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Vector Formulas 

a-(b X c) = b-(c X a) = ec: (a X D) 

a X (b X c) = (a-c)b — (a- b)e 

(a x b)- (ce X d) = (a- c)(b- d) — (a- d)(b- c) 

V x Vw = 0 

V-(V xa) =0 

Vx(V xa) = VW(V-a) — Va 

V-(wa)=a-Vi+ WV-a 

Vx (wa) = Vp xatYVxa 

V(a-b) = (a: V)b + (b- V)at+ ax (V xX b) + b x (V X a) 

V-(a x b) =b-(V X a) —a-(V Xb) 

V x (a X b) = a(V - b) — D(V- a) + (b- V)a — (a- V)b 

If x is the coordinate of a point with respect to some origin, with magnitude 

r = |x|, m = x/r is a unit radial vector, and f(r) is a well-behaved function of r, 
then 

Vex =3 Vxx=-0 

of 
V x [nf(r)] = 0 V+ [nf(r)] = =f + or 

(a> V)nf(r) = ae [a — n(a-n)] + n(a-n) al 
V(x-a) =a+x(V-a) + i(L X a) 

where L = i (x x V) is the angular-momentum operator. 



Theorems from Vector Calculus 

In the following ¢, w, and A are well-behaved scalar or vector functions, V is a 

three-dimensional volume with volume element d’x, S is a closed two- 
dimensional surface bounding V, with area element da and unit outward normal 

n at da. 

(Divergence theorem) [v-ade= | A-nda 

I, Vw d’x = [ ym da 

[vx ady=| nx ada 

(Green’s first identity) [, @veu+ ve-Wy dx = | on. vy da 

(Green’s theorem) I, (PV'p — Wd) d’x = [ (PV — YV¢) +n da 

Inthe following S is an open surface and C is the contour bounding it, with line 

element dl. The normal n to S is defined by the right-hand-screw rule in relation 

to the sense of the line integral around C. 

(Stokes’s theorem) [ox ayenda= Add 

[in x Vida = b wal 
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Preface 

It has been 36 years since the appearance of the first edition of this book, and 23 
years since the second. Such intervals may be appropriate for a subject whose 
fundamental basis was completely established theoretically 134 years ago by 
Maxwell and experimentally 110 years ago by Hertz. Still, there are changes in 
emphasis and applications. This third edition attempts to address both without 
any significant increase in size. Inevitably, some topics present in the second 
edition had to be eliminated to make room for new material. One major omission 
is the chapter on plasma physics, although some pieces appear elsewhere. Read- 
ers who miss particular topics may, I hope, be able to avail themselves of the 
second edition. 

The most visible change is the use of SI units in the first 10 chapters. Gaussian 

units are retained in the later chapters, since such units seem more suited to 

relativity and relativistic electrodynamics than SI. As a reminder of the sys- 

tem of units being employed, the running head on each left-hand page carries 

““__ST’ or “—G” depending on the chapter. 

My tardy adoption of the universally accepted SI system is a recognition that 

almost all undergraduate physics texts, as well as engineering books at all levels, 

employ SI units throughout. For many years Ed Purcell and I had a pact to 

support each other in the use of Gaussian units. Now I have betrayed him! Al- 

though this book is formally dedicated to the memory of my father, I dedicate 

this third edition informally to the memory of Edward Mills Purcell (1912-1997), 

a marvelous physicist with deep understanding, a great teacher, and a wonderful 

man. 

Because of the increasing use of personal computers to supplement analytical 

work or to attack problems not amenable to analytic solution, I have included 

some new sections on the principles of some numerical techniques for electro- 

statics and magnetostatics, as well as some elementary problems. Instructors may 

use their ingenuity to create more challenging ones. The aim is to provide an 

understanding of such methods before blindly using canned software or even 

Mathematica or Maple. 

There has been some rearrangement of topics—Faraday’s law and quasi- 

static fields are now in Chapter 5 with magnetostatics, permitting a more logical 

discussion of energy and inductances. Another major change is the consolidation 
of the discussion of radiation by charge-current sources, in both elementary and 
exact multipole forms, in Chapter 9. All the applications to scattering and dif- 
fraction are in Chapter 10. 

The principles of optical fibers and dielectric waveguides are discussed in two 
new sections in Chapter 8. In Chapter 13 the treatment of energy loss has been 

shortened and strengthened. Because of the increasing importance of synchro- 

tron radiation as a research tool, the discussion in Chapter 14 has been aug- 

mented by a detailed section on the physics of wigglers and undulators for syn- 

chroton light sources. There is new material in Chapter 16 on radiation reaction 

and models of classical charged particles, as well as changed emphasis. 

There is much tweaking by small amounts throughout. I hope the reader will 
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Vili Preface 

not notice, or will notice only greater clarity. To mention but a few minor addi- 

tions: estimating self-inductances, Poynting’s theorem in lossy materials, polar- 

ization potentials (Hertz vectors), Goos-Hanchen effect, attenuation in optical 

fibers, London penetration depth in superconductors. And more-problems, of 

course! Over 110 new problems, a 40% increase, all aimed at educating, not 

discouraging. 

In preparing this new edition and making corrections, I havé benefited from 

questions, suggestions, criticism, and advice from many students, colleagues, and 

newfound friends. I am in debt to all. Particular thanks for help in various ways 

go to Myron Bander, David F. Bartlett, Robert N. Cahn, John Cooper, John L. 

Gammel, David J. Griffiths, Leroy T. Kerth, Kwang J. Kim, Norman M. Kroll, 

Michael A. Lee, Harry J. Lipkin, William Mendoza, Gerald A. Miller, William 

A. Newcomb, Ivan Otero, Alan M. Portis, Fritz Rohrlich, Wayne M. Saslow, 

Chris Schmid, Kevin E. Schmidt, and George H. Trilling. 

J. David Jackson 

Berkeley, California, 1998, 2001 



Preface to the Second Edition 

In the thirteen years since the appearance of the first edition, my interest in 
classical electromagnetism has waxed and waned, but never fallen to zero. The 
subject is ever fresh. There are always important new applications and examples. 
The present edition reflects two efforts on my part: the refinement and improve- 
ment of material already in the first edition; the addition of new topics (and the 
omission of a few). 

The major purposes and emphasis are still the same, but there are extensive 

changes and additions. A major augmentation is the ‘Introduction and Survey” 

at the beginning. Topics such as the present experimental limits on the mass of 

the photon and the status of linear superposition are treated there. The aim is to 

provide a survey of those basics that are often assumed to be well known when 

one writes down the Maxwell equations and begins to solve specific examples. 

Other major changes in the first half of the book include a new treatment of the 

derivation of the equations of macroscopic electromagnetism from the micro- 

scopic description; a discussion of symmetry properties of mechanical and elec- 

tromagnetic quantities; sections on magnetic monopoles and the quantization 

condition of Dirac; Stokes’s polarization parameters; a unified discussion of the 

frequency dispersion characteristics of dielectrics, conductors, and plasmas; a dis- 

cussion of causality and the Kramers-Kronig dispersion relations; a simplified, 

but still extensive, version of the classic Sommerfeld—Brillouin problem of the 

arrival of a signal in a dispersive medium (recently verified experimentally); an 

unusual example of a resonant cavity; the normal-mode expansion of an arbitrary 

field in a wave guide; and related discussions of sources in a guide or cavity and 

the transmission and reflection coefficients of flat obstacles in wave guides. 

Chapter 9, on simple radiating systems and diffraction, has been enlarged to 

include scattering at long wavelengths (the blue sky, for example) and the optical 
theorem. The sections on scalar and vectorial diffraction have been improved. 

Chapters 11 and 12, on special relativity, have been rewritten almost com- 

pletely. The old pseudo-Euclidean metric with x, = ict has been replaced by 

g”” (with g° = +1, g’ = —1,i = 1, 2, 3). The change of metric necessitated a 
complete revision and thus permitted substitution of modern experiments and 
concerns about the experimental basis of the special theory for the trme-honored 

aberration of starlight and the Michelson—Morley experiment. Other aspects 

have been modernized, too. The extensive treatment of relativistic kinematics of 

the first edition has been relegated to the problems. In its stead is a discussion 

of the Lagrangian for the electromagnetic fields, the canonical and symmetric 

stress-energy tensor, and the Proca Lagrangian for massive photons. 

Significant alterations in the remaining chapters include a new section on 

transition radiation, a completely revised (and much more satisfactory) semi- 

classical treatment of radiation emitted in collisions that stresses momentum 

transfer instead of impact parameter, and a better derivation of the coupling of 

multipole fields to their sources. The collection of formulas and page references 

to special functions on the front and back fiyleaves is a much requested addition. 

Of the 278 problems, 117 (more than 40 per cent) are new. 
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X Preface to the Second Edition 

The one area that remains almost completely unchanged is the chapter on 
magnetohydrodynamics and plasma physics. I regret this. But the book obviously 
has grown tremendously, and there are available many books devoted exclusively 
to the subject of plasmas or magnetohydrodynamics. 

Of minor note is the change from Maxwell’s equations and a Green’ s func- 
tion to the Maxwell equations and a Green function. The latter boggles some 

minds, but is in conformity with other usage (Bessel function, for example). It is 

still Green’s theorem, however, because that’s whose theorem it is 

Work on this edition began in earnest during the first half of 1970 on the 

occasion of a sabbatical leave spent at Clare Hall and the Cavendish Laboratory 

in Cambridge. I am grateful to the University of California for the leave and 

indebted to N. F. Mott for welcoming me as a visitor to the Cavendish Laboratory 

and to R. J. Eden and A. B. Pippard for my appointment as a Visiting Fellow of 

Clare Hall. Tangible and intangible evidence at the Cavendish of Maxwell, Ray- 

leigh and Thomson provided inspiration for my task; the stimulation of everyday 

activities there provided necessary diversion 

This new edition has benefited from questions, suggestions, comments and 

criticism from many students, colleagues, and strangers. Among those to whom 

I owe some specific debt of gratitude are A. M. Bincer, L. S. Brown, R. W. Brown 

E. U. Condon, H. H. Denman, S. Deser, A. J. Dragt, V. L. Fitch, M. B. Halpern 

A. Hobson, J. P. Hurley, D. L. Judd, L. T. Kerth, E. Marx, M. Nauenberg, A. B 

Pippard, A. M. Portis, R. K. Sachs, W. M. Saslow, R. Schleif, V. L. Telegdi, T 

Tredon, E. P. Tryon, V. F. Weisskopf, and Dudley Williams. Especially helpful 

were D. G. Boulware, R. N. Cahn, Leverett Davis, Jr K. Gottfried, C. K. Gra- 

ham, E. M. Purcell, and E. H. Wichmann. I send my thanks and fraternal greet- 

ings to all of these people, to the other readers who have written to me, and the 

countless students who have struggled with the problems (and sometimes written 
asking for solutions to be dispatched before some deadline!). To my mind, the 
book is better than ever. May each reader benefit and enjoy! 

J. D. Jackson 

Berkeley, California, 1974 



Preface to the First Edition 

Classical electromagnetic theory, together with classical and quantum mechanics, 
forms the core of present-day theoretical training for undergraduate and grad- 

uate physicists. A thorough grounding in these subjects is a requirement for more 

advanced or specialized training. 

Typically the undergraduate program in electricity and magnetism involves 

two or perhaps three semesters beyond elementary physics, with the emphasis 

on the fundamental laws, laboratory verification and elaboration of their con- 

sequences, circuit analysis, simple wave phenomena, and radiation. The mathe- 

matical tools utilized include vector calculus, ordinary differential equations with 

constant coefficients, Fourier series, and perhaps Fourier or Laplace transforms, 

partial differential equations, Legendre polynomials, and Bessel functions. 

As a general rule, a two-semester course in electromagnetic theory is given 

to beginning graduate students. It is for such a course that my book is designed. 

My aim in teaching a graduate course in electromagnetism is at least threefold. 

The first aim is to present the basic subject matter as a coherent whole, with 

emphasis on the unity of electric and magnetic phenomena, both in their physical 

basis and in the mode of mathematical description. The second, concurrent aim 

is to develop and utilize a number of topics in mathematical physics which are 

useful in both electromagnetic theory and wave mechanics. These include 

Green’s theorems and Green’s functions, orthonormal expansions, spherical har- 
monics, cylindrical and spherical Bessel functions. A third and perhaps most 
important purpose is the presentation of new material, especially on the inter- 

action of relativistic charged particles with electromagnetic fields. In this last area 

personal preferences and prejudices enter strongly. My choice of topics is gov- 
erned by what I feel is important and useful for students interested in theoretical 
physics, experimental nuclear and high-energy physics, and that as yet ill-defined 

field of plasma physics. 

The book begins in the traditional manner with electrostatics. The first six 

chapters are devoted to the development of Maxwell’s theory of electromagne- 

tism. Much of the necessary mathematical apparatus is constructed along the way, 

especially in Chapter 2 and 3, where boundary-value problems are discussed 

thoroughly. The treatment is initially in terms of the electric field E and the 

magnetic induction B, with the derived macroscopic quantities, D and H, intro- 

duced by suitable averaging over ensembles of atoms or molecules. In the dis- 

cussion of dielectrics, simple classical models for atomic polarizability are de- 

scribed, but for magnetic materials no such attempt to made. Partly this omission 

was a question of space, but truly classical models of magnetic susceptibility are 

not possible. Furthermore, elucidation of the interesting phenomenon of ferro- 

magnetism needs almost a book in itself. 

The next three chapters (7—9) illustrate various electromagnetic phenomena, 

mostly of a macroscopic sort. Plane waves in different media, including plasmas 
as well as dispersion and the propagation of pulses, are treated in Chapter 7. The 

discussion of wave guides and cavities in Chapter 8 is developed for systems of 

arbitrary cross section, and the problems of attenuation in guides and the Q of 
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a cavity are handled in a very general way which emphasizes the physical pro- 

cesses involved. The elementary theory of multipole radiation from a localized 
source and diffraction occupy Chapter 9. Since the simple scalar theory of dif- 

fraction is covered in many optics textbooks, as well as undergraduate books on 

electricity and magnetism, I have presented an improved, although still approx- 

imate, theory of diffraction based on vector rather than scalar Green’s theorems. 

The subject of magnetohydrodynamics and plasmas recefves increasingly 

more attention from physicists and astrophysicists. Chapter 10 represents a sur- 

vey of this complex field ‘with an introduction to the main physical ideas involved. 

The first nine or ten chapters constitute the basic material of classical elec- 

tricity and magnetism. A graduate student in physics may be expected to have 

been exposed to much of this material, perhaps at a somewhat lower level, as an 

undergraduate. But he obtains a more mature view of it, understands it more 

deeply, and gains a considerable technical ability in analytic methods of solution 

when he studies the subject at the level of this book. He is then prepared to go 

on to more advanced topics. The advanced topics presented here are predomi- 

nantly those involving the interaction of charged particles with each other and 
with electromagnetic fields, especially when moving relativistically. 

The special theory of relativity had its origins in classical electrodynamics. 
And even after almost 60 years, classical electrodynamics still impresses and de- 
lights as a beautiful example of the covariance of physical laws under Lorentz 

transformations. The special theory of relativity is discussed in Chapter 11, where 

all the necessary formal apparatus is developed, various kinematic consequences 

are explored, and the covariance of electrodynamics is established. The next 

chapter is devoted to relativistic particle kinematics and dynamics. Although the 

dynamics of charged particles in electromagnetic fields can properly be consid- 

ered electrodynamics, the reader may wonder whether such things as kinematic 

transformations of collision problems can. My reply is that these examples occur 

naturally once one has established the four-vector character of a particle’s mo- 

mentum and energy, that they serve as useful practice in manipulating Lorentz 

transformations, and that the end results are valuable and often hard to find 

elsewhere. 

Chapter 13 on collisions between charged particles emphasizes energy loss 

and scattering and develops concepts of use in later chapters. Here for the first 

time in the book I use semiclassical arguments based on the uncertainty principle 

to obtain approximate quantum-mechanical expressions for energy loss, etc., 

from the classical results. This approach, so fruitful in the hands of Niels Bohr 

and E. J. Williams, allows one to see clearly how and when quantum-mechanical 

effects enter to modify classical considerations. 

The important subject of emission of radiation by accelerated point charges 

is discussed in detail in Chapters 14 and 15. Relativistic effects are stressed, and 

expressions for the frequency and angular dependence of the emitted radiation 

are developed in sufficient generality for all applications. The examples treated 

range from synchrotron radiation to bremsstrahlung and radiative beta processes. 

Cherenkov radiation and the Weizsacker—Williams method of virtual quanta are 
also discussed. In the atomic and nuclear collision processes semiclassical argu- 
ments are again employed to obtain approximate quantum-mechanical results. I 
lay considerable stress on this point because I feel that it is important for the 
student to see that radiative effects such as bremsstrahlung are almost entirely 
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classical in nature, even though involving small-scale collisions. A student who 
meets bremsstrahlung for the first time as an example of a calculation in quantum 
field theory will not understand its physical basis. 

Multipole fields form the subject matter of Chapter 16. The expansion of 

scalar and vector fields in spherical waves is developed from first principles with 
no restrictions as to the relative dimensions of source and wavelength. Then the 

properties of electric and magnetic multipole radiation fields are considered. 

Once the connection to the multiple moments of the source has been made, 

examples of atomic and nuclear multipole radiation are discussed, as well as a 

macroscopic source whose dimensions are comparable to a wavelength. The scat- 

tering of a plane electromagnetic wave by a spherical object is treated in some 

detail in order to illustrate a boundary-value problem with vector spherical 

waves. 

In the last chapter the difficult problem of radiative reaction is discussed. 

The treatment is physical, rather than mathematical, with the emphasis on delim- 

iting the areas where approximate radiative corrections are adequate and on 

finding where and why existing theories fail. The original Abraham—Lorentz the- 

ory of the self-force is presented, as well as more recent classical considerations. 

The book ends with an appendix on units and dimensions and a bibliography. 

In the appendix J have attempted to show the logical steps involved in setting up 

a system of units, without haranguing the reader as to the obvious virtues of my 

choice of units. I have provided two tables which I hope will be useful, one for 

converting equations and symbols and the other for converting a given quantity 

of something from so many Gaussian units to so many mks units, and vice versa. 

The bibliography lists books which I think the reader may find pertinent and 
useful for reference or additional study. These books are referred to by author’s 
name in the reading lists at the end of each chapter. 

This book is the outgrowth of a graduate course in classical electrodynamics 

which I have taught off and on over the past eleven years, at both the University 

of Illinois and McGill University. I wish to thank my colleagues and students at 

both institutions for countless helpful remarks and discussions. Special mention 

must be made of Professor P. R. Wallace of McGill, who gave me the opportunity 

and encouragement to teach what was then a rather unorthodox course in elec- 

tromagnetism, and Professors H. W. Wyld and G. Ascoli of Illinois, who have 

been particularly free with many helpful suggestions on the treatment of various 

topics. My thanks are also extended to Dr. A. N. Kaufman for reading and com- 

menting on a preliminary version of the manuscript, and to Mr. G. L. Kane for 

his zealous help in preparing the index. 

J. D. Jackson 

Urbana, Illinois, January, 1962 
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Introduction and Survey 

Although amber and lodestone were known to the ancient Greeks, electro- 
dynamics developed as a quantitative subject in less than a hundred years. 
Cavendish’s remarkable experiments in electrostatics were done from 1771 to 
1773. Coulomb’s monumental researches began to be published in 1785. This 
marked the beginning of quantitative research in electricity and magnetism on a 
worldwide scale. Fifty years later Faraday was studying the effects of time-varying 
currents and magnetic fields. By 1864 Maxwell had published his famous paper 
on a dynamical theory of the electromagnetic field. Twenty-four years later 
(1888) Hertz published his discovery of transverse electromagnetic waves, which 
propagated at the same speed as light, and placed Maxwell’s theory on a firm 

experimental footing. 

The story of the development of our understanding of electricity and mag- 

netism and of light is, of course, much longer and richer than the mention of a 

few names from one century would indicate. For a detailed account of the fas- 

cinating history, the reader should consult the authoritative volumes by 

Whittaker.* A briefer account, with emphasis on optical phenomena, appears at 

the beginning of Born and Wolf. 

Since the 1960s there has been a true revolution in our understanding of the 

basic forces and constituents of matter. Now (1990s) classical electrodynamics 

rests in a sector of the unified description of particles and interactions known as 

the standard model. The standard model gives a coherent quantum-mechanical 

description of electromagnetic, weak, and strong interactions based on funda- 

mental constituents—quarks and leptons—interacting via force carriers—pho- 

tons, W and Z bosons, and gluons. The unified theoretical framework is gener- 

ated through principles of continuous gauge (really phase) invariance of the 

forces and discrete symmetries of particle properties. 

From the point of view of the standard model, classical electrodynamics is a 

limit of quantum electrodynamics (for small momentum and energy transfers, 

and large average numbers of virtual or real photons). Quantum electrodynamics, 

in turn, is a consequence of a spontaneously broken symmetry in a theory in 

which initially the weak and electromagnetic interactions are unified and the 

force carriers of both are massless. The symmetry breaking leaves the electro- 

magnetic force carrier (photon) massless with a Coulomb’s law of infinite range, 

while the weak force carriers acquire masses of the order of 80-90 GeV/c? with 
a weak interaction at low energies of extremely short range (2 < 107 '* meter). 
Because of the origins in a unified theory, the range and strength of the weak 
interaction are related to the electromagnetic coupling (the fine structure con- 
stant a ~ 1/137). 

*Italicized surnames denote books that are cited fully in the Bibliography. 
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Despite the presence of a rather large number of quantities that must be 

taken from experiment, the standard model (together with general relativity at 
large scales) provides a highly accurate description of nature in all its aspects, 
from far inside the nucleus, to microelectronics, to tables and chairs, to the most 
remote galaxy. Many of the phenomena are classical or explicable with nonrel- 
ativistic quantum mechanics, of course, but the precision of the agreement of the 
standard model with experiment in atomic and particle physics wherevelativistic 
quantum mechanics rules is truly astounding. Classical mechanics and classical 
electrodynamics served as progenitors of our current understanding, and still play 

important roles in practical life and at the research frontier. 

This book is self-contained in that, though some mathematical background 

(vector calculus, differential equations) is assumed, the subject of electrodynam- 

ics is developed from its beginnings in electrostatics. Most readers are not coming 

to the subject for the first time, however. The purpose of this introduction is 

therefore not to set the stage for a discussion of Coulomb’s law and other basics, 

but rather to present a review and a survey of classical electromagnetism. Ques- 

tions such as the current accuracy of the inverse square law of force (mass of the 

photon), the limits of validity of the principle of linear superposition, and the 

effects of discreteness of charge and of energy differences are discussed. ‘‘Bread 

and butter’? topics such as the boundary conditions for macroscopic fields at 

surfaces between different media and at conductors are also treated. The aim is 

to set classical electromagnetism in context, to indicate its domain of validity, 

and to elucidate some of the idealizations that it contains. Some results from later 

in the book and some nonclassical ideas are used in the course of the discussion. 

Certainly a reader beginning electromagnetism for the first time will not follow 

all the arguments or see their significance. For others, however, this introduction 

will serve as a springboard into the later parts of the book, beyond Chapter 5, 

and will remind them of how the subject stands as an experimental science. 

I.1 Maxwell Equations in Vacuum, Fields, and Sources 

The equations governing electromagnetic phenomena are the Maxwell 
equations, 

V-D=o0 

dD 
VxH-—=J 

(I.1a) 

oB 
VxE+—=0 

0 

V-B=0 

where for external sources in vacuum, D = e,E and B = poH. The first two 
equations then become 

V-E pleg 
dE (I.1b) 

Vx B-— Mo cat 
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Implicit in the Maxwell equations is the continuity equation for charge density 
and current density, 

dp 
—_— +V-J=0 (1.2) 
0 

This follows from combining the time derivative of the first equation in (I.1a) 
with the divergence of the second equation. Also essential for consideration of 
charged particle motion is the Lorentz force equation, 

F = g(E + v x B) (1.3) 

which gives the force acting on a point charge q in the presence of electromag- 
netic fields. 

These equations have been written in SI units, the system of electromagnetic 
units used in the first 10 chapters of this book. (Units and dimensions are dis- 
cussed in the Appendix.) The Maxwell equations are displayed in the commoner 
systems of units in Table 2 of the Appendix. Essential to electrodynamics is the 
speed of light in vacuum, given in SI units by c = (u€9) "”. As discussed in the 
Appendix, the meter is now defined in terms of the second (based on a hyperfine 
transition in cesium-133) and the speed of light (c = 299 792 458 m/s, exactly). 
These definitions assume that the speed of light is a universal constant, consistent 
with evidence (see Section 11.2.C) indicating that to a high accuracy the speed 
of light in vacuum is independent of frequency from very low frequencies to at 
least vy = 10°* Hz (4 GeV photons). For most practical purposes we can approx- 

imate c ~ 3 X 10° m/s or to be considerably more accurate, c = 2.998 x 10° m/s. 

The electric and magnetic fields E and B in (1.1) were originally introduced 

by means of the force equation (I.3). In Coulomb’s experiments forces acting 

between localized distributions of charge were observed. There it is found useful 

(see Section 1.2) to introduce the electric field E as the force per unit charge. 

Similarly, in Ampére’s experiments the mutual forces of current-carrying loops 

were Studied (see Section 5.2). With the identification of NAqv as a current in a 

conductor of cross-sectional area A with N charge carriers per unit volume mov- 

ing at velocity v, we see that B in (1.3) is defined in magnitude as a force per unit 

current. Although E and B thus first appear just as convenient replacements for 

forces produced by distributions of charge and current, they have other important 

aspects. First, their introduction decouples conceptually the sources from the test 

bodies experiencing electromagnetic forces. If the fields E and B from two source 

distributions are the same at a given point in space, the force acting on a test 

charge or current at that point will be the same, regardless of how different the 

source distributions are. This gives E and B in (J.3) meaning in their own right, 

independent of the sources. Second, electromagnetic fields can exist in regions 

of space where there are no sources. They can carry energy, momentum, and 

angular momentum and so have an existence totally independent of charges and 

currents. In fact, though there are recurring attempts to eliminate explicit ref- 
erence to the fields in favor of action-at-a-distance descriptions of the interaction 

of charged particles, the concept of the electromagnetic field is one of the most 
fruitful ideas of physics, both classically and quantum mechanically. 

The concept of E and B as ordinary fields is a classical notion. It can be 

thought of as the classical limit (limit of large quantum numbers) of a quantum- 

mechanical description in terms of real or virtual photons. In the domain of 



4 Introduction and Survey 

macroscopic phenomena and even some atomic phenomena, the discrete photon 

aspect of the electromagnetic field can usually be ignored or at least glossed over. 

For example, 1 meter from a 100-watt light bulb, the root mean square electric 

field is of the order of 50 V/m and there are of the order of 10’° visible photons/ 
cm*-s. Similarly, an isotropic FM antenna with a power of 100 watts at 10° Hz 
produces an rms electric field of only 0.5 mV/m at a distance of 100 kilometers, 

but this still corresponds to a flux of 10’ photons/cm?-s, of about 10” photons in 
a volume of 1 wavelength cubed (27 m°) at that distance. Ordinarily an apparatus 

will not be sensible to the individual photons; the cumulative effect of many 

photons emitted or absorbed will appear as a continuous, macroscopically ob- 

servable response. Then a completely classical description in terms of the 

Maxwell equations is permitted and is appropriate. 

How is one to decide a priori when a classical description of the electromag- 

netic fields is adequate? Some sophistication is occasionally needed, but the fol- 

lowing is usually a sufficient criterion: When the number of photons involved can 

be taken as large but the momentum carried by an individual photon is small 
compared to the momentum of the material system, then the response of the 
material system can be determined adequately from a classical description of the 
electromagnetic fields. For example, each 10° Hz photon emitted by our FM 
antenna gives it an impulse of only 2.2 X 10° ** Ns. A classical treatment is surely 
adequate. Again, the scattering of light by a free electron is governed by the 
classical Thomson formula (Section 14.8) at low frequencies, but by the laws of 

the Compton effect as the momentum fiw/c of the incident photon becomes sig- 

nificant compared to mc. The photoelectric effect is nonclassical for the matter 

system, since the quasi-free electrons in the metal change their individual ener- 

gies by amounts equal to those of the absorbed photons, but the photoelectric 

current can be calculated quantum mechanically for the electrons using a classical 

description of the electromagnetic fields. 

The quantum nature of the electromagnetic fields must, on the other hand, 

be taken into account in spontaneous emission of radiation by atoms, or by any 

other system that initially lacks photons and has only a small number of photons 

present finally. The average behavior may still be describable in essentially clas- 

sical terms, basically because of conservation of energy and momentum. An ex- 

ample is the classical treatment (Section 16.2) of the cascading of a charged 

particle down through the orbits of an attractive potential. At high particle quan- 

tum numbers, a classical description of particle motion is adequate, and the sec- 

ular changes in energy and angular momentum can be calculated classically from 

the radiation reaction because the energies of the successive photons emitted are 

small compared to the kinetic or potential energy of the orbiting particle. 

The sources in (I.1) are p(x, t), the electric charge density, and J(x, f), the 

electric current density. In classical electromagnetism they are assumed to be 

continuous distributions in x, although we consider from time to time localized 

distributions that can be approximated by points. The magnitudes of these point 
charges are assumed to be completely arbitrary, but are known to be restricted 
in reality to discrete values. The basic unit of charge is the magnitude of the 
charge on the electron, 

ige| = 4.803 206 8(15) x 107! esu 

= 1.602 177 33(49) x 10°" C 
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where the errors in the last two decimal places are shown in parentheses. The 

charges on the proton and on all presently known particles or systems of particles 
are integral multiples of this basic unit.* The experimental accuracy with which 

it is known that the multiples are exactly integers is phenomenal (better than 1 

part in 10°). The experiments are discussed in Section 11.9, where the question 

of the Lorentz invariance of charge is also treated. 

The discreteness of electric charge does not need to be considered in most 

macroscopic applications. A 1-microfarad capacitor at a potential of 150 volts, 

for example, has a total of 10'° elementary charges on each electrode. A few 

thousand electrons more or less would not be noticed. A current of 1 microam- 

pere corresponds to 6.2 X 10’? elementary charges per second. There are, of 

course, some delicate macroscopic or almost macroscopic experiments in which 

the discreteness of charge enters. Millikan’s famous oil drop experiment is one. 

His droplets were typically 10~* cm in radius and had a few or few tens of ele- 

mentary charges on them. 

There is a lack of symmetry in the appearance of the source terms in the 

Maxwell equations (I.1a). The first two equations have sources; the second two 

do not. This reflects the experimental absence of magnetic charges and currents. 

Actually, as is shown in Section 6.11, particles could have magnetic as well as 

electric charge. If all particles in nature had the same ratio of magnetic to electric 

charge, the fields and sources could be redefined in such a way that the usual 

Maxwell equations (I.1a) emerge. In this sense it is somewhat a matter of con- 

vention to say that no magnetic charges or currents exist. Throughout most of 
this book it is assumed that only electric charges and currents act in the Maxwell 
equations, but some consequences of the existence of a particle with a different 
magnetic to electric charge ratio, for example, a magnetic monopole, are de- 
scribed in Chapter 6. 

\ 

1.2 Inverse Square Law or the Mass of the Photon 

The distance dependence of the electrostatic law of force was shown quantita- 

tively by Cavendish and Coulomb to be an inverse square law. Through Gauss’s 

law and the divergence theorem (see Sections 1.3 and 1.4) this leads to the first 

of the Maxwell equations (I.1b). The original experiments had an accuracy of 

only a few percent and, furthermore, were at a laboratory length scale. Experi- 

ments at higher precision and involving different regimes of size have been per- 

formed over the years. It is now customary to quote the tests of the inverse square 

law in one of two ways: 

(a) Assume that the force varies as 1/r2*€ and quote a value or limit for e. 

(b) Assume that the electrostatic potential has the “Yukawa” form (see Section 
12.8), r~'e-“" and quote a value or limit for w or w~’. Since w = my,c/h, 
where m, is the assumed mass of the photon, the test of the inverse square 

law is sometimes phrased in terms of an upper limit on m,. Laboratory 

experiments usually give € and perhaps yw or my; geomagnetic experiments 

give w or m,,. 

*Quarks have charges %4 and —¥ in these units, but are never (so far) seen individually. 
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Figure I.1 Cavendish’s apparatus for establishing the inverse square law of 

electrostatics. Top, facsimile of Cavendish’s own sketch; bottom, line drawing by a 

draughtsman. The inner globe is 12.1 inches in diameter, the hollow pasteboard 

hemispheres slightly larger. Both globe and hemispheres were covered with tinfoil ‘“‘to 

make them the more perfect conductors of electricity.” (Figures reproduced by 

permission of the Cambridge University Press.) 
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The original experiment with concentric spheres by Cavendish* in 1772 gave 

an upper limit on € of |e| < 0.02. His apparatus is shown in Fig. I.1.: About 100 

years later Maxwell performed a very similar experiment at Cambridge’ and set 

an upper limit of |e| <= 5 x 107°. Two other noteworthy laboratory experiments 

based on Gauss’s law are those of Plimpton and Lawton,‘ which gave |e| < 2 x 

10~°, and the recent one of Williams, Faller, and Hill. A schematic drawing of 
the apparatus of the latter experiment is shown in Fig. I.2. Though not a static 

experiment (v = 4 X 10° Hz), the basic idea is almost the same as Cavendish’s. 
He looked for a charge on the inner sphere after it had been brought into elec- 

trical contact with the charged outer sphere and then disconnected; he found 

none. Williams, Faller, and Hill looked for a voltage difference between two 

concentric shells when the outer one was subjected to an alternating voltage of 

+10 kV with respect to ground. Their sensitivity was such that a voltage differ- 

ence of less than 107! V could have been detected. Their null result, when 
interpreted by means of the Proca equations (Section 12.8), gives a limit of 

€ = (2.7 + 3.1) x 107% 
Measurements of the earth’s magnetic field, both on the surface and out from 

the surface by satellite observation, permit the best direct limits to be set on € or 

equivalently the photon mass m,. The geophysical and also the laboratory ob- 

servations are discussed in the reviews by Kobzarev and Okun’ and by Goldhaber 
and Nieto, listed at the end of this introduction. The surface measurements of 

the earth’s magnetic field give slightly the best value (see Problem 12.15), namely, 

m, <4 X 107" kg 

or 

p } > 108m 

For comparison, the electron mass is m, = 9.1 X 10-*' kg. The laboratory 
experiment of Williams, Faller, and Hill can be interpreted as setting a limit 

m, < 1.6 X 10~*° kg, only a factor of 4 poorer than the geomagnetic limit. 

A rough limit on the photon mass can be set quite easily by noting the ex- 

istence of very low frequency modes in the earth-ionosphere resonant cavity 

(Schumann resonances, discussed in Section 8.9). The double Einstein relation, 
— 

= hv m,c?, suggests that the photon mass must satisfy an inequality, m, < 

hvp/c2, where v is any electromagnetic resonant frequency. The lowest Schumann 

resonance has vp) = 8 Hz. From this we calculate m, < 6 X 10-°° kg, a very small 
value only one order of magnitude above the best limit. While this argument has 

crude validity, more careful consideration (see Section 12.8 and the references 

given there) shows that the limit is roughly (R/H)"” = 10 times larger, R ~ 6400 
km being the radius of the earth, and H ~ 60 km being the height of the iono- 

*H. Cavendish, Electrical Researches, ed. J. C. Maxwell, Cambridge University Press, Cambridge 
(1879), pp. 104-113. 

tIbid., see note 19. 

*S, J. Plimpton and W. E. Lawton, Phys. Rev. 50, 1066 (1936). 

SE. R. Williams, J. E. Faller, and H. A. Hill, Phys. Rev. Lett. 26, 721 (1971). 
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Figure I.2 Schematic diagram of the “Cavendish” experiment of Williams, Faller, and 

Hill. The concentric icosahedrons are conducting shells. A 4 MHz voltage of 10 kV 

peak is applied between shells 5 and 4. Shell 4 and its contiguous shells 2 and 3 are 

roughly 1.5 meters in diameter and contain shell 1 inside. The voltage difference 

between shells 1 and 2 (if any) appears across the inductor indicated at about 8 o’clock 

in shell 1. The amplifier and optics system are necessary to extract the voltage 

information to the outside world. They are equivalent to Cavendish’s system of strings 

that automatically opened the hinged hemispheres and brought up the pith balls to test 

for charge on the inner sphere. (Figure reproduced with permission of the authors.) 
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sphere.* In spite of this dilution factor, the limit of 10~** kg set by the mere 
existence of Schumann resonances is quite respectable. 

The laboratory and geophysical tests show that on length scales of order 10-2 
to 10’ m, the inverse square law holds with extreme precision. At smaller dis- 
tances we must turn to less direct evidence often involving additional assump- 
tions. For example, Rutherford’s historical analysis of the scattering of alpha 
particles by thin foils substantiates the Coulomb law of force down to distances 
of the order of 107 "* m, provided the alpha particle and the nucleus can be treated 
as classical point charges interacting statically and the charge cloud of the elec- 
trons can be ignored. All these assumptions can be, and have been, tested, of 
course, but only within the framework of the validity of quantum mechanics, 
linear superposition (see below), and other (very reasonable) assumptions. At 
still smaller distances, relativistic quantum mechanics is necessary, and strong 
interaction effects enter to obscure the questions as well as the answers. Never- 
theless, elastic scattering experiments with positive and negative electrons at cen- 
ter of mass energies of up to 100 GeV have shown that quantum electrodynamics 
(the relativistic theory of point electrons interacting with massless photons) holds 
to distances of the order of 10~'* m. We conclude that the photon mass can be 
taken to be zero (the inverse square force law holds) over the whole classical 
range of distances and deep into the quantum domain as well. The inverse square 

law is known to hold over at least 25 orders of magnitude in the length scale! 

1.3 Linear Superposition 

The Maxwell equations in vacuum are /inear in the fields E and B. This linearity 

is exploited so often, for example, with hundreds of different telephone conver- 

sations on a single microwave link, that it is taken for granted. There are, of 

course, circumstances where nonlinear effects occur—in magnetic materials, in 

crystals responding to intense laser beams, even in the devices used to put those 

telephone conversations on and off the microwave beam. But here we are con- 

cerned with fields in vacuum or the microscopic fields inside atoms and nuclei. 

What evidence do we have to support the idea of linear superposition? At 

the macroscopic level, all sorts of experiments test linear superposition at the 

level of 0.1% accuracy—groups of charges and currents produce electric and 

magnetic forces calculable by linear superposition, transformers perform as ex- 

pected, standing waves are observed on transmission lines—the reader can make 

a list. In optics, slit systems show diffraction patterns; x-ray diffraction tells us 

about crystal structure; white light is refracted by a prism into the colors of the 
rainbow and recombined into white light again. At the macroscopic and even at 
the atomic level, linear superposition is remarkably valid. 

It is in the subatomic domain that departures from linear superposition can 

be legitimately sought. As charged particles approach each other very closely, 

electric field strengths become enormous. If we think of a charged particle as a 

*The basic point is that, to the extent that H/R is negligible, the extremely low frequency (ELF) 

propagation is the same as in a parallel plate transmission line in the fundamental TEM mode. This 

propagation is unaffected by a finite photon mass, except through changes in the static capacitance 

and inductance per unit length. Explicit photon mass effects occur in order (H/R) pe. 
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localized distribution of charge, we see that its electromagnetic energy grows 

larger and larger as the charge is localized more and more. In attempting to avoid 

infinite self-energies of point particles, it is natural to speculate that some sort of 

saturation occurs, that field strengths have some upper bound. Such classical 
nonlinear theories have been studied in the past. One well-known example is 

nd magnetic 
~~ 

the theory of Born and Infeld.* The vacuum is given electric a 

permeabilities, 

_ 

€ _ Ho (1.4) 
€o B 

= ; ~ 3 (CB? | 

where b is a maximum field strength. Equation (1.4) is actually a simplification 
proposed earlier by Born alone. It suffices to illustrate the general idea. Fields 
are obviously modified at short distances; all electromagnetic energies are finite. 
But such theories suffer from arbitrariness in the manner of how the nonlinearity 
occurs and also from grave problems with a transition to a quantum theory. 

Furthermore, there is no evidence of this kind of classical nonlinearity. The quan- 
tum mechanics of many-electron atoms is described to high precision by normal 

quantum theory with the interactions between nucleus and electrons and between 

electrons and electrons given by a linear superposition of pairwise potentials (or 
retarded relativistic interactions for fine effects). Field strengths of the order of 

10''-10'’ V/m exist at the orbits of electrons in atoms, while the electric field at 
the edge of a heavy nucleus is of the order of 107! V/m. Energy level differences 
in light atoms like helium, calculated on the basis of linear superposition of elec- 

tromagnetic interactions, are in agreement with experiment to accuracies that 

approach 1 part in 10°. And Coulomb energies of heavy nuclei are consistent 
with linear superposition of electromagnetic effects. It is possible, of course, that 

for field strengths greater than 107’ V/m nonlinear effects could occur. One place 
to look for such effects is in superheavy nuclei (Z > 110), both in the atomic 

energy levels and in the nuclear Coulomb energy.’ At the present time there 

is no evidence for any classical nonlinear behavior of vacuum fields at short 

distances. 

There is a quantum-mechanical nonlinearity of electromagnetic fields that 

arises because the uncertainty principle permits the momentary creation of an 

electron-positron pair by two photons and the subsequent disappearance of the 

pair with the emission of two different photons, as indicated schematically in Fig. 

1.3. This process is called the scattering of light by light.*S The two incident plane 

waves e’**~'" and e'*2'*-‘“2! do not merely add coherently, as expected with 
linear superposition, but interact and (with small probability) transform into two 

different plane waves with wave vectors k, and k,. This nonlinear feature of 

*M. Born and L. Infeld, Proc. R. Soc. London A144, 425 (1934). See M. Born, Atomic Physics, 
Blackie, London (1949), Appendix VI, for an elementary discussion. 

‘An investigation of the effect of a Born-Infeld type of nonlinearity on the atomic energy levels in 
superheavy elements has been made by J. Rafelski, W. Greiner, and L. P. Fulcher, Nuovo Cimento 
13B, 135 (1973). 

*When two of the photons in Fig. 1.3 are virtual photons representing interaction to second order 
with a static nuclear Coulomb field, the process is known as Delbriick scattering. See Section 15.8 of 
J. M. Jauch and F. Rohrlich, The Theory of Photons and Electrons, Addison-Wesley, Reading, MA 
(1955). 



11 Sect. 1.3. Linear Superposition 

et 

en 

et 

e~ 

Figure 1.3 The scattering of light by light. 
k; 

Schematic diagram of the process by which 
ky photon-photon scattering occurs. 

quantum electrodynamics can be expressed, at least for slowly varying fields, in 
terms of electric and magnetic permeability tensors of the vacuum: 

D; = €o > Ex EK, B; = Lo 2 Mirll , 

where 

eG 
€ik Ox + 4.7 [2(E? —_ c7B’)5x + 7 c’B;By| + vee 

45 
(1.5) 

h €G 
ik Mik . 45am 407 [2(c*B? —_ E*)8;x + 7 E.E,,| + cre 

Here é, and m are the charge (in Gaussian units) and mass of the electron. These 

results were first obtained by Euler and Kockel in 1935.* We observe that in the 

classical limit (A — 0), these nonlinear effects go to zero. Comparison with the 

classical Born-Infeld expression (1.4) shows that for small nonlinearities, the 

quantum-mechanical field strength 

& €G 
— 

_ V 457 
—_-_ > 

q 
0.51 <S 

2 he re ro 

~ 
=> plays a role analogous to the Born—Infeld parameter b. Here rp = eG/mc? 

2.8 x 10° m is the classical electron radius and eg/r, = 1.8 X 10”° V/m is the 
electric field at the surface of such a classical electron. Two comments in passing: 

(a) the e, and yw; in (1.5) are approximations that fail for field strengths ap- 

proaching b, or when the fields vary too rapidly in space or time (f/mc setting 

the critical scale of length and %/mc? of time); (b) the chance numerical coinci- 
dence of b, and e,/2r4 is suggestive but probably not significant, since b, involves 
Planck’s constant h. 

In analogy with the polarization P = D — €oE, we speak of the field- 

dependent terms in (1.5) as vacuum polarization effects. In addition to the scat- 

tering of light by light or Delbriick scattering, vacuum polarization causes very 

small shifts in atomic energy levels. The dominant contribution involves a virtual 

electron-positron pair, just as in Fig. 1.3, but with only two photon lines instead 

*H. Euler and B. Kockel, Naturwissenschaften 23, 246 (1935). 
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of four. If the photons are real, the process contributes to the mass of the photon 
and is decreed to vanish. If the photons are virtual, however, as in the electro- 
magnetic interaction between a nucleus and an orbiting electron, or indeed for 

any externally applied field, the creation and annihilation of a virtual electron- 

positron pair from time to time causes observable effects. 

Vacuum polarization is manifest by a modification of the electrostatic inter- 

action between two charges at short distances, described‘as a Streefiing of the 

“bare” charges with distance, or in more modern terms as a ‘“‘running”’ coupling 

constant. Since the charge of a particle is defined as the strength of its electro- 

magnetic coupling observed at large distances (equivalent to negligible momen- 

tum transfers), the presence of a screening action by electron-positron pairs 

closer to the charge implies that the “‘bare” charge observed at short distances 

is larger than the charge defined at large distances. Quantitatively, the lowest 

order quantum-electrodynamic result for the Coulomb potential energy between 

two charges Z,e and Z,e, corrected for vacuum polarization, is 

Vk? — 4m? 2a {~ 2m? 2,22 
—_—_—_——_ — —_ dk V(r) = hie 

2 2 3a 2m 
: ( Je] as 

where a is the fine structure constant (= 1/137), m is the inverse Compton wave- 

length (electron mass, multiplied by c/h). The integral, a superposition of Yukawa 

potentials (e~“’/r) is the one-loop contribution of all the virtual pairs. It increases 

the magnitude of the potential energy at distances of separation inside the elec- 

tron Compton wavelength (f/mc = aay ~ 3.86 X 107 m). 

Because of its short range, the added vacuum polarization energy is unim- 

portant in light atoms, except for very precise measurements. It is, however, 

important in high Z atoms and in muonic atoms, where the heavier mass of the 
muon (m, ~ 207 m.) means that, even in the lightest muonic atoms, the Bohr 
radius is well inside the range of the modified potential. X-ray measurements in 
medium-mass muonic atoms provide a highly accurate verification of the vacuum 
polarization effect in (1.6). 

The idea of a “running” coupling constant, that is, an effective strength of 
interaction that changes with momentum transfer, is illustrated in electromag- 
netism by exhibiting the spatial Fourier transform of the interaction energy (I.6): 

4nZ,Z, a(Q?) 
V(Q’) = (1.7) Q? 

The 1/Q? dependence is characteristic of the Coulomb potential (familiar in 
Rutherford scattering), but now the strength is governed by the so-called running 
coupling constant a(Q*), the reciprocal of which is 

1 1 _Q? [a(Q*)]* = 25/3 (1.8) 
me a(0) 39 ( 

Here a(0) = 1/137. 036... is the fine structure constant, e is the base of natural 
logarithms, and Q? is the square of the wavenumber (momentum) transfer. The 
expression (1.8) is an approximation for large Q*/m?. The running coupling a(Q?) 
increases slowly with increasing Q* (shorter distances); the particles are pene- 
trating inside the cloud of screening electron-positron pairs and experiencing a 
larger effective product of charges. 
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Since the lowest order vacuum polarization energy is proportional to a times 
the external charges, we describe it as a linear effect, even though it involves (in 
a) the square of the internal charge of the electron and positron. Small higher 
order effects, such as in Fig. I.3 with three of the photons corresponding to the 
third power of the external field or charge, are truly nonlinear interactions. 

The final conclusion about linear superposition of fields in vacuum is that in 
the classical domain of sizes and attainable field strengths there is abundant ev- 
idence for the validity of linear superposition and no evidence against it. In the 
atomic and subatomic domain there are small quantum-mechanical nonlinear 
effects whose origins are in the coupling between charged particles and the elec- 
tromagnetic field. They modify the interactions between charged particles and 

cause interactions between electromagnetic fields even if physical particles are 

absent. 

I.4- Maxwell Equations in Macroscopic Media 

So far we have considered electromagnetic fields and sources in vacuum. The 

Maxwell equations (I.1b) for the electric and magnetic fields E and B can be 

thought of as equations giving the fields everywhere in space, provided all the 

sources p and J are specified. For a small number of definite sources, determi- 

nation of the fields is a tractable problem; but for macroscopic aggregates of 

matter, the solution of the equations is almost impossible. There are two aspects 

here. One is that the number of individual sources, the charged particles in every 

atom and nucleus, is prohibitively large. The other aspect is that for macroscopic 

observations the detailed behavior of the fields, with their drastic variations in 

Space over atomic distances, is not relevant. What is relevant is the average of a 

field or a source over a volume large compared to the volume occupied by a 

single atom or molecule. We call such averaged quantities the macroscopic fields 

and macroscopic sources. It is shown in detail in Section 6.6 that the macroscopic 

Maxwell equations are of the form (I.1a) with E and B the averaged E and B of 

the microscopic or vacuum Maxwell equations, while D and H are no longer 
simply multiples of E and B, respectively. The macroscopic field quantities D 

and H, called the electric displacement and magnetic field (with B called the 
magnetic induction), have components given by 

Da 
p, - > Gee 5 

B 

wb. +( 
OXg (1.9) 

1 
Ha By ~ (Ma +°**) 

0 

The quantities P, M, Qi, and similar higher order objects represent the mac- 

roscopically averaged electric dipole, magnetic dipole, and electric quadrupole, 

and higher moment densities of the material medium in the presence of applied 

fields. Similarly, the charge and current densities p and J are macroscopic aver- 

ages of the “free” charge and current densities in the medium. The bound charges 

and currents appear in the equations via P, M, and Q4,. 

The macroscopic Maxwell equations (I.1a) are a set of eight equations in- 

volving the components of the four fields E, B, D, and H. The four homogeneous 
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equations can be solved formally by expressing E and B in terms of the scalar 

potential ® and the vector potential A, but the inhomogeneous equations cannot 

be solved until the derived fields D and H are known in terms of E and B. These 

connections, which are implicit in (1.9), are known as constitutive relations, 

D = DIE, B] 
~~ ~ H = HIE, B] 

In addition, for conducting media there is the generalized Ohm’s law, 
J = JE, B] 

The square brackets signify that the connections are not necessarily simple and 
may depend on past history (hysteresis), may be nonlinear, etc. 

In most materials the electric quadrupole and higher terms in (1.9) are com- 
pletely negligible. Only the electric and magnetic polarizations P and M are sig- 

nificant. This does not mean, however, that the constitutive relations are then 

simple. There is tremendous diversity in the electric and magnetic properties of 

matter, especially in crystalline solids, with ferroelectric and ferromagnetic ma- 

terials having nonzero P or M in the absence of applied fields, as well as more 

ordinary dielectric, diamagnetic, and paramagnetic substances. The study of these 

properties is one of the provinces of solid-state physics. In this book we touch 

only very briefly and superficially on some more elementary aspects. Solid-state 

books such as Kittel should be consulted for a more systematic and extensive 

treatment of the electromagnetic properties of bulk matter. 

In substances other than ferroelectrics or ferromagnets, for weak enough 

fields the presence of an applied electric or magnetic field induces an electric or 

magnetic polarization proportional to the magnitude of the applied field. We 

then say that the response of the medium is linear and write the Cartesian com- 

ponents of D and H in the form,* 

Dy, = 2 Ey 
(1.10) 

H, = > MapBp 

The tensors €,, and wg are called the electric permittivity or dielectric tensor 
and the inverse magnetic permeability tensor. They summarize the linear re- 
sponse of the medium and are dependent on the molecular and perhaps crystal- 
line structure of the material, as well as bulk properties like density and temper- 
ature. For simple materials the linear response is often isotropic in space. Then 
€,p and p44, are diagonal with all three elements equal, and D = e€E, H = p'B 
= B/p. 

To be generally correct Eqs. (1.10) should be understood as holding for the Fourier 
transforms in space and time of the field quantities. This is because the basic linear con- 
nection between D and E (or H and B) can be nonlocal. Thus 

DAx, t) = > | d*x' | dt €,9(x', t')Eg(x — x', t — t’) 

*Precedent would require writing B, = Lg Ueptlg, but this reverses the natural roles of B as the basic 
magnetic field and H as the derived quantity. In Chapter 5 we revert to the traditional usage. 
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where €,¢(x’, t’) may be localized around x’ = 0, ¢’ = 0, but is nonvanishing for some 
range away from the origin. If we introduce the Fourier transforms D,(k, w), E,(K, ), 
and €,(k, w) through 

f(k, w) = [ ax { dt f(x, the mxtivr 
Eq. (1.10) can be written in terms of the Fourier transforms as 

(1.11) DA(k, ») = , €aalk, @)Eg(k, «) 
8 

A similar equation can be written H,(k, ) in terms of B,(k, #). The permeability tensors 

are therefore functions of frequency and wave vector in general. For visible light or elec- 

tromagnetic radiation of longer wavelength it is often permissible to neglect the non- 

locality in space. Then €,g and jt4g are functions only of frequency. This is the situation 

discussed in Chapter 7, which gives a simplified treatment of the high frequency properties 

of matter and explores the consequences of causality. For conductors and superconductors 

long-range effects can be important. For example, when the electronic collisional mean 

free path in a conductor becomes large compared to the skin depth, a spatially local form 

of Ohm’s law is no longer adequate. Then the dependence on wave vector also enters. In 

the understanding of a number of properties of solids the concept of a dielectric constant 

as a function of wave vector and frequency is fruitful. Some exemplary references are 

given in the suggested reading at the end of this introduction. 

For orientation we mention that at low frequencies (v < 10° Hz) where all 
charges, regardless of their inertia, respond to applied fields, solids have dielectric 

constants typically in the range of €,,/€) ~ 2—20 with larger values not uncom- 

mon. Systems with permanent molecular dipole moments can have much larger 

and temperature-sensitive dielectric constants. Distilled water, for example, has 

a static dielectric constant of €/é) = 88 at 0°C and €/e, = 56 at 100°C. At optical 
frequencies only the electrons can respond significantly. The dielectric constants 
are in the range, €,/€9 ~ 1.7-10, with €,./€) = 2-3 for most solids. Water has 
e/€, = 1.77-1.80 over the visible range, essentially independent of temperature 

from 0 to 100°C. 

The type of response of materials to an applied magnetic field depends on 

the properties of the individual atoms or molecules and also on their interactions. 

Diamagnetic substances consist of atoms or molecules with no net angular mo- 

mentum. The response to an applied magnetic field is the creation of circulating 

atomic currents that produce a very small bulk magnetization opposing the ap- 

plied field. With the definition of 14g in (1.10) and the form of (1.9), this means 
Loflea > 1. Bismuth, the most diamagnetic substance known, has (HoMea — 1) ~ 

1.8 X 1074. Thus diamagnetism is a very small effect. If the basic atomic unit of 

the material has a net angular momentum from unpaired electrons, the substance 

is paramagnetic. The magnetic moment of the odd electron is aligned parallel to 

the applied field. Hence po. < 1. Typical values are in the range (1 — Mobia) 

=~ 1072-1075 at room temperature, but decreasing at higher temperatures be- 

cause of the randomizing effect of thermal excitations. 

Ferromagnetic materials are paramagnetic but, because of interactions be- 

tween atoms, show drastically different behavior. Below the Curie temperature 

(1040 K for Fe, 630 K for Ni), ferromagnetic substances show spontaneous mag- 

netization; that is, all the magnetic moments in a microscopically large region 

called a domain are aligned. The application of an external field tends to cause 
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the domains to change and the moments in different domains to line up together 

leading to the saturation of the bulk magnetization. Removal of the field leaves 

a considerable fraction of the moments still aligned, giving a permanent mag- 

netization that can be as large as B, = oM, = 1 tesla. 

For data on the dielectric and magnetic properties of materials, the reader 
can consult some of the basic physics handbooks* from which he or she will be 

~ ~ 

led to more specific and detailed compilations. 

Materials that show a linear response to weak fields eventually show nonlin- 
ear behavior at high enough field strengths as the electronic or ionic oscillators 
are driven to large amplitudes. The linear relations (I.10) are modified to, for 
example 

(1.12) = 2 eBEp + D etpyEpE, + 

For static fields the consequences are not particularly dramatic, but for time- 

varying fields it is another matter. A large amplitude wave of two frequencies w, 

and w, generates waves in the medium with frequencies 0, 2a), 22, w, + wy», 

@ 1 — @, aS well as the original w, and w,. From cubic and higher nonlinear terms 

an even richer spectrum of frequencies can be generated. With the development 

of lasers, nonlinear behavior of this sort has become a research area of its own 

called nonlinear optics, and also a laboratory tool. At present, lasers are capable 

of generating light pulses with peak electric fields approaching 10’? or even 10'% 
V/m. The static electric field experienced by the electron in its orbit in a hydrogen 

~ 
= atom is e/a 5 x 10"! V/m. Such laser fields are thus seen to be capable of 

driving atomic oscillators well into their nonlinear regime, capable indeed of 

destroying the sample under study! References to some of the literature of this 

specialized field are given in the suggested reading at the end of this introduction 

The reader of this book will have to be content with basically linear phenomena 

I.5 Boundary Conditions at Interfaces Between Different Media 

The Maxwell equations (I.1) are differential equations applying locally at each 
point in space-time (x, ¢). By means of the divergence theorem and Stokes’s 
theorem, they can be cast in integral form. Let V be a finite volume in space, S 
the closed surface (or surfaces) bounding it, da an element of area on the surface 
and n a unit normal to the surface at da pointing outward from the enclosed 
volume. Then the divergence theorem applied to the first and last equations of 
(I.1a) yields the integral statements 

(1.13) ? D-nda={ pd! 

(1.14) $B nda=0 

*CRC Handbook of Chemistry and Physics, ed. D. R. Lide, 78th ed., CRC Press, Boca Raton, FL 
(1997-98). 

American Institute of Physics Handbook, ed. D. E. Gray, McGraw Hilll, New York, 3rd edition 
(1972), Sections 5.d and 5.f. 
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The first relation is just Gauss’s law that the total flux of D out through the surface 

is equal to the charge contained inside. The second is the magnetic analog, with 
no net flux of B through a closed surface because of the nonexistence of magnetic 

charges. 

Similarly, let C be a closed contour in space, S’ an open surface spanning 
the contour, dl a line element on the contour, da an element of area on S’, and 

n’ a unit normal at da pointing in the direction given by the riglit-hand rule from 

the sense of integration around the contour. Then applying Stokes’s theorem to 

the middle two equations in (I.1a) gives the integral statements 

0 
y+ (1.15) 

0 fu-a-|.| Jw a 
oB 

-n’ da (1.16) fea 
Equation (1.15) is the Ampére—Maxwell law of magnetic fields and (1.16) is 

Faraday’s law of electromagnetic induction. 

These familiar integral equivalents of the Maxwell equations can be used 

directly to deduce the relationship of various normal and tangential components 

of the fields on either side of a surface between different media, perhaps with a 

surface charge or current density at the interface. An appropriate geometrical 

arrangement is shown in Fig. 1.4. An infinitesimal Gaussian pillbox straddles the 
boundary surface between two media with different electromagnetic properties. 

Similarly, the infinitesimal contour C has its long arms on either side of the 

boundary and is oriented so that the normal to its spanning surface is tangent to 

the interface. We first apply the integral statements (I.13) and (1.14) to the vol- 
ume of the pillbox. In the limit of a very shallow pillbox, the side surface does 

UY 
ZR 

Ep, Be 
Dp, He 

a 

Figure 1.4 Schematic diagram of boundary surface (heavy line) between different 

media. The boundary region is assumed to carry idealized surface charge and current 

densities o and K. The volume V is a small pillbox, half in one medium and half in the 

other, with the normal n to its top pointing from medium 1 into medium 2. The 

rectangular contour C is partly in one medium and partly in the other and is oriented 

with its plane perpendicular to the surface so that its normal t is tangent to the surface 
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not contribute to the integrals on the left in (1.13) and (1.14). Only the top and 
bottom contribute. If the top and the bottom are parallel, tangent to the surface, 

and of area Aa, then the left-hand integral in (I.13) is 

$ D+ nda = (D; ~ D,)- Aa 

and similarly for (1.14). If the charge density p is singular at the interface so as 
to produce an idealized surface charge density o, then the integral on the right 

in (1.13) is 

[pax = ao Aa 

Thus the normal components of D and B on either side of the boundary surface 

are related according to 

— 

= oC (1.17) (D, — D,)-n 
= 0 (1.18) (B, — B,)-n 

In words, we say that the normal component of B is continuous and the discon- 

tinuity of the normal component of D at any point is equal to the surface charge 
density at that point. 

In an analogous manner the infinitesimal Stokesian loop can be used to de- 
termine the discontinuities of the tangential components of E and H. If the short 

arms of the contour C in Fig. I.4 are of negligible length and each long arm is 
parallel to the surface and has length Al, then the left-hand integral of (1.16) is 

p E-dl= (tx n)+(B,~ E,) Al 

and similarly for the left-hand side of (1.15). The right-hand side of (1.16) vanishes 

because dB/dt is finite at the surface and the area of the loop is zero as the length 

of the short sides goes to zero. The right-hand side of (1.15) does not vanish, 

however, if there is an idealized surface current density K flowing exactly on the 

boundary surface. In such circumstances the integral on the right of (1.15) is 

aD 
J+ [| |eeda= Ket a 

The second term in the integral vanishes by the same argument that was just 

given. The tangential components of E and H on either side of the boundary are 

therefore related by 

n X (E, — E,) = 0 (1.19) 

n X (H, — H,) = K (1.20) 

In (1.20) it is understood that the surface current K has only components parallel 

to the surface at every point. The tangential component of E across an interface 

is continuous, while the tangential component of H is discontinuous by an amount 
whose magnitude is equal to the magnitude of the surface current density and 
whose direction is parallel to K X n. 

The discontinuity equations (I.17)-(1.20) are useful in solving the Maxwell 
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equations in different regions and then connecting the solutions to obtain the 
fields throughout all space. 

1.6 Some Remarks on Idealizations in Electromagnetism 

In the preceding section we made use of the idea of surface distributions of charge 

and current. These are obviously mathematical idealizations that do not exist in 

the physical world. There are other abstractions that occur throughout electro- 

magnetism. In electrostatics, for example, we speak of holding objects at a fixed 

potential with respect to some zero of potential usually called “ground.” The 

relations of such idealizations to the real world is perhaps worthy of a little dis- 

cussion, even though to the experienced hand most will seem obvious. 

First we consider the question of maintaining some conducting object at a 

fixed electrostatic potential with respect to some reference value. Implicit is the 

idea that the means does not significantly disturb the desired configuration of 

charges and fields. To maintain an object at fixed potential it is necessary, at least 

from time to time, to have a conducting path or its equivalent from the object to 

a source of charge far away (‘“‘at infinity”’) so that as other charged or uncharged 

objects are brought in the vicinity, charge can flow to or from the object, always 

maintaining its potential at the desired value. Although more sophisticated 

means are possible, metallic wires are commonly used to make the conducting 

path. Intuitively we expect small wires to be less perturbing than large ones. The 

reason is as follows: 

Since the quantity of electricity on any given portion of a wire at a given 

potential diminishes indefinitely when the diameter of the wire is indefi- 
nitely diminished, the distribution of electricity on bodies of considerable 

dimensions will not be sensibly affected by the introduction of very 

fine metallic wires into the field, such as are used to form electrical con- 
nexions between these bodies and the earth, an electrical machine, or an 
electrometer.* 

The electric field in the immediate neighborhood of the thin wire is very large, 

of course. However, at distances away of the order of the size of the ‘“‘bodies of 

considerable dimensions” the effects can be made small. An important historical 

illustration of Maxwell’s words is given by the work of Henry Cavendish 200 

years ago. By experiments done in a converted stable of his father’s house, using 

Leyden jars as his sources of charge, thin wires as conductors, and suspending 

the objects in the room, Cavendish measured the amounts of charge on cylinders, 

discs, etc., held at fixed potential and compared them to the charge on a sphere 

(the same sphere shown in Fig. I.1) at the same potential. His values of capaci- 

tance, so measured, are accurate to a few per cent. For example, he found the 

ratio of the capacitance of a sphere to that of a thin circular disc of the same 

radius was 1.57. The theoretical value is 7/2. 

There is a practical limit to the use of finer and finer wires. The charge per 

unit length decreases only logarithmically [as the reciprocal of In(d/a), where a 

*J, C. Maxwell, A Treatise on Electricity and Magnetism, Dover, New York, 1954 reprint of the 3rd 

edition (1891), Vol. 1, p. 96. 
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is the mean radius of the wire and d is a typical distance of the wire from some 

conducting surface]. To minimize the perturbation of the system below some 
level, it is necessary to resort to other means to maintain potentials, comparison 
methods using beams of charged particles intermittently, for example. 

When a conducting object is said to be grounded, it is assumed to be con- 

nected by a very fine conducting filament to a remote reservoir of charge that 
serves as the common zero of potential. Objects held at fixed potentials are sim- 
ilarly connected to one side of a voltage source, such as a battery, the other side 
of which is connected to the common “ground.” Then, when initially electrified 
objects are moved relative to one another in such a way that their distributions 
of electricity are altered, but their potentials remain fixed, the appropriate 

amounts of charge flow from or to the remote reservoir, assumed to have an 

inexhaustible supply. The idea of grounding something is a well-defined concept 

in electrostatics, where time is not a factor, but for oscillating fields the finite 

speed of propagation blurs the concept. In other words, stray inductive and ca- 

pacitive effects can enter significantly. Great care is then necessary to ensure a 

“‘sood ground.” 

Another idealization in macroscopic electromagnetism is the idea of a surface 

charge density or a surface current density. The physical reality is that the charge 

or current is confined to the immediate neighborhood of the surface. If this region 

has thickness small compared to the length scale of interest, we may approximate 

the reality by the idealization of a region of infinitesimal thickness and speak of 

a surface distribution. Two different limits need to be distinguished. One is the 

limit in which the ‘‘surface”’ distribution is confined to a region near the surface 

that is macroscopically small, but microscopically large. An example is the pen- 

etration of time-varying fields into a very good, but not perfect, conductor, de- 
scribed in Section 8.1. It is found that the fields are confined to a thickness 6, 
called the skin depth, and that for high enough frequencies and good enough 
conductivities 6 can be macroscopically very small. It is then appropriate to in- 
tegrate the current density J over the direction perpendicular to the surface to 

obtain an effective surface current density Kg. 

The other limit is truly microscopic and is set by quantum-mechanical effects 

in the atomic structure of materials. Consider, for instance, the distribution of 
excess charge of a conducting body in electrostatics. It is well known that this 

charge lies entirely on the surface of a conductor. We then speak of a surface 

charge density o. There is no electric field inside the conductor, but there is, in 

accord with (J.17), a normal component of electric field just outside the surface. 

At the microscopic level the charge is not exactly at the surface and the field 

does not change discontinuously. The most elementary considerations would in- 

dicate that the transition region is a few atomic diameters in extent. The ions in 

a metal can be thought of as relatively immobile and localized to 1 angstrom 

or better; the lighter electrons are less constrained. The results of model cal- 

culations* are shown in Fig. I.5. They come from a solution of the quantum- 

mechanical many-electron problem in which the ions of the conductor are 

approximated by a continuous constant charge density for x < 0. The electron 

density (r, = 5) is roughly appropriate to copper and the heavier alkali metals. 

*N. D. Lang and W. Kohn, Phys. Rev. B1, 4555 (1970); B3, 1215 (1971); V. E. Kenner, R. E. Allen, 

and W. M. Saslow, Phys. Lett. 38A, 255 (1972). 
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Figure 1.5 Distribution of excess charge at the surface of a conductor and of the 
normal component of the electric field. The ions of the solid are confined to x < 0 and 

are approximated by a constant continuous charge distribution through which the 

electrons move. The bulk of the excess charge is confined to within +2 A of the 

“‘surface.”’ 

The excess electronic charge is seen to be confined to a region within +2 A of 

the ‘“‘surface”’ of the ionic distribution. The electric field rises smoothly over this 

region to its value of o “outside” the conductor. For macroscopic situations 

where 10~’ m is a negligible distance, we can idealize the charge density and 

electric field behavior as p(x) = o8(x) and E,,(x) = o6(x)/e€9, corresponding to a 

truly surface density and a step-function jump of the field. 

We see that the theoretical treatment of classical electromagnetism involves 

several idealizations, some of them technical and some physical. The subject of 

electrostatics, discussed in the first chapters of the book, developed as an exper- 

imental science of macroscopic electrical phenomena, as did virtually all other 

aspects of electromagnetism. The extension of these macroscopic laws, even for 

charges and currents in vacuum, to the microscopic domain was for the most part 

an unjustified extrapolation. Earlier in this introduction we discussed some of 

the limits to this extrapolation. The point to be made here is the following. With 

hindsight we know that many aspects of the laws of classical electromagnetism 

apply well into the atomic domain provided the sources are treated quantum 

mechanically, that the averaging of electromagnetic quantities over volumes con- 

taining large numbers of molecules so smooths the rapid fluctuations that static 

applied fields induce static average responses in matter, and that excess charge 

is on the surface of a conductor in a macroscopic sense. Thus Coulomb’s and 

Ampére’s macroscopic observations and our mathematical abstractions from 

them have a wider applicability than might be supposed by a supercautious phys- 
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icist. The absence for air of significant electric or magnetic susceptibility certainly 

simplifies matters! 
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CHAPTER 1 

Introduction to Electrostatics 

We begin our discussion of electrodynamics with the subject of electrostatics— 

phenomena involving time-independent distributions of charge and fields. For 

most readers this material is in the nature of a review. In this chapter especially 

we do not elaborate significantly. We introduce concepts and definitions that are 

important for later discussion and present some essential mathematical appara- 

tus. In subsequent chapters the mathematical techniques are developed and 

applied. 

One point of physics should be mentioned. Historically, electrostatics devel- 

oped as a science of macroscopic phenomena. As indicated at the end of the 

Introduction, such idealizations as point charges or electric fields at a point must 

be viewed as mathematical constructs that permit a description of the phenomena 

at the macroscopic level, but that may fail to have meaning microscopically. 

1.1 Coulomb’s Law 

All of electrostatics stems from the quantitative statement of Coulomb’s law 

concerning the force acting between charged bodies at rest with respect to each 

other. Coulomb, in an impressive series of experiments, showed experimentally 

that the force between two small charged bodies separated in air a distance large 

compared to their dimensions 

varies directly as the magnitude of each charge, 

varies inversely as the square of the distance between them, 

is directed along the line joining the charges, and 

is attractive if the bodies are oppositely charged and repulsive if the bodies have 
the same type of charge. 

Furthermore it was shown experimentally that the total force produced on one 
small charged body by a number of the other small charged bodies placed around 
it is the vector sum of the individual two-body forces of Coulomb. Strictly speak- 
ing, Coulomb’s conclusions apply to charges in vacuum or in media of negligible 
susceptibility. We defer consideration of charges in dielectrics to Chapter 4. 

1.2. Electric Field 

Although the thing that eventually gets measured is a force, it is useful to intro- 
duce a concept one step removed from the forces, the concept of an electric field 
due to some array of charged bodies. At the moment, the electric field can be 

24 
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defined as the force per unit charge acting at a given point. It is a vector function 
of position, denoted by E. One must be careful in its definition, however. It is 
not necessarily the force that one would observe by placing one unit of charge 
on a pith ball and placing it in position. The reason is that one unit of charge 
may be so large that its presence alters appreciably the field configuration of the 
array. Consequently one must use a limiting process whereby the ratio of the 
force on the small test body to the charge on it is measured for smaller and smaller 

amounts of charge.* Experimentally, this ratio and the direction of the force will 

become constant as the amount of test charge is made smaller and smaller. These 

limiting values of magnitude and direction define the magnitude and direction of 

the electric field E at the point in question. In symbols we may write 

F = gE (1.1) 

where F is the force, E the electric field, and qg the charge. In this equation it is 

assumed that the charge gq is located at a point, and the force and the electric 

field are evaluated at that point. 

Coulomb’s law can be written down similarly. If F is the force on a point 

charge q,, located at x,, due to another point charge q, located at x, then 

Coulomb’s law is 

X; X2 
F = kqiq2 (1.2) 

|x, — x,|° 
Note that q, and q, are algebraic quantities, which can be positive or negative. 

The constant of proportionality k depends on the system of units used. 

The electric field at the point x due to a point charge q, at the point x, can 

be obtained directly: 

KX — X; 
(1.3) E(x) = kq, 

[x —_ xP 

as indicated in Fig. 1.1. The constant k differs in different systems of units.‘ In 
electrostatic units (esu), k = 1 and unit charge is chosen as that charge that exerts 
a force of one dyne on an equal point charge located one centimeter away. The 

esu unit of charge is called the statcoulomb, and the electric field is measured in 

statvolts per centimeter. In the SI system, which we employ here, k = (47€)-' = 
10~7c?, where €) ~ 8.854 x 10°” farad per meter (F/m) is called the permittivity 

of free space. The SI unit of charge is the coulomb (C), and the electric field is 

measured in volts per meter (V/m). One coulomb (1 C) produces an electric field 

ql 

X1 

Figure 1.1 

*The discreteness of electric charge (see Section I.1) means that this mathematical limit is impossible 

to realize physically. This is an example of a mathematical idealization in macroscopic electrostatics. 

*The question of units is discussed in detail in the Appendix. 
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of approximately 8.9874 x 10° V/m (8.9874 GV/m) at a distance of 1 meter. One 
9 

electron (q ~ 1.602 X 107'° C) produces a field of approximately 1.44 x 107 

V/m (1.44 nV/m) at 1 meter. 

The experimentally observed linear superposition of forces due to many 

charges means that we may write the electric field at x due to a system of point 
n, as the vector sum 1,2 charges q;, located at x;, 

~~ ~ 

(1.4) E(x) = mle 
47€ i= no xh 

If the charges are so small and so numerous that they can be described by a 

charge density p(x’) [if Aq is the charge in a small volume Ax Ay Az at the point 

x’, then Ag = p(x’) Ax Ay Az], the sum is replaced by an integral 

x — Xx’ 
d°x' (1.5) BOs) = gaz | ote) Se x’ |? 

where d?x' = dx’ dy’ dz' is a three-dimensional volume element at x 

At this point it is worthwhile to introduce the Dirac delta function. In one dimension 
the delta function, written 6(x —a), is a mathematically improper function having the 

properties 

1 d(x — a) = 0 for x # a, and 

2. Jf 5(x — a) dx = 1 if the region of integration includes x = a, and is zero otherwise 

The delta function can be given an intuitive, but nonrigorous, meaning as the limit of a 

peaked curve such as a Gaussian that becomes narrower and narrower, but higher and 

higher, in such a way that the area under the curve is always constant. L. Schwartz’s theory 

of distributions is a comprehensive rigorous mathematical approach to delta functions and 

their manipulations.* 

From the definitions above it is evident that, for an arbitrary function f(x) 

3. J f(x) (x — a) dx = f(a) 

The integral of f(x) times the derivative of a delta function is simply understood if the 

delta function is thought of as a well-behaved, but sharply peaked, function. Thus the 

definition is 

4, J f(x) 8x — a) dx = —f'(a) 

where a prime denotes differentiation with respect to the argument 

If the delta function has as argument a function f(x) of the independent variable x 

it can be transformed according to the rule 

1 
5. (F(x) > d(x xi) 

a 
where f(x) is assumed to have only simple zeros, located at x = x 

In more than one dimension, we merely take products of delta functions in each 
dimension. In three dimensions, for example, with Cartesian coordinates 

6. d(x — X) = d(x, X;) X>) d(x3 X)) 5(x2 

*A useful, rigorous account of the Dirac delta function is given by Lighthill. See also Dennery and 
Krzywicki (Section III.13). (Full references for items cited in the text or footnotes by italicized author 
only will be found in the Bibliography.) 
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is a function that vanishes everywhere except at x = X, and is such that 

1 if AV contains x = X 

0 if AV does not contain x = X 
7. i 8(x — X) @x = | 
Note that a delta function has the dimensions of an inverse volume in whatever number 
of dimensions the space has. 

A discrete set of point charges can be described with a charge density by means of 
delta functions. For example, 

(1.6) p(x) = > qi 5(x — X;) 
represents a distribution of n point charges q,, located at the points x,. Substitution of this 

charge density (1.6) into (1.5) and integration, using the properties of the delta function, 

yields the discrete sum (1.4). 

1.3 Gauss’s Law 

The integral (1.5) is not always the most suitable form for the evaluation of 

electric fields. There is another integral result, called Gauss’s law, which is some- 

times more useful and furthermore leads to a differential equation for E(x). To 

obtain Gauss’s law we first consider a point charge qg and a closed surface S, as 

shown in Fig. 1.2. Let r be the distance from the charge to a point on the surface, 

n be the outwardly directed unit normal to the surface at that point, da be an 

S 

q outside S 

qinside S 

Figure 1.2 Gauss’s law. The normal component of electric field is integrated over the 

closed surface S. If the charge is inside (outside) S, the total solid angle subtended at 

the charge by the inner side of the surface is 47 (zero). 
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element of surface area. If the electric field E at the point on the surface due to 

the charge g makes an angle 6 with the unit normal, then the normal component 

of E times the area element is: 

cos 9 q 
d. (1.7) E-nda= 2 r ATE 

Since E is directed along the line from the surface element to the charge q, 
cos 9 da = r* dQ, where dQ is the element of solid angle subtended by da at 
the position of the charge. Therefore 

q 
dQ E-nda= (1.8) 

TTEy 

If we now integrate the normal component of E over the whole surface, it is easy 

to see that 

if q lies inside S qlé (1.9) 
0 if q lies outside S 

f e-nde~| 

This result is Gauss’s law for a single point charge. For a discrete set of charges, 

it is immediately apparent that 

(1.10) }.B+nda=—> 4 

where the sum is over only those charges inside the surface S. For a continuous 

charge density p(x), Gauss’s law becomes: 

(1.11) fb nda=> | p(x) a°x 

where V is the volume enclosed by S. 

Equation (1.11) is one of the basic equations of electrostatics. Note that it 
depends upon 

the inverse square law for the force between charges, 

the central nature of the force, and 

the linear superposition of the effects of different charges. 

Clearly, then, Gauss’s law holds for Newtonian gravitational force fields, with 

matter density replacing charge density. 

It is interesting to note that, even before the experiments of Cavendish and 

Coulomb, Priestley, taking up an observation of Franklin that charge seemed to 

reside on the outside, but not the inside, of a metal cup, reasoned by analogy 

with Newton’s law of universal gravitation that the electrostatic force must obey 

an inverse square law with distance. The present status of the inverse square law 

is discussed in Section IJ.2. 

1.4 Differential Form of Gauss’s Law 

Gauss’s law can be thought of as being an integral formulation of the law of 

electrostatics. We can obtain a differential form (i.e., a differential equation) by 
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using the divergence theorem. The divergence theorem states that for any well- 
behaved vector field A(x) defined within a volume V surrounded by the closed 
surface S the relation 

$A-nda=| V-Adx 

holds between the volume integral of the divergence of A and the surface integral 
of the outwardly directed normal component of A. The equation in fact can be 
used as the definition of the divergence (see Stratton, p. 4). 

To apply the divergence theorem we consider the integral relation expressed 

in Gauss’s theorem: 

, B-nda= =I p(x) as 

Now the divergence theorem allows us to write this as 

(1.12) [ (V-E — ple) d’x = 0 

for an arbitrary volume V. We can, in the usual way, put the integrand equal to 

zero to obtain 

V-E= ple (1.13) 

which is the differential form of Gauss’s law of electrostatics. This equation can 

itself be used to solve problems in electrostatics. However, it is often simpler to 

deal with scalar rather then vector functions of position, and then to derive the 

vector quantities at the end if necessary (see below). 

15 Another Equation of Electrostatics and the Scalar Potential 
The single equation (1.13) is not enough to specify completely the three com- 

ponents of the electric field E(x). Perhaps some readers know that a vector field 
can be specified almost* completely if its divergence and curl are given every- 
where in space. Thus we look for an equation specifying curl E as a function of 
position. Such an equation, namely, 

Vx E=0 (1.14) 

follows directly from our generalized Coulomb’s law (1.5): 

x — x’ 
————. x' Bq) = 7 | oe’ 
|x — x’ 

The vector factor in the integrand, viewed as a function of x, is the negative 

gradient of the scalar 1/|x — x’|: 

1 x — x’ 

[x — x’ | rl |x — x’? 

*Up to the gradient of a scalar function that satisfies the Laplace equation. See Section 1.9 on 

uniqueness. 
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Since the gradient operation involves x, but not the integration variable x’, it can 

be taken outside the integral sign. Then the field can be written 

p(x’) d>x' (1.15) 
x — x’| BG) = ev | ee 

Since the curl of the gradient of any well-behaved scalar function of position 

vanishes (V x Vu = 0, for all ), (1.14) follows immediately from (1.15). 
Note that V x E = 0 depends on the central nature of the force between 

charges, and on the fact that the force is a function of relative distances only, but 

does not depend on the inverse square nature 

In (1.15) the electric field (a vector) is derived from a scalar by the gradient 

operation. Since one function of position is easier to deal with than three, it is 

worthwhile concentrating on the scalar function and giving it a name. Conse- 

quently we define the scalar potential ®(x) by the equation 

E = -V® (1.16) 

Then (1.15) shows that the scalar potential is given in terms of the charge density 

by 

p(x’) | d>x' 
P(x) = (1.17) ing [x — x’| 

where the integration is over all charges in the universe, and ® is arbitrary only 
to the extent that a constant can be added to the right-hand side of (1.17) 

The scalar potential has a physical interpretation when we consider the work 
done on a test charge q in transporting it from one point (A) to another point 
(B) in the presence of an electric field E(x), as shown in Fig. 1.3. The force acting 
on the charge at any point is 

F = qE 

so that the work done in moving the charge from A to B is 

(1.18) W= [ ¥ dl -q | E- dl 

The minus sign appears because we are calculating the work done on the charge 
against the action of the field. With definition (1.16) the work can be written 

(1.19) =f VD a-q{ d® = q(®z — ®,) 

dl 

Figure 1.3 
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which shows that g® can be interpreted as the potential energy of the test charge 
in the electrostatic field. 

From (1.18) and (1.19) it can be seen that the line integral of the electric field 
between two points is independent of the path and is the negative of the potential 
difference between the Points 

(1.20) 

This follows directly, of course, from definition (1.16). If the path is closed, the 
line integral is zero, 

(1.21) $ dl =0 

a result that can also be obtained directly from Coulomb’s law. Then application 
of Stokes’s theorem [if A(x) is a well-behaved vector field, S is an arbitrary open 
surface, and C is the closed curve bounding S$ 

$A dl [wx a) n da 

where dl is a line element of C, n is the normal to S, and the path C is traversed 

in a right-hand screw sense relative to n] leads immediately back to V x E = 0 

1.6 Surface Distributions of Charges and Dipoles and 

Discontinuities in the Electric Field and Potential 

One of the common problems in electrostatics is the determination of electric 

field or potential due to a given surface distribution of charges. Gauss’s law (1.11) 

allows us to write down a partial result directly. If a surface S, with a unit normal 

n directed from side 1 to side 2 of the surface, has a surface-charge density of 

a(x) (measured in coulombs per square meter) and electric fields E, and E, on 
either side of the surface, as shown in Fig. 1.4, then Gauss’s law tells us imme- 

diately that 

(1.22) (E, E,) n= al€ 

This does not determine E, and E, unless there are no other sources of field and 

the geometry and form of are especially simple. All that (1.22) says is that there 

Side 2 

Side 1 

Eo 

E; 

Figure 1.4 Discontinuity in the normal 

component of electric field across a surface 

layer of charge 
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is a discontinuity of o/e, in the normal component of electric field in crossing a 

surface with a surface-charge density o, the crossing being made in the direction 

of n 

The tangential component of electric field can be shown to be continuous 

across a boundary surface by using (1.21) for the line integral of E around a 

closed path. It is only necessary to take a rectangular path with 1 negligible ends 
and one side on either side of the boundary. 

An expression for the potential (hence the field, by differentiation) at any 

point in space (not just at the surface) can be obtained from (1.17) by replacing 

p d°x by o da 

a(x’) 
d i (1.23) P(x) = im s |x — x’| 

For volume or surface distributions of charge, the potential is everywhere con- 

tinuous, even within the charge distribution. This can be shown from (1.23) or 
from the fact that E is bounded, even though discontinuous across a surface 

distribution of charge. With point or line charges, or dipole layers, the potential 

is no longer continuous, as will be seen immediately 

Another problem of interest is the potential due to a dipole-layer distribution 

on a surface S. A dipole layer can be imagined as being formed by letting the 

surface S have a surface-charge density o(x) on it, and another surface S’, lying 

close to S, have an equal and opposite surface-charge density on it at neighboring 

points, as shown in Fig. 1.5. The dipole-layer distribution of strength D(x) is 

formed by letting S’ approach infinitesimally close to S while the surface-charge 

density a(x) becomes infinite in such a manner that the product of o(x) and the 

local separation d(x) of S and S’ approaches the limit D(x) 

lim o(x) d(x) D(x) 
d(x)> 

The direction of the dipole moment of the layer is normal to the surface S and 

in the direction going from negative to positive charge 

To find the potential due to a dipole layer we can consider a single dipole 

and then superpose a surface density of them, or we can obtain the same result 

by performing mathematically the limiting process described in words above on 

the surface-density expression (1.23). The first way is perhaps simpler, but the 
second gives useful practice in vector calculus. Consequently we proceed with 

8 

a(x) 

d(x) 
-C 

s Figure 15 Limiting process involved in 
Ss’ 

creating a dipole layer 



33 Sect. 1.6 Surface Distributions of Charges and Dipoles 

da’ 

d(x’) 
x’ 

da” 

, - nat®) 
Ss’ 

Figure 1.6 Dipole-layer geometry 

the limiting process. With n, the unit normal to the surface S, directed away from 
S’, as shown in Fig. 1.6, the potential due to the two close surfaces is 

1 a(x’) | a(x’) da" P(x) = ml 47 Ix — x)" |x —x' + nd| 

por small d we can expand |x — x’ + nd|~'. Consider the general expression 
|x + a|-', where |a| < |x|. We write a Taylor series expansion in three 
dimensions: 

1 1 
— 

= -+a-V 
x x Ix a| ( 

In this way we find that as d — 0 the potential becomes 

P(x) = (1.24) 
= ~ |, D(x')n « v(t 5) aa’ 

In passing we note that the integrand in (1.24) is the potential of a point dipole 

with dipole moment p = n D da’. The potential at x caused by a dipole p at x’ is 

Pp (x — x’) 
P(x) = (1.25) 

4me, |x — x’? 

Equation (1.24) has a simple geometrical interpretation. We note that 

1 cos 6 da 
— dQ 

| [x — x’| Je 1 ( 
—x'f? 

where dQ) is the element of solid angle subtended at the observation point by the 

area element da’, as indicated in Fig. 1.7. Note that dO has a positive sign if @ is 

da’ Figure 1.7 The potential at P due to the 
“eo 

dipole layer D on the area element da’ is just 

the negative product of D and the solid angle 
Pe |x—-x 

element dQ. subtended by da’ at P. 
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an acute angle (i.e., when the observation point views the “inner” side of the 

dipole layer). The potential can be written: 

1 
(1.26) P(x) = — [ D(x’) dO, 

4 TTEo 

For a constant surface-dipole-moment density D, the potential is just the product 

of the moment divided by 47ré, and the solid angle subtended at the Observation 
point by the surface, regardless of its shape. 

There is a discontinuity in potential in crossing a double layer. This can be 
seen by letting the observation point come infinitesimally close to the double 
layer. The double layer is now imagined to consist of two parts, one being a small 

disc directly under the observation point. The disc is sufficiently small that it is 
sensibly flat and has constant surface-dipole-moment density D. Evidently the 

total potential can be obtained by linear superposition of the potential of the disc 

and that of the remainder. From (1.26) it is clear that the potential of the disc 

alone has a discontinuity of D/e, in crossing from the inner to the outer side, 

being —D/2«€ on the inner side and + D/2e€, on the outer. The potential of the 

remainder alone, with its hole where the disc fits in, is continuous across 

the plane of the hole. Consequently the total potential jump in crossing the sur- 

face is: 

®, _ ®, = Dé (1.27) 

This result is analogous to (1.22) for the discontinuity of electric field in crossing 

a surface-charge density. Equation (1.27) can be interpreted “‘physically” as a 

potential drop occurring “‘inside”’ the dipole layer; it can be calculated as the 

product of the field between the two layers of surface charge times the separation 

before the limit is taken. 

1.7 Poisson and Laplace Equations 

In Sections 1.4 and 1.5 it was shown that the behavior of an electrostatic field 
can be described by the two differential equations: 

V-E = ple (1.13) 

and 

VxE=0 (1.14) 

the latter equation being equivalent to the statement that E is the gradient of a 
scalar function, the scalar potential ®: 

E = -V® (1.16) 

Equations (1.13) and (1.16) can be combined into one partial differential 
equation for the single function P(x): 

V’® = —ple (1.28) 

This equation is called the Poisson equation. In regions of space that lack a charge 
density, the scalar potential satisfies the Laplace equation: 

Vb = 0 (1.29) 
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We already have a solution for the scalar potential in expression (1.17) 

1 p(x’) d°x’ 
@(x) = (1.17) 47€5 TE |x — x’ 

To verify directly that this does indeed satisfy the Poisson equation (1.28), we 
operate with the Laplacian on both sides. Because it turns out that the resulting 

integrand is singular, we invoke a limiting procedure. Define the ‘‘a-potential” 

(x) by 

1 p(x’) d>x' 
®,(x) = 

47€ Vix —x’’ +a 

The actual potential (1.17) is then the limit of the “‘a-potential” as a > 0. Taking 

the Laplacian of the ‘“‘a-potential” gives 

1 

Vret+a 
V’°®,(x) = — { p(x r( )e (1.30) 

3a 
—_— 

= 

4 ITE ( r+ a’? | oe »| | 
where r = x — x'|, The square-bracketed expression is the negative Laplacian 
of 1/Vr* + a’. It is well-behaved everywhere for nonvanishing a, but as a tends 
to zero it becomes infinite at r = 0 and vanishes for r # 0. It has a volume integral 

equal to 47 for arbitrary a. For the purposes of integration, divide space into two 

regions by a sphere of fixed radius R centered on x. Choose FP such that p(x’) 

changes little over the interior of the sphere, and imagine a much smaller than 

R and tending toward zero. If p(x‘) is such that (1.17) exists, the contribution to 

the integral (1.30) from the exterior of the sphere will vanish like a“ as a > 0 

We thus need consider only the contribution from inside the sphere. With a 

x, one finds Taylor series expansion of the well-behaved p(x') around x 

2 

2dr + O(a’) p(x) += Vp + vo) =- 2) ae | 
Direct integration yields 

Vo, (x) —— p(x) (1 + O(@7/R’)) + O(a’, a’log a) Vp + 

In the limit a > 0, we obtain the Poisson equation (1.28) 

The singular nature of the Laplacian of 1/r can be exhibited formally in terms 

of a Dirac delta function. Since V?(1/r) = 0 for r # 0 and its volume integral is 
—476(x) or, more generally, —47r, we can write the formal equation, V*(1/r) 

1 
—_— 

= (1.31) —4776(x — x’) 
|x — x’ “| 

1.8 Green’s Theorem 

If electrostatic problems always involved localized discrete or continuous distri- 

butions of charge with no boundary surfaces, the general solution (1.17) would 
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be the most convenient and straightforward solution to any problem. There 

would be no need of the Poisson or Laplace equation. In actual fact, of course, 

many, if not most, of the problems of electrostatics involve finite regions of space, 

with or without charge inside, and with prescribed boundary conditions on the 

bounding surfaces. These boundary conditions may be simulated by an appro- 
priate distribution of charges outside the region of interest (perhaps at infinity), 
but (1.17) becomes inconvenient as a means of calculating the potential, except 
in simple cases (e.g., method of images). 

To handle the boundary conditions it is necessary to develop some new math- 
ematical tools, namely, the identities or theorems due to George Green (1824). 
These follow as simple applications of the divergence theorem. The divergence 

theorem: 

[veAde=$ Anda 

applies to any well-behaved vector field A defined in the volume V bounded by 

the closed surface S$. Let A = ¢ Vu, where ¢ and yw are arbitrary scalar fields. 

Now 

V- (PVH) = 6 VE + Vh- Vy (1.32) 

and 

(1.33) oVy-n= 6% 

where 0/dn is the normal derivative at the surface S (directed outward from inside 

the volume V). When (1.32) and (1.33) are substituted into the divergence the- 

orem, there results Green’s first identity: 

(1.34) [ove + va-vy bx = > 6H da 
If we write down (1.34) again with ¢ and w interchanged, and then subtract it 

from (1.34), the Vd - Vy terms cancel, and we obtain Green’s second identity or 
Green’s theorem: 

ow ad 
(1.35) on on [vw uve) ax = 4 « | 

The Poisson differential equation for the potential can be converted into an 
integral equation if we choose a particular y, namely 1/R = 1/|x — x’|, where x 
is the observation point and x’ is the integration variable. Further, we put ¢ = ®, 
the scalar potential, and make use of V?® = —p/eo. From (1.31) we know that 
V*(1/R) = —47r8(x — x’), so that (1.35) becomes 

0 1 1 a® 
—_— - 

on' R R an' 
| +n d(x — x’) + =R pw’| Bx! = $ ( Jae 

If the point x lies within the volume V, we obtain: 

1 1 a@ a 1 p(x’) 
—_——. 

—_ ——_ — —_— d°x' + i P(x) = 7 _ 
R 4a R on' on’ 4 TE JV R | ( )| da' (1.36) 
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If x lies outside the surface S, the left-hand side of (1.36) is zero.* [Note that this 
is consistent with the interpretation of the surface integral as being the potential 
due to a surface-charge density o = €) d@/an' and a dipole layer D = —e)®. The 
discontinuities in electric field and potential (1.22) and (1.27) across the surface 
then lead to zero field and zero potential outside the volume V.] 

Two remarks are in order about result (1.36). First, if the surface S goes to 
infinity and the electric field on S falls off faster than R~', then the surface integral 
vanishes and (1.36) reduces to the familiar result (1.17). Second, for a charge- 
free volume, the potential anywhere inside the volume (a solution of the Laplace 
equation) is expressed in (1.36) in terms of the potential and its normal derivative 
only on the surface of the volume. This rather surprising result is not a solution 
to a boundary-value problem, but only an integral statement, since the arbitrary 

specification of both ® and d@/dn (Cauchy boundary conditions) is an overspe- 
cification of the problem. This is discussed in detail in the next sections, where 
techniques yielding solutions for appropriate boundary conditions are developed 

using Green’s theorem (1.35). 

1.9 Uniqueness of the Solution with Dirichlet 

or Neumann Boundary Conditions 

What boundary conditions are appropriate for the Poisson (or Laplace) equation 

to ensure that a unique and well-behaved (i.e., physically reasonable) solution 

will exist inside the bounded region? Physical experience leads us to believe that 

specification of the potential on a closed surface (e.g., a system of conductors 

held at different potentials) defines a unique potential problem. This is called a 

Dirichlet problem, or Dirichlet boundary conditions. Similarly it is plausible that 

specification of the electric field (normal derivative of the potential) everywhere 

on the surface (corresponding to a given surface-charge density) also defines a 

unique problem. Specification of the normal derivative is known as the Neumann 

boundary condition. We now proceed to prove these expectations by means of 

Green’s first identity (1.34). 

We want to show the uniqueness of the solution of the Poisson equation, 

V?® = —p/éo, inside a volume V subject to either Dirichlet or Neumann boundary 
conditions on the closed bounding surface S$. We suppose, to the contrary, that 

there exist two solutions ®, and ®, satisfying the same boundary conditions. Let 

(1.37) U=9, - ®, 

Then V7U = O inside V, and U = 0 or dU/dén = 0 on S for Dirichlet and Neumann 
boundary conditions, respectively. From Green’s first identity (1.34), with @ = & 
= U, we find 

0 
— (1.38) a da [, (U VU + VU+ VU) d’x = $ U 

*The reader may complain that (1.36) has been obtained in an illegal fashion since 1/|x — x’| is not 

well-behaved inside the volume V. Rigor can be restored by using a limiting process, as in the pre- 

ceding section, or by excluding a small sphere around the offending point, x = x’. The result is still 

(1.36). 
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With the specified properties of U, this reduces (for both types of boundary 

condition) to 

|VUP d3x = 0 

which implies VU = 0. Consequently, inside V, U is constant. For Dirichlet 
boundary conditions, U = 0 on S so that, inside V, ®, = ®, and the solution is 
unique. Similarly, for Neumann boundary conditions, the solution is unique, 

apart from an unimportant arbitrary additive constant 

From the right-hand side of (1.38) it is evident that there is also a unique 

solution to a problem with mixed boundary conditions (i.e., Dirichlet over part 

of the surface S, and Neumann over the remaining part) 

It should be clear that a solution to the Poisson equation with both ® and 

d/an specified arbitrarily on a closed boundary (Cauchy boundary conditions) 

does not exist, since there are unique solutions for Dirichlet and Neumann con- 

ditions separately and these will in general not be consistent. This can be verified 

with (1.36). With arbitrary values of ® and d®/dn inserted on the right-hand side 

it can be shown that the values of ®(x) and V®(x) as x approaches the surface 

are in general inconsistent with the assumed boundary values. The question of 

whether Cauchy boundary conditions on an open surface define a unique elec- 

trostatic problem requires more discussion than is warranted here. The reader 

may refer to Morse and Feshbach (Section 6.2, pp. 692-706) or to Sommerfeld 

(Partial Differential Equations in Physics, Chapter II) for a detailed discussion 

of these questions. The conclusion is that electrostatic problems are specified 

only by Dirichlet or Neumann boundary conditions on a closed surface (part or 

all of which may be at infinity, of course) 

1.10 Formal Solution of Electrostatic Boundary- Value 

Problem with Green Function 

The solution of the Poisson or Laplace equation in a finite volume V with either 
Dirichlet or Neumann boundary conditions on the bounding surface S can be 
obtained by means of Green’s theorem (1.35) and so-called Green functions. 

In obtaining result (1.36)—not a solution—we chose the function & to be 
1/|x — x'|, it being the potential of a unit point source, satisfying the equation: 

1 
476(x — x’) (1.31) “( Ix — x’ | 

The function 1/|x — x’| is only one of a class of functions depending on the 
variables x and x’, and called Green functions, which satisfy (1.31). In general 

V’?G(x, x’) = —478(x — x’) (1.39) 

where 

G(x, x') = + F(x, x’) (1.40) 
| | 

with the function F satisfying the Laplace equation inside the volume V 

V’ F(x, x') = 0 (1.41) 
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In facing the problem of satisfying the prescribed boundary conditions on ® 
or o@/dn, we can find the key by considering result (1.36). As has been pointed 
out already, this is not a solution satisfying the correct type of boundary condi- 
tions because both ® and a®/dn appear in the surface integral. It is at best an 
integral relation for ®. With the generalized concept of a Green function and its 

additional freedom [via the function F(x, x’)], there arises the possibility that we 

can use Green’s theorem with y = G(x, x’) and choose F(x, x’) to eliminate one 

or the other of the two surface integrals, obtaining a result that involves only 

Dirichlet or Neumann boundary conditions. Of course, if the necessary G(x, x’) 

depended in detail on the exact form of the boundary conditions, the method 

would have little generality. As will be seen immediately, this is not required 

and G(x, x’) satisfies rather simple boundary conditions on S 

With Green’s theorem (1.35), @ = ®, yw = G(x, x’), and the specified prop- 

erties of G (1.39), it is simple to obtain the generalization of (1.36) 

(1.42) 
1 

+ — 

70 mee 

4 

» OG(x, 2] da’ 

| 
The freedom available in the definition of G (1.40) means that we can make the 

surface integral depend only on the chosen type of boundary conditions. Thus 

for Dirichlet boundary conditions we demand 

for x’ on S (1.43) Gp(x, x') = 0 

Then the first term in the surface integral in (1.42) vanishes and the solution is 

dGp 
(1.44) P(x) = 

— da' [ ox yGo(x, x’) dx’ - 2. $ oe’) 2 
0 

For Neumann boundary conditions we must be more careful. The obvious 
choice of boundary condition on G(x, x’) seems to be 

dGy 
for x’ on S )=0 

0 , 

since that makes the second term in the surface integral in (1.42) vanish, as de- 

sired. But an application of Gauss’s theorem to (1.39) shows that 

dG 
— da'=-— 4a p on' 

Consequently the simplest allowable boundary condition on Gy is 

for x’ on S (1.45) 
dGw =F 
0 

where S is the total area of the boundary surface. Then the solution is 

1 
— da' (1.46) 

0? 

son 4 @(x) = (D) 5 + | p(x \Gn{x x ) d°x' + 

where (®), is the average value of the potential over the whole surface. The 

customary Neumann problem is the so-called exterior problem in which the vol- 
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ume V is bounded by two surfaces, one closed and finite, the other at infinity. 

Then the surface area S.is infinite; the boundary condition (1. 45) becomes ho- 

mogeneous; the average value (®),; vanishes. 

We note that the Green functions satisfy simple boundary conditions (1.43) 

or (1.45) which do not depend on the detailed form of the Dirichlet (or Neumann) 

boundary values. Even so, it is often rather involved (if not impossible) to de- 

termine G(x, x’) because of its dependence on the shape of the sufface S. We 

will encounter such problems in Chapters 2 and 3 

The mathematical symmetry property G(x, x’) = G(x’, x) can be proved for 
the Green functions satisfying the Dirichlet boundary condition (1.43) by means 
of Green’s theorem with ¢ = G(x, y) and & = G(x', y), where y is the integration 

variable. Since the Green function, as a function of one of its variables, is a 
potential due to a unit point source, the symmetry merely represents the physical 

interchangeability of the source and the observation points. For Neumann 

boundary conditions the symmetry is not automatic, but can be imposed as a 

separate requirement.* 

As a final, important remark we note the physical meaning of F(x, x')/47r€ 

It is a solution of the Laplace equation inside V and so represents the potential 

of a system of charges external to the volume V. It can be thought of as the 

potential due to an external distribution of charges chosen to satisfy the homo- 

geneous boundary conditions of zero potential (or zero normal derivative) on 

the surface S when combined with the potential of a point charge at the source 

point x’. Since the potential at a point x on the surface due to the point charge 

depends on the position of the source point, the external distribution of charge 

F(x, x’) must also depend on the ‘“‘parameter” x’. From this point of view 

we see that the method of images (to be discussed in Chapter 2) is a physical 

equivalent of the determination of the appropriate F(x, x’) to satisfy the bound- 

ary conditions (1.43) or (1.45). For the Dirichlet problem with conductors 

F(x, x')/47r€9 can also be interpreted as the potential due to the surface-charge 

distribution induced on the conductors by the presence of a point charge at the 

source point x 

I.11_ Electrostatic Potential Energy 

and Energy Density; Capacitance 

In Section 1.5 it was shown that the product of the scalar potential and the charge 
of a point object could be interpreted as potential energy. More precisely, if a 
point charge q; is brought from infinity to a point x; in a region of localized electric 
fields described by the scalar potential ® (which vanishes at infinity), the work 
done on the charge (and hence its potential energy) is given by 

(1.47) W; ~ q:P(x;) 
The Poe ® can be viewed as produced by an array of (nm — 1) charges 
qj = ,n — 1) at positions x;. Then 

n-1 
1 qj 

P(x;) = (1.48) 
Amey j= |x | 

*See K.-J. Kim and J. D. Jackson, Am. J. Phys. 61, (12) 1144-1146 (1993) 
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so that the potential energy of the charge q; is 

n-1 
qj qi 

—— W, = (1.49) 
47r€ j=l |x; _ x;| 

The total potential energy of all the charges due to all the forces acting between 
them is: 

n 

1 9:9; 
We= (1.50) 

4mT€ i=1 j<i |x; _ x,| 
as can be seen most easily by adding each charge in succession. A more symmetric 
form can be written by summing over i and j unrestricted, and then dividing by 2: 

1 4:4; 
Wwe= > (1.51) 

87€9 7 J 1X; _ x, | 
It is understood that i = j terms (infinite “self-energy” terms) are omitted in the 
double sum. 

For a continuous charge distribution [or, in general, using the Dirac delta 

functions (1.6)] the potential energy takes the form: 

p(x)p(x') a d>x' (1.52) Waal | |x — x’| 
Another expression, equivalent to (1.52), can be obtained by noting that one of 

the integrals in (1.52) is just the scalar potential (1.17). Therefore 

(1.53) W= 5 | p(x)®(x) dx 

Equations (1.51), (1.52), and (1.53) express the electrostatic potential energy 

in terms of the positions of the charges and so emphasize the interactions between 

charges via Coulomb forces. An alternative, and very fruitful, approach is to 

emphasize the electric field and to interpret the energy as being stored in the 

electric field surrounding the charges. To obtain this latter form, we make use of 

the Poisson equation to eliminate the charge density from (1.53): 

w= | oe as 

Integration by parts leads to the result: 

(1.54) Ww -2| Vb? dx = 2 | JEP d3x 

where the integration is over all space. In (1.54) all explicit reference to charges 

has gone, and the energy is expressed as an integral of the square of the electric 

field over all space. This leads naturally to the identification of the integrand as 

an energy density w: 

€o 
(1.55) Ww = 3 IEF 

This expression for energy density is intuitively reasonable, since regions of high 

fields ‘‘must’’ contain considerable energy. 

There is perhaps one puzzling thing about (1.55). The energy density is pos- 
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itive definite. Consequently its volume integral is necessarily nonnegative. This 
seems to contradict our impression from (1.51) that the potential energy of two 

charges of opposite sign is negative. The reason for this apparent contradiction 
is that (1.54) and (1.55) contain “self-energy” contributions to the energy density, 

whereas the double sum in (1.51) does not. To illustrate this, consider two point 

charges q, and q; located at x; and xp, as in Fig. 1.8. The electric field at the point 
~ ~~ 

P with coordinate x is 

1 go(x - X2) 1 gqi(x — X1) 
E 

Amey |x — x, 47€ [x — xX | 

so that the energy density (1.55) is 

X2) X,) ° (x qig2(x q2 11 
+2 (1.56) 327° €gw 

|x — xP [x — xf? | Ix — x|* _~ x, |* 
Clearly the first two terms are “self-energy” contributions. To show that the third 

term gives the proper result for the interaction potential energy we integrate over 

all space 

(x — x.) ° (x 11492 X>) a? (1.57) Wint J 1677 € [x — x)? [x — x2)? 
A change of integration variable to p = (x — x,)/|x: — X2| yields 

1 p:(p +n) (p + 4192 n) 
(1.58) Wint = 

= 

p lp + 47€ [xy Dip tap? X,| 
where n is a unit vector in the direction . — X>). Using the fact that (p + n)/ 

n|), the dimensionless integral can easily be shown to lp n|° = -V,(1/|p 
have the value 47, so that the interaction energy reduces to the expected value 

Forces acting between charged bodies can be obtained by calculating the 

change in the total electrostatic energy of the system under small virtual displace- 

ments. Examples of this are discussed in the problems. Care must be taken to 

exhibit the energy in a form showing clearly the factors that vary with a change 

in configuration and those that are kept constant 

As a simple illustration we calculate the force per unit area on the surface 

of a conductor with a surface-charge density a(x). In the immediate neighbor- 

hood of the surface the energy density is 

|E/? o7/2€ (1.59) 

If we now imagine a small outward displacement Ax of an elemental area Aa of 

the conducting surface, the electrostatic energy decreases by an amount that is 

the product of energy density w and the excluded volume Ax Aa 

AW = -o7 Aa Ax/2€ (1.60) 

°P 

q1 

q2 x1 

x2 
Figure 1.8 
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This means that there is an outward force per unit area equal to o*/2€) = w at 
the surface of the conductor. This result is normally derived by taking the product 
of the surface-charge density and the electric field, with care taken to eliminate 
the electric field due to the element of surface-charge density itself. 

£ 

For a system of n conductors, each with potential V; and total charge 
-,M) in otherwise empty space, the electrostatic potential energy 

can be expressed in terms of the potentials alone and certain geometrical quan- 
tities called coefficients of capacity. For a given configuration of the conductors, 
the linear functional dependence of the potential on the charge density implies 
that the potential of the ith conductor can be written as 

v= > pid, (i = 1,2,...,n) 
where the p, depend on the geometry of the conductors. These n equations can 
be inverted to yield the charge on the ith conductor in terms of all the potentials: 

(1.61) 

The coefficients C;; are called capacities or capacitances while the C,, i # j, are 
called coefficients of induction. The capacitance of a conductor is therefore the 
total charge on the conductor when it is maintained at unit potential, all other 
conductors being held at zero potential. Sometimes the capacitance of a system 
of conductors is also defined. For example, the capacitance of two conductors 

carrying equal and opposite charges in the presence of other grounded conduc- 

tors is defined as the ratio of the charge on one conductor to the potential dif- 

ference between them. The equations (1.61) can be used to express this capaci- 

tance in terms of the coefficients C; 

The potential energy (1.53) for the system of conductors is 

(1.62) > > avy, w=5>0v,=3 
i=1 j=l 

The expression of the energy in terms of the potentials V; and the C,, or in terms 

of the charges Q; and the coefficients p,, permits the application of variational 

methods to obtain approximate values of capacitances. It can be shown, based 

on the technique of the next section (see Problems 1.17 and 1.18), that there are 

variational principles giving upper and lower bounds on C;;. The principles permit 

estimation with known error of the capacitances of relatively involved configu- 

rations of conductors. High-speed computational techniques permit the use of 

elaborate trial functions involving several parameters. It must be remarked, how- 

ever, that the need for a Green function satisfying Dirichlet boundary conditions 

in the lower bound makes the error estimate nontrivial. Further consideration of 

this technique for calculating capacitances is left to the problems at the end of 

this and subsequent chapters. 

1.12. Variational Approach to the Solution of the Laplace 

and Poisson Equations 

Variational methods play prominent roles in many areas of classical and quantum 

physics. They provide formal techniques for the derivation of “equations of mo- 
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tion” and also practical methods for obtaining approximate, but often accurate, 
solutions to problems not amenable to other approaches. Estimates of resonant 

frequencies of acoustic resonators and energy eigenvalues of atomic systems 

come readily to mind. 

The far-reaching concept that physical systems in equilibrium have minimal 
™~ 

energy content is generalized to the consideration of energy- “like functionals. As 

an example, consider the functional 

(1.63) iy) =4[ vo-vuas — | gua? 
where the function (x) is well-behaved inside the volume V and on its surface 

S (which may consist of several separate surfaces), and g(x) is a specified 
“source” function without singularities within V. We now examine the first-order 

change in the functional when we change y —> + 6y, where the modification 

5y/(x) is infinitesimal within V. The difference 67 = J[y + dy] — I[y] is 

(1.64) at = | Vis» V(dy) d?x - | gow d?x + 

The neglected term is semipositive definite and is second order in dy. Use of 

Green’s first identity with @ = dy and » = yw yields 

(1.65) at = | [-—V7" — g] ay dx + 4 by — d 

Provided 6 = 0 on the boundary surface S (so that the surface integral vanishes) 
the first-order change in J[y] vanishes if w(x) satisfies 

(1.66) Vey = —8 

Recalling that the neglected term in (1.64) is semipositive definite, we see that 

{y] is a stationary minimum if yw satisfies a Poisson-like equation within the 

volume V and the departures 5y vanish on the boundary. With y — ® and g > 

p/€o, the minimization of the functional yields the ‘equation of motion”’ of the 

electrostatic potential in the presence of a charge density and Dirichlet boundary 

conditions (® given on S and so 6® = 0 there) 

The derivation of the Poisson equation from the variational functional is the 

formal aspect. Equally important, the stationary nature of the extremum of [[] 

permits a practical approach to an approximate solution for w(x). We choose a 

flexible ‘‘trial’’ function Y(x) = AV (x, a, B ) that depends on a normalization 

and is constructed constant A and some number of other parameters, a, B 

to satisfy the given boundary conditions on the surface S. The function Y may 

be a sum of terms with the parameters as coefficients, or a single function of 

several parameters; it should be chosen with some eye toward the expected form 

of the solution. (Intuition plays a role here!) Calculation of J{w] gives the func- 

tion, /(A, a, B ). We now vary the parameters to locate the extremum (actually 

a minimum) of I(A, a, B ). With the optimum parameters, the trial solution 

is the best possible approximation to the true solution with the particular func- 

tional form chosen. For the Laplace equation, the normalization constant is de- 

termined by the Dirichlet boundary values of yw. For the Poisson equation, it is 
determined by the source strength g(x), as well as the boundary values on S$ 

A different functional is necessary for Neumann boundary conditions. Sup- 
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pose that the boundary conditions on y& are specified by ays/an|s = f(s), where s 
locates a point on the surface S. The appropriate functional is 

(1.67) w= 5] vu. vwas - | eva’ — > furda 
The same steps as before with y — ys + dy lead to the first-order difference in 

functionals, 

(1.68) él = [, [-V-h — g] db dx + $ (2 _ f0)) dy da 

The requirement that 6/ vanish independent of Sy implies 

wo 
—. and V’y = ~—g within V (1.69) = f(s) on S$ 
on 

Again the functional is a stationary minimum for wsatisfying (1.69). Approximate 

solutions can be found by the use of trial functions that satisfy the Neumann 

boundary conditions, just as described above for Dirichlet boundary conditions. 

As a simple application to the Poisson equation, consider the two-dimen- 

sional problem of a hollow circular cylinder of unit radius centered on the z-axis, 

with an interior source density g(x) = g(p), azimuthally symmetric and inde- 

pendent of z. The potential vanishes at p = 1. The “equation of motion” for 

yw (a function of p alone) in polar coordinates is 

1a oy 
—_— 

_— 
= (1.70) p— —g(p) 

dp p op ( 
For trial functions we consider finite polynomials in powers of (1 — p) and p. A 

three-parameter function of the first type is 

(1.71) Vv, = a, (1 _ p) + Bil ~ py + y(1 ~ p) 

This choice might seem natural because it automatically builds in the boundary 

condition at p = 1, but it contains a flaw that makes it a less accurate represen- 

tation of y than the power series in p. The reason is that, if the source density g 

is well behaved and finite at the origin, Gauss’s law shows that y has a maximum 

or minimum there with vanishing slope. The requirements at both the origin and 

p = 1 are met by a three-parameter trial function in powers of p: 

(1.72) WV, = ap? + Bp? + yp* -— (a+ B+ ¥) 

We expect this trial function in general to be a better approximation to y than 

Y, for the same number of variational parameters. [We could, of course, impose 

the constraint, a, + 28, + 37; = 0 on (1.71) to get the proper behavior at the 

origin, but that would reduce the number of parameters from three to two.] 
The functional integral (1.63) for VY, is easily shown to be 

— 
— ay + 7B 

3 
of + [a8 + 

2 
1 11 = | 

(1.73) 

+ = By + a _— [era + €32 + e4y] 

where e,, = Jo g(p)(p” — 1) p dp. 
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The integral for VY, has the same form as (1.73), but different coefficients. 
As described above, we seek an extremum of (1.73) by setting the partial deriv- 
atives with respect to the parameters a, 8, and equal to zero. The three coupled 
algebraic linear equations yield the “best” values, 

= a 225€> — 420e3 + 210e, 

2450 
(1.74) B —420e, + — €3 —~ 420e, 

y = 210e, — 420e,; + —— &4 

These values can be inserted into (1.73) to give I[V2]min aS a not very illuminating 

function of the e,. One would then find that the “kinetic” (first) bracket was 

equal to half the ‘“‘potential” (second) bracket and opposite in sign, a character- 

istic of the extremum. 

To go further we must specify g(p). The results for the best trial functions 

, and Y, are shown in Fig. 1.9 for the source density, 

(1.75) g(p) = —5(1 — p) + 10*p°(1 — py? 

The choice of source is arbitrary and is chosen to give a potential that is not quite 

featureless. The ‘“‘best” parameters for VY are a = 2.915, B = —7.031, and y = 
—1.5817, compared to 3.642. The variational integral has the value, Z[V2} min 

—1.6017. The fractional error is 1.3%. T[Wlexact 
Note that the trial function WV, fails rather badly for p < 0.3 because it does 

T T T T 0.7 T 

ee 0.6 [—- 
7 = 
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0.4 + 
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Figure 1.9 Comparison of the exact solution y(p) (solid curve) with two variational 

approximations for the potential, Y, (dotted curve) and WY, (dashed curve). The charge 

density (1.75) is indicated by the dash-dot curve (arbitrary scale). 
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~1.5136, not respect the vanishing slope at p = 0. Nonetheless, it gives I[V;] min 

which is somewhat, but not greatly, worse than V, (5.5% error). The insensitivity 
of J[V] to errors in the trial function illustrates both a strength and a weakness 
of the variational method. If the principle is used to estimate eigenvalues (related 
to the value of J[W]), it does well. Used as a method of estimating a solution 
wy ~ W, it can fail badly, at least in parts of the configuration space. 

The reader will recognize from (1.70) that a polynomial source density leads 

to an exact polynomial solution for , but the idea here is to illustrate the vari- 

ational method, not to demonstrate a class of explicit solutions. Further illustra- 

tion is left to the problems at the end of this and later chapters. 

1.13 Relaxation Method for Two-Dimensional 

Electrostatic Problems 

The relaxation method is an iterative numerical scheme (sometimes called iter- 

ative finite difference method) for the solution of the Laplace or Poisson equation 

in two dimensions. Here we present only its basic ideas and its connection with 

the variational method. First we consider the Laplace equation with Dirichlet 

boundary conditions within a two-dimensional region S with a boundary contour 

C. We imagine the region S spanned by a square lattice with lattice spacing h 

(and the boundary contour C approximated by a step-like boundary linking lat- 

tice sites along C). The independent variables are the integers (i, /) specifying 

the sites; the dependent variables are the trial values of the potential (i, j) at 
each site. The potential values on the boundary sites are assumed given. 

To establish the variational nature of the method and to specify the iterative 

scheme, we imagine the functional integral [| over S as a sum over small do- 
mains of area h”, as shown in Fig. 1.10a. We consider the neighboring trial values 
of the potential as fixed, while the value at the center of the subarea is a varia- 
tional quantity to be optimized. The spacing is small enough to permit us to 

approximate the derivatives in, say, the northeast quarter of the subarea by 

oy ou _— 
—_ — 

— = 
= = (i = 4) 

0 Ox l. = (He — Wo); ( h, ( 
and similarly for the other three quarters. The functional integral over the north- 

east quarter is 

ou 
dy )] men ah el of) +( 

(1.76) 

~ E[(do ~ Wn + (Wo ~ HPI 

The complete integral over the whole (shaded) subarea is evidently 

= fle ~ Uy)® + Wo = Ye)? + Wo ~ WSF + (Wo ~ Hw" (1.77) 

Minimizing this integral with respect to Y% gives the optimum value, 

(1.78) (Wo) optimum = (x + We + Ws + pw) 



48 Chapter1 Introduction to Electrostatics—SI 

%--O---&--O- *--O-- 
WN 

*--O---& *%--O Q-- 

%--O---&:--O O-- 

M-- O-- x--O--X 
We Vw 

-* x--O- *-9 
QO-- 

y given 
O-- xO KO onc 

O--&--O----O- 

% --O-----O- = K- Q-- vs 

(a) (6) 

Figure 1.10 (a) Enlargement of one of the subareas in the functional integral (shaded) 
The trial values of the potential at the neighboring sites are labeled Wn, Ws, We, and pw, 

while the value at the center of the subarea is %. (b) One possible iteration is to 

replace the trial values at the lattice sites (C) with the average of the values at the 

surrounding sites (Xx). 

The integral is minimized if y% is equal to the average of the values at the ‘“‘cross”’ 

points. 

Now consider the whole functional integral, that is, the sum of the integrals 

over all the subareas. We guess a set of w(i, j) initially and approximate the 

functional integral [yw] by the sum of terms of the form of (1.77). Then we go 

over the lattice and replace half the values, indicated by the circles in Fig. 1.105, 

by the average of the points (crosses) around them. The new set of trial values 

Wi, j) will evidently minimize J[y] more than the original set of values; the new 

set will be closer to the correct solution. Actually, there is no need to do the 

averaging for only half the points—that was just a replication for half of the 

subareas of the process for Fig. 1.10a. 

There are many improvements that can be made. One significant one con- 

cerns the type of averaging. We could have taken the average of the values at 

the corners of the large square in Fig. 1.10a instead of the “cross” values. Or we 

could take some linear combination of the two. It can be shown (see Problem 

1.22) by Taylor series expansion of any well-behaved function F(x, y) that a 

particular weighted average, 

(1.79) (FG, y)) = 3 Fe + 5 MF, 

where the “cross” and ‘‘square”’ averages are 

(F(x, y)). = ; [F(xt+h, y) + F(x, yth) + F(x—h, y) + F(x, y-h)] (1.80a) 

(F(x, y)). = ; [F(xt+h, yth) + F(xt+h, y—h) 
(1.80b) 

+ F(x—-h, y+h) + F(x—-h, y—h)] 

yields 

. 

1 
(F(x, y)) = Fx, y) + = W VF + — ht V(V2F) + O(n) (1.81) 

10 40 
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In (1.81) the Laplacians of F are evaluated at (x, y). If F(x, y) is a solution of the 
Laplace equation, the weighted averaging over the eight adjacent lattice sites in 
(1.79) gives F at the center with corrections only of order A®. Instead of (1.78), 
which is the same as (1.80a), a better iteration scheme uses rew(i, j) = (ab(i, j))) 
+ O(h°). With either the “cross” or ‘“‘square” averaging separately, the error is 
O(h*). The increase in accuracy with ((y)) is at the expense of twice as much 
computation for each lattice site, but for the same accuracy, far fewer lattice sites 

are needed: ((N)) = O((N)*?), where ({N)) is the number of sites needed with 
((¥)) and (N) is the corresponding number with the ‘‘cross” or “square” average. 

Equation (1.81) has an added advantage in application to the Poisson equa- 

tion, V7 = —g. The terms of order h? and h* can be expressed directly in terms 

of the specified charge density and the simplest approximation for its Laplacian. 

It is easy to show that the new value of the trial function at (i, /) is generated by 

2 

(1.82) noni) = Mutiny + © eG i) + 
where (g), is the “‘cross”’ average of g, according to (1.80a). 

A basic procedure for the iterative numerical solution of the Laplace or 

Poisson equation in two dimensions with Dirichlet boundary conditions is as 

follows: 

1 A square lattice spacing h is chosen and the lattice sites, including the sites 

on the boundary, are labeled in some manner [which we denote here as (i, j)]. 

The values of the potential at the boundary sites are entered in a table of the 
potential at all sites. 

A guess is made for the values, called ®, (i, /), at all interior sites. A constant 
value everywhere is easiest. These are added to the table or array of “start- 

ing”’ values. 

The first iteration cycle begins by systematically going over the lattice sites, 

one by one, and computing ((®(i, j))) with (1.79) or one of the averages in 
(1.80). This quantity (or (1.82) for the Poisson equation) is entered as 
®,-w(i, j) in a table of ‘‘new” values of the potential at each site. Note that 
the sites next to the boundary benefit from the known boundary values, and 
so their ((®)) values are likely initially to be closer to the ultimate values of 

the potential than those for sites deep in the interior. With each iteration, 

the accuracy works its way from the boundaries into the interior. 

Once all interior sites have been processed, the set of ®oa(i, j) is replaced 

by the set of ®,.,(i, j), and the iteration cycle begins again. 

Iterations continue until some desired level of accuracy is achieved. For ex- 

ample, one might continue iterations until the absolute value of the differ- 

ence of old and new values is less than some preassigned value at every 

interior site. 

The scheme just outlined is called Jacobian iteration. It requires two arrays 

of values of the potential at the lattice sites during each iteration. A better 

scheme, called Gauss-Seidel iteration, employs a trivial change: one replaces 

®,:a(i, j) with ®,,,,(i, /) as soon as the latter is determined. This means that during 

an iteration one benefits immediately from the improved values. Typically, at any 

given site, (()) is made up half of old values and half of new ones, depending 
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on the path over the lattice. There are many other improvements possible— 
consult Press et al., Numerical Recipes, or some of the references cited at the end 
of the chapter. The relaxation method is also applicable to magnetic field prob- 
lems, as described briefly in Section 5.14. 

~~ ~ References and Suggested Reading 

On the mathematical side, the subject of delta functions is treated simply but rigor- 

ously by 

Lighthill 

Dennery and Kryzwicki 

For a discussion of different types of partial differential equations and the appropriate 

boundary conditions for each type, see 

Morse and Feshbach, Chapter 6 

Sommerfeld, Partial Differential Equations in Physics, Chapter II 

Courant and Hilbert, Vol. IJ, Chapters II-VI 

The general theory of Green functions is treated in detail by 

Friedman, Chapter 3 

Morse and Feshbach, Chapter 7 

The general theory of electrostatics is discussed extensively in many of the older 

books. Notable, in spite of some old-fashioned notation, are 

Maxwell, Vol. 1, Chapters II and IV 

Jeans, Chapters IJ, VI, VII 

Kellogg 

Of more recent books, mention may be made of the treatment of the general theory by 
Stratton, Chapter III, and parts of Chapter II. 

Readers interested in variational methods applied to electromagnetic problems can 

consult 

Cairo and Kahan 

Collin, Chapter 4 

Sadiku, Chapter 4 

and 

Polya and Szegé 

for elegant and powerful mathematical techniques. 

The classic references to relaxation methods are the two books by R. V. Southwell: 

Relaxation Methods in Engineering Science, Oxford University Press, Oxford 

(1940). 

Relaxation Methods in Theoretical Physics, Oxford University Press, Oxford 

(1946). 

Physicists will be more comfortable with the second volume, but much basic material is 

in the first. More modern references on relaxation and other numerical methods are 

Sadiku 

Zhou 

Problems 

11 Use Gauss’s theorem [and (1.21) if necessary] to prove the following: 

(a) Any excess charge placed on a conductor must lie entirely on its surface. (A 

conductor by definition contains charges capable of moving freely under the 

action of applied electric fields.) 
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(b) A closed, hollow conductor shields its interior from fields due to charges out- 
side, but does not shield its exterior from the fields due to charges placed 
inside it. 

(c) The electric field at the surface of a conductor is normal to the surface and 
has a magnitude o/¢), where o is the charge density per unit area on the 
surface. 

1.2 The Dirac delta function in three dimensions can be taken as the improper limit as 

a — 0 of the Gaussian function 

1 
— 

207 
(x? + yy? + "| D(a; x,y, z) = (277) 37a? exp| - 

— 

= Consider a general orthogonal coordinate system specified by the surfaces u 

constant, v = constant, w = constant, with length elements du/U, dv/V, dw/W in 

the three perpendicular directions. Show that 

d(x — x’) = d(u — u’) d(v — v') 5(w — w')- UVW 

by considering the limit of the Gaussian above. Note that as a — 0 only the infin- 

itesimal length element need be used for the distance between the points in the 

exponent. 

1.3 Using Dirac delta functions in the appropriate coordinates, express the following 

charge distributions as three-dimensional charge densities p(x). 

(a) In spherical coordinates, a charge Q uniformly distributed over a spherical 

shell of radius R. 

(b) In cylindrical coordinates, a charge A per unit length uniformly distributed 

over a cylindrical surface of radius b. 

(c) In cylindrical coordinates, a charge Q spread uniformly over a flat circular 
disc of negligible thickness and radius R. 

(d) The same as part (c), but using spherical coordinates. 

1.4 Each of three charged spheres of radius a, one conducting, one having a uniform 
charge density within its volume, and one having a spherically symmetric charge 

density that varies radially as r” (n > —3), has a total charge Q. Use Gauss’s theorem 

to obtain the electric fields both inside and outside each sphere. Sketch the behavior 

of the fields as a function of radius for the first two spheres, and for the third with 

n= —2, +2. 

15 The time-averaged potential of a neutral hydrogen atom is given by 

—or 
ar ée q 

— 

= 

+ — 

2 r Ate ( 
1 = a)/2, ao being the where q is the magnitude of the electronic charge, and a~ 

Bohr radius. Find the distribution of charge (both continuous and discrete) that will 

give this potential and interpret your result physically. 

1.6 A simple capacitor is a device formed by two insulated conductors adjacent to each 

other. If equal and opposite charges are placed on the conductors, there will be a 

certain difference of potential between them. The ratio of the magnitude of the 

charge on one conductor to the magnitude of the potential difference is called the 

capacitance (in SI units it is measured in farads). Using Gauss’s law, calculate the 

capacitance of 

two large, flat, conducting sheets of area A, separated by a small distance d; 
(a) 

two concentric conducting spheres with radii a, b (b > a); (b) 

(c) two concentric conducting cylinders of length L, large compared to their radii 
a,b (b> a). 
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(d) What is the inner diameter of the outer conductor in an air-filled coaxial cable 
whose center conductor is a cylindrical wire of diameter 1 mm and whose 
capacitance is 3 X 107!! F/m? 3 x 107’? F/m? 

1.7 Two long, cylindrical conductors of radii a; and a, are parallel and separated by a 
distance d, which is large compared with either radius. Show that the capacitance 
per unit length is given approximately by 

~~ ~ 

c= wale!) 
where a is the geometrical mean of the two radii. 

Approximately what gauge wire (state diameter in millimeters) would be nec- 

essary to make a two-wire transmission line with a capacitance of 1.2 x 107"? F/m 
if the separation of the wires was 0.5 cm? 1.5 cm? 5.0 cm? 

18 (a) For the three capacitor geometries in Problem 1.6 calculate the total electro- 

static energy and express it alternatively in terms of the equal and opposite 

charges Q and —@Q placed on the conductors and the potential difference 
between them. 

Sketch the energy density of the electrostatic field in each case as a function (b) 
of the appropriate linear coordinate. 

1.9 Calculate the attractive force between conductors in the parallel plate capacitor 

(Problem 1.6a) and the parallel cylinder capacitor (Problem 1.7) for 

(a) fixed charges on each conductor; 

(b) fixed potential difference between conductors. 

1.10 Prove the mean value theorem: For charge-free space the value of the electrostatic 

potential at any point is equal to the average of the potential over the surface of 

any sphere centered on that point. 

1.11 Use Gauss’s theorem to prove that at the surface of a curved charged conductor, 

the normal derivative of the electric field is given by 

1 1 1 aE _ 

E an R, Ri ( 
where R, and R, are the principal radii of curvature of the surface. 

1.12 Prove Green’s reciprocation theorem: If ® is the potential due to a volume-charge 
density p within a volume V and a surface-charge density o on the conducting 
surface S bounding the volume V, while ®’ is the potential due to another charge 
distribution p' and o’, then 

I, p®’ d°x + [ a®' da = I, p’® d’x + [ o'® da 
1.13 Two infinite grounded parallel conducting planes are separated by a distance d. A 

point charge q is placed between the planes. Use the reciprocation theorem of 

Green to prove that the total induced charge on one of the planes is equal to (—q) 

times the fractional perpendicular distance of the point charge from the other plane. 

(Hint: As your comparison electrostatic problem with the same surfaces choose one 

whose charge densities and potential are known and simple.) 

1.14 Consider the electrostatic Green functions of Section 1.10 for Dirichlet and 

Neumann boundary conditions on the surface S bounding the volume V. Apply 

Green’s theorem (1.35) with integration variable y and ¢ = G(x, y), # = G(x’, y), 

with V7, G(z, y) = —47r8(y — z). Find an expression for the difference [G(x, x’) — 

G(x’, x)] in terms of an integral over the boundary surface S. 

(a) For Dirichlet boundary conditions on the potential and the associated bound- 

ary condition on the Green function, show that Gp(x, x’ must be symmetric 

in x and x’. 



Ch. 1 Problems 53 

(b) For Neumann boundary conditions, use the boundary condition (1.45) for 

G)(x, x’) to show that G)(x, x’) is not symmetric in general, but that Gy(x, 
x’) — F(x) is symmetric in x and x’, where 

F(x) = “ $ G(x, y) da, 

(c) Show that the addition of F(x) to the Green function does not affect the po- 

tential ®(x). See problem 3.26 for an example of the Neumann Green function. 

1.15 Prove Thomson’s theorem: If a number of surfaces are fixed in position and a given 

total charge is placed on each surface, then the electrostatic energy in the region 

bounded by the surfaces is an absolute minimum when the charges are placed so 

that every surface is an equipotential, as happens when they are conductors. 

1.16 Prove the following theorem: If a number of conducting surfaces are fixed in po- 

sition with a given total charge on each, the introduction of an uncharged, insulated 

conductor into the region bounded by the surfaces lowers the electrostatic energy. 

1.17 A volume V in vacuum is bounded by a surface S consisting of several separate 

conducting surfaces S;. One conductor is held at unit potential and all the other 

conductors at zero potential. 

(a) Show that the capacitance of the one conductor is given by 

C = & [ |V@P d3x 

where (x) is the solution for the potential. 

(b) Show that the true capacitance C is always less than or equal to the quantity 

C[¥] = & [ VW? dx 

where WV is any trial function satisfying the boundary conditions on the con- 

ductors. This is a variational principle for the capacitance that yields an upper 

bound. 

1.18 Consider the configuration of conductors of Problem 1.17, with all conductors ex- 

cept S, held at zero potential. 

(a) Show that the potential ®(x) anywhere in the volume V and on any of the 

surfaces S; can be written 

P(x) = ing . o,(x')G(x, x’) da’ 

where o;(x’) is the surface charge density on S, and G(x, x’) is the Green 

function potential for a point charge in the presence of all the surfaces that 

are held at zero potential (but with 5S, absent). Show also that the electrostatic 

energy is 

— 

= , da , da' o,(x)G(x, x')o,(x’) 
81TE 

where the integrals are only over the surface Sj. 

Show that the variational expression (b) 

, da , da'a(x)G(x, x')o(x’) 
Cle] = 

neff, oe 0] 

with an arbitrary integrable function a(x) defined on S,, is stationary for small 

variations of o away from o,. Use Thomson’s theorem to prove that the 
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reciprocal of C™'[o] gives a lower bound to the true capacitance of the con- 

ductor S;. 

1.19 For the cylindrical capacitor of Problem 1.6c, evaluate the variational upper bound 

of Problem 1.17b with the naive trial function, V,(p) = (b — p)/(b. — a). Compare 
the variational result with the exact result for b/a = 1.5, 2, 3. Explain the trend of 
your results in terms of the functional form of V,. An improved trial function is 

™~ ~ treated by Collin (pp. 275-277). 

1.20 In estimating the capacitance of a given configuration of conductors, comparison 

with known capacitances is often helpful. Consider two configurations of n conduc- 

tors in which the (n — 1) conductors held at zero potential are the same, but the 

one conductor whose capacitance we wish to know is different. In particular, let the 

conductor in one configuration have a closed surface S, and in the other configu- 

ration have surface S;, with S; totally inside S;. 

(a) Use the extremum principle of Section 1.12 and the variational principle of 

Problem 1.17 to prove that the capacitance C’ of the conductor with surface 

Sj 1s less than or equal to the capacitance C of the conductor with surface S, 

that encloses Sj. 

(b) Set upper and lower limits for the capacitance of a conducting cube of side a. 

Compare your limits and also their average with the numerical value, 

C = 0.655(477€9a). 

(c) By how much do you estimate the capacitance per unit length of the two-wire 

system of Problem 1.7 will change (larger? smaller?) if one of the wires is 

replaced by a wire of square cross section whose side is equal to its diameter? 

1.21 A two-dimensional potential problem consists of a unit square area (0 = x = 1, 

0 = y = 1) bounded by “‘surfaces” held at zero potential. Over the entire square 

there is a uniform charge density of unit strength (per unit length in z). 

(a) Apply the variational principle (1.63) for the Poisson equation with the ‘“‘vari- 

ational” trial function V(x, y) = A+ x(1 — x)-y(1 — y) to determine the best 

value of the constant A. [I use quotation marks around variational because 
there are no parameters to vary except the overall scale.] 

(b) The exact (albeit series) solution for this problem is [see Problems 2.15 and 
2.16] 

sin[(2m + 1)ax]} _ cosh[(2m + 1)m(y — 3)] 47reyP(x, y) = * 
=0 (2m + 1p cosh[(2m + 1)7/2] 

For y = 0.25 and y = 0.5, plot and compare the simple variational solution of 
part a with the exact solution as functions of x. 

1.22 Two-dimensional relaxation calculations commonly use sites on a square lattice with 
spacing Ax = Ay = h, and label the sites by (i, j), where i, j are integers and x, = 
th + Xo, y; = jh + yo. The value of the potential at (i, j) can be approximated by 
the average of the values at neighboring sites. [Recall the relevant theorem about 
harmonic functions.] But what average? 

(a) If F(x, y) is a well-behaved function in the neighborhood of the origin, but 
not necessarily harmonic, by explicit Taylor series expansions, show that the 
“cross”? sum 

S. = F(h, 0) + F(O, h) + F(-h, 0) + F(0, —h) 

can be expressed as 

S. = 4F(0, 0) + WV2F + x (Feusx + Fyyyy) + OC) 
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(b) Similarly, show that the ‘‘square” sum, 

Ss = Fh, h) + F(-h, h) + F(-h, —h) + F(h, -h) 

can be expressed as 

Ss = AF(O, 0) + 2hV2F — . (Force + Fyyyy) + e V°(V2F) + O(n’) 

Here F,,,, is the fourth partial derivative of F with respect to x, evaluated at 
x =0,y = 0, etc. If V?F = 0, the averages S./4 and S,/4 each give the value of 
F(0, 0), correct to order h° inclusive. Note that an improvement can be ob- 
tained by forming the ‘‘improved” average, 

1 
S, + = S, 

4 
«reo. oy = | 

where 

3 
(FQ, 0))) = F(O, 0) + 5 VF + (WF) + O(R°) 

If V’F = 0, then § gives F(0, 0), correct to order h' inclusive. For Poisson’s 

equation, the charge density and its lowest order Laplacian can be inserted 

for the same accuracy. 

1.23 A transmission line consists of a long straight conductor with a hollow square region 

in its interior, with a square conductor of one-quarter the area of the hollow region 

centered in the empty space, with edges parallel to the inner sides of outer con- 

ductor. If the conductors are raised to different potentials, the potential and electric 

field in the space between them exhibit an eightfold symmetry; the basic unit is 

sketched in the accompanying figure. The efficacy of the relaxation method in de- 

termining the properties of the transmission line can be illustrated by a simple 

calculation. 

(a) Using only the four interior points indicated in the figure, write down the 

relaxation equation for each point for the ‘‘cross’”’ and the “amproved”’ aver- 

aging schemes (defined in Problem 1.22) if the inner conductor has ® = 100 

V and the outer has ® = 0. By performing either the relaxation iteration 

process or solving the set of algebraic equations for each scheme, find esti- 

mates for the potential at each of the four points for the two schemes. 

(b) From the results of part a make the best estimate (or estimates) you can for 

the capacitance per unit length of the transmission line. 

(c) (Optional) Using your favorite computational tools, repeat the relaxation cal- 
culation with half the lattice spacing (21 interior points) and compare. 

Answer: ®, = 48.87 V, ®, = 47.18 V, ®; = 38.34 V, ®, = 19.81 V and C = 10.23 
€) F/m [from an accurate numerical calculation]. 

————-—4 

@ e3' 

9 e3 e2 e2' *1 

Problem 1.23 ‘?- 
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1.24 Consider solution of the two-dimensional Poisson equation problem of Problem 

1.21, a unit square with zero potential on the boundary and a constant unit charge 

density in the interior, by the technique of relaxation. Choose h = 0.25 so that there 

are nine interior sites. Use symmetry to reduce the number of needed sites to three, 

at (0.25, 0.25), (0.5, 0.25), and (0.5, 0.5). With so few sites, it is easy to do the 

iterations with a block of paper and a pocket calculator, but suit yourself. 

(a) Use the ‘“‘improved grid” averaging of Problem 1.22 and the simple (Jacobian) 

iteration scheme, starting with 47re,@ = 1.0 at all three interior sites. Do at 

least six iterations, preferably eight or ten. 

(b) Repeat the iteration procedure with the same starting values, but using Gauss— 

Seidel iteration. 

(c) Graph the two sets of results of each iteration versus iteration number and 
compare with the exact values, 47ré9@(0.25, 0.25) = 0.5691, 47e9@(0.5, 0.25) 

= 0.7205, 47répB(0.5, 0.5) = 0.9258. Comment on rate of convergence and final 

accuracy. 



CHAPTER 2 

Boundary-Value Problems 
in Electrostatics: I 

Many problems in electrostatics involve boundary surfaces on which either the 
potential or the surface-charge density is specified. The formal solution of such 
problems was presented in Section 1.10, using the method of Green functions. 
In practical situations (or even rather idealized approximations to practical sit- 

uations) the discovery of the correct Green function is sometimes easy and some- 

times not. Consequently a number of approaches to electrostatic boundary-value 

problems have been developed, some of which are only remotely connected to 

the Green function method. In this chapter we will examine three of these special 

techniques: (1) the method of images, which is closely related to the use of Green 

functions; (2) expansion in orthogonal functions, an approach directly through 

the differential equation and rather remote from the direct construction of a 

Green function; (3) an introduction to finite element analysis (FEA), a broad 

class of numerical methods. A major omission is the use of complex-variable 

techniques, including conformal mapping, for the treatment of two-dimensional 

problems. The topic is important, but lack of space and the existence of self- 

contained discussions elsewhere accounts for its absence. The interested reader 

may consult the references cited at the end of the chapter. 

2.1 | Method of Images 
The method of images concerns itself with the problem of one or more point 

charges in the presence of boundary surfaces, for example, conductors either 
grounded or held at fixed potentials. Under favorable conditions it is possible to 
infer from the geometry of the situation that a small number of suitably placed 

charges of appropriate magnitudes, external to the region of interest, can simu- 

late the required boundary conditions. These charges are called image charges, 

and the replacement of the actual problem with boundaries by an enlarged region 

with image charges but not boundaries is called the method of images. The image 

charges must be external to the volume of interest, since their potentials must be 

solutions of the Laplace equation inside the volume; the “particular integral” 

(i.e., solution of the Poisson equation) is provided by the sum of the potentials 

of the charges inside the volume. 

A simple example is a point charge located in front of an infinite plane con- 

ductor at zero potential, as shown in Fig. 2.1. It is clear that this is equivalent to 

the problem of the original charge and an equal and opposite charge located at 

the mirror-image point behind the plane defined by the position of the conductor. 

57 
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WO 
<— Dp=0 <— o=0 

—_— ——— — fo 

—q 

Figure 2.1 Solution by method of 

images. The original potential problem 

is on the left, the equivalent-image 

problem on the right. 

2.2 Point Charge in the Presence of a Grounded 
Conducting Sphere 

As an illustration of the method of images we consider the problem illustrated 

in Fig. 2.2 of a point charge q located at y relative to the origin, around which is 

centered a grounded conducting sphere of radius a. We seek the potential P(x) 

such that ®(|x| = a) = 0. By symmetry it is evident that the image charge q’ 
(assuming that only one image is needed) will lie on the ray from the origin to 

the charge q. If we consider the charge q outside the sphere, the image position 

y’ will lie inside the sphere. The potential due to the charges q and q’ is: 

gl4 trey qd "1417 
@(x) = (2.1) 

|x — y| |x —y’| 

We now must try to choose q’ and |y’| such that this potential vanishes at |x| = a. 

If n is a unit vector in the direction x, and n’ a unit vector in the direction y, then 

glare q'l4ié 
P(x) = (2.2) 

|zn — yn’| |xn — y’n'| 

If x is factored out of the first term and y’ out of the second, the potential at 

x = a becomes: 

glameo q'l4ié, 
P(x = a) = (2.3) 

y , , n--; a 
n’ 

n y 
——Tnhn 

°P 

~.a |/ on 

y) 
Figure 2.2 Conducting sphere of radius 
a, with charge q and image charge q’. 
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From the form of (2.3) it will be seen that the choices: 
, 

a q q y 
_— _ —_— 

= = 

, , 
a a y y 

make ®(x = a) = 0, for all possible values of n+ nm’. Hence the magnitude and 
position of the image charge are 

r , 

q 
~ 44, 

y (2.4) 
y 

We note that, as the charge q is brought closer to the sphere, the image charge 

grows in magnitude and moves out from the center of the sphere. When q is just 

outside the surface of the sphere, the image charge is equal and opposite in 

magnitude and lies just beneath the surface. 

Now that the image charge has been found, we can return to the original 

problem of a charge g outside a grounded conducting sphere and consider various 

effects. The actual charge density induced on the surface of the sphere can be 

calculated from the normal derivative of ® at the surface: 

1 
2 a® a y q 

—_— 
_— 

C= ~€& (2.5) 
2 Ox ~ Amat y ( x=a 14+ 5-2 4 cos 

y 
ry M 

where y is the angle between x and y. This charge density in units of —q/47a7 is 
shown plotted in Fig. 2.3 as a function of y for two values of y/a. The concentra- 

2- 

4na 
= 

| 

1b 

Y4 

Y— 

Figure 2.3. Surface-charge density o induced on the grounded sphere of radius a as a 

result of the presence of a point charge q located a distance y away from the center of 
the sphere. o is plotted in units of ~—q/47na? as a function of the angular position -y away 

from the radius to the charge for y = 2a, 4a. Inset shows lines of force for y = 2a. 
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dF = (o7/2eq)da 

—— ee eg 

Figure 2.4 

tion of charge in the direction of the point charge q is evident, especially for 

yla = 2. It is easy to show by direct integration that the total induced charge on 

the sphere is equal to the magnitude of the image charge, as it must be, according 

to Gauss’s law. 

The force acting on the charge q can be calculated in different ways. One 
(the easiest) way is to write down immediately the force between the charge q 
and the image charge q’. The distance between them is y — y’ = y(1 — a’/y’). 
Hence the attractive force, according to Coulomb’s law, is: 

2 2 
a a 1 q 

— _— 1--s (2.6) |F| = 2 Ame, a” y y 

‘i 

( )( 
For large separations the force is an inverse cube law, but close to the sphere it 

is proportional to the inverse square of the distance away from the surface of the 

sphere. 

The alternative method for obtaining the force is to calculate the total force 

acting on the surface of the sphere. The force on each element of area da is 

(o7/2€9) da, where a is given by (2.5), as indicated in Fig. 2.4. But from symmetry 
it is clear that only the component parallel to the radius vector from the center 

of the sphere to q contributes to the total force. Hence the total force acting on 

the sphere (equal and opposite to the force acting on q) is given by the integral: 

2 2 
a a q cos y 

—_— |F| = ; dO (2.7) 
2 2 3277 ea" y y a 2a ( ) J )( 

—_— —_— 

2 
y y 

(1 w=) 

Integration immediately yields (2.6). 

The whole discussion has been based on the understanding that the point 

charge q is outside the sphere. Actually, the results apply equally for the charge 

q inside the sphere. The only change necessary is in the surface-charge density 

(2.5), where the normal derivative out of the conductor is now radially inward, 

implying a change in sign. The reader may transcribe all the formulas, remem- 

bering that now y <= a. The angular distributions of surface charge are similar to 
those of Fig. 2.3, but the total induced surface charge is evidently equal to —q, 
independent of y. 

2.3 Point Charge in the Presence of a Charged, Insulated, 
Conducting Sphere 

In the preceding section we considered the problem of a point charge g near a 
grounded sphere and saw that a surface-charge density was induced on the 
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sphere. This charge was of total amount q’ = —aqly, and was distributed over 
the surface in such a way as to be in equilibrium under all forces acting. 

If we wish to consider the problem of an insulated conducting sphere with 
total charge Q in the presence of a point charge q, we can build up the solution 
for the potential by linear superposition. In an operational sense, we can imagine 
that we start with the grounded conducting sphere (with its charge q' distributed 
over its surface). We then disconnect the ground wire and add to the sphere an 
amount of charge (Q — q’). This brings the total charge on the sphere up to Q. 
To find the potential we merely note that the added charge (Q — q') will dis- 
tribute itself uniformly over the surface, since the electrostatic forces due to the 
point charge q are already balanced by the charge q’. Hence the potential due 
to the added charge (Q — q’) will be the same as if a point charge of that mag- 
nitude were at the origin, at least for points outside the sphere. 

The potential is the superposition of (2.1) and the potential of a point charge 
(Q — q’) at the origin: 

Q+"q 1 q aq y 
P(x) = (2.8) 

2 Ame, | |x — y| — a [x| 
x-— 

y 2 
y 

The force acting on the charge q can be written down directly from Coulomb’s 

law. It is directed along the radius vector to q and has the magnitude: 

1 q 
— 

_ qa(2y — a’) y 
= (2.9) 

4m€ y” yy? — a y | | 2)? 

In the limit of y >> a, the force reduces to the usual Coulomb’s law for two small 

charged bodies. But close to the sphere the force is modified because of the 

induced charge distribution on the surface of the sphere. Figure 2.5 shows the 

force as a function of distance for various ratios of Q/q. The force is expressed 

m units of g*/47€ gy’; positive (negative) values correspond to a repulsion (at- 
traction). If the sphere is charged oppositely to q, or is uncharged, the force is 

attractive at all distances. Even if the charge Q is the same sign as q, however, 

the force becomes attractive at very close distances. In the limit of Q >> gq, the 

point of zero force (unstable equilibrium point) is very close to the sphere, 

namely, at y ~ a(1 + 3Vq/Q). Note that the asymptotic value of the force is 
attained as soon as the charge q is more than a few radii away from the sphere. 

This example exhibits a general property that explains why an excess of 

charge on the surface does not immediately leave the surface because of mutual 

repulsion of the individual charges. As soon as an element of charge is removed 
from the surface, the image force tends to attract it back. If sufficient work is 
done, of course, charge can be removed from the surface to infinity. The work 
function of a metal is in large part just the work done against the attractive image 

force to remove an electron from the surface. 

2.4 Point Charge Near a Conducting Sphere at Fixed Potential 

Another problem that can be discussed easily is that of a point charge near a 

conducting sphere held at a fixed potential V. The potential is the same as for 
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Figure 2.5 The force on a point charge q due to an insulated, conducting sphere of 

radius a carrying a total charge Q. Positive values mean a repulsion, negative an 

attraction. The asymptotic dependence of the force has been divided out. 47regFy7/q’ is 
plotted versus y/a for Q/q = —1, 0, 1, 3. Regardless of the value of Q, the force is 

always attractive at close distances because of the induced surface charge. 

the charged sphere, except that the charge (Q — q’) at the center is replaced by 

a charge (Va). This can be seen from (2.8), since at |x| = a the first two terms 

cancel and the last term will be equal to V as required. Thus the potential is 

1 Va q aq 
P(x) = (2.10) 

2 Ame, | |x — y| 7 a [x 
x — 

y y> 

The force on the charge q due to the sphere at fixed potential is 

1 q gay” y 
— F = 

2 (2.11) 7 Ame, (y? — a y 
ly * 

For corresponding values of 47re9Va/q and Q/q this force is very similar to that 

of the charged sphere, shown in Fig. 2.5, although the approach to the asymptotic 
value (Vaq/y’) is more gradual. For Va >> q, the unstable equilibrium point has 
the equivalent location y ~ a(1 + $V q/47e,Va). 

2.5 Conducting Sphere in a Uniform Electric Field 
by Method of Images 

As a final example of the method of images we consider a conducting sphere of 
radius a in a uniform electric field Eo. A uniform field can be thought of as being 
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produced by appropriate positive and negative charges at infinity. For example, 
if there are two charges +Q, located at positions z = +R, as shown in Fig. 2.6a, 
then in a region near the origin whose dimensions are very small compared to R 
there is an approximately constant electric field Ey ~ 2Q/47ré)R? parallel to the 

z axis. In the limit as R, Q — ©, with Q/R’ constant, this approximation becomes 

exact. 

If now a conducting sphere of radius a is placed at the origin, the potential 
—_— 

=> will be that due to the charges +Q at +R and their images +Qa/R at z 
+@7/R: 

Q/4 7 O/47r€ 
— 

— 

~ (r? + R? + 2rR cos 6)? (r? + R? — 2rR cos 6)" (2.12) 

aQ/4 rey aQl4 TTEg 
—_— 

1/2 + 4 2 4 

a a 2a’r 
r?> + — + — cos6 r> + — — —cosé 

R2 
R R2 R ‘| ‘| 

where ® has been expressed in terms of the spherical coordinates of the obser- 

vation point. In the first two terms R is much larger than r by assumption. Hence 

we can expand the radicals after factoring out R?. Similarly, in the third and 
fourth terms, we can factor out r? and then expand. The result is: 

3 
Q 
rcos@ + —~-—;cos@ (2.13) 

R2 r? ~ R? 47€ 
| | 

where the omitted terms vanish in the limit R > ©. In that limit 20/47e)R? 
becomes the applied uniform field, so that the potential is 

3 

(2.14) ro Jews @ = -Fa( 
The first term (— Ez) is, of course, just the potential of a uniform field Ey which 

could have been written down directly instead of the first two terms in (2.12). 

= —> Fp 

TT -Q #Q ee 
z=R z=-R 

(a) 

aQ 
aQ sR 

-_-—_— -@ +Q 
z=R z =-R a2 

z=z= = <A 
(o) 

Conducting sphere in a uniform electric field by the method of images Figure 2.6 
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The second is the potential due to the induced surface-charge density or, equiv- 

alently, the image charges. Note that the image charges form a dipole of strength 

D = QalR X 2a°/R = 47€ E,a’. The induced surface-charge density is 

ab 
(2.15) = 3€)Eo cos 0 GC = —-€& 

r 

r=a 
™~ ~ 

We note that the surface integral of this charge density vanishes, so that there is 
no difference between a grounded and an insulated sphere. 

2.6 Green Function for the Sphere; General Solution 

for the Potential 

In preceding sections the problem of a conducting sphere in the presence of a 

point charge was discussed by the method of images. As mentioned in Section 

1.10, the potential due to a unit source and its image (or images), chosen to satisfy 

homogeneous boundary conditions, is just the Green function (1.43 or 1.45) ap- 

propriate for Dirichlet or Neumann boundary conditions. In G(x, x’) the variable 

x’ refers to the location P’ of the unit source, while the variable x is the point P 

at which the potential is being evaluated. These coordinates and the sphere are 

shown in Fig. 2.7. For Dirichlet boundary conditions on the sphere of radius a 

the Green function defined via (1.39) for a unit source and its image is given by 

(2.1) with q — 47re and relations (2.4). Transforming variables appropriately, 

we obtain the Green function: 

1 
G(x, x’) = (2.16) 

Ix —x'] 
x —— xX 
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Figure 2.7 
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In terms of spherical coordinates this can be written: 

1 1 G(x, x') = (2.17) 
24.12 
x 

2 
a 

(x? + x’? — 2xx' cos y)? ( + a? — 2xx' cos ”) . 
where y is the angle between x and x’. The symmetry in the variables x and x’ 
is obvious in the form (2.17), as is the condition that G = 0 if either x or x’ is on 
the surface of the sphere. 

For solution (1.44) of the Poisson equation we need not only G, but also 
dG/dn'. Remembering that n’ is the unit normal outward from the volume of 
interest (i.e., inward along x’ toward the origin), we have 

(x* — a’) — aG 
— 

= (2.18) 
on’ 

x =a 
a(x? + a? — 2ax cos y)*” 

[Note that this is essentially the induced surface-charge density (2.5).] Hence the 
solution of the Laplace equation outside a sphere with the potential specified on 
its surface is, according to (1.44), 

a(x? — a’) 
dQ’ (2.19) P(x) = +| P(a, 0’, db’) 

(x* + a* — 2ax cos y)*” 

where dQ’ is the element of solid angle at the point (a, 0’, @') and cosy = 

cos 6 cos 6’ + sin 6 sin @’ cos(@ — ¢'). For the interior problem, the normal 

derivative is radially outward, so that the sign of dG/dn’ is opposite to (2.18). 

This is equivalent to replacing the factor (x? — a”) by (a* — x”) in (2.19). For a 

problem with a charge distribution, we must add to (2.19) the appropriate integral 

in (1.44), with the Green function (2.17). 

2.7 Conducting Sphere with Hemispheres at Different Potentials 

As an example of the solution (2.19) for the potential outside a sphere with 

prescribed values of potential on its surface, we consider the conducting sphere 

of radius a made up of two hemispherical shells separated by a small insulating 

ring. The hemispheres are kept at different potentials. It will suffice to consider 

the potentials as +V, since arbitrary potentials can be handled by superposition 

of the solution for a sphere at fixed potential over its whole surface. The insu- 
lating ring lies in the z = 0 plane, as shown in Fig. 2.8, with the upper (lower) 
hemisphere at potential +V (—V). 

+V 

= r — “2 = 

-V 

Figure 2.8 
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From (2.19) the solution for ®(x, 6, @) is given by the integral 

P(x, 6, 6) = 7 aff d(cos 6’) 
(2.20) 

a(x? — a’) 

(a? + x? — .2ax cos y)°? 
[. d(cos 6 | 

By a suitable change of variables in the second integral (6’ > 7 — 0’, ¢' > 
' + 7), this can be cast in the form 

P(x, 0, b) = *) i dq’ [, d(cos 6’)[(a* + x? — 2ax cos y)~*” Vale —a 

(2.21) 

“Wn + x? + 2ax cos y)*7] 
)and (6, 6) Because of the complicated dependence of cos y on the angles (0’ 

equation (2.21) cannot in general be integrated in closed form 

As a special case we consider the potential on the positive z axis. Then 

cos y = cos 6’, since 6 = 0. The integration is elementary, and the potential can 

be shown to be 

(2? — a’) 
(2.22) P(z) 

Zz zeta | 
At z = a, this reduces to ® = V as required, while at large distances it goes 

asymptotically as ® = 3Va?/2z 
In the absence of a closed expression for the integrals in (2.21), we can ex- 

pand the denominator in power series and integrate term by term. Factoring out 

(a* + x’) from each denominator, we obtain 

Va(x? — a?) 
P(x, 6, d) dd I d(cos 6’)[(1 — 2acos y)~*”” 

4a(x? + a’)? 
(2.23) 

— (1 + 2acos y)~*?] 

where a = ax/(a* + x”). We observe that in the expansion of the radicals only 
odd powers of a cos y will appear 

[(1 — 2acos y)~*? (1 + 2acos y)-*?] = 6acos y + 35a° cos? y + (2.24) 

It is now necessary to integrate odd powers of cos y over dd’ d(cos 6’) 

[as | d(cos 6’) cos y = wcos 0 
(2.25) 

—_— cos 0(3 — cos’6) [as I d(cos 0’) cos’y = 
4 

If (2.24) and (2.25) are inserted into (2.23), the potential becomes 

35 ax x°(x? — a’) 
1+= 

B(x, 6, 6) = Ve ( 
(x? + a’)>? 24 (a? + x 

eof mp (3 — cos*6) + 

(2.26) 
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We note that only odd powers of cos 6 appear, as required by the symmetry of 
the problem. If the expansion parameter is (a?/x”), rather than a, the series takes 
on the form: 

2 3Va? 5 
= cos’? — = cos 4 P(x, 0, b) = 

2x? 12x? 2 2 
fase ( J+ (2.27) 

For large values of x/a this expansion converges rapidly and so is a useful rep- 
resentation for the potential. Even for x/a = 5, the second term in the series is 
only of the order of 2%. It is easily verified that, for cos 6 = 1, expression (2.27) 
agrees with the expansion of (2.22) for the potential on the axis. [The particular 
choice of angular factors in (2.27) is dictated by the definitions of the Legendre 
polynomials. The two factors are, in fact, P,(cos 6) and P3(cos 6), and the expan- 
sion of the potential is one in Legendre polynomials of odd order. We establish 
this in a systematic fashion in Section 3.3.] Further consideration of both the 
exterior and interior problem of the two hemispheres is found in Problem 2.22. 

2.8 Orthogonal Functions and Expansions 

The representation of solutions of potential problems (or any mathematical phys- 

ics problem) by expansions in orthogonal functions forms a powerful technique 

that can be used in a large class of problems. The particular orthogonal set chosen 

depends on the symmetries or near symmetries involved. To recall the general 

properties of orthogonal functions and expansions in terms of them, we consider 

an interval (a, b) in a variable é with a set of real or complex functions U,,(é), 

n = 1,2,..., Square integrable and orthogonal on the interval (a, b). The ortho- 

gonality condition on the functions U,,(é) is expressed by 

(2.28) [, usqun@) de= 0, man 
If n = m, the integral is nonzero. We assume that the functions are normalized 

so that the integral is unity. Then the functions are said to be orthonormal, and 
they satisfy 

(2.29) [, ux@Unl@) dé = Om 
An arbitrary function f(€), square integrable on the interval (a, b), can be 

expanded in a series of the orthonormal functions U,,(€). If the number of terms 

in the series is finite (say N), 

N 

(2.30) fo dX aU, 
n=1 

then we can ask for the “‘best” choice of coefficients a, so that we get the ‘“‘best”’ 

representation of the function f(é). If “best” is defined as minimizing the mean 

square error M,;: 

2 N 

(2.31) f(€) -— Dd a,U,(é)| dé My =f 
n=1 
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it is easy to show that the coefficients are given by 

(2.32) a, = | UN@FE) a8 
where the orthonormality condition (2.29) has been used. This is the standard 

result for the coefficients in an orthonormal function expansion. 
If the number of terms N in series (2.30) is taken larger and larger, we in- 

tuitively expect that our series representation of f(&) is “better” and “‘better.”’ 

Our intuition will be correct provided the set of orthonormal functions is com- 

plete, completeness being defined by the requirement that there exist a finite 

number No such that for N > N, the mean square error M, can be made smaller 

than any arbitrarily small positive quantity. Then the series representation 

oo 

> a,U,(é) f(€) (2.33) 
n= 

with a, given by (2.32) is said to converge in the mean to f(€). Physicists generally 

leave the difficult job of proving completeness of a given set of functions to the 

mathematicians. All orthonormal sets of functions normally occurring in math- 

ematical physics have been proven to be complete 

Series (2.33) can be rewritten with the explicit form (2.32) for the coef- 

ficients a 

(2.34) f(g) = | , > uxewso| f(g’) dé 
Since this represents any function f(é) on the interval (a, b), it is clear that the 

sum of bilinear terms U7(é')U,(€) must exist only in the neighborhood of 
é’ = & In fact, it must be true that 

> UXE')U,(é) = 6(é' - €) (2.35) 

This is the so-called completeness or closure relation. It is analogous to the or- 
thonormality condition (2.29), except that the roles of the continuous variable € 
and the discrete index n have been interchanged. 

The most famous orthogonal functions are the sines and cosines, an expan- 
sion in terms of them being a Fourier series. If the interval in x is (—a/2, a/2), the 
orthonormal functions are 

27mX 2 27mxX 
_— 

a a a Fal ) ( 
where m is a non-negative integer and for m = 0 the cosine function is 1/\/a 
The series equivalent to (2.33) is customarily written in the form 

Tm 

(2.36) f(x) =340+ Dd c cos( ) + Bs ) 
where 

A, = dx 
a 
Fs es 

(2.37) 
al2 

27mx 
Bn == 

2 a 
a f(x) sin( 
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If the interval spanned by the orthonormal set has more than one dimension, 
formulas (2.28)-(2.33) have obvious generalizations. Suppose that the space is 
two-dimensional, and the variable ¢ ranges over the interval (a, b) while the 
variable 7 has the interval (c, d). The orthonormal functions in each dimension 

are U,(€) and V,,,(7). Then the expansion of an arbitrary function f(&, 7) is 

(2.38) f(E n) = 2 > AnmU (EV n(n) 
where 

(2.39) Onm = [ dé [ dnu7(é)Vi(n)f(é 1) 
If the interval (a, b) becomes infinite, the set of orthogonal functions U,,(€) 

may become a continuum of functions, rather than a denumerable set. Then the 

Kronecker delta symbol in (2.29) becomes a Dirac delta function. An important 

example is the Fourier integral. Start with the orthonormal set of complex 

exponentials, 

i(2a7mx/a) (2.40) U,,(x) = —=e 

m = 0, +1, +2,..., on the interval (—a/2, a/2), with the expansion: 

(2.41) f(x) = 1 Ss Ameiem™2) 
m=—o 

where 

al2, 
1 

(2.42) An 
e (e-nmx'la) £(') dx’ 

~ Va —al2 

Then let the interval become infinite (a > ~), at the same time transforming 

27m 
—>k 

a 

oo oo 

dk dm = — (2.43) 
—ow —o 7 

> 

20 

The resulting expansion, equivalent to (2.41), is the Fourier integral, 

(2.44) f(x) = Z [- A(k)e™ dk 

where 

oo 

1 
_ (2.45) e F(x) dx A(k) = 
V2i7 J-= 

The orthogonality condition is 
oo 

1 
(2.46) ek dx = &(k — k’) 

2a J-s 
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while the completeness relation is 

if (2.47) ekO-*") dk = &(x — x’) 
27 J—« 

These last integrals serve as convenient representations of a delta function. We 

note in (2.44)—(2.47) the complete equivalence of the two contmuous variables 
™~ ~ 

x and k. 

2.9 Separation of Variables; Laplace Equation 

in Rectangular Coordinates 

The partial differential equations of mathematical physics are often solved con- 
veniently by a method called separation of variables. In the process, one often 

generates orthogonal sets of functions that are useful in their own right. Equa- 

tions involving the three-dimensional Laplacian operator are known to be sep- 

arable in eleven different coordinate systems (see Morse and Feshbach, pp. 509, 

655). We discuss only three of these in any detail—rectangular, spherical, and 

cylindrical—beginning with the simplest, rectangular coordinates. 

The Laplace equation in rectangular coordinates is 

o® a-@ ar® 
— — + -—— (2.48) 

ax? dz? ay” 

A solution of this partial differential equation can be found in terms of three 

ordinary differential equations, all of the same form, by the assumption that the 

potential can be represented by a product of three functions, one for each 

coordinate: 

P(x, y, z) = X(x)¥(y)Z(z) (2.49) 

Substitution into (2.48) and division of the result by (2.49) yields 

1 d’x 1 dy 1 @Z_ 
(2.50) 

X(x) dx? Y(y) dy? Z(z) dz2 

where total derivatives have replaced partial derivatives, since each term involves 
a function of one variable only. If (2.50) is to hold for arbitrary values of the 

independent coordinates, each of the three terms must be separately constant: 

1 dX _ 
a? 

X dx? 
1 d*Y 

2 
—_— --_s-sCi — (2.51) 
Y dy? 

1 az 
y 

Z dz 

where 

e+ Pay 

If we arbitrarily choose a” and B” to be positive, then the solutions of the three 
a2+ B2z ordinary differential equations (2.51) are e*!*, e*®”, e* . The potential 

(2.49) can thus be. built up from the product solutions: 

a2+ B2z ® = e7!et o*iBy 5+ 
(2.52) 
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At this stage a and £ are completely arbitrary. Consequently (2.52), by linear 

superposition, represents a very large class of solutions to the Laplace equation. 

To determine a and B it is necessary to impose specific boundary conditions 

on the potential. As an example, consider a rectangular box, located as shown 

in Fig. 2.9, with dimensions (a, b, c) in the (x, y, z) directions. All surfaces of the 

box are kept at zero potential, except the surface z = c, which is at a potential 

V(x, y). It is required to find the potential everywhere inside the box. Starting 

with the requirement that ® = 0 for x = 0, y = 0, z = 0, it is easy to see that the 

required forms of X, Y, Z are 

X = sinax 

(2.53) Y = sin By 

Z = sinh(V a + B’z) 

To have ® = 0 at x = a and y = Db, we must have aa = nz and Bb = mz. With 

the definitions, 

nv 

ay 

mT 
(2.54) Bm 

7 Yam eB 

we can write the partial potential ®,,,,, satisfying all the boundary conditions 

except one, 

(2.55) Om = sin(a,x) sin(B,»y) sinh(YnmZ) 

The potential can be expanded in terms of these ®,,,, with initially arbitrary 

coefficients (to be chosen to satisfy the final boundary condition): 

(2.56) (x, y, z) = D2 Agm sin(ar,x) sin(Bpy) sinh(YumZ) 
nym=1 

There remains only the boundary condition ® = V(x, y) at z = c¢: 

(2.57) Vie, y) = D> Anm sin(aegt) sin(Byy) Sith) 
nym=1 

zec 

(* we Vixy) 

v 

@=0-—— 
> a 

-zj7 #=0 

y=d 

Figure 2.9 Hollow, rectangular box 

with five sides at zero potential, while 

xa . 

the sixth (z = c) has the specified 

potential @ = V(x, y). 
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This is just a double Fourier series for the function V(x, y). Consequently the 
coefficients A,,, are given by: 

4 

Anm [ dx [ dy V(x, y) sin(a,x) sin(Bry) (2.58) 
~ ab sinh(YzmC) 

If the rectangular box has potentials different from zero on all six sides, the 

required solution for the potential inside the box can be obtained by a linear 

superposition of six solutions, one for each side, equivalent to (2.56) and (2.58). 
The problem of the solution of the Poisson equation, that is, the potential inside 

the box with a charge distribution inside, as well as prescribed boundary condi- 

tions on the surface, requires the construction of the appropriate Green function, 

according to (1.43) and (1.44). Discussion of this topic will be deferred until we 

have treated the Laplace equation in spherical and cylindrical coordinates. For 

the moment, we merely note that the solution given by (2.56) and (2.58) is equiv- 

alent to the surface integral in the Green function solution (1.44). 

2.10 A Two-Dimensional Potential Problem; 
Summation of a Fourier Series 

We now consider briefly the solution by separation of variables of the two- 

dimensional Laplace equation in Cartesian coordinates. By two-dimensional 

problems we mean those in which the potential can be assumed to be indepen- 

dent of one of the coordinates, say, z. This is usually only an approximation, but 

may hold true to high accuracy, as in a long uniform transmission line. If the 

potential is independent of z, the basic solutions of the previous section reduce 

to the products 

tiax ,tay e- e- 

where a is any real or complex constant. The imposition of boundary conditions 

on the potential will determine what values of a are permitted and the form of 

the linear superposition of different solutions required. 

A simple problem that can be used to demonstrate the separation of variables 

technique and also to establish connection with the use of complex variables is 

indicated in Fig. 2.10. The potential in the region, 0 = x <= a, y = 0, is desired, 

subject to the boundary conditions that ® = 0 at x = 0 and x = a, while ® = V 

at y = 0 for 0 = x = a and ® — 0 for large y. Inspection of the basic solutions 

shows that a is real and that, to have the potential vanish at x = 0 and x = a 

for all y and as y — %, the proper linear combinations are e~® sin(ax) with 

a = naa. The linear combination of solutions satisfying the boundary conditions 

on three of the four boundary surfaces is thus 

(2.59) (x, y) = > A,, exp(—nzry/a) sin(nax/a) 

The coefficients A, are determined by the requirement that ® = V for y = 0, 
0 = x =a. As discussed in Section 2.8, the Fourier coefficients are 

(2.60) A, = = [ P(x, 0) sin(nax/a) dx 
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Figure 2.10 Two-dimensional potential problem. 

With ®(x, 0) = V, one finds 

1 for n odd _41v A, 
0 for n even 7H | 

The potential ®(x, y) is therefore determined to be 

(2.61) P(x, y) = av >, . exp(—nzry/a) sin(n7x/a) 

For small values of y many terms in the series are necessary to give an accurate 

approximation, but for y 2 a/z it is evident that only the first few terms are 

appreciable. The potential rapidly approaches its asymptotic form given by the 

first term, 

(2.62) O(x, y) > 7 exp(—7ry/a) sin(7x/a) 

Parenthetically, we remark that this general behavior is characteristic of all 

boundary-value problems of this type, independently of whether ®(x, 0) is a 

constant, provided the first term in the series is nonvanishing. The coefficient A, 

(2.60) will be different, but the smooth behavior in x of the asymptotic solution 

sets in for y = a, regardless of the complexities of ®(x, 0). This is shown quan- 
titatively for the present example in Fig. 2.11 where the potential along the two 
dashed lines, y/a = 0.1, 0.5, of Fig. 2.10 is plotted. The solid curves are the exact 
potential, the dotted, the first term (2.62). Close to the boundary (y/a = 0.1) the 
curves differ appreciably, but for y/a = 0.5 the asymptotic form is already an 
excellent approximation. 
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Figure 2.11 Potentials at y/a = 0.1, 0.5 (along the dashed lines of Fig. 2.10) as 

functions of x/a. The solid curves are the exact solution; the dashed curves are the first 

term in the series solution (2.61). 

There are many Fourier series that can be summed to give an answer in 

closed form. The series in (2.61) is one of them. We proceed as follows. Observing 

that sin 9 = Im(e’®), where Im stands for the imaginary part, we see that (2.61) 
can be written as 

V 1 = efin tla)(x+iy) (x, y) = —Im > 
n odd 

With the definition, 

Z= elitlay(xtiy) 
(2.63) 

this can be put in the suggestive form, 

4V 
(x, y) = — Im yz 

nodd 

At this point we can perhaps recall the expansion,* 

InQl + Z) = Z - 3Z? + 42° iZt te 

*Alternatively, we observe that (d/dZ)(27-,Z"/n) = Z7ooZ” = 1/(1 — Z). Integration then gives 
S2_,Z"In = —In(1 — Z). 



Sect. 2.11 Fields and Charge Densities in Two-Dimensional Corners and Along Edges 775 

Evidently, 

1+Z 
_— 

= 

sz lin 
2 1-Z nodd Nh ( 

and 

V 1+ Z 
P(x, y) = — Im (2.64) 

1-Z [>| } 
Since the imaginary part of a logarithm is equal to the phase of its argument, we 
consider 

1+Z_(1+Z)1-Z*)_1-|ZP+2iImzZ 

1-Z [1 — Z/ [1 — ZP 
The phase of the argument of the logarithm is thus tan7"[2 Im Z/(1 — |Z|*)]. 
With the explicit form (2.63) of Z substituted, it is found that the potential 
becomes 

TX 
sin —— 

a 
-1 @(x, y) = — tan (2.65) 

sinh ae 
a 

The branch of the tangent curve corresponds to the angle lying between 0 and 

t/2. The infinite series (2.61) has been transformed into the explicit closed form 

(2.65). The reader may verify that the boundary conditions are satisfied and that 

the asymptotic form (2.62) emerges in a simple manner. 

The potential (2.64) with Z given by (2.63) is obviously related to functions 

of a complex variable. This connection is a direct consequence of the fact that 

the real or the imaginary part of an analytic function satisfies the Laplace equa- 

tion in two dimensions as a result of the Cauchy-Riemann equations. As men- 

tioned at the beginning of the chapter, we omit discussion of the complex-variable 

technique, not because it is unimportant but for lack of space and because 

completely adequate discussions exist elsewhere. Some of these sources are listed 

at the end of the chapter. The methods of summation of Fourier series, with 

many examples, are described in Collin (Appendix A.6). 

2.11 Fields and Charge Densities in Two-Dimensional 
Corners and Along Edges 

In many practical situations conducting surfaces come together in a way that can 
be approximated, on the small scale at least, as the intersection of two planes. 
The edges of the box shown in Fig. 2.9 are one example, the corners at x = 0, 

y = 0 and x = a, y = O in Fig. 2.10 another. It is useful therefore to have an 

understanding of how the potential fields, and the surface-charge densities be- 

have in the neighborhood of such sharp “‘corners”’ or edges. To be able to look 

at them closely enough to have the behavior of the fields determined in functional 

form solely by the properties of the ‘‘corner” and not by the details of the overall 

configuration, we assume that the “corners” are infinitely sharp. 
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The general situation in two dimensions is shown in Fig. 2.12. Two conducting 

planes intersect at an angle B. The planes are assumed to be held at potential V. 

Remote from the origin and not shown in the figure are other conductors or 

possibly configurations of charges that specify the potential problem uniquely. 
Since we are interested in the functional behavior of the fields, etc. near the 

™ 

origin, but not in the absolute magnitudes, we leave the “far away”’ behavior 

unspecified as much as possible. 

The geometry of Fig. 2.12 suggests use of polar rather than Cartesian coor- 

dinates. In terms of the polar coordinates (p, ¢), the Laplace equation in two 

dimensions is 

1 #*@ 1a ae =0 (2.66) 
p 0p op p? ag? ( 

Using the separation of variables approach, we substitute 

B(p, 6) = R(p)¥(¢) 

This leads, upon multiplication by p’/®, to 

dR 1 av pd 
=0 (2.67) 

R dp Pp W dd? ( 
Since the two terms are separately functions of p and ¢ respectively, each one 
must be constant: 

dR 1a’y pd 
=-? (2.68) 

R dp P ip ( W dd? )-* 
The solutions to these equations are 

R(p) = ap” + bp” 
(2.69) 

W(d) = A cos(vd) + B sin(vd) 

For the special circumstance of v = 0, the solutions are 

R(p) = a9 + bo In p 
(2.70) 

W(d) = Ao + Bod 

Figure 2.12 Intersection of two conducting planes defining a corner in two dimensions 
with opening angle B. 
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These are the building blocks with which we construct the potential by linear 
superposition. 

Although not central to our present purpose, we note the general solution 
of the Laplace equation in two dimensions when the full azimuthal range is per- 
mitted as, for example, for the potential between two cylindrical surfaces, p = a 
and p = b, on which the potential is given as a function of @. If there is no 
restriction on 4, it is necessary that v be a positive or negative integer or zero to 
ensure that the potential is single-valued. Furthermore, for v = 0, the constant 

Bo in (2.70) must vanish for the same reason. The general solution is therefore 

of the form, 

D(p, 4) = ay + Boln p+ >, ayp" sin(ng + a7) 
(2.71) 

+ > b,p ” sin(n@ + B,) 

If the origin is included in the volume in which there is no charge, all the 5,, are 

zero. Only a constant and positive powers of p appear. If the origin is excluded, 

the b,, can be different from zero. In particular, the logarithmic term is equivalent 

to a line charge on the axis with charge density per unit length A = —27€ bp, as 

is well known. 

For the situation of Fig. 2.12 the azimuthal angle is restricted to the range 

0 = ¢ S B. The boundary conditions are that ® = V for all p = 0 when ¢ = 0 

and @ = B. This requires that bp) = Bo = O in (2.70) and b = 0 and A = Oin 

(2.69). Furthermore, it requires that v be chosen to make sin(vB) = 0. Hence 

MTT 
v= m= 1,2,... B > 

and the general solution becomes 

ow 

(2.72) @(p, 6) = Vt > a,,p""* sin(mmd/B) 
m= 

The still undetermined coefficients a,, depend on the potential remote from the 

corner at p = 0. Since the series involves positive powers of p”®, for small enough 
p only the first term in the series will be important.* Thus, near p = 0, the po- 

tential is approximately 

(2.73) ®(p, 6) = V + ap” sin(7d/B) 

The electric field components are 

ab may (7/8)-1 sin(ard/B) E,(p, 6) = — 
B dp (2.74) 

1a®@ Ta, 
= — (7B)~1 cos(ar/B) Eg (p, i) = 

B ag 

*Here we make a necessary assumption about the remote boundary conditions, namely, that they 

are such that the coefficient a, is not zero. Ordinarily this is of no concern, but special symmetries 
might make a;, or even ap, etc., vanish. These unusual examples must be treated separately. 
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The surface-charge densities at @ = 0 and ¢ = B are equal and are approximately 

Eo TA, (7/B)-1 (2.75) o(p) = €E4(p, 9) = — 
B 

The components of the field and the surface-charge density near p = 0 all vary 

with distance as p‘”’)-!. This dependence on p is shown for some special cases 

in Fig. 2.13. For a very deep corner (small 8) the power of p becomes very large. 
Essentially no charge accumulates in such a corner. For B = 7 (a flat surface), 
the field quantities become independent of p, as is intuitively obvious. When 
B > 7, the two-dimensional corner becomes an edge and the field and the surface- 

charge density become singular as p — 0. For B = 27 (the edge of a thin sheet) 
the singularity is as p~“””. This is still integrable so that the charge within a finite 

distance from the edge is finite, but it implies that field strengths become very 

large at the edges of conducting sheets (or, in fact, for any configuration where 
B> 7). 

The preceding two-dimensional electrostatic considerations apply to many 

three-dimensional situations, even with time-varying fields. If the edge is a sharp 

edge of finite length, as the edge of a cube away from a corner, then sufficiently 

close to the edge the variation of the potential along the edge can be ignored. 

The two-dimensional considerations apply, although the coefficient a, in (2.75) 

may vary with distance along the edge. Similarly, the electrostatic arguments are 

valid even for time-varying fields. The point here is that with time dependence 
another length enters, namely, the wavelength. Provided one is concerned with 
distances away from the edge that are small compared to a wavelength, as well 
as other relevant distances, the behavior of the fields reduces to electrostatic or 
magnetostatic behavior. In the diffraction of microwaves by a hole in a thin 

-1/2 as p — 0, where p conducting sheet, for example, the fields are singular as p 

is the distance from the boundary of the hole, and this fact must be taken into 

account in any exact solution of the diffraction problem. 

The singular behavior of the fields near sharp edges is the reason for the 

effectiveness of lightning rods. In the idealized situation discussed here the field 

strength increases without limit as p — 0, but for a thin sheet of thickness d with 

a smoothly rounded edge it can be inferred that the field strength at the surface 

will be proportional to d~””. For sinall enough d this can be very large. In ab- 
solute vacuum such field strengths are possible; in air, however, electrical break- 

down and a discharge will occur if the field strength exceeds a certain value 

(depending on the exact shape of the electrode, its proximity to the other elec- 

-V3 -1/2 

= xan 

Figure 2.13 Variation of the surface-charge density (and the electric field) with 

distance p from the ‘‘corner” or edge for opening angles B = 7/4, 7/2, a, 37/2, and 27. 
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trodes, etc., but greater than about 2.5 x 10° V/m for air at normal temperature 
and pressure (NTP), sometimes by a factor of 4). In thunderstorms, with large 
potential differences between the ground and the thunderclouds, a grounded 
sharp conducting edge, or better, a point (see Section 3.4), will have breakdown 
occur around it first and will then provide one end of the jagged conducting path 
through the air along which the lightning discharge travels. 

2.12 Introduction to Finite Element Analysis for Electrostatics 

Finite element analysis (FEA) encompasses a variety of numerical approaches 
for the solution of boundary-value problems in physics and engineering. Here 
we sketch only an introduction to the essential ideas, using Galerkin’s method 
for two-dimensional electrostatics as an illustration. The generalization to three 
dimensions is mentioned briefly at the end. The reader who wishes a deeper 
introduction may consult Binns, Lawrenson, and Trowbridge, Ida and Bastos, 
Sadiku, Strang, or Zhou. 

Consider the Poisson equation, V7’ = —g in a two-dimensional region R, 

with Dirichlet boundary conditions on the boundary curve C. We construct the 

vanishing integral, 

(2.76) I. [¢ Vw + gd] dx dy = 0 
where $(x, y) is a test function specified for the moment only as piecewise con- 

tinuous in R and vanishing on C. Use of Green’s first identity on the first term 

above leads to 

(2.77) | t¥6- Vu - 96] ax ay = 0 
The surface integral vanishes because ¢ vanishes on C. Galerkin’s method con- 

sists first of approximating the desired solution w(x, y) by a finite expansion in 

terms of a set of localized, linearly independent functions, ¢,(x, y), with support 
only in a finite neighborhood of x = x;, y = y;. For definiteness, we imagine the 

region R spanned by a square lattice with lattice spacing h. Then a possible choice 

for hi (x, y) is, 

(2.78) pix, y=a- |x _ x;|/h)(1 — ly —~ y;\/h) 
for |x — x;| = h, |y — y,| Sh; otherwise, ¢,(x, y) = 0. The sum of all the ¢, over 
the square lattice is unity. Other choices of the localized functions are possible, 
of course. Whatever the choice, if the number of lattice sites, including the bound- 

ary, is No, the expansion of w(x, y) takes the form 

(No) 

(2.79) w(x, y) = 2 Whilx, y) 

Apart from the known values at sites on the boundary, the constant coefficients 

W,, may be thought of as the approximate values of #(x,, y,). If the lattice spacing 

h is small enough, the expansion (2.79) will be a reasonable approximate to the 

true w, provided the coefficients are chosen properly. 

The second step in Galerkin’s method is to choose the test function ¢ in 

(2.77) to be the (i, j)™ function on the expansion set, with i and j running suc- 
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cessively over all N internal sites of the lattice. The typical equation derived from 
(2.77) is 

(No) 

I, Voi (x, y) + Voix, y) dx dy = g(xi, y;) I, Gi;(x, y) dx dy (2.80) > Wr 

While the integrals are indicated as being over the whole region R, $, has support 

only in a small region around the site (x;, y,). In (2.80) it is assumed that g(x, y) 
varies slowly enough on the scale of the cell size to be approximated in the 

integral on the right by its value at the lattice site. Once the integrals have been 

performed, (2.80) becomes one of N coupled inhomogeneous linear algebraic 

equations for the N unknowns, V,,. The coupling among the WV, is confined to a 

small number of sites near (x;, y;), aS indicated in Fig. 2.14 for the localized 

function (2.78). It is left as a problem to show that the needed integrals for the 

functions (2.78) are 

I, d(x, y)dx dy = h? 
(2.81) 

k =i, l=j 

k=it1,1l=j I, Voi (x, y) ° Vdbyilx, y)dx dy = { } for 
k =i, l=j+1 

k=it1,l=j241 

When the site (i, j) is adjacent to the boundary, there are three or more terms 

on the left-hand side of (2.80) that are (—1/3) times known boundary values of 

Lk . 

ANS 
SSe AS STL be SS LLL SS SLL L ff aa QS 

SSS ZZZ LLL LLL LL SS SSS 
SOs S227 

LLL SS OSL LLL YS LL// 
SOK 
> LO 

LELL IA 

LESSEE 

(, l) 

(i, 7) 

Figure 2.14 Sketch of the ¢,(x, y) in (2.78). The sites marked with a dot in the lattice 
(bottom) are those coupled by the integrals on the left in (2.80) for the localized 
function (2.78). 
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w. These can be moved to the right-hand side as part of the inhomogeneity. If 
we write (2.80) in matrix form, KW = G, with K an N Xx N square matrix and 

W and G N-column vectors, the matrix K is a “sparse” matrix, with only a few 

nonvanishing elements in any row or column. The solution of the matrix operator 

equation by inversion of such a sparse matrix can be accomplished rapidly by 

special numerical techniques (see Press et al.). Concrete illustration of this ap- 

proach is left to the problems at the end of the chapter. 

A square lattice is not optimal in many problems because the solution may 

change more rapidly in some parts of the domain of interest than in other parts. 

In such regions one wishes to have a finer mesh. An FEA method with a standard 

generic shape, but permitting different sizes, will be more flexible and therefore 

superior. We describe the popular triangle as the basic unit in two dimensions. 

The triangular element is assumed to be small enough that the field variable 

changes little over the element and may be approximated by a linear form in 

each direction. The basic triangular element e(1, 2, 3) is shown in Fig. 2.15. Within 

this region, we approximate the field variable w(x, y) ~ &(x, y) = A + Bx + 

Cy. The three values (ui, Y, #3) at the nodes or vertices determine the coeffi- 

cients (A, B, C). It is useful, however, to systematize the procedure for numerical 

computation by defining three shape functions N‘(x, y), one for each vertex, 
such that N{ = 1 when x = x, y = y,; and N{ = 0 at the other vertices. The 
shape functions for the element e vanish outside that triangular domain. 

Consider N§? = a, + b,x + cy. Demand that 

Qa, + bx, + Cy = 1 

ay, + bi x2 + Cyy2 = 0 

Qy + b4x3 + C1y3 = 0 

The determinant D of the coefficients on the left is 

1x 

D = |1 x yo] = (2 — x1)03 — yi) — (%3 — X12 - yi) 
1 x3 y3 

The determinant D is invariant under rotations of the triangle; in fact, D = 2S,, where S, 

is the area of the triangle. The coefficients (a,, b;, c;) are 

1 
a= (x2y3 — X3y2) 

25 

— 

= by = (y2 — ys) 
-1 

qa = (x2 - X3) 
2S. 

3 

(xg, yg) 

2 

(x9, Ya) 

Figure 2.15 Basic triangular element 

e(1, 2, 3) with area S, for FEA in two 
1 

dimensions. (x4, yp 
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The other N‘* can be written down by cyclic permutation of indices. The N, and their 
coefficients obey the following relations: 

> NPC, 9) = 1 D a= D b,=0, Ya =0 

— a; + bx. + Ce = (j = 1,2, 3) 
~ ~ 3 

Here x, = (x; + x. + x3)/3 and y, = (y, + y2 + y3)/3 are the coordinates of the center of 

gravity of the triangular element e. 

The shape functions for the triangular elements spanning the region R can 

be used in the Galerkin method as the localized linearly independent expansion 
set. The field variable (x, y) has the expansion, 

(2.82) w(x, y) ~ > VANDA (x, y) 

where the sum goes over all the triangles f and over the vertices of each triangle. 

The constants ¥ are the desired values of the field at the vertices. (There is 
redundant labeling here because adjacent triangles have some vertices in com- 

mon.) It is worth noting that despite the shift from one set of shape functions to 

another as the point (x, y) crosses from one triangle to one adjacent to it, the 

function defined by the right-hand side of (2.82) is continuous. Because of the 

linearity of the shape functions, the value of (2.82) along the common side of 

the two triangles from either representation is the same weighted average of the 

values at each end, with no contributions from the shape functions for the vertices 

not in common. 

We return to the Poisson equation with Dirichlet boundary conditions and 

the vanishing integral (2.77). With the expansion (2.82) for W(x, y), we choose 

the test function }(x, y) = N(x, y) for some particular element e and vertex i 
(only avoiding vertices on the boundary because we require ¢ = 0 on C). The 

choice reduces the integral [and the sum in (2.82)] to one over the particular 

element chosen, just as did the choice of the localized function in (2.80). The 

integral, with the inhomogeneity transferred to the right-hand side, is 

(2.83) > yo I VN» VN® dx dy = [ ene dx dy 
If g(x, y) changes very little over the element e, it can be approximated by its 
value g, = g(X,, y-) at the center of gravity of the triangle and factored out of 
the right-hand integral. The remaining integral is 

(2.84) [ ne dx dy = S.(a; + b,x. + cy.) = Se 
For the left-hand integral in (2.83), the linearity of the shape functions means 
that the integrand is a constant. We note that aN‘°/ax = b;, AN‘ /ay = c,, and 
define 

ki = S.(b:b; + C,C;) (2.85) 

The coefficients k{? form an array of dimensionless coupling coefficients for the 
triangle e. It is straightforward to show that they depend on the shape of the 
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v3 

45° 60° 

-—_—_ 
-——_ 

-= 2v3 2v3 

45° 60° 60° 90° 1 

-— v3 v3 
2v3 

Figure 2.16 Examples of the triangular coupling coefficients. The “diagonal” 
coefficients are at the corners (vertices) and the “off-diagonal” coefficients along the 
sides, between vertices. 

triangle, but not its orientation or size. Two examples are shown in Fig. 2.16, 
where the diagonal elements k{ are located at the corresponding vertices (i) and 

the off-diagonal elements k{ along the line connecting vertex i with vertex j. 

With the definition (2.85) of the coupling coefficients, (2.83) becomes 

3 
S 
= 8e (i = 1, 2,3) (2.86) Y KOWO = 

. 

j=l 

For each element e there are three algebraic equations, except when the side(s) 

of the triangle form part of the boundary. The three coupled equations can be 

written in matrix form, kKOWwo = G@, 
The result for one element must now be generalized to include all the tri- 

angular elements spanning R. Let the number of interior vertices or nodes be N 

and the total number of vertices, including the boundary, be No. Label the inter- 

nal nodes with j = 1, 2, 3,..., N, and the boundary nodes by j = N + 1, 

N + 2,..., No. Now enlarge and rearrange the matrix k‘? > K, where K is an 
N X N matrix with rows and columns labeled by the node index. Similarly, define 

the N-column vectors, W and G. For each triangular element in turn, add the 

elements of k{ and S.g,/3 to the appropriate rows and columns of K and G. The 
end result is the matrix equation 

KW =G (2.87) 

where 

(e) and L#] 
yoo K = (ky) ky = Dk with ky = > ki 

(2.88) 

G.= 5D Sete - 
j=N+1 

The summation over TJ means over all the triangles connected to the internal 

node i; the summation over E means a sum over all the triangles with a side from 

internal node i to internal node j. The final sum in G; contains, for nodes con- 

nected directly to the boundary nodes, the known boundary values of & there 

and the corresponding k‘?) values (not present in the matrix K). The reader may 

ponder Fig. 2.17 to be convinced of the correctness of (2.88). Just as for the square 

lattice, the N X N matrix K is a symmetric sparse matrix, with positive diagonal 

elements. As mentioned earlier, there are special efficient methods of inverting 

such matrices, even if very large. 
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105 

101 

Figure 2.17 A part of the array of 
102 

104 triangular elements spanning the region R, 
103 assumed to have 100 internal nodes. Boundary 

The obvious generalization of the triangle to three-dimensional FEA is to 

add another vertex out of the plane to make a tetrahedron the basic element of 

volume. Now four shape functions, N{(x, y, z), are used to give an approxima- 
tion to the field variable within the tetrahedron. The algebra is more involved, 

but the concept is the same. 

Our discussion is a bare introduction to finite element analysis. Many variants 

exist in every branch of physics and engineering. National laboratories and com- 

mercial companies have ‘‘canned”” FEA packages: POISSON is one such pack- 

age, developed at the Lawrence Berkeley National Laboratory jointly with 

Livermore National Laboratory; TOSCA and CARMEN are two developed at 

the Rutherford—Appleton Laboratory in Britain. 

References and Suggested Reading 

The method of images and the related technique of inversion are treated in many 

books; among the better or more extensive discussions are those by 

Jeans, Chapter VIII 

Maxwell, Vol. 1, Chapter XI 

Smythe, Chapters IV and V 

The classic use of inversion by Lord Kelvin in 1847 to obtain the charge distribution on 

the inside and outside surfaces of a thin, charged, conducting spherical bowl is discussed 
in 

Kelvin, p. 186 

Jeans, pp. 250-251 

A truly encyclopedic source of examples of all sorts with numerous diagrams is the book 
by Durand, especially Chapters III and IV. Durand discusses inversion on pp. 107-114. 

Complex variables and conformal mapping techniques for the solution of two- 
dimensional potential problems are discussed by 

Durand, Chapter X 

Jeans, Chapter VIII, Sections 306-337 

Maxwell, Vol. I, Chapter XII 

Morse and Feshbach, pp. 443-453, 1215-1252 

Smythe, Chapter IV, Sections 4.09-4.31 

Thomson, Chapter 3 

A useful little mathematics book on conformal mapping is 

Bieberbach 
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There are, in addition, many engineering books devoted to the subject, e.g., 
Gibbs 

Rothe, Ollendorff, and Polhausen 

Elementary, but clear, discussions of the mathematical theory of Fourier series and 
integrals, and orthogonal expansions, can be found in 

Churchill 

Hildebrand, Chapter 5 

A somewhat old-fashioned treatment of Fourier series and integrals, but with many ex- 
amples and problems, is given by 

Byerly 

The literature on numerical methods is vast and growing. A good guidepost to per- 
tinent literature is 

Paul L. DeVries, Resource Letter CP-1: Computational Physics, Am. J. Phys. 
64, 364-368 (1996) 

In addition to the books cited at the beginning of Section 2.12, two others are 

P. Hammond and J. K. Sykulski, Engineering Electromagnetism, Physical Pro- 
cesses and Computation, Oxford University Press, New York (1994). 

C. W. Steele, Numerical Computation of Electric and Magnetic Fields, Van 

Nostrand, New York (1987). 

The first of these has a brief but clear discussion of FEA in Chapter 7; the second treats 

FEA and related topics in greater depth. 

Problems 

2.1 A point charge q is brought to a position a distance d away from an infinite plane 

conductor held at zero potential. Using the method of images, find: 

(a) the surface-charge density induced on the plane, and plot it; 

(b) the force between the plane and the charge by using Coulomb’s law for the 

force between the charge and its image; 

(c) the total force acting on the plane by integrating o7/2€) over the whole plane; 

(d) the work necessary to remove the charge q from its position to infinity; 

(e) the potential energy between the charge q and its image [compare the answer 

to part d and discuss]. 

(f) Find the answer to part d in electron volts for an electron originally one ang- 

strom from the surface. 

2.2 Using the method of images, discuss the problem of a point charge q inside a hollow, 
grounded, conducting sphere of inner radius a. Find 

(a) the potential inside the sphere; 

the induced surface-charge density; (b) 

(c) the magnitude and direction of the force acting on q. 

(d) Is there any change in the solution if the sphere is kept at a fixed potential V? 

If the sphere has a total charge Q on its inner and outer surfaces? 

2.3 A straight-line charge with constant linear charge density A is located perpendicular 

to the x-y plane in the first quadrant at (xo, yo). The intersecting planes x = 0, 

y > 0 and y = 0, x = 0 are conducting boundary surfaces held at zero potential. 
Consider the potential, fields, and surface charges in the first quadrant. 
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(a) The well-known potential for an isolated line charge at (xo, Yo) is P(x, y) = 
(A/4zre9)In(R2/r?), where r? = (x — xo)” + (y — Yo)” and R is a constant. De- 
termine the expression for the potential of the line charge in the presence of 
the intersecting planes. Verify explicitly that the potential and the tangential 
electric field vanish on the boundary surfaces. 

Determine the surface charge density o on the plane y = 0, x 2 0. Plot o/A 
(b) 

versus x for (Xp = 2, Yo = 1), (x0 = 1, Yo = 1), and (%o = Yo =2). 

Show that the total charge (per unit length in z) on the plane y = 0, x = Ois 
(c) 

0 
— 

Yo 
Q,=-—=2 tan™( 

What is the total charge on the plane x = 0? 

—_— 

= V(x? + y’) and (d) Show that far from the origin [p>>pp, where p 

po = V(x3 + ys)] the leading term in the potential is 

_ 4A (xo¥o)(xy) 
= 

4 ® > 25m 
TTEo p 

Interpret. 

2.4 A point charge is placed a distance d > R from the center of an equally charged, 

isolated, conducting sphere of radius R. 

Inside of what distance from the surface of the sphere is the point charge (a) 
attracted rather than repelled by the charged sphere? 

(b) What is the limiting value of the force of attraction when the point charge is 

located a distance a (= d — R) from the surface of the sphere, if a << R? 

(c) What are the results for parts a and b if the charge on the sphere is twice 

(half) as large as the point charge, but still the same sign? 

[Answers: (a) d/R — 1 = 0.6178, (b) F = —q7/(167e9a°), i.e., image force, (¢) for 
QO = 2q, d/R — 1 = 0.4276; for Q = q/2, d/R — 1 = 0.8823. The answer for part b 
is the same.] 

2.5 (a) Show that the work done to remove the charge q from a distance r > a to 

infinity against the force, Eq. (2.6), of a grounded conducting sphere is 

ga 
~ 8are,(r? — a”) 

Relate this result to the electrostatic potential, Eq. (2.3), and the energy dis- 

cussion of Section 1.11. 

(b) Repeat the calculation of the work done to remove the charge q against the 

force, Eq. (2.9), of an isolated charged conducting sphere. Show that the work 

done is 

1 qa qa qQ 
2r 2(r? - a’) ~ 41r€ | 

Relate the work to the electrostatic potential, Eq. (2.8), and the energy dis- 

cussion of Section 1.11. 

2.6 The electrostatic problem of a point charge q outside an isolated, charged con- 

ducting sphere is equivalent to that of three charges, the original and two others, 

one located at the center of the sphere and another (‘the image charge’) inside 

the now imaginary sphere, on the line joining the center and the original charge. 
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If the point charge and sphere are replaced by two conducting spheres of radii 
r, and r,, carrying total charges Q, and Q,, respectively, with centers separated by 
a distance d > r, + r,, there is an equivalence with an infinite set of charges within 
each sphere, one at the center and a set of images along the line joining the centers. 
The charges and their locations can be determined iteratively, starting with a charge 
qa(1) at the center of the first sphere and q,(1) correspondingly for the second 
sphere. The charge q,(1) has its image q,(2) within the first sphere and vice versa. 
Then the image charge within the first sphere induces another image within the 
second sphere, and so on. The sum of all the charges within each sphere must be 
scaled to be equal to Q, or Q,. 

The electrostatic potential outside the spheres, the force between the spheres, 
etc. can be found by summing the contributions from all the charges. 

(a) Show that the charges and their positions are determined iteratively by the 

relations, 

d,{j) = d — xa(j) Ga(j) = CAG) ~ 1)/d,(j ~ 1), Xalj) = rald,( ~ 1), 
qo) = —rega(j — 1)/d.(j — 1), xo(j) = ré/d(j - 1), ay(j) = d — x,(j) 

for j = 2,3, 4,..., with d,(1) = d,(1) = d, and x,(1) = x,(1) = 0. 

(b) Find the image charges and their locations as well as the potentials on the 

spheres and force between them by means of a suitable computer program. 

[In computing the potential on each sphere, evaluate it in different places: e.g., 

in the equatorial plane and at the pole opposite the other sphere. This permits 

a check on the equipotential of the conductor and on the accuracy of 

computation. | 

(c) As an example, show that for two equally charged spheres of the same radius 

R, the force between them when almost in contact is 0.6189 times the value 

that would be obtained if all the charge on each sphere were concentrated 

at its center. Show numerically and by explicit summation of the series that 

the capacitance of two identical conducting spheres in contact is C/47egR = 

1.3863 -- - [= In 4]. 

Reference: J. A. Soules, Am. J. Phys. 58, 1195 (1990). 

2.7 Consider a potential problem in the half-space defined by z = 0, with Dirichlet 

boundary conditions on the plane z = 0 (and at infinity). 

(a) Write down the appropriate Green function G(x, x’). 

(b) If the potential on the plane z = 0 is specified to be ® = V inside a circle of 

radius a centered at the origin, and ® = 0 outside that circle, find an integral 

expression for the potential at the point P specified in terms of cylindrical 

coordinates (p, ¢, Z). 

Show that, along the axis of the circle (p = 0), the potential is given by (c) 

z 

Va + 2? 
o=v(1- 

Show that at large distances (p” + z” >> a’) the potential can be expanded in (d) 
a power series in (p” + z”)~*, and that the leading terms are 

3a? Va? z 
—_ 

S(3p’a* + at) 
8(p* + zy - A(p? + 2?) | 2 (p? + 2°)? | 

Verify that the results of parts c and d are consistent with each other in 

their common range of validity. 
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2.8 A two-dimensional potential problem is defined by two straight parallel line charges 

separated by a distance R with equal and opposite linear charge densities A 
and —A. 

(a) Show by direct construction that the surface of constant potential V is a cir- 
cular cylinder (circle in the transverse dimensions) and find the coordinates 

of the axis of the cylinder and its radius in terms of R, A, and V. 

(b) Use the results of part a to show that the capacitance per unit length C of two 
right-circular cylindrical conductors, with radii a and b, separated by a distance 

d>atby,is 

277Ey 
Cc 

d? — a — b* 

2ab 
ar 

(c) Verify that the result for C agrees with the answer in Problem 1.7 in the 

appropriate limit and determine the next nonvanishing order correction in 

powers of a/d and b/d. 

(d) Repeat the calculation of the capacitance per unit length for two cylinders 
inside each other (d < |b — a|). Check the result for concentric cylinders 
(d = 0). 

2.9 An insulated, spherical, conducting shell of radius a is in a uniform electric field Eo. 

If the sphere is cut into two hemispheres by a plane perpendicular to the field, find 
the force required to prevent the hemispheres from separating 

(a) if the shell is uncharged; 

(b) if the total charge on the shell is Q. 

2.10 A large parallel plate capacitor is made up of two plane conducting sheets with 

separation D, one of which has a small hemispherical boss of radius a on its inner 

surface (D >> a). The conductor with the boss is kept at zero potential, and the 

other conductor is at a potential such that far from the boss the electric field between 

the plates is Eo. 

(a) Calculate the surface-charge densities at an arbitrary point on the plane and 

on the boss, and sketch their behavior as a function of distance (or angle). 

(b) Show that the total charge on the boss has the magnitude 3ze)E a”. 

(c) If, instead of the other conducting sheet at a different potential, a point charge 

q is placed directly above the hemispherical boss at a distance d from its center, 

show that the charge induced on the boss is 

ad? —- @ 

dV d? + a’ 
q' = - - | 

2.11 A line charge with linear charge density 7 is placed parallel to, and a distance R 

away from, the axis of a conducting cylinder of radius b held at fixed voltage such 

that the potential vanishes at infinity. Find 

(a) the magnitude and position of the image charge(s); 

(b) the potential at any point (expressed in polar coordinates with the origin at 

the axis of the cylinder and the direction from the origin to the line charge as 
the x axis), including the asymptotic form far from the cylinder; 

(c) the induced surface-charge density, and plot it as a function of angle for 
R/b = 2, 4 in units of 7/2mb; 

(d) the force per unit length on the line charge. 
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2.12 Starting with the series solution (2.71) for the two-dimensional potential problem 
with the potential specified on the surface of a cylinder of radius b, evaluate the 
coefficients formally, substitute them into the series, and sum it to obtain the po- 
tential inside the cylinder in the form of Poisson’s integral: 

27T b? — p* 

P(b, >’) dq’ D(p, ) = on 
b? + p* — 2bp cos(d’ — ¢) 

What modification is necessary if the potential is desired in the region of space 

bounded by the cylinder and infinity? 

2.13 (a) Two halves of a long hollow conducting cylinder of inner radius b are sepa- 

rated by small lengthwise gaps on each side, and are kept at different poten- 

tials V, and V,. Show that the potential inside is given by 

P(p, o) = 
2 T 

b? p° mn osd) 

where ¢ is measured from a plane perpendicular to the plane through the gap. 

(b) Calculate the surface-charge density on each half of the cylinder. 

2.14 A variant of the preceding two-dimensional problem is a long hollow conducting 

cylinder of radius b that is divided into equal quarters, alternate segments being 

held at potential + V and —V. 

(a) Solve by means of the series solution (2.71) and show that the potential inside 

the cylinder is 

oo 

4V * sin[(4n + 2)4] pP > 
2n+1 b P(p, ¢) = Tr 

n=0 ( 
Sum the series and show that (b) 

2V 2p2b? sin 2 
D(p, 6) = — ( b* — p* 

Sketch the field lines and equipotentials. (c) 

Show that the Green function G(x, y; x’, y’) appropriate for Dirichlet bound- 2.15 (a) 

ary conditions for a square two-dimensional region, 0 =x = 1,0= y =1, has 

an expansion 

Gee, y3x',y') = 2D) gals y’) sin(ne) sin(ne’) 

where g,,(y, y’) satisfies 

2 

— - nr ay’? ) ea y') = —4n6(y’ — y) and g,(y, 0) = gn(y, 1) = 0 ( 
(b) Taking for g,(y, y’) appropriate linear combinations of sinh(n7ry’) and 

cosh(n7ry’) in the two regions, y’ < y and y’ > y, in accord with the boundary 
conditions and the discontinuity in slope required by the source delta function, 

show that the explicit form of G is 

G(x, y; x, y’) 

sin(nax) sin(nmx’) sinh(nzy.) sinh[n(1 — y.)] > 
n=1 n sinh(n7) 

where y_(y;) is the smaller (larger) of y and y’. 
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2.16 A two-dimensional potential exists on a unit square area (0<x<s1,0<y=1) 
bounded by “surfaces” held at zero potential. Over the entire square there is a 
uniform charge density of unit strength (per unit length in z). Using the Green 
function of Problem 2.15, show that the solution can be written as 

4 sin[(2m + 1) 2x] _ cosh[(2m + 1)a(y - 2)] 
x 

m=0 
Ox, y) = Ge | (2m + 1)° cosh[(2m + 1) 7/2} 

2.17 (a) Construct the free-space Green function G(x, y; x’, y’) for two-dimensional 
electrostatics by integrating 1/R with respect to (z’ — z) between the limits 
+Z, where Z is taken to be very large. Show that apart from an inessential 
constant, the Green function can be written alternately as 

G(x, y; x’, y') = —Inf[ -— x’P + y - y’')] 
= —In[p? + p'? — 2pp' cos(¢ — $')} 

(b) Show explicitly by separation of variables in polar coordinates that the Green 

function can be expressed as a Fourier series in the azimuthal coordinate, 

G= mm ei(o- Oe (p, p') 
where the radial Green functions satisfy 

2 
m 5(p — p’) 1 Bm 

— to = -47 
20m 

p dp’ p’ op’ ( 
Note that g,,(p, p’) for fixed p is a different linear combination of the solutions 

of the homogeneous radial equation (2.68) for p’ < p and for p’ > p, with a 

discontinuity of slope at p’ = p determined by the source delta function. 

(c) Complete the solution and show that the free-space Green function has the 

expansion 

P< 
— Glo, 4; p', $') = -In(2) +2 S > 

m=1 M™ > ( ) ‘ cos[m(o — $')] 
where p.(p,) is the smaller (larger) of p and p’. 

2.18 (a) By finding appropriate solutions of the radial equation in part b of Problem 
2.17, find the Green function for the interior Dirichlet problem of a cylinder 

of radius b [g,,(p, p’ = b) = 0. See (1.40)]. First find the series expansion akin 

to the free-space Green function of Problem 2.17. Then show that it can be 

written in closed form as 

pp’? + bt — 2pp'b? cos(p — $') 
b*(p? + p'® — 2pp' cos(¢ — ¢$')) 

c=] | 
or 

(b* — p*)(b? — p’) + b* |p — p'P 
b’ |p — p'f? | G = in| 

(b) Show that the solution of the Laplace equation with the potential given as 

®(b, ¢) on the cylinder can be expressed as Poisson’s integral of Problem 2.12. 

(c) What changes are necessary for the Green function for the exterior problem 

(b < p< ©), for both the Fourier expansion and the closed form? [Note that 

the exterior Green function is not rigorously correct because it does not vanish 
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for p or p’ — ©. For situations in which the potential falls off fast enough as 

p— ©, no mistake is made in its use.] 

2.19 Show that the two-dimensional Green function for Dirichlet boundary conditions 

for the annular region, b = p = c (concentric cylinders) has the expansion 

cos[m(p — $')] ca Inel/B2) In(2ipe) 
(pz — b*"/pZ)\(ip= — pric”) +2> 

m=1 In(7/b?) m1 — (bic)”) 

2.20 Two-dimensional electric quadrupole focusing fields for particle accelerators can 

be modeled by a set of four symmetrically placed line charges, with linear charge 

densities +A, as shown in the left-hand figure (the right-hand figure shows the elec- 

tric field lines). 

A 

“A 

Problem 2.20 

The charge density in two dimensions can be expressed as 

a(p, >) = sy (-1)" (p — a) 8(¢ — na/2) 
(a) Using the Green function expansion from Problem 2.17c, show that the elec- 

trostatic potential is 

wo 

1 A Pz 
— 

— D(p, ¢) = 
P> WWEq k=0 2k +1 ( i cos[(4k + 2) ¢] 

Relate the solution of part a to the real part of the complex function (b) 

2X (z — ia)(z + ia) 
w(Z) = | (z — a)(z + a) 4t€ “| 

where z = x + iy = pe’*. Comment on the connection to Problem 2.3. 

