top of page

Physics 105 Analytic Mechanics (Zi Qiu):

Jerry B. Marion & Stephen T. Thorton, Classical Dynamics of Particles and Systems

​

Other Book:

L. D. Landau & E. M. Lifshitz, Mechanics

Alexei Deriglazov, Classical Mechanics: Hamiltonian and Lagrangian Formalism

 

Physics 110A Electromagneticism and Optics (Liang Dai): 

David J. Griffiths, Introduction to Electrodynamics 

John David Jackson, Classical Electrodynamics

 

Other Book:

Andrew Zangwill, Modern Electrodynamics

​

Physics 112 Introduction to Statistical and Thermal Physics (Austin Hedeman):

Daniel V. Schroeder, An Introduction to Thermal Physics

Charles Kittel & Herbert Kroemer, Thermal Physics

Frederick Reif, Fundamentals of Statistical and Thermal Physics

​

Physics 137A Quantum Mechanics (Irfan Siddiqi):

David J. Griffiths, Introduction to Quantum Mechanics

B.H. Bransden & C.J. Joachain, Quantum Mechanics

​

Other Book:

Peter Woit, Quantum Theory, Groups and Representations: An Introduction

L. D. Landau & E. M. Lifshitz, Quantum Mechanics

​

Physics 139 Special Relativity and General Relativity (Lawrence Hall):

James B. Hartle, Gravity: An Introduction to Einstein's General Relativity

Bernard Schutz, A First Course in General Relativity

Sean M. Carroll, Spacetime and Geometry: An Introduction to General Relativity

​

Physics 151 Special Topic: Quantum Field Theory (Hitoshi Murayama):

​

Physics 205A Advanced Dynamics (Edgar Knobloch):

J.V. José & E.J. Saletan, Classical Dynamics, A Contemporary Approach

​

Physics 231 General Relativity (Yasunori Nomura):

Robert M. Wald, General Relativity

​

Physics 233A Standard Model and Beyond I (Ben Safdi):

Michael E. Peskin & Daniel V. Schroeder, An Introduction to Quantum Field Theory

Matthew D. Schwartz, Quantum Field Theory and the Standard Model

Stuart Raby, Introduction to the Standard Model and Beyond: Quantum Field Theory, Symmetries and Phenomenology

​

Several Courses:

Moataz H. Eman, Covariant Physics: From Classical Mechanics to General Relativity and Beyond

​

​

​

​

Physics 105 Analytic Mechanics:

David Morin The Lagrangian Method

S. Widnall & J. Peraire MIT 16.07 Dynamics Fall 2008 Lecture L5 - Other Coordinate System

David Kunbiznˇák, PSI Study Text: Theoretical Mechanics

 

Physics 110A Electromagneticism and Optics: 

David Tong Electromagneticism

The Spherical Harmonics

​

Physics 112 Introduction to Statistical and Thermal Physics:

David Tong Statistical Physics

David Tong Statistical Field Theory

Mehran Kardar, MIT 8.333 Statistical Mechanics I: Statistical Mechanics of Particles, Fall 2013

Laws of Thermaldynamics, Wikipedia

​

Physics 137A Quantum Mechanics:

Robert Littlejohn's Physics 221AB Quantum Mechanics Lecture Recordings and Notes

​

Physics 139 Special Relativity and General Relativity:

Frederick Schuller's Lecture on General Relativity

Frederick Schuller's Lecture on General Relativity Notes

David Tong General Relativity

​

Physics 151 Special Topic: Quantum Field Theory:

​

​

​

Physics 205A Advanced Dynamics:

​

​

​

Physics 231 General Relativity:

​

​

Physics 233A Standard Model and Beyond I:

​

​

​

​

​

​

​

Differential Geometry and Lie Groups for Physicists, Marián Fecko

David Tong Statistical Mechanics Note Ch. 1 - Ch. 3, https://www.damtp.cam.ac.uk/user/tong/statphys.html

Field Theory: Path Integral Approach, Ashok Das,  Ch. 1 - Ch2

PHYSICS 221AB Quantum Mechanics: http://bohr.physics.berkeley.edu/classes/221/2021/221.html Notes 1-11

Griffiths QM 7.1 and Section 7.3.0-7.3.1 (problem 7.17)

Feynman Hughes Lectures Vol5, Lec 3-6

​

​

https://www.theoretical-physics.net/dev/index.html

​

​

​

​

https://www.theoretical-physics.net/dev/index.html

​

​

​

​

Spring 2022 Physics Notes (Google Drive)

 

Physics 105 Analytic Mechanics:

105 Notes

​

Lecture 4 Newtonian Mechanics

Lecture 6 Damped Oscillator & Forced Oscillator

Lecture 7 Gravitation

Lecture 8 Gravitational Field, Force, & Potential

Lecture 9 Gravitational Potential & Energy

Lecture 9 Variations

Lecture 11 Variations

Lecture 11 Construction of Lagrangian

Lecture 12 Lagrangian and Three Examples

Lecture 13 Derivation of Hamiltonian, Equation of Moti0n, & Poisson Bracket

Lecture 14 Hamiltonian, Equations of Motion, Conservation of Momentum

​

​

Physics 110A Electromagneticism and Optics: 

Instructor Liang Dai's Lecture Notes 1 Mathematics

Instructor Liang Dai's Lecture Notes 2 Electrostatics

​

110A March 8 Multipole Expansion

110A March 10 Polarization, Bound Charge

110A March 15 Polarization, Electric Displacement Vector

110A March 29 Electric Displacement, Linear Dielectric

​

​

Physics 112 Introduction to Statistical and Thermal Physics:

112 Lec 1

​

Physics 137A Quantum Mechanics:

Griffiths QM 3 Formalism

137A Lec 1

137A Lec 2

​

137A Feb 28

137A Mar 2

137A Mar 7

137A Mar 9

137 A Mar 11; 137A Mar 11 Second; 137A Mar 11 Second 2

137A Mar 14; 137A Mar 14 Second

137A Mar 16; 137A Mar 16 Second

137A Mar 18; 137A Mar 18 Second; 137A Mar 18 Third

137A Mar 11-18 Third

​

​

​

​

Physics 139 Special Relativity and General Relativity:

​

​

Physics 205A Advanced Dynamics:

205 Lec2

205 Lec3

205 Lec6

205 Lec8

205 Lec9

205 Lec10

​

205 Dis Jan 25

205 Dis Feb 1

205 Dis Feb 15

​

Physics 231 General Relativity:

​

​

Physics 233A Standard Model and Beyond I (Audit):

233A Lec 1

233A Lec 2

233A Lec 3

233A Lec 4

233A Lec 5

233A Lec 6

233A Feb 14

233A Feb 16

233A Feb 25

233A Feb 28

233A Mar 4

233A Mar 7

233A Mar 28

233A Apr 4

​

​

Lec 1 Thermodynamics

​

First Law: If A & C systems, B & C systems have the same temperature. A & B systems have the same temperature.

​

Second Law: In an adiabatic process (there is no heat transfer), the work chance is equal to the (final E - initial E). If there is heat transfer, ∆Q = (Final E - Initial E) - ∆W

​

In differential form

dE(\vec(x))          =        \bar(d) W + \bar(d) Q

Depends on state         Depend on path

​

Quasistatic: Slow (slow enough to maintain equilibrium)

​

Pull a string sufficient slowly that the string does not start to vibrate (Too rapidly -> oscillating)

Calculate the amount of work

\bar(W) = \Sigma_i J_i dx_i 

\Sigma_i Generalized Force

\dx_i Generalized Path

​

​

                      x.       J

wire(1d)        L.      F

film(2d)        A.      \sigma (surface tension)

gas(3d).        V.      -P

Magnet.       M.      B.

 

x - extensive 

J - intensive

 

\bar(d)W = \Sigma J_i dx_i 

\bar(d)Q = ?

--

dE = \Sigma_i J_i dx_i + ?

​

Ideal gas scale:

​

Heat capacity C_{path}= \bar(d)Q_{path}/dT  \bar -> dependent on path

C_v C_p

​

C_v = \bar(d)Q_v/dT = (dE + PdV_v)/dT = ∂E/∂T|_v No mechanic work is done

C_p = \bar(d)Q_p/dT = (dE + PdV_p)/dT = ∂E/∂T|_p + P(∂V/∂T)|_p

​

​

Expansion ideal gas

​

A gas that is adiabatically isolated.

From a chamber to both chambers.

T_f = T_i = T

​

∆Q = 0 = ∆W -> ∆E

​

Pressure and volume certainly changed when it goes from one chamber to both chambers.

Ideal gas 

​

E(P, V) = E(T, V)

​

​

C_p - C_v = PV/T = N k_b

k_B = 1.4 * 10^{-23}

​

​

Lec2 Thermodynamics

​

RECAP

​

A. Equilibrium (x_i, J_i)

​

x_i generalized displacement

J_i generalized force 

​

​

Ideal Gas

(V, -P)

​

Where does it lie in the PV-Plane

​

B. 0th Laws (Transitive of Equilibrium) If two objects are in equilibrium with the third object they are also in equilibrium with each other

​

\Theta(x_i, J_i) = \Theta'(x_i', J_i')

The equilibrium has to be the same

Like a balance

​

(V, -P) 

PV = \Theta (constant)

​

C. 1st laws 

​

Adiabatic 

​

The amount of the work is only dependent on the initial and final state. 

​

Conversation of Energy 

​

\exist E(x_i, J_i)

​

dE = \bar(d)W+ \bar(d)Q

​

dE only depends on the state

​

\bar(d) blah depends on the path

​

Doole's free expansion

​

Isolate two gases into two chambers

​

Initial the gas is completely isolated on one side

Final the gas is on both sides

​

T_f = T_i

​

E must only be a product of PV

​

P changes V changes

But PV is constant

​

NEW

​

Quasistatic: slow enough:

\bar(d) W = \Sigma_i J_i dx_i (when the spring is pulled slowly aka. without vibrations)

 

mechanical equilibrium J is the same

​

\bar(d) Q = 

​

temperature for measuring thermal equilibrium

​

the conjugate? Entropy

​

Student Qs: 

[The equilibrium is ideal

[The adiabatic process is ideal

​

D. 2nd law

​

Heat <- -> Work

​

Engine

​

Hot

    | Q_H

   V

Engine -> W

    | Q_C

   V

Cold

​

Efficiency

​

\ita = W/Q_H = (Q_H - Q_C)/Q_H < 1

​

​

Reverse Refrigerator

​

Performance 

\omega = Q_c / W = Q_c / (Q_H - Q_c)

​

Kelvin: No process is possible whose sole result is complete conversion of heat to work.

(No idea engine, \ita < 1)

​

Clausius: No process is possible whose sole result is transfer of heat from colder to  hotter body. (No ideal refrigerator)

​

E. Carnot Engine is any engine that is 

  (1) Reversible: Can go forward/backward by reversing input/output (frictionless)

  (2) Operates in cycle (start and endpoints are the same)

  (3) All heat input and output at 2 temperature 

​

​

​

​

​

​

​

​

​

​

​

​

​

​

​

​

​

​

 

bottom of page