(c) Find expressions for the Cartesian components of the electric field near the 
origin, expressed in terms of x and y. Keep the k = 0 and k = 1 terms in the 

expansion. For y = 0 what is the relative magnitude of the k = 1 (2°-pole) 
contribution to E, compared to the k = 0 (2?-pole or quadrupole) term? 

2.21 Use Cauchy’s theorem to derive the Poisson integral solution. Cauchy’s theorem 
states that if F(z) is analytic in a region R bounded by a closed curve C, then 

inside F(z) lf F@) az 
i Z 1S 

outside 0 271 c z'-2 

Hint: You may wish to add an integral that vanishes (associated with the image 
point) to the integral for the point inside the circle. 
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2.22 (a) For the example of oppositely charged conducting hemispherical shells sepa- 
rated by a tiny gap, as shown in Figure 2.8, show that the interior potential 
(r < a) on the z axis is 

_ (a? _ 2’) 

®,,(z) =V- aVa® + 2? | 
Find the first few terms of the expansion in powers of z and show that they 
agree with (2.27) with the appropriate substitutions. 

From the result of part a and (2.22), show that the radial electric field on the 
(b) 

positive z axis is 

2 2 
a a 

+-— 
2 Ez) = ( (2? + a’)? 

for z > a, and 

2 
a V 3 + (alzy 

2 E,(z) =~ 
z a | | (1 + (z/a)’)°”* 

for |z| < a. Show that the second form is well behaved at the origin, with the 

value, E,(0) = —3V/2a. Show that at z = a (north pole inside) it has the value 

—(V2 — 1)V/a. Show that the radial field at the north pole outside has the 
value V2 Via. 

Make a sketch of the electric field lines, both inside and outside the conducting (c) 
hemispheres, with directions indicated. Make a plot of the radial electric field 

along the z axis from z = —2a to z = +2a. 

2.23 A hollow cube has conducting walls defined by six planes x = 0, y = 0, z = 0, and 

x = a,y =a, Zz =a. The walls z = 0 and z = a are held at a constant potential V. 
The other four sides are at zero potential. 

(a) Find the potential P(x, y, z) at any point inside the cube. 

(b) Evaluate the potential at the center of the cube numerically, accurate to three 

significant figures. How many terms in the series is it necessary to keep in 

order to attain this accuracy? Compare your numerical result with the average 

value of the potential on the walls. See Problem 2.28. 

(c) Find the surface-charge density on the surface z = a. 

2.24 In the two-dimensional region shown in Fig. 2.12, the angular functions appropriate 

for Dirichlet boundary conditions at ¢ = 0 and ¢ = B are ®(¢) = A,, sin(m7¢/B). 

Show that the completeness relation for these functions is 

o 

d(¢- $')=7 sin(mad/B) sin(m7¢'/B) for0<¢,¢'< 8B 
m=1 

2.25 Two conducting planes at zero potential meet along the z axis, making an angle B 

between them, as in Fig. 2.12. A unit line charge parallel to the z axis is located 

between the planes at position (p’, $’). 

(a) Show that (47re)) times the potential in the space between the planes, that is, 

the Dirichlet Green function G(p, ¢; p’, ¢'), is given by the infinite series 

G(p, ¢; p’, ¢’) = 4 > ~ pZ™8o>™™'® sin(mad/B) sin(md'/B) 
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(b) By means of complex-variable techniques or other means, show that the series 
can be summed to give a closed form, 

(p)°7? + (o'r? — 2(pp')”"” cos[a(d + ')/B] Glo, 6; p'. 6’) = in| 
(pyr? + (p'”"? — 2(pp')”* cos[a(d — '/6] 

(c) Verify that you obtain the familiar results when B = wand B= a2. 

2.26 The two-dimensional region, p = a,0< $< B, is bounded by conducting surfaces 
at @ = 0, p = a, and ¢ = B held at zero potential, as indicated in the sketch. At 
large p the potential is determined by some configuration of charges and/or con- 
ductors at fixed potentials. 

— 

® =0 

in 

~— Problem 2.26 

(a) Write down a solution for the potential ®(p, ¢) that satisfies the boundary 

conditions for finite p. 

(b) Keeping only the lowest nonvanishing terms, calculate the electric field com- 

ponents E, and E, and also the surface-charge densities o(p, 0), o(p, B), and 

a(a, @) on the three boundary surfaces. 

(c) Consider 8B = z (a plane conductor with a half-cylinder of radius a on it). 

Show that far from the half-cylinder the lowest order terms of part b give a 

uniform electric field normal to the plane. Sketch the charge density on and 

in the neighborhood of the half-cylinder. For fixed electric field strength far 

from the plane, show that the total charge on the half-cylinder (actually charge 

per unit length in the z direction) is twice as large as would reside on a strip 

of width 2a in its absence. Show that the extra portion is drawn from regions 

of the plane nearby, so that the total charge on a strip of width large compared 

to a is the same whether the half-cylinder is there or not. 

2.27 Consider the two-dimensional wedge-shaped region of Problem 2.26, with B = 27. 

This corresponds to a semi-infinite thin sheet of conductor on the positive x axis 

from x = a to infinity with a conducting cylinder of radius a fastened to its edge. 

(a) Sketch the surface-charge densities on the cylinder and on the top and bottom 
of the sheet, using the lowest order solution. 

(b) Calculate the total charge on the cylinder and compare with the total defi- 
ciency of charge on the sheet near the cylinder, that is, the total difference in 

charge for a finite compared with a = 0, assuming that the charge density far 
from the cylinder is the same. 
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2.28 A closed volume is bounded by conducting surfaces that are the n sides of a regular 

polyhedron (n = 4, 6, 8, 12, 20). The n surfaces are at different potentials V,, 

i= 1,2,...,n. Prove in the simplest way you can that the potential at the center 

of the polyhedron is the average of the potential on the n sides. This problem bears 

on Problem 2.23b, and has an interesting similarity to the result of Problem 1.10. 

2.29 For the Galerkin method on a two-dimensional square lattice with lattice spacing 

h, verify the relations (2.81) for the localized ‘‘pyramid”’ basis functions, #,(x, y) 

= (1 — |x|/h)(1 — |y|/A), |x| < A, |y| < A, where x and y are measured from the 
site (i, j). In particular, 

8 
—_-* 

’ | ax | dy (x, y) = h’s [ ax dy Vo; + Vij = 
1 
—_—* [ ac | a Vobies;* Vbi; = -3; [ ae | a Vodijr1 * Vbij = — 3 ’ 

1 
_ | ax | dy Voisij+1° VOij = — 3 

2.30 Using the results of Problem 2.29, apply the Galerkin method to the integral equiv- 

alent of the Poisson equation with zero potential on the boundary, 

[ dx dy[V¢i; Vy - Anp¢j, = 0 with W(x, y) = 3 Wir i Derg (X, y) 
j=l 

for the lattice of Problem 1.24, with its three independent lattice sites. Show that 
you get three coupled equations for the ,; values (Y,, Y, Ws) and solve to find the 
“Galerkin” approximations for the potential at these sites. Compare with the exact 
values and the results of the various iterations of Problem 1.24c. Comment. 

[yb = 47re,®]. 



CHAPTER 3 

Boundary-Value Problems 

in Electrostatics: IT 

In this chapter the discussion of boundary-value problems is continued. Spherical 

and cylindrical geometries are first considered, and solutions of the Laplace equa- 

tion are represented by expansions in series of the appropriate orthonormal func- 

tions. Only an outline is given of the solution of the various ordinary differential 

equations obtained from the Laplace equation by separation of variables, but the 

properties of the different functions are summarized. 

The problem of construction of Green functions in terms of orthonormal 

functions arises naturally in the attempt to solve the Poisson equation in the 

various geometries. Explicit examples of Green functions are obtained and ap- 

plied to specific problems, and the equivalence of the various approaches to 

potential problems is discussed. 

3.1 Laplace Equation in Spherical Coordinates 

In spherical coordinates (r, 6, 6), shown in Fig. 3.1, the Laplace equation can be 

written in the form: 

1 om o® 1 1 3 
— = 0 sin 9 — (3.1) 

00 r* sin 6 00 r’ sin? 0 07 
7 or (r®) + ( 

If a product form for the potential is assumed, then it can be written: 

U(r) ®m = (3.2) P()Q(¢) 
r 

When this is substituted into (3.1), there results the equation: 

dP UP a@Q d’?U UQ d 
= 0 sin 9 — 

dé ? sin 6 d0 r’ sin? 6 dd” PO 72 t )s ( 
If we multiply by r? sin? 6/UPQ, we obtain: 

dP d 1 1 a’Q 1 d*U 
— +5 °F =0 (3.3) sin 975 

Pr? sin 6 d@ Q dd’ U dr’ } ( r sin’ | 

The ¢ dependence of the equation has now been isolated in the last term. Con- 

sequently that term must be a constant which we call (—m”): 

2 1aQ_ 
— Ol (3.4) 
Q dd’ 

95 
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“NI 
Figure 3.1 

This has solutions 

+timd 
=e” (3.5) Q 

For Q to be single valued, m must be an integer if the full azimuthal range is 

allowed. By similar considerations we find separate equations for P(@) and U(r): 

2 
d 1 d 

— sin 6 —— (3.6) 
sin’ @ dé sin 6 dé 

r= ( )+[a+n- 
ad?U (lt + 1) 

— U=0 (3.7) 
2 

r dr? 

where /(/ + 1) is another real constant. 

From the form of the radial equation it is apparent that a single power of r 

(rather than a power series) will satisfy it. The solution is found to be: 

U = Ar'*) + Br“! (3.8) 

but / is as yet undetermined. 

3.2 Legendre Equation and Legendre Polynomials 

The @ equation for P(@) is customarily expressed in terms of x = cos 0, instead 

of @ itself. Then it takes the form: 

2 d 
— (3.9) 

2 d. 1- 
ja — x’) | + cE +1) - Jr-0 

This equation is called the generalized Legendre equation, and its solutions are 

the associated Legendre functions. Before considering (3.9) we outline the 

solution by power series of the ordinary Legendre differential equation with 

m = 0; 

d 
— (3.10) 
d. 

ja — x?) a +K1+1)P =0 

We assume that the whole range of cos 6, including the north and south poles, is 

in the region of interest. The desired solution should then be single valued, finite, 

and continuous on the interval —1 = x = 1 in order that it represent a physical 
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potential. The solution will be assumed to be represented by a power series of 
the form: 

(3.11) P(x) = “> a;x! 
where a is a parameter to be determined. When this is substituted into (3.10), 
there results the series: 

> ((@ + f(a + jf — 1)ajxt*? — [(a + f(a +f +1) - Ul + IJajx**} = 0 
(3.12) 

In this expansion the coefficient of each power of x must vanish separately. For 
J = 0, 1 we find that 

if do # 0, then a(a — 1) = 0 
(3.13) 

if a, # 0, then a(a + 1) = 0 

while for a general j value 

(a+ /(at+j+1)-ll+1) 
+ 

a; 

d (3.14) 
J (a+j+1)\(a + j + 2) | | 

A moment’s thought shows that the two relations (3.13) are equivalent and that 

it is sufficient to choose either ay or a, different from zero, but not both. Making 

the former choice, we have a = 0 or a = 1. From (3.14) we see that the power 

series has only even powers of x (a = 0) or only odd powers of x (a@ = 1). 

For either of the series a = 0 or a = 1 it is possible to prove the following 

properties: 

the series converges for x? < 1, regardless of the value of /; 

the series diverges at x = +1, unless it terminates. 

Since we want a solution that is finite at x = +1, as well as for x* < 1, we demand 
that the series terminate. Since @ and / are positive integers or zero, the recur- 

rence relation (3.14) will terminate only if / is zero or a positive integer. Even 

then only one of the two series converges at x = +1. If/ is even (odd), then only 

the a = 0 (a = 1) series terminates.* The polynomials in each case have x’ as 
their highest power of x, the next highest being x’~?, and so on, down to x°(x) 
for | even (odd). By convention these polynomials are normalized to have the 

value unity at x = +1 and are called the Legendre polynomials of order I, P(x). 
The first few Legendre polynomials are: 

Po(x) = 1 

P,(x) =X 

(3.15) P(x) = (3x? — 1) 

P3(x) = 3(5x? — 3x) 

P,(x) = 1(35x4 — 30x? + 3) 

*For example, if / = 0 the a = 1 series has a general coefficient a; = ao/(j + 1) forj = 0,2, 4,.... Thus 

the series is ap(x + $x° + $x° + ---). This is just ap times the power series expansion of a function 
Q(x) = 3in(1 + x)/(1 — x), which clearly diverges at x = +1. For each / value there is a similar function 

Q,(x) with logarithms in it as the partner to the well-behaved polynomial solution. See Magnus et al. 

(pp. 151 ff). Whittaker and Watson (Chapter XV) give a treatment using analytic functions. 
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By manipulation of the power series solutions (3.11) and (3. 14) it is possible 

to obtain a compact representation of the Legendre polynomials, known as 

Rodrigues’ formula: 

1 d' 
(3.16) _ 1) 

P,(x) Nn d i (x 
—_ ~ 

[See, for example, Arfken.] 

The Legendre polynomials form a complete orthogonal set of functions on 

the interval 1 <= x <1. To prove the orthogonality we can appeal directly to 

the differential equation (3.10). We write down the differential equation for P,(x) 
multiply by P,(x), and then integrate over the interval 

(3.17) [. P, oy ja — | + i+ pred a x = 0 

Integrating the first term by parts, we obtain 

(3.18) 
[. E 2 _ 1) “ a + Ul + 1)(P; P00 | r= 0 

If we now write down (3.18) with / and /’ interchanged and subtract it from (3.18) 
the result is the orthogonality condition 

(3.19) +1) -V0' +d] i P.(x)P(x) dx 

For / # I’, the integral must vanish. For / = I’, the integral is finite. To determine 

its value it is necessary to use an explicit representation of the Legendre poly- 

1 

nomials, e.g., Rodrigues’ formula. Then the integral is “eney 

1 
d! 

N, [ [P.(x)]? dx Ze -ySe-yar 2(L!)* J- 

Integration by parts / times yields the result 

d?! (-1y 
N; [ w@-vwS dx! (x? —~ 1)! dx ~ 21)? 

The differentiation 2/ times of (x? — 1)’ yields the constant (2/)!, so that 

(20)! 
N; 

x’)! dx [,a- ~ 22)? 

The remaining integral can be done by brute force, but also by induction. We 

write the integrand as 

Q—-x7/=(1 — x*\(1 — x)" 1m (1 _ x7)" 1 + * da — x7)! 
21 dx 

Thus we have 

21-1 (21 — 1) 
— N, Ni d{(1 — x*)'] 2l 27)? 
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Integration by parts in the last integral yields 

21-1 
N; Ni-1 Ni 

2l al 

Or 

— 

= (21 + 1)N, (3.20) (21 ~ 1)Ni-1 

This shows that (2/ + 1)N, is independent of J. For / = 0, with Po(x) = 1, we have 

No = 2. Thus N, = 2/(2/ + 1) and the orthogonality condition can be written: 

2 
Opi (3.21) [. Preoypie) ae = 

21+ 1 

and the orthonormal functions in the sense of Section 2.8 are 

(3.22) P,(x) U,(x) = pet 
Since the Legendre polynomials form a complete set of orthogonal functions, 

any function f(x) on the interval —1 = x = 1 can be expanded in terms of them. 

The Legendre series representation is: 

oo 

(3.23) f(x) = >» A,P,(x) 
7=0 

where 

2l 
(3.24) A, = thf pap ax 

2 

As an example, consider the function shown in Fig. 3.2: 

— 

= for x >0 +1 f(x) 
— 

= -1 for x <0 

Then 

2i+1 
A, = 

2 
[ff eo ax fr ar] 

Since P;(x) is odd (even) about x = 0 if / is odd (even), only the odd / 

coefficients are different from zero. Thus, for / odd, 

(3.25) A, = (21 + 1) [ P,(x) ax 

a 

0 -1| 
6. 

——— | Figure 3.2 
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By means of Rodrigues’ formula the integral can be evaluated, yielding 

+ 1-2)! 
(3.26) A; = (-1)-92 (21 

I+1 
——___ 

2 
): | 

where (2n + 1)!! = (2n + 1)(2n — 1)(2n — 3)--- X 5 X 3 X 1. Thus the series 
for f(x) is: 

(3.27) f(x) = 3P,(x) _ £P3(x) + 1ePs(X) ~t 

Certain recurrence relations among Legendre polynomials of different order 

are useful in evaluating integrals, generating higher order polynomials from 

lower order ones, etc. From Rodrigues’ formula it is a straightforward matter to 

show that 

AP 41 aP,_, 
— (21+ 1)P, = 0 (3.28) 

dx d. 

This result, combined with differential equation (3.10), can be made to yield 

various recurrence formulas, some of which are: 

(I + LPs — (21 + 1)xP, + IP), = 0 

AP +1 aP, 
— 

(3.29) dx dx 

dP; 
(x? 1) 7 7 Pr + IP. = 0 

As an illustration of the use of these recurrence formulas, consider the evaluation 

of the integral: 

— 

= q (3.30) [. xP;(x)P;(x) dx 

From the first of the recurrence formulas (3.29) we obtain an expression for 
xP,(x). Therefore (3.30) becomes 

1= yey [. Pr (x){(Z + 1)Pi41(x) + IP,_1(x)] dx 

The orthogonality integral (3.21) can now be employed to show that the integral 
vanishes unless /' = / + 1, and that, for those values, 

2(1 + 1) 
h=l]+1 

(21 + 1)(21 + 3)’ 
(3.31) { , XxP(x)P;(x) dx = 

2l 
v= 1-1 

(21 — 1)(21 + 1)’ 
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These are really the same result with the roles of / and /' interchanged. In a 
similar manner it is easy to show that 

2(1 + 1)(1 + 2) 
l’=1+2 

(21 + 1)(21 + 3)(2/ + 5)’ 
(3.32) | , x*P,(x)P;(x) dx = 

2(272 + 21 — 1) 
v=! 

(21 — 1)(21 + 1)(21 + 3)’ 

where it is assumed that /’ = /. 

3.3 Boundary- Value Problems with Azimuthal Symmetry 

From the form of the solution of the Laplace equation in spherical coordinates 

(3.2), it will be seen that for a problem possessing azimuthal symmetry m = 0 in 

(3.5). This means that the general solution for such a problem is: 

oo 

(3.33) @(r, 0) = > [A,r’ + By“ ]P,(cos 6) 
7=0 

The coefficients A, and B, can be determined from the boundary conditions. 

Suppose that the potential is specified to be V(6) on the surface of a sphere of 

radius a, and it is required to find the potential inside the sphere. If there are no 

charges at the origin, the potential must be finite there. Consequently B, = 0 for 

all J. The coefficients A, are found by evaluating (3.33) on the surface of the 

sphere: 

(3.34) V(0) = > A,a'P,(cos 0) 

This is just a Legendre series of the form (3.23), so that the coefficients A, are: 

+i 
(3.35) 

l [ , V(6)P,(cos 6) sin @ dé 
2 i 

If, for example, V(6) is that of Section 2.7, with two hemispheres at equal and 

opposite potentials, 

+V, (0 < 6< 7/2) 

(7/2 <0 7) 
vo =| 

-—V, 

then the coefficients are proportional to those in (3.27). Thus the potential inside 

the sphere is 

r 

— r 
— 

a 16 a ( ) Poo 6): | (3.36) ) Peo 6) + P(r, 0) = v3 7 P,(cos 6) — 2( 
To find the potential outside the sphere we merely replace (r/a)' by (a/r)'*!. The 
resulting potential can be seen to be the same as (2.27), obtained by another 

means. 

Series (3.33), with its coefficients determined by the boundary conditions, is 

a unique expansion of the potential. This uniqueness provides a means of ob- 
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taining the solution of potential problems from a knowledge of the potential in 

a limited domain, namely on the symmetry axis. On the symmetry axis (3.33) 

becomes (with z = r): 

(3.37) Sy [Ar! + By OY] P(z = r) 

valid for positive z. For negative z each term must be multiplied by (—1)’. Sup- 
pose that, by some means, we can evaluate the potential ®(z) on the symmetry 
axis. If this potential function can be expanded in a power series in z = r of the 

form (3.37), with known coefficients, then the solution for the potential at 

any point in space is obtained by multiplying each power of r' and r~“*” by 
P,(cos 0) 

At the risk of boring the reader, we return to the problem of the hemispheres 

at equal and opposite potentials. We have already obtained the series solution 

in two different ways, (2.27) and (3.36). The method just stated gives a third way 

For a point on the axis we have found the closed form (2.22) 

r—a 

Vrit+a 
P(z = r) fi -- | 

This can be expanded in powers of a?/r 

V I'(j — 3) 
OZ =r) =+= Ss ( 1)/ 1 (2) 3) 

! ( i 

Comparison with expansion (3.37) shows that only odd / values (J = 27 — 1) enter 

The solution, valid for all points outside the sphere, is consequently 

P(r, 6) = FD (-1)7 (2j7 - ar — 3) (2 ) P,;_;(cos 6) 
— 

_— 

This is the same solution as already obtained, (2.27) and (3.36) 

An important expansion is that of the potential at x due to a unit point charge 

at x 

oo i 1 
2, “rai Pi(cos 7) (3.38) 
= 

= [x — x’| 

where r. (r,) is the smaller (larger) of |x| and |x’|, and y is the angle between x 
and x’, as shown in Fig. 3.3. This can be proved by rotating axes so that x’ lies 

NO 

~~ 
Figure 3.3 
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along the z axis. Then the potential satisfies the Laplace equation, possesses 
azimuthal symmetry, and can be expanded according to (3.33), except at the point 
x=x’: 

1 = > (Ayr! + Bir“ )P,(cos 9) 
1=0 |x — x’| 

If the point x is on the z axis. the right-hand side reduces to (3.37), while the left- 

hand side becomes: 

1 1 1 

|x — x’| ~ (r? + r'? — 2rr' cos y)”” ~ |r —r'| 

Expanding, we find, for x on axis, 

ow 

1 1 Pe 
— 

rs ( |x — x’| 1 
For points off the axis it is only necessary, according to (3.33) and (3.37), to 

multiply each term by P,(cos y). This proves the general result (3.38). 

Another example is the potential due to a total charge q uniformly distrib- 

uted around a circular ring of radius a, located as shown in Fig. 3.4, with its axis 

the z axis and its center at z = b. The potential at a point P on the axis of 

symmetry with z = r is just q/47re, divided by the distance AP: 

1 q 
OZ =r) = ye Are (r? + c? — 2cr cosa 

where c? = a’ + b* and a = tan™' (a/b). The inverse distance AP can be expanded 

using (3.38). Thus, for r > c, 

oo t 
q 

®(z = 1) = > sa Pi(cos a) 
=0 47€ 

For r < c, the corresponding form is: 

vr P,(cos @) 4 ¥ 
+1 Oz = 1) = 

= 

= ATE 

z=raP 

—— — — 

CN 

J, 
Figure 3.4 Ring of charge of radius a and total 

charge q located on the z axis with center at z = b 
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The potential at any point in space is now obtained by multiplying each member 

of these series by P,(cos 6): 

oo 

rl. q P,(cos a)P;(cos 0) > P(r, 6) = i+1 4 
0 /=0 F> 

where r. (r,) is the smaller (larger) of r and c. 

3.4 Behavior of Fields in a Conical Hole or Near a Sharp Point 

Before turning to more complicated boundary-value problems, we consider one 
with azimuthal symmetry, but with only a limited range of 6. This is a three- 

dimensional analog of the situation discussed in Section 2.11. Suppose that the 

limited angular region, 0 = 6< 8,0 = ¢ S 27, is bounded by a conical conducting 

surface, as indicated in Fig. 3.5. For B < 7/2, the region can be thought of as a 

deep conical hole bored in a conductor. For B > 7/2, the region of space is that 

surrounding a pointed conical conductor. 

The treatment of Section 3.2 for the Legendre differential equation needs 

modification. With the assumption of azimuth symmetry, (3.10) is still applicable, 

but we now seek solutions finite and single-valued on the range of x = cos 0 of 

cos 8B = x = 1. Furthermore, since the conducting surface 6 = 8B is at fixed po- 

tential, which we can take to be zero, the solution in cos 6 must vanish at 6 = B 
— 

= 1 it is to satisfy the boundary conditions. Since we demand regularity at x 

convenient to make a series expansion around x = 1 instead of x = 0, as was 

done with (3.11). With the introduction of the variable 

1 
== 
= é 2 (1 — x) 

the Legendre equation (3.10) becomes 

(3.39) f\ea-o%| + o(v+1)P=0 

2 

—_—-+—- 

r—6 

Bo 

Figure 3.5 
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where / has been replaced by v to avoid confusion. The corresponding radial 
solutions for U(r)/r in (3.2) are r” and r~”"'. With a power series solution, 

co 

P(é) = & > a;é! 
j=0 

substituted into (3.39), the vanishing of the coefficient of the lowest power of é 
requires a = 0. The recursion relation between successive coefficients in the series 
is then 

Qa; 

J +0 6G — wy t+ vt 1) 
(3.40) 

a (j + 1) J 

Choosing a) = 1 to normalize the solution to unity at € = 0 (cos 6 = 1), we have 

the series representation 

(—v)(v + 1) (—v)(—v + 1)(v + 1)(v + 2) 24 
é+ Pjé) =1+ (3.41) 

1! 1! 2! 2! 

We first observe that if v is zero or a positive integer the series terminates. The 

reader can verify that for vy = / = 0, 1, 2,..., the series (3.41) is exactly the 

Legendre polynomials (3.15). For v not equal to an integer, (3.41) represents a 

generalization and is called a Legendre function of the first kind and order v. The 

series (3.41) is an example of a hypergeometric function 2F;,(a, b; c; z) whose 

series expansion is 

— ab z a(a + 1)b(b + 1)2* 
2Fi(a, b3c;z) = 1 + 

2! 1! c(c + 1) 

Comparison with (3.41) shows that the Legendre function can be written 

1-x 
(3.42) 

2 
P(x) = 2h ( =» y+ 1;1; 

Here we have returned to our customary variable x = cos 6. The properties of 

the hypergeometric functions are well known (see Morse and Feshbach, Chapter 

5, Dennery and Krzywicki, Sections IV.16-18, Whittaker and Watson, Chapter 

XIV). The Legendre function P,(x) is regular at x = 1 and for |x| < 1, but is 
singular at x = —1 unless v is an integer. Depending on the value of », it has a 

certain number of zeros on the range |x| < 1. Since the polynomial P,(x) has / 
zeros for |x| < 1, we anticipate that for real y more and more zeros occur as v 

gets larger and larger. Furthermore, the zeros are distributed more or less uni- 

formly on the interval. In particular, the first zero moves closer and closer to 

x = 1 as v increases. 

The basic solution to the Laplace boundary-value problem of Fig. 3.5 is 

Ar’P,(cos @) 

where v > 0 is required for a finite potential at the origin. Since the potential 

must vanish at 6 = B for all r, it is necessary that 

(3.43) P,(cos B) = 0 

This is an eigenvalue condition on v. From what was just stated about the 
zeros of P, it is evident that (3.43) has an infinite number of solutions, v = vy, 
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(k = 1,2,...), which we arrange in order of increasing magnitude. For v = %, 

x = cos is the first zero of P,,(x). For v = %, x = cos B is the second zero 
of P,,(x), and so on. The complete solution for the azimuthally symmetric poten- 
tial in the region 0 = @ = B is* 

(3.44) P(r, 6) = > A,r”'P,, (COs 6). . . 

In the spirit of Section 2.11 we are interested in the general behavior of the 
potential and fields in the neighborhood of r = 0 and not in the full solution with 
specific boundary conditions imposed at large r. Thus we approximate the be- 

havior of the potential near r = 0 by the first term in (3.44) and write 

(3.45) @(r, 6) = Ar’P,(cos 0) 

where now v is the smallest root of (3.43). The components of electric field and 

the surface-charge density on the conical conductor are 

a® 
~ 

— — 
= E, —vAr”’'P,(cos 6) 

or 

1 o® 
(3.46) ——~— = Ar”' sin 6P(cos 6) Ee 

r 06 

1 
— 

— _ o(r) 4 
Evlo=p = —-— r’! sinBP,(cos B) 

Here the prime on P, denotes differential with respect to its argument. The fields 

and charge density all vary as r’~' as r > 0. 
The order v for the first zero of P,(cos B) is plotted as a function of f in Fig. 

3.6. Obviously, for B <1, vy >> 1. An approximate expression for vin this domain 
can be obtained from the Bessel function approximation," 

(3.47) P,(cos 6) = Jo 2» + 1) sin :) 

valid for large v and @ < 1. The first zero of Jo(x) is at x = 2.405. This gives 

2.405 
=~ (3.48a) 

Since |E| and o vary as r’~' there are evidently very small fields and very little 
charge deep in a conical hole as 8B — 0. For B = a/2, the conical conductor 

becomes a plane. There v = 1 and 0 « 1, as expected. For B > 7/2, the geometry 
_— 

= 0. For is that of a conical point. Then v < 1 and the field is singular at r 

B — 7, v— 0, but rather slowly. An approximation for (a7 — 8) small is 

2 
2 In (3.48b) 

a—B r= [pul i 
This shows that for (7 — B) = 10°, v = 0.2 and even for (7 — B) =~ 1°, v= 0.1. 

In any event, for a narrow conical point the fields near the point vary as r~'*¢ 

*The orthogonality of the functions P,,(cos 6) on the interval cos 8 = x = 1 can be shown in the 

same way as for P,(cos @)—see (3.17)-(3.19). Completeness can also be shown. 

*Bessel functions are discussed in Section 3.7. 
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Figure 3.6 The order parameter v for the first zero of P,(cos 8) versus B. The range 

0 < B < 90° corresponds to a conical hole, while 90° < 6 < 180° represents a conical 

point. Near r = 0 the fields and surface-charge density are proportional to r’~’. The 

dashed curves are the approximate expressions, (3.48a) and (3.48b). 

where e < 1. Very high fields exist around the point. The efficacy of such points 

in lightning rods is discussed in Section 2.11. 

An extended discussion of potential problems of this general kind by R. N. 

Hall [J. Appl. Phys. 20, 925 (1949)] includes graphs for a number of the roots », 

of (3.43) as functions of B. 

3.5 Associated Legendre Functions and the 
Spherical Harmonics Y,,(0, ©) 

So far we have dealt with potential problems possessing azimuthal symmetry with 
solutions of the form (3.33). Unless the range in 6 is restricted, as in Section 3.4, 
these involve only ordinary Legendre polynomials. The general potential prob- 

lem can, however, have azimuthal variations so that m # 0 in (3.5) and (3.9). 
Then we need the generalization of P;(cos 9), namely, the solution of (3.9) with 

l and m both arbitrary. In essentially the same manner as for the ordinary 

Legendre functions it can be shown that to have finite solutions on the interval 

—1 <x <1, the parameter / must be zero or a positive integer and the integer m 

can take on only the values —/, —(/ — 1),..., 0,..., (7 — 1), 1. The solution 
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having these properties is called an associated Legendre function P7'(x). For 

positive m it is defined by the formula* 

(3.49) P(x) = (-1)"(1 
ayn oo ~ P(x) 

If Rodrigues’ formula is used to represent P,(x), a definition valid for both pos- 

itive and negative m is obtained 

l+m 

(-1)” (3.50) (1 _ 1)' 
P7"(x) 

2ymn2 
d l+m (x 2'1! 

P;'"(x) and P?"(x) are proportional, since the differential equation (3.9) depends 

only on m* and m is an integer. It can be shown that 

(J — m) (3.51) P"(x) P,™(x) = (-1)” 
(i+ )! 

For fixed m the functions P/"(x) form an orthogonal set in the index / on the 
interval -1 = x < 1. By the same means as for the Legendre functions the 
orthogonality relation can be obtained 

2 (1 + m) 
6p (3.52) i PF(x)P7'(x) dx = 

2+1( m)! 

The solution of the Laplace equation was decomposed into a product of 

factors for the three variables r, 6, and @. It is convenient to combine the angular 

factors and construct orthonormal functions over the unit sphere. We will call 

these functions spherical harmonics, although this terminology is often reserved 

for solutions of the generalized Legendre equation (3.9). Our spherical harmonics 

in older books are sometimes called ‘“‘tesseral harmonics The functions 

O,,(¢) = e’”* form a complete set of orthogonal functions in the index m on the 
interval 0 = @ = 27. The functions P/"(cos 6) form a similar set in the index | 

for each m value on the interval 1 = cos 6 = 1. Therefore their product P"Q,, 

will form a complete orthogonal set on the surface of the unit sphere in the two 

indices /, m. From the normalization condition (3.52) it is clear that the suitably 

normalized functions, denoted by Y,,,(6, @), are 

2+1(1— m)! 
P?"(cos 6) e”"* (3.53) Yim ¢) 

‘(i )! 

From (3.51) it can be seen that 

Yi —-m(9, 6) = (-1)" Yim, ) (3.54) 

The normalization and orthogonality conditions are 

(3.55) i ad | Sin 8 dO Vim (9, P)Vim(9, 6) = 8118 m'm 
The completeness relation, equivalent to (2.35), is 

(3.56) > S Yiml8’, &')¥im(0, &) = 5(b — &')5(cos 6 — cos 6’) 
1=0 m=-!l 

*The choice of phase for P/"(x) is that of Magnus et al. and E. U. Condon and G. H Shortley in 
Theory of Atomic Spectra, Cambridge University Press (1953). For explicit expressions and recursion 
formulas, see Magnus et al., Section 4.3 
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For a few small / values and m = 0 the list below shows the explicit form of the 

Yin(9, @). For negative m values (3.54) can be used 

SPHERICAL HARMONICS Y,,,(0, d) 

1 
1=0 Yoo 

V4ir 

— sin 6e'? Yu 
7 £ 

= l 

Yio 

1 
— Yo. 
4 

Ya l1=2 - 2 sin 6 cos 6e* 

Y29 (3cos@ — 3) 

—o 

V3 ; 
1 
— 

Y32 ea sin’6 cos 6e”* 
1=3 } 

1 
—_ — Y; 1 1 sin @ (5cos?6 — 1)e"* 

Y30 FE cewe- toss 

Note that, for m = 0 

(3.57) Yio, 6) = ao P,(cos 6) 
An arbitrary function g(@, @) can be expanded in spherical harmonics 

(3.58) g(@ ) = > > AmY im p) 

where the coefficients are 

Am = | 40 Yin(®, 6)8@, 4) 
A point of interest to us in the next section is the form of the expansion for 
6 = 0. With definition (3.57), we find: 

(3.59) Ato 
a=! 

[g(0 )Jo-0 = -> 
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where 

(3.60) to= Jag | Hose 
All terms in the series with m # 0 vanish at @ = 

The general solution for a boundary-value problem i in spherical coordinates 
can be written in terms of spherical harmonics and powers of rin a generalization 
of (3.33): 

(3.61) O(r, 6.6) = > Dd [Ammr! + Bint? |¥im(O, &) 
{=0 m=-l 

If the potential is specified on a spherical surface, the coefficients can be deter- 

mined by evaluating (3.61) on the surface and using (3.58) 

3.6 Addition Theorem for Spherical Harmonics 

A mathematical result of considerable interest and use is called the addition 
theorem for spherical harmonics. Two coordinate vectors x and x’, with spherical 
coordinates (r, 6, @) and (r’, 6’, @'), respectively, have an angle y between them 
as shown in Fig. 3.7. The addition theorem expresses a Legendre polynomial of 
order / in the angle yin terms of products of the spherical harmonics of the angles 

6, d and 6’, d' 

(3.62) P,(cos y) = iat, > Yim(9', b')¥im(9, ) 
where cos y = cos 9 cos 6’ + sin @ sin @’ xos( @'). To prove this theorem we 
consider the vector x’ as fixed in space. Then P,(cos y) is a function of the angles 

&, with the angles 6’, @’ as parameters. It may be expanded in a series (3.58) 

(3.63) P,(cos Y) ~~ > > Apm(6' d )Y, m(O p) 

Comparison with (3.62) shows that only terms with J’ = / appear. To see why 

this is so, note that if coordinate axes are chosen so that x’ is on the z axis, then 

y becomes the usual polar angle and P,(cos y) satisfies the equation 

1) V’’P,(cos y) + P,(cos y) = 0 (3.64) 
M+ 

where V’? is the Laplacian referred to these new axes. If the axes are now rotated 
to the position shown in Fig. 3.7, V’* = V? and r is unchanged.* Consequently 
P,(cos y) still satisfies an equation of the form (3.64); i.e., it is a spherical harmonic 

of order /. This means that it is a linear combination of Y,,,’s of that order only 

Pj(cos y) = >, An(6', b')Yin(O, ) (3.65) 

The coefficients A,,(6’, @’) are given by 

(3.66) n(0', &') = | Yin(®, 4)P)(cos 9) dO 
*The proof that V'? = V? under rotations follows most easily from noting that V2 = V- Vy is an 
operator scalar product and that all scalar products are invariant under rotations. 
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Figure 3.7 

To evaluate this coefficient we note that it may be viewed, according to (3.60), 
as the m’ = 0 coefficient in an expansion of the function V47/(21 + 1) Y*,,(0, @) 
in a series Of Yin(y, 8) referred to the primed axis of (3.64). From (3.59) it is 
then found that, since only one / value is present, coefficient (3.66) is 

A,,(6', 6’) = [Yimly, B), O(y, B)I}y=0 (3.67) i 
In the limit y — 0, the angles (6, #), as functions of (y, 8), go over into (6’, @’) 
Thus addition theorem (3.62) is proved. Sometimes the theorem is written in 
terms of P7*(cos 6) rather than Y,,,. Then it has the form 

(3.68) 
P,(cos y) = P,(cos ree , ) 

- PP(cos 6)P7"(cos 8’) cos[m(¢ — $')] +2 y om 

If the angle y goes to zero, there results a ‘‘sum rule” for the squares of Y,,, 

t 
21+ 1 

> [¥n(9, 6) |? = (3.69) 
4 

m=— 

The addition theorem can be used to put expansion (3.38) of the potential 

at x due to a unit charge at x’ into its most explicit form. Substituting (3.62) for 

P,(cos y) into (3.38), we obtain 

1 
re 

Vim", ')¥im(8, &) (3.70) TES 1=0 m=-I 
iri anand S 

Ix — 

Equation (3 0) & gives the potential in a completely factorized form in the coor- 
dinates x and x’. This is useful in any integrations over charge densities, etc 

where one variable is the variable of integration and the other is the coordinate 

of the observation point. The price paid is that there is a double sum rather than 

a single term 

3.7 Laplace Equation in Cylindrical Coordinates; 

Bessel Functions 

In cylindrical coordinates (p, ¢, z), as shown in Fig. 3.8, the Laplace equation 

takes the form 

me 1o® 7® 1 ro 
0 (3.71) 

Oz p? ag? p ap dp 
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Figure 3.8 

The separation of variables is accomplished by the substitution: 

(3.72) D(p, $, Z) = R(p)Q($)Z(z) 

In the usual way this leads to the three ordinary differential equations 

Z 
— -kKZ=0 (3.73) 
dz” 

a) 
+ vQ=0 (3.74) 

dd* 

d’R v- 

1 dR (3.75) 
2 

p p dp dp* 
Jeo + (w- 

The solutions of the first two equations are elementary: 

Z(z) =— exkz 
(3.76) 

Q() =e" 

For the potential to be single-valued when the full azimuth is allowed, v must be 

an integer. But barring some boundary-condition requirement in the z direction, 

the parameter k is arbitrary. For the present we assume that k is real and positive. 

The radial equation can be put in a standard form by the change of variable 

x = kp. Then it becomes 

d*R 1 dR vy 

—_— + - — (3.77) 1-> dx? x ax * Jeo 

This is the Bessel equation, and the solutions are called Bessel functions of order 

v. If a power series solution of the form 

(3.78) R(x) = x* > a;x! 

is assumed, then it is found that 

a= tp (3.79) 

and 

2) (3.80) 
AiG + a) 7? 
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for j = 1,2,3,.... All odd powers of x/ have vanishing coefficients. The recursion 
formula can be iterated to obtain 

(-1)T(a + 1) 
— 

(3.81) 7 Di TG + a+ 1)” 

It is conventional to choose the constant ay = [2°T(@ + 1)]~!. Then the two 
solutions are 

wo 

x (-1) x > (3.82) 
2 2 109 =| 

j=0 uTg+vtyi) ( 
oo 

x (-1y * > (3.83) 
2 2 j=0 u’g-vt+i) 

J_(x) = ( 
‘ 

( 
These solutions are called Bessel functions of the first kind of order +v. The 

series converge for all finite values of x. If v is not an integer, these two solutions 

J. (x) form a pair of linearly independent solutions to the second-order Bessel 

equation. However, if v is an integer, it is well known that the solutions are 

linearly dependent. In fact, for vy = m, an integer, it can be seen from the series 

representation that 

(3.84) Jem (X) = (-1Y"Ipn(X) 

Consequently it is necessary to find another linearly independent solution when 

vy is an integer. It is customary, even if v is not an integer, to replace the pair 

Js.(x) by J,(x) and N,(x), the Neumann function (or Bessel function of the sec- 

ond kind): 

J,(x) cos var — J_ (x) 
(3.85) N,(x) = 

sin var 

For v not an integer, N,(x) is clearly linearly independent of J,(x). In the limit 
vy — integer, it can be shown that N,(x) is still linearly independent of J,(x). As 

expected, it involves log x. Its series representation is given in the reference 

books. 

The Bessel functions of the third kind, called Hankel functions, are defined 

as linear combinations of J,(x) and N,(x): 

HY(x) = J) + iN) 
(3.86) 

HD (x) = Sx) — iN) 

The Hankel functions form a fundamental set of solutions to the Bessel equation, 

just as do J,(x) and N,(x). 

The functions J,, N,, H$?, H©® all satisfy the recursion formulas 

(3.87) 0-104) + OQv41(x) = 0,(x) 

dQ, (x) 
—_— (3.88) 0-104) — Qi) = 2 

dx 

where 0,,(x) is any one of the cylinder functions of order v. These may be verified 

directly from the series representation (3.82). 
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For reference purposes, the limiting forms of the various kinds of Bessel 
function are given for small and large values of their argument. For simplicity, 
we show only the leading terms: 

x 1 
(3.89) x<il J(x) > 2 

, 

T(v + 1) ( 
~ 

x 2 
—_— 

= —_ 
—_— + ast | v [( (3.90) N,(x) > 

2 _T®) vp#0 
x T 

y 

( 
In these formulas v is assumed to be real and nonnegative. 

T vq 

Xx 
4 2 

x>elvp SX J— cos( 
(3.91) 

T Vit 

4 2 
Nx) > |= sin( 

The transition from the small x behavior to the large x asymptotic form occurs 

in the region of x ~ ». 

From the asymptotic forms (3.91) it is clear that each Bessel function has an 

infinite number of roots. We will be chiefly concerned with the roots of J,(x): 

(3.92) (n = 1, 2, 3,...) J (Xm) = 0 

Xn is the nth root of J,(x). For the first few integer values of », the first three 
roots are: 

y= 0, Xon = 2.405, 5.520, 8.654, 

v= 1, Xin = 3.832, 7.016, 10.173, 

vy = 2, Xo, = 5.136, 8.417, 11.620, 

For higher roots, the asymptotic formula 

Xm = nT + (v4) 5 

gives adequate accuracy (to at least three figures). Tables of roots are given in 

Jahnke, Emde, and Losch (p. 194) and Abramowitz and Stegun (p. 409). 

Having found the solution of the radial part of the Laplace equation in terms 

of Bessel functions, we can now ask in what sense the Bessel functions form an 

orthogonal, complete set of functions. We consider only Bessel functions of the 

first kind, and we show that Vp J Ax,,p/a), for fixed v = 0,n = 1, 2,..., form 
an orthogonal set on the interval 0 = p = a. The demonstration starts with the 

differential equation satisfied by J,(x,,,p/a): 

( 
Xin Ld 

p (3.93) 
p dp dp 

N Yul )=o 
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If we multiply the equation by pJ,(X,:pla) and integrate from 0 to a, we obtain 

p 

a 

a d 
tm 

p 

dp + | 0 d 
i( 

dp 
a 2 

x 
v- 

un p p 
— — ~— 

—_ 

2 2 | 0 a 
mo ( Jou 0 HM Javeo 

Integration by parts, combined with the vanishing of (pJ,J/,) at p = 0 (for v= 0) 
and p = a, leads to the result: 

p p 
— 

— 

a a 2 a 
» al ) a v- 

Xin p 
a — 

2 2 | 0 

lapel 
0 a dp dp ( )o (10 \ ( e) dp =0 

If we now write down the same expression, with n and n’ interchanged, and 
subtract, we obtain the orthogonality condition: 

p p 
_ 

m (3.94) 
a 

(xo_ — X24") [ phn NH ) ap =0 
Adroit use of the differential equation, and the recursion formulas (3.87) and 
(3.88) leads to the normalization integral: 

a 

p 
_ (3.95) | 0 

pm Yon e) dp = = (F412) San 

Assuming that the set of Bessel functions is complete, we can expand an arbitrary 
function of p on the interval 0 = p < a in a Fourier—Bessel series: 

— 

= f(e) (3.96) > A wl e) 

where 

Xin 
(3.97) 

a 
Ayn aS? (Xn) [ aptoy( )a 

Our derivation of (3.96) involved the restriction v = 0. Actually it can be proved 

to hold for all vy = —1. 

Expansion (3.96) and (3.97) is the conventional Fourier—Bessel series and is 

particularly appropriate to functions that vanish at p = a (e.g., homogeneous 

Dirichlet boundary conditions on a cylinder; see the following section). But it 

will be noted that an alternative expansion is possible in a series of functions 

Vp J,(yynpla) where y,, is the nth root of the equation [dJ,(x)|/dx = 0. The 
reason is that, in proving the orthogonality of the functions, all that is demanded 

is that the quantity [pJ,(kp)(d/dp)J,(k'p) — pJ.(k'p)(d/dp)J,(kp)| vanish at 
the end points p = 0 and p = a. The requirement is met by A = x,,,/a or A = 

y n/a, where J,(x,,) = 0 and Ji(y.,) = 0, or, more generally, by p(d/dp)J,(kp) 
+ AJ,(kp) = 0 at the end points, with A a constant independent of k. The expan- 

sion in terms of the set Vp J,(yrnp/a) is especially useful for functions with van- 
ishing slope at p = a. (See Problem 3.11.) 
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A Fourier—Bessel series is only one type of expansion involving Bessel func- 
tions. Some of the other possibilities are: 

Neumann series: > AnJ y+n(Z) 
n=0 

Kapteyn series: > And yin((v + 1)z) 

Schlémilch series: > a,J,(nx) 

The reader nay refer to Watson (Chapters XVI-XIX) for a detailed discussion 

of the properties of these series. Kapteyn series occur in the discussion of the 

Kepler motion of planets and of radiation by rapidly moving charges (see Prob- 

lems 14.14 and 14.15). 

Before leaving the properties of Bessel functions, we note that if, in the 

separation of the Laplace equation, the separation constant k? in (3.73) had been 

taken as —k’, then Z(z) would have been sin kz or cos kz and the equation for 
R(p) would have been: 

2 d’R 1 dR Vv 
-_-— — (3.98) P+s 

dp” p dp ( Jao 
With kp = x, this becomes 

d’R 1 dR vy 
-_-—— — — 

2 (3.99) 
dx? x dx x 

Jeo ( 

The solutions of this equation are called modified Bessel functions. It is evident 
that they are just Bessel functions of pure imaginary argument. The usual choices 
of linearly independent solutions are denoted by J,(x) and K,(x). They are de- 
fined by 

T(x) = i-*J,(ix) (3.100) 

(3.101) K,(x) = 5 PHD (ix) 

and are real functions for real x and v. Their limiting forms for small and large 
x are, assuming real v = 0: 

1 x 
x<il I(x) > (3.102) 2 T(v + 1) ( 

y 

x 
— 

2 in ) + osrre---], v=0 
K,(x) > (3.103) 

r@) 2 
v#0O0 

2 x ( ) 
1 

x>t1,v I(x) > (3.104) x V L£7X } efi + of 

1 
_— 

x } K,(x) > 7 oi + of 
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3.8 Boundary-Value Problems in Cylindrical Coordinates 

— 

=> The solution of the Laplace equation in cylindrical coordinates is ® 

R(p)Q()Z(z), where the separate factors are given in the previous section. Con- 

sider now the specific boundary-value problem shown in Fig. 3.9. The cylinder 

has a radius a and a height L, the top and bottom surfaces being at z = L and 

z = 0. The potential on the side and the bottom of the cylinder is zero, while the 
top has a potential ® = V(p, ¢). We want to find the potential at any point inside 

the cylinder. In order that ® be single valued and vanish at z = 0, 

Q(¢) = A.sinmd + B cosmd 

Z(z) = sinh kz 

where v = mis an integer and k is a constant to be determined. The radial factor 

is 

R(p) = CI (kp) + DNnlkp) 

If the potential is finite at p = 0, D = 0. The requirement that the potential vanish 
at p = a means that k can take on only those special values: 

Xmn 
(n = 1, 2,3,...) Kinn = 

where x,,, are the roots of Jijn(Xmn) = 0. 

Combining all these conditions, we find that the general form of the solution 

is 

®(p, b. 2) = DD Inbennb) Sith KynnZ)(Amm Sin md 
m=0 n=1 (3.105a) 

+ Bin cosmd) 

At z = L, we are given the potential as V(p, @). Therefore we have 

Vip, 6) = » sinh(Kmnl-)Jm(KmnP (Amn sinmd + Byrn Cosmd) 

4 

f° = Vip, ) 

— 

7 $=0 

aT. 

é=0 

Figure 3.9 
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This is a Fourier series in ¢ and a Fourier—Bessel series in p. The coefficients 
are, from (2.37) and (3.97), 

_ 2cosech(kmnLl) {” 
Amn dd [ dp pV(p, b)Im(Kmn) sinmd 

Ta’ J 7434(Kmna) Jo 

and (3.105b) 

_ 2 cosech(KynL) om 
Brinn db [dp pV(p, &)Jn(knnp) cosmd 

maT in+ (Kimn@) 0 

with the proviso that, for m = 0, we use $Bo,, in the series. 
The particular form of expansion (3.105a) is dictated by the requirement that 

the potential vanish at z = 0 for arbitrary p and at p = a for arbitrary z. For 

different boundary conditions the expansion would take a different form. An 

example where the potential is zero on the end faces and equal to V(@, z) on the 

side surface is left as Problem 3.9 for the reader. 

The Fourier—Bessel series (3.105) is appropriate for a finite interval in p, 

0 = p<=a.Ifa— %, the series goes over into an integral in a manner entirely 

analogous to the transition from a trigonometric Fourier series to a Fourier in- 

tegral. Thus, for example, if the potential in charge-free space is finite for z = 0 

and vanishes for z — ©, the general form of the solution for z = 0 must be 

P(p, , Z) = > . dk e~**J,,(kp)[A,,(k) sinmd + B,,(k) cosmp] (3.106) 

If the potential is specified over the whole plane z = 0 to be V(p, #) the coeffi- 

cients are determined by 

Vi. 6) = 3 |) ak Jn(ke)LAn(R) sin md + By(K) cos md) 
The variation in ¢ is just a Fourier series. Consequently the coefficients A,,,(k) 
and B,,,(k) are separately specified by the integral relations: 

277 
sin md A», (k') 

—_— 

dk’ (3.107) | 0 T cosmd@ 
V(p, 6){ 

B,,(k’) 
ao =| Jutk' 0) 

These radial integral equations of the first kind can be easily solved, since they 
are Hankel transforms. For our purposes, the integral relation, 

(3.108) [ XD (kx) In(k'x) dx = - d(k' — k) 

can be exploited to invert equations (3.107). Multiplying both sides by ps (Kp) 
and integrating over p, we find with the help of (3.108) that the coefficients are 
determined by integrals over the whole area of the plane z = 0: 

A,(k) sin md 
(3.109) 

cos B,,{k) ob 

_ [ dp p . db V(p, 5)Intko)| 

As usual, for m = 0, we must use 3B (k) in series (3.106). 
While on the subject of expansions in terms of Bessel functions, we observe 

that the functions J(kx) for fixed v, Re(v) > —1, form a complete, orthogonal 
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(in k) set of functions on the interval, 0 < x < ©. For each m value (and fixed 
¢ and z), the expansion in k in (3.106) is a special case of the expansion, 

A(x) = I . A(k)J,(kx) dk, where A(k) = k l . xA(x)J,(kx) dx (3.110) 
An important example of these expansions occurs in spherical coordinates, with 
spherical Bessel functions, j,(kr),/ = 0,1,2,.... For present purposes we merely 
note the definition, 

(3.111) Jz) = ee) 

[Details of spherical Bessel functions may be found in Chapter 9.] The ortho- 
gonality relation (3.108) evidently becomes 

(3.112) | . Pi(knji(k'r) dr = 52 8(k — k’) 

The completeness relation has the same form, with r > k, k > r, k’ > r’. The 
Fourier—spherical Bessel expansion for a given / is then 

A(r) = [ A(k)j(kr) dk, where A(k) = 7 [ r°A(r)j(kr) dr (3.113) 

Such expansions are useful for current decay in conducting media or time- 

dependent magnetic diffusion for which angular symmetry reduces consideration 

to one or a few / values. See Problems 5.35 and 5.36. 

3.9 Expansion of Green Functions in Spherical Coordinates 

To handle problems involving distributions of charge as well as boundary values 

for the potential (i.e., solutions of the Poisson equation), it is necessary to deter- 

mine the Green function G(x, x’) that satisfies the appropriate boundary con- 

ditions. Often these boundary conditions are specified on surfaces of some sep- 

arable coordinate system (e.g., spherical or cylindrical boundaries). Then it is 

convenient to express the Green function as a series of products of the functions 

appropriate to the coordinates in question. We first illustrate the type of expan- 

sion involved by considering spherical coordinates. 

For the case of no boundary surfaces, except at infinity, we already have the 

expansion of the Green function, namely (3.70): 

Z 
1 r 1 =40> 3 V7 n(O', b')Yin(8, i) 

1=0 m=-l 21+1 rt} |x — x’| 

Suppose that we wish to obtain a similar expansion for the Green function ap- 
propriate for the “exterior” problem with a spherical boundary at r = a. The 
result is readily found from the image form of the Green function (2.16). Using 

expansion (3.70) for both terins in (2.16), we obtain: 

2 
a 1 1 re 
— — G(x, x’) = 42 >, 

a rr’ 21+ 1 lm 

yo | Yim’, &')Vim(8, 6) (3.114) rif 1 ( | 
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To see clearly the structure of (3.114) and to verify that it satisfies the boundary 

conditions, we exhibit the radial factors separately for r <r’ and forr > r’: 

21+ 1 
a 1 

i+1 +. Z 2 
r 1 a rs 

|, 
—-> — — — } a (3.115) 

i+1 2i+1 
a rr’ 1 rs ( I} | 

—. r> r ha 
d+. I+1? 

r | 
[rs 

First of all, we note that for either r or r’ equal to a the radial factor vanishes, 

as required. Similarly, as r or r’ — ©, the radial factor vanishes. It is symmetric 

in r and r’. Viewed as a function of r, for fixed r’, the radial factor is just a linear 

combination of the solutions r' and r~“*” of the radial part (3.7) of the Laplace 
equation. It is admittedly a different linear combination for r < r’ and for 

r >r'. The reason for this, which will become apparent below, is connected with 

the fact that the Green function is a solution of the Poisson equation with a delta 

function inhomogeneity. 

Now that we have seen the general structure of the expansion of a Green 

function in separable coordinates we turn to the systematic construction of such 

expansions froin first principles. A Green function for a Dirichlet potential prob- 

lem satisfies the equation 

V2G(x, x’) = —478(x — x’) (3.116) 

subject to the boundary conditions G(x, x’) = 0 for either x or x’ on the boundary 

surface S. For spherical boundary surfaces we desire an expansion of the general 

form (3.114). Accordingly we exploit the fact that the delta function can be 

written* 

d(x — x’) = > d(r — r') 5(¢ — ') &(cos 8 — cos 6’) 

and that the completeness relation (3.56) can be used to represent the angular 
delta functions: 

5 > (3.117) d(x — x’) = : é(r — r’) 
f=0 m=—- 

i Yi m6, b')Vin(8, od) 

Then the Green function, considered as a function of x, can be expanded as 

Gxx)=5 5 (3.118) 
1=0 m=- 

Aim(r|r' g b')V inl, cd) 

Substitution of (3.117) and (3.118) into (3.116) leads to the results 

(3.119) Am(r|r', 6’, p') = gir, Yi nl, o') 

*To express 5(x — x’) = (x, — x{)8(x2 — x3)6(x3 — x4) in terms of the coordinates (&, &, &), related 
to (x1, x2, x3) via the Jacobian J(x;, ), we note that the meaningful quantity is 5(x — x') d?x. Hence 

(x — x’) = 5(& ~ &) 5(& £2) 8(& — &) |J(x:, &)| 
See Problem 1.2. 
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with 

2 1 Il + 1) 
(3.120) - dP (rg(r, r')) - r2 g(r, r') = ~—F lr — r') 

The radial Green function is seen to satisfy the homogeneous radial equation 
(3.7) for r # r’. Thus it can be written as 

Ar! + Br7@) forr<-r’ 

forr>-r' 
A trl + Bre @) gir, r’) -{ 

The coefficients A, B, A’, B’ are functions of r’ to be determined by the boundary 
conditions, the requirement implied by 5(r — r’) in (3.120), and the symmetry of 
gr, r') in r and r’. Suppose that the boundary surfaces are concentric spheres 
at r = a and r = b, The vanishing of G(x, x’) for x on the surface implies the 

vanishing of g,(r, r’) for r = a and r = b. Consequently g,(r, r’) becomes 

21+1 
a 

r<yr' 
+1 

a(- ) 
(3.121) er, r’) = l 1 r 

+1 pt °( ree 

The symmetry in r and r’ requires that the coefficients A(r’) and B'(r’) be such 

that g,(r, r’) can be written 

21+1 
a 1 re 

— (3.122) 
+1 i+1 p2!*1 
< > 

gir, r’) = (x. ~~ I 
where r. (r,) is the smaller (larger) of r and r’. To determine the constant C we 

must consider the effect of the delta function in (3.120). If we multiply both sides 

of (3.120) by r and integrate over the interval from r = r’ — etor=r' +e, 

where € is very small, we obtain 

— 

= (3.123) it 
r’—e r’+e 

~ {2 sari} {4 (reir, ri 
Thus there is a discontinuity in slope at r = r’, as indicated in Fig. 3.10 

Forr=r'+e6r,=r,re =r’. Hence 
i+1 21+1 1 r a d 

— 

r! ~ purl dr prt N., I ( ce 
r’t+e 

{2 [rej(r, rt 
a Cc 
— -— > 

r r 

)olive of) | 

\l 

Figure 3.10 Discontinuity in slope of the 
te radial Green function. 
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Similarly 

, 

r Cc 
—_— 

; b ) | r’—eé 

: +1+ (4) ]fs - ( {4 [ren(r, | 
Substituting these derivatives into (3.123), we find: 

4a 
Cc (3.124) 

_— 

b ) | (21 + pp ~ ( 

Combination of (3.124), (3.122), (3.119), and (3.118) yields the expansion of the 
Green function for a spherical shell bounded by r = a andr = b: 

21+ 1 q 
a 1 rs i Yim(O, b')Y (9, d) 

< G(x, x') = 47 x S +1 +1 p2*1 
7=0 m=— < rs I ( 

— 

b ) | ‘ars ofr -( 
(3.125) 

For the special cases a > 0, b > », and b — ©, we recover the expansions (3.70) 

and (3.114), respectively. For the “‘interior” problem with a sphere of radius b, 

we merely let a — 0. Whereas the expansion for a single sphere is most easily 

obtained from the image solution, the general result (3.125) for a spherical shell 

is rather difficult to obtain by the method of images, since it involves an infinite 

set of images. 

3.10 Solution of Potential Problems with the 

Spherical Green Function Expansion 

The general solution to the Poisson equation with specified values of the potential 

on the boundary surface is (see Section 1.10): 

P(x) = 
4 

0 

I p(x')G(x, x’) dx’ — ~¢ O(x’) oe da’ (3.126) 

For purposes of illustration let us consider the potential inside a sphere of radius 
b. First we will establish the equivalence of the surface integral in (3.126) to the 
method of Section 3.5, equations (3.61) and (3.58). With a = 0 in (3.125), the 
normal derivative, evaluated at r’ = b, is: 

* aG _ 3G 
im (3.127) (0', d "Vin, ¢) an’ ar’ vb ED (Z) 

— 

= b with ® = Consequently the solution of the Laplace equation inside r 
V(6', 6’) on the surface is, according to (3.126): 

@(x) = 2 ll V(0', b')¥*,,(6', ') aor|(2) vac d) (3.128) 
For the case considered, this is the same form of solution as (3.61) with (3.58). 
There is a third form of solution for the sphere, the so-called Poisson integral 
(2.19). The equivalence of this solution to the Green function expansion solution 
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Figure 3.11 Ring of charge of radius a and total 

charge Q inside a grounded, conducting sphere ay of radius b 

is implied by the fact that both were derived from the general expression (3.126) 
and the image Green function. The explicit demonstration of the equivalence of 
(2.19) and the series solution (3.61) will be left to the problems 

We now turn to the solution of problems with charge distributed in the vol- 

ume, so that the volume integral in (3.126) is involved. It is sufficient to consider 

problems in which the potential vanishes on the boundary surfaces. By linear 

superposition of a solution of the Laplace equation, the general situation can be 

obtained. The first illustration is that of a hollow grounded sphere of radius b 

with a concentric ring of charge of radius a and total charge Q. The ring of charge 

is located in the x-y plane, as shown in Fig. 3.11. The charge density of the ring 

can be written with the help of delta functions in angle and radius as 

p(x’) = (3.129) 

In the volume integral over the Green function only terms in (3.125) with m = 0 

will survive because of azimuthal symmetry. Then, using (3.57) and remembering 

that a > 0 in (3.125), we find 

O(x) = —— x] p(x')G(x, x’) d°x' 
(3.130) 

ro 

pelt ~ 4 TE I= oy P,(O)re a i+1 six) Pcs 6) 
where now r (r,) is the smaller (larger) of r and a. Using the fact that 

((—1)"(2n — 1)!!]/2"n!, (3.130) can be written as Pon+1(0) = 0 and P2,(0) 
2n 

1 ry (2n — 1)! 
—_— 

2n+1 P(x) = pint) 
2"n! rs 

Q yo 1)" 
477€9 n= ( )Pateo 6) (3.131) 

In the limit b — ©, it will be seen that (3.130) or (3.131) reduces to the expression 

at the end of Section 3.3 for a ring of charge in free space. The present result can 

be obtained alternatively by using that result and the images for a sphere 

A second example of charge densities, illustrated in Fig. 3.12, is that of a 

hollow grounded sphere with a uniform line charge of total charge Q located on 

the z axis between the north and south poles of the sphere. Again with the help 

of delta functions, the volume-charge density can be written 

Q (3.132) [S(cos 6’ — 1) + 6(cos 6’ + 1)] p(x’) = 2b 2ar'? 
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Linear 

~ - 

Figure 3.12 Uniform line charge of length 

2b and total charge Q inside a grounded 

conducting sphere of radius b 

The two delta functions in cos 9 correspond to the two halves of the line charge 

above and below the x-y plane. The factor 27rr’” in the denominator assures that 

the charge density has a constant linear density Q/2b. With this density in (3.126) 
we obtain 

l 
ry 

2i+1 P(x) = x [P,(1) + P;(—1)]P,(cos 6) [ re 

oes 
7=0 Eb (be ia) dr’ (3.133) 

The integral must be broken up into the intervals 0 =r’ <randrsr' <b 
Then we find 

b Wl I r 1 r 1 
+l i+1 | p21 

0 
pet JLorwe ve -(- 

| (3.134) 
r (21 + 1) 

b i + 1) | 
For / = 0 this result is indeterminate. Applying L’Hospital’s rule, we have, for 

! = 0 only, 

r d 
—_— 

b dl b ) | d 
—_ 

= 1m 1m. | 0 dl d 10 50 

E e! wc | in?) (3.135) 
) 

This can be verified by direct integration in (3.133) for / = 0. Using the fact that 

P,(—1) = (—1)’, the potential (3.133) can be put in the form 

r (4 +1). 
—_— P(x) = 
b TE gb 2j(2j + 1) int WC) * | ) |e. (cos 0| (3.136) 

The presence of the logarithm for / = 0 reminds us that the potential diverges 

along the z axis. This is borne out by the series in (3.136), which diverges for 

cos 6 = +1, except at r = b exactly. The peculiarity that the logarithm has ar- 

gument (b/r) instead of (b/r sin 6) is addressed in Problem 3.8 

The surface-charge density on the grounded sphere is readily obtained from 

(3.136) by differentiation 

o® (47 +1 a(6) = = €& 2 
0 - Aab? r=b 

oof1+3 
1 (27 + 1) 

d pi(c s0)| (3.137) 
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The leading term shows that the total charge induced on the sphere is —Q, the 

other terms integrating to zero over the surface of the sphere. 

3.11 Expansion of Green Functions in Cylindrical Coordinates 

The expansion of the potential of a unit point charge in cylindrical coordinates 

affords another useful example of Green function expansions. We present the 

initial steps in general enough fashion to permit the procedure to be readily 

adapted to finding Green functions for potential problems with cylindrical bound- 

ary surfaces. The starting point is the equation for the Green function: 

(3.138) V2G(x, x’) = —— 8(p — p’) 8(¢ — 6’) Sz — z’) 

where the delta function has been expressed in cylindrical coordinates. The ¢ 

and z delta functions can be written in terms of orthonormal functions: 

oo 

—2 

8(z — 2) = 5 dk e*@-2) = if dk cos[k(z — z’)] 
(3.139) 

1 
— y eim(o—') 8(b — $') = 5 

T ma—o 

We expand the Green function in similar fashion: 

1 
—_ G(x, x’) = s [ dk e'™%—% cos[k(z — z’)]gm(k, p, p’) (3.140) 
2 2 

ma=—a 

Then substitution into (3.138) leads to an equation for the radial Green function 

&m(k, p, p’): 
2 

—_ 48m = 1d (3.141) -— a(p - p’) +e Pap \ 
p dp )-( ( 

For p # p’ this is just equation (3.98) for the modified Bessel functions, [,,(kp) 
and K,,(kp). Suppose that y,(kp) is some linear combination of /,, and K,,, which 

satisfies the correct boundary conditions for p < p’, and that y(kp) is a linearly 

independent combination that satisfies the proper boundary conditions for 

p > p'. Then the symmetry of the Green function in p and p’ requires that 

(3.142) Enlk, P; p’) = Wn (kp) Wo(kps) 

The normalization of the product 4, is determined by the discontinuity in slope 

implied by the delta function in (3.141): 

d2m _4An _ Bn (3.143) 
' 

—_ 

p dp dp + 

where |. means evaluated at p = p’ + e. From (3.142) it is evident that 

dg m _ Bm (3.144) 
—_ dp 
| = k( — Yoh}) = kWh, Yo] 

dp + | 
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where primes mean differentiation with respect to the argument, and W[y, Ws] 
is the Wronskian of ys, and w.. Equation (3.141) is of the Sturm—Liouville type 

(3.145) 2 [poy 2] + geo = 0 
and it is well known that the Wronskian of two linearly independent solutions of 

such an equation is proportional to [1/p(x)]. Hence the possibility of satisfying 
(3.143) for all values of p’ is assured. Clearly we must demand that the normal- 

ization of the product y,y be such that the Wronskian has the value 

4a 
(3.146) W[va(x), Yo(x)] = a 

If there are no boundary surfaces, g,,(k, p, p’) must be finite at p = 0 and 

vanish at p — %. Consequently (kp) = AL,,(kp) and w(kp) = K,,(kp). The 

constant A is to be determined from the Wronskian condition (3.146). Since the 

Wronskian is proportional to (1/x) for all values of x, it does not matter where 

we evaluate it. Using the limiting forms (3.102) and (3.103) for small x [or (3.104) 

for large x], we find 

(3.147) WL n(x), K,,(x)] = TT 

so that A = 47. The expansion of 1/|x — x’| therefore becomes: 

1 

|x — x’| ~ - >. j, dk e'™-#) costk(z — z')Mn(kp)Km(kp») (3.148) 
This can also be written entirely in terms of real functions as: 

1 
—_— “I dk cos[k(z — z')] 

Ix —x'| (3.149) 
oo 

> cos[m(¢ — 6’) Un(kpz)Kmkps) 
m=1 

x {otk Kutke) + 
A number of useful mathematical results can be obtained from this expan- 

sion. If we let x’ — 0, only the m = 0 term survives, and we obtain the integral 
representation: 

1 
(3.150) = [ . cos kz Ko(kp) dk Vert 

— 

= If we replace p* in (3.150) by R? p’ + p’? — 2pp' cos(¢ — '), then we have 
on the left-hand side the inverse distance |x — x’|~! with z’ = 0, ie., just (3.149) 
with z’ = 0. Then comparison of the right-hand sides of (3.149) and (3.150) 
(which must hold for all values of z) leads to the identification: 

Ko(kV p* + p — 2pp’ cos(¢ — $')) = 
(3.151) 

lo(kp<)Ko(kp.) + 2 2 cosln(d — $’)Mn(kp)Km(kps) 
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In this last result we can take the limit k — 0 and obtain an expansion for the 
Green function for (two-dimensional) polar coordinates 

1 o( 
p> + p” — 2pp' cos(d — $') 

(3.152) 

+2>- 2n(4 +) i (2) cos[m(p — $')] 
This representation can be verified by a systematic construction of the two- 
dimensional Green function for the Poisson equation along the lines leading to 
(3.148). See Problem 2.17 

3.12 Eigenfunction Expansions for Green Functions 

Another technique for obtaining expansions of Green functions is the use of 

eigenfunctions for some related problem. This approach is intimately connected 

with the methods of Sections 3.9 and 3.11 

To specify what we mean by eigenfunctions, we consider an elliptic differ- 

ential equation of the form 

V'w(x) + [f(x) + Al¥(x) = 0 (3.153) 

If the solutions w(x) are required to satisfy homogeneous boundary conditions 

on the surface S of the volume of interest V, then (3.153) will not in general have 

well-behaved (e.g., finite and continuous) solutions, except for certain values of 

A. These values of A, denoted by A,,, are called eigenvalues (or characteristic val- 

ues) and the solutions w(x) are called eigenfunctions.* The eigenvalue differ- 

ential equation is written 

(3.154) Vedn(x) + [f(x) + An]on(x) = 0 

By methods similar to those used to prove the orthogonality of the Legendre or 

Bessel functions, it can be shown that the eigenfunctions are orthogonal 

(3.155) [, we Ws) ax = Ban 
here the eigenfunctions are assumed normalized. The spectrum of eigenvalues 

A, Iay be a discrete set, or a continuum, or both. It will be assumed that the 
totality of eigenfunctions forms a complete set 

Suppose now that we wish to find the Green function for the equation 

(3.156) V2G(x, x’) + [f(x) + A]G(x, x’) = —476(x — x’) 

where A is not equal to one of the eigenvalues A,, of (3.154). Furthermore, suppose 

that the Green function is to have the same boundary conditions as the eigen- 

functions of (3.154). Then the Green function can be expanded in a series of the 

eigenfunctions of the form 

(3.157) G(x, x') = Dd a(x’ )n() 

*The reader familiar with wave mechanics will recognize (3.153) as equivalent to the Schrédinger 

equation for a particle in a potential 
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Substitution into the differential equation for the Green function leads to the 
result 

(3.158) DY AnlK' A = Am)Ym(X) = —4276(x — x’) 
m 

If we multiply both sides by y%(x) and integrate over the volume V, the ortho- 
gonality condition (3.155) reduces the left-hand side to one term, and we find: 

~ _ 

W(x") 
4 (3.159) n{X’) 

A An 

Consequently the eigenfunction expansion of the Green function is 

n(X') Pal) (3.160) G(x, x') = 47 Ee 
n An — A 

For a continuous spectrum the sum is replaced by an integral 

Specializing the foregoing considerations to the Poisson equation, we place 

f(x) = 0 and A = 0 in (3.156). As a first, essentially trivial, illustration we let 

(3.154) be the wave equation over all space 

(3.161) k*)tn(x) = 0 (Vv? 

with the continuum of eigenvalues, k”, and the eigenfunctions 

ik-x (3.162) (x) (2 3/2 

These eigenfunctions have delta function normalization 

(3.163) [ wh Cown(s) ax = 3k - 
Then, according to (3.160), the infinite space Green function has the expansion 

eik- a x’) 

(3.164) 1a aoe" 27? 
This is just the three-dimensional Fourier integral representation of 1/|x — x’| 

As a second example, consider the Green function for a Dirichlet problem 

0,.y=0,z=O0,x =a inside a rectangular box defined by the six planes, x 

y = b,z =c. The expansion is to be made in terms of eigenfunctions of the wave 

equation 

(3.165) (Vv? + Kiran) Winn (x y; Zz) =0 

where the eigenfunctions which vanish on all the boundary surfaces are 

mT NTZ 
—_—_— —_ sim Wimn(X y, Zz) 

abc b Cc ) 2) E 
and (3.166) 

2 k —+-— 
imn b2 “| 
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The expansion of the Green function is therefore: 

32 
G(x, x') = (3.167) 

qrabc 
, lax lax’ naz’ may y 

——_ —___. 

a b b 
snl a ) al ) al ) aa") ol 

2 2 ig 
m n im,n=1 

+ + 

2 
a Be ce 

To relate expansion (3.167) to the type of expansions obtained in Sections 

3.9 and 3.11, namely, (3.125) for spherical coordinates and (3.148) for cylindrical 

coordinates, we write down the analogous expansion for the rectangular box. If 

the x and y coordinates are treated in the manner of (6, #) or (¢, z) in those 

cases, while the z coordinate is singled out for special treatment, we obtain the 

Green function: 

eo 

lax lax’ 167 may’ y 
——— —_—. 

— —_— G(x, x’) = 
b b ab Lm=1 ) )s( ) al of (3.168) 

sinh(K,,Z<) sinh[K;,,(c — z:)] 

Kim Sinh(K nc) 

where Ki, = 7(P/a? + m?/b?)"”. If (3.167) and (3.168) are to be equal, it must 

be that the sum over n in (3.167) is just the Fourier series representation on the 

interval (0, c) of the one-dimensional Green function in z in (3.168): 

nz’ 

oo c 
al 

NZ 
—— 

sinh(KinZ) sinh[Km(c — z;)] _ 2 (3.169) 
n=1 n ( Kim sinh (KinC) 

2 
— 

Im 

; 

( 
The verification that (3.169) is the correct Fourier representation is left as an 

exercise for the reader. 

Further illustrations of this technique will be found in the problems at the 

end of the chapter. 

3.13 Mixed Boundary Conditions; Conducting Plane 
with a Circular Hole 

The potential problems discussed so far in this chapter have been of the orthodox 

kind in which the boundary conditions are of one type (usually Dirichlet) over 
the whole boundary surface. In the uniqueness proof for solutions of the Laplace 
or Poisson equation (Section 1.9) it was pointed out, however, that mixed bound- 
ary conditions, where the potential is specified over part of the boundary and its 
normal derivative is specified over the remainder, also lead to well-defined, 
unique boundary-value problems. Textbooks tend to mention the possibility of 
mixed boundary conditions when making the uniqueness proof and to ignore 

such problems in subsequent discussion. The reason, as we shall see, is that mixed 
boundary conditions are much more difficult to handle than the normal type. 
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To illustrate the difficulties encountered with mixed boundary conditions, we 
consider the problem of an infinitely thin, grounded, conducting plane with a 
circular hole of radius a cut in it, and with the electric field far from the hole 

being normal to the plane, constant in magnitude, and having different values on 

either side of the plane. The geometry is sketched in Fig. 3.13. The plane is at 

z = 0; the hole is centered on the origin of coordinates; the nonvanishing as- 
ymptotic electric field components are EF, = —E, for z > 0 and E, = —E, for 

z < 0. The problem may seem contrived, but with E, = 0 or E; = 0 it has 
application for radiation from small holes in the walls of wave guides, where 

“small’’ is defined as small compared to a wavelength so that electrostatic con- 

siderations can apply (see Section 9.5). 

Since the electric field is specified far from the hole, we write the potential 

as 

Eoz + @® (z > 0) 
—_ 

= (3.170) 
E,z + & (z < 0) 

If the hole were not there, ®) would be zero. The top surface of the sheet would 
have a uniform surface charge density — e€)£,) and the bottom surface a charge 

density €)E,. The potential 6” can thus be thought of as resulting from a rear- 

rangement of surface charge in the neighborhood of the hole. Since this charge 

density is located on the plane z = 0, the potential 6“ can be represented as 

1 a(x", y’) dx’ dy’ OY (x, y, z) _ 

47r€ J V(x —x'P+y-y'l t+ 2? 

This shows that ® is even in z, so that E{ and E® are even in z, but E™ is 
odd. We note that E{? and E are the x and y components of the total electric 
field, but that, because of (3.170), ES” is not the total z component. Thus, even 
though it is odd in z, it does not vanish at z = 0. Rather, it is discontinuous there. 

Zz 

Eo 

Se 
eo ee 

Ey 

Figure 3.13 
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Since the total z component of electric field must be continuous across z = 0 in 

the hole, we must have (for p < a) 

-—E + ES y ot 7 -E + EM|, 0 

Because E% is odd in z, this relation determines the normal component of the 
electric field to be 

) EM), -E|, o (Eo 
provided (x, y) lie inside the opening (0 = p < a). For points on the conducting 

surface (a = p < %), the electric field is not known, but the potential is zero by 

hypothesis. From (3.170) this means that ©“ = 0 there. Note that in the opening 
we do not know the potential. We therefore have an electrostatic boundary-value 

problem with the following mixed boundary conditions 

aD~™ 
= forO=p<a 1) (Eo 

Oz z=0r 

(3.171) 
and 

— 

= 0 forasp< | 

Because of the azimuthal symmetry of the geometry, the potential ®® can 
be written in terms of cylindrical coordinates [from (3.106)] as 

(3.172) Bp, 2) =| ak AGe-*Volkp) 
Before proceeding to see how A(k) is determined by the boundary conditions 

we relate A(k) and its derivatives at k = 0 to the asymptotic behavior of the 

potential. For large p or |z| the rapid oscillations of Jo(kp) or the rapid decrease 

of e~*?! imply that the integral in (3.172) receives its important contributions from 

the region around k = 0. The asymptotic behavior of ®) is therefore related to 
the behavior of A(k) at small k. We assume that A(k) can be expanded in a 

Taylor series around k = 0 

A(k) = 
5 A 

<40) 
With this series inserted into (3 172). the ne woven ®”) becomes 

oo 

d'A 
(3.173) dk! —,(0) B,(p, Zz) O(p, z= ~ 2 

where 

(3.174) dk k'e*\J)(kp) i(p, z) 

The integral (3.174) can evidently be written 

1 
B, = I 

(- 4) [ dk e~*Io(kp) 

Using a result from Problem 3.16c, we find that B, is 

1 d 1 
(3.175) B, = It d |z| I Vp +2 ( 
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The reader should not be surprised to find that explicit calculation yields 

P,(|cos 6]) (3.176) B, +1 
r 

where cos 6 = z/r and r = Vp” + z*. The asymptotic expansion (3.173) is thus 

an expansion of the spherical harmonic form (3.33) 

ao 

a'A P,(|cos 6|) om = (3.177) > yt (0): 
d 1=0 

is called a As is discussed in the next chapter, this expansion in powers of r 

multipole expansion. The / = 0 coefficient, A(0), is the total charge (divided by 

Aire). The / = 1 coefficient, dA(0)/dk, is the dipole moment in the z-direction 

and so on. Once the function A(k) is known these quantities that describe the 

asymptotic behavior of the potential can be evaluated without explicit construc- 

tion of the potential itself 

We are now ready to discuss the mixed boundary value problem. With the 
assumed form (3.172) for ®, the boundary conditions (3.171) become a pair of 
integral equations of the first kind for A(k) 

forO =p<a 1) (Eo ~~ [ dk kA(k)Jo(kp) 
(3.178) 

— 0 forasp<o [ak Agesotk) 
Such pairs of integral equations, with one of the pair holding over one part of 

the range of the independent variable and the other over the other part of the 

range, are known as dual integral equations. The general theory of such integral 

equations is complicated and not highly developed.* Just over a hundred years 

ago H. Weber solved the closely related problem of the potential of a charged 

circular disc by means of certain discontinuous integrals involving Bessel func- 

tions. We appeal to a generalization of Weber’s formulas. Consider the dual 

integral equations 

n _— 

x forO=x<1 [ dy yg(y)Jn(yx) 
(3.179) 

— 0 forls=x< om [ dy g(y)Jn(yx) 
Examination of the formula of Sonine and Schafheitlin for the integral of 
,(at)J,(bt)t~* (see Watson, pp. 398 ff, or Magnus et al., p. 99) shows that the 

solution for g(y) is 

T(n + 1) T(n + 1) Jn+3(y) 
g(y) (3.180) n+il ) 

I'(n + 3) (2y)” Va T(n + 3) 
In this relation j,(y) is the spherical Bessel function of order n (see Section 9 6) 

*One monograph, I. N. Sneddon, Mixed Boundary Value Problems in Potential Theory, North- 
Holland, Amsterdam, and Wiley-Interscience, New York (1966), is devoted to our subject. See also 
Tranter (Chapter VIII). 
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For our pair of equations (3.178) we have n = 0, x = p/a, y = ka. Therefore 
A(k) is 

sin ka a cos ka 
—_— 

k 
k?2 A(k) = G2 EU" (gq) = Eo— >| | (3.181) 

The expansion of A(k) for small k takes the form 

(ka)” 
10 

A(k) (Eo 3 1)a ls ‘| 
This means that total charge associated with ®™ is zero and the leading term in 
the asymptotic potential (3.177) is the / = 1 contribution 

(Eo |z| E,)a 
pe (3.182) 

3 37 r 

falling off with distance as r and having an effective electric dipole moment 

_ 4€ 
(Ey — E,)a (z ) (3.183) P= +> 

The reversal of the effective dipole moment depending on whether the obser- 

vation point is above or below the plane is a consequence of the fact that a true 

dipole potential is odd in z, whereas (3.182) is even. The idea that a small hole 

in a plane conducting sheet is equivalent far from the opening to a dipole normal 

to the surface is important in discussing the consequences of such openings in 

the walls of waveguides and cavities. Figure 9.4 depicts the origin of the dipole- 

like field as a consequence of the penetration of the field lines through the hole 

to terminate on the side with the smaller constant field. The picture is given 

quantitative meaning through (3.182) and (3.183) 

The added potential ®” in the neighborhood of the opening must be cal- 
culated from the exact expression, 

(Eo = Fi) 2 (3.184) O(p, z) = [ dk j,(ka)e~“"o(kp) a 

The integral,* after an integration by parts to replace j, with jo, can be expressed 

as a sum of the imaginary parts of the Laplace transforms (for complex p) of 
J,(kp)/k for v = 0, 1. The result, after some simplifications, is 

—.A 
y= p/ 

2 

(Eo — | R lz, (-24)| (3.185) 

where 

A? + 42*/a A= 3 (2? + p? — a’) 

Some special cases are of interest. The added potential on the axis (p = 0) is 

a |z| 00 ) 

a Iz| 
a(t ) (Eo 1)a [1 - 

*For integrals of the kind encountered here, see Watson (Chapter 13), Gradshteyn and Ryzhik, 

Magnus, Oberhettinger, and Soni, or the Bateman Manuscript Project 
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For |z| >> a thus reduces to (3.182) with r = |z|, while for |z| — 0 it is approx- 
imated by the first term. In the plane of the opening (z = 0) the potential ®” is 

E}) _ (Eo 
——— 

= b(p, 0) 
T 

for 0 < p < a (and zero, of course, for p = a). The tangential electric field in the 
~ ~ opening is a radial field, 

p E,) (Eo 
— —— — ——_— (3.186) Etan(P, 0) = 

T 
Va — pw 

The normal component of electric field in the opening is, from the first equation 
in (3.171), just the average of the uniform fields above and below the plane, that 

iS, 

(3.187) Ep, 0) = —3(Ey + E;) 

We note that the magnitude of the electric field has a square root singularity at 

the edge of the opening, in agreement with the considerations of Section 2.11. 

The surface-charge densities on the upper and lower sides of the conducting plane 

in the neighborhood of the hole can be evaluated in a straightforward manner. 

The explicit calculation is left to the problems. 

Equipotential contours near the circular hole for the full potential (3.170) 

are shown in Fig. 3.14 for the situation where E, = 0. At distances more than 

2.0 

1.0 
—_- 08 

nn eed 'S 
0.4 
0.2 SU SS 

0.1 

Figure 3.14 Equipotential contours near a circular hole in a conducting plane with a 
normal electric field Ey far from the hole on one side and no field asymptotically on the 
other (E, = 0). The numbers are the values of the potential ® in units of aEp. The 
distribution is rotationally symmetric about the vertical dashed line through the center 
of the hole. 
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two or three times the radius away from the hole, its presence is hardly 
discernible. 

The classic problem of a charged conducting disc is discussed in detail by 
Sneddon (op. cit.). The mixed boundary conditions for the disc or hole can be 
avoided by separating the Laplace equation in elliptic coordinates. The disc (or 
hole) is then taken to be the limiting form of an oblate spheroidal surface. For 
this approach, see, for example, Smythe (pp. 124, 171) or Jeans (p. 244). 

References and Suggested Reading 

The subjects of the special functions of mathematical physics, the solution of ordinary 
differential equations, hypergeometric functions, and Sturm—Liouville theory are covered 
in many books. For the reader who does not already have his favorite, some of the pos- 
sibilities are 

Arfken 

Dennery and Kryzwicki 

Morse and Feshbach 

Whittaker and Watson 

A more elementary treatment, with well-chosen examples and problems, can be found in 

Hildebrand, Chapters 4, 5, and 8 

A somewhat old-fashioned source of the theory and practice of Legendre polynomials 

and spherical harmonics, with many examples and problems, is 

Byerly 

For purely mathematical properties of spherical functions one of the most useful one- 

volume references is 

Magnus, Oberhettinger, and Soni 

For more detailed mathematical properties, see 

Watson, for Bessel functions 

Bateman Manuscript Project books, for all types of special functions 

Electrostatic problems in cylindrical, spherical, and other coordinates are discussed 

extensively in 

Durand, Chapter XI 

Jeans, Chapter VIII 

Smythe, Chapter V 

Stratton, Chapter III 

Problems 

3.1 Two concentric spheres have radii a, b (b > a) and each is divided into two hemi- 

spheres by the same horizontal plane. The upper hemisphere of the inner sphere 

and the lower hemisphere of the outer sphere are maintained at potential V. The 

other hemispheres are at zero potential 

Determine the potential in the region a = r = b as a series in Legendre poly- 

nomials. Include terms at least up to / = 4. Check your solution against known 

results in the limiting cases b > ~, anda — 0. 

3.2 A spherical surface of radius R has charge uniformly distributed over its surface 
with a density Q/47R?, except for a spherical cap at the north pole, defined by the 
cone 0 = a. 
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(a) Show that the potential inside the spherical surface can be expressed as 

oo r' 
1 Q P,(cos @) [Pi+1(cos a) — P)_\(cos @)] =5 > R'*3 

21+ 1 '=0 8 TTE9 

where, for / = 0, P;_1(cos a) = —1. What is the potential outside? 

(b) Find the magnitude and the direction of the electric field at the origin 

(c) Discuss the limiting forms of the potential (part a) and electric-ield (part b) 

as the spherical cap becomes (1) very small, and (2) so large that the area with 

charge on it becomes a very small cap at the south pole 

3.3 A thin, flat, conducting, circular disc of radius R is located in the x-y plane with its 

center at the origin, and is maintained at a fixed potential V. With the information 
i) 1/2 that the charge density on a disc at fixed potential is proportional to (R? 

where p is the distance out from the center of the disc 

(a) show that for r > R the potential is 

(1 
P(r, 0, f) = 

ae 

r jzo 21+ 1 
(8) ren 

(b) find the potential forr< R 

(c) What is the capacitance of the disc? 

3.4 The surface of a hollow conducting sphere of inner radius a is divided into an even 

number of equal segments by a set of planes; their common line of intersection is 

the z axis and they are distributed uniformly in the angle ¢. (The segments are like 

the skin on wedges of an apple, or the earth’s surface between successive meridians 

of longitude.) The segments are kept at fixed potentials +V, alternately 

(a) Set up a series representation for the potential inside the sphere for the gen- 

eral case of 2n segments, and carry the calculation of the coefficients in the 

series far enough to determine exactly which coefficients are different from 

zero. For the nonvanishing terms, exhibit the coefficients as an integral over 

cos 6 

(b) For the special case of n = 1 (two hemispheres) determine explicitly the po- 

tential up to and including all terms with / = 3. By a coordinate transformation 

verify that this reduces to result (3.36) of Section 3.3 

3.5 A hollow sphere of inner radius a has the potential specified on its surface to be 

® = V(6, ). Prove the equivalence of the two forms of solution for the potential 

inside the sphere 

V(6'", $') ' (a) P(x) = 
ae - 2 | 

(r? + a* — 2ar cos y)?” 

where cos y = cos @ cos 6’ + sin 6 sin 6’ cos(¢ — ¢') 

(b) P(x) = » > Aim 
1=0 m=-/ 

(rata 
where A,,, f do’ ¥*,,(6' )\V(6'", 6’) 

—_— 
= 

= 3.6 = —a Two point charges g and —q are located on the z axis at z +a and z 

respectively 

(a) Find the electrostatic potential as an expansion in spherical harmonics and 
powers of r for both r > a andr <a 
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(b) Keeping the product ga = p/2 constant, take the limit of a > 0 and find the 
potential for r # 0. This is by definition a dipole along the z axis and its 
potential. 

(c) Suppose now that the dipole of part b is surrounded by a grounded spherical 
shell of radius b concentric with the origin. By linear superposition find the 
potential everywhere inside the shell. 

3.7 Three point charges (q, —2q, q) are located in a straight line with separation a and 
with the middle charge (—2g) at the origin of a grounded conducting spherical shell 
of radius b, as indicated in the sketch. 

$=0 
eg 

eq 

Problem 3.7 

(a) Write down the potential of the three charges in the absence of the grounded 

sphere. Find the limiting form of the potential as a — 0, but the product 

ga’ = Q remains finite. Write this latter answer in spherical coordinates. 

(b) The presence of the grounded sphere of radius b alters the potential for r < b. 

The added potential can be viewed as caused by the surface-charge density 

induced on the inner surface at r = b or by image charges located at r > b. 

Use linear superposition to satisfy the boundary conditions and find the po- 

tential everywhere inside the sphere for r < a and r > a. Show that in the 

limit a — 0, 

5 r 

Q 
P(r, 0, 6) > we 2meor° ( )Pxcos 6) 

3.8 There is a puzzling aspect of the solution (3.136) for the potential inside a grounded 
sphere with a uniformly charged wire along a diameter. Very close to the wire (i.e., 
for p = r sin @ << b), the potential should be that of a uniformly charged wire, 
namely, ® = (Q/47re9b) In(b/p) + Bo. The solution (3.136) does not explicitly have 
this behavior. 

(a) Show by use of the Legendre differential equation (3.10) and some integration 
by parts, that In(cosec 0) has the appropriate expansion in spherical harmonics 

to permit the solution (3.136) to be written in the alternative form, 

o 

r 2b 4j+1 Q 
—_ - 

®(x) = b r sin @ 47€ 9b jai 2j(2j + 1) ( y‘nueoso} (nl 
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in which the expected behavior near the wire is manifest. Give an interpre- 

tation of the constant term ®) = —Q/47repb. Note that in this form, for any 

rib < 1 the Legendre polynomial series is rapidly convergent at all angles. 

(b) Show by use of the expansion (3.38) that 

1 1 1 
—_ 

cos 6/2 2 sin 0/2 
=2 > P2,(cos 6) ( 

and that therefore the charge density on the inner surface of the sphere, Eq. 
(3.137), can be expressed alternatively as 

oo 

1 1 1 Q 
—_—— _ -2 o(6) = — 4 ab? 2 sin 6/2 cos 6/2 +1 j=0 

P2,(cos 0| ( 
The (integrable) singular behavior at 6 = 0 and 6 = 77 is now exhibited ex- 

plicitly. The series provides corrections in In(1/6) as @ — 0. 

3.9 A hollow right circular cylinder of radius b has its axis coincident with the z axis 

and its ends at z = 0 and z = L. The potential on the end faces is zero, while the 

potential on the cylindrical surface is given as V(¢, z). Using the appropriate sep- 

aration of variables in cylindrical coordinates, find a series solution for the potential 

anywhere inside the cylinder. 

3.10 For the cylinder in Problem 3.9 the cylindrical surface is made of two equal half- 

cylinders, one at potential V and the other at potential —V, so that 

V for —a/2 < 6 < w/2 

V for 
V(, 2) = {_ 

a2< 6 < 3n/2 

(a) Find the potential inside the cylinder. 

(b) Assuming L >> b, consider the potential at z = L/2 as a function of p and ¢ 

and compare it with two-dimensional Problem 2.13. 

3.11 A modified Bessel—Fourier series on the interval 0 = p = a for an arbitrary function 
f(p) can be based on the “homogeneous” boundary conditions: 

aI, (k'p) _ 
0 At p = 0, p J (kp) 

d, 

At p =a, (A real) ap llke)] = ~ 7 

The first condition restricts v. The second condition yields eigenvalues k = y,,/a, 
where y,, is the nth positive root of x dJ,(x)/dx + AJ,(x) = 0. 

(a) Show that the Bessel functions of different eigenvalues are orthogonal in the 
usual way. 

(b) Find the normalization integral and show that an arbitrary function f(p) can 
be expanded on the interval in the modified Bessel—Fourier series 

f(p) = > And 222) 
with the coefficients A, given by 

2 
— A, = 

2 (0 -Zvo + 2] Cea 



Ch.3 Problems 139 

The dependence on A is implicit in this form, but the square bracket has al- 
ternative forms: 

- dI(Ymn) 
1- > 2 

un | 220.0 + ( 
dy ym iI Yun 

700 
Yin — ¥ dd (y un ) 

dr 
-(1+ 

dy, I 
= (J20yn) ~ J-1 Vin 1410 in) 

For A — © we recover the result of (3.96) and (3.97). The choice A = 0 is 
another simple alternative. 

3.12 An infinite, thin, plane sheet of conducting material has a circular hole of radius a 
cut in it. A thin, flat disc of the same material and slightly smaller radius lies in the 
plane, filling the hole, but separated from the sheet by a very narrow insulating 
ring. The disc is maintained at a fixed potential V, while the infinite sheet is kept 
at zero potential. 

(a) Using appropriate cylindrical coordinates, find an integral expression involv- 
ing Bessel functions for the potential at any point above the plane. 

(b) Show that the potential a perpendicular distance z above the center of the disc 
is 

z Po(z) = v(1 

(c) Show that the potential a perpendicular distance z above the edge of the disc 

iS 

V kz 
®,(z) = 2 1 - mg te) | | 

where k = 2a/(z? + 4a”)'?, and K(k) is the complete elliptic integral of the 

first kind. 

3.13 Solve for the potential in Problem 3.1, using the appropriate Green function ob- 

tained in the text, and verify that the answer obtained in this way agrees with the 

direct solution from the differential equation. 

3.14 A line charge of length 2d with a total charge Q has a linear charge density varying 

as (d* — z*), where z is the distance from the midpoint. A grounded, conducting, 
spherical shell of inner radius b > d is centered at the midpoint of the line charge. 

(a) Find the potential everywhere inside the spherical shell as an expansion in 

Legendre polynomials. 

(b) Calculate the surface-charge density induced on the shell. 

(c) Discuss your answers to parts a and b in the limit thatd < b. 

3.15 Consider the following ‘‘spherical cow” model of a battery connected to an external 

circuit. A sphere of radius a and conductivity o is embedded in a uniform medium 

of conductivity a’. Inside the sphere there is a uniform (chemical) force in the z 
direction acting on the charge carriers; its strength as an effective electric field 

entering Ohm’s law is F. In the steady state, electric fields exist inside and outside 

the sphere and surface charge resides on its surface. 

(a) Find the electric field (in addition to F) and current density everywhere in 
space. Determine the surface-charge density and show that the electric dipole 
moment of the sphere is p = 47€,0a°F/(o + 20°). 
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(b) Show that the total current flowing out through the upper hemisphere of the 
sphere is 

200° 
_ 

= - 7a°F 
a+20' 

Calculate the total power dissipation outside the sphere. Using the lumped 
circuit relations, P = J]? R, = IV.., find the effective external resistance R, and 

~ ~ voltage V.. 

(c) Find the power dissipated within the sphere and deduce the effective internal 

resistance R; and voltage V;. 

(d) Define the total voltage through the relation, V, = (R. + R;)J and show that 

V, = 4aF/3, as well as V. + V; = V,. Show that /V, is the power supplied by 

the “‘chemical”’ force. 

Reference: W. M. Saslow, Am. J. Phys. 62, 495-501 (1994). 

3.16 (a) Starting from the Bessel differential equation and appropriate limiting pro- 

cedures, verify the generalization of (3.108), 

Fak ~ k’) = | ph tkp\lk'p) dp 
or equivalently that 

, B(p — p') = | kdstkp (kp) ak 
where Re(v) > —1. 

(b) Obtain the following expansion: 

——_ =— 

m=—a |x —x’] — > J, dk e™(-94,,(kp)In( kp" Je M>-29) 
(c) By appropriate limiting procedures prove the following expansions: 

WF = | e*ea(kp) dk 
— 

= Jo(kV p* + p’* — 2pp' cos ¢) > eT (Kp )Im(Kp') 
m=—-D 

wo 

— eékecos ¢ > ime*s,,(kp) 
m=>=—a 

(d) From the last result obtain an integral representation of the Bessel function: 

Jin(x) = = [ ecosh —im dod 

Compare the standard integral representations. 

3.17 The Dirichlet Green function for the unbounded space between the planes at 
z = 0 and z = L allows discussion of a point charge or a distribution of charge 
between parallel conducting planes held at zero potential. 

(a) Using cylindrical coordinates show that one form of the Green function is 

G(x, x’) 
4 

_— 
nTz' nT ny nme x > eiO-%') cin 

iL n=1 m=—-o L L LP ( LPs ) sl pn }x 
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(b) Show that an alternative form of the Green function is 

sinh(kz_) sinh[k(L — z,)] Gx’) =2 > [ ” dk e'™O- 47 (kpn(kp') 
mao sinh(kL) 

3.18 The configuration of Problem 3.12 is modified by placing a conducting plane held 
at zero potential parallel to and a distance L away from the plane with the disc 
insert in it. For definiteness put the grounded plane at z = 0 and the other plane 
with the center of the disc on the z axis at z = L. 

(a) Show that the potential between the planes can be written in cylindrical co- 
ordinates (z, p, @) as 

sinh(Az/a) (2, 6) = V | da LANAI) 
sinh(AL/a) 

(b) Show that in the limit a — © with z, p, L fixed the solution of part a reduces 
to the expected result. Viewing your result as the lowest order answer in an 

expansion in powers of a~', consider the question of corrections to the lowest 

order expression if a is large compared to p and L, but not infinite. Are there 

difficulties? Can you obtain an explicit estimate of the corrections? 

(c) Consider the limit of L — © with (L — z), a and p fixed and show that the 

results of Problem 3.12 are recovered. What about corrections for L >> a, but 

not L — «? 

3.19 Consider a point charge g between two infinite parallel conducting planes held at 

zero potential. Let the planes be located at z = 0 and z = L ina cylindrical coor- 

dinate system, with the charge on the z axis at z = Zp, 0 < z < L. Use Green’s 

reciprocation theorem of Problem 1.12 with problem 3.18 as the comparison 

problem. 

(a) Show that the amount of induced charge on the plate at z = L inside a circle 

of radius a whose center is on the z axis is given by 

Q1(a) = ~F, ®(z0, 0) 

where ®(Zo, 0) is the potential of Problem 3.18 evaluated at z = Zo, p = 0. 

Find the total charge induced on the upper plate. Compare with the solution 

(in method and answer) of Problem 1.13. 

(b) Show that the induced charge density on the upper plate can be written as 

sinh(kZ5) _4 kJo(Kp) o(p) = 
27 Jo sinh(kL) 

This integral can be expressed (see, e.g., Gradshteyn and Ryzhik, p. 728, for- 

mula 6.666) as an infinite series involving the modified Bessel functions 
K((n7p/L), showing that at large radial distances the induced charge density 

falls off as (p)~"7e77”". 

Show that the charge density at p = 0 can be written as the series (c) 

q 
> a(0) = - ; [(n — zf/L)~? — (n + 2/L)~7] 
0, od 27L? n> 

From the results of Problem 3.17 or from first principles show that the poten- 3.20 (a) 

tial at a point charge q between two infinite parallel conducting planes held 

at zero potential can be written as 

NWMZ Zo nip 
— —_— 

@(z, p) = L L L n=1 Jf } ol ITE L 
> sin( 
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where the planes are at z = 0 and z = L and the charge is on the z axis at the 
point z = Zp. 

(b) Calculate the induced surface-charge densities oo(p) and o1(p) on the lower 
and upper plates. The result for o,(p) is 

NMZo nip 
—_—— 

L L 
ole) = 4 > (-1y"n sn( Jl 

Discuss the connection of this expression with that of Problem 3.19b and 3.19c. 

(c) From the answer in part b, calculate the total charge Q, on the plate at z = L. 

By summing the Fourier series or by other means of comparison, check your 

answer against the known expression of Problem 1.13 [C. Y. Fong and C. 

Kittel, Am. J. Phys. 35, 1091 (1967).] 

3.21 (a) By using the Green function of Problem 3.17b in the limit L — ~, show that 

the capacitance of a flat, thin, circular, conducting disc of radius R located 

parallel to, and a distance d above, a grounded conducting plane is given by 

2 

[° psotkodore) ar| 
417€ 

2 = [ dk — e%2) 
Cc 

[ . pa(p) éo| 
where a(p) is the charge density on the disc. 

(b) Use the expression in part a as a variational or stationary principle for C~' 

with the approximation that o(p) = constant. Show explicitly that you obtain 

the correct limiting value for C~* as d << R. Determine an approximate value 

of C~' for an isolated disc (d >> R) and evaluate the ratio of it to the exact 

result, 47€)/C = (m/2)R™'. 

(c) As a better trial form for o(p) consider a linear combination of a constant and 
(R? — p*)~'”, the latter being the correct form for an isolated disc. 

For part b the following integrals may be of use: 

Jy(t) 1 . t | 0 t 2 | 3. [eae 
3.22 The geometry of a two-dimensional potential problem is defined in polar coordi- 

nates by the surfaces ¢ = 0, ¢ = B, and p = a, as indicated in the sketch. 

Ss 
a 

Problem 3.22 

Using separation of variables in polar coordinates, show that the Green function 
can be written as 

wo mal B 1 ¢ mid’ mr! Bp _ P> 
—_———_ G(p, $; p’, 6’) = > 7, P< mt! B 2m! B 

m=1 P> ( B )=( } ol 
Problem 2.25 may be of use. 



Ch.3 Problems 143 

3.23 A point charge q is located at the point (p’, ', z’) inside a grounded cylindrical 
box defined by the surfaces z = 0, z = L, p = a. Show that the potential inside the 
box can be expressed in the following alternative forms: 

7 ow 

cine 0,( Sa 14( ‘sa 
oa,x)=-- FY > 

TE\a mao no Xmnl XmndJ ort 1 (Xmn) snh( 
Xmn Xmn 

a a 
J sm] x sinh] (L - 2] 

np. 

L 
u| 

NTZ nz! q o(x, x’) = y Ss eim(o-$') gin 
L L oL m=—a n=1 ( )s( nWa 

L ‘ 
nia nwa np, np, 

L L L L « [rl ie }-s( pl ) 
kaz' XmnP 

——_- 

oo L L } ol 1 pol) elo—o) sin( 
2q 

P(x, x’) >>> 
=-a k=] n=1 TEyLa* m 

Xmn kn 
a L } +( |( ) std 

Discuss the relation of the last expansion (with its extra summation) to the other 

two. 

3.24 The walls of the conducting cylindrical box of Problem 3.23 are all at zero potential, 

except for a disc in the upper end, defined by p = b <a, at potential V. 

(a) Using the various forms of the Green function obtained in Problem 3.23, find 

three expansions for the potential inside the cylinder. 

(b) For each series, calculate numerically the ratio of the potential at p = 0, 

z = L/2 to the potential of the disc, assuming b = L/4 = a/2. Try to obtain at 

least two-significant-figure accuracy. Is one series less rapidly convergent than 
the others? Why? 

(Abramowitz and Stegun have tables; Mathematica has Bessel functions, as 

does the software of Press et al.) 

3.25 Consider the surface-charge densities for the problem of Section 3.13 of the con- 

ducting plane with a circular hole of radius a. 

(a) Show that the surface-charge densities on the top and bottom of the plane for 
p =a are 

o+(p) = —GEo + Aa(p) 

o-(p) = &E, + Ao(p) 

where 

a E,) (Eo -1 
—— 

Ao(p) = —€ 
T () | Vepoe on 

How does Aa(p) behave for large p? Is Ao(p), defined in terms of ©, zero 
for p < a? Explain. 
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(b) Show by direct integration that 

lim 
Row 

dp p(Eo — z)| =0 [2 dp p(o. + o_) + 276 [ 
Interpret 

3.26 Consider the Green function appropriate for Neumann boundary conditions for the 

r=aandr=b volume V between the concentric spherical surfaces defined b 

i a <b. To be able to use (1.46) for the potential, impose the simple constraint (1.45) 

Use an expansion in spherical harmonics of the form 

G(x, x’) = > air, r')PAcos y) 

where g(r, r’) = rir) + fir,r’) 

(a) Show that for / > 0, the radial Green function has the symmetric form 

i 

—{ + gr, 1’) = +1 
> 

i a4 1 I+1 tf r r 
(ab)""*} 

er (rr')’ + +l +1 l r 1+1( sr yt (b7*) — a7*1) } 
Show that for / = 0 (b) 

2 
a 

gor, 1’) =— - 24 p > (= )4+ 7 + fr) 
where f(r) is arbitrary. Show explicitly in (1.46) that answers for the potential 
(x) are independent of f(r) 

[The arbitrariness in the Neumann Green function can be removed by sym- 
metrizing go in r and r’ with a suitable choice of f(r).] 

3.27 Apply the Neumann Green function of Problem 3.26 to the situation in which the 
normal electric field is E, = 0 Eo cos 6 at the outer surface (r = b) and is E 
on the inner surface (r ) 
(a) Show that the electrostatic potential inside the volume V is 

3 r cos 6 a 

P(x) 3 1 2r 
(1 

where p = a/b. Find the components of the electric field 

3 3 cos 8 sin 6 a —Ep Er, 0) = 
3 3 (7, 9) 3 1 - 1 2r (5 ) (1 

(b) Calculate the Cartesian or cylindrical components of the field, E, and E,, and 
make a sketch or computer plot of the lines of electric force for a typical case 

of p = 0.5. 



CHAPTER 4 

Multipoles, Electrostatics of 
Macroscopic Media, Dielectrics 

This chapter is first concerned with the potential due to localized charge distri- 
butions and its expansion in multipoles. The development is made in terms of 
spherical harmonics, but contact is established with the rectangular components 

for the first few multipoles. The energy of a multipole in an external field is then 

discussed. An elementary derivation of the macroscopic equations of electro- 

statics is sketched, but a careful treatment is deferred to Chapter 6. Dielectrics 

and the appropriate boundary conditions are then described, and some typical 

boundary-value problems with dielectrics are solved. Simple classical models are 

used to illustrate the main features of atomic polarizability and susceptibility 

Finally the question of electrostatic energy and forces in the presence of dielec- 

trics is discussed 

4.1 Multipole Expansion 

A localized distribution of charge is described by the charge density p(x’), which 

is nonvanishing only inside a sphere of radius R around some origin.* The po- 

tential outside the sphere can be written as an expansion in spherical harmonics 
oo I 

4a 1 Yim(O oD) 
(4.1) > P(x) i+] 

r 21+ 1 m=—l 47r€é (=0 

where the particular choice of constant coefficients is made for later convenience 

Equation (4.1) is called a multipole expansion; the / = 0 term is called the mon- 

opole term, / = 1 are the dipole terms, etc. The reason for these names becomes 
clear below. The problem to be solved is the determination of the constants q,,, 
in terms of the properties of the charge density p(x’). The solution is very easily 

obtained from the integral (1.17) for the potential 

_ p(x’) d°x' 
P(x) = a Ey Ix-x'| 

with expansion (3.70) for 1/|x — x’|. Since we are interested at the moment in 

the potential outside the eee distribution, r. = r’ and r. = r. Then we find 

(4.2) es da) = =D 
€o Lm 

737 | [ vin, or'o(x") ax |% 

*The sphere of radius R is an arbitrary conceptual device employed merely to divide space into 

regions with and without charge. If the charge density falls off with distance faster than any power 

the expansion in multipoles is valid at large enough distances 

145 
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Consequently the coefficients in (4.1) are: 

(4.3) dim = | Yin(9', b')r"p(x') d?x' 

These coefficients are called multipole moments. To see the physical interpreta- 
tion of them we exhibit the first few explicitly in terms of Cartesian coordinates: 

~ ~ 

— 

= (4.4) Via? foo = Zz | p(x’) d°x' 
— 

= 

qu - fe (Px — Py) -e [ we - roe ae’ 
(4.5) 

= 

710 JE] 00 Px! = [Be 

m= 4 Pf ow - wy eey er = 3 Jn ~ 230 - O29 
— 

= (4.6) -3 ie (Qrs - ix) qu = - [Ef ew — iy')p(x’) dx’ 
1 

— _ Qs; 
2 T 
E an = 5 i [ Ge? - r)p(x') dx’ = 

Only the moments with m = 0 have been given, since (3.54) shows that for a real 
charge density the moments with m < 0 are related through 

(4.7) diu-m = (- 1)" qin 

In equations (4.4)-—(4.6), g is the total charge, or monopole moment, p is the 

electric dipole moment: 

(4.8) 
Pp _ | x'o@” d>x' 

and Q,, is the traceless quadrupole moment tensor: 

— 

= (4.9) OQ; | (3x;x; — r'78;)p(x’) d?x’ 
We see that the /th multipole coefficients [(2/ + 1) in number] are linear com- 

binations of the corresponding multipoles expressed in rectangular coordinates. 

The expansion of ®(x) in rectangular coordinates 

1 4,P'x P(x) = —— 
3 (4.10) 

r 47 | PZ 0, a| 
by direct Taylor series expansion of 1/|x — x’| will be left as an exercise for the 
reader. It becomes increasingly cumbersome to continue the expansion in (4.10) 
beyond the quadrupole terms. 

The electric field components for a given multipole can be expressed most 
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easily in terms of spherical coordinates. The negative gradient of a term in (4.1) 
with definite /, m has spherical components: 

(i+ 1) Yim (6, oD) 
1+2 r "(21 + Vey 2” 

1 0 
= E, (4.11) 30 6 Yim (6, ¢) ~ (2+ Dey 1" 

1 1 im 
= 

¢ (2 + 1)e, dim r'*? sin @ Yin(Ps ) 
dY;,/00 and Y,,,/sin 6 can be expressed as linear combinations of other Yim’, but 
the expressions are not particularly illuminating and so will be omitted. The 
proper way to describe a vector multipole field is by vector spherical harmonics, 

discussed in Chapter 9. 

For a dipole p along the z axis, the fields in (4.11) reduce to the familiar 
form: 

_ 2p cos 6 
E, 

Aqegr? 

_ psing (4.12) E 
Aareor? 

E, =0 

These dipole fields can be written in vector form by recombining (4.12) or by 

directly operating with the gradient on the dipole term in (4.10). The result for 

the field at a point x due to a dipole p at the point xp is: 

E(x) = 3n(p +n) — p 
(4.13) 

4 TE |x _ Xo|° 

where n is a unit vector directed from Xp to x. 

There are two important remarks to be made. The first concerns the rela- 

tionship of the Cartesian multipole moments like (4.8) to the spherical multipole 

moments (4.3). The former are (/ + 1)(/ + 2)/2 in number and for / > 1 are more 

numerous than the (2/ + 1) spherical components. There is no contradiction here. 

The root of the differences lies in the different rotational transformation prop- 

erties of the two types of multipole moments; the Cartesian tensors are reducible, 

the spherical, irreducible—see Problem 4.3. Note that for / = 2 we have recog- 

nized the difference by defining a traceless Cartesian quadrupole moment (4.9). 

The second remark is that in general the multipole moment coefficients in 

the expansion (4.1) depend on the choice of origin. As a blatant example, con- 

sider a point charge e located at Xo = (10, 90, @o)- Its potential has a multipole 

expansion of the form (4.1) with multipole moments, 

dim = eroY i m(9o, $o) 
These are nonvanishing for all 7, m in general. Only the / = 0 multipole 
Goo = e/V 47 is independent of the location of the point charge. For two point 

charges + e and —e at Xp and x, respectively, the multipole moments are 

dim = e[roY im(9o, do) ~ YV in(A, ¢1)] 
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Now the / = 0 multipole moment of the system vanishes, and the / = 1 moments 
are 

3 
= — e(Z% — 21) dio 

4a 

q11 - [eo ~ 2) iYo- yb 
These moments are independent of the location of the origin, depending only on 

the relative position of the two charges, but all higher moments depend on the 

location of the origin as well. These simple examples are special cases of general 

theorem (see Problem 4.4). The values of q,,, for the lowest nonvanishing mul- 

tipole moment of any charge distribution are independent of the choice of origin 

of the coordinates, but all higher multipole moments do in general depend on 

the location of the origin. 

Before leaving the general formulation of multipoles, we consider a result 

that is useful in elucidating the basic difference between electric and magnetic 

dipoles (see Section 5.6) as well as in other contexts. Consider a localized charge 

distribution p(x) that gives rise to an electric field E(x) throughout space. We 

wish to calculate the integral of E over the volume of a sphere of radius R. We 

begin by examining the problem in general, but then specialize to the two ex- 

tremes shown in Fig. 4.1, one in which the sphere contains all of the charge and 

the other in which the charge lies external to the sphere. Choosing the origin of 

coordinates at the center of the sphere, we have the volume integral of the electric 

field, 

V® d*x E(x) d°x = - (4.14) 
r<R r<R 

This can be converted to an integral over the surface of the sphere: 

(4.15) 
r< 

R E(x) d?x = -| R? dQ ®(x)n 

_—— 

BS SS SS WS WES 

—— 

(a) (0) 

Figure 4.1 Two configurations of charge density and the spheres within which the 
volume integral of electric field is to be calculated. 
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where n is the outwardly directed normal (n = x/R). Substitution of (1.17) for 
the potential leads to 

x E(x) d°x = (4.16) 
r<R 

eo p(x’ yy |x — ‘| 
To perform the angular integration we first observe that n can be written in terms 
of the spherical angles (6, ¢) as 

n = isin@cos¢@ + j sin@ sing + k cosé 

Evidently the different components of n are linear combinations of Yin for 
/ = 1 only. When (3.38) or (3.70) is inserted into (4.16), orthogonality of the Y,,, 
will eliminate all but the / = 1 term in the series. Thus we have 

n 

(4.16’) ln? =" | ao ncosy 
[x — x’| 

where cos y = cos 6 cos 6’ + sin @ sin @’ cos(@ — @’). The angular integral is 

equal to 47n’/3, where n’ = r’/r’. Thus the integral (4.16) is 

(4.17) E(x) d’x = -—— | d°x' S n'p(x’) 
r<R 

where (r., r,) = (r’, R) or (R, r’) depending on which of r’ and R is larger 

If the sphere of radius R completely encloses the charge density, as indicated 

in Fig. 4.1a, then r. = r' and r, = R in (4.17). The volume integral of the electric 

field over the sphere then becomes 

P E(x) d?x = (4.18) 
r<R 3€ 

where pis the electric dipole moment (4.8) of the charge distribution with respect 

to the center of the sphere. Note that this volume integral is independent of the 

size of the spherical region of integration provided all the charge is inside 

If, on the other hand, the situation is as depicted in Fig. 4.1b, with the charge 

all exterior to the sphere of interest, r. = R andr, =r’ in (4.17). Then we have 

rcR 

E(x) dx = -—— x | d°x' 2 o(x’) 

From Coulomb’s law (1.5) the integral can be recognized to be the negative of 

47rey times the electric field at the center of the sphere. Thus the volume integral 
of E is 

4a 
(4.19) E(x) d°x = — R*E(0) 

r<R 

In other words, the average value of the electric field over a spherical volume 

containing no charge is the value of the field at the center of the sphere 

The result (4.18) implies modification of (4.13) for the electric field of a 

dipole. To be consistent with (4.18), the dipole field must be written as 

T 1 3n(p-n) — p (4.20) E(x) 3 pd(x — Xo) 
Xo|? | [x 47€ | 
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The added delta function does not contribute to the field away from the site of 
the dipole. Its purpose is to yield the required volume integral (4.18), with the 
convention that the spherically symmetric (around x.) volume integral of the first 

— 

= Xo Causing an term is zero (from angular integration), the singularity at x 

otherwise ambiguous result. Equation (4.20) and its magnetic dipole counterpart 

(5.64), when handled carefully, can be employed as if the dipoles were idealized 

point dipoles, the delta function terms carrying the essential information about 

the actually finite distributions of charge and current. 

4.2 Multipole Expansion of the Energy of a Charge Distribution 

in an External Field 

If a localized charge distribution described by p(x) is placed in an external 

potential P(x), the electrostatic energy of the system is: 

We | pmo) d°x (4.21) 

If the potential ® is slowly varying over the region where p(x) is nonnegligible, 

then it can be expanded in a Taylor series around a suitably chosen origin: 

a7 
(4.22) (0) +-:- P(x) = B(0) + x- VB(O) + 5 > 2 X;X; 

OX; OX; 

Utilizing the definition of the electric field E = —V®, the last two terms can be 
rewritten. Then (4.22) becomes: 

BH) = 0) — x- BO) FT Vax tO + 

Since V - E = 0 for the external field, we can subtract 

PV » E(0) 

from the last term to obtain finally the expansion: 

P(x) = O(0) — x- E(O) - - 2 2 (3x;x; — r8;) = (0) +-- (4.23) 

When this is inserted into (4.21) and the definitions of total charge, dipole mo- 
ment (4.8), and quadrupole moment (4.9) are employed, the energy takes the 
form: 

6, (0) +--- (4.24) W = 4%) ~ p-BO) -§> DO y Ox; 

This expansion shows the characteristic way in which the various multipoles in- 
teract with an external field—the charge with the potential, the dipole with the 
electric field, the quadrupole with the field gradient, and so on. 

In nuclear physics the quadrupole interaction is of particular interest. Atomic 
nuclei can possess electric quadrupole moments, and their magnitudes and signs 
reflect the nature of the forces between neutrons and protons, as well as the 
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shapes of the nuclei themselves. The energy levels or states of a nucleus are 
described by the quantum numbers of total angular momentum J and its projec- 
tion M along the z axis, as well as others, which we will denote by a general index 
a. A given nuclear state has associated with it a quantum-mechanical charge 
density* p;y.(x), which depends on the quantum numbers (J, M, a) but is cylin- 
drically symmetric about the z axis. Thus the only nonvanishing quadrupole mo- 
Ment is oo in (4.6), or Qs3 in (4.9). The quadrupole moment of a nuclear state 
is defined as the value of (1/e) Q33 with the charge density p,,,,(x), where e is the 
protonic charge: 

(4.25) Qima = . | (327 — r°)prma(x) d°x 
The dimensions of Q,, are consequently (length)*. Unless the circumstances 
are exceptional (e.g., nuclei in atoms with completely closed electronic shells), 

nuclei are subjected to electric fields that possess field gradients in the neighbor- 

hood of the nuclei. Consequently, according to (4.24), the energy of the nuclei 

will have a contribution from the quadrupole interaction. The states of different 

M value for the same J will have different quadrupole moments Q,,,,, and so a 

degeneracy in M value that may have existed will be removed by the quadrupole 

coupling to the “‘external”’ (crystal lattice, or molecular) electric field. Detection 

of these small energy differences by radiofrequency techniques allows the deter- 

mination of the quadrupole moment of the nucleus.* 

The interaction energy between two dipoles p, and p, can be obtained di- 

rectly from (4.24) by using the dipole field (4.20). Thus, the mutual potential 

energy is 

P2 — 3(n- p,)(n- ps) _ Pi 
Wi (4.26) 

Ame|x; — x,|° 

where n is a unit vector in the direction (x, — x2) and it is assumed that x, # Xp. 

The dipole-dipole interaction is attractive or repulsive, depending on the orien- 

tation of the dipoles. For fixed orientation and separation of the dipoles, the 

value of the interaction, averaged over the relative positions of the dipoles, is 
zero. If the moments are generally parallel, attraction (repulsion) occurs when 
the moments are oriented more or less parallel (perpendicular) to the line joining 
their centers. For antiparallel moments the reverse is true. The extreme values 
of the potential energy are equal in magnitude. 

4.3 Elementary Treatment of Electrostatics with Ponderable Media 

In Chapters 1, 2, and 3 we considered electrostatic potentials and fields in the 

presence of charges and conductors, but no other ponderable media. We there- 

*See Blatt and Weisskopf (pp. 23 ff.) for an elementary discussion of the quantum aspects of the 

problem. 

tActually Q,, and Qo» are different from zero, but are not independent of Q33, being given by 
= 

= Qn Qn = 3033. 
*“The quadrupole moment of a nucleus,” denoted by Q, is defined as the value of Q,,. in the state 

M =J. See Blatt and Weisskopf, loc. cit. 
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fore made no distinction between microscopic fields and macroscopic fields, al- 

though our treatment of conductors in an idealized fashion with surface charge 

densities implied a macroscopic description. Air is sufficiently tenuous that the 

neglect of its dielectric properties causes no great error; our results so far are 

applicable there. But much of electrostatics concerns itself with charges and fields 
in ponderable media whose respective electric responses must be taken into ac- 

count. In the Introduction we indicated the need for averaging overt macroscop- 

ically small, but microscopically large, regions to obtain the Maxwell equations 

appropriate for macroscopic phenomena. This is done in a careful fashion in 

Chapter 6, after the Maxwell equations with time variation have been discussed. 

For the present we merely remind the reader of the outlines of the elementary 

discussion of polarization in a fashion that glosses over difficult and sometimes 

subtle aspects of the averaging procedure and the introduction of the macroscopic 

quantities. 

The first observation is that when an averaging is made of the homogeneous 
equation, V X Ejjicro = 0, the same equation, namely, 

VxE=0 (4.27) 

holds for the averaged, that is, the macroscopic, electric field E. This means that 

the electric field is still derivable from a potential ®(x) in electrostatics. 

If an electric field is applied to a medium made up of a large number of 

atoms or molecules, the charges bound in each molecule will respond to the 

applied field and will execute perturbed motions. The molecular charge density 

will be distorted. The multipole moments of each molecule will be different from 

what they were in the absence of the field. In simple substances, when there is 

no applied field the multipole moments are all zero, at least when averaged over 

many molecules. The dominant molecular multipole with the applied fields is the 

dipole. There is thus produced in the medium an electric polarization P (dipole 

moment per unit volume) given by 

(4.28) P(x) = > Ni<pi) 

where p; is the dipole moment of the ith type of molecule in the medium, the 

average is taken over a small volume centered at x and N, is the average number 

per unit volume of the ith type of molecule at the point x. If the molecules have 

a net charge e; and, in addition, there is macroscopic excess or free charge, the 

charge density at the macroscopic level will be 

(4.29) p(x) = > Nei) + Pexcess 

Usually the average molecular charge is zero. Then the charge density is the 
excess or free charge (suitably averaged). 

If we now look at the medium from a macroscopic point of view, we can 
build up the potential or field by linear superposition of the contributions from 
each macroscopically small volume element AV at the variable point x’. Thus 
the charge of AV is p(x’) AV and the dipole moment of AV is P(x’) AV. If there 
are no higher macroscopic multipole moment densities, the potential A®(x, x’) 
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caused by the configuration of moments in AV can be seen from (4.10) to be 
given without approximation by 

1 p(x’) P(x’) - (x — x’) 
———_ AV + A®(x, x’) = — 

TTEG [x — x’| | |x — 
x’? 

av] (4.30) 
provided x is outside AV. We now treat AV as (macroscopically) infinitesimal, 
put it equal to d*x’, and integrate over all space to obtain the potential 

1 ) 
—— P(x) = 7 _ (4.31) “ 47r€ [x x’ | [x — x’| 

jex| + P(x’). v( } 
The second term is analogous to the dipole layer potential (1.25), but is for a 

volume distribution of dipoles. An integration by parts transforms the potential 

into 

@(x) = [o(x’) — V’+ P(x’)] (4.32) few 
|x — x'| 4Tr€ 

This is just the customary expression for the potential caused by a charge distri- 

bution (p — V- P). With E = —V9, the first Maxwell equation therefore reads 

(4.33) V-E=—[p-V-P| 

The presence of the divergence of P in the effective charge density can be un- 

derstood qualitatively. If the polarization is nonuniform there can be a net in- 

crease or decrease of charge within any small volume, as indicated schematically 

in Fig. 4.2. 

With the definition of the electric displacement D, 

(4.34) D=e6E+P 

(4.33) becomes the familiar 

(4.35) V-D=pop 

Equations (4.27) and (4.35) are the macroscopic counterparts of (1.13) and (1.14) 
of Chapter 1. 

As discussed in the Introduction, a constitutive relation connecting D and E 

is necessary before a solution for the electrostatic potential or fields can be ob- 
tained. In the subsequent sections of this chapter we assume that the response 
of the system to an applied field is linear. This excludes ferroelectricity from 

discussion, but otherwise is no real restriction provided the field strengths do not 

CTS 
WY 

Col 
Ce Origin of polarization-charge density. Figure 4.2 

Cf Because of spatial variation of polarization, more Cel) 
molecular charge may leave a given small volume Cf > 

Ce$ than enters it. Only molecules near the boundary are 

C2 shown. 
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become extremely large. As a further simplification we suppose that the medium 

is isotropic. Then the induced polarization P is parallel to E with a coefficient of 

proportionality that is independent of direction: 

(4.36) P= €0oX. ek 

The constant y, is called the electric susceptibility of the medium. The displace- 
~~ -~ ment D is therefore proportional to E, 

D = «€&E (4.37) 

where 

(4.38) e= €o(1 + Xe) 

is the electric permittivity; €/e) = 1 + y, is called the dielectric constant or relative 
electric permittivity. 

If the dielectric is not only isotropic, but also uniform, then ¢€ is independent 
of position. The divergence equations (4.35) can then be written 

V-E= ple (4.39) 

All problems in that medium are reduced to those of preceding chapters, except 

that the electric fields produced by given charges are reduced by a factor €o/e. 

The reduction can be understood in terms of a polarization of the atoms that 

produce fields in opposition to that of the given charge. One immediate conse- 

quence is that the capacitance of a capacitor is increased by a factor of €/€p if the 

empty space between the electrodes is filled with a dielectric with dielectric con- 

stant €/€, (true only to the extent that fringing fields can be neglected). 

If the uniform medium does not fill all of the space where there are electric 

fields or, more generally, if there are different media juxtaposed, not necessarily 

linear in their responses, we must consider the question of boundary conditions 

on D and E at the interfaces between media. These boundary conditions are 

derived from the full set of Maxwell equations in Section I.5. The results are that 

the normal components of D and the tangential components of E on either side 

of an interface satisfy the boundary conditions, valid for time-varying as well as 

static fields, 

= oC (D, - D,) ° My) 
(4.40) 

= 0 (E, — E;) x Mo 
where nm), is a unit normal to the surface, directed from region 1 to region 2, and 

o is the macroscopic surface-charge density on the boundary surface (not includ- 
ing the polarization charge). 

4.4 Boundary-Value Problems with Dielectrics 

The methods of earlier chapters for the solution of electrostatic boundary-value 
problems can readily be extended to handle the presence of dielectrics. In this 
section we treat a few examples of the various techniques applied to dielectric 
media. 

To illustrate the method of images for dielectrics we consider a point charge 
q embedded in a semi-infinite dielectric €, a distance d away from a plane inter- 
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€2 

Figure 4.3 

face that separates the first medium from another semi-infinite dielectric €. The 
surface may be taken as the plane z = 0, as shown in Fig. 4.3. We must find the 
appropriate solution to the equations: 

z>0 6V-E = p, 

z<O0 ©V-E = 0, 
(4.41) 

and 

VxE=0, everywhere 

subject to the boundary conditions at z = 0: 

€,E, EF, 

lim = lim Ey Ey (4.42) 
z>0T z07 

E E 
¥y y 

Since V X E = 0 everywhere, E is derivable in the usual way from a potential 

®. In attempting to use the image method it is natural to locate an image charge 

q' at the symmetrical position A’ shown in Fig. 4.4. Then for z > 0 the potential 

at a point P described by cylindrical coordinates (p, ¢, z) will be 

f 

1 q q + @m = (4.43) 
47, R, Ry ( J. so 

where R, = Vp? + (d — z)*, Ro = Vp* + (d + z)’. So far the procedure is 
completely analogous to the problem with a conducting inaterial in place of the 

dielectric €, for z < 0. But we now must specify the potential for z < 0. Since 
there are no charges in the region z < 0, it must be a solution of the Laplace 

equation without singularities in that region. Clearly the simplest assumption is 
that for z < 0 the potential is equivalent to that of a charge q” at the position A 
of the actual charge q: 

n 

1 q 
z<O0 (4.44) 

~ 47> R,’ 

€1 

\A A’ 

be——— ¢ >< d ——_> 

Figure 4.4 
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Since 

d 1 0 
—_— 

— —- 

Oz OZ Ry 
= ( + d?)j? 

R, z=0 ( z=0 

while 

1 0 1 0 _P 
— 

— = 
= 

R, (p* + d’)>? Ri ap dp ( z=0 ( z=0 

the boundary conditions (4.42) lead to the requirements: 

“ 
—_— 

q q-q' 

Hu 
—_— 

q 
€2 

= 4+ 4) 
These can be solved to yield the image charges q’ and q”: 

€& — & t 
— 

q 
€6& + & : 

(4.45) 
2€ 

un” 

q 
€& + & ( 

For the two cases €) > e, and € < e, the lines of force (actually lines of D) are 

shown qualitatively in Fig. 4.5. 

The polarization-charge density is given by —V- P. Inside either dielectric, 

P = e)y-E, so that —V - P = —e9y.V - E = 0, except at the point charge g. At 

the surface, however, y, takes a discontinuous jump, Vy, = (€; — €)/€o as Z passes 

through z = 0. This implies that there is a polarization-surface-charge density on 

the plane z = 0: 

—(P, — P,) +m, (4.46) Opol 

S 
Y / = 

7) me €> <€, 

Figure 4.5 Lines of electric displacement for a point charge embedded in a dielectric 
€, near a semi-infinite slab of dielectric e). 
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where np, is the unit normal from dielectric 1 to dielectric 2, and P; is the polar- 

ization in the dielectric i at z = 0. Since 

€,) V(0~) P; = (é; _ €))E; = —(€; 

it is a simple matter to show that the polarization-charge density is 

d 
— 

€;) _4 €o(€2 
OC, ol (4.47) P 

2 €,(€, + €&) (p* + d?)?? 

In the limit €, >> e, the dielectric €, behaves much like a conductor in that the 

electric field inside it becomes very small and the surface-charge density (4.47) 

approaches the value appropriate to a conducting surface, apart from a factor of 

€0/€,. 

The second illustration of electrostatic problems involving dielectrics is that 

of a dielectric sphere of radius a with dielectric constant €/€, placed in an initially 

uniform electric field, which at large distances from the sphere is directed along 

the z axis and has magnitude Eo, as indicated in Fig. 4.6. Both inside and out- 

side the sphere there are no free charges. Consequently the problem is one of 

solving the Laplace equation with the proper boundary conditions at r = a. From 

the axial symmetry of the geometry we can take the solution to be of the form: 

INSIDE: 

(4.48) ®,, = »» A,r'P,(cos @) 

OUTSIDE: 

—_— 

= (4.49) Pout > [Bir' + Cyr“ ]P,(cos 6) 

From the boundary condition at infinity (® — —E oz = —Eor cos @) we find that 
— 

= —Ep . The other coefficients are determined the only nonvanishing B; is B, 

from the boundary conditions at r = a: 

TANGENTIAL E: 

_ 1 dour _10%, 
a 00 a 00 

r=a r=a 

(4.50) 
09, AD out 

— —¢E€ — 

0 NORMAL D: 
or or r=a r=a 

When the series (4.48) and (4.49) are substituted, there result two series of 

Legendre functions equal to zero. Since these must vanish for all 6, the coef- 

Eo Eo 

Figure 4.6 
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ficient of each Legendre function must vanish separately. For the first boundary 

condition this leads (through orthogonality of P’, = dP,/d6) to.the relations: 

C 
— Ay = —-E,) + 

3 

(4.51) 
— for] #1 A, 21+1 

~~ 

while the second gives (through orthogonality of P,): 

G 2 (€/€9) A, = —Epo 
3 

(4.52) 

(e/e9)LA, (+) $4 for! #1 

The second equations in (4.51) and (4.52) can be satisfied simultaneously only 
with A; = C, = 0 for all / # 1. The remaining coefficients are given in terms of 
the applied electric field Ep: 

3 
A, 

2+ €/€ + )e 
(4.53) 

e/éEy — 1 
Cc, 

€/€ + 2 ( Jor. 
The potential is therefore 

3 
i, 

e/éeg + 2 = Jee cos 9 
(4.54) 

3 €/€ —1 a 

Dour Eo 2 cos 6 
e/éE) + 2 

—Eor cos 6 + ( 

The potential inside the sphere describes a constant electric field parallel to 
the applied field with magnitude 

in Eo < Ey if € > € (4.55) ~ e/éEy + 2 

Outside the sphere the potential is equivalent to the applied field Ey plus the 
field of an electric dipole at the origin with dipole moment: 

€/€o 
3 Eo 

(4.56) ley + 2 
p= sel 

= 

+ ~ 
Ga) — 

Figure 4.7 Dielectric sphere in a uniform field Eo, Showing the polarization on the left 
and the polarization charge with its associated, opposing, electric field on the right. 
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Figure 4.8 Spherical cavity in a dielectric 

with a uniform field applied. 

oriented in the direction of the applied field. The dipole moment can be inter- 
preted as the volume integral of the polarization P. The polarization is 

1 €/€ 
P = (€ — &) )E = 20 (4.57) 

€/Eg + 2 
Je 

It is constant throughout the volume of the sphere and has a volume integral 

given by (4.56). The polarization-surface-charge density is, according to (4.46), 

Opa = (Perr: 

e/€ — 1 
(4.58) 

e/é) + 2 
)r cos rus 3 

This can be thought of as producing an internal field directed oppositely to the 

applied field, so reducing the field inside the sphere to its value (4.55), as sketched 

in Fig. 4.7. 

The problem of a spherical cavity of radius a in a dielectric medium with 

dielectric constant €/é, and with an applied electric field Ep parallel to the z axis, 

as shown in Fig. 4.8, can be handled in exactly the same way as the dielectric 

sphere. In fact, inspection of boundary conditions (4.50) shows that the results 

for the cavity can be obtained from those of the sphere by the replacement 

€/€y — (€)/e). Thus, for example, the field inside the cavity is uniform, parallel 
to Ep, and of magnitude: 

3e€ 
(4.59) Ey) > Ep if € > € Ein ~ VE + & 

Similarly, the field outside is the applied field plus that of a dipole at the origin 
oriented oppositely to the applied field and with dipole moment: 

1 €/€ 
(4.60) p= sme 

2€/€ +1 
Vor. 

4.5 Molecular Polarizability and Electric Susceptibility 

In this section and the next we consider the relation between molecular prop- 

erties and the macroscopically defined parameter, the electric susceptibility y.. 

Our discussion is in terms of simple classical models of the molecular properties, 

although a proper treatment necessarily would involve quantum-mechanical con- 

siderations. Fortunately, the simpler properties of dielectrics are amenable to 

classical analysis. 
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Before examining how the detailed properties of the molecules are related 

to the susceptibility, we must make a distinction between the fields acting on the 

molecules in the medium and the applied field. The susceptibility is defined 

through the relation P = e€)y.E, where E is the macroscopic electric field. In 

rarefied media where molecular separations are large there is little difference 

between the macroscopic field and that acting on any molecule or group of mol- 

ecules. But in dense media with closely packed molecules the polarization of 

neighboring molecules gives rise to an internal field E; at any piven molecule in 
addition to the average macroscopic field E, so that the total field at the molecule 

is E + E,. The internal field E; can be written as the difference of two terms, 

E; (4.61) Enear ~ Ep 

where E,,.,, is the actual contribution of the molecules close to the given molecule 

and Ep is the contribution from those molecules treated in an average continuum 

approximation described by the polarization P. What we are saying here is that 

close to the molecule in question we must take care to recognize the specific 

atomic configuration and locations of the nearby molecules. Inside some mac- 

roscopically small, but microscopically large, volume V we therefore subtract out 

the smoothed macroscopic equivalent of the nearby molecular contributions (Ep) 

and replace it with the correctly evaluated contribution (E,.,,). This difference 
is the extra internal field E,. 

The result (4.18) for the integral of the electric field inside a spherical volume 
of radius R containing a charge distribution can be used to calculate Ep. If the 
volume V is chosen to be a sphere of radius R containing many molecules, the 
total dipole moment inside is 

477R? 
P p = 

3 

provided V is so small that P is essentially constant throughout the volume. Then 
(4.18) shows that the average electric field inside the sphere (just what is desired 
for E>) is 

3 P 
E dx = -— Ep = (4.62) 

4aR? rcR 3€ 

The internal field can therefore be written 

1 
— 

= —P+E E; near (4.63) 
3€ 

The field due to the molecules near by is more difficult to determine. Lorentz 
(p. 138) showed that for atoms in a simple cubic lattice E,.,, vanishes at any 
lattice site. The argument depends on the symmetry of the problem, as can be 
seen as follows. Suppose that inside the sphere we have a cubic array of dipoles 
such as are shown in Fig. 4.9, with all their moments constant in magnitude and 
oriented along the same direction (remember that the sphere is macroscopically 
small even though it contains very many molecules). The positions of the dipoles 
are given by the coordinates x,, with the components along the coordinate axes 
(ia, ja, ka), where a is the lattice spacing, and i, j, k each take on positive and 
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<— 

_—____— 

Figure 4.9 Calculation of the internal field: 

contribution from nearby molecules in a 

simple cubic lattice. 

negative integer values. The field at the origin due to all the dipoles is, according 
to (4.13), 

E = Ss 3(p: Xijk)Xijk — Xiu? 
(4.64) 

ijk 4 7rex ik 

The x component of the field can be written in the form: 

3(*p, + ijp. + ikp;)- (P+ fr + k*\p, E,=> (4.65) 
ijk Area (i? + f? + k?)8? 

Since the indices run equally over positive and negative values, the cross terms 

involving (ijp2 + ikp3) vanish. By symmetry the sums 

2 2 
l 

k2 
J > =2 => 

ik ijk 
(i? + P + k?)? 

ijk 

are all equal. Consequently 

[37 -(@ + 7 + k*)]p, 
— 

= 0 Ey (4.66) 
ijk Ame a’ (i + Pr + k?)p? 

Similar arguments show that the y and z components vanish also. Hence 

Ejear = 0 for a simple cubic lattice. 

0 If E,ear = O for a highly symmetric situation, it seems plausible that E,.., 

also for completely random situations. Hence we expect amorphous substances 

to have no internal field due to nearby molecules. For lattices other than simple 

cubic, the components of E,.., are related to the components of P through a 

traceless tensor 5,g that has the symmetry properties of the lattice. Nevertheless, 

it is a good working assumption that E,.,., ~ 0 for most materials. 

The polarization vector P was defined in (4.28) as 

P = N({Pmoi) 

where (pio) is the average dipole moment of the molecules. This dipole moment 

is approximately proportional to the electric field acting on the molecule. To 
exhibit this dependence on electric field we define the molecular polarizability 
Ymoi as the ratio of the average molecular dipole moment to € times the applied 

field at the molecule. Taking account of the internal field (4.63), this gives: 

(4.67) (Pmoi) = €0Ymoi(E + E;) 
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Ymoi is, in principle, a function of the electric field, but for a wide range of field 

strengths is a constant that characterizes the response of the molecules to an 

applied field. Equation (4.67) can be combined with (4.28) and (4.63) to yield: 

(4.68) 6&E+-P 
3 

P = Noa 
where we have assumed E,,..,, = 0. Solving for P in terms of E_and_using the fact 

that P = €)y-E defines the electric susceptibility of a substance, we find 

N Ymol 
(4.69) Xe = 

1 
1 - = NYmot 

3 

as the relation between susceptibility (the macroscopic parameter) and molecular 

polarizability (the microscopic parameter). Since the dielectric constant is 

e/ep = 1 + y,, it can be expressed in terms of y,,,,, or alternatively the molecular 

polarizability can be expressed in terms of the dielectric constant: 

3 €/€ -1 
(4.70) Ymol = N 

e/Eg + 2 ( 
This is called the Clausius—Mossotti equation, since Mossotti (in 1850) and 

Clausius independently (in 1879) established that for any given substance 

(€/€) — 1)/(e/eg + 2) should be proportional to the density of the substance.* The 

relation holds best for dilute substances such as gases. For liquids and solids, 

(4.70) is only approximately valid, especially if the dielectric constant is large. 

The interested reader can refer to the books by Béttcher, Debye, and Fréhlich 
for further details. 

4.6 Models for the Molecular Polarizability 

The polarization of a collection of atoms or molecules can arise in two ways: 

the applied field distorts the charge distributions and so produces an induced 
dipole moment in each molecule; 

the applied field tends to line up the initially randomly oriented permanent dipole 
moments of the molecules. 

To estimate the induced moments we consider a simple model of harmonically 
bound charges (electrons and ions). Each charge e is bound under the action of 
a restoring force 

F = —mw}3x (4.71) 

where m is the mass of the charge, and w) the frequency of oscillation about 
equilibrium. Under the action of an electric field E the charge is displaced from 
its equilibrium by an amount x given by 

mwsx = eE 

*At optical frequencies, €/e) = n?, where n is the index of refraction. With n2 replacing é/e, in (4.70), 
the equation is sometimes called the Lorenz—Lorentz equation (1880). 
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Consequently the induced dipole moment is 

2 

ex = E (4.72) 2 Pmoi 
Wo 

This means that the polarizability is y = e?/mwe). If there are a set of charges e, 
with masses m, and oscillation frequencies w, in each molecule then the molecular 
polarizability is 

Ymol ty (4.73) 
Ey F Mjw; 

To get a feeling for the order of magnitude of y we can make two different 
estimates. Since y has the dimensions of a volume, its magnitude must be of the 
order of molecular dimensions or less, namely y.; S 10-7’ m*. Alternatively, we 
note that the binding frequencies of electrons in atoms must be of the order 
of light frequencies. Taking a typical wavelength of light as 3000 A, we find 

w = 6 X 10° s”!. Then the electronic contribution to y is Ye, (e?/mw*€o) ~ 
0.88 X 10°”? m?, consistent with the molecular volume estimate. For gases at 
NTP the number of molecules per cubic meter is N = 2.7 X 10%, so that their 

susceptibilities should be of the order of y. <= 107°. This means dielectric con- 

stants differing from unity by a few parts in 10°, or less. Experimentally, typical 

values of dielectric constant are 1.00054 for air, 1.0072 for ammonia vapor, 1.0057 

for methyl alcohol, 1.000068 for helium. For solid or liquid dielectrics, N ~ 10° 

— 10”? molecules/m?. Consequently, the susceptibility can be of the order of unity 
(to within a factor 10*') as is observed.* 

The possibility that thermal agitation of the molecules could modify the re- 

sult (4.73) for the induced dipole polarizability needs consideration. In statistical 

mechanics the probability distribution of particles in phase space (p, q space) is 

some function f(H) of the Hamiltonian. For classical systems 

(4.74) f(A) — eer 

is the Boltzmann factor. For the simple problem of the harmonically bound 
charge with an applied field in the z direction, the Hamiltonian is 

1 
H=— (4.75) p? + wax? — eEz 

2 2m 

where here p is the momentum of the charged particle. The average value of the 

dipole moment in the z direction is 

[ ap | ax (exp 
(4.76) (p mo!) 

[a | a f(A) 

If we introduce a displaced coordinate x’ = x — eEZ/mwo then 

1 
2 Fe 

H=— (4.77) (x')? — p+—— 
mut 

2 2mwo 

*See, e.g., CRC Handbook of Chemistry and Physics 78th ed., ed. D. R. Lipe, CRC Press, Boca 

Raton, FL (1997-98) 
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and 

Jp [a [a (ez 
(4.78) (p mol) 

| d? | d°x' f(H) 

Since H is even in z' the first integral vanishes. Thus, independent of the form 
of f(H), we obtain 

(Pmot) 
0 

just as was found in (4.72), ignoring thermal motion 

The second type of polarizability is that caused by the partial orientation of 

otherwise random permanent dipole moments. This orientation polarization is 

important in “‘polar’”’ substances such as HCI and H,O and was first discussed by 

Debye (1912). All molecules are assumed to possess a permanent dipole moment 

Po, which can be oriented in any direction in space. In the absence of a field 
thermal agitation keeps the molecules randomly oriented so that there is no net 

dipole moment. With an applied field there is a tendency to line up along the 

field in the configuration of lowest energy. Consequently there will be an average 

dipole moment. To calculate this we note that the Hamiltonian of the molecule 

is given by— 

E H = Ho — po (4.79) 

where Hp is a function of only the “internal” coordinates of the molecule. Using 

the Boltzmann factor (4.74), we can write the average dipole moment as 

PoE cos 0 

kT 
| dQ, po cos 6 exo( 

(4.80) (Pmo1) = 
| doex (2 PF vost) 

where we have chosen E along the z axis, integrated out all the irrelevant vari- 
ables, and noted that only the component of (po) parallel to the field is different 
from zero. In general, (poE/kT) is very small compared to unity, except at low 
temperatures. Hence we can expand the exponentials and obtain the result 

1 po 
(Pmol) ~ (4.81) 3 aT” 

The orientation polarization depends inversely on the temperature, as might be 
expected of an effect in which the applied field must overcome the opposition of 
thermal agitation. 

In general both types of polarization, induced (electronic and ionic) and 
orientation, are present, and the general form of the molecular polarization is 

1 po 
Ymol = Yi + 37 oF (4.82) 

3€ kT 
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Polar 

Ymol 
Nonpolar 

Figure 4.10 Variation of molecular 

polarizability y,,.. with temperature 

for polar and nonpolar substances: 
1/T ——> Ymoi Versus T™!. 

This shows a temperature dependence of the form (a + b/T) so that the two 
types of polarization can be separated experimentally, as indicated in Fig. 4.10. 
For “polar” molecules, such as HCl and H,O, the observed permanent dipole 
moments are of the order of an electronic charge times 107° cm, in accordance 
with molecular dimensions. 

4.7 Electrostatic Energy in Dielectric Media 

In Section 1.11 we discussed the energy of a system of charges in free space. The 

result obtained there, 

(4.83) W=- | p(x) P(x) d°x 

for the energy due to a charge density p(x) and a potential ®(x) cannot in general 

be taken over as it stands in our macroscopic description of dielectric media. The 

reason becomes clear when we recall how (4.83) was obtained. We thought of 

the final configuration of charge as being created by assembling bit by bit the 

elemental charges, bringing each one in from infinitely far away against the action 

of the then existing electric field. The total work done was given by (4.83). With 

dielectric media, work is done not only to bring real (macroscopic) charge into 

position, but also to produce a certain state of polarization in the medium. If p 

and ® in (4.83) represent macroscopic variables, it is certainly not evident that 

(4.83) represents the total work, including that done on the dielectric. 

To be general in our description of dielectrics, we will not initially make any 

assumptions about linearity, uniformity, etc., of the response of a dielectric to an 

applied field. Rather, let us consider a small change in the energy 5W due to 

some sort of change 6p in the macroscopic charge density p existing in all space. 

The work done to accomplish this change is 

(4.84) éW = | 5p(x)®(x) d°x 

where ®(x) is the potential due to the charge density p(x) already present. Since 
V -D = p, we can relate the change dp to a change in the displacement of 6D: 

(4.85) 6p = V - (6D) 
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Then the energy change 5W can be cast into the form: 

(4.86) aw = | E- aD a’s 

where we have used E = —V@ and have assumed that p(x) was a localized charge 
distribution. The total electrostatic energy can now be written down formally, 

at least, by allowing D to be brought from an initial value D =_0 to its final 
value D: 

(4.87) w=f@x[ e-a 

If the medium is /inear, then 

(4.88) E- SD = $5(E- D) 

and the total electrostatic energy is 

(4.89) w=ifE-Dax 

This last result can be transformed into (4.83) by using E = —V® and V-D = 

p, or by going back to (4.84) and assuming that p and ® are connected linearly. 
Thus we see that (4.83) is valid macroscopically only if the behavior is linear. 

Otherwise the energy of a final configuration must be calculated from (4.87) and 

might conceivably depend on the past history of the system (hysteresis effects). 

A problem of considerable interest is the change in energy when a dielectric 

object with a linear response is placed in an electric field whose sources are fixed. 

Suppose that initially the electric field E, due to a certain distribution of charges 

pPo(x) exists in a medium of electric susceptibility €), which may be a function of 

position (for the moment €p is not the susceptibility of the vacuum). The initial 

electrostatic energy is 

= 
= Wo 

2 
1 | y+ Dy d°x 

where Do = €9Eo. Then with the sources fixed in position a dielectric object of 

volume V, is introduced into the field, changing the field from E, to E. The 

presence of the object can be described by a susceptibility e(x), which has the 

value e, inside V, and €) outside V,. To avoid mathematical difficulties we can 

imagine e€(x) to be a smoothly varying function of position that falls rapidly but 

continuously from €, to €) at the edge of the volume V,. The energy now has the 
value 

i 
= Ww, 

2 
Lf E- Dats 

where D = cE. The difference in the energy can be written: 

w=1] @-p-£)-Dy) ax 
(4.90) 

=5 | @-D)~ D+ By) dx +4 | + B)-(D - Dy) dx 
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The second integral can be shown to vanish by the following argument. Since 
V x (E + E,) = 0, we can write 

Then the second integral becomes: 

t= -}[ vo-.@ - Dy) dx 
Integration by parts transforms this into 

r= | ov-@~Dd,) dx =0 
since V-(D — Do) = 0 because the source charge density po(x) is assumed 
unaltered by the insertion of the dielectric object. Consequently the energy 
change is 

(4.91) w=1 (-D,- D+) dx 

The integration appears to be over all space, but is actually only over the volume 
V, of the object, since, outside V,, D = €,E. Therefore we can write 

(4.92) We -5 j, (Ee, _- €))E . Eo d°x 

If the medium surrounding the dielectric body is free space, then using the def- 

inition of polarization P, (4.92) can then be expressed in the form: 

W=-= Pp. Eo d>x (4.93) 
2 Vv, 

where P is the polarization of the dielectric. This shows that the energy density 

of a dielectric placed in a field E, whose sources are fixed is given by 

(4.94) w= —-5P-E, 

This result is analogous to the dipole term in the energy (4.24) of a charge dis- 

tribution in an external field. The factor 3 is due to the fact that (4.94) represents 
the energy density of a polarizable dielectric in an external field, rather than a 

permanent dipole. It is the same factor 5 that appears in (4.88). 
Equations (4.92) and (4.93) show that a dielectric body will tend to move 

toward regions of increasing field E, provided &, > €). To calculate the force 

acting we can imagine a small generalized displacement of the body 5€. Then 

there will be a change in the energy 6W. Since the charges are held fixed, there 

is no external source of energy and the change in field energy can be interpreted 
as a change in the potential energy of the body. This means that there is a force 
acting on the body: 

aw 
(4.95) 

0k no } 
where the subscript Q has been placed on the partial derivative to indicate that 

the sources of the field are kept fixed. 
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In practical situations involving the motion of dielectrics the electric fields 

are often produced by a configuration of electrodes held at fixed potentials by 

connection to an external source such as a battery. To maintain the potentials 

constant as the distribution of dielectric varies, charge will flow to or from the 

battery to the electrodes. This means that energy is being supplied from the 
external source, and it is of interest to compare the energy supplied in that way 

with the energy change found above for fixed sources of the field. We will treat 

only linear media so that (4.83) is valid. It is sufficient to consider small changes 
in an existing configuration. From (4.83) it is evident that the change in energy 

accompanying the changes 5p(x) and 5®(x) in charge density and potential is 

(4.96) sw = 5 | (p 8b + ap) ax 

Comparison with (4.84) shows that, if the dielectric properties are not changed, 
the two terms in (4.96) are equal. If, however, the dielectric properties are altered, 

(4.97) e(x) — e(x) + de(x) 

the contributions in (4.96) are not necessarily the same. In fact, we have just 

calculated the change in energy brought about by introducing a dielectric body 

into an electric field whose sources were fixed (6p = 0). Equal contributions in 

(4.96) would imply 6W = 0, but (4.91) or (4.92) are not zero in general. The 

reason for this difference lies in the existence of the polarization charge. The 

change in dielectric properties implied by (4.97) can be thought of as a change 

in the polarization-charge density. If then (4.96) is interpreted as an integral over 

both free and polarization-charge densities (i.e., a microscopic equation), the two 

contributions are always equal. However, it is often convenient to deal with mac- 

roscopic quantities. Then the equality holds only if the dielectric properties are 

unchanged. 

The process of altering the dielectric properties in some way (by moving the 

dielectric bodies, by changing their susceptibilities, etc.) in the presence of elec- 

trodes at fixed potentials can be viewed as taking place in two steps. In the first 

step the electrodes are disconnected from the batteries and the charges on them 

held fixed (6p = 0). With the change (4.97) in dielectric properties, the energy 

change is 

—_— 

= 5W, (4.98) = | pP 6®, d°x 

where 6®, is the change in potential produced. This can be shown to yield 
the result (4.92). In the second step the batteries are connected again to the 
electrodes to restore their potentials to the original values. There will be a flow 
of charge dp, from the batteries accompanying the change in potential* 
5, = —5®,. Therefore the energy change in the second step is 

_— 

= 5W,, (4.99) ; | (p 5®, + ® Sp,) d°x = —26W, 

*Note that it is necessary merely to know that 6, = —8®, on the electrodes, since that is the only 
place where free charge resides. 
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since the two contributions are equal. In the second step we find the external 
sources changing the energy in the opposite sense and by twice the amount of 
the initial step. Consequently the net change is 

(4.100) SW = | p se, d?x 

Symbolically 

bWy — -6Wo (4.101) 

where the subscript denotes the quantity held fixed. If a dielectric with €/e, > 1 
moves into a region of greater field strength, the energy increases instead of 
decreases. For a generalized displacement dé the mechanical force acting is now 

ow 
(4.102) 

e | r= +( 
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Problems 

4.1 Calculate the multipole moments q,,, of the charge distributions shown as parts a 

and b. Try to obtain results for the nonvanishing moments valid for all /, but in each 

case find the first two sets of nonvanishing moments at the very least. 
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+q 
“qa 

—2q —-d a 

aq 

+q 

(b) (a) 

Problem 4.1 

For the charge distribution of the second set b write down the multipole ex- 
(c) 

pansion for the potential. Keeping only the lowest-order term in the expan- 

sion, plot the potential in the x-y plane as a function of distance from the 

origin for distances greater than a. 

Calculate directly from Coulomb’s law the exact potential for b in the 
(d) 

x-y plane. Plot it as a function of distance and compare with the result found 

in part c. 

Divide out the asymptotic form in parts c and d to see the behavior at large distances 

more clearly. 

4.2 A point dipole with dipole moment p is located at the point x9. From the properties 

of the derivative of a Dirac delta function, show that for calculation of the potential 

® or the energy of a dipole in an external field, the dipole can be described by an 

effective charge density 

Per(X) = —p + V(x — Xp) 

4.3 The /th term in the multipole expansion (4.1) of the potential is specified by the 
(21 + 1) multipole moments q,,. On the other hand, the Cartesian multipole 
moments, 

— () = Q aBy { p(x)x*y®z? d°x 

with a, B, y nonnegative integers subject to the constraint a + B + y = J, are 

(i + 1)(@/ + 2)/2 in number. Thus, for / > 1 there are more Cartesian multipole 

moments than seem necessary to describe the term in the potential whose radial 
—i-1 dependence is r 

Show that while the q,,,, transform under rotations as irreducible spherical ten- 

sors of rank /, the Cartesian multipole moments correspond to reducible spherical 

tensors of ranks /, / — 2,1 — 4,..., lain, where J,;, = 0 or 1 for / even or odd, 

respectively. Check that the number of different tensorial components adds up to 

the total number of Cartesian tensors. Why are only the q,,,, needed in the expansion 

(4.1)? 

4.4 (a) Prove the following theorem: For an arbitrary charge distribution p(x) the 

values of the (2/ + 1) moments of the first nonvanishing multipole are inde- 

pendent of the origin of the coordinate axes, but the values of all higher mul- 

tipole moments do in general depend on the choice of origin. (The different 

moments q,,, for fixed / depend, of course, on the orientation of the axes.) 

(b) . with respect to one A charge distribution has multipole moments q, p, Q;;, 

set of coordinate axes, and moments q’, p’, Q . with respect to another ij> 
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set whose axes are parallel to the first, but whose origin is located at the point 
R = (X, Y, Z) relative to the first. Determine explicitly the connections be- 
tween the monopole, dipole, and quadrupole moments in the two coordinate 
frames. 

(c) If q # 0, can R be found so that p’ = 0? If g # 0, p # 0, or at least p # 0, can 
R be found so that Q/; = 0? 

4.5 A localized charge density p(x, y, z) is placed in an external electrostatic field de- 
scribed by a potential ®(x, y, z). The external potential varies slowly in space 
over the region where the charge density is different from zero. 

(a) From first principles calculate the total force acting on the charge distribution 
as an expansion in multipole moments times derivatives of the electric field, 

up to and including the quadrupole moments. Show that the force is 

EO 
—_. 5 > Qix “ F = gE(0) + {V[p- E(x)]}o + {| JL e 

Compare this to the expansion (4.24) of the energy W. Note that (4.24) is a 
number—it is not a function of x that can be differentiated! What is its con- 

nection to F? 

(b) Repeat the calculation of part a for the total torque. For simplicity, evaluate 

only one Cartesian component of the torque, say N,. Show that this compo- 

nent is 

+ N, = [p x E(O)}: + 3 [2 (= x8”) — = (= on}) | 
0 

4.6 A nucleus with quadrupole moment Q finds itself in a cylindrically symmetric elec- 

tric field with a gradient (dE ,/dz)> along the z axis at the position of the nucleus. 

(a) Show that the energy of quadrupole interaction is 

OE. 

0z ) w= -£of 

(b) If it is known that Q = 2 X 10°28 m? and that W/h is 10 MHz, where 
h is Planck’s constant, calculate (dE,/dz)o in units of e/47e€,a%, where 
Q = 47€h?/me? = 0.529 X 107!° m is the Bohr radius in hydrogen. 

(c) Nuclear charge distributions can be approximated by a constant charge density 

throughout a spheroidal volume of semimajor axis a and semiminor axis b. 

Calculate the quadrupole moment of such a nucleus, assuming that the total 

charge is Ze. Given that Eu’? (Z = 63) has a quadrupole moment Q = 
2.5 x 10728 m? and a mean radius 

R=(a+ by2=7X10"%m 

determine the fractional difference in radius (a — b)/R. 

4.7 A localized distribution of charge has a charge density 

p(r) = an re’ sin’6é 

(a) Make a multipole expansion of the potential due to this charge density and 

determine all the nonvanishing multipole moments. Write down the potential 

at large distances as a finite expansion in Legendre polynomials. 
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(b) Determine the potential explicitly at any point in space, and show that near 

the origin, correct to r? inclusive, 

2 
1 1 Jt - — P(r) = 7 _ 

120 4 4 
‘0 

P,(cos 0 | | 
2 

3 (c) If there exists at the origin a nucleus with a quadrupole moment Q = 10-* m 
determine the magnitude of the interaction energy, assuming that the unit of 

charge in p(r) above is the electronic charge and the unit of length is the 
hydrogen Bohr radius ay = 47€ph?/me” = 0.529 X 10°*° m. Express your an- 
swer as a frequency by dividing by Planck’s constant h. 

The charge density in this problem is that for the m = +1 states of the 
2p level in hydrogen, while the quadrupole interaction is of the same order as 

found in molecules. 

4.8 A very long, right circular, cylindrical shell of dielectric constant €/ép and inner and 

outer radii a and b, respectively, is placed in a previously uniform electric field Eo 

with its axis perpendicular to the field. The medium inside and outside the cylinder 

has a dielectric constant of unity. 

(a) Determine the potential and electric field in the three regions, neglecting end 

effects. 

(b) Sketch the lines of force for a typical case of b = 2a. 

(c) Discuss the limiting forms of your solution appropriate for a solid dielectric 

cylinder in a uniform field, and a cylindrical cavity in a uniform dielectric. 

4.9 A point charge q is located in free space a distance d from the center of a dielectric 

sphere of radius a (a < d) and dielectric constant €/é€. 

(a) Find the potential at all points in space as an expansion in spherical harmonics. 

(b) Calculate the rectangular components of the electric field near the center of 

the sphere. 

(c) Verify that, in the limit €/eg —> ©, your result is the same as that for the 

conducting sphere. 

4.10 Two concentric conducting spheres of inner and outer radii a and b, respectively, 
carry charges +Q. The empty space between the spheres is half-filled by a hemi- 
spherical shell of dielectric (of dielectric constant €/€9), as shown in the figure 

+Q 

-Q 

Problem 4.10 

(a) Find the electric field everywhere between the spheres. 

(b) Calculate the surface-charge distribution on the inner sphere. 

(c) Calculate the polarization-charge density induced on the surface of the di- 
electric at r = a. 
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4.11 The following data on the variation of dielectric constant with pressure are taken 
from the Smithsonian Physical Tables, 9th ed., p. 424: 

Air at 292 K 

Pressure (atm) elé 

20 1.0108 Relative density of air as a function of 
40 1.0218 pressure is given in AIP Handbook, 

60 1.0333 [3rd ed., McGraw-Hill, New York 
80 1.0439 (1972), p. 4-165]. 

100 1.0548 

Pentane (C;H,,) at 303 K 

Pressure (atm) ele Density (g/cm?) 

1 0.613 1.82 

10° 0.701 1.96 

4x 10° 0.796 2.12 

8 x 10° 0.865 2.24 

12 x 10° 0.907 2.33 

Test the Clausius—Mossotti relation between dielectric constants and density 

for air and pentane in the ranges tabulated. Does it hold exactly? Approximately? 

If approximately, discuss fractional variations in density and (€/e) — 1). For pentane, 

compare the Clausius—Mossotti relation to the cruder relation, (€/€) — 1) « density. 

4.12 Water vapor is a polar gas whose dielectric constant exhibits an appreciable tem- 

perature dependence. The following table gives experimental data on this effect. 

Assuming that water vapor obeys the ideal gas law, calculate the molecular polar- 

izability as a function of inverse temperature and plot it. From the slope of the 

curve, deduce a value for the permanent dipole moment of the H,O molecule (ex- 

press the dipole moment in coulomb-meters). 

(ele) — 1) x 10° T(K) Pressure (cm Hg) 

400.2 56.49 393 

371.7 60.93 423 

348.8 65.34 453 

328.7 69.75 483 

4.13 Two long, coaxial, cylindrical conducting surfaces of radii a and b are lowered 

vertically into a liquid dielectric. If the liquid rises an average height h between the 

electrodes when a potential difference V is established between them, show that 

the susceptibility of the liquid is 

_ (b? — a*)pgh in(b/a) 
é€ &V2 

where p is the density of the liquid, g is the acceleration due to gravity, and the 

susceptibility of air is neglected. 



CHAPTER 5 

Magnetostatics, Faraday's Law, 
™~ Quasi-Static Fields 

5.1 Introduction and Definitions 

In the preceding chapters we examined various aspects of electrostatics (i.e., the 
fields and interactions of stationary charges and boundaries). We now turn to 
steady-state magnetic phenomena, Faraday’s law of induction, and quasi-static 
fields. From a historical point of view, magnetic phenomena have been known 
and studied for at least as long as electric phenomena. Lodestones were known 

in ancient times; the mariner’s compass is a very old invention; Gilbert’s re- 

searches on the earth as a giant magnet date from before 1600. In contrast to 

electrostatics, the basic laws of magnetic fields did not follow straightforwardly 

from man’s earliest contact with magnetic materials. The reasons are several, but 

they all stem from the radical difference between magnetostatics and electro- 

statics: there are no free magnetic charges (even though the idea of a magnetic 

charge density may be a useful mathematical construct in some circumstances). 

This means that magnetic phenomena are quite different from electric phenom- 

ena and that for a long time no connection was established between them. The 

basic entity in magnetic studies was what we now know as a magnetic dipole. In 

the presence of magnetic materials the dipole tends to align itself in a certain 

direction. That direction is by definition the direction of the magnetic-flux den- 

sity, denoted by B, provided the dipole is sufficiently small and weak that it does 

not perturb the existing field. The magnitude of the flux density can be defined 

by the mechanical torque N exerted on the magnetic dipole: 

N=pxXB (5.1) 

where w is the magnetic moment of the dipole, defined in some suitable set of 

units. 

Already, in the definition of the magnetic-flux density B (sometimes called 
the magnetic induction), we have a more complicated situation than for the elec- 
tric field. Further quantitative elucidation of magnetic phenomena did not occur 
until the connection between currents and magnetic fields was established. A 
current corresponds to charges in motion and is described by a current density 

J, measured in units of positive charge crossing unit area per unit time, the di- 
rection of motion of the charges defining the direction of J. In SI units it is 
measured in coulombs per square meter-second or amperes per square meter. If 
the current density is confined to wires of small cross section, we usually integrate 
over the cross-sectional area and speak of a current of so many amperes flowing 
along the wire. 

174 
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Conservation of charge demands that the charge density at any point in space 
be related to the current density in that neighborhood by a continuity equation: 

F+v-5=0 (5.2) 
0 

This expresses the physical fact that a decrease in charge inside a small volume 
with time must correspond to a flow of charge out through the surface of the 
small volume, since the total amount of charge must be conserved. Steady-state 
magnetic phenomena are characterized by no change in the net charge density 
anywhere in space. Consequently in magnetostatics 

V-J=0 (5.3) 

We now proceed to discuss the experimental connection between current and 
magnetic-flux density and to establish the basic laws of magnetostatics. 

5.2. Biot and Savart Law 

In 1819 Oersted observed that wires carrying electric currents produced defiec- 

tions of permanent magnetic dipoles placed in their neighborhood. Thus the 

currents were sources of magnetic-flux density. Biot and Savart (1820), first, and 

Ampére (1820-1825), in much more elaborate and thorough experiments, estab- 

lished the basic experimental laws relating the magnetic induction B to the cur- 

rents and established the law of force between one current and another. Although 

not in the form in which Ampére deduced it, the basic relation is the following. 

If dl is an element of length (pointing in the direction of current flow) of a 

filamentary wire that carries a current J and x is the coordinate vector from the 

element of length to an observation point P, as shown in Fig. 5.1, then the ele- 

mental flux density dB at the pomt P is given in magnitude and direction by 

(dl x x) 
dB = kl (5.4) 

Ix}? 

It should be noted that (5.4) is an inverse square law, just as is Coulomb’s law 
of electrostatics. However, the vector character is very different. 

A word of caution about (5.4). There is a temptation to think of (5.4) as the 
magnetic equivalent of the electric field (1.3) of a point charge and to identify 

I di as the analog of q. Strictly speaking this is incorrect. Equation (5.4) has 

meaning only as one element of a sum over a continuous set, the sum representing 

the magnetic induction of a current loop or circuit. Obviously the continuity 

equation (5.3) is not satisfied for the current element J dl standing alone—the 

dl dB 

Figure 5.1 Elemental magnetic induction dB 

due to current element / dl. 
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current comes from nowhere and disappears after traversing the length dl! One 

apparent way out of this difficulty is to realize that current is actually charge in 

motion and to replace J dl by qv where q is the charge and v its velocity. The 

flux density for such a charge in motion would be 

vxx 
—_—_—— (5.5) B = kq 

[x/? 
~ ™~ 

in close correspondence with (5.4). But this expression is time dependent and 
furthermore is valid only for charges whose velocities are small compared to that 

of light and whose accelerations can be neglected. Since we are considering 

steady-state magnetic fields in this chapter, we stick with (5.4) and integrate over 

circuits to obtain physical results.* 

In (5.4) and (5.5) the constant k depends in magnitude and dimension on the 

system of units used, as discussed in detail in the Appendix. In Gaussian units, 

in which current is measured in esu and magnetic induction in emu, the constant 

is empirically found to be k = 1/c, where c is the speed of light in vacuo. The 

presence of the speed of light in the equations of magnetostatics is an initial 

puzzlement resolved within special relativity where u/c has a natural appearance. 

In Gaussian units, E and B have the same dimensions: charge divided by length 

squared or force per unit charge. 

In SI units, k = 49/47 = 107” newton per square ampere (N/A?) or henry 
per meter (H/m). Here B has the dimensions of newtons per ampere-meter 

(N/A - m) while E has dimensions of N/C. B times a speed has the same dimen- 

sions as E. Since c is the natural speed in electromagnetism, it is no surprise that 

in SI units E and cB form the field-strength tensor F” in a relativistic description 

(see Chapter 11). 

We can linearly superpose the basic magnetic-flux elements (5.4) by integra- 

tion to determine the magnetic-flux density due to various configurations of 

current-carrying wires. For example, the magnetic induction B of the long straight 

wire shown in Fig. 5.2 carrying a current J can be seen to be directed along the 
normal to the plane containing the wire and the observation point, so that the 
lines of magnetic induction are concentric circles around the wire. The magnitude 
of B is given by 

dl _ bol 
—_— 

Ho rp { |B] = (5.6) 
4a Ia R -2 (R? + 23? 

where R is the distance from the observation point to the wire. This is the ex- 
perimental result first found by Biot and Savart and is known as the Biot—Savart 
law. Note that the magnitude of the induction B varies with R in the same way 
as the electric field due to a long line charge of uniform linear-charge density. 

*There is an apparent inconsistency here. Currents are, after all, charges in motion. How can (5.4), 
integrated, yield exact results yet (5.5) be only approximate? The answer is that (5.5) applies to only 
one charge. If a system of many charges moves in such a way that as the unit of charge goes to zero 
and the number of charges goes to infinity it produces a steady current flow, then the sum of the 
exact relativistic fields, including acceleration effects, gives a magnetostatic field equal to the field 
obtained by integrating (5.4) over the circuit. This rather subtle result is discussed for some special 
situations in Problems 14.23 and 14.24. 
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BC |) 

all 

x 

‘. 

Cl 
Figure 5.2 

This analogy shows that in some circumstances there may be a correspondence 

between electrostatic and magnetostatic problems, even though the vector char- 

acter of the fields is different. We see more of that in later sections. 

Ampeére’s experiments did not deal directly with the determination of the 

relation between currents and magnetic induction, but were concerned rather 

with the force that one current-carrying wire experiences in the presence of an- 

other. Since we have already introduced the idea that a current element produces 

a magnetic induction, we phrase the force law as the force experienced by a 

current element J, dl, in the presence of a magnetic induction B. The elemental 

force is 

(5.7) dF = I, (dl, x B) 

If the external field B is due to a closed current loop #2 with current J, then the 

total force which a closed current loop #1 with current J, experiences is [from 
(5.4) and (5.7)]: 

x (dl, x X12) — Ho 
= ° Lb (5.8) Fi. pp 4a [X12 ? 

The line integrals are taken around the two loops; x) is the vector distance from 
line element dl, to dl,, as shown in Fig. 5.3. This is the mathematical statement 

of Ampére’s observations about forces between current-carrying loops. By ma- 

nipulating the integrand it can be put in a form that is symmetric in dl, and dl, 

and that explicitly satisfies Newton’s third law. Thus 

X12 dal, ° Xj2 
_—_—_— —_—- 

dal, x (dl, x Xj2) _ 
(5.9) 

X12 [? 
+ an ~(dh, + db); [x121? [x12 [? 

Figure 5.3 | Two Ampérian current loops. 
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The second term involves a perfect differential in the integral over dl,. Conse- 

quently it gives no contribution to the integral (5.8), provided the paths are closed 

or extend to infinity. Then Ampére’s law of force between current loops becomes 

+ dly)X12 
— 

= (5.10) Po ry Fi. pp 4a 1X19 |’ 

showing symmetry in the integration, apart from the necessary vectorial depen- 
dence on Xjp>. 

Each of two long, parallel, straight wires a distance d apart, carrying currents 
I, and I, experiences a force per unit length directed perpendicularly toward the 
other wire and of magnitude, 

— 

dF _ Ho LL 
(5.11) 

dl wd 

The force is attractive (repulsive) if the currents flow in the same (opposite) 
directions. The forces that exist between current-carrying wires can be used to 

define magnetic-flux density in a way that is independent of permanent magnetic 

dipoles.* We will see later that the torque expression (5.1) and the force result 

(5.7) are intimately related. 

If a current density J(x) is in an external magnetic-flux density B(x), the 

elementary force law implies that the total force on the current distribution is 

(5.12) F= [ 300 x B(x) d°x 

Similarly the total torque is 

(5.13) N= [xx xB) ds 
These general results will be applied to localized current distributions in Sec- 

tion 5.7. 

5.3 Differential Equations of Magnetostatics and Ampére’s Law 

The basic law (5.4) for the magnetic induction can be written down in general 
form for a current density J(x): 

x — 

—___——_. (5.14) 
x 

B(x) = bo | J(x’) x 
[x — 

a dx ’ 

This expression for B(x) is the magnetic analog of electric field in terms of the 
charge density: 

(5.15) BO) = 5 | tw) BE 
Just as this result for E was not as convenient in some situations as differential 
equations, so (5.14) is not the most useful form for magnetostatics, even though 
it contains in principle a description of all the phenomena. 

*In fact, (5.11) is the basis of the internationally accepted standard of current. See the Appendix. 
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To obtain the differential equations equivalent to (5.14), we use the relation 
just above (1.15) to transform (5.14) into the form: 

J(x’) 
d*x' (5.16) Bax) = Hv x | 

Ix — x’| 
From (5.16) it follows immediately that the divergence of B vanishes: 

V-B=0 (5.17) 

This is the first equation of magnetostatics and corresponds to V x E = 0 in 
electrostatics. By analogy with electrostatics we now calculate the curl of B: 

J(x’) 
—— d>x' (5.18) VX B= VxVx 

[x — x’| 
With the identity V x (V x A) = V(V- A) — V?A for an arbitrary vector field 
A, expression (5.18) can be transformed into 

1 1 

[x — x’| 
vx B= fy { ae)-/ 

[x — ‘| 
Jee ) are #2 | ae y( 

(5.19) 

If we use 

1 1 
— 

= 

x — x’| x — x’| - ( v( 
and 

1 
= —4775(x — x’) “| [x — x'| 

the integrals in (5.19) can be written: 

1 
Bx! + poS(x) (5.20) 

[x — ‘| 
vx B= Hy [aey-v( 

Integration by parts yields 

V+ I(x’) 
d>x' (5.21) Vx B= pod + Hy | 

[x — x’| 

But for steady-state magnetic phenomena V - J = 0, so that we obtain 

Vx B= pod (5.22) 

This is the second equation of magnetostatics, corresponding to V- E = p/e in 

electrostatics. 

In electrostatics Gauss’s law (1.11) is the integral form of the equation 

V-E = p/é. The integral equivalent of (5.22) is called Ampére’s law. It is ob- 

tained by applying Stokes’s theorem to the integral of the normal component of 

(5.22) over an open surface S bounded by a closed curve C, as shown in Fig. 5.4. 

Thus 

(5.23) [vx B-nda= uo | 3-m da 
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Sai 
Figure 5.4 

is transformed into 

(5.24) § Bedi = po | J-nda 

Since the surface integral of the current density is the total current J passing 

through the closed curve C, Ampére’s law can be written in the form: 

(5.25) $ B-dl= pol 

Just as Gauss’s law can be used for calculation of the electric field in highly 

symmetric situations, so Ampére’s law can be employed in analogous 

circumstances. 

5.4 Vector Potential 

The basic differential laws of magnetostatics are 

Vx B= pod 
(5.26) 

V-B=0 

The problem is how to solve them. If the current density is zero in the region of 

interest, V x B = 0 permits the expression of the vector magnetic induction B 

as the gradient of a magnetic scalar potential, B = —V®,y. Then (5.26) reduces 
to the Laplace equation for ®,, and all our techniques for handling electrostatic 

problems can be brought to bear. A large number of problems fall into this class, 

but we will defer discussion of them until later in the chapter. The reason is that 

the boundary conditions are different from those encountered in electrostatics, 

and the problems usually involve macroscopic media with magnetic properties 

different from free space with charges and currents. 

A general method of attack is to exploit the second equation in (5.26). If 

V-B = 0 everywhere, B must be the curl of some vector field A(x), called the 

vector potential, 

B(x) = V x A(x) (5.27) 

We have, in fact, already written B in this form (5.16). Evidently, from (5.16), 

the general form of A is 

Ho J(x’) 
—_— A(x) = d°x' + V¥(x) (5.28) 

awJ |x —x'| 
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The added gradient of an arbitrary scalar function V shows that for a given 
magnetic induction B, the vector potential can be freely transformed accord- 
ing to 

A->-A4+ VY (5.29) 

This transformation is called a gauge transformation. Such transformations on A 
are possible because (5.27) specifies only the curl of A. The freedom of gauge 

transformations allows us to make V - A have any convenient functional form we 

wish. 

If (5.27) is substituted into the first equation in (5.26), we find 

Vx (V x A) = pod 
or (5.30) 

V(V- A) — V2A = pod 

If we now exploit the freedom implied by (5.29), we can make the convenient 

choice of gauge,* V- A = 0. Then each rectangular component of the vector 

potential satisfies the Poisson equation, 

(5.31) VA = — [oJ 

From our discussions of electrostatics it is clear that the solution for A in un- 

bounded space is (5.28) with VY = constant: 

Ho J(x’) 
— ——_— d>x' (5.32) A(x) = awJ|x—x’| 

The condition VY = constant can be understood as follows. Our choice of gauge, 

V-A = 0, reduces to V*¥ = 0, since the first term in (5.28) has zero divergence 
because of V’ - J = 0. If V’¥ = 0 holds in all space, ¥ must be at most a constant 
provided there are no sources at infinity. 

5.5 Vector Potential and Magnetic Induction 

for a Circular Current Loop 

As an illustration of the calculation of magnetic fields from given current distri- 

butions, we consider the problem of a circular loop of radius a, lying in the x-y 

plane, centered at the origin, and carrying a current J, as shown in Fig. 5.5. The 

current density J has only a component in the ¢ direction, 

d(r’ — a) 
(5.33) J, = I sin 6'8(cos 6’) 

The delta functions restrict current flow to a ring of radius a. The vectorial current 

density J can be written 

(5.34) J=-—J,sind'i + Jy cos o'j 

Since the geometry is cylindrically symmetric, we may choose the observation 
point in the x-z plane (¢ = 0) for purposes of calculation. Since the azimuthal 

*The choice is called the Coulomb gauge, for a reason that will become apparent only in Section 6.3. 
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C a 
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Figure 5.5 

integration in (5.32) is symmetric about ¢' = 0, the x component of the current 

does not contribute. This leaves only the y component, which is Ay. Thus 

sin 6’ cos @'8(cos 8’)8(r’ — a) 
(5.35) Ag(r, 0) = ro r’? dr’ dQ’ 

|x — x'| 

where |x — x’| = [r? + r'? — 2rr’(cos 6 cos 6’ + sin @ sin 6’ cos @')]"”. 
We first consider the straightforward evaluation of (5.35). Integration over 

the delta functions leaves the result 

277 
cos ¢' dd’ Hola 

(5.36) Agl(r, 6) = | 0 4a (a? + r? — 2ar sin 6 cos &')"? 

This integral can be expressed in terms of the complete elliptic integrals K and E: 

4la Ho (2 — k2)K(k) — 2E(k) 
Ag(r, 6) = (5.37) k2 | 4a Va’ + r* + 2ar sin @ 

where the argument k of the elliptic integrals is defined through 

4ar sin @ 
_ 

= 

k? 

a’ +r? + 2ar sin @ 

The components of magnetic induction, 

o B, (sin 6A, ) 
r sin 6 00 

1a (5.38) Be —-~—(rA e) 
ror 

By 

can also be expressed in terms of elliptic integrals. But the results are not partic- 
ularly illuminating (useful, however, for computation). 

For a >> r,a <r, or 6 <1, an alternative expansion of (5.36) in powers 
of a’r* sin’@/(a’ + r?)* leads to the following approximate expression for the 
vector potential, 

15a’r? sin?6 Mola?r sin 6 
Ag(’, 6) = (5.39) 4(a? + rp? | 8(a? + | 
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To the same accuracy, the corresponding field components are 

15a’r’ sin?6 Hola? cos @ 
r ~~ (a? + ry? A(a? + r’)? | | (5.40) 

Lola” sin 6 r? sin?6(4a? — 3r7) 
B= Aa? + p25! 

2 _p 15a? 
8(a? + ry’ | 

These can easily be specialized to the three regions, near the axis (@< 1), near 
the center of the loop (r <« a), and far from the loop (r >> a). 

Of particular interest are the fields far from the loop: 

cos @ 
— 

= B, x (Ima 7) 3 

(5.41) 
sin 0 

— 

= Be an! 7a’) os 

Comparison with the electrostatic dipole fields (4.12) shows that the magnetic 

fields far away from a circular current loop are dipole in character. By analogy 

with electrostatics we define the magnetic dipole moment of the loop to be 

m = la’ (5.42) 

We see in the next section that this is a special case of a general result—localized 

current distributions give dipole fields at large distances; the magnetic moment 

of a plane current loop is the product of the area of the loop times the current. 

Although we have obtained a complete solution to the problem in terms of 

elliptic integrals, we now illustrate the use of a spherical harmonic expansion to 

point out similarities and differences between the magnetostatic and electrostatic 
problems. Thus we return to (5.35) and substitute the spherical expansion (3.70) 
for |x — x'|7!: 

i 

Yim(9, 0) id’ re 

Yim(O’, 6’) r’? dr' dO’ &(cos 6')d(r' — ae +1 > 
21+ 1 > im 

(5.43) 

The presence of e‘* means that only m = +1 will contribute to the sum. Hence 

oo 

Y1(8, 0) re 7 0 (5.44) 
i+] Ag = 27Uola > 

2 21+ 1 l=1 > ) [a 
where now r. (r,) is the smaller (larger) of a and r. The square-bracketed quan- 

tity is a number depending on /: 

[ar 0 | 
for / even 0 

— (5.45) 
(-1)"*"T(_+ 3) 

for] =2n41 
T(n + 11) 
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Then A, can be written 

1)"(2n _ 1)! 2n+1 

(5.46) P2n+1(COS 6) 2n+2 

Mola > ( 
Ag 

n=0 2"(n + 1)! 

— 

= ‘)x 5X3 1, and the n= 0 coefficient (2n — 1)(2n — 3)(-- where (2n — 1)!! 

in the sum is unity by definition. To evaluate the radial component of B from 

~ 
(5.38) we need 

™~ 

(5.47) — [V1 — x* Pi(x)] = WE + 1)Pix) 

Then we find 

(2n + 1)! 27) Mola (5.48) Pon +1(COs 6) B, = 2n+2 

ys & 1)" 
r 2°n! 2r =0 

The @ component of B is similarly 

2n+2 
—_— 

a a2n+1 Jal 1)"(2n + 1)! ( 
(5.49) Bo= P2n+t (cos 6) 

1 

— Hole S ( 
n=0 2"(n + 1)! 

—_— 

3 
r 

r ( 
The upper line holds for r < a, and the lower line for r > a. For r >> a, only the 

—sin 6, (5.48) and n = 0 term in the series is important. Then, since P}(cos @) 
(5.49) reduce to (5.41). For r << a, the leading term is again n = 0. The fields 

are then equivalent to a magnetic induction pol/2a in the z direction, a result 

that can be found by elementary means 

We note a characteristic difference between this problem and a correspond- 

ing cylindrically symmetric electrostatic problem. Associated Legendre polyno- 

mials appear, as well as ordinary Legendre polynomials. This can be traced to 

the vector character of the current and vector potential, as opposed to the scalar 

properties of charge and electrostatic potential 

Another mode of attack on the problem of the planar loop is to employ 

an expansion in cylindrical waves. Instead of (3.70) as a representation of 

|x — x’|~? we may use the cylindrical form (3.148) or (3.149) or that of Problem 
3.16b. The application of this technique to the circular loop will be left to the 

problems 

5.6 Magnetic Fields of a Localized Current Distribution, 

Magnetic Moment 

We now consider the properties of a general current distribution that is localized 
in a small region of space small” being relative to the scale of length of interest 
to the observer. A complete treatment of this problem, in analogy with the elec- 
trostatic multipole expansion, can be made using vector spherical harmonics.* 

*This is not the only way. Scalar potentials can be used. See J. B. Bronzan, Am. J. Phys. 39, 1357 
(1971). 
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i 

Figure 5.6 Localized current density 

J(x’) gives rise to a magnetic induction 

at the point P with coordinate x. 

These are presented in Chapter 9 in connection with multipole radiation. We 
will be content here with only the lowest order of approximation. Assuming 
\x| >> |x’|, we expand the denominator of (5.32) in powers of x’ measured 
relative to a suitable origin in the localized current distribution, shown schemat- 
ically in Fig. 5.6: 

1 1 K°x’ 
+ (5.50) 

jx—x’| |x |x? 
Then a given component of the vector potential will have the expansion, 

A,(x) = 2 fae d3x' + ix [ sex d3x' + | (5.51) 

The fact that J is a localized, divergenceless current distribution permits simpli- 

fication and transformation of the expansion (5.51). Let f(x’) and g(x’) be 

well-behaved functions of x’ to be chosen below. If J(x’) is localized but not 

necessarily divergenceless, we have the identity 

(5.52) [ va-ve + g)-V'f + feV' J) d’x' =0 

This can be established by an integration by parts on the second term, followed 

by expansion of fV’-(gJ). With f = 1 and g = x;, (5.52) with V’ «J = 0 estab- 
lishes that 

[ 107) d°x' = 0 
The first term in (5.51), corresponding to the monopole term in the electrostatic 

expansion, is therefore absent. With f = x}, g = xj and V’ - J = 0, (5.52) yields 

| (xiJ; + xjJ) dx’ = 0 
The integral in the second term of (5.51) can therefore be written 

xe | xy d>x' 2 x, | x, d°x' 

-5 > x, | (x}J; — xj Ji) d?x' 

-3 > EijKX; | (x' x J)x d?x' 

£ 

—= ls x | (x’' x J) a 
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It is customary to define the magnetic moment density or magnetization as 

(5.53) M(x) = 5 [x x 5(H)] 

and its integral as the magnetic moment m: 

~ 
(5.54) 

~ m == | x’ X J(x’) d°x' 

Then the vector potential from the second term in (5.51) is the magnetic dipole 

vector potential, 

oo MX x 
(5.55) A(x) = 

Ix}? 

This is the lowest nonvanishing term in the expansion of A for a localized steady- 

state current distribution. The magnetic induction B outside the localized source 
can be calculated directly by evaluating the curl of (5.55): 

Ko 3n(n-m) — m 
(5.56) BO) = ae [x\? | | 

Here n is a unit vector in the direction x. The magnetic induction (5.56) has 

exactly the form (4.13) of the field of a dipole. This is the generalization of the 

result found for the circular loop in the last section. Far away from any localized 

current distribution the magnetic induction is that of a magnetic dipole of dipole 

moment given by (5.54). 

If the current is confined to a plane, but otherwise arbitrary, loop, the mag- 

netic moment can be expressed in a simple form. If the current J flows in a closed 

circuit whose line element is dl, (5.54) becomes 

m=- 
2 

$ x x dl 

For a plane loop such as that in Fig. 5.7, the magnetic moment is perpendicular 

to the plane of the loop. Since 3|x x dl| = da, where da is the triangular element 
of the area defined by the two ends of dl and the origin, the loop integral gives 

the total area of the loop. Hence the magnetic moment has magnitude, 

|m| = IJ X (Area) (5.57) 

regardless of the shape of the circuit. 

dl dan, 

NU 
Figure 5.7 
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If the current distribution is provided by a number of charged particles with 
charges q; and masses M, in motion with velocities v,, the magnetic moment can 
be expressed in terms of the orbital angular momentum of the particles. The 
current density is 

J= > qiv:5(x — x;,) 

where x; is the position of the ith particle. Then the magnetic moment (5.54) 
becomes 

m =5> q(x; X v;) 

The vector product (x; x v,) is proportional to the ith particle’s orbital angular 
momentum, L; = M;(x; Xx v,). Thus the moment becomes 

(5.58) m= > 472 

If all the particles in motion have the same charge-to-mass ratio (g;/M; = e/M), 
the magnetic moment can be written in terms of the total orbital angular mo- 

mentum L: 

(5.59) 

This is the well-known classical connection between angular momentum and 

magnetic moment, which holds for orbital motion even on the atomic scale. But 

this classical connection fails for the intrinsic moment of electrons and other 

elementary particles. For electrons, the intrinsic moment is slightly more than 

twice as large as implied by (5.59), with the spin angular momentum S replacing 

L. Thus we speak of the electron having a g factor of 2(1.00116). The departure 

of the magnetic moment from its classical value has its origins in relativistic and 

quantum-mechanical effects which we cannot consider here. 

Before leaving the topic of the fields of a localized current distribution, we 

consider the spherical volume integral of the magnetic induction B. Just as in the 

electrostatic case discussed at the end of Section 4.1, there are two limits of 

interest, one in which the sphere of radius R contains all of the current and the 

other where the current is completely external to the spherical volume. The vol- 
ume integral of B is 

VxAd*x (5.60) B(x) d°x = 
rc<R r<R 

The volume integral of the curl of A can be integrated to give a surface integral. 

Thus 

r<R 

Bdéx=R? | donx A 

where n is the outwardly directed normal. Substitution of (5.32) for A and an 

interchange of the orders of integration permits this to be written as 

—_— 

= B d°x 
r<R 

— #2 pe | ay’ I(x’) x | ao r 2 
x’ | 
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The angular integral is the same one as occurred in the electrostatic situation. 
Making use of (4.16’), we therefore find for the integral of B. over a spherical 
volume, 

Rr. = Ho (5.61) B d°x 12 
r 3 r<R 

x x I(x’) d°x’ I( 
where (rz, r,) are the smaller and larger of r’ and R. If all the.current density is 
contained within the sphere, r. = r’ andr, = R. Then 

Ho 
=m B d°x (5.62) 

3 r<R 

where m is the total magnetic moment (5.54). For the opposite extreme of the 
current all external to the sphere, we have, by virtue of (5.14), 

4aR? 
B d?x = (5.63) B(0) 

3 r<R 

The results (5.62) and (5.63) can be compared with their electrostatic counter- 

parts (4.18) and (4.19). The difference between (5.62) and (4.18) is attributable 

to the difference in the origins of the fields, one from charges and the other from 

circulating currents. If we wish to include the information of (5.62) in the mag- 

netic dipole field (5.56), we must add a delta function contribution 

87 Ho 3n(n-m) — m 
+ — (5.64) msn 

3 BO) = ae Ix)? | 
The delta function term enters the expression for the hyperfine structure of 
atomic s states (see the next section). 

5.7. Force and Torque on and Energy of a Localized Current 
Distribution in an External Magnetic Induction 

If a localized distribution of current is placed in an external magnetic induction 

B(x), it experiences forces and torques according to Ampére’s laws. The general 

expressions for the total force and torque are given by (5.12) and (5.13). If the 

external magnetic induction varies slowly over the region of current, a Taylor 

series expansion can be utilized to find the dominant terms in the force and 

torque. A component of B can be expanded around a suitable origin, 

(5.65) B,,(x) = B,(0) +X. VB,(0) tones 

Then the ith component of the force (5.12) becomes 

F, = > cul Be(O | J;(x’) d>x' + [ nex . VB,,(0) d°x' +:- | (5.66) 
Here €,, is the completely antisymmetric unit tensor (€,, = 1 for i = 1, j = 2, 

k = 3, and any cyclic permutation, €jx = —1 for other permutations, and €;;, = 

0 for two or more indices equal). The volume integral of J vanishes for steady 
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currents; the lowest order contribution to the force comes from the second term 
in (5.66). The result above (5.53) can be used [with x > VB,(0)] to yield 

(5.67) F; = > €;(m x V); By (x) 

After differentiation of B,(x), x is to be put to zero. This can be written vecto- 
rially as 

F = (m x V) x B = Vim- B) — m(V- B) (5.68) 

Since V-B = 0 generally, the lowest order force on a localized current distri- 

bution in an external magnetic field B is 

F = Vim - B) (5.69) 

This force represents the rate of change of the total mechanical momentum, 

including the “hidden mechanical momentum” associated with the presence of 

electromagnetic momentum. (See Problems 6.5 and 12.8, and the references cited 

at the end of Chapter 12.) The effective force in Newton’s equation of motion 

of mass times acceleration is (5.69), augmented by (1/c*)(d/dt)(E x m), where E 

is the external electric field at the position of the dipole. Apart from angular 

factors, the relative size of the two contributions is (cB/L) versus (E/x), where L 

is the length scale over which B changes significantly and A is the free-space 

wavelength of radiation at the typical frequencies present in a Fourier decom- 

position of the time-varying electric field. 

A localized current distribution in a nonuniform magnetic induction expe- 

riences a force proportional to its magnetic moment m and given by (5.69). One 

simple application of this result is the time-averaged force on a charged particle 

spiraling in a nonuniform magnetic field. As is well known, a charged particle in 
a uniform magnetic induction moves in a circle at right angles to the field and 
with constant velocity parallel to the field, tracing out a helical path. The circular 
motion is, on the time average, equivalent to a circular loop of current that will 
have a magnetic moment given by (5.57). If the field is not uniform but has a 

small gradient (so that in one turn around the helix the particle does not feel 

significantly different field strengths), then the motion of the particle can be 

discussed in terms of the force on the equivalent magnetic moment. Considera- 

tion of the signs of the moment and the force shows that charged particles tend 

to be repelled by regions of high flux density, independent of the sign of their 

charge. This is the basis of the ‘‘magnetic mirrors,” important in the confinement 

of plasmas. 

The total torque on the localized current distribution is found in a similar 

way by inserting expansion (5.65) into (5.13). Here the zeroth-order term in the 

expansion contributes. Keeping only this leading term, we have 

(5.70) N = [x x [J x B(O)] d°x’ 

Writing out the triple vector product, we get 

N= | [(a' » BS - Cw’ SB) a2’ 
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The first integral has the same form as the one considered in (5.66). Hence we 

can write down its value immediately. The second integral vanishes for a localized 
steady-state current distribution, as can be seen from (5.52) with f = g =r’. The 
leading term in the torque is therefore 

(5.71) N = m X B(0) 

This is the familiar expression for the torque on a dipole, discussed in Section 
5.1 as one of the ways of defining the magnitude and direction of the magnetic 
induction. 

The potential energy of a permanent magnetic moment (or dipole) in an 

external magnetic field can be obtained from either the force (5.69) or the torque 

(5.71). If we interpret the force as the negative gradient of a potential energy U, 

we find 

U=-m-B (5.72) 

For a magnetic moment in a uniform field, the torque (5.71) can be interpreted 

as the negative derivative of U with respect to the angle between B and m. This 

well-known result for the potential energy of a dipole shows that the dipole tends 
to orient itself parallel to the field in the position of lowest potential energy. 

We remark in passing that (5.72) is not the total energy of the magnetic 
moment in the external field. In bringing the dipole m into its final position in 
the field, work must be done to keep the current J, which produces m, constant. 

Even though the final situation is a steady state, there is a transient period initially 
in which the relevant fields are time-dependent. This lies outside our present 

considerations. Consequently we leave the discussion of the energy of magnetic 

fields to Section 5.16, following Faraday’s law of induction. 

The energy expression (5.72) can be employed in the treatment of magnetic 

effects on atomic energy levels, as in the Zeeman effect or for the fine and hy- 

perfine structure. The fine structure can be viewed as coming from differences 

in energy of an electron’s intrinsic magnetic moment wp, in the magnetic field seen 

in its rest frame. Fine structure, with the subtle complication of Thomas preces- 

sion, is discussed briefly in Chapter 11. The hyperfine interaction is that of the 

magnetic moment py of the nucleus with the magnetic field produced by the 

electron. The interaction Hamiltonian is (5.72) with m = pa and B equal to the 

magnetic field of the electron, evaluated at the position of the nucleus (x = 0). 

This field has two parts; one is the dipole field (5.64) and the other is the magnetic 

field produced by the orbital motion of the electron’s charge. The latter is given 

nonrelativistically by (5.5) and can be expressed as Boypita(0) = boeL/4amr’, 

where L = x X my is the orbital angular momentum of the electron about the 

nucleus. The hyperfine Hamiltonian is therefore 

87 Mo 
ups = 

4 ~ az Be * Hy5(x) 

é 

— L: pw 
5 Bo Hw) 

r m 
+3 we py - 

} (5.73) 

The expectation values of this Hamiltonian in the various atomic (and nuclear 
spin) states yield the hyperfine energy shifts. For spherically symmetric s states 
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the second term in (5.73) gives a zero expectation value. The hyperfine energy 
comes solely from the first term: 

(5.74) ag = ~ B57 1 yCO)P (wu, my) 
For | # 0, the hyperfine energy comes entirely from the second term in (5.73) 
because the wave functions for / # 0 vanish at the origin. These expressions are 
due to Fermi, who obtained them from the Dirac equation (1930). In applying 
(5.73) and (5.74) it should be remembered that the charge e is negative and that 
4. points in the opposite direction to the electron’s spin. The energy difference 

(5.74) between the singlet and triplet states of the 1s state of atomic hydrogen is 

the source of the famous 21 cm line in astrophysics. 

The difference of the “contact” term in (5.73) from the electric dipole form 

(4.20) allows us to draw a conclusion concerning the nature of intrinsic magnetic 

moments. While orbital magnetic moments are obviously caused by circulating 

currents, it is a priori possible that the intrinsic magnetic moments of elementary 

particles such as the electron, positron, muon, proton, and neutron are caused 

by magnetic charges, arranged in magnetically neutral configurations (no net 

magnetic charge). If the electron and proton magnetic moments were caused by 

groups of magnetic charges, the coefficient 87/3 in (5.74) would be replaced by 

—477/3! The astrophysical hyperfine line of atomic hydrogen would be at 42 cm 

wavelength, and the singlet and triplet states would be reversed. The experimen- 

tal results on positronium and muonium, as well as the magnetic scattering of 

neutrons, give strong additional support to the conclusion that intrinsic magnetic 

moments of particles can be attributed to electric currents, not magnetic charges.* 

5.8 Macroscopic Equations, Boundary Conditions on B and H 

So far we have dealt with the basic laws (5.26) of steady-state magnetic fields as 

microscopic equations in the sense of the Introduction and Chapter 4. We have 

assumed that the current density J was a completely known function of position. 

In macroscopic problems this is often not true. The atoms in matter have elec- 

trons that give rise to effective atomic currents, the current density of which is a 

rapidly fluctuating quantity. Only its average over a macroscopic volume is 

known or pertinent. Furthermore, the atomic electrons contribute intrinsic mag- 

netic moments in addition to those from their orbital motion. All these moments 

can give rise to dipole fields that vary appreciably on the atomic scale of 

dimensions. 

The process of averaging the microscopic equations to obtain a macroscopic 

description of magnetic fields in ponderable media is discussed in detail in Chap- 

ter 6. Here, just as in Chapter 4, we give only a sketch of the elementary 

*There is a caveat that all particles must have the same origin for their moments. For a pedagogical 

discussion of the experiments, see J. D. Jackson, The nature of intrinsic magnetic dipole moments, 

CERN Report No. 77-17, CERN, Geneva (1977), reprinted in The International Community of Phys- 

icists: Essays on Physics and Society in Honor of Victor Frederick Weisskopf, ed. V. Stefan, AIP Press/ 

Springer-Verlag, New York (1997). 
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derivation. The first step is to observe that the averaging of the equation, 

V + Buicro = 0, leads to the same equation 

V-B=0 (5.75) 

for the macroscopic magnetic induction. Thus we can still use the concept of a 
vector potential A(x) whose curl gives B. The large number of molecules or atoms 

per unit volume, each with its molecular magnetic moment m,, gives rise to an 

average macroscopic magnetization or magnetic moment density, 

(5.76) M(x) = 2 N{m;) 

where N; is the average number per unit volume of molecules of type i and (m;) 

is the average molecular moment in a small volume at the point x. In addition 

to the bulk magnetization, we suppose that there is a macroscopic current density 

J(x) from the flow of free charge in the medium. Then the vector potential from 

a small volume AV at the point x’ will be 

J(x') AV M(x’) x (x — x’) AA(x) = nm 
[x — x’| [x — x’P 

a 
This is the magnetic analog of (4.30). The second term is the dipole vector po- 

tential (5.55). Letting AV become the macroscopically infinitesimal d*x’, the total 

vector potential at x can be written as the integral over all space, 

J(x’) M(x’) x (x — x’) 
(5.77) A(x) = ra 

[x — x’| [x — x’P 
Je 

The magnetization term can be rewritten as follows: 

1 M(x’) x (x — x’) 

[x — x’[ | ‘| 
Jae ax! = [ ma x v'( 

Now an integration by parts casts the gradient operator over onto the magneti- 
zation and also gives a surface integral. If M(x’) is well behaved and localized, 
the surface integral vanishes. The vector potential (5.77) then becomes 

[J(x’) + V’ x M(x’)] 
d>x' A(x) = Ho 

(5.78) | 4a [x — x’| 
The magnetization is seen to contribute an effective current density, 

(5.79) 

The macroscopic equivalent of the microscopic equation, V x B micro 

MoSmicro, can be read off from (5.78). If the equations (5.26) have (5.32) as a 
solution, then (5.78) implies that J + Jy, plays the role of the current in the 
macroscopic equivalent, that is: 

Vx B= uJ + Vx M] (5.80) 

The V x M term can be combined with B to define a new macroscopic field H, 
called the magnetic field, 

1 
H=—B-M (5.81) 

Ho 
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Then the macroscopic equations, replacing (5.26), are 

VxH=J 
(5.82) 

V-B=0 

The introduction of H as a macroscopic field is completely analogous to the 
introduction of D for the electrostatic field. The macroscopic equations (5.82) 
have their electrostatic counterparts 

V-D=p 
(5.83) 

VxE=0 

We emphasize that the fundamental fields are E and B. They satisfy the homo- 

geneous equations in (5.82) and (5.83). The derived fields, D and H, are intro- 

duced as a matter of convenience, to permit us to take into account in an average 

way the contributions to p and J of the atomic charges and currents 

To complete the description of macroscopic magnetostatics, there must be a 

constitutive relation between H and B. As discussed in the Introduction, for 

isotropic diamagnetic and paramagnetic substances the simple linear relation 

B = pH (5.84) 

holds, 2 being a parameter characteristic of the medium and called the magnetic 

permeability. Typically y/o differs from unity by only a few parts in 10° (u > po 
for paramagnetic substances and wu < py for diamagnetic). For the ferromagnetic 

substances, (5.84) must be replaced by a nonlinear functional relationship, 

(5.85) B = F(H) 

The phenomenon of hysteresis, shown schematically in Fig. 5.8, implies that B is 

not a single-valued function of H. In fact, the function F(H) depends on the 
history of preparation of the material. The incremental permeability u(H) is 
defined as the derivative of B with respect to H, assuming that B and Hi are 
parallel. For high-permeability substances, 4(H)/uo can be as high as 10°. Most 
untreated ferromagnetic materials have a linear relation (5.84) between B and 

H for very small fields. Typical values of initial relative permeability range from 

10 to 107 

AT. 
LY 

Figure 5.8 Hysteresis loop giving B in a 

ferromagnetic material as a function of H 
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H1>> Ue 

Hy 

Figure 5.9 

The complicated relationship between B and H in ferromagnetic materials 

makes analysis of magnetic boundary-value problems inherently more difficult 

than that of similar electrostatic problems. But the very large values of rela- 

tive permeability sometimes allow simplifying assumptions on the boundary 

conditions. 

The boundary conditions for B and H at an interface between two media are 

derived in Section I.5. There it is shown that the normal components of B and 

the tangential components of H on either side of the boundary are related ac- 

cording to 

(B, — B,)-n=0 (5.86) 

n x (H, — H,) = K (5.87) 

where n is a unit normal pointing from region 1 into region 2 and K is the ide- 
alized surface current density. For media satisfying linear relations of the form 
(5.84) the boundary conditions can be expressed alternatively as 

B,- n= B, -n, B, Xn =-?B xn (5.88) 
By 

or 

H, Xn H-n="Hen, =H, xn (5.89) 

If 4, >> py, the normal component of H, is much larger than the normal com- 
ponent of H,, as shown in Fig. 5.9. In the limit (41;/u2) > ~, the magnetic field 
H, is normal to the boundary surface, independent of the direction of H, (barring 
the exceptional case of H, exactly parallel to the interface). The boundary con- 
dition on H at the surface of a material of very high permeability is thus the same 
as for the electric field at the surface of a conductor. We may therefore use 
electrostatic potential theory for the magnetic field. The surfaces of the high- 
permeability material are approximately “‘equipotentials,” and the lines of H are 
normal to these equipotentials. This analogy is exploited in Many magnet-design 
problems. The type of field is decided upon, and the pole faces are shaped to be 
equipotential surfaces. See Section 5.14 for further discussion. 

3.9 Methods of Solving Boundary- Value Problems 
in Magnetostatics 

The basic equations of magnetostatics are 

VxH=J V-B=0, (5.90) 
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with some constitutive relation between B and H. The variety of situations that 
can occur in practice is such that a survey of different techniques for solving 
boundary-value problems in magnetostatics is worthwhile. 

A. Generally Applicable Method of the Vector Potential 

Because of the first equation in (5.90) we can always introduce a vector 
potential A(x) such that 

B=VxA 

If we have an explicit constitutive relation, H = H[B], then the second equation 
in (5.90) can be written 

Vx H[V x A] =J 

This is, in general, a very complicated differential equation, even if the current 
distribution is simple, unless H and B are simply related. For linear media with 

B = wH, the equation becomes 

1 
—-VXxA (5.91) 
bh 

vx ( )=s3 
If uw is constant over a finite region of space, then in that region (5.91) can be 

written 

V(V- A) - VA = pJ (5.92) 

With the choice of the Coulomb gauge (V- A = 0), this becomes (5.31) with a 

modified current density, (42/9)J. The situation closely parallels the treatment 

of uniform isotropic dielectric media where the effective charge density in the 

Poisson equation is €,p/e. Solutions of (5.92) in different linear media must be 

matched across the boundary surfaces using the boundary conditions (5.88) 

or (5.89). 

B. J = 0; Magnetic Scalar Potential 

If the current density vanishes in some finite region of space, the second 

equation in (5.90) becomes V x H = 0. This implies that we can introduce a 
magnetic scalar potential ®y such that 

H = -Vo,, (5.93) 

just as E = —V@® in electrostatics. With an explicit constitutive relation, this time 

of B = B[H], the V- B = 0 equation can be written 

V+ B[-V@y] = 0 

Again, this is a very complicated differential equation unless the medium is linear, 

in which case the equation becomes 

(5.94) V-(uVOu) = 0 

If ps is at least piecewise constant, in each region the magnetic scalar potential 

satisfies the Laplace equation, 

V-Ou = 0 
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The solutions in the different regions are connected via the boundary conditions 
(5.89). Note that in this last circumstance of piecewise constancy of w, we can 
also write B = —VWy, with V’°V,, = 0. With this alternative scalar potential the 
boundary conditions (5.88) are appropriate. 

The concept of a magnetic scalar potential can be used fruitfully for closed 

loops of current. It can be shown that ®,, is proportional to the solid angle 

subtended by the boundary of the loop at the observation point. See Problem 

5.1. Such a potential is evidently multiple-valued. 

C. Hard Ferromagnets (M given and J = 0) 

A common practical situation concerns ‘‘hard” ferromagnets, having a mag- 

netization that is essentially independent of applied fields for moderate field 

strengths. Such materials can be treated as if they had a fixed, specified magne- 

tization M(x). 

(a) Scalar Potential 

Since J = 0, the magnetic scalar potential ®,, can be employed. The first 
equation in (5.90) is written as 

V-B= wV-(H + M) =0 

Then with (5.93) it becomes a magnetostatic Poisson equation, 

VOy = —Pm (5.95) 

with the effective magnetic-charge density, 

pau = —V-M (5.96) 

The solution for the potential ®y, if there are no boundary surfaces is 

1 [V'-M(x’) 
d*x' Oy(x) = — (5.97) 

An [x — x’| 
If M is well behaved and localized, an integration by parts may be performed to 
yield 

1 

|x ‘ 
Jae Dy(x) = c | M(x’) - v'( 

Then 

1 1 

r( [x — x’| )--+( |x — x’| 
may be used to give 

M(x’) 
d*x’ (5.98) 

[x — x’| 
In passing we observe that far from the region of nonvanishing magnetization 

the potential may be approximated by 

@y(x) = = v(2) | Me” dx" 
_m:x 
= 

A4ar? 
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where m = fM d°x is the total magnetic moment. This is the scalar potential of 
a dipole, as can be seen from the electrostatic (4.10). Thus an arbitrary localized 
distribution of magnetization asymptotically has a dipole field with strength given 
by the total magnetic moment of the distribution. 

While physical distributions of magnetization are mathematically well be- 
haved and without discontinuities, it is sometimes convenient to idealize the re- 
ality and treat M(x) as if it were discontinuous. Thus, if a “hard” ferromagnet 
has a volume V and surface S, we specify M(x) inside V and assume that it falls 
suddenly to zero at the surface S. Application of the divergence theorem to py 
(5.96) in a Gaussian pillbox straddling the surface shows that there is an effective 
magnetic surface-charge density, 

Ou =n-M (5.99) 

where n is the outwardly directed normal. Then instead of (5.97) the potential is 

given by 

1 1 V+ M(x’) n’ - M(x’) da’ 
— ——- dx! + D)(x) = (5.100) 

4a Js Andy |x —x’| [x — ‘| 
An important special case is that of uniform magnetization throughout the vol- 

ume V. Then the first term vanishes; only the surface integral over a, contributes. 

It is important to note that (5.98) is generally applicable, even for the limit 

of discontinuous distributions of M, because we can introduce a limiting proce- 

dure after transforming (5.97) into (5.98) in order to discuss discontinuities in M. 

Never combine the surface integral of oy with (5.98)! 

(b) Vector Potential 

If we choose to write B = V x A to satisfy V - B = 0 automatically, then we 

write the second equation of (5.90) as 

V x H=V X (B/yo — M) = 0 

This leads to the Poisson equation for A in the Coulomb gauge, 

VA = —HoIu (5.101) 

where Jy, is the effective magnetic current density (5.79). The solution for the 

vector potential in the absence of boundary surfaces is 

Mo Vv’ x M(x’) 
d>x' (5.102) A(x) = 

An [x — x’| 

as was already shown in (5.78). An alternative form is given by the magnetization 

term in (5.77). 

If the distribution of magnetization is discontinuous, it is necessary to add a 

surface integral to (5.102). Starting from (5.77) it can be shown that for M dis- 

continuously falling to zero at the surface S bounding the volume V, the gener- 

alization of (5.102) is 

Bo £ M(x’) x n’ bo [ V' X M(x’) 
— 

= da’ d°x' + (5.103) A(x) An Js Vv 4a [x — x’| [x — x’| 

The effective surface current (M x n) can also be understood by expressing the 

boundary condition (5.87) for tangential H in terms of B and M. Again, if M is 
constant throughout the volume, only the surface integral survives. 
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5.10 Uniformly Magnetized Sphere 

To illustrate the different methods possible for the solution of a boundary-value 
problem in magnetostatics, we consider in Fig. 5.10 the simple problem of a 

sphere of radius a, with a uniform permanent magnetization M of magnitude My 
and parallel to the z axis, embedded in a nonpermeable medium. 

The simplest method of solution is that of part C(a) of the preceding section, 

via the magnetic scalar potential in spherical coordinates and a surface magnetic- 

charge density oy,(0). With M = Moe; and oy = n-M = M, cos @, the solution 

(5.100) for the potential is 

cos @’ M,a? 
®,,(r, 6) = | dQ 

4a |x — x’| 

With the expansion (3.38) or (3.70) for the inverse distance, only the / = 1 term 

survives. The potential is 

(5.104) @,(r, 0) = ; Moa? a cos 6 

_ 

= r and where (r., r,) are smaller and larger of (r, a). Inside the sphere, r. 
r, = a. Then ®y = (1/3)Mor cos @ = (1/3)Moz. The magnetic field and magnetic 
induction inside the sphere are therefore 

1 2 ko 
—.—M - M, Hin (5.105) Bi, = 

3 3 

We note that B;, is parallel to M, while Hj, is antiparallel. Outside the sphere, 
r. = aandr, = r. The potential is thus 

1 
—_— 

3 cos 6 
= Oy Moa 

2 (5.106) 
r 

This is the potential of a dipole with dipole moment, 

4na? 
_— 

= M (5.107) 
3 

For the sphere with uniform magnetization, the fields are not only dipole in char- 
acter asymptotically, but also close to the sphere. For this special geometry (and 
this only) there are no higher multipoles. 

The lines of B and H are shown in Fig. 5.11. The lines of B are continuous 
closed paths, but those of H terminate on the surface because there is an effective 
surface-charge density oy. 

M = Moeg 

=| 
oy Figure 5.10 
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> 

B H 

Figure 5.11 Lines of B and lines of H for a uniformly magnetized sphere. The lines of 
B are closed curves, but the lines of H originate on the surface of the sphere where the 
effective surface magnetic “charge,” oy, resides. 

Brief mention should be made of employing (5.98) instead of (5.100). With 

M = Moe; inside the sphere, (5.98) gives 

1 0 1 . r'? dr’ P(r, 0) = ——— M,— (5.108) | 0 4 oz 
fan 

‘ 

Now only the / = 0 term in expansion of the inverse separation survives the 

angular integration and the integral is a function only of r. With ar/dz = cos 8, 

the potential is 

0 
a r’? dr’ 

| 0 

®y(r, 0) = —My cos 6 ap 
rs 

Integration over r’ leads directly to the expression (5.104) for Dy. 

An alternative solution can be accomplished by means of the vector potential 

and (5.103). Because M is uniform inside the sphere the volume current density 

Jy, vanishes, but there is a surface contribution. With M = Moe3, we have 

M x n’ = Mo sin d’e, 

= M, sin 6'(—sin ¢'e, + cos d’€,) 

Because of the azimuthal symmetry of the problem we can choose the observa- 
tion point in the x-z plane (¢@ = 0), just as in Section 5.5. Then only the y com- 
ponent of M x n’ survives integration over the azimuth, giving an azimuthal 
component of the vector potential, 

sin 6’ cos d' 
(5.109) Ag(x) = i Moa? | dQ’ 

[x — x’| 

where x’ has coordinates (a, 6’, @’). The angular factor can be written 

T 
(5.110) sin 0’ cos @’ = —_/— Re[Y,,(0’, ¢’)] E 
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Thus with expansion (3.70) for |x — x’| only the / = 1, m = 1 term will survive 

Consequently 

Fe (5.111) 
2 
> 

) sno Ag (x) = 5 Moc*( 
where r.. (r,) is the smaller (larger) of r and a. With only a @ component of A, 

the components of the magnetic induction B are given by (5.38). Equation (5.111) 
evidently gives the uniform B inside and the dipole field outside, as found before. 

5.11 Magnetized Sphere in an External Field; Permanent Magnets 

In Section 5.10 we discussed the fields of a uniformly magnetized sphere. Because 

of the linearity of the field equations we can superpose a uniform magnetic in- 

duction By = oH) throughout all space. Then we have the problem of a uni- 

formly magnetized sphere in an external field. From (5.105) we find that the 

magnetic induction and field inside the sphere are now 

2 Mo 
B in = Bo + —M 

3 
(5.112) 

1 1 
H, = — Bo -=M 

3 Ho 

We now imagine that the sphere is not a permanently magnetized object, but 
rather a paramagnetic or diamagnetic substance of permeability 4. Then the 
magnetization M is a result of the application of the external field. To find the 
magnitude of M we use (5.84): 

Bin (5.113) = HH, 

Thus 

1 1 2 [Lo 
+ yy Bo —B,-=M (5.114) 

3 3 Ho _ 
This gives a magnetization, 

3 KM Bo M= 
(5.115) 

Ho M+ 2p ( 
We note that this is completely analogous to the polarization P of a dielectric 
sphere in a uniform electric field (4.57). 

For a ferromagnetic substance, the arguments of the preceding paragraph 
fail. Equation (5.115) implies that the magnetization vanishes when the external 
field vanishes. The existence of permanent magnets contradicts this result. The 
nonlinear relation (5.85) and the phenomenon of hysteresis allow the creation of 
permanent magnets. We can solve equations (5.112) for one relation between 
H,,, and B;,, by eliminating M: 

B,, + 2uoHin = 3Bo (5.116) 

The hysteresis curve provides the other relation between B;, and H,,, so that 
specific values can be found for any external field. Equation (5.116) corresponds 
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to a line with slope —2 on the hysteresis diagram with intercept 3By on the y axis, 

as in Fig. 5.12. Suppose, for example, that the external field is increased until the 

ferromagnetic sphere becomes saturated and then decreased to zero. The internal 

B and H will then be given by the point marked P in Fig. 5.12. The magnetization 

can be found from (5.112) with Bp = 0. 

The relation (5.116) between B;,, and H,, is specific to the sphere. For other 

geometries other relations pertain. The problem of the ellipsoid can be solved 

exactly and shows that the slope of the lines (5.116) range from zero for a flat 

disc to — © for a long needle-like object. Thus a larger internal magnetic induction 

can be obtained with a rod geometry than with spherical or oblate spheroidal 

shapes. 

5.12 Magnetic Shielding, Spherical Shell 
of Permeable Material in a Uniform Field 

Suppose that a certain magnetic induction By = @oHp exists in a region of empty 

space initially. A permeable body is now placed in the region. The lines of mag- 

netic induction are modified. From our remarks at the end of Section 5.8 con- 

cerning media of very high permeability, we would expect the field lines to tend 

to be normal to the surface of the body. Carrying the analogy with conductors 

further, if the body is hollow, we would expect the field in the cavity to be smaller 

than the external field, vanishing in the limit » — %. Such a reduction in field is 

said to be due to the magnetic shielding provided by the permeable material. It 

is of considerable practical importance, since essentially field-free regions are 

often necessary or desirable for experimental purposes or for the reliable working 

of electronic devices. 

As an example of the phenomenon of magnetic shielding we consider a 

spherical shell of inner (outer) radius a (b), made of material of permeability pu, 

and placed in a formerly uniform constant magnetic induction Bo, as shown in 

Fig. 5.13. We wish to find the fields B and H everywhere in space, but most 

particularly in the cavity (r < a), as functions of yw. Since there are no currents 

present, the magnetic field H is derivable from a scalar potential, H = —V®,,. 
— 

= pH, the divergence equation V-B = 0 becomes Furthermore, since B 

V-H = 0 in the various regions. Thus the potential ®,, satisfies the Laplace 
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Bo 

Figure 5.13 

equation everywhere. The problem reduces to finding the proper solutions in the 

different regions to satisfy the boundary conditions (5.89) at r = a andr = b. 

For r > b, the potential must be of the form, 

(5.117) ®y = —Hor cos 6 + > oi P,(cos 6) 

to give the uniform field, H = Hp, at large distances. For the inner regions, the 

potential must be 

ao 

a<r<b Oy = > 
1=0 

(4 i+ y sts) Pico 6) 
(5.118) 

r<a Dy = > 5,r'P;(cos 6) 

The boundary conditions at r = a andr = b are that H, and B, be continuous. 
In terms of the potential ®,, these conditions become 

ID y IDy ID y, ODy, 
(b_) 99 (+) = 00 ag (+) = 9 (4) 

(5.119) 
IDy aD y dPu ID yy 

Ho (b+) =p (2_) ar (P awn (a+) = po 
or 

The notation b.. means the limit r > b approached from r 2 b, and similarly for 
a.. These four conditions, which hold for all angles 6, are sufficient to determine 
the unknown constants in (5.117) and (5.118). All coefficients with / # 1 vanish. 
The / = 1 coefficients satisfy the four simultaneous equations 

— _— 

= a — b*By NY BH, 
—_— 

= 2a, + w'b°B, — 2b’ —b°H, 
— 

(5.120) 
= 

+ 0 ap, v1 -a@ 5, 

wap, — 2p'y, —a*6, = 0 

Here we have used the notation wu’ = p/p to simplify the equations. The solu- 
tions for a, and 6, are 

(2u' + 1)(u' - 1) 
a 

3 (b° ~~ a°)H ) 
ef (2u' + 1)(u' + 2) -2 3 (y’ _ 1)’ 

b (5.121) 

Oy’ 
5, Ay 

c (2u’ + 1)(u' +2) -2 (w’ — 1) 
b 
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Figure 5.14 Shielding effect of a shell of highly permeable material. 

The potential outside the spherical shell corresponds to a uniform field Hy plus 

a dipole field (5.41) with dipole moment a, oriented parallel to Hp. Inside the 

cavity, there is a uniform magnetic field parallel to Hj and equal in magnitude 

to —6,. For w >> po, the dipole moment a, and the inner field — 6, become 

a= b?Ho 
(5.122) 

Do -~§,> Fo 
3 

a 
1--—= 

b? 
m 

We see that the inner field is proportional to 4~'. Consequently a shield made 
of high-permeability material with 2/1) ~ 10° to 10° causes a great reduction in 
the field inside it, even with a relatively thin shell. Figure 5.14 shows the behavior 

of the lines of B. The lines tend to pass through the permeable medium if possible. 

5.13 Effect of a Circular Hole in a Perfectly Conducting Plane 
with an Asymptotically Uniform Tangential Magnetic Field 
on One Side 

Section 3.13 discussed the electrostatic problem of a circular hole in a conducting 

plane with an asymptotically uniform normal electric field. Its magnetic counter- 

part has a uniform tangential magnetic field asymptotically. The two examples 

are useful in the treatment of small holes in wave guides and resonant cavities 

(see Section 9.5). 

Before sketching the solution of the magnetostatic boundary-value problem, 

we must discuss what we mean by a perfect conductor. Static magnetic fields 

penetrate conductors, even excellent ones. The conductor modifies the fields only 
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because of its magnetic properties, not its conductivity, unless of course there is 

current flow inside. With time-varying fields it is often otherwise. It is shown in 

Section 5.18 that at the interface between conductor and nonconductor, fields 

with harmonic time dependence penetrate only a distance of the order of 
5 = (2/uwo)'” into the conductor, where w is the frequency and a the conduc- 
tivity. For any nonvanishing o, therefore, the skin depth 6 > 0 as a > ~. Os- 
cillating electric and magnetic fields do not exist inside a perfect conductor. We 

define magnetostatic problems with perfect conductors as the limit of harmoni- 
cally varying fields as w — 0, provided at the same time that wa — ©. Then the 
magnetic field can exist outside and up to the surface of the conductor, but not 

inside. The boundary conditions (5.86) and (5.87) show that B-n = 0,n X H= 

K at the surface. These boundary conditions are the magnetostatic counterparts 

of the electrostatic boundary conditions, E;,, = 0, D +n = a, at the surface of a 

conductor, where in this last relation o is the surface-charge density, not the 

conductivity! 

We consider a perfectly conducting plane at z = 0 with a hole of radius a 

centered at the origin, as shown in Fig. 5.15. For simplicity we assume that the 

medium surrounding the plane is uniform, isotropic, and linear and that there is 

a uniform tangential magnetic field Hp in the y direction in the region z > 0 far 

from the hole, and zero field asymptotically for z < 0. Other possibilities can be 

obtained by linear superposition. Because there are no currents present except 

on the surface z = 0, we can use H = —V®y,y, with the magnetic scalar potential 

®,,(x) satisfying the Laplace equation with suitable mixed boundary conditions. 

Then we can parallel the solution of Section 3.13. 

The potential is written as 

forz>0 —Apoy + po” 
Dy(x) = (5.123) 

pl) forz <0 

The reversal of sign for the added potential &“” below the plane is a consequence 
of the symmetry properties of the added fields—H and H‘” are odd in z, while 
HY and ®™ are even in z. This can be inferred from (5.14) with the realization 
that the effective current is only on the surface z = 0, as is the effective magnetic- 
charge density that determines the scalar potential d™. 

From (3.106) the added potential can be written in cylindrical coordinates as 

(5.124) OY (x) = f . dk A(k)e™*'*'J,(kp) sin d 

Ho Ho 

oa | 

Figure 5.15 
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Only m = 1 enters because the hole is cylindrically symmetric and the asymptotic 
field varies as y = p sin @. From the boundary conditions on normal B and tan- 
gential H we find that the boundary conditions on the full potential ®,, are 

®,, continuous across z = 0 forO0 =p<a 

aD y 
—— =0Oatz=0 fora < p< © 

0 

These requirements imply the dual integral equations, 

[ dk A(k)J,(kp) = Hopl2 forO<p<a 
(5.125) 

fora<p< © l "dk kA(k)J,(kp) = 0 

These are closely related to, but different from, the electrostatic set (3.178) or 
(3.179). The necessary pair here are 

[ dy g(y)J,( yx) = x” forO=x<1 
(5.126) 

forl<x< l . dy yg(y)JAyx) = 0 
with solution, 

1/2 

2 2T(n + 1) I'(n + 1) 
g(y) = iY) = Jn+i2y) (5.127) 

y ( [(n + 3) Val(n + 4) 

In (5.125) we have g = 2A(k)/Hoa’, n = 1, x = pla, and y = ka. Hence 

2H,a’ 
(ka) A(k) = (5.128) 7! 

The added potential is therefore 

2H,a’ 
(5.129) © (x) = [ dk j,(ka)e~*?'J,(kp) sing 

T 

By methods similar to those of Section 3.13 it can be shown that far from the 

opening the added potential has the asymptotic form 

_— 

2Hoa* y 
(5.130) (x) => 

3 r 3% 

This is the potential of a dipole aligned in the y direction, the direction of Hb. 

Because of the signs in (5.123), the circular hole is equivalent at large distances 

to a magnetic dipole with moment 

8a? 
for z 20 m = +— H, (5.131) 

3 

where Hy is the tangential magnetic field on the z = 0” side of the plane in 
the absence of the hole. Later (Fig. 9.4) we show qualitatively how the magnetic 
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—_— 

= 0, field lines distort to give rise to the dipole field. In the opening itself (z 
0 < p < a) the tangential and normal components of the magnetic field are 

1 
ian = 5 Ho 

2 
(5.132) 

2Ho p 
— sin d Hp, 0) = at Vae— pe o 

~~ _~ 

Comparison with the corresponding electrostatic problem in Section 3.13 

shows similarities and differences. Roughly speaking, the roles of tangential and 

normal components of fields have been interchanged. The effective dipoles point 
in the directions of the asymptotic fields, but the magnetic moment (5.131) is a 

factor of 2 larger than the electrostatic moment (3.183) for the same field 

strengths. For arbitrarily shaped holes the far field in the electrostatic case is still 

that of a dipole normal to the plane, while the magnetic case has its effective 

dipole in the plane, but now the direction of the magnetic dipole depends on 

both the field direction and the orientation of the hole (the hole has an aniso- 

tropic magnetic susceptibility). 

5.14 Numerical Methods for Two-Dimensional Magnetic Fields 

Magnetic fields in the presence of iron or other highly permeable materials can 

be evaluated numerically in two dimensions by the relaxation method described 

in Section 1.13 or, more generally, by the method of finite element analysis of 

Section 2.12. The problems can be classed as “‘interior”’ or ‘exterior,’ depending 

whether the current flow and/or magnetized material and desired field are within 

the same region. 

First consider the boundary conditions for the field components at the 
smooth interface of a highly permeable medium and a nonpermeable one. Lo- 
cally, the interface can be approximated by a plane. The boundary conditions 
are that the tangential component of H and the normal component of B are 
continuous across the interface, if there are no surface currents. Figure 5.16 is a 

H>>Uo H= Ho 

HoA, By 
Up © = Bo 

HoH HoH 
B =upH UH ' 0). BO 

B Bi 

Figure 5.16 Illustration of the effect of large permeability on the components of the 
magnetic induction and magnetic field on either side of an interface. The sketch has 
. ~ 5p, not a very high permeability! 
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sketch of the behavior of the field components, similar to Fig. 5.9 but showing 
both B and H components. For a given “external” field B© in the nonpermeable 
region, the components of B (and H) in the highly permeable medium are more 
closely parallel to the interface. The magnitude of the magnetic induction just 
inside the highly permeable medium is 

_— 

= |B)’ Bor + ig Bor 

while the energy per unit volume (see Section 5.16) there is 

1 be 

— BY? + Bio 

2 2M 

These two relations are immediately useful in learning the appropriate boundary 
conditions of “‘exterior”’ and ‘“‘interior’” problems in the limit 4/9 > ©. 

The most familiar static magnetic fields are those around a permanent mag- 
net of high permeability or an iron core excited by remote current-carrying wind- 

ings. The region of interest is the nonpermeable region bounded by the highly 

permeable pole face or faces—the archetypal ‘‘exterior’’ problem. If we suppose 

that the stored energy within the highly permeable medium is finite, the energy 

relation shows that, as 44/9 — ©, the parallel component of the magnetic field 

outside must vanish: the ‘‘external’”’ magnetic field at the surface is perpendicular 

to the interface. These are just the boundary conditions for the electrostatic field 

at the surface of a conducting boundary, as mentioned at the end of Section 

5.8. If there are no currents within the nonpermeable region of interest, then 

V x H = 0 there and we can write H = —V®,,. The magnetic scalar potential 

satisfies the Laplace equation, V’*®y, = 0, with the “pole pieces,” surfaces of 
constant potential; the analogy with electrostatics is complete. 

For simplicity we restrict our discussion of “interior” problems to two di- 

mensions, with steady current flow only in the third direction in a uniform, highly 

permeable conducting medium. We are interested in the magnetic induction 

within the medium—for example, a long iron third rail of a subway system. The 

current flow produces a magnetic induction both inside and outside the medium. 

Whatever the magnitudes of the parallel and perpendicular components just out- 

side, the boundary conditions assure that B is parallel to the surface of the me- 

dium just inside as p/py > ©. 

If the current density has only a z component, J,(x, y), the vector potential 

A has only a z component, A,(x, y), which satisfies the Poisson equation, 
— 

= —pJ,. The field components are B, = 0A,/dy, B, = —dA,/dx, B, = 0. VA, 
If the internal field B is tangential to the boundary C of the region R sketched 
in Fig. 5.17, we haven-(V, X A) =(n x V,)-A = 0onC. The gradient operator 
in the x-y plane can be resolved into components parallel to and perpendicular 

to n. The boundary condition thus becomes 

aA, 
= 0 

al 

where d/ is an element of arc length along C. The vector potential is constant 

along the boundary curve C. Furthermore, we can infer that in the interior region 

R the magnetic field lines are parallel to the contours of constant A,. Because B 

= V x A, the density of lines of force is given by the derivative of A, perpen- 
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Figure 5.17 Cross section of a long, highly permeable 

cylindrical conductor with current flow along its length. 

dicular to the surfaces of constant value; the spacing of contours of constant A, 

with equal increments in A, will show the intensity of the field as well as its 

direction. 

In implementing numerical methods of solution of the Poisson equation, 
— 

= —pJ,, boundary conditions must be specified. That seems to mean the VA, 
constant value of A, on the contour C. But the vector potential is arbitrary 

to within addition of the gradient of a scalar function y. With the choice, 

y = —Apo:+z, where Apo is the yet undetermined value of A, on C, we define 

Al = A,(x, y) — Ao. The Poisson equation problem to be solved then becomes 

V’A! = wJ, within R with the homogeneous boundary condition A; = 0 on the 
boundary C. The value of A, on C is not physically meaningful and is not 
needed. With J,(x, y) specified, the solution by the relaxation technique proceeds 
as in Section 1.13. 

Powerful numerical codes exist to solve more realistic magnetic field prob- 

lems where, for example, the different permeable materials have large, but not 

infinite, values of y/o. References are given at the end of the chapter. 

5.15 Faraday’s Law of Induction 

The first quantitative observations relating time-dependent electric and magnetic 

fields were made by Faraday (1831) in experiments on the behavior of currents 

in circuits placed in time-varying magnetic fields. Faraday observed that a tran- 

sient current is induced in a circuit if (a) the steady current flowing in an adjacent 

circuit is turned on or off, (b) the adjacent circuit with a steady current flowing 

is moved relative to the first circuit, (c) a permanent magnet is thrust into or out 

of the circuit. No current flows unless either the adjacent current changes or there 

is relative motion. Faraday attributed the transient current flow to a changing 

magnetic flux linked by the circuit. The changing flux induces an electric field 

around the circuit, the line integral of which is called the electromotive force, 6. 

The electromotive force causes a current flow, according to Ohm’s law. 

We now express Faraday’s observations in quantitative mathematical terms. 

Let the circuit C be bounded by an open surface S with unit normal n, as in Fig. 

5.18. The magnetic induction in the neighborhood of the circuit is B. The mag- 

netic flux linking the circuit is defined by 

(5.133) r= | B-nda 
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Figure 5.18 

The electromotive force around the circuit is 

(5.134) => Bed 

where E’ is the electric field at the element dl of the circuit C. Faraday’s obser- 
vations are summed up in the mathematical law, 

dF 
— 

=> é -k— (5.135) 
dt 

The induced electromotive force around the circuit is proportional to the time 
rate of change of magnetic flux linking the circuit. The sign is specified by Lenz’s 

law, which states that the induced current (and accompanying magnetic flux) is 

in such a direction as to oppose the change of flux through the circuit. 

The constant of proportionality k depends on the choice of units for the 

electric and magnetic field quantities. It is not, as might at first be supposed, an 

independent empirical constant to be determined from experiment. As we will 

see immediately, once the units and dimensions in Ampére’s law have been cho- 

sen, the magnitude and dimensions of k follow from the assumption of Galilean 
-1 

2 
invariance for Faraday’s law. For SI units, k = 1; for Gaussian units, k = c 

where c is the velocity of light. 

Before the development of special relativity (and even afterward, when in- 

vestigators were dealing with relative speeds that were small compared with the 

velocity of light), it was understood, although not often explicitly stated, by all 

physicists that physical laws should be invariant under Galilean transformations. 

That is, physical phenomena are the same when viewed by two observers moving 

with a constant velocity v relative to one another, provided the coordinates in 

space and time are related by the Galilean transformation, x’ = x — vi, ft’ = 1. 

In particular, consider Faraday’s observations. It is expected and experimentally 

verified that the same current is induced in a secondary circuit whether it is moved 

while the primary circuit through which current is flowing is stationary or it is 

held fixed while the primary circuit is moved in the same relative manner. 

Let us now consider Faraday’s law for a moving circuit and see the conse- 

quences of Galilean invariance. Expressing (5.135) in terms of the integrals over 
E’ and B, we have 

(5.136) $ g-at=-k2 | Benda 
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as 

=e! Figure 5.19 

The induced electromotive force is proportional to the total time derivative of 
the flux—the flux can be changed by changing the magnetic induction or by 

changing the shape or orientation or position of the circuit. In form (5.136) we 

have a far-reaching generalization of Faraday’s law. The circuit C can be thought 
of as any closed geometrical path in space, not necessarily coincident with an 
electric circuit. Then (5.136) becomes a relation between the fields themselves. 
It is important to note, however, that the electric field, E’ is the electric field at 
dl in the coordinate system or medium in which dl is at rest, since it is that field 
that causes current to flow if a circuit is actually present. 

If the circuit C is moving with a velocity v in some direction, as shown in Fig. 

5.19, the total time derivative in (5.136) must take into account this motion. The 

flux through the circuit may change because (a) the flux changes with time at a 

point, or (b) the translation of the circuit changes the location of the boundary. 

It is easy to show that the result for the total time derivative of flux through the 

moving circuit is* 

— 

= (5.137) | £ | B-nda sada + (BX v)-dl 

Equation (5.136) can now be written in the form, 

0 
(5.138) p [E' — k(v x B)]- dl = a +n da 

This is an equivalent statement of Faraday’s law applied to the moving circuit C. 

But we can choose to interpret it differently. We can think of the circuit C and 

surface S as instantaneously at a certain position in space in the laboratory. Ap- 

plying Faraday’s law (5.136) to that fixed circuit, we find 

0 
(5.139) fea--«| 0 

= +n da 

*For a general vector field there is an added term, J,(V + B)v- n da, which gives the contribution of 
the sources of the vector field swept over by the moving circuit. The general result follows most easily 
from the use of the convective derivative, 

a 
—+yv-V 

dt 0 

Thus 

dB 0B 
—=—+(¥ 
dt 0 

-V)B = — + V x (Bx v) + v(V- B) 

where v is treated as a fixed vector in the differentiation. Use of Stokes’s theorem on the second term 
yields (5.137). 
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where E is now the electric field in the laboratory. The assumption of Galilean 
invariance implies that the left-hand sides of (5.138) and (5.139) must be equal. 
This means that the electric field E’ in the moving coordinate system of the circuit 
1S 

E' =E + k(v x B) (5.140) 

To determine the constant k we merely observe the significance of E’. A charged 
particle (e.g., one of the conduction electrons) essentially at rest in a moving 
circuit will experience a force gE’. When viewed from the laboratory, the charge 
represents a current J = gvd(x — xo). From the magnetic force law (5.7) or (5.12) 

it is evident that this current experiences a force in agreement with (5.140) pro- 
vided the constant k is equal to unity (SI) or 1/c (Gaussian). 

Thus we see that, with our choice of units for charge and current, Galilean 
covariance requires that the present constant k be equal to the constant appearing 
in the definition of the magnetic field (5.4). Faraday’s law (5.136) therefore reads 

(5.141) pe -a=-4) Benda 

where E’ is the electric field at dl in its rest frame of coordinates. The time 

derivative on the right is a total time derivative (5.137). As a by-product we have 

found that the electric field E’ in a coordinate frame moving with a velocity v 

relative to the laboratory is 

E’=E+vxB (5.142) 

Because we considered a Galilean transformation, the result (5.142) is an ap- 

proximation valid only for speeds small compared to the speed of light. (The 

relativistic expressions are derived in Section 11.10.) Faraday’s law is no approx- 

imation, however. The Galilean transformation was used merely to evaluate the 

constant k in (5.135), a task for which it was completely adequate. 

Faraday’s law (5.141) can be put in differential form by use of Stokes’s the- 

orem, provided the circuit is held fixed in the chosen reference frame (to have E 
and B defined in the same frame). The transformation of the electromotive force 

integral into a surface integral leads to 

[.(vxe+2)naa=o 

Since the circuit C and bounding surface S are arbitrary, the integrand must 
vanish at all points in space. 

Thus the differential form of Faraday’s law is 

oB 
VxE+—=-0 (5.143) 

We note that this is the time-dependent generalization of the statement, 

Vv x E = 0, for electrostatic fields. 
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5.16 Energy in the Magnetic Field 

In discussing steady-state magnetic fields in the first 14 sections of this chapter 
we avoided the question of field energy and energy density. The reason was that 

the creation of a steady-state configuration of currents and associated magnetic 
fields involves an initial transient period during which the currents and fields are 

brought from zero to the final values. For such time-varying fields there are 

induced electromotive forces that cause the sources of current to do work. Since 

the energy in the field is by definition the total work done to establish it, we must 

consider these contributions. 

Suppose for a moment that we have only a single circuit with a constant 

current J flowing in it. If the flux through the circuit changes, an electromotive 

force @ is induced around it. To keep the current constant, the sources of current 

must do work. To determine the rate, we note that the time rate of change of 

energy of a particle with velocity v acted on by a force F is dE/dt = v- F. With 

a changing flux, the added field E’ on each conduction electron of charge q and 

mean velocity v gives rise to a change in energy per unit time of qv-E’ per 

electron. Summing over all the electrons in the circuit, we find that the sources 

do work to maintain the current at the rate 

dF dW _ 
= -1@ = [— 

d. d 

the negative sign following from Lenz’s law. This is in addition to ohmic losses 

in the circuit, which are not to be included in the magnetic-energy content. Thus, 

if the flux change through a circuit carrying a current J is 5F, the work done by 

the sources is 

OW = 1 6F 

Now we consider the problem of the work done in establishing a general 
steady-state distribution of currents and fields. We may imagine that the buildup 
process occurs at an infinitesimal rate so that V - J = 0 holds to any desired degree 

of accuracy. Then the current distribution can be broken up into a network of 
elementary current loops, the typical one of which is an elemental tube of current 
of cross-sectional area Ao following a closed path C and spanned by a surface S 
with normal n, as shown in Fig. 5.20. 

We can express the increment of work done against the induced emf in terms 
of the change in magnetic induction through the loop: 

A(6W) = J Ao [ n- 5B da 

-_—— 

_—_— 

Ao 
—_—_—— 

TN Ar TTT 

AHN _{\C TT 

Figure 5.20 Distribution of current 
density broken up into elemental current 
loops. 
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where the extra A appears because we are considering only one elemental circuit. 
If we express B in terms of the vector potential A, then we have 

A(6W) = to | (V x 5A)+nda 

With application of Stokes’s theorem this can be written 

A(6W) = J Ao $ SA + dl 

but J Ao dl is equal to J d°x, by definition, since dl is parallel to J. Evidently the 
sum over all such elemental loops will be the volume integral. Hence the total 
increment of work done by the external sources due to a change SA(x) in the 
vector potential is 

(5.144) sw = | 5A 5d%x 
An expression involving the magnetic fields rather than J and 6A can be 

obtained by using Ampére’s law: 

VxH=J 

Then 

(5.145) sw = | 5A. (Vx) as 

The vector identity, 

V- (Px Q)=Q-(V x P)-P-(V x Q) 

can be used to transform (5.145): 

(5.146) sw = | [H-(V x 5A) + V- (Hx 8A)] as 

If the field distribution is assumed to be localized, the second integral vanishes. 

With the definition of B in terms of A, the energy increment can be written: 

(5.147) aw = | H- 8B d’x 

This relation is the magnetic equivalent of the electrostatic equation (4.86). In 
its present form it is applicable to all magnetic media, including ferromagnetic 
substances. If we assume that the medium is para- or diamagnetic, so that a linear 

relation exists between H and B, then 

H. 5B = 16(H -B) 

If we now bring the fields up from zero to their final values, the total magnetic 

energy will be 

(5.148) w-i/H-Bar 
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This is the magnetic analog of (4.89). 

The magnetic equivalent of (4.83) where the electrostatic energy is expressed 

in terms of charge density and potential, can be obtained from (5.144) by assum- 

ing a linear relation between J and A. Then we find the magnetic energy to be 

(5.149) wei faads 

The magnetic problem of the change in energy when anobjéct of perme- 

ability 4, is placed in a magnetic field whose current sources are fixed can be 

treated in close analogy with the electrostatic discussion of Section 4.7. The role 

of E is taken by B, that of D by H. The original medium has permeability 49 and 

existing magnetic induction Bo. After the object is in place the fields are B and 

H. It is left as an exercise for the reader to verify that for fixed sources of the 

field the change in energy is 

1 
W=- 

2 
y, CBs Ho — Hi: Bo) dx 

where the integration is over the volume of the object. This can be written in the 

alternative forms: 

1 1 1 
— _—_—- — —— W =, (41 — Ho)H + Hy d?x = 

Ho My A )p ° Bo d°x 
Both 2; and po can be functions of position, but they are assumed independent 
of field strength. 

If the object is in otherwise free space, the change in energy can be expressed 
in terms of the magnetization as 

W=- M ° Bo d°x (5.150) 
2 Vy 

It should be noted that (5.150) is equivalent to the electrostatic result (4.93), 
except for sign. This sign change arises because the energy W consists of the total 
energy change occurring when the permeable body is introduced in the field, 
including the work done by the sources against the induced electromotive forces. 
In this respect the magnetic problem with fixed currents is analogous to the elec- 
trostatic problem with fixed potentials on the surfaces that determine the fields. 
By an analysis equivalent to that at the end of Section 4.7 we can show that for 
a small displacement the work done against the induced emf’s is twice as large 
as, and of the opposite sign to, the potential-energy change of the body. Thus, 
to find the force acting on the body, we consider a generalized displacement & 
and calculate the positive derivative of W with respect to the displacement: 

— aw 
= 

(5.151) 
0g ( ) 

The subscript J implies fixed source currents. 
The difference between (5.150) and the potential energy (5.72) for a per- 

manent magnetic moment in an external field (apart from the factor 5, which is 
traced to the linear relation assumed between M and B) comes from the fact that 
(5.150) is the total energy required to produce the configuration, whereas (5.72) 
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includes only the work done in establishing the permanent magnetic moment in 

the field, not the work done in creating the magnetic moment and keeping it 

permanent. 

5.17 Energy and Self- and Mutual Inductances 

A. Coefficients of Self- and Mutual Inductance 

Just as the concept of coefficients of capacitance for a system of conductors 

held at different electrostatic potential is useful (Section 1.11), the concept of 

self- and mutual inductances are useful for systems of current-carrying circuits. 

Imagine a system of N distinct current-carrying circuits, the ith one with total 

current J;, in otherwise empty space. The circuits are not necessarily thin wires 

(they can be bus bars, etc.) but are assumed for the present to be nonpermeable. 

The total energy (5.149) in terms of an integral of J- A/2 can be expressed as 

(5.152) S Ss Mylid; w=i> Litt 
i=1 j>i 

where L, is the self-inductance of the ith circuit and M;; is the mutual inductance 

between the ith and jth circuits. To establish this result, we first use (5.32) for the 
vector potential to convert (5.149) to 

I(x) + I(x’) (5.153) w=" fae | ay 
|x — x'| 

The integrals can now be broken up into sums of separate integrals over each 

circuit: 

J(x:) + I(xj) 
d°x' 

J w= Bes farx,> 
|x; _ x;| 

In the sums there are terms with i = j and terms with i # j. The former define 

the first sum in (5.152), the latter, the second. Evidently, the coefficients L; and 

M, are given by 

Lo J(x,) J(x;) 
(5.154) 

L [ax] ax 
~ Ani? |x; ~ x; 

and 

Ho J(x;) ° J(x;) 
(5.155) M; = 

|x 
[an Jax) 

x; | A4nl,I; 

Note that the coefficients of mutual inductance M,; are symmetric in ¢ and j. 
These general expressions for self- and mutual inductance are the rigorous 

versions of the more elementary definitions in terms of flux linkage. To establish 
the connection, consider the expression for mutual inductance (for which the 
ambiguities in the definition of flux linkage for self-inductance are absent). The 
integral over d°x’ times 19/4 7ris just the expression (5.32) for the vector potential 
A(x,) at position x; in the ith circuit caused by the current I, flowing in the jth 
circuit. If the ith circuit is imagined to be negligible in cross section compared to 
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the overall scale of both circuits, we can write the integrand J(x,) d°x for the 
integration over the volume of the ith circuit as J d°x = J, da dl, where da is a 
locally defined element of cross-sectional area and dl is a directed longitudinal 
differential in the sense of current flow. With the vector potential sensibly con- 

stant in the cross-sectional integral at a fixed position along the circuit, the mutual 

inductance becomes 

— 

T. 
M; a $ A; - dl = I, (V x Ajj) ° nda ™~ 

J 

where A,, is the vector potential caused by the jth circuit at the integration point 

on the ith and the factor J; comes from the integral over the cross section. Stokes’s 

theorem has been used to obtain the second form. Since the curl of A is the 

magnetic induction B, the area integral is just the magnetic-flux linkage (5.133). 
Thus the mutual inductance is finally 

1 
F; M (5.156) 

y y TL. 
J 

where F, is the magnetic flux from circuit j linked within circuit i. For self-induc- 
tance, the physical argument is the same, but the ambiguity in the meaning of 
the self-flux linkage F,; requires a return to the rigorous expression (5.154) based 
on the magnetic energy. 

For both mutual and self-inductance the energy definitions are fundamental. 

If either the conductors carrying the current are permeable or the medium be- 

tween the conductors is (uw # po), (5.152) is valid, but (5.153) is not. It is then 

best to use the expression (5.148) for the magnetic energy in terms of the fields 

on the left-hand side of (5.152) in computation of the coefficients of induction. 

The presence of terms such as L di/dt or M,, dl,/dt in the voltage balance in 

lumped circuit equations follows immediately from relating the time derivative 

of the linked flux (dF/dt) to the induced emf @ through (5.135). 

B. Estimation of Self-Inductance for Simple Circuits 

The self-inductance of simple current-carrying elements can be estimated by 

consideration of the magnetic energy. Suppose a circular wire of cross-sectional 

radius a@ carrying a steady current J forms a loop of circumference C and “‘area”’ 

A (the quotation marks remind us that, since the loop may not be planar, A may 

stand for a projected area). We imagine that the loop, though relatively arbitrary 

in shape, does not have kinks in it with radii of curvature as small as the wire 

size. An example is sketched in Fig. 5.21. There are three length scales here— 
the wire radius, the dimensions of the loop, represented by C/27 or A, and the 
outside region, r >> C/27. From (5.152), the relation between the self-inductance 
and the magnetic energy, we find that 

e 1 {B 
L=3 d°x (5.157) I 

Estimation of the magnetic induction will lead to an estimate of the inductance. 
On the length scale of the wire radius, we may ignore the curvature and consider 
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Diameter = 2a 

"Area"=A 

Circumference = C 

Figure 5.21 Closed current-carrying 

circuit made of a wire of radius a, length 

C, and (projected) area A. 

the field inside and outside the wire as if it were straight and infinitely long. If 
the current density is uniform throughout the interior, from symmetry and 
Ampeére’s law (5.25) the magnetic induction is azimuthal and equal to 

= Holl pe 
p 

27a ps 

where p. (p,) is the smaller (larger) of a and p. We have assumed that the wire 
and the medium surrounding it are nonpermeable. The contributions to the in- 

ductance per unit length from inside the wire and outside the wire, out to a radius 

Pmax» are 

dLin Mo, Pinax 
= 

dL out(Pmax) _ Ho 
dl 8a’ dl 4a 

a Hl 
The radial integral outside the wire is limited to p < py... because the expression 

for B, fails to represent the magnetic induction at distances of the order of the 

middle length scale. If we look to the interior of the loop, it is clear that for 

p = O(C/27) = O(A””) the isolated straight wire is a very poor representation 
of the current pattern. Thus we expect* pz, = O(A’”). There is, of course, a 
contribution to the inductance from the outside region at distances beyond pax. 

There, at distances large compared to A’”, the slow falloff of the magnetic in- 
duction as 1/p is replaced by a dipole field pattern with |B| = O(om/47r*), where 
m = O(IA) is the magnetic moment of the loop of wire. Because of the rapid 

decrease of the field beyond p,,,,, the contribution per unit length to the induc- 

tance from large distances (i.e., p = A”) can be estimated to be 
oo 

4a dLaipote J dl Pmax pol®C 
r?(UolAl/4ar’?y ar) = O(uoA7/4mpiiaxC) = of 

— 

= (€'A)'”, where é’ is a number of order unity (containing our If we set pmax 

ignorance), 

d Lai ole —— “por = O(u)A7/4nC) 
dl 

*If the circuit shape is such that A < C’, as for an elongated loop, a different estimate of p,,., may 

be appropriate [e.g., Pmax = O(A/C)]. 
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a contribution of order unity compared to the logarithm above. Upon combining 
the different contributions, the inductance of the loop is estimated to be 

1 tA 
_— L~="c + —-— (5.158) 

2 2 T | pol 
Here we have exhibited the interior contribution explicitly and indicated the 

uncertainty in the proper value of p,,., and the size of the exterior contribution 
~~ ~~ 

through the number &, of order unity. 

Four comments: First, if the wire has a magnetic permeability yw, the interior 

contribution becomes 3 — 4/2449. Second, for a thin wire bent in a circle of radius 
large compared to the wire radius, a precise calculation (see Problem 5.32) shows 

that € = 64/me* ~ 0.373. Third, at frequencies high enough to ensure that the 
skin depth of the wire is small compared to its radius, the interior contribution 

is absent because the current is confined to near the surface of the wire (see next 

section). Fourth, if the single turn of wire is replaced by a tight coil of N turns, 

with the effective cross-sectional radius of the bundle being a, the self-inductance 

is N* times the expression above. 

Exercise 

Consider a circuit made up of two long, parallel, nonpermeable, circular wires of 

radii a, and a2, separated by a distance d large compared to the largest radius. 
Current flows up one wire and back along the other. Ignore the ends. Use the 
method above to show that the self-inductance per unit length is approximately 

1 éd 
_ 

dL _ bo 

dl T 4 
V Gaz [>( | 

where ¢ is of order unity. Can you find a reliable value of & within the approxi- 
mations stated? 

5.18 Quasi-Static Magnetic Fields in Conductors; 
Eddy Currents; Magnetic Diffusion 

The magnetostatics of the first 14 sections of this chapter are based on Ampére’s 
law and the absence of magnetic charges. As we saw in Section 5.15, if the mag- 
netic induction varies in time, an electric field is created, according to Faraday’s 
law; the situation is no longer purely magnetic in character. Nevertheless, if the 
time variation is not too rapid, the magnetic fields dominate and the behavior 
can be called quasi-static. “‘Quasi-static” refers to the regime for which the finite 
speed of light can be neglected and fields treated as if they propagated instan- 
taneously. Said in other, equivalent words, it is the regime where the system is 
small compared with the electromagnetic wavelength associated with the domi- 
nant time scale of the problem. As we learn in subsequent chapters, such a regime 
permits neglect of the contribution of the Maxwell displacement current to 
Ampére’s law. We consider such fields in conducting media, where Ohm’s law 
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relates the electric field to the current density and so back to the magnetic field 
via the Ampére equation. The relevant equations are 

0 
VxH=-J, V-B=0, VxE+—=0, J=oE (5.159) 

With B = V x A, Faraday’s law shows that the curl of E + dA/dt vanishes. As a 
result, we can write E = —dA/dt — V ®. With the assumption of negligible free 
charge and the time-varying B as the sole source of the electric field, we may set 
the scalar potential ® = 0 and have E = —@A/dt. Note that we have the subsidiary 
conditions, V- E = 0 and V- A = O. For media of uniform, frequency-indepen- 
dent permeability 4, Ampére’s law can be written V x B = pI = wok. Elimi- 
nation of B and E in favor of A and use of the vector identity, V x V x A = 
V(V- A) — VA, yields the diffusion equation for the vector potential, 

dA 
VA = po — (5.160) 

ot 

This equation, which obviously also holds for the electric field E, is valid for 
spatially varying, but frequency-independent o. If the conductivity is constant in 
space, it follows that the magnetic induction B and the current density J also 
satisfy the same diffusion equation. 

The structure of (5.160) allows us to estimate the time 7 for decay of an initial 

configuration of fields with typical spatial variation defined by the length L. We 

put V7A = O(A/L’) and dA/at = O(A/t). Then 

T= O(uoL’) (5.161) 

Alternatively, (5.161) can be used to estimate the distance L over which fields 

exist in a conductor subjected externally to fields with harmonic variation at 

frequency v = 1/7, 

1 
(5.162) 

V pov 
L = of 

For a copper sphere of radius 1 cm, the decay time of some initial B field inside 

is of the order of 5-10 milliseconds; for the molten iron core of the earth it is of 

the order of 10° years. This last number is consistent with paleomagnetic 
data—the last polarity reversal of the earth’s field occurred about 10° years ago; 
there is some evidence for a decline to near zero about 5 X 10* years ago and a 
rise back to its present value. 

A. Skin Depth, Eddy Currents, Induction Heating 

A simple quantitative illustration of the fields described by (5.160) is afforded 
by the situation shown in Fig. 5.22: A semi-infinite conductor of uniform con- 
ductivity o and permeability ~ occupies the space z > 0, with empty space for 
z <0. The surface at z = 0° is subjected to a spatially constant, but time-varying, 

magnetic field in the x direction, H,(t) = Ho cos wt. We seek a steady-state so- 

lution of (5.160) for z > 0, subject to appropriate boundary conditions at z = 0 

and finiteness at z > +. Continuity of the tangential component of H and the 
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H,, = Ho cos wt 
Ho 

Zz 
~~ 

Figure 5.22 At the surface of a semi-infinite conducting permeable medium, a spatially 
constant magnetic field, H,(t) = Ho cos wt, is applied parallel to the surface at z = 0 

A localized magnetic field and current flow exists within the medium in the region 

z < O(8). 

normal component of B across z = 0 requires that at z = 0°, the magnetic field 

have only an x component, H,(t) = Ho cos wt. The linearity of (5.160) implies 

that there is only an x component throughout the half-space, z > 0 and it is a 

function of z and ¢, H,(z, t). 

Because the diffusion equation is second order in the spatial derivatives and 

first order in the time, it is convenient to use complex notation, with the under- 

standing that the physical fields are found by taking the real parts of the solutions. 

Thus, the boundary value on H, is H, = Hye™‘“", where taking the real part is 

understood. The steady-state solution for H,(z, tf) can be written 

H,(z, t) = h(zje*" 
where, from (5.160), A(z) satisfies 

2 

—_ (5.163) 
dz” ( + ino )i(2) = 0 

A trial solution of the form, h(z) = e’** leads to the condition 

Or k* = ipow k=+01 +i) [2° (5.164) 
2 

The square root has the dimensions of an inverse length characteristic of the 
medium and the frequency [see (5.162)]. The length is called the skin depth 6: 

2 
—— 6= (5.165) 
pow 

For copper at room temperature (o~* = 1.68 xX 10°° O-m), 6 = 6.52 xX 
10°7/\V v(Hz) m, where v = w/27. For seawater, 5 ~ 240/V v(Hz) m (see Fig. 7.9 
and accompanying text). 

The solution for H, is the real part of 

H(z, t) — Ae 2/8 iz/8- ot) 4 Bez!e7i@/6+ wt) 

with A and B complex numbers. We must choose B = 0 to avoid exponentially 
large fields as z — ©. Comparison of the solution to the boundary value, 
H,(0*, t) = Hoe’, shows that A = H, and the solution for z > 0 is 

H(z, t) = Hoe" cos(z/8 — wt) (5.166) 

The magnetic field falls off exponentially in z, with a spatial oscillation of the 
same scale, being confined mainly to a depth less than the skin depth 6. 
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Since the field varies in time, there is an accompanying small electric field. 
From Ampére’s and Ohm’s laws, together with the existence of only H(z, t), we 
find that there is only a y component of E, given by 

—_ 

1dH, -1+i 
Ey = Hye7 2% e!2/8-iwt 

od o dz 

Taking the real part and writing 1/05 = 5/2, we have 

pwd 
— Ey = Hye~*” cos(z/5 — wt + 32/4) (5.167) /2 

To compare the magnitude of the electric field and the magnetic induction, we 
form the dimensionless ratio, 

E,/cuH, = O(wdlc) << 1 

by the quasi-static assumption. The fields are predominantly magnetic, with a 
small tangential electric field. The field is associated with a localized current 

density (for z > 0), 

/2 

J 
y (5.168) oF, = — Hyoe™*” cos(z/6 — wt + 37/4) 

whose integral in z is an effective surface current, 

K,(t) = [ J,(z, t) dz = —Hp cos wt 

For very small skin depth, the volume current flow in the region within O(6) of 

the surface acts as a surface current whose magnitude and direction is such as to 

reduce the magnetic field to zero for z >> 6. See Section 8.1 for more discussion 

relevant to waveguides and cavities. 

There is resistive heating in the conductor. The time-averaged power input 

per unit volume is P,esistive = (J»E) (recall P = IV = V’/R in a simple lumped 
resistor circuit). With (5.167) and (5.168), we find 

—22/6 (5.169) P resistive = 2 poole 

The heating of the conducting medium to a depth of the order of the skin depth 

is the basis of induction furnaces in steel mills and of microwave cookers in 
kitchens (where the conductivity of water, or more correctly, the dissipative part 
of its dielectric susceptibility, causes the losses—see Fig. 7.9). References to more 

elaborate treatments of eddy currents and induction heating are found at the end 

of the chapter. 

B. Diffusion of Magnetic Fields in Conducting Media 

Diffusion of magnetic fields in conducting media can be illustrated with the 

simple example of two infinite uniform current sheets, parallel to each other and 

located a distance 2a apart, at z = —a and z = +a, within an infinite conducting 

medium of permeability 4 and conductivity o. The currents are such that in the 
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region, 0 < |z| < a, there is a constant magnetic field Hy in the x direction and 

zero field outside. Explicitly, the current density J is in the y direction, and 

Jy = Hold(z + a) - 8(z - a)] 

At time t = 0, the current is suddenly turned off. The vector potential and mag- 

netic field decay according to (5.160), with variation only in z and ¢. We use a 

Laplace transform technique: Separate the space and time dependences by 

writing 

H,(z, t) = [ e'h(p, z) dp 
Substitution into the diffusion equation (5.160) for H,, leads to the wave equation, 

(d?/dz” + k*)h(p, z) = 0, where k? = yop. Since the situation is symmetric about 
z = 0, the appropriate solution is h < cos(kz). With a change of variable from p 
to k in the transform integral, H(z, t) becomes 

co 

e’“eh(k) cos(kz) dk (5.170) H(z, t) = [ 
0 

The coefficient function h(k) is determined by the initial conditions. At t = 0*, 
the magnetic field is 

H(z, 0°) = [. h(k) cos(kz) dk = H,[@(z + a) — @(z — a)] (5.171) 

where (x) is the unit step function, @(x) = 0 for x < 0 and @(x) = 1 for x > 0. 
Exploiting the symmetry in z, we can express the cosine in terms of exponentials 
and write 

(5.172) if h(k)e"* dk = H[@(z + a) — @(z - a)] 

where h(—k) = h(k). Inversion of the Fourier integral yields h(k), 

(5.173) h(k) = Ho [. e * dz = a sin(ka) 
k 

The solution for the magnetic field at all times, t > 0, is therefore 

sin kK 
(5.174) 

A(z, t) = “s [ enk 
K 

aa (2)c] a 
where v = (j40a*)~' is a characteristic decay rate [see (5.161)]. The integral in 
(5.174) can be expressed as the sum of two terms, each identified with a repre- 
sentation of the error function, 

2 2 ~x24g2 SINX "2 dx = — O(f) = —= — dx (5.175) 
0 T T x 

The result is 

1 + |z\/a 1 — |z|/a 
(5.176) WV vt Wot 

A(z, t) = = | o( }+al } 
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Figure 5.23 Magnetic field distributions given by (5.172) for vt < 0, and (5.176) for 

vt = 0.05, 1, 4 as a function of z/a. The outward diffusion with time for t > 0 is 

manifest; the rise and fall of the field in time at a fixed position can be noted for 

1 <|z|/a <2. 

To understand qualitatively the meaning of the solution we note first that 

&(— 2) = —0(8), second that &(é) > 1 — (1/V a) — 1/2é? + - - -Jexp(—€) for 
&— o, and third that ®(é) ~ (2é/Vm)(1 — 27/3 + -+-) for |€| <1. For vt > 0, 
the arguments in (5.176) are large in magnitude; the solution obviously reduces 

to the right-hand side of (5.172), as required. For long times (|é| << 1), 

H,(z, t) > Ho/V mvt, independent of |z|/a to leading order in an expansion in 
1/Vvt. This result is misleading, however, because the coefficients of the higher 
terms in 1/vt are z-dependent. A more revealing result is obtained by expanding 

the error functions in Taylor series in 1/2 vt to the third order. The result is 

Ho 
H(z, t) ~ 

vt 
ein + a (\z|?/2vta? — 1) + | (5.177) 

Note that the approximate expression vanishes as vt — 0, as it should for any 
|z| > a, and goes to H, ~ Ho/V mvt for vt >> |z|/2a. For |z|/a < 5, it is within 
a few percent for any vt > 1. At a given position, the field as a function of time 

has a maximum at vt ~ |z|?/2a” [exact for the approximation (5.177)], followed 
by the very slow decrease as ¢~". Figure 5.23 shows the spatial distributions of 
the magnetic field at different fixed times. 
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Problems 

5.1 Starting with the differential expression 

x — x’ Mol 
dB = — dl’ x 

4a Ik — x’ 
for the magnetic induction at the point P with coordinate x produced by an incre- 
ment of current / dl at x’, show explicitly that for a closed loop carrying a current 
I the magnetic induction at P is 

an 

where () is the solid angle subtended by the loop at the point P. This corresponds 
to a magnetic scalar potential, Py = —olM/47. The sign convention for the solid 

angle is that © is positive if the point P views the “‘inner’’ side of the surface span- 
ning the loop, that is, if a unit normal n to the surface is defined by the direction 
of current flow via the right-hand rule, 0 is positive if n points away from the point 

P, and negative otherwise. This is the same convention as in Section 1.6 for the 

electric dipole layer. 

5.2 A long, right cylindrical, ideal solenoid of arbitrary cross section is created by stack- 

ing a large number of identical current-carrying loops one above the other, with N 

coils per unit length and each loop carrying a current J. [In practice such a solenoid 

could be wound on a mandrel machined to the arbitrary cross section. After the 

coil was made rigid (e.g., with epoxy), the mandrel would be withdrawn. ] 

(a) In the approximation that the solenoidal coil is an ideal current sheet and 

infinitely long, use Problem 5.1 to establish that at any point inside the coil 

the magnetic field is axial and equal to 

H=NI 

and that H = 0 for any point outside the coil. 

(b) For a realistic solenoid of circular cross section of radius a (Na >> 1), but still 

infinite in length, show that the “smoothed” magnetic field just outside the 

solenoid (averaged axially over several turns) is not zero, but is the same in 

magnitude and direction as that of a single wire on the axis carrying a current 

I, even if Na — ~,. Compare fields inside and out. 

5.3 A right-circular solenoid of finite length L and radius a has N turns per unit length 

and carries a current /. Show that the magnetic induction on the cylinder axis in 

the limit NL — © is 

I 
—_— B,-” 

z 
(cos @ + cos 62) 

2 

where the angles are defined in the figure. 

—— 
! | 

Problem 5.3 eBNTOCOOOCOCOICUCOCOO OOS 

5.4 A magnetic induction B in a current-free region in a uniform medium is cylindrically 

symmetric with components B,(p, z) and B,(p, z) and with a known B,(0, z) on the 

axis of symmetry. The magnitude of the axial field varies slowly in z. 
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(a) Show that near the axis the axial and radial components of magnetic induction 
are approximately 

a’B,(0, z) Pr 

, —_ 

4 dz” BAp, z) ~ B,(0, z) ~ ( I 
0B,(0, z) B,(0, 2) e Pp 

16 az? 2 0z In I [+ I B,(p, z) ~ -( 
(b) What are the magnitudes of the neglected terms, or equivalently what is the 

criterion defining “near” the axis? 

5.5 Use the results of Problems 5.4 and 5.3 to find the axial and radial components (a) 
of magnetic induction in the central region (|z| < L/2) of a long uniform 

solenoid of radius a and ends at z = +L/2, including the value of B, just inside 

the coil (p = a’). 

(b) Use Ampére’s law to show that the longitudinal magnetic induction just out- 

side the coil is approximately 

9a? 122? 2poNIa? 
PE L? It BAp = a", Zz) * -( 

For L >> a, the field outside is negligible compared to inside. How does this 

axial component compare in size to the azimuthal component of Problem 

5.2b? 

(c) Show that at the end of the solenoid the magnetic induction near the axis has 

components 

HoNI pP __HoNT 
—_ B,= B, = 

4 a ( 
5.6 A cylindrical conductor of radius a has a hole of radius b bored parallel to, and 

centered a distance d from, the cylinder axis (d + b < a). The current density is 

uniform throughout the remaining metal of the cylinder and is parallel to the axis. 

Use Ampére’s law and principle of linear superposition to find the magnitude and 

the direction of the magnetic-flux density in the hole. 

5.7 A compact circular coil of radius a, carrying a current J (perhaps N turns, each with 

current J/N), lies in the x-y plane with its center at the origin. 

(a) By elementary means [Eq. (5.4)] find the magnetic induction at any point on 

the z axis. 

(b) An identical coil with the same magnitude and sense of the current is located 

on the same axis, parallel to, and a distance b above, the first coil. With the 

coordinate origin relocated at the point midway between the centers of the 

two coils, determine the magnetic induction on the axis near the origin as an 

expansion in powers of z, up to z* inclusive: 

ola 3(b? — a’)z? 15(b* — 6b’a? + 2a*)z* 

2d‘ 16d® ad )b B= (# | 
where d? = a? + b?/4. 

(c) Show that, off-axis near the origin, the axial and radial components, correct 
to second order in the coordinates, take the form 

2 
p 

2 
) B, —d02Zp B= 0 + (2? - 
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(d) For the two coils in part b show that the magnetic induction on the z axis for 

large |z| is given by the expansion in inverse odd powers of |z| obtained from 

the small z expansion of part b by the formal substitution, d —> |z| 

(e) If b = a, the two coils are known as a pair of Helmholtz coils. For this choice 

of geometry the second terms in the expansions of parts b and d are absent 

(og, = 0 in part c). The field near the origin is then very uniform. What is the 

maximum permitted value of |z|/a if the axial field is to be uniform to one 

part in 10*, one part in 10°? 

5.8 A localized cylindrically symmetric current distribution is such that the current flows 

only in the azimuthal direction; the current density is a function only of r and 6 (or 

p and z): J= bJ(r, 6). The distribution is “hollow” in the sense that there is a 
current-free region near the origin, as well as outside. 

(a) Show that the magnetic field can be derived from the azimuthal component 

of the vector potential, with a multipole expansion 

—~=<2 5) m,r'P1 (cos 6) (7, 9) 

in the interior and 

Sy wir + PL (cos 6) Ag(r, 6) 

outside the current distribution 

Show that the internal and external multipole moments are (b) 

mr Lh +1) | d’x r-*'P} (cos 6) J(r, 6) 

and 

ML >= | d°x r' Pi (cos 6) J(r, 0) 
aE +1) 

5.9 The two circular coils of radius a and separation b of Problem 5.7 can be described 

in cylindrical coordinates by the current density 

J = $18(p — a)[5(z — 5/2) + &(z + b/2)] 

(a) Using the formalism of Problem 5.8, calculate the internal and external mul- 
, tipole moments for L = 1,. 

Using the internal multipole « expansion of Problem 5.8, write down explicitly 
(b) 

an expression for B, on the z axis and relate it to the answer of Problem 5.7b. 

5.10 A circular current loop of radius a carrying a current J lies in the x-y plane with its 

center at the origin 

(a) Show that the only nonvanishing component of the vector potential is 

ol 

oP, z= [ dk cos kz1,(kp.)K,(kp,) 

where p. (p;) is the smaller (larger) of a and p 

(b) Show that an alternative expression for Ag is 

of 
Ag(9, Z) [ dk e~*'2\J,(ka)J,(kp) 
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(c) Write down integral expressions for the components of magnetic induction, 

using the expressions of parts a and b. Evaluate explicitly the components of 

B on the z axis by performing the necessary integrations. 

5.11 A circular loop of wire carrying a current J is located with its center at the origin 

of coordinates and the normal to its plane having spherical angles 9, ¢o. There is 

an applied magnetic field, B, = Bo(1 + By) and B, = Bo(1 + Bx). 

(a) Calculate the force acting on the loop without making any approximations. 
Compare your result with the approximate result (5.69). €omment. 

(b) Calculate the torque in lowest order. Can you deduce anything about the 
higher order contributions? Do they vanish for the circular loop? What about 

for other shapes? 

5.12 Two concentric circular loops of radii a, b and currents J, I’, respectively (b < a), 

have an angle a between their planes. Show that the torque on one of the loops is 

about the line of intersection of the two planes containing the loops and has the 

magnitude. 

b Potll'b? <= (n + 1) Tin + 3) 
— N= 

2a a n=0 (2n + 1) T(n + 2)TQ) | I ) Pheleo a) 
where P/(cos a) is an associated Legendre polynomial. Determine the sense of the 
torque for a an acute angle and the currents in the same (opposite) directions. 

5.13 A sphere of radius a carries a uniform surface-charge distribution o. The sphere is 

rotated about a diameter with constant angular velocity w. Find the vector potential 

and magnetic-flux density both inside and outside the sphere. 

5.14 A long, hollow, right circular cylinder of inner (outer) radius a (b), and of relative 

permeability u,, is placed in a region of initially uniform magnetic-flux density By 

at right angles to the field. Find the flux density at all points in space, and sketch 

the logarithm of the ratio of the magnitudes of B on the cylinder axis to By as a 

function of logio u, for a/b? = 0.5, 0.1. Neglect end effects. 

5.15 Consider two long, straight wires, parallel to the z axis, spaced a distance d apart 

and carrying currents J in opposite directions. Describe the magnetic field H in 

terms of a magnetic scalar potential ®,,, with H = —V®,y. 

(a) If the wires are parallel to the z axis with positions, x = +d/2, y = 0, show 

that in the limit of small spacing, the potential is approximately that of a two- 
dimensional dipole, 

Id sind 
Oy =~ — + O(d?/p’) 

where p and ¢ are the usual polar coordinates. 

(b) The closely spaced wires are now centered in a hollow right circular cylinder 
of steel, of inner (outer) radius a (b) and magnetic permeability 1 = p,{o. 
Determine the magnetic scalar potential in the three regions, 0 < p < a, 
a <p <b, and p > b. Show that the field outside the steel cylinder is a two- 
dimensional dipole field, as in part a, but with a strength reduced by the factor 

4u,b? 

~ (a, + Leb? — (u, — lye? 
Relate your result to Problem 5.14. 

(c) Assuming that 4, >> 1, and b = a + t, where the thickness t << b, write down 
an approximate expression for F and determine its numerical value for 
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M, = 200 (typical of steel at 20 G), b = 1.25 cm, t = 3mm. The shielding effect 
is relevant for reduction of stray fields in residential and commercial 60 Hz, 
110 or 220 V wiring. The figure illustrates the shielding effect for a/b = 0.9, 
b, = 100. 

TSS 

\\ 
) cU 

Problem 5.15 

5.16 A circular loop of wire of radius a and negligible thickness carries a current J. The 

loop is centered in a spherical cavity of radius b > a in a large block of soft iron. 

Assume that the relative permeability of the iron is effectively infinite and that of 

the medium in the cavity, unity. 

(a) In the approximation of b >> a, show that the magnetic field at the center of 

the loop is augmented by a factor (1 + a?/2b*) by the presence of the iron. 

(b) What is the radius of the “image” current loop (carrying the same current) 

that simulates the effect of the iron for r < b? 

5.17 A current distribution J(x) exists in a medium of unit relative permeability adjacent 

to a semi-infinite slab of material having relative permeability x, and filling the half- 

space, z < 0. 

(a) Show that for z > 0 the magnetic induction can be calculated by replacing the 

medium of permeability u, by an image current distribution, J*, with 

components, 

wu, — 1 wu, — 1 B,— 1 
— 

bw, +1 uw, +1 wp +1 
Jee ys —Z) ie Y, —Z), ( ( ie Y, ~2), -( 

Show that for z < 0 the magnetic induction appears to be due to a current (b) 
distribution [2u,,/(u, + 1)]J in a medium of unit relative permeability. 

5.18 A circular loop of wire having a radius a and carrying a current / is located in 
vacuum with its center a distance d away from a semi-infinite slab of permeability 

p. Find the force acting on the loop when 

(a) the plane of the loop is parallel to the face of the slab, 

(b) the plane of the loop is perpendicular to the face of the slab. 

Determine the limiting form of your answer to parts a and b when d >> a. (c) 
Can you obtain these limiting values in some simple and direct way? 
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5.19 A magnetically “hard” material is in the shape of a right circular cylinder of length 
L and radius a. The cylinder has a permanent magnetization Mo: uniform through- 
out its volume and parallel to its axis. 

(a) Determine the magnetic field H and magnetic induction B at all points on the 

axis of the cylinder, both inside and outside. 

(b) Plot the ratios B/uoM, and H/M, on the axis as functions of z for L/a = 5 

5.20 (a) Starting from the force equation (5.12) and the fact that.a magnetization M 

inside a volume V bounded by a surface S is equivalent to a volume current 

density Jy, = (V X M) and a surface current density (M X n), show that in 

the absence of macroscopic conduction currents the total magnetic force on 

the body can be written 

F= Low M)B ax + | n)B, da 

where B, is the applied magnetic induction (not including that of the body in 

question). The force is now expressed in terms of the effective charge densities 

Pu and oy. If the distribution of magnetization is not discontinuous, the sur- 

face can be at infinity and the force given by just the volume integral 

(b) A sphere of radius R with uniform magnetization has its center at the origin 

of coordinates and its direction of magnetization making spherical angles 4, 

oo. If the external magnetic field is the same as in Problem 5.11, use the 

expression of part a to evaluate the components of the force acting on the 

sphere 

5.21 A magnetostatic field is due entirely to a localized distribution of permanent 

magnetization 

(a) Show that 

[s H d*x =0 

provided the integral is taken over all space 

(b) From the potential energy (5.72) of a dipole in an external field, show that for 
a continuous distribution of permanent magnetization the magnetostatic en- 
ergy can be written 

w=-“[q Hd = -{ m. H ax 

apart from an additive constant, which is independent of the orientation or 
position of the various constituent magnetized bodies 

5.22 Show that in general a long, straight bar of uniform cross-sectional area A with 
uniform lengthwise magnetization M, when placed with its flat end against an infi- 
nitely permeable flat surface, adheres with a force given approximately by 

F ~ * 4m 

Relate your discussion to the electrostatic considerations in Section 1.11. 

5.23 A right circular cylinder of length L and radius a has a uniform lengthwise mag- 
Netization M. 
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(a) Show that, when it is placed with its flat end against an infinitely permeable 
plane surface, it adheres with a force 

K(k) ~ E(k) _ K(k;) ~ E(k) 
k ky 

Fe= 2uoat| | 
where 

2a 

© Vae® + "ESE 
(b) Find the limiting form for the force if L >> a. 

5.24 (a) For the perfectly conducting plane of Section 5.13 with the circular hole in it 
and the asymptotically uniform tangential magnetic field Hy on one side, cal- 
culate the added tangential magnetic field H on the side of the plane with 
Ho. Show that its components for p > a are 

2H,a* xy H® = wT ph / — @ — @ 

2 2 
a a y Ho 2H,a? 
_ _ 1-+5- sin H® = 

2 
p p T pV p* — a - ‘ | } 

(b) Sketch the lines of surface current flow in the neighborhood of the hole on 

both sides of the plane. 

5.25 A flat right rectangular loop carrying a constant current J, is placed near a long 

straight wire carrying a current J,. The loop is oriented so that its center is a per- 

pendicular distance d from the wire; the sides of length a are parallel to the wire 

and the sides of length b make an angle a with the plane containing the wire and 

the loop’s center. The direction of the current J, is the same as that of J, in the side 

of the rectangle nearest the wire. 

(a) Show that the interaction magnetic energy 

Wie = [a ° A> d°x = LF 

(where F; is the magnetic flux from J, linking the rectangular circuit carrying 

I,), is 

4d? + b* + 4d b cosa _ Molla 
Wie 

4d* + b? — 4d b cosa 4 | “| 
Calculate the force between the loop and the wire for fixed currents. (b) 

(c) Repeat the calculation for a circular loop of radius a, whose plane is parallel 

to the wire and makes an angle a with respect to the plane containing the 

center of the loop and the wire. Show that the interaction energy is 

—_ 

= Molly d . Re {e'* Zia a’/d”} 
Wi. 

Find the force. 

For both loops, show that when d >> a,b the interaction energy reduces to (d) 
W,. ~ m-B, where m is the magnetic moment of the loop. Explain the sign. 

A two-wire transmission line consists of a pair of nonpermeable parallel wires of 5.26 

radii a and b separated by a distance d > a + b. A current flows down one wire 
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and back the other. It is uniformly distributed over the cross section of each wire 

Show that the self-inductance per unit length is 

2 
Ho 

—_ L= 

4n b 
fren } 

5.27 A circuit consists of a long thin conducting shell of radius a and a parallel return 
wire of radius b on axis inside. If the current is assumed distributed uniformly 

throughout the cross section of the wire, calculate the self-imductance per unit 

length. What is the self-inductance if the inner conductor is a thin hollow tube? 

5.28 Show that the mutual inductance of two circular coaxial loops in a homogeneous 

medium of permeability yu is 

M,> = uve (2 _ KK — 2 £0) 

where 

dab 
P= 

(a+ b’)+ a 

and a, b are the radii of the loops, d is the distance between their centers, and K 

and E are the complete elliptic integrals. 

Find the limiting value when d < a, b and a = b. 

5.29 The figure represents a transmission line consisting of two, parallel perfect conduc- 
tors of arbitrary, but constant, cross section. Current flows down one conductor and 
returns via the other. 

ce 

ce 

Problem 5.29 

Show that the product of the inductance per unit length L and the capacitance 
per unit length C is 

LC = pe 

where ys and € are the permeability and the permittivity of the medium surrounding 
the conductors. (See the discussion about magnetic fields near perfect conductors 
at the beginning of Section 5.13.) 

5.30 (a) Show that a surface current density K(¢) = I cos ¢/2R flowing in the axial 
direction on a right circular cylindrical surface of radius R produces inside the 
cylinder a uniform magnetic induction By = yol/4R in a direction perpendic- 
ular to the cylinder axis. Show that the field outside is that of a two-dimen- 
sional dipole. 

(b) Calculate the total magnetostatic field energy per unit length. How is it divided 
inside and outside the cylinder? 

(c) What is the inductance per unit length of the system, viewed as a long circuit 
with current flowing up one side of the cylinder and back the other? 

Answer: L = myo/8. 
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5.31 An accelerator bending magnet consists of N turns of superconducting cable whose 
current configuration can be described approximately by the axial current density 

J(p, 6) = (Sco $ d(p — R) 
The right circular current cylinder is centered on the axis of a hollow iron cylinder 
of inner radius R’ (R’ > R). The relative dimensions (R, R’ a few centimeters and 
a magnet length of several meters) permit the use of a two-dimensional approxi- 
mation, at least away from the ends of the magnet. Assume that the relative per- 
meability of the iron can be taken as infinite. [Then the outer radius of the iron is 
irrelevant.] 

(a) Show that the magnetic field inside the current sheath is perpendicular to the 
axis of the cylinder in the direction defined by @ = +7/2 and has the 
magnitude 

R2 
HoNI 

4R R? ne I) | 
(b) Show that the magnetic energy inside r = R is augmented (and that outside 

diminished) relative to the values in the absence of the iron. (Compare part b 

of Problem 5.30.) 

(c) Show that the inductance per unit length is 

R2 Tig N* ab _ 

8 
R? dz ( Jp | 

5.32 A circular loop of mean radius a is made of wire having a circular cross section of 

radius b, with b << a. The sketch shows the relevant dimensions and coordinates 

for this problem. 

@ b 

Problem 5.32 

(a) Using (5.37), the expression for the vector potential of a filamentary circular 

loop, and appropriate approximations for the elliptic integrals, show that the 

vector potential at the point P near the wire is approximately 

Ag = (Mol/27)[In(8a/p) — 2] 

where p is the transverse coordinate shown in the figure and corrections are 

of order (p/a)cos ¢ and (p/a)’. 

Since the vector potential of part a is, apart from a constant, just that outside (b) 
a straight circular wire carrying a current J, determine the vector potential 

inside the wire (p < b) in the same approximation by requiring continuity of 
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Ag and its radial derivative at p = b, assuming that the current is uniform in 

density inside the wire: 

p<b Ag = (uol/4m)(1 — p?/b?) + (pol/27)[In(8a/b) — 2], 
(c) Use (5.149) to find the magnetic energy, hence the self-inductance, 

L = poa[in(8a/b) — 7/4] 

Are the corrections of order b/a or (b/a)?? What is the~change in L if the 
current is assumed to flow only on the surface of the wire (as occurs at high 

frequencies when the skin depth is small compared to b)? 

5.33 Consider two current loops (as in Fig. 5.3) whose orientation in space is fixed, but 

whose relative separation can be changed. Let O, and O, be origins in the two 

loops, fixed relative to each loop, and x, and x, be coordinates of elements dl, and 

dl,, respectively, of the loops referred to the respective origins. Let R be the relative 

coordinate of the origins, directed from loop 2 to loop 1. 

(a) Starting from (5.10), the expression for the force between the loops, show that 

it can be written 

F,. = L.bVrM,2(R) 

where M,, is the mutual inductance of the loops, 

dl, + dh 
Se M,,(R) = Hog ¢ 
[xy -x+R| 

and it is assumed that the orientation of the loops does not change with R. 

(b) Show that the mutual inductance, viewed as a function of R, is a solution of 

the Laplace equation, 

VieM,2(R) =0 

The importance of this result is that the uniqueness of solutions of the Laplace 
equation allows the exploitation of the properties of such solutions, provided 
a solution can be found for a particular value of R. 

5.34 Two identical circular loops of radius a are initially located a distance R apart on 
a common axis perpendicular to their planes. 

(a) From the expression W,, = f d*x J, + A> and the result for Ay from Problem 
5.10b, show that the mutual inductance of the loops is 

M,2 = porta’ [ dk e*®J?(ka) 

(b) Show that for R > 2a, M,2 has the expansion, 

a Loma 
_— a 75 a My 
R R 8 R | } 9 

; 

( 
y 

| 
(c) Use the techniques of Section 3.3 for solutions of the Laplace equation to 

show that the mutual inductance for two coplanar identical circular loops of 
radius a whose centers are separated by a distance R > 2a is 

a 9 a 375 a Moma 
= 

—_ _— = — — 
—_— Mp 

4 R 4 R 64, R ( ( 
y 

( 
y 

| 
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(d) Calculate the forces between the loops in the common axis and coplanar con- 
figurations. Relate the answers to those of Problem 5.18. 

5.35 An insulated coil is wound on the surface of a sphere of radius a in such a way as 
to produce a uniform magnetic induction Bo in the z direction inside the sphere 
and dipole field outside the sphere. The medium inside and outside the sphere has 
a uniform conductivity 7 and permeability p. 

(a) Find the necessary surface current density K and show that the vector poten- 
tial describing the magnetic field has only an azimuthal component, given by 

oa” re 
— 0 Ag = 

2 2 > 

where r. (r,) is the smaller (larger) of r and a. 

(b) Att = 0 the current in the coil is cut off. [The coil’s presence may be ignored 
from now on.] With the neglect of Maxwell’s displacement current, the decay 
of the magnetic field is described by the diffusion equation, (5.160). Using a 
Laplace transform and a spherical Bessel function expansion (3.113), show 
that the vector potential at times 1 > 0 is given by 

oo 

3Boa 
Ag = ino | 

0 

ens (kj, (*) dk 

where v = 1/007 is a characteristic decay rate and j,(x) is the spherical Bessel 

function of order one. Show that the magnetic field at the center of the sphere 

can be written explicitly in terms of the error function ®(x) as 

1 1 
a 

Aut V4u ) ~ ao } B,(0, t) = Bo} 2( 

(c) Show that the total magnetic energy at time ¢ > 0 can be written 

_ 6Bea* 
Wm | “eA (P ak 

Show that at long times (vt >> 1) the magnetic energy decays asymptotically 

as 

V27Bia* 

” D4u(vty?? 

(d) Find a corresponding expression for the asymptotic form of the vector poten- 

tial (at fixed r, @ and vt > ~) and show that it decays as (vt)~*” as well. Since 
the energy is quadratic in the field strength, there seems to be a puzzle here. 

Show by numerical or analytic means that the behavior of the magnetic field 

at time ¢ is such that, for distances small compared to R = a(vt)'? >> a, the 
field is uniform with strength (Bo/67"”) (vt)~*”, and for distances large com- 
pared to R, the field is essentially the original dipole field. Explain physically. 

5.36 The time-varying magnetic field for ¢ > 0 in Problem 5.35 induces an electric field 

and causes current to flow. 

(a) What components of electric field exist? Determine integral expressions for 

the components of the electric field and find a simple explicit form of the 

current density J = oE at t = 0*. Compare your result with the current density 

of Problem 5.35a. Find the asymptotic behavior of the electric fields in time. 
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(b) With Ohm’s law and the electric fields found in part a, show that the total 

power dissipated in the resistive medium can be written 

12B2a?p 
P= { en 2M Ki (KYL dk 

bh 

Note that the power is the negative time derivative of the magnetic energy, 
Wa 

(c) Because of Ohm’s law, the total electric energy is W.~= €of/20. The total 

energy is the sum of W, and W,,; its time derivative should be the negative of 

the power dissipation. Show that the neglect of the energy in the electric field 

is the same order of approximation as neglect of the displacement current in 

the equations governing the magnetic field. 



CHAPTER 6 

Maxwell Equations, 
Macroscopic Electromagnetism, 
Conservation Laws 

In the preceding chapters we dealt mostly with steady-state problems in electric- 
ity and in magnetism. Similar mathematical techniques were employed, but elec- 
tric and magnetic phenomena were treated as independent. The only link 
between them was that the currents that produce magnetic fields are basically 
electrical in character, being charges in motion. The almost independent nature 

of electric and magnetic phenomena disappears when we consider time- 

dependent problems. Faraday’s discovery of induction (Section 5.15) destroyed 

the independence. Time-varying magnetic fields give rise to electric fields and 

vice versa. We then must speak of electromagnetic fields, rather than electric or 

magnetic fields. The full import of the interconnection between electric and mag- 

netic fields and their essential sameness becomes clear only within the framework 

of special relativity (Chapter 11). For the present we content ourselves with ex- 

amining the basic phenomena and deducing the set of equations known as the 

Maxwell equations, which describe the behavior of electromagnetic fields. Vector 

and scalar potentials, gauge transformations, and Green functions for the wave 

equation are next discussed, including retarded solutions for the fields, as well as 

the potentials. There follows a derivation of the macroscopic equations of elec- 

tromagnetism. Conservation laws for energy and momentum and transformation 

properties of electromagnetic quantities are treated, as well as the interesting 

topic of magnetic monopoles. 

6.1 Maxwell’s Displacement Current; Maxwell Equations 

The basic laws of electricity and magnetism we have discussed so far can be 

summarized in differential form by these four (not yet Maxwell) equations: 

COULOMB’S LAW V-D=pop 

VxH=J AMPERE’S LAW (V+ J = 0) 

0B (6.1) 
VxE+—=0 FARADAY’S LAW 

0 

V-B=0 ABSENCE OF FREE MAGNETIC POLES 

Let us recall that all but Faraday’s law were derived from steady-state observa- 

tions. Consequently, from a logical point of view there is no a priori reason to 

237 
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expect that the static equations will hold unchanged for time-dependent fields. 

In fact, the equations in set (6.1) are inconsistent as they stand. 

It required the genius of J. C. Maxwell, spurred on by Faraday’s observations, 

to see the inconsistency in equations (6.1) and to modify them into a consistent 

set that implied new physical phenomena, at the time unknown but subsequently 

verified in all details by experiment. For this brilliant stroke in 1865, the modified 

set of equations is justly known as the Maxwell equations. 

The faulty equation is Ampére’s law. It was derived-for steady-state current 

phenomena with V - J = 0. This requirement on the divergence of J is contained 

right in Ampére’s law, as can be seen by taking the divergence of both sides: 

V-J=V-(V x H)=0 (6.2) 

While V- J = 0 is valid for steady-state problems, the general relation is given 

by the continuity equation for charge and current: 

vV-3+ 2% =0 (6.3) 
0 

What Maxwell saw was that the continuity equation could be converted into a 

vanishing divergence by using Coulomb’s law (6.1). Thus 

oD vy + PQ =V y+ (6.4) ( )=o 
Then Maxwell replaced J in Ampére’s law by its generalization 

oD 
J—-J+— 

0 

for time-dependent fields. Thus Ampére’s law became 

oD 
VxH=J+— (6.5) 

t 

still the same, experimentally verified, law for steady-state phenomena, but now 
mathematically consistent with the continuity equation (6.3) for time-dependent 
fields. Maxwell called the added term in (6.5) the displacement current. Its pres- 
ence means that a changing electric field causes a magnetic field, even without a 
current—the converse of Faraday’s law. This necessary addition to Ampére’s law 
is of crucial importance for rapidly fluctuating fields. Without it there would be 
no electromagnetic radiation, and the greatest part of the remainder of this book 
would have to be omitted. It was Maxwell’s prediction that light was an electro- 
magnetic wave phenomenon, and that electromagnetic waves of all frequencies 
could be produced, that drew the attention of all physicists and stimulated so 
much theoretical and experimental research into electromagnetism during the 
last part of the nineteenth century. 

The set of four equations, 

oD 
VxH=J+— V-D=p 

(6.6) 
oB 

V-B=0 VxE+—=0 
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known as the Maxwell equations, forms the basis of all classical electromagnetic 

phenomena. When combined with the Lorentz force equation and Newton’s sec- 

ond law of motion, these equations provide a complete description of the classical 

dynamics of interacting charged particles and electromagnetic fields (see Section 

6.7 and Chapters 12 and 16). The range of validity of the Maxwell equations is 

discussed in the Introduction, as are questions of boundary conditions for the 

normal and tangential components of fields at interfaces between different me- 

dia. Constitutive relations connecting E and B with D and H were touched on 

in the Introduction and treated for static phenomena in Chapters 4 and 5. More 

is said later in this chapter and in Chapter 7. 

The units employed in writing the Maxwell equations (6.6) are those of the 

preceding chapters, namely, SI. For the reader more at home in other units, such 

as Gaussian, Table 2 of the Appendix summarizes essential equations in the 

commoner systems. Table 3 of the Appendix allows the conversion of any equa- 

tion from Gaussian to SI units or vice versa, while Table 4 gives the corresponding 

conversions for given amounts of any variable. 

6.2. Vector and Scalar Potentials 

The Maxwell equations consist of a set of coupled first-order partial differential 
equations relating the various components of electric and magnetic fields. They 

can be solved as they stand in simple situations. But it is often convenient to 

introduce potentials, obtaining a smaller number of second-order equations, 

while satisfying some of the Maxwell equations identically. We are already fa- 

miliar with this concept in electrostatics and magnetostatics, where we used the 

scalar potential ® and the vector potential A. 

Since V - B = O still holds, we can define B in terms of a vector potential: 

B=VxA (6.7) 

Then the other homogeneous equation in (6.6), Faraday’s law, can be written 

A 
E+ (6.8) )=o vx ( 

This means that the quantity with vanishing curl in (6.8) can be written as the 

gradient of some scalar function, namely, a scalar potential ®: 

oA 
_ 

= —V® E+— 
0 

(6.9) 
or 

0A 
E = -V% —- — 

ot 

The definition of B and E in terms of the potentials A and ® according to (6.7) 
and (6.9) satisfies identically the two homogeneous Maxwell equations. The dy- 

namic behavior of A and ® will be determined by the two inhomogeneous equa- 

tions in (6.6). 

At this stage it is convenient to restrict our considerations to the vacuum 
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form of the Maxwell equations. Then the inhomogeneous equations in (6.6) can 
be written in terms of the potentials as 

(6.10) Vb + x (V+ A) = —pleo 

1 o@ 1 vA 
_— 

= V-AtsS— VA-s—-V Hod (6.11) 
C Cc oat ( 

— 

equations. But We have now reduced the set of four Maxwell equations to two 
they are still coupled equations. The uncoupling can be accomplished by exploit- 

ing the arbitrariness involved in the definition of the potentials. Since B is defined 

through (6.7) in terms of A, the vector potential is arbitrary to the extent that 

the gradient of some scalar function A can be added. Thus B is left unchanged 

by the transformation, 

A> A’=A+VA (6.12) 

For the electric field (6.9) to be unchanged as well, the scalar potential must be 

simultaneously transformed, 

TAN 
Oo = h-— (6.13) 

ot 

The freedom implied by (6.12) and (6.13) means that we can choose a set of 
potentials (A, ®) to satisfy the Lorenz condition (1867),* 

1 a@ 
(6.14) V-A+G7=0 

This will uncouple the pair of equations (6.10) and (6.11) and leave two inho- 
mogeneous wave equations, one for ® and one for A: 

1 eb 
=—- — — = _— 

V2 

ple (6.15) C2 ate 

1 eA 
VA - = Hod (6.16) ot? 

Equations (6.15) and (6.16), plus (6.14), form a set of equations equivalent in all 
respects to the Maxwell equations in vacuum, as observed by Lorenz and others. 

6.3 Gauge Transformations, Lorenz Gauge, Coulomb Gauge 

The transformation (6.12) and (6.13) is called a gauge transformation, and the 
invariance of the fields under such transformations is called gauge invariance. To 
see that potentials can always be found to satisfy the Lorenz condition, suppose 
that the potentials A, ® that satisfy (6.10) and (6.11) do not satisfy (6.14). Then 
let us make a gauge transformation to potentials A’, ®’ and demand that A’, D' 
satisfy the Lorenz condition: 

1 a® 1 aA 1 a0! 
V-A’t 2A —- —-— 

(6.17) 
c c or? 

*L. V. Lorenz, Phil. Mag. Ser. 3, 34, 287 (1867). See also p. 294. 
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Thus, provided a gauge function A can be found to satisfy 

2 
17°A 

=—-— 1o® (6.18) 
c at? C2 

-(v A 
the new potentials A’, ®’ will satisfy the Lorenz condition and the wave equations 
(6.15) and (6.16). 

Even for potentials that satisfy the Lorenz condition (6.14) there is arbitrar- 
iness. Evidently the restricted gauge transformation, 

A>A+VA 

(6.19) oA 
> P - — 

ot 

where 

A WA - 5 (6.20) 
Cc ar 

preserves the Lorenz condition, provided A, ® satisfy it initially. All potentials 

in this restricted class are said to belong to the Lorenz gauge. The Lorenz gauge 

is commonly used, first because it leads to the wave equations (6.15) and (6.16), 

which treat ® and A on equivalent footings, and second because it is a concept 

independent of the coordinate system chosen and so fits naturally into the con- 

siderations of special relativity (see Section 11.9). 

Another useful gauge for the potentials is the so-called Coulomb, radiation, 

or transverse gauge. This is the gauge in which 

V-A=0 (6.21) 

From (6.10) we see that the scalar potential satisfies the Poisson equation, 

V’® = —ple (6.22) 

with solution, 

p(x’, t) d>x' (6.23) P(x 1) = 4 a J [x — x’| 

The scalar potential is just the instantaneous Coulomb potential due to the charge 

density p(x, t). This is the origin of the name “Coulomb gauge.” 

The vector potential satisfies the inhomogeneous wave equation, 

1 o® 1 7A 
VA-S (6.24) Hod + GV 

ar? 

The term involving the scalar potential can, in principle, be calculated from 

(6.23). Since it involves the gradient operator, it is a term that is irrotational, that 

is, has vanishing curl. This suggests that it may cancel a corresponding piece of 

the current density. The current density (or any vector field) can be written as 

the sum of two terms, 

J=J5,+ J, (6.25) 
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where J, is called the longitudinal or irrotational current and has VxJ,=0 

while J, is called the transverse or solenoidal current and has V - J, = 0. Starting 

from the vector identity, 

(6.26) Vx(VxJ=VV-J)-— VI 

together with V?(1/|x — x’|) = —47(x — x’), it can be shown that J, and J, can 

~ ™~ be constructed explicitly from J as follows 

(6.27) w= alee 
d>x' (6.28) J,= ayxvx fo 

— x’ | 

With the help of the continuity equation and (6.23) it is seen that 

a® 1 
—_— (6.29) V = = Bod: 

0 C2 

Therefore the source for the wave equation for A can be expressed entirely in 
terms of the transverse current (6.28) 

17°A 
VA - 5S Mod: (6.30) 

Cc at? 

This, of course, is the origin of the name “‘transverse gauge.” The name “‘radia- 

tion gauge” stems from the fact that transverse radiation fields are given by the 

vector potential alone, the instantaneous Coulomb potential contributing only to 

the near fields. This gauge is particularly useful in quantum electrodynamics. A 

quantum-mechanical description of photons necessitates quantization of only the 

vector potential 

The Coulomb or transverse gauge is often used when no sources are present 

Then ® = 0, and A satisfies the homogeneous wave equation. The fields are 

given by 

oA 
— 

= 

ot 
(6.31) 

B=VxA 

In passing we note a peculiarity of the Coulomb gauge. It is well known that 

electromagnetic disturbances propagate with finite speed. Yet (6.23) indicates 

that the scalar potential “propagates” instantaneously everywhere in space. The 

vector potential, on the other hand, satisfies the wave equation (6.30), with its 

implied finite speed of propagation c. At first glance it is puzzling to see how 

obviously unphysical behavior is avoided. A preliminary remark is that it is the 
fields, not the potentials, that concern us. A further observation is that the trans- 
verse current (6.28) extends over all space, even if J is localized.* 

*See O. L. Brill and B. Goodman, Am. J. Phys. 35, 832 (1967) for a detailed discussion of causality 
in the Coulomb gauge. See also Problem 6.20 
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6.4 Green Functions for the Wave Equation 

The wave equations (6.15), (6.16), and (6.30) all have the basic structure 

1a 
=—> — 

V2 
—4af(x, t) (6.32) 

c* at? 

where f(x, f) is a known source distribution. The factor c is the velocity of prop- 
agation in the medium, assumed here to be without dispersion. 

To solve (6.32) it is useful to find a Green function, just as in electrostatics. 
We consider the simple situation of no boundary surfaces and proceed to remove 
the explicit time dependence by introducing a Fourier transform with respect to 
frequency. We suppose that (x, t) and f(x, f) have the Fourier integral 
representations, 

W(x, t) = -- [- W(x, we" dw 
(6.33) 

f(x, t) = = [- f(x, w)e dw 

with the inverse transformations, 

W(x, w) = [. Wx, He at 
(6.34) 

f(x, @) = [- f(x, De dt 
When the representations (6.33) are inserted into (6.32) it is found that the 

Fourier transform V(x, w) satisfies the inhomogeneous Helmholtz wave equation 

(6.35) (V? + k*)W(x, w) = —4rf(x, w) 

for each value of w. Here k = wic is the wave number associated with frequency 

w. In this form, the restriction of no dispersion is unnecessary. A priori, any 

connection between k and w is allowed, although causality imposes some restric- 
tions (see Section 7.10). 

Equation (6.35) is an elliptic partial differential equation similar to the 
Poisson equation to which it reduces for k = 0. The Green function G(x, x’) 

appropriate to (6.35) satisfies the inhomogeneous equation 

(6.36) (V2 + k?)G,(x, x’) = —476(x — x’) 

If there are no boundary surfaces, the Green function can depend only on R = 

x — x’, and must in fact be spherically symmetric, that is, depend only on 

R = |R|. From the form of the Laplacian operator in spherical coordinates [see 

(3.1)], it is evident that G,(R) satisfies 

1 ad 
— 

= (6.37) 4776(R) (RG,) + kG, R dR? 



244 Chapter 6 Maxwell Equations, Macroscopic Electromagnetism, Conservation Laws—SI 

Everywhere except R = 0, RG;(R) satisfies the homogeneous equation 

dz 

aR? (RG,) + k°(RG,) = 0 

with solution, 

RG,(R) = Ae*® + Be7#*? 

Furthermore, the delta function in (6.37) has influence only at R > 0. In that 
limit the equation reduces to the Poisson equation, since KR << 1. We therefore 

know from electrostatics that the correct normalization is 

1 
— (6.38) lim G,(R) = 
R kR70 

The general solution for the Green function is thus 

(6.39) G,(R) = AGO(R) + BGO(R) 

where 

+ikR 
é 

(6.40) G(R) = 
R 

with A + B = 1. With the convention of (6.33) for the time dependence, the first 

term in (6.39) represents a diverging spherical wave propagating from the origin, 

while the second represents a converging spherical wave. 

The choice of A and B in (6.39) depends on the boundary conditions in time 

that specify the physical problem. It is intuitively obvious that, if a source is 

quiescent until some time ¢ = 0 and then begins to function, the appropriate 

Green function is the first term in (6.39), corresponding to waves radiated out- 

ward from the source after it begins to work. Such a description is certainly 

correct and also convenient, but is not unique or necessary. By suitable specifi- 

cation of the wave amplitude at boundary times, it is possible to employ the 

second term in (6.39), not the first, to describe the action of the source. 

To understand the different time behaviors associated with G(*) and GO” 
we need to construct the corresponding time-dependent Green functions that 

satisfy 

1 
2 

-_—_ — 

x (6.41) 
c* at? ( Jom thx’, t') = —478(x — x’)6(t — 1) 

Using (6.34) we see that the source term for (6.35) is 

—478(x — x')e’" 

The solutions are therefore G(*)(R)e‘”. From (6.33) the time-dependent Green 
functions are 

etikR 
e fT dw 

(6.42) 
R 

where 7 = ¢ ~ ¢’ is the relative time appearing in (6.41). The infinite-space Green 
function is thus a function of only the relative distance R and the relative time 



245 Sect. 6.4 Green Functions for the Wave Equation 

Tt between source and observation point. For a nondispersive medium where 
k = wic, the integral in (6.42) is a delta function. The Green functions are 

1 R 
— 6 T+ GOR, 1) = (6.43) 

Cc ( 
or, more explicitly, 

— (x7 x'| 
Cc 

ef ) 
G(x, x’, ’) = (6.44) 

[x — x’ 

The Green function G) is called the retarded Green function because it exhibits 
the causal behavior associated with a wave disturbance. The argument of the 
delta function shows that an effect observed at the point x at time t is caused by 
the action of a source a distance R away at an earlier or retarded time, ¢’! = 
t — Ric. The time difference Ric is just the time of propagation of the disturbance 
from one point to the other. Similarly, G~ is called the advanced Green function. 

Particular integrals of the inhomogeneous wave equation (6.32) are 

WH (x, 1) = | | GO(x, tx!) f(x, t') dx’ dr! 

To specify a definite physical problem, solutions of the homogeneous equation 

may be added to either of these. We consider a source distribution f(x’, t’) that 

is localized in time and space. It is different from zero only for a finite interval 

of time around f’ = 0. Two limiting situations are envisioned. In the first it is 

assumed that at time t —- —o there exists a wave W,,(x, ¢) that satisfies the 

homogeneous wave equation. This wave propagates in time and space; the source 

turns on and generates waves of its own. The complete solution for this situation 

at all times is evidently 

(6.45) W(x, t) = V,,(x, t) + | | GO x, t,x’, ) f(x’, ') dbx! dt’ 
The presence of G‘*? guarantees that at remotely early times, t, before the source 
has been activated, there is no contribution from the integral. Only the specified 

wave W,,, exists. The second situation is that at remotely late times (t > +) the 
wave is given as V,,,(x, ¢), a known solution of the homogeneous wave equation. 

Then the complete solution for all times is 

W(x, 1) = Vou(x, ) + | G(x, tx’, t!) F(x’, t') d*x’ dt’ ~—— (6.46) 
Now the advanced Green function assures that no signal from the source shall 

exist explicitly after the source shuts off (all such signals are by assumption in- 

cluded in V,,,). 

The commonest physical situation is described by (6.45) with Vj, = 0. It is 

sometimes written with the Green function (6.44) inserted explicitly: 

(6.47) W(x, t) = 
|x — x'| 



246 Chapter 6 Maxwell Equations, Macroscopic Electromagnetism, Conservation Laws—SI 

The square bracket [ J,., means that the time ¢’ is to be evaluated at the retarded 

time, t’ = ¢t — |x — x’|Ic. 
The initial or final value problem at finite times has been extensively studied 

in one, two, and three dimensions. The reader may refer to Morse and Feshbach 

(pp. 843-847) and also to the more mathematical treatment of Hadamard. 

6.5 Retarded Solutions for the Fields: Jefimenko’s Generalizations 
of the Coulomb and Biot-Savart Laws; Heaviside-Feynman 
Expressions for Fields of Point Charge 

Use of the retarded solution (6.47) for the wave equations (6.15) and (6.16) yields 

P(x, t) = ins | ad? ’ = [p(x’, t'Vyret 
(6.48) 

Ho 
— A(x, t) = 
4 

d?x' = [JOx’, t ret 

where we have defined R = x — x’, with R = |x — x’| and (below) R = R/R. 
These solutions were first given by Lorenz (op. cit.). In principle, from these two 

equations the electric and magnetic fields can be computed, but it is often useful 

to have retarded integral solutions for the fields in terms of the sources. 

Either directly from the Maxwell equations or by use of the wave equations 

for ® and A, (6.15) and (6.16), and the definitions of the fields in terms of the 

potentials, (6.7) and (6.9), we can arrive at wave equations for the fields in free 

space with given charge and current densities, 

1 #E 1 1 aJ 
— ns VE-s—=- (6.49) 

Cc at? Cc oat 0 

and 

1 3B 
=—-_ — —— 

V2 

= —pyV x J (6.50) 
c oat? 

The wave equation for each of the Cartesian field components is in the form 
(6.32). The retarded solutions (6.47) for the fields can immediately be written in 
the preliminary forms 

1 1 oJ 
E(x, t) = (6.51) 

Cc’ ar 41 [eet[w I. 
and 

ret (6.52) B(x, t) = He | ay = [V' x J] 

These preliminary expressions can be cast into forms showing explicitly the static 
limits and the corrections to them by extracting the spatial partial derivatives 
from the retarded integrands. There is a subtlety here because V’[f],e: # [V’ fret: 
The meaning of V’ under the retarded bracket is a spatial gradient in x’, with ¢' 
fixed; the meaning outside the retarded bracket is a spatial gradient with respect 
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to x’, with x and ¢ fixed. Since [f(x’, ’)],er = f(x’, t — Ric), it is necessary to 
correct for the x’ dependence introduced through R when the gradient operator 
is taken outside. Explicitly, we have 

ip 
— ap [V’ pl ret = V' [elret 0 , 

at’ 
|. V'(t — Ric) = V'[phret R lL. (6.53) 

and 

0 
— [V’ x Vret = Vv’ x [Fret + 0 , 
I. x W(t — Ric) 

(6.54) 

A 

R - v * Mes * ER 
If these expressions are substituted into the preliminary forms of the solutions 
and an integration by parts is performed on the first (gradient or curl) term in 
each case, we arrive at 

A 

R dp(x’, t') 
— E(x, t) = 

4 R or’ 0 

dx {& [o(x’, thet + | l. (6.55) 
1 dJ(x’, t’) 

— 

CR ot’ | Ja) 
and 

R R Ho aJ(x’, t’) 
— x — a + B(x, t) = 4 

T R or’ R 
[ ax’ {ise thet | I. | (6.56) 

If the charge and current densities are time independent, the expressions reduce 

to the familiar static expressions (1.5) and (5.14). The terms involving the time 

derivatives and the retardation provide the generalizations to time-dependent 

sources. These two results, sometimes known as Jefimenko’s generalizations of 

the Coulomb and Biot—Savart laws, were popularized in this author’s text, 

(Jefimenko). 

In passing, we note that because the integrands are to be viewed as functions 

of x, x’, and ¢, with ’ = t — |x — x’|/c, the time derivatives in the integrands have 
the property 

of(x’, t’) 
(6.57) 

ot’ | I. = = [FC Ye 
This relation facilitates the specialization of the Jefimenko formulas to the Heav- 

iside-Feynman expressions for the fields of a point charge. With p(x’, t’) = 

q6[x’ — ro(t’)] and J(x’, t') = pv(t'), (6.55) and (6.56) specialize to 
A 

v 0 R 0 R q 
—_ — —_— (6.58) 

coat KR KR cat KR? | [J | ln I. 7 47€ | 
and 

vxR 0 vyvxR Hod 
B= (6.59) 

KR cot KR? 4a Jal | I. | 
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Here R is the distance from the position of the charge to the observation point; 
R is a unit vector from the charge toward the observation point; v is the charge’s 
velocity; x = 1 — v- R/cis a retardation factor. [See Problem 6.2.] It is important 

to note that now there is a difference between d[- - -],«)/dt and [0 - - - /dt],<, because 

x’ — r(t’), where ro is the position of the charge. The fields are functions of x 

and t, with ’ = tf — |x — ro(t’)|/c. Feynman’s expression for the electric field is 
A a 

R R q 
— 

[R] ret oO (6.60) 
Cat” Cc R? R?2 if | [. — 47E I. | 

while Heaviside’s expression for the magnetic field is 

vxR 0 1 vxR Lod 
B= — (6.61) 

K K-R? 4a | lad I. c[R] ret at | 
The equivalence of the two sets of expressions for the fields follows from some 

careful algebra. 

6.6 Derivation of the Equations of Macroscopic Electromagnetism 

The discussion of electromagnetism in the preceding chapters has been based on 

the macroscopic Maxwell equations, 

0 
VxE+—=0 V-B=0 

(6.62) 
dD 

Vx H-—-=-J V-D=p 

where E and B are the macroscopic electric and magnetic field quantities, D and 

H are corresponding derived fields, related to E and B through the polarization 

P and the magnetization M of the material medium by 

1 
H=—B-M D = «FE + P, (6.63) 

Ho 

Similarly, p and J are the macroscopic (free) charge density and current density, 

respectively. Although these equations are familiar and totally acceptable, we 

have yet to present a serious derivation of them from a microscopic starting point. 

This deficiency is remedied in the present section. The derivation remains within 

a classical framework even though atoms must be described quantum mechani- 

cally. The excuse for this apparent inadequacy is that the quantum-mechanical 

discussion closely parallels the classical one, with quantum-mechanical expecta- 

tion values replacing the classical quantities in the formulas given below. The 

reader can examine the statistical mechanical treatments in the literature cited 

at the end of the chapter. 

We consider a microscopic world made up of electrons and nuclei. For di- 

mensions large compared to 10~'* m, the nuclei can be treated as point systems, 
as can the electrons. We assume that the equations governing electromagnetic 

phenomena for these point charges are the microscopic Maxwell equations, 

db 
— 

= V-b Vxet—=0 0, 

(6.64) 
1 de 

V-e Vxb- s- N/E, = Boj 
c* at 
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where e and b are the microscopic electric and magnetic fields and 7 and j are 
the microscopic charge and current densities. There are no corresponding fields 
d and h because all the charges are included in y and j. A macroscopic amount 
of matter at rest contains of the order of 1023*> electrons and nuclei, all in in- 
cessant motion because of thermal agitation, zero point vibration, or orbital mo- 
tion. The microscopic electromagnetic fields produced by these charges vary 
extremely rapidly in space and in time. The spatial variations occur over distances 
of the order of 107'° m or less, and the temporal fluctuations occur with periods 
ranging from 107” s for nuclear vibrations to 10~'” s for electronic orbital motion. 
Macroscopic measuring devices generally average over intervals in space and 
time much larger than these. All the microscopic fluctuations are therefore av- 
eraged out, giving relatively smooth and slowly varying macroscopic quantities, 
such as appear in the macroscopic Maxwell equations. 

The question of what type of averaging is appropriate must be examined 
with some care. At first glance one might think that averages over both space 
and time are necessary. But this is not true. Only a spatial averaging is necessary. 
(Parenthetically, we note that a time averaging alone would certainly not be 
sufficient, as can be seen by considering an ionic crystal whose ions have small 

zero point vibrations around well-defined and separated lattice sites.) To delimit 

the domain where we expect a macroscopic description of electromagnetic phe- 

nomena to work, we observe that the reflection and refraction of visible light are 

adequately described by the Maxwell equations with a continuous dielectric con- 

stant, whereas x-ray diffraction clearly exposes the atomistic nature of matter. It 

is plausible therefore to take the length Lp = 10°° m = 10? A as the absolute 
lower limit to the macroscopic domain. The period of oscillation associated with 

light of this wavelength is Lo/c ~ 3 X 107!’ s. Ina volume of LZ = 10-74 m* there 

are, in ordinary matter, still of the order of 10° nuclei and electrons. Thus in any 
region of macroscopic interest with L >> Ly there are so many nuclei and elec- 

trons that the fluctuations will be completely washed out by a spatial averaging. 

On the other hand, because the time scale associated with L is actually in the 

range of atomic and molecular motions, a time-averaging would not be appro- 

priate. There is, nevertheless, no evidence after the spatial averaging of the mi- 

croscopic time fluctuations of the medium. This is so because, in the absence of 

special preparation and the establishment of ordering over macroscopic dis- 

tances, the time variations of the microscopic fields are uncorrelated over dis- 

tances of order L. All that survive are the frequency components corresponding 
to oscillators driven at the external, applied frequencies. 

The spatial average of a function F(x, ¢) with respect to a test function f(x) 
is defined as 

(6.65) (F(x, )) = | dx’ f'yPox — x’, 
where f(x) is real, nonzero in some neighborhood of x = 0, and normalized to 

unity over all space. It is simplest, though not necessary, to imagine f(x) to be 

nonnegative. To preserve without bias directional characteristics of averaged 

physical properties, we make f(x) isotropic in space. Two examples are 

3 r<R 

4aR?’ f(x) = 
r>R 

0, (6.66) 

f(x) — (mR?) 3@- 71 
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e+ L>>a>AL>>a>| 

la 

Figure 6.1 Schematic diagram of test function f(x) used in the spatial averaging 

procedure. The extent L of the plateau region, and also the extent AL of the region 

where f falls to zero, are both large compared to the molecular dimension a. 

The first example, a spherical averaging volume of radius R, is a common one in 

the literature. It has the advantage of conceptual simplicity, but the disadvantage 

of an abrupt discontinuity at 7 = R. This leads to a fine-scale jitter on the averaged 

quantities as a single molecule or group of molecules moves in or out of the 

averaging volume. A smooth test function, exemplified by the Gaussian, elimi- 

nates such difficulties provided its scale is large compared to atomic dimensions. 

Fortunately, the test function f(x) does not need to be specified in detail; all that 

are needed are general continuity and smoothness properties that permit a rap- 

idly converging Taylor series expansion of f(x) over distances of atomic dimen- 

sions, as indicated schematically in Fig. 6.1. This is a great virtue.* 

Since space and time derivatives enter the Maxwell equations, we must con- 

sider these operations with respect to averaging according to (6.65). Evidently, 

we have 

oF 
— 

Ox; 
~ (F(x, t)) = | dx! f(x’) x (x — x’, 1) = ( 

and (6.67) 

oF 
— 

ot 
5, (Fx, ) = ( 

The operations of space and time differentiation thus commute with the aver- 
aging operation. 

We can now consider the averaging of the microscopic Maxwell equations 
(6.64). The macroscopic electric and magnetic field quantities E and B are defined 
as the averages of the microscopic fields e and b: 

E(x, t) = (e(x, ¢)) (6.68) 

B(x, t) = (b(x, £)) 

Then the averages of the two homogeneous equations in (6.64) become the cor- 
responding macroscopic equations, 

(V-b)=0>V-B=0 (6.69) 

OB 
=0-VxE+—=0 (vxe+ 2) 

*We are here following the development of G. Russakoff, Am. J. Physics 38, 1188 (1970). 
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The averaged inhomogeneous equations from (6.64) become 

€oV - E = (n(x, t)) (6.70) 

w= iu 0) 
Ho 

Comparison with the inhomogeneous pair of macroscopic equations in (6.62) 
indicates the already known fact that the derived fields D and H are introduced 
by the extraction from (7) and (j) of certain contributions that can be identified 
with the bulk properties of the medium. The examination of (n) and (j) is there- 
fore the next task. 

We consider a medium made up of molecules composed of nuclei and elec- 
trons and, in addition, ‘‘free”’ charges that are not localized around any particular 
molecule. The microscopic charge density can be written as 

(6.71) (x, t) = 2 q[x — x,(t)] 

where x;,(t) is the position of the point charge q,. To distinguish the bound charges 
from the free ones, we decompose 7 as 

= 

7 (6.72) Tiree + TNoound 

and write 

Miree > qj d(x — xj) 
j(free) 

Toound > N(x, ¢) 
n 

(molecules) 

where 7, is the charge density of the nth molecule, 

(6.73) NnAX, t) = > qj 6(x ~ x;) 
i) 

In these and subsequent equations we suppress the explicit time dependence, 

since the averaging is done at one instant of time. We proceed by averaging the 

charge density of the nth molecule and then summing up the contributions of all 

molecules. It is appropriate to express the coordinates of the charges in the nth 

molecule with respect to an origin at rest in the molecule. Let the coordinate of 

that fixed point in the molecule (usually chosen as the center of mass) be x,,(t), 

and the coordinate of the jth charge in the molecule be x,,(t) relative to that 

origin, as indicated in Fig. 6.2. The average of the charge density of the nth 

molecule is 

(nals) = [eB x! F08") mal — ¥'.1 
(6.74) d*x' f(x’) 5(x — x’ — Xin — X,) = 4 

i) 

Xin) =DVafx-x, 
i(n) 

Since x;, is of order atomic dimensions, the terms in the sum have arguments 

differing only slightly from (x — x,) on the scale over which f(x) changes appre- 
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Xn 

LO 

Figure 6.2 Coordinates for the nth molecule. The origin O’ is fixed in the molecule 

(usually it is chosen at the center of mass). The jth charge has coordinate x,, relative to 

O’', while the molecule is located relative to the fixed (laboratory) axes by the 

coordinate x,, 

ciably. It is therefore appropriate to make a Taylor series expansion around 

(x — x,) for each term. This gives 

(n(x t)) = > a foe - X,) — Kin we ~ X,) 
+ > ( nol X Xin) 8 ax x, Ie HT | 

The various sums over the charges in the molecule are just molecular multipole 

moments 

MOLECULAR CHARGE 

> 4 (6.75) 
J(n) 

MOLECULAR DIPOLE MOMENT 

> 4j Xin (6.76) 

MOLECULAR QUADRUPOLE MOMENT 

(6.77) (Q,)ep 3 > q;( nal n)p 
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In terms of these multipole moments the averaged charge density of the nth 
molecule is 

(6.78) (a(x, t)) = mits — Xn) — Pn Vf(K — X,) 

HFK = Xn) Thx — +s 5 (Qa ~~ 
Xq IXp 

If we attempt to view this equation as the direct result of the definition (6.65) of 
the spatial averaging, we see that the first term can be thought of as the averaging 
of a point charge density at x = x,, the second as the divergence of the average 
of a point dipole density at x = x,, and so on. Explicitly, 

(n(x, t)) (q@nO(x V + (p,d(x — X,)) (6.79) “) 

X,)) + (Qp)apO(x — +2> 6 cp OX, oe 
We thus find that, as far as the result of the averaging process is concerned, we 

can view the molecule as a collection of point multipoles located at one fixed point 

in the molecule. The detailed extent of the molecular charge distribution is im- 

portant at the microscopic level, of course, but is replaced in its effect by a sum 

of multipoles for macroscopic phenomena 

An alternative approach to the spatial averaging of (6.65) via Fourier trans- 

forms gives a valuable different perspective. With the spatial Fourier transforms 

defined by 

g(x, t) = 1 ae o(k, je™* and = g(k,t) = | d°x g(x, the ™*™ 
(27) 

(6.80) 

straightforward substitution into (6.65) leads to the expression for the average of 

F(x, t) 

(6.81) (F(x, t)) = | d?k F(k, t)F(k, te™* 
(277) 

an illustration of the “‘faltung theorem” of Fourier transforms. The convolution 

of (6.65) has a Fourier transform that is the product of the transforms of the 

separate functions in the convolution. Thus 

(6.82) (F(x, t)) = f(k)F(K, ¢) 

The notation FT is introduced to stand for the kernel multiplying the exponential 

in the first integral above [FT g(x, t) = &(k, t)] to avoid a clumsy and confusing 

use of the tilde 

A crucial aspect of f(k) is that (0) = 1, as can be seen from its definition 

and from the fact that f(x) is normalized to unity. For the Gaussian test function 

the Fourier transform is 

(6.83) f(k) — ek R14 
FT f(x) 

Evidently the Fourier transform (6.82) of the averaged quantity contains only 
O(1/R), the inverse low wave numbers, up to but not significantly beyond k,,., = 

of the length scale of the averaging volume. But because f(k) — 1 for wave 
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numbers small compared to the cutoff, the FT (F(x, r)) gives a true representation 
of the long-wavelength aspects of F(x, t). Only the small-scale (large wave num- 
ber) aspects are removed, as expected for the averaging. 

Consider the averaging of the charge density of the nth molecule shown in 

Fig. 6.2. The Fourier transform of the averaged quantity is 

(6.84) FT (n,(x, t)) = f(K)fin(k, ¢) 

where 

Tn(K, ‘) ~ | ax n(x’, | 
Here we have taken the spatial Fourier transform relative to x,,. The qualitative 

behaviors of the two factors in (6.84) are sketched in Fig. 6.3. Since the support 

for the product is confined to comparatively small wave numbers, it is appropriate 

to make a Taylor series expansion of the Fourier transform %,(k, t) for 

small |k|, 

fn(k, t) ~ 7,(0, t) + k- V,4,(0, 2) + --- 

Explicitly, we have 

Ark, t) = | d°x' n(x’, t)[l — ik+- (xk —x,) +°--] 
or 

i(k, t) ~ q, — ik +p, + quadrupole and higher (6.85) 

in terms of the molecule’s multipole moments. The averaged molecular charge 
density can therefore be written as 

1 
(n(x, 2) = [ ak e700 lan — tk py +] 

(277)° (6.86) 

= nf (K — Xn) — Par Vf(K — X,») + °°- 
We have arrived at (6.78) by a different and perhaps longer route, but one with 
the advantage of giving a complementary view of the averaging as a cutoff in 
wave number space, a point of view stressed by Robinson. 

The total microscopic charge density (6.72) consists of the free and bound 

fk) 

7k, t) 

[\ pn. 
YN 

Fignre 6.3. Qualitative behavior of the Fourier transforms in (6.84) for the transform 
of the averaged molecular charge density (1,(x, f)). 
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charges. Summing up over all the molecules (which may be of different species) 
and combining with the free charges, we find the averaged microscopic charge 
density to be 

a 

(6.87) Qiplx, t) + -+- (n(x, t)) = p(x, t) — Vv: P(x, t) + > 
ap OXq OXpg 

where p is the macroscopic charge density, 

> S gj5(x — x) + (6.88) 
n /(free) 

p(x, t) = ( Gn6(X ~ «)) 
(molecules) 

P is the macroscopic polarization, 

> (6.89) 
n 

P(x, t) = ( P,O(x ~ «)) 
(molecules) 

and Q4, is the macroscopic quadrupole density, 

> (6.90) Qielx, 1) = 2 
n 

(O71) ap5(X ~ «.)) 
(molecules) 

When (6.87) is inserted in the first equation of (6.70), it gives 

> ys — (6.91) 
a OXg B 

Ee + P, _ A ou+-]=0 
From (6.62) this means that the macroscopic displacement vector D is defined to 

have components, 

Qin 
D, 6E,+ P,- > (6.92) 

B OX pg 

The first two terms are the familiar result (6.63). The third and higher terms are 

present in principle, but are almost invariably negligible. 

To complete the discussion we must consider (j). Because of its vector nature 

and the presence of velocities the derivation is considerably more complicated 

than the earlier treatment of (n), even though no new principles are involved. 

We present only the results, leaving the gory details to a problem for those read- 

ers who enjoy such challenges. We begin with the microscopic current density, 

(6.93) jx, t) = 2 qv; 8(x ~ x;(t)) 

where v, = dx;,/dt is the velocity of the jth charge. Again the sum is divided into 
one over the free charges and one over the molecules. The current density of the 

nth molecule can be averaged just as in (6.74) to give 

(6.94) (jx, t)) = » Qj(Vin + Vint (x — X, Xin) 

Here we have assumed nonrelativistic motion by writing the velocity of the jth 
charge as the sum of an internal relative velocity v,,, and the velocity v,, = dx,,/dt 
of the origin O’ in the molecule. From this point on the development entails 
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Taylor series expansions and vector manipulations. A portion of the current in- 
volves the molecular magnetic moment, 

(6.95) m, = > Fp X Vin) 
i”) 

The final result for a component of the averaged microscopic current density is 
~ 

(«0 (alX, t)) = JAX, t) + [D.(x, t) ~ €oE AX, t)] + 2 €apy aX, M, 

a 
> > [(Pral¥n)e ~ (P,)a(¥n)al5(x ~ 2) 

n B ( OX g 
(molecules) 

a 
1 

> 
n 

[(Qn)aplYn)y ~ (Qh) yp(¥n)o] d(x _ «.)) 4... ( 6 St Axp ax, 
(molecules) 

(6.96) 

The so-far undefined quantities in this rather formidable equation are the mac- 

roscopic current density 

(6.97) I(x, t) = ( > qv; 5(x ~ x;) + > nV nO(X ~~ «)) 
(molecules) (free) 

and the macroscopic magnetization 

(6.98) > 
n 

m,,5(x — «)) M(x, t) = ( 
(molecules) 

If the free “‘charges’’ also possess intrinsic magnetic moments, these can be in- 

cluded in the definition of M in an obvious way. The last terms in (6.96) involve 
the electric molecular moments and molecular velocities and cannot be given an 

easy interpretation, except in special cases (see below). 

When (j) is inserted in the second equation of (6.70), there results the mac- 

roscopic Ampére—Maxwell equation of (6.62) with the derived magnetic field 

quantity H given in terms of B and the properties of the medium as 

1 
— 

= —B-H > 
n Ho ( ) Ma + ( (P, x Vida 5(x ~ «)) 

(molecules) 
(6.99) 

> ~ - > €apy 
n 

y x ( (Q,,)sp(¥n)yO(X — «)) foes 
(molecules) 

The first term of the right-hand side of (6.99) is the familiar result, (6.63). The 

other terms are generally extremely small; first, because the molecular velocities 

Vv, are small, typically thermal velocities in a gas or lattice vibrational velocities 

in a solid and, second, because the velocities fluctuate and tend to average to 

zero macroscopically. An exception occurs when the medium undergoes bulk 

motion. For simplicity, suppose that the medium as a whole has a translational 
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velocity v. Neglecting any other motion of the molecules, we put v, = v for all 
n. Then (6.99) becomes, after a little manipulation, 

1 
(6.100) —B-H=M+(D- @&E) xv 

Ho 

where D is given by (6.92). This shows that for a medium in motion the electric 

polarization P (and quadrupole density Q,,) enter the effective magnetization. 

Equation (6.100) is the nonrelativistic limit of one of the equations of 

Minkowski’s electrodynamics of moving media (see Pauli, p. 105). 

The reader may consult the book by de Groot for a discussion of the relativ- 

istic corrections, as well as for a statistical-mechanical treatment of the averaging. 

From the standpoint of logic and consistency there remains one loose end. In 

defining the molecular quadrupole moment (Q},)ag by (6.77) we departed from 

our convention of Chapter 4, Eq. (4.9), and left (Q,,)4g with a nonvanishing trace. 

Since we made a point in Chapter 4 of relating the five independent components 

of the traceless quadrupole moment tensor to the (2/ + 1) spherical harmonics 

for 1 = 2, we need to explain why six components enter the macroscopic Maxwell 

equations. If we define a traceless molecular quadrupole moment (Q,,) a by 

means of (4.9), then we have 

(6.101) (O,) ap = (O,)ap + 2 ;(Xjn) Sap 

Introducing a mean square charge radius r7, of the molecular charge distribution 

by 

ern = 2 qj(Xin)” 

where e is some convenient unit of charge, for example, that of a proton, we can 

write (6.101) as 

(O,,)ap = (Q,)ap + ern Sap 

The macroscopic quadrupole density (6.90) thus becomes 

> Qo = Qap +¢ 
n 

er, bapO(K — «)) 
(molecules) 

where Q,,, is defined in terms of (Q,)ag just as in (6.90). The net result is that in 

the averaged microscopic charge density (6.87) the traceless quadrupole density 
Q., replaces the density Q., and the charge density p is augmented by an ad- 

ditional term, 

> > 
n 

er25(x — x) (6.102) 
n 

qn5(X ~ «)) + s( pP - Pfree + ( 
(molecules) (molecules) 

The trace of the tensor Qi, is exhibited with the charge density because it is an 
1 = 0 contribution in terms of the multipole expansion. The molecular charge 
and mean square radius terms together actually represent the first two terms in 

an expansion of the / = 0 molecular multipole as we go beyond the static limit. 
In the Fourier-transformed wave number space, they correspond to the first two 
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terms in the expansion of the charge form factor in powers of k?. This can be 
seen from the definition of the form factor F(k?) for a charge density p(x): 

FUR) = | dx pONe™™ m0 par 

~ 
- | d°x p(x) sin ‘ 

[ate | reaes 
With the correspondence k <> —iV, the general equivalence of the form factor 

expansion and (6.102) is established 

In an interesting monograph alluded to above, Robinson gives a discussion 

of the connection between the microscopic equations and the macroscopic equa- 

tions similar to ours. However, he makes a distinction between the spatial av- 

eraging (6.65) with the test function f(x), called “truncation” (of the wave 
number spectrum) by him, and the statistical-mechanical averaging over various 

orts of ensembles. Robinson holds that each macroscopic problem has its own 
appropriate lower limit of relevant lengths and that this sets the size of the test 

function to be used, before any considerations of statistical averaging are made 

6.7 Poynting’s Theorem and Conservation of Energy 

and Momentum for a System of Charged Particles 

and Electromagnetic Fields 

The forms of the laws of conservation of energy and momentum are important 

results to establish for the electromagnetic field. We begin by considering con- 

servation of energy, often called Poynting’s theorem (1884). For a single charge 

q the rate of doing work by external electromagnetic fields E and B is qgv- E 

where v is the velocity of the charge. The magnetic field does no work, since the 

magnetic force is perpendicular to the velocity. If there exists a continuous dis- 

tribution of charge and current, the total rate of doing work by the fields in a 

finite volume V is 

(6.103) [spe 

This power represents a conversion of electromagnetic energy into mechanical 

or thermal energy. It must be balanced by a corresponding rate of decrease of 

energy in the electromagnetic field within the volume V. To exhibit this conser- 

vation law explicitly, we use the Maxwell equations to express (6.103) in other 

terms. Thus we use the Ampére—Maxwell law to eliminate J 

_ oD 
(6.104) 

ot 
[is Eds =| E (Vv x H) Ges 

If we now employ the vector identity, 

V-(E x H) H-(V x E)— E-(V x H) 
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and use Faraday’s law, the right-hand side of (6.104) becomes 

aD 
V-(EXH)+E-—-+H- [is ee ~ | | Bl ax (6.105) 

To proceed further we make two assumptions: (1) the macroscopic medium is 
linear in its electric and magnetic properties, with negligible dispersion or losses, 
and (2) the sum of (4.89) and (5.148) represents the total electromagnetic energy 
density, even for time-varying fields. With these two assumptions and the total 
energy density denoted by 

u=-(E-D+B-H) (6.106) 

(6.105) can be written 

ou 
—+V-(E x H) (6.107) |e [a pax =| |% 

Since the volume V is arbitrary, this can be cast into the form of a differential 
continuity equation or conservation law 

ou 
—+V-S=-J-E (6.108) 
ot 

The vector S, representing energy flow, is called the Poynting vector. It is given 

by 

S=ExH (6.109) 

and has the dimensions of (energy/area X time). Since only its divergence appears 

in the conservation law, the Poynting vector seems arbitrary to the extent that 

the curl of any vector field can be added to it. Such an added term can, however 

have no physical consequences. Relativistic considerations (Section 12.10) show 

that (6.109) is unique 

The physical meaning of the integral or differential form (6.107) or (6.108) 

is that the time rate of change of electromagnetic energy within a certain volume 

plus the energy flowing out through the boundary surfaces of the volume per 

unit time, is equal to the negative of the total work done by the fields on the 

sources within the volume. This is the statement of conservation of energy. The 

assumptions that follow (6.105) really restrict the applicability of the simple ver- 

sion of Poynting’s theorem to vacuum macroscopic or microscopic fields. Even 

for linear media, there is always dispersion (with accompanying losses). Then the 

right-hand side of (6.105) does not have the simple interpretation exhibited in 

(6.107). The more realistic situation of linear dispersive media is discussed in the 

next section 

The emphasis so far has been on the energy of the electromagnetic fields 

The work done per unit time per unit volume by the fields (J - E) is a conversion 

of electromagnetic energy into mechanical or heat energy. Since matter is ulti- 

mately composed of charged particles (electrons and atomic nuclei), we can think 

of this rate of conversion as a rate of increase of energy of the charged particles 

per unit volume. Then we can interpret Poynting’s theorem for the microscopic 

fields (E, B) as a statement of conservation of energy of the combined system of 



260 Chapter 6 Maxwell Equations, Macroscopic Electromagnetism, Conservation Laws—SI 

particles and fields. If we denote the total energy of the particles within the 

volume V as E,,ec, and assume that no particles move out of the volume, we have 

(6.110) =| s-Bax ah “mech 

Then Poynting’s theorem expresses the conservation of energy for the combined 
~~ _ system as 

dE _ 
(6.111) 

dt 
«(Ener + Exel) = ~ $ n:S da 

where the total field energy within V is 

(6.112) Evseta = u d°x = e | (E? + c’B?) a 

The conservation of linear momentum can be similarly considered. The total 

electromagnetic force on a charged particle is 

= q(E + v x B) (6.113) 

If the sum of all the momenta of all the particles in the volume V is denoted by 

Pnech, WE Can write, from Newton’s second law, 

(6.114) Bev =| (pE + J x B) d*x 

where we have converted the sum over particles to an integral over charge and 

current densities for convenience in manipulation. In the same manner as for 

Poynting’s theorem, we use the Maxwell equations to eliminate p and J from 

(6.114) 

1 dE 
p=eV-E J=—VXxXB-eq— (6.115) 

Ho 

With (6.115) substituted into (6.114) the integrand becomes 

E+ IX B= a EW b) + Bx E—emx vx) 

Then writing 

dE oB 
— 

= B 
ot 

-S (Ex B) + Ex 

and adding c’B(V - B) = 0 to the square bracket, we obtain 

pE + J x B= © [E(V- E) + c’B(V - B) 

— Ex (V x E) — c’B x (V x B)] — & (E x B) 

The rate of change of mechanical momentum (6.114) can now be written 

d AP nech 
+ — €,(E x B) ad (6.116) dt d. 

= «| [E(V +E) — E x (V x E) + c*B(V- B) — c’B x (V x B)] d@? 
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We may tentatively identify the volume integral on the left as the total electro- 
magnetic momentum P,,.)g in the volume V: 

(6.117) Preia = €& [e xB d°x = Hoo [x x H d°*x 

The integrand can be interpreted as a density of electromagnetic momentum. 
We note that this momentum density is proportional to the energy-flux density 

2 S, with proportionality constant c™ 

To complete the identification of the volume integral of 

(6.118) g= 5 (Ex H) 
as electromagnetic momentum, and to establish (6.116) as the conservation law 

for momentum, we must convert the volume integral on the right into a surface 

integral of the normal component of something that can be identified as mo- 

mentum flow. Let the Cartesian coordinates be denoted by x,, a = 1, 2, 3. The 

a = 1 component of the electric part of the integrand in (6.116) is given explicitly 

by 

[E(V-E) - Ex (V x B)], 

OF, OF, JE, Ey dE, 
_— —_—S ll —S sd ——— 

dE, , dE; 

OX Oxy 0X4 Ox, Ox 3 Ox, OX> 
- a ) a ) +f 

This means that we can write the ath component as 

[E(V-E)-Ex(VxE)], => i (EE, — 3E+E8.,) (6.119) 

and have the form of a divergence of a second rank tensor on the right-hand 

side. With the definition of the Maxwell stress tensor T., as 

(6.120) Tap = €[EE,g + BBg - 3(E+E + cB - B)d, 5] 

we can therefore write (6.116) in component form as 

(6.121) => 2 Tap a°x “ (Pinech + Preia)a 
B Vv OX pg 

Application of the divergence theorem to the volume integral gives 

(6.122) & (Prnech + Preta)a = $ > T.ghp da 
where n is the outward normal to the closed surface S. Evidently, if (6.122) rep- 

resents a statement of conservation of momentum, 2g7 g/g is the ath component 

of the flow per unit area of momentum across the surface S into the volume V. 

In other words, it is the force per unit area transmitted across the surface S and 

acting on the combined system of particles and fields inside V. Equation (6.122) 
can therefore be used to calculate the forces acting on material objects in elec- 

tromagnetic fields by enclosing the objects with a boundary surface S and adding 

up the total electromagnetic force according to the right-hand side of (6.122). 
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The conservation of angular momentum of the combined system of particles 

and fields can be treated in the same way as we have handled energy and linear 

momentum. This is left as a problem for the student (see Problem 6.10). 

The discussion of electromagnetic momentum and the stress tensor in fluids 

and solids entails analysis of interplay of mechanical, thermodynamic, and elec- 
tromagnetic properties (e.g., de/aT and de/dp). We refer the reader to Landau 

and Lifshitz, Electrodynamics of Continuous Media (Sections 10, 15, 16, 31, 35), 
Stratton (Chapter 2), and, for a statistical mechanical approach, to de Groot (Sec- 
tion 13). We note only that, although a treatment using the macroscopic Maxwell 
equations leads to an apparent electromagnetic momentum, g = D x B (Min- 
kowski, 1908), the generally accepted expression for a medium at rest is 

1 4s (6.123) 
Cc B= GE x H = Moeok x H = 

We note that g is the electromagnetic momentum associated with the fields. 

There is an additional co-traveling momentum within the medium from the me- 

chanical momentum of the electrons in the molecular dipoles in response to the 

incident traveling wave.* The Minkowski momentum of a plane wave is the 

“‘pseudomomentum” of the wave vector (k = nwic or hk = n(hw)/c for a photon). 

6. 8 Poynting’s Theorem in Linear Dispersive Media with Losses 

In the preceding section Poynting’s theorem (6.108) was derived with the restric- 

tion to linear media with no dispersion or losses (i.e., D = «E and B = pH), with 

€ and yu real and frequency independent. Actual materials exhibit dispersion and 

losses. To discuss dispersion it is necessary to make a Fourier decomposition in 

time of both E and D (and B and H). Thus, with 

E(x, t) = [- dw E(x, w)e7'" 

D(x, t) = [- dw D(x, w)e"'" 

the assumption of linearity (and, for simplicity, isotropy) implies that D(x, w) = 
€(w)E(x, w), where €(w) is the complex and frequency-dependent susceptibility. 
Similarly, B(x, w) = u(w)H(x, w). The reality of the fields implies that E(x, —w) 
= E*(x, w), D(x, —w) = D*(x, ), and e(—w) = e*(w). The presence of dispersion 
carries with it a temporally nonlocal connection between D(x, f) and E(x, 1), 
discussed in detail in Section 7.10. As a consequence, the term E- (dD/ar) in 
(6.105) is not simply the time derivative of (E - D/2). 

We write out E- (dD/dt) in terms of the Fourier integrals, with the spatial 
dependence implicit, 

E o ~ | de i dw'E*(w’)[—iwe(w)] - E(w)e °° 

*See R. E. Peierls, Proc. R. Soc. London 347, 475 (1976) for a very accessible discussion, of which 
Problem 6.25 is a simplified version. See also R. Loudon, L. Allen, and D. F. Nelson, Phys. Rev. E 
55, 1071 (1997). 
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Split the integrand into two equal parts and in one make the substitutions 
@®—> —w,w — — w, and use the reality constraints to obtain 

_oD =} Al da) { dw'E*(w’)[—iwe(w) + iw’ e*(w')] + E(w)e"&™ ~— (6.124) 
We now suppose that the electric field is dominated by frequency components 
in a relatively narrow range compared to the characteristic frequency interval 
over which e(w) changes appreciably. We may then expand the factor iw’ e*(o’ ) 
in the square brackets around w’ = w to get 

[ ] = 2m Im e€(a) i(w — w') — (we*(w)) + 

Insertion of this approximation into (6.124) leads to 

E sD [ dw | aw E*(w') + E(w) Im e(w)e 
(6.125) 

a1 
+ —— 

ot 2 
[ de { dw’ E*(w’) - E(u) = — , [we*(w)]e -(w—w')t 

There is a corresponding expression for H - dB/ét with E — H and e—> yp on the 

right-hand side 

First of all note that if e and yw are real and frequency independent we recover 

the simple connection between the time derivative terms in (6.105) and du/at 

with u given by (6.106). Second, the first term in (6.125) evidently represents the 

conversion of electrical energy into heat (or more generally into different forms 

of radiation*), while the second term must be an effective energy density. A more 

transparent expression, consistent with our assumption of the dominance of E 

and H by a relatively narrow range of frequencies can be obtained by supposing 

that E = E(t) cos(wot + a), H H(t) cos(@ot + 8), where E(t) and H(t) 

are slowly varying relative to both 1/w» and the inverse of the frequency range 

over which e(w) changes appreciably. If we substitute for the Fourier transforms 

E(@) and H(w) and average both sides of the sum of (6.125) and its magnetic 

counterpart over a period of the ‘‘carrier” frequency w, we find (after some 

straightforward manipulation) 

0B oD 
— H 
0 ot 
) = wy Im €(a,)(E(x, t) « E(x, 2) (e 

(6.126a) 

+ @ Im p(e)H(x, t) « H(x, t)) + 
0 

where the effective electromagnetic energy density is 

d(we) ( » |e t) - E(x, 2)) | (6.126b) 

d(wp) 
d "| ( fet t) + H(x, £)) 

*For example, if the dominant frequencies are near an atomic resonance of the medium where ab- 

sorption is important (Im € # 0), the re-emission of the radiation absorbed at w may be at w’, where 

wo =o. 
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The presence of the factors d(we)/dw and d(wp)/dw was first noted by Brillouin 

(see Brillouin, pp. 88-93). Our treatment is similar to Landau and Lifshitz, Elec- 

trodynamics of Continuous Media (Section 80). 

Poynting’s theorem in these circumstances reads 

OUese 
—_—— 

0 (6.127) 
+V-S = —-J-E —- w Im eC E(x, t)s EG, t)) 

~ tw Im p(@)A(x, t) « H(x, 0) 

The first term on the right describes the explicit ohmic losses, if any, while the 

next terms represent the absorptive dissipation in the medium, not counting con- 

duction loss. If the conduction current contribution is viewed as part of the di- 

electric response (see Section 7.5), the —J-E term is absent. Equation (6.127) 

exhibits the local conservation of electromagnetic energy in realistic situations 

where, as well as energy flow out of the locality (V-S # 0), there may be losses 
from heating of the medium (Im ¢ + 0, Im p» # 0), leading to a (presumed) slow 
decay of the energy in the fields. 

6.9 Poynting’s Theorem for Harmonic Fields; 

Field Definitions of Impedance and Admittance* 

Lumped circuit concepts such as the resistance and reactance of a two-terminal 

linear network occur in many applications, even in circumstances where the size 

of the system is comparable to the free-space wavelength, for example, for a 

resonant antenna. It is useful therefore to have a general definition based on field 

concepts. This follows from consideration of Poynting’s theorem for harmonic 

time variation of the fields. We assume that all fields and sources have a time 
—iwt , SO that we write dependence e 

1 =_— 

=2 E(x, t) = Re[E(x)e‘"] (6.128) [E(x)e"" + E*(x)e'] 

The field E(x) is in general complex, with a magnitude and phase that change 

with position. For product forms, such as J(x, t) - E(x, t), we have 

J(x, t) - E(x, t) = H[U(ax)e“'*" + J*(w)e"*"] « [E(we"" + EA(x)e'] (6.129) 
— 

= 7 Re[J*(x) - E(x) + I(x) + E(x)e"*"] 

For time averages of products, the convention is therefore to take one-half of 

the real part of the product of one complex quantity with the complex conjugate 

of the other. 

For harmonic fields the Maxwell equations become 

Vx E — ioB = 0 V-B=0, 
(6.130) 

VxH+ ioD =J V-D= op, 

*The treatment of this section parallels that of Fano, Chu, and Adler (Sections 8.2 and 8.3). The 
reader can find in this book considerable further discussion of the connection between lumped circuit 
and field concepts, examples of stray capacitances in inductors, etc. See also the first two chapters of 
Adler, Chu, and Fano. 
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where all the quantities are complex functions of x, according to the right-hand 
side of (6.128). Instead of (6.103) we consider the volume integral 

tf aE a 

whose real part gives the time-averaged rate of work done by the fields in the 
volume V. In a development strictly paralleling the steps from (6.103) to (6.107), 
we have 

5 |e eae =2f ety xn — ioe as 
(6.131) 

=3[ -v-(e x HY) - io(E DY - Be HE ax 
We now define the complex Poynting vector 

S = 3(E x H*) (6.132) 

and the harmonic electric magnetic energy densities, 

w= i(E - D*), (6.133) Wm = 7(B ° H*) 

Then (6.131) can be written as 

cf J* - E dx + 2iw I, (We — Wm) d2x + ’ S-nda=0 (6.134) 

This is the analog of (6.107) for harmonic fields. It is a complex equation whose 

real part gives the conservation of energy for the time-averaged quantities and 

whose imaginary part relates to the reactive or stored energy and its alternating 

flow. If the energy densities w, and w,, have real volume integrals, as occurs 

for systems with lossless dielectrics and perfect conductors, the real part of 

(6.134) is 

[, + Re(J* - E) d°x + $ Re(S -n) da = 0 

showing that the steady-state, time-averaged rate of doing work on the sources 

in V by the fields is equal to the average flow of power into the volume V through 

the boundary surface S, as calculated from the normal component of Re S. This 

is just what would be calculated from the earlier form of Poynting’s theorem 

(6.107) if we assume that the energy density u has a steady part and a harmoni- 

cally fluctuating part. With losses in the components of the system, the second 

term in (6.134) has a real part that accounts for this dissipation. 
The complex Poynting theorem (6.134) can be used to define the input im- 

pedance of a general, two-terminal, linear, passive electromagnetic system. We 
imagine the system in the volume V surrounded by the boundary surface S, with 
only its input terminals protruding, as shown in Fig. 6.4. If the complex harmonic 

input current and voltage are J; and V;, the complex power input is 31*V;. This 
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Figure 6.4 Schematic diagrams of arbitrary, two-terminal, linear, passive 
electromagnetic systems. The surface S completely surrounds the system; only the input 
terminals protrude. At these terminals, the harmonic input current and voltage are J; 
and V,, with the input impedance Z defined by V; = Z/;. The upper diagram applies at 

low frequencies where radiation losses are negligible, while the lower one with its 
coaxial-line input permits discussion of radiation resistance. 

can be written in terms of the Poynting vector by using (6.134) applied to all of 
space on the outside of S as 

(6.135) SI*V; = -$ S -“n da 

where the unit normal n is outwardly directed, as shown in Fig. 6.4, and we have 

assumed that the input power flow is confined to the area S; (the cross section of 

the coaxial line in the lower diagram of Fig. 6.4). By now considering (6.134) for 

the volume V surrounded by the closed surface S, the right-hand side of (6.135) 

can be written in terms of integrals over the fields inside the volume V: 

S-nda (6.136) Wm) a°x + ¢ SIV; = if J* - E d’x + 2iw [, (w. 
S-S; 

The surface integral here represents power flow out of the volume V through the 

surface S, except for the input surface S,. If the surface (S — S,) is taken to infinity, 

this integral is real and represents escaping radiation (see Chapter 9). At low 

frequencies it is generally negligible. Then no distinction need be made between 

S; and S; the upper diagram in Fig. 6.4 applies. 

The input impedance Z = R — ix (electrical engineers please read as Z = 

R + jX!) follows from (6.136) with its definition, V; = ZJ;. Its real and imaginary 

parts are 

1 
R 

~ [LP S-S; 
{Re [rE dte +2 S-nda+t 4w Im I, (Wm — We) ix} 

(6.137) 
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x= 1, {ao Re [, (Wn —w.) de — Im [ae Eas] 
(6.138) 

In writing (6.137) and (6.138) we have assumed that the power flow out through 
S is real. The second term in (6.137) is thus the “radiation resistance,” important 
at high frequencies. At low frequencies, in systems where ohmic losses are the 
only appreciable source of dissipation, these expressions simplify to 

R=— (6.139) I, o |E/ da 
ma 

y ~ 42 (6.140) [, on — w,) d?x 
[LP 

Here a is the real conductivity, and the energy densities w,, and w, (6.133) are 

also real over essentially the whole volume. The resistance is clearly the value 

expected from consideration of ohmic heat loss in the circuit. Similarly, the re- 

actance has a plausible form: if magnetic stored energy dominates, as for a 

lumped inductance, the reactance is positive, etc. The different frequency de- 

pendences of the low-frequency reactance for inductances (X = wL) and capac- 

itances (X = —1/wC) can be traced to the definition of L in terms of current and 

voltage (V = L di/dt) on the one hand, and of C in terms of charge and voltage 

(V = Q/C) on the other. The treatment of some simple examples is left to the 

problems at the end of the chapter, as is the derivation of results equivalent to 

(6.139) and (6.140) for the conductance and susceptance of the complex 

admittance Y. 

6.10 Transformation Properties of Electromagnetic Fields 
and Sources Under Rotations, Spatial Reflections, 
and Time Reversal 

The fact that related physical quantities have compatible transformation prop- 

erties under certain types of coordinate transformation is so taken for granted 
that the significance of such requirements and the limitations that can be thereby 
placed on the form of the relations is sometimes overlooked. It is useful therefore 
to discuss explicitly the relatively obvious properties of electromagnetic quanti- 

ties under rotations, spatial inversions, and time reversal. The notions have direct 

application for limiting phenomenological constitutive relations, and are applied 

in the next section where the question of magnetic monopoles is discussed 

It is assumed that the idea of space and time coordinate transformations and 

their relation to the general conservation laws is familiar to the reader from 

classical mechanics (see, e.g., Goldstein). Only a summary of the main results is 

given here 

A. Rotations 

A rotation in three dimensions is a linear transformation of the coordinates 

of a point such that the sum of the squares of the coordinates remains invariant 
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Such a transformation is called an orthogonal transformation. The transformed 
coordinates x/, are given in terms of the original coordinates xg by 

(6.141) x, = > AapXp 

The requirement to have (x’)* = (x)’ restricts the real transformation coefficients 

Aap to be orthogonal, 
™ _~ 

(6.142) 2 Aaplay = Spy 

The inverse transformation has (a~')ag = @gq and the square of the determinant 

of the matrix (a) is equal to unity. The value det(a) = +1 corresponds to a proper 

rotation, obtainable from the original configuration by a sequence of infinitesimal 

steps, whereas det(a) = —1 represents an improper rotation, a reflection plus a 

rotation. 

Physical quantities are classed as rotational tensors of various ranks depend- 

ing on how they transform under rotations. Coordinates x;, velocities v,, momenta 

p; have components that transform according to the basic transformation law 

(6.141) and are tensors of rank one, or vectors. Scalar products of vectors, such 

aS X, °X> OF V; « pp, are invariant under rotations and so are tensors of rank zero, 

or scalars. Groups of quantities that transform according to 

(6.143) op = 2 Day ApsBys 

are called second-rank tensors or, commonly, tensors. The Maxwell stress tensor 
is one such group of quantities. Higher rank tensor transformations follow 

obviously. 

In considering electromagnetic fields and other physical quantities, we deal 

with one or more functions of coordinates and perhaps other kinematic variables. 

There then arises the choice of an “‘active” or a “‘passive”’ view of the rotation. 

We adopt the active view—the coordinate axes are considered fixed and the 

physical system is imagined to undergo a rotation. Thus, for example, two 

charged particles with initial coordinates x, and x, form a system that under a 

rotation is transformed so that the coordinates of the particles are now x; and 

x3, as shown in Fig. 6.5. The components of each coordinate vector transform 

according to (6.141), but electrostatic potential is unchanged because it is a func- 

tion only of the distance between the two points, R = |x, — x>|, and R? is asum 
of scalar products of vectors and so is invariant under the rotation. The electro- 

static potential is one example of a scalar under rotations. In general, if a physical 

quantity ¢, which is a function of various coordinates denoted collectively by x; 

(possibly including coordinates such as velocities and momenta), is such that 

when the physical system is rotated with x; > x;, the quantity remains unchanged, 

(6.144) '(x;) = (x;) 

then ¢ is a scalar function under rotations. Similarly, if a set of three physical 

quantities V,(x;) (a@ = 1, 2, 3) transform under rotation of the system according 

to 

(6.145) ViUxi) = > AapV p(Xi) 

then the V, form the components of a vector, and so on for higher rank tensors. 
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Figure 6.5 Active rotation of a system 
x of two charges. 

Differential vector operations have definite transformation properties under 
rotations. For example, the gradient of a scalar, Vd, transforms as a vector, the 
divergence of a vector, V « V, is a scalar, and the Laplacian operator V’ is a scalar 
operator in the sense that its application to a function or set of functions does 

not alter their rotational transformation properties. 

Special mention must be made of the cross product of two vectors: 

A=BxC (6.146) 

In component form this vector shorthand reads 

A, = > Eapy Bg Cy 

where € —1 for = +1 for a = 1, B = 2, y = 3 and cyclic permutations, e€ apy apy 

other permutations, and vanishes for two or more indices equal. Because of the 

presence of two vectors on the right-hand side, the cross product has some at- 

tributes of a traceless antisymmetric second-rank tensor. Since such a tensor has 

only three independent components, we treat it as a vector. This practice is jus- 

tified, of course, only insofar as it transforms under rotations according to (6.141). 

In actual fact, the transformation law for the cross product (6.146) is 

(6.147) Aj, = det(a) 2 aa.pAg 

For proper rotations, the only kind we have considered so far, det(a) = +1; thus 
(6.147) is in agreement with the basic coordinate transformation (6.141). Under 
proper rotations, the cross product transforms as a vector. 

B. Spatial Reflection or Inversion 

Spatial reflection in a plane corresponds to changing the signs of the normal 
components of the coordinate vectors of all points and to leaving the components 

parallel to the plane unchanged. Thus, for reflection in the x-y plane, x; = 
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(xj, Vis Zi) > X) = (%, Yi, — Z,). Space inversion corresponds to reflection of all 
three components of every coordinate vector through the origin, x; > x; = —X;. 

Spatial inversion or reflection is a discrete transformation that, for more than 

two coordinates, cannot in general be accomplished by proper rotations. It cor- 

responds to det(a) = —1, and for the straightforward inversion operation is given 
by (6.141) with azg = —5Sag. It follows that vectors change sign under spatial 

inversion, but cross products, which behave according to (6.147), donot. We are 

thus forced to distinguish two kinds of vectors (under general rotations): 

Polar vectors (or just vectors) that transform according to (6.145) and for 

X; > X; = —x;, behave as 

— 

= -V vo-V 

Axial or pseudovectors that transform according to (6.147) and for x; > x; = —x; 
behave as 

— 

= A A-> A’ 

Similar distinctions must be made for scalars under rotations. We speak of scalars 

or pseudoscalars, depending on whether the quantities do not or do change sign 

under spatial inversion. The triple scalar product a-(b X c) is an example of a 

pseudoscalar quantity, provided a, b, ¢ are all polar vectors. (We see here in 

passing a dangerous aspect of our usual notation. The writing of a vector as a 

does not tell us whether it is a polar or an axial vector.) The transformation 

properties of higher rank tensors under spatial inversion can be deduced directly 

if they are built up by taking products of components of polar or axial vectors. 

If a tensor of rank N transforms under spatial inversion with a factor (—1)%, we 

call it a true tensor or just a tensor, while if the factor is (—1)‘*! we call it a 
pseudotensor of rank N. 

C. Time Reversal 

The basic laws of physics are invariant (at least at the classical level) to the 

sense of direction of time. This does not mean that the equations are even in f, 

but that, under the time reversal transformation ¢ — t' = —t, the related physical 

quantities transform in a consistent fashion so that the form of the equation is 

the same as before. Thus, for a particle of momentum p and position x moving 

in an external potential U(x), Newton’s equation of motion, 

dp _ 
— —-VU(x) 
d 

is invariant under time reversal provided x — x’ = x and p> p’ = —p. The sign 
change for the momentum is, of course, intuitively obvious from its relation to 
the velocity, v = dx/dt. The consequence of the invariance of Newton’s laws under 
time reversal is that, if a certain initial configuration of a system of particles 
evolves under the action of various forces into some final configuration, a possible 
State of motion of the system is that the time-reversed final configuration (all 
positions the same, but all velocities reversed) will evolve over the reversed path 
to the time-reversed initial configuration. 

The transformation properties of various mechanical quantities under rota- 
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Table 6.1 Transformation Properties of Various Physical Quantities under Rotations, 
Spatial Inversion and Time Reversal? 

Rotation 

Time (rank of Space Inversion 
Physical Quantity Reversal tensor) (name) 

I. Mechanical 

Coordinate Even Odd (vector) 
Velocity Odd Odd (vector) 
Momentum Odd Odd (vector) 
Angular momentum Odd L=xxp Even (pseudovector) 
Force Even Odd (vector) 

N=xxF Even Torque Even (pseudovector) 

Even Kinetic energy p?/2m Even (scalar) 

Even Potential energy U(x) Even (scalar) 

I] Electromagnetic 

Even Charge density Even (scalar) 

Odd Current density Odd (vector) 

Electric field 

Polarization Even Odd (vector) 

Displacement 

Magnetic induction 

Odd Magnetization Even (pseudovector) 

Magnetic field 

S=ExH Odd Poynting vector Odd (vector) 

Maxwell stress tensor Even Even (tensor) Tap 

*For quantities that are functions of x and f, it is necessary to be very clear what is meant by 

evenness or oddness under space inversion or time reversal. For example, the magnetic induction is 

such that under space inversion, B(x, t) > B,(x, t) = +B(—x, 0), while under time reversal, 

B(x, 1) > By(x, 1) = —B(x, —2). 

tions, spatial inversion, and time reversal are summarized in the first part of Table 

6.1. 

D. Electromagnetic Quantities 

Just as with the laws of mechanics, it is true (i.e., consistent with all known 
experimental facts) that the forms of the equations governing electromagnetic 
phenomena are invariant under rotations, space inversion, and time reversal. This 
implies that the different electromagnetic quantities have well-defined transfor- 
mation properties under these operations. It is an experimental fact that electric 

charge is invariant under Galilean and Lorentz transformations and is a scalar 

under rotations. It is natural, convenient, and permissible to assume that charge 

is also a scalar under spatial inversion and even under time reversal. The point 

here is that physically measurable quantities like force involve the product of 

charge and field. The transformation properties attributed to fields ike E and B 

thus depend on the convention chosen for the charge. 

With charge a true scalar under all three transformations, charge density p is 

also a true scalar. From the fact that the electric field is force per unit charge, we 

see that E is a polar vector, even under time reversal. This also follows from the 
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Maxwell equation, V-E = p/éo, since both sides must transform in the same 

manner under the transformations. 

The first term in the Maxwell equation representing Faraday’s law, 

0 
VxE+ 7 =0 

transforms as a pseudovector under rotations and spatial inversion;-and is even 

under time reversal. To preserve the invariance of form it is therefore necessary 

that the magnetic induction B be a pseudovector, odd under time reversal. The 

left-hand side of the Ampére—Maxwell equation, 

0 
—VxB-e—=J 
Ho 

can be seen to transform as a polar vector, odd under time reversal. This implies 

that the current density J is a polar vector, odd under time reversal, as expected 

from its definition in terms of charge times velocity. 

We have just seen that the microscopic fields and sources have well-defined 
transformation properties under rotations, spatial inversion, and time reversal. 
From the derivation of the macroscopic Maxwell equations in Section 6.6 and 
the definitions of P, M, etc., it can be seen that E, P, D all transform in the same 
way, as do B, M, H. The various transformation properties for electromagnetic 

quantities are summarized in the second part of Table 6.1. 

To illustrate the usefulness of arguments on the symmetry properties listed 

in Table 6.1, we consider the phenomenological structure of a spatially local 

constitutive relation specifying the polarization P for an isotropic, linear, non- 

dissipative medium in a uniform, constant, external magnetic induction Bo. The 

relation is first order in the electric field E, by assumption, but we require an 

expansion in powers of B, up to second order. Since P is a polar vector, and even 

under time reversal, the various terms to be multiplied by scalar coefficients must 

transform in the same way. To zeroth order in Bo, only E is available. To first 

order in Bo, possible terms involving E linearly are 

dE vE 
E x By, — X Bo, —=z X< By: :: 

All these are permitted by rotational and spatial inversion grounds, but only 

those involving odd time derivatives transform properly under time reversal. For 

the second order in Bo, the possibilities are 

(By B,)E, (E By) Bo, (By - By) <= . 

Here only the terms with zero or even time derivatives of E satisfy all the re- 

quirements. The most general spatially local expression for the polarization, cor- 
rect to second order in the constant magnetic field Bo, is thus 

(6.148) & P= XoE + X1 at x Bo + X2(By ° B,)E + x3(E . Bo) Bo + 

where the y; are real scalar coefficients and higher time derivatives of E can occur, 
odd for the terms linear in By and even for the zeroth and second powers of Bo. 
At low frequencies, the response of essentially all material systems is via electric 
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forces. This means that at zero frequency there should be no dependence of P 
on Bo, and a more realistic form is 

1 VE vE 
— P= yE + y, — * Bo + x2(Bo - Bo) 

ot 0 at? at? 
+ x 

where we have exhibited only the lowest order time derivatives for each power 
of Bo. At optical frequencies this equation permits an understanding of the gy- 
rotropic behavior of waves in an isotropic medium in a constant magnetic field.* 

Another example, the Hall effect, is left to the problems. It, as well as ther- 
mogalvanomagnetic effects and the existence of magnetic structure in solids, are 
discussed in Landau and Lifshitz (op. cit.). 

In certain circumstances the constraints of space-time symmetries must be 
relaxed in constitutive relations. For example, the optical rotatory power of chiral 
molecules is described phenomenologically by the constitutive relations, P = 
€oXoE + €0B/dt and woM = xoB + é'dE/dt. The added terms involve pseudoscalar 

quantities € and é' that reflect the underlying lack of parity symmetry for chiral 
substances. (Quantum mechanically, nonvanishing é or é’ requires both electric 

and magnetic dipole operators to have nonvanishing matrix elements between 

the same pair of states, something that cannot occur for states of definite parity.) 

6.11 On the Question of Magnetic Monopoles 

At the present time (1998) there is no experimental evidence for the existence 

of magnetic charges or monopoles. But chiefly because of an early, brilliant the- 

oretical argument of Dirac,’ the search for monopoles is renewed whenever a 

new energy region is opened up in high-energy physics or a new source of matter, 

such as rocks from the moon, becomes available. Dirac’s argument, outlined 

below, is that the mere existence of one magnetic monopole in the universe would 

offer an explanation of the discrete nature of electric charge. Since the quanti- 

zation of charge is one of the most profound mysteries of the physical world, 

Dirac’s idea has great appeal. The history of the theoretical ideas and experi- 

mental searches up to 1990 are described in the resource letter of Goldhaber and 

Trower.* Some other references appear at the end of the chapter. 
There are some necessary preliminaries before examining Dirac’s argument. 

One question that arises is whether it is possible to tell that particles have mag- 
netic as well as electric charge. Let us suppose that there exist magnetic charge 

and current densities, p,, and J,,, in addition to the electric densities, p, and J,. 

The Maxwell equations would then be 

éD 
VxH=—iJ, V-D=p, 

0 
(6.150) 

oB 
-VxE=-— + J,, V-B= pn, 

0 

*See Landau and Lifshitz, Electrodynamics of Continuous Media, p. 334, Problem 3, p. 337. 

tp. A. M. Dirac, Proc. R. Soc. London A133, 60 (1931); Phys. Rev. 74, 817 (1948). 

+A. S. Goldhaber and W. P. Trower, Resource Letter MM-1: Magnetic Monopoles, Am. J. Phys. 58, 

429-439 (1990). 
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The magnetic densities are assumed to satisfy the same form of the continuity 

equation as the electric densities. It appears from these equations that the exis- 
tence of magnetic charge and current would have observable electromagnetic 

consequences. Consider, however, the following duality transformation*: 

Z.D = Z,.D’ cosé + B’ sin € E = E’ cosé + ZH’ sing, 
(6.151) 

B = —Z,D’ sin € +~B’ cesé ZH = -E’ sin€ + ZH’ cos & 

For a real (pseudoscalar) angle é, such a transformation leaves quadratic forms 

such as E x H, (E- D + B- Hi), and the components of the Maxwell stress tensor 

Tg, invariant. If the sources are transformed in the same way, 

= Zod. cosé + J,, sin € = Zop. COSE + pm sin é, Lode ZoPe (6.152) 
—_— 

= 
= —Z,J. siné + J, cosé Jin Pm —Zop. sinE + pm cos é, 

then it is straightforward algebra to show that the generalized Maxwell equations 
(6.150) are invariant, that is, the equations for the primed fields (E’, D’, B’, H’) 
are the same as (6.150) with the primed sources present. 

The invariance of the equations of electrodynamics under duality transfor- 

mations shows that it is a matter of convention to speak of a particle possessing 

an electric charge, but not magnetic charge. The only meaningful question is 

whether all particles have the same ratio of magnetic to electric charge. If they 

do, then we can make a duality transformation, choosing the angle € so that 

Pm = 0, Jn = 0. We then have the Maxwell equations as they are usually known. 

If, by convention, we choose the electric and magnetic charges of an electron 

to be gq. = —€, dm = 0, then it is known that for a proton, g, = +e (with the 

present limits of error being |q.(electron) + q,(proton)|/e ~ 107°°) and 
|¢,.(nucleon)| <2 x 1074 Zoe. 

This extremely small limit on the magnetic charge of a proton or neutron 

follows directly from knowing that the average magnetic field at the surface of 

the earth is not more than 10~* T. The conclusion, to a very high degree of 
precision, is that the particles of ordinary matter possess only electric charge or, 

equivalently, they all have the same ratio of magnetic to electric charge. For 

other, unstable, particles the question of magnetic charge is more open, but no 

positive evidence exists. 

The transformation properties of p,, and J,,, under rotations, spatial inver- 

sion, and time reversal are important. From the known behavior of E and B in 

the usual formulation we deduce from the second line in (6.150) that 

Pm is a pseudoscalar density, odd under time reversal, and 

J,, is a pseudovector density, even under time reversal. 

Since the symmetries of p,, under both spatial inversion and time reversal are 
opposite to those of p,, it is a necessary consequence of the existence of a particle 
with both electric and magnetic charges that space inversion and time reversal 
are no longer valid symmetries of the laws of physics. It is a fact, of course, that 

*The presence of the “impedance of free space,” Zp = V o/e€p, in the transformation is a consequence 
of the presence of the dimensionful parameters €» and jo in the SI system. Magnetic charge density 
differs in dimensions from electric charge density in SI units. For users of Gaussian units, put Z) > 1. 
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these symmetry principles are not exactly valid in the realm of elementary par- 
ticle physics, but present evidence is that their violation is extremely small and 
associated somehow with the weak interactions. Future developments linking 
electromagnetic, weak, and perhaps strong, interactions may utilize particles car- 

rying magnetic charge as the vehicle for violation of space inversion and time 
reversal symmetries. With no evidence for monopoles, this remains speculation. 

In spite of the negative evidence for the existence of magnetic monopoles, 

let us turn to Dirac’s ingenious proposal. By considering the quantum mechanics 

of an electron in the presence of a magnetic monopole, he showed that consis- 

tency required the quantization condition, 

2S —_— 

ag _n 

(6.153) (n = 0, +1, +2,...) 
2 4th Zoe 

— 

= e7/4reohc is the fine structure constant where e is the electronic charge, a 

(a ~ 1/137), and g is the magnetic charge of the monopole. The discrete nature 

of electric charge thus follows from the existence of a monopole. The magnitude 

of e is not determined, except in terms of the magnetic charge g. The argument 

can be reversed. With the known value of the fine structure constant, we infer 

the existence of magnetic monopoles with charges g whose magnetic “‘fine struc- 

ture’’ constant is 

137 rn 
g 47réphc 

2 ~> — — 

= 

2 4 é 4apohc 4 ( 
Such monopoles are known as Dirac monopoles. Their coupling strength is enor- 
mous, making their extraction from matter with dc magnetic fields and their 
subsequent detection very simple in principle. For instance, the energy loss in 

matter by a relativistic Dirac monopole is approximately the same as that of a 

relativistic heavy nucleus with Z = 137n/2. It can presumably be distinguished 

from such a nucleus if it is brought to rest because it will not show an increase 

in ionization at the end of its range (see Problem 13.11). 

6.12 Discussion of the Dirac Quantization Condition 

Semiclassical considerations can illuminate the Dirac quantization condition 

(6.153). First, we consider the deflection at large impact parameters of a particle 

of charge e and mass m by the field of a stationary magnetic monopole of mag- 

netic charge g. At sufficiently large impact parameter, the change in the state of 

motion of the charged particle can be determined by computing the impulse of 

the force, assuming the particle is undeflected. The geometry is shown in Fig. 6.6. 

The particle is incident parallel to the z axis with an impact parameter b and a 

speed v and is acted on by the radially directed magnetic field of the monopole, 

B = er/4zr’, according to the Lorentz force (6.113). In the approximation that 

the particle is undeflected, the only force acting throughout the collision is a y 

component, 

vb &g (6.154) F, = evB, = 
an Ot 
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Fignre 6.6 Charged particle 

passing a magnetic monopole at 
Zz 

large impact parameter. 

The impulse transmitted by this force is 

at &g 
—_ 

_ egub [~ 
A (6.155) 

y 2ab an 
—« (b? + vr)??? 

Since the impulse is in the y direction, the particle is deflected out of the plane 

of Fig. 6.6, that is, in the azimuthal direction. Evidently the particle’s angular 

momentum is changed by the collision, a result that is not surprising in the light 

of the noncentral nature of the force. The magnitude of the change in angular 

momentum is somewhat surprising, however. There is no z component of L ini- 

tially, but there is finally. The change in L, is 

& 
— (6.156) AL, = b Ap, = 
2 

The change in the z component of angular momentum of the particle is inde- 

pendent of the impact parameter b and the speed v of the charged particle. It 

depends only on the product eg and is a universal value for a charged particle 

passing a stationary monopole, no matter how far away. If we assume that any 

change of angular momentum must occur in integral multiples of %, we are led 

immediately to the Dirac quantization condition (6.153).* 

The peculiarly universal character of the change in the angular momentum 

(6.156) of a charged particle in passing a magnetic monopole can be understood 
by considering the angular momentum contained in the fields of a point electric 
charge in the presence of a point magnetic monopole. If the monopole g is at 
x = R and the charge e is at x = 0, as indicated in Fig. 6.7, the magnetic and 
electric fields in all of space are 

, 1 n é 1 é n & & 
—_— 

_ —. H = - E = - 
12? (6.157) 2 r 

r r Amo ~ Amo ( 47 ~ 4megr ( 
where r’ = |x — R|, r = |x|, and n’ and n are unit vectors in the directions of 
(x — R) and x, respectively. The angular momentum L,,, is given by the volume 
integral of x x g, where g = (E x H)/c’ is the electromagnetic momentum density. 

*This argument is essentially due to A. S. Goldhaber, Phys. Rev. 140, B1407 (1965). 
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Figure 6.7 

The total momentum of the fields P.,,, (volume integral of g) vanishes. This fol- 

lows from the fact that P.,,, is a vector and the only vector available is R. Thus 

P.,n = (R/R)P, where P is the volume integral of g-(R/R). But g-R 

R-(n X n’). Since R lies in the plane defined by the vectors n and n’, the triple 

scalar product vanishes and so does P,,,,. This vanishing of the total momentum 

means that the angular momentum 

(6.158) Lin = 5 | xx (Ex H) dx 

is independent of choice of origin. To evaluate L,,, one can first substitute from 

(6.157) for the electric field: 

4a Lem ef tnx (ax B) d’x = ~e | fH - n(a- HD] ax 
Ho 

Using a vector identity from the front flyleaf, this can be expressed as 

AmtLem = —e | (B- V)n d°x 

where B = oH. Integration by parts gives 

AmLem =e { n(V - B) d°x — e [ n(B - ns) da 

where the second integral is over a surface S at infinity and mgs is the outward 

normal to that surface. With B from (6.157) this surface integral reduces to 

(g/47)f n dO, = 0, since n is radially directed and has zero angular average. Since 

B is caused by a point monopole at x = R, its divergence is V- B = g d(x — R). 
The field angular momentum is therefore* 

_ eg R (6.159) Lem 47 R 

*This result was first stated by J. J. Thomson, Elements of the Mathematical Theory of Electricity and 

Magnetism, Cambridge University Press, Section 284 of the third (1904) and subsequent editions. 

The argument of Section 284 is exactly the converse of ours. From the conservation of angular 

momentum, Thomson deduces the magnetic part e(v x B) of the Lorentz force. 



278 Chapter 6 Maxwell Equations, Macroscopic Electromagnetism, Conservation Laws—SI 

It is directed along the line from the electric to the magnetic charge and has 

magnitude equal to the product of the charges (in SI units) divided by 47. If we 
now think of the collision process of Fig. 6.6 and the total angular momentum of 

the system, that is, the sum of the angular momenta of the particle and the 
electromagnetic field, we see that the total angular momentum is conserved. The 
change (6.156) in the angular momentum of the particle is just balanced by the 

change in the electromagnetic angular momentum (6.159) caused by the reversal 

of the direction R. A systematic discussion of the classical and quantum-me- 

chanical scattering problem, including the electromagnetic angular momentum, 

is given by Goldhaber (loc. cit.). 

The Thomson result (6.159) was used by Saha* and independently by 

Wilson! to derive the Dirac condition (6.153) by semiclassical means. To get n/2 
instead of n when only the field angular momentum is considered, it is necessary 

to postulate half-integral quantization of L,,,, a somewhat undesirable hypothesis 

for the electromagnetic field. 

Finally, we present a simplified discussion of Dirac’s original (1931) argument 

leading to (6.153). In discussing the quantum mechanics of an electron in the 

presence of a magnetic monopole it is desirable to change as little as possible of 

the formalism of electromagnetic interactions, and to keep, for example, the 

interaction Hamiltonian in the standard form, 

——A-A 
2m 

Hin = e® ——p- A + 

where ® and A are the scalar and vector potentials of the external sources. To 
do this with a magnetic charge it is necessary to employ an artifice. The magnetic 
charge g is imagined to be the end of a line of dipoles or a tightly wound solenoid 
that stretches off to infinity, as shown in Fig. 6.8. The monopole and its attached 
string, as the line of dipoles or solenoid is called, can then be treated more or 
less normally within the framework of conventional electromagnetic interactions 
where B = V x A, etc. From (5.55) we see that the elemental vector potential 
dA for a magnetic dipole element dm at x’ is 

1 _ Ho odmxvV dA(x) = (6.160) 
4a ( Ix — x’| 

Thus for a string of dipoles or solenoid whose location is given by the string L 
the vector potential is 

1 
(6.161) A(x) = -£{ dl x v( 

Ix — x’| 
For all points except on the string, this vector potential has a curl that is directed 
radially outward from the end of the string, varies inversely with distance 
squared, with total outward flux g, as expected for the B field of monopole g. On 
the string itself the vector potential is singular. This singular behavior is equiv- 
alent to an intense field B’ inside the solenoid and bringing a return contribution 
of flux (—g) in along the string to cancel the pole’s outward flow. So far we have 

*M. N. Saha, Indian J. Phys. 10, 141 (1936); Phys. Rev. 75, 1968 (1949), 

‘H. A. Wilson, Phys. Rev. 75, 309 (1949). 
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Figure 6.8 Two representations of a magnetic monopole g, one as the termination of a 
line of dipoles and the other as the end of a tightly wound solenoid, both “strings” 
stretching off to infinity. 

just described a long thin solenoid. To exhibit the field of the monopole alone 

we write 

Bnonopole =VxA-B’ 

where B’ exists only on the string (inside the solenoid). Dirac now argued that 

to describe the interaction of the electron with a magnetic monopole, rather than 

with a long thin solenoid, it is mandatory that the electron never “‘see”’ the sin- 

gular field B’. He thus required the electronic wave function to vanish along the 

string. This arbitrary postulate has been criticized, but discussion of such aspects 

leads us too far afield and is not central to our limited purpose. Dirac’s later work 

(1948) treats the question of the unobservability of the strings in detail. 

If (6.161) for A,(x) is accepted as the appropriate vector potential for a 

monopole and its string L, there remains the problem of the arbitrariness of the 

location of the string. Clearly, the physical observables should not depend on 

where the string is. We now show that a choice of different string positions is 

equivalent to different choices of gauge for the vector potential. Indeed, the 

requirements of gauge invariance of the Schrédinger equation and single-val- 

uedness of the wave function lead to the Dirac quantization condition (6.153). 
Consider two different strings L and L’, as shown in Fig. 6.9. The difference of 
the two vector potentials is given by (6.161) with the integral taken along the 
closed path C = L' — L around the area S. By Problem 5.1, this can be written 

Ss VOc(x) (6.162) A(x) = A(x) + 
4a 

where - is the solid angle subtended by the contour C at the observation point 
—_ 

= A + Vy, x. Comparison with the gauge transformation equations, A — A’ 
—_— 

= © —> ®' ® — (1/c)(dy/at), shows that a change in string from L to L’ is equiv- 

alent to a gauge transformation, y = gQ-/4z. 
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potentials differing by a gauge 

transformation involving the gradient 

of the solid angle 0-(x) subtended at 

the observation point P by the 

surface S spanning the contour C = 
L' -L. 

It is well known in quantum mechanics* that a change in the gauge of the 

electromagnetic potentials leaves the form of the Schrodinger equation invariant, 

provided the wave function is transformed according to 

> py’ = pe'ex!* 

where e is the charge of the particle and y is the gauge function. A change in the 

location of the string from L to L’ must therefore be accompanied by a modifi- 
cation of the phase of the wave function of the electron, 

(6.163) ys => yy _— peieOclamh 

Since Q¢ changes suddenly by 47 as the electron crosses the surface S, the wave 
function will be multiple-valued unless we require 

é, 

—=27Nn (n = 0, +1, +2,...) 
h 

This is the Dirac quantization condition (6.153). It follows from the general re- 

quirements of gauge invariance and single-valuedness of the wave function, in- 

dependent of the location of the monopole’s string. 

The preceding discussion of magnetic monopoles presents only the most ba- 

sic concepts. An extensive literature exists on modifications of the quantization 

condition, attempts at a quantum electrodynamics with magnetic monopoles and 

electric charges, and other aspects. The interested reader can pursue the subject 

through the article by Goldhaber and Trower (op. cit.) and the references at the 

end of the chapter. 

6.13 Polarization Potentials (Hertz Vectors) 

It is sometimes useful to utilize potentials other than the standard scalar and 

vector potentials as auxiliary fields from which to determine the fundamental 

electromagnetic fields. The most important of these are the polarization potentials 

*The demonstration is very easy. See, for example, H. A. Kramers, Quantum Mechanics, North- 

Holland, Amsterdam, (1957); Dover reprint (1964), Section 62. 
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or Hertz vectors, introduced by Hertz (1889) and Righi (1901). As the name 

suggests, these potentials put the electric and magnetic polarization densities to 

the fore. We consider linear, isotropic media with sources of external polarization 

densities, P.,, and M.,., but no separate macroscopic charge or current. The me- 

dia are described by electric and magnetic susceptibilities, « and yw. [The realistic 

situation of frequency-dependent quantities can be abstracted by choosing a 

unique sinusoidal time dependence and then using Fourier superposition. ] 

The macroscopic fields are written 

D = «€E + Pix (6.164) B= vH + BoMext 

Then with the standard definitions (6.7) and (6.9) of the fields in terms of the 

scalar and vector potentials, the macroscopic Maxwell equations yield the wave 

equations, 

eA 
—_— 

= e— -V (6.165a) Bb x + LoV x Mext 
ar? 0 

1 erp 
— (6.165b) pe — Vb = -= V+ Pox 
at? 

with 

V-A+ pe =0 

as the Lorenz condition. Two vector polarization potentials, II. and II,,, are 

introduced by writing A and ® in a form paralleling the structures of the right- 

hand sides of the wave equations (6.165), namely, 

1 
(6.166) o- —-~V-H. A= w= + MoV X Mn; 

When we substitute these definitions into (6.165), we find that the Lorenz con- 

dition is automatically satisfied. The wave equations become the following equa- 

tions for Il, and II,,: 
a 

€ 

+ Pax = 0 2 V- van, — pe 
(6.167a) 

2 Il, 
€ 

at? t? 
+ ma] = + Pax| + ploV X |v, — pe we | von. — pe 

(6.167b) 

From (6.167a) we find that the square-bracketed quantity can at most be equal 
to the curl of some vector function, call it (j4o/#)V. When this form is inserted 
into (6.167b), we have a vanishing curl of a vector quantity that must therefore 
be equal at most to the gradient of some scalar field, call it dé/dt. The result is 
that the Hertz vectors satisfy the wave equations, 

il. Mov yxy (6.1684) 
pe ~ VII. = Pext 

at? 

ov IL, vie (6.168b) _ V’IL, = M.x: + be 
at 0 ot? 
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It is left to the problems (Problem 6.23) to show that the arbitrary functions V 

and € may be removed by a gauge transformation on the polarization potentials. 

We may thus set V and € equal to zero with no loss of generality. 
The electric and magnetic fields are given in terms of the Hertz vectors by 

all, Il. 
(6.169a) — Ho 

0 ar? 
E==V(V- M1) ~ 

(6.169b) B= pV X == + woV X VX Tn 

Outside the source P.,, the wave equation (6.168a) can be used to express E in 

a form analogous to (6.169b) for B with the roles of the electric and magnetic 

Hertz vectors interchanged. 

The wave equations for II, and II, have solutions that are particularly simple 

if the external polarization densities are simple. For example, a time-dependent 

magnetic dipole at the point x) has a magnetization density, 

Me xt = m(t)5(x ~ Xo) 

From the form of the wave equation (6.41) and its solution (6.47), we deduce 

that the magnetic Hertz vector is 

m(t — V peR) 
II,,.(x, £) = 

47R 

where R = |x — xol. 

Illustrations of the use of polarization potentials can be found in Born and 

Wolf, in Stratton, and in Panofsky and Phillips, who discuss elementary multipole 

radiation in terms of a Hertz vector. We find it adequate to work with the usual 

potentials A and ® or the fields themselves. 

References and Suggested Reading 

The conservation laws for the energy and momentum of electromagnetic fields are 
discussed in almost all text books. For example, 

Panofsky and Phillips, Chapter 10 

Stratton, Chapter II 

Landau and Lifshitz, Electrodynamics of Continuous Media (Sections 15, 16, 34) 
discuss the Maxwell stress tensor in some detail in considering forces in fluids and solids. 

The connection of lumped circuit concepts to a description using fields is given by 
Adler, Chu, and Fano 

Fano, Chu, and Adler 

as has already been mentioned. The description of resonant cavities as circuit elements is 
treated in a classic paper by 

W. W. Hansen, J. Appl. Phys. 9, 654 (1938). 

A thought-provoking discussion of the derivation of the macroscopic equations of 
electromagnetism, as well as of the thermodynamics of electric and magnetic systems, is 
given by 

Robinson 
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The derivation of the macroscopic Maxwell equations from a statistical-mechanical point 
of view has long been the subject of research for a school of Dutch physicists. Their 
conclusions are contained in two comprehensive books, 

de Groot 

de Groot and Suttorp 

A treatment of the energy, momentum, and Maxwell stress tensor of electromagnetic 
fields somewhat at variance with these authors is given by 

Penfield and Haus, 

Haus and Melcher 

For the reader who wishes to explore the detailed quantum-mechanical treatment of 
dielectric constants and macroscopic field equations in matter, the following are suggested: 

S. L. Adler, Phys. Rev, 126, 413 (1962). 

B. D. Josephson, Phys. Rev. 152, 21 (1966). 

G. D. Mahan, Phys. Rev. 153, 983 (1967). 

Symmetry properties of electromagnetic fields under reflection and rotation are dis- 

cussed by 

Argence and Kahan 

The subject of magnetic monopoles has an extensive literature. We have already cited 

the paper by Goldhaber and his review with Trower, as well as the fundamental papers 

of Dirac. The relevance of monopoles to particle physics is discussed by 

J. Schwinger, Science 165, 757 (1969). 

The interest in and status of searches for magnetic monopoles up to the 1980s can be 

found in 

R. A. Carrigan and W. P. Trower, Magnetic Monopoles, NATO Adv. Sci. Inst. 

Series B, Physics, Vol. 102, Plenum Press, New York (1983). 

The mathematical topics in this chapter center around the wave equation. The initial- 

value problem in one, two, three, and more dimensions is discussed by 

Morse and Feshbach (pp. 843-847) 

and, in more mathematical detail, by 

Hadamard 

Problems 
6.1 In three dimensions the solution to the wave equation (6.32) for a point source in 

space and time (a light flash at r’ = 0, x’ = 0) is a spherical shell disturbance of 
radius R = ct, namely the Green function G“? (6.44). It may be initially surprising 
that in one or two dimensions, the disturbance possesses a ‘‘wake,” even though 

the source is a “‘point”’ in space and time. The solutions for fewer dimensions than 

three can be found by superposition in the superfluous dimension(s), to eliminate 

dependence on such variable(s). For example, a flashing line source of uniform 

amplitude is equivalent to a point source in two dimensions. 

(a) Starting with the retarded solution to the three-dimensional wave equation 

(6.47), show that the source f(x’, t’) = 5(x’)8(y’)4(v’), equivalent to a t = 0 

point source at the origin in two spatial dimensions, produces a two-dimen- 

sional wave, 

2c@(ct — p) 
W(x, y, ) = 

Ver =p 
_ 

= x? + y* and @(€) is the unit step function [O(g) = 0 (1) if where p* 

€< (>) 0] 
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(b) Show that a “sheet” source, equivalent to a point pulsed source at the origin 

in one space dimension, produces a one-dimensional wave proportional to 

W(x, t) = 2ac@(ct — |x|) 

6.2 The charge and current densities for a single point charge q can be written formally 
as 

J(x’, ') = qv(t')d[x+— r@)] p(x’, t') = g6[x’ — r(t’)]; 

where r(t’) is the charge’s position at time ¢' and v(t’) is its velocity. In evaluating 
expressions involving the retarded time, one must put f’ = 4, = ¢ — R(t’)/c, where 
R = x — r(t’) (but R = x — x’ (¢’) inside the delta functions). 

(a) Asa preliminary to deriving the Heaviside-Feynman expressions for the elec- 

tric and magnetic fields of a point charge, show that 

| d°x' 8[x' — r(tret)] = ; 

where x = 1 — v- Ric. Note that « is evaluated at the retarded time. 

(b) Starting with the Jefimenko generalizations of the Coulomb and Biot—Savart 

laws, use the expressions for the charge and current densities for a point charge 

and the result of part a to obtain the Heaviside-Feynman expressions for the 

electric and magnetic fields of a point charge, 

A 

R 0 R 0 v q 
— 

— 

— 47 KR? cot «R Cat KR | In | I. | lJ 
and 

vxR 0 vxR B = Hod 

4a KR? cot KR | I. | [al 
(c) In our notation Feynman’s expression for the electric field is 

R R oe 
q 

_— 
[RJ ret 0 

— 

R c ot 
R?2 ~ 4 17€ * Cat? | I. | I, | 

while Heaviside’s expression for the magnetic field is 

vxR 1 0 vxR B = Uo 

4a KR? K | C[R] rer at I, | Jal 
Show the equivalence of the two sets of expressions for the fields. 

References: O. Heaviside, Electromagnetic Theory, Vol. 3 (1912), p. 464, Eq. (214). 
R. P. Feynman, The Feynman Lectures in Physics, Vol. 1 (1963), Chapter 28, Eq. 
(28.3). 

6.3 The homogeneous diffusion equation (5.160) for the vector potential for quasi-static 
fields in unbounded conducting media has a solution to the initial value problem 
of the form, 

A(x, t) = | a°x' G(x — x’, NA(x’, 0) 

where A(x’, 0) describes the initial field configuration and G is an appropniate 
kernel. 
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(a) Solve the initial value problem by use of a three-dimensional Fourier trans- 
form in space for A(x, t). With the usual assumptions on interchange of orders 
of integration, show that the Green function has the Fourier representation, 

1 
G(x — x’, = i @k en Kwa gik-(x—x’) 

(277)? 

and it is assumed that ¢ > 0. 

(b) By introducing a Fourier decomposition in both space and time, and perform- 
ing the frequency integral in the complex plane to recover the result of part 
a, show that G(x—x’, #) is the diffusion Green function that satisfies the in- 
homogeneous equation, 

dG 1 
— -— VG = 6(x — x’)8(2) 
ot Bo 

and vanishes for t < 0. 

(c) Show that if a is uniform throughout all space, the Green function is 

—po|x — x’? 

4t 
G(x, t;x', 0) = eo(42) e ( 

(d) Suppose that at time ¢’ = 0, the initial vector potential A(x’, 0) is nonvanishing 

only in a localized region of linear extent d around the origin. The time de- 

pendence of the fields is observed at a point P far from the origin, i.e., |x| = 
= 
= tS To, r >> d. Show that there are three regimes of time, 0 < ¢ S T,, T, 

and t >> T>. Give plausible definitions of T, and T>, and describe qualitatively 

the time dependence at P. Show that in the last regime, the vector potential 

is proportional to the volume integral of A(x’, 0) times ¢~?”, assuming that 

integral exists. Relate your discussion to those of Section 5.18.B and Problems 

5.35 and 5.36. 

6.4 A uniformly magnetized and conducting sphere of radius R and total magnetic 

moment m = 47MR°*/3 rotates about its magnetization axis with angular speed w 

In the steady state no current flows in the conductor. The motion is nonrelativistic; 

the sphere has no excess charge on it. 

(a) By considering Ohm’s law in the moving conductor, show that the motion 

induces an electric field and a uniform volume charge density in the conductor, 

p = —molmc?R’. 

(b) Because the sphere is electrically neutral, there is no monopole electric field 

outside. Use symmetry arguments to show that the lowest possible electric 

multipolarity is quadrupole. Show that only a quadrupole field exists outside 

and that the quadrupole moment tensor has nonvanishing components, 
—_ 

= O33 = —4moR?/3c’, On Q» = —Q;;/2. 

(c) By considering the radial electric fields inside and outside the sphere, show 

that the necessary surface-charge density o(@) is 

1 4mw 
a(8) = 4nR? 3c 

I: 75 P2(cos 0 | 

The rotating sphere serves as a unipolar induction device if a stationary circuit (d) 
is attached by a slip ring to the pole and a sliding contact to the equator. Show 
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that the line integral of the electric field from the equator contact to the pole 
contact (by any path) is € = poma/4nR. 

[See Landau and Lifshitz, Electrodynamics of Continuous Media, p. 221, for an 

alternative discussion of this electromotive force.] 

6.5 A localized electric charge distribution produces an electrostatic field, E = -V®. 
Into this field is placed a small localized time-independent current density J(x), 

~ ™~ which generates a magnetic field H. 

(a) Show that the momentum of these electromagnetic fields, (6.117), can be trans- 

formed to 

Preta S fo d’x 

provided the product ®H falls off rapidly enough at large distances. How 

rapidly is “rapidly enough’? 

(b) Assuming that the current distribution is localized to a region small compared 

to the scale of variation of the electric field, expand the electrostatic potential 

in a Taylor series and show that 

Preiag = 2 E(0) x m 

where E(0) is the electric field at the current distribution and m is the magnetic 

moment, (5.54), caused by the current. 

(c) Suppose the current distribution is placed instead in a uniform electric field 

E, (filling all space). Show that, no matter how complicated is the localized J, 

the result in part a is augmented by a surface integral contribution from infinity 

equal to minus one-third of the result of part b, yielding 

2 
— E, X m Preia 
3c? 

Compare this result with that obtained by working directly with (6.117) and the 
considerations at the end of Section 5.6. 

6.6 (a) Consider a circular toroidal coil of mean radius a and N turns, with a small 
uniform cross section of area A (both height and width small compared to a). 
The toroid has a current J flowing in it and there is a point charge Q located 
at its center. Calculate all the components of field momentum of the system; 
show that the component along the axis of the toroid is 

1 HoQINA 
_— (Preta)z = 

47a’ 

where the sign depends on the sense of the current flow in the coil. Assume 
that the electric field of the charge penetrates unimpeded into the region of 
nonvanishing magnetic field, as would happen for a toroid that is actually a 
set of N small nonconducting tubes inside which ionized gas moves to provide 
the current flow. 

Check that the answer conforms to the approximation of Problem 6.5b. 

(b) If Q = 10°° C (~ 6 X 10” electronic charges), J = 1.0 A, N = 2000, A = 
10-* m?, a = 0.1 m, find the electric field at the toroid in volts per meter, the 
magnetic induction in tesla, and the electromagnetic momentum in newton- 
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seconds. Compare with the momentum of a 10 Lg insect flying at a speed of 
0.1 m/s. 

[Note that the system of charge and toroid is at rest. Its total momentum must 
vanish. There must therefore be a canceling “hidden” mechanical momentum—see 
Problem 12.8.] 

6.7 The microscopic current j(x, £) can be written as 

j(x, t) = 2 qvjO(x — x;(t)) 

where the point charge gq, is located at the point x,(¢) and has velocity v; = dx,(t)/dt. 
Just as for the charge density, this current can be broken up into a “free” (conduc- 
tion) electron contribution and a bound (molecular) current contribution. 

Following the averaging procedures of Section 6.6 and assuming nonrelativistic 
addition of velocities, consider the averaged current, (j(x, )). 

(a) Show that the averaged current can be written in the form of (6.96) with the 

definitions (6.92), (6.97), and (6.98). 

(b) Show that for a medium whose internal molecular velocities can be neglected, 
but which is in bulk motion (i.e., v,, = v for all 7), 

1 
—B-H=M+(D - &E) xv 
Mo 

This shows that a moving polarization (P) produces an effective magnetization 

density. 

Hints for part a: Consider quantities like (dp,/dt), (dQi$/dt) and see what they 

look like. Also note that 

“f(x — x,(0)) = —¥n + WFO — ¥,(0) 
6.8 A dielectric sphere of dielectric constant € and radius a is located at the origin. 

There is a uniform applied electric field Eo in the x direction. The sphere rotates 

with an angular velocity w about the z axis. Show that there is a magnetic field 

H = —V®,y, where 

€o 
a Py €9 Low 

€ + 2€ 
) 

where r, is the larger of r and a. The motion is nonrelativistic. 

You may use the results of Section 4.4 for the dielectric sphere in an applied 

field. 

6.9 Discuss the conservation of energy and linear momentum for a macroscopic system 
of sources and electromagnetic fields in a uniform, isotropic medium described by 

a permittivity « and a permeability 4. Show that in a straightforward calculation 
the energy density, Poynting vector, field-momentum density, and Maxwell stress 
tensor are given by the Minkowski expressions, 

u= 5 (cB? + pH?) 

S=ExH 

_— 

= peE x H 8 

Ty [cE ;E; + BA; A,; _ 38,(€E” + »H?)] 

What modifications arise if « and ws are functions of position? 
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6.10 With the same assumptions as in Problem 6.9 discuss the conservation of angular 

momentum. Show that the differential and integral forms of the conservation law 

are 

< (Lec + Lee) + V> M = 0 

and ‘we. 

“{ (Lech + Lpeia) 22x + [ -M da = 0 

where the field angular-momentum density is 

Lee = X X B= wex X (E X H) 

and the flux of angular momentum is described by the tensor 

M=Txx 

Note: Here we have used the dyadic notation for M, and T,. A double-headed 

arrow conveys a fairly obvious meaning. For example, n- M is a vector whose jth 

component its 2M. The second-rank M can be written as a third-rank tensor, 

Mix = TyXx T;,x;. But in the indices j and k it is antisymmetric and so has only 

three independent elements. Including the index i, M,, therefore has nine compo- 

nents and can be written as a pseudotensor of the second rank, as above. 

6.11 A transverse plane wave is incident normally in vacuum on a perfectly absorbing 

flat screen. 

(a) From the law of conservation of linear momentum, show that the pressure 

(called radiation pressure) exerted on the screen is equal to the field energy 

per unit volume in the wave. 

(b) In the neighborhood of the earth the flux of electromagnetic energy from the 

sun is approximately 1.4 kW/m”. If an interplanetary ‘“‘sailplane” had a sail of 

mass 1 g/m? of area and negligible other weight, what would be its maximum 
acceleration in meters per second squared due to the solar radiation pressure? 

How does this compare with the acceleration due to the solar “‘wind” (cor- 

puscular radiation)? 

6.12 Consider the definition of the admittance Y = G — iB of a two-terminal linear 
passive network in terms of field quantities by means of the complex Poynting 
theorem of Section 6.9. 

(a) By considering the complex conjugate of (6.134) obtain general expressions 
for the conductance G and susceptance B for the general case including 
radiation loss. 

(b) Show that at low frequencies the expressions equivalent to (6.139) and (6.140) 
ate 

G= [ o JEP dx 
[ViP? 

4w 
Bo=- we) a>x J, Vil? 

6.13 A parallel plate capacitor is formed of two flat rectangular perfectly conducting 
sheets of dimensions a and b separated by a distance d small compared to a or b. 
Current is fed in and taken out uniformly along the adjacent edges of length b. 
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With the input current and voltage defined at this end of the capacitor, calculate 
the input impedance or admittance using the field concepts of Section 6.9. 

(a) Calculate the electric and magnetic fields in the capacitor correct to second 
order in powers of the frequency, but neglecting fringing fields. 

(b) Show that the expansion of the reactance (6.140) in powers of the frequency 
to an appropriate order is the same as that obtained for a lumped circuit 
consisting of a capacitance C = e,ab/d in series with an inductance L = 
poad/3b. 

6.14 An ideal circular parallel plate capacitor of radius a and plate separation d a is 
connected to a current source by axial leads, as shown in the sketch. The current 
in the wire is I(t) = Ipcos wt. 

ue) 

<——_—_—_ q 

- 
Mt gs 

ae Uae 

re] 

Problem 6.14 

\ 

(a) Calculate the electric and magnetic fields between the plates to second order 
in powers of the frequency (or wave number), neglecting the effects of fringing 

x. fields. 

(b) Calculate the volume integrals of w, and w,, that enter the definition of the 

reactance X, (6.140), to second order in w. Show that in terms of the input 

current J;, defined by J; = —iwQ, where Q is the total charge on one plate, 

these energies are 

wa’ 1 [iP d 
—_ _ bo liP ad 

2—42 ? 
[nn fucte- 

wa 4 8 12c? 4T€ 
(1+ 

(c) Show that the equivalent series circuit has C = qe ja7/d, L ~ pod/87, and that 
an estimate for the resonant frequency of the system is w,., ~ 2V2 cla. Com- 
pare with the first root of Jo(x). 

6.15 If a conductor or semiconductor has current flowing in it because of an applied 
electric field, and a transverse magnetic field is applied, there develops a component 
of electric field in the direction orthogonal to both the applied electric field (direc- 
tion of current flow) and the magnetic field, resulting in a voltage difference be- 
tween the sides of the conductor. This phenomenon is known as the Hall effect. 

(a) Use the known properties of electromagnetic fields under rotations and spatial 

reflections and the assumption of Taylor series expansions around zero mag- 

netic field strength to show that for an isotropic medium the generalization of 

Ohm’s law, correct to second order in the magnetic field, must have the form 

E = ppJ + R(H x J) + 6, HI + B(H- JH 



290 Chapter 6 Maxwell Equations, Macroscopic Electromagnetism, Conservation Laws—SI 

where fp is the resistivity in the absence of the magnetic field and R is called 
the Hall coefficient. 

(b) What about the requirements of time reversal invariance? 

6.16 Calculate the force in newtons acting on a Dirac monopole of the minimum (a) 
magnetic charge located a distance 0.5 A from and in the median plane of a 
magnetic dipole with dipole moment equal to one nuclear magneton (ef/2m,). 

(b) Compare the force in part a with atomic forces such as the direct electrostatic 
force between charges (at the same separation), the spin-orbit force, the hy- 
perfine interaction. Comment on the question of binding of magnetic mono- 
poles to nuclei with magnetic moments. Assume that the monopole mass is at 

least that of a proton. 

Reference: D. Sivers, Phys. Rev. D2, 2048 (1970). 

6.17 (a) For a particle possessing both electric and magnetic charges, show that the 

generalization of the Lorentz force in vacuum is 

F = q.E + GmB/io + g.¥ X B- dm¥ X &E 

(b) Show that this expression for the force is invariant under a duality transfor- 

mation of both fields and charges, (6.151) and (6.152). 

(c) Show that the Dirac quantization condition, (6.153), is generalized for two 

particles possessing electric and magnetic charges e,, g; and e2, go, respectively, 

to 

€182 — €281 
= 27Nn 

h 

and that the relation is invariant under a duality transformation of the charges. 

6.18 Consider the Dirac expression 

x (x — x’) 

a0 = 1,5 [x — x’? 

for the vector potential of a magnetic monopole and its associated string L. Suppose 
for definiteness that the monopole is located at the origin and the string along the 
negative z axis. 

(a) Calculate A explicitly and show that in spherical coordinates it has 
components 

§ 
— 

_ g(1 — cos 6) _ 
A A, 0, A, = 0, 

4ar sin @ 4ar ( } (3) 
(b) Verify that B = V x A is the Coulomb-like field of a point charge, except 

perhaps at 0 = 7. 

(c) With the B determined in part b, evaluate the total magnetic flux passing 
through the circular loop of radius R sin @ shown in the figure. Consider 
8 < m/2 and 6 > a/2 separately, but always calculate the upward flux. 

(d) From $ A - dl around the loop, determine the total magnetic flux through the 
loop. Compare the result with that found in part c. Show that they are equal 
for 0 < @< 7/2, but have a constant difference for 7/2 < 6 < 7. Interpret this 
difference. 
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pa cee ee ee mee 

Problem 6.18 

6.19 (a) Apply space inversion to the monopole vector potential of Problem 6.18 and 

show that the vector potential becomes 

§ 
—_ 

_, (+ cos 6) _ 
—— cot A, = 

4ar sin 0 4ar 2 ( 
with the other components vanishing. Show explicitly that its curl gives the 

magnetic field of a magnetic monopole, except perhaps at @ = 0. [Remember 

the space-inversion properties of the magnetic charge!] 

(b) Show that the difference, 5A = A’ — A, can be expressed as the gradient of 

a scalar function, indicating that the original and space-inverted vector poten- 

tials differ by a gauge transformation. 

(c) Interpret the gauge function in terms of Fig. 6.9. [Hint: Choose the contour C 

to be a rectangle lying in a plane containing the z axis, with three sides at 

infinity] 

6.20 An example of the preservation of causality and finite speed of propagation in spite 

of the use of the Coulomb gauge is afforded by a dipole source that is flashed on 

and off at t = 0. The effective charge and current densities are 

p(x, t) = (x)8(y)8'(z) d(4) 

J (x, 1) = —8(x)8(y)6(z)8'(1) 

where a prime means differentiation with respect to the argument. This dipole is 
of unit strength and it points in the negative z direction. 

(a) Show that the instantaneous Coulomb potential (6.23) is 

1 
—— P(x, 1) = — 80) 5 
47€ 

(b) Show that the transverse current J, is 

<3 

4 
ta n(€; - "| I(x, 1) = -5(0| 4000) - 

where the factor of 2/3 multiplying the delta function comes from treating the 

gradient of z/r? according to (4.20). 
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(c) Show that the electric and magnetic fields are causal and that the electric field 

components are 

1 
E,(x, t) = 

41r€5 
© Ex — ct) + - S'(r — ct) - A a(r — <9 sin 6 cos 6 cos 

E, is the same as E,, with cos ¢ replaced by sin ¢, and 

(rm city or — ct 
2 E(x, t) = 

r r 4 
0 ) = sint0a — ct) + (3 cos’9 - 1): ( 

Hint: While the answer in part b displays the transverse current explicitly, the less 

explicit form 

1 1 
— v2 
r dz 

te ( } I(x, ) = #0 e609 + 

can be used with (6.47) to calculate the vector potential and the fields for part c. 

An alternative method is to use the Fourier transforms in time of J, and A, the 

Green function (6.40) and its spherical wave expansion from Chapter 9. 

6.21 An electric dipole of dipole moment p, fixed in direction, is located at a position 

ro(t) with respect to the origin. Its velocity v = dr)/dt is nonrelativistic. 

(a) Show that the dipole’s charge and current densities can be expressed formally 

as 

p(x, t) = —(p + V)d(x — rol); J(x, 1) = —v(p + V)8(x — ro(t)) 

(b) Show that the off-center moving dipole gives rise to a magnetic dipole field 

and an electric quadrupole field in addition to an electric dipole field, with 

moments 

m=3pxv 

and 

Qi = 3(xoiP; + Xoypi) — 280 + pd; 

[There are, of course, still higher moments.] 

(c) Show that the quasi-static electric quadrupole field is 

—— E(x) = 5 =i [15a(a + )(m+ p) — 3ry(m + p) — 3p(a + Fo) ~ 3m(ty p)] 
€o 

where n is a unit vector in the radial direction. 

6.22 (a) For the off-center, slowly moving, electric dipole of Problem 6.21, show that 
the quasi-static vector potential produced by the current flow associated with 
the dipole motion is 

Ho 
= 

1(p Xv) Xx | 1 [p(x-v) + v(x p)] A(x, t) = Mov(n ° P) 
3 3 4ar* - Ag 2 r 2 r | | 

where the first term of the second form (antisymmetric in v and p) is the vector 
potential of the magnetic dipole whose moment is given in Problem 6.21. The 
added term is symmetric in v and p. 

(b) Show that the magnetic field of the symmetric term is 

_ 2Ho 
n X [p(v-n) + v(p-n)] Byym = 

8ar? 
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(c) By calculating its curl, show that B.ym is consistent with being the quasi-static 
magnetic field associated with the electric quadrupole field of Problem 6.21c. 

(d) Show that the total magnetic field (computed from the first form of the vector 
potential, i.e., the sum of B,,,, and the magnetic dipole field) is 

B= y [3n(n - P) — Pl 
4a r 

Comment. 

6.23 The wave equations (6.168) for the Hertz vectors contain arbitrary source terms 
involving the functions V and & Consider the gauge transformations 

aG Il’, = 0, - TI, = I, + woV x G — Vg; 
Pat 

where G and g are well-behaved functions of space and time. 

(a) Show that, if G and g satisfy the wave equations 

0 
G 

e—=-V 
at? 

(x N 
} ZV + V6 

0 

then the new polarization potentials II; and II,, satisfy (6.168) with vanishing 

V and & 

(b) Show that the gauge transformation on the Hertz vectors is equivalent to a 

gauge transformation on A and ®. What is the gauge function A of (6.19) in 

terms of G and g? 

6.24 A current distribution J(x, t) localized near the origin varies slowly in time. 

(a) Use the Jefimenko expressions (6.55) and (6.56) for the retarded fields to 

evaluate the quasi-static fields far from the current distribution. Assuming that 

there are no electric multipole moments and retaining only the magnetic di- 

pole contributions, show that the magnetic and electric fields at the point 

(x = fr, ¢) to first order in an expansion in successive time derivatives are 

_ Mol 
Are 

( af 2) [3(m(t — ric) - f)f — m(t — ric)] 

am(t — ric) _ Hol, 
ot Agr? 

The construction and excitation of an infinite, straight, right circular solenoid (b) 
of radius a, with N turns per unit length, are such that its current /(¢) is the 

same everywhere along its length and is changed very slowly in time. Show 

that the fields far from the solenoid are approximately 

al 
— 

er B~0+0/ 
Jo Na? al(t — plc) » 

E x= —2?— 

ot 2 p 

where p is the perpendicular distance from the axis, provided max(|d//dt/I|) 
<< c/p. A long solenoid with a time-varying current has an electric field outside 

it, in contrast to the static situation. Verify that Faraday’s law is satisfied. 
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6.25 (a) Starting with the Lorentz force expression (6.114), show that in the dipole 

approximation the force acting on a neutral atom at rest can be expressed as 

dP stom =(d-V)E+dxB 
dt 

where d is the atomic dipole moment and E and B are the electric and mag- 

netic fields at the site of the atom. 

(b) For a uniform plane wave of frequency w in a nonmagnetic tenuous dielectric 
medium with index of refraction n(w), show that the time rate of change of 

mechanical momentum per unit volume gmech accompanying the electromag- 

netic momentum g,,, (6.118) of the wave is 

Ag em AB mech 
at 

5 (i ~ 1) 
at 

[see Peierls (loc. cit.) for corrections for dense media and non-uniform waves. ] 

Note of explanation: 

The reader may be startled to find (in all but the earliest printings) the association 

of Danish physicist Ludvig V. Lorenz’s name instead of Dutch physicist Hendrik A. Lo- 

rentz’s with the relation (6.14) between the scalar and vector potentials. Yet it is a fact 

that in 1867 Lorenz, in a paper entitled “On the identity of the vibrations of light with 

electrical currents,” (op. cit.) exploited the retarded solutions for the potentials, derived 

(6.14) and equations equivalent to wave equations for the electric field, and discussed the 

characteristics of light propagation in conductors and transparent media, contemporane- 

ously with Maxwell. H. A. Lorentz has ample recognition in physics terminology without 

the mis-attribution of (6.14) to him (by others, beginning around 1900). As Van Bladel* 

observes, it is up to textbook authors to accord Lorenz his due.* 

*J. Van Bladel, IEEE Antennas and Propagation Magazine 33, No. 2, 69 (April 1991). 

‘An earlier author who deplored the lack of recognition of Lorenz’s contributions is A. O’Rahilly, 

Electromagnetic Theory, Dover Publications, New York (1965) [originally published as Electromag- 

netics, Longman Green and Cork University Press (1938)], footnote, p. 184. 



CHAPTER 7 

Plane Electromagnetic Waves 
and Wave Propagation 

This chapter on plane waves in unbounded, or perhaps semi-infinite, media treats 

first the basic properties of plane electromagnetic waves in nonconducting me- 

dia—their transverse nature, linear and circular polarization states. Then the 

important Fresnel formulas for reflection and refraction at a plane interface are 

derived and applied. This is followed by a survey of the high-frequency dispersion 

properties of dielectrics, conductors, and plasmas. The richness of nature is illus- 

trated with a panoramic view (Fig. 7.9) of the index of refraction and absorption 

coefficient of liquid water over 20 decades of frequency. Then comes a simplified 

discussion of propagation in the ionosphere, and of magnetohydrodynamic waves 

in a conducting fluid. The ideas of phase and group velocities and the spreading 

of a pulse or wave packet as it propagates in a dispersive medium come next. 

The important subject of causality and its consequences for the dispersive prop- 

erties of a medium are discussed in some detail, including the Kramers—Kronig 

dispersion relations and various sum rules derived from them. The chapter con- 

cludes with a treatment of the classic problem of the arrival of a signal in a 

dispersive medium, first discussed by Sommerfeld and Brillouin (1914) but only 
recently subjected to experimental test. 

7.1 Plane Waves ina Nonconducting Medium 

A basic feature of the Maxwell equations for the electromagnetic field is the 
existence of traveling wave solutions which represent the transport of energy 
from one point to another. The simplest and most fundamental electromagnetic 

waves are transverse, plane waves. We proceed to see how such solutions can be 

obtained in simple nonconducting media described by spatially constant per- 

meability and susceptibility. In the absence of sources, the Maxwell equations in 

an infinite medium are 

VxEi+—=0 V-B=0, 

(7.1) 
dD 

Vx H-—=0 V-D=40, 
7) 

Assuming solutions with harmonic time dependence e ‘from which we can 
build an arbitrary solution by Fourier superposition, the equations for the am- 

plitudes E(w, x), etc. read 

Vx E — iwB = 0 V-B=0, 

Vx H+ ioD = 0 V-D=0, 

295 
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For uniform isotropic linear media we have D = eE, B = wH, where ¢€ and 
may in general be complex functions of w. We assume for the present that they 
are real and positive (no losses). Then the equations for E and H are 

(7.2) V x B+ iopeE = 0 V x E — iwB = 0, 

The zero-divergence equations are not independent, but are obtained by taking 
divergences in (7.2). By combining the two equations we get the Helmholtz wave 

equation 

(7.3) (Vv? + nes | =0 
ikx— iat 

Consider as a possible solution a plane wave traveling in the x direction, e 

From (7.3) we find the requirement that the wave number k and the frequency 

w are related by 

(7.4) k = Vpew 

The phase velocity of the wave is 

Cc 1 @ 
—_— 

= 

v=-7F (7.5) 
k 

The quantity n is called the index of refraction and is usually a function of fre- 

quency. The primordial solution in one dimension is 

ikx—iwt + be~ iia (7.6) u(x, t) = ae 

Using w = kv from (7.5), this can be written 

u,(x, t) = aeike—¥) + be ke +e9 

If the medium is nondispersive (ue independent of frequency), the Fourier su- 
perposition theorem (2.44) and (2.45) can be used to construct a general solution 

of the form 

(7.7) u(x, t) = f(x — vt) + g& + vt) 

where f(z) and g(z) are arbitrary functions. Equation (7.7) represents waves 

traveling in the positive and negative x directions with speeds equal to the phase 

velocity v. 

If the medium is dispersive, the basic solution (7.6) still holds, but when we 

build up a wave as an arbitrary function of x and t¢, the dispersion produces 

modifications. Equation (7.7) no longer holds. The wave changes shape as it 

propagates (see Sections 7.8, 7.9, and 7.11). 

We now consider an electromagnetic plane wave of frequency w and wave 

vector k = kn and require that it satisfy not only the Helmholtz wave equation 

(7.3) but also all the Maxwell equations. The constraint imposed by (7.3) is es- 

sentially kinematic; those imposed by the Maxwell equations, dynamic. With the 

convention that the physical electric and magnetic fields are obtained by taking 

the real parts of complex quantities, we write the plane wave fields as 

E(x, t) _ Seikn-x—iot 

(7.8) 
B(x, t) _ Peikn-x—iwt 
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where @, %, and n are constant vectors. Each component of E and B satisfies 
(7.3) provided 

ke n-en = pew (7.9) 

To recover (7.4) it is necessary that n be a unit vector such that n-n = 1. With 

the wave equation satisfied, there only remains the fixing of the vectorial prop- 
erties so that the Maxwell equations (7.1) are valid. The divergence equations in 
(7.1) demand that 

n-€é=0 and n-B=0 (7.10) 

This means that E and B are both perpendicular to the direction of propagation 

n. Such a wave is called a transverse wave. The curl equations provide a further 

restriction, namely 

R= Vyuenx b (7.11) 

The factor V we can be written V we = n/c, where n is the index of refraction 

defined in (7.5). We thus see that cB and E, which have the same dimensions, 

have the same magnitude for plane electromagnetic waves in free space and differ 

by the index of refraction in ponderable media. In engineering literature the 

magnetic field H is often displayed in parallel to E instead of B. The analog of 

(7.11) for H is 

#e=n xX E/Z (7.11’) 

where Z = V w/e is an impedance. In vacuum, Z = Zp = V pto/€) ~ 376.7 ohms, 

the impedance of free space. 

If n is real, (7.11) implies that @ and @ have the same phase. It is then useful 

to introduce a set of real inutually orthogonal unit vectors (€;, €2, mn), as shown 
in Fig. 7.1. In terms of these unit vectors the field strengths @ and & are 

(7.12) $ = €\Ep, B= eV pe Ey 

Or 

(7.12’) R= —€;V pe EG S = €,F 4, 

where E, and Ej are constants, possibly complex. The wave described by (7.8) 

and (7.12) or (7.12’) is a transverse wave propagating in the direction n. It rep- 

k=kn 

Figure 7.1 Propagation vector k and two 

orthogonal polarization vectors €, and €). 
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resents a time-averaged flux of energy given by the real part of the complex 

Poynting vector: 

1 
S =-=E xX H* 

2 

The energy flow (energy per unit area per unit time) is 
_ 

(7.13) s=3 (Ele Pn 
The time-averaged energy density u is correspondingly 

E* +—B.- B* 
Be 

u-} (a, 
This gives 

(7.14) u= 5 | Eol 

The ratio of the magnitude of (7.13) to (7.14) shows that the speed of energy 

flow is v = 1/V pe, as expected from (7.5). 

In the discussion that follows (7.11) we assumed that n was a real unit vector. 

This does not yield the most general possible solution for a plane wave. Suppose 

that n is complex, and written as n = ng + in;. Then the exponential in (7.8) 

becomes 

tkn-x—iwt 
e =e 

—kn x gikmp-x— ict 

The wave possesses exponential growth or decay in some directions. It is then 

called an inhomogeneous plane wave. The surfaces of constant amplitude and 

constant phase are still planes, but they are no longer parallel. The relations (7.10) 

and (7.11) still hold. The requirement n-n = 1 has real and imaginary parts,* 

ne —nz=1 (7.15) 
Neen, = 0 

The second of these conditions shows that ng and n, are orthogonal. The coor- 

dinate axes can be oriented so that ng is in the x direction and n; in the y direction. 

The first equation in (7.15) can be satisfied generally by writing 

n = e, cosh @ + ie, sinh @ (7.16) 

where @ is a real constant and e, and e, are real unit vectors in the x and y 
directions (not to be confused with €, and €,!). The most general vector © sat- 
isfying n-€ = 0 is then 

@ = (ie, sinh 9 — e, cosh O@)A + e,A' (7.17) 

where A and A’ are complex constants. For 6 # 0, in general has components 
in the direction(s) of n. It is easily verified that for 6 = 0, the solutions (7.12) and 
(7.12’) are recovered. 

We encounter simple examples of inhomogeneous plane waves in the dis- 
cussion of total internal reflection and refraction in a conducting medium later 
in the chapter, although in the latter case the inhomogeneity arises from a com- 

*Note that if m is complex it does not have unit magnitude, that is, n-m = 1 does not imply |n|? = 1. 
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plex wave number, not a complex unit vector n. Inhomogeneous plane waves 
form a general basis for the treatment of boundary-value problems for waves 
and are especially useful in the solution of diffraction in two dimensions. The 
interested reader can refer to the book by Clemmow for an extensive treatment 
with examples. 

7.2 Linear and Circular Polarization; Stokes Parameters 

The plane wave (7.8) and (7.12) is a wave with its electric field vector always in 
the direction €,. Such a wave is said to be linearly polarized with polarization 
vector €,. Evidently the wave described in (7.12’) is linearly polarized with po- 

larization vector €, and is linearly independent of the first. Thus the two waves, 

— ik-x—iwt 
= E, €,E,e 

ik-x—iwt 
=> E, €,F5e 

(7.18) with 

kx E, 
B 

> 
V be j= 1,2 

J 
k 

can be combined to give the most general homogeneous plane wave propagating 

in the direction k = kn, 

E(x, t) = (€,E, + €.F,)e*™ (7.19) 

The amplitudes EF, and E, are complex numbers, to allow the possibility of a 

phase difference between waves of different linear polarization. 

If E, and E, have the same phase, (7.19) represents a linearly polarized wave, 

with its polarization vector making an angle @ = tan™' (F,/E,) with e, and a 
magnitude E = V Ej + E3, as shown in Fig. 7.2. 

If E, and E, have different phases, the wave (7.19) is elliptically polarized. 

To understand what this means let us consider the simplest case, circular polar- 

ization. Then E, and E, have the same magnitude, but differ in phase by 90°. 
The wave (7.19) becomes: 

(7.20) E(x, t) = Eo(€, + ie,)e*— 1 

with E, the common real amplitude. We imagine axes chosen so that the wave 
is propagating in the positive z direction, while €, and €, are in the x and y 

directions, respectively. Then the components of the actual electric field, obtained 

by taking the real part of (7.20), are 

E(x, t) = Ey cos(kz — wt) 
(7.21) 

E,(x, t) = ¥Ep sin(kz — wt) 

E E2 

Figure 7.2 Electric field of a linearly polarized 

wave. Ei €1 
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At a fixed point in space, the fields (7.21) are such that the electric vector is 
constant in magnitude, but sweeps around in a circle at a frequency w, as shown 

in Fig. 7.3. For the upper sign (€, + ie), the rotation is counterclockwise when 

the observer is facing into the oncoming wave. This wave is called left circularly 

polarized in optics. In the terminology of modern physics, however, such a wave 

is said to have positive helicity. The latter description seems more appropriate 

because such a wave has a positive projection of angular mementum on the z 
axis (see Problem 7.29). For the lower sign (€; — ie€,), the rotation of E is clock- 
wise when looking into the wave; the wave is right circularly polarized (optics); 
it has negative helicity. 

The two circularly polarized waves (7.20) form an equally acceptable set of 

basic fields for description of a general state of polarization. We introduce the 

complex orthogonal unit vectors: 

(7.22) es 5 (e, + ie) 

with properties 

e: * €- 

0 e: (7.23) * €&3 

1 et + € 

Then a general representation, equivalent to (7.19), is 

(7.24) E(x, t) = (E.e, + E_e_)e*™'™ 

where FE, and E_ are complex amplitudes. If E, and E_ have different magni- 

tudes, but the same phase, (7.24) represents an elliptically polarized wave with 

principal axes of the ellipse in the directions of €; and €,. The ratio of semimajor 

to semiminor axis is |(1 + r)/(1 — r)|, where E_/E, = r. If the amplitudes have 
a phase difference between them, E_/E., = re“, then it is easy to show that the 
ellipse traced out by the E vector has its axes rotated by an angle (a/2). Figure 

7.4 shows the general case of elliptical polarization and the ellipses traced out by 

both E and B at a given point in space. 

For r = +1 we get back a linearly polarized wave. 

The polarization content of a plane electromagnetic wave is known if it can 

be written in the form of either (7.19) or (7.24) with known coefficients (E,, E>) 

or (E,,, E_). In practice, the converse problem arises. Given that the wave is of 

the form (7.8), how can we determine from observations on the beam the state 

of polarization in all its particulars? A useful vehicle for this are the four Stokes 

y 

E 

UT 
Figure 7.3. Electric field of a circularly polarized 

E(x, t) = Eo(e, + iegde’* =~ bt wave. 
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cB 

Figure 7.4 Electric field and magnetic induction for an elliptically polarized wave. 

parameters, proposed by G. G. Stokes in 1852. These parameters are quadratic 

in the field strength and can be determined through intensity measurements only, 

in conjunction with a linear polarizer and a quarter-wave plate or equivalents. 

Their measurement determines completely the state of polarization of the wave. 

The Stokes parameters can be motivated by observing that for a wave prop- 

agating in the z direction, the scalar products, 

e*.E e? -E, e,-E, (7.25) €, - E, 

are the amplitudes of radiation, respectively, with linear polarization in the x 

direction, linear polarization in the y direction, positive helicity, and negative 

helicity. Note that for circular polarization the complex conjugate of the appro- 

priate polarization vector must be used, in accord with (7.23). The squares of 

these amplitudes give a measure of the intensity of each type of polarization. 

Phase information is also needed; this is obtained from cross products. We give 

definitions of the Stokes parameters with respect to both the linear polarization 

and the circular polarization bases, in terms of the projected amplitudes (7.25) 

and also explicitly in terms of the magnitudes and relative phases of the com- 

ponents. For the latter purpose we define each of the scalar coefficients in (7.19) 
and (7.24) as a magnitude times a phase factor: 

— —_ 
i8, 

= = 

> E, ae aje Ey 
(7.26) 

—_ is, 
= E_ a_e®- 

a,e’°*, E, 

In terms of the linear polarization basis (€,, €2), the Stokes parameters are* 
—_— 

= ata So = le, ° E/ + |e, . E/ 
—_— 

= ay — a3 s, = |e, - Ef — le. EP 
(7.27) 

S, = 2 Re[(e, - E)*(€, + E)] = 2a,a, cos(d, — 4) 
s3 = 2 Im[(e, - E)*(e.- E)] = 2a,a, sin(é, — 6,) 

If the circular polarization basis (€,., €_) is used instead, the definitions read 

So = let Ef? + [eX - EP = a4 + a2 

5, = 2 Re[(e* - E)*(e* - E)] = 2a,a_ cos(6_ — 8,) 
(7.28) 

So = 2 Im[(ex - E)*(e* - E)] = 2a,a_ sin(6_ — 6,) 

sy = |e* - EP? — le*- EP = at - a 

*The notation for the Stokes parameters is unfortunately not uniform. Stokes himself used (A, B, C, 

D); other labelings are (J, Q, U, V) and (J, M, C, S). Our notation is that of Born and Wolf. 



302 Chapter7 Plane Electromagnetic Waves and Wave Propagation—SI 

The expressions (7.27) and (7.28) show an interesting rearrangement of roles of 

the Stokes parameters with respect to the two bases. The parameter so measures 

the relative intensity of the wave in either case. The parameter s, gives the pre- 

ponderance of x-linear polarization over y-linear polarization, while s2 and 53 in 
the linear basis give phase information. We see from (7.28) that s3 has the inter- 

pretation of the difference in relative intensity of positive and negative helicity, 
while in this basis s; and s, concern the phases. The four Stokes parameters are 

not independent, since they depend on only three quantities, a, a2, and 6, — 6). 

They satisfy the relation 

—_— 

= (7.29) sit s3 +83 56 

Discussion of the operational steps needed to measure the Stokes parameters 

and so determine the state of polarization of a plane wave would take us too far 

afield. We refer the reader to Section 13.13 of Stone for details. Also neglected, 

except for the barest mention, is the important problem of quasi-monochromatic 

radiation. Beams of radiation, even if monochromatic enough for the purposes 

at hand, actually consist of a superposition of finite wave trains. By Fourier’s 

theorem they thus contain a range of frequencies and are not completely mono- 
chromatic. One way of viewing this is to say that the magnitudes and phases 
(a; 6;) in (7.26) vary slowly in time, slowly, that is, when compared to the fre- 
quency w. The observable Stokes parameters then become averages over a rel- 
atively long time interval, and are written as 

Sz = 2(a\a, cos(d, — 6;)) 

for example, where the angle brackets indicate the macroscopic time average. 

One consequence of the averaging process is that the Stokes parameters for a 

quasi-monochromatic beam satisfy an inequality, 

siz set sh + 83 

rather than the equality, (7.29). ‘Natural light,”’ even if monochromatic to a high 

degree, has s; = s. = s3 = 0. Further discussion of quasi-monochromatic light 

and partial coherence can be found in Born and Wolf, Chapter 10. 

An astrophysical example of the use of Stokes parameters to describe the 

state of polarization is afforded by the study of optical and radiofrequency ra- 

diation from the pulsar in the Crab nebula. The optical light shows some small 

amount of linear polarization, while the radio emission at w ~ 2.5 X 10° s”! has 

a high degree of linear polarization.* At neither frequency is there evidence for 

circular polarization. Information of this type obviously helps to elucidate the 

mechanism of radiation from these fascinating objects. 

7.3 Reflection and Refraction of Electromagnetic Waves 

at a Plane Interface Between Dielectrics 

The reflection and refraction of light at a plane surface between two media of 
different dielectric properties are familiar phenomena. The various aspects of the 
phenomena divide themselves into two classes. 

*See The Crab Nebula and Related Supernova Remnants, eds. M. C. Kafatos and R. B. C. Henry, 
Cambridge University Press, New York (1985). 
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1 Kinematic properties: 

(a) Angle of reflection equals angle of incidence. 

(b) Snell’s law: (sin i)/(sinr) = n'/n, where i, r are the angles of incidence 
and refraction, while n,n’ are the corresponding indices of refraction. 

2 Dynamic properties: 

(a) Intensities of reflected and refracted radiation. 

(b) Phase changes and polarization. 

The kinematic properties follow immediately from the wave nature of the 

phenomena and from the fact that there are boundary conditions to be satisfied. 

But they do not depend on the detailed nature of the waves or the boundary 

conditions. On the other hand, the dynamic properties depend entirely on the 

specific nature of electromagnetic fields and their boundary conditions. 

The coordinate system and symbols appropriate to the problem are shown 

in Fig. 7.5. The media below and above the plane z = 0 have permeabilities and 
i permittivities uw, € and p’, € , respectively. The indices of refraction, defined 

through (7.5), are n = V pe/upe, and n’ = Vp 'e'/p€. A plane wave with wave 

vector k and frequency w is incident from medium yp, e. The refracted and re- 

flected waves have wave vectors k’ and k”, respectively, and n is a unit normal 

directed from medium yp, € into medium yp’, e’. 

According to (7.18), the three waves are: 

INCIDENT 

E _ E,e** i 

(7.30) 
kxE 

B= V pe 
k 

REFRACTED 
E’ = Eje* * 

(7.31) 
— 

_k’ x E’ 

= 

B’ 

VEE k' 

k’ 

nA 

w’e 

ME 

k” 

Figure 7.5 Incident wave k strikes plane interface between different media, giving rise 
to a reflected wave k” and a refracted wave k’. 
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REFLECTED 
E’ — Eve x ie 

(7.32) " x E’” 

_ 

= 

B’” 

eek 

The wave numbers have the magnitudes 

Ik| = [k"| = k = ope (7.33) 

Iki] =k = owe 

The existence of boundary conditions at z = 0, which must be satisfied at all 

points on the plane at all times, implies that the spatial (and time) variation of 
all fields must be the same at z = 0. Consequently, we must have the phase factors 

all equal at z = 0, 

_— 

= (7.34) (k" + x),=0 (k ° X)2=0 = (k’ ° X)-=0 

independent of the nature of the boundary conditions. Equation (7.34) contains 

the kinematic aspects of reflection and refraction. We see immediately that all 

three wave vectors must lie in a plane. Furthermore, in the notation of Fig. 7.5, 

k sini = k’ sinr = k" sinr'’ (7.35) 

—_ 

= Since k" k, we find i = r’; the angle of incidence equals the angle of reflection. 

Snell’s law is 

, 

— 
— 

pie’ _n sini kt | 
(7.36) 

n k sinr ie 
The dynamic properties are contained in the boundary conditions—normal 

components of D and B are continuous; tangential components of E and H are 
continuous. In terms of fields (7.30)—(7.32) these boundary conditions at z = 0 
are: 

[e(E + Eo) —_ e'Eo| “h= 0 

[k x Ey + k” x Eg —k’ x Ey] -n = 0 

(7.37) (E, + ES — Ei) x n=0 

[2 de Bo +k x <q x £5] xn=0 

In applying these boundary conditions it is convenient to consider two sep- 

arate situations, one in which the incident plane wave is linearly polarized with 

its polarization vector perpendicular to the plane of incidence (the plane defined 

by k and n), and the other in which the polarization vector is parallel to the plane 

of incidence. The general case of arbitrary elliptic polarization can be obtained 

by appropriate linear combinations of the two results, following the methods of 

Section 7.2. 

We first consider the electric field perpendicular to the plane of incidence, 

as shown in Fig. 7.6a. All the electric fields are shown directed away from the 

viewer. The orientations of the B vectors are chosen to give a positive flow of 

energy in the direction of the wave vectors. Since the electric fields are all parallel 
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B’ 

k’ 
na 

zk’ 

’ 

u’e 

HE 

B’ 

E” 

k” 

(a) 

n,s 

u‘e 

ue 

E” 

B’ 

Figure 7.6 Reflection and 

refraction with polarization (a) k’” 

perpendicular and (5) parallel to 

(6) the plane of incidence. 

to the surface, the first boundary condition in (7.37) yields nothing. The third and 

fourth equations in (7.37) give 

Ey + Eo — Eo = 0 

(7.38) 

ff — Eo) cosi — [se cosr = 0 
while the second, using Snell’s law, duplicates the third. The relative amplitudes 

of the refracted and reflected waves can be found from (7.38). These are: 

E PERPENDICULAR TO PLANE OF INCIDENCE 

2n Cosi Eo 
Eo 

ncosi + — Vn”? — n?* sin’i 

(7.39) 
be 

n cosi — — Vn"? — n? sini 
/ 5 

— 

Eo be 

Vn'? — n? sini ncosi + — 

The square root in these expressions is n’ cos, but Snell’s law has been used to 

express it in terms of the angle of incidence. For optical frequencies it is usually 
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permitted to put u/u’ = 1. Equations (7.39), and (7.41) and (7.42) below, are 
most often employed in optical contexts with real n and n’, but they are also 
valid for complex dielectric constants. 

If the electric field is parallel to the plane of incidence, as shown in Fig. 7.65, 

the boundary conditions involved are normal D, tangential FE, and tangential 7 

[the first, third, and fourth equations in (7.37)]. The tangential E and H contin- 
~~ ~ uous demand that 

cosi(Ey — Eo) — cosr Eg = 0 

(7.40) 

JE eo+ €5 - [Seo 

Normal D continuous, plus Snell’s law, merely duplicates the second of these 

equations. The relative amplitudes of refracted and reflected fields are therefore 

E PARALLEL TO PLANE OF INCIDENCE 

2nn’ cosi 
—_— 

= 

Eo 
n"”* cosi + nVn"? — n? sin’i 

(7.41) 

n” cosi — nVn'? — n’ sini 
a" 

Eo 
n”? cosi + nVn"* — n? sin’i 

For normal incidence (i = 0), both (7.39) and (7.41) reduce to 

+ 

2 2n 
—_— 

= 

ni+-n Eo 
+1 

(7.42) 

—1 
a" 

n—-n 
= 

nt+n Eo 
+1 

where the results on the right hold for uw’ = w. For the reflected wave the sign 
convention is that for polarization parallel to the plane of incidence. This means 
that if n’ > n there is a phase reversal for the reflected wave. 

7.4 Polarization by Reflection and Total Internal Reflection; 
Goos—Hanchen Effect 

Two aspects of the dynamical relations on reflection and refraction are worthy 
of mention. The first is that for polarization parallel to the plane of incidence 
there is an angle of incidence, called Brewster’s angle, for which there is no re- 
flected wave. With yu’ = p for simplicity, we find that the amplitude of the re- 
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flected wave in (7.41) vanishes when the angle of incidence is equal to Brewster’s 
angle, 

n' (7.43) 
n 

For a typical ratio n'/n = 1.5, ig ~ 56°. If a plane wave of mixed polarization is 
incident on a plane interface at the Brewster angle, the reflected radiation is 

completely plane-polarized with polarization vector perpendicular to the plane of 

incidence. This behavior can be utilized to produce beams of plane-polarized 

light but is not as efficient as other means employing anisotropic properties of 

some dielectric media. Even if the unpolarized wave is reflected at angles other 

than the Brewster angle, there is a tendency for the reflected wave to be pre- 

dominantly polarized perpendicular to the plane of incidence. The success of dark 

glasses that selectively transmit only one direction of polarization depends on 

this fact. In the domain of radiofrequencies, receiving antennas can be oriented 

to discriminate against surface-reflected waves (and also waves reflected from 

the ionosphere) in favor of the directly transmitted wave. 

The second phenomenon is called total internal reflection. The word “‘inter- 

nal’ implies that the incident and reflected waves are in a medium of larger index 

of refraction than the refracted wave (n > n’). Snell’s law (7.36) shows that, if 

n> n', then r > i. Consequently, r = 7/2 when i = ig, where 

t 

n 
— (7.44) 

For waves incident at i = ip, the refracted wave is propagated parallel to the 
surface. There can be no energy flow across the surface. Hence at that angle of 
incidence there must be total reflection. What happens if i > ip? To answer this 

we first note that, for i > ip, sinr > 1. This means that r is a complex angle with 

a purely imaginary cosine. 

sin i 
(7.45) 

sin ip 
yaa 

The meaning of these complex quantities becomes clear when we consider the 

propagation factor for the refracted wave: 

ik’-x 
=e 

ik'(xsinr+zcosr) — e7 Kk U(sini/sinigy?—1)"7z ik’ (sini/sinig)x 
é (7.46) 

This shows that, for i > ip, the refracted wave is propagated only parallel to the 
surface and is attenuated exponentially beyond the interface. The attenuation 

occurs within a very few wavelengths of the boundary, except for 1 = ig. 

Even though fields exist on the other side of the surface there is no energy 

flow through the surface. Hence total internal reflection occurs for i = i. The 

lack of energy flow can be verified by calculating the time-averaged normal com- 

ponent of the Poynting vector just inside the surface: 

(7.47) S-n= 5 Relm -(E’ x H’*)| 
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—-————— — —_—--4 | _ 
Oe 

Figure 7.7. Geometrical interpretation of the Goos— 

Hanchen effect, the lateral displatemeiit of a totally 

internally-reflected beam of radiation because of the 

penetration of the evanescent wave into the region 

of smaller index refraction. 

with H’ = (k’ x E’)/p'o, we find 

S-n = >—— Re[(n - k’) |Eo/"] 
2op' 

But n-k’ = k’ cosr is purely imaginary, so that S-n = 0. 

The purely imaginary value (7.45) of cos r, times n’, is the appropriate quan- 
tity to replace the square root appearing in the Fresnel formula, (7.39) and (7.41). 
Inspection shows that the ratios E¢/E, are now of modulus unity, as is expected 

physically for total internal reflection. The reflected wave does, however, suffer 
a phase change that is different for the two kinds of incidence and depends on 

the angle of incidence and on (n/n’). These phase changes can be utilized to 

convert one kind of polarization into another. Fresnel’s rhombus is one such 

device, whereby linearly polarized light with equal amplitudes in the plane of 

incidence and perpendicular to it is converted by two successive internal reflec- 

tions, each involving a relative phase change of 45°, into circularly polarized light 

(see Born and Wolf, p. 50). 

The evanescent wave penetrating into the region z > 0 has an exponential 

decay in the perpendicular direction, e~*’*, where 5~' = kVsin*i — sinip. The 
penetration of the wave into the ‘‘forbidden”’ region is the physical origin of the 

Goos—Hanchen effect: If a beam of radiation having a finite transverse extent 

undergoes total internal reflection, the reflected beam emerges displaced laterally 

with respect to the prediction of a geometrical ray reflected at the boundary.* If 

we imagine that the beam is reflected from the plane a distance 6 beyond the 

boundary, as indicated in Fig. 7.7, the beam should emerge with a transverse 

displacement of D ~ 26 sini. More careful calculation (see Problem 7.7) shows 

that this naive result is modified somewhat, with D dependent on the state of 

polarization of the radiation. The first-order expressions for D for the two states 

of linear polarization are 

A sini sin7iy 
D,= (7.48) D, = D, 

am \Vsin?i — sin7iy " [sin’i — cos’i - sin?ig] 

where A is the wavelength in the medium of higher index of refraction. 

The phenomenon of internal reflection is exploited in many applications 
where it is desired to transmit light without loss in intensity. In nuclear and 

*F, Goos and H. Hanchen, Ann. Phys. (Leipzig) (6) 1, 333-346 (1947). For an extensive discussion 
of the effect, with many references, see the four-part article, H. K. V. Lotsch, Optik, 32, 116-137, 
189-204, 299-319, 553-568 (1970). 
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particle physics, plastic “light pipes” are used to carry light from scintillators 
(excited by the passage of a charged particle or energetic photon) to photomul- 
tipliers, where the light is converted into useful electrical signals. If the light pipe 
is large in cross-sectional dimension compared to the wavelength of the light 
involved, the considerations presented here for a plane interface have approxi- 
mate validity. In telecommunications, optical fibers exploit total internal reflec- 

tion for transmission of modulated light signals over long distances. The various 

transverse dimensions of a multilayered fiber are not always very large compared 

to a wavelength. Then the precise geometry must be taken into account; the 

language of modes in a waveguide may be more appropriate—see Chapter 8. 

7.5 Frequency Dispersion Characteristics of Dielectrics, 

Conductors, and Plasmas 

In Section 7.1 we saw that in the absence of dispersion an arbitrary wave train 

(7.7) travels without distortion. In reality all media show some dispersion. Only 

over a limited range of frequencies, or in vacuum, can the velocity of propagation 

be treated as constant in frequency. Of course, all the results of the preceding 

sections that involve a single frequency component are valid in the presence of 

dispersion. The values of yx and € need only be interpreted as those appropriate 

to the frequency being considered. Where a superposition of a range of frequen- 

cies occurs, however, new effects arise as a result of the frequency dependence 

of e« and uw. To examine some of these consequences, we need to develop at least 

a simple model of dispersion. 

A. Simple Model for €(«) 

Almost all of the physics of dispersion is illustrated by an extension to 
time-varying fields of the classical model described in Section 4.6. For simplicity 

we neglect the difference between the applied electric field and the local field. 

The model is therefore appropriate only for substances of relatively low density. 

[This deficiency can be removed by use of (4.69), if desired.] The relative per- 

meability will be taken equal to unity. The equation of motion for an electron of 

charge —e bound by a harmonic force (4.71) and acted on by an electric field 

E(x, £) is 

(7.49) mlx + yx + wox] = —eE(x, 2) 

where y measures the phenomenological damping force. Magnetic force effects 

are neglected in (7.49). We make the additional approximation that the ampli- 

tude of oscillation is small enough to permit evaluation of the electric field at the 

average position of the electron. If the field varies harmonically in time with 

frequency w as e~‘”, the dipole moment contributed by one electron is 

2 

(7.50) pa mex = 2 (0h — oF — fo 'B 

If we suppose that there are N molecules per unit volume with Z electrons per 

molecule, and that, instead of a single binding frequency for all, there are f; 
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electrons per molecule with binding frequency w; and damping constant y,, then 
the dielectric constant, €/é9 = 1 + yz, is given by 

e(@) (7.51) 
€o 

where the oscillator strengths f; satisfy the sum rule, 
~~ 

(7.52) 2X f= 2 

With suitable quantum-mechanical definitions of f;, y;, and ,;, (7.51) is an ac- 

curate description of the atomic contribution to the dielectric constant. 

B. Anomolous Dispersion and Resonant Absorption 

The damping constants y; are generally small compared with the binding or 

resonant frequencies w;. This means that €(w) is approximately real for most 

frequencies. The factor (w; — w*)~' is positive for # < w; and negative for w > 

w;. Thus, at low frequencies, below the smallest «,, all the terms in the sum in 

(7.51) contribute with the same positive sign and e(w) is greater than unity. As 
successive w; values are passed, more and more negative terms occur in the sum, 
until finally the whole sum is negative and e(w) is less than one. In the neigh- 
borhood of any w,;, of course, there is rather violent behavior. The real part of 

the denominator in (7.51) vanishes for that term at w = w; and the term is large 
and purely imaginary. The general features of the real and imaginary parts of 

€(w) around two successive resonant frequencies are shown in Fig. 7.8. Normal 

dispersion is associated with an increase in Re e(w) with w, anomalous dispersion 

with the reverse. Normal dispersion is seen to occur everywhere except in the 

neighborhood of a resonant frequency. And only where there is anomalous dis- 

persion is the imaginary part of e appreciable. Since a positive imaginary part to 

€ represents dissipation of energy from the electromagnetic wave into the me- 

dium, the regions where Im e« is large are called regions of resonant absorption.* 

The attenuation of a plane wave is most directly expressed in terms of the 

real and imaginary parts of the wave number k. If the wave number is written as 

a k=Bti (7.53) 
2 

then the parameter a is known as the attenuation constant or absorption coef- 

ficient. The intensity of the wave falls off as e~**. Equation (7.5) yields the con- 

nection between (a, B) and (Re «, Im e): 

2 

—_- — 

B? 
=> Re €/e 

(7.54) 
2 

Ba = = Im e/e, 

*If Im € < 0, energy is given to the wave by the medium; amplification occurs, as in a maser or laser. 
See M. Borenstein and W. E. Lamb, Phys. Rev. A5, 1298 (1972). 
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Figure 7.8 Real and imaginary parts of the dielectric constant e(w)/e, in the 

neighborhood of two resonances. The region of anomalous dispersion is also the 

frequency interval where absorption occurs. 

If a << £, as occurs unless the absorption is very strong or Re € is negative, the 

attenuation constant a can be written approximately as 

_ Im e(@) 
B (7.55) 

~ Re €(w) 

where B = VRe(e/e,) a/c. The fractional decrease in intensity per wavelength 

divided by 277 is thus given by the ratio, Im €/Re e. 

C. Low-Frequency Behavior, Electric Conductivity 

In the limit w — 0 there is a qualitative difference in the response of the 

medium depending on whether the lowest resonant frequency is zero or nonzero. 

For insulators the lowest resonant frequency is different from zero. Then at w = 

0 the molecular polarizability is given by (4.73), corresponding to the limit w = 

0 in (7.51). The elementary aspects of dielectrics in the static limit have been 

discussed in Section 4.6. 

If some fraction fy of the electrons per molecule are “free” in the sense of 

having w) = 0, the dielectric constant is singular at w = 0. If the contribution of 

the free electrons is exhibited separately, (7.51) times €) becomes 

Ne *fo 
(7.56) E(w) = €,(w) + i 

mw(Y¥o — iw) 
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where €,(w) is the contribution of all the other dipoles. The singular behavior 
can be understood if we examine the Maxwell-Ampére equation 

dD 
Vx H=J+— 

at 

and assume that the medium obeys Ohm’s law, J = oE and has a “normal” 

dielectric constant e,. With harmonic time dependence the equation becomes 

(7.57) VxH= ~io( 4 + iz) 

If, on the other hand, we did not insert Ohm’s law explicitly but attributed instead 
all the properties of the medium to the dielectric constant, we would identify the 

quantity in brackets on the right-hand side of (7.57) with e(w). Comparison with 

(7.56) yields an expression for the conductivity: 

foNe? 
c= (7.58) 

m(yo — iw) 

This is essentially the model of Drude (1900) for the electrical conductivity, with 

foN being the number of free electrons per unit volume in the medium. The 
damping constant y/f, can be determined empirically from experimental data 
on the conductivity. For copper, N =~ 8 X 1078 atoms/m? and at normal temper- 
atures the low-frequency conductivity is ¢ = 5.9 X 10’ (Q.- m)~’. This gives yo/fo 
= 4 xX 10% s7!. Assuming that fy ~ 1, this shows that up to frequencies well 
beyond the microwave region (w = 10'’ s~*) conductivities of metals are essen- 
tially real (i-e., current in phase with the field) and independent of frequency. At 

higher frequencies (in the infrared and beyond) the conductivity is complex and 

varies with frequency in a way described qualitatively by the simple result (7.58). 
The problem of electrical conductivity is really a quantum-mechanical one in 

which the Pauli principle plays an important role. The free electrons are actually 

valence electrons of the isolated atoms that become quasi-free and move rela- 

tively unimpeded through the lattice (provided their energies lie in certain inter- 

vals or bands) when the atoms are brought together to form a solid. The damping 

effects come from collisions involving appreciable momentum transfer between 

the electrons and lattice vibrations, lattice imperfections, and impurities.* 

The foregoing considerations show that the distinction between dielectrics 
—_— 

= 0. If the medium and conductors is an artificial one, at least away from w 

possesses free electrons it is a conductor at low frequencies; otherwise, an insu- 

lator.’ But at nonzero frequencies the “conductivity” contribution to e(@) (7.51) 
merely appears as a resonant amplitude like the rest. The dispersive properties 

of the medium can be attributed as well to a complex dielectric constant as to a 

frequency-dependent conductivity and a dielectric constant. 

*See R. G. Chambers, Electrons in Metals and Semiconductors, Chapman & Hall, New York (1990), 

or G, Lehmann and P. Ziesche, Electronic Properties of Metals, Elsevier, New York (1990). 

‘In terms of the quantum-mechanical band structure of the solid, the conductor has some electrons 
in a partially filled band, while the insulator has its bands filled to the full extent permitted by the 
Pauli principle. A “free” electron must have nearby energy-conserving quantum states to which it 
can move. In a partially filled band there are such states, but a filled band has, by definition, no such 
states available. 
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D. High-Frequency Limit, Plasma Frequency 

At frequencies far above the highest resonant frequency the dielectric con- 
stant (7.51) takes on the simple form 

e() 
_ — (7.59) 

€0 

where 

NZe? 
2 

(7.60) a, = 

€ym 

The frequency w,, which depends only on the total number NZ of electrons per 
unit volume, is called the plasma frequency of the medium. The wave number is 

given in the limit by 

(7.61) ck = Vor — oF 

—_— 

= Sometimes (7.61) is expressed as w* w, + c’k’, and is called a dispersion 
relation or equation for w = w(k). In dielectric media, (7.59) applies only for 

w >> w;. The dielectric constant is then close to unity, although slightly less, 
and increases with frequency somewhat as the highest frequency part of the curve 

shown in Fig. 7.8. The wave number is real and varies with frequency as for a 

mode in a waveguide with cutoff frequency w,. (See Fig. 8.4.) 

In certain situations, such as in the ionosphere or in a tenuous electronic 

plasma in the laboratory, the electrons are free and the damping is negligible. 

Then (7.59) holds over a wide range of frequencies, including w < w,. For fre- 

quencies lower than the plasma frequency, the wave number (7.61) is purely 

imaginary. Such waves incident on a plasma are reflected and the fields inside 

fall off exponentially with distance from the surface. At w = 0 the attenuation 

constant is 

2Wp 
(7.62) plasma 

c 

On the laboratory scale, plasma densities are of the order of 10'* — 10” electrons/ 
m°>. This means w, ~ 6 X 10'°-6 x 10'*s~', so that typically attenuation lengths 
(a~') are of the order of 0.2 cm to 2 x 10~° cm for static or low-frequency fields. 
The expulsion of fields from within a plasma is a well-known effect in controlled 

thermonuclear processes and is exploited in attempts at confinement of hot 

plasma. 

The reflectivity of metals at optical and higher frequencies is caused by es- 

sentially the same behavior as for the tenuous plasma. The dielectric constant of 

a metal is given by (7.56). At high frequencies (w >> yo) this takes the approx- 

imate form, 

2 

E(w) = €,(w) — + & 

where w? = ne’/m*e, is the plasma frequency squared of the conduction elec- 

trons, given an effective mass m* to include partially the effects of binding. For 

w << w, the behavior of light incident on the metal is approximately the same 
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as for the plasma described by (7.59). The light penetrates only a very short 
distance into the metal and is almost entirely reflected. But when the frequency 

is increased into the domain where e(w) > 0, the metal suddenly can transmit 

light and its reflectivity changes drastically. This occurs typically in the ultraviolet 
and leads to the terminology “ultraviolet transparency of metals.” Determination 

of the critical frequency gives information on the density or the effective mass 
~~ ~~ of the conduction electrons.* 

E. Index of Refraction and Absorption Coefficient 

of Liquid Water as a Function of Frequency 

As an example of the overall frequency behavior of the real part of the index 

of refraction and the absorption coefficient of a real medium, we take the ubiq- 

uitous substance, water. Our intent is to give a broad view and to indicate the 

tremendous variations that are possible, rather than to discuss specific details. 

Accordingly, we show in Fig. 7.9, on a log-log plot with 20 decades in frequency 

and 11 decades in absorption, a compilation of the gross features of n(w) = 
Re V pe/o€p and a(w) = 2 Im V we w for liquid water at NTP. The upper part 

of the graph shows the interesting, but not spectacular, behavior of n(w). At very 

low frequencies, n(w) ~ 9, a value arising from the partial orientation of the 
permanent dipole moments of the water molecules. Above 10’° Hz the curve falls 
relatively smoothly to the structure in the infrared. In the visible region, shown 

by the vertical dashed lines, n(w) = 1.34, with little variation. Then in the ultra- 
violet there is more structure. Above 6 X 10'° Hz (hv = 25 eV) there are no data 
on the real part of the index of refraction. The asymptotic approach to unity 
shown in the figure assumes (7.59). 

Much more dramatic is the behavior of the absorption coefficient a. At fre- 

quencies below 10® Hz the absorption coefficient is extremely small. The data 
seem unreliable (two different sets are shown), probably because of variations 

in sample purity. As the frequency increases toward 10°’ Hz, the absorption 
coefficient increases rapidly to a ~ 10* m™’, corresponding to an attenuation 
length of 100 um in liquid water. This is the well-known microwave absorption 

by water. It is the phenomenon (in moist air) that terminated the trend during 

World War II toward better and better resolution in radar by going to shorter 

and shorter wavelengths. 

In the infrared region absorption bands associated with vibrational modes of 

the molecule and possibly oscillations of a molecule in the field of its neighbors 

cause the absorption to reach peak values of a ~ 10° m™'. Then the absorption 
coefficient falls precipitously over 7; decades to a value of a < 3 X 107! m™ in 
a narrow frequency range between 4 x 10'* Hz and 8 X 10'* Hz. It then rises 
again by more than 8 decades by 2 X 10° Hz. This is a dramatic absorption 

window in what we call the visible region. The extreme transparency of water 

here has its origins in the basic energy level structure of the atoms and molecules. 

The reader may meditate on the fundamental question of biological evolution 

on this water-soaked planet, of why animal eyes see the spectrum from red to 

*See Chapter 4 of D. Pines, Elementary Excitations in Solids, W. A. Benjamin, New York (1963), for 
a discussion of these and other dielectric properties of metals in the optical and ultraviolet region. 
More generally, see F. Wooten, Optical Properties of Solids, Academic Press, New York (1972) and 
Handbook of Optical Constants of Solids, ed. E. D. Palik, Academic Press, Boston (1991). 
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Figure 7.9 The index of refraction (top) and absorption coefficient (bottom) for liquid 

water as a function of linear frequency. Also shown as abscissas are an energy scale 

(arrows) and a wavelength scale (vertical lines). The visible region of the frequency 

spectrum is indicated by the vertical dashed lines. The absorption coefficient for 

seawater is indicated by the dashed diagonal line at the left. Note that the scales are 

logarithmic in both directions. 

violet and of why the grass is green. Mother Nature has certainly exploited her 

window! In the very far ultraviolet the absorption has a peak value of a = 1.1 X 
10° m7! at y= 5 X 10" Hz (21 eV). This is exactly at the plasmon energy fw,, 
corresponding to a collective excitation of all the electrons in the molecule. The 
attenuation is given in order of magnitude by (7.62). At higher frequencies data 
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are absent until the photoelectric effect, and then Compton scattering and other 
high-energy processes take over. There the nuclear physicists have studied the 

absorption in detail. The behavior is basically governed by the atomic properties 
and the density, not by the fact that the substance is water. 

At the low-frequency end of the graph in Fig. 7.9 we have indicated the 
absorption coefficient of seawater. At low frequencies, seawater has an electrical 
conductivity ¢ ~ 4.4 07! m7!. From (7.57) we find that:below-about 10° Hz a = 
(2u9wo)'”. The absorption coefficient is thus proportional to Vw and becomes 
very small at low frequencies. The line shown is a (m1) = 8.4 x 10° °V v(Hz). 
At 10? Hz, the attenuation length in seawater is a~* ~ 10 meters. This means 
that 1% of the intensity at the surface will survive at 50 meters below the surface. 

If one had a large fleet of submarines scattered throughout the oceans of the 

world and wished to be able to send messages from a land base to the submerged 

vessels, one would be led to consider extremely low-frequency (ELF) commu- 
nications. The existence of prominent resonances of the earth-ionosphere cavity 

in the range from 8 Hz to a few hundred hertz (see Section 8.9) makes that region 

of the frequency spectrum specially attractive, as does the reduced attenuation. 

With wavelengths of the order of 5 X 10° km, very large antennas are needed 

(still small compared to a wavelength!).* 

7.6 Simplified Model of Propagation in the Ionosphere 
and Magnetosphere 

The propagation of electromagnetic waves in the ionosphere is described in 

zeroth approximation by the dielectric constant (7.59), but the presence of the 
earth’s magnetic field modifies the behavior significantly. The influence of a static 

external magnetic field is also present for many laboratory plasmas. To illustrate 

the influence of an external magnetic field, we consider the simple problem of a 

tenuous electronic plasma of uniform density with a strong, static, uniform, mag- 

netic induction By and transverse waves propagating parallel to the direction of 

Bo. (The more general problem of an arbitrary direction of propagation is con- 

tained in Problem 7.17.) If the amplitude of electronic motion is small and col- 

lisions are neglected, the equation of motion is approximately 

mi — eBy X x = —eEe™ (7.63) 

where the influence of the B field of the transverse wave has been neglected 

compared to the static induction By and the electronic charge has been written 

as —e. It is convenient to consider the transverse waves as circularly polarized. 

Thus we write 

E = (€, = ie, )E (7.64) 

and a similar expression for x. Since the direction of By is taken orthogonal to e, 

and €,, the cross product in (7.63) has components only in the direction e, and 

*For detailed discussion of ELF communications, see the conference proceedings, ELF/VLF/LF Ra- 

dio Propagation and Systems Aspects, (AGARD-CP-529), Brussels, 28 September-2 October, 1992, 

AGARD, Neuilly sur Seine, France (1993). 
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€, and the transverse components decouple. The steady-state solution of (7.63) 
iS 

e 
x = E (7.65) 

Mmuw(w + wp) 

where wg is the frequency of precession of a charged particle in a magnetic field, 

eBo 
—_— 

Wz = ~ (7.66) 

The frequency dependence of (7.65) can be understood by the transformation of 
(7.63) to a coordinate system precessing with frequency w, about the direction 
of Bo. The static magnetic field is eliminated; the rate of change of momentum 
there is caused by a rotating electric field of effective frequency (w + wg), de- 
pending on the sign of the circular polarization. 

The amplitude of oscillation (7.65) gives a dipole moment for each electron 
and yields, for a bulk sample, the dielectric constant 

2 
@ 

P 
e-/e—g = 1 - (7.67) 

w(w + wa) 

The upper sign corresponds to a positive helicity wave (left-handed circular po- 

larization in the optics terminology), while the lower is for negative helicity. For 

propagation antiparallel to the magnetic field Bo, the signs are reversed. This is 

the extension of (7.59) to include a static magnetic induction. It is not completely 

general, since it applies only to waves propagating along the static field direction. 

But even in this simple example we see the essential characteristic that waves of 

right-handed and left-handed circular polarizations propagate differently. The 

ionosphere is birefringent. For propagation in directions other than parallel tc 

the static field By it is straightforward to show that, if terms of the order of wz 
are neglected compared to a” and wwa,, the dielectric constant is still given by 
(7.67). But the precession frequency (7.66) is now to be interpreted as that due 

to only the component of By parallel to the direction of propagation. This means 

that wz, in (7.67) is a function of angle—the medium is not only birefringent, but 

also anisotropic (see Problem 7.17). 

For the ionosphere a typical maximum density of free electrons is 10'°-10 
electrons/m*, corresponding to a plasma frequency of the order of w, ~ 6 x 10° 
—6 X 10’ s~'. If we take a value of 30 wT as representative of the earth’s magnetic 
field, the precession frequency is wg, ~ 6 X 10° s7. 

Figure 7.10 shows €./€) as a function of frequency for two values of the ratio 
of (w,/w ). In both examples there are wide intervals of frequency where one of 
€,. or €_ is positive while the other is negative. At such frequencies one state of 

circular polarization cannot propagate in the plasma. Consequently a wave of 

that polarization incident on the plasma will be totally reflected. The other state 

of polarization will be partially transmitted. Thus, when a linearly polarized wave 

is incident on a plasma, the reflected wave will be elliptically polarized, with its 

major axis generally rotated away from the direction of the polarization of the 

incident wave. 

The behavior of radio waves reflected from the ionosphere is explicable in 

terms of these ideas, but the presence of several layers of plasma with densities 
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Figure 7.10 Dielectric constants as functions of frequency for model of the ionosphere 
(tenuous electronic plasma in a static, uniform magnetic induction). e.(w) apply to the 

right and left circularly polarized waves propagating parallel to the magnetic field. w, is 

the gyration frequency; , is the plasma frequency. The two sets of curves correspond 

to w,/w, = 2.0, 0.5. 

and relative positions varying with height and time makes the problem consid- 

erably more complicated than our simple example. The electron densities at var- 

ious heights can be inferred by studying the reflection of pulses of radiation 

transmitted vertically upwards. The number ny of free electrons per unit volume 

increases slowly with height in a given layer of the ionosphere, as shown in Fig. 

7.11, reaches a maximum, and then falls with further increase in height. A pulse 

of a given frequency w, enters the layer without reflection because of the slow 

change in M». When the density no is large enough, however, w,(h,) = w,. Then 

the dielectric constants (7.67) vanish and the pulse is reflected. The actual density 

No Where the reflection occurs is given by the roots of the right-hand side of (7.67). 

By observing the time interval between the initial transmission and reception of 

the reflected signal the height h, corresponding to that density can be found. By 

varying the frequency w, and studying the change in time intervals, the electron 

nof 
20 max 

p— — — +7 

| 
ae ee nolh4) [~ 

Figure 7.11 Electron density as a j@pltey) =O 

function of height in a layer of the 
h—> hy ionosphere (schematic). 
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density as a function of height can be determined. If the frequency «@, is too high, 
the index of refraction does not vanish and very little reflection occurs. The 
frequency above which reflections disappear determines the maximum electron 
density in a given layer. A somewhat more quantitative treatment using the 
Wentzel-Kramers—Brillouin (WKB) approximation is sketched in Problem 7.14. 

The behavior of e_(w) at low frequencies is responsible for a peculiar mag- 
netospheric propagation phenomenon called ‘“‘whistlers.”” As w — 0, €_(w) tends 
to positive infinity as €_/ey ~ w;/ww,. Propagation occurs, but with a wave num- 
ber (7.5), 

@ @ 
— k~=~— 

Cc Wp 

This corresponds to a highly dispersive medium. Energy transport is governed 

by the group velocity (7.86)—see Section 7.8—which is 

V WaW 

U,(w) = 2u,(w) = 2c 
P 

Pulses of radiation at different frequencies travel at different speeds: the lower 

the frequency, the slower the speed. A thunderstorm in one hemisphere gener- 

ates a wide spectrum of radiation, some of which propagates more or less along 

the dipole field lines of the earth’s magnetic field in a fashion described approx- 

imately by (7.67). The higher frequency components reach the antipodal point 

first, the lower frequency ones later. This gives rise at 10° Hz and below to whis- 
tlers, so named because the signal, as detected in an audio receiver, is a whistlelike 

sound beginning at high audio frequencies and falling rapidly through the audible 

range. With the estimates given above for w, and wz, and distances of the order 

of 10* km, the reader can verify that the time scale for the whistlers is measured 
in seconds. Further discussion on whistlers can be found in the reading sugges- 

tions at the end of the chapter and in the problems. 

7.7 Magnetohydrodynamic Waves 

In the preceding section we discussed in terms of a dielectric constant the prop- 

agation of waves in a dilute plasma in an external magnetic field with negligible 

collisions. In contrast, in conducting fluids or dense ionized gases, collisions are 

sufficiently rapid that Ohm’s law holds for a wide range of frequencies. Under 

the action of applied fields the electrons and ions move in such a way that, apart 

from high-frequency jitter, there is no separation of charge, although there can 

be current flow. Electric fields arise from external charges, current flow, or time- 

varying magnetic fields. At low frequencies the Maxwell displacement current is 

usually neglected. The nonrelativistic mechanical motion is described in terms of 

a single conducting fluid with the usual hydrodynamic variables of density, ve- 

locity, and pressure, with electromagnetic and gravitational forces. The combined 

system of equations describes magnetohydrodynamics (MHD). 
The electromagnetic equations are those of Section 5.18, with the Ohm’s law 
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in (5.159) generalized for a fluid in motion to J = o(E + v x B), in accord with 

the discussion of Section 5.15. The generalization of (5.160), but for the magnetic 
induction, is 

oB 
— (7.68) =V x (vx B)+~_ VB 
ot 

where for simplicity we have assumed that the conductivity and permeability are 
independent of position. 

Consider the idealization of a compressible, nonviscous, ‘‘perfectly conduct- 

ing” fluid in the absence of gravity, but in an external magnetic field. By perfectly 

conducting we mean that the conductivity is so large that the second term on the 

right-hand side of (7.68) can be neglected—the diffusion time (5.161) is very long 

compared to the time scale of interest. The hydrodynamic equations are 

dp 
— 0 + V - (pv) 
ot (7.69) 

ov 
p + p(v+ V)v 

ot 
Vp — 7 Bx (v x B) 

The first equation is conservation of matter; the second is the Newton equation 

of motion with the mechanical pressure force density and the magnetic force 
density, J x B, in which J has been replaced by V x H. The magnetic force can 

be written as 

1 
— B’? 

2p 
)+i@-¥p -Lp x (xB) = -v/ 

The first term represents the gradient of a magnetic pressure; the second is an 

additional tension. Equation (7.69) must be supplemented by an equation of 

State. 

In the absence of a magnetic field, the mechanical equations can describe 

small-amplitude, longitudinal, compressional (sound) waves with a speed s, the 

square of which is equal to the derivative of the pressure p with respect to the 

density p at constant entropy. With the adiabatic gas law, p = Kp”, where y is 

the ratio of specific heats, s* = ypo/po. By analogy, we anticipate longitudinal 

MHD waves in a conducting fluid in an external field Bo, with a speed squared 

of the order of the magnetic pressure divided by the equilibrium density, 

VmHD = OV Bo/2upo 

To exhibit these waves we consider the combined equations of motion (7.68) and 

(7.69), with the neglect of the V’B/uo term in (7.68), with an unperturbed con- 

figuration consisting of a spatially uniform, time-independent magnetic induction 

By throughout a stationary fluid of constant equilibrium density pp. We then allow 
for small-amplitude departures from equilibrium, 

— 

= B Bo + B,(x, f) 

= p (7.70) Po + p(x, t) 
= Vv v,(x, £) 
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If equations (7.69) and (7.68) are linearized in the small quantities, they become: 

opi 
ot 

Ov; 
Pow t+s (7.71) 

0 

OB, 
—_ 9 x (v, xX Bo) = 0 ot 

where s? is the square of the sound velocity. These equations can be combined 
to yield an equation for vy, alone: 

av, 
ts CUS *V(V-v,) + v4 x Vx [V x (v, X v4)] = 0 (7.72) 
ot 

where we have introduced a vectorial Alfvén velocity: 

Bo 
V4= (7.73) 

V Po 

The wave equation (7.72) for v; is somewhat involved, but it allows simple 
solutions for waves propagating parallel or perpendicular to the magnetic field 
direction.* With v,(x, t) a plane wave with wave vector k and frequency w: 

v, (Xx, t) _ vex iat 
(7.74) 

equation (7.72) becomes: 

— wv, + (s? + v4) (k ° v.)k + VA . k[ (v4 . k)v, (7.75) 

_- (V4 . vi)k _ (k . V1)¥a] = 0 

If k is perpendicular to v, the last term vanishes. Then the solution for v, is a 

longitudinal magnetosonic wave with a phase velocity: 

(7.76) Uiong = VS* + V4 

Note that this wave propagates with a velocity that depends on the sum of hy- 

drostatic and magnetic pressures, apart from factors of the order of unity. If k is 

parallel to v,, (7.75) reduces to 

2 

2 
U4 (k? (7.77) il 

A 

ae . Vi)V4 = 0 m+ ( 

There are two types of wave motion possible in this case. There is an ordinary 

longitudinal wave (v, parallel to k and v,) with phase velocity equal to the sound 
velocity s. But there is also a transverse wave (v, - V4 = 0) with a phase velocity 
equal to the Alfvén velocity v,. This Alfvén wave is a purely magnetohydrody- 

namic phenomenon, which depends only on the magnetic field (tension) and the 
density (inertia). 

For mercury at room temperature the Alfvén velocity is 7.67 By (tesla) m/s, 

*The determination of the characteristics of the waves for arbitrary direction of propagation is left 

to Problem 7.18. 
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Figure 7.12 Magnetohydrodynamic waves. 

compared with the sound speed of 1.45 x 10° m/s. At all laboratory field strengths 
the Alfvén velocity is much less than the speed of sound. In astrophysical prob- 
lems, on the other hand, the Alfvén velocity can become very large because of 

the much smaller densities. In the sun’s photosphere, for example, the density is 

of the order of 107+ kg/m? (~6 x 10” hydrogen atoms/m?) so that v, = 10° B(T) 
m/s. Solar magnetic fields appear to be of the order of 1 or 2 X 10“ T at the 
surface, with much larger values around sunspots. For comparison, the velocity 

of sound is of the order of 10* m/s in both the photosphere and the chromosphere. 

The magnetic fields of these different waves can be found from the third 

equation in (7.71): 

k 
fork L Bo — U, Bo 

0 (7.78) B, = for the longitudinal k || Bo 

k 
for the transverse k || Bo —— Bov; 

The magnetosonic wave moving perpendicular to By causes compressions and 
rarefactions in the lines of force without changing their direction, as indicated in 
Fig. 7.12a. The Alfvén wave parallel to Bp causes the lines of force to oscillate 
back and forth laterally (Fig. 7.12b). In either case the lines of force are “‘frozen 
in” and move with the fluid. 

Inclusion of the effects of fluid viscosity, finite, not infinite, conductivity, and 

the displacement current add complexity to the analysis. Some of these elabo- 

rations are treated in the problems. 

7.8 Superposition of Waves in One Dimension; Group Velocity 

In the preceding sections plane wave solutions to the Maxwell equations were 

found and their properties discussed. Only monochromatic waves, those with a 

definite frequency and wave number, were treated. In actual circumstances such 

idealized solutions do not arise. Even in the most monochromatic light source or 

the most sharply tuned radio transmitter or receiver, one deals with a finite (al- 

though perhaps small) spread of frequencies or wavelengths. This spread may 

originate in the finite duration of a pulse, in inherent broadening in the source, 

or in many other ways. Since the basic equations are linear, it is in principle an 
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elementary matter to make the appropriate linear superposition of solutions with 
different frequencies. In general, however, several new features arise. 

1 If the medium is dispersive (i.e., the dielectric constant is a function of the 
frequency of the fields), the phase velocity is not the same for each frequency 
component of the wave. Consequently different components of the wave 

travel with different speeds and tend to change phase with respect to one 

another. 

In a dispersive medium the velocity of energy flow may differ greatly from 
the phase velocity, or may even lack precise meaning. 

In a dissipative medium, a pulse of radiation will be attenuated as it travels 

with or without distortion, depending on whether the dissipative effects are 

or are not sensitive functions of frequency. 

The essentials of these dispersive and dissipative effects are implicit in the 

ideas of Fourier series and integrals (Section 2.8). For simplicity, we consider 

scalar waves in only one dimension. The scalar amplitude u(x, t) can be thought 

of as one of the components of the electromagnetic field. The basic solution to 

the wave equation has been exhibited in (7.6). The relationship between fre- 

quency w and wave number k is given by (7.4) for the electromagnetic field. 

Either w or k can be viewed as the independent variable when one considers 

making a linear superposition. Initially we will find it most convenient to use k 

as an independent variable. To allow for the possibility of dispersion we will 

consider w as a general function of k: 

(7.79) w = w(k) 

Since the dispersive properties cannot depend on whether the wave travels to 

the left or to the right, w must be an even function of k, w(—k) = w(k). For most 

wavelengths w is a smoothly varying function of k. But, as we have seen in Section 

7.5, at certain frequencies there are regions of ‘“‘anomalous dispersion” where w 

varies rapidly over a narrow interval of wavelengths. With the general form 

(7.79), our subsequent discussion can apply equally well to electromagnetic 
waves, sound waves, de Broglie matter waves, etc. For the present we assume 

that k and w(k) are real, and so exclude dissipative effects. 

From the basic solutions (7.6) we can build up a general solution of the form 

(7.80) u(x, t) = m [- A(k)et io dk 

The factor 1/\/27r has been inserted to conform with the Fourier integral notation 

of (2.44) and (2.45). The amplitude A(x) describes the properties of the linear 

superposition of the different waves. It is given by the transform of the spatial 

amplitude u(x, t), evaluated at t = 0*: 
oo 

1 
—_—- (7.81) u(x, O)e~"** dx A(k) = 
V27 J-@ 

If u(x, 0) represents a harmonic wave e'* for all x, the orthogonality relation 
(2.46) shows that A(k) = V27 6(k — ko), corresponding to a monochromatic 

*The following discussion slights somewhat the initial-value problem. For a second-order differential 

equation we must specify not only u(x, 0) but also du(x, 0)/at. This omission is of no consequence for 

the rest of the material in this section. It is remedied in the following section. 
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traveling wave u(x, t) = e’or~'(0", as required. If, however, at t = 0, u(x, 0) 

represents a finite wave train with a length of order Ax, as shown in Figure 7.13 

then the amplitude A(X) is not a delta function. Rather, it is a peaked function 

with a breadth of the order of Ak, centered around a wave number Ko, which is 

the dominant wave number in the modulated wave u(x, 0). If Ax and Ak are 

defined as the rms deviations from the average values of x and k [defined in terms 

of the intensities |u(x, 0)|? and |A(k)|’], it is possible. to draw the general 

conclusion 

Ax Ak (7.82) 

The reader may readily verify that, for most reasonable pulses or wave packets 

that do not cut off too violently, Ax times Ak lies near the lower limiting value 

in (7.82). This means that short wave trains with only a few wavelengths present 

have a very wide distribution of wave numbers of monochromatic waves, and 

conversely that long sinusoidal wave trains are almost monochromatic. Relation 

(7.82) applies equally well to distributions in time and in frequency 

The next question is the behavior of a pulse or finite wave train in time. The 

pulse shown at ¢ = 0 in Fig. 7.13 begins to move as time goes on. The different 

frequency or wave-number components in it move at different phase velocities 

Consequently there is a tendency for the original coherence to be lost and for 

the pulse to become distorted in shape. At the very least, we might expect it to 

propagate with a rather different velocity from, say, the average phase velocity 

of its component waves. The general case of a highly dispersive medium or a 

very sharp pulse with a great spread of wave numbers present is difficult to treat 

But the propagation of a pulse which is not too broad in its wave-number spec- 

trum, or a pulse in a medium for which the frequency depends weakly on wave 

number, can be handled in the following approximate way. The wave at time f 

is given by (7.80). If the distribution A(k) is fairly sharply peaked around some 

value ko, then the frequency w(k) can be expanded around that value of k 

dw 
wy + — w(k) = (7.83) 

dk |, 

u(x, 0) 

£e——_ “tt i 
A(k) 

La Figure 7.13 A harmonic wave train of 
k— finite extent and its Fourier spectrum in 

wawva niumbhar 
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and the integral performed. Thus 

elko(dw/dk)l— wo] 

u(x, t) = (7.84) 
[. A(k)ei~ Gelb lore dk 

V2a7 

From (7.81) and its inverse it is apparent that the integral in (7.84) is just u(x’, 0), 
where x’ = x — (dw/dk)|o t: 

x-—t— (7.85) 
dk 

; 0) eilko(dwdk)lo— ap} u(x, t) = u( 
This shows that, apart from an overall phase factor, the pulse travels along un- 
distorted in shape with a velocity, called the group velocity: 

dw 
—- Ug = (7.86) 
dk 

0 

If an energy density is associated with the magnitude of the wave (or its absolute 
square), it is clear that in this approximation the transport of energy occurs with 
the group velocity, since that is the rate at which the pulse travels along. 

For light waves the relation between w and k is given by 

ck 
—_—_—. w(k) = (7.87) 
n(k) 

where c is the velocity of light in vacuum, and n(k) is the index of refraction 
expressed as a function of k. The phase velocity is 

w(k) _c¢ 
P (7.88) 

k n(k) 

and is greater or smaller than c depending on whether n(k) is smaller or larger 

than unity. For most optical wavelengths n(x) is greater than unity in almost all 

substances. The group velocity (7.86) is 

c 

(7.89) eo n(w) + w(dn/daw) 

In this equation it is more convenient to think of n as a function of w than of k. 

For normal dispersion (dn/dw) > 0, and also n > 1; then the velocity of energy 

flow is less than the phase velocity and also less than c. In regions of anomalous 

dispersion, however, dn/dw can become large and negative as can be inferred 

from Fig. 7.8. Then the group velocity differs greatly from the phase velocity, 

often becoming larger than c or even negative. The behavior of group and phase 

velocities as a function of frequency in the neighborhood of a region of anoma- 

lous dispersion is shown in Fig. 7.14. There is no cause for alarm that our ideas 

of special relativity are violated; group velocity is generally not a useful concept 

in regions of anomalous dispersion. In addition to the existence of significant 

absorption (see Fig. 7.8), a large dn/dw is equivalent to a rapid variation of w 
with k. Consequently the approximations made in (7.83) and following equations 
are no longer valid. Usually a pulse with its dominant frequency components in 

the neighborhood of a strong absorption line is absorbed and distorted as it 
travels. As shown by Garret and McCumber,* however, there are circumstances 

*C. G. B. Garrett and D. E. McCumber, Phys. Rev. A 1, 305 (1970). 
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Le ——t——— ra 

n(w) 

Q——_> 
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—_—— __— Figure 7.14 Index of refraction n() a 

1 
as a function of frequency w ata 

region of anomalous dispersion; phase 

velocity v, and group velocity uv, as 

functions of w. wo—_> 

in which “group velocity” can still have meaning, even with anomalous disper- 
sion. Other authors* subsequently verified experimentally what Garrett and 
McCumber showed theoretically: namely, if absorbers are not too thick, a 
Gaussian pulse with a central frequency near an absorption line and with support 
narrow compared to the width of the line (pulse wide in time compared to 1/y) 
propagates with appreciable absorption, but more or less retains its shape, the 

peak of which moves at the group velocity (7.89), even when that quantity is 

negative. Physically, what occurs is pulse reshaping—the leading edge of the 

pulse is less attenuated than the trailing edge. Conditions can be such that the 

peak of the greatly attenuated pulse emerges from the absorber before the peak 

of the incident pulse has entered it! (That is the meaning of negative group 

velocity.) Since a Gaussian pulse does not have a sharply defined front edge, 

there is no question of violation of causality. 

Some experiments are described as showing that photons travel faster than 

the speed of light through optical ‘“‘band-gap”’ devices that reflect almost all of 

the incident flux over a restricted range of frequencies. While it is true that the 

centroid of the very small transmitted Gaussian pulse appears slightly in advance 

of the vacuum transit time, no signal or information travels faster than c. The 

main results are explicable in conventional classical terms. Some aspects are ex- 

amined in Problems 7.9-7.11. A review of these and other experiments has been 

given by Chiao and Steinberg." 

7.9 Illustration of the Spreading of a Pulse as It Propagates 

in a Dispersive Medium 

To illustrate the ideas of the preceding section and to show the validity of the 
concept of group velocity, we now consider a specific model for the dependence 

*S. Chu and S. Wong, Phys. Rev. Letters 48, 738 (1982); A. Katz and R. R. Alfano, Phys. Rev. Letters, 
49, 1292 (1982); S. Chu, and S. Wong, ibid, 1293. B. Ségard and B. Macke, Phys. Lett. 109A, 213 (1985). 

TR. Y. Chiao and A. M. Steinberg, in Progress in Optics, Vol. 37, ed. E. Wolf, Elsevier, Amsterdam 
(1997), p. 347-406. 
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of frequency on wave number and calculate without approximations the propa- 
gation of a pulse in this model medium. Before specifying the particular model 
it is necessary to state the initial-value problem in more detail than was done in 
(7.80) and (7.81). As noted there, the proper specification of an initial-value 
problem for the wave equation demands the initial values of both function u(x, 0) 
and time derivative du(x, 0)/dt. If we agree to take the real part of (7.80) to obtain 
u(x, t), 

u(x, t) = (7.90) sl. Ake! dk + c.c. 

then it is easy to show that A(k) is given in terms of the initial values by 

wo 

U 

A(k) = (7.91) om — 0 w(k) at 
e vue 0) + 0a 

We take a Gaussian modulated oscillation 

u(x, 0) = e*"" cos kox (7.92) 

as the initial shape of the pulse. For simplicity, we will assume that 

(x, 0) =0 (7.93) 

This means that at times immediately before t = 0 the wave consisted of two 

pulses, both moving toward the origin, such that at t = 0 they coalesced into the 

shape given by (7.92). Clearly at later times we expect each pulse to reemerge 

on the other side of the origin. Consequently the initial distribution (7.92) may 

be expected to split into two identical packets, one moving to the left and one 

to the right. The Fourier amplitude A(k) for the pulse described by (7.92) and 

(7.93) is 

oo 

ike /2L 
—_—_ 

e é cos kyx dx A(k) = 
V 0 (7.94) 

L 
—_— 

[ ~(L772)(k— ko) LEM K+ ko) 

2 

A(k) is a reflection of the presence of two pulses trav- The symmetry A(—k) 

eling away from the origin, as is seen below 
w(k). Asa To calculate the waveform at later times, we must specify w 

model allowing exact calculation and showing the essential dispersive effects, we 

assume 

2k? 

(7.95) 
2 

w(k) (: + 

where v is a constant frequency, and a is a constant length that is a typical wave- 

length where dispersive effects become important. Equation (7.95) is an approx- 

imation to the dispersion equation of the tenuous plasma, (7.59) or (7.61). Since 

the pulse (7.92) is a modulated wave of wave number k = ko, the approximate 
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arguments of the preceding section imply that the two pulses will travel with the 
group velocity 

dw 
— (7.96) (Ko) = va'ko 

Ye dk 

and will be essentially unaltered in shape provided the pulse is not too narrow 

in space. 

The exact behavior of the wave as a function of time is given by (7.90), with 
(7.94) for A(k): 

—— Re u(x, f) 
| * [en (L712 1(k ko)” 4 7 (L712) e+ key) gikx—int{1 + (@7k712)) dk 

—o 2V 

(7.97) 

The integrals can be performed by appropriately completing the squares in the 

exponents. The result is 

u(x, t) = 

(x — va*kgt) 
exp] — 

ia’ vt 
L? a’k? 

2L°(1 + 
1+° + (ko ~ —ko) sR 

2 ia’ vt 
shor ~ of 

L? 
(: 

(7.98) 

Equation (7.98) represents two pulses traveling in opposite directions. The peak 

amplitude of each pulse travels with the group velocity (7.96), while the modu- 

lation envelop remains Gaussian in shape. The width of the Gaussian is not 

constant, however, but increases with time. The width of the envelope is 

2 
a vt 

—_ (7.99) 
L )y Lo = {1+ ( 

Thus the dispersive effects on the pulse are greater (for a given elapsed time), 

the sharper the envelope. The criterion for a small change in shape is that 

L >> a. Of course, at long times the width of the Gaussian increases linearly with 

time 

a’ vt 
(7.100) MOT 

but the time of attainment of this asymptotic form depends on the ratio (L/a). 
A measure of how rapidly the pulse spreads is provided by a comparison of L(t) 
given by (7.99), with v,t = va*kot. Figure 7.15 shows two examples of curves of 
the position of peak amplitude (v,t) and the positions v,t + L(t), which indicate 
the spread of the pulse, as functions of time. On the left the pulse is not too 
narrow compared to the wavelength kg‘ and so does not spread too rapidly. The 
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Figure 7.15 Change in shape of a wave packet as it travels along. The broad packet, 

containing many wavelengths (ko£ >> 1), is distorted comparatively little, while the 

narrow packet (ko = 1) broadens rapidly. 

pulse on the right, however, is so narrow initially that it is very rapidly spread 

out and scarcely represents a pulse after a short time. 

Although the results above have been derived for a special choice (7.92) of 

initial pulse shape and dispersion relation (7.95), their implications are of a more 

general nature. We saw in Section 7.8 that the average velocity of a pulse is the 

group velocity v, = dw/dk = w’. The spreading of the pulse can be accounted 

for by noting that a pulse with an initial spatial width Ax) must have inherent in 

it a spread of wave numbers Ak ~ (1/Ax,). This means that the group velocity, 

when evaluated for various k values within the pulse, has a spread in it of the 

order 

an 

@ 

(7.101) Av, ~ w” Ak ~— 
Xo 

At a time ¢ this implies a spread in position of the order of Auv,t. If we combine 

the uncertainties in position by taking the square root of the sum of squares, we 

obtain the width Ax(t) at time f: 

ue 

wt 
(7.102) 

Axo 
Ax(t) = ./(Axo)* + ( 

y 

We note that (7.102) agrees exactly with (7.99) if we put Axo = L. The expression 

(7.102) for Ax(t) shows the general result that, if w” # 0, a narrow pulse spreads 

rapidly because of its broad spectrum of wave numbers, and vice versa. All these 

ideas carry over immediately into wave mechanics. They form the basis of the 

Heisenberg uncertainty principle. In wave mechanics, the frequency is identified 

with energy divided by Planck’s constant, while wave number is momentum di- 

vided by Planck’s constant. 

The problem of wave packets in a dissipative, as well as dispersive, medium 

is rather complicated. Certain aspects can be discussed analytically, but the an- 

alytical expressions are not readily interpreted physically. Except in special cir- 

cumstances, wave packets are attenuated and distorted appreciably as they prop- 

agate. The reader may refer to Stratton (pp. 301-309) for a discussion of the 

problem, including numerical examples. 
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7.10 Causality in the Connection Between D and E; 
Kramers—Kronig Relations 

A. Nonlocality in Time 

Another consequence of the frequency dependence of e() is a temporally 

nonlocal connection between the displacement D(x, ¢). and the electric field 

E(x, t). If the monochromatic components of frequency w are related by 

(7.103) D(x, ) = €(w)E(x, ) 

the dependence on time can be constructed by Fourier superposition. Treating 

the spatial coordinate as a parameter, the Fourier integrals in time and frequency 

can be written 

D(x, t) = = [_ D(x, we dw 

and (7.104) 

D(x, w) = = [- D(x, t')e”” dt’ 

with corresponding equations for E. The substitution of (7.103) for D(x, w) gives 

D(x, t) = e(w)E(x, we" dw Via! 
We now insert the Fourier representation of E(x, w) into the integral and obtain 

D(x, ) = = [- dw €(w)e [- dt’ e" E(x, 1’) 

With the assumption that the orders of integration can be interchanged, the last 

expression can be written as 

(7.105) D(x, t) = co BO th + [- G(r)E(x, t — 7) ar 
where G(r) is the Fourier transform of x. = €(w)/€) — 1: 

(7.106) G(r) = o [- [e(w)/eg — 1Je*” dw 

Equations (7.105) and (7.106) give a nonlocal connection between D and E, in 

which D at time ¢ depends on the electric field at times other than 2.* If €(w) is 

*Equations (7.103) and (7.105) are recognizable as an example of the faltung theorem of Fourier 

integrals: if A(t), B(t), C(t) and a(w), b(w), c(w) are two sets of functions related in pairs by the 
Fourier inversion formulas (7.104), and 

c(w) = a(w)b(w) 

then, under suitable restrictions concerning integrability, 

C() = =I. A(t')B(t — ¢’) de’ 
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independent of w for all w, (7.106) yields G(r) « 8(7) and the instantaneous 
connection is obtained, but if e(w) varies with w, G(r) is nonvanishing for some 
values of 7 different from zero. 

B. Simple Model for G(z), Limitations 

To illustrate the character of the connection implied by (7.105) and (7.106) 
we consider a one-resonance version of the index of refraction (7.51): 

2 _— —_— 
= €(w)/€q wh (we — w” — iyw)' (7.107) 

The susceptibility kernel G(7) for this model of €(w) is 

2 oo —iwt 
é ? dw (7.108) GQ) = 5 

TJ wy w — iyo 

The integral can be evaluated by contour integration. The integrand has poles in 
the lower half-w-plane at 

2 
U Y 2 

— —t Vo, where % = 2 > — Wo (7.109) 
2 4 

For 7 < 0 the contour can be closed in the upper half-plane without affecting the 

value of the integral. Since the integrand is regular inside the closed contour, 
the integral vanishes. For 7 > 0, the contour is closed in the lower half-plane and 

the integral is given by —22i times the residues at the two poles. The kernel 

(7.108) is therefore 

SiN YoT 
G(x) = we”? A(7) (7.110) 

Vo 

where 6(7) is the step function [6(7) = 0 for 7 < 0; 6(7) = 1 for r > OJ. For the 

dielectric constant (7.51) the kernel G(r) is just a linear superposition of terms 

like (7.110). The kernel G(r) is oscillatory with the characteristic frequency of 

the medium and damped in time with the damping constant of the electronic 

oscillators. The nonlocality in time of the connection between D and E is thus 

confined to times of the order of y~’. Since y is the width in frequency of spectral 
lines and these are typically 10’-10° s~', the departure from simultaneity is of 
the order of 10~’-10~? s. For frequencies above the microwave region many 
cycles of the electric field oscillations contribute an average weighed by G(7) to 

the displacement D at a given instant of time. 

Equation (7.105) is nonlocal in time, but not in space. This approximation is 

valid provided the spatial variation of the applied fields has a scale that is large 

compared with the dimensions involved in the creation of the atomic or molecular 

polarization. For bound charges the latter scale is of the order of atomic dimen- 

sions or less, and so the concept of a dielectric constant that is a function only of 
w can be expected to hold for frequencies well beyond the visible range. For 
conductors, however, the presence of free charges with macroscopic mean free 
paths makes the assumption of a simple €(w) or o(w) break down at much lower 
frequencies. For a good conductor like copper we have seen that the damping 
constant (corresponding to a collision frequency) is of the order of yo ~ 3 x 10” 
s' at room temperature. At liquid helium temperatures, the damping constant 

may be 107° times the room temperature value. Taking the Bohr velocity in 
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hydrogen (c/137) as typical of electron velocities in metals, we find mean free 
paths of the order L ~ c/(137y) ~ 10°‘ m at liquid helium temperatures. On 
the other hand, the conventional skin depth 6 (5.165) can be much smaller, of 
the order of 107’ or 107® m at microwave frequencies. In such circumstances, 
Ohm’s law must be replaced by a nonlocal expression. The conductivity becomes 
a tensorial quantity depending on wave number k and frequency w. The associ- 
ated departures from the standard behavior are known collectixely as the anom- 

alous skin effect. They can be utilized to map out the Fermi surfaces in metals.* 

Similar nonlocal effects occur in superconductors where the electromagnetic 

properties involve a coherence length of the order of 10°° m.+ With this brief 
mention of the limitations of (7.105) and the areas where generalizations have 

been fruitful we return to the discussion of the physical content of (7.105). 

C. Causality and Analyticity Domain of €(o) 

The most obvious and fundamental feature of the kernel (7.110) is that it 

vanishes for 7 < 0. This means that at time ¢ only values of the electric field prior 

to that time enter in determining the displacement, in accord with our funda- 

mental ideas of causality in physical phenomena. Equation (7.105) can thus be 

written 

(7.111) D(x, t) = co EO. t) + [ G(7)E(x, t — 7) ar} 
This is, in fact, the most general spatially local, linear, and causal relation that 

can be written between D and E in a uniform isotropic medium. Its validity 

transcends any specific model of e(w). From (7.106) the dielectric constant can 

be expressed in terms of G(r) as 

(7.112) e(w)/eg = 1 + [ G(r)e'" dr 

This relation has several interesting consequences. From the reality of D, E, and 
therefore G(r) in (7.111) we can deduce from (7.112) that for complex «, 

€(—w)/éy = €*(w*)/€ (7.113) 

Furthermore, if (7.112) is viewed as a representation of €(w)/é, in the complex 
w plane, it shows that €(w)/e€, is an analytic function of w in the upper half-plane, 
provided G(z) is finite for all +. On the real axis it is necessary to invoke 
the “physically reasonable” requirement that G(r) = 0 as r—> © to assure that 
€(w)/€p is also analytic there. This is true for dielectrics, but not for conductors, 
where G(r) — o/ey as T—> © and e€(w)/e, has a simple pole at w = 0 (€ > ia/w 
as w — 0). Apart, then, from a possible pole at w = 0, the dielectric constant 
€(w)/€9 is analytic in w for Im w = 0 as a direct result of the causal relation (7.111) 

*A. B. Pippard, in Reports on Progress in Physics 23, 176 (1960), and the article entitled “The Dy- 
namics of Conduction Electrons,” by the same author in Low-Temperature Physics, Les Houches 
Summer School (1961), eds. C. de Witt, B. Dreyfus, and P. G. de Gennes, Gordon and Breach, New 
York (1962). The latter article has been issued separately by the same publisher. 

‘See, for example, the article ““Superconductivity” by M. Tinkham in Low Temperature Physics, op. 
cit. 
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between D and E. These properties can be verified, of course, for the models 
discussed in Sections 7.5.A and 7.5.C. 

The behavior of €(w)/e) — 1 for large w can be related to the behavior of 
G(r) at small times. Integration by parts in (7.112) leads to the asymptotic series, 

iG(0) G'(0) 
1 €(w)/€q 

@ @ 

where the argument of G and its derivatives is tr = 0 It is unphysical to have 
G(0") 0, but G(O*) # 0. Thus the first term in the series is absent, and 
€(w)/€9 — 1 falls off at high frequencies as w just as was found in (7.59) for the 
oscillator model. The asymptotic series shows, in fact, that the real and imaginary 
parts of €(w)/e, — 1 behave for large real w as 

— (7.114) 
3 

Re[e(w)/ey — 1] ( :) Im e(w)/e) = of 
These asymptotic forms depend only upon the existence of the derivatives of 
G(7) around 7 = 0* 

D. Kramers-Kronig Relations 

The analyticity of €(w)/€, in the upper half-w-plane permits the use of Cau- 

chy’s theorem to relate the real and imaginary part of €(w)/é) on the real axis 

For any point z inside a closed contour C in the upper half-w-plane, Cauchy’s 

theorem gives 

1 [Ee(w' leg — 1} 
e(z)/éeg = 1 + —— 

c 2 w' — Zz 

The contour C is now chosen to consist of the real w axis and a great semicircle 

at infinity in the upper half-plane. From the asymptotic expansion just discussed 

or the specific results of Section 7.5.D, we see that e/e€,) — 1 vanishes sufficiently 

rapidly at infinity so that there is no contribution to the integral from the great 

semicircle. Thus the Cauchy integral can be written 

le(o'eo ~ 1) 
(7.115) €(z)/ég = 1 + 5 d Lf 

w' —Z 

where z is now any point in the upper half-plane and the integral is taken along 

the real axis. Taking the limit as the complex frequency approaches the real axis 

from above, we write z = w + id in “ 1) 

* [e(w' leg — 1] 
(7.116) e(w)/eg = 1 + — z _. of -onib 

For real w the presence of the i6 in the denominator is a mnemonic for the 
distortion of the contour along the real axis by giving it an infinitesimal semicir- 
cular detour below the point w’ = w. The denominator can be written formally 
as 

1 1 
- (7.117) m5(w' — w) 

oO — w' —w— i6 



334 Chapter7 Plane Electromagnetic Waves and Wave Propagation—SI 

where P means principal part. The delta function serves to pick up the contri- 
bution from the small semicircle going in a positive sense halfway around the 

pole at w' = w. Use of (7.117) and a simple rearrangement turns (7.116) into 

[e(w')/ey — 1] 
(7.118) €(w)/é =1+ P [_ 

@®a — @ 

The real and imaginary parts of this equation are 

Im €(')/€o 
—_ 

d , 

Re €(w)/€q 
w' —- w 

tate” 
(7.119) 

[Re €(@’)/ép — 1] 1) 
Im €(w)/€ 

wo’ — @ “P., 
These relations, or the ones recorded immediately below, are called Kramers— 

Kronig relations or dispersion relations. They were first derived by H. A. Kramers 

(1927) and R. de L. Kronig (1926) independently. The symmetry property (7.113) 
shows that Re e(w) is even in w, while Im e(w) is odd. The integrals in (7.119) 
can thus be transformed to span only positive frequencies 

Re €(w)/€ 
1+2 2 Pi, a’ oT oes yy 

(7.120) 

20 ” [Re e(w')/eg — 1] 
P Im €(w)/€ 

2 2 
0 @ — @ T 

In writing (7.119) and (7.120) we have tacitly assumed that e(w)/e) was regular 

at w = 0. For conductors the simple pole at w = 0 can be exhibited separately 

with little further complication 

The Kramers—Kronig relations are of very general validity, following from 

little more than the assumption of the causal connection (7.111) between the 

polarization and the electric field. Empirical knowledge of Im e() from absorp- 

tion studies allows the calculation of Re e(w) from the first equation in (7.120) 

The connection between absorption and anomalous dispersion, shown in Fig. 7.8 

is contained in the relations. The presence of a very narrow absorption line or 

band at w = w,) can be approximated by taking 

K 
Im e(w') = —— 8(w' — aw) + 

where K is a constant and the dots indicate the other (smoothly varying) contri- 

butions to Im e. The first equation in (7.120) then yields 

K 
Re e(w) = € + 

2 2 (7.121) 
@ @ 

for the behavior of Re e(w) near, but not exactly at, w = wo. The term é represents 

the slowly varying part of Re e resulting from the more remote contributions to 
Im ¢. The approximation (7.121) exhibits the rapid variation of Re €(w) in the 
neighborhood of an absorption line, shown in Fig. 7.8 for lines of finite width. A 
more realistic description for Im e€ would lead to an expression for Re € in com- 
plete accord with the behavior shown in Fig. 7.8. The demonstration of this is 
left to the problems at the end of the chapter 
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Relations of the general type (7.119) or (7.120) connecting the dispersive and 
absorptive aspects of a process are extremely useful in all areas of physics. Their 
widespread application stems from the very small number of physically well- 
founded assumptions necessary for their derivation. References to their appli- 
cation in particle physics, as well as solid-state physics, are given at the end of 

the chapter. We end with mention of two sum rules obtainable from (7.120). It 

was shown in Section 7.5.D, within the context of a specific model, that the di- 

electric constant is given at high frequencies by (7.59). The form of (7.59) is, in 

fact, quite general, as shown above (Section 7.10.C). The plasma frequency can 

therefore be defined by means of (7.59) as 

w, = lim {w*[1 — €(w)/€ |} 

Provided the falloff of Im e(w) at high frequencies is given by (7.114), the first 

Kramers—Kronig relation yields a sum rule for w;: 

2 _— 

= @ (7.122) 
P 

= [ w Im €(@)/é9 dw 

This relation is sometimes known as the sum rule for oscillator strengths. It can 

be shown to be equivalent to (7.52) for the dielectric constant (7.51), but is ob- 
viously more general. 

The second sum rule concerns the integral over the real part of e(w) 
and follows from the second relation (7.120). With the assumption that 
[Re e(@’)/ey — 1] = —af/w’? + O(1/") for all w' > N, it is straightforward to 
show that for a > N 

1 2 
Im €(w)/€éy = — ar 

\-¥ + [- [Re e(w’)/éeg — 1] aw'| + of 

It was shown in Section 7.10.C that, excluding conductors and barring the un- 
3 

physical happening that G(0*) # 0, Im e(w) behaves at large frequencies as w™ 

It therefore follows that the expression in curly brackets must vanish. We are 

thus led to a second sum rule, 

2 

dw=1+— (7.123) 
N2 if Re €(@)/€ 

which, for N > ©, states that the average value of Re €(w)/€o over all frequencies 

is equal to unity. For conductors, the plasma frequency sum rule (7.122) still 

holds, but the second sum rule (sometimes called a superconvergence relation) 

has an added term — 7ra/2e,)N, on the right hand side (see Problem 7.23). These 
optical sum rules and several others are discussed by Altarelli et al.* 

7.11 Arrival of a Signal After Propagation Through 
a Dispersive Medium 

Some of the effects of dispersion have been considered in the preceding sections. 
There remains one important aspect, the actual arrival at a remote point of a 

*M. Altarelli, D. L. Dexter, H. M. Nussenzveig, and D. Y. Smith, Phys. Rev. B6, 4502 (1972). 
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wave train that initially has a well-defined beginning. How does the signal build 
up? If the phase velocity or group velocity is greater than the velocity of light in 
vacuum for important frequency components, does the signal propagate faster 

than allowed by causality and relativity? Can the arrival time of the disturbance 

be given an unambiguous definition? These questions were examined authori- 

tatively by Sommerfeld and Brillouin in papers published in Annalen der Physik 

in 1914.* The original papers, plus subsequent work by Brillouin, are contained 

in English translation in the book, Wave Propagation and Group Velocity, by 

Brillouin. A briefer account is given in Sommerfeld’s Optics, Chapter III. A com- 

plete discussion is lengthy and technically complicated.* We treat only the qual- 
itative features. The reader can obtain more detail in the cited literature or the 

second edition of this book, from which the present account is abbreviated. 

For definiteness we consider a plane wave train normally incident from vac- 

uum on a semi-infinite uniform medium of index of refraction n() filling the 

region x > 0. From the Fresnel equations (7.42) and Problem 7.20, the amplitude 

of the electric field of the wave for x > 0 is given by 

2 
(7.124) 

1 + n(@) 
u(x, t) = [- | [Acwetore dw 

where 

_— 

= A(@) (7.125) — [- u,(0, te’ at 

is the Fourier transform of the real incident electric field u,(x, t) evaluated just 
outside the medium, at x = 0°. The wave number k(w) is 

(7.126) k(w) = = n(w) 

and is generally complex, with positive imaginary part corresponding to absorp- 
tion of energy during propagation. Many media are sufficiently transparent that 
the wave number can be treated as real for most purposes, but there is always 
some damping present. [Parenthetically we observe that in (7.124) frequency, not 
wave number, is used as the independent variable. The change from the practice 
of Sections 7.8 and 7.9 is dictated by the present emphasis on the time develop- 
ment of the wave at a fixed point in space.] 

We suppose that the incident wave has a well-defined front edge that reaches 
x = 0 not before ¢t = 0. Thus u(0, t) = 0 for t < 0. With additional physically 
reasonable mathematical requirements, this condition on u(0, t) assures that A(w) 
is analytic in the upper half-w-plane [just as condition (7.112) assured the anal- 
yticity of e(w) there]. Generally, A(w) will have singularities in the lower half-w- 
plane determined by the exact form of u(x, f). We assume that A(w) is bounded 
for |@| > ~. 

The index of refraction n() is crucial in determining the detailed nature of 
the propagation of the wave in the medium. Some general features follow, how- 

*A Sommerfeld, Ann. Phys (Leipzig) 44, 177 (1914). L. Brillouin, Ann. Phys. (Leipzig) 44, 203 (1914). 
‘An exhaustive treatment is given in K. E. Oughstun and G. C. Sherman, Electromagnetic Pulse 
Propagation in Causal Dielectrics, Springer-Verlag, Berlin (1994). 
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ever, from the global properties of n(w). Just as e(w) is analytic in the upper half- 
w-plane, so is n(w). Furthermore, (7.59) shows that for |w| > », n(w) > 
1 — w;/2e”. A simple one-resonance model of n(w) based on (7.51), with resonant 
frequency w) and damping constant y, leads to the singularity structure shown in 
Fig. 7.16. The poles of e(w) become branch cuts in n(w). A multiresonance ex- 
pression for € leads to a much more complex cut structure, but the upper plane 
analyticity and the asymptotic behavior for large | w| remain. 

The proof that no signal can propagate faster than the speed of light in 

vacuum, whatever the detailed properties of the medium, is now straightforward. 

We consider evaluating the amplitude (7.124) by contour integration in the com- 

plex w plane. Since n(w) — 1 for |w| — ©, the argument of the exponential in 

(7.124) becomes 

iw(x — ct) 
id(w) = i[k(w)x — wt] > 

for large |w|. Evidently, we obtain a vanishing contribution to the integral by 
closing the contour with a great semicircle at infinity in the upper half-plane for 

x > ct and in the lower half-plane for x < ct. With n(w) and A(@) both analytic 

in the upper half-w-plane, the whole integrand is analytic there. Cauchy’s theo- 

rem tells us that if the contour is closed in the upper half-plane (x > ct), the 

integral vanishes. We have therefore established that 

(7.127) for (x — ct) >0 u(x, t) = 0 

provided only that A(w) and n(@) are analytic for Im w > 0 and n(w) > 1 for 
| w| — ©. Since the specific form of n(w) does not enter, we have a general proof 
that no signal propagates with a velocity greater than c, whatever the medium. 

For ct > x, the contour is to be closed in the lower half-plane, enveloping 
the singularities. The integral is dominated by different singularities at different 

Im w 

W2 WO “1 
11 Re w TT x 

-—t—7 

We We Wd ed 

Figure 7.16 Branch cuts defining the singularities of a simple one-resonance model for 

the index of refraction n(w). For transparent media the branch cuts lie much closer to 

(but still below) the real axis than shown here. More realistic models for n(w) have 
more complicated cut structures, all in the lower half-c-plane. The crosses mark the 

possible locations of singularities of A(@). 
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times. Brillouin and Sommerfeld used the method of steepest descent* to eval- 

uate (7.124) in various regimes. We sketch the chief aspects using the concepts 

of the less rigorous method of stationary phase. The method of stationary phase 

is based on the idea that the phase #(w) in an integral such as (7:124) is generally 

large and rapidly varying. The rapid oscillations of e’* over most of the range of 
integration mean that the integrand averages almost to zero. Exceptions to the 

cancellation occur only when (a) is “stationary,” that is, when-(w) has an 

extremum. The integral can therefore be estimated by approximating the integral 

at each of the points of stationary phase by a Taylor series expansion of () 
and summing these contributions. 

We use the idea of stationary phase to discuss the qualitative aspects of 

the arrival of the signal without explicit use of the integration formulas. With 

$(w) = k(w)x — wt and k(w) given by (7.126), the stationary phase condition 

dd/dw = 0 becomes 

dn d. 
_ for t > to = x/c (7.128) c— =n(o) + @ 

d dw to 

The earliest part of the wave occurs when t/t is infinitesimally larger than unity. 
From the global properties of n(w) we see that the point of stationary phase is 

at |w| —> ©, where n — 1. Explicitly, we have 

2 
a), dk P 

c— 1+ for t = to 
dw 20” ~ o. 

showing that the frequency of stationary phase w, ~ w,/V2(t/t) — 1) depends 

only on t/tp and w2, a global property of the index of refraction. The incident 
wave’s A(w,) is presumably very small. The earliest part of the signal is therefore 

extremely small and of very high frequency, bearing no resemblance to the in- 

cident wave. This part of the signal is called the first or Sommerfeld precursor. 

At somewhat later times, the frequency w, slowly decreases; the signal grows 

very slowly in amplitude, and its structure is complex. 

Only when t/t in (7.128) reaches n(0) is there a qualitative change in the 

amplitude. Because w = 0 is now a point of stationary phase, the high frequency 

of oscillation is replaced by much lower frequencies. More important is the fact 

that d*k(w)/dw* = 0 at w = 0. In such circumstances the stationary phase 

approximation fails, giving an infinite result. One must improve the approxi- 

mation to include cubic terms in the Taylor series expansion of ¢(w) around 
— 

= @ w,. The amplitude is expressible in terms of Airy integrals (of rainbow 

fame). The wave becomes relatively large in amplitude and of long period for 
times t 2 n(0)to. This phase of development is called the second or Brillouin 
precursor. 

At still later times, there are several points of stationary phase. The wave 
depends in detail on the exact form of n(w). Eventually, the behavior of A(w) 
begins to dominate the integral. By then the main part of the wave has arrived 
at the point x. The amplitude behaves in time as if it were the initial wave prop- 
agating with the appropriate phase velocity and attenuation. 

The sequence of arrival of the tiny, high-frequency Sommerfeld precursor, 
the larger and slower oscillating Brillouin precursor, and then the main signal, 

*See Jeffreys and Jeffreys (Section 17.04) or Born and Wolf (Appendix III) for a discussion of this 
method, originally developed by P. Debye. 
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and indeed their detailed appearance, can differ greatly depending upon the 
specifics of n(w), A(w), and the position x of observation. A textbook example 
can be found in Oughstun and Sherman (op. cit., Fig. 9.10, p. 383). 
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Problems 

71 For each set of Stokes parameters given below deduce the amplitude of the electric 

field, up to an overall phase, in both linear polarization and circular polarization 

bases and make an accurate drawing similar to Fig. 7.4 showing the lengths of the 

axes of one of the ellipses and its orientation. 

1, (a) 5, = 83 = —2; So = 3, S2 = 2, 

(b) 59 = 25, s2 = 24, 83 = 7. 5, = 0, 

7.2 A plane wave is incident on a layered interface as shown in the figure. The indices 

of refraction of the three nonpermeable media are nj, n>, n3. The thickness of the 

intermediate layer is d. Each of the other media is semi-infinite. 

(a) Calculate the transmission and reflection coefficients (ratios of transmitted 

and reflected Poynting’s flux to the incident flux), and sketch their behavior 

% 
as a function of frequency for n, = 1, n. = 2, ny = 3; nm, = 3, nm) = 2,n, = 1 

and n, = 2,nm. =4,n, = 1. 

oe 

EL 

Problem 7.2 

(b) The medium n, is part of an optical system (e.g., a lens); medium n; is air 
(nz = 1). It is desired to put an optical coating (medium nz) on the surface so 
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that there is no reflected wave for a frequency wo. What thickness d and index 

of refraction nz are necessary? 

73 Two plane semi-infinite slabs of the same uniform, isotropic, nonpermeable, lossless 

dielectric with index of refraction n are parallel and separated by an air gap (n = 1) 

of width d. A plane electromagnetic wave of frequency is incident on the gap 

from one of the slabs with angle of incidence i. For linear polarization both parallel 

to and perpendicular to the plane of incidence, 

(a) calculate the ratio of power transmitted into the second slab to the incident 

power and the ratio of reflected to incident power; 

(b) for i greater than the critical angle for total internal reflection, sketch the ratio 

of transmitted power to incident power as a function of d measured in units 

of wavelength in the gap. 

7.4 A plane-polarized electromagnetic wave of frequency w in free space is incident 

normally on the flat surface of a nonpermeable medium of conductivity o and di- 

electric constant e. 

(a) Calculate the amplitude and phase of the reflected wave relative to the inci- 

dent wave for arbitrary o and e. 

(b) Discuss the limiting cases of a very poor and a very good conductor, and show 

that for a good conductor the reflection coefficient (ratio of reflected to inci- 

dent intensity) is approximately 

R=1-278 

where 6 is the skin depth. 

7.5 A plane polarized electromagnetic wave E = E,e**~'” is incident normally on a 
flat uniform sheet of an excellent conductor (o >> wé,) having a thickness D. As- 

—_ 

= e/€, = 1, discuss the suming that in space and in the conducting sheet p/p 

reflection and transmission of the incident wave. 

(a) Show that the amplitudes of the reflected and transmitted waves, correct to 

the first order in (€pw/c)"”, are: 

E, —(1 = e™*) 
E; ~ (QQ -—e*) + y(1 +e) 

—Xr 2¥e E, 
— 

E; ~ Gd —-e) + (1 +e) 

where 

2€o@ 
y= a-j=a-9 

oC 

A=(1 - dD/IS 

and 6 = V2/wuc is the penetration depth. 

Verify that for zero thickness and infinite thickness you obtain the proper 
(b) 

limiting results. 

Show that, except for sheets of very small thickness, the transmission coeffi- 
(c) 

cient is 

8(Re ye 2" 

T 
1 — 2e72) cos(2D/5) + e 4° 

Sketch log T as a function of (D/6), assuming Re y = 10-2. 
Define ‘‘very small thickness.” 
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7.6 A plane wave of frequency w is incident normally from vacuum on a semi-infinite 

slab of material with a complex index of refraction n(w) [n?(w) = €(w)/é]. 

(a) Show that the ratio of reflected power to incident power is 

2 

1 — n(@) 
R= 

1 + n(w) 

while the ratio of power transmitted into the medium to-the ificident power 

is 

4 Re n(w) 

— |1 + n(w)|? 

(b) Evaluate Re[i#(E -D* — B-H*)/2] as a function of (x, y, z). Show that this 
rate of change of energy per unit volume accounts for the relative transmitted 

power T. 

(c) For a conductor, with n? = 1 + i(o/we), o real, write out the results of parts 
a and b in the limit eg@ << o. Express your answer in terms of 6 as much as 

possible. Calculate } Re(J* - E) and compare with the result of part b. Do both 
enter the complex form of Poynting’s theorem? 

77 A ribbon beam of plane-polarized radiation of wavelength A is totally reflected 

internally at a plane boundary between two nonpermeable media with indices of 

refraction n and n’ (n’ <n). As discussed in Section 7.4, the ratio of the reflected 

to incident amplitudes is a complex number of modulus unity, Eo/Ey = exp[id(i, ig)] 

for the angle of incidence i > ij, where sin ig = n’/n. 

(a) Show that for a ‘‘monochromatic” ribbon beam of radiation in the z direction 

with an electric field amplitude, E(x)e“*?-””, where E(x) is smooth and finite 

in transverse extent (but many wavelengths broad), the lowest order approx- 

imation in terms of plane waves is 

E(x, z,)) =e | dk A( kei *ikz—iat 

where € is a polarization vector, and A(x) is the Fourier transform of E(x), 

with support in « around «x = 0 small compared to k. The finite beam consists 

of plane waves with a small range of angles of incidence, centered around the 
geometrical optics value. 

(b) Consider the reflected beam and show that for i > ig the electric field can be 
expressed approximately as 

E"(x, z, ) = e"E(x" — &x) exp[ik" - x — iwt + id(i, ip)] 

where e” is a polarization vector, x” is the x coordinate perpendicular to k”, 
the reflected wave vector, and 6x = —(1/k)[d@(i, ip)/di]. 

(c) With the Fresnel expressions of Section 7.3 for the phases (i, i) for the two 
states of plane polarization, show that the lateral displacements of reflected 
beams with respect to the geometric optics position are 

A sin i sin*i, 
D and mr (sin’i — sin2i,)”? [sin?i — cos’i - sin2ig] 

The displacement is known as the Goos—Hanchen effect (op. cit.). 

7.8 A monochromatic plane wave of frequency w is incident normally on a stack of 
layers of various thicknesses t; and lossless indices of refraction n;. Inside the stack, 
the wave has both forward and backward moving components. The change in the 
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wave through any interface and also from one side of a layer to the other can be 
described by means of 2 X 2 transfer matrices. If the electric field is written as 

E= E,e" + Ee 

— 

= in each layer, the transfer matrix equation E’ TE is explicitly 

Ex Ex hi be 
= 

= 

EL E_ ( by ( bo I 
(a) Show that the transfer matrix for propagation inside, but across, a layer of 

index of refraction n, and thickness 1; is 

ik ;t; 
ens 

0 
Thayer(n t) = ( “n) = I cos(k;t;) + igs sin(k,t;) 

where k; = njw/c, J is the unit matrix, and o;, are the Pauli spin matrices of 

quantum mechanics. Show that the inverse matrix is T*. 

(b) Show that the transfer matrix to cross an interface from n, (x < xo) to 

Ny (x > Xo) is 

n+1 —(n- (n — 1) 
1 

2 2 n+l 
Tintertace(2, 1) = , (_ 

(n — 1) 
where n = nj/np. 

(c) Show that for a complete stack, the incident, reflected, and transmitted waves 

are related by 

_ det(T) 
= Evrans Eine Even _ - 21 Ein 

boo 22 

where ¢,; are the elements of T, the product of the forward-going transfer 

matrices, including from the material filling space on the incident side into the 

first layer and from the last layer into the medium filling the space on the 

transmitted side. 

7.9 A stack of optical elements consists of N layers with index of refraction n and 

thickness ¢,, separated by air gaps (m2 = 1) of thickness f,. A monochromatic plane 

wave is incident normally. With appropriate thicknesses, a modest number of layers 

can cause almost total reflection of a given range of frequencies, even for normal 

n values (e.g., 1.3 <n < 1.8). 

(a) Show the transfer matrix for the stack is Ty... = IT’ (I cos a2 — io; sin a), 
where a2 = wt,/c, and the single air gap plus foil transfer matrix is 

— 

= T (1/4n){[(n + 1)? cos(a, + a) — (n — 1)* cos(a, — a) I 

+ ios[(n + 1)? sin(a, + a) + (n _ 1)? sin(a, _ a»)| 

+ 20,(n? — 1) sin a, sin a, 

— 20,(n? — 1) sin a, cos a} 

= nat,!c. with ay 

If all the layers (both air gaps and foils) have optical thicknesses of a quarter- (b) 
wavelength of the incident wave, show that 

where A = In(n) T = —exp(—Aqa;), 

is (roughly) the amplitude “decay constant” per layer. Show that the fractional 

transmitted intensity is 

2N 
n | Evrans |? — 4 exp[—N In(n’)] = sech’[N In(n)] = 

(N+ 1? | Eine ? 

The asymptotic form holds for n7 >> 1. 
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7.10 An arbitrary optical element of length L is placed in a uniform nonabsorbing me- 

dium with index of refraction n(w) with its front face at x = 0 and its back face at 

x = L. Ifa monochromatic plane wave of frequency w with amplitude Wine(@, X, £) 
= exp[ik(w)x — iwt] is incident on the front face of the element, the transmitted 

wave amplitude is Yirans(@, X, t) = T(w) exp[ik(w)(x — L) — iwt], where the relative 

transmission amplitude T(w) = 7(w) exp[id(@)] is a complex quantity of magnitude 

7(w) and phase $(w). 

A plane wave of radiation yin-(x, £), consisting of a coherent superposition of 
different frequencies centered around w = , with support A(w) narrow on the 

scale of variation of 7(w), @(w) and k(w), is incident on the optical element. Show 

that the transmitted wave for x > L is approximately 

Urrans(X; t) = T( a) ein (X’, i) 

where @ is a constant phase and x’ = x — L, t’ = t — T. The transit or group 

delay time (sometimes attributed in another context to E. P. Wigner) is T = 

[db(w)/do],-.. If cT < L, some authors speak of superluminal propagation 
through the element. Discuss. 

7.11 A simple example of the transit time of the preceding problem is afforded by a slab 
of lossless dielectric of thickness d and index of refraction n in vacuum. 

(a) For a plane wave incident normally, show that the magnitude of the trans- 
mitted amplitude is 

An 
|7(w)| = 

(n — 1)? cos(2z)]? + [(n — 1)? sin(2z)/? V[(n + 1)? 

while its phase is 

(n — 1)? sin(2z) 

(n + 1)? — (n — 1)* cos(2z) | o(w) = z+ arctan| 

where z = nadic. 

(b) Neglecting dispersion, show that for z — 0 and z = a, |7| = 1.0 and cT/d = 

(n? + 1)/2, while for z = w/2 (quarter-wave plate), |r| = 2n/(n? + 1) and 

cT/d = 2n7/(n? + 1). Show also that cT/d, averaged over any integer number 

of quarter-wavelength optical paths, is (cT/d) = n. Does this result tell you 

anything about what you might expect for the observed transit time of a long 

wave train (Aw/w < 1) through a piece of window glass? Explain. 

(c) Calculate numerically and plot the results as functions of z for the magnitude 

of the transmission amplitude, its phase, and the transit time in units of d/c 

forn = 1.5 andn = 2.0. 

712 The time dependence of electrical disturbances in good conductors is governed by 

the frequency-dependent conductivity (7.58). Consider longitudinal electric fields 

in a conductor, using Ohm’s law, the continuity equation, and the differential form 

of Coulomb’s law. 

(a) Show that the time-Fourier-transformed charge density satisfies the equation 

[a(w) — ime |p(x, w) = 0 

(b) Using the representation o(w) = oo/(1 — iwt), where oo = €)w27 and Tis a 
damping time, show that in the approximation w,7 >> 1 any initial disturbance 
will oscillate with the plasma frequency and decay in amplitude with a decay 
constant A = 1/27. Note that if you use o(w) ~ o(0) = oo in part a, you will 
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find no oscillations and extremely rapid damping with the (wrong) decay con- 
stant Aw = Dol Eo. 

Reference: W. M. Saslow and G. Wilkinson, Am. J. Phys. 39, 1244 (1971). 

7.13 A stylized model of the ionosphere is a medium described by the dielectric constant 

(7.59). Consider the earth with such a medium beginning suddenly at a height h 

and extending to infinity. For waves with polarization both perpendicular to the 

plane of incidence (from a horizontal antenna) and in the plane of incidence (from 

a vertical antenna), 

(a) show from Fresnel’s equations for reflection and refraction that for w > w, 

there is a range of angles of incidence for which reflection is not total, but for 

larger angles there is total reflection back toward the earth. 

(b) A radio amateur operating at a wavelength of 21 meters in the early evening 

finds that she can receive distant stations located more than 1000 km away, 

but none closer. Assuming that the signals are being reflected from the F layer 

of the ionosphere at an effective height of 300 km, calculate the electron 

density. Compare with the known maximum and minimum F layer densities 

of ~ 2 X 10” m°? in the daytime and ~ (2-4) x 10'! m™? at night. 

7.14 A simple model of propagation of radio waves in the earth’s atmosphere or iono- 

sphere consists of a flat earth at z = 0 and a nonuniform medium with € = e(z) for 

z > 0. Consider the Maxwell equations under the assumption that the fields are 
i(k wot) independent of y and can be written as functions of z times e 

(a) Show that the wave equation governing the propagation for z > 0 is 

2. 

—_—— + q°(z)F = 0 
dz? 

where 

q?(z) = w*poe(z) — Kk? 

and F = E, for horizontal polarization, and 

de 1 de 3 

dz T(z) = wmoe(z) + 773 Ge ( ) - 2 

with F = Ve/é€ E, for vertical polarization. 

Use the WKB approximation to treat the propagation of waves directed ver- (b) 
tically into the ionosphere (k = 0), assuming that the dielectric constant is 

given by (7.59) with a plasma frequency ,(z) governed by an electron density 

like that shown in Fig. 7.11. Verify that the qualitative arguments in Section 

7.6 hold, with departures in detail only for w ~ @, max- 

(c) Using the WKB results of part b and the concepts of the propagation of a 

pulse from Section 7.8, define an effective height of the ionosphere h'(w) by 

calculating the time T for a pulse of dominant frequency w to travel up and 
= 

S cT/2). [The WKB approximation is discussed in most be reflected back (h’ 

books on quantum mechanics. ] 

7.15 The partially ionized interstellar medium (mostly hydrogen) responds to optical 

frequencies as an electronic plasma in a weak magnetic field. The broad-spectrum 

pulses from a pulsar allow determination of some average properties of the inter- 

stellar medium (e.g., mean electron density and mean magnetic field). The treat- 
ment of an electronic plasma in a magnetic field of Section 7.6 is pertinent. 
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(a) Ignoring the weak magnetic field and assuming that max(,) << , show that 

c times the transit time of a pulse of mean frequency w from a pulsar a distance 

R away is 

2 

ct(w) ~ R = | ete) dz * 2€)Me 

where n,(z) is the electron density along the path of the light. ~ 

(b) The presence of the magnetic field causes a rotation of the plane of linear 

polarization (Faraday effect). Show that to lowest order in the magnetic field, 

the polarized light from the pulsar has its polarization rotated through an angle 

60(w): 

2 

b0(w) ~ [ ne)B2) az ~ Qegem2w 

where B,(z) is the component of B parallel to the path of the light. 

(c) Assuming you had an independent measure of the pulsar distance R, what 

observations would you make in order to infer (n,) and (B,)? What assump- 

tions, if any, about the polarization are necessary? 

7.16 Plane waves propagate in a homogeneous, nonpermeable, but anisotropic dielectric. 

The dielectric is characterized by a tensor ¢,, but if coordinate axes are chosen as 

the principle axes, the components of displacement along these axes are related to 

the electric-field components by D; = ¢,E; (i = 1, 2, 3), where e; are the eigenvalues 

of the matrix €;. 

(a) Show that plane waves with frequency w and wave vector k must satisfy 

(b) Show that for a given wave vector k = kn there are two distinct modes of 
= 

= propagation with different phase velocities v w/k that satisfy the Fresnel 

equation 

3 2 
n i =0 

> 2 v2 — vu t=1 £ 

where v; = 1/V poe; is called a principal velocity, and n, is the component of 

n along the ith principal axis. 

(c) Show that D,-D, = 0, where D,, D, are the displacements associated with 

the two modes of propagation. 

7.17 Consider the problem of dispersion and waves in an electronic plasma when a 

uniform external magnetic induction By is present, as in Section 7.6. 

(a) Show that in general the susceptibility tensor y,,(w) defined through D, = 
Dé peEK, and 7 €o( 5x + Xin)» 1S 

2 

Xik = oo = 2) [WS — wpb by IW p€/b)] 

where b is a unit vector in the direction of Bo. 

(b) By straightforward diagonalization of the dielectric tensor €, or by an airtight 
argument based on the approach and results of Section 7.6, find the eigenval- 
ues €;,,j = 1, 2, 3. 
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(c) A plane wave (w, k = kn) must satisfy the vector equation of Problem 7.16a. 
Show that in terms of Xjx the electric field and wave number must satisfy the 
three homogeneous equations, 

j=1,2,3 (1 - EE; + én(m- E) + > XE, = 0, 

where é = (ck/w)’. Keeping only first-order terms in an expansion of Xijx 10 
powers of w/w, show that the effective dielectric constant for propagation of 
the plane wave is 

2 
w@ 

P 
wewgb on 

z+ €./€69 = 1 —- 
2 3 

w 

for positive and negative helicity waves. 

7.18 Magnetohydrodynamic waves can occur in a compressible, nonviscous, perfectly 

conducting fluid in a uniform static magnetic induction Bg. If the propagation di- 
rection is not parallel or perpendicular to Bo, the waves are not separated into 

purely longitudinal (magnetosonic) or transverse (Alfvén) waves. Let the angle 

between the propagation direction k and the field Bo be 6. 

(a) Show that there are three different waves with phase velocities given by 

ui = (vy, cos 6)" 
— 

= u33 $(s* + v4) + 3[(s? + v4)? — 450% cos?6]"? 

where s is the sound velocity in the fluid, and v, = (BY/upp)*” is the Alfvén 

velocity. 

(b) Find the velocity eigenvectors for the three different waves, and prove that 

the first (Alfvén) wave is always transverse, while the other two are neither 

longitudinal nor transverse. 

(c) Evaluate the phase velocities and eigenvectors of the mixed waves in the ap- 

proximation that v, >> s. Show that for one wave the only appreciable com- 

ponent of velocity is parallel to the magnetic field, while for the other the only 

component is perpendicular to the field and in the plane containing k and Bo. 

7.19 An approximately monochromatic plane wave packet in one dimension has the 

instantaneous form, u(x, 0) = f(x) e’*>*, with f(x) the modulation envelope. For 
each of the forms f(x) below, calculate the wave-number spectrum |A(k)|? of the 

2 evaluate explicitly the rms deviations from the packet, sketch | u(x, 0)|? and | A(k) 
means Ax and Ak (defined in terms of the intensities |u(x, 0)|? and |A(k)|*), and 
test inequality (7.82). 

(a) f(x) = Ne ~alzl2 

(b) f(x) = Neo" 

for a |x| <1 
() f= for a|x|>1 

{" — a |x|) 

N for |x| < a 

0 for |x| >a (d) f(x) = { 
7.20 A homogeneous, isotropic, nonpermeable dielectric is characterized by an index of 

refraction n(w), which is in general complex in order to describe absorptive 

processes. 
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Show that the general solution for plane waves in one dimension can be 
(a) 

written 

u(x, 9) = m [- dw eA (werner + B(w)e Horr] 

where u(x, t) is a component of E or B. 

™~ ~ (b) If u(x, t) is real, show that n(—w) = n*(w). 

(c) Show that, if u(0, t) and du(0, £)/dx are the boundary values of u and its deriv- 

ative at x = 0, the coefficients A(w) and B(w) are 

Ic au A(w) 
wn(@) dx B(w) 

(0, a| | = aor [- dt e'” Eo t) + 

7.21 Consider the nonlocal (in time) connection between D and E, 

D(x, t) = oo BOs th + [ ar G(7)E(x, t — | 

with the G(r) appropriate for the single-resonance model, 

e(w)/eg = 1 + w2(aG — w — iyw)™" 

(a) Convert the nonlocal connection between D and E into an instantaneous re- 

lation involving derivatives of E with respect to time by expanding the electric 
field in the integral in a Taylor series in 7. Evaluate the integrals over G(7) 
explicitly up to at least a°E/ae’. 

(b) Show that the series obtained in part a can be obtained formally by converting 

the frequency-representation relation, D(x, w) = e(w)E(x, ) into a space- 

time relation, 

D(x, t) = i 2). t) 

where the variable w in e(w) is replaced by w — i(d/dt). 

7.22 Use the Kraniers—Kronig relation (7.120) to calculate the real part of e(@), given 

the imaginary part of e(w) for positive w as 

w > wa, > 0 (a) Im €é/ey = A[O(w — @,) — O(w — w)], 

Ayw 
(b) Im ée/e, = 

(a — 2)? + Vw 

In each case sketch the behavior of Im e(w) and the result for Re e(w) as 

functions of w. Comment on the reasons for similarities or differences of your 

results as compared with the curves in Fig. 7.8. The step function is 6(x) = 0, 

x <Oand Ox) =1,x>0. 

7.23 Discuss the extension of the Kramers—Kronig relations (7.120) for a medium with 

a static electrical conductivity a. Show that the first equation in (7.120) is unchanged, 

but that the second is changed into 

e€ €(w’) — &] 
da’ 

2 wo — w 
Im (w) = 2-72 p [RR 

{Hint: Consider €(w) — io/w as analytic for Im w = 0.] 

7.24 (a) Use the relation (7.113) and the analyticity of e(w)/e9 for Im w = 0 to prove 
that on the positive imaginary axis €(w)/€o is real and monotonically decreasing 
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away from the origin toward unity as w — ic, provided Ime = 0 for real 
positive frequencies. Assume that (7.114) holds for real w 

(b) With the assumption that Im e vanishes for finite real w only at w = 0, show 
that €(w) has no zeros in the upper half-w-plane 

(c) Write down a Kramers-Kronig relation for €9/e(w) and deduce a sum rule 
similar to (7.122), but as an integral over Im[eo/e(w)] 

(d) With the one-resonance model (7.107) for e(w) determine Im e(w) and 
Im[1/e()] and verify explicitly that the sum rules (7.122) and part c are 
satisfied 

7.25 Equation (7.67) is an expression for the square of the index of refraction for waves 
propagating along field lines through a plasma in a uniform external magnetic field 

Using this as a model for propagation in the magnetosphere, consider the arrival 

of a whistler signal (actually the Brillouin precursor and subsequently of Section 

7.11) 

(a) Make a reasonably careful sketch of cdk/dw, where k wn(w)/c, for 

the positive helicity wave, assuming w,/wg = 1. Indicate the interval where 

c dk/dw is imaginary, but do not try to sketch it there! 

(b) Show that on the interval, 0 < w < w,, the minimum of c dk/dw occurs at 

wo! @p provided w,/w, = 1. Find approximate expressions for c dk/dw for 

w near zero and for w near wz, 

(c) By means of the method of stationary phase and the general structure of the 

solution to Problem 7.20a, show that the arrival of a whistler is signaled by a 

rising and falling frequency as a function of time, the falling frequency com- 

ponent being the source of the name 

(d) (Optional) Consider the form of the signal in the Brillouin precursor. Show 

that it consists of a modulated waveform of frequency w) = wa,/4 whose en- 

velope is the Airy integral. This then evolves into a signal beating with the 

two frequencies of part c 

7.26 A charged particle (charge Ze) moves at constant velocity v through a medium 

described by a dielectric function e(q, w)/é, or, equivalently, by a conductivity func- 

tion o(q, w) = ialeo — €(q, w)]. It is desired to calculate the energy loss per unit 
time by the moving particle in terms of the dielectric function e(q, w) in the ap- 

proximation that the electric field is the negative gradient of the potential and 

current flow obeys Ohm’s law, J(q, w) = o(q, w)E(q, ) 

(a) Show that with suitable normalization, the Fourier transform of the particle’s 

charge density is 

d(@ — q:v) p(q, @) = ts Gms 
(b) Show that the Fourier components of the scalar potential are 

p(q, @) y= 

(q, 
q’ €(q, ®) 

s3 +E d°x show that the energy loss per unit time can (c) Starting from dW/dt 

be written as 

—_——_ = 

ze 2 d°q 

al dw win] = afte-a-v Tl 
[This shows that Im[e(q, or ‘is related to energy loss and provides, by study- 
ing characteristic energy losses in thin foils, information on €(q, w) for solids. ] 
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7.27. The angular momentum of a distribution of electromagnetic fields in vacuum is 

given by 

= 5 | dex x Ex B) 

where the integration is over all space 

(a) For fields produced a finite time in the past (and so localized toa finite region 

of space) show that, provided the magnetic field is eliminated in favor of the 

vector potential A, the angular momentum can be written in the form 

b=] a JExa +> Bax 9A, 

The first term is sometimes identified with the “‘spin’’ of the photon and the 

second with its “orbital” angular momentum because of the presence of the 

—i(x x V) angular momentum operator L,, 

(b) Consider an expansion of the vector potential in the radiation gauge in terms 

of plane waves 

Aa. =D | EE fetoaitoe™m + co] 
The polarization vectors €,(k) are conveniently chosen as the positive and 

negative helicity vectors e. = (1/V2)(e, + ie) where €, and e, are real 
orthogonal vectors in the plane whose positive normal is in the direction of k 

Show that the time average of the first (spin) term of L can be written as 

Ley = | Ss Mla) ~ [a0 
Can the term spin” angular momentum be justified from this expression? 

Calculate the energy of the field in terms of the plane wave expansion of A 

and compare 

7.28 <A circularly polarized plane wave moving in the z direction has a finite extent in 

the x and y directions. Assuming that the amplitude modulation is slowly varying 

(the wave is many wavelengths broad), show that the electric and magnetic fields 

are given approximately by 

aE dE 
iwt ikz + 

— +i— 
Ox a 

E(x y, %, t) ~ | Bt, y)(e, in) + E( 
~ 

= +IV pe E 

where e;, e2, e; are unit vectors in the x, y, z directions 

7.29 For the circularly polarized wave of Problem 7.28 with Eo(x, y) a real function of x 

and y, calculate the time-averaged component of angular momentum parallel to the 

direction of propagation. Show that the ratio of this component of angular mo- 
mentum to the energy of the wave in vacuum is 

L; -1 
—- = 1a 

Interpret this result in terms of quanta of radiation (photons). Show that for a 
cylindrically symmetric, finite plane wave, the transverse components of angular 
momentum vanish 
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7.30 Starting with the expression for the total energy of an arbitrary superposition of 

plane electromagnetic waves (7.8, 7.11) in otherwise empty space, show that the 

total number of photons (defined for each plane wave of wave vector k and polar- 

ization € as its energy divided by fick) is given by the double integral 

E(x, ) - E(x’, 2) + c* B(x, ft) + BO’, 1) N= pie atx [ex 
[x — x’? | 



CHAPTER 8 

Waveguides, Resonant Cavities, 
and Optical Fibers 

Electromagnetic fields in the presence of metallic boundaries form a practical 
aspect of the subject of considerable importance. At high frequencies where the 
wavelengths are of the order of meters or less, the only practical way of gener- 
ating and transmitting electromagnetic radiation involves metallic structures with 
dimensions comparable to the wavelengths involved. At much higher (infrared) 
frequencies, dielectric optical fibers are exploited in the telecommunications in- 

dustry. In this chapter we consider first the fields in the neighborhood of a con- 

ductor and discuss their penetration into the surface and the accompanying re- 

sistive losses. Then the problems of waves guided in hollow metal pipes and 

of resonant cavities are treated from a fairly general viewpoint, with specific 

illustrations included along the way. Attenuation in waveguides and Q 

values of cavities are discussed from two different points of view. The earth- 

ionosphere system as a novel resonant cavity is treated next. Then we discuss 

multimode and single-mode propagation in optical fibers. The normal mode 

expansion for an arbitrary field in a waveguide is presented and applied to the 

fields generated by a localized source, with brief mention of the use of the nor- 

mal mode expansion in the treatment of obstacles in waveguides by variational 

methods 

8.1 Fields at the Surface of and Within a Conductor 

In Section 5.18 the concept of skin depth and effective surface current was intro- 

duced by a simple example of a planar interface between conductor and vacuum 

with a spatially uniform, time-varying magnetic field at the interface. Here we 
generalize the circumstances, at least conceptually, even though the mathematics 

is much the same 

First consider a surface with unit normal n directed outward from a perfect 
conductor on one side into a nonconducting medium on the other side. Then 
just as in the static case, there is no electric field inside the conductors. The 
charges inside a perfect conductor are assumed to be so mobile that they move 
instantly in response to changes in the fields, no matter how rapid, and always 
produce the correct surface-charge density = (capital > is used to avoid confusion 
with the conductivity o) 

n-D=2 (8.1) 

352 
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to give zero electric field inside the perfect conductor. Similarly, for time-varying 
magnetic fields, the surface charges move in response to the tangential magnetic 
field to produce always the correct surface current K: 

nx H=K (8.2) 

to have zero magnetic field inside the perfect conductor. The other two boundary 
conditions are on normal B and tangential E: 

n:-(B-B,) =0 (8.3) 

n X (E —- E,) = 0 

where the subscript c refers to the conductor. From these boundary conditions 
we see that just outside the surface of a perfect conductor only normal E and 

tangential H fields can exist, and that the fields drop abruptly to zero inside the 

perfect conductor. This behavior is indicated schematically in Fig. 8.1. 

The fields in the neighborhood of the surface of a good, but not perfect, 

conductor must behave approximately the same as for a perfect conductor. In 

Section 5.18 we saw that inside a conductor the fields are attenuated exponen- 

tially in a characteristic length 6, called the skin depth. For good conductors and 

moderate frequencies, 5is a small fraction of a centimeter. Consequently, bound- 

ary conditions (8.1) and (8.2) are approximately true for a good conductor, aside 

from a thin transitional layer at the surface. 

If we wish to examine that thin transitional region, however, care must be 

taken. First of all, Ohm’s law J = cE shows that with a finite conductivity there 

cannot actually be a surface layer of current, as implied in (8.2). Instead, the 

boundary condition on the magnetic field is 

n x (H — H,) = 0 (8.4) 

To explore the changes produced by a finite, rather than an infinite, conductivity, 
we employ a successive approximation scheme. First we assume that just outside 

the conductor there exists only a normal electric field E, and a tangential mag- 

netic field H,, as for a perfect conductor. The values of these fields are assumed 
to have been obtained from the solution of an appropriate boundary-value prob- 
lem. Then we use the boundary conditions and the Maxwell equations in the 

conductor to find the fields within the transition layer and small corrections to 

the fields outside. In solving the Maxwell equations within the conductor we 

make use of the fact that the spatial variation of the fields normal to the surface 

E, E, Ay 

Hy 
Ej 

g=0 E— 

(b) (a) 

Figure 8.1 Fields near the surface of a perfect conductor. 
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is much more rapid than the variations parallel to the surface. This means that 

we can safely neglect all derivatives with respect to coordinates parallel to the 

surface compared to the normal derivative. 

If there exists a tangential H, outside the surface, boundary condition (8.4) 
implies the same Hj inside the surface. With the neglect of the displacement 
current in the conductor, the Maxwell curl equations become 

~~ -~ 

E.~ Vx H. 
(8.5) 

i 
—_ 

— 
= H. VXxeE, 

HW 

where a harmonic variation e~“”’ has been assumed. If n is the unit normal out- 

ward from the conductor and € is the normal coordinate inward into the con- 

ductor, then the gradient operator can be written 

0 
v= -n— 

0g 

neglecting the other derivatives when operating on the fields within the conduc- 
tor. With this approximation the Maxwell curl equations (8.5) become 

1 oH. 
x E, ~ —— 

oC 0g (8.6) 

l dE, 
H, = 

How 0g 

These can be combined to yield 

2 
2 “(nx H,) ~0 
& 

ag (BX He) + 
(8.7) 

n-H,=0 

where 6 is the skin depth defined previously: 

2 
(8.8) 

wo -( 
The second equation in (8.7) shows that inside the conductor H is parallel to the 
surface, consistent with our boundary conditions. The solution for H., is 

H, = H, e7 Fe pisls 
(8.9) 

where H, is the tangential magnetic field outside the surface. From (8.6) the 
electric field in the conductor is approximately 

Me 
E. (1 — i)(n x Hee’? (8.10) 20 

These solutions for H and E inside the conductor exhibit the properties discussed 
in Section 5.18: rapid exponential decay, phase difference, and magnetic field 
much larger than the electric field. Furthermore, they show that, for a good con- 
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Ey 

Ay 

E\ 

Ay 

§=0 

Figure 8.2 Fields near the surface of a good, but not perfect, conductor. For € > 0, the 
dashed curves show the envelope of the damped oscillations of H, (8.9). 

ductor, the fields in the conductor are parallel to the surface* and propagate 

normal to it, with magnitudes that depend only on the tangential magnetic field 

H, that exists just outside the surface. 

From the boundary condition on tangential E (8.3) we find that just outside 

the surface there exists a small tangential electric field given by (8.10), evaluated 

at €= 0: 

Me 
(8.11) E| = “(1 - (a x HH) 

2 Co 

In this approximation there is also a small normal component of B just outside 

the surface. This can be obtained from Faraday’s law of induction and gives B, 

of the same order of magnitude as E,. The amplitudes of the fields both inside 

and outside the conductor are indicated schematically in Fig. 8.2. 

The existence of a small tangential component of E outside the surface, in 

addition to the normal E and tangential H, means that there is a power flow into 

the conductor. The time-averaged power absorbed per unit area is 

1 H.wd dP loss 
—_ 

= Re[n- E x H*] = (8.12) [Hi 
2 d 

*From the continuity of the tangential component of H and the equation connecting E to V x Hon 
either side of the surface, one can show that there exists in the conductor a small normal component 

of electric field, E.-n = (iwe/o)E,, but this is of the next order in small quantities compared with 

(8.10). Note that our discussion here presupposes a tangential component of H. In situations in which 

the lowest order approximation is essentially electrostatic, the present treatment is inapplicable. Dif- 

ferent approximations must be employed. See T. H. Boyer, Phys. Rev. A9, 68 (1974). 
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This result can be given a simple interpretation as ohmic losses in the body of 
the conductor. According to Ohm’s law, there exists a current density J near the 
surface of the conductor: 

(8.13) 

The time-averaged rate of dissipation of energy per unit volume in ohmic losses 
— 

= is $3 - E* (1/2c) |J|?, as written in (5.169). The integral of (5.169) in z leads 

directly to (8.12). 

The current density J is confined to such a small thickness just below the 

surface of the conductor that it is equivalent to an effective surface current Keg: 

(8.14) Ky = | Sde=nx Hy, 

Comparison with (8.2) shows that a good conductor behaves effectively like a 

perfect conductor, with the idealized surface current replaced by an equivalent 

surface current, which is actually distributed throughout a very small, but finite, 

thickness at the surface. The power loss can be written in terms of the effective 

surface current: 

dP loss Jt (8.15) Ker)? 
da 66 

This shows that 1/a6 plays the role of a surface resistance of the conductor.* 

Equation (8.15), with K.¢ given by (8.14), or (8.12) will allow us to calculate 

approximately the resistive losses for practical cavities, transmission lines, and 

waveguides, provided we have solved for the fields in the idealized problem of 

infinite conductivity. 

8.2. Cylindrical Cavities and Waveguides 

A practical situation of great importance is the propagation or excitation of elec- 

tromagnetic waves in hollow metallic cylinders. If the cylinder has end surfaces, 

it is called a cavity; otherwise, a waveguide. In our discussion of this problem the 

boundary surfaces are assumed to be perfect conductors. The losses occurring in 

practice can be accounted for adequately by the methods of Section 8.1. A cylin- 

drical surface S of general cross-sectional contour is shown in Fig. 8.3. For sim- 

plicity, the cross-sectional size and shape are assumed constant along the cylinder 

axis. With a sinusoidal time dependence e~'” for the fields inside the cylinder, 

the Maxwell equations take the form 

V x E = ioB V-B=0 

(8.16) 
V-E=0 V <X B= —ipvewE 

*The coefficient of proportionality linking E, and K.¢ is called the surface impedance Z,. For a good 
conductor (8.11) yields Z, = (1 — i)/o6, but the concept of surface impedance obviously has wider 
applicability. 
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Figure 8.3. Hollow, cylindrical waveguide of arbitrary cross-sectional shape. 

where it is assumed that the cylinder is filled with a uniform nondissipative me- 
dium having permittivity « and permeability wz. It follows that both E and B satisfy 

(8.17) (Vv? + new?){ | =0 
Because of the cylindrical geometry it is useful to single out the spatial vari- 

ation of the fields in the z direction and to assume 

E(x, y, z, t) E(x, yen ike tot 

(8.18) 
B(x, y, Z, t) 

B(x, yen efor In| 
Appropriate linear combinations can be formed to give traveling or standing 

waves in the z direction. The wave number k is, at present, an unknown param- 

eter that may be real or complex. With this assumed z dependence of the fields 

the wave equation reduces to the two-dimensional form 

(8.19) [V2 + (wew? — ene = 0 
where V? is the transverse part of the Laplacian operator: 

Fee 

_— 
— 

= 

V2 
Vi (8.20) 

az" 

It is useful to separate the fields into components parallel to and transverse 

to the z axis: 

(8.21) E=-E,+E, 

where 

— 

= aE, E, (8.22) 
= E, (2 x E) x i 

and Z is a unit vector in the z direction. Similar definitions hold for the magnetic 

field B. The Maxwell equations (8.16) can be written out in terms of transverse 

and parallel components as 

aA 

(8.23) -(V, x E,) = iwB, — + ay} x B, = VE, 
Zz 

A OB, 
——_—_ — —ipewE, (8.24) VB, pewz X E, ° (V, x B,) 
OZ 

_aB, _0E, 
V,° B, (8.25) V,-E, 

a az” 

It is evident from the first equations in (8.23) and (8.24) that if E, and B, are 

known the transverse components of E and B are determined, assuming the z 
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dependence is given by (8.18). Explicitly, assuming propagation in the positive z 

direction and the nonvanishing of at least one of E, and B,, the transverse fields 
are 

L 
(8.26a) [kV,E, wz X V,B_| 

(wew? — K) 

and 

L 
(8.26b) B, [kV,B, + pew? X V,E,] 

~ (new? — Rk?) 

For waves in the opposite direction, change the sign of k. 

Before considering the kinds of field that can exist inside a hollow cylinder, 

we take note of a degenerate or special type of solution, called the transverse 

electromagnetic (TEM) wave. This solution has only field components transverse 

to the direction of propagation. From the second equation in (8.23) and the first 

in (8.25) it is seen that E, = 0 and B, = 0 imply that E, = Eye» satisfies 

V, + Erem = 0 V, X Erem = 0, 

This means that Eygy, is a solution of an electrostatic problem in two dimensions. 

There are three main consequences. The first is that the axial wave number is 
given by the infinite-medium value, 

k = ky = wV pe (8.27) 

as can be seen from (8.19). The second consequence is that the magnetic field, 

deduced from the first equation in (8.24), is 

Brem = +V pez X Erem (8.28) 

for waves propagating as e~““*. The connection between Brgy and Eye is just 
the same as for plane waves in an infinite medium. The final consequence is that 

the TEM mode cannot exist inside a single, hollow, cylindrical conductor of in- 

finite conductivity. The surface is an equipotential; the electric field therefore 

vanishes inside. It is necessary to have two or more cylindrical surfaces to support 

the TEM mode. The familiar coaxial cable and the parallel-wire transmission line 

are structures for which this is the dominant mode. (See Problems 8.1 and 8.2.) 

An important property of the TEM mode is the absence of a cutoff frequency. 

The wave number (8.27) is real for all w. This is not true for the modes occurring 

in hollow cylinders (see below). 

In hollow cylinders (and on transmission lines at high frequencies) there 

occur two types of field configuration. Their existence can be seen from consid- 

ering the wave equations (8.19) satisfied by the longitudinal components, E, and 

B,, and the boundary conditions to be satisfied. Provided the fields are time- 

varying, perfect conductivity assures that both E (and D) and B (and H) vanish 
within the conductor. (For the latter, the skin depth is vanishingly small.) The 
presence of surface charges and currents at the interface allows the existence of 
a normal component of D at the boundary, and also a tangential component of 
H, but the tangential component of E and the normal component of B must be 
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continuous across the boundary. Thus, for a perfectly conducting cylinder the 
boundary conditions are 

n-B=0 nx E =0, 

where n is a unit normal at the surface S. It is evident that the boundary condition 
on E, is 

(8.29) E.\s =0 
From the component of the first equation in (8.24) parallel to n it can be inferred 

that the corresponding boundary condition on B, is 

aB, 
=0 (8.30) 

on | 

where 0/dn is the normal derivative at a point on the surface. The two-dimensional 

wave equations (8.19) for E, and B,, together with the boundary conditions (8.29) 

and (8.30), specify eigenvalue problems of the usual sort. For a given frequency 

w, only certain values of wave number k can occur (typical waveguide situation), 

or, for a given k, only certain w values are allowed (typical resonant cavity situ- 

ation). Since the boundary conditions on E.,, and B, are different, the eigenvalues 

will in general be different. The fields thus naturally divide themselves into two 

distinct categories: 

TRANSVERSE MAGNETIC (TM) WAVES 

B, = 0 everywhere; boundary condition, E,|; = 0 

TRANSVERSE ELECTRIC (TE) WAVES 

= E, = 0 everywhere; boundary condition, — 
Ns 

The designations “electric (or E) waves” and ‘‘magnetic (or H) waves” are some- 

times used instead of TM and TE waves, respectively, corresponding to a spec- 

ification of the axial component of the fields. The various TM and TE waves, 

plus the TEM wave if it can exist, constitute a complete set of fields to describe 

an arbitrary electromagnetic disturbance in a waveguide or cavity. 

8.3 Waveguides 

For the propagation of waves inside a hollow waveguide of uniform cross section, 

it is found from (8.26a, b) that the transverse magnetic and electric fields for both 

TM and TE waves are related by 

+1 
— 

= —ixkE, (8.31) H, 

where Z is called the wave impedance and is given by 

k k 
— 

—_— = (TM) 
EW ko 

= (8.32) 

po _ ko 
k k 
Ew 
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where ky is given by (8.27). The plus (minus) sign in (8.31) goes with z depen- 
dence, e'*# (e~**). The transverse fields are determined by the longitudinal fields, 
according to (8.26): 

TM WAVES 

ik 
+— a E, 

TE WAVES 

ik 
+— (8.33) W H, 
“? 

where we*< is E,(H,) for TM (TE) waves* and y’ is defined below. The scalar 
function ys satisfies the two-dimensional wave equation (8.19), 

(8.34) (Vit ¥)y=0 

where 

(8.35) y= pew — k? 

subject to the boundary condition, 

or (8.36) wls = 0 
Ss 

for TM (TE) waves. 

Equation (8.34) for y, together with boundary condition (8.36), specifies an 

eigenvalue problem. It is easy to see that the constant y* must be nonnegative. 
Roughly speaking, it is because y must be oscillatory to satisfy boundary condi- 

tion (8.36) on opposite sides of the cylinder. There will be a spectrum of eigen- 

values y, and corresponding solutions y,, A = 1, 2, 3,..., which form an or- 
thogonal set. These different solutions are called the modes of the guide. For a 

given frequency w, the wave number k is determined for each value of A: 

—_ 

=> ky pew — Yi (8.37) 

If we define a cutoff frequency w), 

Va 
(8.38) wo, = “ae 

then the wave number can be written: 

ky, = VpevV a — wx (8.39) 

We note that, for w > w,, the wave number k, is real; waves of the A mode can 

propagate in the guide. For frequencies less than the cutoff frequency, k, is imag- 

inary; such modes cannot propagate and are called cutoff modes or evanescent 

modes. The behavior of the axial wave number as a function of frequency is 

shown qualitatively in Fig. 8.4. We see that at any given frequency only a finite 
number of modes can propagate. It is often convenient to choose the dimensions 

*We have changed from E and B to E and H as our basic fields to eliminate factors of 44 when using 
the wave impedances. (Like ordinary impedance, wave impedance involves voltage and current and 
so E and H.) 
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oO —> is the cutoff frequency. 

of the guide so that at the operating frequency only the lowest mode can occur. 

This is shown by the vertical arrow on the figure. 

Since the wave number k, is always less than the free-space value V jew, the 

wavelength in the guide is always greater than the free-space wavelength. In turn, 

the phase velocity vu, is larger than the infinite space value: 

@ 1 1 1 
(8.40) 

Wy 
— 

@ 

Pk ue :-( 

y 
The phase velocity becomes infinite exactly at cutoff. 

8.4 Modes in a Rectangular Waveguide 

As an important illustration of the general features described in Section 8.3 we 

consider the propagation of TE waves in a rectangular waveguide with inner 

dimensions a, b, as shown in Fig. 8.5. The wave equation for f = H, is 

a 

F (8.41) jy2 a 2 

yao ( 
with boundary conditions dy//an = 0 at x = 0, a and y = 0, b. The solution for & 
is consequently 

na 
—_—— (8.42) 

b 
Uran(X, Y) = Ho cos(™™) ( 

where 

—_-4+— (8.43) Yoon b? “| 

is 

pe 
by 

el Figure 8.5 



362 Chapter 8 Waveguides, Resonant Cavities, and Optical Fibers—SI 

The single index A that specified the modes earlier is replaced by the two positive 

integers m, n. For there to be nontrivial solutions, m and n cannot both be zero. 

The cutoff frequency w,,,, is given by 

2 2 
n m T 
—_ (8.44) 

a Ob ( Onn = Le 

If a > b, the lowest cutoff frequency, that of the dominant TE-mode, occurs for 

m=1,n=0: 

(8.45) “9” Tea 
This corresponds to half of a free-space wavelength across the guide. The explicit 

fields for this mode, denoted by TE», are: 

A, se) 
ika 

—— Hp sin A, (8.46) 

@ 

i —— Hp sin 
y Be 

where k = ko is given by (8.39) with w, = w,9. The presence of a factor i in H, 

(and E,) means that there is a spatial (or temporal) phase difference of 90° be- 

tween H, (and F,) and H, in the propagation direction. It happens that the TE, o 

mode has the lowest cutoff frequency of both TE and TM modes,* and so is the 

one used in most practical situations. For a typical choice a = 2b the ratio of 

cutoff frequencies w,,,, for the next few modes to 9 are as follows: 

n 0 1 2 3 

2.00 4.00 6.00 

1.00 2.24 4.13 
2.00 2.84 4.48 

3.00 3.61 5.00 

4.00 4.48 5.66 

5.00 5.39 

6.00 

There is a frequency range from cutoff to twice cutoff or to (a/b) times cutoff, 
whichever is smaller, where the TE,» mode is the only propagating mode. Be- 
yond that frequency other modes rapidly begin to enter. The field configurations 

*This is evident if we note that for the TM modes E, is of the form 

niy 
—_——_ 

b 
£.= Esn(™2) si 

while +’ is still given by (8.43). The lowest mode has m = n = 1. Its cutoff frequency is greater than 
that of the TE;, mode by the factor (1 + a?/b?)!”. 



363 Sect. 8.5 Energy Flow and Attenuation in Waveguides 

of the TE,, mode and other modes are shown in many books, for example 
American Institute of Physics Handbook [ed. D. E. Gray, 3rd edition, McGraw- 
Hill, New York (1972), p. 5-54] 

8.5 Energy Flow and Attenuation in Waveguides 

The general discussion of Section 8.3 for a cylindrical waveguide of arbitrary 
cross-sectional shape can be extended to include the flow of energy along the 

guide and the attenuation of the waves due to losses in the walls having finite 
conductivity. The treatment is restricted to one mode at a time; degenerate modes 

are mentioned only briefly. The flow of energy is described by the complex 

Poynting vector 

S = 5(E x H*) (8.47) 

whose real part gives the time-averaged flux of energy. For the two types of field 

we find, using (8.31) and (8.33) 

y 

— aE Viv + i a 
(8.48) S= 74 

Y 
x 

ula wwe — 1% ? ova) 
where the upper (lower) line is for TM (TE) modes. Since y is generally real,* 

we see that the transverse component of S represents reactive energy flow and 

does not contribute to the time-averaged flux of energy. On the other hand, the 

axial component of S gives the time-averaged flow of energy along the guide. To 

evaluate the total power flow P we integrate the axial component of S over the 

cross-sectional area A 

(8.49) P= [ s- ida = 2k | kf. (V,u)* + (VW) da 
By means of Green’s first identity (1.34) applied to two dimensions, (8.49) can 
be written 

(8.50) tells | w* View da| 

where the first integral is around the curve C, which defines the boundary surface 

of the cylinder. This integral vanishes for both types of field because of boundary 

conditions (8.36). By means of the wave equation (8.34) the second integral may 

be reduced to the normalization integral for %. Consequently the transmitted 

power is 

1 Wy 
_—_ — P= (8.51) 

2V [Le (ows (5) ( 
*It is possible to excite a guide in such a manner that a given mode or linear combination of modes 

has a complex ys. Then a time-averaged transverse energy flow can occur. Since it is a circulatory 

flow, however, it really represents only stored energy and is not of great practical importance. 
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where the upper (lower) line is for TM (TE) modes, and we have exhibited all 

the frequency dependence explicitly. 

It is straightforward to calculate the field energy per unit tength of the guide 
in the same way as the power flow. The result is 

1 
— U=- (8.52) 

2 Wy ~~ (: Hab Lene ™~ 

Comparison with the power flow P shows that P and U are proportional. The 

constant of proportionality has the dimensions of velocity (velocity of energy 

flow) and is just the group velocity 

2 
1 kl P Wy 

= 
— (8.53) 7 — U 

1-— 

U w@ bE V be 

as can be verified by a direct calculation of v, = dw/dk from (8.39), assuming 

that the dielectric filling the guide is nondispersive. We note that v, is always less 
than the velocity of waves in an infinite medium and falls to zero at cutoff. The 
product of phase velocity (8.40) and group velocity is constant 

1 
U,U, = — (8.54) 

pe 

an immediate consequence of the fact that w Aw « k Ak 

Our considerations so far have applied to waveguides with perfectly con- 

ducting walls. The axial wave number k, was either real or purely imaginary. If 

the walls have a finite conductivity, there will be ohmic losses and the power flow 

along the guide will be attenuated. For walls with large conductivity the wave 

number will have small additional real and imaginary parts 

ky = k® + a + iB, (8.55) 

where k© is the value for perfectly conducting walls. The change a, in the real 
part of the wave number is generally unimportant except near cutoff when 

k© — 0. The attenuation constant f, can be found either by solving the bound- 
ary-value problem over again with boundary conditions appropriate for finite 

conductivity, or by calculating the ohmic losses by the methods of Section 8.1 

and using conservation of energy. We will first use the latter technique. The 

power flow along the guide will be given by 

P(z) = Poe?" (8.56) 

Thus the attenuation constant is given by 

1 dP 
Ba (8.57) 

2P dz 

where —dP/dz is the power dissipated in ohmic losses per unit length of the guide 
According to the results of Section 8.1, this power loss is 

_aP 
(8.58) + In x HP dl 

~ 2s dz 
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where the integral is around the boundary of the guide. With fields (8.31) and 
(8.33) it is easy to show that for a given mode: 

2 

1 oy 
dP 1 on @ Was 

-oco- TS hl er 

dl (8.59) 
2 206 dz Wy ( fh 4 wy 

1-3 In x VP + 3 lwP BLEW ( 
where again the upper (lower) line applies to TM (TE) modes. 

Since the transverse derivatives of ys are determined entirely by the size and 
shape of the waveguide, the frequency dependence of the power loss is explicitly 
exhibited in (8.59). In fact, the integrals in (8.59) may be simply estimated from 
the fact that for each mode: 

(Vi + peak) = 0 (8.60) 

This means that, in some average sense, and barring exceptional circumstances, 
the transverse derivatives of ys must be of the order of magnitude of V wew,w: 

ow 
— (8.61) 
on ( ) ~ (In x Vw?) ~ wea |?) 

Consequently, the line integrals in (8.59) can be related to the normalization 

integral of | y|’ over the area. For example, 

1 ow 
— — (8.62) 

on 
“at ame< | |yP da 

wh 

where C is the circumference and A is the area of cross section, while &, is a 

dimensionless number of the order of unity. Without further knowledge of the 

shape of the guide we can obtain the order of magnitude of the attenuation 

constant B, and exhibit completely its frequency dependence. Thus, using (8.59) 

with (8.62) and (8.51), plus the frequency dependence of the skin depth (8.8), we 

find 

@ 

Wy ( Cc Wy 
—_ 

— 1 (8.63) A 
2 @ 2A 

ls + n( )] ( E 
A - bw 08 

—_—_ — 

2 
@ M 

where oa is the conductivity (assumed independent of frequency), 6, is the skin 
depth at the cutoff frequency, and &, n, are dimensionless numbers of the order 

of unity. For TM modes, 7, = 0. 

For a given cross-sectional geometry it is a straightforward matter to calcu- 

late the dimensionless parameters é, and 7, in (8.63). For the TE modes with 

n = 0 in a rectangular guide, the values are &,. = a/(a + b) and no = 
2b/(a + b). For reasonable relative dimensions, these parameters are of order 

unity, as expected. 

The general behavior of B, as a function of frequency is shown in Fig. 8.6. 

Minimum attenuation occurs at a frequency well above cutoff. For TE modes 

the relative magnitudes of é, and 7, depend on the shape of the guide and on 4. 
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™ 

By TE 

Figure 8.6 Attenuation constant , 
| as a function of frequency for 

typical TE and TM modes. For TM 

modes the minimum attenuation I | 

ys 
5 4 3 occurs at w/w, = V3, regardless of 

w|w,—> cross-sectional shape. 

Consequently no general statement can be made about the exact frequency for 

minimum attenuation. But for TM modes the minimum always occurs at @nin 

\/3w,. At high frequencies the attenuation increases as w'”. In the microwave 
region typical attenuation constants for copper guides are of the order 

B, ~ 10~*,/c, giving 1/e distances of 200-400 meters. 
The approximations employed in obtaining (8.63) break down close to cutoff. 

Evidence for this is the physically impossible, infinite value of (8.63) at w = a). 

8.6 Perturbation of Boundary Conditions 

The use of energy conservation to determine the attenuation constant f, is direct 

and has intuitive appeal, but gives physically meaningless results at cutoff and 
fails to yield a value for a,, the change in the real part of the wave number. Both 

these defects can be remedied by use of the technique called perturbation of 

boundary conditions. This method is capable, at least in principle, of obtaining 

answers to any desired degree of accuracy, although we shall apply it only to the 

lowest order. It also permits the treatment of attenuation for degenerate modes, 

mentioned briefly at the end of this section and in Problem 8.13. The effect of 

small distortions of cross section can also be treated. See Problem 8.12. 

For definiteness we consider a single TM mode with no other mode (TE or 

TM) degenerate or nearly degenerate with it. The argument for an isolated TE 

mode is similar. To reduce the number of sub- and superscripts, we denote the 

(unperturbed) solution for perfectly conducting walls by a subscript zero and the 

(perturbed) solution for walls of finite conductivity by no sub- or superscript. 

Thus the unperturbed problem has a longitudinal electric field FE, = W, where 

ols = 0 (8.64) 

and ¥¢ is real. For finite, but large, conductivity, E, = wis not zero on the walls, 
but is given by (8.11). To lowest order, the right-hand side of (8.11) is approxi- 

mated by the unperturbed fields. By use of the first equation in (8.23) and (8.33), 

the perturbed boundary condition on # can be expressed as 

Oo 
— bls = f (8.65) 

Ss 
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where the small complex parameter f is* 

— (8.66) 
Wo 

f=at pae(s 
y 

Here y, and w are the magnetic permeabilities of the conducting walls and the 
medium in the guide, respectively, 6 is the skin depth (8.8), and wy is the cutoff 
frequency of the unperturbed mode. The perturbed problem, equivalent to 
(8.64), is thus 

dN 
(Vi + Y)~ =0 bls = (8.67) fo 

Ss 

If only the eigenvalue ~ is desired, Green’s theorem (1.35) in two dimensions 

can be employed 

| [6 viw- w V3) 4 $ |v oe 5 2t) a 
where the right-hand side has an inwardly directed normal [out of the conductor 

in conformity with (8.11) and (8.65)]. With the identifications, ¥ = y% and ¢ = 

Wo, and use of the wave equations (8.64) and (8.67), and their boundary condi- 

tions, the statement of Green’s theorem becomes 

atbo| 
(8.68) (vo - Y) | wow da => |™ 

Since f is assumed to be a small parameter, it is normally consistent to approx- 

imate yw in the integral on the left by its unperturbed value if. This leads to the 
final result 

do 
dl p on 

(8.69) yak ko ~ f Y% 

[lol da 
From (8.51) and (8.59) of the preceding section one finds that the ratio of integrals 

on the right-hand side of (8.69) enters a previous result, namely, 

Yo p on 

(8.70) 2k = Lo (2) 
[vol aa 

where B is defined by (8.57) and (8.63). This means that (8.69) can be written 

as 

(8.71) k2 =~ KO? + 201 + KO BO 

a result that holds for both TM and TE modes, with the appropriate B® from 
Section 8.5. For k® >> B, (8.71) reduces to the former expression (8.55) with 

*More generally, f can be expressed in terms of the surface impedance Z, as f = Colpws)Z. 



368 Chapter 8 Waveguides, Resonant Cavities, and Optical Fibers—SI 

a = B. At cutoff and below, however, where the earlier results failed, (8.71) yields 

sensible results because the combination kB is finite and well behaved in the 
neighborhood of k® = 0. The transition from a propagating mode to a cutoff 

mode is evidently not a sharp one if the walls are less than perfect conductors, 

but the attenuation is sufficiently large immediately above and below the cutoff 
frequency that little error is made in assuming a sharp cutoff. 

The discussion of attenuation here and in the preceding section is restricted 
to one mode at a time. For nondegenerate modes with not too great losses this 
approximation is adequate. If, however, it happens that a TM and a TE mode 
are degenerate (as occurs in the rectangular waveguide for n # 0, m # 0), then 

any perturbation, no matter how small, can cause sizable mixing of the two 

modes. The methods used so far fail in such circumstances. The breakdown of 

the present method occurs in the perturbed boundary condition (8.65), where 

there is now on the right-hand side a term involving the tangential derivative of 

the unperturbed H,, as well as the normal derivative of E,. And there is, of 

course, a corresponding perturbed boundary condition for H, involving both 

unperturbed longitudinal fields. The problem is one of degenerate-state pertur- 

bation theory, most familiar in the context of quantum mechanics. The perturbed 

modes are orthogonal linear combinations of the unperturbed TM and TE 

modes, and the attenuation constants for the two modes have the characteristic 

expression, 

— 

= B 3(Brm + Bre) + 3V(Brm — Bre)* + 4 [KP (8.72) 

where Brym and Brz are the values found above, and K is a coupling parameter. 

The effects of attenuation and distortion for degenerate modes using per- 

turbation of boundary conditions are addressed in Problem 8.13. See also Collin. 

8.7 Resonant Cavities 

Although an electromagnetic cavity resonator can be of any shape whatsoever, 
an important class of cavities is produced by placing end faces on a length of 
cylindrical waveguide. We assume that the end surfaces are plane and perpen- 
dicular to the axis of the cylinder. As usual, the walls of the cavity are taken to 
have infinite conductivity, while the cavity is filled with a lossless dielectric with 
constants yw, €. Because of reflections at the end surfaces, the z dependence of 
the fields is that appropriate to standing waves: 

A sinkz + B coskz 

If the plane boundary surfaces are at z = 0 and z = d, the boundary conditions 
can be satisfied at each surface only if 

k=p-— (p = 0, 1,2,...) (8.73) 
d 

For TM fields the vanishing of E, at z = 0 and z = d requires 

pre (p = 0,1, 2,...) (8.74) 
d 

E, = W(x, y) cos 
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Similarly for TE fields, the vanishing of H, at z = 0 and z=d requires 

(8.75) W(x, y) sin(22 (p = 1,2,3 ) 
Then from (8.31) and (8.33) we find the transverse fields 

TM FIELDS 

_ 

= _pT sin E, 77 (Fr (8.76) 

i€ew 
_ 

H, 2 
(022) a4 

TE FIELDS 

Lape Pp 
—_— E, ib 2 ( (8.77) 

P ES 
=> Cos H, = 

d 
dy’ (F sw 

The boundary conditions at the ends of the cavity are now explicitly satisfied 
There remains the eigenvalue problem (8.34)-(8.36), as before. But now the 
constant y” is 

pT 
— (8.78) 
d 

Y = pew - ( 
For each value of p the eigenvalue y; determines an eigenfrequency w,, 

pT 

(8.79) 
d ish ft “) | 

and the corresponding fields of that resonant mode. The resonance frequencies 

form a discrete set that can be determined graphically on the figure of axial wave 

number k versus frequency in a waveguide (see Fig. 8.4) by demanding that k = 

paid. It is usually expedient to choose the various dimensions of the cavity so 

that the resonant frequency of operation lies well separated from other resonant 

frequencies. Then the cavity will be relatively stable in operation and insensitive 

to perturbing effects associated with frequency drifts, changes in loading, etc 

An important practical resonant cavity is the right circular cylinder, perhaps 

with a piston to allow tuning by varying the height. The cylinder is shown in Fig 

8.7, with inner radius R and length d. For a TM mode the transverse wave equa- 

tion for w = E,, subject to the boundary condition E, = 0 at p = R, has the 

solution 

(8.80) W(p, ¢) ~ Ed nl YmnPye”® 

where 

Xmn 
Ymn 
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pf 

_-f- | 

Figure 8.7 

is the nth root of the equation, J,,(x) = 0. These roots were given earlier, 
Xmn 

following Eq. (3.92). The integers m and n take on the values m = 0, 1, 2,..., 

and n = 1,2,3,.... The resonance frequencies are given by 

1 
(8.81) 

Onn \/ we 
The lowest TM mode has m = 0,n = 1, p = 0, and so is designated TM; 0. 

Its resonance frequency is 

2.405 
Wolo = VueR 

The explicit expressions for the fields are 

2.405p 
E. 

R 
Eoh| 

(8.82) 
2.405p 

Hy 
R 

~i/é Eon 

The resonant frequency for this mode is independent of d. Consequently simple 

tuning is impossible. 

For TE modes, the basic solution (8.80) still applies, but the boundary con- 

dition on H,[(dW/dp) |p = 0] makes 

Ximn 
Yon = 

R 

where x,,,, is the nth root of J,,(x) = 0. These roots, for a few values of m and 

n, are tabulated below (for m # 1, x = Ois a trivial root): 

Roots of J,,(x) = 0 

m= Xon = 3.832, 7.016, 10.173, 

m= Xin = 1.841, 5.331, 8.536, 

m= X4, = 3.054, 6.706, 9.970, 

m= X3, = 4.201, 8.015, 11.336, 
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The resonance frequencies are given by 

12 2 pe 2 1 Xmn P 
— —_—__—_ (8.83) Omnp R2 d* 

V pe ( 
where m = 0,1, 2,..., but n, p = 1, 2, 3,.... The lowest TE mode has m = 
n = p = 1, and is denoted TE, , ;. Its resonance frequency is 

2 1.841 
1 + 2.912 — (8.84) d2 ( @141 = VweR 

while the fields are derivable from 

1.841p 
w= H, = Hoh (8.85) 

R 
ew sn) 

by means of (8.77). For d large enough (d > 2.03R), the resonance frequency 
@1;, 1S smaller than that for the lowest TM mode. Then the TE, 1,, mode is the 
fundamental oscillation of the cavity. Because the frequency depends on the ratio 
d/R it is possible to provide easy tuning by making the separation of the end 
faces adjustable. 

Variational methods can be exploited to estimate the lowest resonant fre- 

quencies of cavities. A variational principle and some examples are presented in 

the problems (Problems 8.9-8.11). 

8.8 Power Losses in a Cavity; QO of a Cavity 

In the preceding section it was found that resonant cavities have discrete fre- 

quencies of oscillation with a definite field configuration for each resonance fre- 

quency. This implies that, if one were attempting to excite a particular mode of 

oscillation in a cavity by some means, no fields of the right sort could be built up 

unless the exciting frequency were exactly equal to the chosen resonance fre- 

quency. In actual fact there will not be a delta function singularity, but rather a 

narrow band of frequencies around the eigenfrequency over which appreciable 

excitation can occur. An important source of this smearing out of the sharp fre- 

quency of oscillation is the dissipation of energy in the cavity walls and perhaps 

in the dielectric filling the cavity. A measure of the sharpness of response of the 

cavity to external excitation is the Q of the cavity, defined as 277 times the ratio 

of the time-averaged energy stored in the cavity to the energy loss per cycle: 

Stored energy 
QO = w (8.86) 

Power loss 

Here a, is the resonance frequency, assuming no losses. By conservation of en- 
ergy the power dissipated in ohmic losses is the negative of the time rate of 

change of stored energy U. Thus from (8.86) we can write an equation for the 

behavior of U as a function of time: 

Wo dU _ 
— — 

dt Q 
(8.87) 

with solution 
U(t) = Ue” vo/2 
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If an initial amount of energy Us is stored in the cavity, it decays away exponen- 

tially with a decay constant inversely proportional to Q. The time dependence 
in (8.87) implies that the oscillations of the fields in the cavity are damped as 

follows: 

(8.88) E(t) _ Ee7 00/22 e@7 oot Aut 

where we have allowed for a shift Aw of the resonant frequency as well as the 

damping. A damped oscillation such as this has not a pure frequency, but a 

superposition of frequencies around w = wy + Aw. Thus, 

E(t) = ver [_ E(w)e7'" dw 

where (8.89) 

E(w) = = I " Eye7 2002 2etom eo Awe dt 

The integral in (8.89) is elementary and leads to a frequency distribution for the 
energy in the cavity having a resonant line shape: 

1 
(8.90) | E(w) |? (w — w — Aw)* + (a/2Q)’ 

The resonance shape (8.90), shown in Fig. 8.8, has a full width I at half-maximum 

(confusingly called the half-width) equal to w)/Q. For a constant input voltage, 

the energy of oscillation in the cavity as a function of frequency will follow the 

resonance curve in the neighborhood of a particular resonant frequency. Thus, 

the frequency separation 5w between half-power points determines the width I 

and the Q of cavity is 

Wo 
— (8.91) 
r 

Q values of several hundreds or thousands are common for microwave cavities. 

To determine the Q of a cavity we can calculate the time-averaged energy 

stored in it and then determine the power loss in the walls. The computations 

are very similar to those done in Section 8.5 for attenuation in waveguides. We 

consider here only the cylindrical cavities of Section 8.7, assuming no degener- 

o/Q=T 

Figure 8.8 Resonance line shape. The 

full width I‘ at half-maximum (of the 

1 power) is equal to the unperturbed 

o> frequency w, divided by the Q of the 
wo + Aw oo 

cavity. 
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acies. The energy stored in the cavity for the mode A, p is, according to (8.74)- 
(8.77): 

d 
U= (8.92) 

4 Ue}L + (23) |. a 
where the upper (lower) line applies to TM (TE) modes. For the TM modes with 

= 0 the result must be multiplied by 2 
The power loss can be calculated by a modification of (8 58) 

Pross 08 Slt ai | dz |n X H[Za-5 + 2 da |n x Hn | (8.93) 
For TM modes with p # 0 it is easy to show that 

Pp _€ 

Pross (8.94) 
oop yd P(E er) Wr + 4) [tye ae 

where the dimensionless number €, is the same one that appears in (8.62), C is 

0, a the circumference of the cavity, and A is its cross-sectional area. For p 
must be replaced by 2£,. Combining (8.92) and (8.94) according to (8.86), and 
using definition (8.8) for the skin depth 6, we find the Q of the cavity 

1 wad 
—_—_ — Q= (8.95) 
Me Cd 

4A | 
where yz, is the permeability of the metal walls of the cavity. For p = 0 modes 

(8.95) must be multiplied by 2 and &, replaced by 2. This expression for Q has 

an intuitive physical interpretation when written in the form 

(8.96) Q=— #(z ; *) x (Geometrical factor) 
where V is the volume of the cavity, and S its total surface area. The Q of a cavity 

is evidently, apart from a geometrical factor, the ratio of the volume occupied 

by the fields to the volume of the conductor into which the fields penetrate be- 

cause of the finite conductivity. For the TE, ,,, mode in the right circular cylinder 

cavity, calculation yields a geometrical factor 

d? 

1 + 0.343 — 
R? ( 

1+< (8.97) 
d ad 

1 + 0.209 — + 0.244 — 
R? M 

that varies from unity for d/R = 0 to a maximum of 2.13 at d/R = 1.91 and then 
decreases to 1.42 as d/R — © 

Expression (8.96) for Q applies not only to cylindrical cavities but also to 
cavities of arbitrary shape, with an appropriate geometrical factor of the order 

of unity 

The use of conservation of energy to discuss losses in a cavity has the same 

advantages and disadvantages as for waveguides. The Q values can be calculated 
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but possible shifts in frequency lie outside the scope of the method. The technique 

of perturbation of boundary conditions, described in Section 8.6, again removes 

these deficiencies. In fact the analogy is so close to the waveguide situation that 

the answers can be deduced without performing the calculation explicitly. The 

unperturbed problem of the resonant frequencies of a cavity with perfectly con- 

ducting walls is specified by (8.64) or its equivalent for TE modes. Similarly, the 

perturbed problem involves solution of (8.67) or equivalent. Aresult equivalent 

to (8.69) evidently emerges. The difference (y3 — y’) is proportional to (w — w”) 
where now ap is the unperturbed resonant frequency rather than the cutoff fre- 

quency of the waveguide and w is the perturbed resonant frequency. Thus the 

analog of (8.69) takes the form, 

(8.98) w-w=(1+ DI 

where J is the ratio of appropriate integrals. In the limit of J — 0, the imaginary 
part of w is —il/2w . From (8.88) this is to be identified with —iw)/2Q, and there- 
fore J = w5/Q. Equation (8.98) can thus be written 

(1 + i) 
(8.99) 

Q | a = ail - 

where Q is the quantity defined by (8.86) and (8.92), (8.93). Damping is seen to 

cause equal modifications to the real and imaginary parts of w*. For large Q 
values, the change in the resonant frequency, rather than its square, is 

Aw = Im wo = -=— 
20 

The resonant frequency is always lowered by the presence of resistive losses. The 

near equality of the real and imaginary parts of the change in w” is a consequence 
of the boundary condition (8.11) appropriate for relatively good conductors. For 

very lossy systems or boundaries with different surface impedances, the relative 

magnitude of the real and imaginary parts of the change in w* can be different 

from that given by (8.99). 

In this section, as in Section 8.6, the discussion has been confined to non- 

degenerate modes. Generalization to degenerate modes is treated in Problem 

8.13. 

8.9 Earth and Ionosphere as a Resonant Cavity: 

Schumann Resonances 

A somewhat unusual example of a resonant cavity is provided by the earth itself 
as one boundary surface and the ionosphere as the other. The lowest resonant 
modes of such a system are evidently of very low frequency, since the character- 
istic wavelength must be of the order of magnitude of the earth’s radius. In such 
circumstances the ionosphere and the earth both appear as conductors with real 
conductivities. Seawater has a conductivity of a ~ 0.1 Q7' m“!, while the iono- 
sphere has ao ~ 107’-10°* 07" m™'. The walls of the cavity are thus far from 
perfectly conducting, especially the outer one. Nevertheless, we idealize the phys- 
ical reality and consider as a model two perfectly conducting, concentric spheres 
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with radii a and b = a + h, where a is the radius of the earth (a ~ 6400 km) and 

h is the height of the ionosphere above the earth (h ~ 100 km). Furthermore, if 

we are concerned with only the lowest frequencies, we can focus our attention 

on the TM modes, with only tangential magnetic fields.* The reason for this is 

that the TM modes, with a radially directed electric field, can satisfy the boundary 

condition of vanishing tangential electric field at r = a and r = b without appre- 

ciable radial variation of the fields. On the other hand, the TE modes, with only 

tangential electric fields, must have a radial variation of approximately half a 

wavelength between r = a and r = b. The lowest frequencies for the TE modes 

are therefore of the order of wre ~ ac/h, whereas for the lowest TM modes 

Wr ~ cla 

The general problem of modes in a spherical geometry is involved enough 

that we leave it to Chapter 9. Here we consider only TM modes and assume that 

the fields are independent of the azimuthal angle @. The last is no real restriction 

it is known from consideration of spherical harmonics that the relevant quantity 

is /, not m. If the radial component of B vanishes and the other components do 

not depend on ¢, the vanishing of the divergence of B requires that only By, is 

nonvanishing if the fields are finite at @ = 0. Faraday’s law then requires Ey, 

0. Thus the homogeneous Maxwell equations specify that TM modes with no ¢ 

dependence involve only E,, E,, and By. The two curl equations of Maxwell can 

be combined, after assuming a time-dependence of e-“”, into 

2 

>+>B-VxVxB=0 (8.100) 

where the relative permeabilities of the medium between the spheres are taken 
as unity. The ¢ component of (8.100) is 

2 1 1a 

sin 0 30 r° 00 
2 (TBs) + = (TBs) ° (sin 6 B.)| O (8.101) li 

0 

The angular part of . 101) can be transformed into 

0 rBg a(rBg) 
— —_ = ° (sin 6 rBy) 

sin?6 06 sin 6 06 00 Si sin 6 a0 
(sino |- 3 

showing, upon comparison with (3.6) or (3.9), that the 6 dependence is given by 

the associated Legendre polynomials P/"(cos 6) with m = +1. It is natural there- 

fore to write a product solution 

Ar) (8.102) P;(cos 9) Bg(r, 9) 

Substitution into (8.101) yields as the differential equation for u,(r) 
2 

a d’u,(r) (8.103) ur) = 0 2 
Cc dr 

_ lt al 

| 
with / = 1,2 defining the angular dependence of the modes 

The characteristic frequencies emerge from (8.103) when the boundary con- 

*For a spherical geometry the notation TE (TM) indicates the absence of radial electric (magnetic) 
field components 
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ditions appropriate for perfectly conducting walls at r = a and r = b are imposed. 
The radial and tangential electric fields are 

ic? u,(r) a 
E, P((cos 6) (sin 0B,) = 1 +1) 

wr sin 6 00 

ic? ic? du,(r) 
—_— Pi(cos 6) 

6 —— = (rBg) 
™ 

r 

™~ wr or 

The vanishing of E, at r = a andr = b implies that the boundary condition for 
u,(r) is 

du,(r) _ r=b forr=a and 0 (8.104) 
dr 

The solutions of (8.103) are r times the spherical Bessel functions (see Section 

9.6). The boundary conditions (8.104) lead to transcendental equations for the 
characteristic frequencies. An example is left as a problem; for our present pur- 

poses a limiting case suffices. The height h of the ionosphere is sufficiently small 

compared to the radius a that the limit h/a << 1 can be assumed. The /(/ + 1)/r? 
term in (8.103) can be approximated by its value at r = a. The solutions of (8.103) 
are then sin(qr) and cos(qr), where q’ is given by the square bracket in (8.103) 
evaluated at r = a. With the boundary conditions (8.104), the solution is 

u,(r) = A cos[q(r — a)] 

where gh = nz,n = 0,1,2,.... Forn =1,2,... the frequencies of the modes 

are evidently larger than w = nac/h and are in the domain of frequencies of the 
TE modes. Only for n = 0 are there very-low-frequency modes. The condition 
q = 0 is equivalent to u,(r) = constant and 

(8.105) w, = Vid + 1) < 

where the equality is exact in the limit h/a — 0. The exact solution shows that to 

first order in A/a the correct result has a replaced by (a + 5h). The fields are 
E, = 0, r’E, < P,(cos 6), rBy « P}(cos 6). 

The resonant frequencies (8.105) are called Schumann resonances.* They are 

extremely low frequencies: with a = 6400 km, the first five resonant frequencies 

are w,/27 = 10.6, 18.3, 25.8, 33.4, 40.9 Hz. Schumann resonances manifest them- 

selves as peaks in the noise power spectrum of extremely low frequencies prop- 

agating around the earth. Lightning bolts, containing a wide spectrum of fre- 

quencies, act as sources of radial electric fields. The frequency components near 

the Schumann resonances are propagated preferentially because they are normal 

modes of the earth-ionosphere cavity. The first definitive observations of these 

peaks in the noise power spectrum were made in 1960," although there is evidence 
that Nikola Tesla may have observed them before 1900.* A typical noise power 

*W. O. Schumann, Z. Naturforsch. 72, 149, 250 (1952). 

'M. Balser and C. A. Wagner, Nature 188, 638 (1960). 

*In U. S. patent 787,412 (April 18, 1905), reprinted in Nikola Tesla, Lectures and Patents and Articles, 

Nikola Tesla Museum, Beograd, Yugoslavia (1956), this remarkable genius clearly outlines the idea 

of the earth as a resonating circuit (he did not know of the ionosphere), estimates the lowest resonant 

frequency as 6 Hz (close to the 6.6 Hz for a perfectly conducting sphere), and describes generation 

and detection of these low-frequency waves. I thank V. L. Fitch for this fascinating piece of history. 
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Figure 8.9 Typical noise power spectrum at low frequencies (integrated over 30 s), 

observed at Lavangsdalen, Norway on June 19, 1965. The prominent Schumann 

resonances at 8, 14, 20, and 26 Hz, plus peaks at 32, 37, and 43 Hz as well as smaller 

structure are visible. [After A. Egeland and T. R. Larsen, Phys. Norv. 2, 85 (1967).] 

spectrum is shown in Fig. 8.9. The resonances are clearly visible. They shift 

slightly and change shape from day to day, but have average linear frequencies 

of 8, 14, 20, 26, 32, 37, and 43 Hz for the first seven peaks. These frequencies 

are given quite closely by 5.8V/(/ + 1) Hz, the coefficient being 0.78 times 

c/2ma(= 7.46 Hz). The lack of precise agreement is not surprising, since, as al- 

ready noted, the assumption of perfectly conducting walls is rather far from the 

truth. The Q values are estimated to be of the order of 4 to 10 for the first few 

resonances, corresponding to rather heavy damping. The effect of the damping 

on a resonant frequency is in the right direction to account for the differences 

between the observed values and (8.105), but the simple shift implied by (8.99) 

is only about half of what is observed. The V/(/ + 1) variation of the resonant 
frequencies is, however, quite striking. 

The simple picture of a resonant cavity with well-defined, but lossy, walls 

accounts for the main features of the Schumann resonances, although failing in 
some quantitative aspects. More realistic and detailed models and discussion of 
the observations can be found in a review by Galejs,* as well as his monograph, 

Galejs. The use of waveguide and resonant cavity concepts in the treatment of 
propagation of electromagnetic waves around the earth is discussed in the books 
by Budden and Wait listed at the end of this chapter. Two curiosities may be 

*J, Galejs, J. Res. Nat. Bur. Stand. (U.S.) 69D, 1043 (1965). See also T. Madden and W. Thompson, 

Rev. Geophys. 3, 211 (1965) and F. W. Chapman, D. L. Jones, J. D. W. Todd, and R. A. Challinor, 

Radio Sci. 1, 1273 (1966). 
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permitted here. On July 9, 1962, a nuclear explosion was detonated at high alti- 

tude over Johnston Island in the Pacific. One consequence of this test was to 

create observable alterations in the ionosphere and radiation belts on a world- 

wide scale. Sudden decreases of 3—5% in Schumann resonant frequencies were 

observed in France and at other stations immediately after the explosion, the 

changes decaying away over a period of several hours. This is documented in 

~~ 
Fig. 17 of the paper by Galejs. 

The second curiosity is the proposal* that Schumann resonances can serve 
as ‘“‘a global tropical thermometer.” The average magnetic field intensity of the 

fundamental Schumann resonance is expected to be strongly dependent on the 
frequency of lightning strikes around the world (which are seen from satellite 
observations to peak strongly in the tropics, +23° latitude). The frequency of 
lightning strikes at a number of sites in the tropics is known to be drainatically 

correlated to the average temperature. This lightning-temperature relation pro- 

vides the physical understanding of the remarkably close correlation of 
Schumann resonance monthly inean magnetic field strength and monthly mean 

surface temperature observed at Kingston, Rhode Island, over a 5.5-year period 
and suggests that the Schumann resonances can serve as a global thermometer! 

8.10 Multimode Propagation in Optical Fibers 

Optical fibers lie at the heart of high-speed, high-capacity telecommunications 

Visible or infrared light, modulated with the signal, is transmitted with little loss 

through small silica fibers. The very great frequency of the carrier light means 

that very large bandwidths are available for the signals. The technology has ad- 

vanced rapidly in the past 25 years; a voluminous technical literature continues 

to grow. We can discuss only some of the basic principles. The reader wishing 

more can consult the references given at the end of the chapter 

Transmission via optical fibers falls approximately into two classes—multi- 

mode or single-mode propagation. ‘‘Cores”’ (the region where most of the energy 

flow is located) are typically 50 wm in diameter for multimode propagation, com- 

pared to a wavelength of the order of 1 wm, while 5 wm diameters are typical of 

single-mode fibers. We first consider multimode transmission for which the se- 

migeometrical eikonal or WKB approximation is appropriate. Single-mode prop- 

agation is best described in waveguide terms. These concepts are treated in the 

following section 

Optical fiber cables, of the order of 2 cm in diameter, are actually nests of 
smaller cables each containing six or eight optical fibers protected by secondary 
coatings and buffer layers. The operative fiber consists of a cylindrical core of 
radius a [2a = O(50 um)] and index of refraction n,, surrounded by a cladding 
of outer radius b [2b = O(150 um)] and index of refraction ny < n,, as shown in 
Fig. 8.10a. Since the wavelength of the light is O(1 um), the ideas of geometrical 
optics apply; the interface between core and cladding can be treated as locally 
flat. If the angle of incidence i of a ray originating within the core is greater than 
ip, Where iy = sin™'(ng/n,) is the critical angle for total internal reflection, the ray 
will continue to be confined—it will propagate—as shown in Fig. 8.10b and 8.10c. 

*E. R. Williams, Science 256, 1184-1187 (1992) 
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Figure 8.10 Optical fiber core and cladding, with inner cylinder of index of refraction 

n, and cladding of index np (nm; > no): (a) cross section of fiber; (b) longitudinal 

section, showing a total internally reflected ray; (c) longitudinal section of the core, 

showing meridional propagating rays with complementary angles of incidence 

0 < @nax = COS” '(Mo/n,), the critical angle for total internal reflection. 

It is convenient to use the complementary angle of incidence 6, measured from 

the cylinder axis. Propagation occurs for rays with 6 < Onax = COS ‘(9/n,). It is 
also convenient to use the parameter 

No ny — No 
~1-— (8.106) 

2n ny 

Typical operation has A = 1%. Then Oma, ~ V2A & 0.14 radian (8 degrees). 
The system is, of course, a waveguide with discrete modes, as discussed in 

Section 8.11. Simple phase-space arguments allow us to estimate the number of 

propagating modes. The transverse wave number k, ~ k@ is limited because 

6 < Onax- Two-dimensional phase-space number density dN is 

d’k 
2 dN = 7a’ 

(2a 
where the first factor is the spatial area, the second the wave-number volume 

element, and the factor 2 is for two states of polarization. With d*k = 2mk, dk, = 
27k*6 dO, we have 

(8.107) N = ak? | =" 6 d@ =~ 3(kaV2A)? = 5V’ 

Here V = kaV 2A, called the fiber parameter in the literature. Typical numbers 
= 
= 260), and A = 0.005, leading to are A = 0.85 wm, a = 25 wm, n, ~ 1.4 (ka 

—_— 

= O(2.7 wm) and A = N ~ 335. In contrast, single-mode propagation has a 

O(0.0025). Then N = O(2), one for each state of polarization. Such a phase-space 

estimate is, of course, is only qualitative. 

A core with a single coating is the simplest configuration, but multilayer 

geometries are possible. Consideration of Snell’s law at successive interfaces 
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shows that if the indices of refraction decrease from layer to layer out from the 

center, a ray leaving the axis at some angle is bent successively more toward the 

axis until it is totally reflected. In fact, for an arbitrary number of layers outside 

the core, the critical angle 0,4, = COS~'(Mouter/Minner)» just as for the simple two- 
index fiber. The limit of many layers is a “graded” index fiber in which the index 

of refraction varies continuously with radius from the axis. Grading addresses 

the problem of distortion caused by different optical path lengths for different 

angles of launch, as we discuss below. 

For multimode propagation, especially in graded fibers, the quasi-geomet- 

rica] description called the eikonal approximation is appropriate. We assume that 

the medium of propagation is a linear, nonconducting, nonmagnetic material with 

an index of refraction n(x) = V e(x)/e€ that varies in space slowly on the scale of 

the local wavelength of the wave. With fields varying in time as e~‘“”, the Maxwell 

equations for E and H can be combined to give Helmholtz wave equations of 

the form 

1 
_E:Ve VE + pow’e(x)E + v( )=o 

(8.108) 

V’H + pow*e(x)H — ia(Ve) x E = 0 

The assumption that e(x) changes little over a wavelength allows us to drop the 
terms involving the gradient of € as the next order of smallness. Then the com- 
ponents of the electric and magnetic fields satisfy 

(8.109) [y° + = ta) |v =0 
Locally, the basic solutions are “plane” waves; that is, there is a local wave num- 
ber |k(x)| = wn(x)/c. It is suggestive to write, without approximation to (8.109) 
as yet, 

ys _ eleSQ0le 
(8.110) 

where the function S(x) is called the eikonal. Insertion of (8.110) into (8.109) 
leads to an equation for S, 

2 

a (n(x) — VS - VS] +i = VS =0 

Consistent with the hypothesis of slow variation of n(x) on the scale of a wave- 
length (and thus small change in S on the same scale), we neglect the last term 
as higher order. We then have the eikonal approximation of quasi-geometrical 
optics, 

VS + VS = r(x) (8.111) 

To interpret the eikonal S and connect it to geometric ray tracing, we first 
consider the expansion of S(x) in a Taylor series around some point x,: 

S(x) = S(Xo) + (K — Xo) + VS(X) + ++: 
The wave amplitude w is then 

wVS(Xo) 
c 

w(x) ~ expos (x)lexp| i — Xo) * 
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wVS(Xo)/c = The form of ¥ is that of a plane wave with wave vector k(x) = 
N(Xo) wk (Xo)/c, where k(xo) is a unit vector in the direction of VS(Xo). In general 
we define k(x) by 

(8.112) VS = n(x)k(x) 

The amplitude s(x) describes a wave front that is locally plane and is propagating 

in the direction defined by k(x). If we imagine advancing incrementally in the 

direction of k, we trace out a path that is the geometrical ray associated with the 

wave. Figure 8.11a sketches such a path. If the distance along the path is labeled 

by the variable s, the incremental change Ar has associated with it an incremental 

distance As along the path. In the limit of vanishing increments, the ratio Ar/As 

becomes dr/ds k. We therefore can write a result equivalent to (8.112) to 

describe the optical ray path r(s) 

(8.113) n(x) — = VS 

Consider now the change in the left-hand side with s along the path 

dS d 
—_— 

= — VS =V— 
ds ds oo | 

But d/ds = k- V, so that, from (8.112), dS/ds = k -kn(r) = n(r). We thus obtain 
an equation relating the coordinate r(s) along the ray to the gradient of the index 
of refraction, a generalization of Snell’s law 

(8.114) — nie “| Vn(r) 

Rays in a circular fiber fall into two classes 

Meridional rays: rays that pass through the cylinder axis; they correspond 

to modes with vanishing azimuthal index m and nonvanishing intensity at 

p=0 

Skew rays: rays that originate off-axis and whose path is a spiral in space with 

inner and outer turning points in radius; they correspond to modes with non- 

vanishing azimuthal index m and vanishing intensity at p = 0 

x 

k(z, x) 

n(x) As 

Ar 

—_-——— — k(r) 

r+Ar 

n{O) 

a(0) 
Zz 

(b) (a) 

Figure 8.11 (a) Path of wave front defined by ray unit vector k. (b) Propagation in the 

z direction with index of refraction graded in the x direction. 
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For simplicity, we apply (8.114) only to the transmission of meridional rays in an 

ptical fiber, or equivalently to rays in a “‘slab” geometry. Let.the propagation 

of radiation be in the x-z plane, generally in the z direction with an index of 

refraction that is “‘graded” in the x direction, i.e., n = n(x), as indicated in Fig 

8.11b. Suppose that a ray leaves the origin at an angle 6(0) with respect to the z 
axis, as shown. A distance s along the ray (at the point P) the unit vector k makes 

an angle 6(x) with the z axis. Note that we write @(x), not 0(x, z), because the 
coordinate x of the point P on the ray determines the value of z, modulo multiple 

values if the ray bends back toward the z axis. In terms of 6(x), the derivatives 
in (8.114) are dx/ds = sin @(x) and dz/ds = cos 6(x). Then the vector equation 
(8.114) has as its two components 

d [n(x) cos 0(x)] = 0 a = (n(x) sin 0(x)] = 

The second equation has as its integral, n(x) cos 6(x) = n(0) cos 6(0). If n(x) is 
a monotonically decreasing function of |x|, for any given 0(0) there is a maximum 

1 (and a minimum) value of x attained by the ray, namely, when cos 6(%max) 

Xmax 1S The index of refraction at |x| 

nN = n(Xmax) n(0) cos[6(0)] (8.115) 

The parameter 7 is a characteristic of a given ray or trajectory [specified by 9(0)] 

From n(x) we can deduce x,,,, and so delimit the lateral extent of that trajectory 

To find the actual path x(z) or z(x) of the ray we must return to the equations 

for x and z in terms of s. The first integral of the z component of (8.114) is, as 

we have just seen, n(dz/ds) = n. This means that we can replace d/ds in the x 

component of (8.114) by d/ds = (n/n)d/dz. The equation then reads 

—_— 

n d dx dn 

dx dz n(x) dz ( 
or 

d’x 

(8.116) 
-3< 

5 gy dz 

Equation (8.116) has the structure of Newton’s equation of motion of a particle 
of mass m in a potential V(x), with t > z,m—n’, and V(x) > —n?(x)/2. Just as 
in mechanics, use of the ‘‘velocity” x’ = dx/dz allows one to write d*x/dz 
d(x'?/2)/dx and find a first integral (conservation of energy in mechanics) 

nx = n(x) -ii (8.117) 

the constant of integration being determined by the condition that x’ = 0 when 
n(x) = 7. The trajectory z(x) is found from the integral 

Pa 

dx 
zx)=n 

Vini(x) — A 
Here it is assumed that the ray began at the origin with angle 6(0). For x <x 

max? 

the path represents one-quarter of a cycle of oscillation back and forth across 
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the x = 0 line, as shown in Fig. 8.12a. The half-period of the ray (from one 
crossing of the z axis to the next) is 

X, 
max dx 

Z=2n (8.118) 
0 

To discuss the transit time of a wave along an optical fiber, we need to 
examine the physical and optical path lengths along the ray. These path lengths 
from A to B are 

Lony = [ ds and Lopt | . n(x)ds 
— 

= With ds (nin) dz = (n/n)(dz/dx) dx = [n(x)/Vn?(x) — 77] dx, we find the 
physical and optical path lengths for half a period to be 

n(x) dx n?(x) dx 
(8.119) and Lopt = 2 I -~ 

Vn*(x) — Ww Vn2(x) — n° 

The transit time of a ray of a given launch angle 0(0) is given by the optical path 
divided by c. For a length of fiber z >> Z, the transit time 7(z) is 

opt Z 
— T(z) = (8.120) 

Z 

Different rays, defined by different 9(0) or7, have different transit times, a form 

of dispersion that is geometrical. (Note that cZ/L,,; is the ray equivalent of the 

group velocity within the fiber.) A signal launched with a nonvanishing angular 

spread will be distorted unless n(x) is chosen to make the transit time largely 

independent of 7. With a graded profile that decreases monotonically with |x|, 

rays with larger initial angles and so larger x,,,, Will have longer physical paths, 

but will have larger speeds (phase velocities) c/n(x) in those longer arcs. There 

is thus an inherent tendency toward equalization of transit times. The grading 

can in fact be chosen to make all transit times equal (see Problem 8.14). A simple 

example is shown in Fig. 8.12b. The fractional increase in optical path length L,,, 

[divided by n(0)] relative to Z as a function of @ is shown for a simple two-index 
—_ 

= n(0) and no fiber and a Gaussian-graded fiber with the same values of n, 

(A = 0.01). For 0 < 6< 6, ~ 0.1414, the graded fiber has a fractional change 

of less than 107°; for the simple fiber, the spread is 1%. 
The geometrical dispersion resulting from different launch angles @(0) has 

its counterpart as intermodal and intramodal dispersion when the propagation is 
described by discrete modes, as in the next section (see Problem 8.16). There is 
also material dispersion from the optical properties of the dielectrics. The optical 
path length L,,; (8.119) is then modified by having one of the factors of n(x) in 
the integrand of (8.119) replaced by d[wn(a, x)]/dw. For silica, the group velocity 
in the infinite medium is stationary at A ~ 1.3 wm; very large bandwidths and 
very high information transmission rates are possible there. Absorption is a min- 

imum at A ~ 1.55 yum; losses are of the order of 0.2 dB/km (see Section 9.7 for 

the Rayleigh scattering limit). 
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Figure 8.12 (a) Rays at critical angles 6,,., and On4,/2 in a simple fiber with A = 0.01 
(dashed curves) and a graded fiber of the same radius a, critical angle, and central 
index, but with a Gaussian profile, n(x) = n, e*””’ for 0 <x <a, (b = alV/A) and n(x) 
= No for x > a. Note the difference in scales. Units are such that a = 0 = V2/10. max 

(b) Differences in optical path length (divided by the axial index of refraction) and 
actual length along a fiber, [L,,./n(0)Z — 1], for a simple two-index fiber with A = 0.01 
and the Gaussian-graded fiber of (a); @nax = 2/10. The compensation from faster 
phase velocity at larger excursions away from the axis in the graded fiber is striking. 
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8.11 Modes in Dielectric Waveguides 

While the geometrical ray description of propagation in optical fibers is appro- 
priate when the wavelength is very short compared to the transverse dimensions 
of the guiding structure, the wave nature of the fields must be taken into account 
when these two scales are comparable. Just as in a metallic waveguide, propa- 
gation at a given frequency can occur only via certain discrete modes, each with 
unique transverse field configurations and axial wave numbers. The bound rays 
(09 < Onax) in the geometric description have their counterparts as bound modes, 
with fields outside the core that decrease exponentially in the radial direction. 
Unbound rays (@ > @,.x) correspond to the radiating modes, with oscillatory 
fields outside the core. Not surprisingly, single-mode propagation is important 
in optical communication, just as it is in microwave transmission in metallic 
guides. We now discuss modes in a planar guide and then introduce the circular 

fiber. 

A. Modes in a Planar Slab Dielectric Waveguide 

To examine the existence of discrete modes in an optical fiber, we consider 

the simple situation of a “‘step-index”’ planar fiber consisting of a dielectric slab 

of thickness 2a in the x direction and infinite in the other two directions. We look 

for waves that are traveling in the z direction and are independent of y. The 

indices of refraction are n,; and n, for the slab and its surrounding medium (clad- 

ding), respectively. The surfaces of the slab are at x = +a, as shown in Fig. 8.13. 

Geometrically, any ray that makes an angle 6 with respect to the z axis less than 

Onax iS totally internally reflected; the light is confined and propagates in the z 

direction, as discussed in the preceding section. The discrete mode structure oc- 

curs when we consider the wave nature of the light. Instead of solving the bound- 

ary-value problem, as for metallic waveguides, we keep to the optical description 
(but see Problem 8.15). The path shown in Fig. 8.13 can be thought of as the 

normal to the wave front of a plane wave, reflected back and forth or alternatively 
as two plane waves, one with positive x component of wave number, k, = 
k sin 6, and the other with k, = —k sin 6. To have a stable transverse field con- 

figuration and coherent propagation in the z direction, the accumulation of trans- 

verse phase on the path from A to just beyond B (with two internal reflections) 
must be an integer multiple of 27: 

(8.121) 4ka sin 6 + 26 = 2pr 

i) 

my 

-a 

Ray or normal to wave front at angle @ shown Slab dielectric waveguide. Figure 8.13 
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where p is a nonnegative integer, k = n,w/c, and ¢ is the phase associated with 

the total internal reflection, according to the Fresnel formulas (7.39) and (7.42). 
These phases are easily found to be 

OTE 
(8.122) 

2a -. 
om sin20 1 -— 2A 

i —2 arctan( 

where A = (nj? — n3)/2nj. The subscripts TE and TM in waveguide language 
correspond to the electric field being perpendicular and parallel to the plane of 
incidence in the Fresnel equations. Introducing the fiber parameter (frequency 
variable) V = ka\/2A and transverse variable ¢ = sin 6/V2A, (8.121) can be 
written 

(8.123) tan( ve - PE) = 5 zo 

where f = 1 for TE modes and f = 1/(1 — 2A) for TM modes. 

The two sides of (8.123) are plotted in Fig. 8.14 for V = 1 and V = 10. There 

are seven TE and seven TM modes for V = 10. For small A the TE and TM 

modes are almost degenerate. The left-hand side of (8.123) shows that there are 

roughly N ~ 4V/7 modes in all, a number that follows from the one-dimensional 

phase-space estimate, 

V 
Kmax dk, 

— 

_ 

Now ~ Naw ~ 2a | = “ to d(sin 6) = 
Kmax 2a 

An appropriate expression for the roots of (8.123) for TE modes is given 

in Problem 8.15. The lowest approximation, valid for V >> 1 and small p, is 

& (TE) ~ (p + 1)7/2(V + 1), showing equal spacing in p, as implied by the 

phase-space argument. 

Although our phase coherence argument relied only on the wave in the 

interior of the slab, fields exist outside, too. Their influence is expressed in 
the phases ¢. From (7.46) we find that the fields outside the slab vary in x as 
ef 8) where 

(8.124) B= kV2A — sn" = ~ VI- 

For a fixed V, as the mode number p increases (€— 1), B gets smaller and smaller; 
the fields extended farther and farther into the cladding. For angles @ > Onax 
(€> 1), B becomes imaginary, corresponding to unconfined transverse fields. The 
slab radiates rather than confines the fields. In the waveguide regime, part of the 
power propagates within the core (slab) and part outside (see Problem 8.15). For 
V = 1, roughly two-thirds of the power of the TE, mode is carried within the 
core. When V >> 1, the lower modes are almost totally confined. Only for p ~ 
Pmax does any appreciable power travel outside the core. 

Note that if A is very small, 6,4. ~ V2A is small. The longitudinal propa- 
gation constant k, = k cos @ ~ k for all the waveguide modes, as we saw in the 
geometrical optics approach. For the TM modes, in which there is a longitudinal 
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Figure 8.14. Graphic determination of eigenvalues for planar slab optical fiber: 

tan(Vx — pa/2) = fV 1x? — 1; x = sin OV 2A ~ OO nax, V = kaV2A (f = 1 for 

TE modes, f ~ 1 + 2A for TM modes); dashed curves have f = 1.04. (a) V = 1, 

x = 0.739 (TE), 0.747 (TM). (b) V = 10, seven roots for TE and for TM (p = 0,..., 6). 

component of electric field E,, we have |E,/E,| = tan 6 S On.x = V2A for small 
A. Thus, to zeroth order in A, the TM modes have transverse electric fields and 

are degenerate with the TE modes. Appropriate linear superposition of two such 

degenerate modes gives a mode with arbitrary direction of polarization in the 

x-y plane. Such modes are labeled LP (for linearly polarized, although they can 

be circularly or elliptically polarized as well). LP modes are approximate descrip- 
tions in other geometries, such as circular, provided A << 1, as is mentioned at 

the end of this section. 

B. Modes in Circular Fibers 

Optical fibers come in a wide variety of cross-sectional shapes, many analyz- 

able only by numerical methods. The circular fiber with an index of refraction 
that is azimuthally symmetric is one of the simplest to discuss, but even it is more 
complicated than the one-dimensional slab geometry of the preceding section. 
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We give only an introduction here. The reader wishing to go into more details 
may consult the references cited at the end of the chapter. 

We consider a fiber of uniform cross section with unit relative magnetic per- 

meability and an index of refraction that does not vary along the cylinder axis 
but may vary in the transverse directions. For the present we do hot restrict the 

problem to a circular cylinder. The Maxwell equations can be combined, as in 
Section 8.2, with assumed propagation as e“*~‘*", to yield the Helmholtz wave 
equations for H and E, 

2,2 
n 

VH + H = iwe,(Vn’) x E 
Cc (8.125) 
27,2 

now 

VE + 
C 

E = -v| 2 (Vn?) - r| 

where we have written € = n’€p. Just as in Section 8.2, the transverse components 

of E and H can be expressed in terms of the longitudinal fields E, and H,. 

Explicitly, the connections are 

E, = * [k, VE, — wpot x V,H,] 

and (8.126) 

H, = " [k, ViH, + wen x V.E-] 

where y = n’w*/c? — k? is the radial propagation constant, as for metallic wave- 
guides. If we take the z component of the equations (8.125) and use (8.126) to 
eliminate the transverse field components (and assume that dn’/az = 0), we find 
generalizations of the two-dimensional scalar wave equation (8.34), 

@ wk ,€ 
— z-[V.n? x V,E,] 

2 
iC 

VrH, + YH, ~ ( ) ewe) -V.H, = - 
and (8.127) 

wk Mo A 
[V.n* x V,H,] 

242 VE, + YE, ~ (4) cv VE. = 
Our first observation is that, in contrast to (8.34) for ideal metallic guides, 

the equations for E, and H, are coupled. In general there is no separation into 

purely TE or TM modes. We restrict further comments to the simple situation 

of a core that is a circular cylinder of radius a with an azimuthally symmetric 

index n(p). The cross products on the right-hand sides in (8.127) are proportional 

to (dn?/dp)(d/pdd)[E,, H,]. Only if the fields have no azimuthal variation are these 
right-hand sides zero; only in such circumstances are there separate TE and TM 

modes. One might think that for a step-index fiber the transverse gradient of n? 

would vanish, at least for p < a and for p > a; but there’s the rub. The change 

from n = n, inside to n = n, outside implies a transverse gradient, 

Vn = —2njA8(p — ap 

The equations are coupled, unless the fields are independent of azimuth. The 
modes with both E, and H, nonzero are known as HE or EH hybrid modes. In 
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practice, the solution is found by requiring continuity for normal D and B and 
tangential E and H across p = a. Separation of variables in cylindrical coordi- 
nates, assuming variation in azimuth of the form e’”? leads to solutions for E, 
and H,, 

A E. —_— 

= 

H 
Zz A, hater p<a 

and (8.128) 

E, B, 
B A, I> bn(Borer p>a 

with the z and t dependences understood. Here y? = n?w7/c? — k?2 and p? = 
2 k2 -— nbw /c>, Matching boundary conditions at p = a, with the transverse com- 

ponents computed from (8.126), leads to a determinantal eigenvalue equation 

for the various modes (see Problem 8.17). One finds that the TE and TM modes 

have nonvanishing ‘‘cutoff” frequencies, with the lowest corresponding to V = 
—_ 

= n,wavV 2Alc 2.405, the first root of Jo(x). In contrast, the lowest HE mode 

(HE,,) has no “cutoff” frequency. For 0 < V < 2.405, it is the only mode that 

propagates in the fiber. 

The azimuthally symmetric TE or TM modes correspond to meridional rays; 

the HE or EH modes, which have azimuthal variation, say, as sin(md@) or 

cos(m@), correspond to skew rays. That “‘skew ray’ modes have longitudinal 

components of both E and H can be understood physically by considering the 

total internal reflection of such a ray at p = a. Since the plane containing such a 

ray and the normal to the surface does not contain the z axis, the electric field 

vector after reflection will have a different projection on the z axis than before, 

as will the magnetic field vector. Successive reflections therefore mix TE and TM 

waves; the eigenmodes have both E, and H, nonvanishing. 

In fibers with very small A, called ‘weakly guiding waveguides” in the lit- 

erature, the fields are found to have very small longitudinal components and are 

closely transverse. The language of plane light waves can be employed. For ex- 

ample, an HE,, mode, with azimuthal dependence for E, of cos ¢, has fields that 

are approximately linearly polarized and vary as Jo(yp) in the radial direction. 
In the ‘“‘weakly guided” approximation, this mode is labeled LPo. 

The discussion so far (and some further aspects addressed in the problems) 
provide a brief introduction to the subject of optical waveguides. The literature 

is extensive and growing. The interested reader may gain entrée by consulting 

one of the references at the end of the chapter. 

8.12 Expansion in Normal Modes; Fields Generated 
by a Localized Source in a Hollow Metallic Guide 

For a given waveguide cross section and frequency w, the electromagnetic fields 

in a hollow guide are described by an infinite set of characteristic or normal 

modes consisting of TE and TM waves, each with its characteristic cutoff fre- 

quency. For any given finite frequency, only a finite number of the modes can 

propagate; the rest are cutoff or evanescent modes. Far away from any source, 
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obstacle, or aperture in the guide, the fields are relatively simple, with only the 
propagating modes (often just one) present with appreciable amplitude. Near a 

source or obstacle, however, many modes, both propagating and evanescent, 

must be superposed in order to describe the fields correctly. The cutoff modes 

have sizable amplitudes only in the neighborhood of the source or obstacle; their 
effects decay away over distances measured by the reciprocal of the imaginary 

part of their wave number. A typical practical problem congerning a source, 

obstacle, or aperture in a waveguide thus involves as accurate a solution as is 

possible for the fields in the vicinity of the source, etc., the expansion of those 

fields in terms of all normal modes of the guide, and a determination of the 

amplitudes for the one or more propagating modes that will describe the fields 

far away. 

A. Orthonormal Modes 

To facilitate the handling of the expansion of fields in the normal modes, it 

is useful to standardize the notation for the fields of a given mode, treating TE 

and TM modes on an equal footing and introducing a convenient normalization. 

Let the subscript A or » denote a given mode. One may think of A = 1, 2, 3,... 
as indicating the modes arranged in some arbitrary order, of increasing cutoff 
frequency, for example. The subscript A also conveys whether the mode is a TE 
or TM wave. The fields for the 4 mode propagating in the positive z direction 
are written 

ES (x, ys z) = [E,(x, y) + E(x, y)Je* (8.129) 

HP (x, y, z) = [Ha y) + Hats, y)Je*” 

where E,, H, are the transverse fields given by (8.31) and (8.33) and E,,, H,, 
are the longitudinal fields. The wave number k, is given by (8.37) and is taken 

to be real and positive for propagating modes in lossless guides (and purely imag- 
—iwt ; 

1 s, of course, under- inary, k, = ik,, for cutoff modes). A time dependence e 

stood. For a wave propagating in the negative z direction the fields are 

EC = [E, - E,Je** (8.130) 

HS? = [—-H, + H,,Je7* 

The pattern of signs in (8.130) compared to (8.129) can be understood from the 

need to satisfy V-E = V-H = 0 for each direction of propagation and the 

requirement of positive power flow in the direction of propagation. The overall 

phase of the fields in (8.130) relative to (8.129) is arbitrary. The choice taken 

here makes the transverse electric field at z = 0 the same for both directions of 

propagation, just as is done for the voltage waves on transmission lines. 

A convenient normalization for the fields in (8.129) and (8.130) is afforded 

by taking the transverse electric fields E,(x, y) to be real, and requiring that 

(8.131) { E, . E,. da Onn 
where the integral is over the cross-sectional area of the guide. [The orthogonality 
of the different modes is taken for granted here. The proof is left as a problem 
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(Problem 8.18), as is the derivation of the other normalization integrals listed 
below.] From the relation (8.31) between electric and magnetic fields it is evident 
that (8.131) implies 

1 
— (8.132) Onn [ H.-H, da = 
Zi 

and that the time-averaged power flow in the Ath mode is 

(8.133) Onn 1 | (ex H,) +2 da = 
22) 

It can also be shown that if (8.131) holds, the longitudinal components are nor- 
malized according to 

TM WAVES 

=A 
— On | EE, da = 
ki 

TE WAVES 

= 
——_———- (8.134) Onn | Hote. da = 
Zi 

As an explicit example of these normalized fields we list the transverse elec- 

tric fields and also H, and E, of the TE and TM modes in a rectangular guide. 

The mode index A is actually two indices (m, n). The normalized fields are 

TM WAVES 

27m TV. ni 
—_— 

a ———— 

= Eymn 
a b ( )( Yn ab ab cos 

27 m niy 
—_ 

= (8.135) E ymn 
a b ( }e( YnnbVab 

TX —2i¥ mn ny 

Een 
b a k,Vab ( )( 

TE WAVES 

NTX —2%n nay 

Emn 
a b 

os( ) sl Ymnb Vab 
nia TX 27m 
—_—— (8.136) E ymn 

b a ( )e( YmnAV ab ™ 
nay —2iYmn 

—_— 

Hemn 
b a )en( ( ky Z,Wab 

with 7,,, given by (8.43). The transverse magnetic field components can be ob- 

tained by means of (8.31). For TM modes, the lowest value of m and n is unity, 

but for TE modes, m = 0 orn = 0 is allowed. If m = 0 orn = 0, the normalization 

must be amended by multiplication of the right-hand sides of (8.136) by V2. 
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B. Expansion of Arbitrary Fields 

An arbitrary electromagnetic field with time dependence ee" can be ex- 

panded in terms of the normal mode fields (8.129) and (8.130).* It is useful to 

keep track explicitly of the total fields propagating in the two directions. Thus 

the arbitrary fields are written in the form 

™ H = H +-H® ~ E= EO + EO (8.137) 

where 

(8.138) H® = S AMHE E® = S APE) 

Specification of the expansion coefficients A{*? and A‘ determines the fields 
everywhere in the guide. These may be found from boundary or source condi- 

tions in a variety of ways. Here is a useful theorem 

The fields everywhere in the guide are determined uniquely by specification 

of the transverse components of E and H in a plane, z = constant 

Proof: There is no loss in generality in choosing the plane at z = 0. Then from 

(8.137), (8.138), and (8.129), (8.130), the transverse fields are 

E, = > (AY + AD)E, 
(8.139) 

H, = >, (AX? — AS)A, 

If the scalar product of both sides of the first equation is formed with E, and an 

integration over the cross section of the guide is performed, the orthogonality 

condition (8.131) implies 

A +A = |B E, da 
Similarly the second equation, with (8.132), yields 

AQ? AO = 23 | Hy H, da 
The coefficients A{*) are therefore given by 

H,) da (8.140) Ae =]. E, + Z?H 

This shows that if E, and H, are given at z = 0, the coefficients in the expansion 
(8.137) and (8.138) are determined. The completeness of the normal mode ex- 
pansion assures the uniqueness of the representation for all z 

C. Fields Generated by a Localized Source 

The fields in a waveguide may be generated by a localized source, as shown 
schematically in Fig. 8.15. The current density J(x, t) is assumed to vary in time 
as e~‘“", Because of the oscillating current, fields propagate to the left and to the 

*We pass over the mathematical problem of the completeness of the set of normal modes, and also 
only remark that more general time dependences can be handled by Fourier superposition 
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n<— 

Figure 8.15 Schematic representation of a 

localized source in a waveguide. The walls 

2.—_—_ of the guide, together with the planes S, 

and S_, define the volume containing the 
- S, source. 

right. Outside the source, at and to the right of the surface S,., say, there will be 
only fields varying as e’“* and the electric field can be expressed as 

(8.141) E = E® = > AWPED) 

with a corresponding expression for H. On and to the left of the surface S_ the 

fields all vary as e~“* and the electric field is 

(8.142) E=E = » ADDED? 

To determine the coefficients A‘) in terms of J, we consider a form of the 
energy flow equation of Poynting’s theorem. The identity 

V-(E x H& —- E® x WH) =J- EO (8.143) 

follows from the source-free Maxwell equations for ES*”, HS, and the Maxwell 
equations with source satisfied by E and H. Integration of (8.143) over a volume 

V bounded by a closed surface S leads, via the divergence theorem, to the result, 

(8.144) 

where n is an outwardly directly normal. The volume V is now chosen to be the 

volume bounded by the inner walls of the guide and two surfaces S, and S_ of 

Fig. 8.15. With the assumption of perfectly conducting walls containing no sources 

or apertures, the part of the surface integral over the walls vanishes. Only the 

integrals over S, and S_ contribute. For definiteness, we choose the /ower sign 
in (8.144) and substitute from (8.141) for the integral over S,: 

= haw I. a+ (EY x HO — EO x HO) da 

With the fields (8.129) and (8.130) and the normalization (8.133), this becomes 

2 
—_— 

= 
_ AW (8.145) I Z) 

The part of the surface integral in (8.144) from S_ is 

[. = 2 AS [. z+ (ES x HO? — E{? x HO”) da 
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which can easily be shown to vanish. For the choice of the lower sign in (8.144), 
therefore, only the surface S.,. gives a contribution to the left-hand side. Similarly, 

for the upper sign, only the integral over S_ contributes. It yields (8.145), but 
with A{~ instead of A{*. With (8.145) for the left-hand side of (8.144), the 
coefficients A‘ are determined to be 

~~ ™~ (8.146) AY = -= [3 EY d?x 

where the field E{* of the normal mode A is normalized according to (8.131). 
Note that the amplitude for propagation in the positive z direction comes from 

integration of the scalar product of the current with the mode field describing 

propagation in the negative z direction, and vice versa. 

It is a simple matter to allow for the presence of apertures (acting as sources 

or sinks) in the walls of the guide between the two planes S, and S_. Inspection 

of (8.144) shows that in such circumstances (8.146) is modified to read 

Zn AY? = 
2 Vane E x Hy”) +m da — 3 j, J-E® dx (8.147) 

where E is the exact tangential electric field in the apertures and n is outwardly 
directed. 

The application of (8.146) to examples of the excitation of waves in guides 

is left to the problems at the end of the chapter. In the next chapter (Section 9.5) 
we consider the question of a source that is small compared to a wavelength and 

derive an approximation to (8.146): the coupling of the electric and magnetic 

dipole moments of the source to the electric and magnetic fields of the Ath mode. 

The coupling of waveguides by small apertures is also discussed in Section 9.5. 

The subject of sources and excitation of oscillations in waveguides and cavities 

is of considerable practical importance in microwave engineering. There is a vo- 

luminous literature on the topic. One of the best references is the book by Collin 

(Chapters 5 and 7). 

D. Obstacles in Waveguides 

Discontinuities in the form of obstacles, dielectric slabs, diaphragms, and 

apertures in walls occur in the practical use of waveguides as carriers of electro- 

magnetic energy and phase information in microwave systems. The expansion of 

the fields in normal modes is an essential aspect of the analysis. In the second 

(1975) edition of this book we analyzed the effects of transverse planar obstacles 

with variational methods (Sections 8.12 and 8.13). Lack of space prevents inclu- 

sion of the material here. The reader interested in pursuing these questions can 

refer to the second edition or the references mentioned below and in the Ref- 

erences and Suggested Reading. 

Theoretical and experimental study of obstacles, etc. loomed large in the 

immense radar research effort during the Second World War. The contributions 
of the United States during 1940-45 are documented in the Massachusetts Insti- 
tute of Technology Radiation Laboratory Series, published by the McGraw-Hill 
Book Company, Inc., New York. The general physical principles of microwave 
circuits are covered in the book by Montgomery, Dicke, and Purcell, while a 
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compendium of results on discontinuities in waveguides is provided in the volume 
by Marcuvitz. Collin, already cited, is a textbook source. 

References and Suggested Reading 

Waveguides and resonant cavities are discussed in numerous electrical and commu- 
nications engineering books, for example, 

Ramo, Whinnery, and Van Duzer, Chapters 7, 8, 10, and 11 
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tinuities, are covered in detail. The original work on variational methods for discontinu- 

ities is summarized in 

J. Schwinger and D. S. Saxon, Discontinuities in Waveguides, Notes on Lectures 

by Julian Schwinger, Gordon & Breach, New York (1968). 

Variational principles for eigenfrequencies, etc., as well as discontinuities, are sur- 

veyed in 

Cairo and Kahan 

and also discussed by 

Harrington, Chapter 7 

Van Bladel, Chapter 13 

Waldron, Chapter 8 

The definitive compendium of formulas and numerical results on discontinuities, 
junctions, etc., in waveguides is 

Marcuvitz 

The mathematical tools for the treatment of these boundary-value problems are pre- 

sented by 

Morse and Feshbach, especially Chapter 13 

Perturbation of boundary conditions is discussed by Morse and Feshbach (pp. 1038 ff). 

Information on special functions may be found in the ever-reliable 

Magnus, Oberhettinger, and Soni, and in encyclopedic detail in 

Bateman Manuscript Project, Higher Transcendental Functions. 
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Numerical values of special functions, as well as formulas, are given by 

Abramowitz and Stegun 

Jahnke, Emde, and Lésch 

Two books dealing with propagation of electromagnetic waves around the earth and 

in the ionosphere from the point of view of waveguides and normal modes are 

Budden 
~ ~ Wait 

See also 

Galejs 

Schumann resonances are also described in detail in 

P. V. Bliokh, A. P. Nicholaenko, and Yu. F. Filtippov, Schumann Resonances in 

the Earth-lonosphere Cavity, transl. S. Chouet, ed. D. L. Jones, IEE Electro- 

magnetic Wave Series, Vol. 8, Peter Peregrinus, London (1980). 

There is a huge literature of the theory and practice of optical fibers for communi- 

cations. Our discussion in Sections 8.10 and 8.11 has benefited from the comprehensive 

book 

A. W. Snyder and J. D. Love, Optical Waveguide Theory, Chapman & Hall, New 
York (1983). 

Books with discussions of the waveguide aspects, as well as much practical detail, are 
J. M. Senior, Optical Fibre Communications, 2nd ed., Prentice-Hall, New York 

(1992). 

C. Vassallo, Optical Waveguide Concepts, Elsevier, New York (1991). 

Numerical methods are often required for optical waveguide geometries. A useful refer- 

ence is 

F. A. Fernandez and Y. Lu, Microwave and Optical Waveguide Analysis by the 

Finite Element Method, Research Studies Press & Wiley, New York (1996). 

Problems 

8.1 Consider the electric and magnetic fields in the surface region of an excellent con- 

ductor in the approximation of Section 8.1, where the skin depth is very small 

compared to the radii of curvature of the surface or the scale of significant spatial 

variation of the fields just outside. 

(a) For a single-frequency component, show that the magnetic field H and the 

current density J are such that f, the time-averaged force per unit area at the 

surface from the conduction current, is given by 

f=—n a Hi, 

where Hj is the peak parallel component of magnetic field at the surface, 1, 

is the magnetic permeability of the conductor, and n is the outward normal at 
the surface. 

(b) If the magnetic permeability y outside the surface is different from y,, is there 
an additional magnetic force per unit area? What about electric forces? 

(c) Assume that the fields are a superposition of different frequencies (all high 
enough that the approximations still hold). Show that the time-averaged force 
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takes the same form as in part a with |H,|? replaced by 2(|H,|?), where the 
angle brackets (: - -) mean time average. 

8.2 A transmission line consisting of two concentric circular cylinders of metal with 
conductivity o and skin depth 6, as shown, is filled with a uniform lossless dielectric 
(u, €). A TEM mode is propagated along this line. Section 8.1 applies. 

(a) Show that the time-averaged power flow along the line is 

P= if: ma? | Hof? in?) 
where Hp is the peak value of the azimuthal magnetic field at the surface of 
the inner conductor. 

ee 

sta ke 

Problem 8.2 

(b) Show that the transmitted power is attenuated along the line as 

P(z) = Poe?” 

where 

1 1 
— 

a b gl ) 
_ yYy=-=7. 

208 Vw b 
— 

a Hl ) 
(c) The characteristic impedance Z, of the line is defined as the ratio of the voltage 

between the cylinders to the axial current flowing in one of them at any 

position z. Show that for this line 

= 
= Zo 

2 a 
Show that the series resistance and inductance per unit length of the line are (a) 

1 1 1 
_ = —— 

a b ~ Qano8 ( 
1 1 b U5 pb 

—_— 
— 

= 

+ L 4+ — 

a a 4 b 27 ) ( ol ) 
where yp, is the permeability of the conductor. The correction to the induc- 

tance comes from the penetration of the flux into the conductors by a distance 

of order 6. 



398 Chapter 8 Waveguides, Resonant Cavities, and Optical Fibers—SI 

8.3 (a) A transmission line consists of two identical thin strips of metal, shown in 
cross section in the sketch. Assuming that b >> a, discuss the propagation of 

a TEM mode on this line, repeating the derivations of Problem 8.2. Show that 

ab 
-_-— [Hol 

~~ 

y= 

aad 

o= fe ( 
= 

adb 

pa + p6 

H,€ 

ee 

Ho, Eo 

Problem 8.3 

where the symbols on the left have the same meanings as in Problem 8.2. 

(b) The lower half of the figure shows the cross section of a microstrip line with 

a strip of width b mounted on a dielectric substrate of thickness h and dielectric 

constant e¢, all on a ground plane. What differences occur here compared to 

partaifb >> h?Ifb<h? 

8.4 Transverse electric and magnetic waves are propagated along a hollow, right cir- 

cular cylinder with inner radius R and conductivity o. 

(a) Find the cutoff frequencies of the various TE and TM modes. Determine 

numerically the lowest cutoff frequency (the dominant mode) in terms of the 

tube radius and the ratio of cutoff frequencies of the next four higher modes 

to that of the dominant mode. For this part assume that the conductivity of 
the cylinder is infinite. 

(b) Calculate the attenuation constants of the waveguide as a function of fre- 
quency for the lowest two distinct modes and plot them as a function of 
frequency. 

8.5 A waveguide is constructed so that the cross section of the guide forms a right 
triangle with sides of length a, a, 2a, as shown. The medium inside has By, = 
é-= 1, 
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(a) Assuming infinite conductivity for the walls, determine the possible modes of 
propagation and their cutoff frequencies. 

aS 
aes Problem 8.5 

(b) For the lowest modes of each type calculate the attenuation constant, assuming 

that the walls have large, but finite, conductivity. Compare the result with that 

for a square guide of side a made from the same material. 

8.6 A resonant cavity of copper consists of a hollow, right circular cylinder of inner 

radius R and length L, with flat end faces. 

(a) Determine the resonant frequencies of the cavity for all types of waves. With 

(1/V we R) as a unit of frequency, plot the lowest four resonant frequencies 

of each type as a function of R/L for 0 < R/L < 2. Does the same mode have 

the lowest frequency for all R/L? 

(b) If R = 2 cm, L = 3 cm, and the cavity is made of pure copper, what is the 

numerical value of Q for the lowest resonant mode? 

8.7 A resonant cavity consists of the empty space between two perfectly conducting, 

concentric spherical shells, the smaller having an outer radius a and the larger an 

inner radius b. As shown in Section 8.9, the azimuthal magnetic field has a radial 

dependence given by spherical Bessel functions, j,(kr) and n,(kr), where k = wic. 

(a) Write down the transcendental equation for the characteristic frequencies of 

the cavity for arbitrary /. 

(b) For / = 1 use the explicit forms of the spherical Bessel functions to show that 

the characteristic frequencies are given by 

1 
e+ — 

ab ( tan kh _ 

1 1 
= 

2 b2 I ke + aol? - 
where h = b — a. 

For hia << 1, verify that the result of part b yields the frequency found in (c) 
Section 8.9, and find the first order correction in h/a. [The result of part b 

seems to have been derived first by J. J. Thomson and published in his book 

Recent Researches in Electricity and Magnetism, Oxford Clarendon Press, 

1893, pp. 373 ff] 

For the Schumann resonances of Section 8.9 calculate the Q values on the assump- 8.8 

tion that the earth has a conductivity a, and the ionosphere has a conductivity o;, 

with corresponding skin depths 6, and 6,. 

(a) Show that to lowest order in h/a the Q value is given by Q = Nhi(6, + 6;) and 
determine the numerical factor N for all J. 

(b) For the lowest Schumann resonance evaluate the Q value assuming a, = 0.1 

(Qm)-!, o; = 107° (Qm)", A = 10° km. 
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(c) Discuss the validity of the approximations used in part a a for the range of 
parameters used in part b. 

8.9 A hollow volume V containing a uniform isotropic linear medium (e, 4) is bounded 

by a perfectly conducting closed surface S (which may have more than one discon- 
nected part). A harmonic electric field inside the cavity satisfies the vector 

Helmholtz equation, 

~~ with k? =:w*we™ Vx(Vx E)=KE 

The boundary condition isn x E = 0 (andn-B =0)onS 

(a) Show that 

[ee [V x (V x E)] @ 
k? 

[= E d’ 

is a variational principle for the eigenvalue k? in the sense that a change of 

E—E + 6E, where both E and 6E satisfy the boundary conditions on S, leads 
to only second-order changes in k? 

(b) Apply the variational principle to the TMoi9 mode of a right cylindrical cavity 

of radius R and length d, using the trial longitudinal electric field E 

Eo cos(7rp/2R) [no variational parameters]. Show that the estimate of the ei- 

genvalue is 

T 

kR = 
2\yr-4 

je 

Compare numerically with the known eigenvalue, the root xo, of Jo(x) 

(1 + a)(p/R)*] (c) Repeat the calculation of part b with FE, = Ep [1 + a(p/R)? 
where a is a variational parameter. Show that for this trial function the best 

estimate 1s 

17 — 234 

68 + 34 
kR E ( le 

How much better is this truly variational calculation than part b? 

8.10 Use the variational principle of Problem 8.9 in terms of the electric field E to find 

an estimate of the eigenvalue for k? for the TE,,, mode in a right circular cylinder 

cavity of radius R and length d with perfectly conducting walls. Use as a trial func- 

tion B, = Bo(p/R) (1 — p/2R) cos ¢ sin(7z/d). [This function satisfies the boundary 

conditions of B, = 0 at z = 0 and z = d, and 0B,/dp = 0 at p= R_] 

(a) First show that the variational principle can be reexpressed as 

[wx Ey (V x E) d* 
k2 

[= Ed 

(b) Show that the (transverse) components of the (trial) electric field are 

E, = Eo(1 — p/2R) sin ¢ sin(az/d) Ey, = E,(1 — p/R) cos $ sin(mz/d) 

(c) Calculate the curl of E and show that the approximation for k? is 

18 qr? 
k2 

5R? d? 
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Compare with the exact result. For small enough d/R, this mode has a larger 
eigenvalue than the TMoi. mode. Why should the present variational estimate 
be at all reliable? 

(d) The original variational expression in Problem 8.9 has an equivalent integrand 

in the numerator, E*-[V(V-E) — V°E]. Discuss the relative merits of this 

integrand compared with the square of the curl of E in part a for the present 
problem. 

8.11 Apply the variational method of Problem 8.9 to estimate the resonant frequency of 

the lowest TM mode in a “‘breadbox” cavity with perfectly conducting walls, of 

length d in the z direction, radius R for the curved quarter-circle “front” of the 

breadbox, and the “bottom” and “‘back” of the box defined by the plane segments 

(y = 0,0 <x < R) and (x = 0,0 < y < R), respectively. Use the trial function, 

E, = E,(p/R)*(1 — p/R)sin2¢ 

for the only component of electric field present. This function gives vanishing tan- 

gential component of E on the boundary surfaces; the index v is a variational pa- 

rameter. Show that 

_ (v + 2)Qv + 3\(¥% + v4 4) 
k?R? 

v(2v + 1) 

Minimize with respect to v to find the best estimate of KR from the given trial 

function. Compare with the exact answer, KR = 5.13562, the first root of J2(x). 

8.12 A waveguide with lossless dielectric inside and perfectly conducting walls has a 

cross-sectional contour C that departs slightly from a comparison contour Cy whose 

fields are known. The difference in boundaries is described by 4(x, y), the length 

measured from Cy to C along the normal to Cy at the boundary point (x, y). The 
derivative d5/ds along the boundary is higher order in small quantities. 

(a) If the eigenvalue parameters and solutions for C and Cy are (7’, w) and (¥, Yo), 
respectively, without degeneracy, show that to first order in 6 

on i, Ze] dl $. 60 »| 
—_— _ 

o> 

I, lwo? dx dy 
where only the first (second) term in the numerator occurs for TM (TE) 

modes. [Hint: Follow the same general approach as used in Section 8.6 for the 

effects of finite conductivity. ] 

Determine the perturbed value of 7 for the lowest TE and TM modes (TE; o (b) 
and TM, ,,) in a rectangular guide if the change in shape is as shown in the 

accompanying sketch. 

_|6 5| 

New 

boundary 

Problem 8.12 a 
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8.13 To treat perturbations if there is a degeneracy of modes in guides or cavities under 
ideal conditions, one must use degenerate-state perturbation theory. Consider the 
two-dimensional (waveguide) situation in which there is an N-fold degeneracy in 
the ideal circumstances (of perfect conductivity or chosen shape of cross section), 
with no other nearby modes. There are N linearly independent solutions yi, chosen 
to be orthogonal, to the transverse wave equation, (V7 + y)¥f? =0,i=1,2,..., 
N. In response to the perturbation, the degeneracy is in general lifted. There is a 

set of perturbed eigenvalues, yz, with associated eigenmodes, y,, Which can be 
—_ 

= expanded (in lowest order) in terms of the N unperturbed eigenmodes: , 

Law. 

(a) Show that the generalization of (8.68) for finite conductivity (and the corre- 

sponding expression in Problem 8.12 on distortion of the shape of a wave- 

guide) is the set of algebraic equations, 

> [(y — YO)Nj6i + Ajla; = 0 G = 1,2,...,N) 
where 

(i) 
0 ayy” ays 

——_— —_——_ dl 
on c on 

N; = [ |y da and Ay = f 

for finite conductivity, and 

(i) (i) bi ayY* ow 
0 

2 

v 

on 0 
|e Aj = $ d(x, »| 

for distortion of the boundary shape. 

(b) The lowest mode in a circular guide of radius R is the twofold degenerate TE}, 
mode, with fields given by 

WO = Bz = Bol(yop) exp(+id) exp(ikz — iwt) 

The eigenvalue parameter is yo = 1.841/R, corresponding to the first root of 

dJ,(x)/dx. Suppose that the circular waveguide is distorted along its length 
into an elliptical shape with semimajor and semiminor axes, a = R + AR, 

b = R — AR, respectively. To first order in AR/R, the area and circumfer- 

ence of the guide remain unchanged. Show that the degeneracy is lifted by 

the distortion and that to first order in AR/R, yj = yo(1 + AAR/R) and ¥3 = 
yo(1 — AAR/R). Determine the numerical value of A and find the eigenmodes 

as linear combinations of y‘*). Explain physically why the eigenmodes turn 
out as they do. 

8.14 Consider an optical fiber with a graded index of refraction for rays confined to the 

x-z plane, n(x) = n(0) sech(ax). The fiber has large enough transverse dimensions 

(x) to contain all rays of interest, which are evidently symmetric about x = 0. The 

invariant H = n(%max) = n(0) cos A(0). 

(a) Solve the eikonal equations for the transverse coordinate x(z) of the ray and 

show that 

ax = sinh” '[sinh(axmax) sin(@z)] 

where the origin in z is chosen when the ray has x = 0. Sketch rays over one 

half-period for ‘‘launch angles’? 6(0) = 7/6, 7/4, and 7/3. 

(b) Find the half-period Z of the ray. Does it depend on 7? 

(c) Show that the optical path length for a half period, L,,, = Jn(x) ds is Lon = 

n(0)Z. Comment on the effectiveness of this particular grading of the index. 
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Hint: In the computation of copt, a useful change of variables is sinh(ax) = 
sinh(@Xmax) Sin t. The resulting integral can be done by contour integration: 

atl 
dé 

| 0 1+ a’ sin26 WIE 
8.15 Discuss the TE and TM modes in the dielectric slab waveguide of Section 8.11.A 

as a boundary-value problem. 

(a) Show that (8.123) emerges as the determining relation for both even and odd 
modes (in x) and that even or odd p goes with the evenness or oddness of the 
mode, defined by the symmetry in x of the transverse fields. 

(b) Show that the eigenvalues of é for the TE modes are given approximately by 

(p + 1)7 _ (p + 1/7 
é= 

2(V + 1) 24(V + 1) | | 
The lowest order result is accurate for V >> 1 and small p. Check the accuracy 
of the full expression against solution of (8.123) by Newton’s method for 

V = 1,2, 3. 

(c) Calculate the power flow in the z direction (per unit length in the y direction) 

within the core (|x| < a) and in the cladding (|x| > a) for the even TE modes 

and show that the fractions are 

1 sin(2Vé) cos?(VE) 
Froore =. 

S 2VE 
; 

VWI1-2@ | and Faaa :| 
where 

cos?(VE) + sin(2Vé) 

VE VWWI-@ 
sf I | 

where éis the root of (8.123) for the pth mode. Find corresponding expressions 

for the odd TE modes. 

8.16 The longitudinal phase velocity in the dielectric slab waveguide of the preceding 

wik, = c/(n; cos @,). Intermodal dispersion occurs because the problem is v, 

dielectric media have dispersion and also because the group velocity differs intrin- 

sically for different modes. 

(a) Making the approximation that the dielectrics’ dispersion can be neglected, 

show that the group velocity v, = dw/dk, for the TE, mode is 

c cos @ 1 + B,a 
— ———_2 Pe 

& 
ny | | cos*6, + Ba 

where 6, is the eigenangle of the pth mode (cos 6, = V1 — 2Aé?) and 8, is 
given by (8.124). Interpret the departure from u,v, = c’/n{ (as in metallic 
waveguides; 8, — ©) in terms of the Goos—Hanchen effect and ray-like prop- 

agation at the simple phase speed c/n. [Hint: Write the eigenvalue relation 
(8.121) in terms of the independent variable w and the dependent variable k, 

and differentiate with respect to w.] 

(b) Write a program to evaluate v, versus V/V,, where V, = pa/2 is the threshold 
frequency variable for the p™ mode. Make a plot of v,/c for n, = 1.5, nz = 1.0 

for p = 0,1, 2,..., 6 as a function of V/V,(p = 1) on the range (0, 10). 

Relate the results of part b to the optical path length difference for the step- (c) 
index fiber shown in Fig. 8.12b. Can you generate a plot from the results for 

v,(p) at fixed V for mn, = 1.01, n. = 1.0 to compare with the “classical” ray 

result? 
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8.17 Consider the propagating modes in a cylindrical optical fiber waveguide of radius 

a with a step index of refraction, , in the core (p < a) and n, <-, in the cladding 
(p > a). Assume that the fields vary as elm +ik,z—iot Ror bound modes, the fields in 

the core (cladding) are proportional to ordinary (modified) Bessel functions J,(K,) 

with appropriate values of v and argument, as in (8.128) 

(a) Show that for m # 0 the eigenvalue relation for the transverse parameter Ynp, 

(and Brn) is _™— ~ 

1 ny 1K, Jin ni J, 
— 

ny Kin my 

7" B eB 7) B Km ¥ Jn alle B Ki, y J me) Fy ( me); 
kK2 and B? = k2 — n3a*/c”, while primes indicate deriv- where ¥° = niw’/c? 

atives with respect to the argument, and the argument of J,, (K,,) is ya (Ba) 

The first subscript on y is the azimuthal index m; the second designates the 

nth root of the eigenvalue equation for fixed m 

(b) Determine the eigenvalue equation for the m = 0 modes (TE and TM) and 

show that the lowest “‘cutoff”’ frequency corresponds to V = 2.405, the first 

root of Jo(x), where “‘cutoff’’ is the frequency below which the guide radiates 

rather than confines. 

(c) Show that the lowest HE mode (HE,,) has no cutoff frequency and that 

for V <1 the decay parameter Ba ~ Ae~®””. Find A and B in terms of n 
and np. 

8.18 From the use of Green’s theorem in two dimensions show that the TM and (a) 
TE modes in a waveguide defined by the boundary-value problems (8.34) and 

(8.36) are orthogonal in the sense that 

| E,,E,,da = 0 for A # uw 

for TM modes, and a corresponding relation for H, for TE modes 

(b) Prove that the relations (8.131)—(8.134) form a consistent set of normalization 

conditions for the fields, including the circumstances when A is a TM mode 

and wis a TE mode 

8.19 The figure shows a cross-sectional view of an infinitely long rectangular waveguide 

with the center conductor of a coaxial line extending vertically a distance h into its 

interior at z = 0. The current along the probe oscillates sinusoidally in time 

with frequency w, and its variation in space can be approximated as I(y) 

Ty sin[(wic)(h — y)]. The thickness of the probe can be neglected. The frequency is 

such that only the TE,) mode can propagate in the guide 

— 

Problem 8.19 

(a) Calculate the amplitudes for excitation of both TE and TM modes for all 
(m, n) and show how the amplitudes depend on m and n for m,n >> 1 for a 
fixed frequency w 



405 Ch. 8 Problems 

(b) For the propagating mode show that the power radiated in the positive z 
direction is 

xX I pec 
— wh 

wkab 2 ( )=( 
with an equal amount in the opposite direction. Here k is the wave number 

for the TE,) mode. 

(c) Discuss the modifications that occur if the guide, instead of running off to 

infinity in both directions, is terminated with a perfectly conducting surface at 

z = L. What values of L will maximize the power flow for a fixed current Jp? 
What is the radiation resistance of the probe (defined as the ratio of power 

flow to one-half the square of the current at the base of the probe) at 

maximum? 

8.20 An infinitely long rectangular waveguide has a coaxial line terminating in the short 

side of the guide with the thin central conductor forming a semicircular loop of 

radius R whose center is a height 4 above the floor of the guide, as shown in the 

accompanying cross-sectional view. The half-loop is in the plane z = 0 and its radius 

R is sufficiently small that the current can be taken as having a constant value Ip 

everywhere on the loop. 

a 

= 
7 

—2R 
b iF 

—F h 

| Problem 8.20 
Prove that to the extent that the current is constant around the half-loop, the (a) 
TM modes are not excited. Give a physical explanation of this lack of 

excitation. 

Determine the amplitude for the lowest TE mode in the guide and show that (b) 
its value is independent of the height h. 

Show that the power radiated in either direction in the lowest TE mode is (c) 

I aR 4 Z P= 

a 16 ib ( 
; 

where Z is the wave impedance of the TE; mode. Here assume R < a, b. 

8.21 A hollow metallic waveguide with a distortion in the form of a localized bend or 

increase in cross section can support nonpropagating (“bound state’’) configura- 

tions of fields in the vicinity of the distortion. Consider a rectangular guide that has 

its distortion confined to a plane, as shown in the figure, and TE jo as its lowest 

propagating mode, with perpendicular electric field E, = y. On either side of 

the distortion the guide is straight and of width a. Without distortion, y = 

Ep sin(aryla) exp(+ikz), where k? = (w/c)? — (a/a)’. The distortion is described by 

a curvature x(s) = 1/R(s) and a width w(s). Locally the element of area in the plane 

is dA = h(s, t) ds dt, where s is the length along the guide wall and ¢ the transverse 

coordinate, as shown in the figure, and A(s, t) = 1 — «(s)t. In terms of s and ¢ the 

Laplacian is 

1a 10 Loy ow _— Vy = 
h as h as oat h at ( (i 
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If the distortions are very small and change slowly in s on the scale of the width 

a, an ansatz for the solution is 

Tt u(s) 
Ws, t) = 

w(s) “| | Vh(s, t) 

[The factor in the denominator is equivalent to the factor p’” familiar from Bessel 
functions that converts the radial part of the Laplacian in polar coordinates to a 

simple second partial derivative (plus an additional term without derivatives).] 

(a) Show that substitution of the ansatz into the two-dimensional wave equation, 

(V* + w/c?) = 0, leads to the equation for u(s), 

d’u 1 1 
— 

ds 
- ; K*(s) 

ws) a 
+ [k? — v(s)Ju = 0 with v(s) = 7 

if small terms are neglected. Interpret v(s) in analogy with the Schrédinger 

equation in one dimension. 

(b) If the distortion is in the form of a bend through an angle @ with constant 

radius of curvature R >> a, show that for 6a/R << J there is a “‘bound state’”’ 

at frequency wp) where 

WC 6a 
2 

— 

Wo = 

87R )Le-( )] 
References: J. Goldstone and R. L. Jaffe, Phys. Rev. B 45, 14100 (1992); J. P. 

Carini, J. T. Londergan, K. Mullen, and D. P. Murdock, Phys. Rev. B 48, 4503 

(1993). 

i «(s) = 1/R(s) 

! 

Problem 8.21 



CHAPTER 9 

Radiating Systems, Multipole Fields 
and Radiation 

In Chapters 7 and 8 we discussed the properties of electromagnetic waves and 

their propagation in both bounded and unbounded geometries, but very little 

was said about the generation of such waves. In the present chapter we turn to 

this question and discuss the emission of radiation by localized systems of oscil- 

lating charge and current densities. The initial treatment is straightforward, with- 

out elaborate formalism. It addresses simple systems in which electric dipole, 

magnetic dipole, or electric quadrupole radiation dominates, or the sources are 

sufficiently simple that direct evaluation of the radiation fields is easy. The simple 

multipole expansion of a source in a waveguide is also treated, and the effective 

multipole moments of apertures. These ‘‘elementary” discussions are followed 

by the systematic development of multipole fields of arbitrary order (/, m) and 

the derivation of exact formulas for multipole radiation of any order by localized 

harmonic systems. Some comparisons of the simple and systematic approaches 

are made. Applications to scattering are presented in Chapter 10, along with 

diffraction and the optical theorem. Considerations of the relativistic Liénard— 

Wiechert fields and radiation by rapidly moving charged particles are deferred 

to Chapters 14 and 15. 

9.1 Fields and Radiation of a Localized Oscillating Source 

For a system of charges and currents varying in time we can make a Fourier 

analysis of the time dependence and handle each Fourier component separately. 

We therefore lose no generality by considering the potentials, fields, and radia- 

tion from a localized system of charges and currents that vary sinusoidally in 

time: 

—iwt 

p(x, t) = p(xje 
(9.1) 

I(x, t) = I(x)e"' 

As usual, the real part of such expressions is to be taken to obtain physical 

quantities.* The electromagnetic potentials and fields are assumed to have the 

same time dependence. The sources are located in otherwise empty space. 

*See Problem 9.1 for some of the subtleties that can arise over factors of 2. There are also factors of 

2 in the correspondence between classical and quantum-mechanical quantities. For example, in a one- 

electron atom our classical dipole moment p is replaced by 2e(f |r|i) for a transition from state i to 
state f. 

407 



408 cChapter9 Radiating Systems, Multipole Fields and Radiation—SI 

It was shown in Chapter 6 that the solution for the vector potential A(x, ¢) 
in the Lorenz gauge is 

(9.2) aw. = ff ax | ar ( 4! = ) 

provided no boundary surfaces are present. The Dirac delta function assures the 

causal behavior of the fields. With the sinusoidal time dependence (9.1), the 

solution for A becomes 

ik|x—x'| 

d?x' (9.3) A(x) =“ | ae’ 
| 

where k = w/c is the wave number, and a sinusoidal time dependence is under- 

stood. The magnetic field is given by 

1 
H=—-VxA (9.4) 

Ko 

while, outside the source, the electric field is 

iZo 
E=—VxH (9.5) 

where Zp = V Mo/€q is the impedance of free space. 

Given a current distribution J(x’), the fields can, in principle at least, be 

determined by calculating the integral in (9.3). We will consider one or two ex- 

amples of direct integration of the source integral in Section 9.4. But at present 

we wish to establish certain simple, but general, properties of the fields in the 

limit that the source of current is confined to a small region, very small in fact 

compared to a wavelength. If the source dimensions are of order d and the wave- 

length is A = 27c/w, and if d << A, then there are three spatial regions of interest 

d<xr<a The near (static) zone 

d<r~a The intermediate (induction) zone 

d<A<r The far (radiation) zone 

We will see that the fields have very different properties in the different zones 

In the near zone the fields have the character of static fields, with radial com- 

ponents and variation with distance that depend in detail on the properties of 

the source. In the far zone, on the other hand, the fields are transverse to the 

radius vector and fall off as r~', typical of radiation fields 

For the near zone where r << A (or kr << 1) the exponential in (9.3) can be 

replaced by unity. Then the vector potential is of the form already considered in 

Chapter 5. The inverse distance can be expanded using (3.70), with the result 

4m Yin(9, >) 
lim A(x) = 

+1 [s0'V4.0, 6). Px 06) 
kr->0 mE 

a shows that the near fields are quasi-stationary, oscillating harmonically as 
~'t but otherwise static in character. 

In the far zone (kr >> 1) the exponential in (9.3) oscillates rapidly and de- 
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termines the behavior of the vector potential. In this region it is sufficient to 
approximate* 

Ix —x’|=r—-n-x (9.7) 

where n is a unit vector in the direction of x. Furthermore, if only the leading 
term in kr is desired, the inverse distance in (9.3) can be replaced by r. Then the 
vector potential is 

Lo eikr 

— lim A(x) = (9.8) 
[ 302. ikn-x a ' 

kr—> co 

This demonstrates that in the far zone the vector potential behaves as an outgoing 
spherical wave with an angular dependent coefficient. It is easy to show that the 
fields calculated from (9.4) and (9.5) are transverse to the radius vector and fall 
off as r They thus correspond to radiation fields. If the source dimensions are 

small compared to a wavelength it is appropriate to expand the integral in (9.8) 

in powers of k 

lim A(x) = 
“S 

(9.9) 
a oe "| ae )(n - x’)” d?x' 

kr>@ 2 
The magnitude of the nth term is given by 

(9.10) — | J(x’)(An x’)” da? ’ 

Since the order of magnitude of x’ is d and kd is small compared to unity by 

assumption, the successive terms in the expansion of A evidently fall off rapidly 

with n. Consequently the radiation emitted from the source will come mainly 

from the first nonvanishing term in the expansion (9.9). We will examine the first 

few of these in the following sections 

In the intermediate or induction zone the two alternative approximations 

leading to (9.6) and (9.8) cannot be made; all powers of kr must be retained 

Without marshalling the full apparatus of vector multipole fields, described in 

Sections 9.6 and beyond, we can abstract enough for our immediate purpose. The 

key result is the exact expansion (9.98) for the Green function appearing in (9.3) 
For points outside the source (9.3) then becomes 

A(x) = Holk DHPC )¥in(®s #) | I(x')j(kr')Vin(8', $') Ax" (9.11) 

If the source dimensions are small compared to a wavelength, j,(kr’) can be 
approximated by (9.88). Then the result for the vector potential is of the form 

of (9.6), but with the replacement 

ikr 
e 1 

+ a,(ikr)'] (9.12) aq [1 + a,(ikr) + a,(ikry 
+1 

*Actually (9.7) is valid for r >> d, independent of the value of kr. It is therefore an adequate ap- 

proximation even in the near zone 
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The numerical coefficients a; come from the explicit expressions for the spherical 

Hankel functions. The right-hand side of (9.12) shows the transition from the 

static-zone result (9.6) for kr << 1 to the radiation-zone form (9.9) for kr >> 1. 

Before discussing electric dipole and other types of radiation, we examine 

the question of electric monopole fields when the sources vary in time. The analog 

of (9.2) for the scalar rome is 
t') 

, p(x’, t') 
P(x, t) = 4 v fae ie 

The electric monopole cc contribution is obtained by replacing |x — x’| > |x| =r 
under the integral. The result is 

q(t! = t — ric) 
®,nronopote(X t) ~ 

4T€ 

where q(t) is the total charge of the source. Since charge is conserved and a 

localized source is by definition one that does not have charge flowing into or 

away from it, the total charge q is independent of time. Thus the electric monopole 

part of the potential (and fields) of a localized source is of necessity static. The 

fields with harmonic time dependence e “*’, w # 0, have no monopole terms 

We now turn to the lowest order multipole fields for w # 0. Because these 

fields can be calculated from the vector potential alone via (9.4) and (9.5), we 

omit explicit reference to the scalar potential in what follows 

9.2. Electric Dipole Fields and Radiation 

If only the first term in (9.9) is kept, the vector potential is 

Ho ikr 

— A(x) = (9.13) 
| J(x’)d? ’ 

Examination of (9.11) and (9.12) shows that (9.13) is the / = 0 part of the series 

and that it is valid everywhere outside the source, not just in the far zone. The 

integral can be put in more familiar terms by an integration by parts 

(9.14) [sav =-[x@ Dax’ = ~iw | x’p(x")d2x' 
since from the continuity equation 

iop =V-J (9.15) 

Thus the vector potential is 

ikr 
ée LpLoW 

A(x) P (9.16) 
4a r 

where 

(9.17) p= | xXow)a°e 
is the electric dipole moment, as defined in electrostatics by (4.8) 
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The electric dipole fields from (9.4) and (9.5) are 

ikr 
é 1 H=~ xp) 

r kr 
(1 

(9.18) 
ikr 

Lik EK = —— + [3n(n + p) — nl 2 4 r 

0 
rp 

{Hen x p) Xn Je) 
We note that the magnetic field is transverse to the radius vector at all distances, 
but that the electric field has components parallel and perpendicular to n. 

In the radiation zone the fields take on the limiting forms, 

ikr ck? e 
=e (n x p) 

(9.19) 

E= ZH xn 

showing the typical behavior of radiation fields. 

In the near zone, on the other hand, the fields approach 

H = (nx p)5 
(9.20) 

E= ing [3n(n + p) — p] 4 

The electric field, apart from its oscillations in time, is just the static electric dipole 

field (4.13). The magnetic field times Z, is a factor (kr) smaller than the electric 

field in the region where kr < 1. Thus the fields in the near zone are dominantly 

electric in nature. The magnetic field vanishes, of course, in the static limit 

k — 0. Then the near zone extends to infinity. 

The time-averaged power radiated per unit solid angle by the oscillating 

dipole moment p is 

dP 
= 

—_—— _ 
= (9.21) Re[r?n + E x H*] 

dQ 2 

where E and H are given by (9.19). Thus we find 

dP CZp 
(9.22) k4 \(n x p) x n/? 

dQ 327 

The state of polarization of the radiation is given by the vector inside the absolute 

value signs.* If the components of p all have the same phase, the angular distri- 

bution is a typical dipole pattern, 

dP Zp 
(9.23) k* |p[? sin? 

dQ 327 

*In writing angular distributions of radiation we will always exhibit the polarization explicitly by 

writing the absolute square of a vector that is proportional to the electric field. If the angular distri- 

bution for some particular polarization is desired, it can then be obtained by taking the scalar product 

of the vector with the appropriate polarization vector before squaring. 
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where the angle @ is measured from the direction of p. The total power radiated, 

independent of the relative phases of the components of p, is 

c7Zok* 
P= (9.24) Ip? 

12 

A simple example of an electric dipole radiator is a center-fed, linear antenna 

whose length d is small compared to a wavelength. The ‘anterma is~assumed to 

be oriented along the z axis, extending from z = (d/2) to z = —(d/2) witha 

narrow gap at the center for purposes of excitation, as shown in Fig. 9.1. The 

current is in the same direction in each half of the antenna, having a value Jp at 

the gap and falling approximately linearly to zero at the ends: 

2 |z| 
— 

_—_— 
= 

I(z)e7'" 
(9.25) 

d 
A(t — }- 

From the continuity equation (9.15) the linear-charge density p’ (charge per unit 

length) is constant along each arm of the antenna, with the value, 

__ 2H 
p'(z) = (9.26) 

~ wd 

the upper (lower) sign being appropriate for positive (negative) values of z. The 
dipole moment (9.17) is parallel to the z axis and has the magnitude 

(d/2) 
Ud 

zp'(z) dz = (9.27) P~{ 
2 (d/2) 

The angular distribution of radiated power is 

dP ZI} 
(kd)? sin?@ (9.28) dQ 12877 

while the total power radiated is 

_ Zol%(kdy? 
P (9.29) 

487 

We see that for a fixed input current the power radiated increases as the square 
of the frequency, at least in the long-wavelength domain where kd < 1. 

The coefficient of J¢/2 in (9.29) has the dimensions of a resistance and is 
called the radiation resistance R,,4 of the antenna. It corresponds to the second 
term in (6.137) and is the total resistance of the antenna if the conductivity is 

5---- 

VY 
<A 

o >~ 

aN 
—— — — | 

-_—_— 

Figure 9.1 Short, center-fed, linear antenna. 
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perfect. For this short center-fed antenna R.aq ~ 5(kd)* ohms. In principle the 
input reactance for the antenna can be calculated by applying (6.138) or (6.140) 
of Section 6.9. Unfortunately the calculation depends crucially on the strong 
fields near the gap and thus is sensitive to the exact shape and method of exci- 
tation. Since the system is an electric dipole and the electrostatic dipole field 
dominates near the antenna, we can nevertheless say with certainty that the re- 
actance is negative (capacitive) for small kd. 

9.3 Magnetic Dipole and Electric Quadrupole Fields 

The next term in expansion (9.9) leads to a vector potential, 

ikr 
Mo € 
— A(x) = (9.30) 
47 r 

(2 _ it) [ se) - x’) d>x' 
where we have included the correct terms from (9.12) to make (9.30) valid ev- 

erywhere outside the source. This vector potential can be written as the sum of 

two terms: One gives a transverse magnetic induction and the other gives a trans- 

verse electric field. These physically distinct contributions can be separated by 

writing the integrand in (9.30) as the sum of a part symmetric in J and x’ and a 

part that is antisymmetric. Thus 

(9.31) (n-x’)J =3[(n-x')J + (n-J)x’]) +3’ XI xn 

The second, antisymmetric part is recognizable as the magnetization due to the 

current J: 

(9.32) M = 3(x x J) 

The first, symmetric term will be shown to be related to the electric quadrupole 

moment density. 

Considering only the magnetization term, we have the vector potential, 

ikr 1 e ikjLo 1-— (9.33) (n X m) A(x) = ikr 4a ( 
where m is the magnetic dipole moment, 

(9.34) m= | Md = 3] (xx 3) as 
The fields can be determined by noting that the vector potential (9.33) is pro- 

portional to the magnetic field (9.18) for an electric dipole. This means that the 

magnetic field for the present magnetic dipole source will be equal to 1/Z, times 

the electric field for the electric dipole, with the substitution p — m/c. Thus we 

find 

ikr ik 1 
— 

Pp Pp w| (9.35) + [3n(n +m) — mi( = 2 {eax m xn 

Similarly, the electric field for a magnetic dipole source is the negative of Zo 

times the magnetic field for an electric dipole (with p — m/c): 
ikr 1 

(9.36) E = -— k(n x m) kr r ( 
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All the arguments concerning the behavior of the fields in the near and far 
zones are the same as for the electric dipole source, with the interchange 

E > Z,H, Z,H — —E, p > mc. Similarly the radiation pattern and total power 
radiated are the same for the two kinds of dipole. The only difference in the 
radiation fields is in the polarization. For an electric dipole the electric vector 

lies in the plane defined by n and p, while for a magnetic dipole it is perpendicular 
™ _ to the plane defined by n and m. 

The integral of the symmetric term in (9.31) can be transformed by an in- 

tegration by parts and some rearrangement 

} | [(n- x’)J + (n+ J)x’] d?x’ = 2 | x (n = x’)p(x’) d’x’ ~— (9.37) 

The continuity equation (9.15) has been used to replace V- J by iwp. Since the 

integral involves second moments of the charge density, this symmetric part cor- 

responds to an electric quadrupole source. The vector potential is 

Ho Cc ke? ikr 

A(x) = (9.38) 
r 

T 

(1 i) I (n x’) p(x") dx" 

The complete fields are somewhat complicated to write down. We content our- 

selves with the fields in the radiation zone. Then it is easy to see that 

H ikn X Alo 
(9.39) 

E ikZo(m X A) X n/p 

Consequently the magnetic field is 

= ——— (9.40) 

ek ¢ tkr 

— | (ax x)(n-x’)p(x’) d°s’ 
With definition (4.9) for the quadrupole moment tensor 

(9.41) Qua = | xaxp ~ 1°8.5)p(x) a 
the integral in (9.40) can be written 

_— 

= gn X Q(n) (9.42) n x | (n + x’)p(x’) d?x' 
The vector Q(n) is defined as having components 

(9.43) >» Q.ang 

We note that it depends in magnitude and direction on the direction of obser- 
vation as well as on the properties of the source. With these definitions we have 
the magnetic induction 

ikr ick? 
= —— n X Q(n) (9.44) 

24a 7 

and the time-averaged power radiated per unit solid angle 

dP c’ZLo 
k® |[n x Q(n)] x nn? (9.45) dQ 11527? 
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where again the direction of the radiated electric field is given by the vector inside 
the absolute value signs. 

The general angular distribution is complicated. But the total power radiated 
can be calculated in a straightforward way. With the definition of Q(n) we can 
write the angular dependence as 

— |[n x Q(n)] x nP Q*-Q — |n- Q/ 
(9.46) 

— 

= > Q2pQaNany— Y OkpO,snangn,ns 
«By a,B,y,5 

The necessary angular integrals over products of the rectangular components of 
n are readily found to be 

4a 
— Spy | ngn, dQ = 
3 

(9.47) 

| NgNgn,ns dQ = “2 (Saa853 + Say5es + Sas8py) 

Then we find 

| |[n x Q(m)] x nf dQ = anf > | Qual? 
(9.48) 

~ = b Ore 2 Q,, +2 > 12.5" | 
Since Q,, is a tensor whose main diagonal sum is zero, the first term in the square 

brackets vanishes identically. Thus we obtain the final result for the total power 

radiated by a quadrupole source: 

CZ KE 
P > (9.49) | Qas |? 

14407 < B 

The radiated power varies as the sixth power of the frequency for fixed quad- 

rupole moments, compared to the fourth power for dipole radiation. 

A simple example of a radiating quadrupole source is an oscillating sphe- 

roidal distribution of charge. The off-diagonal elements of Q., vanish. The di- 

agonal elements may be written 

Q33 = Qo, Qn = Qn = —$Qo (9.50) 

Then the angular distribution of radiated power is 

dP — 2Zk® 
Q3 sin*@ cos?6é (9.51) 

dQ 5127 

This is a four-lobed pattern, as shown in Fig. 9.2, with maxima at 6 = 7/4 and 
37/4. The total power radiated by this quadrupole is 

CZ ok OR 
P= (9.52) 

9607 

The labor involved in manipulating higher terms in expansion (9.9) of the 

vector potential (9.8) becomes increasingly prohibitive as the expansion is ex- 

tended beyond the electric quadrupole terms. Another disadvantage of the pres- 

ent approach is that physically distinct fields such as those of the magnetic dipole 
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z 

~~ 

A quadrupole radiation pattern. Figure 9.2 

and the electric quadrupole must be disentangled from the separate terms in 

(9.9). Finally, the present technique is useful only in the long-wavelength limit. 

A systematic development of multipole radiation begins in Section 9.6. It involves 

a fairly elaborate mathematical apparatus, but the price paid is worthwhile. The 

treatment allows all multipole orders to be handled in the same way; the results 

are valid for all wavelengths; the physically different electric and magnetic mul- 
tipoles are clearly separated from the beginning. 

9.4 Center-Fed Linear Antenna 

A. Approximation of Sinusoidal Current 

For certain radiating systems the geometry of current flow is sufficiently sim- 

ple that integral (9.3) for the vector potential can be found in relatively simple, 

closed form if the form of the current is assumed known. As an example of such 

a system we consider a thin, linear antenna of length d which is excited across a 

small gap at its midpoint. The antenna is assumed to be oriented along the z axis 

with its gap at the origin, as indicated in Fig. 9.3. If damping due to the emission 

of radiation is neglected and the antenna is thin enough, the current along the 

antenna can be taken as sinusoidal in time and space with wave number k = wic, 

and is symmetric on the two arms of the antenna. The current vanishes at the 

ends of the antenna. Hence the current density can be written 

(9.53) J(x) = rsin( * — kz 5(x) 5(y)e3 
for |z| < (d/2). The delta functions assure that the current flows only along the 

z axis. J is the peak value of the current if kd = 7. The current at the gap is 
Ig = I sin(kd/2). 

With the current density (9.53) the vector potential is in the z direction and 

in the radiation zone has the form [from (9.8)]: 

(d/2) 

—_—_ — 

- Mo Tei* 

Zz (9.54) 
— J A(x) = 

47 r 2 (d/2) | k | Zz |Jerusom dz 
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Figure 9.3. Center-fed, linear antenna. 

The result of straightforward integration is 

se 26 cos( M4 cos 8) — cos( 
A(x) = (9.55) 

4n kr sin?6 

Since the magnetic field in the radiation zone is given by H = ikn X A/jUo, its 

magnitude is |H| = k sin 6|A3|/y1o. Thus the time-averaged power radiated per 
unit solid angle is 

kd 
— — cos @ 

2 2 

\ 

)-( dP Z,I? cos 
(9.56) 

sin 6 dQ 87? 

The electric vector is in the direction of the component of A perpendicular to n. 

Consequently the polarization of the radiation lies in the plane containing the 

antenna and the radius vector to the observation point. 

The angular distribution (9.56) depends on the value of kd. In the long- 

wavelength limit (kd << 1) it is easy to show that it reduces to the dipole result 

(9.28). For the special values kd = a(27), corresponding to a half (two halves) 

of a wavelength of current oscillation along the antenna, the angular distributions 

are 

= cos 6 
2 

a( 
—_— 

= kd > 

sin’@ dP ZI? 

(9.57) 7 cos 6 
2 

dQ 8a” 4 cos 
kd = 27 2 

sin*6 

These angular distributions are shown in Fig. 9.7, where they are compared to 

multipole expansions. The half-wave antenna distribution is seen to be quite 

similar to a simple dipole pattern, but the full-wave antenna has a considerably 

sharper distribution. 

The full-wave antenna distribution can be thought of as due to the coherent 

superposition of the fields of two half-wave antennas, one above the other, ex- 

cited in phase. The intensity at 6 = 7/2, where the waves add algebraically, is 
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four times that of a half-wave antenna. At angles away from 6 = 7/2 the ampli- 

tudes tend to interfere, giving the narrower pattern. By suitable arrangement of 
a set of basic antennas, such as the half-wave antenna, with the phasing of the 
currents appropriately chosen, arbitrary radiation patterns can be formed by co- 

herent superposition. The interested reader should refer to the electrical engi- 
neering literature for detailed treatments of antenna arrays. 

B. The Antenna as a Boundary- Value Problem 

Only for infinitely thin conductors are we justified in assuming that the cur- 

rent along the antenna is sinusoidal, or indeed has any other known form. A 

finite-sized antenna with a given type of excitation is actually a complicated 

boundary-value problem. Without attempting solution of such problems, we give 

some preliminary considerations on setting up the boundary-value problem for 

a straight antenna with circular cross section of radius a and length d, of which 

the center-fed antenna of Fig. 9.3 is one example. We assume that the conductor 

is perfectly conducting and has a small enough radius compared to both a wave- 

length A and the length d that current flow on the surface has only a longitudinal 

(z) component, and that the fields have azimuthal symmetry. Then the vector 

potential A will have only a z component. With harmonic time dependence of 

frequency w and in the Lorentz gauge, the scalar potential and the electric field 

are given in terms of A by 

—Ic 
—V-A P(x) = 

k (9.58) 

E(x) = z [V(V + A) + KA] 

Since A = 2A,(x), the z component of the electric field is 

ic 
a 

—_— E(x) = 
k aa? ( Jats 

But on the surface of the perfectly conducting antenna the tangential component 
of E vanishes. We thus establish the important fact that the vector potential A, 
(and also the scalar potential) on the surface of the antenna are strictly sinusoidal: 

a 

= tk (9.59) ( Jase =a,z)=0 
This is an exact statement, in contrast to the much rougher assumption that the 
current is sinusoidal. 

An integral equation for the current can be found from (9.3). If the total 
current flow in the z direction is J(z), then (9.3) gives for A, on the surface of 
the antenna, 

Zotd 

Ho 
I(z')K(z — z') dz’ AAp = 4,2) = 7 

where 

exp[ikV(z — z' + 4a? sin?B] 
B (9.60) K(z-2)=+] 

V(z — z')? + 4a’ sin?B 
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is the azimuthal average of the Green function e**/R. The condition (9.59) leads 
to the integro-differential equation 

a? 

—+k (9.61) 
dz* cr I(z')K(z — 2’) dz’ =| 

This can be regarded as a differential equation for the integral, or equivalently 
one can integrate (9.59) and equate it to A,(p = a, z). The result is the integral 
equation 

Zgtd 

I(z')K(z — z') dz' a, coSkz + a sinkz = | 
20 

The constants a, and a, are determined by the method of excitation and by the 
boundary conditions that the current vanishes at the ends of the antenna. 

The solution of the integral equation is not easy. From the form of (9.60) it 

is clear that when z' ~ z care must be taken and the finite radius is important. 

For a — 0, the current can be shown to be sinusoidal, but the expansion param- 

eter for corrections turns out to be the reciprocal of In(d/a). This means that even 

for d/a = 10° there can be corrections of the order of 10-15%. When there is a 
current node near the place of excitation, such corrections can change the an- 

tenna’s input impedance drastically. Various approximate methods of solution 

of (9.61) are described by Jones. A detailed discussion of his version of the theory 

and the results of numerical calculations for the current, resistance, and reactance 

of a linear center-fed antenna are given by Hallén. Other references are cited in 

the suggested reading at the end of the chapter. 

9.5 Multipole Expansion for Localized Source 

or Aperture in Waveguide 

If a source in the form of a probe or loop or aperture in a waveguide is sufficiently 

small in dimensions compared to the distances over which the fields vary appre- 

ciably, it can be usefully approximated by its lowest order multipole moments, 

usually electric and magnetic dipoles. Different sources possessing the same low- 
est order multipole moments will produce sensibly the same excitations in the 
waveguide. Often the electric dipole or magnetic dipole moments can be calcu- 

lated from static fields, or even estimated geometrically. Even if the source is not 

truly small, the multipole expansion gives a qualitative, and often semiquantita- 

tive, understanding of its properties. 

A. Current Source Inside Guide 

In Section 8.12 it was shown that the amplitudes A‘ for excitation of the 
Ath mode are proportional to the integral 

| J-E® dx 

where the integral is extended over the region where J is different from zero. If 

the mode fields E{*) do not vary appreciably over the source, they can be ex- 
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panded in Taylor series around some suitably chosen origin. The integral is thus 
written, dropping the sub- and superscripts on E(”: 

| d°x (9.62) [s E d*x = s 1.00] E,(0) + > Xp 
From (9.14) and (9.17) we see that the first term is 

(9.63) E(0) | 300 d°’x = —iwp - E(0) 

where p is the electric dipole moment of the source 

p= | 300 ad? 

This can be transformed into the more familiar form (9.17) by the means of the 

steps in (9.14), provided the surface integral at the walls of the waveguide can 

be dropped. This necessitates choosing the origin for the multipole expansion 

such that J,x, vanishes at the walls. This remark applies to all the multipole 

moments. The use of the forms involving the electric and magnetic charge den- 

x, vanish at the walls of the sities p and py requires that (x,Jg + xpJq)x 

guide. The above-mentioned form for the electric dipole and the usual expression 

(9.34) for the magnetic dipole are correct as they stand, without concern about 

choice of origin 

The second term in (9.62) is of the same general form as (9.30) and is handled 

the same way. The product J,.x, is written as the sum of symmetric and antisym- 

metric terms, just as in (9.31) 

_ 9Es (0) 

OXy 
Jars E* (0) = FE ap - Jpn] | (9.64) 

+= 5 (JX + Ipxa) —* =) 
The first (antisymmetric) part has been written so that the magnetic moment 

density and the curl of the electric field are clearly visible. With the help of 
Faraday’s law V x E iwB, the antisymmetric contribution to the right side of 
(9.62) can be written 

d°x = iwom - B(0) (9.65) | b Jaxp | 
antisym 

where m is the magnetic dipole moment (9.34) of the source. Equations (9.63) 
and (9.65) give the leading order multipole moment contributions to the source 
integral (9.62) 

Other terms in the expansion in (9.62) give rise to higher order multipoles 
The symmetric part of (9.64) can be shown, just as in Section 9.3, to involve the 
traceless electric quadrupole moment (9.41). The first step is to note that if the 
surface integrals vanish (see above) 

| (JaXg + IpxXq) Ax = —iw XeXpp(x) d? 
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Then the second double sum in (9.64), integrated over the volume of the current 
distribution, takes the form 

Ea -2> (0) | P(X) XeXg d°x ; B 

The value of the double sum is unchanged by the replacement x,xg —> 
(X_Xg — 517 Sap) because V- E = 0. Thus the symmetric part of the second term 
in (9.62) is 

OE l 
— ~ (0) (9.66) 
6 
oY, Que = (0) | b JaXp 

dX pg l. ax - 
Similarly an antisymmetric part of the next terms in (9.62), involving XpXy, Zives 
a contribution 

PE, u oBa 
> Ja Xx (0) (9.67) 

a,B,y \| Xg OX, oO] ae 7 6 > e ” OxXpg °F ax, 
in(a,8) 

where Q%, is the magnetic quadrupole moment of the source, given by (9.41) with 
the electric charge density p(x) replaced by the magnetic charge density, 

pM(x) = -—V- M = -=V-(xx J) (9.68) 

If the various contributions are combined, the expression (8.146) for the 

amplitude A“ has as its multipole expansion, 

_ WZ) 
l AM = {p - EXO) — m- BY(0) 

(=) 0 Aa uw OB E® (0) - 63 [2 OX pg oF Ax, 

0] . } (9.69) 

It should be remembered that here the mode fields E{*? are normalized according 
to (8.131). The expansion is most useful if the source is such that the series 

converges rapidly and is adequately approximated by its first terms. The posi- 

tioning and orientation of probes or antennas to excite preferentially certain 

modes can be accomplished simply by considering the directions of the electric 

and magnetic dipole (or higher) moments of the source and the normal mode 

fields. For example, the excitation of TE modes, with their axial magnetic fields, 

can be produced by a magnetic dipole antenna whose dipole moment is parallel 

to the axis of the guide. TM modes cannot be excited by such an antenna, except 
via higher multipole moments. 

B. Aperture in Side Walls of Guide 

Apertures in the walls of a waveguide can be considered as sources (or sinks) 
of energy. In Section 8.12 it was noted that if the guide walls have openings in 
the volume considered to contain the sources, the amplitudes A$“ are given by 
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(8.147) instead of (8.146). With the assumption that there is only one aperture, 

and no actual current density, the amplitude for excitation of the Ath mode is 

Zy 
—_— — (9.70) A = 

2 Jo n° (E * Hy”) da 
where n is an inwardly directed normal and the integral is over the aperture in 

the walls of the guide. If the aperture is small compared to a wavelength or other 

scale of variation of the fields, the mode field H{ can be expanded just as before. 
The lowest order term, with H® treated as constant over the aperture, evidently 
leads to a coupling of the magnetic dipole type. The next terms, with linear 

variation of the mode field, give rise to electric dipole and magnetic quadrupole 

couplings, exactly as for (9.64)—(9.66), but with the roles of electric and magnetic 

interactions interchanged. The result is an expansion of (9.70) like (9.69): 

_wZ) 
t (9.71) A® = [Perr * EX(0) — mere + BX(0) + --] 

4 

where the effective electric and magnetic dipole moments are 

Peft = en | (x ° Evan) da (9.72) 

More = = | (n x Eitan) da 
In these expressions the integration is over the aperture, the electric field E,,, is 

the exact tangential field in the opening, and in (9.71) the mode fields are eval- 
uated at (the center of) the aperture. The effective moments (9.72) are the equiv- 

alent dipoles whose fields (9.18) and (9.35)—(9.36) represent the radiation fields 
of a small aperture in a flat, perfectly conducting screen (see Problem 10.10). 

Comparison of (9.71) and (9.69) shows that the dipole moments (9.72) are only 

half as effective in producing a given amplitude as are the real dipole moments 

of a source located inside the guide. The effective dipoles of an aperture are in 

some sense half in and half out of the guide. 

C. Effective Dipole Moments of Apertures 

On first encounter the effective dipole moments (9.72) are somewhat mys- 

terious. As already mentioned, they have a precise meaning in terms of the elec- 

tric and magnetic dipole parts of the multipole expansion of the fields radiated 

through an aperture in a flat perfectly conducting screen (considered later: Prob- 

lem 10.10). For small apertures they can also be related to the solutions of ap- 

propriate static or quasi-static boundary-value problems. Such problems have 

already been discussed (Sections 3.13 and 5.13), and the results are appropriated 

below. 

If an aperture is very small compared to the distance over which the fields 

change appreciably, the boundary-value problem can be approximated by one in 

which the fields ‘far from the aperture” (measured in units of the aperture di- 
mension) are those that would exist if the aperture were absent. Except for very 
elongated apertures, it will be sufficiently accurate to take the surface to be flat 
and the “asymptotic” fields to be the same in all directions away from the ap- 
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erture. For an opening in a perfectly conducting surface, then, the boundary- 
value problem is specified by the normal electric field E, and the tangential 
magnetic field Hy that would exist in the absence of the opening. The fields Ey 
and Hp are themselves the result of some boundary-value problem, of propaga- 
tion in a waveguide or reflection of a plane wave from a screen, for example. But 
for the purpose at hand, they are treated as given. To lowest order their time 
dependence can be ignored, provided the effective electric dipole moment is 
related to Ey and the magnetic moment to Hp. (See, however, Problem 9.20.) 

The exact form of the fields around the opening depends on its shape, but 

some qualitative observations can be made by merely examining the general 

behavior of the lines of force. Outside a sphere enclosing the aperture the fields 

may be represented by a multipole expansion. The leading terms will be dipole 

fields. Figure 9.4 shows the qualitative behavior. The loop of magnetic field pro- 

truding above the plane on the left has the appearance of a line of force from a 

magnetic dipole whose moment is directed oppositely to Ho, as indicated by the 

direction of the moment m“? shown below. The magnetic field below the plane 
can be viewed as the unperturbed Hp, plus an opposing dipole field (dashed lines 

in Fig. 9.4) whose moment is oriented parallel to Hy (denoted by m‘ below). 
Similarly, the electric field lines above the plane appear to originate from a ver- 

tical dipole moment p“*? directed along Eo, while below the plane the field has 
the appearance of the unperturbed normal field Eo, plus the field from a dipole 

p‘”, directed oppositely to Eo. The use of effective dipole fields is of course 
restricted to regions some distance from the aperture. Right in the aperture the 

fields bear no resemblance to dipole fields. Nevertheless, the dipole approxima- 

tion is useful qualitatively everywhere, and the effective moments are all that are 

needed to evaluate the couplings of small apertures. 

The preceding qualitative discussion has one serious deficiency. While it is 

correct to state that the electric dipole moment is always directed parallel or 
antiparallel to E, and so is normal to the aperture, the magnetic dipole moment 
is not necessarily parallel or antiparallel to Ho. There are two directions in the 
tangent plane, and the relative orientation of the aperture and the direction of 
H, are relevant in determining the direction of m+. Since the effective moments 
are obviously proportional to the field strength, it is appropriate to speak of the 

electric and magnetic polarizabilities of the aperture. The dipole moments can be 

written 

Pert = €&oY Eo (9.73) 

(Mer) o = > yxp(Ho), 

where y® is the scalar electric polarizability and yp is the 2 x 2 magnetic po- 
larizability tensor. The magnetic tensor can be diagonalized by choosing principal 

axes for the aperture. There are thus three polarizabilities (one electric and two 

magnetic) to characterize an arbitrary small aperture. It should be remembered 

that the signs of the ’s in (9.73) depend on the side of the surface from which 

the dipole is viewed, as shown in Fig. 9.4. If there are fields on both sides of the 

surface, the expressions in (9.73) must be modified. For example, if there is a 

vertically directed electric field E, above the surface in Fig. 9.45, as well as Eo 

below, then E, in (9.73) is replaced by (Ey — E,). Other possibilities can be 

worked out from (9.73) by linear superposition. 
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Figure 9.4 Distortion of (a) the tangential magnetic field and (6) the normal electric 

field by a small aperture in a perfectly conducting surface. The effective dipole 

moments, as viewed from above and below the surface, are indicated beneath. 

The polarizabilities y* and y%, have the dimensions of length cubed. If a 
typical dimension of the aperture is d, then it can be expected that the polariz- 

abilities will be d° times numerical coefficients of the order of unity, or smaller. 
The expression (9.72) for per can be seen to be of the form to yield such a result, 

since E,,, is proportional to Eo, and the two-dimensional integral will give Eo 

times the cube of a length that is characteristic of the aperture. Furthermore, the 

vectorial properties of per in (9.72) correspond to (9.73). On the other hand, the 

expression in (9.72) for meg is less transparently of the proper form, even though 

dimensionally correct. Some integrations by parts and use of the Maxwell equa- 

tions puts it into the equivalent and more satisfying form: 

(9.74) mex = 2. | x(n) da 
where n> H is the exact normal component of H in the aperture and the integra- 

tion is over the plane of the aperture. It is now evident that the connection 

between Hy and meg; is of the general form shown in (9.73). For a circular opening 

of radius R the effective dipole moments can be taken from the static solutions 

of Sections 3.13 and 5.13. The results are 

8R? 4e oR? 
Mere = Perr = — H, (9.75) Eo, 

3 3 

where the signs are appropriate for the apertures viewed from the side of the 
surface where E and H are nonvanishing, as can be checked from Fig. 9.4. The 
electric and magnetic polarizabilities are thus 

AR? 8R? E — M 
_——— 

= 

2 Y Yap = bap (9.76) 
3 3 

The use of effective dipole moments to describe the electromagnetic prop- 
erties of small holes can be traced back to Lord Rayleigh.* The general theory 
was developed by H. A. Bethe’ and has been applied fruitfully to waveguide and 

*Lord Rayleigh, Phil. Mag. XLIV, 28 (1897), reprinted in his Scientific Papers, Vol. IV, p. 305. 

'H. A. Bethe, Phys. Rev. 66, 163 (1944). 
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diffraction problems. It is significant in practical applications that the effective 
dipole moments of arbitrary apertures can be determined experimentally by elec- 
trolytic tank measurements.* 

Examples of the use of multipoles to describe excitation and scattering in 

waveguides and diffraction are left to several problems at the end of the chapter. 

Other material can be found in the list of suggested reading. 

9.6 Spherical Wave Solutions of the Scalar Wave Equation 

In Chapters 3 and 4 spherical harmonic expansions for the solutions of the 

Laplace or Poisson equations were used in potential problems with spherical 

boundaries or to develop multipole expansions of charge densities and their 

fields. Our approach so far for radiating sources has been ‘‘brute force,” with 

creation of the lowest order multipoles more or less by hand. Clearly, treatment 

of higher multipoles demands a more systematic approach. We therefore turn to 

the development of vector spherical waves and their relation to time-varying 

sources. 

As a prelude to the vector spherical wave problem, we consider the scalar 

wave equation. A scalar field (x, t) satisfying the source-free wave equation, 

1 a7 
—_— 

—- (9.77) Vu — 
C at? 

can be Fourier-analyzed in time as 

(9.78) W(x, t) = [- u(x, we‘ dw 

with each Fourier component satisfying the Helmholtz wave equation 

(9.79) (V2 + k)ub(x, w) = 0 

with k? = w/c’. For problems possessing symmetry properties about some origin, 

it is convenient to have fundamental solutions appropriate to spherical coordi- 

nates. The representation of the Laplacian operator in spherical coordinates is 

given in equation (3.1). The separation of the angular and radial variables follows 

the well-known expansion 

(9.80) W(x, w) = > fim) Yim, d) 

where the spherical harmonics Y,,, are defined by (3.53). The radial functions 

fim(r) satisfy the radial equation, independent of m, 

2d a i+ 1) 
—-+- +k? - (9.81) 

r- 
r ar dr’ 

[rom = 0 | 
With the substitution, 

(9.82) fil) = a m0) 

*s. B. Cohn, Proc. IRE 39, 1416 (1951); 40, 1069 (1952). 
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equation (9.81) is transformed into 

ld dz 

(9.83) sats 

dr? r dr | k2 - (i+ oe u,(r )= =— 0 

This equation is just the Bessel equation (3.75) with v = / + 5. Thus the solutions 

for fin(r) are 
~~ ~ 

Aim Bim 
(9.84) fin(r) = yz Jisinlkr) + =a 2 Nr+i2lkr) 

It is customary to define spherical Bessel and Hankel functions, denoted by 

I(x), n(x), ho (x), as follows 
1/2 

— Ji) 
2. 

jilx) ( 
— (9.85) 
2. 

ne =| yon 141/2(X) 
T 

— “Y 141/2(X ) + iNi+ v2(x)] h(x) = ( 

For real x, h(x) is the complex conjugate of h$?(x). From the series expansions 
(3.82) and (3.83) one can show that 

sin x 
— 

x 
jx) = (x) (: 2) ( 

(9.86) 

COS X 

x 
ne = a (*)| 

For the first few values of / the explicit forms are 

ux 
sin COs X 

% Jo(x) = 2 No(x) h(x) = 

Sin x COS X COS Xx sin xX 
— 

—_ — 

? h(x) 2 2 ny (x) = 
x x 

AY(x) = -— (1 + 

1 3 cosx 3 sin x 

2 3 2 
h(x) = (3 sn ewes ’ n(x) ~ -( 

> (9.87) 
3i 3 )( ) 

2 
x x (r+ 

15 6 15 1 
3 x4 

ja(X) = (2 jal Je 

15 6 15 1 
4 2 3 n= | ewe ( sins 

6i 15 15i 
—_ -_— CO 

hAYP(x) — 
3 

x 

( 
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From the series (3.82), (3.83), and the definition (3.85) it is possible to calculate 
the small argument limits (x << 1, J) to be 

l 2 
x 

jx) > 
(22+ 1)! ( ~ 201+ 3) 7° (9.88) 

2 
x (21 — 1)! 

n(x) > — +1 ( "20-27" ) 
where (2/ + 1)!! = (21 + 1)(2/ — 1)(21 — 3) + - (5) - (3) - (1). Similarly the large 
argument limits (x >> /) are 

la 
— $in x- ji(x) > 

lt 
x-— (9.89) 

2 
n(x) > -- cos( 

ax 

APG) > (i 

The spherical Bessel functions satisfy the recursion formulas, 

2+ 1 
Z,(x) = Z)-1(x) + Z141(x) 

—__——_ Z(x) = (9.90) [1z)-1(x) - (d+ 1)Z141(x)] 2i+ 1 

dx [xz,(x)] = xZ)-,(x) — 1z,(x) 

where z,(x) is any one of the functions j,(x), (x), hf? (x), h(x). The Wronskians 
of the various pairs are 

(9.91) Wi, 11) = : WC, h) = -W(n, h) = 4 
The general solution of (9.79) in spherical coordinates can be written 

(9.92) W(x) = > [Ape hi (kr) + Aiph?(kr)|¥im(8, $) 

where the coefficients A%) and A will be determined by the boundary 
conditions. 

For reference purposes we present the spherical wave expansion for the out- 

going wave Green function G(x, x’), which is appropriate to the equation, 

(V? + k?)G(x, x’) = —8(x — x’) (9.93) 

in the infinite domain. This Green function, as was shown in Chapter 6, is 

ik|x—x'| 
é 

(9.94) G(x, x’) = 
An |x — x’ | 

The spherical wave expansion for G(x, x’) can be obtained in exactly the same 
way as was done in Section 3.9 for the Poisson equation [see especially (3.117) 
and text following]. An expansion of the form 

(9.95) G(x, x’) = > gil’, r')Y im(O, b')Yim(9, co) 



428 Chapter9 Radiating Systems, Multipole Fields and Radiation—SI 

substituted into (9.93) leads to an equation for g,(r, r’): 

az 2d 
—_ 

= —+-—- (9.96) +R wen) 
dr? r dr 

-5 5(r — r) | 
The solution that satisfies the boundary conditions of finiteness at the origin and 
outgoing waves at infinity is 

~~ ~ 

(9.97) gir, r’) = Aj(kr)h}(kr.) 

The correct discontinuity in slope is assured if A = ik. Thus the expansion of the 

Green function is 

elkix-*'| 

y ik > ji(kr)AY (kr) 
m=— 

' Yim(9', b')Yim(8, i) (9.98) 
An |x — x’| 

Our emphasis so far has been on the radial functions appropriate to the scalar 

wave equation. We now reexamine the angular functions in order to introduce 

some concepts of use in considering the vector wave equation. The basic angular 

functions are the spherical harmonics Y,,,(6, @) (3.53), which are solutions of the 

equation 

1 0 1 a 

— —_ sin 6 — (9.99) 
sin 6 00 06 sin’@ dd ( | |r = uC + 1) Yin 

As is well known in quantum mechanics, this equation can be written in the form: 

(9.100) LY im = uC + 1) Yin 
=_— 

=> The differential operator L? Lz + L?2 + L?2, where 

(9.101) L=2(rx¥) 

is A~' times the orbital angular-momentum operator of wave mechanics. 
The components of L can be written conveniently in the combinations, 

—_ 

= + i cot @— L,=L,+iL, 
06 4 

L_ —-— + icot@— L, iL, (9.102) 
00 4 

0 
. 

L, 
ag 

We note that L operates only on angular variables and is independent of r. From 
definition (9.101) it is evident that 

r-L=0 (9.103) 

holds as an operator equation. From the explicit forms (9.102) it is easy to verify 
that L” is equal to the operator on the left side of (9.99). 

From the explicit forms (9.102) and recursion relations for Y,,, the following 
useful relations can be established: 

Li Yim = NV (I ~ m)(I +mt+ 1) Yim-+1 

L_¥im = Vit m— m $1) Yin (9.104) 

L, Yin MY pp, 
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Finally we note the following operator equations concerning the commutation 
properties of L, L”, and V?: 

L’?L = LL’ 
— 

= LxL iL (9.105) 
—_ 

= LW? VL; 

where 

L’ » 18 
(r) - (9.106) 

r or? r2 

9.7 Multipole Expansion of the Electromagnetic Fields 

With the assumption of a time dependence e~ the Maxwell equations in a 
source-free region of empty space may be written 

V x E = ikZH, V x H = -ikE/Z, 
(9.107) 

V-E=0 V-H=0 

where k = ac. If E is eliminated by combining the two curl equations, we obtain 
for H, 

—_ 

= V-H=0 0, (V2 + )H 

with E given by (9.108) 
iZo 

E —_—VxH 
k 

Alternatively, H can be eliminated to yield 

V-E=0 (V2 + )E = 0, 

with H given by (9.109) 

H=--LVxE 
kZo 

Either (9.108) or (9.109) is a set of three equations that is equivalent to the 

Maxwell equations (9.107). 

We wish to find multipole solutions for E and H. From (9.108) and (9.109) 

it is evident that each Cartesian component of H and E satisfies the Helmholtz 

wave equation (9.79). Hence each such component can be written as an expan- 

sion of the general form (9.92). There remains, however, the problem of orches- 

trating the different components in order to satisfy V- H = 0 and V- E = 0 and 

to give a pure multipole field of order (/, m). We follow a different and somewhat 

easier path suggested by Bouwkamp and Casimir.* Consider the scalar quantity 

r- A, where A is a well-behaved vector field. It is straightforward to verify that 

the Laplacian operator acting on this scalar gives 

(9.110) Vr- A) =r-(V2A) + 2V-A 

*C. J. Bouwkamp and H. B. G. Casimir, Physica 20, 539 (1954). This paper discusses the relationship 
among a number of different, but equivalent, approaches to multipole radiation. 



430 Chapter9 Radiating Systems, Multipole Fields and Radiation—SI 

From (9.108) and (9.109) it therefore follows that the scalars, r- E andr - H, both 

satisfy the Helmholtz wave equation: 

(9.111) (V2 + k2)(r+ H) = 0 (V2 + k)(r- E) = 0 

The general solution for r- E is given by (9.92), and similarly for r- H 

We now define a magnetic multipole field of order (1, m) by the conditions 

~ ~ Kl + 1) 
~HYW = )— gilkr)Yin(8, $) 

(9.112) 
EY =0 

where 

(9.113) APAM (kr) + APAP (Kr) gi(kr) = 

The presence of the factor of /(/ + 1)/k is for later convenience. Using the curl 
equation in (9.109) we can relate r- H to the electric field 

(9.114) Zkr-H=-r-(Vx E)=~(xV)-E=L-E 

where L is given by (9.101). With r- H given by (9.112), the electric field of the 

magnetic mp must satisfy 

(9.115) Ee (r, 8, 6) = Ul + 1)Zogi(kr)Yim(9, &) 
and r- E\” = 0. To determine the purely transverse electric field from (9.115) 
we first observe that the operator L acts only on the angular variables (6, ¢) 

This means that the radial dependence of E{’” must be given by g,(kr). Second 
the operator L acting on Y,,, transforms the m value according to (9.104), but 

does not change the / value. Thus the components of E{” can be at most linear 
combinations of Y,,,’s with different m values and a common IJ, equal to the / 

value on the right-hand side of (9.115). A moment’s thought shows that for 

L- E{” to yield a single Y;,,, the components of E{’” must be prepared before- 
hand to compensate for whatever raising or lowering of m values is done by L 

Thus, in the term L_E,, for example, it must be that F, is proportional to L, Y,,, 

What this amounts to is that the electric field should be 

Elm” = Zogi(kr)LY¥im(8, 6) 
together with (9.116) 

— 

= -y x EW HM” ) 

kZo 

Equation (9.116) specifies the electromagnetic fields of a magnetic multipole of 

order (/, m). Because the electric field (9.116) is transverse to the radius vector 

these multipole fields are sometimes called transverse electric (TE) rather than 
magnetic 

The fields of an electric or transverse magnetic (TM) multipole of order (1, m) 
are specified similarly by the conditions, 

r E&®) 
Zo FAKT)Yim(, ) 

Us +1) 

(9.117) 
r HY 
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Then the electric multipole fields are 

—_— (E) 
= 

im FKr)LY (8, $) (9.118) 
iZo 

— 

= —VxH Ein Im 
k 

The radial function f,(kr) is given by an expression like (9.113). 
The fields (9.116) and (9.118) are the spherical wave analogs of the TE and 

TM cylindrical modes of Chapter 8. Just as in the cylindrical waveguide, the two 
sets of multipole fields (9.116) and (9.118) can be shown to form a complete set 
of vector solutions to the Maxwell equations in a source-free region. The ter- 
minology electric and magnetic multipole fields will be used, rather than TM and 
TE, since the sources of each type of field will be seen to be the electric-charge 
density and the magnetic-moment density, respectively. Since the vector spherical 
harmonic, LY,,,, plays an important role, it is convenient to introduce the nor- 
malized form,* 

1 
(9.119) Xin (9, co) = Vil + 1) LY,,.(8, ¢) 

with the orthogonality properties, 

(9.120) | xt. ° Xin dQ, = Oy Sam’ 
and 

(9.121) | xt, -(r X Xj) dO = 0 
for all J, l', m, m'. 

By combining the two types of fields we can write the general solution to the 

Maxwell equations (9.107): 

H = > act m)f(kr)Xim + antl m)V xX sikr)Xn | 
(9.122) 

E=2Z > E ag(l, m)V X filkr)Xim + aul, m)gi(kr) Xin 
where the coefficients a,(/, m) and ay,(1, m) specify the amounts of electric (J, m) 
multipole and magnetic (/, m) multipole fields. The radial functions f,(kr) and 

g(kr) are of the form (9.113). The coefficients az(/, m) and a,,(I, m), as well as 
the relative proportions in (9.113), are determined by the sources and boundary 
conditions. To make this explicit, we note that the scalars r-H and r-E are 

sufficient to determine the unknowns in (9.122) according to 

"mt * H dQ andl, m)g(kr) = Te { Y 
(9.123) 

k 
— Zoaz(l, m)f (kr) = — | Yimt > E dO 
Vidi + 1) 

*X,,, is defined to be identically zero for / = 0. Spherically symmetric solutions to the source-free 

Maxwell’s equations exist only in the static limit k — 0. See Section 9.1. 
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Knowledge of r-H and r-E at two different radii, r; and r,, in a source-free 
region will therefore permit a complete specification of the fields, including de- 
termination of the relative proportions of hf” and h{ in f, and g,. The use of the 
scalars r- H and r- E permits the connection between the sources p, J and the 
multipole coefficients az(J, m) and ay(/, m) to be established with relative ease 
(see Section 9.10). 

~~ ~~ 

9.8 Properties of Multipole Fields; Energy 

and Angular Momentum of Multipole Radiation 

Before considering the connection between the general solution (9.122) and a 
localized source distribution, we examine the properties of the individual multi- 
pole fields (9.116) and (9.118). In the near zone (kr << 1) the radial function 
f,(kr) is proportional to n;, given by (9.88), unless its coefficient vanishes iden- 
tically. Excluding this possibility, the limiting behavior of the magnetic field for 

an electric (/, m) multipole is 

Yim —> —-— L — (9.124) Hi, +1 

where the proportionality coefficient is chosen for later convenience. To find the 

electric field we must take the curl of the right-hand side. A useful operator 

identity is 

(9.125) wxi=w-v(1+r3) 
The electric field (9.118) is 

Yim 
(9.126) 

ritl E® > = ZV x u( 
Since (Y,,,/r'**) is a solution of the Laplace equation, the first term in (9.125) 
vanishes. Consequently the electric field at close distances for an electric (/, m) 
multipole is 

Yim 
— (9.127) 

i+1 

This is exactly the electrostatic multipole field of Section 4.1. We note that the 
E /Zy by a factor kr. Hence, magnetic field H{= is smaller in magnitude than Eff 

in the near zone, the magnetic field of an electric multipole is always much smaller 
than the electric field. For the magnetic multipole fields (9.116) evidently the 
roles of E and H are interchanged according to the transformation, 

EH > -Z,H™, H® — EZ, (9.128) 

In the far or radiation zone (kr >> 1) the multipole fields depend on the 

boundary conditions imposed. For definiteness we consider the example of out- 

going waves, appropriate to radiation by a localized source. Then the radial func- 

tion f,(kr) is proportional to the spherical Hankel function h{(kr). From the 
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asymptotic form (9.89) we see that in the radiation zone the magnetic induction 
for an electric (J, m) multipole goes as 

ikr 

L Yim 
H& > ( iit} (9.129) 

k 

Then the electric field can be written 

ikr eikr (-i! E® = 
Lo xX LYin (9.130) k2 

r r(" vx L%n| 

Since we have already used the asymptotic form of the spherical Hankel function 

we are not justified in keeping powers higher than the first in (1/r). With this 

restriction and use of the identity (9.125) we find 

ikr 

= — 
= 

Ef Z ( iy} x LY, — — (rV? W¥in| (9.131) 

where n = (r/r) is a unit vector in the radial direction. The second term is evi- 

dently 1/kr times some dimensionless function of angles and can be omitted in 

the limit kr >> 1. Then we find that the electric field in the radiation zone is 

EY = ZH xn (9.132) 

where H is given by (9.129). These fields are typical radiation fields, transverse 

For magnetic multipoles the same to the radius vector and falling off as r 

relation holds because the Poynting vector is directed radially outward for both 

types of multipole 

The multipole fields of a radiating source can be used to calculate the energy 
and angular momentum carried off by the radiation. For definiteness we consider 

a linear superposition of electric (/, m) multipoles with different m values, but all 
having the same /, and, following (9.122), write the fields as 

H, > az(l, m)Xphi? (knee 
m (9.133) 

ZoV X H; E, 

For harmonically varying fields the time-averaged energy density is 

(9.134) TE: E* + Z2H - H*) 

In the radiation zone the two terms are equal. Consequently the energy in a 

spherical shell between r and (r + dr) (for kr >> 1) is 

Modr Xin dO dU (9.135) S) ak(l, m')az(I m) | x 
2k? myn 

where the asymptotic form (9.89) of the spherical Hankel function has been used 

With the orthogonality integral (9.120) this becomes 

dU _ 
(9.136) 

dr 
= 33> 5 laz(l, m)|? 
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independent of the radius. For a general superposition of electric and magnetic 
multipoles the sum over m becomes a sum over 1 and m and |a,|* becomes 
|az|* + |ay|2. The total energy in a spherical shell in the radiation zone is thus 
an incoherent sum over all multipoles. 

The time-averaged angular-momentum density is 

(9.137) m = 53 Ref x (E x H*)] 

The triple cross product can be expanded and the electric field (9.133) substituted 
to yield, for a superposition of electric multipoles, 

Ho 
n=, (9.138) Re[H*(L - H)] 

2@ 

Then the angular momentum in a spherical shell between r and (r + dr) in the 
radiation zone is 

_ bodr 
dM 

~~ Qwk? 
Re a a*(l, m')az(I, m) | (L + Xgu)* Xin dQ (9.139) 

With the explicit form (9.119) for X,,,, (9.139) can be wnitten 

dM Ho (9.140) Re >) aki, m')az(l, m) | Yim LY im dO, 
dr 2wk? m,m 

From the properties of LY,,, listed in (9.104) and the orthogonality of the spher- 

ical harmonics we obtain the following expressions for the Cartesian components 
of dM/dr: 

dM, Ko 

4wk? dr 
Re > [Vd — m)\l + m + 1) al, m + 1) 

(9.141) 

+ V(l +m) -— m+ 1) az(l,m 1)Jae(l, m) 
io dM, 

Im % [VU -— m)\( + m + 1) a§(l, m + 1) 
4wk? dr m 

(9.142) 

— V(l+ ml -— m + 1) af(L, m — 1)Jac(l, m) 

Ho dM, 
—_— m |ag(1, m)|? (9.143) 

dr 2wk? — 

These equations show that for a general /th-order electric multipole that consists 

of a superposition of different m values only the z component of angular mo- 

mentum is relatively simple. 

For a multipole with a single m value, M, and M, vanish, while a comparison 

of (9.143) and (9.136) shows that 

dM, _mdU (9.144) 
dr w dr 

independent of r. This has the obvious quantum interpretation that the radiation 

from a multipole of order (/, m) carries off mf units of z component of angular 

momentum per photon of energy Aw. Even with a superposition of different m 

values, the same interpretation of (9.143) holds, with each multipole of definite 
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m contributing incoherently its share of the z component of angular momentum. 
Now, however, the x and y components are in general nonvanishing, with mul- 
tipoles of adjacent m values contributing in a weighted coherent sum. The be- 
havior contained in (9.140) and exhibited explicitly in (9.141)-(9.143) is familiar 
in the quantum mechanics of a vector operator and its representation with respect 
to basis states of J? and J,.* The angular momentum of multipole fields affords 
a Classical example of this behavior, with the z component being diagonal in the 
(/, m) multipole basis and the x and y components not. 

The characteristics of the angular momentum just presented hold true gen- 
erally, even though our example (9.133) was somewhat specialized. For a super- 
position of both electric and magnetic multipoles of various (/, m) values, the 
angular momentum expression (9.139) is generalized to 

dM Ho Re > 
dr. 2wk? m 

{laze m')ar(l, m) + axl’, m')ay(l, m)] { (L © Xp)" Xn dO 
Um 

+ "lak (I, m')ay(l, m) — axl, m')az(I, m)] | (L = Xm)" X Xin ao| 

(9.145) 

The first term in (9.145) is of the same form as (9.139) and represents the sum 

of the electric and magnetic multipoles separately. The second term is an inter- 

ference between electric and magnetic multipoles. Examination of the structure 

of its angular integral shows that the interference is between electric and mag- 

netic multipoles whose / values differ by unity. This is a necessary consequence 

of the parity properties of the multipole fields (see below). Apart from this com- 

plication of interference, the properties of dM/dr are as before. 

The quantum-mechanical interpretation of (9.144) concerned the z compo- 

nent of angular momentum carried off by each photon. In further analogy with 

quantum mechanics we would expect the ratio of the square of the angular mo- 

mentum to the square of the energy to have value 

i +1) M® — (M2 + M2 + M2), 
(9.146) 

2 
wW 

U2 U2 

But from (9.136) and (9.141)-(9.143) the classical result for a pure (/, m) multi- 

pole is 

MO _|M,P _ ne 
= (9.147) 

2 
@ 

U2 U2 

The reason for this difference lies in the quantum nature of the electromagnetic 

fields for a single photon. If the z component of angular momentum of a single 

photon is known precisely, the uncertainty principle requires that the other com- 

ponents be uncertain, with mean square values such that (9.146) holds. On the 
other hand, for a state of the radiation field containing many photons (the clas- 

sical limit), the mean square values of the transverse components of angular 

momentum can be made negligible compared to the square of the z component. 

*See for example, E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra, Cambridge 

University Press, Cambridge (1953), p. 63. 
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Then the classical limit (9.147) applies. For a (J, m) multipole fi field containing N 
photons it can be shown* that 

N2m2 + Nl + 1) -— m [MONI (9.148) 
N20~ 

[UNF 

This contains (9.146) and (9.147) as limiting cases. 

The quantum-mechanical interpretation of the radiated aitgular momentum 

per photon for multipole fields contains the selection rules for multipole transi- 
tions between quantum states. A multipole transition of order (1, m) will connect 

an initial quantum state specified by total angular momentum J and z component 

M to a final quantum state with J’ in the range |J — /| = J’ = J + land M’ = 
M — m. Or, alternatively, with two states (J, M) and (J’, M’), possible multipole 

transitions have (J, m) such that |J — J'|) s/=J+J' andm=M-—M' 

To complete the quantum-mechanical specification of a multipole transition 

it is necessary to state whether the parities of the initial and final states are the 

same or different. The parity of the initial state is equal to the product of the 

parities of the final state and the multipole field. To determine the parity of a 

multipole field we merely examine the behavior of the magnetic field H,,, under 

the parity transformation of inversion through the origin (r > —r). One way of 

seeing that H,,, specifies the parity of a multipole field is to recall that the inter- 

action of a charged particle and the electromagnetic field is proportional to 
(v- A). If H,,, has a certain parity (even or odd) for a multipole transition, then 

the corresponding A,,, will have the opposite parity, since the curl operation 
changes parity. Then, because v is a polar vector with odd parity, the states 
connected by the interaction operator (v + A) will differ in parity by the parity of 

the magnetic field H,,, 

For electric multipoles the magnetic field is given by (9.133). The parity trans- 

formation (r > —r) is equivalent to (r > r, 9—> a — 6,¢— @+ 7) in spherical 

coordinates. The operator L is invariant under inversion. Consequently the parity 

properties of H,,, for electric multipoles are specified by the transformation of 

Yin(8, ). From (3.53) and (3.50) it is evident that the parity of Y,,, is (—1)’. Thus 
we see that the parity of fields of an electric multipole of order (1, m) is (—1)' 
Specifically, the magnetic induction H,,, has parity (—1)’, while the electric field 

iZV X Hyn/k E,,, has parity (—1)'*’, since E,,, 
For a magnetic multipole of order (1, m) the parity is (—1)'*". In this case the 

electric field E,,, is of the same form as H,,, for electric multipoles. Hence the 

parities of the fields are just opposite to those of an electric multipole of the same 

order 

Correlating the parity changes and angular-momentum changes in quantum 

transitions, we see that only certain combinations of multipole transitions can 

occur. For example, if the states have J = 3 and J’ = 5, the allowed multipole 

orders are / = 1, 2. If the parities of the two states are the same, we see that 

parity conservation restricts the possibilities, so that only magnetic dipole and 

electric quadruple transitions occur. If the states differ in parity, then electric 

dipole and magnetic quadrupole radiation can be emitted or absorbed 

*C, Morette De Witt, and J. H. D. Jensen, Z. Naturforsch. 8a, 267 (1953). Their treatment parallels 
ours closely, with our classical multipole coefficients a-(J, m) and ay,(1, m) becoming quantum-me- 

chanical photon annihilation operators (the complex conjugates, a= and ax;, become Hermitian con- 
jugate creation operators) 



437 Sect. 9.9 Angular Distribution of Multipole Radiation 

9.9 Angular Distribution of Multipole Radiation 

For a general localized source distribution, the fields in the radiation zone are 
given by the superposition 

ikr—iwt 

H-—- 
kr 

> (-i"* [az (L, M)Xip + antl, m)n x Xin 
(9.149) 

E— ZH xn 

The coefficients a;(/, m) and ay(/, m) will be related to the properties of the 
source in the next section. The time-averaged power radiated per unit solid angle 
is 

2 
dP Z, 

> (-i)""[ac(1, m)X,, X n + an(l, M)Xyn] (9.150) dQ 2k? im 

Within the absolute value signs the dimensions are those of magnetic field, but 
the polarization of the radiation is specified by the directions of the vectors. We 
note that electric and magnetic multipoles of a given (J, m) have the same angular 
dependence but have polarizations at right angles to one another. Thus the mul- 
tipole order may be determined by measurement of the angular distribution of 
radiated power, but the character of the radiation (electric or magnetic) can be 
determined only by a polarization measurement. 

For a pure multipole of order (/, m) the angular distribution (9.150) reduces 

to a single term, 

dP(l,m) _ Zo 
|a(2, m)|* | Kin? (9.151) 

dQ Qk? 

From definition (9.119) of X,,,, and properties (9.104), this can be transformed 

into the explicit form: 

3(1 — m) + m+ 1) |¥imai? dP(l,m) _ Zy |a(l, m)|? 
= 

dQ 2k(l + 1) + (0 + ml — m + 1) |¥im—rP + m? |Yin? 
(9.152) 

Table 9.1 lists some of the simpler angular distributions. 

The dipole distributions are seen to be those of a dipole oscillating parallel 

to the z axis (m = 0) and of two dipoles, one along the x axis and one along the 

y axis, 90° out of phase (m = +1). The dipole and quadrupole angular distribu- 

tions are plotted as polar intensity diagrams in Fig. 9.5. These are representative 

of / = 1 and / = 2 multipole angular distributions, although a general multipole 

Table 9.1 Some Angular Distributions: |X,,,(0, ¢) |? 

m 

+1 +2 0 I 

1 
— sin?6 — (1 + cos’6) 

167 87 Dipole 

5 2 
— sin?@ cos”@ =—— (1 - cos — (1 — 3 cos’@ + 4 cos*@) 4@) 

167 167 Quadrupole 
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l=2,m=%2 

l=2, 
m=tl1 

l=2,m=0 

CC 
lt=1m=0 U 

le=lme=fil 

Dipole and quadrupole radiation patterns for pure (/, m) multipoles. Figure 9.5 

distribution of order / will involve a coherent superposition of the (2/ + 1) am- 

plitudes for different m, as shown in (9.150). 

It can be shown by means of (3.69) that the absolute squares of the vector 

spherical harmonics obey the sum rule, 

l 
21+ 1 

> (9.153) 
4 

m=— 

' |Xin(9, o)? ~ 

Hence the radiation distribution will be isotropic from a source that consists of 

a set of multipoles. of order /, with coefficients a(/, m) independent of m, super- 
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posed incoherently. This situation usually prevails in atomic and nuclear radiative 
transitions unless the initial state has been prepared in a special way. 

The total power radiated by a pure multipole of order (J, m) is given by the 
integral of (9.151) over all angles. Since the X,,, are normalized to unity, the 
power radiated is 

(9.154) P(L, m) = <3 alt, m)? 
For a general source the angular distribution is given by the coherent sum (9.150). 
On integration over angles it is easy to show that the interference terms do not 
contribute. Hence the total power radiated is just an incoherent sum of contri- 
butions from the different multipoles: 

(9.155) P= 22 [lac(l, m)P + lant, m)F 

9.10 Sources of Multipole Radiation; Multipole Moments 

Having discussed the properties of multipole fields, the radiation patterns, and 

the angular momentum and energy carried off, we now turn to the connection 

of the fields with the sources that generate them. We assume that there exist 

localized well-behaved distributions of charge p(x, z), current J(x, t), and intrinsic 

magnetization M(x, t). Furthermore, we assume that the time dependence can 

be analyzed into its Fourier components, and we consider only harmonically 

varying sources, 

(9.156) M(x)ei@* I(xje"™, p(x) eit 

where it is understood that we take the real part of such complex quantities. A 

more general time dependence can be obtained by linear superposition (see also 
Problem 9.1). 

The Maxwell equations for E and H’ = B/jp are 

V x E — ikZ,H’ = 0 V-H’ =0, 
(9.157) 

Vx H' + ikE/Z,=J+Vxm V-E = p/éo, 

with the continuity equation, 

(9.158) iop = V-JI 

It is convenient to deal with divergenceless fields. Accordingly, we use as field 

variables, H’ and 

EB =E+—3J (9.159) 
WE 

In the region outside the sources, E’ reduces to E and H’ to H. In terms of these 

fields the Maxwell equations read 

— vxj V x E’ — ikZ.H’ V-H’ =0, 
WE (9.160) 

Vx V-E’ =0, Vv x H’ + ikEZ, 



440 Chapter9 Radiating Systems, Multipole Fields and Radiation—SI 

The curl equations can be combined to give the inhomogeneous Helmholtz wave 

equations 

-Vx(I+Vx M) (v? 
k?)H’ 

(9.161) and 

(V2 + k2)E’ —iZokV xX (u + +3V*x x) ~ 

These wave equations, together with V - H’ = 0, V- E’ = 0, and the curl equations 

giving E’ in terms of H’ or vice versa, are the counterparts of (9.108) and (9.109) 
when sources are present. 

Since the multipole coefficients in (9.122) are determined according to 

(9.123) from the scalars r- H’ andr - E’, it is sufficient to consider wave equations 

for them, rather than the vector fields E’ and H’. From (9.110), (9.161) and the 
vector relation, r-(V x A) = (r X V)-A = iL-A for any vector field A, we find 

the inhomogeneous wave equations 

— —iL (I+V x M) (v? k*)r - H’ (9.162) 

M+—sVxJ (V2 + )r- E’ 
k? 

ZokL ( 

The solutions of these scalar wave equations follow directly from the develop- 
ment in Section 6.4. With the boundary condition of outgoing waves at infinity, 

we have 

efkix— —x’ 

[J(x’) +0" x M(x’)] d2x' r- H’(x) = aoe 
(9.163) oe x’| 

r- E’(x) = —- — 
ae 

ape [x 
[aoe +2 +SV' x I(x’ | d°x' 

To evaluate the multipole coefficients by means of (9.123), we first observe that 

the requirement of outgoing waves at infinity makes A$” = 0 in (9.113). Thus we 
choose f,(kr) = g,(kr) = h§(kr) in (9.122) as the representation of E and H 
outside the sources. Next we consider the spherical wave representation (9.98) 

for the Green function in (9.163) and assume that the point x is outside a spherical 

surface completely enclosing the sources. Then in the integrations in (9.163) 

r. =r',r, =r. The spherical wave projection needed for (9.123) is 

etklx— —x’ 

= ik h(kr)j,(kr')Y*,,(0', 6') (9.164) 1 | a0 Ytn08, 8) 
[x x’ | 

By means of this projection we see that a,,(/, m) and a;,(I, m) are given in terms 

of the integrands in (9.163) by 

ik} 1 
+sTVxJ az(l m) = | JAkr) Vial (4 Vill + 1) a (9.165) 

(I+ Vx M) da ay(l, m) = Tar | iV 

The expressions in (9.165) give the strengths of the various multipole fields 
outside the source. in terms of integrals over the source densities J and M. They 
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can be transformed into more useful forms by means of the following identities: 
Let A(x) be any well-behaved vector field. Then 

L-A=i¥V-(r x A) (9.166) 

L-(V x A) = (r+ A) — = 5 (PVA) 

These follow from the definition (9.101) of L and simple vector identities. With 
A = M in the first equation and A = J in the second, the integral for a e(/, m) in 
(9.165) becomes 

a;(l,m) = TESS J irra ¥ -(r x M) 
ic 19a 

+ Vd) — 77 (’e) 
k 

Jen 
where we have used (9.158) to express V - J in terms of p. Use of Green’s theorem 
on the second term replaces V* by —k’, while a radial integration by parts on the 
third term casts the radial derivative over onto the spherical Bessel function. The 
result for the electric multipole coefficient is 

k? cp — [rid kr)] + ik(e » Dyker) 
= OT d°x az(l, m) (9.167) 

iVl+1)) '™ — ikV + (t xX M)j,(kr) 

The analogous manipulation with the second equation in (9.165) leads to the 

magnetic multipole coefficient, 

k? V-(rx Dj(kr) + V- M < [ri(kr)] 
x ay(l, m) = WIT 21) im 

— (r+ Mji(kr) 
(9.168) 

These results are exact expressions, valid for arbitrary frequency and source size. 

For many applications in atomic and nuclear physics the source dimensions 

are very small compared to a wavelength (krja, << 1). Then the multipole co- 
efficients can be simplified considerably. The small argument limit (9.88) can be 
used for the spherical Bessel functions. Keeping only the lowest powers in kr for 
terms involving p or J and M, we find the approximate electric multipole 

coefficient, 

I+1 ck! +2 

—_—_ (9.169) a-(l,m) = 
l i(2l + 1)! 
) Cr + Qim) ( 

where the multipole moments are 

—_ 

= Om | r'Y'inp A°X 
and (9.170) 

—ik 
'y* V(r x M) dex Qim = 

(i+ 1c 

The moment Q,,, is seen to be the same in form as the electrostatic multipole 

moment Gjn (4.3). The moment Q7,, is an induced electric multipole moment due 



442 Chapter9 Radiating Systems, Multipole Fields and Radiation—SI 

to the magnetization. It is generally at least a factor kr smaller than the normal 

moment Q,,. For the magnetic multipole coefficient a,,(/, m) the corresponding 

long-wavelength approximation is 

I+1 iki *? 

—_—_— (9.171) an(l, m) = 
l 
) Mi + Mim) 

(21 + 1)! ( 
™ ™ 

where the magnetic multipole moments are 

1 
Mim | Yin Ve(t x J) d°x 

T+) 
and (9.172) 

— 

= Mim -| yin Ve M dix 
In contrast to the electric multipole moments Q,,, and Q},,, for a system with 
intrinsic magnetization the magnetic moments M,,, and M/,, are generally of the 
same order of magnitude. 

In the long-wavelength limit we see clearly that electric multipole fields are 
related to the electric-charge density p, while the magnetic multipole fields are 
determined by the magnetic-moment densities, (r x J)/2 and M. 

9.11 Multipole Radiation in Atoms and Nuclei 

Although a full discussion of radiative transitions in atoms and nuclei requires a 

quantum-mechanical treatment, the qualitative aspects can be gleaned from our 

classical formulas by means of semiclassical arguments and simple estimates of 

the effective multipole moments. First of all, we note that the transition proba- 

bility [ (reciprocal mean life) for emission of a photon of energy hw is given by 

the radiated power divided by iw. From (9.154) for the power and (9.169) and 

(9.171) for the amplitudes a, and a,, in terms of the long-wavelength multipoles, 

we find the transition probability for an electric multipole (/, m), 

I+1 wZok a 
———_ r-(l, m) = (9.173) | Qin + O'm| 

l 2A[(2l + 1)iP ( 
For a magnetic multipole, Qi, + Qim— (1/c)[Mim + Min]. 

The effective multipole moments can be estimated as to order of magnitude 

as follows. Suppose that for the system under consideration the effective charge 

is e, the effective mass of the radiating constituents is m, and the effective size is 

R. Then the effective magnetization is | A| = O(eh/mR?), where eh/m is the ef- 

fective magnetic moment of the constituents. The most naive estimates of the 
multipole coefficients are then 

hw 

mack |Qim| = O(ER'); |Otm| = of 
and (9.174) 

eh 
me Ro = Min + Mil = O( 
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With these order-of-magnitude estimates some qualitative features of atomic and 
nuclear radiative transitions can be abstracted. In atoms and in nuclei the tran- 
sition energies fiw are invariably small compared to the rest energy mc’ of the 
constituents. We thus see that |Q/,,| << |Q,,,| is a universal expectation. Electric 
multipole transitions of order / (denoted by E/) are dominated by the transitional 
charge density, with negligible contribution from the “magnetization charge.” 
On the other hand, magnetic multipole transitions (M1) generally have compa- 
rable contributions from the orbital and intrinsic magnetizations. 

In atoms the electrons are the radiating constituents. The size of the system 
is R = O(ao/Zese), where ag is the Bohr radius and Ze, is of order unity for valence 
electron transitions and of order Z for K- or L-shell x-ray transitions. From 
(9.174) the relative size of the magnetic multipole moments with respect to the 
electric of the same order / is |M|/c|Q| = O(4i/mcR) = O(Z.)/137). For the same 
transition energy, the transition probabilities will be in the ratio 

Zen Pull) _ 
(9.175) 

Te) (137) ( 
Only for x-ray transitions in heavy elements are magnetic multipoles even re- 
motely competitive with electric multipoles of the same order. [Note, however, 

that the MI transitions have the opposite parity properties to the El for the 
same 1.] 

Of interest is the relative size of transition probabilities for multipoles dif- 

fering by one unit in order. Ignoring factors of order unity, we see from (9.173) 

and (9.174) that 

Teu(l + 1) 
= O(K?R?) (9.176) 

Vem!) 

In atoms the transition energies are of order Z2,mc7/(137)*, while the size is 
R = O(137 h/mcZ.¢¢). We thus find KR = O(Z,,;/137) and the ratio for successive 

El multipoles is of the same order as (9.175). For atomic transitions in which the 

angular-momentum selection rules permit several multipoles, the lowest multi- 

pole generally dominates. For example, if the initial and final angular momenta 

are J =4andJ’ =3and the states have the opposite parity, the allowed multipoles 
are E1 and M2. The E1 transition will dominate by a factor of order (Zeg¢/137)*. 
If the parities are the same, the allowed transitions are M1 and E2. Now the two 

transition mechanisms may be comparable, with transition probabilities much 

smaller than for opposite parities. In atoms the dominant transitions are £1; high 

angular momentum states de-excite by a cascade of F1 transitions, if at all 

possible. 

In nuclei the situation is somewhat different. Successive multipoles of the 

same type still obey the estimate (9.176), but the transition energies vary signif- 
icantly. With the nuclear radius R = 1.4 A’? X 10° m as the effective size, 
numerically we have KR = [hw(MeV)] A*?/140. Energies vary from a few keV 
to several MeV. In heavy nuclei, this corresponds to a range, KR = 107*-107'. 
Evidently, for energetic nuclear transitions successive multipoles of the same type 
are not as suppressed as in atoms. For low energies, however, the suppression of 
rate with multipole order is dramatic. M4 isomeric transitions with energies of 
the order of 100 keV or less can have mean lives of hours. The nuclear estimates 
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for magnetic relative to electric transition rates of the same order, and for an 
electric multipole of one higher order relative to a magnetic transition, are 

(hw[MeV])* A*? PZ) _ Pel +1) _ 
= O(0.2 A~**); (9.177) 

4000 Py() PeQ) ( 
In these estimates we have taken the effective magnetization to be roughly 

3 eh/myR?, with a g factor of 3 to account for the magnétic moments of nucleons. 
Our estimates of the nuclear transition rates are subject to exceptions as- 

cribable to special properties of the nuclear states and interactions. In light to 

medium mass nuclei, £1 transitions are strongly suppressed by the isospin sym- 

metry of nuclear forces, at least at low energies. M1 transitions are far commoner 

than F1 transitions and just as intense. In rare earth and transuranic nuclei, E2 

transitions are often 100 times stronger than our estimate because of significant 

static and transitional quadrupole moments in these nonspherical nuclei. If al- 

lowed by spin-parity, £2 transitions then compete favorably with M1 transitions. 

A proper quantum-mechanical treatment of multipole radiation can be found 

in Blatt and Weisskopf, Chapter XII. Applications to nuclear transitions are cited 

in the References and Suggested Reading at the end of the chapter. 

9.12 Multipole Radiation from a Linear, Center-Fed Antenna 

As an illustration of the use of a multipole expansion for a source whose dimen- 

sions are comparable to a wavelength, we consider the radiation from a thin, 

linear, center-fed antenna, as shown in Fig. 9.6. We have already given in Section 
9.4 a direct solution for the fields when the current distribution is taken to be 
sinusoidal. This will serve as a basis of comparison to test the convergence of 
the multipole expansion. We assume the antenna to lie along the z axis from 
—(d/2) = z S (d/2), and to have a small gap at its center so that it can be suitably 

—d 

6 

SY 
-_ =| —— — z= 

T(z) 

Figure 9.6 Linear, center-fed it 
antenna. 
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excited. The current along the antenna vanishes at the end points and is an even 
function of z. For the moment we will not specify it more than to write 

d 
—_— (9.178) 
2 

I(z, t) = K(|z|e™, i )=0 

Since the current flows radially, (r x J) = 0. Furthermore there is no intrinsic 

magnetization. Consequently all magnetic multipole coefficients a,,(/, m) vanish. 

To calculate the electric multipole coefficient ag(/1, m) (9.167) we need expres- 

sions for the charge and current densities. The current density J is a radial current, 

confined to the z axis. In spherical coordinates this can be written for r < (d/2) 

. I) 
r I(x) = (9.179) [d(cos @ — 1) — d(cos@ + 1)] 

r2 

where the delta functions cause the current to flow only upward (or downward) 

along the z axis. From the continuity equation (9.158) we find the charge density 

d(cos € — 1) — 6(cos 6 + 1) 1 dlr) 
(9.180) p(x) = 

iw ar Qar | | 
These expressions for J and p can be inserted into (9.167) to give 

al2 
dl d ke? 

_- —————— ag(l,m) = 
k dr dr 

rier) dr | krj(kr)I(r) - 
2aVi(l + 1) Jo (9.181) 

x | dQ, Y7,,[5(cos 6 — 1) — &(cos@ + 1)] 

The integral over angles is 

| dQ, = 2778 mol Y10(0) _ Yio(7)] 
showing that only m = 0 multipoles occur. This is obvious from the cylindrical 

symmetry of the antenna. The Legendre polynomials are even (odd) about 6 = 

m/2 for | even (odd). Hence, the only nonvanishing multipoles have / odd. The 

the angular integral has the value, 

| dQ, = V4r(2l + 1), l odd, m = 0 

With slight manipulation (9.181) can be written 
al2 

d 4n (21 + 1) dl 
—_ — | d 0 dr a,(l, 0) = ~ rit) 

Ki + 1) | (9.182) 
da’I 

dr — + k*] 
dr? + rier ( 

To evaluate (9.182) we must specify the current J(z) along the antenna. If 

no radiation occurred, the sinusoidal variation in time at frequency w would imply 
a sinusoidal variation in space with wave number k = o/c. But as discussed in 

Section 9.4.B, the emission of radiation modifies the current distribution unless 
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the antenna is infinitely thin. The correct current /(z) can be found only by solving 

a complicated boundary-value problem. Since our purpose here is to compare a 

multipole expansion with a closed form of solution for a known current distri- 

bution, we make the same assumption about J(z) as in Section DAA, namely, 

—__ — (9.183) 
2 

™ ~ 

kz! (iz) =I sin( 

where J is the peak current, and the phase is chosen to ensure that the current 
vanishes at the ends of the antenna. With a sinusoidal current the second part of 
the integrand in (9.182) vanishes. The first part is a perfect differential. Conse- 
quently we immediately obtain, with /(z) from (9.183), 

2 

kd kd I 
. 

4a(2I + 1) 
— — — 

Ji a-(l, 0) = 
2 2 d il + 1) ( )} lodd (9.184) II | 

Since we wish to test the multipole expansion when the source dimensions 

are comparable to a wavelength, we consider the special cases of a half-wave 

antenna (kd = 7) and a full-wave antenna (kd = 27). Table 9.2 shows the / = 1 

coefficient for these two values of kd, along with the relative values for / = 3, 5. 

From the table it is evident that (a) the coefficients decrease rapidly in magnitude 

as / increases, and (b) higher / coefficients are more important the larger the 

source dimensions. But even for the full-wave antenna it is probably adequate 

to keep only / = 1 and / = 3 in the angular distribution and certainly adequate 

for the total power (which involves the squares of the coefficients). 

With only dipole and octupole terms in the angular distribution we find that 

the power radiated per unit solid angle (9.150) is 

2 

dP Z, \ag(1, 0)|? az (3, 0) 
3,0 (9.185) LY io —_ 

dQ Ak? V6 az(1, 0) 

The various factors in the absolute square are 

— 

= —— sin?6 ILYi of? 

— sin ILY30? = 7@(5 cos’@ — 1)? (9.186) 
167 
VA 

sin’6(5 cos*6 — 1) (LY, 0)* ° (LY30) = 
87 

Table 9.2. Multipole Coefficients for Linear Antenna 

kd a,(1, 0) a,(3, 0)/a,(1, 0) az (5, 0)/a,z(1, 0) 

61 4.95 x 107? 1.02 x 1073 
rd 

E 
I 
— 2a V 61 0.3242 2.39 x 107? 
d 
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With these angular factors (9.185) becomes 
2 

dP 3 3Zo]? 
—_—— 

7 az (3, 0) 
— sin’@ (9.187) (5 cos*6 — 1) 

dQ T 8 ( { 8 a-(1, 0) 

where the factor A is equal to 1 for the half-wave antenna and (77/4) for the full 
wave. The coefficient of (5 cos?@ — 1) in (9.187) is 0.0463 and 0.3033 for the half- 

wave and full-wave antenna, respectively. 

A numerical comparison of the exact and approximate angular distributions, 

(9.57) and (9.187), is shown in Fig. 9.7. The solid curves are the exact results, the 

dashed curves the two-term multipole expansions. For the half-wave case (Fig. 

9.7a) the simple dipole result [first term in (9.187)] is also shown as a dotted 

curve. The two-term multipole expansion is almost indistinguishable from the 

exact result for kd = a. Even the lowest order approximation is not very far off 

in this case. For the full-wave antenna (Fig. 9.7b) the dipole approximation is 

evidently quite poor. But the two-term multipole expansion is reasonably good, 

differing by less than 5% in the region of appreciable radiation. 

The total power radiated is, according to (9.155), 

Zo P=— (9.188) > lae(l, 0)? 
2k? ; odd 

(b) kd = 20 (a) kd=7 

Figure 9.7 Comparison of exact radiation patterns (solid curves) for half-wave 
(kd = 77) and full-wave (kd = 27) center-fed antennas with two-term multipole 

expansions (dashed curves). For the half-wave pattern, the dipole approximation 
(dotted curve) is also shown. The agreement between the exact and two-term multipole 

results is excellent, especially for kd = a. 
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Figure 9.8 Total power radiated by center-fed antenna with sinusoidal current 

distribution (9.183) versus kd. The ordinate is 47P/Zol*, with J the peak current in 

(9.183). The curve labeled ‘““Long-wavelength dipole approx.”’ employs the long- 

wavelength dipole moment (9.170) rather than the exact (9.167) used for the curve 

labeled “‘Exact dipole term.” The curve labeled “All multipoles” is the sum (9.188) 
[actually up to £9]. 

For the half-wave antenna the coefficients in Table 9.2 show that the power 
radiated is a factor 1.00244 times larger than the simple dipole result, (3Z)17/7°). 
For the full-wave antenna, the power is a factor 1.10565 times larger than the 

dipole form (3Z)I*/47). 
A comparison of the total power (9.188) for the center-fed linear antenna 

with the lowest multipole power, for both the exact lowest multipole and its long- 

wavelength approximation, is shown in Fig. 9.8 versus kd. For kd S 277, the power 

is dominated by the E1 multipole, as we have just seen, but for larger kd the 

higher multipoles contribute more and more. It is noteworthy that the long- 

wavelength dipole approximation departs significantly from the exact dipole re- 

sult (and the total power) for kd > 7. The departure, which becomes gross for 

larger kd, is a consequence of differences between exact multipole moments and 

the long-wavelength approximations to them when the wavelength becomes com- 

parable to or smaller than source size. 
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Problems 

9.1 A common textbook example of a radiating system (see Problem 9.2) is a config- 

uration of charges fixed relative to each other but in rotation. The charge density 

is obviously a function of time, but it is not in the form of (9.1). 

(a) Show that for rotating charges one alternative is to calculate real time-depen- 

dent multipole moments using p(x, ¢) directly and then compute the multipole 

moments for a given harmonic frequency with the convention of (9.1) by in- 

spection or Fourier decomposition of the time-dependent moments. Note that 

care must be taken when calculating q,,,(t) to form linear combinations that 

are real before making the connection. 

Consider a charge density p(x, ¢) that is periodic in time with period T = 277/ap. (b) 
By making a Fourier series expansion, show that it can be written as 

a(x, 1) = po(x) +S) Rel2pn(x)e"" 

where 
T 

p(x, the" dt 
0 

P(X) = T [ 
This shows explicitly how to establish connection with (9.1). 
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(c) Fora single charge q rotating about the origin in the x-y plane in a circle of 
radius R at constant angular speed wo, calculate the / = 0 and / = 1 multipole 
moments by the methods of parts a and b and compare. In method b express 
the charge density p,(x) in cylindrical coordinates. Are there higher multi- 

poles, for example, quadrupole? At what frequencies? 

9.2 A radiating quadrupole consists of a square of side a with charges +q at alternate 

corners. The square rotates with angular velocity w about an axis normal to the 

plane of the square and through its center. Calculate the quadrupole t moments, the 
radiation fields, the angular distribution of radiation, and the total radiated power, 

all in the long-wavelength approximation. What is the frequency of the radiation? 

9.3 Two halves of a spherical metallic shell of radius R and infinite conductivity are 

separated by a very small insulating gap. An alternating potential is applied between 

the two halves of the sphere so that the potentials are +V cos wt. In the long- 

wavelength limit, find the radiation fields, the angular distribution of radiated 

power, and the total radiated power from the sphere. 

9.4 Apply the approach of Problem 9.1b to the current and magnetization densities of 

the particle of charge q rotating about the origin in the x-y plane in a circle of radius 

R at constant angular speed wy. The motion is such that wR << c. 

(a) Find (J,),, Jy)n, and (J,), in terms of cylindrical coordinates for all n. Also 

determine the components of the orbital “‘magnetization,” (x x J,,)/2, and its 

divergence [which plays the role of a magnetic charge density for magnetic 

multipoles, as in M,,, (9.172)]. 

(b) What long-wavelength magnetic multipoles (/, m) occur and at what frequen- 

cies? [Remember that the multipole order / does not necessarily equal the 

harmonic number n.] 

(c) Use linear superposition to generalize your argument to the four charges ro- 

tating in Problem 9.2 at radius R = a/\/2. What harmonics occur, and what 
magnetic multipoles at each harmonic? Is there a magnetic multipole contri- 
bution at the E2 frequency of Problem 9.2? Is it significant relative to the E2 

radiation? 

9.5 (a) Show that for harmonic time variation at frequency w the electric dipole scalar 
and vector potentials in the Lorenz gauge and the long-wavelength limit are 

ikr 

P(x) = n- p(1 — ikr) 
A meéor? 

elkr 

A(x) = -i1 £2 
P [this is (9.16)] 

4 

where k = w/c, nis a unit vector in the radial direction, p is the dipole moment 
(9.17), and the time dependence e~‘ is understood. 

(b) Calculate the electric and magnetic fields from the potentials and show that 
they are given by (9.18). 

9.6 (a) Starting from the general expression (9.2) for A and the corresponding ex- 
pression for ®, expand both R = |x — x’| and ¢’ = ¢ — Ric to first order in 
|x’ |/r to obtain the electric dipole potentials for arbitrary time variation 

1 1 . OPret P(x, t) = ZN? Pre + —N 4 ot 0 | | 
A(x, t) = bo OPret 

4ar at 
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where pre = p(t’ = t — ric) is the dipole moment evaluated at the retarded 
time measured from the origin. 

(b) Calculate the dipole electric and magnetic fields directly from these potentials 
and show that 

1 1 OPret a Pret 
ot cr 

-_—s. 

or? 
B(x, = fs | 

ro 3n(n ‘ Pret) ~~ Pret I’ Pret 
+—>nx nx —, E(x, ¢) = 

3 4 c ot r Cr ‘0 
ar? ( I | ( ) 

(c) Show explicitly how you can go back and forth between these results and the 
harmonic fields of (9.18) by the substitutions —iw <> d/at and pe’ p,..(t’). 

9.7 (a) By means of Fourier superposition of different frequencies or equivalent 
means, show for a real electric dipole p(t) that the instantaneous radiated 

power per unit solid angle at a distance r from the dipole in a direction n is 

2 
2 dP(t) = Zp 

dQ 1672 x oa) | |x 

where ¢’ = ¢ — r/c is the retarded time. For a magnetic dipole m(t), substitute 

(1/c)m x n for (n X p) X n. 

(b) Show similarly for a real quadrupole tensor Q,,(t) given by (9.41) with a real 

charge density p(x, ¢) that the instantaneous radiated power per unit solid 

angle is 

2 

a°Q dP(t)_ = Zo 
dt? (n, t’) dQ ~~ -576n°c4 | |x 

where Q(n, ) is defined by (9.43). 

9.8 (a) Show that a classical oscillating electric dipole p with fields given by (9.18) 

radiates electromagnetic angular momentum to infinity at the rate 

ke dL 
Im[p* x p] 

dt 1276 

(b) What is the ratio of angular momentum radiated to energy radiated? Interpret. 

(c) For a charge e rotating in the x-y plane at radius a and angular speed w, show 

that there is only a z component of radiated angular momentum with mag- 

nitude dL ,/dt = e*k?a?/67ré9. What about a charge oscillating along the z axis? 

What are the results corresponding to parts a and b for magnetic dipole (d) 
radiation? 

Hint: The electromagnetic angular momentum density comes from more than the 

transverse (radiation zone) components of the fields. 

9.9 (a) From the electric dipole fields with general time dependence of Problem 9.6, 

show that the total power and the total rate of radiation of angular momentum 

through a sphere at large radius r and time ¢ are 

1 O°’ Dret 
P(t) = at? 67eEC° 

; 

( 
1 Lem Pret OPret 

= 

at? ot at 677€yC° ( 
where the dipole moment p is evaluated at the retarded time ¢’ = t — ric. 
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(b) The dipole moment is caused by a particle of mass m and charge e moving 

nonrelativistically in a fixed central potential V(r). Show that the radiated 

power and angular momentum for such a particle can be written as 

dV T 

— 

dr 
P(t) = mM 

; 

( 
dV dem 

= a 
= 

™~ ~ rdr at m ( ju 

where 7 = e7/67regnc? (= 2e?/3mc? in Gaussian units) is a characteristic time, 
L is the particle’s angular momentum, and the right-hand sides are evaluated 

at the retarded time. Relate these results to those from the Abraham—Lorentz 

equation for radiation damping [Section 16.2]. 

(c) Suppose the charged particle is an electron in a hydrogen atom. Show that the 

inverse time defined by the ratio of the rate of angular momentum radiated 
— 

= to the particle’s angular momentum is of the order of a‘c/ay, where a 
e?/47r€ghc ~ 1/137 is the fine structure constant and ay is the Bohr radius. How 

does this inverse time compare to the observed rate of radiation in hydrogen 

atoms? 

(d) Relate the expressions in parts a and b to those for harmonic time dependence 

in Problem 9.8. 

9.10 The transitional charge and current densities for the radiative transition from the 

m = 0, 2p state in hydrogen to the 1s ground state are, in the notation of (9.1) and 

with the neglect of spin, 

2e 
p(r, 9, , t) = 

rT ~3220V Ye ive! 
4 V6 
0 

a 

- Uo ao . a I(r, 8, $, t) = 
2 2 ra ( Joc a) 

where dy = 477€9fi?/me* = 0.529 X 107" m is the Bohr radius, wp) = 37/32 7€phidg is 

the frequency difference of the levels, and vg = e7/47re,, = ac ~ c/137 is the Bohr 

orbit speed. 

(a) Show that the effective transitional (orbital) ‘“magnetization”’ is 

“M(r, 0, b, ) = —i 2 tan o(% sin o — § cos $) - pr, 6, 6, 1) 

Calculate V - “MM” and evaluate all the nonvanishing radiation multipoles in 
the long-wavelength limit. 

(b) In the electric dipole approximation calculate the total time-averaged power 
radiated. Express your answer in units of (Aw) - (a*c/ay), where a = e7/4-7re,hic 
is the fine structure constant. 

(c) Interpreting the classically calculated power as the photon energy (Aw) times 
the transition probability, evaluate numerically the transition probability in 
units of reciprocal seconds. 

(d) If, instead of the semiclassical charge density used above, the electron in the 
2p state was described by a circular Bohr orbit of radius 2a, rotating with the 
transitional frequency w), what would the radiated power be? Express your 
answer in the same units as in part b and evaluate the ratio of the two powers 
numerically. 

9.11 Three charges are located along the z axis, a charge +2q at the origin, and charges 
= 

= —q at Z +a cos wt. Determine the lowest nonvanishing multipole moments, 
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the angular distribution of radiation, and the total power radiated. Assume that 
ka << 1, 

9.12 An almost spherical surface defined by 

R(6) = Roll + BP2(cos 6)] 

has inside of it a uniform volume distribution of charge totaling Q. The small pa- 

rameter £ varies harmonically in time at frequency w. This corresponds to surface 

waves on a sphere. Keeping only lowest order terms in 8 and making the long- 

wavelength approximation, calculate the nonvanishing multipole moments, the an- 

gular distribution of radiation, and the total power radiated. 

9.13 The uniform charge density of Problem 9.12 is replaced by a uniform density of 

intrinsic magnetization parallel to the z axis and having total magnetic moment M. 

With the same approximations as above calculate the nonvanishing radiation mul- 

tipole moments, the angular distribution of radiation, and the total power radiated. 

9.14 An antenna consists of a circular loop of wire of radius a located in the x-y plane 

with its center at the origin. The current in the wire is 

I = Ip cos wt = Re Khe 

(a) Find the expressions for E, H in the radiation zone without approximations 

as to the magnitude of ka. Determine the power radiated per unit solid angle. 

(b) What is the lowest nonvanishing multipole moment (Q,,, or M;,)? Evaluate 

this moment in the limit ka << 1. 

9.15 Two fixed electric dipoles of dipole moment p are located in the x-y plane a distance 

2a apart, their axes parallel and perpendicular to the plane, but their moments 

directed oppositely. The dipoles rotate with constant angular speed w about a z axis 
located halfway between them. The motion is nonrelativistic (wa/c << 1). 

(a) Find the lowest nonvanishing multipole moments. 

(b) Show that the magnetic field in the radiation zone is, apart from an overall 

phase factor, 

ikr 

H = x k7[(& + if) cos 6 — Z sin 6 e'*} cos 6 

(c) Show that the angular distribution of the radiation is proportional to 

(cos?@ + cos*@) and the total time-averaged power radiated is 

P= Cc ko p* ‘a 

15 7€ 

Hint: Problem 6.21 is relevant. 

9.16 A thin linear antenna of length d is excited in such a way that the sinusoidal current 

makes a full wavelength of oscillation as shown in the figure. 

ao 

Problem 9.16 _— = 

Calculate exactly the power radiated per unit solid angle and plot the angular 
(a) 

distribution of radiation. 

Determine the total power radiated and find a numerical value for the radi- 
(b) 

ation resistance. 
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9.17 Treat the linear antenna of Problem 9.16 by the multipole expansion method. 

(a) Calculate the multipole moments (electric dipole, magnetic dipole, and elec- 
tric quadrupole) exactly and in the long-wavelength approximation. 

(b) Compare the shape of the angular distribution of radiated power for the lowest 

nonvanishing multipole with the exact distribution of Problem 9.16. 

Determine the total power radiated for the lowest multipole and the corre- (c) 
sponding radiation resistance using both multipole moments~from part a. 

Compare with Problem 9.16b. Is there a paradox here? 

9.18 A qualitative understanding of the result for the reactance of a short antenna whose 

radiation fields are described by the electric dipole fields of Section 9.2 can be 

achieved by considering the idealized dipole fields (9.18). 

(a) Show that the integral over all angles at fixed distance r of €)|E|? — o |H/? 
is 

1 |pr 
6 [ feo LEP — po [IP] a0 = 

27€ 

(b) Using (6.140) for the reactance, show that the contribution X, to the reactance 

from fields at distances 7 > a is 

o lpi 
Xa ~ 6€ |L,|? a 

where /; is the input current. 

For the short center-fed antenna of Section 9.2 show that X, = — d?/247re,wa’, (c) 
corresponding to an effective capacitance 247re9a*/d’. With a = d/2, X, gives 
only a small fraction of the total negative reactance of a short antenna. The 

fields close to the antenna, obviously not dipole in character, contribute heav- 

ily. For calculations of reactances of short antennas, see the book by 

Schelkunoff and Friis. 

9.19 Consider the excitation of a waveguide in Problem 8.19 from the point of view of 

multipole moments of the source. 

(a) For the linear probe antenna calculate the multipole moment components of 

P, m, Q.¢, Q%, that enter (9.69). 

(b) Calculate the amplitudes for excitation of the TE,. mode and evaluate the 

power flow. Compare the multipole expansion result with the answer given in 

Problem 8.19b. Discuss the reasons for agreement or disagreement. What 

about the comparison for excitation of other modes? 

9.20 (a) Verify by direct calculation that the static tangential electric field (3.186) in a 

circular opening in a flat conducting plane, when inserted into the defining 

equation (9.72) for the electric dipole moment p,g, leads to the expression 

(9.75). 

(b) Determine the value of iuwm,;; given by (9.72) with the static electric field in 

part a. 

(c) Use the static normal magnetic field (5.132) for the corresponding magnetic 

boundary problem with a circular opening to compute via (9.74) the magnetic 

dipole moment my, and compare with (9.75). 

(d) Comment on the differences between the results of parts b and c and the use 

of the definitions (9.72) in a consistent fashion. [See Section 9 of the article, 

Diffraction Theory, by C. J. B. Bouwkamp in Reports on Progress in Physics, 

Vol. 17, ed. A. C. Strickland, The Physical Society, London (1954).] 
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9.21 The fields representing a transverse magnetic wave propagating in a cylindrical 
waveguide of radius R are: 

H, =0 
E, = Jin rye ee!Bz— iar, 

k —mB E, 

, A, = Ey = Es v ZB 
k _ ip aE, 

E E, Hy = 
~ Par? LZoB " 

where m is the index specifying the angular dependence, 8 is the propagation con- 

stant, y° = k* — B* (k = alc), where yis such that J,,(yR) = 0. Calculate the ratio 

of the z component of the electromagnetic angular momentum to the energy in the 

field. It may be advantageous to perform some integrations by parts, and to use the 

differential equation satisfied by E,, to simplify your calculations. 

9.22 A spherical hole of radius a in a conducting medium can serve as an electromagnetic 

resonant cavity. 

(a) Assuming infinite conductivity, determine the transcendental equations for 

the characteristic frequencies w,,, of the cavity for TE and TM modes. 

(b) Calculate numerical values for the wavelength A,,, in units of the radius a for 

the four lowest modes for TE and TM waves. 

(c) Calculate explicitly the electric and magnetic fields inside the cavity for the 

lowest TE and lowest TM mode. 

9.23 The spherical resonant cavity of Problem 9.22 has nonpermeable walls of large, but 

finite, conductivity. In the approximation that the skin depth 6 is small compared 

to the cavity radius a, show that the Q of the cavity, defined by equation (8.86), is 

given by 

for all TE modes Q=5 

_ i+) 
for TM modes 

2 
lm 

o-S(1 
where x,, = (a/c)w,, for TM modes. 

9.24 Discuss the normal modes of oscillation of a perfectly conducting solid sphere of 
radius a in free space. (This problem was solved by J. J. Thomson in the 1880s.) 

(a) Determine the characteristic equations for the eigenfrequencies for TE and 

TM modes of oscillation. Show that the roots for w always have a negative 
— bat 

imaginary part, assuming a time dependence of e 

Calculate the eigenfrequencies for the / = 1 and / = 2 TE and TM modes. (b) 
Tabulate the wavelength (defined in terms of the real part of the frequency) 

in units of the radius a and the decay time (defined as the time taken for the 

energy to fall to e' of its initial value) in units of the transit time (a/c) for 

each of the modes. 



CHAPTER 10 

Scattering and Diffraction 

The closely related topics of scattering and diffraction are important in many 

branches of physics. Approaches differ depending on the relative length scales 
involved—the wavelength of the waves on the one hand, and the size of the 
target (scatterer or diffractor) on the other. When the wavelength of the radiation 
is large compared to the dimensions of the target, a simple description in terms 
of lowest order induced multipoles is appropriate. When the wavelength and size 

are comparable, a more systematic treatment with multipole fields is required. 
In the limit of very small wavelength compared to the size of the target, semi- 

geometric methods can be utilized to obtain the departures from geometrical 

optics. We begin with the long-wavelength limit of electromagnetic scattering, 

with some simple examples. Then we develop a perturbation approach to scat- 

tering by a medium with small variations in its dielectric properties in order to 

discuss Rayleigh scattering, the blue sky, and critical opalescence. To introduce 

the more systematic approach with multipole fields, we first present the multipole 

expansion of an electromagnetic plane wave and then apply it to the scattering 

by a conducting sphere. 

Diffraction is treated next, first the scalar Huygens—Kirchhoff theory, then a 

vector generalization that leads naturally to a discussion of Babinet’s principle 

of complementary screens. These tools are applied to diffraction by a circular 

aperture, with connection to the low-order effective multipoles of Section 9.5 in 

the long-wavelength limit. Scattering at very short wavelengths and the important 

optical theorem complete the chapter. 

10.1 Scattering at Long Wavelengths 

A. Scattering by Dipoles Induced in Small Scatterers 

The scattering of electromagnetic waves by systems whose individual dimen- 
sions are small compared with a wavelength is a common and important occur- 
rence. In such interactions it is convenient to think of the incident (radiation) 

fields as inducing electric and magnetic multipoles that oscillate in definite phase 
relationship with the incident wave and radiate energy in directions other than 
the direction of incidence. The exact form of the angular distribution of radiated 
energy is governed by the coherent superposition of multipoles induced by the 
incident fields and in general depends on the state of polarization of the incident 
wave. If the wavelength of the radiation is long compared to the size of the 
scatterer, only the lowest multipoles, usually electric and magnetic dipoles, are 
important. Furthermore, in these circumstances the induced dipoles can be cal- 
culated from static or quasi-static boundary-value problems, just as for the small 
apertures of the preceding chapter (Section 9.5). 

456 
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The customary basic situation is for a plane monochromatic wave to be in- 
cident on a scatterer. For simplicity the surrounding medium is taken to have 
Ht, = €, = 1. If the incident direction is defined by the unit vector no, and the 
incident polarization vector is €, the incident fields are 

= 

€)E,e*mo* Einc (10.1) 

No x Einc/Zo Hine 
where k = w/c and a time-dependence e~‘” is understood. These fields induce 
dipole moments p and m in the small scatterer and these dipoles radiate energy 
in all directions, as described earlier (Sections 9.2, 9.3). Far away from the scat- 
terer, the scattered (radiated) fields are found from (9.19) and (9.36) to be 

ikr 1 
k? E,. [(m xX p) X n—n X mic] 

r ~ 47r€ 
(10.2) 

H,, = n x E,./Zo 

where n is a unit vector in the direction of observation and r is the distance away 
from scatterer. The power radiated in the direction n with polarization e, per unit 
solid angle, per unit incident flux (power per unit area) in the direction no with 
polarization € , is a quantity with dimensions of area per unit solid angle. It is 
called the differential scattering cross section*: 

r2 le* - E,.|? 
do 2Zo 
—— (n, €; Mo, €o) = (10.3) 
dQ 1 

—. leo + Eincl? 
2Zo 

The complex conjugation of the polarization vectors in (10.3) is important for 

the correct handling of circular polarization, as mentioned in Section 7.2. With 

(10.2) and (10.1), the differential cross section can be written 

4 

(10.4) 70 (n, €; Mo, Eo) = 
(4 TEE le =p (a x et) + mel 

The dependence of the cross section on my and € is implicitly contained in the 

dipole moments p and m. The variation of the differential (and total) scattering 
cross section with wave number as k* (or in wavelength as A~*) is an almost 
universal characteristic of the scattering of long-wavelength radiation by any fi- 

nite system. This dependence on frequency is known as Rayleigh’s law. Only if 

both static dipole moments vanish does the scattering fail to obey Rayleigh’s law; 
the scattering is then via quadrupole or higher multipoles (or frequency- 
dependent dipole moments) and varies as w® or higher. Sometimes the dipole 
scattering is known as Rayleigh scattering, but this term is usually reserved for 
the incoherent scattering by a collection of dipole scatterers. 

B. Scattering by a Small Dielectric Sphere 

As a first, very simple example of dipole scattering we consider a small di- 

electric sphere of radius a with 4, = 1 and a uniform isotropic dielectric constant 

*In the engineering literature the term bistatic cross section is used for 41 (do/dQ). 
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e,(w). From Section 4.4, in particular (4.56), the electric dipole moment is found 

to be 

-1 
(10.5) Jer p= tel 

There is no magnetic dipole moment. The differential scattering cross section is 
2 

~™”~ ~ do €, 
— = k*a® (10.6) le* + €9|? 
dQ €é,+2 

The polarization dependence is typical of purely electric dipole scattering. The 

scattered radiation is linearly polarized in the plane defined by the dipole moment 

direction (€9) and the unit vector n. 

Typically the incident radiation is unpolarized. It is then of interest to ask 

for the angular distribution of scattered radiation of a definite state of linear 

polarization. The cross section (10.6) is averaged over initial polarization €) for 

a fixed choice of €. Figure 10.1 shows a possible set of polarization vectors. The 
(1) 

& scattering plane is defined by the vectors mp and n. The polarization vectors 

2 = and €) are in this plane, while € e” is perpendicular to it. The differential 
cross sections for scattering with polarizations e“ and e®, averaged over initial 
polarizations, are easily shown to be 

2 

e-—1 d Oj _ k4a® 
cos*6 

dQ 2 €é, +2 
(10.7) 

2 

ne | do, _ k*a® 

dQ 2 e, +2 

where the subscripts || and | indicate polarization parallel to and perpendicular 

to the scattering plane, respectively. The polarization T1(6) of the scattered ra- 
diation is defined by 

do, do; 
dQ dQ 

I1(6) = (10.8) 
da, do 
dQ, dQ 

ep 

e@ ae 

qd) Fignre 10.1 Polarization and 

propagation vectors for the 
y incident and scattered radiation 
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Figure 10.2 Differential scattering cross section (10.10) and the polarization of 

scattered radiation (10.9) for a small dielectric sphere (dipole approximation). 

From (10.7) we find for the (electric dipole) scattering by a small dielectric sphere, 

sin? 
(10.9) I1(6) = 1 + cos?6 

The differential cross section, summed over scattered polarization, is 
2 

1 do E, 
— = k‘*q® (10.10) (1 + cos76) 

2 dQ r 

and the total scattering cross section is 
2 

87 do e,—1 
— dQ, = — k*a® GC = (10.11) 

3 dQ €e,+ 2 

The differential cross section (10.10) and the polarization of the scattered radi- 

ation (10.9) are shown as functions of cos @ in Fig. 10.2. The polarization I(6) 
has its maximum at 6 = 7/2. At this angle the scattered radiation is 100% linearly 

polarized perpendicular to the scattering plane, and for an appreciable range of 

angles on either side of 6 = 7/2 is quite significantly polarized. The polarization 

characteristics of the blue sky are an illustration of this phenomenon, and are, in 

fact, the motivation that led Rayleigh first to consider the problem. The reader 

can verify the general behavior on a sunny day with a sheet of linear polarizer 

or suitable sunglasses. 

C. Scattering by a Small Perfectly Conducting Sphere 

An example with interesting aspects involving coherence between different 

multipoles is the scattering by a small perfectly conducting sphere of radius a. 
The electric dipole moment of such a sphere was shown in Section 2.5 to be 

(10.12) p= Amreéga?E inc 
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The sphere also possesses a magnetic dipole moment. For a perfectly conducting 
sphere the boundary condition on the magnetic field is that the normal compo- 

nent of B vanishes at r = a. Either by analogy with the dielectric sphere in a 

uniform electric field (Section 4.4) with e = 0, or from the magnetically permeable 

sphere (Section 5.11) with 4 = 0, or by a simple direct calculation, it is found 

that the magnetic moment of the small sphere is 

— ~ (10.13) m = —27@Hinc 

For a linearly polarized incident wave the two dipoles are at right angles to each 

other and to the incident direction. 

The differential cross section (10.4) is 

da 
—_— (10.14) (n, €; Mo, €9) = K4a° |e* + €y — F(m X €*) = (Mp X €)|? 
dQ 

The polarization properties and the angular distribution of scattered radiation 

are more complicated than for the dielectric sphere. The cross sections analogous 

to (10.7), for polarization of the scattered radiation parallel to and perpendicular 

to the plane of scattering, with unpolarized radiation incident, are 

———— 

do _ k*a® 
|cos 6 — 5) 

2 dQ (10.15) 

do, _ kta® 
|1 — 5 cos 6/? 

2 dQ 

The differential cross section summed over both states of scattered polarization 

can be written 

da 
a (10.16) = k*a®[3(1 + cos*6) — cos 6] 
dQ 

while the polarization (10.8) is 

3 sin?@ 
T1(6) = (10.17) 

5(1 + cos*6) — 8 cos 6 

The cross section and polarization are plotted versus cos @ in Fig. 10.3. The cross 

section has a strong backward peaking caused by electric dipole—magnetic dipole 

interference. The polarization reaches II] = +1 at 6 = 60° and is positive through 

the whole angular range. The polarization thus tends to be similar to that for a 

small dielectric sphere, as shown in Fig. 10.2, even though the angular distribu- 

tions are quite different. The total scattering cross section is o = 10mk‘*a°/3, of 

the same order of magnitude as for the dielectric sphere (10.11) if (€, — 1) is not 

small. 

Dipole scattering with its w* dependence on frequency can be viewed as the 

lowest order approximation in an expansion in kd, where d is a length typical of 

the dimensions of the scatterer. In the domain kd ~ 1, more than the lowest 

order multipoles must be considered. Then the discussion is best accomplished 

by use of a systematic expansion in spherical multipole fields. In Section 10.4 the 
scattering by a conducting sphere is examined from this point of view. When 

kd >> 1, approximation methods of a different sort can be employed, as is illus- 
trated later in this chapter (Section 10.10). Whole books are devoted to the scat- 
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Figure 10.3 Differential scattering cross section (10.16) and polarization of scattered 

radiation (10.17) for a small perfectly conducting sphere (electric and magnetic dipole 

approximation). 

tering of light by spherical particles possessing arbitrary yu, €, 0. Some references 

to this literature are given at the end of the chapter. 

D. Collection of Scatterers 

As a final remark we note that if the scattering system consists of a number 

of small scatters with fixed spatial separations, each scatterer generates an am- 

plitude of the form (10.2). The scattering cross section results from a coherent 

superposition of the individual amplitudes. Because the induced dipoles are pro- 

portional to the incident fields, evaluated at the position x, of the jth scatterer, 

its moments will possess a phase factor, e“"”. Furthermore, if the observation 
point is far from the whole scattering system, (9.7) shows that the fields (10.2) 
for the jth scatterer will have a phase factor e~“". The generalization of (10.4) 
for such a system is 

2 

da Kw (10.18) > [e* + pj + (m X €*) + micle™™ 
j dQ (41€9E)* 

where q = kn — kmis the vectorial change in wave vector during the scattering. 

The presence of the phase factors e“*”’ in (10.18) means that, apart from the 
forward direction where q = 0, the scattering depends sensitively on the exact 

distribution of the scatterers in space. The general behavior can be illustrated by 

assuming that all the scatterers are identical. Then the cross section is the product 

of the cross section for one scatterer times a structure factor,* 

2 

(10.19) #(q) = 
2 eit 

*We do not consider here the effects of multiple scattering; that is, we assume that the mean free 

path for scattering is large compared to the dimensions of the scattering array. 
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Written out as a factor times its complex conjugate, ¥(q) is 

¥(q) = 2 > eft (j-¥) 

If the scatterers are randomly distributed, the terms with j # j’ can be shown to 

give a negligible contribution. Only the terms with j = j’ are significant. Then 

#(q) = N, the total number of scatterers, and the scattering is said to be an 

incoherent superposition of individual contributions. If, on thé-othér hand, the 

scatterers are very numerous and have a regular distribution in space, the struc- 

ture factor effectively vanishes everywhere except in the forward direction. There 

is therefore no scattering by a very large regular array of scatterers, of which 

single crystals of transparent solids like rock salt or quartz are examples. What 

small amount of scattering does occur is caused by thermal vibrations away from 

the perfect lattice, or by impurities, etc. An explicit illustration, also providing 

evidence for a restriction of the foregoing remarks to the long-wavelength re- 

gime, is that of a simple cubic array of scattering centers. The structure factor is 

well known to be 

sine M02) ne( Mate) ine) 
F(q) = N? (10.20) 

qia q2a 
— — 

2 
) vasi( ac N? sin'( 

where a is the lattice spacing, N;, N2, N3 are the numbers of lattice sites along 

the three axes of the array, N = N,N,N; is the total number of scatterers and 
41, J2, 43 are the components of q along the axes. At short wavelengths 

(ka > 7), (10.20) has peaks when the Bragg scattering condition, g,a = 0, 27, 
4a, ..., 1s obeyed. This is the situation familiar in x-ray diffraction. But at long 
wavelengths only the peak at g,a = 0 is relevant because (q,@)max = 2ka <1. 
In this limit #(q) is the product of three factors of the form [(sin x,)/x,]? with 
x; = N,q,a/2. The scattering is thus confined to the region g; = 27/N,a, corre- 
sponding to angles smaller than A/L, where A is the wavelength and L a typical 
overall dimension of the scattering array. 

10.2 Perturbation Theory of Scattering, Rayleigh’s Explanation 
of the Blue Sky,* Scattering by Gases and Liquids, 
Attenuation in Optical Fibers 

A. General Theory 

If the medium through which an electromagnetic wave is passing is uniform 
in its properties, the wave propagates undisturbed and undeflected. If, however, 

*Although Rayleigh’s name should undoubtedly be associated with the quantitative explanation of 
the blue sky, it is of some historical interest that Leonardo da Vinci understood the basic phenomenon 
around 1500. In particular, his experiments with the scattering of sunlight by wood smoke observed 
against a dark background (quoted as items 300-302, pp. 237 ff, in Vol. I of Jean Paul Richter, The 
Literary Works of Leonardo da Vinci, 3rd edition, Phaidon, London 1970) (also a Dover reprint 
entitled The Notebooks of Leonardo da Vinci, Vol. 1, pp. 161 ff.) anticipate by 350 years Tyndall’s 
remarkably similar observations [J. Tyndall, Philos. Trans. R. Soc. London 160, 333 (1870)]. 
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there are spatial (or temporal) variations in the electromagnetic properties, the 
wave is scattered. Some of the energy is deviated from its original course. If the 
variations in the properties are small in magnitude, the scattering is slight and 
perturbative methods can be employed. We imagine a comparison situation cor- 
responding to a uniform isotropic medium with electric permittivity ¢) and mag- 
netic permeability j1o. For the present €) and po are assumed independent of 
frequency, although when harmonic time dependence is assumed this restriction 
can be removed in the obvious way. Note that in this section €) and py are not 
the free-space values! Through the action of some perturbing agent, the medium 
is supposed to have small changes in its response to applied fields, so that 
D # e€E, B # poH, over certain regions of space. These departures may be 
functions of time and space variables. Beginning with the Maxwell equations in 
the absence of sources, 

oB 
VxE= —-— V-B=0, 

ot 
(10.21) 

dD 
Vx H=— V-D=0, 

ot 

it is a straightforward matter to arrive at a wave equation for D, 

62 

— 

2 VD - LHo€o =-VxVx(D- @E) + «= V x (B — poH) (10.22) 

This equation is without approximation as yet, although later the right-hand side 

will be treated as small in some sense.* 

If the right-hand side of (10.22) is taken as known, the equation is of the 

form of (6.32) with the retarded solution (6.47). In general, of course, the right- 

hand side is unknown and (6.47) must be regarded as an integral relation, rather 

than a solution. Nevertheless, such an integral formulation of the problem forms 

a fruitful starting point for approximations. It is convenient to specialize to har- 

monic time variation with frequency w for the unperturbed fields and to assume 

that the departures (D — €)E) and (B — poH) also have this time variation. This 
puts certain limitations on the kind of perturbed problem that can be described 

by the formalism, but prevents the discussion from becoming too involved. With 

a time dependence e~*” understood, (10.22) becomes 

(V2 + )D = -V x V x (D — &E) — iew V x (B— poH) (10.23) 

where k? = po€pw”, and po and €, can be values specific to the frequency w. The 
solution of the unperturbed problem, with the right-hand side of (10.23) set equal 

to zero, will be denoted by D(x). A formal solution of (10.23) can be obtained 
from (6.45), if the right-hand side is taken as known. Thus 

ik|x—x’| 
é Vv’ x Vv’ x (D — &E) 

d>x' D = D® + — (10.24) 
4a [x — x'| +iéyw V’ X (B — poH) 

*If prescribed sources p(x, t), J(x, f) are present, (10.22) is modified by the addition to the left-hand 

side of 

Vp + Mofo 7 
0 | | 
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If the physical situation is one of scattering, with the integrand in (10.24) confined 

to some finite region of space and D© describing a wave incident in some direc- 

tion, the field far away from the scattering region can be written as 

tkr 

(10.25) D—> D® + A, 

~ ~ where the scattering amplitude A,, 18 

v' x V' x (D — @E) 
= —_— 
= (10.26) Ag. 

4 +i€égw V' X (B — oH) 

The steps from (10.24) to (10.26) are the same as from (9.3) to (9.8) for the 

radiation fields. Some integrations by parts in (10.26) allow the scattering ampli- 

tude to be expressed as 

{n x (D — &E)] <n 
(10.27) A. KI d?x e ikn™ 

_ Eqgw 
— n x (B _ oH) 
k 

The vectorial structure of the integrand can be compared with the scattered 
dipole field (10.2). The polarization dependence of the contribution from 
(D — € E) is that of an electric dipole, from (B — u oH) a magnetic dipole. In 
correspondence with (10.4) the differential scattering cross section is 

do _ |e* ° A.<|” (10.28) 
dQ ID! 

where € is the polarization vector of the scattered radiation. 

Equations (10.24), (10.27), and (10.28) provide a formal solution to the scat- 

tering problem posed at the beginning of the section. The scattering amplitude 

A,, is not known, of course, until the fields are known at least approximately. 

But from (10.24) a systematic scheme of successive approximations can be 

developed in the same way as the Born approximation series of quantum- 

mechanical scattering. If the integrand in (10.24) can be approximated to first 

order, then (10.24) provides a first approximation for D, beyond D©. This ap- 
proximation to D can be used to give a second approximation for the integrand, 

and an improved D can be determined, and so on. Questions of convergence of 

the series, etc. have been much studied in the quantum-mechanical context. The 

series is not very useful unless the first few iterations converge rapidly. 

B. Born Approximation 

We will be content with the lowest order approximation for the scattering 

amplitude. This is called the first Born approximation or just the Born approxi- 

mation in quantum theory and was actually developed in the present context by 
Lord Rayleigh in 1881. Furthermore, we shall restrict our discussion to the simple 
example of spatial variations in the linear response of the medium. Thus we 

assume that the connections between D and E and B and H are 

D(x) = [€) + Se(x)JE(x) (10.29) 

B(x) = [uo + du(x)JH(x) 

where de(x) and d(x) are small in magnitude compared with €) and po. The 
differences appearing in (10.24) and (10.27) are proportional to Se and du. To 
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lowest order then, the fields in these differences can be approximated by the 
unperturbed fields: 

(x) D(x) D —- €oE = " 
0 (10.30) 

d(x) 
—__— B — » HH = B(x) 

0 

If the unperturbed fields are those of a plane wave propagating in a direction no, 
so that D® and B® are 

D(x) = €gD eo 

B(x) = e ny X D(x) 
the scalar product of the scattering amplitude (10.27) and €*, divided by Dg, is 

de(x) 
Ee* + & 

e* + AD? €o 
_— 

= (10.31) 
Do d(x) 

+ (n X €*) + (Mp X €) 
0 

where q = k(Mp — n) is the difference of the incident and scattered wave vectors. 

The absolute square of (10.31) gives the differential scattering cross section 

(10.28). 

If the wavelength is large compared with the spatial extent of Se and dy, the 

exponential in (10.31) can be set equal to unity. The amplitude is then a dipole 

approximation analogous to the preceding section, with the dipole frequency 

dependence and angular distribution. To establish contact with the results already 

obtained, suppose that the scattering region is a uniform dielectric sphere of 

radius a in vacuum. Then 6ée is constant inside a spherical volume of radius a and 

vanishes outside. The integral in (10.31) can be performed for arbitrary |q|, with 
the result, 

OE € A sin ga — ga cosqa 
== k* — (€* - €) 3 

0 Do q | | 
In the limit g — 0 the square bracket approaches a°/3. Thus, at very low fre- 
quencies or in the forward direction at all frequencies, the Born approximation 

to the differential cross section for scattering by a dielectric sphere of radius a is 
2 

do 
— —_—— lim (10.32) |e* + Ee)? 

dQ 3€ q-0 ( ) orn - Kal 
Comparison with (10.6) shows that the Born approximation and the exact low 

frequency result have the expected relationship. 

C. Blue Sky: Elementary Argument 

The scattering of light by gases, first treated quantitatively by Lord Rayleigh 

in his celebrated work on the sunset and blue sky,* can be discussed in the present 

*Lord Rayleigh, Philos. Mag. XLI, 107, 274, (1871); ibid. XLVII, 375 (1899); reprinted in his Scientific 

Papers, Vol. I, p. 87, and Vol. 4, p. 397. Rayleigh’s papers are well worth reading as examples of a 

masterful physicist at work. 
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framework. Since the magnetic moments of most gas molecules are negligible 

compared to the electric dipole moments, the scattering is purely electric dipole 

in character. In the preceding section we discussed the angular distribution and 
polarization of the individual scatterings (see Fig. 10.2). We therefore confine 

our attention to the total scattering cross section and the attenuation of the in- 

cident beam. The treatment is in two parts. The first, elementary argument is 

adequate for a dilute ideal gas, where the molecules are truly randomly distrib- 
uted in space relative to each other. The second, based on density fluctuations 
in the gas, is of more general validity. We now identify €, with the electric per- 

mittivity of free space. 

If the individual molecules, located at x,, are assumed to possess dipole mo- 

€0YmoiK(x;), the effective variation in dielectric constant de(x) in ments p; 

(10.31) can be written as 

(10.33) 5e(x) = € 2 Yor O(X — X;) 

The differential scattering cross section obtained from (10.31) and (10.28) is 

kA do 
—_— | Y¥mot |? |e* ° € ’F(q) dO ~ 1672 

where %(q) is given by (10.19). For a random distribution of scattering centers 
the structure factor reduces to an incoherent sum, and the cross section is just 
that for one molecule, times the number of molecules. For a dilute gas the mo- 

lecular polarizability is related to the dielectric constant by e€, = 1 + Ny¥mo1, where 

N is the number of molecules per unit volume. The total scattering cross section 

per molecule of the gas is thus 

2k* kA 

= In — 1/° (10.34) le, ~ 1? = 3aN7 6aN? TW 

where the last form is written in terms of the index of refraction n, assuming 

|n — 1| <1. The cross section (10.34) represents the power scattered per mol- 
ecule for a unit incident energy flux. In traversing a thickness dx of the gas, the 

fractional loss of flux is No dx. The incident beam thus has an intensity I(x) = 

Ipe”™, where a is the absorption or attenuation coefficient (also called the extinc- 

tion coefficient) of (7.53) and is given by 

k* 

a= No jn — 1) (10.35) 
3aN 

These results, (10.34) and (10.35), describe what is known as Rayleigh scattering, 

the incoherent scattering by gas molecules or other randomly distributed dipole 

scatterers, each scattering according to Rayleigh’s w* law. 

Rayleigh’s derivation of (10.35) was in the context of scattering of light by 

the atmosphere. Evidently the k* dependence means that in the visible spectrum 

the red is scattered least and the violet most. Light received away from the di- 

rection of the incident beam is more heavily weighted in high-frequency (blue) 
components than the spectral distribution of the incident beam, while the trans- 

mitted beam becomes increasingly red in its spectral composition, as well as di- 
minishing in overall intensity. The blueness of the sky, the redness of the sunset, 
the waneness of the winter sun, and the ease of sunburning at midday in summer 
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are all consequences of Rayleigh scattering in the atmosphere. The index of 
refraction of air in the visible region (4100-6500 A) and at NTP is (n — 1) = 
2.78 X 10°*. With N = 2.69 x 10° molecules/cm%, typical values of the attenu- 
ation length A = a" are A = 30, 77, 188 km for violet (4100 A), green (5200 
A), and red (6500 A) light, respectively. With an isothermal model of the at- 
mosphere in which the density varies exponentially with height, the following 
intensities at the earth’s surface relative to those incident on the top of the at- 
mosphere at each wavelength can be estimated for the sun at zenith and sunrise- 
sunset: 

Color Zenith Sunrise-Sunset 

0.96 0.21 Red (6500 A) 
0.90 0.024 Green (5200 A) 
0.76 0.000065 Violet (4100 A) 

These numbers show strikingly the shift to the red of the surviving sunlight at 

sunrise and sunset. 

The actual situation is illustrated in Fig. 10.4. The curve A shows the power 

spectrum of solar radiation incident on the earth from outside as a function of 

photon energy. Curve B is a typical spectrum at sea level with the sun directly 
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Figure 10.4 Power spectrum of solar radiation (in watts per square meter per electron 

volt) as a function of photon energy (in electron volts). Curve A is the incident 

spectrum above the atmosphere. Curve B is a typical sea-level spectrum with the sun at 

the zenith. The absorption bands below 2 eV are chiefly from water vapor and vary 

from site to site and day to day. The dashed curves give the expected sea-level 
spectrum at zenith and at sunrise-sunset if the only attenuation is from Rayleigh 

scattering by a dry, clean atmosphere. 
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overhead.* The upper dashed curve is the result expected from curve A if the 

only attenuation is Rayleigh scattering by a dry, clean, isothermal, exponential 

atmosphere. In reality the attenuation is greater, mainly because of the presence 

of water vapor, which has strong absorption bands in the infrared, and ozone, 

which causes absorption of the ultraviolet, as well as other molecular species and 

dust. The lower dashed curve indicates roughly the sunrise-sunset spectrum at 
sea level. Astronauts orbiting the earth see even redder sunsets because the at- 
mospheric path length is doubled. 

Detailed observations on the polarization of the scattered light from the sky 
have been reported." Just as with the attenuation, the reality departs somewhat 
from the ideal of a dry, clean atmosphere of low density. At 90° the polarization 

is a function of wavelength and reaches a maximum of approximately 75% at 

5500 A. It is estimated to be less than 100% because of multiple scattering (6%), 
molecular anisotropy (6%), ground reflection (5%, and especially important in 

the green when green vegetation is present), and aerosols (8%). 

The formula (10.35) for the extinction coefficient is remarkable in its pos- 

session of the factor N~' as well as macroscopic quantities such as the index of 
refraction. If there were no atomicity (N — ©), there would be no attenuation. 

Conversely, the observed attenuation can be used to determine N. This point 

was urged particularly on Rayleigh by Maxwell in private correspondence. If the 

properties of the atmosphere are assumed to be well enough known, the relative 

intensity of the light from a definite star as a function of altitude can be used to 

determine N. Early estimates were made in this way and agree with the results 

of more conventional methods. 

D. Density Fluctuations; Critical Opalescence 

An alternative and more general approach to the scattering and attenuation 

of light in gases and liquids is to consider fluctuations in the density and so the 
index of refraction. The volume V of fluid is imagined to be divided into cells 
small compared to a wavelength, but each containing very many molecules. Each 

—_— 

= UN of molecules inside. The cell has volume v with an average number N,, 

actual number of molecules fluctuates around N, in a manner that depends on 
the properties of the gas or liquid. Let the departure from the mean of the num- 
ber of molecules in the jth cell be AN,. The variation in index of refraction S¢ 
for the jth cell is 

aN ou 

From the Clausius—Mossotti relation (4.70), this can be written 

_ (& - IMe, + 2) 
6 

J AN, (10.36) 
3Nu 

*The data in Fig. 10.4 were derived from W. E. Forsythe, Smithsonian Physical Tables 9th revised 
edition, Smithsonian Institution, Washington, DC (1954), Tables 813 and 815, and from K. Ya. 
Kondratyev, Radiation in the Atmosphere, Academic Press, New York (1969), Chapter 5. 

'T. Gehrels, J. Opt. Soc. Am. 52, 1164 (1962). 
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With this expression for Se for the jth cell, the integral (10.31), now a sum over 
cells, becomes 

e* - A k*(e, — 1)(e, + 2) 
= ¢€* 

0 (10.37) 
Do 127Ne, 2 AN 

In forming the absolute square of (10.37) a structure factor similar to (10.19) will 
occur. If it is assumed that the correlation of fluctuations in different cells (caused 
indirectly by the intermolecular forces) only extends over a distance small com- 
pared to a wavelength, the exponential in (10.37) can be put equal to unity. Then 
the extinction coefficient a, given by 

2 

eX AD 
a dQ, “4 Do 

1S (10.38) 

(wic)* 
— 

(e, — 1)(e, + 2) * AN}, 
a 

6aN 3 NV 

where AN{, is the mean square number fluctuation in the volume V, defined by 

AN}, = > AN, AN; 

the sum being over all the cells in the volume V. With the use of statistical 
mechanics* the quantity AN{, can be expressed in terms of the isothermal com- 
pressibility By of the medium: 

1 Vv ANY, 
= NkTBr, Br=-s (10.39) 

NV V aP }, ( 
The attenuation coefficient (10.38) then becomes 

2 

1 (e, — 1)(e, + 2) 2 
a (10.40) ~ 6aN c 3 ( 

; 

This particular expression, first obtained by Einstein in 1910, is called the 

Einstein—Smoluchowski formula. For a dilute ideal gas, with |e — 1| < 1 and 

NkTBr = 1, it reduces to the Rayleigh result (10.35). As the critical point is 

approached, B; becomes very large (infinite exactly at the critical point). The 

scattering and attenuation thus become large there. This is the phenomenon 

known as critical opalescence. The large scattering is directly related to the large 

fluctuations in density near the critical point, as stressed originally by 

Smoluchowski (1904). Very near the critical point our treatment so far fails be- 

cause the correlation length for the density fluctuations becomes greater than a 

wavelength, as first pointed out by Ornstein and Zernicke (1914). 

For large correlation length A we must retain the exponential phase factors 

in (10.37). The absolute square of the scattering amplitude then involves a double 

sum of AN,ANje‘%—™, which can be expressed as a Fourier transform of the 
density correlation function. Because there is now additional angular dependence 
from q, the angular distribution is no longer the simple dipole form. If a corre- 

*See F. Reif, Fundamentals of Statistical and Thermal Physics, McGraw-Hill, New York (1965), 
pp. 300-1, or L. D. Landau and E. M. Lifshitz, Statistical Physics, 3rd edition, Pergamon Press, New 
York (1980), Chapter XII. 
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lation function of Yukawa form e~”“/r is assumed, it can be shown that the 

differential attenuation coefficient for unpolarized incident radiation takes the 
form 

1 + A2g?/NkTBr da(@) 3 
(10.41) 

dQ, 167 1 + A?q? 
(1 + cos?) of 

where g* = 2(w/c)?(1 — cos 6) and @ is given by (10.40).-For Aq <<.1, integration 
over the normalized angular distribution gives back (10.40), but for A — ™, the 
angular integration yields attenuation proportional to (c/Aw)” In(Aw/c) times 
(10.40). The frequency dependence as w* away from the critical point is altered 
to roughly w’; the scattered light appears “‘whiter’’ close to the critical point. 

We note that, while our expressions diverge exactly at the critical point and 

therefore are unphysical, a better treatment yields large but finite attenuation. 

One consideration is that the correlation length A cannot become larger than the 

dimensions of the fluid container. 

References to the early literature can be found in Fabelinskii, who discusses 

the application of light scattering to critical point phenomena and second-order 

phase transitions. For treatments of the radial density correlation function, see 

Rosenfeld (Chapter V, Section 6), or Landau and Lifshitz (op. cit.). 

E. Attenuation in Optical Fibers 

It is of interest that the ultimate limiting factor setting the maximum distance 

between repeater units in optical fiber transmission is the unavoidable attenua- 
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Figure 10.5 Attenuation versus wavelength for a typical low-loss, single-mode silica 
optical fiber (schematic). Rayleigh scattering sets the lower limit until infrared 
absorption rises above 1.6 xm. The peaks in the observed attenuation are caused by 
water (OH ions) dissolved in the glass. 
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tion caused by Rayleigh scattering, and by infrared absorption at longer wave- 
lengths. The isothermal compressibility of silica glass is By ~ 7 X 107"! m2/N, 
while the relevant temperature T ~ 1400 K (called the fictive temperature) is 
where the fluctuations are frozen in (approximately the annealing temperature). 
The effective value of (e, — 1)(e, + 2)/3 = 1.30 in (10.40) is somewhat smaller 
than the 1.51 inferred from an index of refraction of n = 1.45 at A = 1.0 um. The 
net result is that a (km™~') ~ 0.2/[A (um)]*. The conversion to decibels per kilo- 
meter (a factor of 4.343) gives a (dB/km) ~ 0.85/[A (um)]*, shown as the dash- 
dotted curve in Fig. 10.5, which displays a schematic representation of typical 

data for a low-loss, single-mode optical fiber. For wavelengths less than 1.5 «wm, 

the attenuation is dominated by Rayleigh scattering, plus the absorption by im- 

purities such as the hydroxyl ions from very small amounts of water dissolved in 

the glass. At wavelengths longer than 1.6 um, infrared absorption sets in strongly. 

The minimum attenuation of about 0.2 dB/km occurs at A ~ 1.55 um. The ab- 

sorption mean free path at the minimum is 22 km. 

10.3 Spherical Wave Expansion of a Vector Plane Wave 

In discussing the scattering or absorption of electromagnetic radiation by spher- 

ical objects, or localized systems in general, it is useful to have an expansion of 

a plane electromagnetic wave in spherical waves. 

For a scalar field w(x) satisfying the wave equation, the necessary expansion 

can be obtained by using the orthogonality properties of the basic spherical so- 

lutions j;(kr) Y;,,(0, 6). An alternative derivation makes use of the spherical wave 
expansion (9.98) of the Green function (e“*/47R). We let |x’| > © on both sides 
of (9.98). Then we can put |x — x’| ~ r’ — n+ x on the left-hand side, where n is 
a unit vector in the direction of x’. On the right side r, = r’ and r. = r. Fur- 
thermore we can use the asymptotic form (9.89) for h\?(kr’). Then we find 

ikr' ikr’ 
é é 

—ithn-x _ ik 
e (10.42) SY (ad (kr) V4.8. Yin, &) 

k t 

4rr’ 

Canceling the factor e“”/r’ on either side and taking the complex conjugate, we 

have the expansion of a plane wave 

a 

(10.43) e*™ = da Ss talker) SD VIA, A¥ lO $ 
!=0 

where k is the wave vector with spherical coordinates k, 6’, $'. The addition 

theorem (3.62) can be used to put this in a more compact form 

a 

(10.44) ek = S* (21 + 1)j,(kr)P,(cos y) 
1=0 

where y is the angle between k and x. With (3.57) for P, cos(y), this can also be 
written as 

(10.45) eikx = > iv A(2! + 1) j(kr)Yi0(y) 
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We now wish to make an equivalent expansion for a circularly polarized 

plane wave with helicity + incident along the z axis, 

E(x) = (e€, + ie,)e'*” 
(10.46) 

cB(x) = 6, X E = +iE 

Since the plane wave is finite everywhere, we can write its multipole expansion 
~~ ™~ (9.122) involving only the regular radial functions j,(kr): 

E(x) = > 
im 

anu m)j (kr) Xin + : b.(, m)V x jlked% | 
(10.47) 

cB(x) = S 
im FE a(l, m)V X ji(kr)Xim + bl, milk Xr 

To determine the coefficients a.(/, m) and b.(l, m) we utilize the orthogonality 

properties of the vector spherical harmonics X,,,. For reference purposes we 

summarize the basic relation (9.120), as well as some other useful relations: 

[ Xm) + LeiC)Xmn] AD = Fg) BeBe 

| [f(r Xr |* ° [V x gr) Xin] ap = 0 
\. (10.48) 

1 
— [VX fir) Xm ]* + [VX g(r)Xin| dO. k? 

1 0 

kr? ar E . cz | = iran Ft + 
In these relations f;(r) and g,(r) are linear combinations of spherical Bessel func- 

tions, satisfying (9.81). The second and third relations can be proved using the 

operator identity (9.125), the representation 

ro 
-—-srxL 
ror 

for the gradient operator, and the radial differential equation (9.81). 

To determine the coefficients a.(J, m) and b..(/, m) we take the scalar product 

of both sides of (10.47) with X%,, and integrate over angles. Then with the first 
and second orthogonality relations in (10.48) we obtain 

(10.49) a.(l, m)j(kr) = | Xim * E(x) dO 

and 

(10.50) b.(l, m)j, (kr) = c | Xin ° B(x) dO, 

With (10.46) for the electric field, (10.49) becomes 

(Lz Yim)* ikz a.(l, m)j(kr) = (10.51) Vil +1) ° 
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where the operators L.. are defined by (9. 102), and the results of their operating 
by (9.104). Thus we obtain 

V(L+ m\( = m + 1) ( lt+m\l=mt1 
a.(l, m)j(kr) = (10.52) LT vet a 

Vil + 1) 

If expansion (10.45) for e’*? is inserted, the orthogonality of the Yj,’s evidently 
leads to the result, 

a.(l, m) = iV 47(21 + 1) 6,4 (10.53) 

From (10.50) and (10.46) it is clear that 

b.(1, m) = ¥ia.(1, m) (10.54) 

Then the multipole expansion of the plane wave (10.46) is 

(10.55) 

E(x) 2 V4r(21 [em ¥ x j(kO% 

cB(x) = Di iV 47(2l + 1) E V X jlkr)X,., + ii(kr)X,., 

+1 have the obvious For such a circularly polarized wave the m values of m 

interpretation of +1 unit of angular momentum per photon parallel to the prop- 

agation direction. This was established in Problems 7.28 and 7.29 

10.4 Scattering of Electromagnetic Waves by a Sphere 

If a plane wave of electromagnetic radiation is incident on a spherical obstacle 

as indicated schematically in Fig. 10.6, it is scattered, so that far away from the 

scatterer the fields are represented by a plane wave plus outgoing spherical 

waves. There may be absorption by the obstacle as well as scattering. Then the 

total energy flow away from the obstacle will be less than the total energy flow 

towards it, the difference being absorbed. We will ultimately consider the simple 

example of scattering by a sphere of radius a and infinite conductivity, but will 

for a time keep the problem more general 

The fields outside the sphere can be written as a sum of incident and scattered 

waves 

E(x) Eine + Ex. 
(10.56) 

B(x) Binc + B,. 

Scattered 

wave 

Incident 

wave 

HEX 

X Bg 
Figure 10.6 Scattering of radiation by a localized object 
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where E,,, and B,,,, are given by (10.55). Since the scattered fields are outgoing 

waves at a their expansions must be of the form 

E,. = i\/42(21 + 1) | COA )X,.; + BA’) fe vx PUNK. | 2% 
~~ 

vx ne (kr) X21 + iB: (IAS? (kr) X21 | cB.. = = >L \/4ar(2l + 1) 0 iat-(1) 
(10.57) 

The coefficients a..(/) and B.(J) will be determined by the boundary conditions 

on the surface of the scatterer. A priori, it is necessary to keep a full sum over 

m as well as / in (10.57), but for the restricted class of spherically symmetric 

problems considered here, only m = +1 occurs. 

Formal expressions for the total scattered and absorbed power in terms of 

the coefficients of a(/) and B(/) can be derived from the scattered and total fields 

on the surface of a sphere of radius a surrounding the scatterer, with the scattered 

power being the outward component of the Poynting vector formed from the 

scattered fields, integrated over the spherical surface, and the absorbed power 

being the corresponding inward component formed from the total fields. With 

slight rearrangement of the mple scalar products, these can be written 

(10.58) P,. = -—— Re | Bu. (a x BE) ao Sh 
(10.59) Pa = 2 Re | E- (n x B*) dO 

Here n is a radially directed outward normal, E,, and B,, are given by (10.57) 
while E and B are the sum of the plane wave fields (10.55) and the scattered 
fields (10.57). Only the transverse parts of the fields enter these equations. We 

already know that X,,,, is transverse. The other type of term in (10.55) and (10.57) 
1S 

1 inVi(l + 1) 
(10.60) VX fi(r)Xim = FT) Yin + = = [rf(r)|m x X,, 

where f; is any spherical Bessel function of order / satisfying (9.81). When the 

multipole expansions of the fields are inserted in (10.58) and (10.59), there results 

x double sum over / and /’ of various scalar products of the form X*,,,° Xm; 
m?(n X X,,,-) and (n x X7%,,)+(m X X;,,,). On integration over angles, the 

onihogonality relations (10.48) reduce the double sum to a single sum. Each term 
in the sum involves products of spherical Bessel functions and derivatives of 

spherical Bessel functions. Use of the Wronskians (9.91) permits the elimination 

of all the Bessel functions and yields the following expressions for the total scat- 

tering and absorption cross sections (the power scattered or absorbed divided by 

the incident flux, 1/j19c) 

Ox = 505 (2+ Nfla@P + BOP 
(10.61) 

GOabs pe ae (2 + 12 — lal) + 1P - |B) + 17) 
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The total or extinction cross section is the sum of o,, and ¢ abs: 

(10.62) g, = “3 > (21 + 1) Re{a(l) + B(D] 

Not surprisingly, these expressions for the cross sections resemble closely the 
partial wave expansions of quantum-mechanical scattering.* 

The differential scattering cross section is obtained by calculating the scat- 

tered power radiated into a given solid angle element dQ and dividing by the 

incident flux. Using the result of Problem 10.6a, we find the scattering cross 
+ 

— 
section for incident polarization (e€, l€>) to be 

2 

T dsc 
—_— (10.63) > V2 + 1 [a()X,.; + i8.() m X X21] dQ 2k l 

The scattered radiation is in general elliptically polarized. Only if a.(/) = B.(/) 

for all / would it be circularly polarized. This means that if the incident radiation 

is linearly polarized, the scattered radiation will be elliptically polarized; if the 

incident radiation is unpolarized, the scattered radiation will exhibit partial po- 

larization depending on the angle of observation. Examples of this in the long- 

wavelength limit were described in Section 10.1 (see Figs. 10.2 and 10.3). 

The coefficients a.(/) and B..(/) in (10.57) are determined by the boundary 

conditions on the fields at r = a. Normally this would involve the solution of the 

Maxwell equations inside the sphere and appropriate matching of solutions 

across r = a. If, however, the scatterer is a sphere of radius a whose electromag- 

netic properties can be described by a surface impedance Z, independent of po- 
sition (for this the radial variation of the fields just inside the sphere must be 
rapid compared to the radius), then the boundary conditions take the relatively 
simple form 

(10.64) Etan = Zn x B/Lo 

where E and B are evaluated just outside the sphere. From (10.55), (10.57), and 

(10.60) we have 

Ean = » iV 4r(21 + D{ i + a9 Ha 
10a 

+ 

~ x Ox 
fo(ii + On) In x x... 

and 

+ a.(1) A 
cn xX B= > 'V4n(21 + 1) 

2 ! Ik. rat 
+ i + (0 Ht |n x x..| 

*Our results are not completely general. If the sum over m had been included in (10.57), the scattering 
cross section would have a sum over / and m with the absolute squares of a(/, m) and A(/, m). The 
total cross section would stay as it is, with a(/) > a(l,m = + 1) and B(/) > B(L, m = +1), depending 
on the state of polarization of the incident wave (10.46). The absorption cross section can be deduced 

from taking the difference of a, and a... 
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where x = ka and all the spherical Bessel functions have argument x. The bound- 

ry condition (10.64) requires that, for each / value and for each term X,,, and 

n X X,,, separately, the coefficients of E,,, and n x B be proportional, according 

to 

1d Z; (@) pa a (J) hY 
Ji 2 x dx Zo 1 ): (2, ae 

~ (10.65) 
1d Zo B (Z) hw 

Z. x ax 2 ( 8) 
h® + h, the coefficients a..(/) and B..(/) can be By means of the relation 2), 

written 

Zs 

Zo 
h? (2 ‘jig d (xh? 

(10.66) al) +1 = —- 
Zs 

Zo eK 
‘id d (crf?) 

with £..(/) having the same form, but with Z,/Z,) replaced by its reciprocal. We 
note that with the surface impedance boundary condition the coefficients are the 

same for both states of circular polarization 

For a given Z,, all the multipole coefficients are determined and the scatter- 

ing is known in principle. All that remains is to put in numbers. Before proceeding 

to a specific limit, we make some observations. First, if Z, is purely imaginary 

(no dissipation) or if Z, = 0 or Z, > ©, [a (J) + 1] and [B.(J) + 1] are numbers 

of modulus unity. This means that a..(/) and B..(/) can be written as 

1) B.(1) = (e"! — 1) (10.67) 
a.(1) _— (e7#* 

where the phase angles 6, and 6; are called scattering phase shifts. Specifically 

tan 6; = ji(ka)/n,(ka) 

— (xji(x)) 
(10.68) 

tan 6; = 

— (xn,(x)) 
x=ka 

if Z, = 0 (perfectly conducting sphere) and 6, <> 6; for Z, > © 

The second observation is that (10.66) can be simplified in the low- and high- 

frequency limits. For ka << 1, the spherical Bessel functions can be approximated 
according to (9.88). Then we obtain the long-wavelength approximation 

—2i(ka)™*" 
x — i(l + 1)Z,/Zo 

a.(l) = (10.69) 
(21 1)[(2! — 1)upP x + IZ,/Zo | 

and the same form for B.(/), with (Z,/Z)) replaced by its inverse. For ka >> 1 
we use (9.89) and obtain 

Z,|Zo 
(10.70) 

Z,|Zy +1 
a.(l) ~ ( i) 1)'*le —2ika 1 
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with B.(/) = —a.(l) via the usual substitution. In the long-wavelength limit, 
independent of the actual value of Z,, the scattering coefficients a.(l), B.(1) 
become small very rapidly as / increases. Usually, only the lowest term (/ = 1) 
need be retained for each multipole series. In the opposite limit of ka >> 1, 
(10.70) shows that for 1 < ka, the successive coefficients have comparable mag- 
nitudes, but phases that fluctuate widely. For / ~ 1,4, = ka, there is a transition 
region and for / >> J,,,,, (10.69) holds. The use of a partial wave or multipole 
expansion for such a large number of terms is a delicate matter, necessitating the 
careful use of digital computers or approximation schemes of the type discussed 
in Section 10.10. 

We specialize now to the long-wavelength limit (ka < 1) for a perfectly 
conducting sphere (Z, = 0), and leave examples of slightly more complexity to 
the problems. Only the / = 1 terms in (10.63) are important. From (10.69) we 
find 

a.(1) = > B.(1) = —2 (kay 
In this limit the scattering cross section is 

27 dsc 
(10.71) 

dQ, 
= 3. a’(ka)* |X... + 2in x Xai? 

From Table 9.1 we obtain the absolute squared terms, 

[n x Xia? = |X, .,|? = = (1 + cos’) 
The cross terms can be easily worked out: 

[+i x X,.,)* - X,..] = = cos 8 

Thus the long-wavelength limit of the differential scattering cross section is 

do 
—--r-a *(ka)*[2(1 + cos?6) — cos 6] (10.72) 
dQ, 

Equation (10.72) is the same as (10.16), found by other means and is valid for 

either state of circular polarization incident, or for an unpolarized incident beam. 

The generalizations to arbitrary incident polarization and to different surface 

boundary conditions are left to the problems at the end of the chapter. 

The general problem of the scattering of electromagnetic waves by spheres 

of arbitrary electric and magnetic properties when ka is not small is complicated. 

It was first systematically attacked by Mie and Debye in 1908-1909. By now, 

hundreds of papers have been published on the subject. Details of the many 

aspects of this important problem can be found in the books by Kerker, King 

and Wu, Bowman, Senior, and Uslenghi and other sources cited at the end of the 

chapter. The book by Bowman, Senior, and Uslenghi discusses scattering by other 

regular shapes besides the sphere. 

For scatterers other than spheres, cylinders, etc., there is very little in the 

way of formal theory. The perturbation theory of Section 10.2 may be used in 
appropriate circumstances. 
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10.5 Scalar Diffraction Theory 

Although scattering and diffraction are not logically separate, the treatments tend 

to be separated, with diffraction being associated with departures from geomet- 

rical optics caused by the finite wavelength of the waves. Thus diffraction tradi- 
tionally involves apertures or obstacles whose dimensions are large compared to 

a wavelength. To lowest approximation the interaction of electromagnetic waves 

is described by ray tracing (geometrical optics). The next approximation involves 

the diffraction of the waves around the obstacles or through the apertures with 

a consequent spreading of the waves. Simple arguments based on Fourier trans- 

forms show that the angles of deflection of the waves are confined to the region 

6 = A/d, where A is the wavelength and d is a linear dimension of the aperture 

or obstacle. The various approximations to be discussed below all work best for 

Ald << 1, and fail badly for A ~ d or A > d. 

The earliest work on diffraction is associated with the names of Huygens, 
Young, and Fresnel. The first systematic attempt to derive the Fresnel theory 
from first principles was made by G. Kirchhoff (1882). Kirchhoff’s theory, despite 
its mathematical inconsistency and its physical deficiencies, works remarkably 

well in the optical domain and has been the basis of most of the work on dif- 
fraction. We first derive the basic Kirchhoff integral and its operative approxi- 

mations, then comment on its mathematical difficulties, and finally describe the 

modifications of Rayleigh and Sommerfeld that remove the mathematical 

inconsistencies. 

The customary geometry in diffraction involves two spatial regions I and II, 

separated by a boundary surface S,, as shown in Fig. 10.7. The surface S, is 

generally taken to be “‘at infinity,” that is, remote from the region of interest. 

Sources in region I generate fields that propagate outward. The surface S, is 

supposed to be made up of “‘opaque”’ portions (the boundary conditions are 

discussed below) and apertures. The surface $, mteracts with the fields generated 

in region I, reflecting some of the energy, absorbing some of it, and allowing 

some of the fields, modified by their interaction, to pass into region II. The an- 

gular distribution of the fields in region II, the diffraction region, is called the 

diffraction pattern. It is the diffracted fields in region II that we wish to express 

in terms of the fields of the sources and their interaction with the screen and 

apertures on S,, or more precisely, in terms of the fields on the surface Sj. It 

Figure 10.7 Possible diffraction geometries. Region I contains the sources of radiation. 
Region II is the diffraction region, where the fields satisfy the radiation condition. The 
right-hand figure is also indicative of scattering, with a finite scatterer in region I instead 
of an active source, and the surface S$, an arbitrary mathematical surface enclosing the 
scatterer rather than a material screen with apertures. 
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should be obvious that the geometry and mode of description is equally appli- 
cable to scattering, with the sources in region I replaced by a scatterer (thought 
of as a source being driven by the incident wave). 

Kirchhoff’s method uses Green’s theorem (1.35) to express a scalar field (a 
component of E or B) inside a closed volume V in terms of the values of the field 
and its normal derivative on the boundary surface §. Let the scalar field be 
w(x, ¢), and let it have harmonic time dependence, e~“”. The field y is assumed 
to satisfy the scalar Helmholtz wave equation, 

(V? + k*)wW(x) = 0 (10.73) 

inside V. We introduce a Green function for the Helmholtz wave equation 
G(x, x’), defined by 

(V7 + k*)G(x, x’) = —8(x — x’) (10.74) 

In Green’s theorem (1.35), we put ¢ = G, # = w, make use of the wave equations 
(10.73) and (10.74), and obtain, in analogy to (1.36), 

w(x) = ° [w(x’)n’ + V'G(x, x’) — G(x, x’)n’ - V’h(x')] da’ (10.75) 
where n’ is an inwardly directed normal to the surface S. Equation (10.75) holds 

if x is inside V; if it is not, the left-hand side vanishes. 

The Kirchhoff diffraction integral is obtained from (10.75) by taking G to be 

the infinite-space Green function describing outgoing waves, 

ikR 

G(x, x’) = (10.76) 
47R 

where R = x — x’. With this Green function, (10.75) becomes 

ikR 1 e 

—n’- r+ 
R 

w(x) = aa 
kR 

[ey + t( a | da' (10.77) 

This is almost the Kirchhoff integral. To adapt the mathematics to the diffraction 

context we consider the volume V to be that of region II in Fig. 10.7 and the 

surface S to consist of 5S, + S,. The integral over S is thus divided into two parts, 

one over the screen and its apertures (S,), the other over a surface “‘at infinity” 

(S2). Since the fields in region II are assumed to be transmitted through S), they 

are outgoing waves in the neighborhood of S>. The fields, hence (x), will satisfy 
a radiation condition, 

ikr 1 é lop, ik — — (10.78) w— f@, ¢) 
r 

r > 

w or ( 
With this condition on w at S, it is easily seen that the contribution from S, in 

(10.77) vanishes at least as the inverse of the radius of the hemisphere or sphere 

as the radius goes to infinity. There remains the integral over S,. The Kirchhoff 

integral formula reads 

ikR 
1 r+ —n’- 2 da’ (10.79) 

R k R HO) = Fa Js, fey + u( 

with the integration only over the surface S, of the diffracting “screen.” 
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To apply (10.79) it is necessary to know the values of y and d¢/dn on the 

surface S,. Unless the problem has been solved by other means, these values are 
not known. Kirchhoff’s approach was to approximate the values of y and ay//dn 
on §S, in order to calculate an approximation to the diffracted wave. The 
Kirchhoff approximation consists of the assumptions: 

1 w and dy//dn vanish everywhere on S, except in the openings 

2. The values of & and dW/an in the openings are equal to the values of the 

incident wave in the absence of any screen or obstacles 

The standard diffraction calculations of classical optics are all based on the 

Kirchhoff approximation. It is obvious that the recipe can have only limited va- 

lidity. There is, in fact, a serious mathematical inconsistency in the assumptions 

of Kirchhoff. It can be shown for the Helmholtz wave equation (10.73), as well 

as for the Laplace equation, that if w and dy//on are both zero on any finite surface 

then & = 0 everywhere. Thus the only mathematically correct consequence of 

the first Kirchhoff assumption is that the diffracted field vanishes everywhere 

This is, of course, inconsistent with the second assumption. Furthermore, (10.79) 

does not yield on S; the assumed values of w and dys/an 

The mathematical inconsistencies in the Kirchhoff approximation can be re- 

moved by the choice of a proper Green function in (10.75). Just as in Section 

1.10, a Green function appropriate to Dirichlet or Neumann boundary conditions 

can be constructed. If y is known or approximated on the surface S,, a Dirichlet 

Green function Gp(x, x’), satisfying 

for x’ on S G(x, x’) (10.80) 

is required. Then a generalized Kirchhoff ee equivalent to (10.79), is 

2 (x, x’) da’ (10.81) wos) = | yew Se 
and a consistent approximation is that y% = 0 on S, except in the openings and w 
is equal to the incident wave in the openings. If the normal derivative of wis to 
be approximated, a Neumann Green function G)(x, x’), satisfying 

for x’ on § , (x, X') = (10.82) 
us 

is employed. Then the generalized Kirchhoff integral for Neumann boundary 
conditions reads 

(x’)Gy(x, x’) da (10.83) wx) = -| 
Again a consistent approximation scheme can be formulated 

For the important special circumstance in which the surface S, is an infinite 
plane screen at z = 0, as shown in Fig. 10.8, the method of images can be used 
to give the Dirichlet and Neumann Green functions explicit form 

ikR ikR 
é e 
—_—_ 

(10.84) 
R R' 

Gop n(x x’) = ! ( 
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oP 

P's 

_—~— 
_——-— lL 

| da Figure 10.8 Diffraction geometry for a 

point source at P’, a plane screen with 

apertures, and an observation point at 

P. The distances from the element of 

i F) area da’ in the aperture to the points P 

and P’ are r and r’, respectively. The 

angles 6 and @’ are those between r and 

n, and r’ and —n, respectively. 

where R = x — x’, and R’ = x — x”, x” being the mirror image of x’. Explicitly 
we have 

R=[(@-xYty-ylP+(z- z’P]? 
R' _— [(x _ x’) + (y _ y'? + (z + zy}? 

The generalized Kirchhoff integral (10.81) (w approximated on S,) then takes 
the form, 

ikR 
L n’-R 

W(x’) da’ (10.85) R kR R 
(+ 

An analogous expression can be written for (10.83), both results attributable to 

the ubiquitous Rayleigh.* 

Comparison of (10.85) with (10.79) shows that (10.85) can be obtained from 

(10.79) by omitting the first term in the square brackets and doubling the second 

term. The Neumann result (10.83) specialized to a plane screen is equivalent, on 

the other hand, to doubling the first term and omitting the second. It might thus 

appear that the three approximate formulas for the diffracted field are quite 

different and will lead to very different results. In the domain where they have 

any reasonable validity they yield, in fact, very similar results. This can be un- 

derstood by specializing the diffraction problem to a point source at position P’ 

on one side of a plane screen and an observation point P on the other side, as 

shown in Fig. 10.8. The amplitude of the point source is taken to be spherically 

symmetric and equal to e“”/r'. Both P and P’ are assumed to be many wave- 
lengths away from the screen. With the Kirchhoff approximation in (10.79) and 
equivalent assumptions in (10.85) and its Neumann boundary condition counter- 
part, the diffracted fields for all three approximations can be written in the com- 
mon form, 

tkr ikr’ 
é k é 

—_— 6(0, 6’) da’ (10.86) W(P) = r’ 
r Qa apertures 

*Equation (10.85) was also used by Sommerfeld in his early discussions of diffraction. See 

Sommerfeld, Optics, pp. 197 ff. 
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where the obliquity factor 0(6, 6’) is the only point of difference. These factors 

are 

cos 6 (y approximated on S,) 

cos 6’ (6, 6’) = (2 approximated on 51) 
(Kirchhoff approximation) $(cos 6 + cos 6’) 

where the angles are defined in Fig. 10.8. For apertures whose dimensions are 
large compared to a wavelength, the diffracted intensity is confined to a narrow 
range of angles and is governed almost entirely by the interferences between the 
two exponential factors in (10.86). If the source point P’ and the observation 
point P are far from the screen in terms of the aperture dimensions, the obliquity 
factor in (10.86) can be treated as a constant. Then the relative amplitudes of the 
different diffracted fields will be the same. For normal incidence all obliquity 

factors are approximately unity where there is appreciable diffracted intensity. 
In this case even the absolute magnitudes are the same. 

The discussion above explains to some extent why the mathematically in- 

consistent Kirchhoff approximation has any success at all. The use of Dirichlet 

or Neumann Green functions gives a better logical structure, but provides little 

practical improvement without further elaboration of the physics. An important 

deficiency of the discussion so far is its scalar nature. Electromagnetic fields have 

vector character. This must be incorporated into any realistic treatment, even if 

approximate. In the next section we proceed with the task of obtaining the vector 

equivalent of the Kirchhoff or generalized Kirchhoff integral for a plane screen. 

10.6 Vector Equivalents of the Kirchhoff Integral 

The Kirchhoff integral formula (10.79) is an exact formal relation expressing the 

scattered or diffracted scalar field y(x) in region II of Fig. 10.7 in terms of an 

integral of y and dyw/dn over the finite surface S,. Corresponding vectorial rela- 

tions, expressing E and B in terms of surface integrals, are useful as a basis for 

a vectorial Kirchhoff approximation for diffraction (Section 10.7) and scattering 

(Section 10.10), and also for formal developments such as the proof of the optical 
theorem (Section 10.11). 

To derive a Kirchhoff integral for the electric field, we begin with (10.75) for 
each rectangular component of E and write the obvious vectorial equivalent, 

(10.87) E(x) = ° [E(n’ - V’G) — Gin’ - V’)E] da’ 

provided the point x is inside the volume V bounded by the surface S. Here, as 
in (10.75), the unit normal n’ is directed into the volume V. Eventually we will 
specify G to be the infinite-space Green function, (10.76), but for the present we 
leave it as any solution of (10.74). Because we wish to use certain theorems of 
vector calculus that apply to well-behaved functions, while G is singular at 
x’ = x, we must exercise some care. We imagine that the surface S consists of an 
outer surface S’ and an infinitesimally smaller inner surface S” surrounding the 
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point x’ = x. Then, from Green’s theorem, the left-hand side of (10.87) vanishes. 
Of course, evaluation of the integral over the inner surface S”, in the limit as it 
shrinks to zero around x’ = x, gives —E(x). Thus (10.87) is restored in practice, 
but by excluding the point x’ = x from the volume V the necessary good math- 
ematical behavior is assured. With this understanding concerning the surface S, 
we rewrite (10.87) in the form 

0 = } [2E(n’ « V'G) ~ a’ - V"(GE)) da 
The divergence theorem can be used to convert the second term into a volume 
integral, thus yielding 

0 = ° 2E(n’ + V'G) da’ + [ V'2(GE) 3x’ 

With the use of V’A = V(V- A) — V x (V x A) for any vector field A, and the 
vector calculus theorems, 

I, Vd d°x = ’ n@ da 
(10.88) 

[vx Ad =$ (x A) da 

where ¢ and A are any well-behaved scalar and vector functions (and n is the 
outward normal), we can express the volume integral again as a surface integral. 
We thus obtain 

0= ° [2E(n’ - V’G) — n'(V’ - (GE)) + n’ x (V’ x (GE))] da’ 

Carrying out the indicated differentiation of the product GE, and making use of 

the Maxwell equations, V’- E = 0, V’ X E = iwB, we find 

0= ’ [iw(n’ X B)G + 2E(n’ - V’G) — n'(E- V’G) +n’ X (V’'G X E)] da’ 

Expansion of the triple cross product and a rearrangement of terms yields the 

final result, 

E(x) = $ [iwo(m’ x B)G + (n’ x E) x W’G + (n’- E)V’G] da’ (10.89) 

where now the volume V bounded by the surface S contains the point x’ = x. An 

analogous expression for B can be obtained from (10.89) by means of the sub- 
stitutions, E — cB and cB > —E. 

Equation (10.89) is the vectorial equivalent of the scalar formula (10.75). To 

obtain the analog of the Kirchhoff integral (10.79), we consider the geometry of 
Fig. 10.7 and let the surface S be made up of a finite surface S, surrounding the 
sources or scatterer and a surface S “at infinity.”’ There is no loss of generality 
in taking S, to be a spherical shell of radius ro > ©. The integral in (10.89) can 
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be written as the sum of two integrals, one over S,; and one over 53. On the 
surface S, the Green function (10.76) is given, for large enough ro, by 

ikr'’ 

ikn’ «x 
=> é 

4ar' 

and its gradient by 

~ 

V’G — —ikn'G 

Then the contribution from S, to (10.89) is 

’, ik f. [c(n’ x B) — (n’ X E) Xn’ — n(n’ - E)]G da’ 
or 

i [c(n’ x B) — EJG da’ ’, 
The fields in region II are diffracted or scattered fields and so satisfy the condition 

of outgoing waves in the neighborhood of S,. In particular, the fields E and B 

are mutually perpendicular and transverse to the radius vector. Thus, on S$, 

E = cn’ X B + O(1/r9). This shows that 

1 
— 

Yo 7 OL 
and the contribution from the integral over $, vanishes as 79 — ©. For the ge- 

ometry of Fig. 10.7, then, with S at infinity, the electric field in region II satisfies 
the vector Kirchhoff integral relation, 

E(x) = - [io(n’ x B)G + (n’ x E) x WG + (n’- E)V’G] da’ (10.90) 

where G is given by (10.76) and the integral is only over the finite surface S,. 

It is useful to specialize (10.90) to a scattering situation and to exhibit a 

formal expression for the scattering amplitude as an integral of the scattered 

fields over S,. The geometry is shown in Fig. 10.9. On both sides of (10.90) the 

ko 

— 

Scattered wave Incident wave 
NN“ (E,, B,) ({E;, B;) 

1\ 

Figure 10.9 Scattering geometry. An incident plane wave with wave vector ky and 

fields (E;, B;) is scattered by an obstacle (the scatterer), giving rise to scattered fields 
(E,, B,) that propagate as spherically diverging waves at large distances. The surface S; 
completely encloses the scatterer. 
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fields are taken to be the scattered fields (E,, B,), that is, the total fields (E, B) 
minus the incident wave (E,, B,). If the observation point P is far from the scat- 
terer, then the Green function and the scattered electric field take on their as- 
ymptotic forms, 

ikr 
e 

—ikex’ 
e G(x, x’) > — 

r 

ikr 

E,(x) > F(k, Ko) 
r 

where k is the wave vector in the direction of observation, Ky is the incident wave 
vector, and F(k, ko) is the (unnormalized) vectorial scattering amplitude. In this 

limit, V’G = —ikG. Thus (10.90) can be written as an integral expression for the 

scattering amplitude F(k, ko): 

F(k, k,) = “ P e'**To(n’ x B,) + k x (n’ x E,) — k(n’ E,)] da’ (10.91) 

Note carefully how F(k, k,) depends explicitly on the outgoing direction of k. 

The dependence on the incident direction specified by ky is implicit in the scat- 

tered fields E, and B,. Since we know that k - F = 0, it must be true that in (10.91) 

the component parallel to k of the first integral cancels the third integral. It is 

therefore convenient to resolve the integrand in (10.91) into components parallel 

and perpendicular to k, and to exhibit the transversality of F explicitly: 

ck x(n’ xX B,) 

k 
—n’ x E| da’ (10.92) Fie k) = gtx fem 

Alternatively, we can ask for the amplitude of scattered radiation with wave 

vector k and polarization e. This is given by 

€* FU, ky) =f eM faet (nl xB) + €* «(KX (a! x E,))] da 
(10.93) 

The terms in square brackets can be interpreted as effective electric and magnetic 

surface currents on 5, acting as sources for the scattered fields. The various equiv- 

alent forms (10.91)—(10.93) are valuable as starting points for the discussion of 

the scattering of short-wavelength radiation (Section 10.10) and in the derivation 
of the optical theorem (Section 10.11). 

10.7 Vectorial Diffraction Theory 

The vectorial Kirchhoff integral (10.90) can be used as the basis of an approxi- 

mate theory of diffraction in exactly the same manner as described below (10.79) 

for the scalar theory. Unfortunately, the inconsistencies of the scalar Kirchhoff 

approximation persist. 

For the special case of a thin, perfectly conducting, plane screen with aper- 

tures, however, it is possible to obtain vectorial relations, akin to the generalized 

Kirchhoff integral (10.81) or (10.85), in which the boundary conditions are sat- 
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isfied; these relations, moreover, are amenable to consistent approximations. The 

plane screen is taken at z = 0, with the sources supposed to be in the region 
z <0, and the diffracted fields to be observed in the region z > 0. It is convenient 

to divide the fields into two parts, 

B = B© + B’ (10.94) E=E®+E’, 

where E®, B© are the fields produced by the sources in the absence of any 

screen or obstacle (defined for both z < 0 and z > 0), and E’, B’ are the fields 

caused by the presence of the plane screen. For z > 0, E’, B’ are the diffracted 

fields, while for z < 0, they are the reflected fields. We will call E’, B’ the scattered 
fields when considering both z < 0 and z > 0. The scattered fields can be con- 
sidered as having their origin in the surface-current density and surface-charge 
density that are necessarily produced on the screen to satisfy the boundary con- 
ditions. Certain reflection properties in z of the scattered fields follow from the 

fact that the surface-current and -charge densities are confined to the z = 0 plane. 

A vector potential A’ and a scalar potential ®’ can be used to construct E’ and 
B’. Since the surface current flow has no z component, A; = 0. Furthermore, 

A,, Ay, and ®’ are evidently even functions of z. The relation of the fields to the 

potentials shows that the scattered fields have the reflection symmetries, 

are even in Z E,, Ey, B; 
(10.95) 

are odd in z E,, By, By 

The fields that are odd in z are not necessarily zero over the whole plane z = 0. 

Where the conducting surface exists, EF; # 0 implies an associated surface-charge 

density, equal on the two sides of the surface. Similarly, nonvanishing tangential 

components of B imply a surface-current density, equal in magnitude and direc- 

tion on both sides of the screen. Only in the aperture does continuity require 

that F,, B,, B; vanish. This leads to the statement that in the apertures of a 

perfectly conducting plane screen the normal component of E and the tangential 

components of B are the same as in the absence of the screen. 

The generalized Kirchhoff integral (10.83) for Neumann boundary condi- 

tions can be applied to the components of the vector potential A’. The normal 

derivatives on the right can be expressed in terms of components of B’. The 

result, written vectorially is 

ikR 

— (10.96) 
screen 

A'(x) = 5 
T 

n X B’) RE aa 

In view of the preceding remarks about the surface current and the tangential 
components of B’, (10.96) could perhaps have been written down directly. The 
scattered magnetic field can be obtained by taking the curl of (10.96): 

ikR 

(10.97) n x BY) da’ BY(x) = 5 V x I... 
In (10.96) and (10.97) the integrand can be evaluated on either side of the screen 
with n being normal to the surface. For definiteness, we specify that n is a unit 
normal in the positive z direction and the integrand is to be evaluated at z = 0*. 

' 

= 0 in the The integration extends over the metallic part of the screen; B tan 

apertures. The electric field E’ can be calculated from E’ = (i/wue)V x B’. 
Equation (10.97) can be used for approximations in a consistent way. It is 
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most useful when the diffracting obstacles consist of one or more finite flat seg- 
ments at z = 0, for example, a circular disc. Then the surface current on the 
obstacles can be approximated in some way—for instance, by using the incident 
field B® in the integrand. We then have a vectorial version of the generalized 
Kirchhoff’s approximation of the preceding section. 

It is useful to construct an expression equivalent to (10.97) for the electric 
field. From the symmetry of the source-free Maxwell equations with respect to 
E and B it is evident that the electric field E’ can be expressed by analogy with 
(10.97), as 

ikR 

da' (10.98) 
R 

E’(x) = iV x J, (n x E’) 

where it is assumed that E’ is known on the whole surface S$, at z = 0*. The 

upper (lower) sign applies for z > 0 (z < 0). It can be verified that (10.98) satisfies 

the Maxwell equations and yields consistent boundary values at z = 0. The reason 

for the difference in sign for z 2 0, as compared to (10.97) for B’, is the opposite 

reflection properties of E’ compared to B’ [see (10.95)]. 

There is a practical difficulty with (10.98) as it stands. The integration in 

(10.98) is over the whole plane at z = 0. We cannot exploit the vanishing of the 

tangential components of the electric field on the metallic portions of the screen 

because it is the total electric field whose tangential components vanish, not those 

of E’. The difficulty can be removed by use of linear superposition. We add E© 
to the integrand in (10.98) to obtain the full electric field, and subtract the cor- 

responding integral. We thus have, for the diffracted electric field, 

ikR 

(10.99) x E) Re da’ — Ex) E’(x) = = Vx I, (n 

where 

ikR 

(10.100) E) da’ E(x) = = vx I, (n x 

The integrand in (10.99) now has support only in the apertures of the screen, as 
desired. But what is the extra electric field E“? Just as (10.98) gives the extra 
(diffracted) field for z > 0 in terms of a surface integral of itself over the whole 

screen, so (10.100) is equal to the “‘source”’ field E® in the region z > 0. But 
because E™ is defined by an integral over the surface at z = 0, it respects the 

symmetries of (10.95). A moment’s thought will show that this behavior means 

that for z < 0 the sum E® + E™ describes the fields of the sources in the presence 

of a perfectly conducting plane (with no apertures) at z = 0: E“ (and its partner 
B“) are the reflected fields! 

If in (10.99) we transfer E to the left-hand side, we find for z > 0 the total 

electric field, now called the diffracted field, given by 
ikR 

— da (10.101) 
R Eaite(X) = 7 

T vx Vc (n * E) 
where the integration is only over the apertures in the screen and E is total 

tangential electric field in the apertures. In the illuminated region (z < 0) the 
total electric field is 

(10.102) E(x) = E(x) + E(x) _ Eaie(x) 
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where for both regions Egig¢(x) is given by (10.101). This solution for the diffracted 
electric field in terms of the tangential electric field in the apertures of a perfectly 

conducting plane screen was first obtained by Smythe.* It can serve as the basis 
of a consistent scheine of approximation, with the approximate solutions for E gir 
satisfying the required boundary conditions at z = 0 and at infinity. Some ex- 
amples are discussed in a later section and in the problems. 

10.8 Babinet’s Principle of Complementary Screens 

Before discussing examples of diffraction we wish to establish a useful relation 

called Babinet’s principle. Babinet’s principle relates the diffraction fields of one 

diffracting screen to those of the complementary screen. We first discuss the 

principle in the scalar Kirchhoff approximation. The diffracting screen is assumed 

to lie in some surface S, which divides space into regions I and IJ in the sense of 

Section 10.5. The screen occupies all of the surface S except for certain apertures. 

The complementary screen is that diffracting screen which is obtained by replac- 

ing the apertures by screen and the screen by apertures. If the surface of the 

original screen is S, and that of the complementary screen is S,, then S, + S, = 

S, as shown schematically in Fig. 10.10. 

If there are sources inside S (in region I) that give rise to a field (x), then 

in the absence of either screen the field y(x) in region I is given by the Kirchhoff 

integral (10.79) where the surface integral is over the entire surface §. With the 

screen S, in position, the field #,(x) in region II is given in the Kirchhoff ap- 

proximation by (10.79) with the source field y in the integrand and the surface 

integral only over S, (the apertures). Similarly, for the complementary screen S,, 

the field w(x) is given in the same approximation by a surface integral over S,. 

Evidently, then, we have the following relation between the diffraction fields wy, 

and Wy: 

Ya + w= (10.103) 

This is Babinet’s principle as usually formulated in optics. If y% represents an 
incident plane wave, for example, Babinet’s principle says that the diffraction 

Sp 

Figure 10.10 A diffraction screen S, and its 
a complementary diffraction screen S,. 

*W. R. Smythe, Phys. Rev. 72, 1066 (1947). See also Smythe, Section 12.18. 
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patterns away from the incident direction are the same for the original screen 
and its complement. 

The result (10.103) also follows from the generalized Kirchhoff integrals 
(10.81) or (10.83) if the amplitude or its normal derivative is taken equal to that 
of the incident wave in the apertures and zero elsewhere, in the spirit of the 
Kirchhoff approximation. All these formulations of Babinet’s principle are un- 
satisfactory in two respects: They are statements about scalar fields, and they are 
based on a Kirchhoff approximation. 

A rigorous statement of Babinet’s principle for electromagnetic fields can be 
made for a thin, perfectly conducting plane screen and its complement. The result 
follows from the two alternative formulations of this diffraction problem given 
in the preceding section. The original diffraction problem and its complementary 
problem are defined by the source fields and screens as follows: 

ORIGINAL 

Eo BO. Sa (10.104) 

COMPLEMENT 

E® = cB, BO = -E%c; Sp 

The complementary situation has a screen that is the complement of the original 

and has source fields with opposite polarization characteristics. For the original 

screen S, the electric field for z > 0 is, according to (10.101), 

ikR 

(10.105) x E) = da' E(x) = =v x I, (n 

For the complementary screen S, we choose to use (10.97) instead of (10.101) to 

express the complementary scattered magnetic field B; for z > 0 as 

ikR 

(10.106) x B!) R da' Bi(x) = =v x I, (n 

In both (10.105) and (10.106) the integration is over the screen S, because of the 
boundary conditions on E and B? in the two cases. Mathematically, (10.105) and 

(10.106) are of the same form. From the linearity of the Maxwell equations and 

the relation between the original and complementary source fields, it follows that 

in the region z > 0 the total electric field for the screen S, is numerically equal 

to c times the scattered magnetic field for the complementary screen S,: 

E(x) = cBi(x) 

The other fields are related by 

B(x) = —Ed(x)c 

where the minus sign is a consequence of the requirement of outgoing radiation 

flux at infinity, just as for the source fields. If use is made of (10.94) for the 

complementary problem to obtain relations between the total fields in the region 

z > 0, Babinet’s principle for a plane, perfectly conducting thin screen and its 

complement states that the original fields (E, B) and the complementary fields 

(E., B.) are related according to 

E — cB, = E® (10.107) 

B + E,/c = B® 
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Figure 10.11 Equivalent radiators according to Babinet’s 
phe principle. 

for z > 0, provided the complementary diffraction problems are defined by 

(10.104). These relations are the vectorial analogs of (10.103); they are exact, not 
approximate, statements for the idealized problem of a perfectly conducting 
plane screen. For practical situations (finite, but large, conductivity; curved 

screens whose radii of curvature are large compared to aperture dimensions, 

etc.), the vectorial Babinet’s principle can be expected to hold approximately. It 

says that the diffracted intensity in directions other than that of the incident field 
is the same for a screen and its complement. The polarization characteristics are 

rotated, but this conforms with the altered polarization of the complementary 

source fields (10.104). 

The rigorous vector formulation of Babinet’s principle is very useful in mi- 

crowave problems. For example, consider a narrow slot cut in an infinite, plane, 

conducting sheet and illuminated with fields that have the magnetic induction 

along the slot and the electric field perpendicular to it, as shown in Fig. 10.11. 

The radiation pattern from the slot will be the same as that of a thin linear 

antenna with its driving electric field along the antenna, as considered in Sections 

9.2 and 9.4. The polarization of the radiation will be opposite for the two systems. 

Elaboration of these ideas makes it possible to design antenna arrays by cutting 

suitable slots in the sides of waveguides.* 

10.9 Diffraction by a Circular Aperture; 

Remarks on Small Apertures 

The subject of diffraction has been extensively studied since Kirchhoff’s original 

work, both in optics, where the scalar theory based on (10.79) generally suffices, 

and in microwave generation and transmission, where more accurate solutions 
are needed. Specialized treatises are devoted entirely to the subject of diffraction 

and scattering. We will content ourselves with a few examples to illustrate the 
use of the scalar and vector theorems (10.79), (10.85) and (10.101) and to com- 
pare the accuracy of the approximation schemes. 

Historically, diffraction patterns were classed as Fresnel or Fraunhofer dif- 
fraction, depending on the relative geometry involved. There are three length 
scales to consider, the size d of the diffracting system, the distance r from the 
system to the observation point, and the wavelength A. A diffraction pattern only 
becomes manifest for r >> d. Then in expressions like (10.86) or (10.101) slowly 
varying factors in the integrands can be treated as constants. Only the phase 

*See, for example, Silver, Chapter 9. 
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Si da 

Figure 10.12 

factor kR in e**® needs to be handled with some care. With r >> d, it can be 
expanded as 

KR = kr—koex’ +> [r? — (nex) ++ 

where n = x/r is a unit vector in the direction of observation. The successive 

terms are of order (kr), (kd), (kd)(d/r),.... The term Fraunhofer diffraction 

applies if the third and higher terms are negligible compared to unity. For small 

diffracting systems this always holds, since kd << 1, and we have supposed 

dlr << 1. But for systems that are large compared to a wavelength, (kd?/r) may 

be of order unity or larger even though d/r « 1. Then the term Fresnel diffraction 

applies. In most practical applications the simpler Fraunhofer limit is appropriate. 

Far enough from any diffracting system it always holds. We consider only the 

Fraunhofer limit here (except for Problem 10.11). 

If the observation point is far from the diffracting system, expansion (9.7) 

can be used for R = |x — x’|. Keeping only lowest order terms in (1/kr), the 

scalar Kirchhoff expression (10.79) becomes 

tkr 

W(x) = — 
4ar 

I, eT. W(x’) + ik nu(x’)] da’ (10.108) 

where x’ is the coordinate of the element of surface area da’, r is the length of 

the vector x from the origin O to the observation point P, and k = k(x/r) is the 

wave vector in the direction of observation, as indicated in Fig. 10.12. For a plane 

surface we can use the vector expression (10.101), which reduces in this limit to 

; ikr 
é 

(10.109) E(x) = 
2ar 

k x I, n x E(x’)e*™ da’ 

As an example of diffraction we consider a plane wave incident at an angle 

a on a thin, perfectly conducting screen with a circular hole of radius a in it. The 
polarization vector of the incident wave lies in the plane of incidence. Figure 
10.13 shows an appropriate system of coordinates. The screen lies in the x-y plane 
with the opening centered at the origin. The wave is incident from below, so that 

the domain z > 0 is the region of diffraction fields. The plane of incidence is 

taken to be the x-z plane. The incident wave’s electric field, written out explicitly 

in rectangular components, is 

ik(zcosa+xsina) (10.110) E; = Ep(€, cosa — €3 sina)e 

In calculating the diffraction field with (10.108) or (10.109) we will make the 

customary approximation that the exact field in the surface integral may be re- 

placed by the incident field. For the vector relation (10.109) we need 

iksinax’ (10.111) (n x E;),=0 = Eo€2 cosa é 
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Figure 10.13 Diffraction by a circular 
E; hole of radius a 

Then, introducing plane polar coordinates for the integration over the opening, 

we have 

(10.112) apeielsinacosp sin 6cos(¢ — B)] 
E(x) = (k x €,) [ p dp |, ieee cos a 

where 6, ¢ are the spherical angles of k. If we define the angular function 

yi? 
= (sin*6 + sin’a — 2 sin @ sina cos¢ 

the angular integral can be transformed into 

‘277 
1 dp —ikp&cosp’ _. Jo(kpé) 

Qa 

Then the radial integral in (10.112) can be done directly. The resulting electric 
field in the vector Smythe—Kirchhoff approximation is 

ikr 
l J,(kaé) 

(10.113) E(x) *Ey cos a(k X €>) 
kag 

The time-averaged diffracted power per unit solid angle is 

dP 2i(kaé) |” 
— = P.cosa (10.114) 
dQ 

ay 

(cos*6 + cos*¢ sin’ 6) Peeee 
where 

2 

(10.115) 
2Zy me FB wat COS @ 

is the total power normally incident on the aperture. If the opening is large com- 

pared to a wavelength (ka >> 1), the factor [2/,(kaé)/kaé]* peaks sharply to a 

value of unity at € = 0 and falls rapidly to zero (with small secondary maxima) 

within a region Aé (1/ka) away from & = 0. This means that the main part of 

the wave passes through the opening in the manner of geometrical optics; only 

slight diffraction effects occur.* For ka ~ 1 the Bessel function varies compara- 

*To see this explicitly we expand € around the geometrical optics direction 6 = a, 6 = 0 

é= V(@— a) cos’a + ¢? sinta 

For ka >> 1 it is evident that kaé >> 1 as soon as 6 departs appreciably from a, or @ from zero, or 

both 
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tively slowly in angle; the transmitted wave is distributed in directions very dif- 

ferent from the incident direction. For ka << 1, the angular distribution is entirely 

determined by the factor (k x €,) in (10.113). But in this limit the assumption of 

an unperturbed field in the aperture breaks down badly. 

The total transmitted power can be obtained by integrating (10.114) over all 

angles in the forward hemisphere. The ratio of transmitted power to incident 

power is called the transmission coefficient T: 

2 

co J(kaé) 
T= sin6.d@ (10.116) so {" dd [" (cos?6 + cos*@ sin’6) 

7 

In the two extreme limits ka >> 1 and ka < 1, the transmission coefficient 

approaches the values, 

ka >> 1 1, 

ka <1 3(ka)* cosa, | 
The long-wavelength limit (ka << 1) is suspect because of our approximations, 
but it shows that the transmission is small for very small holes. For normal inci- 

dence (a = 0) the transmission coefficient (10.116) can be written 

T= {~ Ji(ka sin (2, — sin 7 dé 

With the help of the integral relations, 

a2 
dé * J>,(t) dt 

0 t 
I2(z sin 6) sin 8 = 

(10.117) 
2Z al2 

J2(z sin 6)sin 6 d@ = >> Jon (t) dt 
2 

and the recurrence formulas (3.87) and (3.88), we can put the transmission co- 

efficient in the alternative forms 

1- = >, Jom+(2ka) 
T= 

1 - a i Jo(t) dt 

The transmission coefficient increases more or less monotonically as ka increases, 

with small oscillations superposed. For ka >> 1, the second form can be used to 
obtain an asymptotic expression 

1 
2ka -— — (10.118) 1 T 

4 Oka 
)s 

which exhibits the small oscillations explicitly. These approximate expressions 

for T give the general behavior as a function of ka, but they are not very accurate. 

Exact calculations, as well as more accurate approximate ones, have been made 

for the circular opening. These are compared with each other in the book by 
g. 41, p. 126). The correct asymptotic expression does not contain King and Wu (Fi 

is twice as ) 732 

the 1/2ka term in (10.118), and the coefficient of the term in (ka 
large. 
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We now wish to compare our results of the vector Smythe—Kirchhoff ap- 

proximation with the usual scalar theory based on (10.79). For a. wave not nor- 

mally incident, the question immediately arises as to what to choose for the scalar 
function s(x). Perhaps the most consistent assumption is to take the magnitude 

of the electric or magnetic field. Then the diffracted intensity is tréated consis- 

tently as proportional to the absolute square of (10.79). If a component of E or 

B is chosen for w, we must then decide whether to keep or throw away radial 

components of the diffracted field in calculating the diffracted power. Choosing 

the magnitude of E for yw, we have, by straightforward calculation with (10.108), 

ikr cos a + cos @ é J,(kaé) 
W(x) = —ik 

2 r kaé 
eel 

as the scalar equivalent of (10.113). The power radiated per unit solid angle in 

the scalar Kirchhoff approximation is 
2 

cosa + cos @ dP 2J,(kaé) (ka)’ (10.119) ~ P, 

2 cos a dQ 4a ka&é 

y 

( 
where P; is given by (10.115). If the alternative scalar formula (10.85) is used, 
the obliquity factor (cos @ + cos 9)/2 in (10.119) is replaced by cos 0. 

If we compare the vector Smythe—Kirchhoff result (10.114) with (10.119), we 
see similarities and differences. Both formulas contain the same ‘‘diffraction”’ 

distribution factor [J,(ka€)/kaé]* and the same dependence on wave number. But 
the scalar result has no azimuthal dependence (apart from that contained in é), 
whereas the vector expression does. The azimuthal variation comes from the 

polarization properties of the field, and must be absent in a scalar approximation. 

For normal incidence (a = 0) and ka >> 1 the polarization dependence is un- 

important. The diffraction is confined to very small angles in the forward direc- 

tion. Then all scalar and vector approximations reduce to the common 

expression, 

J, (ka sin 6) ; dP _ (kay? 
P 

£ (10.120) 
dQ T ka sin @ 

The vector and scalar approximations are compared in Fig. 10.14 for the 

angle of incidence equal to 45° and for an aperture one wavelength in diameter 

(ka = 7). The angular distribution is shown in the plane of incidence (containing 

the electric field vector of the incident wave) and a plane perpendicular to it. The 

solid (dashed) curve gives the vector (scalar) approximation in each case. We see 

that for ka = a there is a considerable disagreement between the two approxi- 

mations. There is reason to believe that the Smythe—Kirchhoff result is close 

to the correct one, even though the approximation breaks down seriously for 

ka = 1. The vector approximation and exact calculations for a rectangular open- 

ing yield results in surprisingly good agreement, even down to ka ~ 1.* 

*See J. A. Stratton and L. J. Chu, Phys. Rev., 56, 99 (1939), for a series of figures comparing the 

vector Smythe—Kirchhoff approximation with exact calculations by P. M. Morse and P. J. Rubenstein, 

Phys. Rev. 54, 895 (1938). The alert reader may be puzzled by the apparent discrepancy in the dates 
of Smythe’s publication (doc. cit.) and of Stratton and Chu. The two calculations yield the same result, 
though quite different in appearance and detail of derivation, the earlier one involving a line integral 
around the boundary of the aperture as well as a surface integral over it. 
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Figure 10.14 Fraunhofer diffraction pattern for a circular opening one wavelength in 

diameter in a thin, plane, conducting sheet. The plane wave is incident on the screen at 

45°. The solid curves are the vector Smythe—Kirchhoff approximation, while the dashed 

curves are the scalar approximation. (a) The intensity distribution in the plane of 

incidence (E plane). (b) The intensity distribution (enlarged 2.5 times) perpendicular to 

the plane of incidence (H plane). 

The diffraction by apertures or obstacles whose dimensions are small com- 

pared to a wavelength requires methods different from the Kirchhoff or 

Kirchhoff-like approximation. The exact formula (10.101) for a plane screen can 

be used as a starting point. If the radiation fields of (10.101) are expanded in 

multipoles, as in Sections 9.2—9.3, effective multipole moments (9.72) and (9.74) 

can be identified in terms of integrals of the exact electric field in the aperture. 

The derivation of these effective moments is left as Problem 10.10. Once the 

dipole moments of an aperture are known, the diffraction can be calculated 

merely by using the dipole fields of Sections 9.2 and 9.3. The example of a circular 

aperture with effective moments (9.75) is left to the problems. The whole dis- 

cussion of the physical picture parallels that of Section 9.5.C and is not repeated 

here. 

10.10 Scattering in the Short-Wavelength Limit 

Scattering in the long-wavelength limit was discussed in Sections 10.1 and 10.2. 
The opposite limit, similar to the Kirchhoff domain of diffraction, is a scattering 
by obstacles large compared to a wavelength. Just as for diffraction by a screen, 
the zeroth approximation is given by classical ray theory. The wave aspects of 
the fields give corrections to this, with the scattering confined to angular regions 
only slightly away from the paths of geometrical optics. For a thin, flat obstacle, 

the techniques of Section 10.7, perhaps with Babinet’s principle, can be used. 

But for other obstacles we base the calculation on the integral expression (10.93) 

for the scattering amplitude in terms of the scattered fields E,, B, on a surface 

S, just outside the scatterer. 

In the absence of knowledge about the correct fields E, and B, on the surface, 
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we must make some approximations. If the wavelength is short compared to the 

dimensions of the obstacle, the surface can be divided approximately into an 

illuminated region and a shadow region.* The boundary between these regions 

is sharp only in the limit of geometrical optics. The transition region can be shown 

to have a width of the order of (2/kR)'?R, where R is a typical radius-of curvature 
of the surface. Since R is of the order of magnitude of the dimensions of the 

obstacle, the short-wavelength limit will approximately satisfy the geometrical 

condition. In the shadow region the scattered fields on the surface must be very 
nearly equal and opposite to the incident fields, regardless of the nature of the 

scatterer, provided it is “opaque.” In the illuminated region, on the other hand, 

the scattered fields at the surface will depend on the properties of the obstacle. 

If the wavelength is short compared to the minimum radius of curvature, the 

Fresnel equations of Section 7.3 can be utilized, treating the surface as locally 

flat. Eventually we will specialize to a perfectly conducting obstacle, for which 

the tangential E, and the normal B, must be equal and opposite to the corre- 

sponding incident fields, while the tangential B, and normal E, will be approxi- 

mately equal to the incident values [see (10.95)}. 

Because of the generality of the contribution from the shadow region, it is 

desirable to consider it separately. We write 

e* F = e*- Fy, + €* - Fi (10.121) 

If the incident wave is a plane wave with wave vector k, and polarization €o, 

E; = E,€,eo™ (10.122) 
B; = ky x E,/kc 

the shadow contribution, from (10.93) with E, ~ —E,, B, ~ —B,, is 

Eo 
€ -F, = — 

Ami 
[. e*-[n’ X (Ky X €) + k X (n’ X €)Je“"™™ da’ (10.123) 

where the integration is only over the part of S; in shadow. A rearrangement of 
the vector products allows (10.123) to be written 

— 

= € ° Fy a J, e* + [(k + ko) X (m! X €) + (M+ Ep) Kye“ da’ 
(10.124) 

In the short-wavelength limit the magnitudes of k)-x’ and k-x’ are large com- 
pared to unity. The exponential factor in (10.124) will oscillate rapidly and cause 
the integrand to have a very small average value except in the forward direction 
where k = kp. In that forward region, @ < 1/kR, the second term in the square 
bracket is negligible compared to the first because (€* - ky)/k is of the order of 
sin 6 << 1 (remember e* -k = 0 and ky ~ k). Thus (10.124) can be approximated 
by 

LE 
e* F, h = 

— €* [. elo“ W)-x'(k, . n’) da’ 

*For a very similar treatment of the scattering of a scalar wave by a sphere, see Morse and Feshbach 
(pp. 1551-1555). 
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The integral over the shadowed side of the obstacle has, in this approximation, 
the remarkable property of depending only on the projected area normal to the 
incident direction and not at all on the detailed shape of the obstacle. This can 
be seen from the fact that (ko-n’) da’ = k dx' dy’ = k d?x, is just k times the 
projected element of area and (ky — k)- x’ = k(1 — cos 6)z' — k,-x, ~ —k,-X,. 
Here we have chosen kp along the z axis, introduced two-dimensional vectors, 
Xx, = x'e, + y'e, k, = k,e, + k,e, in the plane perpendicular to kp, and approx- 
imated to small angles. The final form of the shadow contribution to the scattering 
when kR >> 1 and 6 < 1 is therefore 

(10.125) e*- Fy, = - Eo(€* + €0) [. ei d2x, 

In this limit all scatterers of the same projected area give the same shadow- 
scattering contribution. The polarization character of the scattered radiation is 

given by the factor e* - €9. Since the scattering is at small angles, the dominant 
contribution has the same polarization as the incident wave. In quantum- 

mechanical language we say that the shadow scattering involves no spin flip. 

For example, consider a scatterer whose projected area is a circular disc of 

radius a. Then 

» Ji(ka sin 6) 
(10.126) 

[, e ik x d*x, — 
ka sin @ 

and the shadow-scattering amplitude is 

J,(ka sin 6) 
e* - Fy, = ika’E,(€* « €5) (10.127) 

(ka sin @) 

The scattering from the illuminated side of the obstacle cannot be calculated 

without specifying the shape and nature of the surface. We assume, for purposes 

of illustration, that the illuminated surface is perfectly conducting. In utilizing 

(10.93) we must know the tangential components of E, and B, on S;. As men- 

tioned in the introductory paragraphs of this section, in the short-wavelength 

limit these are approximately opposite and equal, respectively, to the correspond- 

ing components of the incident fields. Thus the contribution from the illuminated 

side is 

Eo 
e* - Fy, = — 

4m 
[. e*-[—n’ X (Kp X €)) + k X (’ X €,) Jeo" da’ (10.128) 

a 

Comparison with the shadow contribution (10.123) at the same stage shows a 

sign difference in the first term. This is crucial in giving very different angular 

behaviors of the two amplitudes. The counterpart of (10.124) is 

Eo 
e* + Fy = [ e* -[k — ko) X (n’ X €o) — (n’=+ €o)Kole“o"”™ da’ (10.129) 

4m 

For kR >> 1, the exponential oscillates rapidly as before, but now, in the forward 
direction, where we anticipate the major contribution to the integral, the other 
factor in the integrand goes to zero. This can be traced to the presence of (k — ko) 
in the first term, rather than the (k + Ky) of the shadow amplitude (10.124). The 
illuminated side of the scatterer thus gives only a modest contribution to the 
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scattering at small angles. This makes perfect sense if we think of the limit of 

geometrical optics. The illuminated side must give the reflected wave, and the 

reflection is mainly at angles other than forward. 

To proceed further we must specify the shape of the illuminated portion of 

the scatterer, as well as its electromagnetic properties. We assume that the surface 

is spherical of radius a. Since the contribution is not dominantly forward, we must 

consider arbitrary scattering angles. The integrand in (10,129) consists of a rel- 

atively slowly varying vector function of angles times a rapidly varying exponen- 

tial. As discussed in Section 7.11, the dominant contribution to such an integral 

comes from the region of integration where the phase of the exponential is sta- 

tionary. If (6, @) are the angular coordinates of k and (a, B) those of n’, relative 

to Ko, the phase factor is 

f(a, B) = (Ky — k)- x’ = ka[(1 — cos 6) cosa — sin 6 sina cos(B — ¢)] 

The stationary point is easily shown to be at angles ap, Bo, where 

T 6 
—_— 

= 
—¢4+- 

132) 
2 2 

= dp Bo 

These angles are evidently just those appropriate for reflection from the sphere 
according to geometrical optics. At this point the unit vector n’ points in the 
direction of (k — ko). If we expand the phase factor around a = a, B = Bo, we 
obtain 

x? + cos? = f(a, B) = —2ka sin — 
2 2 a ”) + (10.130) 

where x = a@ — ao, y = B — Bo. Then integral (10.129) can be approximated by 
evaluating the square bracket there at a = a, B = Bo: 

a Eo 
~ 

€ F 
. ill ~~ 

sin Oe” 2/Kasin(@/2) ex , E, | dx eilkasin(6/2)]x? i dy eilkasin(6/2)cos?(6/2]y? 

(10.131) 

where e€, is a unit polarization vector defined by 

€, = —€ + 2(n,- €)n, 

n, being a unit vector in the direction of (k — ko). The vector €, is just the 
polarization expected for reflection, having a component perpendicular to the 
surface equal to the corresponding component of €, and a component parallel to 
the surface opposite in sign, as shown in Fig. 10.15. The x and y integrals in 

(10.131) can be approximated using ei dy = Vaila provided 2ka sin(6/2) 

>> 1, giving 

e*- Fy, = Ey a en 2ikasin(@/2) ex . ¢ 
(10.132) 

For 2ka sin(6/2) large, the reflected contribution is constant in magnitude as a 
function of angle, but it has a rapidly varying phase; as 6 — 0, it vanishes as 62. 
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Figure 10.15 Polarization of the reflected wave relative to the incident polarization: n 
is normal to the surface at the point appropriate for reflection according to geometrical 
optics. To avoid complexity in the figure, the wave vectors ky and k are not shown, but 
they are perpendicular to €y and €,, respectively, and so oriented as to make their 
difference parallel to n,. 

Comparison of the shadow amplitude (10.127) with the reflected amplitude 

(10.132) shows that in the very forward direction the shadow contribution dom- 

inates in magnitude over the reflected amplitude by a factor of ka >> 1, while at 

angles where ka sin@ >> 1, the ratio of the magnitudes is of the order of 

1/(ka sin’6)"”. Thus, the differential scattering cross section (10.3), summed over 
the outgoing and averaged over the initial polarization states, is given in the two 

regions by 

2 

10 J, (ka sin 9) 
6s — ? a’(kay’ 

ka sin 0 ka do 
—_—_— = (10.133) 
dQ 

>> — 
4 ? 

a 

The scattering in the forward direction is a typical diffraction pattern with a 

central maximum and smaller secondary maxima, while at larger angles it is iso- 

tropic. At intermediate angles there is some interference between the two am- 

plitudes (10.127) and (10.132), causing the cross section to deviate from the sum 

of the two terms shown in (10.133). Actually, in the present approximation this 

interference is very small for ka >> 1. There is more interference in the exact 

solution, as shown in Fig. 10.16, where the dips below unity are indicative of 

destructive interference.* 

The total scattering cross section is obtained by integrating over all angles. 

Neglecting the interference terms, we find from (10.133) that the shadow dif- 

ftaction peak gives a contribution of za’, and so does the isotropic part. The total 
scattering cross section is thus 27a’, one factor of the geometrical projected area 
coming from direct reflection and the other from the diffraction scattering that 

must accompany the formation of a shadow behind the obstacle. The latter part 
of the total cross section can be shown to be independent of the detailed shape 
of the scatterer in the short-wavelength limit (Problem 10.16). Similarly, for a 
general scatterer that is “opaque,” the reflected or absorbed part of the total 

cross section will also be equal to the projected area, although without specifying 

*For a linearly polarized wave incident, the amount of interference depends on the orientation of the 
incident polarization vector relative to the plane of observation containing k and ko. For €p in this 

plane the interference is much greater than for €) perpendicular to it. See King and Wu (Appendix) 

or Bowman, Senior, and Uslenghi (pp. 402-405) for numerous graphs with different values of ka. 
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Figure 10.16 Semilogarithmic plot of the scattering cross section for a perfectly 

conducting sphere as a function of scattering angle, with an unpolarized plane wave 

incident and ka = 10. The solid curve is the exact result (King and Wu). The dashed 

curve is the approximation based on the sum of the amplitudes (10.127) and (10.132). 

the properties of the illuminated surface, we cannot say how it is divided between 

scattering and absorption. 

10.11 Optical Theorem and Related Matters 

A fundamental relation, called the optical theorem, connects the total cross sec- 

tion of a scatterer to the imaginary part of the forward scattering amplitude. The 

theorem follows from very general considerations of the conservation of energy 

and power flow, and has its counterpart in the quantum-mechanical scattering of 

particles through the conservation of probability. 

To establish the theorem, we consider the scattering geometry shown in Fig. 

10.9. A plane wave with wave vector k, and fields (E;, B;,) is incident in vacuum 
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on a finite scatterer that lies inside the surface S,. The scattered fields (E,, B,) 
propagate out from the scatterer and are observed far away in the direction of 

k. The total fields at all points in space are, by definition, 

B = B, + B, E=-E, + E,, 

The scatterer is, in general, dissipative and absorbs energy from the incident 

wave. The absorbed power can be calculated by integrating the inward-going 

component of the Poynting vector of the total fields over the surface S}: 

(10.134) Paps “Sin 7 Re(E x B*) +n’ da’ 
The scattered power is normally calculated by considering the asymptotic 

form of the Poynting vector for the scattered fields in the region where these are 

simple transverse fields falling off as 1/r. But since there are no sources between 

S, and infinity, the scattered power can equally well be evaluated as an integral 

over S, of the outwardly directed component of the scattered Poynting vector: 

1 
(10.135) Re(E, X B®) -n’ da' P scatt 

2Mo IS; 

The total power P taken from the incident wave, either by scattering or 

absorption, is the sum of (10.134) and (10.135). With some obvious substitutions 

and rearrangements, the total power can be written 

P=-— Re[E, X B; + E; < B,]-n’ da’ 
2Mo YS 

With the incident wave written explicitly as 

E, = Eo Eq etKo"x (10.136) 

cB, = hy X E, 

the total power takes the form, 

1 ky x (n’ x E,) 
P=— Re 

ke |e} Ho 
(es § emefarearxmy ee 

Comparison with (10.93) for the scattering amplitude shows that the total power 

is related to the forward (k = ko, € = €9) scattering amplitude according to 

27 
P= (10.137) Im[E6 €6 + F(k = kp)] 

kZo 

This is the basic result of the optical theorem, although it is customary to express 

it in a form that is independent of the magnitude of the incident flux. The total 

cross section o, (sometimes called the extinction cross section in optics) is defined 

as the ratio of the total power P to the incident power per unit area, | Eo|?/2Zp. 
Similarly, the normalized scattering amplitude f is defined relative to the ampli- 

tude of the incident wave at the origin as 

F(k, ko) (10.138) f(k, Ko) = 
Eo 
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Figure 10.17 A plane wave incident normally on a slab of dielectric of thickness d. 

The scatterers in the slab give rise to a scattered wave that adds coherently to the 

incident wave to give a modified wave at the observation point O behind the slab. 

In terms of o, and f the optical theorem reads 

(10.139) o, = —Im [eo - f(k = ko)] 
k 

The notation in (10.139) corresponds to the standard quantum-mechanical con- 

ventions. For particles with spin the relevant forward scattering amplitude is the 
one in which none of the particles change their spin state. For electromagnetic 

radiation (photons) this is indicated by the presence of the amplitude €} - f for 
scattered radiation with the same polarization finally as it was initially. 

The optical theorem relates different aspects of the scattering and absorption 

of electromagnetic waves for a single scatterer. It is also possible to connect the 

forward scattering amplitude for a single scatterer to the macroscopic electro- 

magnetic properties, namely the dielectric constant, of a medium composed of a 

large number of scatterers. We will content ourselves with a brief elementary 

discussion and refer the reader to the literature for more detailed and rigorous 

treatments.* Consider a plane wave (10.136) incident normally from the left on 

a thin slab of uniform material composed of N identical scattering centers per 

unit volume, as shown in Fig. 10.17). The incident wave impinges on the scattering 

centers, causing each to generate a scattered wave. The coherent sum of the 

incident wave and of all the scattered waves gives a modified wave to the right 

of the slab. Comparison of this modified wave at the observation point O with 

that expected for a wave transmitted through a slab described by a macroscopic, 

electric susceptibility e(w) then leads to a relation between e and the scattering 

amplitude f. 

*See, for example, the very readable review by M. A. Lax, Rev. Mod. Phys. 23, 287 (1951), or M. L. 

Goldberger and K. M. Watson, Collision Theory, Wiley, New York (1964), Chapter 11, especially 

pp. 766-775. 
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The thickness and the density of the slab are assumed to be so small that 
only single scatterings in the slab need be considered and, as a consequence, the 
effective exciting field at each scatterer is just the incident field itself. The scat- 
tered field produced at the observation point O with cylindrical coordinates 
(0, 0, Zo) by the N d°x scatterers in the infinitesimal volume element d°x at the 

point x(p, ¢, z) in the slab is, in this approximation 

ikR 

dE, = f(k, 0, b)Ee*o*N a? 

where we have written the scattering amplitude in terms of the scattering angles 

6 and ¢, with sin @ = p/R, and have assumed that the observation point is many 

wavelengths from the slab. The distance from the volume element to O is 

[p* + (Zo — z)’]'”. The presence of the phase factor of the incident wave is 

necessary to account for the location of the scatterers at x, rather than at the 

origin of coordinates. The total scattered field is obtained by integration over the 

volume of the slab 

ikR 

(10.140) p — fk, 6, ¢) E, = NE | do | dz e* | pd 

Since p dp = R dR, this expression can be written 

eo 

E, = NE, |” ae | dz eit | a OR eR fk, 0,6) (10.141) 

where cos 6 = (Zp) — z)/R. We now treat e’** dR as a differential and integrate 
by parts to obtain for the R integration 

co 
wo 

dR e*® f(k, 6, b) = = ott Hk, 8, $) | Z9—Z| 
R=|Zo—2| 

1 
+ — f(k, 8, $) on 6) 

aca an(2 a zo) ikR 

Provided the indicated derivative of f is well behaved, the remaining integral is 

of the order of 1/(k |z) — z|) times the original. Since we have assumed that the 

observation point is many wavelengths from the slab, this integral can be ne- 

glected. Neglecting the oscillating contribution at the upper limit R > ~ (this 
can be made to vanish somewhat more plausibly by assuming that the number 

N of scattering centers per unit volume falls to zero at very large p), we have the 

result 

| . _ dR et £(ke, 8, ) = 5, oto *1 Hk, 0) 

The scattered field at O is therefore 

2m 
E, = NE f(k, of dz etklz*\z0-21] 

ke 

Since z) > z by assumption, we have finally 

271 
(10.142) E, = — NEof(k, 0)ei** d 
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The total electric field at the observation point O is 

27iNd 
(10.143) E = Bet + 

k 
£(k, | 

correct to first order in the slab thickness d. The amplitude at O for a wave with 
the same polarization state as the incident wave is 

-~ 2miNd 
1+ ~ (10.144) 65 °-E= Bet €5 ° £(k, | 

Suppose that we now consider the slab macroscopically, with its electromag- 

netic properties specified by a dielectric constant €(w)/€o appropriate to describe 

the propagation of the wave of frequency w = ck and polarization €9. A simple 

calculation using the formulas of Chapter 7 shows that the transmitted wave at 

Z = Zo is given by 

(10.145) €9 + E(macroscopic) = Beet + ik(e/ey — 1) ‘| 
correct to first order in d, but with no approximation concerning the smallness of 

| €/€y — 1|. Comparison of (10.144) and (10.145) shows that the dielectric constant 
can be written in terms of the forward scattering amplitude as 

4aN 
(10.146) E(w)/Eq =1+ 7 €4 . f(k, 0) 

A number of observations are in order. It is obvious that our derivation has been 
merely indicative, with a number of simplifying assumptions and the notion of a 

macroscopic description assumed rather than derived. More careful consider- 

ations show that the scattering amplitude in (10.146) should be evaluated at the 

wave number k’ in the medium, not at the free-space wave number k, and that 

there is a multiplier to the second term that gives a measure of the effective 

exciting field at a scatterer relative to the total coherent field in the medium. The 

reader can consult the literature cited above for these and other details. Suffice 

it to say that (10.146) is a reasonable approximation for not too dense substances 

and provided correlations among neighboring scatterers are not important. It is 

worthwhile to illustrate (10.146) with the simple electronic oscillator model used 

in Chapter 7 to describe the dielectric constant. The dipole moment of the atom 

is given by (7.50), summed over the various oscillators: 

P= <> fj(w; — wo — iwy,)Eo€o 
From (10.2) we infer that the atomic scattering amplitude is 

1 
2 

f(k) = )"\k X €) x k w — wy; 
4 

0 

c 2 fi(@ - 
The scalar product of €> with the forward scattering amplitude is then 

e*k? 
€o + f(k = kp) = > f(@; — w — iwy;)™' 

4megm J 
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Substitution into (10.146) yields the dielectric constant 

2 
—_— €(w)/éeg = 1 + (10.147) w — iwy;)" 
E 
we 2 fi(a@F - 

in agreement with (7.51). 

Contact can be established between (10.146) and the optical theorem 

(10.139) by recalling that the attenuation coefficient a is related to the total cross 

section of a single scatterer through a = No, and to the imaginary part of the 

wave number in the medium through a = 2 Im(k’). From (10.146) and the re- 

lations (7.54) for the real and imaginary parts of k’ in terms of €(w) we find 

4aN 
a = No, = Im[eg « f(Re k’, 0)] (10.148) 

Re(k’) 

where I have improved (10.146) by evaluating f at the wave number in the me- 

dium, as described above. Equation (10.148) indicates that, if we consider scat- 

tering by a single scatterer embedded in a medium, the optical theorem and other 

relations will appear as before, provided we describe the “kinematics” correctly 

by using the local wave number k’ in the medium. The same situation holds in 

the scattering of electrons in a solid, for example, where the effective mass or 

other approximation is used to take into account propagation through the lattice. 

As a final comment on the optical theorem we note the problem of approx- 

imations for f. The optical theorem is an exact relation. If an approximate ex- 

pression for f is employed, a manifestly wrong result for the total cross section 

may be obtained. For example, in the long-wavelength limit we find from (10.2) 

and (10.5) that the scattering amplitude for a dielectric sphere of radius a is 

e--1 
— 

= 

2 r ( Jer X €&) Xk 

The forward amplitude is 

e,—1 
(10.149) €3 - f(k = ky) = ee 

€é,+2 

For a lossless dielectric, this amplitude is real; the optical theorem (10.139) then 
yields o, = 0. On the other hand, we know that the total cross section is in this 

case equal to the scattering cross section (10.11): 
2 

1 87 €, 
(10.150) Tso = — k’a® 

3 e, + 2 

Even with a lossy dielectric (Im € # 0), the optical theorem yields a total cross 

section, 

127ka’ Im e, 
(10.151) Oo; = 

le, + 2)? 

while the scattering cross section remains (10.150). These seeming contradictions 

are reflections of the necessity of different orders of approximation required to 

obtain consistency between the two sides of the optical theorem. In the long- 

wavelength limit it is necessary to evaluate the forward scattering amplitude to 
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higher order in powers of w to find the scattering cross section contribution in 

the total cross section by means of the optical theorem. For lossless or nearly 

lossless scatterers it is therefore simplest to determine the total cross section 

directly by integration of the differential scattering cross section over angles. For 

dissipative scatterers, on the other hand, the optical theorem yields a nonzero 
answer that has a different (usually a lower power) dependence on w and other 

parameters from that of the scattering cross section. This contribution is, of 

course, the absorption cross section to lowest explicit order in w. It can be cal- 
culated from first principles with (10.134), but the optical theorem provides an 

elegant and convenient method. Examples of these considerations are given in 

the problems. An analogous situation occurs in quantum-mechanical scattering 

by a real potential where the first Born approximation yields a real scattering 

amplitude. The second Born approximation has an imaginary part in the forward 

direction that gives, via the optical theorem, a total cross section in agreement 

with the integrated scattering cross section of the first Born approximation. 
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Problems 

10.1 (a) Show that for arbitrary initial polarization, the scattering cross section of a 

perfectly conducting sphere of radius a, summed over outgoing polarizations, 

is given in the long-wavelength limit by 

do 
-_— — 

4 dQ 
(€o, Mo, M) = al Jom — i m= (my x ex) — mom] 

where ny and n are the directions of the incident and scattered radiations, 
respectively, while €9 is the (perhaps complex) unit polarization vector of the 

incident radiation (€6 - €o = 1; mp €) = 0). 

If the incident radiation is linearly polarized, show that the cross section is (b) 

da 
— 

dQ, 
(€p, Mo, n) = Kes 3 (1 + cos*6) — cos 6 — = sin?@ cos 20 | 

where n° No = cos 8 and the azimuthal angle ¢ is measured from the direction 

of the linear polarization. 
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(c) What is the ratio of scattered intensities at 6 = m/2, ¢ = 0 and 6 = w/2 

¢ = 7/2? Explain physically in terms of the induced multipoles and their 

radiation patterns 

10.2 Electromagnetic radiation with elliptic polarization, described (in the notation of 

Section 7.2) by the polarization vector 

re'“e_) 
~ -~ © Vien © 

is scattered by a perfectly conducting sphere of radius a. Generalize the amplitude 
— 

= oo, and in the scattering cross section (10.71), which applies for r = 0 or r 

calculate the cross section for scattering in the long-wavelength limit. Show that 

da 
— 

T+ 4 dQ, 
) sin?6 cos(2¢ — «| ( = k4 | (1 + cos?6) — cos 6 — 

Compare with Problem 10.1 

10.3 A solid uniform sphere of radius R and conductivity o acts as a scatterer of a 

plane-wave beam of unpolarized radiation of frequency w, with wR/c < 1. The 

conductivity is large enough that the skin depth 6 is small compared to R 

(a) Justify and use a magnetostatic scalar potential to determine the magnetic 

field around the sphere, assuming the conductivity is infinite. (Remember 

that w # 0.) 

(b) Use the technique of Section 8.1 to determine the absorption cross section 

of the sphere. Show that it varies as (w)'’” provided o is independent of 
frequency 

10.4 An unpolarized wave of frequency w = ck is scattered by a slightly lossy uniform 

isotropic dielectric sphere of radius R much smaller than a wavelength. The sphere 

is characterized by an ordinary real dielectric constant e, and a real conductivity 

o. The parameters are such that the skin depth 6 is very large compared to the 

radius R 

(a) Calculate the differential and total scattering cross sections 

(b) Show that the absorption cross section is 

(RZ,a) 127R? Dabs 
(e, + 2)? + (Zoa/k)? 

(c) From part a write down the forward scattering amplitude and use the optical 

theorem to evaluate the total cross section. Compare your answer with the 

sum of the scattering and absorption cross sections from parts a and b 

Comment 

10.5 The scattering by the dielectric sphere of Problem 10.4 was treated as purely elec- 

tric dipole scattering. This is adequate unless it happens that the real dielectric 

constant €/€ is very large. In these circumstances a magnetic dipole contribution 

even though higher order in kR, may be important 

(a) Show that the changing magnetic flux of the incident wave induces an azi- 
muthal current flow in the sphere and produces a magnetic dipole moment 

_i4 AmoZo (kRy = an Bin 
ko 
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(b) Show that application of the optical theorem to the coherent sum of the 
electric and magnetic dipole contributions leads to a total cross section, 

1 1 + (ny (e, + 2)? + (Zoo/k 90 
o, = 120R*(RZ,0)] 

(Compare Landau and Lifshitz, Electrodynamics of Continuous Media, 
p- 323). 

10.6 (a) Show that for the scattered wave (10.57) the normalized scattering amplitude 

(10.138) is 

f= = E > V2i+ 1 [a (2) X21 + if,(J)n x X21] 
where the polarization vector of the incident wave is (€, + ie,)/V2. 

(b) Deduce an expression for the total cross section of o, from the optical the- 

orem (10.139) and the above expression for f. 

10.7 Discuss the scattering of a plane wave of electromagnetic radiation by a nonper- 

meable, dielectric sphere of radius a and dielectric constant e,. 

(a) By finding the fields inside the sphere and matching to the incident plus 

scattered wave outside the sphere, determine without any restriction on ka 

the multipole coefficients in the scattered wave. Define suitable phase shifts 

for the problem. 

(b) Consider the long-wavelength limit (ka << 1) and determine explicitly the 

differential and total scattering cross sections. Compare your results with 

those of Section 10.1.B. 

(c) In the limit €, — %© compare your results to those for the perfectly conducting 

sphere. 

10.8 Consider the scattering of a plane wave by a nonpermeable sphere of radius a and 

very good, but not perfect, conductivity following the spherical multipole field 

approach of Section 10.4. Assume that ka < 1 and that the skin depth 6 < a. 

(a) Show from the analysis of Section 8.1 that 

Z; 
_— 

= Sa-9 
Zo 

(b) In the long-wavelength limit, show that for / = 1 the coefficients a.(/) and 

B.(D) in (10.65) are 

-—-l[- 1-- 

a.(1) = —5 (kay 
+i 1+ 

2a 

B.(1) ~ = (kay 
(c) Write out explicitly the differential scattering cross section, correct to first 

order in 5/a and lowest order in ka. 

(d) Using (10.61), evaluate the absorption cross section. Show that to first order 

in Sit is Gay, ~ 37(kd)a*. How different is the value if 5 = a? 

10.9 In the scattering of light by a gas very near the critical point the scattered light is 

observed to be “whiter” (i.e., its spectrum is less predominantly peaked toward 
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the blue) than far from the critical point. Show that this can be understood by the 

fact that the volumes of the density fluctuations become large enough that 

Rayleigh’s law fails to hold. In particular, consider the lowest order approximation 

to the scattering by a uniform dielectric sphere of radius a whose dielectric constant 
e, differs only slightly from unity. 

(a) Show that for ka >> 1, the differential cross section is sharply peaked i in the 
forward direction and the total scattering cross section is approximately 

~~ -~ 

o = = (kay*\e, — 1/0? 

with a k?, rather than k*, dependence on frequency 

Show that for arbitrary ka the total cross section to lowest order in (€, — 1) (b) 
is the expression given in part a, multiplied by the function 

sin 2z F(z) = 1 + S5z7* — $z7-*(1 — cos2z) — z 

1 — cost 
d. 

_ Me? _ 4) [Loses 

where z = 2ka. [This result is due to Lord Rayleigh, 1914.] 

10.10 The aperture or apertures in a perfectly conducting plane screen can be viewed 

as the location of effective sources that produce radiation (the diffracted fields) 

An aperture whose dimensions are small compared with a wavelength acts as a 

source of dipole radiation with the contributions of other multipoles being 

negligible 

(a) Beginning with (10.101) show that the effective electric and magnetic dipole 
moments can be expressed in terms of integrals of the tangential electric field 
in the aperture as follows 

(x * E,an) da (9.72) pee 

2 | (n X E,,,) da 
~ jw 

where E,,, is the exact tangential electric field in the aperture, n is the normal 

to the plane screen, directed into the region of interest, and the integration 

is over the area of the openings 

(b) Show that the expression for the magnetic moment can be transformed into 

(9.74) m = | xm B) da 

Be careful about possible contributions from the edge of the aperture where 

some components of the fields are singular if the screen is infinitesimally 

thick 

10.11 A perfectly conducting flat screen occupies half of the x-y plane (i.e., x < 0). A 

plane wave of intensity J) and wave number k is incident along the z axis from the 

region z < 0. Discuss the values of the diffracted fields in the plane parallel to the 

-y plane defined by z = Z > 0. Let the coordinates of the observation point be 

(X, 0, Z) 

(a) Show that, for the usual scalar Kirchhoff approximation and in the limit 

Z>> X and V >> 1, the diffracted field is 

WK, 0, 2,0) = Totem EI AL e” dt 
where & = (k/2Z)'2X. 
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(b) Show that the intensity can be written 

1=|¥P = 20C® +2? + (© +H] 
where C(€) and S(é) are the so-called Fresnel integrals. Determine the as- 
ymptotic behavior of J for & large and positive (illuminated region) and é 
large and negative (shadow region). What is the value of J at X = 0? Make 
a sketch of J as a function of X for fixed Z. 

(c) Use the vector formula (10.101) to obtain a result equivalent to that of part a. 
Compare the two expressions. 

10.12 A linearly polarized plane wave of amplitude Ey and wave number k is incident 
on a circular opening of radius a in an otherwise perfectly conducting flat screen. 
The incident wave vector makes an angle a with the normal to the screen. The 
polarization vector is perpendicular to the plane of incidence. 

(a) Calculate the diffracted fields and the power per unit solid angle transmitted 

through the opening, using the vector Smythe—Kirchhoff formula (10.101) 
with the assumption that the tangential electric field in the opening is the 
unperturbed incident field. 

(b) Compare your result in part a with the standard scalar Kirchhoff approxi- 
mation and with the result in Section 10.9 for the polarization vector in the 

plane of incidence. 

10.13 Discuss the diffraction of a plane wave by a circular hole of radius a, following 

Section 10.9, but using a vector Kirchhoff approximation based on (10.90) instead 

of the Smythe formula (10.101). 

(a) Show that the diffracted electric field in this approximation differs from 

(10.112) in two ways, first, that cos a is replaced by (cos 6 + cos a)/2, and 

second, by the addition of a term proportional to (k X €3). Compare with 

the obliquity factors © of the scalar theory. 

(b) Evaluate the ratio of the scattered power for this vector Kirchhoff approxi- 

mation to that of (10.114) for the conditions shown in Fig. 10.14. Sketch the 

two angular distributions. 

10.14 A rectangular opening with sides of length a and b = a defined by x = +(a/2), 

y = +(6/2) exists in a flat, perfectly conducting plane sheet filling the x-y plane. 

A plane wave is normally incident with its polarization vector making an angle B 

with the long edges of the opening. 

(a) Calculate the diffracted fields and power per unit solid angle with the vector 

Smythe-Kirchhoff relation (10.109), assuming that the tangential electric 

field in the opening is the incident unperturbed field. 

(b) Calculate the corresponding result of the scalar Kirchhoff approximation. 

(c) For b = a, B = 45°, ka = 47, compute the vector and scalar approximations 

to the diffracted power per unit solid angle as a function of the angle @ for 

o = 0. Plot a graph showing a comparison between the two results. 

10.15 A cylindrical coaxial transmission line of inner radius a and outer radius b has its 

axis along the negative z axis. Both inner and outer conductors end at z = 0, and 

the outer one is connected to an infinite plane copper flange occupying the whole 

x-y plane (except for the annulus of inner radius a and outer radius b around the 

origin). The transmission line is excited at frequency w in its dominant TEM mode, 
with the peak voltage between the cylinders being V. Use the vector Smythe— 

Kirchhoff approximation to discuss the radiated fields, the angular distribution of 
radiation, and the total power radiated. 
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10.16 (a) Show from (10.125) that the integral of the shadow scattering differential 
cross section, summed over outgoing polarizations, can be written in the 

short-wavelength limit as 

Och = | ax, d*x', za ef — xk, d’k, 

and therefore is equal to the projected area of the scatterer, independent of 
a -~ its detailed shape. 

(b) Apply the optical theorem to the “shadow” amplitude (10.125) to obtain the 

total cross section under the assumption that in the forward direction the 

contribution from the illuminated side of the scatterer is negligible in 

comparison. 

10.17 (a) Using the approximate amplitudes of Section 10.10, show that, for a linearly 

polarized plane wave of wave number k incident on a perfectly conducting 

sphere of radius a in the limit of large ka, the differential scattering cross 

section in the E plane (€o, Ko, and k coplanar) is 

2. 

— 

4 
a (E plane) = 4 cot?6 J7(ka sin 6) + 1 

2 ka sin = 
2 } — 4 cot 6J,(ka sin 6) sin( 

and in the H plane (€) perpendicular to ky and k) is 

2 

a 
4 

a“ (A plane) = 4 cosec’6 J?(ka sin 6) + 1 

2 ka sin = 
2 } + 4 cosec 6 J,(ka sin 6) sin( 

(The dashed curve in Fig. 10.16 is the average of these two expressions.) 

(b) Look up the exact calculations in King and Wu (Appendix) or Bowman, 

Senior and Uslenghi (pp. 402-405). Are the qualitative aspects of the inter- 

ference between the diffractive and reflective amplitudes exhibited in part a 

in agreement with the exact results? What about quantitative agreement? 

10.18 Discuss the diffraction due to a small, circular hole of radius a in a flat, perfectly 

conducting sheet, assuming that ka << 1. 

(a) If the fields near the screen on the incident side are normal E,e~'” and 

tangential Bye‘, show that the diffracted electric field in the Fraunhofer 

zone iS 

ikr—iwt 
é k 

_ E = 

r 3 k k 
(Eo eof ) 

where k is the wave vector in the direction of observation. 

(b) Determine the angular distribution of the diffracted radiation and show that 

the total power transmitted through the hole is 

k4a°(4°B3 + E2) ~ WaZo 
10.19 Specialize the discussion of Problem 10.18 to the diffraction of a plane wave by 

the small, circular hole. Treat the general case of oblique incidence at an angle a 

to the normal, with polarization in and perpendicular to the plane of incidence. 

(a) Calculate the angular distributions of the diffracted radiation and compare 
them to the vector Smythe—Kirchhoff approximation results of Section 10.9 

and Problem 10.12 in the limit ka < 1. 
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(b) For the conditions of Fig. 10.14 (but for ka < 1) compute the diffraction 

intensity in the plane of incidence and compare the relative values with the 

solid curve in Fig. 10.14. (Use a protractor and a ruler to read off the values 

from Fig. 10.14 at several angles.) 

(c) Show that the transmission coefficient [defined above (10.116)] for the two 

states of polarization are 

64 4 + sin’a 
T= are (a 4 cosa ( 

64 
T, == (ka)* cos @ 

279° 

Note that these transmission coefficients are a factor (ka)” smaller than those 

given by the vector Smythe—Kirchhoff approximation in the same limit 

10.20 A suspension of transparent fibers in a clear liquid is modeled as a collection of 

scatterers, each being a right circular cylinder of radius a and length L of uniform 

dielectric material whose electric susceptibility differs from the surrounding me- 

dium by a small fractional amount de/e 

(a) Show that to first order in de/e the scattering cross section per scatterer for 

unpolarized radiation of wave number k is 

do (gia) | sin(qL/2) 
(l+e 0876) 

“fa J 

dQ € a qyLi2 

where J,(z) is the Bessel function of order unity and q, (q,) is the component 

of the wave number transfer parallel (perpendicular) to the cylinder axis 

(b) In the limit of very slender cylinders (ka < 1), show that the scattering cross 

section, averaged over the orientation of the cylinder (appropriate for an 
ensemble of randomly oriented fibers), is 

do sin(qL/2) be 

L/2 

fa - 

€ dQ, ) ( (i+ cosy] Si(qL) — ( )=|* 

where Si(x) = [ [(sin x)/x] dx is the sine integral (Abramowitz and Stegun 
p. 231) and q* = 2k?(1 — cos 6) 

(c) Plot the square-bracketed quantity in part b as a function of q’L? on the 
range (0, 100). Verify that the cross section is the expected one when 

kL <1 and show that when kL >> 1 (but ka <1) the total scattering cross 

section is approximately 

1 In(kL) 
Oscatt 

kL kL’ 60 ral "ea “41 + oft 
Comment on the frequency dependence 



CHAPTER 11 

Special Theory of Relativity 

Beginning with Chapter 11 we employ Gaussian units instead of SI units for electro- 

magnetic quantities. Explicit factors of c appear in a natural manner in these units, 

making them more appropriate than SI units for relativistic phenomena. The issue of 

“rationalization” (suppression of explicit factors of 47 in the Maxwell equations) is 

another matter. Some workers, especially quantum field theorists, prefer Heaviside— 

Lorentz units—see the Appendix. 

The special theory of relativity has, since its publication by Einstein in 1905, 
become a commonplace in physics, as taken for granted as Newton’s laws 
of classical mechanics, the Maxwell equations of electromagnetism, or the 

Schrédinger equation of quantum mechanics. Daily it is employed by scientists 

in their consideration of precise atomic phenomena, in nuclear physics, and above 

all in high-energy physics. 

The origins of the special theory of relativity lie in electromagnetism. In fact, 

one can say that the development of the Maxwell equations with the unification 

of electricity and magnetism and optics forced special relativity on us. Lorentz 

above all laid the groundwork with his studies of electrodynamics from 1890 

onwards. Poincaré made important contributions, but it fell to Einstein to make 

the crucial generalization to all physical phenomena, not just electrodynamics, 

and to stress the far-reaching consequences of the second postulate. The special 

theory of relativity is now believed to apply to all forms of interaction except 

large-scale gravitational phenomena. It serves as a touchstone in modern physics 

for the possible forms of interaction between fundamental particles. Only theo- 

ries consistent with special relativity need to be considered. This often severely 

limits the possibilities. 

The experimental basis and the historical development of the special theory 

of relativity, as well as many of its elementary consequences, are discussed in 

many places. A list of books and articles is given at the end of the chapter. We 

content ourselves with a summary of the key points and some examples of recent 

definitive experimental confirmations. Then the basic kinematic results are sum- 

marized, including coordinate transformations, proper time and time dilatation, 

the relativistic Doppler shift, and the addition of velocities. The relativistic energy 
and momentum of a particle are derived from general principles, independent of 
the force equation. Then the idea of the Lorentz group and its mathematical 
description is presented and a specific representation in terms of 4 x 4 matrices 

514 
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is given. The important phenomenon of Thomas precession is then discussed. 
The experimental basis for the invariance of electric charge, the covariance of 
electrodynamics, and the explicit transformation properties of electric and mag- 
netic fields follow. The chapter concludes with a treatment of the relativistic 
equations of motion for spin and a remark on the notation and conventions of 
relativistic kinematics. 

1.1 The Situation Before 1900, Einstein’s Two Postulates 

In the 40 years before 1900 electromagnetism and optics were correlated and 

explained in triumphal fashion by the wave theory based on the Maxwell equa- 

tions. Since previous experience with wave motion had always involved a medium 

for the propagation of waves, it was natural for physicists to assume that light 

needed a medium through which to propagate. In view of the known facts about 

light, it was necessary to assume that this medium, called the ether, permeated 

all space, was of negligible density, and had negligible interaction with matter. It 

existed solely as a vehicle for the propagation of electromagnetic waves. 

The hypothesis of an ether set electromagnetic phenomena apart from the 

rest of physics. For a long time it had been known that the laws of mechanics 

were the same in different coordinate systems moving uniformly relative to one 

another. We say that the laws of mechanics are invariant under Galilean trans- 

formations. To emphasize the distinction between classical mechanics and elec- 

tromagnetism let us consider explicitly the question of Galilean relativity for 

each. For two reference frames K and K’ with coordinates (x, y, z, t) and 

(x', y’, z', t’), respectively, and moving with relative velocity v, the space and 

time coordinates in the two frames are related according to Galilean relativity 

by 
, —_— 

x xX — Vi 
(11.1) 

t’ 

t 

provided the origins in space and time are chosen suitably. As an example of a 
mechanical system, consider a group of particles interacting via two-body central 

potentials. In an obvious notation the equation of motion of the ith particle in 
the reference frame K’ is 

dv; 
—_ = —- m (11.2) 
dt’ 

V; 2 Vi;(|x! — x;|) 

From the connections (11.1) between the coordinates in K and K’ it is evident 

that vi = v, — v, V; = V,, dv,/dr’ = dv,/dt, and x; — xj = x; — x;. Thus (11.2) can 
be transformed into 

dv; 
—_— 

— (11.3) mM; 
dt V; 2 Vij(|X; _ x;|) 

namely Newton’s equation of motion in the reference frame K. 

The preservation of the form of the equations of classical mechanics under 

the transformation (11.1) is in contrast to the change in form of the equations 
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governing wave phenomena. Suppose that a field w(x’, t’') satisfies the wave 

equation 

1 a (11.4) > 
i ax’? c? ar”? Wns ( 

in the reference frame K’. By straightforward use of (11.1) it is found that in 

terms of the coordinates in the reference frame K the wave €quafion (11.4) 
becomes 

1 0 1 a 
= — El —- 3V°Vv-V (11.5) 

2 
ot C ot bs (v 

The form of the wave equation is not invariant under Galilean transformations. 
Furthermore, no kinematic transformation of y can restore to (11.5) the appear- 
ance of (11.4).* For sound waves the lack of invariance under Galilean transfor- 

mations is quite acceptable. The wind throws our voices. Sound waves are com- 

pressions and rarefactions in the air or in other materials, and the preferred 

reference frame K’' in which (11.4) is valid is obviously the frame in which the 

transmitting medium is at rest. 

So it also appeared for electromagnetism. The vital difference is this. Sound 

waves and similar wave phenomena are consequences of Galilean classical me- 

chanics. The existence of preferred reference frames where the phenomena are 

simple is well understood in terms of the bulk motions of the media of propa- 

gation. For electromagnetic disturbances, on the other hand, the medium seemed 

truly ethereal with no manifestation or purpose other than to support the 

propagation. 

When Einstein began to think about these matters there existed several 

possibilities: 

1 The Maxwell equations were incorrect. The proper theory of electromag- 

netism was invariant under Galilean transformations. 

Galilean relativity applied to classical mechanics, but electromagnetism had 

a preferred reference frame, the frame in which the luminiferous ether was 

at rest. 

There existed a relativity principle for both classical mechanics and electro- 
magnetism, but it was not Galilean relativity. This would imply that the laws 
of mechanics were in need of modification. 

The first possibility was hardly viable. The amazing successes of the Maxwell 
theory at the hands of Hertz, Lorentz, and others made it doubtful that the 

*The reader might wish to ponder the differences between the wave equation and the Schrédinger 
equation under Galilean transformations. If in K’ the Schrédinger equation reads 

oy’ -= View + Vy' = ih oe 

then in K the equation has the same form for the wave function provided V is a Galilean invariant 
and f = wy’ exp[i(m/h)v-x — i(mv7/2h)t]. The Schrodinger equation is invariant under Galilean 
transformations. 
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equations of electromagnetism were in serious error. The second alternative was 
accepted by most physicists of the time. Efforts to observe motion of the earth 
and its laboratories relative to the rest frame of the ether, for example, the 
Michelson—Morley experiment, had failed. But for this important experiment at 
least, the null result could be explained by the FitzGerald—Lorentz contraction 
hypothesis (1892) whereby objects moving at a velocity v through the ether are 
contracted in the direction of motion according to the formula 

2 
U 

1-— Liv) = Lo 
2 (11.6) 

This rather unusual hypothesis apparently lies outside electromagnetism, since it 
applies to bulk matter, but Lorentz later argued that it was rooted in electrody- 
namics. He and Poincaré showed that the Maxwell equations are invariant in 
form under what are known as Lorentz transformations (see Section 11.9) and 
that the contraction (11.6) held for moving charge densities, etc., in electrody- 
namics. With the idea that matter is electromagnetic in nature (the discovery of 

the electron encouraged this hypothesis), it is plausible to assume that (11.6) 

holds for macroscopic aggregates of electrons and atoms. Lorentz thus saved the 

ether hypothesis from contradiction with the Michelson—Morley experiment. 

Other experiments caused embarrassment to the ether idea. Fizeau’s famous 

experiments (1851, 1853) and later similar experiments by Michelson and Morley 

(1886) on the velocity of light in moving fluids could be understood only if one 

supposed that the ether was dragged along partially by the moving fluid, with 

the effectiveness of the medium in dragging the ether related to its index of 

refraction! 

Apparently it was the implausibility of the explanation of the Fizeau obser- 

vations, more than anything else, that convinced Einstein of the unacceptability 

of the hypothesis of an ether. He chose the third alternative above and sought 

principles of relativity that would encompass classical mechanics, electrodynam- 

ics, and indeed all natural phenomena. Einstein’s special theory of relativity is 

based on two postulates: 

1. POSTULATE OF RELATIVITY 

The laws of nature and the results of all experiments performed in a given 

frame of reference are independent of the translational motion of the system 

as a whole. More precisely, there exists a triply infinite set of equivalent 

Euclidean reference frames moving with constant velocities in rectilinear 

paths relative to one another in which all physical phenomena occur in an 

identical manner. 

For brevity these equivalent coordinate systems are called inertial reference 

frames. The postulate of relativity, phrased here more or less as by Poincaré, is 

consistent with all our experience in mechanics where only relative motion be- 

tween bodies is relevant, and has been an explicit hypothesis in mechanics since 

the days of Copernicus, if not before. It is also consistent with the Michelson— 

Morely experiment and makes meaningless the question of detecting motion 

relative to the ether. 
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2. POSTULATE OF THE CONSTANCY OF THE SPEED OF LIGHT 

The speed of light is finite and independent of the motion of its source. 

This postulate, untested when Einstein proposed it (and verified decisively only 

in recent years—see Section 11.2.B), is simplicity itself. Yet it forcés on us such 

a radical rethinking of our ideas about space and time that it was resisted for 

— many years. 

is desirable Because special relativity applies to everything, not just light, it 

to express the second postulate in terms that convey its generality: 

POSTULATE OF A UNIVERSAL LIMITING SPEED 2’. 

In every inertial frame, there is a finite universal limiting speed C for physical 

entities. 

Experimentally, the limiting speed C is equal to the speed c of light in vacuum. 

Postulate 2’ (with the first postulate) can be used equally to derive the Lorentz 

transformation of coordinates (see Problem 11.1). Our own derivation in Section 

11.3 is the traditional one, based on Postulates 1 and 2, but, as Mermin has 

emphasized,* the general structure of the Lorentz transformation can be deduced 

from the first postulate alone, plus some obvious assumptions, without reference 

to the speed of light, except as the empirical parameter that distinguishes the 

transformation from the Galilean (see Problem 11.2). 
The history of the special theory of relativity and its gradual establishment 

through experiments is dealt with in an extensive literature. Some references are 
given at the end of the chapter. Of particular note is the “Resource letter on 

relativity” published in the American Journal of Physics [30, 462 (1962)]. This 
article contains references to books and journal articles on the history, experi- 
mental verification, and laboratory demonstrations on all aspects of special 
relativity. 

In passing we remark that Einstein’s postulates require modification of the 

laws of mechanics for high-speed motions. There was no evidence at the time 

indicating a failure of Galilean relativity for mechanics. This is basically because 

relativistic particles and their dynamics were unknown until the discovery of beta 

rays around 1900. Poincaré had speculated that the speed of light might be a 

limiting speed for material particles, but Einstein’s special theory of relativity 

originated from his desire to treat all physical phenomena in the same way rather 

than from any need to “fix up” classical mechanics. The consequences of the 

special theory for mechanical concepts like momentum and energy are discussed 

in Section 11.5. 

11.2 Some Recent Experiments 

Although we omit discussion of the standard material, appealing to the reader’s 

prior knowledge and the existence of many books on the special theory of rela- 

tivity, there are two experiments worthy of note. One concerns the first postulate, 

namely the search for an ‘ether drift’ (evidence of motion of the laboratory 

relative to the ether) and the other the second postulate. 

*N. D. Mermin, Relativity without light, Am. J. Phys. 52, 119-124 (1984). 
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A. Ether Drift 

The null result of the Michelson—Morley experiment (1887) established that 
the velocity of the earth through the presumed ether was less than one-third of 
its orbital speed of approximately 3 X 10* m/s. The experiment was repeated 
many times with various modifications, always with no firm evidence of motion 
relative to the ether. A summary of all available evidence is given by Shankland 
et al. [Rev. Mod. Phys. 27, 167 (1955)]. 

As already noted, these null results can be explained without abandoning 

the concept of an ether by the hypothesis of the FitzGerald—Lorentz contraction. 

The discovery by Méssbauer (1958) of “‘recoilless’’ emission or absorption of 

gamma rays (called the Méssbauer effect) allows comparison of frequencies to 

astounding precision and gives the possibility of very accurate ether drift exper- 

iments based on the Doppler shift. In the Méssbauer effect the recoil momentum 

from the emission or absorption of a gamma ray is taken up by the whole solid 

rather than by the emitting or absorbing nucleus. This means that the energy of 

recoil is totally negligible. A gamma ray is emitted with the full energy E, of the 

nuclear transition, not the reduced energy E ~ Ey — E$/2Mc’, where M is the 

mass of the recoiling nucleus, resulting from the recoil. Furthermore, with such 

recoilless transitions there are no thermal Doppler shifts. The gamma-ray line 

thus approaches its natural shape with no broadening or shift in frequency. By 

employing an absorber containing the same material as the emitter, one can study 

nuclear resonance absorption or use it as an instrument for the study of extremely 

small changes of frequency. 

To understand the principle of an ether drift experiment based on the 

Mossbauer effect, we need to recall the classic results of the Doppler shift. The 

phase of a plane wave is an invariant quantity, the same in all coordinate frames. 

This is because the elapsed phase of a wave is proportional to the number of 

wave crests that have passed the observer. Since this is merely a counting oper- 

ation, it must be independent of coordinate frame. If there is a plane electro- 

magnetic wave in vacuum its phase as observed in the inertial frames K and K’, 

connected by the Galilean coordinate transformation (11.1), is 

nex 
n’- x’ 

_ —— (11.7) 
! 

c )-o(" 5 =o 
If ¢ and x are expressed in terms of ¢’ and x’ from (11.1), we obtain 

’ ’ 
x n nex’ m-v 

1-— 

c c 

)- |--(- Li 
Since this equality must hold for all r’ and x’, it is necessary that the coefficients 

of t’, x{, x3, x3 on both sides be separately equal. We therefore find 

' 
— 

n 

n-ev 
(11.8) 

c 
of - 

— 

c—fmev 

These are the standard Doppler shift formulas of Galilean relativity. 

The unit wave normal n is seen from (11.8) to be an invariant, the same in 

all inertial frames. The direction of energy flow changes, however, from frame 
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to frame. To see this, consider the segments of a plane wave sketched in Fig. 11.1. 

The segments can be thought of as schematic representations of wave packets. 

Att =t' = 0 the center of the segment is at the point A in both K and K’. If 

inertial frame K is the preferred reference frame (ether at rest) the wave packet 

moves in the direction n, arriving after one unit of time at the point B in frame 

K. The distance AB is equal to c. In frame K’ the center of the wave packet 

arrives at the point B’ after one unit of time. Because of the Galilean transfor- 

mation of coordinates (11.1) the point B’ differs from B by a vectorial amount 
—v, as indicated in the bottom half of Fig. 11.1. The direction of motion of the 

wave packet, assumed to be the direction of energy flow, is thus not parallel to 

nin K’', but along a unit vector m shown in Fig. 11.1 and specified by 

cn—-v 

(11.9) 
~ |cn — v| 

Since the experiments involve photon propagation in the laboratory, it is 

convenient to have the Doppler formulas (11.8) expressed in terms of the m 

appropriate to the laboratory rather than n. It is sufficient to have n in terms of 

m correct to first order in v/c. From (11.9) we find 

M+ Vo Yo (11.10) 
c c 

n=(1- 

where Vp is the velocity of the laboratory relative to the ether rest frame. 

K 

\WN 
K’ 

=v 

\ 
\\ 

Figure 11.1 
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Consider now a plane wave whose frequency is w in the ether rest frame, w 
in the laboratory, and @, in an inertial frame K, moving with a velocity v, = 
u, + vo relative to the ether rest frame. From (11.8) the observed frequencies 
are 

nv, 

W 
c (.- 

N* Vo 
_— 

= 

Wo 
c {1 

If w, is expressed in terms of the laboratory frequency w) and the wave normal 
n is eliminated by means of (11.10), the result, correct to order u/c’, is easily 
shown to be 

+ — (11.11) a4 ( } 
where u, is the velocity of the frame K, relative to the laboratory, m is the 

direction of energy propagation in the laboratory, wo is the frequency of the wave 
in the laboratory, and vy is the velocity of the laboratory with respect to the ether 

Equation (11.11) forms the basis of the analysis of the Méssbauer ether drift 

experiments. It is a consequence of the validity of both the wave equation in the 

ether rest frame and Galilean relativity to transform to other inertial frames 

Since it involves vo, it obviously predicts an ether drift effect. Consider two 

Mossbauer systems, one an emitter and the other an absorber, moving with ve- 

locities u, and u, in the laboratory. From (11.11) the difference in frequency 

between emitter and absorber is 

W 

Wo 
o2 = = (yu, — u) (m+ 

If the emitter and absorber are located on the opposite ends of a rod of length 

2R that is rotated about its center with angular velocity 0, as indicated in Fig 

11.2, then (u, — u,)-m = 0 and the fractional frequency difference is 

20R @) 
—_— 

——— 

W2 _ 
sin Nt | (Vo), | (11.12) Cc 

Wo 

where (vo), is the component of vy perpendicular to the axis of rotation 

A resonant absorption experiment of this type was performed in 1963 in 

Birmingham.* The Méssbauer line was the 14.4 keV gamma ray in °’Fe, following 
the B* decay of *’Co. The isotope *’Fe is stable and occurs with a natural abun- 
dance of 2.2%; the absorber was made with iron enriched to 52% in °’Fe. The 
cobalt source was emplanted in *°Fe. The emitter and absorber foils were located 
as in Fig. 11.2 with R = 4 cm. The observed fractional width of the Méssbauer 
line was Aw/w = 2 x 10°'*. Counters fixed in the laboratory and located sym- 
metrically along a diameter of the circle in the plane of the source and absorber 
recorded the gamma rays transmitted through the absorber. Two rotational 

and 0, = 7728 s—', were alternated during each 4-hour speeds, 0, = 1257s 

cycle that data were taken and a diurnal effect connected to the earth’s rotation 

*D. C. Champeney, G. R. Isaak, and A. M. Khan, Phys. Lett. 7, 241 (1963). See also G. R. lsaak 

Phys. Bull. 21, 255 (1970) 
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Ww 

_é\ (Yo), 
~~ 

ug Figure 11.2 

was sought. From (11.12) it can be seen that with © ~ 6000 s~’ and R = 4 cm, 
an ether drift velocity of 200 m/s would produce a total change of frequency of 

the magnitude of the Méssbauer line width. The data showed no diurnal change 

in transmission to an accuracy of 1 or 2%. The authors conclude that the mag- 

nitude of the component of yp past the earth in a plane perpendicular to the 

earth’s axis of rotation is |(vo),| = 1.6 + 2.8 m/s, a null result. An improved 

experiment along the same lines in 1970 gave a limit of 5 cm/s (see Isaak, op. cit.). 
A conceptually similar experiment was performed in 1958 using ammonia 

masers.* The ammonia molecules have a well-defined direction and nonzero 

speeds when they enter the maser cavity. According to (11.11) there is therefore 
a shift in the frequency. If the frequencies of two masers whose ammonia mol- 

ecules travel in opposite directions are compared, there should be an observable 

beat frequency. Furthermore, if the two masers are rotated together through 180°, 

the beat frequency should change by Aw/wp = 4 |Umoi* Vol/c?. The null result of 
this experiment set the component of ether drift velocity at less than 30 m/s. 

These two Doppler shift experiments set observable ether drift speed limits 

6000 and 1000 times smaller than the speed of the earth in its orbit and make 

the idea that we can ever detect any motion relative to some ‘‘absolute”’ reference 

frame quite implausible. 

B. Speed of Light from a Moving Source 

The second postulate of Einstein, that the speed of light is independent of 

the motion of the source, destroys the concept of time as a universal variable 

independent of the spatial coordinates. Because this was a revolutionary and 

unpalatable idea, many attempts were made to invent theories that would explain 

all the observed facts without this assumption. The most notable and resilient 

scheme was Ritz’s version of electrodynamics (1908-1911). Ritz kept the two 

homogeneous Maxwell equations intact, but modified the equations involving 

the sources in such a way that the speed of light was equal to c only when mea- 

sured relative to the source. The Ritz theory is in accord with observation for 

the aberration of star positions, the Fizeau experiments, and the original 

*C, J. Cedarholm, G. F. Bland, B. L. Havens, and C. H. Townes, Phys. Rev. Lett. 1, 342 (1958). See 
also T. S. Jaseja, A. Javan, J. Murray, and C. H. Townes, Phys. Rev. 133, A1221 (1964). 
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Michelson—Morley experiment. It is customary, however, to cite Michelson— 
Morley experiments performed with extraterrestrial light sources (the sun or 
other stars) and light from binary stars as establishing the second postulate and 
ruling out Ritz’s theory. Unfortunately, it seems clear that most of the early 
evidence is invalid because of the interaction of the radiation with the matter 
through which it passes before detection.* 

There are, however, some more recent experiments that do not suffer from 
the criticism of Fox. The most definitive is a beautiful experiment performed at 
CERN, Geneva, Switzerland, in 1964." The speed of 6 GeV photons produced 
in the decay of very energetic neutral pions was measured by time of flight over 
paths up to 80 meters. The pions were produced by bombardment of a beryllium 
target by 19.2 GeV protons and had speeds (inferred from measured speeds of 
charged pions produced in the same bombardment) of 0.99975c. The timing was 
done by utilizing the rf structure of the beam. Within experimental error it was 
found that the speed of the photons emitted by the extremely rapidly moving 

source was equal to c. If the observed speed is written as c’ = c + kv, where v 

is the speed of the source, the experiment showed k = (0 + 1.3) x 107%. 

The CERN experiment established conclusively and on a laboratory scale 

the validity of the second postulate (2) of the special theory of relativity. Other 

experiments? on charged particles and neutrinos independently establish the 
validity of postulate 2’. See also Section 11.5. 

C. Frequency Dependence of the Speed of Light in Vacuum 

The speed of light is known to an accuracy of a few parts in 10° from mea- 

surements at infrared frequencies and lesser accuracy at higher frequencies (or 

equivalently, the meter is defined to this precision). One can ask whether there 

is any evidence for a frequency dependence of the speed of electromagnetic 

waves in vacuum. One possible source of variation is attributable to a photon 

mass. The group velocity in this case is 

2 

(11.13) 1-*9 
aw 

c(w) = ( 

where the photon rest energy is iwo. As discussed in the Introduction, the 

mere existence of normal modes in the earth-ionosphere resonant cavity sets a 

limit of @) < 10c/R where R is the radius of the earth. From radiofrequencies 

(w ~ 108 s~') to w — &, the change in velocity of propagation from a photon 
mass is therefore less than Ac/c = 107°. 

Another source of frequency variation in the speed of light is dispersion of 
the vacuum, a concept lying outside special relativity but occurring in models 
with a discrete space-time. The discovery of pulsars make it possible to test this 

*See the papers of criticism by J. G. Fox, Am. J. Phys. 30, 297 (1962), 33, 1 (1965); J. Opt. Soc. 57, 

967 (1967). The second paper cited is a detailed discussion of Ritz’s emission theory and a critique 

of the various arguments against it. See also T. Alvager, A. Nilsson, and J. Kjellman, Ark. Fys. 26, 

209 (1963). 

tT, Alvager, J. M. Bailey, F. J. M. Farley, J. Kjellman, and I. Wallin, Phys. Lett. 12, 260 (1964); Ark. 

Fys. 31, 145 (1965). 

*G. R. Kalbfleisch, N. Baggett, E. C. Fowler, and J. Alspector, Phys. Rev. Lett. 43, 1361 (1979). 
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idea with high precision. Pulsar observations cover at least 13 decades of fre- 

quency, with any one observing apparatus having a certain “window” in the 

frequency spectrum. The quite small time duration of the pulse from some pulsars 
permits a simple estimate for the upper limit of variation on the speed of light 

for two frequencies w, and w, inside the frequency window of each apparatus: 

c(a) — (2) —cAl 
~ — D c 

where At is the pulse duration and D is the distance from the source to observer. 

For the Crab pulsar Np 0532, At = 3 X 107? s and D = 6 X 10° light-years so 
that (c At/D) ~ 1.7 X 10~'*. Various overlapping observations from ~4 x 10° Hz 
through the optical region and up to photon energies of 1 MeV indicate constancy 

of the speed at the level of Ac/c < 10~* by this simple estimation.* For higher 

energies, an experiment at the Stanford Linear Accelerator’ compared the speed 
of 7 GeV photons with that of visible light and found Ac/c < 10~>. Up to very 
high energies, then, there is no evidence for dispersion of the vacuum. The speed 

of light is a universal constant, independent of frequency. 

11.3 Lorentz Transformations and Basic Kinematic 
Results of Special Relativity 

As is well known, the constancy of the velocity of light, independent of the ino- 
tion of the source, gives rise to the relations between space and time coordinates 

in different inertial reference frames known as Lorentz transformations. We de- 

rive these results in a more formal manner in Section 11.7, but for the present 

summarize the elementary derivation and important consequences, omitting the 

details that can be found in the many textbooks on relativity. The reader who 

wishes more than a reminder can consult the books listed at the end of the 

chapter. 

A. Simple Lorentz Transformation of Coordinates 

Consider two inertial reference frames K and K’ with a relative velocity v 

between them. The time and space coordinates of a point are (f, x, y, z) and 

(t’, x’, y’, z’) in the frames K and K’, respectively. The coordinate axes in the 

two frames are parallel and oriented so that the frame K’ is moving in the positive 

z direction with speed vu, as viewed from K. For simplicity, let the origins of the 

coordinates in K and K’ be coincident at ¢ = ¢’ = 0. If a light source at rest at 

the origin in K (and so moving with a speed v in the negative z direction, as seen 

from K’) is flashed on and off rapidly at t = tr’ = 0, Einstein’s second postulate 

implies that observers in both K and K’ will see a spherical shell of radiation 

expanding outward from the respective origins with speed c. The wave front 

reaches a point (x, y, z) in the frame K at a time ¢ given by the equation, 

ct? — (x2 + y? + 27) =0 (11.14) 

*J. M. Rawls, Phys. Rev. D5, 487 (1972). 

‘B. C. Brown et al., Phys. Rev. Lett. 30, 763 (1973). 
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Similarly, in the frame K' the wave front is specified by 

c2t'2 (x’? + y” 4 z') =_ 0 
(11.14’) 

With the assumption that space-time is homogeneous and isotropic, as im- 
plied by the first postulate, the connection between the two sets of coordinates 
is linear. The quadratic forms (11.14) and (11.14’) are then related by 

c2t'2 
(11.15) 

(x'? + y? + z’?) _ M027 _ (x? 4 y? + z’)] 

where A = A(v) is a possible change of scale between frames. With the choice of 
orientation of axes and considerations of the inverse transformation from K’ to 
K it is straightforward to show that A(v) = 1 for all v and that the time and space 
coordinates in K’ are related to those in K by the Lorentz transformation 

= x9 y(Xo — Px) 
= x4 yx - BXo) 

(11.16) 
= x2 Xo 

x3 = X3 

where we have introduced the suggestive notation x) = ct, x; = Z, x. = Xx, 

x3 = y and also the convenient symbols, 

B= B = |B| c’ 

(11.17) 

y=(1- By” 

The inverse Lorentz transformation is 

= 

Xo y(xo + Bx}) 
= Xy y(x; + Bxo) 

(11.18) 
X2 = X34 

X3 = X43 

It can be found from (11.16) by direct calculation, but we know from the first 

postulate that it must result from (11.16) by interchange of primed and unprimed 
variables along with a change in the sign of 8. According to (11.16) or (11.18), 
the coordinates perpendicular to the direction of relative motion are unchanged 

while the parallel coordinate and the time are transformed. This can be contrasted 

with the Galilean transformation (11.1). 

Equations (11.16) and (11.17) describe the special circumstance of a Lorentz 

transformation from one frame to another moving with velocity v parallel to the 

x, axis. If the axes in K and K' remain parallel, but the velocity v of the frame 
K’ in frame K is in an arbitrary direction, the generalization of (11.16) is 

—_— 

= x9 y(xo — B-x) 
(11.19) 

(y - 1) ' + 
xX (B-x)B — yBxo B? 

The first equation here follows almost trivially from the first equation in (11.16). 

The second appears somewhat complicated, but is really only the sorting out of 

components of x and x’ parallel and perpendicular to v for separate treatment 

in accord with (11.16). 
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The connection between B and y given in (11.17) and the ranges 0 = 6B <1, 

1 <= y < ~ allow the alternative parametrization, 

B = tanh¢ 

and so 
(11.20) 

y = cosh¢é 

yB = sinh 
~~ -_ 

where ¢ is known as the boost parameter or rapidity. In terms of ¢ the first two 

equations of (11.16) become 

= Xo cosh £ — x, sinh & xo (11.21) 
— 

= —Xg sinh £ + x, cosh¢é xy 

The structure of these equations is reminiscent of a rotation of coordinates, but 

with hyperbolic functions instead of circular, basically because of the relative 
negative sign between the space and time terms in (11.14) [see Section 11.7 and 
(11.95)]. 

B. 4-Vectors 

The Lorentz transformation (11.16), or more generally (11.19), describes the 
transformation of the coordinates of a point from one inertial frame to another. 

Just as for rotations in three dimensions, the basic transformation law is defined 

in terms of the coordinates of a point. In three dimensions we call x a vector and 

speak of x, x2, x3 as the components of a vector. We designate by the same name 

any three physical quantities that transform under rotations in the same way as 

the components of x. It is natural therefore to anticipate that there are numerous 

physical quantities that transform under Lorentz transformations in the same 

manner as the time and space coordinates of a point. By analogy we speak of 

4-vectors. The coordinate 4-vector is (Xo, x1, X2, X3); we designate the components 

of an arbitrary 4-vector similarly as (Ap, A;, Az, A3),* where A,, A>, A; are the 

components of a 3-vector A. The Lorentz transformation law equivalent to 

(11.16) for an arbitrary 4-vector is 

= Ag y(Ao — Bp: A) 
= { (11.22) y(A] — BAo) 
—_— 

= At A, 

where the parallel and perpendicular signs indicate components relative to the 
—_ 

= cB. The invariance from one inertial frame to another embodied velocity v 

through the second postulate in (11.15) has its counterpart for any 4-vector in 
the invariance, 

Ai? — |A’? = Ad —- |AP 
(11.23) 

*Because we are deferring the explicit algebraic treatment of the Lorentz group to Section 11.7, we 
do not write a single symbol for this 4-vector. As written, they are the components of the contravariant 
4-vector A®. 
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where the components (Aj, A’) and (Ay, A) refer to any two inertial reference 
frames. For two 4-vectors (Ay, A}, Az, A3) and (Bo, B,, Bp, B;) the ‘‘scalar prod- 
uct” is an invariant, that is, 

AoB) — A'+ B' = AyByo — A+B (11.24) 

This result can be verified by explicit construction of the left-hand side, using 
(11.22) for the primed components, or using (11.23) for the sum of two 4-vectors. 
It is the Lorentz transformation analog of the invariance of A - B under rotations 
in three dimensions. 

C. Light Cone, Proper Time, and Time Dilatation 

A fruitful concept in special relativity is the idea of the light cone and “‘space- 

like” and ‘‘timelike’’ separations between two events. Consider Fig. 11.3, in which 
the time axis (actually cr) is vertical and the space axes are perpendicular to it. 

For simplicity only one space dimension is shown. At t = 0 a physical system, say 

a particle, is at the origin. Because the velocity of light is an upper bound on all 

velocities, the space-time domain can be divided into three regions by a ‘‘cone,”’ 

called the light cone, whose surface is specified by x* + y* + z? = c*t?. Light 

signals emitted at ¢ = 0 from the origin would travel out the 45° lines in the figure. 

But any material system has a velocity less than c. Consequently as time goes on 

it would trace out a path, called its world line, inside the upper half-cone: for 

example, the curve OB. Since the path of the system lies inside the upper half- 

cone for times t > 0, that region is called the future. Similarly the lower half-cone 

is called the past. The system may have reached O by a path such as AO lying 

inside the lower half-cone. The shaded region outside the light cone is called 

elsewhere. A system at O can never reach or come from a point in space-time in 

elsewhere. 

The division of space-time into the past-future region (inside the light cone) 

and elsewhere (outside the light cone) can be emphasized by considering the 

invariant separation or interval s;. between two events P,(t,, x,) and P(t, x2) in 

space-time (we are reverting to ¢ and x temporarily to avoid proliferation of 

subscripts). The square of the invariant interval is 

— 

= Sia c(t) — 6) — |x — x)? (11.25) 

For any two events P, and P, there are three possibilities: (1) Sir > 0, (2) st. <0, 
(3) si, = 0. If s{2 > 0, the events are said to have a timelike separation. It is always 

ct 

Future ‘\ 

i Figure 11.3. World line of a system and the light 

cone. The unshaded interior of the cone represents 

the past and the future, while the shaded region 

outside the cone is called ‘‘elsewhere.”’ A point 
Past inside (outside) the light cone is said to have a 

timelike (spacelike) separation from the origin. 
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possible to find a Lorentz transformation* to a new coordinate frame K’' such 

that x; = x}. Then 

by >0 Sin = c(t 

In the frame K’ the two events occur at the same space point, but are separated 

in time. Referring to Fig. 11.3, one point can be located at the origin and the 

other lies in the past or future. If s7, < 0, the events are said to have a spacelike 

separation. Now it is possible to find an inertial frame K ” where t” = 3. Then 

xt? <0 Sp = - [x 

In K” the two events occur at different space points at the same instant of time 
In terms of Fig. 11.3, one event is at the origin, while the other lies in the else- 

0, implies a lightlike separation. The where region. The final possibility, sj. 

events lie on the light cone with respect to each other and can be connected only 

by light signals 

The division of the separation of two events in space-time into two 

classes—spacelike separations or timelike separations with the light cone as the 

boundary surface between—is a Lorentz invariant one. Two events with a space- 

like separation in one coordinate system have a spacelike separation in all co- 

ordinate systems. This means that two such events cannot be causally connected 

Since physical interactions propagate from one point to another with velocities 

no greater than that of light, only events with timelike separations can be causally 

related. An event at the origin in Fig. 11.3 can be influenced causally only by the 

events that occur in the past region of the light cone 

Another useful concept is proper time. Consider a system, which for defi- 

niteness we will think of as a particle, moving with an instantaneous velocity u(t) 

relative to some inertial system K. In a time interval dt its position changes by 

dx = u dt. From (11.25) the square of the corresponding infinitesimal invariant 

interval ds is 

ds* = c? dt? — |dx|? = ¢ dt?(1 — B?) 

where here 6 = u/c. In the coordinate system K' where the system is instanta- 

dt, dx’ = 0. Thus the invariant neously at rest the space-time increments are dt 

interval is ds = c dr. The increment of time dv in the instantaneous rest frame 
of the system is thus a Lorentz invariant quantity that takes the form 

dr = dtV1 — B*(t) = (11.26) 0 
The time Tis called the proper time of the particle or system. It is the time as seen 
in the rest frame of the system. From (11.26) it follows that a certain proper time 
interval 7, — 7, will be seen in the frame K as a time interval 

72 

y(r)dr (11.27) 
1 ee eo 

Equation (11.27) or (11.26) expresses the phenomenon known as time dila- 
tation. A moving clock runs more slowly than a stationary clock. For equal time 

*By considering equations (11.16), the reader can verify that there exists a Lorentz transformation 
with 8 < 1 provided sj, > 0. Explicitly, | B| Ix; — x2|/e|t — 4 
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intervals in the clock’s rest frame, the time intervals observed in the frame K are 
greater by a factor of y > 1. This paradoxical result is verified daily in high- 
energy physics laboratories where beams of unstable particles of known lifetimes 
7 are transported before decay over distances many many times the upper limit 
on the Galilean decay distance of c7. For example, at the Fermi National Ac- 
celerator Laboratory charged pions with energies of 200 GeV are produced and 
transported 300 meters with less than 3% loss because of decay. With a lifetime 

of t = 2.56 X 107° s, the Galilean decay distance is ct) = 7.7 meters. Without 
time dilatation, only e-*°”” ~ 1077” of the pions would survive. But at 200 GeV, 
y = 1400 and the mean free path for pion decay is actually yc7 ~ 11 km! 

A careful test of time dilatation under controlled laboratory conditions is 
afforded by the study of the decay of mu-mesons orbiting at nearly constant speed 
in a magnetic field. Such a test, incidental to another experiment, confirms fully 
the formula (11.27). [See the paper by Bailey et al. cited at the end of Section 

11.11] 

A totally different and entertaining experiment on time dilatation has been 

performed with macroscopic clocks of the type used as official time standards.* 

The motion of the clocks was relative to the earth in commercial aircraft, the 

very high precision of the cesium beam atomic clocks compensating for the rel- 

atively small speeds of the jet aircraft. The four clocks were flown around the 

world twice, once in an eastward and once in a westward sense. During the 

journeys logs were kept of the aircrafts’ location and ground speed so that 

the integral in (11.27) could be calculated. Before and after each journey the 

clocks were compared with identical clocks at the U.S. Naval Observatory. With 

allowance for the earth’s rotation and the gravitational ‘“‘red shift” of general 

relativity, the average observed and calculated time differences in nanoseconds 

are —59 + 10 and —40 + 23 for the eastward trip and 273 + 7 and 275 + 21 for 

the westward. The kinematic effect of special relativity is comparable to the gen- 

eral relativistic effect. The agreement between observation and calculation es- 

tablishes that people who continually fly eastward on jet aircraft age less rapidly 

than those of us who stay home, but not by much! 

D. Relativistic Doppler Shift 

As remarked in Section 11.2.A, the phase of a wave is an invariant quantity 

because the phase can be identified with the mere counting of wave crests in a 
wave train, an operation that must be the same in all inertial frames. In Section 

11.2 the Galilean transformation of coordinates (11.1) was used to obtain the 
Galilean (nonrelativistic) Doppler shift formulas (11.8). Here we use the Lorentz 
transformation of coordinates (11.16) to obtain the relativistic Doppler shift. Con- 
sider a plane wave of frequency w and wave vector k in the inertial frame K. In 
the moving frame K’ this wave will have, in general, a different frequency w’ and 
wave vector k’, but the phase of the wave is an invariant: 

(11.28) ¢= wot —k-x = o't’ — k’-x’ 

[Parenthetically we remark that because the equations of (11.16) are linear the 

plane wave in K with phase ¢ indeed remains a plane wave in frame K’.] Using 

*]J. C. Hafele and R. E. Keating, Science 177, 166, 168 (1972). 
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(11.16) and the same arguments as we did in going from (11.7) to (11.8), we find 

that the frequency w’ = ckj and wave vector k’ are given in terms of w = cko 

and k by 

= ko y(ko — B- k) 
= (11.29) i yk, ~ Bko) 
= 

~~ ™~ kK, ki 

The Lorentz transformation of (ko, k) has exactly the same form as for (Xo, x). 
The frequency and wave number of any plane wave thus form a 4-vector. The 

invariance (11.28) of the phase is the invariance of the “‘scalar product” of two 

4-vectors (11.24). This correspondence is, in fact, an alternate path from (11.28) 

to the transformation law (11.29). 
For light waves, |k| = ko, |k’| = ko. Then the results (11.29) can be expressed 

in the more familiar form of the Doppler shift formulas 

, —_— 

= @ yw(1 — B cos 6) (11.30) 

sin 6 
tan 6’ 

y(cos 6 — B) 

where 6 and 6’ are the angles of k and k’ relative to the direction of v. The 
inverse equations are obtained by interchanging primed and unprimed quantities 

and reversing the sign of B. 

The first equation in (11.30) is the customary Doppler shift, modified by the 

factor of y. Its presence shows that there is a transverse Doppler shift, even when 
—_— 

= a/2. This relativistic transverse Doppler shift has been observed spectro- 

scopically with atoms in motion (Ives—Stilwell experiment, 1938). It also has been 

observed using a precise resonance-absorption Mossbauer experiment, with a 

nuclear gamma-ray source on the axis of a rapidly rotating cylinder and the ab- 

sorber attached to the circumference of the cylinder.* 

11.4 Addition of Velocities, 4- Velocity 

The Lorentz transformation (11.16) or (11.18) for coordinates can be used to 

obtain the law for addition of velocities. Suppose that there is a moving point P 

whose velocity vector u’ has spherical coordinates (u’, 6’, @’) in the inertial frame 

K’, as shown in Fig. 11.4. The frame K’ is moving with velocity v = cB in the 

positive x, direction with respect to the inertial frame K. We wish to know the 

components of the velocity u of the point P as seen from K. From (11.18) 

the differential expressions for dxo, dx,, dx2, dx3 are 

= dXo Y(dxg + B dx;) 
= dx 1 y(dx; + B dxo) 
—_— 

= dx, dx5 

dx3 = dx4 

*H. J. Hay, J. P. Schiffer, T. E. Cranshaw, and P. A. Egelstaff, Phys. Rev. Lett. 4, 165 (1960). See 
also T. E. Cranshaw in Proceedings of the International School of Physics, Varenna, Course XX, 1961, 
Academic Press, New York (1962), p. 208. 
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Figure 11.4 Addition of velocities. 
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= where we have put a subscript on y to distinguish it below from y, 

(1 — w/c*)~™? and y, = (1 — u’*/c*)~'”. The velocity components in each frame 
are u; = c dx;/dxo and u; = c dx;/dxo. This means that the components of velocity 

transform according to 

uy + v 

uy = 
veu 

1+ 
(11.31) 

u, 
uu 

v-u ni 

The notation u, and u, refers to components of velocity parallel and perpendic- 

ular, respectively, to v. The magnitude of u and its polar angles 6, ¢ in the frame 

K are easily found. Since u,/u; = u3/u3, the azimuthal angles in the two frames 

are equal. Furthermore, 

u’ sin @’ 
tan 6 = 

y,(u’ cos 6’ + v) 

and (11.32) 

u'v sin 0’ 

c 

y 

u= 

, 

cos 6’ 1+ 
2 

The inverse results for u’ in terms of u can be found, as usual, from (11.31) and 

(11.32), by interchanging primed and unprimed quantities and changing the sign 

of v. 
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For speeds u’ and v both small compared to c, the velocity addition law 

(11.31) reduces to the Galilean result, u = u’ + v, but if either speed is compa- 

rable to c modifications appear. It is impossible to obtain a speed greater than 

that of light by adding two velocities, even if each is very close to c. For the 

simple case of parallel velocities the addition law is 

u’ +ov 
~~ 

uz 

~ (11.33) 
vu’ 

If u’ = c, then u = c also. This is an explicit example of Einstein’s second pos- 
— 

= Cc tulate. The reader can check from the second equation in (11.32) that u 

implies u = c for nonparallel velocities as well 

The formula for the addition of velocities is in accord with such observational 

tests as the Fizeau experiments on the speed of light in moving liquids and the 

aberration of star positions from the motion of the earth in orbit 

The structure of (11.31) makes it obvious that the law of transformation of 

velocities is not that of 4-vectors, as given by (11.22) and of which (11.16) and 

(11.29) are examples. There is however, a 4-vector closely related to ordinary 

velocity. To exhibit this 4-vector we rewrite (11.31). From the second equation 

in (11.32) it can be shown directly that the factor (1 + v- u’/c’) can be expressed 

alternatively through 

' 

u 
(11.34) Vu = Wu (1 + 

where y,, Yu, Yu: are the gammas defined by (11.17) for v, u, and wu’, respectively 

When (11.34) is substituted into (11.31) those equations become 

Yul = Vo (Yu My + UY) 
(11.35) 

Yu, = Yu} 

Comparison of (11.34) and (11.35) with the inverse of (11.22) implies that the 
four quantities (y,,c, y,W) transform in the same way as (Xo, x) and so form a 
4-vector under Lorentz transformations. These four quantities are called the 
time and space components of the 4-velocity (Uo, U) 

An alternative approach to the 4-velocity is through the concept of proper 
time 7. Ordinary velocity u is defined as the time derivative of the coordinate 
x(t). The addition law (11.31) for velocities is not a 4-vector transformation law 
because time is not invariant under Lorentz transformations. But we have seen 
that the proper time 7 is a Lorentz invariant. We can thus construct a 4-vector 

velocity” by differentiation of the 4-vector (xo, x) with respect to 7 instead of t 
Using (11.26) we have 

dxo dt dXo 
_ 

—— —-—_— 
= 

=~ Yu 0 Ur dt d 
(11.36) 

dx dx dt 
— 

= 
U = — 

Yu 
dt dt drt 

We show in the next section that the components of 4-velocity of a particle are 
proportional to its total energy and momentum. 
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11.5 Relativistic Momentum and Energy of a Particle 

We next consider the relativistic generalizations of the momentum and kinetic 
energy of a particle. These can be obtained for charged particles from the Lorentz 

force equation and the transformation properties of electromagnetic fields al- 
ready established by Lorentz before 1900, but it is useful to give a more general 
derivation based only on the laws of conservation of energy and momentum and 
on the kinematics of Lorentz transformations. This approach shows clearly the 
universality of the relationships, independent of the existence of electromagnetic 
interactions for the particle in question. 

For a particle with speed small compared to the speed of light its momentum 

and energy are known to be 

p = mu 

(11.37) 
E = E(0) + mv 

where m is the mass of the particle, u is its velocity, and E(0) is a constant 

identified as the rest energy of the particle. In nonrelativistic considerations the 

rest energies can be ignored; they contribute the same additive constant to both 

sides of an energy balance equation. In special relativity, however, the rest energy 

cannot be ignored. We will see below that it is the total energy (the sum of rest 

energy plus kinetic energy) of a particle that is significant. 

We wish to find expressions for the momentum and energy of a particle 

consistent with the Lorentz transformation law (11.31) of velocities and reducing 

to (11.37) for nonrelativistic motion. The only possible generalizations consistent 

with the first postulate are 

p = M(u)u 
(11.38) 

E = €(u) 

where A((u) and @(u) are functions of the magnitude of the velocity u. Compar- 

ison with (11.37) yields the limiting values, 

M(0) =m 
(11.39) 

m 
— 

2 50 = 
We make the reasonable assumption that (uw) and €(u) are well-behaved mono- 

tonic functions of their arguments. 

To determine the forms of ((u) and €(u) we consider the elastic collision 

of two identical particles and require that conservation of momentum and energy 

hold in all equivalent inertial frames, as implied by the first postulate. In partic- 

ular, we consider the collision in two frames K and K’ connected by a Lorentz 

transformation parallel to the z axis. A certain amount of algebra is unavoidable. 

To keep it to a minimum, two approaches are open. One is to set up the velocities 

and directions of the particles in such a clever way that the algebra shakes down 

quickly into an elegant and transparent result. The other is to pick a straight- 

forward kinematic situation and proceed judiciously. The first approach lacks 

motivation. We adopt the second. 

Let the inertial frame K’ be the ‘‘center of mass’”’ frame with the two identical 
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uy =v" 

Figure 11.5 Initial and final velocity vectors in the 
cal particles. 

™~ 

frame K’ for the collision of two identi 

particles having initial velocities uj, = v, ug = —v along the z axis. The particles 

collide and scatter, emerging with final velocities, u, = v’, uy = v’. The various 

velocities are indicated in Fig. 11.5. In K’ the conservation equations for 

momentum and energy read 

= pot pa Pc + ps 
= E. + Ej Ei, + Ez 

or, with the forms (11.38), 

M(v)v — Mv)v = Mv')v’ + M(v"”)v" 
(11.40) 

€(v) + Sv) = Sv’) + S(v") 

Because the particles are identical it is necessary that €(v’) = @(v") and, with 

the hypothesis of monotonic behavior of €(v), that v’ = v”. The second equation 
— 

= —v’. All in (11.40) then demands v' = v” = v. The first equation requires v” 

four velocities have the same magnitude with the final velocities equal and op- 

posite, just as are the initial velocities. This rather obvious state of affairs is shown 

in the right-hand diagram of Fig. 11.6 where the scattering angle in K’ is denoted 

by 6. 

We now consider the collision in another inertial frame K moving with a 

velocity —v in the z direction with respect to K’. From the transformation equa- 

zZ 

u-—-3 

b_ we 
—— 

\ Ud a 
K’ 

Figure 11.6 Initial and final velocity vectors in frames K and K’ for the collision of two 
identical particles. The lengths and angles of the solid lines representing the velocities 
correspond to 6’ = 30° and f” = 3. The dashed lines in K are the results of a Galilean 
transformation from K’ to K. 
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tions (11.31) for velocity it can be seen that particle b is at rest in K while particle a 
is incident along the z axis with a velocity 

2v 2cB 
u,= 

2 (11.41) 
U 1+ B 

lt+5 
Cc 

where B = vw/c. The velocity components of the final velocities u, and u, in K are 
similarly 

cB sin 6’ cB(1 + cos 6’) 
— (u,)x (u.)z y(1 + B? cos 6')’ 1 + B? cos 6’ 

(11.42) 
cB sin 6’ cB(1 — cos 6’) 

(uz)x (ug )z 7 y(1 — B’ cos 6’)’ 1 — B? cos 6’ 

with y = (1 — B?)7. 

The equations of conservation of momentum and energy in the inertial frame 

K read 

M(ug)u, + M(uy)u, = M(u,)U, + M(ug)Ug 
(11.43) 

(ug) + 6(uz) = 6(u,) + (ug) 

It is apparent from (11.41) and (11.42) or the left-hand diagram of Fig. 11.6 that 

while particle b is at rest the other three velocities are all different in general. 

Thus the determination of M(u) and €(u) from (11.43) seems obscure. We can, 

however, consider the limiting situation of a glancing collision in which 6’ is very 

small. Then in the frame K, u, will be nonrelativistic and u, will differ only slightly 

from u,. We can therefore make appropriate Taylor series expansions around 

6’ = 0 and obtain equations involving M(u), @(u), and perhaps their first deriva- 

tives. Explicitly, the x component of the momentum conservation equation in 

(11.43) is 

cB sin 6’ cB sin 6’ 
— M(uz) 0 = Mu) 

y(1 + B? cos 6’) y(1 — B? cos 6’) 

Canceling common factors and rearranging terms, we have 

1 + B? cos 6’ 

1 — B’ cos @’ 
M(u,) = ( Jus) 

This relation is valid for all 6’ and in particular for 6’ = 0°. Inspection of (11.42) 
shows that in that limit u, = u,, uy = 0. Thus we obtain 

1+ p 
(11.44) 

1- 8B 
M(uz) = ( }.a0) 

From (11.41) it is easy to demonstrate that 

1 
_—_——_ 

1+ p_ 
= Ya (11.45) 

1 — Bp’ 
1-4 
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With the value 44(0) = m from (11.39) we thus have 

M(uz) = Yam 

or equivalently that the momentum of a particle of mass m and velocity w is 

mu 
(11.46) 

p = ymu = 
2 

~~ u 

1l-G 
c 

Determining the functional form of €(u) requires more than the straightfor- 
ward evaluation of the conservation of energy equation at 6’ = 0°. We must 
examime the equation for small 6’. From (11.43) we have 

(11.47) €(uz) + €(0) = (uc) + Elva) 

where u, and u, are functions of 6’. From (11.42) or (11.32) we find, correct to 

order 6’? inclusive, 

2 
ue uz - + + O(7) 

a 

— 

= Ua n + O(7’) 

where y, is given by (11.45) and 7» = c?B76’/(1 — B7) is a convenient expansion 
parameter. We now expand both sides of (11.47) in Taylor series and equate 

coefficients of different powers of 1: 

du.) au 
du2 an 

B(u,) + €(0) = E(u.) + 1° ( he 
(us) du 

du, an |.’ #80 + a-( 

The zeroth-order terms give an identity, but the first-order terms yield 

dé (ua) _1 dé(u,) 0= 

du? du2, Va ( he 
With the known nonrelativistic value of the second term from (11.39), we find 

m d@é(u,) _ 
= 

2 fie du2 

1-4 
c | 

Integration yields the expression, 

mc 
Stu) = (11.48) ia + [€(0) - me’) 2 

1-3 
c ( 

for the energy of a particle of mass m and velocity u, up to an arbitrary constant 

of integration. Parenthetically we remark that in an elastic scattering process the 

conservation of energy condition can be expressed in terms of kinetic energies 
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alone. Thus the undetermined constant in (11.48) is necessary and is not, as the 
reader might have conjectured, the result of our Taylor series expansions. Note 
that the kinetic energy T(u) is given unambiguously by 

1 
1 T(u) = €(u) — €(0) = me? (11.49) 

2 

1-3 
Cc ( 

Equations (11.46) and (11.48) are the necessary relativistic generalizations 

for the momentum and energy of a particle, consistent with the conservation laws 

and the postulates of special relativity. The only remaining question is the value 

of the rest energy @(0). We can appeal directly to experiment or we can examine 

the theoretical framework. First, experiment. Although €(0) cannot be deter- 

mined from elastic scattering, it can be found from inelastic processes in which 

one type of particle is transformed into another or others of different masses. 

Decay processes are particularly transparent. Consider, for example, the decay 

of a neutral K-meson into two photons, K° — yy. In the rest frame of the 
K-meson, conservation of energy requires that the sum of the energies of the two 

photons be equal to €,(0). For another decay mode of a neutral K-meson, into 

two pions, the kinetic energy of each pion in the K-meson’s rest frame must be 

T, = 3€x(0) — €,(0) 

Measurement of the pion kinetic energy (11.49) and knowledge of €,(0) allows 

determination of €,,(0). In these examples and every other case it is found that 

the rest energy of a particle (or more complicated system) of mass m is given by 

tlle famous Einstein mass-energy relation, 

(11.50) 6(0) = mc? 

Thus the second, square-bracketed, term in (11.48) is absent. The total energy 
of a particle of mass m and velocity u is 

mc? 
(11.51) E = ymc? = 

2 
u 

1-3 
c 

A second path to the results (11.50) and (11.51) is theoretical. Although the 

expressions (11.46) and (11.48) for the momentum and energy of a particle were 

found by applying the principles of special relativity to the conservation of energy 

and momentum, the properties of p and FE under Lorentz transformations are 

not yet explicit. The conservation equations are a set of four equations assumed 

to be valid in all equivalent inertial frames. Momentum conservation consists of 

three equations relating the spatial components of vectors. Within the framework 

of special relativity it is natural to attempt to identify the four equations of con- 

servation as relations among 4-vectors. We observe that the momentum (11.46) 

is proportional to the spatial components of the 4-velocity (Up, U) defined in 
—_— 

=> (11.36), that is p = mU. The time component of this 4-vector is pp = mUp 

my,c. Comparison with (11.48) shows that the energy of a particle differs from 

CPo by an additive constant [%(0) — mc’]. This means that the four equations of 
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energy and momentum conservation for an arbitrary collision process can be 
written as 

> (Po)a — > (Po)» = Ao 
final initial 

(11.52) 
> Po 2 Po = A 

~~ 

final initial 

where (Ao, A) is a 4-vector with A = 0 and 

—_— 

= cAg > [S,(0) — myc?] — > [8.(0) — m,c7] 
initial final 

From the first postulate, (11.52) must be valid in all equivalent inertial frames. 

But if A = 0 in all inertial frames it can be seen from (11.22) that it is necessary 

that A, = 0; the 4-vector (Ao, A) is a null vector. If different types or numbers of 

particles can occur in the initial and final states of some process, the condition 

Ao = 0 can only be met by requiring that (11.50) hold for each particle separately. 

We are thus led to (11.51) as the correct form of the total energy. 

The velocity of the particle can evidently be expressed in terms of its 
momentum and energy from (11.46) and (11.51) as 

cP (11.53) 
E 

The invariant “length” of the energy-momentum 4-vector (po = E/c, p) is 

(11.54) Po ~ psp = (mcy 

We see that the invariant property that characterizes a particle’s momentum and 

energy is its mass, m, sometimes called its rest mass.* Equation (11.54), combined 

with the conservation equations, forms a powerful and elegant means of treating 

relativistic kinematics in collision and decay processes (see the problems at the 

end of the chapter). Note that (11.54) permits the energy E to be expressed in 

terms of the momentum as 

E = Vc’p? + mc* (11.55) 

The relations (11.46), (11.51), and (11.53) for momentum, energy, and ve- 

locity of a particle are so universally accepted that it seems superfluous to speak 

of experimental tests. It is perhaps worthwhile, nevertheless, to cite some labo- 

ratory demonstrations. One is the connection between the kinetic energy (11.49) 

of a particle and its speed. The speeds of electrons of known kinetic energies 

from 0.5 to 15 MeV (accelerated through a known voltage in a Van de Graaff 

generator, verified at the beam catcher by calorimetry) are measured by having 

bursts of electrons (At = 3 X 10°° s) travel a flight path of 8.4 meters. As the 

energy increases the transit time falls toward a limiting value of 2.8 x 107° s, in 

good agreement with (11.49). Verification of c as a limiting speed for material 

*Some authors define the mass of a particle to be E/c’, designating it as m or m(u) and reserving the 
symbol mo for the rest mass. We always use the word ‘“‘mass” for the Lorentz invariant quantity whose 
square appears in (11.54). 

'W. Bertozzi, Am. J. Phys. 32, 551 (1964). 
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particles has been carried out for 11 GeV electrons (y = 2 x 10’) in the Stanford 
experiment cited at the end of Section 11.2, where it was found that the electrons’ 
speed differed fractionally from c by less than 5 X 107°. An undergraduate ex- 

periment to verify the relation (11.55) between momentum and energy employs 

a simple magnet with roughly 10 cm radius of curvature for the momentum mea- 

surement and a Nal crystal for the energy measurement on beta rays.* 

The specification of the kinematic properties of a particle (velocity, momen- 

tum, energy) in any inertial frame can be accomplished by giving its mass and 

either its velocity u or its momentum p in that frame. A Lorentz transformation 

(11.22) of (po, p) gives the results in any other frame. It is sometimes convenient 

to use the two components of p perpendicular to the z axis and a rapidity ¢ 

(11.20) as kinematic variables. Suppose that a particle has momentum p in frame 

K, with transverse momentum p, and a z component p,. There is a unique Lorentz 

transformation in the z direction to a frame K’ where the particle has no z com- 

ponent of momentum. In K’ the particle has momentum and energy, 

, 

(11.56) © = 0 = Vp + we "=P, 

Let the rapidity parameter associated with the Lorentz transformation from K 

to K' be ¢. Then from the inverse of (11.21) the momentum components and 

energy of the particle in the original frame K can be written 

— = QM coshg (11.57) Pu, Pi = QO sinh j, 

with O = Vp? + m’c’. The quantity O/c is sometimes called the transverse mass 
(because it depends on p_) or the longitudinal mass (because it is involved in a 
longitudinal boost). If the particle is at rest in K’, that is, p, = 0, then the ex- 
pressions (11.57) become 

E = mc’ cosh¢é (11.58) P = mc sinh @, 

alternatives to (11.46) and (11.51). 

One convenience of p and £“ as kinematic variables is that a Lorentz 

transformation in the z direction shifts all rapidities by a constant amount, ¢ O_, 
£© — Z, where Z is the rapidity parameter of the transformation. With these 

variables, the configuration of particles in a collision process viewed in the lab- 

oratory frame differs only by a trivial shift of the origin of rapidity from the same 

process viewed in the center of mass frame. 

11.6 Mathematical Properties of the Space-Time 
of Special Relativity 

The kinematics of special relativity presented in the preceding sections can be 

discussed in a more profound and elegant manner that simultaneously simplifies 

and illuminates the theory. Three-dimensional rotations in classical and quantum 

mechanics can be discussed in terms of the group of transformations of the co- 

*§. Parker, Am. J. Phys. 40, 241 (1972). 
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ordinates that leave the norm of the vector x invariant. In the special theory of 

relativity, Lorentz transformations of the four-dimensional coordinates (Xo, x) 
follow from the invariance of 

2 
S (11.59) = x3 - x} - 03-33 

We can therefore rephrase the kinematics of special relativity as the considera- 

tion of the group of all transformations that leave s? invariant_Technically, this 
group is called the homogeneous Lorentz group. It contains ordinary rotations 

as well as the Lorentz transformations of Section 11.3. The group of transfor- 

mations that leave invariant 

s7(x, y) = - Yo)” — (%1 - yi)? — (% - yo)” — (%3 - ys) 
is called the inhomogeneous Lorentz group or the Poincaré group. It contains 
translations and reflections in both space and time, as well as the transformations 

of the homogeneous Lorentz group. We shall restrict our discussion to the ho- 

mogeneous transformations and subsequently omit ‘“homogeneous”’ when refer- 

ring to the Lorentz group. 

From the first postulate it follows that the mathematical equations expressing 

the laws of nature must be covariant, that is, invariant in form, under the trans- 

formations of the Lorentz group. They must therefore be relations among 

Lorentz scalars, 4-vectors, 4-tensors, etc., defined by their transformation prop- 

erties under the Lorentz group in ways analogous to the familiar specification of 

tensors of a given rank under three-dimensional rotations. We are thus led to 

consider briefly the mathematical structure of a space-time whose norm is defined 

by (11.59). 

We begin by summarizing the elements of tensor analysis in a non-Euclidean 

vector space. The space-time continuum is defined in terms of a four-dimensional 

space with coordinates x°, x’, x?, x7. We suppose that there is a well-defined 
1 3 transformation that yields new coordinates x’°, x , x'?, x 

, according to some 

rule, 

‘a 

x = x/%(x°, x}, x?, x) (a = 0, 1, 2, 3) (11.60) 

For the moment the transformation law is not specified. 

Tensors of rank k associated with the space-time point x are defined by their 

transformation properties under the transformation x —> x’. A scalar (tensor of 
rank zero) is a single quantity whose value is not changed by the transformation. 
The interval s* (11.59) is obviously a Lorentz scalar. For tensors of rank one, 
called vectors, two kinds must be distinguished. The first is called a contravariant 
vector A“ with four components A°, A', A’, A® that are transformed according 
to the rule 

ox'* 

A’ —_— AB (11.61) 
ax8 

In this equation the derivative is computed from (11.60) and the repeated index 
B implies a summation over B = 0, 1, 2, 3. Thus explicitly we have 

ox’* ox'® ox'® ox'® 

A'*=—, A°+— Al + A? + —, A? 
ax°® ax! ax? ax? 
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We will henceforth employ this summation convention for repeated indices. A 
covariant vector or tensor of rank one B, is defined by the rule 

ax* 
By, = Bs (11.62) ox'% 

or, explicitly, by 

ax° ax! ax? ax? 
—_— 

= B, Bo + — B, + — B, + — Bs ox’™ ox'% ox'% ox'* 

The partial derivative in (11.62) is to be calculated from the inverse of (11.60) 
with x° expressed as a function of x’°, x1, x’2, x’3. 

Note that contravariant vectors have superscripts and covariant vectors have 
subscripts, corresponding to the presence of ax'*/dx* and its inverse in the rule 
of transformation. It can be verified from (11.61) that if the law of transformation 
(11.60) is linear then the coordinates x°, x', x?, x° form the components of a 
contravariant vector. 

A contravariant tensor of rank two F* consists of 16 quantities that trans- 
form according to 

ox'™ ax'8 
— 

ys op 
(11.63) 

ax” ax? 

A covariant tensor of rank two, G,,, transforms as 

ax” ax? 
, 

(11.64) op ax’@ ax'B 7% 

and the mixed second-rank tensor H%, transforms as 

ax'* ax® 
— 

¥ 

= (11.65) 
H' “3 

ax’ ax'B” ° 

The generalization to contravariant, covariant, or mixed tensors of arbitrary rank 

should be obvious from these examples. 

The inner or scalar product of two vectors is defined as the product of the 

components of a covariant and a contravariant vector, 

B-A=B,A*° (11.66) 

With this definition the scalar product is an invariant or scalar under the trans- 

formation (11.60). This is established by considering the scalar product B’ - A’ 

and employing (11.61) and (11.62): 

ax® ax® ax’ 
—_— 

= 

B' . A’ BgA’ = —— BpA” = 8°,B,AY = BA 
ox'* ax? 

The inner product or contraction with respect to any pair of indices, either on 

the same tensor or one on one tensor and the other on another, is defined in 
analogy with (11.66). One index is contravariant and the other covariant always. 

The results or definitions above are general. The specific geometry of the 

space-time of special relativity is defined by the invariant interval s?, (11.59). In 
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differential form, the infinitesimal interval ds that defines the norm of our space 

iS 

= 

= (11.67) (dx*)? (dx°Y? — (dx? — (dx)? (ds)? 

Here we have used superscripts on the coordinates because of our present con- 
ventions. This norm or metric is a special case of the general differential length 

~~ -~ element, 

(11.68) (ds)? = Bap dx® dx 

where gig = Spa is called the metric tensor. For the flat space-time of special 

relativity (in distinction to the curved space-time of general relativity) the metric 

tensor is diagonal, with elements 

(11.69) 8u = 82 = &3 = —1 8oo = 1, 

The contravariant metric tensor g®° is defined as the normalized cofactor of gag. 

For flat space-time it is the same: 

ap _ (11.70) & ~ Sop 

Note that the contraction of the contravariant and covariant metric tensors gives 
the Kronecker delta in four dimensions: 

(11.71) Saye” = 5° 

where 5,8 = 0 for a # 8 and 6,% = 1 for a = 0, 1, 2, 3. 
Comparison of the invariant length element (ds)’ in (11.68) with the similarly 

invariant scalar product (11.66) suggests that the covariant coordinate 4-vector 

Xq can be obtained from the contravariant x® by contraction with g,,, that is, 

(11.72) Xe = Sapx? 

and its inverse, 

(11.73) xt = gx 6 

In fact, contraction with g,, or g** is the procedure for changing an index on any 

tensor from being contravariant to covariant, and vice versa. Thus 

Fit = pF 5 

and (11.74) 

Gita. = SapG..* 

With the metric tensor (11.69) it follows that if a contravariant 4-vector 

has components, A°, A’, A’, A’, its covariant partner has components, Ay = 
—_— 

= —A’, A, = —A’, A3 = —A?. We write this concisely as A®, A, 

A* = (A®, A), A, = (A°, —A) (11.75) 

where the 3-vector A has components A’, A”, A®. The scalar product (11.66) of 

two 4-vectors is 

— 

= B°A°-B-A B-A=B,A* 

in agreement with (11.24). 
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Consider now the partial derivative operators with respect to x“ and x,. The 
transformation properties of these operators can be established directly by using 
the rules of implicit differentiation. For example, we have 

a ax® a 
ox’ ax'™ ax? 

Comparison with (11.62) shows that differentiation with respect to a contravariant 
component of the coordinate vector transforms as the component of a covariant 

vector operator. From (11.72) it follows that differentiation with respect to a 

covariant component gives a contravariant vector operator. We therefore employ 
the notation, 

=>= CC 
em 

Ox ax’ 
-¥) 

(11.76) 

0 
—_— 

= Da ~ ox ax’ ( 
The 4-divergence of a 4-vector A is the invariant, 

aA° 
— 

= 0°Ag = 0,A® (11.77) “-+V-A 

an equation familiar in form from continuity of charge and current density, the 

Lorentz condition on the scalar and vector potentials, etc. These examples give 

a first inkling of how the covariance of a physical law emerges provided suitable 

Lorentz transformation properties are attributed to the quantities entering the 

equation. 

The four-dimensional Laplacian operator is defined to be the invariant 

contraction, 

a 

= 

—_—_— — 

= O 40% (11.78) 
02 

This is, of course, just the operator of the wave equation in vacuum. 

11.7. Matrix Representation of Lorentz Transformations, 
Infinitesimal Generators 

We now turn to the consideration of the Lorentz group of transformations. To 

make the manipulations explicit and less abstract, it is convenient to use a matrix 

representation with the components of a contravariant 4-vector forming the el- 

ements of a column vector. The coordinates x°, x1, x”, x? thus define a coordinate 
vector whose representative is 

x= (11.79) 
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Matrix scalar products of 4-vectors (a, b) are defined in the usual way by summing 
over the products of the elements of a and 5, or equivalently by. matrix multipli- 
cation of the transpose of a on b: 

(11.80) (a, b) = ab 

The metric tensor g., has as its representative the square 4 x 4 matrix 
0 ~~ 0 0 1 ~ 

0 -1 0 0 
—_— (11.81) 

-1 0 0 0 

—1 0 0 0 

with g* = I, the 4 X 4 unit matrix. The covariant coordinate vector is 

0 
x 

(11.82) 
2 gx = 

x 

—x3 

obtained by matrix multiplication of g (11.81) on x (11.79). Note that in the present 

notation the scalar product (11.66) of two 4-vectors reads 

(11.83) a-b = (a, gb) = (ga, b) = agb 

On the basis of arguments already presented in Section 11.3 we seek a group 

of linear transformations on the coordinates, 

x' = Ax (11.84) 

where A is a square 4 X 4 matrix, such that the norm (x, gx) is left invariant: 

X'gx' = Xgx (11.85) 

Substitution of (11.84) into the left-hand side yields the equality, 

FAgAx = gx 

Since this must hold for all coordinate vectors x, A must satisfy the matrix 

equation, 

AgA =g (11.86) 

Certain properties of the transformation matrix A can be deduced immedi- 

ately from (11.86). The first concerns the determinant of A. Taking the deter- 

minant of both sides of (11.86) gives us 

det (AgA) = det g (det A)? = det g 

Since det g = —1 # 0, we obtain 

det A = +1 

There are two classes of transformations: proper Lorentz transformations, con- 
tinuous with the identity transformation and so necessarily having det A = + 1, 
and improper Lorentz transformations. For improper transformations it is suffi- 
cient, but not necessary, to have det A = —1. The fact that det A = +1 does not 
unambiguously sort out the two classes is a consequence of the indefinite metric 
of space-time. Two examples of improper transformations, A = g (space inver- 
sion) with det A = —1 and A = —I (space and time inversion) with det A = +1, 
illustrate this point. 
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The second property of A is the number of parameters needed to specify 

completely a transformation of the group. Since A and g are 4 X 4 matrices, 

(11.86) represents 16 equations for the 47 = 16 elements of A. But they are not 

all independent because of symmetry under transposition. There are thus 

16 — (1 + 2 + 3) = 10 linearly independent equations for the 16 elements of A. 

This means that there are six free parameters—the Lorentz group is a six-param- 

eter group. The six parameters can be conveniently thought of as (a) three pa- 

rameters (e.g., Euler angles) to specify the relative orientation of the coordinate 

axes and (b) three parameters (e.g., components of B) to specify the relative 

velocity of the two inertial frames. Parenthetically we remark that for every 

six-parameter A giving a proper Lorentz transformation, there is an improper 

one represented by —A. From now on we consider only proper Lorentz 

transformations. 

The explicit construction of A can proceed as follows. We make the ansatz 

A=etl (11.87) 

where L is a4 X 4 matrix. The determinant of A is* 

det A = det (e”) = e™* 

If L is a real matrix, det A = —1 is excluded. Furthermore, if L is traceless, then 

det A = +1. Thus, for proper Lorentz transformations, L is a real, traceless 
4 X 4 matrix. Equation (11.86) can be written 

(11.88) gAg =A’ 

From the definition (11.87) and the fact that g* = I we have 

Alz=el A=e, gag = &"8, 
Therefore (11.88) is equivalent to 

glg = -L 
(11.89) or 

gL = —gL 

The matrix gL is thus antisymmetric. From the properties of g (11.81) it is evident 

that the general form of L is 

Lo3 Lo Loz 
weawstt ees weee esses sees sses 

Li; L2 Lo 
(11.90) 

Ly Li L 02 
' ~ Ly Los —Ly3 

The dashed lines are inserted to set off the 3 x 3 antisymmetric spatial matrix 

corresponding to the familiar rotations in a fixed inertial frame from the sym- 

metric space-time part of the matrix corresponding to Lorentz transformations 

or boosts from one inertial frame to another. 

*To prove this, note first that the value of the determinant or the trace of a matrix is unchanged by 

a similarity transformation. Then make such a transformation to put L in diagonal form. The matrix 

A will then be diagonal with elements that are the exponentials of the corresponding elements of L. 

The result follows immediately. 
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The matrix (11.90), with its six parameters is an explicit construction [through 

(11.87)] of the transformation matrix A. It is customary, however, to systematize 

L and its six parameters by introducing a set of six fundamental matrices defined 

by 

0; 
sas aes eeemnreeeseeees seems aes wees sew es see es 

0: 

Ss; = S, = 
—1 0: 

—1 

sesame ees ee eee es eee saan 

-1 
S3 = (11.91) 

1 0 0 0 1 0 0: 0 0 1 0; 0; 
Pe err sesmesesessese ee eer 

1! 0: QO: 
K, = 

? K, = K3 = 
QO: 1: 

The matrices §; evidently generate rotations in three dimensions, while the ma- 
trices K; produce boosts. For reference, we note that the squares of these six 
matrices are all diagonal and of the form, 

0 0 0 0 
0 —1 

S3 = ST = 
’ % —1 

0 —1 —1 

0 
—1 S2 

—1 

0 (11.92) 

1 0 1 0 

kK3 = >? > 

0 

0 
= 

K2 

0 1 

Furthermore, it can be shown that (e- S$)? = —e-S§ and (e’- K)°* = e’- K, where 
€ and e’ are any real unit 3-vectors. Thus any power of one of the matrices can 
be expressed as a multiple of the matrix or its square. 

The general result (11.90) for L can now be written alternatively as 

L=-o-S-€-K 
and 

(11.93) 
A = e7#'s-¢K 
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where w and ¢ are constant 3-vectors. The three components each of w and ¢ 
correspond to the six parameters of the transformation. To establish contact with 
earlier results such as (11.16) or (11.21), we consider first a simple situation in 
which w = 0 and ¢ = ée,. Then L = —£K, and with the help of (11.92) and 

— 

= Kj K, we find 

A =e" = (I — K?) — K, sinh + K? coshé (11.94) 

Explicitly, 

0 cosh ¢ —sinh £ 

0 —sinh ¢ cosh £ 
A (11.95) 

0 0 1 

0 0 0 

This matrix corresponds exactly to the transformation (11.21).* If ¢ = 0 and 

@ = we;, the transformation is similarly found to be 

1 0 0 0 

0 COS w@ sin w 0 
A= (11.96) 

0 —sinw cosw 0 

0 0 0 1 

corresponding to a rotation of the coordinate axes in a clockwise sense around 

the 3-axis. 

For a boost (without rotation) in an arbitrary direction, 

A=e fx 

The boost vector ¢ can be written in terms of the relative velocity B as 

C = 6 tanh 'B 

where is a unit vector in the direction of the relative velocity of the two inertial 
frames. The pure boost is then 

(11.97) Abpoost(B) = e 6K tanh" B 

It is left as an exercise to verify that this transformation gives the explicit matrix: 

— YB3 — YB2 — YP, Y 

(y — 1)B7 (y 7 1)B1 B. (y — 1)B,B3 
1+ — YB; B? p? Bp? 

Apoost(B) = (y — 1)B5 (y — 1)BoB5 (y — 1)B, Bo 
1+ — yBo B? pB Bp? 

(y — 1)B3 (y — 1) BBs (y 7 1)B; Bs; 
1+ — yBs3 B? p? p? 

(11.98) 

*The reader is reminded that in Sections 11.3, 11.4, and 11.5 no distinction is made between subscripts 

and superscripts. All components of vectors there are to be interpreted as contravariant components, 

in accordance with (11.75). 
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Apoost(B)x is a matrix statement of the four equations of The equation x 

(11.19). 

The six matrices (11.91) are a representation of the infinitesimal generators 
of the Lorentz group. Straightforward calculation shows that they satisfy the 
following commutation relations, 

] [Si, ik Sk 
a -~ (11.99) [ ] ik KK 

Sk [K;, Kj] 

AB — BA. The first relation corre- where the commutator notation is [A, B] 

sponds to the commutation relations for angular momentum, the second relation 

merely shows that K transforms as a vector under rotations, and the final relation 

shows that boosts do not in general commute. The commutation relations (11.99) 

with the characteristic minus sign in the last commutator, specify the algebraic 

structure of the Lorentz group to be SL(2, C) or O(3, 1) 

11.8 Thomas Precession 

The description of Lorentz transformations in terms of noncommuting matrices 

demonstrates that in general the result of successive Lorentz transformations 
depends on the order in which they are performed. The commutation relations 

(11.99) imply that two successive Lorentz transformations are equivalent to a 

single Lorentz transformation plus a three-dimensional rotation. An example of 
the kinematic consequences of the noncommutativity of Lorentz transformations 

is the phenomenon known as Thomas precession.* To motivate the discussion 

we first describe the physical context 

In 1926 Uhlenbeck and Goudsmit introduced the idea of electron spin and 

showed that, if the electron had a g factor of 2, the anomalous Zeeman effect 

could be explained, as well as the existence of multiplet splittings. There was a 

difficulty, however, in that the observed fine structure intervals were only half 

the theoretically expected values. If a g factor of unity were chosen, the fine 

structure intervals were given correctly, but the Zeeman effect was then the 

normal one. The complete explanation of spin, including correctly the g factor 

and the proper fine structure interaction, came only with the relativistic electron 

theory of Dirac. But within the framework of an empirical spin angular momen- 

tum and a g factor of 2, Thomas showed in 1927 that the origin of the discrepancy 

was a relativistic kinematic effect which, when included properly, gave both the 

anomalous Zeeman effect and the correct fine structure splittings. The Thomas 

precession, as it is called, also gives a qualitative explanation for a spin-orbit 

interaction in atomic nuclei and shows why the doublets are “‘inverted”’ in nuclei 

The Uhlenbeck—Goudsmit hypothesis was that an electron possesses a spin 

angular momentum s (which can take on quantized values of +4/2 along any 

axis) and a magnetic moment p related to s by 

ge 

p=——s (11.100) 
2mc 

*L. H. Thomas, Phil. Mag. 3, 1 (1927) 
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where the g factor has the value g = 2. Suppose that an electron moves with a 
velocity v in external fields E and B. Then the equation of motion for its angular 
momentum in its rest frame is 

ds 
(11.101) 

dt ( ). frame ~ i * B 
where B’ is the magnetic induction in that frame. We will show in Section 11.10 
that in a coordinate system moving with the electron the magnetic induction is 

(11.102) B~(B-"xe) 
where we have neglected terms of the order of (v/c?). Then (11.101) becomes 

ds 
(11.103) 

dt ( Jenn" #* (B= EXE) 
Equation (11.103) is equivalent to an energy of interaction of the electron spin: 

(11.104) U' = —p (B-!xr] 

In an atom the electric force eE can be approximated as the negative gradient 

of a spherically symmetric average potential energy V(r). For one-electron atoms 

this is, of course, exact. Thus 

rdaV 
—_-— —— eE (11.105) 

r dr 

Then the spin-interaction energy can be written 

§ & Lav —_— —_—— + U= (s- L (11.106) 
2mc 2m 202 r ar 

where L = m(r X vy) is the electron’s orbital angular momentum. This interaction 

energy gives the anomalous Zeeman effect correctly, but has a spin-orbit inter- 

action that is twice too large. 

The error in (11.106) can be traced to the incorrectness of (11.101) as an 
equation of motion for the electron spin. The left-hand side of (11.101) gives the 
rate of change of spin in the rest frame of the electron. If, as Thomas first pointed 

out, that coordinate system rotates, then the total time rate of change of the spin, 
or more generally, any vector G is given by the well-known result,* 

dG dG 
— 

=> (11.107) 
dt dt ). frame r Or * G he ( ( 

where w is the angular velocity of rotation found by Thomas. When applied to 

the electron spin, (11.107) gives an equation of motion: 

, 

ds & 
(11.108) 

2mc dt Joow =| ( - or} 

*See, for example, Goldstein (pp. 174-177). 
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The corresponding energy of interaction is 

(11.109) U=U'+s8-oa-7 

where U’ is the electromagnetic spin interaction (11.104) or (11.106). 

The origin of the Thomas precessional frequency 7 is the aceeleration ex- 

perienced by the electron as it moves under the action of external forces. Con- 

sider an electron moving with velocity v(t) with respect to a laboratory inertial 

frame. The electron’s rest frame of coordinates is defined as a co-moving se- 
quence of inertial frames whose successive origins move at each instant with the 

velocity of the electron. Let the velocity of the rest frame with respect to the 

laboratory at laboratory time ¢ be v(t) = cB, and at laboratory time ¢ + 6t be 

v(t + dt) = c(B + 5B). The connection between the coordinates in the electron’s 

rest frame at time f and the coordinates in the laboratory frame is 

(11.110) x! = Apoost(B)x 

At time ¢ + &t the connection is 

(11.111) x" = Apoost(B + 5B)x 

It is important to note that these transformations of coordinate from the labo- 

ratory to the rest frame are defined here in terms of pure Lorentz boosts without 

rotations. We are interested in the behavior of the coordinate axes of the elec- 

tron’s rest frame as a function of time. Thus we want the connection between 

the two sets of rest-frame coordinates, x’ at time t and x” at time ¢ + 6&t. This 

relation is 

x" = Apr’ 

where 

-1 
boost Ar = Abpoost(B + 5B)A (B) = Apoost(B + 5B) Apcost(— B) (11.112) 

For purposes of calculating A; a suitable choice of axes in the laboratory frame 
is shown in Fig. 11.7. The velocity vector B at time f is parallel to the 1 axis and 
the increment of velocity 5B lies in the 1-2 plane. From (11.98) it follows that 

0 0 Y yB 
yB y 0 0 Abpoost( ~~ B) = (11.113) 
0 0 1 0 

0 0 01 

B+ op 
op 

Figure 11.7 
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Similarly we obtain from (11.98), keeping only first-order terms in op, 

0 y+ 7°B dp, —(yB + y* &B:) —y 5B 
y-1 

—_——_—__—_. 

B 
) ae, 0 —(yB + Y 6B) y+ 7B 5p, ( 

Apoost(B + dB) = 
y-1 
———_—__ 1 0 —y 6B, 

B ( ) 
0 0 0 1 

(11.114) 

Straightforward matrix multiplication according to (11.112) yields 

1 0 -¥ dB, —y 6B 
y-1 
—_——_—_—_ 1 — y dB; 

B ( ) ae, 0 
Ar= (11.115) 

y-1 
———_—__ 1 0 

B 
) —y 6By -( 

0 0 0 1 

This represents an infinitesimal Lorentz transformation that can be written in 
terms of the matrices S and K as 

Y 

€ Ar=1~( Jie x 9p) +S ~ (7 68) + 7 9B,)-K (11.116) 
where 5B, and 6B, are the components of 5B parallel and perpendicular to B, 

respectively. To first order in 5B, (11.116) is equivalent to 

(11.117) Ar = Apoost(AB)R(AQ) = R(AQ) Apoost(5B) 

where 

Abcost(AB) = I — AB- K 

R(AQ) = 1 - AQ-S 

are commuting infinitesimal boosts and rotations, with velocity, 

AB = Y 6B + y 6B, 

and angle of rotation, 

2 
y-1 Y 

B x op 2 y+1 
0 = ( )p x 68 - 

Thus the pure Lorentz boost (11.111) to the frame with velocity c(B + 6B) is 

equivalent to a boost (11.110) to a frame moving with velocity cB, followed by 

an infinitesimal Lorentz transformation consisting of a boost with velocity c AB 

and a rotation AQ. 

In terms of the interpretation of the moving frames as successive rest frames 

of the electron we do not want rotations as well as boosts. Nonrelativistic equa- 

tions of motion like (11.101) can be expected to hold provided the evolution of 

the rest frame is described by infinitesimal boosts without rotations. We are thus 

led to consider the rest-frame coordinates at time ¢ + 6f that are given from those 
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at time ¢ by the boost Apoos:(AB) instead of A;. Denoting these coordinates by 

x”, we have 

x” = A boost(A B)x’ 

Using (11.117), (11.112), and (11.110) we can express x” in terms of the labora- 
tory coordinates as 

— 

a 
= ~~ 

x” (11.118) R(-AQ) Apoost(B + 5B)x 

The rest system of coordinates defined by x” is rotated by —A® relative to the 

boosted laboratory axes (x”). If a physical vector G has a (proper) time rate of 

change (dG/d7) in the rest frame, the precession of the rest-frame axes with 

respect to the laboratory makes the vector have a total time rate of change with 

respect to the laboratory axes of (11.107), with 

axv AQ y 

—_ 

= (11.119) oO; = —lim — 2 
c y+1 51-0 ot 

where a is the acceleration in the laboratory frame and, to be precise, 

Y , (dG/dT) est frame: (dG/dt) rest frame 
The Thomas precession is purely kinematical in origin. If a component of 

acceleration exists perpendicular to v, for whatever reason, then there is a 

Thomas precession, independent of other effects such as precession of the mag- 

netic moment in a magnetic field. 

For electrons in atoms the acceleration is caused by the screened Coulomb 

field (11.105). Thus the Thomas angular velocity is 

—IrxvldVv —1 
—_— >So o—— —_ — — 1 dV 

Or (11.120) 
2c? m r dr mec? r dr 

It is evident from (11.109) and (11.106) that the extra contribution to the energy 

from the Thomas precession reduces the spin-orbit coupling, yielding 

1dV § (g — 1) 
U=- B s->L-— (11.121) 

2,2 2mc 2 Cc r dr 

With g = 2 the spin-orbit interaction of (11.106) is reduced by $ (sometimes called 

the Thomas factor), as required for the correct spin-orbit interaction energy of 

an atomic electron. 

In atomic nuclei the nucleons experience strong accelerations because of the 

specifically nuclear forces. The electromagnetic forces are comparatively weak. 

In an approximate way one can treat the nucleons as moving separately in a 

short-range, spherically symmetric, attractive, potential well, Vy(r). Then each 

nucleon will experience in addition a spin-orbit interaction given by (11.109) with 
the negligible electromagnetic contribution U’ omitted: 

Uy = 8+ Or (11.122) 

where the acceleration in w is determined by V,(r). The form of wis the same 
as (11.120) with V replaced by Vy. Thus the nuclear spin-orbit interaction is 
approximately 

1 1 dVy 
— Tos: Lh Un = (11.123) 

2M?” r dr 
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In comparing (11.123) with atomic formula (11.121) we note that both V and Vx, 
are attractive (although V, is much larger), so that the signs of the spin-orbit 
energies are opposite. This means that in nuclei the single particle levels form 
“inverted” doublets. With a reasonable form for Vy, (11.123) is in qualitative 

agreement with the observed spin-orbit splittings in nuclei.* 

The phenomenon of Thomas precession is presented from a more sophisti- 

cated point of view in Section 11.11 where the BMT equation is discussed. 

11.9 Invariance of Electric Charge; 

Covariance of Electrodynamics 

The invariance in form of the equations of electrodynamics under Lorentz trans- 

formations was shown by Lorentz and Poincaré before the formulation of the 

special theory of relativity. This invariance of form or covariance of the Maxwell 

and Lorentz force equations implies that the various quantities p, J, E, B that 

enter these equations transform in well-defined ways under Lorentz transfor- 

mations. Then the terms of the equations can have consistent behavior under 

Lorentz transformations. 

Consider first the Lorentz force equation for a particle of charge gq, 

P 
— (11.124) 
d. 

- (e+!xB) 

We know that p transforms as the space part of the 4-vector of energy and 

momentum, 

Pp = (Po, p) = m(Uo, UV) 

where po = E/c and U* is the 4-velocity (11.36). If we use the proper time 7 

(11.26) instead of t for differentiation, (11.124) can be written 

dp 
—_ 

= (11.125) 
d 

4 (UE + U x B) 

The left-hand side is the space part of a 4-vector. The corresponding time com- 

ponent equation is the rate of change of energy of the particle (6.110): 

aPo =4y.E (11.126) 
c dt 

If the force and energy change equations are to be Lorentz covariant, the 

right-hand sides must form the components of a 4-vector. They involve products 

of three factors, the charge qg, the 4-velocity, and the electromagnetic fields. If 

the transformation properties of two of the three factors are known and Lorentz 

covariance is demanded, then the transformation properties of the third factor 

can be established. 

Electric charge is absolutely conserved, as far as we know. Furthermore, the 

magnitudes of the charges of elementary particles (and therefore of any system 

*See, for example, Section. 2.4c of A. Bohr and B. R. Mottelson, Nuclear Structure, Vol. 1, W. A. 

Benjamin, New York (1969). 
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of charges) are integral multiples of the charge of the proton. In the published 

literature,* it is experimentally established that the fractional difference between 
the magnitude of the electron’s charge and the proton’s charge is less than 10~”°, 
and unpublished results of King push this limit almost two orders of magnitude 
further.’ The results of these experiments can be used to support the invariance 
of electric charge under Lorentz transformations or, more concretely, the inde- 

pendence of the observed charge of a particle on its speed. In his experiments 

King searched for a residual charge remaining in a container as hydrogen or 
helium gas is allowed to escape. No effect was observed and a limit of less than 

10~1%e was established for the net charge per molecule for both H, and He. Since 
the electrons in He move at speeds twice as fast as in H2, the charge of the 

electron cannot depend significantly on its speed, at least for speeds of the order 

of (0.01—0.02)c. In the experiment of Fraser, Carlson, and Hughes an atomic 

beam apparatus was used in an attempt to observe electrostatic deflection of 

beams of “neutral” cesium and potassium atoms. Again, no effect was observed, 

and a limit of less than 3.5 X 10~!? was set on the fractional difference between 
the charges of the proton and electron. Cesium and potassium have Z = 55 and 

19, respectively. Thus the K-shell electrons in cesium at least move with speeds 

of order 0.4c. The observed neutrality of the cesium atom at the level of 

10-'8-107? is strong evidence for the invariance of electric charge.* 
The experimental invariance of electric charge and the requirement of 

Lorentz covariance of the Lorentz force equation (11.125) and (11.126) deter- 

mines the Lorentz transformation properties of the electromagnetic field. For 

example, the requirement from (11.126) that U- E be the time component of a 

4-vector establishes that the components of E are the time-space parts of a second 

rank tensor F*°, that is, E- U = F°*U,. Although the explicit form of the field 

strength tensor F°* can be found along these lines, we now proceed to examine 
the Maxwell equations themselves. 

For simplicity, we consider the microscopic Maxwell equations, without D 

and H. We begin with the charge density p(x, ¢) and current density J(x, t) and 
the continuity equation 

dp 
— +V-J=0 (11.127) 
0 

From the discussion at the end of Section 11.6 and especially (11.77) it is natural 
to postulate that p and J together form a 4-vector J*: 

J* = (cp, J) (11.128) 

*J. G. King, Phys. Rev. Lett. 5, 562 (1960); V. W. Hughes, L. J. Fraser, and E. R. Carlson, Z. Phys. 
D-Atoms, Molecules and Clusters 10, 145 (1988). The latter tabulates many of the different methods 
and results. 

‘The limits on the measured charge per molecule in units of the electronic charge for H>, He, and 
SF. were determined as 1.8 + 5.4, —0.7 + 4.7, 0 + 4.3, respectively, all times 10~2!. Private com- 
munication from J. G. King (1975). 

*Mentioning only the electrons is somewhat misleading. The protons and neutrons inside nuclei move 
with speeds of the order (0.2-0.3)c. Thus the helium results of King already test the invariance of 
charge at appreciable speeds. Of course, if one is content with invariance at the level of 10-° for 
vic ~ 10° the observed electrical neutrality of bulk matter when heated or cooled will suffice. 
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Then the continuity equation (11.127) takes the obviously covariant form, 

0.4% = 0 (11.129) 

where the covariant differential operator 9, is given by (11.76). That J* is a le- 

gitimate 4-vector follows from the invariance of electric charge: Consider a large 

number of elementary charges totaling 5q at rest* in a small-volume element d°x 

in frame K. They are idealized by a charge density p. The total charge 5g = 

p a4°x within the small-volume element is an experimental invariant; it is thus 
true that p’ d°x’ = pd°x. But the four-dimensional volume element d*x = dx° d*x 
is a Lorentz invariant: 

a(x’®, x"), x! 

*"") ty = det A d’x = dx d*x' = 

a(x®, x', x, x?) 

The equality p’ d°x’ = p d°x then implies that cp transforms like x°, namely, the 
time component of the 4-vector (11.128). 

In the Lorenz family of gauges the wave equations for the vector potential 

A and the scalar potential ® are 

4a 1 7A 
—_—_ — 

Cc ot 
VA=——J 

(11.130) 
1 e@ 
=> - Ve = 47p 
Cc ot? 

with the Lorenz condition, 

1 a®@ 
-—+V-A=0 (11.131) 
c ot 

The differential operator form in (11.130) is the invariant four-dimensional 

Laplacian (11.78), while the right-hand sides are the components of a 4-vector. 

Obviously, Lorentz covariance requires that the potentials ® and A form a 

4-vector potential, 

(11.132) A* = (®, A) 

Then the wave equations and the Lorenz condition take on the manifestly co- 

variant forms, 

4a 
LJA* = ew 

(11.133) 
and 

d,A% = 0 

The fields E and B are expressed in terms of the potentials as 

10A 
== ll Cer Or ero lc 

c of (11.134) 

VxA 

*If there is a conduction current J as well as the charge density p in K, the total charge within d’x is 
not an invariant. See Moller, Section 7.5. (His argument assumes the 4-vector character of cp and J, 

however.) 
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The x components of E and B are explicitly 

10A 
— x _ OP _ —(8°A! — 9'A°) E, 

Ox c or (11.135) 

aA, 
— 

— 

= 

x 

y —(8A? _ A?) 

dz dy 

— 

= (d/dx9, —V). These equa- where the second forms follow from (11.132) and 0 

tions imply that the electric and magnetic fields, six components in all, are the 

elements of a second-rank, antisymmetric field-strength tensor, 

Fe® = g%A® — ah A% (11.136) 

Explicitly, the field-strength tensor is, in matrix form, 

E 0 —E. —E, 
y 

B 0 E, —B, 
y Fae = (11.137) 

0 E B, —B,, 
y 

0 B, E. —-B, 

For reference, we record the field-strength tensor with two covariant indices, 

E 0 Ey E, y 

B 0 —E, —B, 
y (11.138) Fp = Sal gop = E 0 B. —B,, 

y 

0 B, —E, —B, 

The elements of F,, are obtained from F°* by putting E > —E. Another useful 
quantity is the dual field-strength tensor ¥°°. We first define the totally antisym- 
metric fourth-rank tensor e%°”: 

+1 fora = 0, 8 = 1, y = 2, 6 = 3, and 

any even permutation exbys _— (11.139) 
—1 for any odd permutation 

0 if any two indices are equal 

Note that the nonvanishing elements all have one time and three (different) space 

indices and that €,g,5 = —e*°”. The tensor €*®” is a pseudotensor under spatial 
inversions. This can be seen by contracting it with four different 4-vectors and 

examining the space inversion properties of the resultant rotationally invariant 

quantity. The dual field-strength tensor is defined by 

0 B B, 
—B, 

y 

0 E B, 
— E. y FoR = Ferhrd ys (11.140) 

B 0 Ey y 
—E, 

E 0 B, E, y 

The elements of the dual tensor ¥°° are obtained from F?* by putting E > B 
and B — —E in (11.137). This is a special case of the duality transformation 
(6.151). 

To complete the demonstration of the covariance of electrodynamics we 



557 Sect. 11.9 Invariance of Electric Charge; Covariance of Electrodynamics 

must write the Maxwell equations themselves in an explicitly covariant form. The 
inhomogeneous equations are 

V-E = 47p 

1 dE 4a 
—_ 

— 
= Vx B--— 

c ot c 

In terms of F°* and the 4-current J* these take on the covariant form 

An 
(11.141) 0,8 = _F 

Similarly, the homogeneous Maxwell equations 

1 oB 
V-B=0, VXE+-—=0 

can be written in terms of the dual field-strength tensor as 

0,FV = 0 (11.142) 

In terms of F°*, rather than ¥°°, these homogeneous equations are the four 

equations 

(11.143) Dol py + Op ya + OF, B = 0 

where a, B, y are any three of the integers 0, 1, 2, 3. 

With the definitions of J* (11.128), A* (11.132), and F?* (11.136), together 

with the wave equations (11.133) or the Maxwell equations (11.141) and (11.142), 

the covariance of the equations of electromagnetism is established. To complete 

the discussion, we put the Lorentz force and rate of change of energy equations 

(11.125) and (11.126) in manifestly covariant form, 

dU* dp* _ 
(11.144) = 4 feey, 

dt dt c 

The covariant description of the conservation laws of a combined system of elec- 

tromagnetic fields and charged particles and a covariant solution for the fields of 

a moving charge are deferred to Chapter 12, where a Lagrangian formulation is 

presented. 

For the macroscopic Maxwell equations it is necessary to distinguish two 

field-strength tensors, F°* = (E, B) and G** = (D, H), where F?° is given by 
(11.137) and G** is obtained from (11.137) by substituting E — D and B — H. 
The covariant form of the Maxwell equations is then 

0, = 0 (11.145) a,G%* = = JP, 

It is clear that with the fields (E, B) and (D, H) transforming as antisymmetric 
second-rank tensors the polarization P and the negative magnetization —M form 

a similar second-rank tensor. With these quantities given meaning as macroscopic 
averages of atomic properties in the rest frame of the medium, the electrodynam- 

ics of macroscopic matter in motion is specified. This is the basis of the electro- 
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dynamics of Minkowski and others. For further information on this rather large 

and important subject, the reader can consult the literature cited at the end of 
the chapter. 

11.10 Transformation of Electromagnetic Fields 

Since the fields E and B are the elements of a second-rank tensor F°4, their values 
in one inertial frame K' can be expressed in terms of the values in another inertial 
frame K according to 

ax'* ax’ 
v6 

— 
Yap — (11.146) 

ax” ax? 

In the matrix notation of Section 11.7 this can be written 

F' = AFA (11.147) 

where F and F’ are 4 X 4 matrices (11.137) and A is the Lorentz transformation 
matrix of (11.93). For the specific Lorentz transformation (11.95), corresponding 
to a boost along the x, axis with speed cf from the unprimed frame to the primed 
frame, the explicit equations of transformation are 

— 

= By = B, Ey Ey 
— 

= = B, (11.148) Ey y(B, + BE) y(E2 - BB;) 
_— 

= = Bs E; y(B; — BE) y(E; + BB) 

Here and below, the subscripts 1, 2, 3 indicate ordinary Cartesian spatial com- 

ponents and are not covariant indices. The inverse of (11.148) is found, as usual, 

by interchanging primed and unprimed quantities and putting B — —{£. Fora 

general Lorentz transformation from K to a system K’ moving with velocity v 

relative to K, the transformation of the fields can be written 

y 

E’ y(E + B x B) - B(B - E) 
+1 

(11.149) 
2 

Y 
— 

B’ 

y(B — B x E) — B(B - B) 
+1 

These are the analogs for the fields of (11.19) for the coordinates. Transformation 

(11.149) shows that E and B have no independent existence. A purely electric or 

magnetic field in one coordinate system will appear as a mixture of electric and 

magnetic fields in another coordinate frame. Of course certain restrictions apply 

(see Problem 11.14) so that, for example, a purely electrostatic field in one co- 

ordinate system cannot be transformed into a purely magnetostatic field in an- 

other. But the fields are completely interrelated, and one should properly speak 

of the electromagnetic field F*°, rather than E or B separately. 

If no magnetic field exists in a certain frame K’, as for example with one or 

more point charges at rest in K’, the inverse of (11.149) shows that in the frame 
K the magnetic field B and electric field E are linked by the simple relation 

B=BxE (11.150) 
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Note that E is not the electrostatic field in K’, but that field transformed from 

K' to K. 

As an important and illuminating example of the transformation of fields, 

we consider the fields seen by an observer in the system K when a point charge 

q moves by in a straight-line path with a velocity v. The charge is at rest in the 

system K’, and the transformation of the fields is given by the inverse of (11.148) 

or (11.149). We suppose that the charge moves in the positive x, direction and 

that its closest distance of approach to the observer is b. Figure 11.8 shows a 

suitably chosen set of axes. The observer is at the point P. Att = ¢’ = 0 the 

origins of the two coordinate systems coincide and the charge q is at its closest 

distance to the observer. In the frame K’ the observer’s point P, where the fields 
—_ 

= —ut',x5 = b, x3 = 0, and is a distance are to be evaluated, has coordinates x; 

r' = Vb* + (vt')? away from g. We will need to express r’ in terins of the co- 
—_ 

= ordinates in K. The only coordinate needing transformation is the time @’ 

y[t — (v/c?)x,] = yt, since x, = 0 for the point P in the frame K. In the rest frame 
K' of the charge the electric and magnetic fields at the observation point are 

qb 
f 

_ qut' 
= 0 E Ey 13? 13? 

r 

—_ 

= = 0 0, B; B, = 0, By 

In terms of the coordinates of K the nonvanishing field components are 

qb qyvt 
Ej = (11.151) Ej = (b* + yt’)? ~ (b? + yt)? > 

Then, using the inverse of (11.148), we find the transformed fields in the sys- 

tem K: 

qyvt 

E, Ej = (e? + vt?) 

yqb (11.152) 
Ey yE, = (b? + yt’)? 

=> Bs YBE, = BE, 

with the other components vanishing. 

x2 x2 

, 

*1 

«3 
x3 

Figure 11.8 Particle of charge g moving at constant velocity v passes an observation 

point P at impact parameter b. 
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Fields (11.152) exhibit interesting behavior when the velocity of the charge 

approaches that of light. First of all there is observed a magnetic induction in the 

x3 direction already displayed in (11.150). This magnetic field becomes almost 

equal to the transverse electric field E, as B > 1. Even at nonrelativistic velocities 
where y = 1, this magnetic induction is equivalent to 

qvxr 
B= 3 

~ ~ r c 

which is just the approximate Ampére—Biot-Savart expression for the magnetic 

field of a moving charge. At high speeds when y >> 1 we see that the peak 

transverse electric field E, (t = 0) becomes equal to y times its nonrelativistic 

value. In the same limit, however, the duration of appreciable field strengths at 

the point P is decreased. A measure of the time interval over which the fields 

are appreciable is evidently 

b 
At = — (11.153) 

“yu 

As y increases, the peak fields increase in proportion, but their duration goes in 
inverse proportion. The time integral of the fields times v is independent of ve- 
locity. Figure 11.9a shows this behavior of the transverse electric and magnetic 
fields and the longitudinal electric field. For 8 — 1 the observer at P sees nearly 

equal transverse and mutually perpendicular electric and magnetic fields. These 
are indistinguishable from the fields of a pulse of plane polarized radiation prop- 

agating in the x, direction. The extra longitudinal electric field varies rapidly from 

positive to negative and has zero time integral. If the observer’s detecting ap- 

paratus has any significant inertia, it will not respond to this longitudinal field. 

Consequently for practical purposes he will see only the transverse fields. This 

equivalence of the fields of a relativistic charged particle and those of a pulse of 

electromagnetic radiation will be exploited in Chapter 15. In Problem 11.18 the 

fields for 8 = 1 are given an explicit realization. 

The fields (11.152) and the curves of Fig. 11.94 emphasize the time depen- 

dence of the fields at a fixed observation point. An alternative description can 

be given in terms of the spatial variation of the fields relative to the instantaneous 

present position of the charge in the laboratory. From (11.152) we see that 

E/E, = —vt/b. Reference to Fig. 11.8 shows that the electric field is thus directed 

along n, a unit radial vector from the charge’s present position to the observation 

point, just as for a static Coulomb field. By expressing the denominator in 

(11.152) in terms of 7, the radial distance from the present position to the ob- 

server, and the angle w = cos~'(n- ¥) shown in Fig. 11.8, we obtain the electric 

field in terms of the charge’s present position: 

qr 
— 

(11.154) Py _ B sin?p)?? 

The magnetic induction is given by (11.150). The electric field is radial, but the 
lines of force are isotropically distributed only for 8 = 0. Along the direction of 
motion (= 0, 7), the field strength is down by a factor of y~? relative to isotropy, 
while in the transverse directions ( = 7/2) it is larger by a factor of y. This 
whiskbroom pattern of lines of force, shown in Fig. 11.9b, is the spatial “‘snap- 
shot” equivalent of the temporal behavior sketched in Fig. 11.9a. The compres- 
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E, Ep= 5 Bs 

Ya 
_—_—_——— 

At —~> «| K— 

——— — = es 

~— 
_— 27 52 

ut ——~> BS1 

BS17 
_—— 

B=0 At~ 35 

ls 

B=0N + 

_—o —— 

ut ——> 

(a) 

(b) 

Figure 11.9 Fields of a uniformly moving charged particle. (a) Fields at the 

observation point P in Fig. 11.8 as a function of time. (b) Lines of electric force for a 

particle at rest and in motion (y = 3). The field lines emanate from the present position 

of the charge. 

sion of the lines of force in the transverse direction can be viewed as a conse- 

quence of the FitzGerald—Lorentz contraction. 

11.11 Relativistic Equation of Motion for Spin in Uniform 
or Slowly Varying External Fields 

The effects of a particle’s motion on the precession of its spin have already been 

discussed in Section 11.8 on Thomas precession. Here we exploit the ideas of 

Lorentz covariance to give an alternative, more elegant discussion leading to 
what is known as the BMT equation of motion for the spin.* With the magnetic 

*Named, not after one of the New York City subway lines, but for V. Bargmann, L. Michel, and 
V. L. Telegdi, Phys. Rev. Lett. 2, 435 (1959). The equation actually has much earlier origins; Thomas 
published an equivalent in 1927 (op. cit.); Frenkel discussed similar equations contemporaneously; 
Kramers considered the g = 2 equation in the 1930s. 
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moment given by (11.100), the rest frame equation of motion for the spin, 

(11.101), is 

ds ge 
— 

—_—_— s x B’ (11.155) 
dt' 2mc 

where primes denote quantities defined in the rest frame and s is the spin in that 
frame. This equation applies to a particle of mass m, charge e, spin s and a 

magnetic dipole moment with Landé g factor of g. It is a classical equation, but 
is the same as the quantum-mechanical Heisenberg equation of motion for the 
spin operator or, equivalently, the equation of motion for the polarization vector 
of the system. 

A. Covariant Equation of Motion 

To obtain a relativistic generalization of (11.155) it is first necessary to gen- 

eralize the spin s from a 3-vector in the particle’s rest frame. There are two 

avenues open. One is to recall from the end of Section 11.9 that P and —M form 

an antisymmetric second-rank tensor. This suggests that x, hence s, may be gen- 

eralized to a second-rank tensor S?°. A simpler alternative is to define an axial 

4-vector S* in such a manner that it has only three independent components and 

reduces to the spin s in the particle’s rest frame.* If S* denotes the components 

of the spin 4-vector in the inertial frame K, the time-component in the rest frame 

K’ is, according to (11.22), 

5" = y(S° — B+ $) = = U,S* 

where U* is the particle’s 4-velocity. We see that the vanishing of the time- 

component in the rest frame is imposed by the covariant constraint, 

— 

= U,S* (11.156) 

In an inertial frame where the particle’s velocity is cB the time component of 

spin is therefore not independent, but is 

So=B-S (11.157) 

It is useful to display the explicit connection between S* and the rest-frame spin 
s. Use of (11.19) or (11.22) and (11.157) yields 

Y 
s=S§- (B- S)B (11.158) 

+1 

and the inverse expressions 

2 
Y 

S s+ (B- s)B 
yt+1 

(11.159) 
= So yB-s 

Specification of the rest-frame 3-vector spin s determines the components of the 
4-vector spin S* in any inertial frame. 

*The spin 4-vector S* is the dual of the tensor S** in the sense that S* = (1/2c)e*®”*U,S,,s, where U* 
is the particle’s 4-velocity. 
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The obvious generalization of the left-hand side of (11.155) is dS*/dr, where 

T is the particle’s proper time. The right-hand side must therefore be expressible 

as a 4-vector. We assume that the equation is linear in the spin S* and the external 

fields F*°. It can also involve U? and dU*/dr, the latter being linear in F“* itself. 

Higher time derivatives are assumed absent. And of course the equation must 

reduce to (11.155) in the rest frame. With the building blocks S*, F**, U*, dU*/dr 

and the requirement of linearity in S“ and F**, we can construct the 4-vectors, 

dU® 

Sp dt FS, (S,PU,)U°, ( Je 
Other possibilities, such as F?°U,(S,U*), (U,F*“U,)S*%, and (S,F“U,,) dU"/dz, 
either vanish, are higher order in F**, or reduce to multiples of the three above. 

The equation of motion must therefore be of the form 

dS“ du® A 
—_— + — 

2 
c d 

= A,F“S, + “ (S,F*U,,)U* Sp dt )o- (11.160) ( 
where Aj, A>, A; are constants. The constraint equation (11.156) must hold at 

all times. This requires 

dS“ dU, 
+ U,— =0 

d dt 
< (U.S*) = S? 

hence 

du® 
(11.161) (A; — A2)U,F*S. + (1 + A3)Sp dt =0 

If nonelectromagnetic or field gradient forces are allowed, at least in principle, 
— 

= —1. Reduction to the rest frame and it is necessary that A, = A, and A; 

comparison with (11.155) gives A, = ge/2mc. Thus (11.160) becomes 

dU* 1 1 adS* ge 
— 

a S, (11.162) 
d 

au 

dr 2mc 
FS. + C2 U%(S,F*U,) ( | | 

If the electromagnetic fields are uniform in space, or if gradient force terms like 

V(u- B), (5.69), can be neglected, and there are no other appreciable forces on 

the particle, its translational motion is described by (11.144): 

dU* _ 
= (11.163) £& Feb Us 

mc dt 

Then (11.162) becomes the BMT equation: 

1 § & dS“ __eé 
—> — 

= — (11.164) 
2 2 dt mc ( 1) u(s.rnu | | 

B. Connection to the Thomas Precession 

The covariant equation (11.162), or its special case (11.164), contain the 

Thomas precession of the spin. It occurs in the final term in (11.162), the term 
that was specified by the requirement (11.156) that the spin 4-vector be orthog- 
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onal to the 4-velocity. To exhibit the Thomas precession explicitly, we consider 

the equation of motion for the rest-frame spin s. Using the result 

dv dU* 
(11.165) —yS Sr 

dt dt 

and (11.158) for s in terms of S, we find that the equations, 

~ dS ap 
dt dr 

=F+ 6(s- 

and 

dSo ap —_— 

dt 
-h+ ¥(s- 

can be combined to give, after some simplification, 

ds y 
yB —=fF- Fy + —— (11.166) 

1 dt y+1 = (02) 
In these equations (Fo, F) stand for the time and space components of the terms 

— 

= with coefficient (ge/2mc) in (11.162). Since (Fo, F) form a 4-vector, with Fo 

6 - F, the first two terms in (11.166) can be recognized as the torque F’ evaluated 

in the rest frame. Dividing both sides by y and using the definition (11.119) for 

the Thomas precession frequency, we find that (11.166) becomes 

1 ds 
— 

— 
= —-F’+o;,Xs (11.167) 

dt Y 

Since F’ is given by the right-hand side of (11.155), this is just (11.107) of Section 

11.8. 

For motion in electromagnetic fields where (11.163) holds, 

é dp 
— 

= —— [E+ Bx B-— B(B-E)] (11.168) 
dt ymc 

We also have, from the transformation properties (11.149) of B, 

1 ge 
, 

_— = 7—sx (11.169) 
+ MC Y 

[B- - (@- Bp -BxE| 
When these expressions are inserted into (11.167), it becomes 

1 § Y ds_e & 
—. 2-4 =-—-j+4+- 

(B - B)B dt = mc 2 2 +1 Y |( je ( 
(11.170) 

§ Y 
—_—_— 

2 y+1 “( a 
This form of the equation of motion of the spin vector is Thomas’s equation 
(4.121) of 1927 (op. cit.). 

C. Rate of Change of Longitudinal Polarization 

As an example of the use of (11.170) we consider the rate of change of the 
component of spin s parallel to the velocity. This is the longitudinal polarization 



Sect. 11.12 Note on Notation and Units in Relativistic Kinematics 565 

or net helicity of the particle. If B is a unit vector in the direction of B, the 
longitudinal polarization is B - s. It changes in time because s changes and also B 
changes. Explicitly, we have 

gO) = BF 45 (5-6-9) -2 
Using (11.168) and (11.170), this can be written, after some algebra, as 

& 
— sB _ 
2 2 

1)6 xB + ( 6-9) --25.-|( +e | (11.171) 
where s, is the component of s perpendicular to the velocity. 

Equation (11.171) demonstrates a remarkable property of a particle with 

g = 2. Ina purely magnetic field, the spin precesses in such a manner that the 

longitudinal polarization remains constant, whatever the motion of the particle. 

If the particle is relativistic (8 —> 1), even the presence of an electric field causes 

the longitudinal polarization to change only very slowly, at a rate proportional 

to y~’ times the electric field component perpendicular to v. 

The electron and the muon have g factors differing from the Dirac value of 

2 by radiative corrections of order a/a = 0.00232. Because (g — 2) is so small, 

the longitudinal polarization of a beam of electrons or muons orbiting in a mag- 

netic field changes relatively slowly. This phenomenon permits very precise mea- 

surements of the quantity a = (g — 2)/2, called the anomaly or the anomalous 

magnetic moment. The values of a provide accurate tests of the validity of quan- 

tum electrodynamics. For muons, 100% longitudinally polarized at birth, the 

change in polarization is detected by means of the characteristically asyminetric 

angular distribution of the decay electron from the muon relative to the direction 

of muon polarization. For electrons from beta decay the initial longitudinal po- 

larization is +B. Its change with time is detected by changes in the asymmetry 

of Mott scattering (e~) or the angular distribution of the annihilation photons 

from positronium formed in an intense inagnetic field (e*). The precision attain- 

able by these techniques is indicated by the recent data:* 

a(e~) = 1 159 652 188.4 (4.3) x 107” 

a(e*) = 1 159 652 187.9 (4.3) x 10°” 

a(p*) = 1 165 924 (9) x 107° 

These results are in good agreement with the predictions of quantum electro- 
dynamics, as discussed in detail in the review by Kinoshita. 

Further elaboration of spin precession is left to the problems at the end of 

Chapter 12. 

11.12 Note on Notation and Units in Relativistic kinematics 

In dealing with Lorentz transformations and relativistic kinematics, it is conve- 

nient to adopt a consistent, simple notation and set of units. We have seen that 

*e-, e*: Van Dyck, Schwinberg, and Dehmelt, Phys. Rev. Lett. 59, 26 (1987); u*: J. Bailey et al., 

Nucl. Phys. B 150, 1 (1979). See also the review, T. Kinoshita, ed., Quantum Electrodynamics, World 

Scientific, Singapore (1990). 
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various powers of the velocity of light c appear in the formulas of special relativ- 

ity. These tend to make the formulas cumbersome, although their presence fa- 

cilitates extracting nonrelativistic limits (by letting c > ©). In doing relativistic 

kinematics, it is customary to suppress all factors of c by suitable choice of units. 

We adopt the convention that all momenta, energies, and masses are measured 
in energy units, while velocities are measured in units of the velocity of light. In 

particle kinematics the symbols, 
~ ~ 

cp Pp 

E E 

stand for mc m 

U 
— 

Cc 

— 

= Thus the connection between momentum and total energy is written as E? 
p’ + m’, a particle’s velocity is v = p/E, and so on. As energy units, the electron 

volt (eV), the megaelectron volt (1 MeV = 10° eV), and the gigaelectron volt 
(1 GeV = 10° eV) are convenient. One electron volt is the energy gained by a 
particle with electronic charge when it falls through a potential difference of one 

volt (1 eV = 1.602 x 10°" erg = 1.602 x 107° joule). 
In addition to eliminating powers of c, it is customary to denote scalar prod- 

ucts of 4-vectors by a centered dot between italicized symbols, with scalar prod- 

ucts of 3-vectors denoted by a dot between boldface symbols, as usual. Thus we 

have 

a-b=a,b* = agbh — a+b 

Four-vectors may be written with or without an index. Thus conservation of 

energy and momentum may appear as 

P=p+q 

or 

P* = p* + q® 
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Problems 

11.1 Two equivalent inertial frames K and K’ are such that K’' moves in the positive x 

direction with speed v as seen from K. The spatial coordinate axes in K’ are 

parallel to those in K and the two origins are coincident at timest =f = 0. 

(a) Show that the isotropy and homogeneity of space-time and equivalence of 
different inertial frames (first postulate of relativity) require that the most 

general transformation between the space-time coordinates (x, y, Z, t) and 
(x', y’, z’, t') is the linear transformation, 

— 

z y' =y; t’ = g(v’)t — vh(v’)x; x’ = f(v)x — uf(v7)t 

and the inverse, 

f 
— 

= z z yy t = g(v’)t’ + vh(v’)x'; x = f(v’)x' + vf(v)t’; 

where f, g, and # are functions of v’, the structures of the x’ and x equations 

are determined by the definition of the inertial frames in relative motion, 

and the signs in the inverse equation are a reflection of the reversal of roles 

of the two frames. 

Show that consistency of the initial transformation and its inverse require (b) 

and fi-vfh =1 f=8 

(c) If a physical entity has speed u' parallel to the x’ axis in K’, show that its 

speed u parallel to the x axis in K is 

u' +u 
ui = 

1 + vu'(h/f) 

Using the second postulate 2’ (universal limiting speed C), show that h = 

f/C? is required and that the Lorentz transformation of the coordinates re- 
sults. The universal limiting speed C is to be determined from experiment. 

11.2 Consider three inertial frames and coordinates K(x, t), K'(x’, t'), and K"(x”, t”). 

Frame K’ moves in the x direction with speed v, relative to K; frame K” moves 

with speed vz relative to K’, and speed v; relative to K. By considering the group 

property of the transformations of Problem 11.1 (including the results of parts a 

and b), (x, t’) > (’, t!) > (@, 1) and (x”, t’) — (x, 8) directly, show that 

|h(v?)/f(v?)| is a universal constant with the dimensions of an inverse speed 
squared. 

This approach obtains the Lorentz transformation without reference to elec- 

tromagnetism or the second postulate, but requires experiment to show that 

hlf > 0. 

Reference: Y. P. Terletskii, Paradoxes in the Theory of Relativity, Plenum Press, 

New York (1968), pp. 17-25. 

11.3 Show explicitly that two successive Lorentz transformations in the same direction 

are equivalent to a single Lorentz transformation with a velocity 

VD, + v2 

"1+ (vyv2/c") 

This is an alternative way to derive the parallel-velocity addition law. 

11.4 A possible clock is shown in the figure. It consists of a flashtube F and a photocell 

P shielded so that each views only the mirror M, located a distance d away, and 

mounted rigidly with respect to the flashtube-photocell assembly. The electronic 
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innards of the box are such that when the photocell responds to a light flash from 
the mirror, the flashtube is triggered with a negligible delay and emits a short flash 
toward the mirror. The clock thus “ticks” once every (2d/c) seconds when at rest. 

Ol) 

Problem 11.4 

(a) Suppose that the clock moves with a uniform velocity v, perpendicular to the 
line from PF to M, relative to an observer. Using the second postulate of 
relativity, show by explicit geometrical or algebraic construction that the ob- 
server sees the relativistic time dilatation as the clock moves by. 

(b) Suppose that the clock moves with a velocity v parallel to the line from PF 
to M. Verify that here, too, the clock is observed to tick more slowly, by the 

same time dilatation factor. 

11.5 A coordinate system K’ moves with a velocity v relative to another system K. In 

K' a particle has a velocity u’ and an acceleration a’. Find the Lorentz transfor- 

mation law for accelerations, and show that in the system K the components of 

acceleration parallel and perpendicular to v are 

1-- ( 
ay = 3 ay 

(1+ 

¥ 
a, = 

C 
veu 

x (a’ x «)) 
ce (1+ 

5 (a+ 

11.6 Assume that a rocket ship leaves the earth in the year 2100. One of a set of twins 

born in 2080 remains on earth; the other rides in the rocket. The rocket ship is so 

constructed that it has an acceleration g in its own rest frame (this makes the 

occupants feel at home). It accelerates in a straight-line path for 5 years (by its 

own clocks), decelerates at the same rate for 5 more years, turns around, accel- 

erates for 5 years, decelerates for 5 years, and lands on earth. The twin in the 

rocket is 40 years old. 

(a) What year is it on earth? 

(b) How far away from the earth did the rocket ship travel? 

11.7 In the reference frame K two very evenly matched sprinters are lined up a distance 

d apart on the y axis for a race parallel to the x axis. Two starters, one beside each 
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man, will fire their starting pistols at slightly different times, giving a handicap to 

the better of the two runners. The time difference in K is T. 

(a) For what range of time differences will there be a reference frame K’ in 
which there is no handicap, and for what range of time differences is there 

a frame K’ in which there is a true (not apparent) handicap? | 

(b) Determine explicitly the Lorentz transformation to the frame K’ appropriate 

for each of the two possibilities in part a, finding the velocity of K’ relative 
~ to K and the space-time positions of each sprinter in K’. ~ 

11.8 (a) Use the relativistic velocity addition law and the invariance of phase to dis- 

cuss the Fizeau experiments on the velocity of propagation of light in moving 

liquids. Show that for liquid flow at a speed vu parallel or antiparallel to the 

path of the light the speed of the light, as observed in the laboratory, is given 

to first order in v by 

1 
—_— 

w dn(w) 
_ + 

2 
n n dw n(w) 

(1 

where w is the frequency of the light in the laboratory (in the liquid and 

outside it) and n(w) is the index of refraction of the liquid. Because of the 

extinction theorem, it is assumed that the light travels with speed u’ = 

c/n(w") relative to the moving liquid. 

(b) Consult the paper of W. M. Macek, J. R. Schneider, and R. M. Salamon 
[J. Appl. Phys. 35, 2556 (1964)] and discuss the status of the Fizeau 
experiments. 

11.9 An infinitesimal Lorentz transformation and its inverse can be written as 

x'* = (pg + ey, 
xe = (eg? + e'*®) xh, 

where e%? and e'“ are infinitesimal. 

(a) Show from the definition of the inverse that e’%? = — «8, 

(b) Show from the preservation of the norm that e%* = — 

(c) By writing the transformation in terms of contravariant components on both 
sides of the equation, show that e*? is equivalent to the matrix L (11.93). 

11.10 (a) For the Lorentz boost and rotation matrices K and § show that 

— 

= -e:§ (e - S)? 
— e’-K (e’ » K)° 

where € and e’ are any real unit 3-vectors. 

(b) Use the results of part a to show that 

exp(—2pB -K) =/- B > K sinh f + (3 - K)’[cosh ¢ ~ 1] 
11.11 Two Lorentz transformations differ by an infinitesimal amount. In the notation of 

Section 11.7 they are represented by A; = e”, A, = e“**. Without using explicit 
matrix representations show that to first order in 5L the Lorentz transformation 
A = A,A;' can be written as 

A=1+ 8L + (L, 8b] +> (L,(L, BL] + 4 [L, [L, [L, dll) += 
Hint: The early terms can be found by brute force, but alternatively consider the 
Taylor series expansion in A of the operator A(A) = e*£+®e-A and then put 

= 1. 
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11.12 Apply the result of Problem 11.11 to a purely algebraic deviation of (11.116) on 
Thomas precession. 

(a) With 

_ B+ K(tanh7') 
L 

B 

L + 8L _ _B + op, + 6B,) ° K(tanh~'p’) 
B’ 

where B’ = V(B + 6B,)” + (6B,)?, show that 

6B, + K(tanh~'B) 

B 

(b) Using the commutation relations for K and S, show that 

tanh" 'g 

B 
)@ x 5B.) -S Cy = [L, 6L] = -( 

C, = [L, C,] = (tanh 1g)? é6L, 

C; = [L, C,] = (tanh'g)?C, 

C, = [L, C3] = (tanh7'g)* 6L, 

where 6L, is the term in 6L involving 5B,. 

(c) Sum the series of terms for A; = AA]? to obtain 

2 
Y 

Ar=I1-— (7¥ 6B, + y 6B,)>K — (pB x 5B.) *S +1 

correct to first order in 5B. [See D. Shelupsky, Am. J. Phys. 35, 650 (1967).] 

11.13 An infinitely long straight wire of negligible cross-sectional area is at rest and has 

a uniform linear charge density qo in the inertial frame K’. The frame K’ (and the 

wire) move with a velocity v parallel to the direction of the wire with respect to 

the laboratory frame K. 

(a) Write down the electric and magnetic fields in cylindrical coordinates in the 

rest frame of the wire. Using the Lorentz transformation properties of 

the fields, find the components of the electric and magnetic fields in the 

laboratory. 

(b) What are the charge and current densities associated with the wire in its rest 

frame? In the laboratory? 

(c) From the laboratory charge and current densities, calculate directly the elec- 

tric and magnetic fields in the laboratory. Compare with the results of part a. 

11.14 (a) Express the Lorentz scalars F°*F.,, #°°F.,, and #*°%,. in terms of E and 

B. Are there any other invariants quadratic in the field strengths E and B? 

(b) Is it possible to have an electromagnetic field that appears as a purely electric 

field in one inertial frame and as a purely magnetic field in some other inertial 

frame? What are the criteria imposed on E and B such that there is an inertial 

frame in which there is no electric field? 

(c) For macroscopic media, E, B form the field tensor F** and D, H the tensor 
G?*8, What further invariants can be formed? What are their explicit expres- 

sions in terms of the 3-vector fields? 

11.15 In a certain reference frame a static, uniform, electric field E> is parallel to the x 

axis, and a static, uniform, magnetic induction By = 2E, lies in the x-y plane, 
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making an angle 6 with the axis. Determine the relative velocity of a reference 

frame in which the electric and magnetic fields are parallel. What are the fields in 

that frame for 6 << 1 and @— (7/2)? 

11.16 In the rest frame of a conducting medium the current density satisfies Ohm’s law, 

J’ = oF’, where o is the conductivity and primes denote quantities in the rest 
frame. 

(a) Taking into account the possibility of convection current as well as conduc- 

tion current, show that the covariant generalization of Ohm’s law is 

Je 2 (UpI*)U* = = FU, 

where U* is the 4-velocity of the medium. 

Show that if the medium has a velocity v = cB with respect to some inertial (b) 
frame that the 3-vector current in that frame is 

J = yo[E + B x B— B(B- E)] + pv 

where p is the charge density observed in that frame. 

(c) If the medium is uncharged in its rest frame (p’ = 0), what is the charge 

density and the expression for J in the frame of part b? This is the relativistic 

generalization of the equation J = o(E + v X B (see p. 320). 

11.17 The electric and magnetic fields (11.152) of a charge in uniform motion can be 

obtained from Coulomb’s law in the charge’s rest frame and the fact that the field 

strength F°* is an antisymmetric tensor of rank 2 without considering explicitly the 
Lorentz transformation. The idea is the following. For a charge in uniform motion 

the only relevant variables are the charge’s 4-velocity U* and the relative coordi- 
= 

= nate X* Xp — Xg, where x5 and x@ are the 4-vector coordinates of the observation 

point and the charge, respectively. The only antisymmetric tensor that can be 

formed is (X*U® — X*®U*). Thus the electromagnetic field F*? must be this tensor 

multiplied by some scalar function of the possible scalar products, X,X*, X,U%, 

U_U*. 

(a) For the geometry of Fig. 11.8 the coordinates of P and qg at a common time 

in K can be written x> = (ct, b), x7 = (ct, vt), with b- v = 0. By considering 

the general form of F?* in the rest frame of the charge, show that 

q (xeU® — x8U*) 
B 

= 

[3 wary — xe] 
Verify that this yields the expressions (11.152) in the inertial frame K. 

(b) Repeat the calculation, using as the starting point the common-time coor- 
_— 

= dinates in the rest frame, x,° (ct', b — vt’) and x;° = (ct’, 0). Show that 

a4 (Y°U® — y®U*) 

c 
(- Y,Y°)"? 

where Y'* = x,* — x4*. Verify that the fields are the same as in part a. Note 
that to obtain the results of (11.152) it is necessary to use the time ¢ of the 
observation point P in K as the time parameter. 

(c) Finally, consider the coordinate xf = (ct, b) and the “‘retarded-time” coor- 
dinate x7 = [ct — R, B(ct — R)] where R is the distance between P and q at 
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— 

= 
the retarded time. Define the difference as Z% [R, b — B(ct — R)]. Show 
that in terms of Z* and U* the field is 

ap — 4 (Z°U" — Z8U") 

1 
c U,Z* " 

} 

11.18 The electric and magnetic fields of a particle of charge g moving in a straight line 
with speed v = Bc, given by (11.152), become more and more concentrated as 
B — 1, as is indicated in Fig. 11.9. Choose axes so that the charge moves along the 
Z axis in the positive direction, passing the origin at t = 0. Let the spatial coordi- 
nates of the observation point be (x, y, z) and define the transverse vector r,, with 
components x and y. Consider the fields and the source in the limit of B = 1. 

(a) Show that the fields can be written as 

r 
d(ct — z) 

¥ x E = 2q 5 a{ct — 2); B = 2q 
L 

where #¢ is a unit vector in the direction of the particle’s velocity. 

(b) Show by substitution into the Maxwell equations that these fields are consis- 
tent with a 4-vector source density, 

J* = qev"5(r,)8(ct — z) 

where the 4-vector v* = (1, #). 

(c) Show that the fields of part a are derivable from either of the following 

4-vector potentials, 

A®° = A? = —2q8(ct — z) In(Ar,); A, =0 

or 

A° =0= Az; A, = —2q@(ct — z) V, In(ar,) 

where A is an irrelevant parameter setting the scale of the logarithm. 

Show that the two potentials differ by a gauge transformation and find 

the gauge function, y. 

Reference: R. Jackiw, D. Kabat, and M. Ortiz, Phys. Lett. B 277, 148 (1992). 

11.19 A particle of mass M and 4-momentum P decays into two particles of masses m, 

and mp. 

(a) Use the conservation of energy and momentum in the form, pz = P — pi, 

and the invariance of scalar products of 4-vectors to show that the total en- 

ergy of the first particle in the rest frame of the decaying particle is 

M? + m2 -— mi 
=— 

= Ey 
2M 

and that EF, is obtained by interchanging m, and mp. 

Show that the kinetic energy T; of the ith particle in the same frame is (b) 

AM m; 

M 2M 

where AM = M — m, — mz, is the mass excess or Q value of the process. 

(c) The charged pi-meson (M = 139.6 MeV) decays into a mu-meson (m, = 
105.7 MeV) and a neutrino (mz = 0). Calculate the kinetic energies of the 
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mu-meson and the neutrino in the pi-meson’s rest frame. The unique kinetic 
energy of the muon is the signature of a two-body decay. It entered impor- 
tantly in the discovery of the pi-meson in photographic emulsions by Powell 
and coworkers in 1947. 

11.20 The lambda particle (A) is a neutral baryon of mass M = 1115 MeV that decays 
with a lifetime of 7 = 2.9 X 107" s into a nucleon of mass m, = 939 MeV and a 

pi-meson of mass m, ~ 140 MeV. It was first observed in flight by its charged 
decay mode A > p + a in cloud chambers. The charged tracks originate from a 

single point and have the appearance of an inverted vee or lambda. The particles’ 
identities and momenta can be inferred from their ranges and curvature in the 

magnetic field of the chamber. 

(a) Using conservation of momentum and energy and the invariance of scalar 
products of 4-vectors show that, if the opening angle 6 between the two tracks 

is measured, the mass of the decaying particle can be found from the formula 

M2 = m3 + m3 + 2E,E, — 2pip2 cos 8 

where here p, and p, are the magnitudes of the 3-momenta. 

(b) A lambda particle is created with a total energy of 10 GeV in a collision in 
the top plate of a cloud chamber. How far on the average will it travel in the 

chamber before decaying? What range of opening angles will occur for a 

10 GeV lambda if the decay is more or less isotropic in the lambda’s rest 

frame? 

11.21 If a system of mass M decays or transforms at rest into a number of particles, the 

sum of whose masses is less than M by an amount AM, 

show that the maximum kinetic energy of the ith particle (mass m,) is (a) 

AM mM; 
l1-—- — 

2M M 
(T;) max = au( 

(b) determine the maximum kinetic energies in MeV and also the ratios to AM 

for each of the particles in the following decays or transformations of particles 

at rest: 

pBometvuryp 

K* > rt +a +77 

K?>e* ++ 

K* > pt + 4+ 

pt+pr2n* +20 + 7° 

pt+p—-K*+K~ +37 

11.22 The presence in the universe of an apparently uniform ‘‘sea”’ of blackbody radi- 

ation at a temperature of roughly 3K gives one mechanism for an upper limit on 

the energies of photons that have traveled an appreciable distance since their 

creation. Photon-photon collisions can result in the creation of a charged particle 

and its antiparticle (‘‘pair creation”) if there is sufficient energy in the center of 

“mass” of the two photons. The lowest threshold and also the largest cross section 

occurs for an electron-positron pair. 

(a) Taking the energy of a typical 3K photon to be E = 2.5 X 10“ eV, calculate 

the energy for an incident photon such that there is energy just sufficient to 

make an electron-positron pair. For photons with energies larger than this 

threshold value, the cross section increases to a maximum of the order of 

(e?/mc’)* and then decreases slowly at higher energies. This interaction is one 
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mechanism for the disappearance of such photons as they travel cosmological 
distances. 

(b) There is some evidence for a diffuse x-ray background with photons having 
energies of several hundred electron volts or more. Beyond 1 keV the spec- 
trum falls as E~” with n = 1.5. Repeat the calculation of the threshold inci- 
dent energy, assuming that the energy of the photon in the ‘“‘sea” is 500 eV. 

11.23 In a collision process a particle of mass mp, at rest in the laboratory, is struck by 
a particle of mass m,, momentum p; ay and total energy F, ag. In the collision the 
two initial particles are transformed into two others of mass my, and m,. The con- 
figurations of the momentum vectors in the center of momentum (cm) frame (tra- 
ditionally called the center-of-mass frame) and the laboratory frame are shown in 
the figure. 

Pus me S Nn —_—_——_—— me, 
—pP m4 

—q P4 

cm frame Laboratory frame 

Problem 11.23 

(a) Use invariant scalar products to show that the total energy W in the cm frame 

has its square given by 

Ww = mi + ms + 2m, EL AB 

and that the cms 3-momentum p’ is 

» _ M2PLaB 

Ww 

(b) Show that the Lorentz transformation parameters B,, and ym describing the 

velocity of the cm frame in the laboratory are 

My + EAB PLaB 
Bon = Yon = 

Ww My + ELaB > 

(c) Show that the results of parts a and b reduce in the nonrelativistic limit to 

the familiar expressions, 

Ms PLB 
m, + Mm, 2m, 

W= m+ ms + ( 

m Plas 
~ 
= 

+ m, + My, rl -)puae Bem 
11.24 The threshold kinetic energy 7, in the laboratory for a given reaction is the kinetic 

energy of the incident particle on a stationary target just sufficient to make the 

center of mass energy W equal to the sum of the rest energies of the particles in 

the final state. Calculate the threshold kinetic energies for the following processes. 

Express your answers in MeV or GeV and also in units of the rest energy of the 

incident particle (unless it is a massless particle). 

(a) Pi-meson photoproduction, yp > 7°p 

m9 = 135.0 MeV) (m, = 938.5 MeV, 
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(b) Nucleon-antinucleon pair production in nucleon-nucleon collisions, for ex- 

ample, pp — pppp. 

(c) Nucleon-antinucleon pair production in electron-electron collisions, e~e~ — 

ee pp and e*e” — pp (m, = 0.511 MeV). 

11.25 In colliding beam machines such as the Tevatron at Fermilab or-the numerous 
e*e~ storage rings, counterrotating relativistic beams of particles are stored and 

made to collide more or less head-on in one or more interaction regions. Let the 

particles in the two beams have masses m, and m, and momenta pj and po, re- 

spectively, and let them intersect with an angle 6 between the two beams. 

(a) Show that, to order (m/p)* inclusive, the square of the total energy in the cm 

frame is 

2 m 
— im 

P2 Pi 
W? = 4p,p2 cos* = + (p, + pa( 

(b) Show that the cm inertial frame has a velocity in the laboratory given by 

_ (pi + p2) sin 6/2 
Ban 

(E, + E,) sina 

where 

+ P2 
———_——— 

1 — P2 

) tan $ 

The angle a is defined in the figure. 

(c) Check that the results of part b agree with those of Problem 11.23b. 

(d) If the crossing angle is @ = 20° and the colliding protons have p; = p2 = 100 

GeV/c, is the laboratory frame a reasonable approximation to the cm frame? 

Consider, for example, a proton-proton inelastic collision involving pion pro- 

duction and examine the collinearity of two pions produced with equal and 

opposite momenta of 10 GeV/c in the cm frame. 

Bom 

Problem 11.25 

11.26 In an elastic scattering process the incident particle imparts energy to the station- 

ary target. The energy AE lost by the incident particle appears as recoil kinetic 

energy of the target. In the notation of Problem 11.23, mz; = m, and m, = mo, 

while AE = T, = Ey — mg 

(a) Show that AE can be expressed in the following different ways, 

AE = ya Piast! — cos 6’) 

2m2Pi.ap COS"O, 
AE = 

We + Pian sin”6, 
2 

AE = — 
2m, 
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= where Q? —(p; — ps)” = (pi — ps)? — (E, — E;) is the Lorentz invariant 
momentum transfer (squared). 

(b) Show that for charged particles other than electrons incident on stationary 
electrons (m, >> m2) the maximum energy loss is approximately 

AE max ~ 2y°'m, 

where y and 8 are characteristic of the incident particle and y < (m,/m,). 
Give this result a simple interpretation by considering the relevant collision 

in the rest frame of the incident particle and then transforming back to the 

laboratory. 

(c) For electron-electron collisions, show that the maximum energy transfer is 

AE®,. = (y — 1)m, 

11.27 (a) A charge density p’ of zero total charge, but with a dipole moment p, exists 

in reference frame K’. There is no current density in K'. The frame K’ moves 

with a velocity v = Bc in the frame K. Find the charge and current densities 

p and J in the frame K and show that there is a magnetic dipole moment, 

m = (p X B)/2, correct to first order in 8. What is the electric dipole moment 

in K to the same order in B? 

(b) Instead of the charge density, but no current density, in K’, consider no 

charge density, but a current density J’ that has a magnetic dipole moment 

m. Find the charge and current densities in K and show that to first order in 

B there is an electric dipole moment p = B X m in addition to the magnetic 

dipole moment. 

11.28 Revisit Problems 6.21 and 6.22 from the viewpoint of Lorentz transformations. An 

electric dipole instantaneously at rest at the origin in the frame K’ has potentials, 

®’ = p-r’/r?, and A’ = 0 (and thus only an electric field). The frame K’ moves 

with uniform velocity v = Bc in the frame K. 

(a) Show that in frame K to first order in B the potentials are 

R (p: R) P DO = 
> A=8 

R? R? 

where R = x — x,(t), with v = dx,/dt at time ¢. 

(b) Show explicitly that the potentials in K satisfy the Lorentz condition. 

Show that to first order in B the electric field E in K is just the electric dipole (c) 
field (centered at x9), or a dipole field plus time-dependent higher multipoles, 

if viewed from a fixed origin, and the magnetic field is B = B X E. Where is 
the effective magnetic dipole moment of Problem 6.21 or 11.27a? 

11.29 Instead of the electric dipole potential of Problem 11.28, consider a point magnetic 
—_ —_— 

= = m X r'/r? 0, A’ moment m in the moving frame K’, with its potentials, ®' 

(and so only a magnetic field). 

(a) Show that to first order in B the potentials in K are 

(m x R) (B x m)-R 
A= @ = 

R R 

Note that the scalar potential is the same as the static potential of the electric 

dipole moment of Problem 11.27b. [But this gives only the irrotational part 

of the electric field.] 
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(b) Calculate the electric and magnetic fields in K from the potentials and show 

that the electric field can be expressed alternatively as 

,, Bata: B) = 6] 
E= Egipoie(Pett = B x m) — m R 

3, [min B) + B(a- m)] 
—xXm R 

2 2 
)s E= Easgoe Pas ~ 

.. ~~ 

E=Bx 8 

where B is the magnetic dipole field. In light of Problem 6.22, comment on 

the interpretation of the different forms. 

11.30 An isotropic linear material medium, characterized by the constitutive relations 

(in its rest frame K'), D’ = €E’ and »H’ = B’, is in uniform translation with 

velocity v in the inertial frame K. By exploiting the fact that F,, = (E, B) and 

G,» = (D, H) transform as second rank 4-tensors under Lorentz transformations, 

show that the macroscopic fields D and H are given in terms of E and B by 

D=c«E+ aC - 1 )ee, +B x B] 
1 

H- 7Bty (<6, + pn 
where E, and B, are components perpendicular to v. 

11.31 Consider a hollow right-circular cylinder of magnetic insulator (relative perme- 

abilities « and 4 and inner and outer radii a and b) set in rotation about its axis 

at angular speed w in a uniform axial magnetic field By. In 1913 the Wilsons mea- 

sured the voltage difference between its inner and outer surfaces caused by a radial 

internal electric field. Assuming that locally the relations of Problem 11.30 hold, 
_ 

= that the velocity v wpd, and that there are only the field components E, 

and B,, which are independent of z and ¢, solve the equations V-D = 0 and 

V x H = 0 within the cylinder and show that the internal fields are 

1 pwpBo 1 — w*p/c*pe 
E,=- p pe c(1 — w*p/c2) 1 — w*p/c? 

( - ) anal | 
and that for nonrelativistic motion (wb/c << 1) the voltage difference is 

1 
1-— 

pe 

V= 5, Bole” )( ) 
This experiment was an early validation of special relativity and Minkowski’s elec- 

trodynamics of material media in motion. If you are curious about how the Wilsons 

made a magnetic insulator, look up the paper. 

Reference: M. Wilson and H. A. Wilson, Proc. Roy. Soc. London A89, 99-106 
(1913). 



CHAPTER 12 

Dynamics of Relativistic Particles 
and Electromagnetic Fields 

The kinematics of the special theory of relativity was developed in Chapter 11. 

We now turn to the question of dynamics. In the first part of the chapter we 

discuss the dynamics of charged particle motion in external electromagnetic 

fields. The Lagrangian approach to the equations of motion is presented mainly 

to introduce the concept of a Lorentz invariant action from which covariant dy- 

namical equations can be derived. The transition to a Hamiltonian, with the 

definition of the canonical momentum, is then discussed. Several sections are 

devoted to the motion of a charged particle in electric and magnetic fields. Our 

treatment of motion in a uniform static magnetic field is followed by considera- 

tion of motion in a combination of electric and magnetic fields. Then the secular 

changes (drifts) of a particle’s orbit caused by nonuniform magnetic fields and 

the adiabatic invariance of the linked flux are discussed. The problem of a rela- 

tivistic Lagrangian for a system of interacting charged particles is addressed, and 

it is shown that to order v’/c’ it is possible to eliminate retardation effects and 
write a Lagrangian (the Darwin Lagrangian) in terms of the instantaneous po- 

sitions and velocities of the particles. 

In the last five sections of the chapter the emphasis is on fields. First, the 

Maxwell equations are derived from a suitable Lagrangian. Then, a modified 

Lagrangian describing a “photon” with mass is presented and its consequences 

in resonant circuits, transmission lines, and cavities described, as well as its man- 

ifestation in superconductors. A covariant generalization of the Hamiltonian for 
fields is next discussed, along with the conservation laws of energy, momentum, 

and angular momentum for fields, both source free and in interaction with 
charged particles. The chapter ends with a derivation of the invariant Green 
functions that form the basis of the solution of the wave equation with a given 

4-vector current density as source. 

12.1 Lagrangian and Hamiltonian for a Relativistic Charged 

Particle in External Electromagnetic Fields 

The equations of motion 

dp 
—=e E+ "xB (12.1) 

Cc d | | 
dE 
—=eu-E (12.2) 

t 

579 
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for a particle of charge e in external fields E and B can be written in the covariant 

form (11.144) 

dU* 
(12.3) —_— —__ < Feu, 

mc dt 

where m is the mass, 7 is the proper time, and U* = (yc, yu) = p%/m is the 

4-velocity of the particle. 

Although the equations of motion (12.1) and (12. 2) a are sufficient to describe 
the general motion of a charged particle in external electromagnetic fields 

(neglecting the emission of radiation), it is useful to consider the formulation of 

the dynamics from the viewpoint of Lagrangian and Hamiltonian mechanics. The 

Lagrangian treatment of mechanics is based on the principle at least action or 

Hamilton’s principle. In nonrelativistic mechanics the system is described by gen- 

eralized coordinates q;(t) and velocities q(t). The Lagrangian L is a functional 

of g; and g; and perhaps the time explicitly and the action A is defined as the 
time integral of L along a possible path of the system. The principle of least action 
states that the motion of a mechanical system is such that in going from a con- 
figuration a at time ¢, to a configuration b at time 4, the action 

ta 

A (12.4) Liqi(t), Gilt), t| at 

is an extremum. By considering small variations of the coordinates and velocities 

0, one obtains (see Goldstein away from the actual path and requiring 5A 

Chapter 2) the Euler-Lagrange equations of motion 

d aL aL 
—y (12.5) 

dt 0g; 0g; ( 
We wish to extend the formalism to relativistic particle motion in a manner 

consistent with the special theory of relativity and leading for charged particles 

in external fields to (12.1) and (12.2) or (12.3). There are several levels of so- 

phistication possible. The least sophisticated and most familiar treatment contin- 

ues with ordinary coordinates, velocities, and time and generalizes from the non- 

relativistic domain in a straightforward way. More sophisticated is a manifestly 

covariant discussion. We first present the elementary approach and then indicate 

the manifestly covariant treatment 

A. Elementary Approach to a Relativistic Lagrangian 

To obtain a relativistic Lagrangian for a particle in external fields we first 

consider the question of the Lorentz transformation properties of the Lagrangian 
From the first postulate of special relativity the action integral must be a Lorentz 
scalar because the equations of motion are determmed by the extremum condi- 

tion, 6A 0. If we introduce the particle’s proper time 7 into (12.4) through 
dt = y dr, the action integral becomes 

72 

A yL dt (12.6) 
Ty 

Since proper time is invariant the condition that A also be invariant requires that 
yL be Lorentz invariant 

The Lagrangian for a free particle can be a function of the velocity of the 
particle and its mass, but cannot depend on its position. The only Lorentz invar- 
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iant function of the velocity available is U,U* = c?. Thus we conclude that the 
Lagrangian for a free particle is proportional to y-! = V/1 — f?. It is easily seen 
that 

2 

(12.7) —mc* |/1 — < Live 
Cc 

is the proper multiple of y~' to yield, through (12.5), the free-particle equation 
of motion, 

(12.8) < (mu) =0 

The action (12.6) is proportional to the integral of the proper time over the 
path from the initial proper time 7, to the final proper time 7. This integral is 
Lorentz invariant, but it depends on the path taken. For purposes of calculation, 
consider a reference frame in which the particle is initially at rest. From definition 

(11.26) of proper time it is clear that, if the particle stays at rest in that frame, the 

integral over proper time will be larger than if it moves with a nonzero velocity 

along its path. Consequently we see that a straight world line joining the initial 

and final points of the path gives the maximum integral over proper time or, with 

the negative sign in (12.7), a minimum for the action integral. This motion at 

constant velocity is, of course, the solution of the free-particle equation of motion. 

The general requirement that yL be Lorentz invariant allows us to determine 

the Lagrangian for a relativistic charged particle in external electromagnetic 

fields, provided we know something about the Lagrangian (or equations of mo- 

tion) for nonrelativistic motion in static fields. A slowly moving charged particle 

is influenced predominantly by the electric field that is derivable from the scalar 

potential ®. The potential energy of interaction is V = e®. Since the nonrelativ- 

istic Lagrangian is (T — V), the interaction part L;,, of the relativistic Lagrangian 

must reduce in the nonrelativistic limit to 

(12.9) Lint -> LYE = -e® 

Our problem thus becomes that of finding a Lorentz invariant expression for yLint 

that reduces to (12.9) for nonrelativistic velocities. Since ® is the time component 

of the 4-vector potential A%, we anticipate that yLj,, will involve the scalar prod- 

uct of A% with some 4-vector. The only other 4-vectors available are the momen- 
tum and position vectors of the particle. Since gamma times the Lagrangian must 

be translationally invariant as well as Lorentz invariant, it cannot involve the co- 
ordinates explicitly. Hence the interaction Lagrangian must be* 

(12.10) _£ U,A*% Lint 
ye 

or 

(12.11) Lint -eb + ous A 

*Without appealing to the nonrelativistic limit, this form of L;,, can be written down by demanding 

that yLin be a Lorentz invariant that is (1) linear in the charge of the particle, (2) linear in 

the electromagnetic potentials, (3) translationally invariant, and (4) a function of no higher than the 

first time derivative of the particle coordinates. The reader may consider the possibility of an inter- 

action Lagrangian satisfying these conditions, but linear in the field strengths F*, rather than the 
potentials A*. 
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The combination of (12.7) and (12.11) yields the complete relativistic Lagrangian 
for a charged particle: 

(12.12) Lanne fi-$+fura—es 
Verification that (12.12) does indeed lead to the Lorentz force equation will be 
left as an exercise for the reader. Use must be made of the conyective derivative 
[d/dt = (a/at) + u- V] and the standard definitions of the fields in terms of the 
potentials. 

The canonical momentum P conjugate to the position coordinate x is ob- 
tained by the definition, 

a 
(12.13) 

£ 
- 0 
= ymu; + ~ Ai 

L 

Thus the conjugate momentum is 

(12.14) P=p+ <A 

where p = ymu is the ordinary kinetic momentum. The Hamiltonian H is a 

function of the coordinate x and its conjugate momentum P and is a constant of 

the motion if the Lagrangian is not an explicit function of time. The Hamiltonian 

is defined in terms of the Lagrangian as 

H=P-u-L (12.15) 

The velocity u must be eliminated from (12.15) in favor of P and x. From (12.13) 
or (12.14) we find that 

cP -— eA 
u= (12.16) 

eA 
2,2 Pp - — +m 

; 

When this is substituted into (12.15) and into L (12.12), the Hamiltonian takes 

on the form: 

H = V(cP — eA) + m’c* + e@ (12.17) 

Again the reader may verify that Hamilton’s equations of motion can be com- 

bined to yield the Lorentz force equation. Equation (12.17) is an expression for 

the total energy W of the particle. It differs from the free-particle energy by the 

addition of the potential energy e® and by the replacement p — [P — (e/c)A]. 

These two modifications are actually only one 4-vector change. This can be seen 

by transposing e® in (12.17) and squaring both sides. Then 

—_— 

= (W — e®) — (cP - eA)? (mc) (12.18) 

This is just the 4-vector scalar product, 

Pap® = (mc)? (12.19) 

where 

E 
a 

S 4 (12.20) cP ( )= (Ee - em, p-£a) 
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We see that the total energy W/c acts as the time component of a canonically 

conjugate 4-momentum P* of which P given by (12.14) is the space part. A man- 

ifestly covariant approach, discussed in the following paragraphs and also in 

Problem 12.1 leads naturally to this 4-momentum. 

In passing we remark on the question of gauge transformations. Obviously 

the equations of motion (12.1) and (12.2) are invariant under a gauge transfor- 

mation of the potentials. Since the Lagrangian (12.10) involves the potentials 

explicitly, it is not invariant. In spite of this lack of invariance of L under gauge 

transformations it can be shown (Problem 12.2) that the change in the Lagrangian 

is of such a form (a total time derivative) that it does not alter the action integral 

or the equations of motion. 

B. Manifestly Covariant Treatment of the Relativistic Lagrangian 

To make a manifestly covariant description, the customary variables x and 

u are replaced by the 4-vectors x* and U*. The free-particle Lagrangian (12.7) 

can be written in terms of U*% as 

mc 

— VU,U* (12.21) Lree 
Y 

Then the action integral (12.6) would be 

(12.22) A = —mc . VU,U% dt 

This manifestly invariant form might be thought to provide the starting point for 

a variational calculation leading to the equation of motion, dU%/dt = 0. There 

is, however, the equation of constraint, 

—_ 

= 

Cc (12.23) U,U* 

or the equivalent constraint, 

dU* 
= 0 (12.24) U., 

d 

on the equations of motion. This can be incorporated by the Lagrange multiplier 

technique, but we pursue a different, equivalent procedure. The integrand in 

(12.22) is 

VUE dr = [a2 dr = Ve dx, dg 

that is, the infinitesimal length element in 4-space. This suggests that the action 
integral (12.22) be replaced by 

ap Xa Xp 
S (12.25) 

ds ds 
A= -me | g 

where the 4-vector coordinate of the particle is x°(s), with s a parameter that is 

a monotonically increasing function of 7, but otherwise arbitrary. The action 
integral is an integral along the world line of the particle, and the principle of 
least action is the statement that the actual path is the longest path, namely the 
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goedesic.* The Lagrangian variables are now x* and ‘“‘the velocity” dx“/ds, but s 
is considered as arbitrary. Only after the calculus of variations has been com- 

pleted do we identify 

(12.26) ort Be Bas = oa 
and so impose the constraint (12.23). A straightforward variational calculation 
with (12.25) yields the Euler-Lagrange equations, 

dx“/ds d 
_ (12.27) 

dx, dx? 

ds ds 

mes ( 

or 

d?x* 
= 0 (12.28) 

"IP 

as expected for free-particle motion. 

For a charged particle in an external field the form of the Lagrangian (12.11) 
suggests that the manifestly covariant form of the action integral is 

$2 e dXy 
(12.29) =| c ds 51 

arto| ds 

Hamilton’s principle yields the Euler-Lagrange equations, 

d al 
— oh =0 (12.30) 

dx. 

ds “ld 
where the Lagrangian is 

~ 

_— 

e ax, 
= L (12.31) 

c ds 
ant| 

Explicitly, (12.30), upon division by the square root and use of (12.26), becomes 

d*x% e dA%(x) e dXzg 
= = a*A*(x) = 0 

dt dr’ c dt 

Since dA%/dr = (dxg/dr) d°A*%, this equation can be written as 

d?x% é 
(12.32) 

"dr ~ ¢ 
(0"A® — aA?) “ 

which is the covariant equation of motion (12.3) in different notation. 

The transition to the conjugate momenta and a Hamiltonian is simple 

enough, but has problems of interpretation. The conjugate momentum 4-vector 

is defined by 

ar 
ce —_ 

—_— 
= (12.33) = mU* + © A° 

Xo 

ds ( 
*The geodesic is the longest path or longest proper time for timelike separation of events. See 

Rohrlich, pp. 277-278. 
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The minus sign is introduced so that (12.33) conforms with (12.14); its origin can 
be traced to the properties of the Lorentz space-time. A Hamiltonian can be 
defined by 

A= P,U*+L (12.34) 

Elimination of U* by means of (12.33) leads to the expression, 

1 eA* eA, 
A=— 

m Cc c (r-- \r- ~¢ | @ - < 4.)(™ - < 4°) (12.35) 
Hamilton’s equations are 

dx* dH 1 
pe — — A* 

dt aP, m 
and (12.36) 

eA dP* dH e 
— Pz, - 
mc dr ax, - 

oa 

where we have made use of the constraint @ — <4.) (> _ < 4°) = mc 
after differentiation. These two equations can be immediately shown to be equiv- 

alent to the Euler—-Langrange equation (12.32). 

While the Hamiltonian above is formally satisfactory, it has several problems. 

The first is that it is by definition a Lorentz scalar, not an energylike quantity. 

Second, use of (12.23) and (12.33) shows that H = 0. Clearly, such a Hamiltonian 
formulation differs considerably from the familiar nonrelativistic version. The 

reader can refer to Barut (pp. 68 ff.) for a discussion of this and other alternative 

Hamiltonians. 

12.2. Motion in a Uniform, Static Magnetic Field 

As a first important example of the dynamics of charged particles in electromag- 

netic fields we consider the motion in a uniform, static, magnetic induction B. 

The equations of motion (12.1) and (12.2) are 

dE 
— dp _é B, (12.37) 

dt dt c 

where here the particle’s velocity is denoted by v. Since the energy is constant 

in time, the magnitude of the velocity is constant and so is y. Then the first 

equation can be written 

dv 
VX Wp (12.38) 

dt 

where 

eB ecB 
— 

= (12.39) Op 

ymc E 

is the gyration or precession frequency. The motion described by (12.38) is a 

circular motion perpendicular to B and a uniform translation parallel to B. The 

solution for the velocity is easily shown to be 

(12.40) v(t) = Vy E3 + wpa(€, _ ie, e718! 
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where €; is a unit vector parallel to the field, €, and €, are the other orthogonal 
unit vectors, v, is the velocity component along the field, and a is the gyration 
radius. The convention is that the real part of the equation is to be taken. Then 

one can see that (12.40) represents a counterclockwise rotation (for positive 

charge e) when viewed in the direction of B. Another integration yields the dis- 
placement of the particle, 

~~ 

(12.41) x(t) = Xo + vite, + ia(e, — ie,)e~ st 

The path is a helix of radius a and pitch angle a = tan~' (v)/w,a). The magnitude 
of the gyration radius a depends on the magnetic induction B and the transverse 

momentum p, of the particle. From (12.39) and (12.40) it is evident that 

cp, = eBa 

This form is convenient for the determination of particle momenta. The radius 

of curvature of the path of a charged particle in a known B allows the determi- 

nation of its momentum. For particles with charge the same in magnitude as the 

electronic charge, the momentum can be written numerically as 

(12.42) p.(MeVic) = 3.00 X 10°*Ba (gauss-cm) = 300 Ba (tesla-m) 

12.3. Motion in Combined, Uniform, Static Electric 
and Magnetic Fields 

We now consider a charged particle moving in a combination of electric and 

magnetic fields E and B, both uniform and static, but in general not parallel. As 

an important special case, perpendicular fields will be treated first. The energy 

equation (12.2) shows that the particle’s energy is not constant in time. Conse- 

quently we cannot obtain a simple equation for the velocity, as was done for a 

static magnetic field. But an appropriate Lorentz transformation simplifies the 

equations of motion. Consider a Lorentz transformation to a coordinate frame 

K' moving with a velocity u with respect to the original frame. Then the Lorentz 

force equation for the particle in K’ is 

vy’ x B’ 

dp" _ 
= 

dt c 
(es 

where the primed variables are referred to the system K’. The fields E’ and B’ 

are given by relations (11.149) with v replaced by u. Let us first suppose that 

|E| < |B. If u is now chosen perpendicular to the orthogonal vectors E and B, 

E xB 
u =C¢ (12.43) B2 

we find the fields in K’ to be 

EF. | = 9, (E+2xs 
V2 (12.44) 

B? — EF? 
—B Bi | = 9, B2 
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where || and | refer to the direction of u. In the frame K’ the only field acting is 
a static magnetic field B’ which points in the same direction as B, but is weaker 
than B by a factor y~’. Thus the motion in K’ is the same as that considered in 
Section 12.2, namely a spiraling around the lines of force. As viewed from the 
original coordinate system, this gyration is accompanied by a uniform “‘drift” u 
perpendicular to E and B given by (12.43). This drift is sometimes called the 
E X B drift. The drift can be understood qualitatively by noting that a particle 

that starts gyrating around B is accelerated by the electric field, gains energy, and 

sO moves in a path with a larger radius for roughly half of its cycle. On the other 

half, the electric field decelerates it, causing it to lose energy and so move in a 

tighter arc. The combination of arcs produces a translation perpendicular to E 

and B as shown in Fig. 12.1. The direction of drift is independent of the sign of 

the charge of the particle. 

The drift velocity u (12.43) has physical meaning only if it is less than the 

velocity of light, i.e., only if |E| < |B]. If |E| > |B], the electric field is so strong 
that the particle is continually accelerated in the direction of E and its average 

energy continues to increase with time. To see this we consider a Lorentz trans- 

formation from the original frame to a system K” moving with a velocity 

ExB 
urHec (12.45) 

E2 

relative to the first. In this frame the electric and magnetic fields are 

E? — B? 
uv — 

= = 0, EY I E? ( 
(12.46) 

u XE 
uw 

BY = 0, 
I| 

Cc 

)=0 v(B - 
the particle is acted on by a purely electrostatic field which Thus in the system K” 

causes hyperbolic motion with ever-increasing velocity (see Problem 12.3). 
The fact that a particle can move through crossed E and B fields with the 

uniform velocity u = cE/B provides the possibility of selecting charged particles 
according to velocity. If a beam of particles having a spread in velocities is nor- 

mally incident on a region containing uniform crossed electric and magnetic 

fields, only those particles with velocities equal to cE/B will travel without de- 

flection. Suitable entrance and exit slits will then allow only a very narrow band 

of velocities around cE/B to be transmitted, the resolution depending on the 

geometry, the velocities desired, and the field strengths. When combined with 

momentum selectors, such as a deflecting magnet, these E x B velocity selectors 

SOOT 

LOU, 
E x B drift of charged Figure 12.1 a particles in crossed fields. 
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can extract a very pure and monoenergetic beam of particles of a definite mass 

from a mixed beam of particles with different masses and momenta. Large-scale 
devices of this sort are commonly used to provide experimental beams of particles 
produced in high-energy accelerators. 

ticle cannot be If E has a component parallel to B, the behavior of the par 

understood in such simple terms as above. The scalar produce E - B is a Lorentz 

invariant quantity (see Problem 11.14), as is (B? — E*). When the fields were 
perpendicular (E- B = 0), it was possible to find a Lorentz frame where E = 0 

if |B| > |E|, or B = 0 if |E| > |B|. In those coordinate frames the motion was 

relatively simple. If E-B # 0, electric and magnetic fields will exist simulta- 

neously in all Lorentz frames, the angle between the fields remaining acute or 

obtuse depending on its value in the original coordinate frame. Consequently 

motion in combined fields must be considered. When the fields are static and 

uniform, it is a straightforward matter to obtain a solution for the motion in 

Cartesian components. This will be left for Problem 12.6. 

12.4 Particle Drifts in Nonuniform, Static Magnetic Fields 

In astrophysical and thermonuclear applications it is of considerable interest to 

know how particles behave in magnetic fields that vary in space. Often the vari- 
ations are gentle enough that a perturbation solution to the motion, first given 

by Alfvén, is an adequate approximation. “Gentle enough” generally means that 

the distance over which B changes appreciably in magnitude or direction is large 

compared to the gyration radius a of the particle. Then the lowest order approx- 

imation to the motion is a spiraling around the lines of force at a frequency given 

by the local value of the magnetic induction. In the next approximation, the orbit 

undergoes slow changes that can be described as a drifting of the guiding center. 

The first type of spatial variation of the field to be considered is a gradient 

perpendicular to the direction of B. Let the gradient at the point of interest be 

in the direction of the unit vector n, with n-B = 0. Then, to first order, the 

gyration frequency can be written 

1 0B 
— 1+— (12.47) 

Bo 0g ( )n-x| w(x) = —— B(x) ~ on] 
In (12.47) €is the coordinate in the direction n, and the expansion is about the 

origin of coordinates where wg, = wo. Since the direction of B is unchanged, the 

motion parallel to B remains a uniform translation. Consequently we consider 

only modifications in the transverse motion. Writing v, = vp + v,, where Vo is the 

uniform-field transverse velocity and v, is a small correction term, we can sub- 

stitute (12.47) into the force equation 

dv, 
— = V, X @,(X) (12.48) 
d 

and, keeping only first-order terms, obtain the approximate result 

1 0B dy, 
— ~ 

(12.49) 
d 96 | V, + Vo(M + Xo) Bc ( J] xo 
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From (12.40) and (12.41) it is easy to see that for a uniform field the trans- 
verse velocity vo and coordinate x, are related by 

Vo = — X (X> — X) 
(12.50) 

(%) — X) = 5 (wo X Vo) 

where X is the center of gyration of the unperturbed circular motion (X = 0 
here). If (9 X vo) is eliminated in (12.49) in favor of xo, we obtain 

1 0 dv, 
~~ 

_-_— — (12.51) dt Bo 0g 
EB ( Jo x X(n- «| X Wo 

This shows that apart from oscillatory terms, vy, has a nonzero average value. 

1 0B 
—- (12.52) Vo = (Vv) = Ba 
0g ( Jo X ((Xo), (Mm + Xo)) 

To determine the average value of (xp),(m+Xq), it is necessary only to observe 
that the rectangular components of (Xo), oscillate sinusoidally with peak ampli- 
tude a and a phase difference of 90°. Hence only the component of (xo), parallel 
to n contributes to the average, and 

2 

(12.53) ((Xo).(m + Xo)) = Fn 

Thus the gradient drift velocity is given by 

al 0B 
_ — Vo (12.54) 
2 Bo 0g 

Joos x n) ( 
An alternative form, independent of coordinates, is 

a VG 
—_—_—_——_- = (B x V,B) (12.55) 
wpa 2B? 

From (12.55) it is evident that, if the gradient of the field is such that a |VB/B| 

<< 1, the drift velocity is small compared to the orbital velocity (wga). The par- 

ticle spirals rapidly while its center of rotation moves slowly perpendicular to 

both B and VB. The sense of the drift for positive particles is given by (12.55). 

For negatively charged particles the sign of the drift velocity is opposite; the sign 

change comes from the definition of wg. The gradient drift can be understood 

qualitatively from consideration of the variation of gyration radius as the particle 

moves in and out of regions of larger than average and smaller than average field 

strength. Figure 12.2 shows this qualitative behavior for both signs of charge. 

Another type of field variation that causes a drifting of the particle’s guiding 

center is curvature of the lines of force. Consider the two-dimensional field shown 

in Fig. 12.3. It is locally independent of z. Figure 12.3a shows a constant, uniform 

magnetic induction Bo, parallel to the x axis. A particle spirals around the field 

lines with a gyration radius a and a velocity wga, while moving with a uniform 

velocity uv, along the lines of force. We wish to treat that motion as a zeroth-order 

approximation to the motion of the particle in the field shown in Fig. 12.3b, where 

the lines of force are curved with a local radius of curvature R that is large 
compared to a. 
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The first-order motion can be understood as follows. The particle tends to 

spiral around a field line, but the field line curves off to the side. As far as the 

motion of the guiding center is concerned, this is equivalent to a centrifugal 
acceleration of magnitude vu;/R. This acceleration can be viewed as arising from 

an effective electric field 

ym R 
2 (12.56) Fete = “e ReU 

in addition to the magnetic induction Bo. From (12.43) we see that the combined 

effective electric field and the magnetic induction cause a curvature drift velocity, 

ym ,R X Bo 
(12.57) Vo = C— Uj 

R?Bo 

With the definition of wz, = eBo/ymc, the curvature drift can be written 

R x By vi 
Vo (12.58) 

wpR RBo ( 
The direction of drift is specified by the vector product, in which R is the radius 

vector from the effective center of curvature to the position of the charge. The 

sign in (12.58) is appropriate for positive charges and is independent of the sign 

of v,. For negative particles the opposite sign arises from wz. 

A more straightforward, although pedestrian, derivation of (12.58) can be 

given by solving the Lorentz force equation directly. If we use cylindrical coor- 
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Figure 12.3. (a) Particle moving in helical path along lines of uniform, constant 

magnetic induction. (b) Curvature of lines of magnetic induction will cause drift 

perpendicular to the x-y plane. 
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dinates (p, ¢, z) appropriate to Fig. 12.3b with origin at the center of curvature, 
the magnetic induction has only a ¢ component, B, = Bo(R/p). Then the force 
equation can be easily shown to give the three equations: 

— 

= 
—@p—Z p — pd? 

ph + 2p = 0 (12.59) 

R 
Z = We p 

The second equation has a first integral, p?@ = Rv), a constant. The third equation 

has a first integral, z = wg In(p/R) + vo, where vo is a constant of integration. 

With the zeroth-order trajectory a helix with radius small compared to R, it is 

natural to write p = R + x and expand (p/R)" and \n(p/R) in powers of x/R. Then 

= wW,_X + Uo, and the radial equation of motion can be approximated by 

uf vf 
x ~ — — wWeBvo 

R? 
R 

e+ (a5 43 

which describes simple harmonic oscillations in x around a displaced equilibrium 

vf Yo (x) = 
wR WR 

where we have assumed v, << w,R. The mean value of Z is then 

vi (12.60) (Z) ~ Up + W(X) ~ 
wR 

This is just the curvature drift given by (12.58). 
For regions of space in which there are no currents the gradient drift v, 

(12.55) and the curvature drift v¢ (12.58) can be combined into one sinple form. 
This follows from the fact that for a two-dimensional field such as shown in 

Fig. 12.35 V x B = 0 implies 

R VB 

B RR? 

Evidently then, for a two-dimensional field, the sum of vg and v< is a total drift 

velocity, 

Rx B 
a (12.61) Vp > 

RB wpR 
(02 + 402 ( 

where v, = waa is the transverse velocity of gyration. For singly charged non- 

relativistic particles in thermal equilibrium, the magnitude of the drift velocity is 

172 T(K) 
(12.62) vp(cm/s) = 

R(m) B(gauss) 

The particle drifts implied by (12.61) are troublesome in certain types of 

thermonuclear machine designed to contain hot plasma. A possible configuration 

is a toroidal tube with a strong field supplied by solenoidal windings around the 
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torus. With typical parameters of R = 1 meter, B = 10° gauss, particles ina 1 eV 

plasma (T ~ 10* K) will have drift velocities up ~ 1.8 X 10° cm/s. This means 
that they will drift out to the walls in a small fraction of a second. For hotter 

plasmas the drift rate is correspondingly greater. One way to prevent this first- 

order drift in toroidal geometries is to twist the torus into a figure eight. Since 

the particles generally make many circuits around the closed path before drifting 

across the tube, they feel no net curvature or gradient of the field. Gonsequently 

they experience no net drift, at least to first order in 1/R. This method of elimi- 

nating drifts due to spatial variations of the magnetic field is used in the 

Stellarator type of thermonuclear machine, in which containment is attempted 

with a strong, externally produced, axial magnetic field. 

12.5 Adiabatic Invariance of Flux Through Orbit of Particle 

The various motions discussed in the preceding sections have been perpendicular 
to the lines of magnetic force. These motions, caused by electric fields or by the 

gradient or curvature of the magnetic field, arise because of the peculiarities of 
the magnetic-force term in the Lorentz force equation. To complete our general 

survey of particle motion in magnetic fields, we must consider motion parallel to 

the lines of force. It turns out that for slowly varying fields a powerful tool is the 

concept of adiabatic invariants. In celestial mechanics and in the old quantum 

theory, adiabatic invariants were useful in discussing perturbations on the one 

hand, and in deciding what quantities were to be quantized on the other. Our 

discussion will resemble most closely the celestial-mechanical problem, since we 

are interested in the behavior of a charged particle in slowly varying fields, which 

can be viewed as small departures from the simple, uniform, static field consid- 

ered in Section 12.2. 

The concept of adiabatic invariance is introduced by considering the action 

integrals of a mechanical system. If q; and p; are the generalized canonical co- 

ordinates and momenta, then, for each coordinate which is periodic, the action 

integral J; is defined by 

(12.63) J, = $ p, dqi 
The integration is over a complete cycle of the coordinate q;. For a given me- 

chanical system with specified initial conditions the action integrals J; are con- 
stants. If now the properties of the system are changed in some way (e.g., a change 
in spring constant or mass of some particle), the question arises as to how the 
action integrals change. It can be proved* that, if the change in property is slow 
compared to the relevant periods of motion and is not related to the periods 
(such a change is called an adiabatic change), the action integrals are invariant. 
This means that, if we have a certain mechanical system in some state of motion 
and we make an adiabatic change in some property so that after a long time we 
end up with a different mechanical system, the final motion of that different 
system will be such that the action integrals have the same values as in the initial 

*See, for example, M. Born, The Mechanics of the Atom, Bell, London (1927), or I. Percival and 
D. Richards, Introduction to Dynamics, Cambridge University Press, Cambridge (1982), Section 9.4. 
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system. Clearly this provides a powerful tool in examining the effects of slow 
changes in properties. 

For a charged particle in a uniform, static, magnetic induction B, the trans- 
verse motion is periodic. The action integral for this transverse motion is 

(12.64) => Pedi 
where P, is the transverse component of the canonical momentum (12.14) and 
dl is a directed line element along the circular path of a particle. From (12.14) 
we find that 

(12.65) 1= 9 ymv,-dt +26 A-dl 

Since v, is parallel to dl, we find 

(12.66) 1=§ ymopa? do+*$ A. dl 

Applying Stokes’s theorem to the second integral and integrating over 6 in the 
first integral, we obtain 

(12.67) J = 27ymw,a’ + a B-nda 

Since the line element dl in (12.64) is in a counterclockwise sense relative to B, 

the unit vector n is antiparallel to B. Hence the integral over the circular orbit 

subtracts from the first term. This gives 

—_ 

= J = ymowg7a’ (12.68) . (B7a’) 

making use of wg = eB/ymc. The quantity Ba’ is the flux through the particle’s 

orbit. 

If the particle moves through regions where the magnetic field strength varies 

slowly in space or time, the adiabatic invariance of J means that the flux linked 

by the particle’s orbit remains constant. If B increases, the radius a will decrease 

so that Bza* remains unchanged. This constancy of flux linked can be phrased 
in several ways involving the particle’s orbit radius, its transverse momentum, its 

magnetic moment. These different statements take the forms: 

Ba’ 

are adiabatic invariants pi/B (12.69) 

YE 

where pp = (ewza’/2c) is the magnetic moment of the current loop of the particle 
in orbit. If there are only static magnetic fields present, the speed of the particle 

is constant and its total energy does not change. Then the magnetic moment pu 

is itself an adiabatic invariant. In time-varying fields or with static electric fields, 

pis an adiabatic invariant only in the nonrelativistic limit. 

Let us now consider a simple situation in which a static magnetic field B acts 
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mainly in the z direction, but has a small positive gradient in that direction. Figure 
12.4 shows the general behavior of the lines of force. In addition to the z com- 

ponent of field there is a small radial component due to the curvature of the lines 

of force. For simplicity we assume cylindrical symmetry. Suppose that a particle 
is spiraling around the z axis in an orbit of small radius with a transverse velocity 

Vo and a component of velocity v4 parallel to B at z = 0, where the axial field 
strength is Bo. The speed of the particle is constant so that any position along the 

Z axis 

(12.70) yt ul = v6 

where vg = U%g + Ufo is the square of the speed at z = 0. If we assume that the 

flux linked is a constant of motion, then (12.69) allows us to write 

Ui0 vi (12.71) 
B By 

where B is the axial magnetic induction. Then we find the parallel velocity at any 
position along the z axis given by 

2 B(z) 
(12.72) Uj = U6 — U 10 Bo 

Equation (12.72) for the velocity of the particle in the z direction is equivalent 

to the first integral of Newton’s equation of motion for a particle in a one- 

dimensional potential* 

V(2) = don 2 Bee) 

If B(z) increases enough, eventually the right-hand side of (12.72) will vanish at 

some point Z = Zo. This means that the particle spirals in an ever-tighter orbit 

along the lines of force, converting more and more translational energy into 

energy of rotation, until its axial velocity vanishes. Then it turns around, still 

spiraling in the same sense, and moves back in the negative z direction. The 

particle is reflected by the magnetic field, as is shown schematically in Fig. 12.5. 

Equation (12.72) is a consequence of the assumption that p*/B is invariant. 

To show that at least to first order this invariance follows directly from the 

Lorentz force equation, we consider an explicit solution of the equations of mo- 

*Note, however, that our discussion is fully relativistic. The analogy with one-dimensional nonrela- 

tivistic mechanics is only a formal one. 
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Figure 12.5 Reflection of charged 

particle out of region of high field Z= 29 

strength. 

tion. If the magnetic induction along the axis is B(z), there will be a radial com- 
ponent of the field near the axis given by the divergence equation as 

1 dB(z) 
B,(p, z) = —3p (12.73) 

0 

where p is the radius out from the axis. The z component of the force equation 
1S 

é dB(z) 
° (12.74) 

az 2ymc 
z= sme (—p¢B,) = 

where ¢ is the angular velocity around the z axis. This can be written, correct to 

first order in the small variation of B(z), as 

_ V2 dB(z) 
= (12.75) 

Oz 2Bo 

where we have used p’@ ~ —(a*wg)o = —(v29/wg0). Equation (12.75) has as its 
first integral (12.72), showing that to first order in small quantities the constancy 

of flux linking the orbit follows directly from the equations of motion. 

The adiabatic invariance of the flux linking an orbit is useful in discussing 

particle motions in all types of spatially varying magnetic fields. The simple ex- 

ample described above illustrates the principle of the ‘‘magnetic mirror”: 

Charged particles are reflected by regions of strong inagnetic field. This mirror 

property formed the basis of a theory of Fermi for the acceleration of cosinic- 

ray particles to very high energies in interstellar space by collisions with moving 

magnetic clouds. The mirror principle can be applied to the containment of a hot 

plasma for thermonuclear energy production. A magnetic bottle can be con- 

structed with an axial field produced by solenoidal windings over some region of 

space, and additional coils at each end to provide a much higher field toward the 

ends. The lines of force might appear as shown in Fig. 12.6. Particles created or 
injected into the field in the central region will spiral along the axis, but will be 
reflected by the magnetic mirrors at each end. If the ratio of maximum field B,,, 
in the mirror to the field B in the central region is very large, only particles with 
a very large component of velocity parallel to the axis can penetrate through the 
ends. From (12.72) it is evident that the criterion for trapping is 

B Vio | (12.76) 
B Vio <( 
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If the particles are injected into the apparatus, it is easy to satisfy requirement 

(12.76). Then the escape of particles is governed by the rate at which they are 

scattered by residual gas atoms, etc., in such a way that their velocity components 

violate (12.76). 

Another area of application of these principles is to terrestrial and stellar 

magnetic fields. The motion of charged particles in the magnetic dipole fields of 

the sun or earth can be understood in terms of the adiabatic invariant discussed 

here and the drift velocities of Section 12.4. Some aspects of this topic are left to 

Problems 12.9 and 12.10 on the trapped particles around the earth (the Van Allen 

belts). 

12.6 Lowest Order Relativistic Corrections to the Lagrangian 
for Interacting Charge Particles: The Darwin Lagrangian 

In Section 12.1 we discussed the general Lagrangian formalism for a relativistic 

particle in external electromagnetic fields described by the vector and scalar po- 
tentials, A and ®. The appropriate interaction Lagrangian was given by (12.11). 
If we now consider the problem of a conventional Lagrangian description of the 

interaction of two or more charged particles with each other, we see that it is 

possible only at nonrelativistic velocities. The Lagrangian is supposed to be a 

function of the instantaneous velocities and coordinates of all the particles. When 

the finite velocity of propagation of electromagnetic fields is taken into account, 

this is no longer possible, since the values of the potentials at one particle due to 

the other particles depend on their state of motion at “retarded” times. Only 

when the retardation effects can be neglected is a Lagrangian description in terms 

of instantaneous positions and velocities possible. In view of this one might think 

that a Lagrangian could be formulated only in the static limit, i.e., to zeroth order 

in (u/c). We will now show, however, that lowest order relativistic corrections can 

be included, giving an approximate Lagrangian for interacting particles, correct 

to the order of (u/c)? inclusive. 
It is sufficient to consider two interacting particles with charges q, and qo, 

masses 7, and m2, and coordinates x, and x). The relative separation is r = x, — X. 

The interaction Lagrangian in the static limit is just the negative of the electro- 

static potential energy, 

LNR = _ 9192 
(12.77) 

r 
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If attention is directed to the first particle, this can be viewed as the negative of 
the product of q, and the scalar potential ®,, due to the second particle at the 
position of the first. This is of the same form as (12.9). If we wish to generalize 

beyond the static limit, we must, according to (12.11), determine both ®,, and 
A, at least to some degree of approximation. In general there will be relativistic 
corrections to both ®,, and A,,. But in the Coulomb gauge, the scalar potential 

is given correctly to all orders in v/c by the instantaneous Coulomb potential 

Thus, if we calculate in that gauge, the scalar-potential contribution ®,, is already 

known. All that needs to be considered is the vector potential Aj» 

If only the lowest order relativistic corrections are desired, retardation effects 

can be neglected in computing Aj. The reason is that the vector potential enters 

the Lagrangian (12.11) in the combination q,(v,/c) + Aj. Since Aj, itself is of the 

order of v,/c, greater accuracy in calculating A, is unnecessary. Consequently, 

we have the magnetostatic expression 

1 f I{x') d°x' 
Ai = (12.78) 

|x, — x’| 
where J, is the transverse part of the current due to the second particle, as dis- 

cussed in Section 6.3. From equations (6.24)-(6.28) it can be shown that the 

transverse current 1s 

X2) (12.79) 
x,|° | (x') = quvz 8x" — x2) ~ F aoe 

When this is inserted in (12.78), the first term can be integrated immediately 

Thus 

(x’ — Xp) q2V2 
Ay = 

cr | Blea |x’ —_ x, |? 

By changing variables to y = x’ — x, and integrating by parts, the integral can 
be put in the form 

1 Vo q2 y Q2V2 ad? 
An = 3 J 4ac cr y ly - | 

The integral can now be done in a straightforward manner to yield 

r 

} Ay = | v,( 

The differentiation of the second term leads to the final result 

r(v2 °F) q2 (12.80) 
2 Ay =>— | E 

With expression (12.80) for the vector potential due to the second particle 

at the position of the first, the interaction Lagrangian for two charged particles 

including lowest order relativistic effects, is 

1+ (12.81) 
2 

E + (vi - r)(Ve | Lin = 4192 | 

This interaction form was first obtained by Darwin in 1920. It is of importance 

in a quantum-mechanical discussion of relativistic corrections in two-electron 
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atoms. In the quantum-mechanical problem the velocity vectors are replaced by 

their corresponding quantum-mechanical operators (Dirac a’s). Then the inter- 
action is known as the Breit interaction (1930).* 

For a system of interacting charged particles the complete Darwin 

Lagrangian, correct to order 1/c* inclusive, can be written down ‘by expanding 
the free-particle Lagrangian (12.7) for each particle and summing up all the in- 

~~ ~~, teraction terms of the form (12.81). The result is 

1 , V4i 
_ — — 

r parwin ; > mv; + = > mv; 
24 y (12.82) 

1 iWj 
—_— + — 4 i?’ Vj + (Vv; ° r,)(V; ° r;)| 

Ac? ij y 

x,, and the prime on where rj; = |x; — x;|, £ is a unit vector in the direction x, 

the double summation indicates the omission of the (self-energy) terms, i = j. 

Although the Darwin Lagrangian has had its most celebrated application in the 

quantum-mechanical context of the Breit interaction, it has uses in the purely 

classical domain. Two examples are cited in the suggested reading at the end of 

the chapter. See also the problems. 

12.7 Lagrangian for the Electromagnetic Field 

In Section 12.1 we considered the Lagrangian formulation of the equations of 

motion of a charged particle in an external electromagnetic field. We now ex- 

amine a Lagrangian description of the electromagnetic field in interaction with 

specified external sources of charge and current. The Lagrangian approach to 

continuous fields closely parallels the techniques used for discrete point particles.* 
The finite number of coordinates q,(t) and g(t), i = 1,2,...,n, are replaced by 

an infinite number of degrees of freedom. Each point in space-time x% corre- 

sponds to a finite number of values of the discrete index i. The generalized co- 

ordinate q, is replaced by a continuous field ¢,(x), with a discrete index (k = 1, 

2,...,) and a continuous index (x*). The generalized velocity q; is replaced by 

the 4-vector gradient, 0°¢,. The Euler-Lagrange equations follow from the sta- 

tionary property of the action integral with respect to variations 5d, and 5(d°¢,) 

around the physical values. We thus have the following correspondences: 

im xk 

qi > (x) 

Gi — 9% h,(X) (12.83) 

L= > Li(qis 4i) > | L(g, 8% by) dx 
L 

d o£ _ af 
— aL _ aL B 

dt 04 7 0g; ( HPh,) aby 

*See H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One- and Two- Electron Atoms, Springer- 
Verlag, Berlin; Academic Press, New York (1957), pp. 170 ff. 

‘For more detail and or background than given in our abbreviated account, see Goldstein (Chapter 
12) or other references cited at the end of the chapter. 
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where & is a Lagrangian density, corresponding to a definite point in space-time 
and equivalent to the individual terms in a discrete particle Lagrangian like 
(12.82). For the electromagnetic field the “coordinates” and “‘velocities” are A® 
and ofA“. 

The action integral takes the form 

(12.84) A [] ear at [ea 
The Lorentz-invariant nature of the action is preserved provided the Lagrangian 

density £ is a Lorentz scalar (because the four-dimensional volume element is 

invariant). In analogy with the situation with discrete particles, we expect the 

free-field Lagrangian at least to be quadratic in the velocities, that is, 2®A* or 

and F,,.#°* (see F°?, The only Lorentz-invariant quadratic forms are FF 
Problem 11.14). The latter is a scalar under proper Lorentz transformations, but 

a pseudoscalar under inversion. If we demand a scalar ¥ under inversions as well 

as proper Lorentz transformations, we must have &;,.. as some multiple of 

F,,F°°. The interaction term in ¥ involves the source densities. These are de- 

scribed by the current density 4-vector, J*(x). From the form of the electrostatic 

and magnetostatic energies, or from the charged-particle interaction Lagrangian 

(12.10), we anticipate that Y&;,,, is a multiple of J,A*. With this motivation we 

postulate the electromagnetic Lagrangian density 

1 1 
f= -— (12.85) FpF% — = J,A* 

167 

The coefficient and sign of the interaction terms is chosen to agree with (12.10) 
the sign and scale of the free Lagrangian is set by the definitions of the field 

strengths and the Maxwell equations 

In order to use the Euler-Lagrange equation in the form given in (12.83) 
we substitute the definition of the fields and write 

1 
f= - (12.86) vA*) — - J,A% — BrySre(dXA” — 87A")(a*A” 

167 

In calculating 0£/a(0%A“%) care must be taken to pick up all the terms. There are 

four different terms, as can be seen from the following explicit calculation 

1 o£ Spit 52°F” — 857 5.¢F 
167 77 Bap8vo + 8) 5,°FH — §," 5, FY" | 3(a8A%) 

Because of the symmetry of g,g and the antisymmetry of F°°, all four terms are 
equal and the derivative becomes 

1 1 OL 
(12.87) Fig Ba 

4 4 0(d8A%) 

The other part of the Euler-Lagrange equation is 

1 o£ 
—_ 

—— 

= (12.88) 
a 

oA“ 

Thus the equations of motion of the electromagnetic field are 

1 
J (12.89) a OF a = 

T 
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These are recognized as a covariant form of the inhomogeneous Maxwell equa- 
tions (11.141). 

The Lagrangian (12.85) yields the inhomogeneous Maxwell equations, but 

not the homogeneous ones. This is because the definition of the field strength 
tensor F?* in terms of the 4-vector potential A* was chosen so that the homo- 
geneous equations were satisfied automatically (see Section 6.2). To see this in 
our present 4-tensor notation, consider the left-hand side of the homogeneous 

equations (11.142): 

Og FP = 50,67 MP, 
— 0,60, A, 
— €7PM9 A, 

But the differential operator 4,0, is symmetric in a and A (assuming A,, is well 

behaved), while «7° is antisymmetric in a and A. Thus the contraction on a and 

A vanishes. The homogeneous Maxwell equations are satisfied trivially. 

The conservation of the source current density can be obtained from (12.89) 
by taking the 4-divergence of both sides: 

1 
—_— 

— 
= 0°? Fea c ans 

4a 

The left-hand side has a differential operator that is symmetric in a and §, while 
Fz, is antisymmetric. Again the contraction vanishes and we have 

as, = 0 (12.90) 

12.8 Proca Lagrangian; Photon Mass Effects 

The conventional Maxwell equations and the Lagrangian (12.85) are based on 

the hypothesis that the photon has zero mass. As discussed in the Introduction, 

it can always be asked what evidence there is for the masslessness of the photon 

or equivalently for the inverse square law of the Coulomb force and what con- 

sequences would result from a nonvanishing mass. A systematic technique for 

such considerations is the Lagrangian formulation. We modify the Lagrangian 

density (12.85) by adding a ‘“‘mass”’ term. The resulting Lagrangian is known as 

the Proca Lagrangian, Proca having been the first to consider it (1930, 1936). The 

Proca Lagrangian is 

2 1 Mh (12.91) FypF? + Lproca 167 8a 
A,A® ~ —J,A° 

The parameter yu has dimensions of inverse length and is the reciprocal Compton 

wavelength of the photon (uw = m,c/h). Instead of (12.89), the Proca equations 

of motion are 

—_— 

= OF a0 + WA, (12.92) 

with the same homogeneous equations, 0,¥%°° = 0, as in the Maxwell theory. We 
observe that in the Proca equations the potentials as well as the fields enter. In 
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contrast to the Maxwell equations, the potentials acquire real physical (observ- 
able) significance through the mass term. In the Lorenz gauge, now required by 
current conservation, (12.92) can be written 

4a 
—_— 

=> CIA, + pA, (12.93) — Je 
and in the static limit takes the form 

4a 
—_— 

= VA, — p’Ag eo 
If the source is a point charge gq at rest at the origin, only the time component 

Ao = ® is nonvanishing. It takes the spherically symmetric Yukawa form 

eu 
D(x) = q (12.94) 

r 

This shows the characteristic feature of the photon mass. There is an exponential 

falloff of the static potentials and fields, with the 1/e distance equal to u~'. As 

discussed in the Introduction and also in Problem 12.15, the exponential factor 

alters the character of the earth’s magnetic field sufficiently to permit us to set 

quite stringent limits on the photon mass from geomagnetic data. It was at one 

time suggested* that relatively simple laboratory experiments using lumped LC 

circuits could improve on even these limits, but the idea was conceptually flawed. 

There is enough subtlety involved that the subject is worth a brief discussion." 
The starting point of the argument is (12.93) in the absence of sources. If we 

assume harmonic time and space variation, the constraint equation on the fre- 

quency and wave number is 

w? = ck? + pec? (12.95) 

This is the standard expression for the square of the energy (divided by 4) for a 
particle of momentum fk and mass ph/c. Now consider some resonant system 
(cavity or lumped circuit). Suppose that when yw = 0 its resonant frequency is wo, 

while for « # 0 the resonant frequency is w. From the structure of (12.95) it is 
tempting to write the relation, 

(12.96) w? = wet pc? 

Evidently, the smaller the frequency, the larger the fractional difference between 
w and w, for a given photon mass. This suggests an experiment with lumped LC 

circuits. The scheme would be to measure the resonant frequencies of a sequence 

of circuits whose w3 values are in known ratios. If the observed resonant fre- 

quencies are not in the same proportion, evidence for » # 0 in (12.96) would be 

found. Franken and Ampulski compared two circuits, one with a certain induc- 

tance L and a capacitance C, hence with wo = (LC )~*, and another with the same 
inductor, but two capacitances C in parallel. The squares of the observed fre- 

*P, A. Franken and G. W. Ampulski, Phys. Rev. Lett. 26, 115 (1971). 

*Shortly after the idea was proposed, several analyses based on the Proca equations appeared. Some 

of these are A. S. Goldhaber and M. M. Nieto, Phys. Rev. Lett. 26, 1390 (1971); D. Park and E. R. 

Williams, Phys. Rev. Lett. 26, 1393 (1971); N. M. Kroll, Phys. Rev. Lett. 26, 1395 (1971); D. G. 

Boulware, Phys. Rev. Lett. 27, 55 (1971): N. M. Kroll, Phys. Rev. Lett. 27, 340 (1971). 
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quencies, corrected for resistive effects, were in the ratio 2:1 within errors. They 

thus inferred an upper limit on the photon mass, pointing out that in principle 

improvement of the accuracy by several orders of magnitude was possible if the 
idea was sound. 

What is wrong with the idea? The first observation is that lumped circuits 
are by definition incapable of setting any limit on the photon mass.* The lumped 
circuit concept of a capacitance is a two-terminal box with the-property that the 

current flow / at one terminal and the voltage V between the terminals are related 

by J = C dV/dt. Similarly a lumped inductance is a two-terminal box with the 
governing equation V = —L di/dt. When two such boxes are connected, the 

currents and voltages are necessarily equal, and the combined system is described 

by the equation, V + LC d?V/dt* = 0. The resonant frequency of a lumped LC 
circuit is @ = (LC), period. 

It is true, of course, that a given set of conducting surfaces or a given coil of 

wire will have different static properties of capacitance or inductance depending 

on whether » = 0. The potentials and fields are all modified by exponential 

factors of the general form of (12.94). The question then arises as to whether one 

can set a meaningful limit on «% by means of a “‘tabletop”’ experiment, that is, an 

experiment not with lumped-circuit elements but with ones whose sizes are mod- 

est. The reader can verify, for example, that for a solid conducting sphere of 

radius a at the center of a hollow conducting shell of inner radius b held at zero 

potential, the capitance is increased by an amount p’a’b/3, provided wb << 1. It 

then turns out that instead of the fractional difference, 

Ao _ pec? 
(12.97) 

Wo — 20s 

that follows from (12.96) with wg = (LC)~', the actual effect of the finite photon 

mass 1S 

Aw 
— = O(u’d’) (12.98) 

where d is a dimension characteristic of the circuit and w, is the resonant fre- 
quency for » = 0. This makes a “tabletop” experiment possible in principle, but 
very insensitive in practice to a possible photon mass. 

Although the estimate (12.98) says it all, it is of interest to consider the effect 
of a finite photon mass for transmission lines, waveguides, or resonant cavities. 
For transmission lines, the effect of the photon mass is the same as for static 
lumped-circuit parameters. We recall from Chapter 8 that for 4» = 0 the TEM 
modes of a transmission line are degenerate modes, with propagation at a phase 
velocity equal to the velocity of light. The situation does not alter if » # 0. The 
only difference is that the transverse behavior of the fields is governed by 
(Vi — pw’) = 0 instead of the Laplace equation. The capacitance and inductance 
per unit length of the transmission line are altered by fractional amounts of order 
pd’, but nothing else. (The result of Problem 5.29 still holds.) 

For TE and TM modes in a waveguide the situation is more complicated. 

*I am indebted to E. M. Purcell for emphasizing that this is the point almost universally missed or at 
least glossed over in discussions of the Franken—Ampulski proposal. 
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The boundary conditions on fields and potentials must be considered with care. 
Analysis shows (see Kroll, op. cit.) that TM modes have propagation governed 
by the naive equation (12.96), but that TE modes generally propagate differently. 
In any event, since the cutoff frequency of a guide is determined by its lateral 
dimensions, the generally incorrect estimate (12.97) becomes the same as the 
proper estimate (12.98). 

For resonant cavities a rigorous solution is complicated, but for small mass 
some simple results emerge. For example, for a rectangular cavity, (12.96) holds 
to a good approximation for modes with /, m, n all different from zero, but fails 

if any mode number is zero. This is because the fields behave in the direction 

associated with vanishing /, m, or n as static fields and the arguments already 

made apply. The low-frequency modes (Schumann resonances) of the earth- 

ionosphere cavity, discussed in Section 8.9, are of particular interest. These modes 

have a radial electric field and to the zeroth order in h/R, where h is the height 

of the ionosphere and R the radius of the earth, are TEM modes in a parallel 

plate geometry. Thus their propagation, hence resonant frequencies, are unal- 

tered from their yw = 0 values. To first order in h/R there is a mass-dependent 

change in resonant frequency. The result (see Kroll’s second paper cited above) 

is that (12.97) is modified on its right-hand side by a multiplicative factor g = 

0.44 h/R for the lowest Schumann mode. With h ~ 70 km, g =~ 5 X 107%. This 
means that the resonant frequency of wy) ~ 50s"! is a factor of (1/g)'” = 14 less 
effective in setting a limit on the photon mass than naive considerations imply. 

12.9 Effective “Photon” Mass in Superconductivity; 

London Penetration Depth 

A counterpart of Proca electrodynamics is found in the London theory of the 

electromagnetic behavior of superconductors, formulated to explain the Meissner 
effect. The Meissner effect (1933) is the expulsion of a magnetic field from the 
interior of a superconducting material as it makes a transition from the normal 
state (T > T,) to the superconducting state (T < T,). If the field is applied after 
the material is superconducting, it does not penetrate into the sample, or rather, 

it penetrates a very small distance called the London penetration depth A, (typ- 

ically a few tens of nanometers). Rather than being a perfect conductor, a 

superconductor is perfectly diamagnetic. It is this phenomenon, which is a con- 

sequence of an effective “photon” mass for fields within a superconductor, that 

we explore briefly. 

We begin a simple phenomenological discussion by assuming that the current 

flow within a superconductor is caused by the nonrelativistic motion of charge 

carriers of charge Q, effective mass mg, and density ng. If the average local 

velocity of these carriers is v, the current density is 

J = Qnov 

In the presence of electromagnetic fields the current can be expressed in terms 

of the canonical momentum P through (12.14), P = mgpv + QAI: 

Q? 

NoP —- jJ=— NoA 
Moc Mo 
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The superconducting state is a coherent state of the charge carriers with vanishing 
canonical momentum. (P = 0 was an assumption by the Londons, but now has 
a firm quantum-mechanical foundation—see Kittel, Chapter 12.) The effective 
current density within a superconductor is therefore 

2 

J=- (12.99) NoA 
~~ 

MgC 
~~, 

With this current density inserted in the Lorenz-gauge wave equation for A 

[(6.16), but in Gaussian units], the wave equation takes the Proca form (12.93), 
but with no source term: 

VA — @A — wA = 0 

where p” = 477Q?ng/mgc’. It follows from (12.99) that the boundary condition 

on A at an interface between normal and superconducting media across which 

no current is flowing is that the normal component of A vanishes. In the static 

limit and planar geometry, the solution of the London equation akin to (12.94) 
1 

is A « e*"*, showing that the London penetration depth is A, = pw 

— 

= (12.100) AL 

The effective ‘“‘photon” mass is (1) eg = 7i/Ayc. Since the charge carriers are 
surely related to electrons in the material, we express the charge Q in units of e, 
the protonic charge, the mass mg in units of m,, the electronic mass, and write 
the density of carriers in units of the inverse Bohr radius cubed. Then the rest 
energy of the “‘photon’”’ can be written 

2. 
é€ Q 

(m,)er¢C7 = 
é ao 

The dimensionless quantity in square brackets is presumably of order unity. The 

rest energy of the “‘photon”’ is thus of the order of the Rydberg energy, that is, 

a few electron volts. 

Experimentally and theoretically, it is known that the charge carriers in low- 

temperature superconductors are pairs of electrons loosely bound by a second- 

order interaction through lattice phonons. Thus Q = —2e, mg = 2m,, and 

No = Nege/2, where Neg is the effective number of electrons participating in the 

current flow. A useful formula is up? = 8mrong, where ro = 2.818 X 107 m is 
the classical electron radius. With ng = O(10” cm~*) we find 

-1 — 

= AL = pb O(4 x 107° cm) 

The BCS quantum-mechanical theory* shows that at zero temperature, ng = 

Neg! 2 = 2EpN(0)/3, where Ey is the Fermi energy of the valence band and N(0) 

is the density of states (number of states per unit energy of one electronic spin 

state) at the Fermi surface. For a degenerate free Fermi gas, neg is equal to the 

total density of electrons, but in a superconductor the density of states is modified 

by the interactions and resulting energy gap. Using half the total number of 

*J. Bardeen, L. N. Cooper, J. R. Schrieffer, Phys. Rev. 108, 1175 (1957). 



605 Sect. 12.10 Canonical and Symmetric Stress Tensors; Conservation Laws 

valence electrons per unit volume for ng in (12.100) yields only order-of- 
magnitude estimates for A,. In passing we note that in high-temperature (cupric 
oxide) superconductors penetration depths are found to be an order of magni- 
tude smaller than in conventional superconductors. 

Measurements of A,, especially its temperature dependence, can be accom- 
plished by incorporating the superconducting specimen into a resonant circuit 
and studying the shift in resonant frequency with change in temperature. In cir- 
cumstances in which A, is small compared to both the wavelength A associated 

with the resonant circuit and the sample size, a simple calculation (Problem 12.20) 
paralleling Section 8.1 leads to a purely reactive surface impedance, 

8x . 277A, 
=~ 
= or Tt Z,~ - Z; ~ (Gaussian units) Zo (SI units) aa 

With our convention about time dependence (e~‘"), the impedance is inductive, 

corresponding to an inductance per unit area, L = poA, (SI units). 

Our sketch of the simple London theory addresses only the Meissner effect, 

and not all of it. The magnetic and thermodynamic properties of superconduc- 

tors, the physical size of the coherent state (coherence length €), and many other 

features are fully addressed only by the microscopic quantum-mechanical theory. 

The reader wishing to learn more about superconductivity may consult Ashcroft 

and Mermin or Kittel and the numerous references cited there. An alternative, 

perhaps more physical, approach (also by F. London) to the London equations 

is addressed in Problem 12.21. 

12.10 Canonical and Symmetric Stress Tensors; 

Conservation Laws 

A. Generalization of the Hamiltonian: Canonical Stress Tensor 

In particle mechanics the transition to the Hamiltonian formulation and con- 
servation of energy is made by first defining the canonical momentum variables 

aL 
Pi = = 

Ogi 

and then introducing the Hamiltonian 

(12.101) H = 3 pidi ~ L 

It can then be shown that dH/dt = 0 provided oL/at = 0. For fields we anticipate 

having a Hamiltonian density whose volume integral over three-dimensional 

space is the Hamiltonian. The Lorentz transformation properties of # can be 

guessed as follows. Since the energy of a particle is the time component of a 

4-vector, the Hamiltonian should transform in the same way. Since H = fH dx, 
and the invariant 4-volume element is d*x = d*x dx, it is necessary that the 
Hamiltonian density % transform as the time-time component of a second-rank 

tensor. If the Lagrangian density for some fields is a function of the field variables 
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n, the Hamiltonian density is defined in analogy 
x(x), 9° bx (x), k 
with (12.101) as 

ot aD (12.102) KH = 

Ody 
ot “Al 

The first factor in the sum is the field momentum canonically conjugate to ¢; (x) 
and a¢,/at is equivalent to the velocity q;. The inferred Lorentz transformation 

properties of # suggest that the covariant generalization of the Hamiltonian den- 

sity is the canonical stress tensor 

aL 
(12.103) Po, — gPL T# => 

d(OaPx) 

For the free electromagnetic field Lagrangian 

1 
Lem = — F,,F*” 

167 

the canonical stress tensor is 

OL em 
Ts — aPA* — gp? Ln 

a(0,A*) 

where a summation over A is implied by the repeated index. With the help of 
(12.87) (but notice the placing of the indices!) we find 

(12.104) T°? = —— pF, 9A» — gL, 

To elucidate the meaning of the tensor we exhibit some components. With 

B’)/87 and (11.138) we find (E’ 
1 

T® = (E? + B?) + — V- (GE) 

1 
T° —_— (12.105) (AE) _, (E x B) +7 Yv 

T° =~ ~ (E x B); fe x DB), - 2 @8)| 
In writing the second terms here we have made use of the free-field equations 

V-E = Oand V X B — dE/dx, = 0. If we suppose that the fields are localized in 

some finite region of space (and, because of the finite velocity of propagation, 

they always are), the integrals over all 3-space at fixed time in some inertial frame 

of the components T® and T% can be interpreted, as in Chapter 6, as the total 
energy and c times the total momentum of the electromagnetic fields in that 

frame 

T™ d?x = +{ (E’ + B’) d°x = Exeta 
(12.106) 

[ 1° dx = +{e x B) d’x = CPreid 
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These are the usual (Gaussian units) expressions for the total energy and mo- 
mentum of the fields, discussed in Section 6.7. We note that the components T° 
and T” themselves differ from the standard definitions of energy density and 
momentum density by added divergences. Upon integration over all space, how- 
ever, the added terms give no contribution, being transformed into surface in- 
tegrals at infinity where all the fields and potentials are identically zero. 

The connection of the time-time and time-space components of T°? with the 
field energy and momentum densities suggests that there is a covariant general- 
ization of the differential conservation law (6.108) of Poynting’s theorem. This 
differential conservation statement is 

d,7°° = 0 (12.107) 

In proving (12.107) we treat the general situation described by the tensor (12.103) 
and the Euler-Lagrange equations (12.83). Consider 

o£ 
aT = > a, 

k | | — oF 
d(dadx) 

0 oF 
- Poy + 

* d(dax) 
=> |< 

A(Aabx) 
sat — of 

By means of the equations of motion (12.83) the first term can be transformed 

so that 

0 ot Po, + a,T%* = > Heats) ~ PL 
k ag, d(dax) | 

Since £ = L(d,, 0%¢,), the square bracket, summed, is the expression for an 

implicit differentiation (chain rule). Hence 

J.T = PL(dy, A%b,) — HL = 0 

The conservation law or continuity equation (12.107) yields the conservation 

of total energy and momentum upon integration over all of 3-space at fixed time. 

Explicitly, we have 

0= | acre d’x = ao | T°? d?x + | are d°x 
If the fields are localized the second integral (a divergence) gives no contribution. 
Then with the identifications (12.106) we find 

d d 
0 0, (12.108) ry Egeia 

at 
dt Preia 

In this derivation of the conservation of energy (Poynting’s theorem) and 
momentum and in the definitions (12.106) we have not exhibited manifest co- 

variance. The results are valid for an observer at rest in the frame in which the 

fields are specified. But the question of transforming from one frame to another 

has not been addressed. With a covariant differential conservation law, 0,7°* = 0, 

one expects that a covariant integral statement is also possible. The integrals in 

(12.106) do not appear to have the transformation properties of the components 

of a 4-vector. For source-free fields they do in fact transform properly (see Prob- 

lem 12.18 and Rohrlich, Appendix A1-5), but in general do not. To avoid having 

electromagnetic energy and momentum defined separately in each inertial frame, 
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without the customary connection between frames, one may construct explicitly 
covariant integral expressions for the electromagnetic energy and momentum, of 
which the forms (12.106) are special cases, valid in only one reference frame. 

This is discussed further in Chapter 16 in the context of the classical electromag- 

netic self-energy problem. (See Rohrlich, Section 4-9, for an explicitly covariant 
treatment of the conservation laws in integral form.) 

~~ ~~ 

B. Symmetric Stress Tensor 

The canonical stress tensor T*°, while adequate so far, has a certain number 

of deficiencies. We have already seen that T° and 7” differ from the usual 
expressions for energy and momentum densities. Another drawback is its lack 

of symmetry—see T” and T“ in (12.105). The question of symmetry arises when 

we consider the angular momentum of the field, 

—_ Leela 
4 

[ xx (Bx B) dx 

The angular momentum density has a covariant generalization in terms of the 

third-rank tensor, 

Mey = Ty — T2%8 (12.109) 

Then, just as (12.107) implies (12.108), so the vanishing of the 4-divergence 

d,M%*Y = 0 (12.110) 

implies conservation of the total angular momentum of the field. Direct calcu- 

lation of (12.110) gives 

0 = (0,T°%)x’ + TY — (0,T%)x® — TY 

With (12.107) eliminating the first and third terms, we see that conservation of 

angular momentum requires that T° be symmetric. Two final criticisms of T°, 
(12.104), are that it involves the potentials explicitly, and so is not gauge invariant, 

and that its trace (7) is not zero, as required for zero-mass photons. 

There is a general procedure for constructing a symmetric, traceless, 

gauge-invariant stress tensor @°° from the canonical stress tensor T?* (see the 
references at the end of the chapter). For the electromagnetic T°* of (12.104) we 

proceed directly. We substitute a°A* = —F**® + a*A® and obtain 

_ 

4 
“oP — 7 8F,, PA (12.111) T? = — eer + 

The first terms in (12.111) are symmetric in a and @ and gauge invariant. With 

the help of the source-free Maxwell equations, the last term can be written 

1 
TH 7-7 oF Ly ar AF = An Fr 3,A¥ 

1 
— (F°*9,A® + A®a,F**) (12.112) 
4a 

1 
— 

= 0,(F°*A®) 
4a 
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The tensor T7 has the following easily verified properties: 

dTD = (i) 
(ii) { T? d?x =0 

Thus the differential conservation law (12.107) will hold for the difference 
(T°? — T%?) if it holds for T**. Furthermore, the integral relations (12.106) for 
the total energy and momentum of the fields will also be valid in terms of the 
difference tensor. We are therefore free to define the symmetric stress tensor 0°: 

or = T? — TH 

Or 

(12.113) @7 = (sero + — err) 

Explicit calculation gives the following components, 

= Lees wy 

(12.114) @? = —€ x B); 
—_— 

@! —_— 

T 

The indices i and j refer to Cartesian components in 3-space. The tensor @°* can 
be written in schematic matrix form as 

cB 
seem amen eee ee: @78 (12.115) 

cB “ry 

In (12.115) the time-time and time-space components are expressed as the energy 
and momentum densities (6.106) and (6.118), now in Gaussian units, while the 

space-space components (12.114) are seen to be just the negative of the Maxwell 

stress tensor (6.120) in Gaussian units, denoted here by T to avoid confusion 
with the canonical tensor T%*. The various other, covariant and mixed, forms of 

the stress tensor are 

—cg —cg 

meesee bene =eee: Oup 
—Ti 

cB 
—cg Tm! 

y 

cB 
eames qeemensene @,° 

T™ 
y 

The differential conservation law 

(12.116) 8,077 = 0 
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embodies Poynting’s theorem and conservation of momentum for free fields. For 

example, with B = 0 we have 

1 ou 
—+V-S 0 = 0,0° = - ( 

where S = c’g is the Poynting vector. This is the source-free_ form of (6.108). 
Similarly, for B = i, 

3 

TM 
y 0 = 2,0” 8B _ SS é 

ot jai OX; 

a result equivalent to (6.121) in the absence of sources. The conservation of field 

angular momentum, defined through the tensor 

My = @%x?% — @O2%8 (12.117) 

is assured by (12.116) and the symmetry of @°*, as already discussed. There are 
evidently other conserved quantities in addition to energy, momentum, and an- 
gular momentum. The tensor M°*” has three time-space components in addition 
to the space-space components that give the angular momentum density. These 

three components are a necessary adjunct of the covariant generalization of an- 

gular momentum. Their conservation is a statement on the center of mass motion 

(see Problem 12.19). 

C. Conservation Laws for Electromagnetic Fields Interacting 

with Charged Particles 

In the presence of external sources the Lagrangian for the Maxwell equations 

is (12.85). The symmetric stress tensor for the electromagnetic field retains its 

form (12.113), but the coupling to the source current makes its divergence non- 

vanishing. The calculation of the divergence is straightforward: 

1 
0,077 = — 

T 
rere + Loner 

~ Ag or ,)F? + Fin OUPFAS + = Fn vere | 

The first term can be transformed by means of the inhomogeneous Maxwell 
equations (12.89). Transferring this term to the left-hand side, we have 

1 
— 

=> (OPP + ghFAB + gb FHA) 0,07 + c FRY], 
8 

The reason for the peculiar grouping of terms is that the underlined sum can be 
replaced, by virtue of the homogeneous Maxwell equation (a“F**? + a®Fe* + 
oF 8" = 0), by —a*F*" = +0*F“?. Thus we obtain 

1 
— 

—- 
= F,,(04F*8 + oF?) 0,0%7 + c Fe], 

87 



611 Sect. 12.10 Canonical and Symmetric Stress Tensors; Conservation Laws 

But the right-hand side is now the contraction (in uw and A) of one symmetric and 
one antisymmetric factor. The result is therefore zero. The divergence of the 
stress tensor is thus 

1 
(12.118) 9,0% = = FPAY, 

The time and space components of this equation are 

1 ou 
— — 

= —+V-S (12.119) 
c ot 

“Tar ( 
and 

98 >S-r (12.120) 
ot j=l Ox; 

(™) = -| oe + - (J x B), 
These are just the conservation of energy and momentum equations of Chapter 6 

—_ 

= for electromagnetic fields interacting with sources described by J* (cp, J). The 
negative of the 4-vector on the right-hand side of (12.118) is called the Lorentz 

force density, 

1 1 
(12.121) f? — c FRY], = <J+E, pE+-3xB ( 

If the sources are a number of charged particles, the volume integral of f* leads 

through the Lorentz force equation (12.1) to the time rate of change of the sum 

of the energies or the momenta of all particles: 

partictes | ax = 
at 

With the qualification expressed at the end of Section 12.10.A concerning co- 

variance, the integral over 3-space at fixed time of the left-hand side of (12.118) 

is the time rate of change of the total energy or momentum of the field. We 

therefore have the conservation of 4-momentum for the combined system of 

particles and fields: 

(12.122) d°x(d,0° + f®) = < (PB + P28 srtictes) 0 

The discussion above focused on the electromagnetic field, with charged par- 

ticles only mentioned as the sources of the 4-current density. A more equitable 
treatment of a combined system of particles and fields involves a Lagrangian 
having three terms, a free-field Lagrangian, a free-particle Lagrangian, and an 

interaction Lagrangian that involves both field and particle degrees of freedom. 
Variation of the action integral with respect to the particle coordinates leads to 
the Lorentz force equation, just as in Section 12.1, while variation of the field 

“coordinates” gives the Maxwell equations, as in Section 12.7. However, when 

self-energy and radiation reaction effects are included, the treatment is not quite 

so straightforward. References to these aspects are given at the end of the 

chapter. 

Mention should also be made of the action-at-a-distance approach associated 
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with the names of Schwarzschild, Tetrode, and Fokker. The emphasis is on the 
charged particles and an invariant action principle is postulated with the inter- 

action term involving integrals over the world lines of all the particles. The idea 
of electromagnetic fields and the Maxwell equations is secondary. This approach 
is the basis of the Wheeler-Feynman absorber theory of radiation.* 

12.11 Solution of the Wave Equation in Covariant Form; | 
Invariant Green Functions 

The electromagnetic fields F** arising from an external source J*(x) satisfy the 
inhomogeneous Maxwell equations 

0,F%? = ~ ye 

With the definition of the fields in terms of the potentials this becomes 

An 
FA8 — 09(0,A%) = . JP 

If the potentials satisfy the Lorenz condition, 0,A* = 0, they are then solutions 

of the four-dimensional wave equation, 

Aq 
(12.123) LA* = C JF(x) 

The solution of (12.123) can be accomplished by finding a Green function D(x, x’) 
for the equation 

(12.124) O,D(x, x") = 6% — x’) 

where 85(x — x’) = 6(x9 — x4) 5(x — x’) is a four-dimensional delta function. 
In the absence of boundary surfaces, the Green function can depend only on the 

4-vector difference z* = x* — x'*. Thus D(x, x’) = D(x — x’) = D(z) and (12.124) 
becomes 

DD(z) = 6(z) 
We use Fourier integrals to transform from coordinate to wave number space. 

The Fourier transform D(k) of the Green function is defined by 

1 
D(z) = (12.125) { d*k D(k)e"*? 

(277)" 
where k- z = koZ — k+z. With the representation of the delta function being 

1 
§4(z) =— (12.126) 

{ d*ke7* 2 
(27)" 

one finds that the k-space Green function is 

1 
D(k) = -—— (12.127) 

k-k 

*J. A. Wheeler and R. P. Feynman, Rev. Mod. Phys. 21, 425 (1949). 
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The Green function D(z) is therefore 

ew Z 

D(z) = (12.128) + | atk - @: m)* 
Because the integrand in (12.128) is singular, the expression as it stands is 

ambiguous and is given definite meaning only by the handling of the singularities 

We proceed by performing the integration over dk first. Thus 

oo e- ikgZo 
ak eik Zz 

D(z) = - (12.129) _ ake a 
2 k3 (20)* 

where we have introduced the notation, « = |k|. The ko integral is given meaning 

by considering ko as a complex variable and treating the integral as a contour 

integral in the ky plane. The integrand has two simple poles, at ky = +« as shown 

in Fig. 12.7. Green functions that differ in their behavior are obtained by choosing 

different contours of integration relative to the poles. Two possible contours are 

labeled r and a in Fig. 12.7. These open contours may be closed at infinity with 

a semicircle in the upper or lower half-plane, depending on the sign of Zo in the 

exponential. For z) > 0, the exponential, e~ “°°, increases without limit in the 
upper half-plane. To use the residue theorem, we must therefore close the con- 

tour in the lower half-plane. The opposite holds for z) < 0 

Consider now the contour r. For z) < 0, the resulting integral vanishes be- 

cause the contour is closed in the upper half-plane and encircles no singularities 

For Z, > 0, the integral over Kg is 

e” ikoz0 

Ke $ dky >—3 — = —27i Res( <~,) 

— 

= —— sin(kZo) 

The Green function (12.129) is then 

(KZ) 6(Zo) 
D,(Z) 

[ wx ik-z SUD 
K (2m) 

The integration over the angles of k leads to 

9(Zo) (12.130) D,{z) [ dx sin(kR) sin(«Zo) 
27°R 

[o 

—— > 

—K 

_~— — — > — + -— > —- — — 8 

Fignre 12.7 
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where R = |z| = |x — x’| is the spatial distance between x* and x’* Using some 

simple trigonometry and a change of variable, we can write (12:130) as 

D,(z) = 9(Zo) [- dx[e@o- Rx _ eizo+R)«] 
87’R 

The remaining integrals are just Dirac delta functions. Because Z) > 0 and R > 0 

the second integral is always zero. The Green function for contour ris therefore 

A(X — xo) (12.131) xg — R) 5(Xo D(x - x') = 
4r7R 

Here we have reintroduced the original variables x and x’. This Green function 

is called the retarded or causal Green function because the source-point time x9 

is always earlier than the observation-point time x9. Equation (12.131), or its 
Fourier transform with respect to xo, (47R)~* e’°®, is the familiar Green function 
of outgoing waves of Chapter 6. 

With the choice of the contour a in Fig. 12.7, an exactly parallel calculation 

yields the advanced Green function, 

4[ — (xo ~ xo)] (12.132) Dx — x') = 5(Xo — Xo + R) 
4rR 

These Green functions can be put in covariant form by use of the following 
identity: 

5[(%o — x0)? — [x — x’P)] 5[(x — x')"] 
A[(%o — Xo — R)%o — x0 + R)I 

= $5 [8(x — xh — R) + 8% ~ x5 + BI] 
Then, since the theta functions select one or the other of the two terms, we have 

1 
D,(x — x') = 5 (Xo ~ xo) A(x — x')’] 

(12.133) 

D(x — x') = F~ (xo — Xo) A(x — 2')’] 

The theta functions, apparently noninvariant, are actually invariant under proper 

Lorentz transformations when constrained by the delta functions. Thus (12.133) 

gives the Green functions an explicitly invariant expression. The theta and delta 

functions in (12.133) show that the retarded (advanced) Green function is dif- 

ferent from zero only on the forward (backward) light cone of the source point. 

The solution of the wave equation (12.123) can now be written down in terms 

of the Green functions: 

(12.134) A(x) = A&(x) + <2 d*x’ D,(x — x')J%(x') 

or 

(12.135) Ame) = AS) +“ | ate! Doe - x)°) 



Ch. 12 References 615 

where Af, and A%,, are solutions of the homogeneous wave equation. In (12.134) 
the retarded Green function is used. In the limit x) > —, the integral over the 
sources vanishes, assuming the sources are localized in space and time, because 
of the retarded nature of the Green function. We see that the free-field potential 
Aj,(x) has the interpretation of the “incident” or “incoming” potential, specified 
at X» — —. Similarly, in (12.135) with the advanced Green function, the ho- 

mogeneous solution A¢,,(x) is the asymptotic “outgoing” potential, specified at 

Xo —> +, The radiation fields are defined as the difference between the “‘out- 

going” and the “incoming” fields. Their 4-vector potential is 

— 

= (12.136) Afaa(X) = Asut ~~ An “| ay D(x — x')J*(x') 

where 

D(z) = D(z) — D(z) (12.137) 

is the difference between the retarded and advanced Green functions. 

The fields of a charged particle moving in a prescribed path will be of interest 

in Chapter 14. If the particle is a point charge e whose position in the inertial 

frame K is r(f), its charge density and current density in that frame are 

p(x, t) = e dx — r(z)] 
(12.138) 

J(x, t) = e v(t) d[x — r(t)] 

where v(t) = dr(t)/dt is the charge’s velocity in K. The charge and current den- 

sities can be written as a 4-vector current in manifestly covariant form by intro- 

ducing the charge’s 4-vector coordinate r*(r) as a function of the charge’s proper 

time 7 and integrating over the proper time with an appropriate additional delta 

function. Thus 

(12.139) J*(x) = ec | dr U*(r) 6 [x — r(n)] 

where U* is the charge’s 4-velocity. In the inertial frame K, r* = [ct, r(t)] and 
U* = (yc, yv). The use of (12.139) in (12.134) to yield the potentials and fields 
of a moving charge is presented in Section 14.1. 
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The general construction of the symmetric, gauge-invariant stress tensor @%* from 
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Landau and Lifshitz, Classical Theory of Fields, Sections 32 and 94 

The particular questions of the interaction of charged particles and electromagnetic 
fields and the associated conservation laws are covered in 

Barut, Chapters IV and V 

Landau and Lifshitz, Classical Theory of Fields, Chapter 4 

Schwartz, Chapter 7 

and in an especially thorough fashion by 

Rohrlich 

who treats the self-energy and radiation reaction aspects in detail. For a careful discussion 
of the energy, momentum and mass of electromagnetic fields, consult Rohrlich’s book, 
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The invariant Green functions for the wave equation are derived in almost any book 
on quantum field theory. One such book, with a concise covariant treatment of classical 
electrodynamics at its beginning, is 

Thirring, Section 1.2 and Appendix II 

Two reviews on the subject of the photon mass, already cited in the Introduction, are 
A. S. Goldhaber and M. M. Nieto, Rev. Mod. Phys. 43, 277 (1971). 

I. Yu. Kobzarev and L. B. Okun’, Uspek. Fiz. Nauk. 95, 131 (1968) [English 

transl., Sov. Phys. Uspek. 11, 338 (1968)]. 

Problems 

12.1 (a) Show that the Lorentz invariant Lagrangian (in the sense of Section 12.1B) 

mU,U* 
L= 

2 
- 1,4 

gives the correct relativistic equations of motion for a particle of mass m and 

charge q interacting with an external field described by the 4-vector potential 

A%(x). 

Define the canonical momenta and write out the effective Hamiltonian in (b) 
both covariant and space-time form. The effective Hamiltonian is a Lorentz 

invariant. What is its value? 

12.2 (a) Show from Hamilton’s principle that Lagrangians that differ only by a total 

time derivative of some function of the coordinates and time are equivalent 

in the sense that they yield the same Euler-Lagrange equations of motion. 

(b) Show explicitly that the gauge transformation A*% — A® + d*A of the poten- 

tials in the charged-particle Lagrangian (12.12) merely generates another 

equivalent Lagrangian. 

12.3 A particle with mass m and charge e moves in a uniform, static, electric field Ep. 

(a) Solve for the velocity and position of the particle as explicit functions of time, 
assuming that the initial velocity v) was perpendicular to the electric field. 

Eliminate the time to obtain the trajectory of the particle in space. Discuss (b) 
the shape of the path for short and long times (define “short” and “long” 
times). 

12.4 It is desired to make an E X B velocity selector with uniform, static, crossed, 
electric and magnetic fields over a length L. If the entrance and exit slit widths are 

Ax, discuss the interval Au of velocities, around the mean value u = cE/B, that is 

transmitted by the device as a function of the mass, the momentum or energy of 

the incident particles, the field strengths, the length of the selector, and any other 

relevant variables. Neglect fringing effects at the ends. Base your discussion on 

the practical facts that L ~ few meters, Emax ~ 3 X 10° V/m, Ax ~ 107-7-107* m, 
u ~ 0.5-0.995c. (It is instructive to consider the equation of motion in a frame 

moving at the mean speed u along the beam direction, as well as in the laboratory.) 

References: C. A. Coombes et al., Phys. Rev. 112, 1303 (1958); P. Eberhard, M. L. 

Good, and H. K. Ticho, Rev. Sci. Instrum. 31, 1054 (1960). 

12.5 A particle of mass m and charge e moves in the laboratory in crossed, static, 

uniform, electric and magnetic fields. E is parallel to the x axis; B is parallel to the 

y axis. 

(a) For |E| <|B| make the necessary Lorentz transformation described in Sec- 

tion 12.3 to obtain explicitly parametric equations for the particle’s trajectory. 

(b) Repeat the calculation of part a for |E| > |B. 
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12.6 Static, uniform electric and magnetic fields, E and B, make an angle of @ with 
respect to each other. 

(a) By a suitable choice of axes, solve the force equation for the motion of a 
particle of charge e and mass m in rectangular coordinates: 

(b) For E and B parallel, show that with appropriate constants of integration, 

etc., the parametric solution can be written 
~~ ™_ 

z=—v1 + A? cosh(p¢) x = AR sin d, y = AR cos ¢, 

ct = — V1 + A? sinh(p¢) 

where R = (mc’/eB), p = (E/B), A is an arbitrary constant, and ¢ is the 

parameter [actually c/R times the proper time]. 

12.7 A constant uniform magnetic induction B in the negative z direction exists in a 

region limited by the planes x = 0 and x = a. For x < 0 and x > a, there is no 

magnetic induction. 

(a) Determine the total electromagnetic momentum G in magnitude and direc- 

tion of the combination of a particle with point charge q at (xo, Yo, Zo) in the 

presence of this magnetic induction. Find G for the charge located on either 

side of and within the region occupied by the magnetic field. Assume the 

particle is at rest or in nonrelativistic motion. 

(b) The particle is normally incident on the field region from x < 0 with nonre- 
lativistic momentum p. Assuming that p > qBa/c, determine the components 

of momentum after the particle has emerged into the field-free region, x > a. 

Compare the components of the sum of mechanical (particle) and electro- 
magnetic momenta initially and finally. Why are some components of the 

sum conserved and some not? 

(c) Assume that p < qBa/2c and that the initial conditions are such that the 

particle’s motion is confined within the region of the magnetic induction at 

fixed z. Discuss the conservation, or lack of it, of the components of the sum 

of mechanical and electromagnetic momentum as the particle moves in its 

path. Comment. 

12.8 In Problems 6.5 and 6.6 a nonvanishing momentum of the electromagnetic fields 

was found for a charge and a current-carrying toroid at rest. This paradox is among 

situations involving “hidden momentum.” Since the field momentum is propor- 

tional to 1/c”, you may infer that relativistic effects may enter the considerations. 

(a) Consider the charge carriers in the toroid (or other current-carrying systems) 

of mass m, charge e, and individual mechanical momentum p = ymy, and 

the current density J = env, where n is the number density of carriers and y 

is the relativistic Lorentz factor. Use conservation of energy for each charge 

carrier to show that, for the ‘‘static’’ field situation of Problem 6.5, the total 

mechanical momentum of the charge carriers, 

— 

= Pech = { d?x ynmy -5 | d*x OJ 

just opposite to the field momentum of Problem 6.5a. 

(b) Consider the toroid of Problem 6.6 to be of rectangular cross section, with 

width w and height h both small compared to a, and hollow tubes of uniform 
cross section A,,. Show that the electrostatic potential energy difference be- 
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tween the inner and outer vertical segments of each tube yields the change 
in ymc* necessary to generate a net vertical mechanical momentum equal 
and opposite to the result of Problem 6.6a, with due regard to differences in 
units. 

Reference: Vaidman, op. cit. 

12.9 The magnetic field of the earth can be represented approximately by a magnetic 
dipole of magnetic moment M = 8.1 x 107° gauss-cm?. Consider the motion of 
energetic electrons in the neighborhood of the earth under the action of this dipole 
field (Van Allen electron belts). [Note that M points south.] 

(a) Show that the equation for a line of magnetic force is r = ro sin?0, where @ 
is the usual polar angle (colatitude) measured from the axis of the dipole, 
and find an expression for the magnitude of B along any line of force as a 
function of 6. 

(b) A positively charged particle circles around a line of force in the equatorial 

plane with a gyration radius a and a mean radius R (a « R). Show that the 
particle’s azimuthal position (east longitude) changes approximately linearly 
in time according to 

a 

R 
#0) = bo 3 ( ) wp(t — to) 

where wz is the frequency of gyration at radius R. 

(c) If, in addition to its circular motion of part b, the particle has a small com- 

ponent of velocity parallel to the lines of force, show that it undergoes small 

oscillations in 6 around 6 = 7/2 with a frequency 0 = (3/V2)(a/R) wz. Find 
the change in longitude per cycle of oscillation in latitude. 

(d) For an electron of 10 MeV kinetic energy at a mean radius R = 3 X 10’ m, 

find w, and a, and so determine how long it takes to drift once around the 

earth and how long it takes to execute one cycle of oscillation in latitude. 

Calculate the same quantities for an electron of 10 keV at the same radius. 

12.10 A charged particle finds itself instantaneously in the equatorial plane of the earth’s 

magnetic field (assumed to be a dipole field) at a distance R from the center of 

the earth. Its velocity vector at that instant makes an angle a with the equatorial 

plane (v,/v, = tan a). Assuming that the particle spirals along the lines of force 

with a gyration radius a < R, and that the flux linked by the orbit is a constant 

of the motion, find an equation for the maximum magnetic latitude A reached by 

the particle as a function of the angle a. Plot a graph (not a sketch) of A versus a. 

Mark parametrically along the curve the values of a for which a particle at radius 

R in the equatorial plane will hit the earth (radius Ro) for R/Ro = 1.2, 1.5, 2.0, 2.5, 
3, 4, 5. 

12.11 Consider the precession of the spin of a muon, initially longitudinally polarized, 

as the muon moves in a circular orbit in a plane perpendicular to a uniform mag- 
netic field B. 

(a) Show that the difference 0 of the spin precession frequency and the orbital 
gyration frequency is 

eBa 
OQ = 

m,c 

independent of the muon’s energy, where a = (g — 2)/2 is the magnetic 

moment anomaly. (Find equations of motion for the components of spin 

along the mutually perpendicular directions defined by the particle’s velocity, 
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the radius vector from the center of the circle to the particle, and the magnetic 
field.) 

For the CERN Muon Storage Ring, the orbit radius is R = 2.5 meters and 
(b) 

B = 17 X 10° gauss. What is the momentum of the muon?. What is the time 

dilatation factor y? How many periods of precession T = 27/Q, occur per 
observed laboratory mean lifetime of the muons? [m, = 105.66 MeV, 

~~ ~~ ™ = 2.2 X 10°°s, a = a/2n). 

(c) Express the difference frequency 1 in units of the orbital rotation frequency 

and compute how many precessional periods (at the difference frequency) 
occur per rotation for a 300 MeV muon, a 300 MeV electron, a 5 GeV elec- 
tron (this last typical of the e*e™ storage ring at Cornell). 

12.12 In Section 11.11 the BMT equation of motion for the spin of a particle of charge 

e and a magnetic moment with an arbitrary g factor was obtained. 

(a) Verify that (11.171) is the correct equation for the time derivative of the 

longitudinal component of the rest-frame spin vector s. 

(b) Let ft be a unit 3-vector perpendicular to 6 and coplanar with B and s (ii is 
generally time dependent). Let 6 be the angle between B and s. Show that 

the time rate of change of 6 can be written as 

é dé & 
— 
= 

2 mec dt |( 1)a-@ x w+ (2-3) e| 

where E and B are the fields in the laboratory and cB = cBB is the particle’s 
instantaneous velocity in the laboratory. 

(c) For a particle moving undeflected through an E X B velocity selector and 

with (fi x B) -B = B, find d6/dt in terms of the gyration frequency eB/ymc. 

(d) By defining the two 4-vectors, L* = (y, yp) and N* = (0, fi), show that dé/ 
dr can be written in the quasi-covariant form 

1 & 
— = 

db _ e 
F*N, 

2 
a Ue dr mc | 

where U* is the particle’s 4-velocity. 

12.13 (a) Specalize the Darwin Lagrangian (12.82) to the interaction of two charged 

particles (7m, qi) and (72, q2). Introduce reduced particle coordinates, r = 

X, — X2, V = ¥,; — ¥2 and also center of mass coordinates. Write out the 

Lagrangian in the reference frame in which the velocity of the center of mass 

vanishes and evaluate the canonical momentum components, p, = dL/dv,, 

etc. 

Calculate the Hamiltonian to first order in 1/c? and show that it is (b) 

2 1 1 1 1 P P 192 p+ (p- fy 
— + + 4192 

=> 
2 r 8c? r my m m m3 2m,m,c? ( ( ( 

Compare with the various terms in (42.1) of Bethe and Salpeter [op. cit. 

(Section 12.6), p. 193]. Discuss the agreements and disagreements. 

12.14 An alternative Lagrangian density for the electromagnetic field is 

g = -— 
8ir 

IgA gd%A® — IgA" 

(a) Derive the Euler-Lagrange equations of motion. Are they the Maxwell equa- 

tions? Under what assumptions? 
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(b) Show explicitly, and with what assumptions, that this Lagrangian density 
differs from (12.85) by a 4-divergence. Does this added 4-divergence affect 
the action or the equations of motion? 

12.15 Consider the Proca equations for a localized steady-state distribution of current 
that has only a static magnetic moment. This model can be used to study the 
observable effects of a finite photon mass on the earth’s magnetic field. Note that 
if the magnetization is M(x) the current density can be written as J c(V xM) 

(a) Show that if & = mf(x), where m is a fixed vector and f(x) is a localized 

scalar function, the vector potential is 

eTHlxmx’| 
d°x' A(x) = -m x V | f(x’) 

x’| [x 

(b) If the magnetic dipole is a point dipole at the origin [f(x) = 4(x)], show that 

the magnetic field away from the origin is 

2,2 eur Be 
— 

3 
B(x) = [3f(f - m) — (1 + pr + \S- um 

(c) The result of part b shows that at fixed r = R (on the surface of the earth) 

the earth’s magnetic field will appear as a dipole angular distribution, plus 

an added constant magnetic field (an apparently external field) antiparallel 

to m. Satellite and surface observations lead to the conclusion that this 

ternal’ field is less than 4 = 107° times the dipole field at the magnetic 
in earth radii and an upper limit on equator. Estimate a lower limit on pu 

the photon mass in grams from this datum 

This method of estimating yw is due to E. Schrédinger, Proc. R. Irish 

Acad. A49, 135 (1943). See A. S. Goldhaber and M. M. Nieto, Phys. Rev 

Lett. 21, 567 (1968) 

12.16 (a) Starting with the Proca Lagrangian density (12.91) and following the same 
procedure as for the electromagnetic fields, show that the symmetric stress- 

energy-momentum tensor for the Proca fields is 

@*8 = — ae PY + = gh PY + (a2a" — = gFA,A )| 

For these fields in interaction with the external source J*, as in (12.91), show (b) 
that the differential conservation laws take the same form as for the electro- 

magnetic fields, namely, 

JF 
@2 = 

Show explicitly that the time-time and space-time components of ©? are (c) 

(A°A° + A+ A)] @° = — [E? + B’ 

@° = = [(E x B), + w2A‘A"] 

Consider the “Thomson” scattering of Proca waves (photons with mass) by a free 12.17 

electron. 

(a) As a preliminary, show that for an incident plane wave of unit amplitude, 
A = € cos(kz — wt), where € is a polarization vector of unit magnitude 

describing either longitudinal (/) or transverse (t) fields, the time-averaged 

energy fluxes (measured by ©*°) are F, = wk/8a and F; = (u/w)F,. Show 
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also for arbitrary polarization that the ratio of time-averaged energy flux 
to energy density is 

k (O*) _ 
—_ 

= B 
@ (@%) 

as expected for particles of mass p. 

(b) For polarization €, initially and polarization € finally, show that the “Thom- 

son” cross section for scattering is 

do Fou 
—- (e, €o) = reEo le* . Eo" 
dQ F, 

where rg is the classical electron radius, Ep is a factor for the efficiency of the 

incident Proca field in exciting the electron, and the final factor is a ratio of 

the outgoing to incident fluxes. What is the value of Eo? 

(c) For an unpolarized transverse wave incident, show that the scattering cross 

section is 

2 do To 

dO, a) ( I: + cos?6 + (“) si 
where the first term is the familiar transverse to transverse scattering and the 
second is transverse to longitudinal. 

(d) For a longitudinally polarized wave incident, show that the cross section, 

summed over outgoing polarizations, is 

do bb Be 
_ _ 

@ dO, @ }-{ ( ) faa «| Jas 
where the first term is the longitudinal to transverse scattering and the second 

is longitudinal to longitudinal. 

Note that in the limit 4/w — 0, the longitudinal fields decouple and we 

recover the standard Thomson cross section. 

12.18 Prove, by means of the divergence theorem in four dimensions or otherwise, that 

for source-free electromagnetic fields confined to a finite region of space, the 3- 

space integrals of ©°° and @® transform as the components of a constant 4-vector, 

as implied by (12.106). 

12.19 Source-free electromagnetic fields exist in a localized region of space. Consider 

the various conservation laws that are contained in the integral of 0, M°*” = 0 over 

all space, where M°* is defined by (12.117). 

(a) Show that when 8 and y are both space indices conservation of the total field 

angular momentum follows. 

(b) Show that when B = 0 the conservation law is 

aX _ Pon 

dt Eom 

where X is the coordinate of the center of mass of the electromagnetic fields, 

defined by 

x [uae ={ muds 

where u is the electromagnetic energy density and E,,, and P.,,, are tlie total 
energy and momentum of the fields. 
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12.20 A uniform superconductor with London penetration depth A, fills the half-space 

x > Q. The vector potential is tangential and for x < 0 is given by 

Ay - (ae + be **)e7 it 

Find the vector potential inside the superconductor. Determine expressions for 

the electric and magnetic fields at the surface. Evaluate the surface impedance Z, 

(in Gaussian units, 4z/c times the ratio of tangential electric field to tangential 

magnetic field). Show that in the appropriate limit your result for Z, reduces to 

that given in Section 12.9. 

12.21 A two-fluid model for the electrodynamics of superconductors posits two types of 

electron, normal and superconducting, with number densities, charges, masses, and 

collisional damping constants, n;, e;, m;, and y;, respectively (j = N, S). The elec- 

trical conductivity consists of the sum of two terms of the Drude form (7.58) with 

foN > nj, e > e;,m — m,, Yo > ¥;. The normal (superconducting) electrons are 

distinguished by yy # 0 (ys = 0). 

(a) Show that the conductivity of the superconductor at very low frequencies is 

largely imaginary (inductive) with a small resistive component from the nor- 

mal electrons. 

(b) Show that use of Ohm’s law with the conductivity of part a in the Maxwell 

equations results in the static London equation for the electric field in the 

limit w — 0, with the penetration depth (12.100), provided the carriers are 

identified with the superconducting component of the electric fluid. 



CHAPTER 13 

Collisions, Energy Loss, and 
Scattering of Charged Particles; — 
Cherenkov and Transition Radiation 

In this chapter we consider collisions between swiftly moving, charged particles, 

with special emphasis on the exchange of energy between collision partners 

and on the accompanying deflections from the incident direction. We also 

treat Cherenkov radiation and transition radiation, phenomena associated with 

charged particles in uniform motion through material media. 

A fast charged particle incident on matter makes collisions with the atomic 

electrons and nuclei. If the particle is heavier than an electron (mu or pi meson, 

K meson, proton, etc.), the collisions with electrons and with nuclei have different 

consequences. The light electrons can take up appreciable amounts of energy 

from the incident particle without causing significant deflections, whereas the 

massive nuclei absorb very little energy but because of their greater charge cause 

scattering of the incident particle. Thus loss of energy by the incident particle 

occurs almost entirely in collisions with electrons. The deflection of the particle 
from its incident direction results, on the other hand, from essentially elastic 
collisions with the atomic nuclei. The scattering is confined to rather small angles, 
so that a heavy particle keeps a more or less straight-line path while losing energy 
until it nears the end of its range. For incident electrons both energy loss and 
scattering occur in collisions with the atomic electrons. Consequently the path is 

much less straight. After a short distance, electrons tend to diffuse into the ma- 
terial, rather than go in a rectilinear path. 

The subject of energy loss and scattering is an important one and is discussed 

in several books (see references at the end of the chapter) where numerical tables 

and graphs are presented. Consequently our discussion emphasizes the physical 

ideas involved, rather than the exact numerical formulas. Indeed, a full quantum- 

mechanical treatment is needed to obtain exact results, even though all the es- 

sential features are classical or semiclassical in origin. All the orders of magnitude 

of the quantum effects are easily derivable from the uncertainty principle, as will 

be seen. 

We begin by considering the simple problem of energy transfer to a free 

electron by a fast heavy particle. Then the effects of a binding force on the 

electron are explored, and the classical Bohr formula for energy loss is obtained. 

A description of quantum modifications and the effect of the polarization of the 

medium is followed by a discussion of the closely related phenomenon of 

Cherenkov radiation in transparent materials. Then the elastic scattering of in- 

cident particles by nuclei and multiple scattering are presented. Finally, we treat 

624 
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transition radiation by a particle passing from one medium to another of different 
optical properties. 

13.1 Energy Transfer in a Coulomb Collision Between Heavy 
Incident Particle and Stationary Free Electron; 
Energy Loss in Hard Collisions 

A swift particle of charge ze and mass M (energy E = yMc”, momentum P = 

yBMc) collides with an atomic electron of charge —e and mass m. For energetic 

collisions the binding of the electron in the atom can be neglected; the electron 

can be considered free and initially at rest in the laboratory. For all incident 

particles except electrons and positrons, M >> m. Then the collision is best 

viewed as elastic Coulomb scattering in the rest frame of the incident particle. 

The well-known Rutherford scattering formula is 

do 0 ze? 
_ cosec* — (13.1) 

dQ 2 2 ( 
where p = y$mc and v = Bc are the momentum and speed of the electron in 

the rest frame of the heavy particle (exact in the limit M/m — ©). The cross 

section can be given a Lorentz-invariant form by relating the scattering angle to 
—_— 

= —(p — p')’. For elastic scattering, the 4-momentum transfer squared, Q? 
Q? = 4p’ sin?(0/2). The result is 

do ze 

4a (13.2) 
dQ’ BcQ? 

y 

where fc, the relative speed in each particle’s rest frame, is found from p” = 
1 — (Mmc?/P - py’. 

The cross section for a given energy loss T by the incident particle, that is, 
the kinetic energy imparted to the initially stationary electron, is proportional to 

(13.2). If we evaluate the invariant Q? in the electron’s rest frame, we find Q? = 
2mT. With Q? replaced by 2mT, (13.2) becomes 

do 21z’e* 
(13.3) 

dT mc?p?T? 

Equation (13.3) is the cross section per unit energy interval for energy loss T’ by 

the massive incident particle in a Coulomb collision with a free stationary elec- 

tron. Its range of validity for actual collisions in matter is 

Thin < T < Tmax 

with T.,;, set by our neglect of binding (Trin 2 fi(w) where A(w) is an estimate 

of the mean effective atomic binding energy) and T,,. governed by kinematics. 

We can find Tax by recognizing that the most energetic collision in the rest frame 

of the incident particle occurs when the electron reverses its direction. After such 
—_— 

= ymc? and momentum p’ = ymc in the a collision, the electron has energy E’ 

direction of the incident particle’s velocity in the laboratory. The boost to the 

laboratory gives 

(13.4) Tmax = E — me? = y(E' + Bep') ~ me* = 2y°B*me* 
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We note in passing that (13.4) is not correct if the incident particle has too high 
an energy. The exact answer for 7,,,x has a factor in the denominator, D = 

1 + 2mE/M?c?2 + m?/M?. For muons (M/m ~ 207), the denominator must be 

taken into account if the energy is comparable to 44 GeV or greater. For pro- 

tons that energy is roughly 340 GeV. For equal masses, it is easy to see that 
Tmax = (y — 1)mc?. 

When the spin of the electron is taken into account, there is~a quantum- 

mechanical correction to the energy loss cross section, namely, a factor of 
1 — B? sin?(6/2) = (1 — B? T/T ymax): 

T do Qaze* 
(13.5) 

dT Tm ax ~ mc2B?T? (9 ( le 
The energy loss per unit distance in collisions with energy transfer greater 

than « for a heavy particle passing through matter with N atoms per unit volume, 

each with Z electrons, is given by the integral, 

do ar 
dT 

aE (T> °) _ NZ ~ r 

(13.6) 
ze" 

= 2aNZ mc? B? eet) 
In the result (13.6) we assumed e << T,,,,, and used (13.5) for the energy-transfer 

cross section. The small term, — 8”, in the square brackets is the relativistic spin 

contribution. Equation (13.6) represents the energy loss in close collisions. It is 
only valid provided e >> f(w) because binding has been ignored. 

An alternative, classical or semiclassical approach throws a different light on the 
physics of energy loss. In the rest frame of the heavy particle the incident electron ap- 

proaches at impact parameter b. There is a one-to-one correspondence between b and 

the scattering angle @ (see Problem 13.1). The energy transfer T can be written as 

1 2274 
T(b) = 2 B+ DE? 

(c) 
min the energy transfer varies as b~*, implying that, if the with b©), = ze*/pu. For b >> b 

energy transfer is greater than e, the impact parameter must be less than the maximum, 

2z7e* 

mv7e 
12. =| 

‘i 

When the heavy particle passes through matter it ‘“‘sees”’ electrons at all possible impact 

parameters, with weighting according to the area of an annulus, 27b db. The classical 

energy loss per unit distance for collisions with transfer greater than e is therefore 

po) (2) 
max ze4 biS2.(€) T(b)b db = 2aNZ | < (T > &) = 2nNZ 

0 
bo 

min 

mc’ B? )] (13.7) in| ( 

Substitution of b,x and Dp, leads directly to (13.6), apart from the relativistic spin cor- 

rection. That we obtain the same result (for a spinless particle) quantum mechanically 

and classically is a consequence of the validity of the Rutherford cross section in both 

regimes. 

If we wish to find a classical result for the total energy loss per unit distance, we must 

address the influence of atomic binding. Electronic binding can be characterized by the 
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frequency of motion (w) or its reciprocal, the period. The incident heavy particle produces 
appreciable time-varying electromagnetic fields at the atom for a time At ~ b/lyv [see 
(11.153)]. If the characteristic time At is long compared to the atomic period, the atom 
responds adiabatically—it stretches slowly during the encounter and returns to normal, 
without appreciable energy being transferred. On the other hand, if Ar is very short com- 
pared to the characteristic period, the electron can be treated as almost free. The dividing 
line is (w)At ~ 1, implying a maximum effective impact parameter 

‘yu 
pO. = 

max (13.8) 
() 

beyond which no significant energy transfer is possible. Explicit illustration of this cutoff 
for a charge bound harmonically is found in Problems 13.2 and 13.3. 

(c) If (13.8) is used in (13.7) instead of b max (€), the total classical energy loss per unit 
distance is approximately 

2 54 
é dE = 2nNZ ~~ In(B¢) (13.9) 

ax ( mc’ Bp? 

where 

_ , PBme? _ , PB me? 
B. (13.10) 

zew) nii{w) 

In (13.10) we have inserted a numerical constant A of the order of unity to allow for our 
(c) 
max: uncertainty in b The parameter y = ze?/hv is a characteristic of quantum-mechanical 

Coulomb scattering: n < 1 is the strongly quantum limit; 7 >> 1 is the classical limit. 

Equation (13.9) with (13.10) contains the essentials of the classical energy loss for- 

mula derived by Niels Bohr (1915). With many different electronic frequencies, (w) is the 

geometric mean of all the frequencies w;, weighted with the oscillator strength f;: 

(13.11) Zinw) = 2 fin o, 

Equation (13.10) is valid for 7 > 1 (relatively slow alpha particles, heavy nuclei) but 

overestimates the energy loss when 7 < 1 (muons, protons, even fast alpha particles). We 

see below that when 7 < 1 the correct result sets 7 = 1 in (13.10). 

13.2 Energy Loss from Soft Collisions; Total Energy Loss 

The energy loss in collisions with energy transfers less than e, including those 

small compared to electronic binding energies, really can be treated properly 

only by quantum mechanics, although after the fact we can “explain” the result 

in semiclassical language. The result, first obtained by Bethe (1930), is 

2 54 
dE ze 

(13.12) {In[BG(e)] — B’} a (T< &) = 2aNZ 
mc? B” 

where 

yu (2me)"” 
(13.13) B,(e) = 

hiw) 

The effective excitation energy i(w) is given by (13.11), but now with the proper 

quantum-mechanical oscillator strengths and frequency differences for the atom, 

including the contribution from the continuum. The upper limit e on the energy 
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transfers is assumed to be beyond the limit of appreciable oscillator strength. 

Such a limit is consonant with the lower limit « in Section 13.1, chosen to make 

the electron essentially free. 

The total energy loss per unit length is given by the sum of (13.6) and (13.12): 

2,4 
dE z 

——__ — = 4nNZ (13.14) 
dx 

=i {In(B,) — B?} 

where 

_ 27" B?mc? 

B (13.15) 
q 

hw) 

The general behavior of both the classical and quantum-mechanical energy 

loss formulas is illustrated in Fig. 13.1. They are functions only of the speed of 
the incident heavy particle, the mass and charge of the electron, and the mean 
excitation energy A(w). For low energies (y8 < 1) the main dependence is as 

1/87, while at high energies the slow variation is proportional to In(y). The min- 
imum value of dE/dx occurs at yB ~ 3. The coefficient in (13.12) and (13.14) is 
numerically equal to 0.150 z*(2Z/A)p MeV/cm, where Z is the atomic number 
and A the mass number of the material, while p (g/cm’) is its density. Since 
2Z/A ~ 1, the energy loss in MeV-(cm7/g) for a singly charged particle in alu- 
minum is approximately what is shown in Fig. 13.1. For aluminum the minimum 

energy loss is roughly 1.7 MeV -(cm?/g); for lead, it is 1.2 MeV-(cm?/g). At high 
energies corrections to the behavior in Fig. 13.1 occur. The energy loss becomes 

heavy-particle specific, through the mass-dependent denominator D in T,,,,, and 
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Figure 13.1 Energy loss as a function of yf of the incident heavy particle. The solid 
curve is the total energy loss (13.14) with A(w) = 160 eV (aluminum). The daslied curve 
is the energy loss in soft collisions (13.12) with e = 10 keV. The ordinate scale 
corresponds to the curly-bracketed quantities in (13.12) and (13.14), multiplied by 0.15. 
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has a different energy variation and dependence on the material, because of the 
density effect discussed in Section 13.3 

The restricted energy loss shown in Fig. 13.1 is applicable to the energy loss 
inferred from tracks in photographic emulsions. Electrons with energies greater 
than about 10 keV have sufficient range to escape from silver bromide grains 
The density of blackening along a track is therefore related to the restricted 
energy loss. Note that it increases more slowly than the total for large y8—as 

In(y) rather than In(y’). A semiclassical explanation is given below 

Comparison of B, with the classical B, (13.10) shows that their ratio is y = ze?/hu 

To understand how this factor arises, we turn to semiclassical arguments. B, is the ratio 

() = ze of b&, (13.8) to b 
min 

?/ymv*. The uncertainty principle dictates a different b,,;, for 
7 < 1. In the rest frame of the heavy particle the electron has momentum p = ymuv. If it 

is described by a transversely localized wave packet (to define its impact parameter as 

well as possible), the spread in transverse momenta Ap around zero must satisfy Ap << p; 

otherwise, its longitudinal direction would be ill-defined. This limit on Ap translates into 

an uncertainty Ab in impact parameter, Ab >> h/p, or in other words, an effective quan- 

tum-mechanical lower limit 

h 
@ = ——_ (13.16) 
min 

ymv 

Evidently, in calculating energy loss as an integral over impact parameters, the larger 
© /p@ = 7n. When 
min min 

of the two minimum impact parameters should be used. The ratio b 

7 > 1, the classical lower limit applies; for 7 < 1, (13.16) applies and (13.15) is the correct 

expression for B 

The value of B,(e) in (13.12) can also be understood in terms of impact parameters 

The soft collisions contributing to (13.12) come semiclassically from the more distant 

collisions. The momentum transfer 6p to the struck electron in such collisions is related 

to the energy transfer T according to 6p = (2mT)’”. On the other hand, the localized 
electron wave packet has a spread Ap in transverse momenta. To be certain that the 

(2me)'? collision produces an energy transfer less than e, we must have Ap < 6pmax 

hence Ab > f/(2me)"”. The effective minimum impact parameter for soft collisions with 
energy transfer less than ¢ is therefore 

h 
b@ (13.17) (e) min (2me)'”? 

yul(w), we find For collisions so limited in impact parameter between (13.17) and Drax 

(2me)'? 
B,(e) ~ 

hw) 

in agreement with Bethe’s result 

The semiclassical discussion of the minimum and maximum impact param- 

eters elucidates the reason for the difference in the logarithmic growth between 

the restricted and total energy losses. At high energies the dominant energy 
In(Dmax/Pmin). For the total energy loss dependence is through dE/dx « In(B) 

the maximum impact parameter is proportional to y, while the quantum- 

mechanical minimum impact parameter (13.16) is inversely proportional to y. 

The ratio varies as y’. For energy loss restricted to energy transfers less than e, 

the minimum impact parameter (13.17) is independent of y, leading to B,(e) ~ y. 
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Despite its attractiveness in making clear the physics, the semiclassical de- 

scription in terms of impact parameters contains a conceptual difficulty that war- 
rants discussion. Classically, the energy transfer T in each collision is related 

(c) T(b) = 2z7e*/mv’b? (Problem 
min? directly to the impact parameter b. When b >> b 

13.1). With increasing b the energy transfer decreases rapidly until at b = 
bDmax ~~ YU/(w) it becomes 

~ 

2 hiw) Uo 
—_— — (13.18) hiw) ” T(Dmax) ~ <3 
ty ( }( 

Here vg = c/137 is the orbital speed of an electron in the ground state of hydrogen 

and J,; = 13.6 eV its ionization potential. Since empirically hiw) = ZIy, we see 

that for a fast particle (v >> vo) the classical energy transfer (13.18) is much 

smaller than the ionization potential, indeed, smaller than the minimum possible 

atomic excitation. 

We know, however, that energy must be transferred to the atom in discrete 

quantum jumps. A tiny amount of energy such as (13.18) simply cannot be ab- 

sorbed by the atom. We might argue that the classical expression for 7(b) should 

be employed only if it is large compared to some typical excitation energy of the 

atom. This requirement would set quite a different upper limit on the impact 

parameters from b,,,, ~ yu/(w) and lead to wrong results. Could b,,,, nevertheless 

be wrong? After all, it came from consideration of the time dependence of the 

electric and magnetic fields (11.152), without consideration of the system being 

affected. No, time-dependent perturbations of a quantum system cause significant 
excitation only if they possess appreciable Fourier components with frequencies 
comparable to 1/A times the lowest energy difference. That was the “adiabatic” 
argument that led to b,,,x in the first place. The solution to this conundrum lies 
in another direction. The classical expressions must be interpreted in a statistical 

sense. 

The classical concept of the transfer of a small amount of energy in every 

collision is incorrect quantum-mechanically. Instead, while on the average over 

many collisions, a small energy is transferred, the small average results from 

appreciable amounts of energy transferred in a very small fraction of those col- 

lisions. In most collisions no energy is transferred. It is only in a statistical sense 

that the quantum-mechanical mechanism of discrete energy transfers and the 

classical process with a continuum of possible energy transfers can be reconciled. 

The detailed numerical agreement for the averages (but not for the individual 

amounts) stems from the quantum-mechanical definitions of the oscillator 

strengths f; and resonant frequencies w, entering (w). A meaningful semiclassical 

description requires (a) the statistical interpretation and (b) the use of the un- 

certainty principle to set appropriate minimum impact parameters. 

The discussion so far has been about energy loss by a heavy particle of mass 

M >> m. For electrons (M = m), kinematic modifications occur in the energy 

loss in hard collisions. The maximum energy loss is Tmax = (y — 1)mc?. The 

argument of the logarithm in (13.6) becomes (y — 1)mc?/e. The Bethe expression 

(13.12) for soft collisions remains the same. The total energy loss for electrons 

therefore has B, (13.15) replaced by 

V2 yBVy — 1 mc? _ V2 y? me? 
B,(electrons) = (13.19) 

nw) nw) 
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the last form applicable for relativistic energies. There are spin and exchange 
effects in addition to the kinematic change, but the dominant effect is in the 
argument of the logarithm; the other effects only contribute to the added 
constant. 

The expressions for dE/dx represent the average collisional energy loss per 
unit distance by a particle traversing matter. Because the number of collisions 
per unit distance is finite, even though large, and the spectrum of possible energy 
transfers in individual collisions is wide, there are fluctuations around the aver- 
age. These fluctuations produce straggling in energy or range for a particle tra- 
versing a certain thickness of matter. If the number of collisions is large enough 
and the mean energy loss not too great, the final energies of a beam of initially 
monoenergetic particles of energy Ep are distributed in Gaussian fashion about 
the mean E. With Poisson statistics for the number of collisions producing a given 
energy transfer T, it can be shown (see, e.g., Bohr, Section 2.3, or Rossi, Section 

2.7) that the mean square deviation in energy from the mean is 

0? = 2aNZ2’e4(y¥ + 1)t (13.20) 

where tis the thickness traversed. This result holds provided 0 « E andQ «K 

QO > T. max 
(FE, - E), and also = 2 B’mc’. For ultrarelativistic particles the last 
condition ultimately fails. Then the distribution in energies is not Gaussian, but 

is described by the Landau curve. The interested reader may consult the refer- 

ences at the end of the chapter for further details. 

13.3 Density Effect in Collisional Energy Loss 

For particles that are not too relativistic, the observed energy loss is given ac- 

curately by (13.14) [or by (13.9) if 7 > 1] for particles of all kinds in media of all 

types. For ultrarelativistic particles, however, the observed energy loss is less than 

predicted by (13.14), especially for dense substances. In terms of Fig. 13.1 of 

(dE/dx), the observed energy loss increases beyond the minimum with a slope of 

roughly one-half that of the theoretical curve, corresponding to only one power 

of y in the argument of the logarithm in (13.14) instead of two. In photographic 
emulsions the energy loss, as measured from grain densities, barely increases 

above the minimum to a plateau extending to the highest known energies. This 

again corresponds to a reduction of one power of y, this time in B,(€) (13.13). 
This reduction in energy loss, known as the density effect, was first treated 

theoretically by Fermi (1940). In our discussion so far we have tacitly made one 
assumption that is not valid in dense substances. We have assumed that it is 
legitimate to calculate the effect of the incident particle’s fields on one electron 

in one atom at a time, and then sum up incoherently the energy transfers to all 

the electrons in all the atoms with b,;, < b < Bmax. Now bya, is very large 

compared to atomic dimensions, especially for large y. Consequently in dense 

media there are many atoms lying between the incident particle’s trajectory and 

the typical atom in question if b is comparable to b,,.x. These atoms, influenced 

themselves by the fast particle’s fields, will produce perturbing fields at the chosen 

atom’s position, modifying its response to the fields of the fast particle. Said in 

another way, in dense media the dielectric polarization of the material alters the 

particle’s fields from their free-space values to those characteristic of macroscopic 
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fields in a dielectric. This modification of the fields due to polarization of the 
medium must be taken into account in calculating the energy transferred in dis- 

tant collisions. For close collisions the incident particle interacts with only one 

atom at a time. Then the free-particle calculation without polarization effects will 

apply. The dividing impact parameter between close and distant collisions is of 

the order of atomic dimensions. Since the joining of two logarithms is involved 

in calculating the sum, the dividing value of b need not be specified with great 

precision 

We will determine the energy loss in distant collisions (b = a), assuming that 

the fields in the medium can be calculated in the continuum approximation of a 

macroscopic dielectric constant e(w). If a is of the order of atomic dimensions 

this approximation will not be good for the closest of the distant collisions, but 

will be valid for the great bulk of the collisions 

The problem of finding the electric field in the medium due to the incident 

fast particle moving with constant velocity can be solved most readily by Fourier 

transforms. If the potentials A,(x) and source density J,,(x) are transformed in 

space and time according to the general rule 

F(x, t) (13.21) | d°k | dw F(k, w)e** 
(277)? 

then the transformed wave equations become 

p(k, w) Je -2 - > > ea) |G, w) = x <u) 
(13.22) 

w 4a 

A(k, w) = — ~ Uk: w) ke — 5 e(w) | | 
The dielectric constant €(w) appears characteristically in positions dictated by 
the presence of D in the Maxwell equations. The Fourier transforms of 

(x, t) = ze 5(x — vt) 
and (13.23) 

J(x, t) = vp(x, ¢) 

are readily found to be 

p(k, @) = = 6(w — k-v) 

(13.24) 
J(k, w) vp(k, «) 

From (13.22) we see that the Fourier transforms of the potentials are 

2ze _ 8(w — ky) 
O(k y= 

E(w) 
ke - €(w) 

(13.25) and 

A(k, w) = €(w) — ®(k, w) 
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From the definitions of the electromagnetic fields in terms of the potentials we 
obtain their Fourier transforms: 

E(k, w) = ee v_ K Joa w) 
(13.26) 

B(k, ) = ie(w)k x ~ Ok, w) 

In calculating the energy loss to an electron in an atom at impact parameter b, 

we evaluate 

@ 

iwx(@) + E*(w) dw (13.27) aE=-e] v-Edr=2eRe | 

where x(w) is the Fourier transform in time of the electron’s coordinate and E(w) 

is the Fourier transform in time of the electromagnetic fields at a perpendicular 

distance b from the path of the particle noving along the x axis. Thus the required 

electric field is 

1 
(13.28) E(w) = | d?k E(k, we” 

(27)? 

where the observation point has coordinates (0, b, 0). To illustrate the determi- 

nation of E(w) we consider the calculation of E(w), the component of E parallel 

to v. Inserting the explicit forms from (13.25) and (13.26), we obtain 

2ize 
(13.29) E,() = 

5(@ ~ vhs) 

e(w)(2m)*" 
| d?kek2 jo" — ba 

ke - a €(w) 

The integral over dk, can be done immediately. Then 
oo @ 

1 2izew dk, 

— 

. dk eiPka J oka +hke + e(w) 
6 | E,(@) = ~ Omp?v2 

where 

2 2 
@ @ 

—_ 

= 

ty (13.30) 2 [L- Be(o)] ET oe ew) = 

The integral over dk; has the value 7/(A* + k3)"”, so that E,(w) can be written 
oo ibky 

é izew Jj dk, (13.31) E,(@) = — 
=- wo (A? + k3)'? V2 v? e(w) 

| | | 
The remaining integral is a representation of a modified Bessel function.* The 

result is 

1 2 izew 
—— 

— (13.32) 
2 E,(w) =~ 

7 U e() 
B* |b) ( ) | 

*See, for.example, Abramowitz and Stegun (p. 376, formula 9.6.25); Magnus, Oberhettinger, and Soni 
(Chapter XI), or Bateman Manuscript Project, Table of Integral Transforms, Vol. 1 (Chapters I-III). 
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where the square root of (13.30) is chosen so that A lies in the fourth quadrant 
A similar calculation yields the other fields: 

A 2 
— TK (Ab) E,( w) 
T e(w) ( (13.33) 

B3(w) = €(w) BE2(w) 
~~ ™~ 

In the limit e(w) — 1 it is easily seen that fields (13.32) and (13.33) reduce to the 
results of Problem 13.3 

To find the energy transferred to the atom at impact parameter b we merely 
write down the generalization of (13.27) 

AE(b) = 2e > f; Re [ iwx;(w) + E*(w) dw 

where x,(@) is the amplitude of the jth type of electron in the atom. Rather than 

use (7.50) for (w) we express the sum of dipole moments in terms of the mo- 

lecular polarizability and so the dielectric constant. Thus 

[e(w) — 1]JE(a) —e >) £x;() 

where N is the number of atoms per unit volume. Then the energy transfer can 

be written 

1 
—— Re AE(b) = (13.34) [ —iwe(w) |E(w)|? dw 
27N 

The energy loss per unit distance in collisions with impact parameter b = a 

is evidently 

dE 
(13.35) 

dx ( ) = 2nN [ AE(b)b db 

If fields (13.32) and (13.33) are inserted into (13.34) and (13.35), we find, after 

some calculation, the expression due to Fermi 

dE 2 (zey" 
dx I> ( WT v2 

Re | fortak Ora)Kia)( 2 (a) - 6) dw (13.36) 
where A is given by (13.30). This result can be obtained more elegantly by cal- 
culating the electromagnetic energy flow through a cylinder of radius a around 
the path of the incident particle. By conservation of energy this is the energy lost 
per unit time by the incident particle. Thus 

dE 1dE c 
a 27aB3E, dx 

dx v at 4av ( )..- 
The integral over dx at one instant of time is equivalent to an integral at one 
point on the cylinder over all time. Using dx = vu dt, we have 

dE 

dx 
| B3(t)E,(t) dt ( ). 
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In the standard way this can be converted into a frequency integral, 

dE 
—_— 

= (13.37) dx 
—ca Re [ B3(w)E,(w) dw ( ). 

With fields (13.32) and (13.33) this gives the Fermi result (13.36). 
The Fermi expression (13.36) bears little resemblance to our earlier results 

for energy loss. But under conditions where polarization effects are unimportant 
it yields the same results as before. For example, for nonrelativistic particles 
(B << 1) it is clear from (13.30) that A = w/v, independent of e(w). Then in 
(13.36) the modified Bessel functions are real. Only the imaginary part of 1/e(w) 
contributes to the integral. If we neglect the polarization correction of Section 
4.5 to the internal field at an atom, the dielectric constant can be written 

fi 
e(w) =~ 1+ 

4aNe” > 
(13.38) 

m 7 oF — w — iol; 

where we have used the dipole moment expression (7.50). Assuming that the 

second term is small, the imaginary part of 1/e(w) can be readily calculated and 

substituted into (13.36). Then the integral over dw can be performed in the 

narrow-resonance approximation. If the small-argument limits of the Bessel 

functions are used, the nonrelativistic form of (13.9) emerges, with B, = 

v/a(w). If the departure of A from w/yvu in (13.30) is neglected, (13.9) emerges 

with B, = yu/a(w). 

The density effect evidently comes from the presence of complex arguments 

in the modified Bessel functions, corresponding to taking into account e(w) in 

(13.30). Since e(w) there is multiplied by f?, it is clear that the density effect can 
be really important only at high energies. The detailed calculations for all ener- 

gies with some explicit expression such as (13.38) for e(w) are quite complicated 

and not particularly informative. We content ourselves with the extreme relativ- 

istic limit (6 = 1). Furthermore, since the important frequencies in the integral 

over dw are optical frequencies and the radius a is of the order of atomic dimen- 

sions, |Aa| ~ (wa/c) << 1. Consequently we can approximate the Bessel functions 
by their small-argument limits (3.103). Then in the relativistic limit the Fermi 
expression (13.36) is 

1.123c 1 dE _ 2 (zey’ 
aw € wT Cc dx 

- > Inf - «(| dw we [Fo Nel wo) ). ( 
(13.39) 

It is worthwhile right here to point out that the argument of the second logarithm 

is actually [1 — B?e(w)]. In the limit e = 1, this log term gives a factor y in the 

combined logarithm, corresponding to the old result (13.9). Provided e(w) # 1, 

we can write this factor as [1 — e(w)], thereby removing one power of y from 

the logarithm, in agreement with experiment. 

The integral in (13.39) with e(w) given by (13.38) can be performed most 

easily by using Cauchy’s theorem to change the integral over positive real w to 

one over positive imaginary w, minus one over a quarter-circle at infinity. The 

integral along the imaginary axis gives no contribution. Provided the I’; in (13.38) 
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are assumed constant, the result of the integration over the quarter-circle can be 

written in the simple form: 

1.123c dE (ze) 
wp 

(13.40) 
2 

c dx ( aW, ( ).- 
where w, is the electronic plasma frequency 

4aNZe? 
2 (13.41) W, = 

m 

The corresponding relativistic expression without the density effect is 

dE 1.123 yc _ e)*w, 
(13.42) 

2 
Cc dx atw) ( ( ). 

We see that the density effect produces a simplification in that the asymptotic 

energy loss no longer depends on the details of atomic structure through (w) 
(13.11), but only on the number of electrons per unit volume through w,. Two 

substances having very different atomic structures will produce the same energy 

loss for ultrarelativistic particles provided their densities are such that the density 

of electrons is the same in each. 

Since there are numerous calculated curves of energy loss based on Bethe’s 

formula (13.14), it is often convenient to tabulate the decrease in energy loss due 

to the density effect. This is just the difference between (13.40) and (13.42): 

dE yo 
_ 

— 

_ (ze)w} 
= lim A (13.43) 2 dx Cc (w) s-1 ( ( 

Without 
density Pal 

correction “7 

Total Als 

< 10 keV 

| | | | 
0.1 1 10 102 103 104 

(vy -)-— 

Figure 13.2 Energy loss, including the density effect. The dashed curve is the total 
energy loss without density correction. The solid curves have the density effect 
incorporated, the upper one being the total energy loss and the lower one the energy 
loss due to individual energy transfers of less than 10 keV. 
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For photographic emulsions, the relevant energy loss is given by (13.12) and 
(13.13) with e = 10 keV. With the density correction applied, this becomes con- 
stant at high energies with the value, 

2mc’e dE(e) 5 (ze)we, 
(13.44) 

dx 2c? ( i? w?, 

For silver bromide, iw, ~ 48 eV. Then for singly charged particles (13.44), di- 

vided by the density, has the value of approximately 1.02 MeV - (cm’/g). This 

energy loss is in good agreement with experiment, and corresponds to an increase 

above the minimum value of less than 10%. Figure 13.2 shows total energy loss 

and loss from transfers of less than 10 keV for a typical substance. The dashed 

curve is the Bethe curve for total energy loss without correction for density effect. 

13.4 Cherenkov Radiation 

The density effect in energy loss is intimately connected to the coherent response 

of a medium to the passage of a relativistic particle that causes the emission of 

Cherenkov radiation. They are, in fact, the same phenomenon in different lim- 

iting circumstances. The expression (13.36), or better, (13.37), represents the en- 

ergy lost by the particle into regions a distance greater than b = a away from its 

path. By varying a we can examine how the energy is deposited throughout the 

medium. In (13.39) we have considered a to be atomic dimensions and assumed 

|Aa| << 1. Now we take the opposite limit. If |Aa| >> 1, the modified Bessel 
functions can be approximated by their asymptotic forms. Then the fields (13.32) 
and (13.33) become 

—Xb 
1 é . ZEW 

E,(a, b) 7! 2 
V Ab B*e(w) | Po 

A ze 
—rb (13.45) Eo, b) > 

ve(w) Vb 

B,(w, b) > Be(w)E2(a, b) 

The integrand in (13.37) in this limit is 

2 2 1 z . 

L “O+a)a (13.46) (-caB3E,) - — 
~ Be(w) ( Pi 

The real part of this expression, integrated over frequencies, gives the energy 

deposited far from the path of the particle. If A has a positive real part, as is 

generally true, the exponential factor in (13.46) will cause the expression to van- 

ish rapidly at large distances. All the energy is deposited near the path. This is 

not true only when A is purely imaginary. Then the exponential is unity; the 

expression is independent of a; some of the energy escapes to infinity as radiation. 
From (13.30) it can be seen that A can be purely imaginary if €(w) is real (no 
absorption) and Be(w) > 1. Actually, mild absorption can be allowed for, but 
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in the interests of simplicity we will assume that e(w) is essentially real from now 

on. The condition B?e(w) > 1 can be written in the more transparent form, 

c 
v > (13.47) 

Ve(a) 

This shows that the speed of the particle must be larger than the phase velocity of 

the electromagnetic fields at frequency w in order to have emission of Cherenkov 

radiation of that frequency. 

Consideration of the phase of A as B7e changes from less than unity to greater 

than unity, assuming that e(w) has an infinitesimal positive imaginary part when 

w > 0, shows that 

for B’e > 1 A= -ilal 

This means that (A*/A)!” = i and (13.46) is real and independent of a. Equation 
(13.37) then represents the energy radiated as Cherenkov radiation per unit dis- 
tance along the path of the particle: 

dE 
— 

_ (ey? (13.48) 
2 dx Cc B*e() 

) a J eu ( 7 ( ). 
The integrand obviously gives the differential spectrum in frequency. This is the 

Frank-Tamm result, first published in 1937 in an explanation of the radiation 

observed by Cherenkov in 1934. The radiation is evidently not emitted uniformly 

in frequency. It tends to be emitted in bands situated somewhat below regions 

of anomalous dispersion, where e(w) > B~’, as indicated in Fig. 13.3. Of course, 

if 8 = 1 the regions where e(w) > B~? may be quite extensive. 
Another characteristic feature of Cherenkov radiation is its angle of emis- 

sion. At large distances from the path the fields become transverse radiation 

fields. The direction of propagation is given by E x B. As shown in Fig. 13.4, the 

angle 8, of emission of Cherenkov radiation relative to the velocity of the particle 

is given by 

Ey 
tan 6¢ = -— (13.49) 

E, 

From the far fields (13.45) we find 

cos Oc = (13.50) 
BV e(w) 

€(o) e(@) fs p? 

pe a 
——— 

Figure 13.3. Cherenkov band. 

Radiation is emitted only in shaded 
o—> frequency range, where e(w) > B~?. 
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The criterion Be > 1 can now be rephrased as the requirement that the emission 
angle 6- be a physical angle with cosine less than unity. In passing we note from 

Fig. 13.4 that Cherenkov radiation is completely linearly polarized in the plane 

containing the direction of observation and the path of the particle. 

The emission angle 0¢ can be interpreted qualitatively in terms of a “‘shock”’ 

wavefront akin to the familiar shock wave (sonic boom) produced by an aircraft 

in supersonic flight. In Figure 13.5 are sketched two sets of successive spherical 

wavelets moving out with speed c/Ve from successive instantaneous positions of 
a particle moving with constant velocity v. On the left v is assumed to be less 

than, and on the right greater than, clVe. For v > c/Ve the wavelets interfere 
so as to produce a ‘‘shock”’ front or wake behind the particle, the angle of which 

is readily seen to be the complement of 9-. An observer at rest sees a wavefront 

moving in the direction of 6c. 

The qualitative behavior shown in Fig. 13.5 can be given quantitative treat- 

Vs, 
yy 

ut vt >| 

ct — oo 
We 

v>c/-ve u< C/-Ve 

Figure 13.5 Cherenkov radiation. Spherical wavelets of fields of a particle traveling 

less than and greater than the velocity of light in the medium. For v > clVe, an 
electromagnetic “shock” wave appears, moving in the direction given by the Cherenkov 

angle Oc. 
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ment by examining the potentials (x, t) or A(x, t) constructed from (13 25) with 
(13.21). For example, the vector potential takes the form, 

eiki@— UD pik, “p 
2ze 

A(x, t) = p | a kaa (27)° 0 — Be) + kK? 

where € = e€(k,v), while p and k, are transverse coordinates. With the unrealistic 

but tractable, approximation that eis a constant the integral can-be dene in closed 

form. In the Cherenkov regime ($e > 1) the denominator has poles on the path 

of integration. Choosing the contour for the k, integration so that the potential 

vanishes for points ahead of the particle (x — vt > 0), the result is found to be 

2ze 
(13.51) A(x, t) = B V(x — vt) — (Be — 1)p’ 

inside the Cherenkov cone and zero outside. Note that A is singular along the 

shock front, as suggested by the wavelets in Fig. 13.5. The expression (13.51) can 
be taken as indicative only. The dielectric constant does vary with w = k,v. This 
functional dependence will remove the mathematical singularity in (13.51) 

The properties of Cherenkov radiation can be utilized to measure velocities 

of fast particles. If the particles of a given velocity pass through a medium of 
known dielectric constant e, the light is emitted at the Cherenkov angle (13.50) 
Thus a measurement of the angle allows determination of the velocity. Since the 

dielectric constant of a medium in general varies with frequency, light of different 

colors is emitted at somewhat different angles. Narrow-band filters may be em- 

ployed to select a small interval of frequency and so improve the precision of 

velocity measurement. For very fast particles (8 = 1) a gas may be used to pro- 

vide a dielectric constant differing only slightly from unity and having (e — 1) 

variable over wide limits by varying the gas pressure. Counting devices using 

Cherenkov radiation are employed extensively in high-energy physics, as instru- 

ments for velocity measurements, as mass analyzers when combined with mo- 

mentum analysis, and as discriminators against unwanted slow particles 

13.5 Elastic Scattering of Fast Charged Particles by Atoms 

In Section 13.1 we considered the scattering of electrons by an incident heavy 

particle in that particle’s rest frame in order to treat energy transfers to the 

electrons. We now turn to the elastic scattering that accompanies passage of swift 

particles, whether heavy or light, through matter because of interaction with the 

atoms. Charged particles are elastically scattered by the time-averaged potential 

created by the atomic nucleus and its associated electrons. The potential is 

roughly Coulombic in character but is modified at large distances by the screening 

effect of the electrons and at short distances by the finite size of the nucleus 

For a pure Coulomb field, the scattering cross section is given by the 
Rutherford formula (13.1), modified at large angles by spin-dependent correc- 
tions [see above (13.5)]. At small angles, all particles, regardless of spin, scatter 
according to the small-angle Rutherford expression 

1 2zZe do 
(13.52) 

dQ 6+ 
pu -( 
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Even at 9 = 7/2, the small-angle result is within 30% of the exact Rutherford 
formula. Such accuracy is sufficient for present purposes. 

The singular nature of (13.52) as @ > 0 is a consequence of the infinite range 
of the Coulomb potential. Because of electronic screening, the differential scat- 
tering cross section is finite at 6 = 0. A simple classical impact parameter cal- 
culation (following Problem 13.1b) with a Coulomb force cutoff sharply at r = a 
gives a small-angle cross section 

do 1 2zZe” 
(13.53) dQ pu ( + 2 in) ) Ca 

where 6nin is the classical cutoff angle, 

2zZe? 
= 

g©) 
min (13.54) 

pua 

A better form of screened Coulomb interaction is V(r) = (zZe?/r)e~", with 

a ~ 1.4 ajZ~*? (from a rough fit to the Thomas—Fermi atomic potential). A 
classical calculation with such a potential gives a small-angle cross section for 

6 — 0 that rises less rapidly than 9~*, but still is singular at @ = 0. Quantum 

mechanically, either the Born approximation or a WKB eikonal approach yields 

a small-angle cross section of the form (13.53) with 6,;, the quantuin-mechanical 

cutoff angle 

Z'8 
mc 

(q) —_—-—_ eo 0 min (13.55) 
pa 192 p 

where p is the incident momentum (p = yMv), and m is the electron’s mass. In 

passing, we note that the ratio of classical to quantum-mechanical angles 0,,;, is 

n = zZe’/hv, in agreement with the corresponding ratio of minimum impact 
parameters [see below (13.16)]. For fast particles in all but the highest Z 

substances, 7 < 1; the quantum-mechanical expression (13.55) should be used 

for Onin: 

At comparatively large angles (but still small in actual magnitude) the scat- 

tering cross section departs from (13.53) because of the finite size of the nucleus. 

For charged leptons (e, yu, 7) the influence of the finite size is a purely electro- 

magnetic effect, but for hadrons (7, K, p, a, etc.) specifically strong-interaction 

effects also arise. Since the gross overall effect is to lower the cross section below 

(13.53) at larger angles for whatever reason, we examine only the electromagnetic 

aspect. The charge distribution of the atomic nucleus can be approximated 

crudely by a uniform volume distribution inside a sphere of radius R, falling 

sharply to zero outside. The electrostatic potential inside the nucleus is parabolic 
in shape with a finite value at r = 0: 

2 r 3zZe? 
r<R 1-— 

3R? 2R ( 
for (13.56) V(r) = zZe* 

r>R 
r 

The classical scattering cross section from such a potential exhibits singular be- 
havior at a maximum angle given approximately by the classical formula (13.54), 
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but with a — R. This phenomenon is a consequence of the scattering angle 

6(b) = Ap(b)/p vanishing at b = 0, rising to a maximum at just-less than b = R, 

and falling again for larger b. The maximum translates into a vanishing derivative 

da@/db and so an infinite differential cross section. The bizarre classical behavior 

is the vestige of what occurs quantum mechanically. The wave ‘nature of the 

incident particle makes the nuclear scattering very much like the scattering of 

electromagnetic waves by localized scatterers, discussed in Chapter10. At short 

wavelengths, the scattering is diffractive, confined to an angular range A@ = 1/kR 

where k = p/h. Depending on the radial dependence of the localized interaction, 

the scattering cross section may exhibit wiggles or secondary maxima and min- 

ima, but it will fall rapidly below the point Coulomb result at larger angles. Said 

another way, in perturbation theory the scattering amplitude is the product of 

the Coulomb amplitude for a point charge and a form factor F(Q”) that is the 

spatial Fourier transform of the charge distribution. The form factor is defined 

to be unity at Q? = 0, but becomes rapidly smaller for (QR) > 1. Whatever the 
viewpoint, the finite nuclear size sets an effective upper limit of the scattering, 

274 me 
= el —_ .. (13.57) Onax A 1/3 

p 

The final expression is based on the estimate, R = 1.4 A’? x 107} m. We note 
>> 6 that Onax 

m in for all physical values of Z and A. If the incident momentum 
is so small that 6,,., = 1, the nuclear size has no appreciable effect on the scat- 
tering. For an aluminum target, 6,,.x = 1 when p ~ 50 MeV/c, corresponding to 
50 MeV kinetic energy for electrons and 1.3 MeV for protons. Only at higher 
energies are nuclear-sized effects important. At p ~ 50 MeV/c, 6,,;, ~ 107‘ radian 
in aluminum. 

The general behavior of the scattering cross section is shown in Fig. 13.6. 
The dot-dash curve is the small-angle Rutherford formula (13.52); the solid curve 
shows the qualitative behavior of the cross section including screening and finite 
nuclear size. The total scattering cross section can be obtained by integrating 
(13.53) over the total solid angle, 

oo 

2zZe? 6 dé 
(13.58) | 0 pu 

y 

(6 + 67 in) 
a= | SE sino dadé ~ 2n( 

318 | 

¥ 9 

Figure 13.6 Atomic scattering, 
including effects of electronic screening 

Omin 9 max at small angles and finite nuclear size at 
log @ ——> 

large angles. 
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The result is 

2zZe 2zZe 
(13.59) 

Av pu rd Fam 
The final expression is obtained by use of (13.55) for Onin. It shows that at high 
velocities the total scattering cross section can be far smaller than the classical 
geometrical area za“ of the atom 

13.6 Mean Square Angle of Scattering; Angular Distribution 

of Multiple Scattering 

Rutherford scattering is confined to very small angles even for a point Coulomb 

field, and for fast particles 6,,., is small compared to unity. Thus there is a very 

large probability for small-angle scattering. A particle traversing a finite thickness 

of matter will undergo very many small-angle deflections and will generally 

emerge at a small angle that is the cumulative statistical superposition of a large 

number of deflections. Only rarely will the particle be deflected through a large 

angle; since these events are infrequent, such a particle will have made only one 

such collision. This circumstance allows us to divide the angular range into two 

regions—one region at comparatively large angles, which contains only the single 

scatterings, and one region at very small angles, which contains the multiple or 

compound scatterings. The complete distribution in angle can be approximated 

by considering the two regions separately. The intermediate region of so-called 

plural scattering must allow a smooth transition from small to large angles 

The important quantity in the multiple-scattering region, where there is a 

large succession of small-angle deflections symmetrically distributed about the 

incident direction, is the mean square angle for a single scattering. This is defined 

by 

J iq ao 
(6?) = (13.60) 

# 10 
dQ, 

With the approximations of Section 13.5 we obtain 

Omax 
(13.61) 

Onin 
(#) = ~~ 2 Orrin In ( 

If the quantum value (13.55) of Qin is used along with 6,,.x (13.57), then with 

A = 2Z, (13.61) has the numerical form 

(13.62) (0") = 462, In(204Z~") 

If nuclear size is unimportant (generally only of interest for electrons, and per- 

haps other particles at very low energies), max Should be put equal to unity in 

(13.61). Then instead of (204Z~"*), the argument of the logarithm in (13.62) 

becomes ( Zin P 
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Figure 13.7 

It is often desirable to use the projected angle of scattering 6’, the projection 

being made on some convenient plane such as the plane of a photographic emul- 

sion or a bubble chamber, as shown in Fig. 13.7. For small angles it is easy to 

show that 

(0) = (6%) (13.63) 

In each collision the angular deflections obey the Rutherford formula (13.52) 

suitably cut off at 6,1, and @na,, With average value zero (when viewed relative 

to the forward direction, or as a projected angle) and mean square angle (07) 
given by (13.61). Since the successive collisions are independent events, the 

central-limit theorem of statistics can be used to show that for a large number n 

of such collisions the distribution in angle will be approximately Gaussian around 

the forward direction with a mean square angle (@”) = n(6*). The number of 
collisions occurring as the particle traverses a thickness t of material containing 

N atoms per unit volume is 

t 2zZe” 
(13.64) 

pu 
n= Not = a( 

y 

Orin 

This means that the mean square angle of the Gaussian is 

2zZe” Onax 
(@?) = 2m (13.65) 

Onin 
)e } of 

Or, using (13.62) for (67), 

2zZe” 
(Q*) = ann (13.66) ) In(204Z-") ¢ 

The mean square angle increases linearly with the thickness t. But for reasonable 
thicknesses such that the particle does not lose appreciable energy, the Gaussian 
will still be peaked at very small forward angles. Parenthetically, we remark that 
the numerical coefficient in the logarithm can differ from author to author—for 
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example, Rossi has 175 instead of 204. We also note that in practice the Gaussian 
approximation holds only for large n—see the last paragraph of this section for 
some elaboration on this point. 

The multiple-scattering distribution for the projected angle of scattering is 

12 

— Py(0') dé’ = (13.67) 
(0’) 
| Va@") exn(- 

where both positive and negative values of 6’ are considered. The small-angle 
Rutherford formula (13.52) can be expressed in terms of the projected angle as 

do T 1 2zZe? 
_ (13.68) do’ 2 63 

pu ( 
y 

This gives a single-scattering distribution for the projected angle: 

* de’ 2zZe? = Nt— de ==N, P5(6’) do’ (13.69) 
dé 2 63 

pu ( 
The single-scattering distribution is valid only for angles large compared to (@7)”” 

and contributes a tail to the Gaussian distribution. 

If we express angles in terms of the relative projected angle, 

Q’ 

a (13.70) = (@2)12 

the multiple- and single-scattering distributions can be written 

—e” da Var 

(13.71) 

1 da 
Ps(a) da 

8 In(204Z~*) oF 

where (13.66) has been used for (@*). We note that the relative amounts of mul- 
tiple and single scatterings are independent of thickness in these units, and de- 

pend only on Z. Even this Z dependence is not niarked. The factor 8 In(204Z ~ M3) 

has the value 36 for Z = 13 (aluminum) and the value 31 for Z = 82 (lead). 

Figure 13.8 shows the general behavior of the scattering distribution as a function 

of a. The transition from multiple to single scattering occurs in the neighborhood 

of a = 2.5. At this point the Gaussian has a value of 1/600 times its peak value. 

Thus the single-scattering distribution gives only a very small tail on the multiple- 

scattering curve. 

There are two things that cause departures from the simple behavior shown 

in Fig. 13.8. The Gaussian shape is the limiting form of the angular distribution 

for very large n. If the thickness ¢ is such that n (13.64) is not very large (i.e., 

n = 200), the distribution follows the single-scattering curve to smaller angles 

than a = 2.5, and is more sharply peaked at zero angle than a Gaussian.* On 

the other hand, if the thickness is great enough, the mean square angle (@*) 
becomes comparable with the angle 6,4, (13.57) which limits the angular width 
of the single-scattering distribution. For greater thicknesses the multiple-scatter- 

*For numerical evaluation for very thin samples (e.g., gases), see P. Sigmund and K. B. Winterbon, 

Nucl. Instrum. Methods 119, 541-557 (1974). 
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Figure 13.8 Multiple- and single-scattering distributions of projected angle. In the 

region of plural scattering (a ~ 2-3) the dashed curve indicates the smooth transition 

from the small-angle multiple scattering (approximately Gaussian in shape) to the wide- 

angle single scattering (proportional to a~*). 

ing curve extends in angle beyond the single-scattering region, so that there is 

no single-scattering tail on the distribution (see Problem 13.8). 

13.7 Transition Radiation 

A charged particle in uniform motion in a straight line in free space does not 

radiate. It was shown in Section 13.4, however, that a particle moving at constant 

velocity can radiate if it is in a material medium and is moving with a speed 

greater than the phase velocity of light in that medium. This radiation, with its 

characteristic angle of emission, 0¢ = sec” '(Be"”), is Cherenkov radiation. There 

is another type of radiation, transition radiation, first noted by Ginsburg and 

Frank in 1946, that is emitted whenever a charged particle passes suddenly from 

one medium into another. Far from the boundary in the first medium, the particle 

has certain fields characteristic of its motion and of that medium. Later, when it 

is deep in the second medium, it has fields appropriate to its motion and that 

medium. Even if the motion is uniform throughout, the initial and final fields will 
be different if the two media have different electromagnetic properties. Evidently 
the fields must reorganize themselves as the particle approaches and passes 
through the interface. In this process of reorganization some pieces of the fields 
are shaken off as transition radiation. 
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Figure 13.9 A charged particle of charge ze and velocity v is normally incident along 

the z axis on a uniform semi-infinite dielectric medium occupying the half-space z > 0 

The transition radiation is observed at angle @ with respect to the direction of motion 

of the particle, as specified by the wave vector k and associated polarization vectors 

€, and €,. 

Important features of transition radiation can be understood without elab- 

orate calculation.* We consider a relativistic particle with charge ze and speed 

v = Bc normally incident along the z axis from vacuum (z < 0) on a uniform 

semi-infinite medium (z > 0) with index of refraction n(w), as indicated in Fig. 

13.9. The moving fields of the charged particle induce a time-dependent polar- 

ization P(x’, ¢) in the medium. The polarization emits radiation. The radiated 

fields from different points in space combine coherently in the neighborhood of 

the path and for a certain depth in the medium, giving rise to transition radiation 

with a characteristic angular distribution and intensity. 

The angular distribution and the formation length D are a direct consequence 

of the requirement of coherence for appreciable radiated intensity. The exciting 

fields of the incident particle are given by (11.152). The dependence at a point 
x’ = (z’, p’, d’) on inverse powers of [p’? + y*(z’ — vt)*] implies that a Fourier 
component of frequency w (a) will move in the z direction with velocity v and so 

have an amplitude proportional to e““?””, and (b) will have significant magnitude 
radially from the path only out to distances of the order of p,,.x ~ yu/w. On the 

*The need for a qualitative discussion has been impressed on me by numerous questions from col- 

leagues near and far and by V. F. Weisskopf on the occasion of a seminar by him where he presented 
a similar discussion. 
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other hand, the time-dependent polarization at x’ generates a wave whose form 
in the radiation zone is 

ikr 

A= exp[—ik(z’ cos @ + p’ sin 6 cos ¢’)] 
r 

where A is proportional to the driving field of the incident particle, k = n(w)w/c 

and it is assumed that the radiation is observed in the x-z plane and imthe forward 

hemisphere. Appreciable coherent superposition from different points in the me- 

dium will occur provided the product of the driving fields of the particle and the 

generated wave does not change its phase significantly over the region. The rel- 

evant factor in the amplitude is 

exo(i - “| exp| © n(w) cos 0 “| exp| ~ - n(w)p’ sin 6 cos ‘| 

= exp — 3 — n(a@) cos oe} exp| ~ - n(w)p’ sin 6 cos ‘| 

In the radial direction coherence will be maintained only if the phase involving 

pis unity or less in the region 0 < p’ S p,,,, where the exciting field is appreciable. 

Thus radiation will not be appreciable unless 

“ n(w) sino <1 
c 

or 

n(w)y@ = 1 (13.72) 

for y >> 1. The angular distribution is therefore confined to the forward cone, 
y@ = 1, as in all relativistic emission processes. 

The z’-dependent factor in the amplitude is 

a 

B 
cn ns cond] 

The depth d() up to which coherence is maintained is therefore 

@ 
_ _ — 

Cc B | n(w) cos 7 d(w) =~ 1 
We approximate n(w) = 1 — (w;/2w”) for frequencies above the optical region 
where Cherenkov radiation does not occur, 87! =~ 1 + 1/27’ for a relativistic 
particle, and cos 6 = 1, to obtain 

2yclw, 
d(v) = -1 (13.73) 

vtryp 

where we have introduced a dimensionless frequency variable, 

@ 
=e (13.74) 

Y®p 



Sect. 13.7. Transition Radiation 649 

We define the formation length D as the largest value of d(v) as a function of 1: 

D=d(ij=~ (13.75) 
Pp 

~ 
= For substances with densities of order of unity, the plasma frequency is Wy 

3 X 10'° s~', corresponding to an energy iw, ~ 20 eV. Thus c/w, ~ 10~° cm and 
even for y = 10° the formation length D is only tens of micrometers. In air at 
NTP it is a factor of 30 larger because of the reduced density. 

The coherence volume adjacent to the particle’s path and the surface from 

which transition radiation of frequency w comes is evidently 

1 _—_ 
v(1 + vw) 

, 

P 

V(w) ~ mPinax(@) d(w) ~ omy 
This volume decreases in size rapidly for vy > 1. We can therefore expect that in 

the absence of compensating factors, the spectrum of transition radiation will 

extend up to, but not appreciably beyond, v = 1. 

We have obtained some insight into the mechanism of transition radiation 

and its main features. It is confined to small angles in the forward direction 

(y@ = 1). It is produced by coherent radiation of the time-varying polarization 

in a small volume adjacent to the particle’s path and at depths into the medium 

up to the formation length D. Its spectrum extends up to frequencies of the order 

of w ~ yw,. It is possible to continue these qualitative arguments and obtain an 

estimate of the total energy radiated, but the exercise begins to have the ap- 

pearance of virtuosity based on hindsight. Instead, we turn to an actual calcula- 

tion of the phenomenon. 

An exact calculation of transition radiation is complicated. Some references 

are given at the end of the chapter. We content ourselves with an approximate 

calculation that is adequate for most applications and is physically transparent. 

It is based on the observation that for frequencies above the optical resonance 

region, the index of refraction is not far from unity. The incident particle’s fields 

at such frequencies are not significantly different in the medium and in vacuum. 

This means that the Fourier component of the induced polarization P(x’, w) can 
be evaluated approximately by 

(13.76) P(x’, w) = 
Ae) —1 Jee, w) 

where E; is the Fourier transform of the electric field of the incident particle in 

vacuum. The propagation of the wave radiated by the polarization must be de- 

scribed properly, however, with the wave number k = wn(w)/c appropriate to 

the medium. This is because phase differences are important, as already seen in 

the qualitative discussion. 

The dipole radiation field from the polarization P(x’, w) d°x’ in the volume 
element d*x’ at x’ is, according to (9.18), 

ikR 

dE vad R (k x P) x k d?x’ 
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where k is the wave vector in the direction of observation and R = r — kx’. 
With the substitution of (13.76) and an integration over the half-space z’ > 0, 

the total radiated field at frequency w is 

eikr e(w) — 1 
Eyad = 

Aa r 

Je I. (k x E,) x ke7®* d3x' | 
~~ ™~ 

With the approximation, 

2 
1 

— (13.77) e(w) = 1 — 
2 

the radiated field for w > w, becomes 

2 ikr —@, é P 
(13.78) Eyad = | 6 (k x E) x ke** d3x’ 

r 4 arc” ( 
From equations given later [see (14.52) and (14.60)], this means that the energy 
radiated has the differential spectrum in an angle and energy, 

2 

d?I c Pp 
— (13.79) 

dw dQ 32 Cc I. (ik x E; (x, w)| x ke7** dx 
( 

; 

Note that the driving fields E; are defined by the Fourier transform of the fields 

of Section 11.10. In our approximation it is not necessary to use the more elab- 

orate fields of Sections 13.3 and 13.4. In the notation of Fig. 13.9 the incident 

fields are (see Problems 13.2 and 13.3) 

2 zew cop 

7 yu" yu 

eiazly K, ( 

(13.80) 
2 zew 

° cop 
-—L1 [{- EAx, w) = 55 eivzv Ko 

Vv v ( 
: 

The integral in (13.79) can be evaluated as follows. We first exploit the fact that 

the z dependence of E, is only via the factor e’”?”’, and write 

F= I. [k x E,(x, w)] x ke~** d3x 
— 

= | ax| ay x Ej,-0 x k ew sin? [, dz exp| (2 — k cos a)e| 

1 - exp| 2 — k cos a)z]| 
@ J ax] dy(k x Ejjz0 X k eWiexsine 
—-—kcosé 

The upper limit Z on the z integration is a formal device to show that the con- 
tributions from different z values add constructively and cause the amplitude to 
grow until Z = D. Beyond the depth D the rapidly rotating phase prevents further 
enhancement. For effectively semi-infinite media (slabs of thickness large com- 
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pared with D) we drop the oscillating exponential in Z on physical grounds* and 

obtain, for a single interface 

F = {| dx dy[k x EjJ,-9 x k e 
(2 kano 

The electric field transverse to k can be expressed in terms of the components 

E,, E, and the polarization vectors €, and €, shown in Fig. 13.9 as 

[k x E] x k = (E, cos@cos¢ — E, sin be, + E, sin be, 

where @ is the polar angle of k and the prime has been dropped from the azi- 

muthal angle of integration. The component parallel to €, integrates to zero 

because it is odd in y. Thus, substituting from (13.80), we have 

i€, 
F = {| dx e tkxsing cos Very E, — sin 0E | , 

—-—kcosé 
Vv ( 

— Es lneem on k cos) 
sin 0 

x + i—— Ky EE) vee) co 0 Very «(2 

The first term can be transformed by an integration by parts in x, using 

x yu oO 
2 very — —-—— Ky 

Ox yv ( Vee ty 

so that 

ze sin a cos 0 
[| dx dy eta ( vi Fy) 

—-—kcos@ 
U | 

The remaining integral can be evaluated from the cosine transform 

exp(—|t|\Va? + 67) (13.81) [ Ko(BV 2" + t7) cos(az)dz 
Va +B 

The result for F is 

k cos 9 -— —> 
Y 

2V ze sin a 
F (13.82) €, 

—. + k? sin’*6 —-—kcosé 
Vv 

yu" Gs | 
*A less cavalier treatment of the dependence on thickness is necessary for foils that are not thick 

compared to D, or when a stack of foils is employed. See Problems 13.13 and 13.14 
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In the approximation of relativistic motion (y >> 1), small angles (@ << 1), and 
high frequencies (w >> w,), this becomes 

Vn Y 
— co (13.83) 

@ 

y 

P 

F = Avan ( 
1+5 

y + na + 7) "( 
_~ ™~ 

where v is the dimensionless frequency variable (13.74) and n = (y6)* is an 
appropriate angular variable. With dO. = d@ d(cos 6) ~ dd dn/2y’, the energy 
distribution in v and 7 is 

d?I d?I T 

dvdn yy?” dw dQ, (13.84) 

7 
27e7-yuy 

~ 

TC “(1 tat n) ( +)? 

Angular distributions for fixed v values are shown in Fig. 13.10. At low frequen- 

cies the spectrum peaks at 7 ~ 1 and then falls relatively slowly as 7~* until the 
value 7 = v-* is reached. Then it falls off as 7°. For v = 1, the spectrum peaks 
at 7 = 4 and falls at n° for 7 >> 1. At 7 = O the denominator in (13.84) is 

T 

T | | 

y= 0. 

107! ~~ 

\v>> 

mt | boaeg 

107? 
v=l1 

| 1 1073 
2 

n = (70)? ——> 

Figure 13.10 Angular distributions of transition radiation at vy = 0.1, vy = 1 and py >> 1. 
The solid curves are the normalized angular distributions, that is, the ratio of (13.84) to 
(13.87). The dashed curve is »* times that ratio in the limit vy > ©. 
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(1 + v*)’, showing that for v >> 1 there is negligible intensity at any angle [cf. 
coherence volume V(w), above]. 

The energy spectrum, integrated over the angular variable y, is 

dl _ 27e7 yw, 
(13.85) 

dv 
ja + 27) in( 1 + 5) - 2| 

It has the small and large v limits, 

p<l dl Zeyw, |2 In(L/ev), 
(13.86) 1 dv TC 

—— vo 1 
6v*’ 

The energy spectrum is shown on a log-log plot in Fig. 13.11. The spectrum 

diverges logarithmically at low frequencies, where our approximate treatment 

fails in any event, but it has a finite integral. The total energy emitted in transition 

radiation per interface is 

22 2 
dl Zz fe YW, 

—dv= (13.87) yho, 
dv 3c ~ 3(137) 

10 
' 

1}- 

a3 107! 
nt | tay 

4 1072 -- 

L | 1073 
10 1 107! 1072 

v= w/Yop 

Figure 13.11 Normalized frequency distribution (1/1)(di/dv) of transition radiation as 

a function of v = w/yw,. The dashed curves are the two approximate expressions in 
(13.86). 
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From Fig. 13.11 we can estimate that about half the energy is emitted in the range 

0.1 < v < 1. In quantum language, we say that an appreciable fraction of the 

energy appears as comparatively energetic photons. For example, with y = 10° 
and hw, = 20 eV, these quanta are in the soft x-ray region of 2 to 20 keV. 

The presence of the factor of yin (13.87) makes transition radiation attractive 

as a mechanism for the identification of particles, and perhaps even measurement 

of their energies, at very high energies where other means are unavailable. The 

presence of the numerical factor 1/(3 < 137) means that the probability of en- 
ergetic photon emission per transit of an interface is very small. It is necessary 

to utilize a stack of many foils with gaps between. The foils can be quite thin, 

needing to be thick only compared to a formation length D (13.75). Then a 

particle traversing each foil will emit twice (13.87) in transition radiation (see 
Problem 13.13). A typical set-up might involve 200 Mylar foils of thickness 20 

pm, with spacings 150-300 um.* The coherent superposition of the fields from 

the different interfaces, two for each foil, causes a modulation of the energy and 

angular distributions (see Problem 13.14). 
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Rossi gives a semiclassical treatment of energy loss and scattering similar to ours. He also 

considers the question of fluctuations in energy loss, including the Landau-Symon theory. 

The density effect on the energy loss by extremely relativistic particles is discussed, 

with numerous results for different substances in graphical form, by 

R. M. Sternheimer, in Methods of Experimental Physics, Vol. 5A, Nuclear Phys- 

ics, Part A, eds. L. C. L. Yuan and C. S. Wu, Academic Press, New York (1961), 

pp. 4-55. 

Cherenkov radiation is discussed in many places. Its application to particle detectors 

is described in the book by Yuan and Wu, just mentioned, and also in 

D. M. Ritson, ed., Techniques in High Energy Physics, Interscience, New York 

(1961). 

Transition radiation is reviewed with extensive bibliographies by 

I. M. Frank, Usp. Fiz. Nauk 87, 189 (1965) [transl. Sov. Phys. Usp. 8,729 (1966)]. 

F. G. Bass and V. M. Yakovenko, Usp. Fiz. Nauk 86, 189 (1965) [transl. Sov. 
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The calculation of transition radiation from the traversal of interstellar dust grains by 
energetic particles, done in the same approximation as in Section 13.7, is given by 

L. Durand, Astrophys. J. 182, 417 (1973). 

A review of both Cherenkov radiation and transition radiation with much history, is 
given by 

V. L. Ginsburg, Usp. Fiz. Nauk 166, 1033 (1996) [transl. Phys. Usp. 39, 973 
(1996)]. 

For current applications of both Cherenkov and transition radiation, however, the reader 
must turn to specialized journals such as Nuclear Instruments and Methods A. Volume 
367 of that journal (1995), a conference proceedings, contains descriptions of several par- 
ticle physics detectors based on these and other principles. 

Problems 

13.1 If the light particle (electron) in the Coulomb scattering of Section 13.1 is treated 

classically, scattering through an angle @ is correlated uniquely to an incident tra- 

jectory of impact parameter b according to 

2 
0 ze 

b = —cot- 
2 pu 

b db 
—_> = — 

. where p = ymu and the differential scattering cross section is 
dQ sin |dé 

(a) Express the invariant momentum transfer squared in terms of impact param- 

eter and show that the energy transfer T(b) is 

1 2z7e 
T(b) = 2 + 2 

where b©, = ze /pv and T(0) = Tmax = 2 B’mc? 
min 

(b) Calculate the small transverse impulse Ap given to the (nearly stationary) 

light particle by the transverse electric field (11.152) of the heavy particle 

q = ze as it passes by at large impact parameter b in a (nearly) straight line 

path at speed v. Find the energy transfer T ~ (Ap)*/2m in terms of b. Com- 
pare with the exact classical result of part a. Comment. 

13.2 Time-varying electromagnetic fields E(x, ¢) and B(x, ¢) of finite duration act on a 

charged particle of charge e and mass m bound harmonically to the origin with 

natural frequency , and small damping constant I’. The fields may be caused by 

a passing charged particle or some other external source. The charge’s motion in 

response to the fields is nonrelativistic and small in amplitude compared to the 

scale of spatial variation of the fields (dipole approximation). Show that the energy 
transferred to the oscillator in the limit of very small damping is 

ae = = |K(o)P 

where E(w) is the symmetric Fourier transform of E(0, ft): 

E(0, t) = zm [. E(a)e— da; E(w) = = [. E(0, te dt 
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13.3 The external fields of Problem 13.2 are caused by a charge ze passing the origin 

in a straight-line path at speed v and impact parameter b. The fields are given by 

(11.152). 

(a) Evaluate the Fourier transforms for the perpendicular and_ parallel compo- 

nents of the electric field at the origin and show that 

2 2 ze 
—_— 

—_— 

bu Tr ( )" &Ko(6) E(w) = - ( )" éK,(8); E\(#) = -i 
where € = wh/yu, and K,(é) is the modified Bessel function of the second 

kind and order v. [See references to tables of Fourier transforms in Section 

13.3.] 

(b) Using the result of Problem 13.2, write down the energy transfer AE to a 

harmonically bound charged particle. From the limiting forms of the modified 

Bessel functions for small and large argument, show that your result agrees 

with the appropriate limit of T(b) in Problem 13.1 on the one hand and the 

arguments at the end of Section 13.1 on the adiabatic behavior for b >> yu/a 

on the other. 

13.4 (a) Taking f#i(w) = 12Z eV in the quantum-mechanical energy-loss formula, cal- 

culate the rate of energy loss (in MeV/cm) in air at NTP, aluminum, copper, 

and lead for a proton and a mu meson, each with kinetic energies of 10, 100, 

1000 MeV. 

(b) Convert your results to energy loss in units of MeV - (cm?/g) and compare 

the values obtained in different materials. Explain why all the energy losses 

in MeV-(cm?/g) are within a factor of 2 of each other, whereas the values in 

MeV/cm differ greatly. 

13.5 Consider the energy loss by close collisions of a fast, but nonrelativistic, heavy 

particle of charge ze passing through an electronic plasma. Assume that the 

screened Coulomb interaction V(r) = ze? exp(—kpr)/r, where kp is the Debye 

screening parameter, acts between the electrons and the incident particle. 

(a) Show that the energy transfer in a collision at impact parameter b is given 

approximately by 

2(ze?)? 
AE(b) =~ kpKi(kpb) v2 

where m is the electron mass and v is the velocity of the incident particle. 

(b) Determine the energy loss per unit distance traveled for collisions with im- 
pact parameter greater than b,,,,. Assuming kpbmi, << 1, show that 

1 dE ~ (ze)? 
2 dx UV ( LAT kD min 

| he 
where Dyin is given by the larger of the classical and quantum minimum 
impact parameters [(13.16) and above]. 

13.6 The energy loss in a plasma from distant collisions can be found with Fermi’s 
method for the density effect. Consider the nonrelativistic limit of (13.36) with the 
relative dielectric constant of a plasma given by (7.59) augmented by some 
damping, 

2 
Pp 

e(w) = 1 - 
w + iol 
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Assume that the arguments of the Bessel functions are small (corresponding to a 
speed of the incident particle large compared to thermal speeds in the plasma) 

(a) Show that the energy loss (13.36) for kpb > 1 becomes 

dE iw 1.123kpv _ 22 
2 dx TU @ ( €(w) hen =f ef }m( 

(b) With the assumption that [ < w, in e(w), show that the formula of part a 
yields 

dE ze? 1.123kpv 
=e 

@p ( ol dx kpb>1 

Combine with the close-collision result of Problem 13.5 to find the total en- 
ergy loss of a nonrelativistic particle passing through a plasma 

dE Av ze" 
2. =—> Ww, 

dx a) (s ol Pein 

where A is a number of order unity. The presence of », in the logarithm 

suggests that the energy loss may be quantized in units of fw,. In fact, elec- 

trons passing through thin metallic foils do show this discreteness in energy 

loss, allowing determination of effective plasma frequencies in metals. [See 

H. Raether, Springer Tracts in Modern Physics, Vol. 38, ed. G. Hohler 

Springer-Verlag, Berlin (1965), pp. 84-157.] 

13.7 With the same approximations as were used to discuss multiple scattering, show 

that the projected transverse displacement y (see Fig. 13.7) of an incident particle 

is described approximately by a Gaussian distribution 

y? 

a) 
P(y) dy=A oxp| = Je 

where the mean square displacement is (y*) = (x7/6){@”), x being the thickness of 

the material traversed and (@*) the mean square angle of scattering 

13.8 If the finite size of the nucleus is taken into account in the “‘single-scattering” tail 

of the multiple-scattering distribution, there is a critical thickness x, beyond which 

the single-scattering tail is absent 

(a) Define x, in a reasonable way and calculate its value (in cm) for aluminum 

and lead, assuming that the incident particle is relativistic 

(b) For these thicknesses calculate the number of collisions that occur and de- 

termine whether the Gaussian approximation is valid 

13.9 Assuming that Plexiglas or Lucite has an index of retraction of 1.50 in the visible 

region, compute the angle of emission of visible Cherenkov radiation for electrons 

and protons as a function of their kinetic energies in MeV. Determine how many 

quanta with wavelengths between 4000 and 6000 A are emitted per centimeter of 
path in Lucite by a 1 MeV electron, a 500 MeV proton, and a 5 GeV proton 

13.10 A particle of charge ze moves along the z axis with constant speed v, passing 

z = 0 at t = 0. The medium through which the particle moves is described by a 

dielectric constant e(w) 

(a) Beginning with the potential ®(k, w) of (13.25), show that the potential of 
frequency w is given as a function of spatial coordinate x by 

®(w, x) = sda) w) 
2 x,(lele Pp VI= Bee iwz/v 
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Vx? + y’ are the cylindrical coordinates of the observation where z and p 

point. 

(b) Assuming that € is independent of frequency and that Be < 1, take the 
Fourier transform with respect to w of the expression in part a and obtain 

®(x, t). Calculate the electric and magnetic fields and compare them to the 

vacuum fields (11.152). Show that, among other things, the vacuum factor y 

is replaced by [ 
(1 _ B’6) 1/2 

(c) Repeat the calculations of parts a and b with B’e« > 1. Show that now 

P(w, x) = ve ao) a Fem | na( ele vare=7} + (| Le vre=1) | 

for w 2 0. Calculate the remaining Fourier transform to obtain P(x, t). Relate 

your answer to the result given in Section 13.4 for A(x, 2) 

13.11 A magnetic monopole with magnetic charge g passes through matter and loses 

energy by collisions with electrons, just as does a particle with electric charge ze 

(a) Inthe same approximation as presented in Section 13.1, show that the energy 

loss per unit distance is given approximately by (13.14), but with ze > fg, 

yielding 

dE 2’mv 

magnetic dx hw) 
~4 mnz 5 n( ( 

m onopole 

(b) With the Dirac quantization condition (6.153) determining the magnetic 

charge, what z value is necessary for an ordinary charged particle in order 
that it lose energy at relativistic speeds at the same rate as a monopole? 

Sketch for the magnetic monopole a curve of dE/dx equivalent to Fig. 13.1 

and comment on the differences 

13.12 A relativistic particle of charge ze moves along the z axis with a constant speed 

Bc. The half-space z = 0 is filled with a uniform isotropic dielectric medium with 

plasma frequency w,, and the space z > 0 with a similar medium whose plasma 

frequency is w,. Discuss the emission of transition radiation as the particle tra- 

verses the interface, using the approximation of Section 13.7 

(a) Show that the radiation intensity per unit circular frequency interval and per 

unit solid angle is given approximately by 

2 
d?I -6° 1 L 

dw dQ we 1 1 
+ & ya 

y al 

where @ is the angle of emission relative to the velocity of the particle and 
a _— Bp’) 1/2 

(b) Show that the total energy radiated is 
22 

ze (w, — 2)” 
———_— [=—.- 

3c (@, + ws) 

13.13 Consider the transition radiation emitted by a relativistic particle traversing a di- 

electric foil of thickness a perpendicular to its path. Assuming that reflections can 

be ignored because 

|[n(w) — 1)/[n(w) + 1]| 
is very small, show that the differential angular and frequency spectrum is given 
by the single-interface result (13.84) times the factor 

a 
— 

v 
4D 

= 4sin’@, with © = 1 + +n) 
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Here D = yc/w, is the formation length, v = w/yw,, and n = (y6)?. Provided 
a >> D, the factor # oscillates extremely rapidly in angle or frequency, averaging 
to (#) = 2. For such foils the smoothed intensity distribution is just twice that for 
a single interface. Frequency distributions for different values of [T = 2D/a are 
displayed in Fig. 1 of G. B. Yodh, X. Artru, and R. Ramaty, Astrophys. J. 181, 725 
(1973). 

13.14 Transition radiation is emitted by a relativistic particle traversing normally a uni- 
form array of N dielectric foils, each of thickness a, separated by air gaps (effec- 
tively vacuum), each of length b. Assume that multiple reflections can be neglected 
for the whole stack. This requires 

1 Wp n(w) — 1 
=~ 

40? N n(w) + 1 

(a) Show that if the dielectric constant of the medium varies in the z direction 

as e(w, Z) = 1 — (w3/w*)p(z), the differential spectrum of transition radiation 

is given approximately by the single-interface result (13.84) times 

2 

P= Bb | dz p(z)e"” exp( -i cos 0 [ k(z') a’ 
—_— 

= where p(0) = 1 by convention, yw wip — k(0) cos @, and k(z) = 

(w/c) €(w, Z). 

Show that for the stack of N foils (b) 

sin’[M(@ + V)] 
F = 4 sin°@ 

sin?[O + ¥] 

where © is defined in Problem 13.13 and YW = v(1 + »)(b/4D). Compare 

G. M. Garibyan, Zh. Eksp. Teor. Fiz. 60, 39 (1970) [transl. Sov. Phys. JETP 

33, 23 (1971)]. 

The practical theory of multilayered transition radiation detectors is 

treated in great detail by X. Artru, G. B. Yodh, and G. Mennessier, Phys. 

Rev. D 12, 1289 (1975). 

13.15 (a) Find the number N, of transition radiation quanta with frequencies greater 

than w, emitted per interface, starting from the energy spectrum (13.85). 

Show that for y > 1, 

252 

= + — N. 
12 Y ahe G y- 1)? | 

where terms of order 1/7” have been neglected. 

(b) Using the result from part a for the number of photons and the value 

iw, = 20 eV, find the mean energy of the photons (in keV) for y = 10°, 
10*, 10°. 

13.16 A highly relativistic neutral particle of mass m possessing a magnetic moment pw 

parallel to its direction of motion emits transition radiation as it crosses at right 

angles a plane interface from vacuum into a dielectric medium characterized at 

high frequencies by a plasma frequency w,. The magnetic moment wp is defined in 

the particle’s rest frame. [The particle could be a neutron or, of more potential 

interest, a neutrino with a small mass.] 

(a) Show that the intensity of transition radiation is given by (13.79), provided 
the electric field of the incident particle E,, is given by (By/yze) times the 
partial derivative in the z direction of E, in (13.80). Note that the electric 
field actually points azimuthally, but this affects only the polarization of the 

radiation, not its intensity. 
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(b) Show that in the combined limit of y >> 1 and w >> ay, the intensity distri- 
butions in angle and frequency are given by (13.84) and (13.85), each mul- 

tiplied by (wo/zeyc)’. 

(c) By expressing wu in units of the Bohr magneton pg = ef/2m,c and the plasma 

frequency in atomic units (Aw) = e/a) = 27.2 eV), show that the ratio of 
frequency distributions of transition radiation emitted by the magnetic mo- 

ment to that emitted by an electron with the same speed is 

ho, bb al ,(v) _ at 

4 hw dl.(v) MB ( )( Jo» 
where a = 1/137 is the fine structure constant and v = a/yw, is the dimen- 

sionless frequency variable. 

(d) Calculate the total energy of transition radiation, imposing conservation of 

energy, that is, vy S Umax = mc’/hw,. [This constraint will give only a crude 

estimate of the energy in the quantum regime where v,,., < 1 because the 

derivation is classical throughout.] Show that the ratio of total energies for 

the magnetic moment and an electron of the same speed can be written as 

4 
w, I Qa P bb 

Ht —_—— 

I. 20 hwo Mp ( )( ) * GU max) 
where G ~ 1 for Mpa, >> 1 and G = (10 v4,,,/7) - [In(1/Mnax) —2/3] for 

Vmax << 1. For fixed particle energy and magnetic moment, how does the 

actual amount of radiated energy vary with the particle’s mass for very small 

mass? 

Hint: the integrals of Section 2.7 of Gradshteyn and Ryzhik may be of use, al- 

though integration by parts is effective. 



CHAPTER 14 

Radiation by Moving Charges 

It is well known that accelerated charges emit electromagnetic radiation. In 

Chapter 9 we discussed examples of radiation by macroscopic time-varying 

charge and current densities, which are fundamentally charges in motion. But in 

one class of radiation phenomena the source is a moving point charge or a small 

number of such charges. In such problems it is useful to develop the formalism 

in a way that relates the radiation intensity and polarization directly to properties 

of the charge’s trajectory and motion. Of particular interest are the total radiation 

emitted, the angular distribution of radiation, and its frequency spectrum. For 

nonrelativistic motion the radiation is described by the well-known Larmor result 

(see Section 14.2). But for relativistic particles a number of unusual and inter- 

esting effects appear. It is these relativistic aspects that we wish to emphasize. In 

the present chapter a number of general results are derived and applied to ex- 

amples of charges undergoing prescribed motions, especially in external force 

fields. 

Defiection of ultrarelativistic electrons in magnetic fields found in accelera- 

tors, but also in plasmas and astrophysical contexts, leads to copious emission of 

radiation called ‘‘synchrotron radiation.” The basic properties of synchrotron 

radiation are derived in Sections 14.5 and 14.6. The broad frequency spectrum, 

often corresponding to millions of harmonics of the basic frequency of particle 

motion, finds uses in solid-state physics and biology wherever intense beams of 

x-rays are desirable. These applications have led to the creation of dedicated 

“light sources”’ with special “insertion devices” called wigglers and undulators. 
The physics of these magnetic structures, designed to produce spectral “‘lines” 

(actually narrow peaks) of very high brightness and adjustable photon energy, is 
discussed in Section 14.7. 

14.1 Liénard-Wiechert Potentials and Fields for a Point Charge 

In Section 12.11 it was shown that if there are no incoming fields the 4-vector 

potential caused by a charged particle in motion is 

(14.1) A%(x) = = | d*x' D(x — x')J*(x') 

where D,(x — x’) is the retarded Green function (12.133) and 

(14.2) J*(x') = ec | drV%(r) 5[x' — r(7)] 
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is the charge’s 4-vector current, V%(7) its 4-velocity and r°(7) its position. Inser- 
tion of the Green function and the current into (14.1) gives, upon integration 
over d‘*x', 

(14.3) A%x) = 2e | deV%(r) Ol ~ ro(7)] Ibe — PCO 
The remaining integral over the charge’s proper time gives a contribution only 
at T = 7, where 7 is defined by the light-cone condition, 

(14.4) [x — r(t)]° = 0 
and the retardation requirement x9 > ro(7). The significance of these conditions 

is shown diagrammatically in Fig. 14.1. The Green function is different from zero 

only on the backward light cone of the observation point. The world line of the 

particle r(7) intersects the light cone at only two points, one earlier and one later 

than xo. The earlier point, r°(7), is the only part of the path that contributes to 

the fields at x*. To evaluate (14.3) we use the rule, 

d(x — x) 
——___—. A f(x)] = > 

i af 
dx )., ( 

where the points x = x; are the zeros of f(x), assumed to be linear. We need 

d 
_— 

— 

= [x — r(a)P (14.5) —2[x — r(1)]pV"(7) 
d 

evaluated at the one point, 7 = 7. The 4-vector potential is therefore 

eV"(7) 
A%(x) = (14.6) 

V- [x — r(7)] T=T1) 

where 7 is defined by (14.4) and the retardation requirement. 
The potentials (14.6) are known as the Liénard—Wiechert potentials. They 

are often written in noncovariant, but perhaps more familiar, form as follows. 
The light-cone constraint (14.4) implies x9 — ro(7) = |x — r(7)| = R. Then 

V-(x-r) ro(%)] -— V- [x — r(7)] - Vo[Xo 
—_ 

= ycR — yv-nR (14.7) 
— 

= ycR(1 — B+ n) 

Time 

r(7) 

r(T9) 

Space 

/ 
\ 

Figure 14.1 
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where nis a unit vector in the direction of x — r(r) and B = v(7)/c. The potentials 
(14.6) can thus be written 

é ep P(x, t) = 
(1-B-n)R B-n)R 

|. (14.8) \. AG.) = a = 
The subscript “ret”? means that the quantity in the square brackets is to be eval- 

uated at the retarded time 7, given by, ro(m) = xo — R. It is evident that for 

nonrelativistic motion the potentials reduce to the well-known results. 

The electromagnetic fields F°°(x) can be calculated directly from (14.6) or 

(14.8), but it is simpler to return to the integral over dr, (14.3). In computing F?° 

the differentiation with respect to the observation point x will act on the theta 

and delta functions. Differentiation of the theta function will give 6[xp — ro(7)] 

and so constrain the delta function to be 6(—R’). There will be no contribution 

from this differentiation except at R = 0. Excluding R = 0 from consideration, 

the derivative 0°A® is 

(14.9) a°A® = 2e | dr V9(r) O[xo — ro(t)] d%S{[x — r(7)]?} 
The partial derivative can be written 

a dr a af] Af] = a°f - a 5[ f] = a°f - 
df dr df 

where f = [x — r(r)]’. The indicated differentiation gives 

d (x — r)* 
— af] a6 f] = — 

V-(-nr)dr 

When this is inserted into (14.9) and an integration by parts performed, the result 
is 

d (x — r)*v8 
— A[Xo — ro(7)] Affe — r(7)P} (14.10) g*A® = 2e | dt 

T V-(x-r) | 
In the integration by parts the differentiation of the theta function gives no con- 

tribution, as already indicated. The form of (14.10) is the same as (14.3), with 

V(r) replaced by the derivative term. The result can thus be read off by substi- 

tution from (14.6). The field strength tensor is 

d é (x — r)?V — (x — r)Pv 
Fe = (14.11) 

V-@-nr) | V-(x—ndr | 
Here r“ and V® are functions of 7. After differentiation the whole expression is 

to be evaluated at the retarded proper time 7. 

The field-strength tensor F°* (14.11) is manifestly covariant, but not overly 

explicit. It is sometimes useful to have the fields E and B exhibited as explicit 

functions of the charge’s velocity and acceleration. Some of the ingredients 

needed to carry out the differentiation in (14.11) are 

— 

= V* = (yc, ycB) (R, Rn), (x - n)* 
dv“ 

[cy‘B + B, cB + cy‘B(B : B)] (14.12) 
dt 

dv* 
— -?’+(x- nr). 

dt 2 @ 9) 
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where f = dP/dt is the ordinary acceleration, divided by c. When these and (14 7) 
are employed the fields (14.11) can be written in the inelegant, but perhaps more 

intuitive, forms 

(14.13) = [m X Ehret 

é ) x B} n X {(n — —B (14.14) 
see, 

c yk (1 - ret | | I. (1 _ B n)°>R? E(x, t) = | 

Fields (14.13) and (14.14) divide themselves naturally into ‘“‘velocity fields,” which 

are independent of acceleration, and “acceleration fields,” which depend linearly 
, whereas on B. The velocity fields are essentially static fields falling off as R? 

the acceleration fields are typical radiation fields, both E and B being transverse 
to the radius vector and varying as R™' 

For the special circumstance of a particle in uniform motion the second term 
in (14.14) is absent. The first term, the velocity field, must be the same as that 
obtained in Section 11.10 by means of a Lorentz transformation of the static 

Coulomb field. One way to establish this is to note from (14.11) for F°* that if 
V“ is constant, the field is 

ec 
FA —_— (14.15) (x — r)eV8 — (x — r)PV7] 

[V-@ rp 

in agreement with the third covariant form in Problem 11.17. It may be worth- 

while, nevertheless, to make a transformation of the charge’s coordinates from 

its present position (used in Section 11.10) to the retarded position used here in 

order to demonstrate explicitly how the different appearing expressions, (11.152) 

and (14.14), are actually the same. The two positions of the charge are shown 

in Fig. 14.2 as the points P and P’, while O is the observation point. The distance 

P’Qis BR cos 6= B - nR. Therefore the distance OQ is (1 — B- n)R. But from the 

2R? sin?6 triangles OPQ and PP’Q we have [(1 — n)R? =r (PQ)* =r 
Then from the triangle OMP’ we have R sin 6 = b, so that 

[1 - n)RP = 7 + v°?? (14.16) *b? = 5 (b? + 70") 

¥pe T 
\M | 

ut <—— BR vt > 

Figure 14.2 Present and retarded positions of a charge in uniform motion 
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The transverse component E, from (11.152), 

eyb 
(14.17a) 27 (b? + yur)? 

can thus be written in terms of the retarded position as 

b 
(14.17) 

¥°(1 — B+ mR? 
nd I 

This is just the transverse component of the velocity field in (14.14). The other 
components of E and B come out similarly. 

14.2 Total Power Radiated by an Accelerated Charge: 
Larmor’s Formula and Its Relativistic Generalization 

If a charge is accelerated but is observed in a reference frame where its velocity 
is small compared to that of light, then in that coordinate frame the acceleration 
field in (14.14) reduces to 

n X (n X B) é E, (14.18) 
c R | I. 

The instantaneous energy flux is given by the Poynting vector, 

—_— 

= S (14.19) GE Xx B=(IESn 

This means that the power radiated per unit solid angle is* 

— aP £ 
= |RE,| In x (n x B)/? (14.20) 

4c dQ 47 

If @ is the angle between the acceleration v and n, as shown in Fig. 14.3, then 

the power radiated can be written 

2 dP e 
|v|? sin?@ (14.21) dQ. 4nc3 

This exhibits the characteristic sin*® angular dependence, which is a well-known 
result. We note from (14.18) that the radiation is polarized in the plane containing 

v and n. The total instantaneous power radiated is obtained by integrating (14.21) 

over all solid angle. Thus 

2 e? 
P==5 Iv? (14.22) 

3¢ 

This is the familiar Larmor result for a nonrelativistic, accelerated charge. 

*As noted in Chapter 9, in writing angular distributions of radiation we always exhibit the polarization 

explicitly by writing the absolute square of a vector that is proportional to the electric field. If the 

angular distribution for some particular polarization is desired, it can be obtained by taking the scalar 

product of the vector with the appropriate polarization vector before squaring. 
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~ 

Figure 14.3 

Larmor’s formula (14.22) can be generalized by arguments about covariance 
under Lorentz transformations to yield a result that is valid for arbitrary velocities 
of the charge. Radiated electromagnetic energy behaves under Lorentz transfor- 
mation like the zeroth component of a 4-vector (see Problem 12.18). This can be 
used (see Rohrlich, p. 109ff.) to show that the power P is a Lorentz invariant. If 

we can find a Lorentz invariant that reduces to the Larmor formula (14.22) for 
B << 1, then we have the desired generalization. There are, of course, many 

Lorentz invariants that reduce to the desired form when 6 — 0. But from (14.14) 
it is evident that the general result must involve only B and 6. With this restriction 

on the order of derivatives that can appear, the result is unique. To find the 

appropriate generalization we write Larmor’s formula in the suggestive form: 

_2 e dp 4p (14.23) 
3 ~ 3c dt dt ( 

where m is the mass of the charged particle, and p its momentum. The Lorentz 

invariant generalization is 

2 e dp,, dp" 
-— —_—- (14.24) 

3m 
203 dr dt ( 

where dt = dt/y is the proper time element, and p” is the charged particle’s 

momentum-energy 4-vector.* To check that (14.24) reduces properly to (14.23) 

as B — 0 we evaluate the 4-vector scalar product, 

1 dE dp 
_— ap _ 4p, ap* _ = 

dr dt dt C2 dr dt ( 
; 

( 
; 

( ) - p(2 ) (14.25) 
If (14.24) is expressed in terms of the velocity and acceleration by means of 
E = ymc’ and p = ymv, we obtain the Liénard result (1898): 

(14.26) p= 22 py - @ x By] 
One area of application of the relativistic expression for radiated power is 

that of charged-particle accelerators. Radiation losses are sometimes the limiting 
factor in the maximum practical energy attainable. For a given applied force (i.e., 

*That (14.24) is unique can be seen by noting that a Lorentz invariant is formed by taking scalar 
products of 4-vectors or tensors of higher rank. The available 4-vectors are p“ and dp*/dr. Only form 
(14.24) reduces to the Larmor formula for B — 0. Contraction of higher rank tensors such as 
p*(dp"/dr) can be shown to vanish, or to give results proportional to (14.24) or m2. 
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a given rate of change of momentum), the radiated power (14.24) depends in- 

versely on the square of the mass of the particle involved. Consequently these 
radiative effects are largest for electrons 

In a linear accelerator the motion is one-dimensional. From (14.25) it is ev- 
ident that in that case the radiated power is 

2 e dp 
(14.27) 

3m dt ( 
The rate of change of momentum is equal to the change in energy of the particle 
per unit distance. Consequently 

2 e dE 
P (14.28) 

3m dx ( 
showing that for linear motion the power radiated depends only on the external 

forces that determine the rate of change of particle energy with distance, not on 

the actual energy or momentum of the particle. The ratio of power radiated to 

power supplied by the external sources is 

P 1ldE 2 (e?/mc?) dE _2 e 
(14.29) 

dx 3 me 3 dx 3 me (dEldt) 

where the last form holds for relativistic particles (6 — 1). Equation (14.29) shows 

that the radiation loss in an electron linear accelerator will be unimportant unless 

the gain in energy is of the order of mc? = 0.511 MeV in a distance of e7/mc 
2.82 x 1073 cm, or of the order of 2 X 10'* MeV/m! Typical energy gains are 
less than 50 MeV/m. Radiation losses are completely negligible in linear accel- 

erators, whether for electrons or heavier particles 

Circumstances change drastically in circular accelerators like the synchrotron 

or betatron. In such machines the momentum p changes rapidly in direction as 

the particle rotates, but the change in energy per revolution is small. This means 

that 

1ldE 
(14.30) 

c dt | - yo |p| > 
Then the radiated power (14.24) can be written approximately 

2 2 e’c 
P=- (14.31) yo |p? = —= B*y' 203 

3 3 p 

where we have used w (cB/p), p being the orbit radius. This result was first 

obtained by Liénard in 1898. The radiative-energy loss per revolution is 

27 4a e* 
P=— 6E = — — py (14.32) 

3 p B 

where 1/p is actually 1/27 times the path integral around the ring of [1/p(s)]?. For 
high-energy electrons (8 = 1) this has the numerical value 

2 [E(GeV)]' (14.33) 5E(MeV) = 8.85 Xx 107 
(meters) 

0.3 GeV. Hence 6E,,,x In the first electron synchrotrons, p = 1 meter, Emax 

1 keV per revolution. This was less than, but not negligible compared to, the 
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energy gain of a few kilovolts per turn. At higher energies the limitation on 

available radiofrequency power to overcome the radiation loss becomes a dom- 

inant consideration. In the 10 GeV Cornell electron synchrotron, for example, 

the orbit radius is p ~ 100 meters, the maximum magnetic field is ~3.3 kG, and 

the rf voltage per turn is 10.5 MV at 10 GeV. According to (14.33) the loss per 

turn is 8.85 MeV. These same general considerations apply to electron-positron 

storage rings, where rf power must be supplied just to maintain the_beams at a 

constant energy as they circulate. At the LEP ring in Geneva, Switzerland, for 

beams at 60 GeV the loss per turn is about 300 MeV per electron 

The power radiated in circular electron accelerators can be expressed nu- 

merically as 

(14.34) P (watts) = 10° 5E (MeV) J (amp) 

where J is the circulating beam current. This equation is valid if the emission of 

radiation from the different electrons in the circulating beam is incoherent. In 

the largest electron storage rings the radiated power amounts to tens of watts 

per microampere of beam. While this power dissipation is a waste to high-energy 

physicists, the radiation has unique properties that make it a valuable research 
tool. These properties are discussed in Section 14.6, and in greater detail for 
dedicated “‘light sources” in Section 14.7 

14.3 Angular Distribution of Radiation Emitted 
by an Accelerated Charge 

For an accelerated charge in nonrelativistic motion the angular distribution shows 

a simple sin?® behavior, as given by (14.21), where © is measured relative to the 
direction of acceleration. For relativistic motion the acceleration fields depend 

on the velocity as well as the acceleration. Consequently the angular distribution 

is more complicated. From (14.14) the radial component of Poynting’s vector can 

be calculated to be 

2 
é n X [(n — B) x Bl 

(14.35) [S n] ret 
4ac (1 — B-n)? G . 

It is evident that there are two types of relativistic effect present. One is the effect 

of the specific spatial relationship between B and B, which will determine the 

detailed angular distribution. The other is a general, relativistic effect arising from 

the transformation from the rest frame of the particle to the observer’s frame 

and manifesting itself by the presence of the factors (1 — B-n) in the denomi- 

nator of (14.35). For ultrarelativistic particles the latter effect dominates the 

whole angular distribution 

In (14.35) S-n is the energy per unit area per unit time detected at 

an observation point at time ¢ of radiation emitted by the charge at time ¢’ = 
t — R(t')/c. If we wanted to calculate the energy radiated during a finite period 
of acceleration, say from t’ = T, to t’ = T,, we would write 

t=T>+ ee 

(14.36) ee], rtrcryye | S + ner dt [_. ~ G: n) a 
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Thus we see that the useful and meaningful quantity is (S - n) (dt/dt'), the power 

radiated per unit area in terms of the charge’s own time. We therefore define 

the power radiated per unit solid angle to be 

dt dP(t') 
(14.37) = R°(S-n) = R*S-n(1 — B-n) 

dQ dt 

If we imagine the charge to be accelerated only for a short time during which B 

and B are essentially constant in direction and magnitude, and we observe the 

radiation far enough away from the charge that n and R change negligibly during 

the acceleration interval, then (14.37) is proportional to the angular distribution 

of the energy radiated. With (14.35) for the Poynting vector, the angular distri- 

bution is 

adP(t') __e? |m x {(n — B) x B}/? (14.38) 
dQ 4c (1 -—n- By 

The simplest example of (14.38) is linear motion in which B and B are par- 

allel. If 6 is the angle of observation measured from the common direction of B 

and §, then (14.38) reduces to 

sin” 6 dP(t') ev? 
(14.39) 

dQ 4c? (1 — Bos 6) 

For 6B <1, this is the Larmor result (14.21). But as 6 — 1, the angular distri- 

bution is tipped forward more and more and increases in magnitude, as indicated 

schematically in Fig. 14.4. The angle 6,,.. for which the intensity is a maximum 

iS 

(14.40) Omax = cos] 4 V1 + 15B? - »| > = 

where the last form is the limiting value for B — 1. In this same limit the peak 

intensity is proportional to y*. Even for 8 = 0.5, corresponding to electrons of 

~80 keV kinetic energy, Onax = 38.2°. For relativistic particles, On4x 1s very small, 

being of the order of the ratio of the rest energy of the particle to its total energy. 

Thus the angular distribution is confined to a very narrow cone in the direction 

of motion. For such small angles the angular distribution (14.39) can be written 

approximately 

(9)? dP(t') 8 ev , 
(14.41) 

ro dQ 
(1 + yey 

Figure 14.4 Radiation pattern for 8 max 
charge accelerated in its direction of 

oS 

(V 
motion. The two patterns are not to 

scale, the relativistic one (appropriate 

for y ~ 2) having been reduced by a 

factor ~10? for the same acceleration 
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dP 

dQ 

il li 
1.0 -10 

¥9—> 

Figure 14.5 Angular distribution of radiation for relativistic particle 

The natural angular unit is evidently y~'. The angular distribution is shown 1 in 
Fig. 14.5 with angles measured in these units. The peak occurs at y@ = +, and the 

half-power points at y@ = 0.23 and y@ = 0.91. The root mean square angle of 

emission of radiation in the relativistic limit is 

mc 1 
—_—— (14.42) (972 = 

E 

This is typical of the relativistic radiation patterns, regardless of the vectorial 
relation between ® and B. The total power radiated can be obtained by inte- 
grating (14.39) over all angles. Thus 

2 

(14.43) PC’) 3007 

in agreement with (14.26) and (14.27) 

Another example of angular distribution of radiation is that for a charge in 

instantaneously circular motion with its acceleration B perpendicular to its ve- 

locity B. We choose a coordinate system such that instantaneously B is in the z 

direction and B is in the x direction. With the customary polar angles 6, ¢ defining 

the direction of observation, as shown in Fig. 14.6, the general formula (14.38) 

reduces to 

2 
e dP(t') sin?@ cos? Mi 

(14.44) 
dQ 4nc’ (1 — B cos 6)° 2(1 — B cos 6)” 

2 - | 
We note that, although the detailed angular distribution is different from the 

linear acceleration case, the same characteristic relativistic peaking at forward 

4 

Figure 14.6 
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angles is present. In the relativistic limit (y >> 1), the angular distribution can 
be written approximately 

vf? 6 ap) _2¢ _ 470 cos’ 
(14.45) 

dQ ro’ 1+ Yep | | 
The root mean square angle of emission in this approximation is given by (14.42), 
just as for one-dimensional motion. The total power radiated can be found by 
integrating (14.44) over all angles or from (14.26): 

2e*|vP P(t') = 
3 (14.46) 3 

It is instructive to compare the power radiated for acceleration parallel to 
the velocity (14.43) or (14.27) with the power radiated for acceleration perpen- 
dicular to the velocity (14.46) for the same magnitude of applied force. For cir- 
cular motion, the magnitude of the rate of change of momentum (which is equal 
to the applied force) is ymv. Consequently, (14.46) can be written 

2 e dp 
_ —_ (14.47) Peircutar (t’ ) = 
3 mc dt 

; 

3 v( 
When this is compared to the corresponding result (14.27) for rectilinear motion, 

we find that for a given magnitude of applied force the radiation emitted with a 

transverse acceleration is a factor of y” larger than with a parallel acceleration. 

14.4 Radiation Emitted by a Charge in Arbitrary, 

Extremely Relativistic Motion 

For a charged particle undergoing arbitrary, extremely relativistic motion the 

radiation emitted at any instant can be thought of as a coherent superposition of 

contributions coming from the components of acceleration parallel to and per- 

pendicular to the velocity. But we have just seen that for comparable parallel 

and perpendicular forces the radiation from the parallel component is negligible 

(of order 1/7) compared to that from the perpendicular component. Conse- 
quently we may neglect the parallel component of acceleration and approximate 

the radiation intensity by that from the perpendicular component alone. In other 

words, the radiation emitted by a charged particle in arbitrary, extreme relativ- 

istic motion is approximately the same as that emitted by a particle moving 

instantaneously along the arc of a circular path whose radius of curvature p is 

given by 

2 2 
c UV 

(14.48) e= >-F=T 

Vi Vy 

where U, is the perpendicular component of acceleration. The form of the angular 
distribution of radiation is (14.44) or (14.45). It corresponds to a narrow cone or 
searchlight beam of radiation directed along the instantaneous velocity vector of 
the charge. 

For an observer with a frequency-sensitive detector the confinement of the 

radiation to a narrow pencil parallel to the velocity has important consequences. 
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The radiation will be visible only when the particle’s velocity is directed toward 

the observer. For a particle in arbitrary motion the observer will detect a pulse 

or burst of radiation of very short time duration (or a succession of such bursts 

if the particle is in periodic motion), as sketched in Fig. 14.7. Since the angular 

width of the beam is of the order of y~', the particle will travel only a distance 

of the order of 

™ 

q=* 
Y 

corresponding to a time, 

‘yu 

while illuminating the observer. To make the argument conceptually simple, 

neglect the curvature of the path during this time and suppose that a sharp rec- 

tangular pulse of radiation is emitted. In the time Ar the front edge of the 

pulse travels a distance, 

p 
— D=cAt= 
Y 

r<—L 

1] 

I 
P(t) Lo 

-—n 

t{—> 

Figure 14.7 A relativistic particle in periodic motion emits a spiral radiation pattern 
that an observer at the point A detects as short bursts of radiation of time duration 
T = Lic, occurring at regular intervals Ty = Lo/c. The pulse length is given by (14.49), 
while the interval 7) = 2ap/v = 27p/c. For beautiful dia grams of field lines of radiating 
particles, see R. Y. Tsien, Am. J. Phys. 40, 46 (1972). 
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Since the particle is moving in the same direction with speed v and moves a 
distance d in the time Ar, the rear edge of the pulse will be only a distance 

1 p 
—_—_ — Po (14.49) 
B y 29° 

L-p-a=( } 
behind the front edge as the pulse moves off. The pulse length is thus L in space, 
or L/c in time. From general arguments about the Fourier decomposition of finite 

wave trains this implies that the spectrum of the radiation will contain appreciable 

frequency components up to a critical frequency, 

Cc 
_ O-.~ T™~ (14.50) 

L p ( Jr 
For circular motion c/p is the angular frequency of rotation w,) and even for 

arbitrary motion it plays the role of a fundamental frequency. Equation (14.50) 

shows that a relativistic particle emits a broad spectrum of frequencies, up to y° 

times the fundamental frequency. In a 200 MeV synchrotron, yma, = 400, while 

@) ~ 3 X 10° s”'. The frequency spectrum of emitted radiation extends up to 
~2 X 10'* s~1, or down to a wavelength of 1000 A, even though the fundamental 
frequency is in the 100 MHz range. For the 10 GeV machine at Cornell, yn2x 

2 X 10* and wy = 3 X 10°s~'. This means that w, = 2.4 X 10! s~', corresponding 
to 16 keV x-rays. In Section 14.6 we discuss in detail the angular distribution of 

the different frequency components, as well as the total energy radiated as a 

function of frequency. In Section 14.7 we show how to modify the spectrum with 

magnetic insertion devices. 

14.5 Distribution in Frequency and Angle of Energy 
Radiated by Accelerated Charges: Basic Results 

The qualitative arguments of Section 14.4 show that for relativistic motion the 
radiated energy is spread over a wide range of frequencies. The range of the 

frequency spectrum was estimated by appealing to properties of Fourier integrals. 
The argument can be made precise and quantitative by the use of Parseval’s 

theorem of Fourier analysis. 

The general form of the power radiated per unit solid angle is 

dP(t) _ 
(14.51) |A() dQ 

where 

(14.52) A(t) = (<) TRE] ret 
E being the electric field (14.14). In (14.51) the instantaneous power is expressed 

in the observer’s time (contrary to the definition in Section 14.3), since we wish 

to consider a frequency spectrum in terms of the observer’s frequencies. For 

definiteness we think of the acceleration occurring for some finite interval of time, 

or at least falling off for remote past and future times, so that the total energy 

radiated is finite. Furthermore, the observation point is considered far enough 



674 Chapter 14 Radiation by Moving Charges—G 

away from the charge that the spatial region spanned by the charge while accel- 
erated subtends a small solid-angle element at the observation point. 

The total energy radiated per unit solid angle is the time integral of (14.51): 
oo 

dW 
(14.53) . | A(t) |? dt 

dQ 

This can be expressed alternatively as an integral over a frequency spectrum by 

use of Fourier transforms. We introduce the Fourier transform A(w) of A(t), 

oo 

1 
= 
= (14.54) A(‘)e' dt A(w 

V2 J-% 

and its inverse, 

(14.55) A(t) = m [- A(w)e do 

Then (14.53) can be written 

dw 

- I. dt _ dw [ dw’ A*(w') + A(we@"™" — (14.56) 
dQ 

Interchanging the orders of time and frequency integration, we see that the time 

integral is just a Fourier representation of the delta function 6(w’ — w). Conse- 
quently the energy radiated per unit solid angle becomes 

oo 

dw 
(14.57) __ |A(@)P do dQ 

The equality of (14.57) and (14.53), with suitable mathematical restrictions on 

the function A(t), is a special case of Parseval’s theorem. It is customary to in- 

tegrate only over positive frequencies, since the sign of the frequency has no 

physical meaning. Then the relation, 

dW [* d?I(o,n) 
d (14.58) 

dQ Jo dw dQ, 

defines a quantity that is the energy radiated per unit solid angle per unit fre- 

quency interval: 

d?I 
= |A(@)|* + |A(—@)/? (14.59) 

dw dD 

If A(t) is real, from (14.55) it is evident that A(—w) = A*(w). Then 

d?I 
= 2 |A(o)/? (14.60) 

dw dQ 

This result relates in a quantitative way the behavior of the power radiated as a 
function of time to the frequency spectrum of the energy radiated. 

By using (14.14) for the electric field of an accelerated charge we can obtain 
a general expression for the energy radiated per unit solid angle per unit fre- 
quency interval in terms of an integral over the trajectory of the particle. We 
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must calculate the Fourier transform (14.54) of A(t) given by (14.52). Using 
(14.14), we find 

2 

n x [(n — B) x B] 
2 8 Cc 

A(w) = ( het (1 — B-n)’ 
I. dt (14.61) 

where ret means evaluated at ¢’ + [R(t’)/c] = t. We change the variable of inte- 
gration from ¢ to z’, thereby obtaining the result: 

oo 2 
e piot! +[R(eVc)) B x [(n — B) x B] 

dt’ 2 (14.62) 
—oa 8 

A(w) = ( yf (1 — B-ny’ 
Since the observation point is assumed to be far away from the region of space 
where the acceleration occurs, the unit vector n is sensibly constant in time. 
Furthermore the distance R(t’) can be approximated as 

R(t’) =x —n-r(t’) (14.63) 

where x is the distance from an origin O to the observation point P, and r(¢’) is 
the position of the particle relative to O, as shown in Fig. 14.8. Then, apart from 

an overall phase factor, (14.62) becomes 

oo 2 
é 

dt 
eioti—n-r(sc) n X [(n — B) X B] 

(14.64) 
—o 87rc 

A(w) = ( yf (1 — B-n) 
The primes on the time variable have been omitted for brevity. The energy ra- 

diated per unit solid angle per unit frequency interval (14.60) is accordingly 

2 
2 d?*I e n xX [(n ~~ B) * B] eielt-ner(fic) dt (14.65) [. dw dQ 4n°c (1- B-ny 

For a specified motion r(t) is known, B(r) and B(t) can be computed, and the 
integral can be evaluated as a function of w and the direction of n. If accelerated 

motion of more than one charge is involved, a coherent sum of amplitudes A;(w), 

one for each charge, must replace the single amplitude in (14.65) (see Problems 

14.23, 15.1, 15.4-15.8). 

Even though (14.65) has the virtue of explicitly showing the time interval of 

integration to be confined to times for which the acceleration is different from 

zero, a simpler expression for some purposes can be obtained by an integration 

by parts in (14.64). It is easy to demonstrate that the integrand in (14.64), ex- 
cluding the exponential, is a perfect differential: 

n X (n X B) n X [(n- B) xB] _ a 
(14.66) 

dt 1-6B-n (1 — B-n) | | 
r(t') 

Rit’) 

ee 

Figure 14.8 
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Then an integration by parts leads to the intensity distribution: 
2 

d’I ew" 
(14.67) [ nx (n x Bee rrr) dt 

dw aQ, ~ 4arc 

The reader may rightly ask whether (14.67) is correct in all circumstances as it 
stands. Suppose that the acceleration is different from zero only for 7, =¢ = 75. 

Why then is the integration in (14.67) over all time? The prectse answer is that 

(14.67) can be shown, by adding and subtracting the integrals over the times when 

the velocity is constant, to follow from (14.65) provided ambiguities at = +00 

are resolved by inserting a convergence factor e~* in the integrand and taking 
the limit e — 0 after evaluating the integral. In processes like beta decay, where 

the classical description involves the almost instantaneous halting or setting in 

motion of charges, extra care must be taken to specify each particle’s velocity as 

a physically sensible function of time. 

We remind the reader that in (14.67) and (14.65) the polarization of the 

emitted radiation is specified by the direction of the vector integral in each. The 

intensity of radiation of a certain fixed polarization can be obtained by taking 

the scalar product of the appropriate unit polarization vector with the vector 

integral before forming the absolute square. 

For a number of charges e; in accelerated motion the integrand in (14.67) 

involves the replacement, 

(14.68) eBe e/en-r) > e,Bje Koon 

In the limit of a continuous distribution of charge in motion the sum over j 

becomes an integral over the current density J(x, f): 

(14.69) eBe Keon _, . | d°x I(x, the eon* 

Then the intensity distribution becomes 

2 2 d?I @ 

(14.70) | dt d°x n x(n x I(x, t)Jeot—@-ne] 
dowd 47°C 

a result that can be obtained from the direct solution of the inhomogeneous wave 
equation for the vector potential. 

14.6 Frequency Spectrum of Radiation Emitted by a Relativistic 
Charged Particle in Instantaneously Circular Motion 

In Section 14.4 we saw that the radiation emitted by an extremely relativistic 
particle subject to arbitrary accelerations is equivalent to that emitted by a par- 
ticle moving instantaneously at constant speed on an appropriate circular path. 
The radiation is beamed in a narrow cone in the direction of the velocity vector 
and is seen by the observer as a short pulse of radiation as the searchlight beam 
Sweeps across the observation point. 
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To find the distribution of energy in frequency and angle it is necessary to 

calculate the integral in (14.67). Because the duration of the pulse is very short, 

it is necessary to know the velocity B and position r(t) over only a small arc of 

the trajectory whose tangent points in the general direction of the observation 

point. Figure 14.9 shows an appropriate coordinate system. The segment of tra- 

jectory lies in the x-y plane with instantaneous radius of curvature p. Since an 

integral will be taken over the path, the unit vector n can be chosen without loss 

of generality to lie in the x-z plane, making an angle @ (the latitude) with the x 

axis. Only for very small @ will there be appreciable radiation intensity. The origin 

of time is chosen so that at t = 0 the particle is at the origin of coordinates. 

The vector part of the integrand in (14.67) can be written 

(14.71) 1x 6) = Af -asi(!) + « co!) sing 

where €) = €, is a unit vector in the y direction, corresponding to polarization in 

the plane of the orbit; €, = n X €, is the orthogonal polarization vector corre- 

sponding approximately to polarization perpendicular to the orbit plane (for 6 
small). The argument of the exponential is 

p 
—_ — 

_ n-r(t) 
(14.72) 

c c p 

wl Jen ( 4 
Since we are concerned with small angles 6 and comparatively short times around 
t = 0, we can expand both trigonometric functions in (14.72) to obtain 

2 
1 

— 

_ n-r(t) ~2 t+Se (14.73) ++ 6 
2 c 3p” | ( ( 

where B has been put equal to unity wherever possible. Using the time estimate 

picy for t and the estimate (67)'? (14.42) for 6, it is easy to see that neglected 

terms in (14.73) are of the order of y~? times those kept. 
With the same type of approximations in (14.71) as led to (14.73), the radi- 

ated energy distribution (14.67) can be written 

2 
e7w" d?I 

(14.74) —€)A,(@) + €,A,(w) 
dw dQ 4n°c 

& 

eu | 8 

Figure 14.9 
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where the amplitudes are* 

oo 243 

t+i> 5+ it 

3 
_ b exp 

2 
y 

he ( | (14.75) 
oo 2,3 

t+is ++ A (a) = 6 _ 3 y 
he al 

~ - 

— 

= ++ & A change of variable to x y 
| and introduction of the yl 

parameter €, 

@ 1 
— (14.76) E= =+ 6 Al 

allows us to transform the integrals in A,(w) and A,(w) into the form: 

eo 

1 
++ 6 x exp[ié(x + 3x°)] dx 

— oo 
y )I 

(14.77) 
oo 

_ explizé(x + 3x°)] dx A,(@) = ; o(2 + ey | 
The integrals in (14.77) are identifiable as Airy integrals, or alternatively as mod- 

ified Bessel functions: 

[ x sin[Zé(x + 3x°)] dx = V3 Kap(€) 
(14.78) 

1 [ cos[3é(x + 5x°)] dx = V3 Kip(€) 

Consequently the energy radiated per unit frequency interval per unit solid angle 

is 

2 2 
e 1 d’I wp =>+ 

dw dQ ~ 37r7¢ c (1/y*) + 6? ( )( ) [xz + Kin) (14.79) 
The first term in the square bracket corresponds to radiation polarized in the 

plane of the orbit, and the second to radiation polarized perpendicular to that 

plane. 

We now proceed to examine this somewhat complex result. First we integrate 

over all frequencies and find that the distribution of energy in angle is 

oo 

dl d’I 7 e 1 5 Q2 

dw = (14.80) | 0 dQ dw dO, 16 p (ly + 6)? 7 (ly) + & 
: 

*The fact that the limits of integration in (14.75) are t = +o may seem to contradict the approxi- 

mations made in going from (14.72) to (14.73). The point is that for most frequencies the phase of 

the integrands in (14.75) oscillates very rapidly and makes the integrands effectively zero for times 

much smaller than those necessary to maintain the validity of (14.73). Hence the upper and lower 

limits on the integrals can be taken as infinite without error. Only for frequencies of the order of 

@ ~ (clp) ~ w does the approximation fail. But we have seen in Section 14.4 that for relativistic 

particles essentially all the frequency spectrum is at much higher frequencies. 
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This shows the characteristic behavior seen in Section 14.3. Equation (14.80) can 

be obtained directly, of course, by integrating a slight generalization of the 

circular-motion power formula (14.44) over all times. As in (14.79), the first term 

in (14.80) corresponds to polarization parallel to the orbital plane, and the second 

to perpendicular polarization. Integrating over all angles, we find that seven times 

as much energy is radiated with parallel polarization as with perpendicular po- 

larization. The radiation from a relativistically moving charge is very strongly, 

but not completely, polarized in the plane of motion. 

The properties of the modified Bessel functions summarized in (3.103) and 

(3.104) show that the intensity of radiation is negligible for é >> 1. From (14.76) 

we see that this will occur at large angles; the greater the frequency, the smaller 

the critical angle beyond which there will be negligible radiation. This shows that 

the radiation is largely confined to the plane containing the motion, as shown by 

(14.80), being more confined the higher the frequency relative to c/p. If w gets 

too large, however, we see that é will be large at all angles. Then there will be 

negligible total energy emitted at that frequency. The critical frequency w, be- 

yond which there is negligible radiation at any angle can be defined by é = 1/2 

for 6 = 0. Then we find* 

E Cc 3 
— _— —_— (14.81) 

2 mc? p ( 39()> 
This critical frequency is seen to agree with our qualitative estimate (14.50) of 
Section 14.4. If the motion of the charge is truly circular, then c/p is the funda- 
mental frequency of rotation, wo. Then we can define a critical harmonic fre- 
quency w, = n,w , with harmonic number, 

E 
———. (14.82) no*F 

2 mc? 

y 

( 
Since the radiation is predominantly in the orbital plane for y >> 1, it is 

instructive to evaluate the angular distribution (14.79) at @ = 0. For frequencies 

well below the critical frequency (w << w,), we find 

3 d’I KG) wp e (14.83) 
Cc 4 7 Cc dw dQ ) ( 6=0 7 | I 

For the opposite limit of w >> w,, the result is 

3 e? d?I 2, W 
-wiw, 

=> (14.84) 
- Aare dw dQ D> 0=0 

These limiting forms show that the spectrum at @ = 0 increases with frequency 

rouglily as w~” well below the critical frequency, reaches a maximum in the neigh- 
borhood of w,, and then drops exponentially to zero above that frequency. 

The spread in angle at a fixed frequency can be estimated by determining 

*Our present definition of w, differs from earlier editions. The present one, defined originally by 
Schwinger (1949), is in general use. 
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the angle 0, at which &(0,) = &(0) + 1. In the low-frequency range (w < w,), 
&(0) is very small, so that &(0,) = 1. This gives 

1 3c 20, 
—_— ~ —_ 
= = (14.85) 6 

@ Y wp ( ( 
We note that the low-frequency components are emitted at much wider angles 
than the average, (6”)'* ~ y~1. In the high-frequency limit (w >_w,),&(0) is large 
compared to unity. Then the intensity falls off in angle approximately as 

d*I d?I —30767/2a, (14.86) 
dwdQ dwdM 

6=0 

Thus the critical angle, defined by the 1/e point, is 

1 20), 
6. = — (14.87) 

3w | 
This shows that the high-frequency components are confined to an angular range 

much smaller than average. Figure 14.10 shows qualitatively the angular distri- 

bution for frequencies small compared with, of the order of, and much larger 

than w,. The natural unit of angle y is used 

The frequency distribution of the total energy emitted as the particle passes 

by can be found by integrating (14.79) over angles 

oo w/2 2 dl d?I 
dé (14.88) 

—_ | dw wz dw dQ, 
cos 8d ~ 2m | 

° dw dQ, 

(remember that @ is the latitude). We can estimate the integral for the low- 

frequency range by using the value of the angular distribution (14.83) at 6 = 0 

and the critical angle 6, (14.85). Then we obtain 

dl e2 d*] wp 
~— — ~ 276. (14.89) 

dw dw dQ, c Cc (2 
showing that the spectrum increases as w"? for w@ << w,. This gives a very broad 
flat spectrum at frequencies below w,. For the high-frequency limit where w >> w, 
we can integrate (14.86) over angles to obtain the reasonably accurate result 

dad | @ 

(14.90) do 
c 

3 a= y( 

W Swe 

Figure 14.10 Differential frequency 

w <<w, spectrum as a function of angle. For 

frequencies comparable to the critical 
frequency w,, the radiation is confined 

ee | 

to angles of the order of y~!. For 

much smaller (larger) frequencies, the 
y8—> angular spread is larger (smaller) 
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A proper integration of (14.79) over angles yields the expression,* 

oo 

dl @ 
— —_— Ks,(x) dx (14.91) 

d 
vaey 

w/w, @- 

In the limit w < w, this reduces to the form (14.89) with a numerical coefficient 
3.25, while for w >> w, it is equal to (14.90). The behavior of di/dw as a function 
of frequency is shown in Fig. 14.11. The peak intensity is of the order of e”y/c, 
and the total energy is of the order of e?yw,/c = 3e”y‘/p. This is in agreement 
with the value of 47re*y*/3p for the radiative loss per revolution (14.32) in circular 
accelerators. 

The radiation represented by (14.79) and (14.91) is called synchrotron radi- 
ation because it was first observed in electron synchrotrons (1948). The theoret- 
ical results are much older, however, having been obtained for circular motion 
by Schott (1912) although their expression in the present amenable form is due 
to Schwinger. For periodic circular motion the spectrum is actually discrete, being 
composed of frequencies that are integral multiples of the fundamental frequency 
@ = c/p. Since the charged particle repeats its motion at a rate of c/27p revo- 

lutions per second, it is convenient to talk about the angular distribution of power 
radiated into the nth multiple of w instead of the energy radiated per unit fre- 
quency interval per passage of the particle. To obtain the harmonic power ex- 

pressions, we merely multiply di/dw (14.91) or d*I/dw dQ (14.79) by the repetition 

rate c/27p to convert energy to power, and by w, = c/p to convert per unit 

frequency interval to per harmonic. Thus 

c d?I dP, 1 
— 

dQ. 27 dw dO p 

y 

( w=nag 

(14.92) 
1 c * dl 

—_ P,, ~ On dw p ( w=NwWy 

These results have been compared with experiment at various energy synchro- 

trons.‘ The angular, polarization, and frequency distributions are all in good 

agreement with theory. Because of the broad frequency distribution shown in 

Fig. 14.11, covering the visible, ultraviolet, and x-ray regions, synchrotron radi- 

ation is a useful tool for studies in condensed matter and biology. We examine 

synchrotron light sources and some of the insertion devices used to tailor the 

spectrum for special purposes in the next section. 

Synchrotron radiation has been observed in the astronomical realm associ- 

ated with sunspots, the Crab nebula, and from the particle radiation belts of 

Jupiter. For the Crab nebula the radiation spectrum extends over a frequency 

range from radiofrequencies into the extreme ultraviolet, and shows very strong 

polarization. From detailed observations it can be concluded that electrons with 

*This result and the differential distribution (14.79) are derived in a somewhat different way by 

J. Schwinger, Phys. Rev. 75, 1912 (1949). Schwinger later showed that the first-order quantum- 

mechanical corrections to the classical results involve the replacement of w > w(1 + fo/EF) in 
w! d?Iidw dQ or w™! di/dw [Proc. Natl. Acad. Sci. 40, 132 (1954)] and are thus negligible provided 
hw, < E, or equivalently, y << (pmc/h)”. 

'F, R. Elder, R. V. Langmuir, and H. C. Pollock, Phys. Rev., 74, 52 (1948); D. H. Tomboulain and 
P. L. Hartman, Phys. Rev., 102, 1423 (1956); G. Bathow, E. Freytag, and R. Haensel, J. Appl. Phys., 

37, 3449 (1966). 
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Figure 14.11 Normalized synchrotron radiation spectrum (1/I)(dI/dy) = 

(9V/3/87)y [ Ks3(x) dx, where y = w/w, and I = 47e?y‘/3p: (a) linear abscissa scale 
and (5) logarithmic abscissa scale. 

energies ranging up to 10’* eV are emitting synchrotron radiation while moving 
in circular or helical orbits in a magnetic induction of the order of 10~4 gauss 
(see Problem 14.26). The radio emission at ~10? MHz from Jupiter comes from 
energetic electrons trapped in Van Allen belts at distances from a few to 30-100 
radii (R,) from Jupiter’s surface. Data from a space vehicle (Pioneer 10, Decem- 
ber 4, 1973, encounter with Jupiter) passing within 2.8R, showed a roughly dipole 
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magnetic field with a dipole moment of 4R} gauss. Appreciable fluxes of trapped 
electrons with energies greater than 3 MeV and a few percent with energies 
greater than 50 MeV were observed. Taking 1 gauss as a typical field and 5 MeV 
as a typical energy, Eqs. (12.42) and (14.81) show that the spiraling radius is of 
the order of 100-200 meters, w, ~ 2 X 10° s~!, and that about 10° significant 
harmonics are radiated. 

The treatment of synchrotron radiation presented here is completely classi- 
cal, but the language of photons can be used, if desired. The number of photons 
per unit frequency interval is obtained by dividing the intensity distribution 
(14.91) [or (14.79)] by Aw. Then the photon frequency distribution is 

I dN _ 
(14.93) NS J Ks3(x) dx dy he, 

where y = w/w, and I = 47e7y*/3p is the total energy radiated per revolution. 
Integration over frequency gives the mean number of photons emitted per rev- 
olution per particle, 

57 
N= (14.94) v3 7 

where a is the fine structure constant. The mean energy per photon is J/N: 

(hw) -§_ ky (14.95) 
15v3 

As already remarked, because w, is proportional to y* and y = O(10*) for GeV 

energies, fundamental wavelengths (27p) of the order of hundreds of meters give 

rise to synchrotron photons of wavelengths down to 10~"° meter (1 angstrom) or 

less, corresponding to keV x-rays. 

I 4. 7 Undulators and Wigglers for Synchrotron Light Sources 

The broad spectrum of radiation emitted by relativistic electrons bent by the 

magnetic fields of synchrotron storage rings provides a useful source of energetic 

photons for research and was utilized initially in a ‘“‘parasitic’’ mode by biologists 

and condensed matter physicists. Curved crystals or other devices were used to 

select specific frequencies from the continuum. As applications grew, the need 

for brighter sources with the radiation more concentrated in frequency led to the 

development of magnetic “insertion devices”’ called wigglers and undulators to 

be placed in the synchrotron ring. The magnetic properties of these devices cause 

the electrons to undergo special motion that results in the concentration of the 

radiation into a much more monochromatic spectrum or series of separated 

peaks. The basic formula for the radiation is still (14.67), although here we use 
invariance arguments and Lorentz transformations to make the results more 

physically understandable. 

The essential idea of undulators and wigglers is that a charged particle, usu- 
ally an electron and usually moving relativistically, (y >> 1), is caused to move 
transversely to its general forward motion by magnetic fields that alternate pe- 

riodically. The external magnetic fields induce small transverse oscillations in the 
motion; the associated accelerations cause radiation to be emitted. A typical 
configuration of magnets, with an alternating vertical magnetic field at the path 
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Figure 14.12 (a) Schematic diagram of alternating-polarity bending magnets for a 

wiggler or undulator. (b) Sketch of approximately sinusoidal path of electron in the x-z 

plane. The magnet period is Ao, the maximum transverse amplitude is a, and the 

maximum angle is yo. 

of the particle, is sketched in Fig. 14.12a. The path of the particle is in the hori- 

zontal (x-z) plane. 

A. Qualitative Features 

If the periodicity of the magnetic field structure is Ao, the particle’s path will 

be approximately sinusoidal in the transverse direction with the same period, as 

sketched in Fig. 14.12b. We have x ~ a sin(27rz/A,), with the maximum amplitude 

a dependent on the strength of the wiggler’s magnetic field and the particle’s 

energy. The maximum angular deviation y% away from the forward direction is 

proportional to a; it is an important parameter, which distinguishes undulators 

from wigglers. We have 

dx _ 27a 
— — 

= where ky = 277/Xo (14.96) = koa, 
dz Xo w= ). 

is the fundamental wave number of the system. [Actually, the time taken for the 
particle to traverse one period of the magnet structure is T = A,/Bc and so the 
real fundamental wave number of the radiation is Bky. For y >> 1 the difference 
is insignificant. ] 

For y >> 1, the radiation emitted by the charged particle is confined to a 
narrow angular region of angular width A@ = O(1/y) about the actual path. As 
the particle moves in its oscillatory path sketched in Fig..14.12b, the “searchlight” 
beam of radiation will flick back and forth about the forward direction. Quali- 
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tatively different radiation spectra will result, depending on whether y is larger 

or smaller than A@. 

(a) Wiggler (us, >> A@) 

For W% >> AQ, an observer detects a series of flicks of the searchlight beam, 

with a repetition rate given by the relation, % = wo/27 = cko/27. With Ag of the 

order of a few centimeters, y) = O(10 GHz). The phenomenon is very much as 

in an ordinary synchrotron with bunches spaced a few centimeters apart. The 

spectrum of radiation extends to frequencies that are y’ times the basic frequency 

Q = c/R, where R is the effective radius of curvature of the path. The minimum 

value of R is generally the one of interest. It occurs at the maximum amplitude 

of the transverse motion and is 

1 Xo 
R=—= (14.97) 

ka ~ 277 

The wiggler radiation spectrum is a smooth, featureless spectrum very much like 

the synchrotron radiation spectrum of Fig. 14.11, with a fundamental frequency, 

QO. = 2acwo/Ao, and a critical frequency y’ times this value. If the wiggler magnet 
structure has N periods, the intensity of radiation will be N times that for a single 

pass of a particle in the equivalent circular machine. 

It is useful to introduce the parameter K, a scaled angle, by 

K = yo 

A wiggler is characterized by K >> 1. In terms of K, its critical frequency is 

27C 
(14.98) YK No »= of 

Users of synchrotron light sources tend to speak of wavelength rather than fre- 

quency. The critical wavelength is 

Xo 
—_— (14.99) 
yK 

1.< of 

(b) Undulators (th) < A@ or K << 1) 

If th) << AQ, the searchlight beam of radiation moves negligibly compared to 

its own angular width. This means that the radiation detected by an observer is 

an almost coherent superposition of the contributions from all the oscillations of 

the trajectory. For perfect coherence and an infinite number of magnet periods 

(and infinitesimal angular resolution of the detector), the radiation would be 

monochromatic. For finite N the spread in frequency is Aw/w = O(1/N); finite 

angular acceptance also causes a spread because of the Doppler shift. Neverthe- 

less, the frequency spectrum from an undulator is sharply peaked (actually a 
series of peaks in practice, but with a most intense “fundamental”’). 

The frequency of the “line” from an undulator can be estimated by consid- 

ering the particle in its rest frame. The FitzGerald—Lorentz contraction means 

that in that frame the magnet structure is rushing by the particle with a spatial 

period Aoly. The frequency of simple dipole radiation in that frame is thus 
— 

= w’ ~ y(27c/Ao). In the laboratory frame the relativistic Doppler shift, w! 
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yo(1 — B cos 0) ~ w(1 + 7'6*)/2y, leads to a spectral line at an angle 6 with 

frequency 

27C 2y" 
OQ = (14.100) 

Xo 1+ 6 ( 
Note that at small angles (y@ << 1) this frequency has the same y-dependence 

~ _ as the wiggler’s critical frequency, (14.98), for a fixed K. 

B. Some Details of the Kinematics and Particle Dynamics 

We wish to consider the particle in its average rest frame, in which it executes 

oscillations both transversely and longitudinally. If its initial Lorentz parameters 

are y and £, they remain unchanged because the magnetic field does no work on 

the particle. But because of the transverse motion, the particle’s average speed 

in the z direction, Be, and its associated ¥, are less than the instantaneous param- 
eters. The average rest frame moves with speed Bc with respect to the laboratory. 

One way to find 6 and 7 is to consider the path shown in Fig. 14.12b and 
compute its length for one cycle: 

Ao 

s= ” V1 + (dx/dz)* dz ~ |, [+ 2(deldz? + ---}dz (14.101) 

or 

(14.102) s*A (1+ 1Wo) 
Here we have assumed that % << 1, and we assume below that y >> 1. Since 

the particle travels this path as speed Bc, we infer that 

B B= ~ B(1 — 440) (14.103) 
1 + Wd/4 

Even though 8 ~ 1 and %% <1, so that B ~ 1, the difference between B and B 
produces a finite (not infinitesimal) difference between 7 and y: 

1 
—-=1- P~1- pa - 20) ¥ 

=y? + hep= yt 2K’) 
We therefore find 

Y 
(14.104) 1" Pee 

Since K >> 1, is possible even if y% << 1, ¥ can differ significantly from y, at least 
for wigglers. 

The transverse motion has been assumed to be sinusoidal. How is that con- 
nected to the structure of the magnet that causes the motion? With B and y 
constant, the x component of the Lorentz force equation can be written 
x = —eB,B,/ym, where B,B, is assumed to be negligible or zero. Approximating 
z = ct and B, = 1, we have 

yme? d*x _ ymc? 
Bz) = - kéa sin koz (14.105) dz 
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The requisite magnetic structure is B, = By sin kgz, where By = ymc7kéa/e. Since 
K = ykoa, the important parameter K can be expressed in terms of the known 

field of the magnet and its period, 

eBy e€Boro 
K (14.106) 

~ komc2— 2armc? 

An actual magnet structure will be periodic, but not sinusoidal. We can, 

however, make a Fourier decomposition of the actual B, in multiples of ko. Each 

component will contribute to the motion. The fundamental will dominate. For 

simplicity, we keep only that contribution. 

The longitudinal oscillations can be found, at least approximately, from the 

constancy of 6. We have B2 = B? — B82. Since |B,| < B, we can write 

By Be 
B. ~ B- 

2B 

But x = a sinkyz ~ a sin(koct). Thus B, ~ koa cos(koct). We then have the 

component of f in the z direction as 

BAt) ~ B — zkba’ cos*(koct) 
= B — $kga*[1 + cos(2koct)] 

2 

= B — 42 cos(2K oct) 

Integrating cB,(t) once with respect to ¢, we find the longitudinal and transverse 
motions to be 

0 2 

and sin(2K ct) z(t) = Bet — x(t) = ar sin(kgct) (14.107) 
167” 

C. Particle Motion in the Average Rest Frame 

It is informative to examine the particle’s motion in the frame K’, moving 

with speed B in the positive z direction. The Lorentz transformations equations 

are 

ct’ = ¥(ct — Bz) x’ = x, z= ¥(z ~ Bet), 

Substituting z(t) from (14.107) into the last equation, we have 

B 2 

sin 20| 
8koy" 

ct = xf et — p’) + 

where 9 = koct. Neglect of the last term gives the first approximation, t = ‘yt’. 

Then with this result inserted into 0, we find a better approximation, 

2 
1 

t=7' - sin(2yk oct’) 
2+ K? 4k oc ( 

(14.108) 
or 

2 

— — — sin(2yk ct’) d= ykoct' _— 
2+ K* 4 ( 
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Usually the first term is adequate, but in computing time derivatives in the mov- 

ing frame, the second term is necessary when differentiating 6(¢’) 
The particle’s coordinates in the moving frame are 

x'(¢) = sin 6(/) = a sin (0) 
— 2 
¥. sin 26(t') sin 20(t’) = — a(t) = oe 

8V K?/ ko 

The motion is a figure-eight pattern of the form 

Ka 
—_— 

= 

8V1 + K?/ $2(2")max * = ji-% where — (2")max 
Figure 14.13 shows the shape of the particle’s orbit in the moving frame for the 
regime K >> 1. For K = 1, the z’ amplitude is 0.576 times as large as is shown 
For K << 1, the z’ oscillations are negligible; the motion is simple harmonic in 
the transverse direction 

An important feature of the motion in the moving frame is the maximum 

speed of the particle. A straightforward calculation yields the square of the par- 

ticle’s speed in the moving frame to be 

4 2 2 

— 

= 29+ B” 

2+ K2°° 4(2 K’) 
cos 20] | kK’)? cos20| ; - 30 

(14.109) 

where it is now safe to put @(t') = yk ct'. The last factor comes from the form 

of d@(t')/dt'. The two limits of K are instructive. For K << 1, the leading term 

gives 

K<l B' ~ K cos (14.110a) 

corresponding to nonrelativistic simple harmonic motion. This limit is for an un- 

dulator. In the opposite limit, K — %, the leading behavior is 

Koo B 1 — (cos?@ — 3)” (14.110b) 

In this (strong wiggler) limit, the particle’s speed varies between 3c/4 and c in 

the course of the motion, quite relativistic. From Problems 14.12, 14.14, and 14.15 

one can infer that the radiation in the moving frame consists of many harmonics 

of the basic frequency, with an angular distribution that is far from a simple dipole 

pattern. The laboratory radiation pattern from a strong wiggler is better de- 

scribed by the contributions from the successive segments of the path whose 
tangents point in the direction of observation 

Zz 

i 

Figure 14.13 Orbit of the particle in 

the moving (average rest) frame for K 
>> 1. The arrow indicates the 

direction of motion in the laboratory 
7] 

frame 
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D. Radiation Spectrum from an Undulator 

When K < 1, the motion in the average rest frame is very simple. The 

particle moves in nonrelativistic simple harmonic motion along the x axis. It emits 

monochromatic dipole radiation whose power differential distribution is 

dP’ ec 
— 

= k'4a’ sin?O 
dQ! 8a 

where k' = ykp is the wave number in the moving frame. The coordinates are 

shown in Fig. 14.14. Now k” sin?® can be written as k’” sin’?® = k’? — k’? cos’® 

=k? + k?. With K = ykoa ~ ykoa for K << 1, the power angular distribution 
becomes 

dP’ ec 
— 

= (14.111) K(k? + ki?) 
dQ’ 8 

To find the laboratory spectrum in angle and frequency (actually, either angle 

or frequency), we exploit certain invariances. Since the phase-space density d°k/w 
is a Lorentz invariant, it is useful to consider w’ d°P’/d*k', rather than dP’/dQ’. 
Inserting a delta function 6(k’ — yk) to assure the monochromatic nature of the 

radiation in the moving frame, we have 

d?k' e*c?K? d(k’ ~ ko) 
d°P' = (14.112) 

t (kz? + ky’) 
@ T ‘ko | 

where d?k' = k'? dk' dQ’. Consider now d?’P’. If we multiply by the time A?’ it 
takes for one period of the magnet structure to pass by the particle in the moving 
frame (At' = Ao/yBc ~ Ao/ Yc), we obtain the energy radiated per period into the 
invariant element of phase space. If we divide by hw’ = fick’, we obtain the 
differential number a°N' of photons emitted into d°k'/w' per passage of a magnet 
period. But the number of photons is an invariant quantity. We can therefore 

write the connection between the laboratory differential radiation spectrum and 

the spectrum in the moving frame as 

@ d°P’ At’ a°P 
—- 

(Pkiw) At w' (d°k’'la’) 

Figure 14.14 Radiation direction and angles 
¢—* 

in average rest frame. Particle motion is in the 
“1 

x-z plane. 
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With At'/At = 1/¥ and d?k/w = k dk dQ/c, we have 

k2 e*cK? a°P 
(14.113) »(k? + ky’) - 8K’ — ¥ko) dk dQ 8p kB 

All that remains is to express the primed quantities in terms of the laboratory 
variables. The Lorentz transformations are 

~ ™~ 

¢'=¢ =k, = ksin@sin@, ky 
k; = yk(cos 0 — B) 
k' = 7k(1 — B cos 6) 

Using the constraint of the delta function, we have 

ko 
~ 1— Bcosé 

If we make the appropriate approximations for y >> 1 (ie, 6 < 1, 
B~1—- 1/27’, etc.), (14.113) can be written 

d°P (1 — y)* + 4 sin*d _ cy’ K7k5 

27 (1 + n)* dyn dk db — 
Jac +) —27ko] (14.114) | 

where 7 = (76) is the natural angle variable to replace cos 9. Note that, be- 
cause of the delta function, the frequency and angular distributions are not 

independent. 

(a) Angular Distribution 

If we choose to integrate over the frequency spectrum dk, we find the angular 

distribution of power to be 

(1 -— n)? + 4n sin’ dP _ e*cyK7k3 
(14.115) 

27 dn dd (1 + »)° | | 
After integration over azimuth, the polar angle spectrum is 

dP 1+ 7 
—— = 3P (14.116) 
dy (1 + 7) | | 

where 

_ &cy?K7KG 
(14.117) 

3 

is the total power radiated. It is easy to verify that the average value of 7 is 

(n) = 1. 

(b) Frequency Distribution 

To obtain the frequency distribution emitted into an angular range, yn, < 

1 < 1, we integrate (14.114) over dd dy. The result is 

dP 
_— = 3P[v(1 — 2 + 2v’)] for Vain < VU < Vmax (14.118) 
d 

where v = k/277ko and pin = 1/(1 + 12), Vmax = 1/(1 + 7). The complete 
normalized frequency spectrum is plotted in Fig. 14.15a: the sharply peaked spec- 
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Figure 14.15 (a) Normalized frequency spectrum for K < 1 and sinusoidal motion. 

The dashed lines indicate the frequency interval visible if the angular acceptance is 

0 < y6 < 4. (b) Log-log plot of intensity of fundamental and second harmonic for K = 
0.5 with a sinusoidal magnetic field. In real undulators, the spectrum shape depends on 

details of the undulator structure. 
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trum between the dashed lines corresponds to an angular acceptance 0 < 4 < 1/9 

(6 < 1/3). Note that this spectrum is for perfectly sinusoidal motion of the par- 

ticle at all times. If the number N of magnet periods is finite, the duration of the 

oscillatory motion is finite; the radiated wave train will have a fractional spread 

in frequency of the order of 1/N. For large N this spread is generally small com- 
pared to the spread from finite acceptance. 

For small, but not negligible, K, there are higher harmonics. These can be 

thought of as coming from higher multipoles caused by the figure-eight motion 

shown in Fig. 14.13. The second harmonic comes from a coherent superposition 

of the fields of a dipole in the z direction [z’ < sin 26(t’)] and a quadrupole caused 

by the x’ motion. See Problem 14.27. The resulting frequency spectrum is shown 

in Fig. 14.155 for K = 0.5, with higher harmonics decreasing in intensity, at least 

for K <1. 

(c) Energy of Photons and Number Emitted per Magnet Period 

The radiated power is given by (14.117) and the maximum energy of photons 

in the fundamental is Hana, = 27’ kohic (at y = 0). The amount of energy radiated 

per passage of one magnet period is AE = PAt, where At = A,/c. The number 

of photons N, emitted per magnet period can thus be estimated to be N, = 

PAt/h@max = O(aK?), where a is the fine structure constant. A calculation based 
on (14.118) divided by fw gives 

27 
— aK? N, = (14.119) 
3 

E. Numerical Values and Representative Spectra and Facilities 

The parameters K and hw,,,, are given for electrons in practical (accelerator) 
units by 

eBo €BoAg 
—_— K= 

7 = 93.4 Bo(T)Ao(m) 
komc2- 2ammc 

and 

9.496[E (GeV)? 
hOmax(eV) = 

(1 + K/2)Ag(m) 

Typical undulators have By = O(0.5 T), Ag = O(4 cm), E = O(1-7 GeV). Hence 
K = O(2) and hana, = O(80 eV—4 keV). Wigglers have By = O(1 T) and Ay = 
O(20 cm). Then K = O(20). 

There are dozens of synchrotron light facilities around the world. Typical of 
the modern dedicated facilities (as of 1998) are 

Advanced Light Source (ALS), Lawrence Berkeley National Laboratory, 
E = 1.5 GeV 

National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, 
E = 0.75, 2.5 GeV 

European Synchrotron Radiation Facility (ESRF), Grenoble, F rance, EF = 6 GeV 



693 Sect. 14.7 Undulators and Wigglers for Synchrotron Light Sources 

T 
1019 

T T T T 
I PT TTTyy PUTiryy T PPTTtty I UTTTTTy I PTritg 

— ay, 

mone 
~ aon, 

~ -_” ~ 
” ~ \ 1018 

1.5 GeV undulator \ 7 GeV undulator \ 

\ 
\ \ 
\ 1017 

1016 

7 GeV wiggler 

1015 

7 GeV 

bending magnet 
1014 

1918 

j ] 
10 12 

1 1 riiiil 1 1 ris) | tht Pd | roitiil | ritoiul 
0.01 0.1 1 10 100 1000 

E (keV) 

Figure 14.16 Representative photon spectra for actual light sources. The bending 

magnet and wiggler spectra are continuous and are closely proportional to (14.79), 

evaluated at @ = 0. The undulator curves are the envelopes of a series of sharp peaks at 

multiples of the fundamental. See text for definition of brightness. 

Tristan Light Source, KEK National Laboratory, Tsukuba, Japan, E = 6.5 GeV 

Advanced Photon Source (APS), Argonne National Laboratory, E = 7 GeV 

The lower energy facilities provide photons in the tens of eV to several keV 

range; the high-energy facilities extend to 10-75 keV, and even higher at reduced 

flux. Figure 14.16 shows some representative spectra of actual light sources. The 

spectral brightnesses indicate the typical capabilities available at relatively low- 

energy rings such as the ALS and the higher energy rings such as the APS. For 

undulators the smooth curves represent the envelope of the narrow “‘lines.” 

Brightness or brilliance is defined as the number of photons per second per mil- 

liradian in the vertical and horizontal directions per 0.1% fractional bandwidth 

in photon energy, divided by 27 times the effective source area in square milli- 

meters. High brilliance rather than high flux is generally desired. 

F. Additional Comments 

There is a vast amount of detail about synchrotron light sources, the design 

of beams, the transport of photons to experiments, and so on. We make only a 

few comments here. 

1 An undulator’s fundamental frequency ,,,, can be tuned by varying the 
undulator parameter K by changing the gap in the magnet structure and so 
changing By [see (14.106)]. 

The simple undulator with beam oscillations in the horizontal plane provides 
linearly polarized light. Circular polarization can be provided by use of a 
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helical undulator designed to make the transverse trajectory an ellipse. Al- 

ternately, two undulators at right angles with an adjustable longitudinal spac- 

ing between them can be used to produce circular polarization or any other 

state because of the coherent superposition of the radiation from all the 

magnet periods. 

Free electron lasers are closely related to wigglers and undulators. An un- 

dulator can be thought of as radiating in the forward direction at frequency 

by spontaneous emission. Addition of a co-traveling electromagnetic ®max 

wave of almost the same frequency provides the possibility of interaction and 

stimulated emission and growth of the wave. 

Further details about the sources and about their uses in research can be 
found in the references cited at the end of the chapter. 

14.8 Thomson Scattering of Radiation 

If a plane wave of monochromatic electromagnetic radiation is incident on a free 

particle of charge e and mass m, the particle will be accelerated and so emit 

radiation. This radiation will be emitted in directions other than that of the in- 

cident plane wave, but for nonrelativistic motion of the particle it will have the 

same frequency as the incident radiation. The whole process may be described 

as scattering of the incident radiation. 

According to (14.20) the instantaneous power radiated into polarization state 

e by a particle of charge e in nonrelativistic motion is 

2 
é dP _ 

je* + ¥/? (14.120) 
3 dQ 4ac 

The acceleration is provided by the incident plane wave. If its propagation vector 

is Ko, and its polarization vector €, the electric field can be written 

E(x, t) = Ep Egetkox tet 

Then, from the force equation for nonrelativistic motion, we have the 

acceleration, 

(14.121) V(t) = € — Eye'kox iv! 

If we assume that the charge moves a negligible part of a wavelength during one 
cycle of oscillation, the time average of |v |? is Re(v + V*). Then the average power 
per unit solid angle can be expressed as 

2 dP c e 
—_ (14.122) dO, ~ 8 mc? ( ar Y hea 

Since the process is most simply viewed as a scattering, it is convenient to intro- 
duce a scattering cross section, as in Chapter 10 defined by 

do Energy radiated/unit time/unit solid angle 
(14.123) dO. Incident energy flux in energy/unit area/unit time 
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é2 

o~~ 
“J 

€ Figure 14.17 

The incident energy flux is just the time-averaged Poynting vector for the plane 
wave, namely, c | Eo|*/8a. Thus from (14.122) we obtain the differential scattering 
cross section, 

2 do e 
—_ (14.124) dQ mc? ( ) |e* ° €,| 

The scattering geometry with a choice of polarization vectors for the outgoing 
wave is shown in Fig. 14.17. The polarization vector €, is in the plane containing 
n and kp; €2 is perpendicular to it. In terms of unit vectors parallel to the coor- 
dinate axes, €, and €, are 

€, = cos 6(e, cos @ + e, sind) — e, siné 

€, = —e, sind + e, cos¢ 

For an incident linearly polarized wave with polarization parallel to the x axis, 

the angular distribution summed over final polarizations is (cos”@ cos*@ + sin’), 

while for polarization parallel to the y axis it is (cos’@ sin’*@ + cos’). For un- 

polarized incident radiation the scattering cross section is therefore 

2 dao e 

(14.125) dQ mc? ( ) -3(1 + cos’6) 
This is called the Thomson formula for scattering of radiation by a free charge, 

and is appropriate for the scattering of x-rays by electrons or gamma rays by 

protons. The angular distribution is as shown in Fig. 14.18 by the solid curve. The 

total scattering cross section, called the Thomson cross section, is 

e2 87 
—_ 

or = (14.126) 
3 mc? ( 

; 

The Thomson cross section is equal to 0.665 < 10~** cm? for electrons. The unit 
of length e?/mc? = 2.82 X 10~'° cm, is called the classical electron radius, since a 
classical distribution of charge totaling the electronic charge must have a radius 

of this order if its electrostatic self-energy is to equal the electron mass. 

The classical Thomson formula is valid only at low frequencies where the 

momentum of the incident photon can be ignored. When the photon’s momen- 

tum Aw/c becomes comparable to or larger than mc, modifications occur. These 
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Figure 14.18 Differential scattering cross section of unpolarized radiation by a point 

charged particle initially at rest in the laboratory. The solid curve is the classical 

Thomson result. The dashed curves are the quantum-mechanical results for a spinless 

particle, with the numbers giving the values of Aw/mc?. For Aw/mc? = 0.25, 1.0 the 
dotted curves show the results for spin 5 point particles (electrons). 

can be called quantum-mechanical effects, since the concept of photons as mass- 

less particles with momentum and energy is certainly quantum mechanical (pace, 

Newton!), but granting that, most of the modifications are purely kinematical. 

The most important change is the one observed experimentally by Compton. The 

energy or momentum of the scattered photon is less than the incident energy 

because the charged particle recoils during the collision. Applying two-body rel- 

ativistic kinematics to the process, we find that the ratio of the outgoing to the 

incident wave number is given by the Compton formula, 

1 k= 
k hw 

c2 
1 + a (1 — cos 8) 

where @ is the scattering angle in the laboratory (the rest frame of the target). A 

quantum-mechanical calculation of the scattering of photons by spinless point 

particles of charge e and mass m yields the cross section, 

2 do e 
k' 

— (14.127) dQ mc? k ( }( ) je* » €9/? 

to be compared with the classical expression (14.124). In the radiation gauge the 
quantum-mechanical matrix element is the same as the classical amplitude. The 

factor (k'/k)’ comes entirely from the phase space. Its presence causes the dif- 
ferential cross section to decrease relative to the Thomson result at large angles, 
as shown by the dashed curves in Fig. 14.18. Also shown in the figure by the 
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dotted curves are the quantum-mechanical results for photon-electron scattering, 
that is, the scattering by a point spin $ particle described by the Dirac equation. 

The curves are generally similar to those for spinless particles, but are somewhat 

larger at large angles because of scattering by the electron’s magnetic moment.* 

The integral over angles of (14.127) is elementary but slightly involved. We quote 

only the limiting forms for hw << mc? and hw >> mc?: 

hw 
ho < mc? 1-2—S4.-.., 

mec oC 
— 

—- 
= (14.128) 

OT 3 mc? 
ho >> mc? 

4 ho’ 

For scattering by electrons the low-frequency limit is the same, but at high fre- 

quencies there is an additional multiplicative factor, [; + 5 In(2w/mc’)]. 
For protons the departures from the Thomson formula occur at photon en- 

ergies above about 100 MeV. This is far below the critical energy Aw ~ Mc? ~ 
1 GeV, which would be expected in analogy with the electron Compton effect. 

The reason is that a proton is not a point particle like the electron with nothing 

but electromagnetic interactions, but is a complex entity having a spread-out 

charge distribution with a radius of the order of 0.8 x 10~'% cm caused by the 
strong interactions. The departure (a rapid increase in cross section) from Thom- 

son scattering occurs at photon energies of the order of the rest energy of the pi 

meson (140 MeV). 

References and Suggested Reading 

The radiation by accelerated charges is at least touched on in all electrodynamics 

textbooks, although the emphasis varies considerably. The relativistic aspects are treated 

in more or less detail in 

Iwanenko and Sokolow, Sections 39-43 

Landau and Lifshitz, Classical Theory of Fields, Chapters 8 and 9 

Panofsky and Phillips, Chapters 18 and 19 

Sommerfeld, Electrodynamics, Sections 29 and 30 

Extensive calculations of the radiation emitted by relativistic particles, anticipating 

many results rederived in the period 1940-1950, are presented in the interesting mono- 

graph by 

Schott 

Synchrotron radiation has applications in astrophysics, plasma physics, condensed 

matter physics, material science, and biology. Synchrotrons and electron storage rings as 

such are discussed in detail in a classic reference, 

M. Sands, “The physics of electron storage rings,” in Proceedings of the Inter- 

national School of Physics Enrico Fermi, Course No. 46, ed., B. Touschek, 

Academic Press, New York (1971), pp. 257-411. 

*For electrons the cross section equivalent to (14.127) has |€* + € ? replaced by 

(k- ky [1 + (e* x €) + (€ X €5)] |e* eg? + 
4kk' 

It is known as the Klein-Nishina formula for Compton scattering. 
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Astrophysical applications are treated in detail in 

A. G. Pacholezyk, Radio Astrophysics, Freeman, San Francisco (1970); Radio 

Galaxies, Pergamon Press, Oxford (1977). 

Plasma physics applications are discussed by 

Bekefi 

The classic reference on the subject of wigglers and undulators is 
~~ ™~ H. Motz, J. Appl. Phys. 22, 527 (1951). 

The production and characteristics of synchrotron radiation from bending magnets, un- 

dulators, and wigglers and the many uses are covered exhaustively in the five-volume 

work, 

Handbook on Synchrotron Radiation, eds., E. E. Koch and others, Vols. 1A, 1B, 
2, 3, 4, North-Holland, Amsterdam (1983-1991). 

In Volume 1A, Chapter 2, S. Krinsky, M. L. Perlman, and R. E. Watson cover all of the 
theory and comparison with experiment. 

An unpublished 1972 treatment of undulators and wigglers by E. M. Purcell, very like 
that of Section 14.7, appears in 

Proceedings, Wiggler Workshop, SSRP Report 70/05, eds., H. Winick and T. 

Knight, Stanford Linear Accelerator Center (1977), p. IV-18. 

The scattering of radiation by charged particles is presented clearly by 

Landau and Lifshitz, Classical Theory of Fields, Sections 9.11-9.13, and Electro- 

dynamics of Continuous Media, Chapters XIV and XV 

Problems 

14.1 Verify by explicit calculation that the Liénard—Wiechert expressions for all com- 

ponents of E and B for a particle moving with constant velocity agree with the 

ones obtained in the text by means of a Lorentz transformation. Follow the general 

method at the end of Section 14.1. 

14.2 A particle of charge e is moving in nearly uniform nonrelativistic motion. For times 

near f = fo, its vectorial position can be expanded in a Taylor series with fixed 

vector coefficients multiplying powers of (t — ft). 

(a) Show that, in an inertial frame where the particle is instantaneously at rest 

at the origin but has a small acceleration a, the Liénard—Wiechert electric 

field, correct to order 1/c? inclusive, at that instant is E = E, + E,, where 

the velocity and acceleration fields are 

r e 
E, =e3+ 

r 2c = [a ~ 3#(F-a)h E, = -= [a - é(F-a)] 

and that the total electric field to this order is 

r é 
E=es- [a + FF + a)] 

2 r 2c?r 

The unit vector f points from the origin to the observation point and r is the 
magnitude of the distance. Comment on the r dependences of the velocity 
and acceleration fields. Where is the expansion likely to be valid? 

(b) What is the result for the instantaneous magnetic induction B to the same 
order? Comment. 

(c) Show that the 1/c? term in the electric field has zero divergence and that the 
curl of the electric field is V x E = e(f x a)/c?r?. From Faraday’s law, find 
the magnetic induction B at times near t = 0. Compare with the familiar 
elementary expression. 
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14.3 The Heaviside-Feynman expression for the electric field of a particle of charge e 
in arbitrary motion, an alternative to the Liénard—Wiechert expression (14.14), is 

2 R d n 
—_ 

at R2 2 dt [Met edad Ja | ln 
where the time derivatives are with respect to the time at the observation point 
The magnetic field is given by (14.13) 

Using the fact that the retarded time is t' = t — R(t’)/c and that, as a result 

dt 
—_ =1- B)-n(’) 
dt’ 

show that the form above yields (14.14) when the time differentiations are 

performed 

14.4 Using the Liénard-Wiechert fields, discuss the time-averaged power radiated per 

unit solid angle in nonrelativistic motion of a particle with charge e, moving 

(a) along the z axis with instantaneous position z(t) = a cos wot 

(b) in a circle of radius R in the x-y plane with constant angular frequency wo 

Sketch the angular distribution of the radiation and determine the total power 

radiated in each case 

14.5 A nonrelativistic particle of charge ze, mass m, and kinetic energy E makes a head- 

on collision with a fixed central force field of finite range. The interaction is re- 

pulsive and described by a potential V(r), which becomes greater than E at close 

distances 

(a) Show that the total energy radiated is given by 

ar 

S 
-4 re 

V(r) a2. [5 VV(rmin) — Wr) 
where rnin is the closest distance of approach in the collision 

(b) If the interaction is a Coulomb potential V(r) = zZe’/r, show that the total 
energy radiated is 

8 zmvu5 
AW = — 

45 Zc? 

where Uo is the velocity of the charge at infinity 

Generalize the circumstances of the collision of Problem 14.5 to nonzero 14.6 (a) 
angular momentum (impact parameter) and show that the total energy 

radiated is given by 

2 
dV m 4z 

A 
2 d 3m (ev ( ) Ie 

where rnin is the closest distance of approach (root of E — V — L?/2mr’) 
L = mbvo, where b is the impact parameter, and vo is the incident speed 

(E mv¢/2) 

(b) Specialize to a repulsive Coulomb potential V(r) = zZe’/r. Show that AW 
can be written in terms of impact parameter as 

2zZmMvp 
AW = 

Zo 
[arse e(s+ 2) 

where t = bmvu3/zZe’ is the ratio of twice the impact parameter to the distance 

of closest approach in a head-on collision 
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Show that in the limit of t going to zero the result of Problem 14.5b is 

recovered, while for t >> 1 one obtains the approximate result of Problem 

14.7a. 

(c) Using the relation between the scattering angle 6 and t (= cot 12), show that 
AW can be expressed as 

2zmvus 39 AW = 
2 Zc 
E (4 - H(i + 3 tan? 2) - in| 

(d) What changes occur for an attractive Coulomb potential? 

14.7 A nonrelativistic particle of charge ze, mass m, and initial speed uo is incident on 

a fixed charge Ze at an impact parameter b that is large enough to ensure that the 

particle’s deflection in the course of the collision is very small. 

(a) Using the Larmor power formula and Newton’s second law, calculate the 
total energy radiated, assuming (after you have computed the acceleration) 
that the particle’s trajectory is a straight line at constant speed: 

—_— 

auZe® 1 
A 

~ 3m?2cv, b? 

(b) The expression found in part a is an approximation that fails at small enough 

impact parameter. For a repulsive potential the closest distance of approach 

at zero impact parameter, r, = 2zZe?/mvé, serves as a length against which 
to measure b. The approximation will be valid for b >> r,. Compare the 

result of replacing b by r, in part a with the answer of Problem 14.5 for a 

head-on collision. 

(c) A radiation cross section y (with dimensions of energy times area) can be 

defined classically by multiplying AW(b) by 27b db and integrating over all 

impact parameters. Because of the divergence of the expression at small b, 

one must cut off the integration at some b = Dyin. If, as in Chapter 13, the 

uncertainty principle is used to specify the minimum impact parameter, one 

may expect to obtain an approximation to the quantum-mechanical result. 

Compute such a cross section with the expression from part a. Compare your 

result with the Bethe—-Heitler formula [N~’ times (15.30)]. 

14.8 A swiftly moving particle of charge ze and mass m passes a fixed point charge Ze 

in an approximately straight-line path at impact parameter b and nearly constant 

speed v. Show that the total energy radiated in the encounter is 

1 1 mz'Ze° 
— AW = 
3 B 4m’c4B 

(y 
This is the relativistic generalization of the result of Problem 14.7. 

14.9 A particle of mass m, charge q, moves in a plane perpendicular to a uniform, static, 

magnetic induction B. 

(a) Calculate the total energy radiated per unit time, expressing it in terms of 
the constants already defined and the ratio y of the particles’s total energy 
to its rest energy. 

(b) If at time ¢ = 0 the particle has a total energy Ey = yomc?, show that it will 
have energy E = ymc* < Ep at a time ¢, where 

_ 3mPc? 
—_ — = 

2q*B? Yo 

provided y > 1. 
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(c) If the particle is initially nonrelativistic and has a kinetic energy Tp at t = 0, 

what is its kinetic energy at time £? 

(d) If the particle is actually trapped in the magnetic dipole field of the earth 

and is spiraling back and forth along a line of force, does it radiate more 

energy while near the equator, or while near its turning points? Why? Make 

quantitative statements if you can. 

14.10 A particle of charge e moves at constant velocity Bc for t < 0. During the short 

time interval, 0 < ¢ < At, its velocity remains in the same direction, but its speed 

decreases linearly in time to zero. For t > At, the particle remains at rest. 

(a) Show that the radiant energy emitted per unit solid angle is 

e p? (2 — Bcos 6) [1 + (1 — B cos 6)’] sin?6@ dE _ 

dQ 16mc At (1 — Bcos 6)* 

where @ is the polar angle relative to the direction of the initial velocity. 

(b) In the limit of y >> 1, show that the angular distribution can be expressed 

as 

g 
dE e2 B24 

dg cAt (1 + é)* 

where é = (y6)?. Show that (6?)!? ~ /2/y and that the expression for the 
total energy radiated is in agreement with the result from (14.43) in the same 

limit. 

14.11 A particle of charge ze and mass m moves in external electric and magnetic fields 

E and B. 

(a) Show that the classical relativistic result for the instantaneous energy radiated 
per unit time can be written 

2 ztet 
P= Y(E + B x BY — (B- E)’] 3 mc? 

where E and B are evaluated at the position of the particle and y is the 

particle’s instantaneous Lorentz factor. 

Show that the expression in part a can be put into the manifestly Lorentz- (b) 
invariant form, 

_ 2z*K5 
» FY, p Fay ~ 3mc 

where rp = e?/mc? is the classical charged particle radius. 

14.12 As in Problem 14.4a a charge e moves in simple harmonic motion along the z axis, 

z(t’) = a coSs( aot"). 

(a) Show that the instantaneous power radiated per unit solid angle is 

sin’6 cos*( wot’) dP(t') _ ecp* 

dQ 4na? (1 + B cos @ sin wot’)? 

where B = aaj/c. 

(b) By performing a time averaging, show that the average power per unit solid 
angle is 

4 + B* cos’6 dP _ e°cp* 

dQ 32a? 
| sme (1 _ Bp’ cos”6)”” | 
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(c) Make rough sketches of the angular distribution for nonrelativistic and rel- 
ativistic motion. 

14.13 Show explicitly by use of the Poisson sum formula or other means that, if the 

motion of a radiating particle repeats itself with periodicity T, the continuous 

frequency spectrum becomes a discrete spectrum containing frequencies that are 

integral multiples of the fundamental. Show that a general expression for the time- 

averaged power radiated per unit solid angle in each multiple m of the fundamen- 

tal frequency wo = 2a/T is: 

271/ w n+ x(t) dPm _ e?wym 

| 0 )- dQ (2acy? 
v(t) X n exp| ime - 

14.14 (a) Show that for the simple harmonic motion of a charge discussed in Problem 

14.12 the average power radiated per unit solid angle in the mth harmonic is 

dP _ e*cB* 
m’ tan*6 JZ,(mB cos 6) 

2 2 dQ. 

Show that in the nonrelativistic limit the total power radiated is all in the (b) 
fundamental and has the value 

— 2¢ —_ P wea’ 
3 3 

where a is the mean square amplitude of oscillation. 

14.15 A particle of charge e moves in a circular path of radius R in the x-y plane with a 
constant angular velocity wo. 

(a) Show that the exact expression for the angular distribution of power radiated 
into the mth multiple of wo is 

cot? dJ,,(mB sin 0) Py _ e7 wo R? 

dQ 2x3 d(mB sin 6) 
J2,(mB sin 0| }+ 

Bp? | 
where B = wR/c, and J,,(x) is the Bessel function of order m. 

(b) Assume nonrelativistic motion and obtain an approximate result for dP,,,/dQ. 

Show that the results of Problem 14.4b are obtained in this limit. 

Assume extreme relativistic motion and obtain the results found in the text (c) 
for a relativistic particle in instantaneously circular motion. [Watson (pp. 79, 

249) may be of assistance to you.] 

14.16 Exploiting the fact that kod°N/d?*k, the number of quanta per invariant phase-space 
element d?k/ko, is a Lorentz-invariant quantity, show that the energy radiated per 

unit frequency interval per unit solid angle, (14.79), can be written in the invariant 

and coordinate-free form 

(p-kyP d(€, - p) (p-k)\(e: py a°N_ 4e? 
ho 

Pk 30m d [d*(p - k)ldr’?? ( | ) K3a(é) + 2[d2(p - k)ldz?] 
Kia | 

where dt is the proper time interval of the particle of mass m, p” is the 4-momen- 

tum of the particle, k* is the 4-wave vector of the radiation, and €,, €, are polar- 

ization vectors parallel to the acceleration and in the direction e, x k, respectively. 

The parameter is 

(p . ky? -2v2 | 
3m (lap - k)/dx?|)"? 
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This expression can be used to obtain the results of Problem 14.17 in an alternative 
manner. Hint: In proceeding with a solution, it is useful to expand k - r(t) around 
t = 0 in terms of the velocity, acceleration, etc. and compare with (14.72). One 
finds, for example, that wc/p*? = — k-d?v(0)/dt?, and, because the energy is 
constant, 

wE? 

p= Re |d*(p - kid?| 
14.17 A particle of charge e and mass m moves relativistically in a helical path in a 

uniform magnetic field B. The pitch angle of the helix is a (a = 0 corresponds to 

circular motion). 

(a) By arguments similar to those of Section 14.4, show that an observer far from 

the helix would detect radiation with a fundamental frequency 

Wa 
o = 

cos’ a@ 

and that the spectrum would extend up to frequencies in the order of 

We = 5 yw, cosa 

where ws = eB/ymc. (Take care in determining the radius of curvature p of 

the helical path.) 

(b) From part a and the results of Section 14.6, show that the power received by 

the observer per unit solid angle and per unit circular frequency interval is 

d’P @ yw 3e?y Wz 
_—— = CC — 

dw dQ ~~ 8m'°c cos*a W, 1+ yy ( ro] Ja + PvPy| Kio(0 + 
where wa, and w, are defined above, é = (w/2w,)(1 + y'¥’)*”, and w is the 
angle of observation measured relative to the particle’s velocity vector, as in 

Fig. 14.9. 

14.18 (a) By comparison of (14.91) with (14.79), show that the frequency spectrum of 

the received power for the situation in Problem 14.17 is 

V3e7- ym B dP _ oe — 

dw 271 COS @ W, Jol ( 
where G(x) = x [ . Ks,(t) dt and the other symbols are as in Problem 14.17. 
This expression shows that the shape of the power spectrum in units of w/w, 

is unchanged by the spiraling. 

Show that the integral over frequencies yields (b) 

2e*way* 
P= 

3c 

Comparison with (14.31) shows that the total received power is independent 

of the pitch angle of motion. 

{In doing the integration over solid angles in part a, note that y = 0 corresponds 

to 9= m/2 - a.] 

14.19 Consider the angular and frequency spectrum of radiation produced by a magnetic 

moment in nonrelativistic motion, using (14.70) and the fact that a magnetization 

density M produces an effective current density Jeg = cV x M. 
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(a) Show that a magnetic moment p with magnetization, M = w(t) d[x — r(d)], 
in nonrelativistic motion gives a radiation intensity (energy radiated per unit 
solid angle per unit frequency interval), 

2 

BImag _ || din X pret n-r(t)/c) 
“ane dw dw dQ 

(b) The magnetic moment is located at the origin and is caused to_precess by an 
[to COS wot for the time Mo SiN wot and pw, = external torque such that up, = 

interval t = —T/2 to t = T/2, where wo7/27 >> 1. Show that the frequency 

distribution of the radiation is very strongly peaked at w = wo, that the an- 

gular distribution of radiation is proportional to (1 + sin’6 sin’@), and that 
for T — ™, the total time-averaged power radiated is 

(P) = 
pe zat 

Compare the result with the power calculated by the method of Section 9.3 

14.20 Apply part a of Problem 14.19 to the radiation emitted by a magnetic moment at 

the origin flipping from pointing down to pointing up, with components 

My sech(r1) Mx Hz = Mo tanh(vt) My = 0 

where v is characteristic of the time taken to flip 

(a) Find the angular distribution of radiation and show that the intensity per unit 
frequency interval is 

4 nag 
_ 

—_ 
= 

dx 3 
(2) {16(x/7)*[cosech?x + sech?x]} 

where x = 7rw/2v is a dimensionless frequency variable and the quantity in 

curly brackets is the normalized frequency distribution in x. Make a plot of 

this distribution and find the mean value of w in units of v 

(b) Apply the method of Problem 9.7 to calculate the instantaneous power and 

total energy radiated by the flipping dipole. Compare with the answer in 

part a 

14.21 Bohr’s correspondence principle states that in the limit of large quantum numbers 

the classical power radiated in the fundamental is equal to the product of the 

quantum energy (fAw,) and the reciprocal mean lifetime of the transition from 

principal quantum number n to (n — 1) 

(a) Using nonrelativistic approximations, show that in a hydrogen-like atom the 

transition probability (reciprocal mean lifetime) for a transition from a cir- 

cular orbit of principal quantum number 7 to (n — 1) is given classically by 

1 Ze mc 1 
_ _—_ 

_2e& 
T hc Aon 3 he ( 

(b) For hydrogen compare the classical value from part a with the correct 

quantum-mechanical results for the mean lives of the transitions 2p > 1s 

(1.6 X 10 s), 4f > 3d (7.3 x 10 s), 6h — Sg (6.1 X 10 ) 
14.22 Periodic motion of charges gives rise to a discrete frequency spectrum in multiples 

of the basic frequency of the motion. Appreciable radiation in multiples of the 

fundamental can occur because of relativistic effects (Problems 14.14 and 14.15) 

even though the components of velocity are truly sinusoidal, or it can occur if the 

components of velocity are not sinusoidal, even though periodic. An example of 
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this latter motion is an electron undergoing nonrelativistic elliptic motion in a 
hydrogen atom. 

The orbit can be specified by the parametric equations 

_ 

= x a(cosu — €) 
—_— 

= aVvl1 - & sinu y 

where 

Wot = u — esinu 

a is the semimajor axis, € is the eccentricity, w, is the orbital frequency, and 
u is_an angle related to the polar angle 6 of the particle by tan (u/2) = 
V(i — &)/(1 + ©) tan(@/2). In terms of the binding energy B and the angular mo- 
mentum L, the various constants are 

2 
é , _ 8B° 

a= 

0 2B’ met 

(a) Show that the power radiated in the kth multiple of wp is 

1 e 

e 
ies || P= (koa | key + ( 

where J,,(x) is a Bessel function of order k. 

(b) Verify that for circular orbits the general result above agrees with part a of 

Problem 14.21. 

14.23 Instead of a single charge e moving with constant velocity woR in a circular path 

of radius R, as in Problem 14.15, N charges g, move with fixed relative positions 

6; around the same circle. 

(a) Show that the power radiated into the mth multiple of wo is 

dP,(N) _ dPp(1) 
FAN) 

dQ, dQ, 

where dP,,,(1)/dQ. is the result of part a in Problem 14.15 with e > 1, and 

2 

FAN) = 
> qj em 9; 

(b) Show that, if the charges are all equal in magnitude and uniformly spaced 

around the circle, energy is radiated only into multiples of Nw, but with an 

intensity N* times that for a single charge. Give a qualitative explanation of 

these facts. 

(c) For the situation of part b, without detailed calculations show that for non- 

relativistic motion the dependence on N of the total power radiated is dom- 

inantly as 67, so that in the limit N — © no radiation is emitted. 

(d) By arguments like those of part c show that for N relativistic particles of 

equal charge and symmetrically arrayed, the radiated power varies with N 

mainly as e~?%?” for N >> y’, so that again in the limit N > © no radiation 
is emitted. 

What relevance have the results of parts c and d to the radiation properties (e) 
of a steady current in a loop? 

14.24 As an idealization of steady-state currents flowing in a circuit, consider a system 

of N identical charges g moving with constant speed v (but subject to accelerations) 
in an arbitrary closed path. Successive charges are separated by a constant small 

interval A. 
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Starting with the Liénard—Wiechert potentials for each particle, and making 

no assumptions concerning the speed v relative to the velocity of light show that 

in the limit N > », g — 0, and A > 0, but Nq = constant and q/A = constant, no 

radiation is emitted by the system and the electric and magnetic fields of the system 

are the usual static values. 

(Note that for a real circuit the stationary positive ions in the conductors 
neutralize the bulk charge density of the moving charges.) 

14.25 (a) Within the framework of approximations of Section 14 6, show that, for a 
relativistic particle moving in a path with instantaneous radius of curvature 

p, the frequency-angle spectra of radiations with positive and negative helic- 

ity are 

2 0 é 1 aI. 
— us(€) 

dw dQ. 67°c v + °) Ky,(€) () Ge 
(b) From the formulas of Section 14.6 and part a above, discuss the polarization 

of the total radiation emitted as a function of frequency and angle. In par- 

ticular, determine the state of polarization at (1) high frequencies (w > a,) 

for all angles, (2) intermediate and low frequencies (w < w,) for large angles 

(3) intermediate and low frequencies at very small angles 

(c) See the paper by P. Joos, Phys. Rev. Letters, 4, 558 (1960), for experimental 

comparison. See also Handbook on Synchrotron Radiation, (op. cit.), Vol 

1A, p. 139 

14.26 Consider the synchrotron radiation from the Crab nebula. Electrons with energies 

up to 10° eV move in a magnetic field of the order of 10~* gauss 

(a) For E = 10° eV, B= 3 x 10 gauss, calculate the orbit radius p, the fun- 

damental frequency w) = c/p, and the critical frequency w,. What is the en- 

ergy fiw, in keV? 

(b) Show that for a relativistic electron of energy F in a constant magnetic field 

the power spectrum of synchrotron radiation can be written 

@ 
— 

c 

P(E, w) = cons) +( 
where f(x) is a cutoff function having the value unity at x = 0 and vanishing 

rapidly for x >> 1 [e.g., f = exp(— w/w,)], and w, = (3/2)(eB/mc)(E/mc’)* cos 6 
where @ is the pitch angle of the helical path. Cf. Problem 14.17a 

(c) If electrons are distributed in energy according to the spectrum N(E) dE 
oc E~” dE, show that the synchrotron radiation has the power spectrum 

(P(w)) dw x w™* dw 

where @ = (n — 1)/2 

(d) Observations on the radiofrequency and optical continuous spectrum from 

1 to the Crab nebula show that on the frequency interval from w ~ 108 

1 the w ~ 6 X 10° s“' the constant a = 0.35. At frequencies above 10'8 
spectrum of radiation falls steeply with a = 1.5. Determine the index n for 
the electron-energy spectrum, as well as an upper cutoff for that spectrum 
Is this cutoff consistent with the numbers of part a? 

(e) The half-life of a particle emitting synchrotron radiation is defined as the 
time taken for it to lose one half of its initial energy. From the result of 
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Problem 14.9b, find a formula for the half-life of an electron in years when 

B is given in milligauss and E in GeV. What is the half-life using the numbers 

froni part a? How does this compare with the known lifetime of the Crab 

nebula? Must the energetic electrons be continually replenished? From what 

source? 

14.27 Consider the radiation emitted at twice the fundamental frequency in the average 

rest frame of an electron in the sinusoidal undulator of Sections 14.7.C and 14.7.D. 

The radiation is a coherent sum of £1 radiation from the z'(t’) motion and E2 

radiation from the x’(t’) motion. 

(a) Using the techniques and notation of Chapter 9, show that the radiation-zone 

magnetic induction is given to sufficient accuracy by 

K —iek'a 
B= n X [Z — 4x(n- &)] 

8 V1+ K2/2 

where k’ = 2¥Ko, n is a unit vector in the direction of k’, and a factor of 

exp[ik’(r’ — ct')|/r’ is understood. 

(b) Show that the time-averaged radiated power in the average rest frame, 

summed over outgoing polarizations, can be written 

dP’ ec 
K2 

= oe, CO . 

dQ’ Sar (1 + K2/2) 64 

where 

S' = KA + Kt + 18KI2KI? + TKK? + KPKP + 8k'kiZK: 

(c) Using the invariance arguments in the text in going from (14.111) to (14.118), 
show that the laboratory frequency spectrum of the second harmonic is 

3 
kK? dP, 

v?(10 — 21v + 20v? — 6v’) 
dv 16 '(+K22) 

where v = k/2y’k, and P, is the power in the fundamental, (14.117). For the 

angular range 7, < 4 < 7, the minimum and maximum r values are Min 

2/(1 + yp) and max = 2/(1 + 7). What is the total power radiated in the 

second harmonic? 



CHAPTER 15 

Bremsstrahlung, Method of Virtual 
Quanta, Radiative Beta Processes 

In Chapter 14 we discussed radiation by accelerated charges in a general way, 

deriving formulas for frequency and angular distributions, and presenting ex- 

amples of radiation by both nonrelativistic and relativistic charged particles in 

external fields. This chapter is devoted to problems of emission of electromag- 
netic radiation by charged particles in atomic and nuclear processes. 

Particles passing through matter are scattered and lose energy by collisions, 
as described in detail in Chapter 13. In these collisions the particles undergo 

acceleration; hence they emit electromagnetic radiation. The radiation emitted 
during atomic collisions is customarily called bremsstrahlung (braking radiation) 
because it was first observed when high-energy electrons were stopped in a thick 

metallic target. For nonrelativistic particles the loss of energy by radiation is 

negligible compared with the collisional energy loss, but for ultrarelativistic par- 

ticles radiation can be the dominant mode of energy loss. 

Our discussion begins with consideration of the radiation spectrum at very 

low frequencies where a general expression can be derived, valid quantum me- 

chanically as well as classically. The angular distribution, the polarization, and 

the integrated intensity of radiation emitted in collisions of a general sort are 

treated before turning to the specific phenomenon of bremsstrahlung in Coulomb 

collisions. When appropriate, quantum-mechanical modifications are incorpo- 

rated by treating the kinematics correctly (including the energy and momentum 

of the photon). All important quantum effects are included in this way, some- 

times leading to the exact quantum-mechanical result. Relativistic effects, which 

can cause significant changes in the results, are discussed in detail. 

The creation or annihilation of charged particles is another process in which 

radiation is emitted. Such processes are purely quantum mechanical in origin. 

There can be no attempt at a classical explanation of the basic phenomena. But 

given that the process does occur, we may legitimately ask about the spectrum 

and intensity of electromagnetic radiation accompanying it. The sudden creation 

of a fast electron in nuclear beta decay, for example, can be viewed for our 
purposes as the violent acceleration of a charged particle initially at rest to some 

final velocity in a very short time interval, or, alternatively, as the sudden switch- 
ing on of the charge of the moving particle in the same short interval. We discuss 
nuclear beta decay and orbital-electron capture in these terms in Sections 15.6 
and 15.7. 

In some radiative processes like bremsstrahlung it is possible to account for 
the major quantum-mechanical effects merely by treating the conservation of 
energy and momentum properly in determining the maximum and minimum 
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effective momentum transfers. In other processes like radiative beta decay the 
quantum effects are more serious. Phase-space modifications occur that have no 
classical basis. Radiation is emitted in ways that are obscure and not easily related 
to the acceleration of a charge. Generally, our results are limited to the region 

of “soft” photons, that is, photons whose energies are small compared to the 
total energy available. At the upper end of the frequency spectrum our semi- 

classical expressions can be expected to have only qualitative validity. 

15.1 Radiation Emitted During Collisions 

If a charged particle makes a collision, it undergoes acceleration and emits ra- 

diation. If its collision partner is also a charged particle, they both emit radiation, 

and a coherent superposition of the radiation fields must be made. Since the 

amplitude of the radiation fields depends on the charge times the acceleration, 

the lighter particle will radiate more, provided the charges are not too dissimilar. 

In many applications the mass of one collision partner is much greater than the 

mass of the other. Then for the emission of radiation it is sufficient to treat the 

collision as the interaction of the lighter of the two particles with a fixed field of 

force. We will consider only this situation, leaving more involved cases to the 

problems at the end of the chapter. 

A. Low-Frequency Limit 

From (14.65) and (14.66) we see that the intensity of radiation emitted by a 

particle of charge ze during the collision can be expressed as 
2 

d d*I ze n X (n X B) 
— 

eie(e—ner(t)/c) dt (15.1) J at dw dQ 47°c 1-n-8B | 
Let us suppose that the collision has a duration 7 during which significant accel- 

eration occurs and that the collision changes the particle’s velocity from an initial 

value cf to a final value cB’. The spectrum of radiation at finite frequencies will 

depend on the details of the collision, but its form at low frequencies depends 

only on the initial and final velocities. In the limit w — 0 the exponential factor 

in (15.1) is equal to unity. Then the integrand is a perfect differential. The spec- 

trum of radiation with polarization € is therefore 
2 

d?I ze" 
B 

p’ 

lim (15.2) 
dw dQ 47°c w—0 1-n-p’ 1-n-B 

The result (15.2) is very general and holds quantum mechanically as well as 

classically. To establish the connection to the quantum-mechanical form, we first 

convert (15.2) into a spectrum of photons. The energy of a photon of frequency 

w is hw. By dividing (15.2) by #’w we therefore obtain the differential number 

spectrum per unit energy interval and per unit solid angle of “‘soft’’ photons 

(hw — 0) of polarization e€: 
2 

d’N Za B 
Bp’ 

(15.3) lim ~ 47’hw 1—-n-p’ 1-n-B hw—0 d(hw) dQ, 
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Figure 15.1 Quantum-mechanical diagrams describing the scattering of a particle 
without photon emission (top) and with the emission of a photon (bottom). 

where a = e7/fc = 1/137 is the fine structure constant if e is the proton’s charge. 
The subscript y on the solid-angle element serves to remind us that it is the solid 
angle into which the photon goes. The spectrum (15.3) is to be interpreted as 

follows. Suppose that the collision is caused by an external potential or other 

interaction. Let the cross section for scattering that causes a change in velocity 

cB — cB’ be denoted by da/dQ,, where p stands for particle. Then the cross 

section for scattering and at the same time for producing a soft photon of energy 

hw, per unit energy interval and per unit solid angle, is 

d’N d’a do 
— lim (15.4) 

dQ, d(iw) dQ, — | roo d(hw) dQ, | "dQ, 

The expression (15.3) can be made to appear more relativistically covariant by 

introducing the energy-momentum 4-vectors of the photon, k* = (A/c)(w, wn), 

and of the particle, p* = Mc(y, yB). It is also valuable to make use of the Lorentz- 

invariant phase space d*k/k, to write a manifestly invariant expression,* 

2 2 d°N c d?’N c d?I 
(15.5) (Pkiko) hw d(iw) dO, h(hw)? dw dO, 

Then we find from (15.3), 

2 
I d?N e* e* 

Pp Pp _ Za 
lim (15.6) 

Aa? aw+0 (A°k/ko) k-p' k-p 

where the various scalar products are 4-vector scalar products [in the radiation 
gauge, e* = (0, €)]. That (15.6) emerges from a quantum-mechanical calculation 
can be made plausible by considering Fig. 15.1. The upper diagram indicates the 
scattering process without emission of radiation. The lower three diagrams have 
scattering and also photon emission. Their contributions add coherently. The two 
diagrams on the left have the photon emitted by the external lines, that is, before 

*The fact that w” times d?J/dw dQ. is a Lorentz invariant is not restricted to the limit of w > 0. We 
find this result useful in some of our later discussions. 
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or after the collision; both involve propagators for the particle between the scat- 
tering vertex and the photon vertex of the form 

1 1 

(p + ky? — M? +2p-k 

In the limit w — 0 these propagators make the contributions from these two 
diagrams singular and provide the (Aw)~' in (15.3). On the other hand, the dia- 
gram on the right has the photon emitted from the interior of the scattering 
vertex. Its contribution is finite as w — 0 and so is negligible compared to the 
first two. The explicit calculation yields (15.4) with (15.6) in the limit that the 
energy and the momentum of the photon can be neglected in the kinematics. 
Soft photon emission occurs only from the external lines in any process and is 
given by the classical result. 

B. Polarization and Spectrum Integrated over Angles 

Some limiting forms of (15.2) are of interest. If the particle moves non- 
relativistically before and after the collision, then the factors in the denominators 
can be put equal to unity. The radiated intensity becomes 

ze" 

— lim |e* - ABP? (15.7) 
dw dQ 4n’c w>0 

where AB = B’ — B is the change in velocity in the collision. This is just a dipole 

radiation pattern and gives, when summed over polarizations, and integrated 

over angles, the total energy radiated per unit frequency interval per nonrelativ- 

istic collision, 

2z7e7 
_ 

——_—_ 
= I [AB/’ (15.8) 

37 w>0 dw 

For relativistic motion in which the change in velocity AP is small, (15.2) can be 

approximated to lowest order in AB as 

a?I ze” Ap + n X (B X AB) 
lim (15.9) dw dQ 4nc w0 (1 — n- B)’ { i 

where cf is the initial (or average) velocity. 

We now consider the explicit forms of the angular distribution of radiation 

emitted with a definite state of polarization. In collision problems it is usual that 

the direction of the incident particle is known and the direction of the radiation 

is known, but the deflected particle’s direction, and consequently that of AB, are 

not known. Consequently the plane containing the incident beam direction and 

the direction of the radiation is a natural one with respect to which one specifies 

the state of polarization of the radiation. 

For simplicity we consider a small angle deflection so that AB is approxi- 

mately perpendicular to the incident direction. Figure 15.2 shows the vectorial 

relationships. Without loss of generality n, the observation direction, is chosen 
in the x-z plane, making an angle 6 with the incident beam. The change in velocity 
AB lies in the x-y plane, making an angle ¢ with the x axis. Since the direction 
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of the scattered particle is not observed, we will average over ¢. The unit vectors 

€, and e, are polarization vectors parallel and perpendicular to the plane con- 

taining B and n. 

We leave to Problem 15.6 the demonstration that (15.9) gives the expressions 
(averaged over ¢) 

ze" (B — cos 6)" a’ I, 
lim | AB)? dwdQ 87° w>0 (1 — Bcos6)* 

(15.10) 
1 ze" d?I, 

_ lim 
dw dQ 8n°c wo>0 1 — B cos 6)? ABI 

for the low-frequency limits for the two states of linear polarization. These an- 

gular distributions are valid for small-angle collisions of all types. The polariza- 

tion P(6), defined as (d*I, — d*I,)/(d7I, + d*Ij), vanishes at 6 = 0, has a maximum 
value of +1 at cos @ = B, and decreases monotonically for larger angles. For 

y >> 1, it has the form, P(6) = 2y’67/(1 + y*6*). This qualitative behavior is 

observed experimentally,* but departures from the w — 0 limit are significant 

even for w/@,ax = 0.1. 

The sum of the two terms in (15.10) gives the angular distribution of soft 

radiation emitted in an arbitrary small-angle collision (AB small in magnitude 

and perpendicular to the incident direction). For relativistic motion the distri- 

bution is strongly peaked in the forward direction in the by-now familiar fashion, 

with a mean angle of emission of the order of y~’ = Mc?/E. Explicitly, in the 

limit y >> 1 we have 

d2I _ z-e7y4 |AB/? (1 + y‘o*) 

lim (15.11) 
dw dQ wc w>0 (1 + 76?) 

The total intensity per unit frequency interval for arbitrary velocity is found by 

elementary integration from (15.10) to be 

dl 2 ze 
—_—_ ——- lim — y |ABP 
3 c oO dw 

*Some data for electron bremsstrahlung are given by W. Lichtenberg, A. Przybylski, and M. Scheer, 
Phys. Rev. A 11, 480 (1975). 
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For nonrelativistic motion this reduces to (15.8). Since the particle’s momentum 
is p = yMcf, this result can be written as 

al 2 ze? 
lim — = (15.12) OQ? 

347 M23 w>0 dw 

where Q = |p’ — p| is the magnitude of the momentum transfer in the collision. 

Equations (15.10) and (15.12) are valid relativistically, as well as nonrelativ- 

istically, provided the change in velocity is not too large. For relativistic motion 

the criterion is 

or QO < 2Mc [AB] <= (15.13) 

This can be seen from (15.2). If the two velocities B and B’ have an angle 

| AB |/B between them of more than 2/y, the two terms in the amplitude will not 

interfere. When the direction of emission n is such that one of them is large, the 

other is negligible. The angular distribution will be two searchlight beams, one 

centered along BP and the other along B’, each given by the absolute square of 

one term. The radiated intensity integrated over angles is then approximately 

dl 477e7 
hm — = (15.14) In (Q/Mc) 

TIC w>0 dw 
Q>2Mc 

For Q > 2Mc the radiated intensity of soft photons is logarithmically dependent 
on Q?, in contrast to the linear increase with Q” shown by (15.12) for smaller 
momentum transfers. For nonrelativistic motion the momentum transfers are 

always less than the limit of (15.13). The intensity is therefore given by (15.12) 

for all momentum transfers. 

C. Qualitative Behavior at Finite Frequencies 

So far we have concentrated on the very-low-frequency limit of (15.1). It is 

time to consider the qualitative behavior of the spectrum at finite frequencies. 

The phase factor in (15.1) controls the behavior at finite frequencies. Appreciable 

radiation occurs only when the phase changes relatively little during the collision. 

If the coordinate r(t) of the particle is written as 

r(t) = r(0) + [ cB(t') dt’ 

then, apart from a constant, the phase of the integrand in (15.1) is 

P(t) = of —h-h- [ Bt’) ar) 

If we imagine that the collision occurs during a time 7 and that B changes rela- 

tively smoothly from its initial to final value, the criterion for appreciable radi- 
ation is 

(15.15) wr(1 — n-(B)) <1 
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where (B) = (1/7) [ B(¢t) dt is the average value of B during the collision. For 
nonrelativistic collisions this reduces to 

o7T< 1 

At low frequencies the radiated intensity is given by (15.7), but for wr > 1 the 

oscillating phase factor will cause the integral to be much smaller than when 
w = 0. The intensity will thus fall rapidly to zero for w > 1/7. For relativistic 

motion the situation is more complex. For small |AB| but with y >> 1 the criterion 
(15.15) is approximately 

(15.16) ppl + 76) <1 

Now there is angular dependence. For wr < 1, there is significant radiation at all 
angles that matter. For w7 on the range, 1 < wr < y’, there is appreciable radi- 
ation only out to angles of the order of 0,4, Where 6%... = l/wt. For wt > y’, 
(15.16) is not satisfied at any angle. Hence the spectrum of radiation in relativistic 

collisions is given approximately by (15.11) and (15.12) provided wr << +’, but 
modifications occur in the angular distribution as wr approaches y’, and the in- 
tensity at all angles decreases rapidly for w = y’/r. 

15.2. Bremsstrahlung in Coulomb Collisions 

The most common situation in which a continuum of radiation is emitted is in 

the collision of a fast particle with an atom. Because of its greater charge, the 

nucleus is more effective at producing deflections of the incident particle than 

the electrons. Consequently we ignore the effects of the electrons for the present 

and consider the radiation emitted in the collision of a particle of charge ze, mass 

M, and initial velocity cB with the Coulomb field of a fixed point charge Ze. 

The elastic scattering of a charged particle by a static Coulomb field is given 

by the Rutherford formula (see Section 13.1): 

1 2zZe” do, 
(15.17) 

dQ) pu ( 
y 

"(2 sin 6'/2) 

where 6’ is the scattering angle of the particle. This cross section is correct non- 
relativistically at all angles, and is true quantum mechanically for the relativistic 
small-angle scattering of any particle. It is convenient to express (15.17) as a cross 
section for scattering per unit interval in momentum transfer Q. For elastic 
scattering, 

Q* = 4p’sin’(6'/2) = 2p?(1 — cos 6’) (15.18) 

— 

= With dQ)’ = dd’ d cos @’ —Q d¢' dQ/p’, integration over azimuth of (15.17) 
gives 

1 zZe* do, 
- an (15.19) 

dQ Bec oe 

y 
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In a Coulomb collision with momentum transfer Q the incident particle is 

accelerated and emits radiation. From Section 15.1 we know that the angular 

distribution is given by (15.10), at least for small deflections, and the integrated 

intensity by (15.12). Since the angular distributions have already been discussed, 

we focus on the frequency spectrum, integrated over angles. In analogy with 

(15.4) we define the differential radiation cross section, 

d’x_ _ dI(w, Q) do, 
(15.20) (Q) 

dw dw dQ dQ 

where d/(w, Q)/dw is the energy radiated per unit frequency interval in a collision 

with momentum transfer Q. The differential radiation cross section has dimen- 

sions of (area X energy/frequency X momentum). The cross section for photon 

emission per unit energy interval is obtained by dividing by f7w. 
The low-frequency radiation spectrum is given by (15.12), provided Q is not 

too large. Inserting both (15.12) and (15.19) into (15.20) we obtain 

1 1 ze" d?y _ 16 Ze? 
(15.21) 

c Mc? dwdQ 3 BO ( 
; 

This result is valid at frequencies and momentum transfers low enough to ensure 

that the criteria of Section 15.1 are satisfied. The radiation cross section inte- 
grated over momentum transfers is 

1 16 Ze? z-e* 

dx 
—S=S Se 

Qmax dQ 

Mc? dw ( B? Qmnin Q 
or (15.22) 

1 16 Ze? ze" dx Omax 
=an— > _—_—_— 

Mc? dw B 
onl ( Qmin 

In summing over momentum transfers we have incorporated the limitations on 

the range of validity of (15.21) by means of maximum and minimum values of 

Q. At any given frequency (15.21) describes approximately the differential ra- 

diation cross section for only a limited range of Q. Outside that range the cross 

section falls below the estimate (15.21) because one or the other of the factors 

in (15.20) is much smaller than (15.12) or (15.19) (or zero). This effectively limits 
the range of Q and leads to (15.22). Determination of the values of Q,,., and 

Owmin for different physical circumstances is our next task. 

A. Classical Bremsstrahlung 

In our discussion of energy loss in Chapter 13 we saw that classical consid- 

erations were applicable provided 

zZe 
1 n= 

U 

For particles of modest charges this means B < 1. In this nonrelativistic limit 
the maximum effective momentum transfer is not restricted by failure of (15.12). 
The only limit is kinematic. From (15.18) we see that 

(15.23) Omax = 2p = 2Mv 
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The lower limit on Q is determined classically by the relation between frequency 

and collision time that must be satisfied if there is to be significant radiation. 

From Section 11.10 and Problem 13.1 we have 

1 Vv 2zZe? 
_— _ 

= Q= 

bu 
b? 

T 

s so that the condition w < 1/7 can be written in terms of Q as ~. 

2zZe*w 
— (c) 
= (15.24) 

min Q>Q 2 
U 

The classical radiation cross section is therefore 

1 AMv? z-e* 
dx. 16 Z7e* 

= (15.25) 
3 c Mc? dw zZe*w ( ( 

where A is a number of order unity that takes into account our ignorance of 

exactly how the intensity falls to zero around w7 = 1. This cross section is mean- 

ingful only provided the argument of the logarithm is greater than unity. There 
(c) 
max 

on the frequency spectrum. Phrased in terms of a is thus an upper limit w 

photon energy it is 

2X Mv? 
—_— 

— 

= 
hay© 

max 
(15.26) 

2 n ( 
Since 7 is large compared to unity in this classical situation, we find that the range 

of photon energies is limited to very soft quanta whose energies are all very small 

compared to the kinetic energy of the incident particle. For 7 = 10 the classical 

spectrum is shown in Fig. 15.3, with A = 2 (chosen so that for 7 = 1 and w = 0 

the classical and quantum-mechanical cross sections agree). 

| T T I t | | | 
T 

| 

i 
|3 

Classical Bethe- 

Heitler n= 10 

0 0.2 0.4 0.6 0.8 1.0 
tw 
— ———> 

Figure 15.3 Radiation cross section (energy X area/unit frequency) for nonrelativistic 
Coulomb collisions as a function of frequency in units of the maximum frequency (E/h). 
The classical spectrum is confined to very low frequencies. The curve marked “‘Bethe- 
Heitler” is the quantum-mechanical Born approximation result, i.e., (15.29) with A’ = 1. 
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B. Nonrelativistic Bremsstrahlung 

In the classical limit the energy and the momentum of the photon were not 
considered. A posteriori such neglect was justified because (15.26) shows that the 
spectrum is confined to very low-energy photons. But for fast, though still non- 
relativistic, particles with 7 < 1, it is necessary to consider conservation of energy 
and momentum including the photon. For scattering by a fixed (or massive) cen- 
ter of force, the conservation requirements are 

E=E' + how (15.27) 

Q? = (p— p’ — k” = (p- p'y 
where E = p*/2M and E' = p'/2M are the kinetic energies of the particle before 
and after the collision, Aw and k = fwn/c are the energy and momentum of the 
photon, and Q is the momentum transfered to the scattering center, as before. 
The reader can verify that the neglect of the photon’s momentum k in the second 
expression for Q? is justified independently of the directions of the momenta 
provided the particles are nonrelativistic. 

The maximum momentum transfer effective for radiation is again that al- 

lowed by the kinematics. Similarly the minimum effective Q is determined by 

the kinematics and not by the collision time.* From the second equation in 

(15.27) we obtain 

Omx ptp' _ (VE + VE — fw) 
(15.28) 

ho p-p' Qmin 

The second form is obtained by using conservation of energy. The radiation cross 

section (15.22) is therefore 

16 Z7e? 1 
ze M(VE + VE — ho)? dXnr 

=> (15.29) 
Cc Mc? ho dw 3 ( | 

where again A’ is a number expected to be of order unity. Actually, with A’ = 1, 

(15.29) is exactly the quantum-mechanical result in the Born approximation, first 

calculated by Bethe and Heitler (1934). The shape of the radiation cross section 

as a function of frequency is shown in Fig. 15.3. 

The fact that we have obtained the correct quantum-mechanical Born ap- 

proximation cross section by semiclassical arguments in which the quantum as- 
pects were included only in the kinematics can be understood from the consid- 

erations of Section 15.1, especially Fig. 15.1. In the Born approximation the 

scattering vertex, drawn as a blob there to indicate complicated things going on, 
reduces to a point vertex like the photon-particle vertices. The third diagram at 
the bottom is absent. Only the external lines radiate; the amplitude is given by 
(15.6); the exact kinematics and phase space conspire to yield (15.29). 

The radiation cross section dy/dw depends on the properties of the particles 
involved in the collision as Z7z*/M’, showing that the emission of radiation is 
most important for electrons in materials of high atomic number. The total energy 

*For soft photons Qmin = Pp — p’ can be approximated by Qnin = 2Aw/v, while the classical expression 
() = 
min 2nholv. With y < 1, the quantum-mechanical Q,,,, is larger than the classical and (15.24) is O 

so governs the lower cutoff in Q. For more energetic photons (p — p’‘) is even larger. In relativistic 
(c) 
min collisions Q is y? times its nonrelativistic value and so is much smaller than the quantum minimum 

[see (15.33)]. 
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lost in radiation by a particle traversing unit thickness of matter containing N 

fixed charges Ze (atomic nuclei) per unit volume is 

a _ —N —— dx(w) 

Using (15.29) for dy/dw and converting to the variable of integration x = (Aw/E) 
~ ~ we can write the radiative energy loss as 

1+V1l-x ze 16 
zie 

dE yad 
= (15.30) 

he Mc? 3 dx Vx 
Ja 2 m( we) We 16 ne( = 

The dimensionless integral has the value unity. For comparison we write the ratio 
of radiative energy loss to collision energy loss (13.14) 

1 4 Z2m dE yaa 2 
——_ — (15.31) 

137 M In B 37 () dE con 

For nonrelativistic particles (v << c) the radiative loss is completely negligible 

compared to the collision loss. The fine structure constant (e7/Aic = 1/137) enters 
characteristically whenever there is emission of radiation as an additional step 

beyond the basic process (here the deflection of the particle in the nuclear 

Coulomb field). The factor m/M appears because the radiative loss involves the 

acceleration of the incident particle, while the collision loss involves the accel- 

eration of an electron 

C. Relativistic Bremsstrahlung 

For relativistic particles the limits obtained from conservation of energy must 

be modified. The changes are of two sorts. The first is that the maximum effective 

Q value is no longer determined by kinematics. It was shown in Section 15.1 that 

(15.12) is valid only for Q < 2Mc. For larger Q the radiated intensity is logarith- 

mic in Q and given by (15.14). Because of the Q° behavior of (15.19) this means 

that Qmax in (15.22) is 

(15.32) Qmax ~ 2Mc 

The second modification is that the photon’s momentum can no longer be ignored 

in determining the minimum momentum transfer from (15.27). The minimum 
clearly occurs when all three momenta are parallel 

Qin p-p—k 

For relativistic motion of the particle both initially and finally (even though the 
E- photon may carry off appreciable energy), we can approximate cp ~ 

M’c*/2E, cp' = E' — M’c*/2E', where now E and E’ are the total energies. Then 
we obtain 

M’hw 
Qmin (15.33) 

2EE' 

With (15.32) and (15.33), the radiation cross section (15.22) becomes 

16 Ze? ze dxXR NEE' 

—S- rs —— 

(15.34) 
dw Mc? Mc*hw (i ) | 
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with the customary A” of order unity. This result is the same as is obtained quan- 
tum mechanically in the relativistic limit, provided the photon energy satisfies 
hw << E. In the limit of E, E’ >> Mc?, the quantum formula is 

hw 3h7w ze” 2EE' 1 dxXp _ 16 Ze? 
_ 

1-— (15.35) 
dw 3 c Mc? E 4F? Mc*ho 2 ( he ( )( Ihe ( )- 

We note in passing that since Q,4, =~ 2Mc, the small change in velocity AB 

always lies in the plane perpendicular to the incident direction in a relativistic 

collision. The angular distribution of the radiation is thus given by (15.11). The 

doubly differential radiation cross section for energy radiated per unit frequency 

interval and per unit solid angle for Aw << E is then 

a’ xr dxXr 340+ ¥6) 
(15.36) 

“da 2n’ (1+ 76?) dw dQ, — | | 
where @ is the angle of emission of the photon and dyz/dw is given by (15.34). 

The smallness of Q,,,/p justifies the use of the relativistic Rutherford formula 

(15.19) without quantum-mechanical corrections for spin. 

D. Relativistic Bremsstrahlung by a Lorentz Transformation 

It is instructive to consider the calculation of relativistic bremsstrahlung from 

a somewhat different point of view. Suppose that instead of using the laboratory 

frame where the force center is at rest we view the process as taking place in the 

rest frame K’ of the initial particle. The emission process as it appears in the two 

frames is indicated schematically in Fig. 15.4. A small-angle deflection in the 

laboratory corresponds to nonrelativistic motion during the whole collision in the 
frame K’. The differential radiated intensity in K’ is thus given by the sum of 
the two terms in (15.10) with B = 0: 

d’l’ ze" 

— |AB’|? (1 + cos*6’) 
87rc dw’ dQ’ 

where primes denote quantities evaluated in the frame K’. The change in velocity 

can be written for nonrelativistic motion as AB’ = Ap’/Mc, where Ap’ is the 

change of momentum in K’. For a small deflection in the laboratory, Ap’ is per- 

pendicular to the direction of motion and so is the same in the laboratory as in 

Ze v 

ze (2 
“JNO 

Vv 

Coordinate Laboratory 
frame K' frame 

Figure 15.4 Radiation emitted during relativistic collisions viewed from the laboratory 

(nucleus at rest) and the frame K' (incident particle essentially at rest). 
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K’'. Its magnitude is the momentum transfer Q. The radiated energy spectrum 
can therefore be written as 

d7I' 
Ze Q 

Me 87°C dw! dQ’ (i 2a + cos’6’) 

The triply differential radiation cross section for emission of radiation per unit 

frequency interval, per unit solid angle, and per unit interval in momentum trans- 
fer is, in analogy to (15.20) 

doy’ 
ze Q do, 

(15.37) (1 + cos?6’) 
Mc 87°C dQ dw' dQ’ dQ ( 

This is the cross section in frame K’. No primes appear on do,/dQ or on Q? 
because to the extent that Q is transverse, these quantities are obviously invariant 

under Lorentz transformations.* 

The emission of radiation in the frame K’ appears as simple dipole radiation 

in (15.37). To obtain the cross section in the laboratory we must make a Lorentz 

transformation. In Section 15.1 we saw that (15.5) is a Lorentz-invariant quantity 

With what has just been said about do,/dQ, it is clear that the equation relating 

the differential cross sections in the two frames is 

1 a 
1 d?y’ 

(15.38) 
w* dw dQ, dQ w” dw’ dQ’ dQ 

Thus the triply differential cross section in the laboratory is 

2 do. 3 
d°y 

Q Ze? 
~ 3a Cc Mec 167 dw dQ dQ dQ (ic i ( ‘) a + cos’ (15.39) 

The quantities in the square brackets must, of course, be expressed in terms of 
(unprimed) laboratory quantities. The relativistic Doppler shift formulas are 

—_— 

= @ yw'(1 + B cos 6’) 

and 

, 
—_ 

= @ yw(1 — B cos 6) 

Combining the two equations we obtain 

@ 1 2y 
— 

, 

@ (1 — B cos 6) 1+ y¢@ 
and (15.40) 

cos 6 — B 1 _ y’ 6" 

cos @’ 
1 -— Bcosé@ 1+ y@ 

one we can use the manifestly invariant 4-momentum transfer whose square is given by 

= -(pi - P2)” = (Pi — Po)? — (E, — E2)?/c?. For elastic scattering by a massive center of force, 5, = E,, and for small angles and very high energies, the energy difference term can be neglected 
even for inelastic collisions. 
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The approximations on the right are appropriate for small angles around the 

incident direction in the laboratory. With these approximate forms, the square- 

bracketed quantity in (15.39) becomes 

3 3y (+ 6") “ 
167 @ ( | 27 (1+ v6)" | Ja + cosa} | ~ 

which is exactly the normalized expression in (15.36). [Use of the exact forms 

from (15.40) leads to the sum of the two terms in (15.10).] With the Rutherford 

cross section (15.19), or some other collision cross section for do,/dQ, if appro- 

priate, we obtain from (15.39) the relativistic bremsstrahlung results as before. 

The Doppler shift formulas illustrate an important point. Photons of energies 

hw’ in K’, emitted at essentially any angle in that frame, appear in the laboratory 

within the forward cone and with energies of the order of iw ~ yhw’. Thus 

energetic photons in the laboratory energy range Mc? << hw << yMc* come 
from soft quanta with Aw’ << Mc? in the rest frame of the incident particle. 

15.3 Screening Effects; Relativistic Radiative Energy Loss 

In the treatment of bremsstrahlung so far we have ignored the effects of the 
atomic electrons. As direct contributors to the acceleration of the incident par- 

ticle they can be safely ignored, since their contribution per atom is of the order 
of Z~' times the nuclear one. But they have an indirect effect through their 
screening of the nuclear charge. The potential energy of the incident particle 
in the field of the atom can be approximated by the Yukawa form, V(r) = 
(zZe7/r) exp(—r/a), with a =~ 1.4a)Z~'. Instead of (15.17) the scattering cross 
section is (13.53) with Onin given by (13.55). In terms of momentum transfer 

(15.19) is replaced by 

zZe* Q do, 
- on (15.41) 

“(Q? + Q2y dQ Bec 

y 

where 

1/3 

(7) = — = —— mc (15.42) 
min Q, = pe 

192 

is the momentum transfer associated with the screening radius a. Note that m is 

the electronic mass. 

The calculation of bremsstrahlung proceeds as at the beginning of Section 

15.2, but with the replacement in (15.22), 

OQmax Q* dQ Qmax dQ 

| Q Qmin (Q? + Q?)" Qmin 

With the assumption that Q,,.. is very large compared with both Q,i, and Q,, 

we find that the logarithm in (15.22) is replaced by 

QO: Omax Omax (15.43) 
2 
min + Q5) VOrin + QF + OF )-x min )>m( »( 

Qrmin 
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For Omin >> Q, the effects of screening are unimportant and the results of the 

preceding section are unaffected. But for Onin S Q;, important modifications 
occur. 

From (15.23), (15.28), and (15.32) we see that Qn, can be written in all 

circumstances as 

(15.44) Qmax ~ 2Mv 

while from (15.28) and (15.33) we find Q,,in values, 

2hw 
(NR) _ 

= 

mim Pp~ Pp 

(15.45) 
hw hw 

=~ (R) — 
min 

2c 2yY 

The approximations on the right are applicable for soft photons. (Note that, up 
to factors of 2 in the logarithms, a universal formula for Q,,i, for soft photons is 
Omin = hw/yv.) Since both values of Q,,i, are proportional to w for soft photons, 
it is clear that there will always be a frequency below which screening effects are 

important. With Q, given by (15.42), the ratio of Onin to Q, for nonrelativistic 

bremsstrahlung is 

hw QW) 384 fw 192MB 

QO, Z'® mvc mZ"? (ho)max 

where (fw)max = Mv7/2. Except for extremely slow speeds, the frequency at 
(NR) = which Q min Q, is a tiny fraction of the maximum. For example, with 100 keV 

electrons on a gold target (Z = 79), only for w/w pax < 0.04 is screening important. 

For particles heavier than electrons the factor M/m makes screening totally in- 

significant in nonrelativistic bremsstrahlung. 

For relativistic bremsstrahlung, however, screening effects can be important. 

The ratio of Q,,in to Q, is now 

(R) I6hw 96M ho Q min 
— 

Q, ~~ yy'mc2Z"2 

where (4@)max = yMc?. The presence of the factor y’ in the denominator implies 
that at sufficiently high energies Q“®) can be less than Q, for essentially the whole 
range of frequencies [if w/w,,,, = x, then y' = (1 — x)y]. Then the screening is 
said to be complete. The incident energies for complete screening are defined as 
E >> E,, where the critical energy E, is 

192M 
———_——. (15.46) mZ'3 

r= | Jae 

For energies large compared to E,, Qnin can be neglected compared to Q, in 
(15.43) at all frequencies except the very tip of the spectrum. The radiation cross 
section in the complete screening limit is thus the constant value, 

16 Z7e? ze” 233M dy 
—S= CO 

(15.47) 
dw Mc? mzZ'3 ( } 
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1.00 

0.75 
Bethe-Heitler 

dx Figure 15.5 Radiation cross section in 

the complete screening limit. The 

constant value is the semiclassical 

result. The curve marked ‘“‘Bethe-— 

max Heitler” is the quantum-mechanical 
eo-—— Born approximation. 

The numerical coefficient in the logarithm is subject to some uncertainty, of 

course. Bethe and Heitler found a result with 183 instead of 233 in the logarithm 

and with the polynomial (1 — Aw/E + 3h?w*/4E’) of (15.35) multiplying it. 

For electrons, E, ~ 42 MeV in aluminum (Z = 13) and 23 MeV in lead 

(Z = 82). The corresponding values for mu mesons are 2 X 10° MeV and 10° 

MeV. Because of the factor M/m, screening is important only for electrons. When 

E > E,, the radiation cross section is given by the constant value (15.47) for all 

frequencies. Figure 15.5 shows the radiation cross section (15.47) in the limit of 

complete screening, as well as the corresponding Bethe-Heitler result. Their 

proper quantum treatment involves the slowly varying polynomial, which 

changes from unity at w = 0 to 0.75 at w = w,,,,. For cosmic-ray electrons and 

for electrons from most high-energy electron accelerators, the bremsstrahlung is 

in the complete screening limit. Thus the photon spectrum shows a typical (Aw)~' 
behavior. 

The radiative energy loss was considered in the nonrelativistic limit in Section 

15.2.B and was found to be negligible compared to the energy loss by collisions. 

For ultrarelativistic particles, especially electrons, this is no longer true. The ra- 

diative energy loss is given approximately in the limit y >> 1 by 
yMc*ih 252 Ze? ze dE vad Omnax 16 

| 0 Cc Mc? 3 dx VOrnin + QO? 
) a ( 

min + Q5 

; 

( 
For negligible screening we find approximately 

252 Ze? ze dE yaa 16 

h 3 dx 
Mc? ( ) In (Ay)yMc? 

For higher energies where complete screening occurs this is modified to 

233M Ze" ze- 

dE yaa 16 
(15.48) 

23m Mc? Ac 3 dx } »( le ( -| 
showing that eventually the radiative loss is proportional to the particle’s energy.* 

The comparison of radiative loss to collision loss now becomes 

233M 

Z'3m ni 4 Zz? dE vad 
—_— 

Y 
M 137 In B, ( dE eon 7 307 

. 

9 *With the Bethe—Heitler energy dependence shown in Fig. 15.5, the coefficient 16/3 is replaced by 4 

if atomic electrons are counted, the factor of Z? is replaced by Z(Z + 1). 
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The value of y for which this ratio is unity depends on the particle and on Z. For 
electrons it is y ~ 200 for air and y ~ 20 for lead. At higher energies, the radiative 
energy loss is larger than the collision loss and for ultrarelativistic particles is the 

. dominant loss mechanism. 

At energies where the radiative energy loss is dominant, the complete screen- 

ing result (15.48) holds. Then it is useful to introduce a unit of length Xo, called 
the radiation length, which is the distance a particle travels while its energy falls 

to e! of its initial value. By conservation of energy, we may rewrite (15.48) as 

E dE 

dx = Xo 

with solution 

E(x) = Eye™*'*0 

where the radiation length Xo (including quantum corrections, Joc. cit.) is 

233M z-er Z(Z + 1)e? 
—_— 

= (15.49) Xo Z'?m Mc? Ac } | ) ( a 

For electrons, some representative values of Xo are 37 g/cm* (310 m) in air at 
NTP, 24 g/cm? (8.9 cm) in aluminum, and 5.8 g/cm? (0.51 cm) in lead. In studying 
the passage of cosmic-ray or man-made high-energy particles through matter, the 

radiation length Xo is a convenient unit to employ, since not only the radiative 

energy loss is governed by it, but also the production of electron-positron pairs 

by the radiated photons, and so the whole development of the electronic cascade 

shower. 

15.4 Weizsdcker-Williams Method of Virtual Quanta 

The emission of bremsstrahlung and other processes involving the electromag- 
netic interaction of relativistic particles can be viewed in a way that is very helpful 

in providing physical insight into the processes. This point of view is called the 

method of virtual quanta. It exploits the similarity between the fields of a rapidly 

moving charged particle and the fields of a pulse of radiation (see Section 11.10) 

and correlates the effects of the collision of the relativistic charged particle with 

some system with the corresponding effects produced by the interaction of ra- 

diation (the virtual quanta) with the same system. The method was developed 

independently by C. F. Weizsdcker and E. J. Williams in 1934. Ten years earlier 

Enrico Fermi had used essentially the same idea to relate the energy loss by 

ionization to the absorption of x-rays by atoms (see Problem 15.12). 

In any given collision we define an ‘‘incident particle” and a “‘struck system.”’ 

The perturbing fields of the incident particle are replaced by an equivalent pulse 

of radiation that is analyzed into a frequency spectrum of virtual quanta. Then 

the effects of the quanta (either scattering or absorption) on the struck system 

are calculated. In this way the charged-particle interaction is correlated with the 

photon interaction. Table 15.1 lists a few typical correspondences and specifies 

the incident particle and struck system. From the table we see that the struck 

system is not always the target in the laboratory. For bremsstrahlung the struck 
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Table 15.1 Correspondences Between Charged Particle Interactions 
and Photon Interactions 

Incident Struck 
Particle Process Particle Radiative Process System Brain 

Nucleus Electron h/2Mv Bremsstrahlung in Scattering of virtual 

electron (light (light photons of nuclear 

particle)-nucleus particle Coulomb field by 
collision mass M) the electron (light 

particle) 

Collisional ionization Incident Atom Photoejection of 

of atoms (in distant particle atomic electrons by 

collisions) virtual quanta 

Electron Nucleus Electron disintegration Photodisintegration of 

of nuclei (mass m) nuclei by virtual Larger 
quanta of 

Electron Nucleus Production of pions in hi-ymvu Photoproduction of 

electron-nuclear and R (mass m) pions by virtual 

collisions quanta interactions 

with nucleus 

system is the lighter of the two collision partners, since its radiation scattering 

power is greater. For bremsstrahlung in electron-electron collision it is necessary 

from symmetry to take the sum of two contributions where each electron in turn 

is the struck system at rest initially in some reference frame. 

The chief assumption in the method of virtual quanta is that the effects of 

the various frequency components of equivalent radiation add incoherently. This 

will be true provided the perturbing effect of the fields is small, and is consistent 

with our assumption in Section 15.2.D that the motion of the particle in the frame 

K’ was nonrelativistic throughout the collision. 

It is convenient in the discussion of the Weizsicker—Williams method to use 

the language of impact parameters rather than momentum transfers in order to 

make use of results on the Fourier transforms of fields obtained in previous 
chapters. The connection between the two approaches is via the uncertainty- 
principle relation, 

hi 
b~— 

Q 

With the expression (15.44) for Q,,ax in bremsstrahlung, we see that the minimum 

impact parameter effective in producing radiation is 

h h 
(15.50) Dmin ~ Ona 2Mv 

as listed in Table 15.1. The maximum impact parameters corresponding to the 

Omin Values of (15.45) do not need to be itemized. The spectrum of virtual quanta 

automatically incorporates the cutoff equivalent to Qnin- 

The spectrum of equivalent radiation for an independent particle of charge 
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q, velocity v ~ c, passing a struck system S at impact parameter b, can be found 

from the fields of Section 11.10: 

yb 
E,(t) = q (b? + yv? py? 

B,(t) = BE,(t) 
yut 

i(t) 
(b? 

2)3/2 

For B = 1 the fields E(t) and B;(t) are completely equivalent to a pulse of plane- 

polarized radiation P, incident on S in the x, direction, as shown in Fig. 15.6 
There is no magnetic field to accompany £,(t) and so form a proper pulse of 

radiation P, incident along the x, direction, as shown. Nevertheless, if the motion 

of the charged particles in § is nonrelativistic in this coordinate frame, we can 

add the necessary magnetic field to create the pulse P, without affecting the 

physical problem because the particles in S respond only to electric forces. Even 

if the particles in § are influenced by magnetic forces, the additional magnetic 

field implied by replacing E(t) by the radiation pulse P, is not important, since 

the pulse P, will be seen to be of minor importance anyway 

From the discussion Section 14.5, especially equations (14.51), (14.52), and 

(14.60), it is evident that the equivalent pulse P, has a frequency spectrum (en- 

ergy per unit area per unit frequency interval) dJ,(w, b)/dw given by 

7 6 8) = — |Ex(w)? (15.51a) 
al 

where E(w) is the Fourier transform (14.54) of E,(t). Similarly the pulse P, has 

the frequency spectrum 

— |Ex(w)? (15.51b) 6» 5) = 
at 

The Fourier integrals, calculated in Chapter 13, are given by (13.80). The two 
frequency spectra are 

wb 
2 dw 1 c q ‘yu 1 (x) «(2 

—_ 
= (15.52) 

TC VU 
b? 

1 wb ( »{ wb 
— — 

— 

dw y 
‘yu ‘yu ( ( 

x9 *2 

Py es CBs 

Po 

~4 ~1 

Figure 15.6 Relativistic charged particle passing the struck system S and the 
equivalent pulses of radiation 
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and so is of little We note that the intensity of the pulse P, involves a factor y 

importance for ultrarelativistic particles. The shapes of these spectra are shown 

in Fig. 15.7. The behavior is easily understood if one recalls that the fields of 

pulse P, are bell-shaped in time with a width At ~ b/yv. Thus the frequency 

1/At. On spectrum will contain all frequencies up to a maximum of order @nax 

the other hand, the fields of pulse P, are similar to one cycle of a sine wave of 

frequency w ~ yu/b. Consequently its spectrum will contain only a modest range 

of frequencies centered around yu/b 

In collision problems we must sum the frequency spectra (15.52) over the 

various possible impact parameters. This gives the energy per unit frequency 

interval present in the equivalent radiation field. As always in such problems we 

must specify a minimum impact parameter b,,;,. The method of virtual quanta 

will be useful only if b,,;, can be so chosen that for impact parameters greater 

than b,,;, the effects of the incident particle’s fields can be represented accurately 
by the effects of equivalent pulses of radiation, while for small impact parameters 

the effects of the particle’s fields can be neglected or taken into account by other 

means. Setting aside for the moment how we choose the proper value of Dyin in 
general [(15.50) is valid for bremsstrahlung], we can write down the frequency 
spectrum integrated over possible impact parameters 

o 

dl, 
(15.53) (w) = an | (w, b) + ao 

b 
min 

(w, 6p db E 

where we have combined the contributions of pulses P, and P3. The result is 

vp 
dl 2q 

— () xK(x)Ki(x) -— =5 2 ¥ [Ki(x) 
Wwe dw 

eo)| (15.54) ) 
where 

WD nin (15.55) 
yu 

24 
— ee L— Ig 

b2 

qh 

3/8 

~—Ip 
—_-— Ig — 2 

beriiisl 1 1 1 rit 1 

10 1 0.1 0.01 0.001 

ab 
yu 

Figure 15.7 Frequency spectra of the two equivalent pulses of radiation 
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For low frequencies (w < yu/bmin) the energy per unit frequency interval re- 

duces to 

2 2 
VU c 1.123-w 2q 

_ —_— — (15.56) 
2c? 7 c VU oD pin | ( ) be ( 

whereas for high frequencies (w >> yu/b,in) the spectrum falls off exponentially 
~~ ™~ 

as 

2 2 
c 
—_ (15.57) ¢ VU 

2c? ao 8) )( ( 
Figure 15.8 shows an accurate plot of I(w) (15.54) for v = c, as well as the low- 
frequency approximation (15.56). We see that the energy spectrum consists pre- 
dominantly of low-frequency quanta with a tail extending up to frequencies of 
the order of 2yu/Dmnin- 

The number spectrum of virtual quanta N(fiw) is obtained by using the 
relation 

“ (w) dw = hwN(hw) d(hw) 

Thus the number of virtual quanta per unit energy interval in the low-frequency 

limit is 

2 2 2 Cc 1 VU 1.123 yu q 
— _ N(hw) = — (15.58) 

7 Ac Uv ho 2c2 OD ain ( )- I 
y 

Pm ( | 
I | q ‘ | Pererrey 

3-L 

ne 
x (w) 

Low-frequency 

q?/1e approximation 

Ile 

ritil L 1 ] 0 ro\ii il 
0.1 0.5 1 

wbmin/y» ——> 

Figure 15.8 Frequency spectrum of virtual quanta for a relativistic particle, with the 
energy per unit frequency d/(w)/dw in units of q?/mc and the frequency in units of 
yu/Dmin- The number of virtual quanta per unit energy interval is obtained by dividing 
by fw. 
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The choice of minimum impact parameter b,,;, must be considered. In brems- 
strahlung, b,,i, = 4/2Mv, where M is the mass of the lighter particle, as already 
discussed. For collisional ionization of atoms, b,,;, ~ a, the atomic radius, with 
closer impacts treated as collisions between the incident particle and free elec- 
trons. In electron disintegration of nuclei or electron production of mesons from 
nuclei, the wave nature of the particle whose fields provide the virtual quanta 

— sets the effective minimum impact parameter. In these circumstances, b min 

h/yMv or Dmin = R, the nuclear radius, whichever is larger. The values are sum- 
marized in Table 15.1. 

The quantum-mechanical version* of the Weizsicker—Williams method of 
virtual quanta for ultrarelativistic spin 5 electrons (@ — 1) replaces the square- 
bracketed quantity in (15.58)—“‘the logarithm”—by 

E? 4+ E” 2EE’ E+ E’ | 

— 

=> 

_(E+ ES 
—_— L (15.59) 

2E? mchw 4E? hw 2E ( }»( * 
where E and E’ = E — fw are the initial and final energies of the electron. In 

the limit iw < E, “the logarithm’’ reduces to 

E2 (hw) (hw)? 
E? ? mc-how E?2 

L = (1 — A@/E) In (Elmc?) — : + of ( } 
which is consistent with (15.58) with Dyin ~ c/w = X, the wavelength (divided by 

27) of the virtual photon. The quantum-mechanical version finds extensive ap- 

plication in the so-called two-photon processes in electron-positron collisions.": 

15.5 Bremsstrahlung as the Scattering of Virtual Quanta 

The emission of bremsstrahlung in a collision between an incident relativistic 

particle of charge ze and mass M and an atomic nucleus of charge Ze can be 

viewed as the scattering of the virtual quanta in the nuclear Coulomb field by 

the incident particle in the coordinate system K’, where the incident particle is 

at rest. The spectrum of virtual quanta d/'(w’)/dw’ is given by (15.54) with q = Ze. 
The minimum impact parameter is i/2Mvu, so that the frequency spectrum ex- 

tends up to w’ ~ yMc7/h. 
The virtual quanta are scattered by the incident particle (the struck system 

in K’) according to the Thomson cross section (14.125) at low frequencies. Thus, 
in the frame K’ and for frequencies small compared to Mc’/h, the differential 
radiation cross section is approximately 

t 252 

ze 4X 
= -3(1 + cos’6’) - do! 

dw’ dQ Mc? 

; 

( 
Since the spectrum of virtual quanta extends up to yMc7/h, the approximation 
(15.56) can be used for d/'(w’)/dw' in the region w' < Mc’/h. Thus the radiation 
cross section in K’ becomes 

1 Ze? ze" AyMc? 
=> —_—_ _ aX (15.60) 

ho’ Mc? WT C dw’ dQ’ 
)a + cos’6’) - In ( ( 

*R. H. Dalitz and D. R. Yennie, Phys. Rev. 105, 1598 (1957). 

tH. Terazawa, Rev. Mod. Phys. 45, 615 (1973). 
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The cross section in the laboratory can be obtained in the same fashion as in 
Section 15.2.D. Using (15.38) and the Doppler formulas (15.40) we find 

16 Ze? ze" 3y°(1 + y*6") 2ry’Mc? dx 
=> 

Mc? Cc dwdQ 3 2n(1 + y’0")* 
| (15.61) 

Aw(1 + 76’) )| ( } 
This is essentially the same cross section as (15.36). Upon integration over angles 

of emission, it yields an expression equal to the soft-photon limit of-(15.34). 

Equations (15.60) and (15.61) are based on the Thomson scattering cross 

section and so are restricted to w’ < Mc?/h in the rest frame K’. Of course, as 
observed in Section 15.2.D, such soft photons transform into energetic photons 

in the laboratory. But the spectrum of virtual quanta contains frequencies up to 
w’ ~ yMc7/h. For such frequencies the scattering of radiation is not given by the 
Thomson cross section, but rather by (14.127) for spinless struck particles or the 
Klein-Nishina formula for particles of spin 5. The angular distribution of scat- 
tering of such photons is altered from the dipole form of (15.60), as is shown in 

Fig. 14.18. More important, the total cross section for scattering decreases rapidly 
for frequencies larger than Mc?/h, as can be seen from (14.128). This shows that 
in the frame K’ the bremsstrahlung quanta are confined to a frequency range 

0 < w’ Ss Mc’/h, even though the spectrum of virtual quanta in the nuclear 
Coulomb field extends to much higher frequencies. The restricted spectrum in 

K’ is required physically by conservation of energy, since in the laboratory system 

where w = yw’ the frequency spectrum is limited to 0 < w< (yMc?/h). A detailed 
treatment using the angular distribution of scattering from the Klein—Nishina 

formula yields a bremsstrahlung cross section in complete agreement with the 

Bethe-Heitler formulas (Weizsacker, 1934). 

The effects of screening on the bremsstrahlung spectrum can be discussed in 

terms of the Weizsécker—Williams method. For a screened Coulomb potential 

the spectrum of virtual quanta is modified from (15.56). The argument of the 

logarithm is changed to a constant, as discussed in Section 15.3. 

Further applications of the method of virtual quanta to such problems as 

collisional ionization of atoms and electron disintegration of nuclei are deferred 

to the problems at the end of the chapter. 

15.6 Radiation Emitted During Beta Decay 

In the process of beta decay an unstable nucleus with atomic number Z trans- 
forms spontaneously into another nucleus of atomic number (Z + 1) while emit- 
ting an electron (+e) and a neutrino. The process is written symbolically as 

Z—>(Z+1)+e +p (15.62) 

The energy released in the decay is shared almost entirely by the electron and 
the neutrino, with the recoiling nucleus getting a completely negligible share 
because of its very large mass. Even without knowledge of why or how beta decay 
takes place, we can anticipate that the sudden creation of a rapidly moving 
charged particle will be accompanied by the emission of radiation. As mentioned 
in the introduction, either we can think of the electron initially at rest and being 
accelerated violently during a short time interval to its final velocity, or we can 
imagine that its charge is suddenly turned on in the same short time interval. The 
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heavy nucleus receives a negligible acceleration and so does not contribute to 
the radiation. 

For purposes of calculation we can assume that at ¢ = 0 an electron is created 
at the origin with a constant velocity v = cB. Then from (15.1) or (15.2) the 

intensity distribution of radiation is given by 

2 dl é e*- 8B 
(15.63) do dQ 4nc 1-n-8B 

This is the low-frequency limit of the energy spectrum. The intensity will decrease 

from this value at frequencies that violate the condition (15.15). Although it is 

difficult to be precise about the value of (B) that appears there, if the formation 

process is imagined to involve a velocity-versus-time curve, such as is sketched 

in Fig. 15.9, the value of (8) should not be greater than 3. In that case, the criterion 

(15.15) is equivalent to wr < 1. The formation time 7 can be estimated from the 

uncertainty principle to be 

h h 
(15.64) 

AE E 

since in the act of beta decay an electron of total energy E is suddenly created. 

This estimate of 7 implies the frequencies for appreciable radiation are limited 

to w < E/h. This is just the limit imposed by conservation of energy. The radiation 

is seen from (15.63) to be linearly polarized in the plane containing the velocity 

vector of the electron and the direction of observation. The differential distri- 

bution in spherical coordinates is 

2 d’I é sin’@ 
2 (15.65) 

dw dQ 47°c (1 — B cos 6)? 

while the total intensity per unit frequency interval is 

2 1 é 1+ 8B 
— —In (15.66) 
TC 1— 8B B ( )-2 | 

For B << 1, (15.66) reduces to dI/dw ~ 2e*B7/37c, showing that for low-energy 

beta particles the radiated intensity is negligible. 

The intensity distribution (15.66) is a typical bremsstrahlung spectrum with 

number of photons per unit energy range given by 

2 1 1 é 1+ 8B 
— —_— —In (15.67) N(ho) = 
ho qhe 1-8 B )-3 ( ( I 

v(t) 

/ il 
t—> Figure 15.9 
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It sometimes bears the name inner bremsstrahlung to distinguish it from brems- 

strahlung emitted by the same beta particle in passing through matter. 

The total energy radiated is approximately 

2 1 é 
@max dl 1+ 8B 

—In bau | 
Ac 

do 62) 4% = Tee 
1-8 B 

- ae (15.68) ( | 
For very fast beta particles, the ratio of energy going into radiation to the particle 
energy is 

2E 
——_ 

Evad ~ 2 e 
(15.69) 

mc? E a he )-¥ Pm 
This shows that the radiated energy is a very small fraction of the total energy 

released in beta decay, even for the most energetic beta processes (Emax 
30mc?). Nevertheless, the radiation can be observed and provides useful infor- 
mation for nuclear physicists. 

In the actual beta process the energy release is shared by the electron and 

the neutrino so that the electron has a whole spectrum of energies up to some 

maximum. Then the radiation spectrum (15.66) must be averaged over the energy 

distribution of the beta particles. Furthermore, a quantum-mechanical treatment 

leads to modifications near the upper end of the photon spectrum. These are 

important details for quantitative comparison with experiment. But the origins 

of the radiation and its semiquantitative description are given adequately by our 

classical calculation. 

15.7 Radiation Emitted During Orbital-Electron Capture: 

Disappearance of Charge and Magnetic Moment 

In beta emission the sudden creation of a fast electron gives rise to radiation. In 

orbital-electron capture the sudden disappearance of an electron does likewise. 

Orbital-electron capture is the process whereby an orbital electron around an 

unstable nucleus of atomic number Z is captured by the nucleus, which is trans- 
formed into another nucleus with atomic number (Z — 1), with the simultaneous 
emission of a neutrino that carries off the excess energy. The process can be 
written symbolically as 

Zte—>(Z-1)+v (15.70) 

Since a virtually undetectable neutrino carries away the decay energy if there is 
no radiation, the spectrum of photons accompanying orbital-electron capture is 
of great importance in yielding information about the energy release. 

As a simplified model we consider an electron moving in a circular atomic 
orbit of radius a with a constant angular velocity wo. The orbit lies in the x-y 
plane, as shown in Fig. 15.10, with the nucleus at the center. The observation 
direction n is defined by the polar angle 6 and lies in the x-z plane. The velocity 
of the electron is 

V(t) = —€,w9a sin(wot + a) + Ewa cos(apt + a) (15.71) 
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=e 

Figure 15.10 

where ais an arbitrary phase angle. If the electron vanishes at t = 0, the frequency 
spectrum of emitted radiation (14.67) is approximately* 

2 
d?I ew 

(15.72) [ n xX [n x v(t)]e dt dw dQ 47c3 

where we have assumed that (wa/c) << 1 (dipole approximation) and put the 
retardation factor equal to unity. The integral in (15.72) can be written 

0 

(15.73) dt = —wpa(e lt, + €, cos 615) 
—oa 

where 

0 

—_ 

= fh cos(wt + ae’ dt 
— ao J 

(15.74) 

b= [. sin(wot + ae’ dt 

and €,, €, are unit polarization vectors perpendicular and parallel to the plane 

containing n and the z axis. The integrals are elementary and lead to an intensity 

distribution, 

d?I e7w" wa? 
[(w? cos’a + w% sin*a) 

dw dQ. 47°c3 (w* — w)? (15.75) 
+ cos?@(w” sin?a + w% cos’a)] 

Since the electron can be captured from any position around the orbit, we av- 

erage over the phase angle a. Then the intensity distribution is 

2 
é d?I Wa w*(w* + wp) 1 

(1+ cos?@) (15.76) 
2 Cc dwdQ 47n’c oy (w? 

; 

( 
The total energy radiated per unit frequency interval is 

Wa w’(w5 + w”) dI(w) _ 2 e 
(15.77) 

39 c dw (w? — way | ( | 
*To conform to the admonition following (14.67), we should multiply the velocity (15.71) by a factor 

such as (1 — e”’")@(—1) in order to bring the velocity to zero continuously in a short time 7 near 

t = 0. The reader may verify that in the limit wr << 1 and wr < 1 the results given below emerge. 
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while the number of photons per unit energy interval is 

2 1 2 é Wa w’(w3 + w) 
— 

— 
— (15.78) N(ho) = 

hw c fic 37 (w? — w)? | )| ( I 
For w >> w the square-bracketed quantity approaches unity. Then the spectrum 
is a typical bremsstrahlung spectrum. But for w ~ w, the intensity is very large 

(infinite in our approximation). The behavior of the photon spectrum is shown 

in Fig. 15.11. The singularity at # = wy may seem alarming, but it is really quite 

natural and expected. If the electron were to keep orbiting forever, the radiation 

spectrum would be a sharp line at w = wo. The sudden termination of the periodic 

motion produces a broadening of the spectrum in the neighborhood of the char- 

acteristic frequency. 

Quantum mechanically, the radiation arises when an / = 1 electron (mainly 
from the 2p orbit) makes a virtual radiative transition to an / = 0 state, from 

which it can be absorbed by the nucleus. Thus the frequency w) must be identified 
with the frequency of the characteristic 2p — 1s x-ray, hw) ~ (3Z7e7/8a9). Simi- 
larly the orbit radius is actually a transitional dipole moment. With the estimate 

a = ao/Z, where ag is the Bohr radius, the photon spectrum (15.78) is 

1 3 w*(w? + w) e =~ — 7? (15.79) N(ho) 
hw 32% Ac (w? = a8? ( 

; 

| | 
The essential characteristics of this spectrum are its strong peaking at the x-ray 

energy and its dependence on atomic number as Z?. 
So far we have considered the radiation that accompanies the disappearance 

of the charge of an orbital electron in the electron-capture process. An electron 

possesses a magnetic moment as well as a charge. The disappearance of the 

magnetic moment also gives rise to radiation, but with a spectrum of quite dif- 

ferent character. The intensity distribution in angle and frequency for a point 

magnetic moment in nonrelativistic motion is given in Problem 14.19a. The elec- 

tronic magnetic moment can be treated as a constant vector in space until its 

| | 

Niiw) 

| | 0 
0 

hha —> 

Figure 15.11 Spectrum of photons emitted in orbital-electron capture because of 
disappearance of the charge of the electron. 
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disappearance at t = 0. Then, in the dipole approximation, the appropriate in- 
tensity distribution is 

2 4 d’I 
(15.80) 

[. n X rv eit at 
do dQ 47° 

which gives 

2 d*I @ 

pw sin’?® (15.81) dod 47° 
where @ is the angle between qm and the observation direction n. 

In a semiclassical sense the electronic magnetic moment can be thought of 
as having a magnitude uw = V3(eh/2mc), but being observed only through its 
projection 4, = +(eh/2mc) on an arbitrary axis. The moment can be thought of 
as precessing around the axis at an angle a = tan~! V2, so that on the average 
only the component of the moment along the axis survives. It is easy to show 
that on averaging over this precession sin’@ in (15.81) becomes equal to its av- 

2 erage value of 3> independent of observation direction. Thus the angular and 
frequency spectrum becomes 

2 ad’ é ho 
(15.82) dw dQ 87c mc? 

y 

( 
The total energy radiated per unit frequency interval is 

hw dl e 
(15.83) 

dw 2c mc? 

; 

( 
while the corresponding number of photons per unit energy interval is 

2 
é ho 

N(hw) = (15.84) 
2ahc (mc’)* 

These spectra are very different in their frequency dependence from a brems- 

strahlung spectrum. They increase with increasing frequency, apparently without 

limit. Of course, we have been forewarned that our classical results are valid only 

in the low-frequency limit. We can imagine that some sort of uncertainty- 

principle argument such as was used in Section 15.6 for radiative beta decay holds 

here and that conservation of energy, at least, is guaranteed. Actually, modifi- 

cations arise because a neutrino is always emitted in the electron-capture process. 

The probability of emission of the neutrino can be shown to depend on the square 

of its energy E,. When no photon is emitted, the neutrino has the full decay 

energy E,, = Eo. But when a photon of energy Aw accompanies it, the neutrino’s 

energy is reduced to E}, = Ey — fw. Then the probability of neutrino emission is 

reduced by a factor, 

ho Ey 
—_— 

— 

= 

1-— (15.85) 
Eo Ey 

y 

( 
This means that our classical spectra (15.83) and (15.84) must be corrected by 
multiplication with (15.85) to take into account the kinematics of the neutrino 
emission. The modified classical photon spectrum is 

2 ho ho é 
(15.86) N(ho) = 

2ahc (mc?) ( "E, 

, 
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Figure 15.12 Spectrum of photons emitted in orbital-electron capture because of 

disappearance of the magnetic moment of the electron. 

This is essentially the correct quantum-mechanical result. A comparison of the 

corrected distribution (15.86) and the classical one (15.84) is shown in Fig. 15.12. 

Evidently the neutrino-emission probability is crucial in obtaining the proper 

behavior of the photon energy spectrum. For the customary breinsstrahlung spec- 

tra such correction factors are less important because the bulk of the radiation 

is emitted in photons with energies much smaller than the maximum allowable 

value. 

The total radiation emitted in orbital-electron capture is the sum of the con- 

tributions from the disappearance of the electric charge and of the magnetic 

moment. From the different behaviors of (15.79) and (15.86) we see that the 

upper end of the spectrum will be dominated by the magnetic-moment contri- 

N(hw) 

——— 

\7 

7 \ 

Se ee 

0 hwo Eo 
hw — 

Figure 15.13 Typical photon spectrum for radiative orbital-electron capture with 
energy release Eo, showing the contributions from the disappearance of the electronic 
charge and magnetic moment. 
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bution unless the energy release is very small, whereas the lower end of the 
spectrum will be dominated by the electric-charge term, especially for high Z. 
Figure 15.13 shows a typical combined spectrum for Z ~ 20-30. Observations 
on a number of nuclei confirm the general features of the spectra and allow 
determination of the energy release Ep. 
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Problems 

15.1 In radiative collision problems it is useful to have the radiation amplitude ex- 
pressed explicitly as an integral involving the accelerations of the particles, as in 
(14.65), for example. In the nonrelativistic limit, particles do not move rapidly or 
far during the period of acceleration; only the lowest order velocity and retardation 

effects need be kept in an approximate description. 
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(a) Show that the integral (times e) in (14.65), which is, apart from an inessential 
phase, cR times the Fourier transform of the Liénard—Wiechert electric field 
at distance R, can be expanded in inverse powers of c (remembering that 

B = v/c and k = a/c) as follows 

) Jae] deeb, + Ab. + AB, ~ tri, 
~ ~ 

or 

ikr By (8\B.) J=e | dt en( 6, 

B-n,7, =1r-n, and B, = (n x fs) < n. Neglected terms are of where B, 

order 1/c” and higher 

(b) Show that the first term in part a corresponds to the electric dipole approx- 

imation, while the next terms are the magnetic dipole and the electric quad- 

rupole contributions. [Some integrations by parts are required, with a con- 

vergence factor e ‘'! to give meaning to the integrals, as discussed following 
(14.67).] For a group of charges, show that the generalization of part a can 

be written as 

HQ, d’m(t) 
de * eo ae 9+) J = | at on FRO 

and the radiated intensity per unit solid angle and per unit frequency as 

2 

d’] @Q, a’p (t) d’m(t) 
dt? de +e ae dw dQ, Airc 

| dt on P20 (a9 +>) 
where 

x y B 1s 
’ P= > 4a m= >) q; r> Sap) Ques > q,(3 aX jp 2 

and the vector Q(n) has components, Q, = XgQaplg. Relate to the treatment 

of multipole radiation in Sections 9.2 and 9.3 and Problem 9.7 

15.2 A nonrelativistic particle of charge e and mass m collides with a fixed, smooth 

hard sphere of radius R. Assuming that the collision is elastic, show that in the 

dipole approximation (neglecting retardation effects) the classical differential 

cross section for the emission of photons per unit solid angle per unit energy 

interval is 

R2 e2 
VU 

da? 

127 he c dO. d(hw) ( ) =— (2 + 3 sin’6) 

where @ is measured relative to the incident direction. Sketch the angular distri- 

bution. Integrate over angles to get the total bremsstrahlung cross section. Qual- 

itatively, what factor (or factors) govern the upper limit to the frequency 

spectrum? 

15.3 Treat Problem 15.2 without the assumption of nonrelativistic motion, using (15.2) 
and assuming the elastic impact is of negligible duration. Show that the cross sec- 
tion for photon emission is now 

da? sin*6 1 2 
_ R e7 B’ 

1+ Bp 

4nricho dO d(hw) (1 — B cos 6)? | 1-8 ( + pin 
Bp? | 
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15.4 A group of charged particles with charges e; and coordinates r,(t) undergo inter- 
actions and are accelerated only during a time — 1/2 < t < 7/2, during which their 
velocities change from cB, to cB}. 

(a) Show that for wr < 1 the intensity of radiation emitted with polarization € 

per unit solid angle and unit frequency interval is 

d?I 
E/? 

dw dQ, mele 
where 

By B; 
1 

B= Ye( 1-—n- Bi n- B; 

(b) An w meson of mass 784 MeV decays into 7* a and e*e~ with branching 

ratios of 1.3 x 10 and 8 X 107%, respectively. Show that for both decay 
modes the frequency spectrum of radiated energy at low frequencies is 

ad _ e 4e 1 M, 1+ p 1+ B 
— — i 

dw TC m Wc 2 B 1-8£ a | )-7 [m( | 
where M,, is the mass of the w” meson and m is the mass of one of the decay 

products. Evaluate approximately the total energy radiated in each decay by 

integrating the spectrum up to the maximum frequency allowed kinemati- 

cally. What fraction of the rest energy of the w” is it in each decay? 

15.5 A situation closely related to that of Problem 15.4b is the emission of radiation 

caused by the disappearance of charges and magnetic moments in the annihilation 

of electrons and positrons to form hadrons in high-energy storage ring experi- 

ments. If the differential cross section for the process e*e~ — hadrons is dap, 

without the emission of photons, calculate the cross section for the same process 

accompanied by a soft photon (fw — 0) in the energy interval d(#w) around hw 

Compare your results with the quantum-mechanical expressions 

2,2 
@ 

B’ sin’6 + aa 5 (1 — B* cos*6) | d? a do,(s’) 

wr hw (1 — B* cos*6)? dO. d(hw) (an | 
1+ p? 1+ 8B _ 4a doo(s') _do_ 

hw T 1-8 2B ( d(hw) )- (eae (| 
1 hw? 1+ B 
_ 

s’ + 2m B 1-8 ( )-} | 
= electron v/c in c.m. frame. Neglect where s = (p; + p2)’, 5’ = (pi + po — k)? 

the emission of radiation by any of the hadrons, all assumed to be much heavier 

than the electrons 

The factors proportional to w’ in the numerators of these expressions can be 

attributed to the disappearance of the magnetic moments. If you have not included 
such contributions in your semiclassical calculation, you may consider doing so 

15.6 For the soft-photon limit of radiation emitted when there is a small change AB of 

velocity, (15.9) applies, with convenient polarization vectors shown in Fig. 15.2 

(a) Show that 

e,- [AB + n x (B x AB)] = |AB|(B — cos 6) cos ¢ 

e, -[AB + n x (B x AB)] = |AB|(1 — B cos 6) sing 

leading to (15.10) after averaging over } 
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(b) Show that in the limit y >> 1 and @<1 

2 a2 ni 1 d?] (ye — 1)° ~2ey [ABP 
lim 

27°c dw dQ | (1+ yey wo-0 (1 + ye)" | 
where the first (second) term in square brackets corresponds to the parallel 
(perpendicular) polarization. This expression leads immediately to (15.11). 

Show that the result of part b gives the expression for P(6) given following (c) 
(15.10). 

Show that the angular integral of (15.11) or the answer in part b can be (d) 
written 

?y [ABP dl _ ze" |AB |? 

] 
TC TC 

[Se-y+y-3= 
w>0 dw 

15.7 Consider the radiation emitted in nuclear fission by the sudden creation of two 

fragments of charge and mass (Z,e, Aim) and (Ze, Azm) recoiling in opposite 

directions with total c.m.s. kinetic energy E. Treat the nuclei as point charges and 

their motion after the very short initial period of acceleration is nonrelativistic, 

but keep terms up to second order in 1/c, as in Problem 15.1. For simplicity, assume 

that the fragments move with constant speeds in opposite directions away from 

the origin for t > 0. The relative speed is cf. 

(a) Using the appropriate generalization of Problem 15.1a, show that the inten- 

sity of radiation per unit solid angle and per unit photon energy in the c.m. 

system is 

da? ap’ sin?@ 
_ |p + gB cos 6/? 

d(hw) dQ 4° 

where @ is the angle between the line of recoil and the direction of obser- 

vation, and 

2 
é _ Z,A5 + Z,Ajt _ ZA, — Z,A, 

by a- ty, 

hi (A, + Az)’ 

Show that the radiated energy per unit photon energy is 

», Ba dl _ 2ap* 

5 3a d(hw) ( 
where the first term is the electric dipole and the second the quadrupole 

radiation. 

(b) As an example of the asymmetric fission of °U by thermal neutrons, take 
Z, = 36, A; = 95 (krypton), Z, = 56, Az = 138 (barium) (three neutrons are 

emitted during fission), with E = 170 MeV and mc? = 931.5 MeV. What are 

the values of p”? and qg*? Determine the total amount of energy (in MeV) 

radiated by this “inner bremsstrahlung” process, with the substitution, 8? > 

B°(1 — fw/E), as a crude way to incorporate conservation of energy. What 

are the relative amounts of energy radiated in the dipole and quadrupole 

modes? In actual fission, roughly 7 MeV of electromagnetic energy is radi- 

ated within 107° s. How does your estimate compare? If it is much smaller 

or larger, attempt to explain. 

15.8 Two identical point particles of charge g and mass m interact by means of a short- 

range repulsive interaction that is equivalent to a hard sphere of radius R in their 

relative separation. Neglecting the electromagnetic interaction between the two 

particles, determine the radiation cross section in the center-of-mass system for a 
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collision between these identical particles to the lowest nonvanishing approxima- 

tion. Show that the differential cross section for emission of photons per unit solid 

angle per unit energy interval is 

2 1 wR 
daz 

q 
BR? 

— 

Ac c d(hw) dO 487 hw ( ) Vim | e(2 + 3 sin?6 cos*8) + +( 

where @ is measured relative to the incident direction and cf is the relative speed 

By integration over the angles of emission, show that the total cross section for 

radiation per unit photon energy fiw is 

2 wR 1 do q 
Bp? R 

— 

‘ho c hc 15 d(hw) )] ( Jo 
Compare these results with that of Problem 15.2 as to frequency dependence 

relative magnitude, etc 

15.9 A particle of charge ze, mass m, and nonrelativistic velocity v is deflected in a 

screened Coulomb field, V(r) Zze*e “/r, and consequently emits radiation. Dis- 

cuss the radiation with the approximation that the particle moves in an almost 

straight-line trajectory past the force center 

(a) Show that, if the impact parameter is b, the energy radiated per unit fre- 

quency interval is 

27e* 8 Ze? 

= b) = 30 Cc 25) (Jer (re mc? 

for w << v/b, and negligible for w >> v/b 

Show that the radiation cross section 1s (b) 
2 

c 16 Ze? ze" 

dx(w) 
_ =~ 

2 Uv dw 

2H) |} | K300 Ki(x) + mc? ne) | i (re “4 

where x1 = aDpin, X2 = aDmax: 
v/w, and a~! = 1.4a,Z +", determine the radiation hlmv, Dmax = With Drin = (c) 

cross section in the two limits, x. < 1 and x, >> 1. Compare your results 

with the ‘‘screening” and “‘no screening” limits of the text. 

15.10 A particle of charge ze, mass m, and velocity v is deflected in a hyperbolic path 
Zze?/r. Assume the nonrelativistic by a fixed repulsive Coulomb potential, V(r) = 

dipole approximation (but no further approximations) 

(a) Show that the energy radiated per unit frequency interval by the particle 
when initially incident at impact parameter b is 

-1 
f 

ia! ao 3 e 
c 

° (zeaw)? 
= Ko » b= [x()] ()] + | 

(b) Show that the radiation cross section ts 

i 16 (zeav)? 
— 

e7 (melwa) — K 
iw/wo 

38 0 (2) = (0) =5 (3 
Prove that the radiation cross section reduces to that obtained in the text for (c) 
classical bremsstrahlung for w << w. What is the limiting form for w => w 

What modifications occur for an attractive Coulomb interaction? (d) 

The hyperbolic path may be described by 

@ot = (€ + e sinh é) y = —b sinh & x = a(e + cosh &) 

where a = Zze2/mv”, € = V1 + (b/a)’, wo = via 
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15.11 Using the method of virtual quanta, discuss the relationship between the cross 

section for photodisintegration of a nucleus and electrodisintegration of a nucleus. 

(a) Show that, for electrons of energy E = ymc” >> mc’, the electron disinte- 

gration cross section is approximately: 

Eth 2 2 ky*mc? do 
=~>— — o-(E) Ophoto() in 

(7) J hi whe or 

™~ ™~ 

a constant of order where fiw, is the threshold energy for the process and kis 
unity. 

i) Assuming that opnoto(w) has the resonance shape: 

r A e& 

Opnorol) ~ 27 Mc (w@ — wm) + 2p 

where the width I is small compared to (w) — wz), sketch the behavior of 

o\(E) as a function of E and show that for E >> hap, 

KE? 2 e Ae? 1 

hc 
oe(E) = rT 

mecha Mc Wo ( ( 
(c) In the limit of a very narrow resonance, the photonuclear cross section can 

be written as Opnoto(w) = (Ae*/Mc) 6(w — wo). Then the result of part b would 
represent the electrodisintegration cross section for E > hwy. The corre- 

sponding bremsstrahlung-induced cross section is given in the same approx- 

imation by (15.47), multiplied by (Ae?/Mchwo), where Z is the atomic number 
of the radiator. Comparisons of the electron- and bremsstrahlung-induced 

disintegration cross sections of a number of nuclei are given by E. Wolynec 

et al. Phys. Rev. C 11, 1083 (1975). Calculate the quantity called F as a func- 

tion of E (with a giant dipole resonance energy hwy ~ 20 MeV) and compare 

its magnitude and energy dependence (at the high energy end) with the data 
in Figures 1-5 of Wolynec et al. The comparison is only qualitative at E ~ 

hwy because of the breadth of the dipole resonance. [F is the ratio of the 

bremsstrahlung-induced cross section in units of Z?r§ to the electrodisinte- 

gration cross section.] 

15.12 A fast particle of charge ze, mass M, and velocity v, collides with a hydrogen-like 

atom with one electron of charge —e, mass m, bound to a nuclear center of charge 

Ze. The collisions can be divided into two kinds: close collisions where the particle 

passes through the atom (b < d), and distant collisions where the particle passes 

by outside the atom (b > d). The atomic “‘radius” d can be taken as a)/Z. For the 

close collisions the interaction of the incident particle and the electron can be 

treated as a two-body collision and the energy transfer calculated from the Ruth- 

erford cross section. For the distant collisions the excitation and ionization of the 

atom can be considered the result of the photoelectric effect by the virtual quanta 

of the incident particle’s fields. 

For simplicity assume that for photon energies Q greater than the ionization 

potential J the photoelectric cross section is 

8a I 
_—— G0 —_— o,(Q) = 
137 Z Q ( }( 

, 

(This obeys the empirical Z*A° law for x-ray absorption and has a coefficient ad- 
justed to satisfy the dipole sum rule, f o,(Q) dQ = 27’e7h/mc.) 
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(a) Calculate the differential cross sections da/dQ for energy transfer Q for close 
and distant collisions (write them as functions of Q/I as far as possible and 
in units of 27z7e*/mv7J*). Plot the two distributions for Q/I > 1 for non- 
relativistic motion of the incident particle and $mv* = 10°J. 

i) Show that the number of distant collisions measured by the integrated cross 
section is much larger than the number of close collisions, but that the energy 
transfer per collision is much smaller. Show that the energy loss is divided 

approximately equally between the two kinds of collisions, and verify that 

your total energy loss is in essential agreement with Bethe’s result (13.14). 

15.13 In the decay of a pi meson at rest a mu meson and a neutrino are created. The 

total kinetic energy available is (m, — m,)c? = 34 MeV. The mu meson has a 

kinetic energy of 4.1 MeV. Determine the number of quanta emitted per unit 

energy interval because of the sudden creation of the moving mu meson. Assuming 

that the photons are emitted perpendicular to the direction of motion of the mu 

meson (actually it is a sin?@ distribution), show that the maximum photon energy 

is 17 MeV. Find how many quanta are emitted with energies greater than one- 

tenth of the maximum, and compare your result with the observed ratio of radi- 

ative pi-mu decays. [1.24 + 0.25 x 10~* for muons with kinetic energy less than 

3.4 MeV. See also H. Primakoff, Phys. Rev., 84, 1255 (1951).] 

15.14 In internal conversion, the nucleus makes a transition from one state to another 

and an orbital electron is ejected. The electron has a kinetic energy equal to the 

transition energy minus its binding energy. For a conversion line of 1 MeV deter- 

mine the number of quanta emitted per unit energy because of the sudden ejection 

of the electron. What fraction of the electrons will have energies less than 99% of 

the total energy? Will this low-energy tail on the conversion line be experimentally 

observable? 

+t 
77 TT 15.15 One of the decay modes of a K* meson is the three-pion decay, K* 

The energy release is 75 MeV, small enough that the pions can be treated non- 

relativistically in rough approximation. 

(a) Show that the differential spectrum of radiated intensity at low frequencies 

in the K meson rest frame is approximately 

T_ da? 2e” 
=e -— : sin’? 

dw dQ ac mC” 

where T_ is the kinetic energy of the negative pion and @ is the angle of 

emission of the photon relative to the momentum of the negative pion. 

(b) Estimate the branching ratio for emission of a photon of energy greater than 
A relative to the nonradiative three-pion decay. What is its numerical value 
for A = 1 MeV? 10 MeV? Compare with experiment (~2 < 1077 for A = 11 
MeV). 

15.16 One of the decay modes of the charged K meson (Mx = 493.7 MeV) is K* > 
art 7° (M,,+ = 139.6 MeV, M,,o = 135.0 MeV). Inner bremsstrahlung is emitted by 

the creation of the positive pion. A study of this radiative decay mode was made 

by Edwards et al. [Phys. Rev. D5, 2720 (1972)]. 

(a) Calculate the classical distribution in angle and frequency of soft photons 

and compare with the data of Fig. 6 of Edwards et al. Compute the classical 

distribution also for 8 = 0.71, corresponding to a charged pion of kinetic 

energy 58 MeV, and compare. 
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(b) Estimate the number of radiative decays for charged pion kinetic energies 

on the interval, 55 MeV = T,, = 90 MeV, as a fraction of all K* decays (the 

a‘ ° decay mode is 21% of all decays). You can treat the kinematics, in- 
cluding the photon, correctly, or you can approximate reality with an ideal- 

ization that has the neutral pion always with the same momentum and the 

photon and the charged pion with parallel momenta (see part a for justifi- 

cation of this assumption). This idealization permits you to correlate directly 

the limits on the charged pion’s kinetic energy with that ofthe photon. Com- 

pare your estimate with the experimental value for the branching ratio for 

a* 7° y (with the limited range of 7* energies) of (2.75 + 0.15) x 1074. 



CHAPTER 16 

Radiation Damping, Classical Models 
of Charged Particles 

16.1 Introductory Considerations 

In the preceding chapters the problems of electrodynamics have been divided 

into two classes: one in which the sources of charge and current are specified and 

the resulting electromagnetic fields are calculated, and the other in which the 

external electromagnetic fields are specified and the motions of charged particles 

or currents are calculated. Waveguides, cavities, and radiation from prescribed 

multipole sources are examples of the first type of problem, while motion of 

charges in electric and magnetic fields and energy-loss phenomena are examples 

of the second type. Occasionally, as in the discussion of bremsstrahlung, the two 

problems are combined. But the treatment is a stepwise one—first the motion of 

the charged particle in an external field is determined, neglecting the emission 

of radiation; then the radiation is calculated from the trajectory as a given source 

distribution. 

It is evident that this manner of handling problems in electrodynamics can 

be of only approximate validity. The motion of charged particles in external force 

fields necessarily involves the emission of radiation whenever the charges are 

accelerated. The emitted radiation carries off energy, momentum, and angular 

momentum and so must influence the subsequent motion of the charged particles. 

Consequently the motion of the sources of radiation is determined, in part, by 

the manner of emission of the radiation. A correct treatment must include the 

reaction of the radiation on the motion of the sources. 

Why is it that we have taken so long in our discussion of electrodynamics to 

face this fact? Why is it that many answers calculated in an apparently erroneous 

way agree so well with experiment? A partial answer to the first question lies in 

the second. There are very many problems in electrodynamics that can be put 

with negligible error into one of the two categories described in the first para- 
graph. Hence it is worthwhile discussing them without the added and unnecessary 
complication of including reaction effects. The remaining answer to the first ques- 
tion is that a completely satisfactory classical treatment of the reactive effects of 

radiation does not exist. The difficulties presented by this problem touch one of 
the most fundamental aspects of physics, the nature of an elementary particle. 

Although partial solutions, workable within limited areas, can be given, the basic 

problem remains unsolved. 

In quantum mechanics, the situation at first appeared worse, but develop- 

ment of the renormalization program of quantum field theory in the 1950s led to 

a consistent theoretical description of electrodynamics (called quantum electro- 

745 
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dynamics or QED, the interaction of electrons and positrons with electromag- 
netic fields) in terms of observed quantities such as mass and static charge. A 
weak-coupling theory (@ ~ 1/137), QED has proven remarkably successful in 
explaining to amazing accuracy the tiny radiative corrections observed in preci- 
sion atomic experiments (Lamb shift, anomalous magnetic moments, etc.) by 
calculating to higher and higher orders in perturbation theory. More recently, 
the success has been extended to weak and strong interactions as well within the 

standard model, sketched briefly at the beginning of the Introduction. Unfortu- 
nately, the strong interactions are not really amenable to accurate calculations 

via perturbation theory. 

In this chapter we address only some of the classical aspects of radiation 

reaction. 

The question of why many problems can apparently be handled neglecting 

reactive effects of the radiation has the obvious answer that such effects must be 

of negligible importance. To see qualitatively when this is so, and to obtain 

semiquantitative estimates of the ranges of parameters where radiative effects 

are or are not important, we need a simple criterion. One such criterion can be 

obtained from energy considerations. If an external force field causes a particle 

of charge e to have an acceleration of typical magnitude a for a period of time 

T, the energy radiated is of the order of 

2e7a°T 
E rad (16.1) 

3c3 

from the Larmor formula (14.22). If this energy lost in radiation is negligible 

compared to the relevant energy Ep of the problem, we can expect that radiative 

effects will be unimportant. But If E,.4 = Eo, the effects of radiation reaction will 

be appreciable. The criterion for the regime where radiative effects are unim- 

portant can thus be expressed by 

Fvaa << Eo (16.2) 

The specification of the relevant energy Ey demands a little care. We distin- 

guish two apparently different situations, one in which the particle is initially at 
rest and is acted on by the applied force only for the finite interval T, and one 
where the particle undergoes continual acceleration, e.g., in quasiperiodic motion 
at some characteristic frequency wp). For the particle at rest initially, a typical 
energy is evidently its kinetic energy after the period of acceleration. Thus 

Eo ~ maT) 

The criterion (16.2) for the unimportance of radiative effects then becomes 

2 ea T 
<< ma?T? 

3 Co 

or 

2 e 
T>=-= 

3 
me 

It is useful to define the characteristic time in this relation as 

2 e 
>= - 

(16.3) 
3 me 
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Then the conclusion is that for time T long compared to + radiative effects are 
unimportant. Only when the force is applied so suddenly and for such a short 
time that T ~ 7 will radiative effects modify the motion appreciably. It is useful 
to note that the longest characteristic time 7 for charged particles is for electrons 
and that its value is r = 6.26 X 10°*’s. This is of the order of the time taken for 
light to travel 107’? m. Only for phenomena involving such distances or times 
will we expect radiative effects to play a crucial role. 

If the motion of the charged particle is quasiperiodic with a typical amplitude 
d and characteristic frequency wo, the mechanical energy of motion can be iden- 
tified with E, and is of the order of 

Ey ~ mwd? 

The accelerations are typically a ~ wid, and the time interval T ~ (1/w)). Con- 
sequently criterion (16.2) is 

2e7 wad? 
<< mw3d? 

3c3 wo 

or (16.4) 

WoT << 1 

1 where 7 is given by (16.3). Since wo is a time appropriate to the mechanical 

motion, again we see that, if the relevant mechanical time interval is long com- 

pared to the characteristic time 7 (16.3), radiative reaction effects on the motion 

will be unimportant. 

The exainples of the last two paragraphs show that the reactive effects of 

radiation on the motion of a charged particle can be expected to be important if 

the external forces are such that the motion changes appreciably in times of the 

order of 7 or over distances of the order of cr. This is a general criterion within 

the framework of classical electrodynamics. For motions less violent, the reactive 

effects are small enough to have a negligible effect on the short-term motion. 

Their long-term, cumulative effects can be taken into account in an approximate 

way, as we see immediately. 

16.2. Radiative Reaction Force from Conservation of Energy 

The question now arises as to how to include the reactive effects of radiation in 

the equations of motion for a charged particle. We begin with a simple plausibility 
argument based on conservation of energy for a nonrelativistic charged particle. 

A more fundamental derivation and the incorporation of relativistic effects are 
deferred to later sections. 

If the emission of radiation is neglected, a charged particle of mass m and 
charge e acted on by an external force F.,, moves according to the Newton equa- 
tion of motion: 

mv = Fat (16.5) 

Since the particle is accelerated, it emits radiation at a rate given by the Larmor 

power formula (14.22), 

2 
-—-_— (16.6) P(t) = <( 
3 
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To account for this radiative energy loss and its effect on the motion of the 
particle we modify the Newton equation (16.5) by adding a radiative reaction 

force Faq: 

(16.7) mv Fext + Frad 

While F,,4 is not determined at this stage, we can see some of the requirements 

it “‘must”’ satisfy: 

F,,q “must”? (1) vanish if ¥ = 0, since then there is no radiation; 
(2) be proportional to e”, since (a) the radiated power is pro- 

portional to e”, and (b) the sign of the charge cannot enter 
in radiative effects; 

(3) in fact involve the characteristic time 7 (16.3), since that is 

apparently the only parameter of significance available. 

We determine the form of F,,,3 by demanding that the work done by this 

force on the particle in the time interval t, < t < t, be equal to the negative of 

the energy radiated in that time. Then energy will be conserved, at least over the 

interval (t,, f). With the Larmor result (16.6), this requirement is 

t 2 t 

>4V-vdt 
£ 

Faas v dt = —| 
4 ,3¢0 

The second integral can be integrated by parts to yield 

fg tg 2 ta 2 e” 
V-vdt--s Fra * V dt = (v-¥) 3¢ 3c Jr, 

4 

If the motion is periodic or such that (V+ v) = O att = t, and t = h, we may write 

2e7. 
30" £ (a 

Then it is permissible to identify the radiative reaction force as 

2e7. 
=—3V=mrt¥ Fiad (16.8) 
3c? 

The modified equation of motion then reads 

mv — TV) = Fey (16.9) 

Equation (16.9) is sometimes called the Abraham—Lorentz equation of mo- 
tion. It can be considered as an equation that includes in some approximate and 
time-averaged way the reactive effects of the emission of radiation. The equation 
can be criticized on the grounds that it is second order in time, rather than first, 
and therefore runs counter to the well-known requirements for a dynamical equa- 
tion of motion. This difficulty manifests itself immediately in “runaway” solu- 
tions. If the external force is zero, it is obvious that (16.9) has two possible 
solutions, 

w= {en 
— 

= where a is the acceleration at t 0. Only the first solution is reasonable. 
The method of derivation shows that the second solution is unacceptable, since 
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(v-v) # 0 at ¢, and &,. It is clear that the equation is useful only in the domain 
where the reactive term is a small correction. Then the radiative reaction can be 
treated as a perturbation producing slow or small changes in the state of motion 
of the particle. 

An alternative to (16.9) can be obtained by using the zeroth-order equation 
of motion, mv F..., to evaluate the radiation reaction term. The resulting 
equation, 

AF ext 
mv = Fy, + 7 (16.10) = Fax. + | Be + (v ° Fe | 

is a valid equation of motion without runaway solutions or acausal behavior. It 

is a sensible alternative to the Abraham—Lorentz equation for the classical re- 

gime of small radiative effects. It also emerges from a different starting point— 

see G. W. Ford and R. F. O’Connell [Phys. Lett. A, 157, 217 (1991)]. Relativistic 

generalizations of (16.9) and (16.10) can be constructed—see Problems 16.7 and 

16.9. 

To illustrate the use of (16.10) to account for small radiative effects, we 

consider a particle moving in an attractive, conservative, central force field. In 

the absence of radiation reaction, the particle’s energy and angular momentum 

are conserved and determine the motion. The emission of radiation causes 

changes in these quantities. Provided the accelerations are not too violent, the 

energy and angular inomentum will change appreciably only in a time interval 

that is long compared to the characteristic period of the motion. Thus the motion 

will instantaneously be essentially the same as in the absence of radiative reac- 

tion. The long-term changes can be described by averages over the particle’s 

unperturbed orbit. 

If the conservative central force field is described by a potential V(r), the 

acceleration, neglecting reactive effects, is 

-1 dV\r 
v= (16.11) 

m r dr ( 
By conservation of energy, the rate of change of the particle’s total energy is 
given by the negative of the Larmor power: 

V 2 

2e? d 2 e? 
— 

dE _ 
—_— — (vy? dr 3 3¢ dt Co ( 

With the definition of 7 (16.3) this can be written 

T dv\ dE _ 
—_—_—— (16.12) 

dr m dt ( 
Since the change in energy is assumed to be small in one cycle of the orbit, the 

right-hand side may be replaced by its time-averaged value in terms of the 

Newtonian orbit. Then we obtain 

dV dE 
— (16.13) 

dr dt )) \ 
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The secular change in angular momentum can be found by considering the 

vector product of (16.10) with the radius vector r. Since the angular momentum 

is L = mr X vy, we find 

dL 
(16.14) ——=t = ry xX (v > V) Fox =r x Fy, + 1X 

d. t 

where the second form results because the force is central and time independent. 

With (16.11), the right-hand side of (16.14) is found to be 

7 dV 
V 

—_ —— -= 51 (16.15) 
mrdr rar 

Js. = Tr X (v-> V)F.4. = Tr X ( 

With the average of this torque over the slowly changing orbit, the secular rate 

of change of angular momentum can be written as 

T dL lav =~ —-— 
= (16.16) 

r dr m dt 
bu ( ( 

Note that this result for the decay of the particle’s angular momentum is exactly 
the negative of the rate one calculates for the angular momentum radiated in 
electric dipole radiation (Problem 9.9). 

Equations (16.13) and (16.16) determine how the particle orbit changes as a 

function of time because of radiative reaction. Although the detailed behavior 
depends on the specific law of force, some qualitative statements can be made. 

If the characteristic frequency of motion is wo, the average value in (16.16) can 

be written 

T 

7 Lav ~ — mw = wit 
m m r dr ( 

with some dimensionless nuinerical coefficient of the order of unity. This shows 

that the characteristic time over which the angular momentum changes is of the 

order of 1/(wpT)wo. This time is very long compared to the orbital period 27/w, 

provided wor << 1. Similar arguments can be made with the energy equations. 

These equations including radiative effects can be used to discuss practical 

problems such as the moderation time of a mu or pi ineson in cascading from an 

orbit of very large quantum number around a nucleus down to the low-lying 

orbits. Over most of the time interval the quantum numbers are sufficiently large 

that the classical description of continuous motion is an adequate approximation. 

Discussion of examples of this kind is left to the problems. 

16.3 Abraham-Lorentz Evaluation of the Self-Force 

The derivation of the radiation reaction force in Section 16.2, while plausible, is 
certainly not rigorous or fundamental. The problem is to give a satisfactory ac- 
count of the reaction back on the charged particle of its own radiation fields. 
Thus any systematic discussion must consider the charge structure of the particle 
and its self-fields. Abraham (1903) and Lorentz (1904) made the first attempt at 
such a treatment by trying to make a purely electromagnetic model of a charged 
particle. In the beginning, our discussion is patterned after that given by Lorentz 
in his book, Theory of Electrons (note 18, p. 252). 
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Let us consider a single charged particle of total charge e with a sharply 

localized charge density p(x) in the particle’s rest frame. The particle is in external 

electromagnetic fields, E.,.(x, ¢), Bex:(x, £). We have seen in Sections 6.7 and 12.10 

that the rate of change of mechanical momentum plus electromagnetic momen- 

tum in a given volume vanishes, provided there is no flow of momentum out 

of or into the volume. Abraham and Lorentz proposed that the apparently 

mechanical momentum of a charged particle is totally electromagnetic in 

origin. Here we take the more conservative position that the particle’s momen- 

tum is partly mechanical, but with an electromagnetic contribution. Then, if G is 

the total electromagnetic momentum, the conservation of momentum reads, 

dG dp —=0 

dt dt ( he 
or equivalently in terms of the Lorentz force density (12.121), 

dp (16.17) 
dt ( ). = { (oe + J x B) d°x 

In this equation the fields are the total fields, and the integration is over the 

volume of the particle. 

In order that (16.17) take on the form of the Newton equation of motion 

dp ap dp _ (16.18) 
d. at dt ( haa * ( 

we decompose the total fields into the external fields and the self-fields E,, B, 

due to the particle’s own charge and current densities, p and J: 

E = Eext + E, 
B = Baa + B, 

Then (16.17) can be written as the Newton equations of motion, with the external 
force as 

(16.19) Fox = { (oe + c Jx Ben} d°x 
and the electromagnetic contribution to the rate of change of momentum of the 

particle as 

— ap 
= (16.20) 

dt 
-| (oe, +23 xB] d>x ( l. 

Provided the external fields vary only slightly over the extent of the particle, the 

external force (16.19) becomes just the ordinary Lorentz force on a particle of 

charge e and velocity v. 

To calculate the self-force [the integral on the right-hand side of (16.20)] it 
is necessary to have a model of the charged particle. We will assume for simplicity 
that: 

the particle is instantaneously at rest, 

the charge distribution is rigid and spherically symmetric. 

Our results will then necessarily be restricted to nonrelativistic motions and will 
lack some Lorentz transformation properties. 
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For a particle instantaneously at rest (16.20) becomes 

dp (16.21) 
dt 
). | p(x, t)E,(x, 2) a? ( 

The self-field can be expressed in terms of the self-potentials, A and ®, so that 

dp 
~~” (16.22) 

dt ( ). | (x a ree th+-—(x a| 
—_— 

= (®, A) The potentials are given by A* 

(16.23) x,t) =- 
1 f Ee Oe gy 

xX —X with J* (cp, J) and R 

In (16.23) the 4-current must be evaluated at the retarded time ¢’. This differs 

from the time ¢ by a time of the order of At ~ (a/c), where a is the dimension of 

the particle. For a highly localized charge distribution this time interval is ex- 

tremely short. During such a short time the motion of the particle can be assumed 

to change only slightly. Consequently it is natural to make a Taylor series 

expansion in (16.23) around the time ¢’ = ¢. Since [ ]ret INeans evaluated at 

t' = t — (Ric), any retarded quantity has the expansion 

(16.24) ha = OB) Sota 
With this expansion for the retarded 4-current in (16.23), expression (16.22) 

becoines 

o” 

dp S (- 1)” 
— 

Re 1 I(x’, 2) 

dt 
| ax [ aw p(x, t) = 

ot n=0 Mc ( )- a | oe t) VR") + —- 
Consider the n = 0 and n = 1 terms in the scalar potential part (the first term in 

the square bracket) of the right-hand side. For n = 0 the term is proportional to 

[a [ ax p(x, t)p(x’, t) v( 

This is just the electrostatic self-force. For spherically symmetric charge distri- 
butions it vanishes. The n = 1 term is identically zero, since it involves VR"! 
Thus the first nonvanishing contribution from the scalar potential part comes 
from n = 2. This means that we can change the summation indices so that the 
sum now reads 

wo n+1 dp (-1)" 
> n+2 { } dt 

Ja [ ax p(x, t)R"™) 
n! 

n=0 
a nt+1 ( ).- 

where (16.25) 
VR"! 

{ ‘} = JX’, n+ © (X's 
(n + 1)\(n + 2)R"! 

With the continuity equation for charge and current densities, the curly 
bracket in (16.25) can be written 

{ }=Jx’,o - I(x t) 
+2 
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In the integral over d°x’ we can integrate the second term by parts. We then 
have 

Vv’ [ av R" 1 
n+2 

Jato | d?x'(J-V’)R"R 

— 

“nt+2 

~ R “1 py R" (3 + (n- ") 
This means that the curly bracket in (16.25) is effectively equal to 

nt+1 (J-R)R 
(16.26) R?2 mie (4 2109 (Fa) 

For a rigid charge distribution the current is 

J(x’, ) = (x’, t)v(Z) 
If the charge distribution is spherically symmetric, the only relevant direction in 

the problem is that of v(t). Consequently in the integration over d°x and d?x’ 

only the component of (16.26) along the direction of v(t) survives. Hence (16.26) 

is equivalent to 

n+1 1 R-yv _nn 

{-: n+2 Rv ( = px’, pvco| 23 )| 
Furthermore all directions of R are equally probable. This means that the second 

This leads to the final term above can be replaced by its average value of 

simple form of our curly bracket in (16.25) 

(16.27) { } = 3p(x’, t)v(t) 

With (16.27) in (16.25) the self-force becomes, apart from neglected nonlinear 

terms in time derivatives of v (which appear for n = 4), 

dp 
(- 1)" 2 gttly 

> a d?x' { d?x p(x')R" p(x) (16.28) 
dt 

crt2 3n! ort*} 
n=0 ( ).- 

To proceed further it is convenient to introduce Fourier transforms in time 

for the external force, the velocity, and the self-force.* The Fourier transform of 
the velocity v(w) is defined by 

v(wye “ dw v(t) = - 

m)(dv/dt), the Fourier and its inverse, and similarly for the others. If (dp/dt) mech = 

transform of the force equation (16.18) is 

(16.29) ext(@) —iwM(w)v(w) 

where the ‘‘effective mass” a is 

5 Gey" 
M(w) = m + 33 d?x [ ax p(x)R"- 1o(x’) 532 onic 

*Here we parallel quantum-mechanical discussions of radiation reaction in the correspondence limit 

Nonrelativistic theory, E. J. Moniz and D. E. Sharp, Phys. Rev. D 10, 1133-1136 (1974); fully rela- 

tivistic quantum theory (QED) of electrons and positrons, F. E. Low, Ann Phy. (N.Y.). 265, No. 2 

(1998) 
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The sum over n can be recognized as e’”*’/R, the outgoing wave Green function 

Hence M(w) can be written 

iwR/c 

(16.30) p(x’) M(w) = mo +3 = 2! d’x [ aw p(x) 

The spherically symmetric average of e’’*""/R is 

iwRic 
@ é 

R 
= ET Jo ()o(*2) ( 

For some specific spherically symmetric charge distributions, the spatial integrals 

in (16.30) may be performed to give an explicit closed form for M(w). [See Prob- 

lem 16.4.] 

Alternatively, we can introduce the spatial Fourier transform (form factor) 

of the charge density to obtain a different expression for M(w), a “spectral rep- 

resentation” familiar in quantum mechanics. We define the form factor f(k) 
through the three-dimensional transform 

(16.31) (x) = 
| dae’k f(kje™ x 

@: 77° 
1. By straightforward where e is the total charge. For a point charge, f(k) 

substitution and integration, (16.30) is transformed to 

_ Ifa? 
(16.32) M(w) = m + 753 xe | a k2 — (acy 

where w has a small positive imaginary part 

Equations (16.29) and (16.32) are an almost complete solution for the clas- 

sical nonrelativistic motion of an extended charged particle, including radiation 

reaction. [‘‘Almost,’’ because we neglected small nonlinear terms in higher pow- 

ers of the velocity and we assuined spherical symmetry.] In the limit w > 0 

(16.32) is M(0) m, the physical mass of the particle, including the contribution 

of the self-fields 

2 
e 

m= my + (16.33) J 322 ee 

In terms of m, the effective mass M(w) can be written 

__|fyP 
(16.34) M(w) =m + 235 co { ak 

Rk — (wicy] 

We now comment on the solution we have obtained for the motion of an 

extended charged particle, including radiation reaction 

1 The self-field contribution to the mass in (16.33) diverges linearly at large k 

without the form factor, reflecting the fact that the self-fields have an elec- 
trostatic energy of the order of e*/a, where a is a scale parameter determining 
the size of the charge distribution. 

The frequency-dependent integral in (16.34) is more convergent by a factor 
of k* than the integral in (16.33) and converges at large k, even if f(k) =1 
(point charge). 
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For a point charge, the integral in (16.34) can be performed easily by contour 
integration to yield 

(16.35) [M(@) point = m1 + iwr) 

Insertion of this expression into (16.29), followed by an inverse Fourier trans- 
form, leads back to the Abraham—Lorentz equation, (16.9). The zero in the 
upper half-complex-w plane at wr = i in (16.35) signals the runaway solutions 
of that equation. 

For a sufficiently convergent form factor, the integrals in (16.33) and (16.34) 

are well behaved, with zeros of M(w), if any, only in the lower half-w-plane. 

[See Problem 16.4.] The particle’s response to external forces is causal and 

without peculiar behavior such as runaway solutions. The particle’s extent 

must be of the order of cz or greater, corresponding roughly to the classical 

charged particle (electron) radius, ro = e?/mc’?. 

While the nonrelativistic approximation causes conceptual difficulties—the 

self-force contribution in (16.33) is actually 4/3c? times the electrostatic 

self-energy, rather than 1/c? times it—these are removable by more careful 

arguments. [An early relativistic treatment was given by Fermi*; a covariant 

description of the electromagnetic parts of the self-energy and momentum is 

presented in Section 16.5.] 

A quantum-mechanical treatment of a nonrelativistic extended charged par- 

ticle in interaction with electromagnetic fields gives essentially the same re- 

sults, (16.29) and (16.32), for the expectation value of the appropriate op- 

erator (Moniz and Sharp, op. cit.). The particle’s Compton wavelength, 

himc ~ 137rg plays the formal role of the scale parameter a. The self-field 

contribution to the mass is then small (or zero, depending on how limits are 

taken); the particle’s motion is causal; no preacceleration or runaway solu- 

tions occur. Moniz and Sharp endorse (16.10) as the most sensible form of a 

classical equation of motion with radiation reaction, to be considered ap- 

proximately valid when the reactive effects are small. 

16.4 Relativistic Covariance; Stability and Poincaré Stresses 

So far our discussion of the Abraham-—Lorentz model of a classical charged par- 

ticle has been nonrelativistic, with apologies for the paradox of different electro- 

magnetic “masses” from electrostatic and Lorentz force (dynamic) consider- 

ations—the infamous 4/3 problem, first noted by J. J. Thomson (1881). The root 

of the difficulty lies in the nonvanishing of the 4-divergence of the electromag- 

netic stress tensor (12.113). In contrast to source-free fields, the stress tensor @7 
of any charged particle model has the divergence (12.118), 

(16.36) 9,0°° = —FPY,/c = —f* 

where f* is the Lorentz force density (12.121). As stated in Problem 12.18, only 

if the 4-divergence of a stress tensor vanishes everywhere do the spatial integrals 

*E, Fermi, Z. Phy. 24, 340 (1922), or Atti. Accad. Nazl. Lincet Rend. 31, 184, 306 (1922). 
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of @@ transform as a 4-vector. Thus the usual spatial integrals at a fixed time of 
the energy and momentum densities, 

(16.37) u= = (BE? + BY) g = (E xB) 

may be used to discuss conservation of electromagnetic energy or momentum in 
a given inertial frame, but they do not transform as components ofa 4-vector 

unless the fields are source-free. 

As Poincaré observed in 1905-1906,* a deficiency of the purely electromag- 

netic classical models is their lack of stability. Nonelectromagnetic forces are 

necessary to hold the electric charge in place. Poincaré therefore proposed such 

forces, described by a stress tensor P?? to be added to the electromagnetic O°? 
to give a total stress tensor S*°, 

28 _ @28 + pe 

The particle’s total 4-momentum is then defined to be 

(16.38) cP* = [ se dx 

where the integral is over all 3-space at a fixed time. The right-hand side of (16.38) 
transforms as a 4-vector provided 

(16.39) 0,57 = 0 

or equivalently, provided 

(16.40) | SOF G3~O = 0 

with i, j = 1, 2, 3, and the superscript (0) denoting the rest frame (P = 0). 
Condition (16.40) is just the statement that the total self-stress (in the three- 

dimensional sense) must vanish—the condition for mechanical stability. 

Poincaré’s solution provides stability and also, because of the generality of 

the postulates of special relativity, guarantees the proper Lorentz transformation 

properties for the now stable charged particle. A criticism might be that Poincaré 

stresses are not known a priori in the way that @° is known for the fields. If we 
think, however, of macroscopic charged objects, for example a dielectric sphere 

with charge on its surface, we know that there are “nonelectromagnetic”’ 

forces—polarization and quantum-mechanical exchange forces (actually electro- 

magnetic at the fundamental level)—that bind the charge and give the whole 

system stability. It is not unreasonable then to include Poincaré stresses in our 

classical models of charged particles, or at least to remember that care must be 

taken in discussion of the purely electromagnetic aspects of such models. 

It is of interest to note that for strongly interacting elementary particles one 

has a concrete realization of the Poincaré stresses through the gluon field. Con- 

*H. Poincaré, Comptes Rendue 140, 1504 (1905); Rendiconti del Circolo Matematico di Palermo 21, 

129 (1906). The second reference is translated, with modern notation, in H. M. Schwartz, Am. J. 

Phys. 39, 1287 (1971), 40, 862, 1282 (1972). 
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sider the proton, for example. Its three charged quarks are bound together by 

the gluon field in a stable entity with an extended charge distribution. Setting 

aside the internal structure and stability of the quarks themselves, the electro- 

magnetic stress tensor °° must be combined with the “Poincaré stress’ tensor 

©?° of the gluon field to give a divergence-free total stress tensor. The main part 
of the mass of the proton comes from the strong interactions, not from the elec- 

tromagnetic contribution to the self-energy—the neutron and proton have the 

same internal strong interactions, but different electromagnetic; their masses dif- 

fer by only 0.14% (and in the opposite from expected sense). 

In the next section we examine covariant definitions of the total energy and 

momentum of electromagnetic fields, even in the presence of sources. These 

definitions have some advantages when purely electromagnetic issues are con- 

sidered, but in general the nonelectromagnetic forces or stresses must not be 

forgotten. 

16.5 Covariant Definitions of Electromagnetic Energy 

and Momentum 

As emphasized by Rohrlich, even if the electromagnetic stress tensor 6° is not 
divergenceless, it is possible to give covariant definitions of the total electromag- 

netic energy and momentum of a system of fields. The expressions 

E. 
= + | (E” + B”) d°x' 

(16.41) 

P. = = | E’ x BY d?x' 

can be considered to define the energy and momentum at a fixed time ¢’ in some 

particular inertial frame K’, to be specified shortly. The integrands in (16.41) are 

elements of the second-rank tensor 0°°. Evidently we must contract one of the 

tensor indices with a 4-vector, and the 4-vector must be such as to reduce to d>x' 
in the inertial frame K’. We define the timelike 4-vector, 

do® = n® do 

where d3o is an invariant element of three-dimensional ‘‘area” on a spacelike 

hyperplane in four dimensions. The normal to the hyperplane n® has components 
(1, 0, 0, 0) in K’. The invariant d°o is evidently d°o = ng do® = d°x'. If the 
inertial frame K’ moves with velocity cB with respect to an inertial frame K, then 
in K the 4-vector n° is 

(16.42) n? = (y, YB) 

A general definition of the electromagnetic 4-momentum in any frame is 
therefore 

(16.43) cP¢ = | @° dog = { @°*n, d’a 
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In K', ng has only a time component. With d°o = d°x', this covariant expression 

reduces to (16.41). But in the frame K, ng = (y, — yB) and the covariant definition 

has time and space components, 

—_— 

= cP° y| w-v-g) ao 
(16.44) 

— ~~ ™~ = cP. y| (ce + TB") Bo 
M) 
. where T‘ is the 3 X 3 Maxwell stress tensor (6.120). If desired, the invariant 

y 

volume element d°a = d*x' can be suppressed in favor of the volume element 
d°x in the frame K by means of d*x’ = y d°x (integration at fixed time 1). 

The definitions (16.43) or (16.44) of the electromagnetic 4-momentum afford 
a covariant definition starting from the naive expressions (16.41) in any frame 
K'. Different choices of the frame K’ lead to different 4-vectors, of course, but 

that is no cause for alarm.* There is a natural choice of the frame K’ if the 
electromagnetic mass of the fields is nonvanishing, namely, the rest frame in 

which 

— | E® x B© G3, = 9 
4c 

We denote this frame where the total electromagnetic momentum P, is zero as 

K® and attach superscripts zero on quantities in that frame to make it clear that 
it is a special choice of the frame K’. According to (16.41) the electromagnetic 

rest energy is then 

(16.45) E® = mc? = = | [EO? + BO?) dx 

In the frame K the electromagnetic energy and momentum are given by (16.44) 

where now v is the velocity of the rest frame K in K. 
For electromagnetic configurations in which all the charges are at rest in some 

frame (the Abraham-—Lorentz model of a charged particle is one example), the 

general formulas can be reduced to more attractive and transparent forms. 

Clearly the frame where all the charges are at rest is K®, since there all is 

electrostatic and the magnetic field vanishes everywhere in 3-space. For such 

electrostatic configurations, the magnetic field is given without approximation in 

the frame K by (11.150): 

B=BxE 

The integrand in the first equation of (16.44) is thus 

(u—v+g) = = (B+ BY) -— B-(Ex B) 

= 5 (8 + BY) - BX E)-B 

*One possible choice for K' is the “laboratory” where the observer is at rest. The discussion of the 
conservation laws in Chapter 6 may be interpreted in this way. 
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a Lorentz invariant. Thus the energy in K is given by 

(16.46) 
| (E* — B’) ee — y{& (E* — BO 

Similarly, the second equation in (16.44) becomes 

(16.47) 
{ (E - BY) cP, = 6 | @—*) BY 4p 

With the invariant integrand (E* — B?) it is clear that we have a 4-vector 

(ym.c, ym.v), where the electromagnetic mass is 

mm, = dax© (16.48) _— B’) da — 

in agreement with (16.45) 

The equation (16.46) for the energy has been used by Butler* to discuss the 

Trouton—Noble experiment, a test of special relativity involving the question of 

a torque on a charged suspended capacitor moving with respect to the ether 

Pauli (Section 44) gives a clear discussion of the Trouton—Noble paradox with 

emphasis on the early analyses of Lorentz (1904) and von Laue (1911). In a paper 

that includes as a preamble the proof of the assertion of Problem 12.18 

Teukolsky' has revisited the explanation of the Trouton—Noble experiment. He 
stresses that the removal of the paradox requires consideration of the nonelec- 

tromagnetic forces for stability, but that it is a matter of choice whether the 

balancing of electromagnetic and nonelectromagnetic forces is done in a mani- 

festly covariant way or not. All that matters is that the total stress tensor S** be 
divergenceless 

16.6 Covariant Stable Charged Particle 

A. The Model 

An illuminating example of the considerations of Sections 16.4 and 16.5 is 

provided by a model of Schwinger* for a classical stable spinless charged particle 
With its consideration of the Poincaré stresses needed for stability, it may also 
be viewed as a prototype for the discussion of macroscopic charged mechanical 
systems. The model is, in fact, a modern generalization of Poincaré’s work 77 

years earlier [see the middle paper of Schwartz’s translation (op. cit.)]. In the rest 

frame K’ of the particle, the 4-vector potential is defined as 

A’ =0 ®' = ef(r’) 

with f(r) an arbitrary well-behaved function but with the limiting form f(r’) > 
1/r to define the total charge of the particle as e. We now consider a laboratory 

frame K in which the particle moves with velocity v and define the 4-velocity 

*J. W. Butler, Am. J. Phys. 36, 936 (1968) 

t§. A. Teukolsky, Am. J. Phys. 64, 1104 (1996) 

*J. Schwinger, Found. Phys. 13, 373 (1983) 
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(divided by c), v* = (y, yB) = U%c (11.36), with v*v, = 1. We introduce a 

4-vector coordinate €* perpendicular to v%, 

(16.49) &* = x — (v®x,)v%, 

Then we define the invariant coordinate variable z by 

(16.50) ge -@ = -€:€= -x-x + (v-xp 
~ ~ 

In the rest frame K’, £° = 0, € = x, and z becomes z = r’. 
The covariant generalization of the rest-frame potentials is 

(16.51) A* = ev" f(z) 

To evaluate the fields we need 

an(z) = a"(—- £) = —2E" 

Then we have 0°A® = —2e&*v*f', where f’ = df(z)/dz. [Parenthetically, we note 
that with a = B (and summed) we obtain the Lorenz condition on the potentials 
because -v = 0.] The field-strength tensor is 

(16.52) Fe? = —2e(E%v® — EFy%)f' 

The current density is obtained from the Maxwell equations, 

(16.53) je = nm 9,28 = - [3f? + 2zf"v? 

B. The Electromagnetic and Poincaré Stress Tensors; Arbitrariness 

The symmetric stress-energy-momentum tensor (12.113) is easily found to 

be 

(16.54) ert = © (py gree + zuvt — 2 gon 

and its divergence (16.36) is 

(16.55) aor = —1 py, = —© gp ap + 229") 
The Lorentz force density [negative of the right-hand side of (16.55)] must 

be balanced by Poincaré stresses for stability. Schwinger, noting the derivative 

relation 0*G(z) = —2&*G’, defines a function ¢(z) whose derivative is 

e2 dt(z) _ 
t'(z) = (16.56) -= BYP + 22f'F 

dz 

He then defines the Poincaré stress tensor to be 

PoP = gt? t(z) (16.57) 

with its divergence, 0,P*° = d,g°t(z) = —2€*t'. But this is just the negative of 
the right-hand side of (16.55)! We thus have 

a(O% + P**)= 0 

The total stress tensor S*? = ©°° + P** is divergenceless; the spatial integrals of 
S transform as a 4-vector. The model is covariant and stable. 
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Before proceeding, we note an arbitrariness in the Poincaré stresses. Any 
nonelectromagnetic stress tensor with a vanishing divergence may be added to 
p?. Because v - é = 0, it follows that a,{v°v® s(z)] = 0. This means that we may 
add AP? = v*v® s(z), with s(z) arbitrary, without changing the stability or co- 
variance of the model. We will, of course, change the energy and momentum of 

the particle, as is illustrated below for our special choice of the additional term, 

po — TI? = (g% + hutv®) t(z) (16.58) 

with h constant. Schwinger discusses the two cases, h = 0 and h = —1. The 

components of the total stress tensor S@° are explicitly 

—_— 

= 

goo @°+ (1+ hy)t 
— 

= 

go @° + hyBit 

showing that when h = 0, S°° = (@°° + 4) and S® = ©” in all frames. When 
—_— 

= h = -1, S° @°° in the particle’s rest frame. Schwinger’s original choice of 
Poincaré stresses (16.57) is in some sense the minimal and natural choice, tied 

directly to the electromagnegic field configuration. Note that the terms propor- 

tional to v°v* contribute to the energy in the rest frame, but not to the stabilizing 
forces (from the space parts of II**). Poincaré had a spherical shell of charge 
with an arbitrary “‘pressure” inside, equivalent to our arbitrary s(z) above. 

C. The Poincaré Function t(z) and Contributions to the Mass 

From the first-order differential equation (16.56) and the physical require- 

ment that ¢(z) vanish at infinity, an integration by parts leads to 

(16.59) de) =< yeas! - Lary? 
For specific forms of the potential function f(z) it is a straightforward matter of 
integration to find ¢(z). It is left as an exercise to show for a spherical shell of 
charge of radius a and a uniform volume distribution of charge of the same radius 
that 

2 
e shell of charge @(a* — z) 

—— (z) = uniform density 87a‘ 30(a — z)(1 — z/a’) | | 
The shell of charge provides the most dramatic illustration of the stabilizing effect 

of the Poincaré stresses. They exist only inside the sphere. Because there are no 

fields inside the sphere, the electromagnetic stress exists only outside the sphere 

and gives a destabilizing outward force per unit area at r = a* equal to e7/87a* 
in the rest frame. At r = a, the Pioncaré stress provides the stabilizing inward 

force—the surface layer of charge feels no net force. Continuity across an inter- 

face of the total stress tensor contracted with the unit normal is the more general 

criterion for no net force at the interface. 

The electromagnetic contribution to the mass of the particle can be found 

from (16.48) directly or from either the rest-frame integral of °° or J°A°/2c. In 
the first way, we need E©” = 4e? - z(f’)’. Then we find 

(16.60) mc? _ e” [ 27(f'P dz 
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The contribution to the rest mass from the Poincaré stresses is 

m,c? = (1 + h) | t(z) d°x’ 
Integration over angles, then substitution of (16.59) for t(z) and an integration 

by parts leads to the result, 

~~ ~ 
(16.61) mc? = 3(1 + h)m,c? 

The total mass is therefore 

(16.62) M =m, + m, = 3(4 + hA)m,. 

Note that when h = 0 the mass is 4m,/3, the “dynamic” result, while if h = —1, 
M = m,, the electrostatic result. On the other hand, if h >> 1, most of the mass 
is of nonelectromagnetic origin. Neither the 4/3 nor the unity proves anything 

about the covariance of the energy and momentum of the particle. This property 

is guaranteed by the divergence-free S°°, as we now demonstrate. 

D. Demonstration of the Covariance of the Particle’s Energy 

and Momentum 

The evaluation of the spatial integrals of @°°, @”° and IT°°, IT’° and their sums 
at fixed time x° in the laboratory frame illustrates the conspiracy between the 
electromagnetic and Poincaré stresses to assure the proper Lorentz transforma- 

tion properties. We begin with 0°: 

2 
é @°° —- __ 

T 
je + 2 -432|ery 

Since we are to integrate © over 3-space at fixed time in K, we need (€°)” and 

z evaluated explicitly in K. If we take the 3-axis parallel to B, from the definition 

(16.49) and v - € = 0, we find €° = Bé? and & = y*(x? — Bx°). With (€1)? + (é)? 
2\2 — 

> = (x'? + (x p’, we have 

z= prt P(e? ~ pry 
If we define x3 = y(x? — Bx°), which is just the 3-coordinate in K’, the volume 

element d*x can be written d*x = d°x’/y. Putting the pieces together, we have 
the electromagnetic part of the energy as 

Fe= =| a& (© OPO BY + Hr") 
Averaging over angles introduces a factor of [(§) 8? + 3]r’? instead of the square 
bracket. With the definition of m, through (16.60), we obtain 

4 1 
— 

= E. -y-= (16.63) 
3 3 ( Yc 

A corresponding computation of the integral of @°° gives the electromagnetic 
momentum 

(16.64) cP, = | @* d’x = : ypm.c? 

Clearly the electromagnetic contributions alone do not transform properly. 



763 Sect. 16.7 Line Breadth and Level Shift of a Radiating Oscillator 

The nonelectromagnetic contributions to the energy and momentum are 

_1 
d°x' 

me) (5 +») " (1665) 
x’ ‘ 

a fimassa en fae 

—_— 

= Il? d?x = hy’ B (2) 4 — a = 3 hyBm.c’ 

Neither do the Poincaré contributions transform properly. The total stress tensor 
contributions, the sums of the separate contributions, do, however, yield a proper 
relativistic energy and momentum: 

with M E = yMc? cP = yBMc 3(4 + h)m (16.66) 

the same rest mass as found above. Schwinger’s choices of h = 0 andh = —1 
were made to illustrate that either the electrostatic mass or the “dynamic” mass 
can serve as “the mass” when the charge is stabilized by the Poincaré stresses 
Other choices of h are possible and, as noted, above, other totally arbitrary con- 
tributions to the mass can be introduced without affecting the question of the 
covariance of the model 

Although we established the 4-vector nature of energy and momentum using 
the conventional definitions of the total energy and momentum by taking 3-space 
integrals at fixed time x” in the laboratory frame K, it is of interest to see how 
the derivation changes if we use the definitions of Section 16.5, which yield co- 
variant expressions for the separate contributions. The appropriate quantities 

according to (16.43), 16.54) and (16.58), are 

2 

0%), da = — v (16.67) n= [-¢ye 
2 

cP? (16.68) [ ne do = (1 + h)v | @ d? 
Since the integrands and integration are Lorentz invariants, we may evaluate the 

integrals in the rest frame. From (16.60) and below, we see that 

—_ 

= and cP& cP2 = (m,c’)v 3(1 + h)(m,.c”)v 

are separately 4-vectors by construction, with a sum equal to (16.66). The sim- 

plicity and elegance of the use of the manifestly covariant (16.43) is apparent 

The results are, of course, the same either way 

The Poincaré—Schwinger model of a stable charged particle addresses the 

issue of the Lorentz transformation properties of the particle’s energy and mo- 

mentum, but does not attack the question of radiation reaction. For the spherical 

shell model, this problem has been treated in detail by Yaghjian* who also treats 

the Poincaré stresses and stability. See also Rohrlich.* 

16.7 Line Breadth and Level Shift of a Radiating Oscillator 

The effects of radiative reaction are of great importance in the detailed behavior 

of atomic systems. Although a complete discussion involves the rather elaborate 

*A.D. Yaghjian, Relativistic Dynamics of a Charged Sphere, Lecture Notes in Physics m11, Springer- 
Verlag, Berlin, New York (1992) 

*F. Rohrlich, Am. J. Phys. 65, 1051-1057 (1997) 
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formalism of quantum electrodynamics, the qualitative features are apparent 

from a classical treatment. As a typical example we consider a charged particle 
bound by a one-dimensional linear restoring force with force constant k = mas. 
In the absence of radiation damping, the particle oscillates with constant ampli- 
tude at the characteristic frequency w). When the reactive effects ‘are included, 
the amplitude of oscillation gradually decreases, since energy of motion is being 
converted into radiant energy. This is the classical analog of spontaneous emis- 
sion in which an atom makes a transition from an excited state to a state of lower 
energy by emission of a photon. 

If the displacement of the charged particle from equilibrium is x(t) and 
—mapx, (16.10) becomes Fext 

(16.69) mi = —mwex — mwotx 

Because of the expected decay of the amplitude, we assume a solution of the 

form 

—at (16.70) x(t) = xXoe 

where a should have a positive real part and an imaginary part close to wp if the 

radiative damping effects are small. The ansatz leads to a quadratic equation 

for a, 

a — twa + we = 0 

with roots 

a= SWAT + iwpV1 — (wot/2)? = SWOT + i(@ — ZWeT) 

In the last form we have expanded to order 7” in the real part. The real part of 
a is T/2, where T is known as the decay constant and the change Aw in the 
imaginary part from w) is known as the level shift*: 

T = 37, (16.71a) Aw ~ —ZwRr- 

The alert reader will rightly question the legitimacy of keeping terms of order 7” 
in the solution of an equation that is an approximation valid only for small 7 (see 
Problem 16.10b). In fact, if the Abraham—Lorentz equation (16.9) is used instead 

of (16.10), the resulting cubic equation in a yields, to order 7’, the same I, but 

(16.71b) [Aw]ar = Jagr’ 
The important message here is that the classical level shift Aw is one power higher 

order in wo7 than the decay constant I. 

The energy of the oscillator decays exponentially as e~"‘ because of radiation 
damping. This means that the emitted radiation appears as a wave train with 

effective length of the order of c/I’. Such a finite pulse of radiation is not exactly 

monochromatic but has a frequency spectrum covering an interval of order I. 

The exact shape of the frequency spectrum is given by the square of the Fourier 

*The reader is invited to pause at this point and consider the decay constant I from various points 

of view. One is to use the Larmor power formula (16.6) and conservation of energy directly to relate 

the time-averaged radiated power P(t) to the total energy of the oscillator E(t). Another is to ask for 
the initial energy and amplitude x, of the oscillator such that ! = P/Aw, corresponding to the emission 

of a single photon of energy fiwo. These can then be compared to the values for a quantum-mechanical 

oscillator in its nth quantum state. 
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transform of the electric field or the acceleration. Neglecting an initial transient 
(of duration 7), the amplitude of the spectrum is thus proportional to 

1 E(@) « [ e “e' dt = 
a— lw 

The energy radiated per unit frequency interval is therefore 

r 1 dI(w) _ 
(16.72) 

d ° 2a (w — w — Aw)? + (T/2) 

where Jp is the total energy radiated. This spectral distribution is called a resonant 
line shape. The width of the distribution at half-maximum intensity is called the 
half-width or line breadth and is equal to T’. Shown in Fig. 16.1 is such a spectral 

line. Because of the reactive effects of radiation the line is broadened and shifted 
in frequency. 

The classical line breadth for electronic oscillators is a universal constant 

when expressed in terms of wavelength: 

AA = 2n-ST =2mer=12x 107A 
Wo 

Quantum mechanically the natural widths of spectral lines vary. To establish a 

connection with the classical treatment, the quantum-mechanical line width is 

sometimes written as 

Py = fil 

where f;; is the “‘oscillator strength” of the transition (i — /). Oscillator strengths 

vary considerably, sometimes being nearly unity for strong single-electron tran- 

sitions and sometimes much smaller. For optical transitions, A ~ 4-8 x 10° A. 
Thus AA/A <= 3.5-1.5 X 1078 and wot = O(10-8). 

The classical level shift Aw is smaller than the line width I by a factor 

W )T << 1. Quantum mechanically (and experimentally) this is not so. The reason 

is that in the quantum theory there is a different mechanism for the level shift, 

although still involving the electromagnetic field. Even in the absence of photons, 
the quantized radiation field has nonvanishing expectation values of the squares 
of the electromagnetic field strengths (vacuum fluctuations). These fluctuating 

rt 

za 
—>| <— Aw 

aon 

Figure 16.1 Broadening and shifting of spectral line because of radiative reaction. The 

resonant line shape has width I. The level shift is Aw. 
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fields (along with vacuum fluctuations in the electron-positron field) act on the 

charged particle to cause a shift in its energy. The quantum-mechanical level shift 

for an oscillator is of the order of 

Aw mc? 
———- —— ~ art log 
h Do Wo ( 

~ 

as compared to the classical shift due to emission of radiation, 

|Aw.| 
~ (wot)? 

0 

The quantum-mechanical level shift is seen to be comparable to, or greater than, 

the line width. The small radiative shift of energy levels of atoms was first ob- 

served by Lamb in 1947* and is called the Lamb shift in his honor. 

16.8 Scattering and Absorption of Radiation by an Oscillator 

The scattering of radiation by free charged particles is discussed in Section 14.8. 

We now consider the scattering and absorption of radiation by bound charges, 

in particular the scattering of radiation of frequency w by a single nonrelativistic 

particle of mass m and charge e bound by a spherically symmetric linear restoring 

force mwéx. The total force acting on the particle is (neglecting the magnetic field 
term because of the assumption of nonrelativistic motion) 

ik-x—iwt F = —mw2x + eeEpe 

where E, is the magnitude and e the polarization vector of the incident electric 

field. We introduce a resistive term mI’’v in the equation of motion to allow for 

other dissipative processes, corresponding quantum mechanically to other modes 

of decay besides photon re-emission. With this addition, substitution into (16.10) 
leads in the electric dipole approximation to the equation of motion, 

¥+ (0 + Tk + wx = — €(1 - iwr)e"™ (16.73) 

Here we have neglected the (v- V) term for the incident field because it leads to 
a v/c correction. The steady-state solution is 

— 

eE ¢ (1 — iwr)e 
(16.74) 

m w — w — ial, 

where I, = [ + I’ is the total decay constant or total width at resonance. 
The accelerated motion gives rise to radiation fields given by (14.18), 

Eyad a2, ln x (n x X]ret 

*W. E. Lamb and R. C. Retherford, Phys. Rev. 72, 241 (1947). 
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The scattering amplitude for scattered radiation of polarization e’ is 

f = z (ek te!) * . Evad 

or 

2 
é w°(1 — iwr) 

Te = ete 
€ (16.75) 

mc? wo, — w — ial, 

The differential scattering cross section is the absolute square of f: 

2 4 
do é 

(16.76) dQ mc? ( ry + wT? ) ea Jie et 

We have omitted the factor of (1 + wr) ~ 1 in the numerator because the cross 
section is already proportional to (cr)’. The total scattering cross section can be 
written 

w'T7/w 
(16.77) 

(wo w’) + wT? 
Oscatt = | | 

Here X = c/a is the wavelength divided by 27 at resonance and [ = wr is the 

resonant scattering width or radiative decay constant. 

The scattering cross section exhibits a resonance at w = wp. with a peak value 

of o82% = 67XG(I/T,)*. It is proportional to w* at very low frequencies—Ray- 
leigh’s law of scattering, discussed in Chapter 10. At very high frequencies 

(w >> wo, I), it approaches the Thomson scattering cross section for a free 

particle. Figure 16.2 shows the scattering cross section over the whole classical 

range of frequencies. 

The sharply resonant scattering at w = wy is called resonance fluorescence. 

Quantum mechanically it corresponds to the absorption of radiation by an atom, 

molecule, or nucleus in a transition from its ground state to an excited state with 

the subsequent re-emission of the radiation in other directions in the process of 

de-excitation. The factor 67X§ in the peak cross section is replaced quantum 
mechanically by the statistical factor, 

QJe, +1 
67rX5 —> 42k} 

2(2J, + 1) 

r 
ba ———~6nK} tr 

¢ ) 
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Figure 16.2 Total cross section for the scattering of radiation by an oscillator as a 

function of frequency. oy is the Thomson free-particle scattering cross section. 
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where J, and J,, are the angular momenta of the ground and excited states, and 

4arx3, is the maximum allowable scattering for any single quantum state. The 

remaining factors represent a sum over all final magnetic substates and an av- 

erage over initial ones, the factor 2 being the statistical weight associated with 

the incident radiation’s polarizations. The classical result corresponds to J, = 0 
and J,, = 1. 

The total cross section, scattering plus absorption, is obtained from the scat- 
tering amplitude (16.75), including the numerator factor (1 — iw) neglected in 
(16.76), by means of the optical theorem (10.139): 

wT(T’ + w*T/w) (16.78) a” z Im[f(e’ = «, k’ = k)] = on (9 wy + wT? 

The structure of the numerators in the scattering and total cross sections has a 

simple interpretation. In (16.78) there is one factor of I corresponding to the 

incident radiation being absorbed. This is multiplied by the sum of widths for all 

possibilities in the final state—the elastic scattering and the absorptive pro- 

cesses—because it is the total cross section. For the elastic scattering cross section 

(16.77) there are two factors of I’, one for the initial and one for the final state. 

Note that, while the elastic scattering and total cross sections approach the Thom- 

son limiting form at high energies, the inelastic or absorptive cross section has 

only the resonant shape, vanishing as 1/w? at high energies provided I’ is energy 

independent. 

Just as was done in Section 7.5 in the discussion of the atomic contributions 

to the polarization and dielectric constant, we can generalize the one-oscillator 

model to something closer to reality by assuming that there are a number of 

oscillators with resonant frequencies w,, radiative decay constants [; = f;w77 and 

absorptive widths I’;. Then the total cross section, for example, becomes 

wT(Ti + w°T?/w9) 
Orotal = 67 > “| 

(w; | w’)* + wT¥, 

With the appropriate definitions of f;, I';, and w;, this result is almost the correct 
quantum-mechanical expression. Lacking are the interference terms from over- 

lapping resonances. The quantum-mechanical scattering amplitude is a coherent 
superposition of the contributions of all the intermediate states allowed by the 
selection rules. Usually the states are narrow and separated by energy differences 
large compared to their widths. Then the interference terms can be ignored. In 
special situations they must be included, however. 
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Press, New York (1982), pp. 183-210. 

A useful review of all aspects of classical electron models is 

P. Pearle, in Electromagnetism: Paths to Research, ed. D. M. Teplitz, Plenum 
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The most detailed and explicit discussion of radiation reaction for a charged spherical 
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Yaghjian (op. cit.) 

Problems 

16.1 A nonrelativistic particle of charge e and mass m is bound by a linear, isotropic, 

restoring force with force constant ma%. 

Using (16.13) and (16.16) of Section 16.2, show that the energy and angular 

momentum of the particle both decrease exponentially from their initial values as 

e-'*, where T = wr. Quantum mechanically, the mean excitation energy of an 
oscillator decays in exactly the same way because the total radiative transition 

probability for a state with quantum numbers No, Ip is (no, fo) = nol’. The decay 

of the angular momentum approaches the classical law only for Jp > 1. 

16.2 A nonrelativistic electron of charge —e and mass m bound in an attractive 

Coulomb potential (— Ze?/r) moves in a circular orbit in the absence of radiation 
reaction. 

(a) Show that both the energy and angular-momentum equations (16.13) and 
(16.16) lead to the solution for the slowly changing orbit radius, 

ri) =n- 9Z(cx)? * 

where ro is the value of r(t) at ¢ = 0. 

For circular orbits in a Bohr atom the orbit radius and the principal quantum (b) 
number n are related by r = n?a)/Z. If the transition probability for transi- 

tions from n — (n — 1) is defined as —dn/dt, show that the result of part a 

agrees with that found in Problem 14.21. 

(c) From part a calculate the numerical value of the times taken for a mu meson 

of mass m = 207m, to fall from a circular orbit with principal quantum num- 

ber n, = 10 to one with n, = 4, and n. = 1. These are reasonable estimates 

of the time taken for a mu meson to cascade down to its lowest orbit after 

capture by an isolated atom. 
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16.3 An electron moving in an attractive Coulomb field (—Ze?/r) with binding energy 
€ and angular momentum L has an elliptic orbit, 

2 1 Ze’m 
_ 

= 1 
~ Zetm L? 

r 

cos(@ — 0 | 

The eccentricity of the ellipse is given by the square root multiplying the cosine. 

(a) By performing the appropriate time averages over the orbit, show that the 
secular changes in energy and angular momentum are 

2eL? de _ p3l2 Bem 2 ee? 

3 Ls ~ Zetm c dt 3 ( 
2°! 2 Z e @? ab _ 

3 m23 7? dt 

(b) If the initial values of € and L are €) and Lo, show that 

L Z’e'm £o L e(L) = 
2L? Lo Lo }]- -( 

Calculate the eccentricity of the ellipse, and show that it decreases from its 

initial value as (L/L))°*”, showing that the orbit tends to become circular as 
time goes on. 

(c) Compare your results here to the special case of a circular orbit of Problem 

16.2. 

Hint: In performing the time averages make use of Kepler’s law of equal areas 

(dt = mr* d6/L) to convert time integrals to angular integrals. 

16.4 A classical model of an electron is a spherical shell of charge of radius a and total 

charge e. 

(a) Using (16.30) for the “mass” M(w) and the angular average of e’°*/R, show 

that 

2 e& — 1 — ié eo mtr M(o) 2 3 ig ( 
where € = 2wa/c, and m = my + 2e?/3ac? is the physical mass of the electron. 

(b) Expand in powers of the frequency (€) and show that, to lowest nontrivial 
order, M(w) has a zero in the upper half-plane at wr = i, where rt = 2e?/3mc’. 
What is the physical significance of such a zero? 

(c) For the exact result of part a, show that the zeros of wM(w), if any, are defined 
by the two simultaneous equations, proportional to the real and imaginary 
parts of iwM(w), 

e* cosx — 1 + y(1 — alcr) = 0 

e” sinx — x(1 — alcr) = 0 

where x = Re and y = Im & Find the condition on the radius a such that 
wM(w) has no zeros in the upper half-w-plane. Express the condition also in 
terms of the mechanical mass mp for fixed physical mass. What about zeros 
and/or singularities in the lower half-plane? 

16.5 The particle of Problem 16.4 is initially at rest in a spatially uniform, but time- 
varying electric field E(t) = E,@(t). 
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(a) Show that its speed in the direction of the field is given by the integral 

-iTE 
e eEoa 

v(t) = — as 1c eM(é) 

where T = ct/2a. 

(b) From the analytic properties of M(é) established in part c of Problem 16.4, 
show that u(t) = 0 for ¢ = 0 (no preacceleration). 

16.6 A particle of bare mass mo and charge e has a charge density, p(x) = e e~"/4-71a’r. 

(a) Show that the charge form factor is f(k) = (1 + ka”). 

(b) Show that the mass, (16.33), is 

mcT 
m= My + —— 

2 

(c) Show that the zeros of M(w), (16.34), in the complex w plane, are given by 

wt = —i(cr/a)[1 + (1 — 2alcr)~ 7] 

(d) Find the trajectories of the roots in the complex w plane for mg > 0 and 

my < 0. Find the limiting form for the roots when a/ct << 1 and a/ct > 1. 

Discuss. 

16.7 The Dirac (1938) relativistic theory of classical point electrons has as its equation 

of motion, 

ap. 
= Fox + Fred 

d 

where p, is the particle’s 4-momentum, ris the particle’s proper time, and F72° is 
the covariant generalization of the radiative reaction force (16.8). 

Using the requirement that any force must satisfy F,,p* = 0, show that 

2e? d’p,, Py ‘ad 
“eo dp, dp” 

= 

“ 

mc? drt dt 3m? dr? ( } | 
16.8 (a) Show that for relativistic motion in one dimension the equation of motion of 

Problem 16.7 can be written in the form, 

2e? p 
pp” 

= 

= 1+ f(7) pr 

mc? 3mc3 (- Pp’ + nec? 

where p is the momentum in the direction of motion, a dot means differen- 
tiation with respect to proper time, and f(z) is the ordinary Newtonian force 

as a function of proper time. 

Show that the substitution of p = mc sinh y reduces the relativistic equation (b) 
to the Abraham—Lorentz form (16.9) in y and 7. Write down the general 

solution for p(r), with the initial condition that 

7T=0 at P(t) = Po 

Show that the radiation reaction force in the Lorentz—Dirac equation of 16.9 (a) 
Problem 16.7 can be expressed alternatively as 

2e? d’p” 

— 

_ PuPy Frad = 
“ mc? dr 3mc? | (« 
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(b) The relativistic generalization of (16.10) can be obtained by replacing 

d’p’ldr? by g”dF;*/dr in the expression for F7?°. Show that the spatial 

part of the generalization of (16.10) becomes 

dF y° dv dp 
— —- >—*x 

c’ dt dt dt 
(v Xx | , =F +o 

where F is the spatial part of F4,,/y. For a charged particle in external electric 
~ ~ 

and magnetic fields F is the Lorentz force. 

Reference: G. W. Ford and R. F. O’Connell, Phys. Lett. A 174, 182 (1993). 

16.10 The Abraham—Lorentz equation of motion (16.9) can be replaced by an integro- 

differential equation if the external force is considered a function of time. 

(a) Show that a first integral of (16.9) that eliminates the possibility of “runaway”’ 

solutions is 

mv(t) = [ " e F(t + 71s) ds 

(b) Show that a Taylor series expansion of the force for small 7 leads to 

a 

, a F(t) 
mv(t) = > 

dt” n=0 

The approximate equation (16.10) contains the first two terms of the infinite 

series. 

(c) For a step-function force in one dimension, F(t) = F,@(t), solve the 

integro-differential equation of part a for the acceleration and velocity for 

t <0 and¢t > 0 for a particle at rest at t = —%. Plot ma/Fy and mv/Fo7 in 

units of t/7. Compare with the solution from (16.10). Comment. 

16.11 A nonrelativistic particle of charge e and mass m is accelerated in one-dimensional 

motion across a gap of width d by a constant electric field. The mathematical 

idealization is that the particle has applied to it an external force ma while its 

coordinate lies in the interval (0, d). Without radiation damping the particle, hav- 

ing initial velocity uo, is accelerated uniformly for a time T = (—v,/a) + 
—_ 

= Vus + 2ad. V (vg/a7) + (2d/a), emerging at x = d with a final velocity v, 

With radiation damping the motion is altered so that the particle takes a time 

T’ to cross the gap and emerges with a velocity vj. 

(a) Solve the integro-differential equation of motion, including damping, assum- 

ing T and T’ large compared to +. Sketch a velocity-versus-time diagram for 

the motion with and without damping. 

(b) Show that to lowest order in 7, 

Vo T’ -—-rAt-— 

v1 

ar 
v} vy, - —T 

U1 

(c) Verify that the sum of the energy radiated and the change in the particle’s 
kinetic energy is equal to the work done by the applied field. 

16.12 A classical model for the description of collision broadening of spectral lines is 
that the oscillator is interrupted by a collision after oscillating for a time T so that 
the coherence of the wave train is lost. 

(a) Taking the oscillator used in Section 16.7 and assuming that the probability 
that a collision will occur between time T and (T + dT) is (ve~*? dT), where 
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vis the mean collision frequency, show that the averaged spectral distribution 
is 

T+ 2p dI(w) _ Ip 

dw 2m (wo — an? + (5 . ) 

so that the breadth of the line is (2v + I). 

(b) For the sodium doublet at 5893 A the oscillator strength is f = 0.975, so that 
the natural width is essentially the classical value, AA = 1.2 x 10-4 A. Esti- 
mate the Doppler width of the line, assuming the sodium atoms are in ther- 

mal equilibrium at a temperature of SOOK, and compare it with the natural 

width. Assuming a collision cross section of 107 ** cm?, determine the collision 

breadth of the sodium doublet as a function of the pressure of the sodium 

vapor. For what pressure is the collision breadth equal to the natural 

breadth? The Doppler breadth? 

16.13 A single particle oscillator under the action of an applied electric field Eye~‘”" has 

a dipole moment given by 

Pp = a(w)E,e 

(a) Show that the total dipole cross section can be written as 

ow) = — [-iwa(w) + c.c.] 

(b) Using only the facts that all the normal modes of oscillation must have some 
damping and that the polarizability a(w) must approach the free-particle 
value (—e?/mw”) at high frequencies, show that the cross section satisfies the 

dipole sum rule, 

21e* [ af{w) dw = 
mc 

(The discussion of Kramers—Kronig dispersion relations in Chapter 7 is 

clearly relevant.) 





Appendix on Units and Dimensions 

The question of units and dimensions in electricity and magnetism has exercised 
a great number of physicists and engineers over the years. This situation is in 
marked contrast with the almost universal agreement on the basic units of length 
(centimeter or meter), mass (gram or kilogram), and time (mean solar second). 
The reason perhaps is that the mechanical units were defined when the idea of 
“absolute” standards was a novel concept (just before 1800), and they were urged 
on the professional and commercial world by a group of scientific giants (Borda, 
Laplace, and others). By the time the problem of electromagnetic units arose 
there were (and still are) many experts. The purpose of this appendix is to add 
as little heat and as much light as possible without belaboring the issue. 

I Units and Dimensions; Basic Units and Derived Units 

The arbitrariness in the number of fundamental units and in the dimensions of 

any physical quantity in terms of those units has been emphasized by Abraham, 

Planck, Bridgman,* Birge,' and others. The reader interested in units as such will 

do well to become familiar with the excellent series of articles by Birge. 

The desirable features of a system of units in any field are convenience and 

clarity. For example, theoretical physicists active in relativistic quantum field 

theory and the theory of elementary particles find it convenient to choose the 

universal constants such as Planck’s quantum of action and the velocity of light 

in vacuum to be dimensionless and of unit magnitude. The resulting system of 

units (called ‘‘natural’’ units) has only one basic unit, customarily chosen to be 

mass. All quantities, whether length or time or force or energy, etc., are expressed 

in terms of this one unit and have dimensions that are powers of its dimension. 

There is nothing contrived or less fundamental about such a system than one 

involving the meter, the kilogram, and the second as basic units. It is merely a 

matter of convenience.* 
A word needs to be said about basic units or standards, considered as inde- 

pendent quantities, and derived units or standards, which are defined in both 

magnitude and dimension through theory and experiment in terms of the basic 

units. Tradition requires that mass (m), length (/), and time (f) be treated as 
basic. But for electrical quantities there has been no compelling tradition. Con- 

sider, for example, the unit of current. The “international” ampere (for a long 

*P, W. Bridgman, Dimensional Analysis, Yale University Press, New Haven, CT (1931). 

'R. T. Birge, Am. Phys. Teacher (now Am. J. Phys.), 2, 41 (1934); 3, 102, 171 (1935). 

*In quantum field theory, powers of the coupling constant play the role of other basic units in doing 

dimensional analysis. 

7715 
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period the accepted practical unit of current) is defined in terms of the mass of 

silver deposited per unit time by electrolysis in a standard silver voltameter. Such 

a unit of current is properly considered a basic unit, independent of the mass, 

length, and time units, since the amount of current serving as the unit is found 

from a supposedly reproducible experiment in electrolysis. 

On the other hand, the presently accepted standard of current, the ‘“‘abso- 
lute” ampere “‘is that constant current which, if maintained in {wo straight par- 

allel conductors of infinite length, of negligible circular cross section, and placed 
one metre apart in vacuum, would produce between these conductors a force 
equal to 2-10~7 newton per metre of length.” This means that the “absolute” 
ampere is a derived unit, since its definition is in terms of the mechanical force 
between two wires through equation (A.4) below.* The ‘‘absolute” ampere is, 
by this definition, exactly one-tenth of the em unit of current, the abampere. 

Since 1948 the internationally accepted system of electromagnetic standards 
has been based on the meter, the kilogram, the second, and the above definition 

of the absolute ampere plus other derived units for resistance, voltage, etc. This 

seems to be a desirable state of affairs. It avoids such difficulties as arose when, 

in 1894, by act of Congress (based on recommendations of an international com- 

mission of engineers and scientists), independent basic units of current, voltage, 

and resistance were defined in terms of three independent experiments (silver 

voltameter, Clark standard cell, specified column of mercury).' Soon afterward, 
because of systematic errors in the experiments outside the claimed accuracy, 

Ohm’s law was no longer valid, by act of Congress! 

The Systéme International d’Unités (SI) has the unit of mass defined since 

1889 by a platinum-iridium kilogram prototype kept in Sévres, France. In 1967 

the SI second was defined to be “the duration of 9 192 631 770 periods of the 

radiation corresponding to the transition between the two hyperfine levels of the 

ground state of the cesium-133 atom.” The General Conference on Weights and 

Measures in 1983 adopted a definition of the meter based on the speed of light, 

namely, the meter is “‘the length of the distance traveled in vacuum by light during 

a time 1/299 792 458 of a second.” The speed of light is therefore no longer an 

experimental number; it is, by definition of the meter, exactly c = 299 792 458 

m/s. For electricity and magnetism, the Systéme International adds the absolute 

ampere as an additional unit, as already noted. In practice, metrology laborato- 

ries around the world define the ampere through the units of electromotive force, 
the volt, and resistance, the ohm, as determined experimentally from the 
Josephson effect (2e/h) and the quantum Hall effect (h/e”), respectively.* 

*The proportionality constant k, in (A.4) is thereby given the magnitude k, = 107’ in the SI system. 
The dimensions of the “absolute” ampere, as distinct from its magnitude, depend on the dimensions 
assigned k. In the conventional SI system of electromagnetic units, electric current (J) is arbitrarily 
chosen as a fourth basic dimension. Consequently charge has dimensions Jt, and k has dimensions 
of mlI~*t~*. If kz is taken to be dimensionless, then current has the dimensions m!2/12:-!. The ques- 
tion of whether a fourth basic dimension like current is introduced or whether electromagnetic quan- 
tities have dimensions given by powers (sometimes fractional) of the three basic mechanical dimen- 
sions is a purely subjective matter and has no fundamental significance. 

‘See, for example, F. A. Laws, Electrical Measurements, McGraw-Hill, New York (1917), pp. 705-706. 
*For a general discussion of SI units in electricity and magnetism and the use of quantum phenomena 
to define standards, see B. W. Petley, in Metrology at the Frontiers of Physics and Technology, eds. 
L. Corvini and T. J. Quinn, Proceedings of the International School of Physics “Enrico Fermi,” Course 
CX, 27 June-7 July 1989, North-Holland, Amsterdam (1992), pp. 33-61. 
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2 Electromagnetic Units and Equations 

In discussing the units and dimensions of electromagnetism we take as our start- 
ing point the traditional choice of length (/), mass (m7), and time (£) as indepen- 
dent, basic dimensions. Furthermore, we make the commonly accepted definition 
of current as the time rate of change of charge (J = dq/dt). This means that the 
dimension of the ratio of charge and current is that of time.* The continuity 
equation for charge and current densities then takes the form: 

v-5+ 2-9 (A.1) 
0 

To simplify matters we initially consider only electromagnetic phenomena in free 
space, apart from the presence of charges and currents. 

The basic physical law governing electrostatics is Coulomb’s law on the force 
between two point charges q and q’, separated by a distance r. In symbols this 
law is 

qq’ 
Fi=k, (A.2) rz 

The constant k, is a proportionality constant whose magnitude and dimensions 

either are determined by the equation (if the magnitude and dimensions of the 

unit of charge have been specified independently) or are chosen arbitrarily in 

order to define the unit of charge. Within our present framework all that is de- 

termined at the moment is that the product (k,qq’) has the dimensions (ml*t~’). 

The electric field E is a derived quantity, customarily defined to be the force 

per unit charge. A more general definition would be that the electric field be 

numerically proportional to the force per unit charge, with a proportionality con- 

stant that is a universal constant perhaps having dimensions such that the electric 

field is dimensionally different from force per unit charge. There is, however, 

nothing to be gained by this extra freedom in the definition of E, since E is the 

first derived field quantity to be defined. Only when we define other field quan- 

tities may it be convenient to insert dimensional proportionality constants in the 

definitions in order to adjust the dimensions and magnitude of these fields relative 

to the electric field. Consequently, with no significant loss of generality the elec- 

tric field of a point charge gq may be defined from (A.2) as the force per unit 

charge, 

q 
(A.3) E=k, re 

All systems of units known to the author use this definition of electric field. 
For steady-state magnetic phenomena Ampére’s observations form a basis 

for specifying the interaction and defining the magnetic induction. According to 
Ampére, the force per unit length between two infinitely long, parallel wires 
separated by a distance d and carrying currents J and I’ is 

IT’ dF, 
— = 2k, — (A.4) 

d dl 

*From the point of view of special relativity it would be more natural to give current the dimensions 

of charge divided by length. Then current density J and charge density p would have the same di- 

mensions and would form a ‘“‘natural” 4-vector. This is the choice made in a modified Gaussian system 

(see the footnote to Table 4, below). 
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The constant k, is a proportionality constant akin to k, in (A.2). The dimension- 

less number 2 is inserted in (A.4) for later convenience in specifying k,. Because 

of our choice of the dimensions of current and charge embodied m (A.1), the 
dimensions of k, relative to k, are determined. From (A.2) and (A.4) it is easily 
found that the ratio k,/k, has the dimension of a velocity squared (/?t~7). Fur- 
thermore, by comparison of the magnitude of the two mechanical forces (A.2) 
and (A.4) for known charges and currents, the magnitude of.the ratio k,/k, in 

free space can be found. The numerical value is closely given by the square of 
the velocity of light in vacuum. Therefore in symbols we can write 

2 — ky 
= (A.5) 

ky 

where c stands for the velocity of light in magnitude and dimension. 

The magnetic induction B is derived from the force laws of Ampére as being 

numerically proportional to the force per unit current with a proportionality 

constant a that may have certain dimensions chosen for convenience. Thus for a 

long straight wire carrying a current J, the magnetic induction B at a distance d 

has the magnitude (and dimensions) 

B= 2k2a — (A.6) 
d 

The dimensions of the ratio of electric field to magnetic induction can be found 

from (A.1), (A.3), (A.5), and (A.6). The result is that (E/B) has the dimensions 

(I/ta). 

The third and final relation in the specification of electromagnetic units and 

dimensions is Faraday’s law of induction, which connects electric and magnetic 

phenomena. The observed law that the electromotive force induced around a 

circuit is proportional to the rate of change of magnetic flux through it takes on 

the differential form 

oB 
(A.7) 

where k; is a constant of proportionality. Since the dimensions of E relative to 
B are established, the dimensions of k; can be expressed in terms of previously 
defined quantities merely by demanding that both terms in (A.7) have the same 
dimensions. Then it is found that k, has the dimensions of a. Actually, k3 is 
equal to a‘. This is established on the basis of Galilean invariance in Section 
5.15. But the easiest way to prove the equality is to write all the Maxwell equa- 
tions in terms of the fields defined here: 

V-E = 4a7kip 

— kao E VxB= 4tk,aJ + 
0 1 

(A.8) 
oB 

V-B=0 
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Then for source-free regions the two curl equations can be combined into the 
wave equation, 

koa 7B 
—-—— = 0 VB — k, (A.9) 

or? ky 

The velocity of propagation of the waves described by (A.9) is related to the 
combination of constants appearing there. Since this velocity is known to be that 
of light, we may write 

ky 
— 2 

(A.10) K3koa — 

Combining (A.5) with (A.10), we find 

1 
kz =—- (A.11) 

a 

an equality holding for both magnitude and dimensions. 

3 Various Systems of Electromagnetic Units 

The various systems of electromagnetic units differ in their choices of the mag- 

nitudes and dimensions of the various constants above. Because of relations (A.5) 

and (A.11) there are only two constants (e.g., kp, k3) that can (and must) be 

chosen arbitrarily. It is convenient, however, to tabulate all four constants 

(k,, ka, a, k3) for the conmoner systems of units. These are given in Table 1. We 

note that, apart from dimensions, the em units and SI units are very similar, 

differing only in various powers of 10 in their mechanical and electromagnetic 

units. The Gaussian and Heaviside—Lorentz systems differ only by factors of 47. 

Table 1 Magnitudes and Dimensions of the Electromagnetic Constants 
for Various Systems of Units 

The dimensions are given after the numerical values. The symbol c stands for the 

velocity of light in vacuum (c = 2.998 x 10'° cm/s = 2.998 x 108 m/s). The first four 
systems of units use the centimeter, gram, and second as their fundamental units of 

length, mass, and time (/, m, t). The SI system uses the meter, kilogram, and second, 

plus current (/) as a fourth dimension, with the ampere as unit. 

Qa k, ks ky System 

1 1 1 c (17177) Electrostatic (esu) 

1 1 1 c2(P1-2) Electromagnetic (emu) 

1 Gaussian c71(l7") c (71-7) c(it~") 

1 1 
Heaviside—Lorentz c(it~) c(t) (t71-7) 

4ac* Ar 
1 Ho = 1077 

1 1 = 10°7c? SI 
nr 417€ 

(mlt~?I-?) (mI?t~4I-) 
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Only in the Gaussian (and Heaviside—Lorentz) system does k3 have dimensions. 

It is evident from (A.7) that, with k; having dimensions of a reciprocal velocity, 

E and B have the same dimensions. Furthermore, with k; = c™', (A.7) shows 
that for electromagnetic waves in free space E and B are equal in magnitude as 

well. 

For SI units, (A.10) reads 1/(j19€)) = c*. With c now defined as a nine-digit 

number and ky = po/4a = 10-7 Him, also by definition, 10’ times the constant 
k, in Coulomb’s law is 

10’ 
= c? = 89 875 517 873 681 764 

47€ 

an exact 17-digit number (approximately 8.9876 x 10'°). Use of the speed of light 
without error to define the meter in terms of the second removes the anomaly 
in SI units of having one of the fundamental proportionality constants €9 with 
experimental errors. Note that, although the right-hand side above is the square 
of the speed of light, the dimensions of € (as distinct from its magnitude) are not 

seconds squared per meter squared because the numerical factor on the left has 

the dimensions of yo’. The dimensions of 1/e€) and po are given in Table 1. It is 
conventional to express the dimensions of €, as farads per meter and those of jo 

as henrys per meter. With k; = 1 and dimensionless, E and cB have the same 

dimensions in SI units; for a plane wave in vacuum they are equal in magnitude. 

Only electromagnetic fields in free space have been discussed so far. Con- 

sequently only the two fundamental fields E and B have appeared. There remains 

the task of defining the macroscopic field variables D and H. If the averaged 

electromagnetic properties of a material medium are described by a macroscopic 

polarization P and a magnetization M, the general form of the definitions of D 

and H are 

D = eE + AP 

(A.12) 1 
H =—B-.A™M 

Ho 

where €p, fo, A, A’ are proportionality constants. Nothing is gained by making D 

and P or H and M have different dimensions. Consequently A and A’ are chosen 

as pure numbers (A = A’ = 1 in rationalized systems, A = A’ = 47 in unration- 

alized systems). But there is the choice as to whether D and P will differ in 

dimensions from E, and H and M differ from B. This choice is made for conve- 
nience and simplicity, usually to make the macroscopic Maxwell equations have 
a relatively simple, neat form. Before tabulating the choices made for different 
systems, we note that for linear, isotropic media the constitutive relations are 

always written 

D = «cE 
(A.13) 

B = pH 

Thus in (A.12) the constants €) and jo are the vacuum values of € and pu. The 
relative permittivity of a substance (often called the dielectric constant) is defined 
as the dimensionless ratio (€/€9), while the relative permeability (often called the 
permeability) is defined as (,1/,19). 

Table 2 displays the values of € and j1o, the defining equations for D and H, 
the macroscopic forms of the Maxwell equations, and the Lorentz force equation 
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in the five common systems of units of Table 1. For each system of units the 

continuity equation for charge and current is given by (A.1), as-can be verified 

from the first pair of the Maxwell equations in the table in each case.* Similarly, 

in all systems the statement of Ohm’s law is J = aE, where ois the conductivity. 

4 Conversion of Equations and Amounts Between SI Units. 

and Gaussian Units 

The two systems of electromagnetic units in most common use today are the SI 

and Gaussian systems. The SI system has the virtue of overall convenience in 

Table 3. Conversion Table for Symbols and Formulas 

The symbols for mass, length, time, force, and other not specifically electromagnetic 

quantities are unchanged. To convert any equation in SI variables to the corresponding 

equation in Gaussian quantities, on both sides of the equation replace the relevant 

symbols listed below under “‘SI’’ by the corresponding ‘‘Gaussian’’ symbols listed on 

the left. The reverse transformation is also allowed. Residual powers of po€) should be 

eliminated in favor of the speed of light (c?49€) = 1). Since the length and time symbols 
are unchanged, quantities that differ dimensionally from one another only by powers of 

length and/or time are grouped together where possible. 

Gaussian SI Quantity 

c Velocity of light (1oto)"™ 
Electric field (potential, voltage) E(®, V)/V/47€ E(®, V) 

D Displacement V €/4a D 

Charge density (charge, current density, V4eé p(q, J, I, P) eq, J, I, P) 
current, polarization) 

B Magnetic induction V Mo/4ar B 

H Magnetic field H/V4 75 

M Magnetization V 477/ttgp M 

Conductivity ATé9o 

Dielectric constant EE 

Magnetic permeability Mol 

Resistance (impedance) R(Z)/4 7€5 R(Z) 
Inductance Ll4trey 

Capacitance 4megC 

c = 2.997 924 58 x 108 m/s 

€& = 8.854 1878... x 10°"? F/m 

Mo = 1.256 6370... x 10°° Him 

[i= 3167203... 

*Some workers employ a modified Gaussian system of units in which current is defined by J = 
(1/c)(dq/dt). Then the current density J in Table 2 must be replaced by cJ, and the continuity equation 
is V- J + (1/c)(dp/at) = 0, See also the footnote to Table 4. 
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Table 4 Conversion Table for Given Amounts of a Physical Quantity 

The table is arranged so that a given amount of some physical quantity, expressed as so 
many SI or Gaussian units of that quantity, can be expressed as an equivalent number 

of units in the other system. Thus the entries in each row stand for the same amount, 
expressed in different units. All factors of 3 (apart from exponents) should, for accurate 

work, be replaced by (2.997 924 58), arising from the numerical value of the velocity of 

light. For example, in the row for displacement (D), the entry (127 X 10°) is actually 

(2.997 924 58 x 4a X 10°) and “9” is actually 10716 c? = 8.987 55... . Where a name 

for a unit has been agreed on or is in common usage, that name is given. Otherwise, 

one merely reads so many Gaussian units, or SI units. 

SI Gaussian Physical Quantity Symbol 

10° Length 1 meter (m) centimeters (cm) 

Mass 10° 1 kilogram (kg) grams (g) 

Time 1 1 second (s) second (s) 

1 Frequency 1 hertz (Hz) hertz (Hz) 

Force 10° 1 newton (N) dynes 

Work 
10’ ergs 1 joule (J) 

Energy 
1 10’ Power ergs S~ 1 watt (W) 

3 x 10° statcoulombs 1 coulomb (C) Charge 
3 3 x 10° statcoul cm™ 1Cm>? Charge density 

3 x 10° Current statamperes 1 ampere (A) 
2 3 x 10° 1Am? statamp cm~ Current density 

1 statvolt cm7 Electric field 1 volt m7’ (Vm~") 3X 10-4 
statvolt Potential ®,V 300 1 volt (V) 

3 3 x 105 1Cm? Polarization dipole moment cm™ 
1 statvolt cm7 127 x 10° 1Cm7? Displacement 

(statcoul cm~*) 
-1 1 9 x 10° 1 siemens m™ Conductivity 

-1 
scm R Resistance 5x 107" 1 ohm (Q) 
cm 9 x 10! Cc 1 farad (F) Capacitance 

108 gauss cm? or maxwells ob, F 1 weber (Wb) Magnetic flux 

10* B gauss (G) 1 tesla (T) Magnetic induction 
4m X 10 1Am'! H oersted (Oe) Magnetic field 

3 10-7 M 1Am! magnetic moment cm™ Magnetization 

L Inductance* 3x10" 1 henry (H) 

*There is some confusion about the unit of inductance in Gaussian units. This stems from the use 

by some authors of a modified system of Gaussian units in which current is measured in 

electromagnetic units, so that the connection between charge and current is J, = (1/c)(dq/dt). 

Since inductance is defined through the induced voltage V = L(di/dt) or the energy U = LP’, the 
choice of current defined in Section 2 means that our Gaussian unit of inductance is equal in 

magnitude and dimensions (t7/~’) to the electrostatic unit of inductance. The electromagnetic 

current J,, is related to our Gaussian current / by the relation J,, = (1/c)I. From the energy 

definition of inductance, we see that the electromagnetic inductance L,,, is related to our Gaussian 

inductance L through L,, = c?L. Thus L,, has the dimensions of length. The modified Gaussian 

system generally uses the electromagnetic unit of inductance, as well as current. Then the voltage 

relation reads V = (L,,,/c)(dI,,/dt). The numerical connection between units of inductance is 

1 henry = § X 107" Gaussian (es) unit = 10° emu 



784 Appendix 

practical, large-scale phenomena, especially in engineering applications. The 

Gaussian system is more suitable for microscopic problems involving the elec- 

trodynamics of individual charged particles, etc. Previous editions have used 

Gaussian units throughout, apart from Chapter 8, where factors in square brack- 

ets could be omitted for the reader wishing SI units. In this edition, SI units are 
employed exclusively in the first 10 chapters. For the relativistic electrodynamics 
of the latter part of the book, we retain Gaussian units as a matter of cgnvenience. 
A reminder of the units being used appears at the top of every left-hand page, 

with the designation, Chapter Heading—SI or Chapter Heading—G. Some may 

feel it awkward to have two systems of units in use, but the reality is that scientists 
must be conversant in many languages—SI units are rarely used for electromag- 

netic interactions in quantum mechanics, but atomic or Hartree units are, and 

similarly in other fields. 

Tables 3 and 4 are designed for general use in conversion from one system 

to the other. Table 3 is a conversion scheme for symbols and equations that allows 

the reader to convert any equation from the Gaussian system to the SI system 

and vice versa. Simpler schemes are available for conversion only from the SI 

system fo the Gaussian system, and other general schemes are possible. But by 

keeping all mechanical quantities unchanged, the recipe in Table 3 allows the 

straightforward conversion of quantities that arise from an interplay of electro- 

magnetic and mechanical forces (e.g., the fine structure constant e?/fc and the 

plasma frequency w; = 47rne’/m) without additional considerations. Table 4 is a 
conversion table for units to allow the reader to express a given amount of any 

physical entity as a certain number of SI units or cgs-Gaussian units. 
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Abraham-Lorentz equation of motion, 748 electromagnetic, of electric charge and mag- 
Dirac’s relativistic generalization of, 771 netic monopole, 277 
workable approximation to, 749, 772 of bound particle, slow change caused by radi- 

Abraham-Lorentz model of electron, 750f ation damping, 750 
difficulties with, 754-5 of multipole fields, 432f 
form factor in, 754 rate of radiation of, by oscillating electric di- 
see also Classical charged particle pole, 451-2 

Absorption, resonant, 310 Angular momentum density of the electromag- 

netic field, covariant form of the conser- of radiation, by earth’s atmosphere, 467 

by oscillator, 655, 768 vation law for, 608, 610 
Absorption coefficient, definition, 310 Angular momentum operator, L, 428 

of ideal gas, 466 commutation relations for, 429 

of liquid water as a function of frequency, and other vector differential operators, identi- 
315 ties involving, 428, 432, 441, 472 

of sea water at low frequencies, 315 and vector spherical harmonics, 431 
Acceleration, relativistic transformation of, Anomalous dispersion, 310 

569 Anomaly, of magnetic moment of electron and 

muon, 565 Acceleration fields of charge in arbitrary mo- 

tion, 664 Antenna, as a boundary-value problem, 418 

Action, Lorentz invariance of, 580 center-fed, linear, 416f 

Addition of velocities, relativistic, 530f linear, radiation from in terms of multipoles, 

444f Addition theorem for spherical harmonics, 

110-1 radiation resistance of, 412 

short, linear, 412 Adiabatic invariance, of flux through particle’s 

orbit, 592f in wave guide, 392f, 404, 405 

of magnetic moment of particle, 593 Aperture in wave guide or cavity, effective di- 

Admittance, field definition of, 288 pole moments of, 421f 

Advanced Green function for wave equation, Arrival of a signal in a dispersive medium, 335f 

245 Associated Legendre functions, 108 

Attenuation, in optical fibers, 470-1 invariant expression for, 613-4 
Rayleigh scattering limit for, 470 Airy integrals, in terms of Bessel functions, 

678 in resonant cavities, 371f 

treatment by perturbation of boundary condi- Alfvén velocity, 321 
tions, 366f, 374, 401-2 Alfvén waves, 319f 

in wave guides, 363f Ampeére’s law, 179 
Attenuation coefficient, see Absorption Angles of incidence, reflection and refraction, 

coefficient 303 

Attenuation length, for visible light in the atmo- Angular distribution of radiation, from oscillat- 
sphere, 467 ing dipole, 411, 438 

Averaging procedure, to define macroscopic from oscillating quadrupole, 415-6, 438 
fields, 249, 253 from relativistic accelerated charge, 668f, 678 

Axial vector, definition of, 270 see also Bremsstrahlung; Multipole radiation; 
and Radiation Azimutha! symmetry, potential problems with, 

101f Angular momentum, electromagnetic, in circu- 
larly polarized plane wave, 350 

Babinet’s principle, 488f electromagnetic, expansion of, in plane waves, 

350 Bessel equation, 112 
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in magnetostatics, methods of solving, 194f Bessel functions, 112f 
in rectangular coordinates, 70f connection with Airy integrals, 678 
in spherical coordinates, 95f dual integral equations involving, 132, 205 
in two dimensions, 72f expansions involving, 115, 118, 119, 126, 138, 

140, 141, 702, 705 see also Diffraction; Resonant cavity; and 
Wave guide of first kind, J,, 113 

Breit interaction, 598 Fourier-Bessel series, 115, 138 
Bremsstrahlung, 714f Fourier-spherical Bessel series, 119 

~ 

angular distribution of,712 ™ Fourier transforms of Ky and K,, 656 
as scattering of virtual quanta, 729-30 integral relations involving, 118, 126, 132, 140, 
Bethe-Heitler formula for, 717, 719 142, 205, 493 
classical, 716 integral representation of, 140 
frequency spectrum, 716, 717, 719 Kapteyn series of, 116, 702, 705 

at low frequencies, 711 leading behavior for large and small argu- 
in Coulomb collisions, 714f ments, 114, 116, 427 
inner, 732 modified, /,, K,, 116 
maximum effective momentum transfer in, Neumann series of, 116 

713, 715, 718 orthogonality, on finite interval, 114-5, 138 
nonrelativistic, 717-8 on infinite interval, 118, 140 

recursion formulas, 113, 427 polarization of, 712 

relativistic, 718f Schlomilch series of, 116 
of second kind, N,, 113 screening effects in, 721f 

Brewster’s angle, 306-7 series for J,, 113 
Brillouin precursor, 338 spherical, 426-7 

limiting forms, 427 
Canonical stress tensor, 605-6 Wronskians, 427 

of third kind, H™, H®, 113 for electromagnetic fields, 606 
Capacitance, definition of, 43 zeros of J,,(x), 114 

of a circular disc, Cavendish’s value for, 19 zeros of J,,(x), 370 
variational principles for, 53 Beta decay, emission of radiation during, 730f 

Bethe-Heitler formula for bremsstrahlung, 717, Cauchy boundary conditions, 38 

719 Causal connection between D and E, 332 

Causal Green function, 614 Bibliography, 785f 

Biot and Savart law, 175f Causality, 330f 

Jefimenko generalization of, 247 consequences in dispersion, 334 

in Coulomb gauge, 242, 291 Birefringence of the ionosphere, 317 

Bistatic cross section, definition of, 457 lack of, with radiation reaction, 748, 772 

Blue sky, Rayleigh’s explanation of, 465f in special relativity, 528 

BMT equation for spin, 561f Cavendish’s apparatus for inverse square law, 

6-7 Boost parameter, relativistic, 526 
Born approximation, in scattering, 464-5 Cavity, resonant, see Resonant cavity 
Born-Infeld nonlinear electrodynamics, 10 Center of mass, of electromagnetic energy, 622 

relativistic kinematics of, 575 Bound states in wave guides, 405-6 

Boundary conditions, at interface between me- Characteristic time, in radiation damping, 746 
dia, 18, 154, 194 Charge, discreteness of, 4-5 

electric, 25 Cauchy, Dirichlet, and Neumann, 37-8 

for dielectric wave guide, 388-9 electronic and protonic, equality of magni- 

tudes, 554 inconsistency in Kirchhoff’s approximation for 

diffraction, 480 invariance of, 554 

mixed, example of, 129f, 205 quantization of, according to Dirac, 275f 

perturbation of, 366f, 374, 401-2 radiation emitted by sudden creation or disap- 

at surface of, good conductor, 353 pearance of, in beta processes, 730f, 732f 
scatterer, in terms of surface impedance, 475 in uniform motion in vacuum, fields of, 559- 

60 for TE and TM waves in wave guide, 359 

Boundary-value problems, Green function Charge conservation, 175, 238, 777 
method of solution, 38f Charge density, and current density as 4-vector, 

554 in cylindrical coordinates, 117f 

in dielectrics, 154f and current density of charged particle, covar- 
image method of solution, 57f iant expression for, 615 
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effective magnetic, 196-7 Conservation, of angular momentum of particles 
induced by point charge near conducting and fields, 288 

sphere, 59 of charge and current, 3, 175, 238, 777 
at sharp corners, edges, and points, 78, 106-7 of electromagnetic angular momentum, in co- 
at surface of conductor, quantum-mechanical, variant form, 608 

21 of energy of particles and fields, 258f, 611 
Charged particle, dynamics, 579f of field energy and momentum, in covariant 

Lorentz force on, 3, 260, 579 form, 607, 609 
motion, in nonuniform magnetic fields, 588f of momentum of particles and fields, 260, 611 
in uniform static magnetic field, 585 Constitutive relations, 14 
classical model of, 759f Continuity, at interface, of tangential E and nor- 

Poincaré stresses in, 755-7, 760f mal B, 18 
stability and covariance of energy and mo- Continuity equation, for charge and current, 3, 

mentum, 762-3 175, 238, 777 
different contributions to mass, 761-2 in covariant form, 555, 610 
See also Abraham-Lorentz model of for electromagnetic energy flow, 259 

electron in dissipative media, 264 
Cherenkov angle, 638 Contraction of length, see FitzGerald-Lorentz 

contraction Cherenkov radiation, 637f 
Circular current loop, fields of, 181f Contravariant vector, definition of, 540 
Classical electron radius, 604, 695, 755 Convective derivative, in Faraday’s law, 210 
Classical limit, of angular momentum in multi- in fluid flow, 320 

pole fields, 435 Conversion table, for equations in Gaussian and 
of electromagnetic fields, 3-4 SI units, 782 

Clausius-Mossotti relation, 162 for given amounts in Gaussian and SI units, 783 
Closure, see Completeness Correspondence principle of Bohr, 704 
Coherence, of scattering by collection of scatter- Coulomb gauge, definition of, 241 

ing centers, 461-2 and causality, 242, 291 
Coherence volume in transition radiation, 649 Coulomb’s law, 24 

Collisions, Coulomb, energy loss in, 625f Jefimenko’s generalization of, 246f 

radiation emitted during, 709f Coupling constant, running, 12 

Collision time, for fields of relativistic particle, Covariance, of electrodynamics under Lorentz 

560 transformations, 553f 

Commutation relations, for infinitesimal Lorentz of physical laws under Lorcntz transforma- 

tions, 517, 540 transformation generators, 548 

of angular momentum operator, L, 429 Covariant expressions, for electromagnetic en- 

ergy and momentum, 757f Complementary screen, definition of, 488 
for equation of motion for spin, 561f Completeness, of set of orthogonal functions, 

68 for Lorentz force equation, 557, 580 

for Maxwell equations, 557 Completeness relation, 68 
for radiative reaction force, 771 for Bessel functions on infinite interval, 119, 

140 Covariant vector, definition of, 541 

Critical frequency, as upper limit of frequency for complex exponentials, 70, 125 
spectrum of radiation emitted by relativ- for spherical harmonics, 108 
istic particle, 673, 679 Compton effect, modification of Thomson scat- 

Critical opalescence, 469-70 tering by, 696-7 
Cross section, Bethe-Heitler, for bremsstrah- Conduction in a moving medium, 320, 572 

lung, 717 Conductivity, effect of, on quasistatic fields, 

218f classical, for bremsstrahlung, 716 

classical particle scattering, relation to impact relation to complex dielectric constant, 312 
parameter, 655 Conductor, attenuation in, 313 

definition of, for scattering of electromagnetic boundary conditions at, 352f 
waves, 457, 694 definition of, 50 

Rutherford, 625, 714 diffusion of fields in, 221f 
for scattering, and absorption of radiation by fields at surface of, 352f 

harmonically bound charge, 766f fields inside, 220, 354 
by large conducting sphere, 499-500 penetration or skin depth in, 220, 354 
by small conducting sphere, 460, 477 surface impedance of, 356 
by small dielectric sphere, 458-9 Conical hole or point, fields near, 104f 
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of ionosphere, 316f Cross section (Continued) 
model for, 309f for small-angle particle scattering, in screened 

Coulomb field, 641, 721 of plasma, 313 

Thomson, 695 of plasma in magnetic field, 347 

relation to forward scattering amplitude, 504 total, for scattering of fast particles by atoms, 

643 and signal propagation, 335f 

Dielectrics, 151f see also Bremsstrahlung; Scattering 

Current, absolute and international units of, anisotropic, waves in, 346 
_~ 

775-6 boundary conditions, 18, 154f 
boundary-value problems with, 147f Current density, continuity equation for, 3, 175, 

238,777 | electrostatic energy in, 165f 
method of images in, 154-7 force on, in a magnetic field, 178 

Dielectric wave guide, see Optical fibers magnetization caused by, 186 

Diffraction, Babinet’s principle in, 488f Current flow, near surface in good conductor, 

221, 356 by circular aperture, 490f 

Current loop, circular, vector potential and comparison of scalar and vector approxima- 

fields of, 181f tions, 494 

Fresnel and Fraunhofer, 491 force between two, 177-8 

Curvature of magnetic field lines, and associated by half plane, 510-1 

particle drift velocity, 589-91 Kirchhoff approximation, 479 

Cutoff frequency, in wave guide, definition of, obliquity factor in, 482 

360 Rayleigh-Sommerfeld approximation, 481 

Cutoff modes in wave guide, 360, 390 scalar Huygens-Kirchhoff theory of, 478f 

Cylinder functions, see Bessel functions by small apertures, 495, 510, 512 

Cylindrical coordinates, boundary-value prob- Smythe’s vector theorem for, 487-8 

lems in, 111f Smythe-Kirchhoff approximation, for circular 

delta function in, 125 aperture, 490f 
Green function in, 126-7, 140 by sphere, in short wavelength limit, 495f 

Laplace equation in, 111 vectorial theory of, 485f 

separation of variables in, 112 Diffusion, equation of, 219 
waves in, 356f magnetic, 221f 

Dilatation of time, 528 
Damping, of oscillations in cavity, 371 Dimensions, and magnitudes, of electromagnetic 

radiative, of oscillator, 763f quantities, 779 
see also Radiative reaction of physical quantities, arbitrariness of, 775—6 

Darwin Lagrangian, 596f Dipole approximation, in energy loss calcula- 
Decay, of particle, relativistic kinematics of, ex- tion, 634, 655 

amples, 573-4 Dipole fields, of conducting sphere in uniform 
of pi mesons, time dilatation in, 529 field, 63-4 

Delta function, 26-7 of dielectric sphere in uniform field, 158 
in arbitrary coordinates, 551, 120 electrostatic, 147, 149 
charge densities in terms of, 27, 123 of electrostatic dipole layer, 32-4 
current densities in terms of, 181, 187, 416, of magnetized body, 197-8 

445 magnetostatic, 186, 188 
integral representation for, 70, 118, 119, 125, oscillating electric, 411, 450-1 

128, 140 oscillating magnetic, 413 
relation to Laplacian of I/r, 35 scattered, by small scatterer, 457 
three-dimensional, in cylindrical coordinates, Dipole moment, approximation for coupling of 

125 source to modes in guide, 420-1 
in spherical coordinates, 120 effective, of aperture, 422f 

Density effect in energy loss, 631f electrostatic, 146 
Density fluctuations, as cause of scattering, energy of, in external field, 150, 190 

468f induced, 152, 309 
Diamagnetism, definition of, 15 interaction energy of two, 151 
Dielectric constant, analytic properties of, 332f magnetostatic, 186, force on, 189 

of conductor, 311-2 of current loop, 183, 186 
definition of, 154 relation of, to particle’s angular momentum, 

187 dispersion relations for, 333-4 
high-frequency limit of, 313 torque on, 189-90 
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oscillating electric, 410 for wave equation in a rectangular box, 128-9 
oscillating magnetic, 413 in wave guide, orthonormal expansion of, 390 
use of induced static, in scattering at long Einstein’s postulates of relativity, 517-8 

wavelengths, 456f Einstein-Smoluchowski formula, 469 
Dipole sum rule, for total radiative cross sec- Elastic scattering, of fast particles by atoms, 640f 

tion, 773 Electric charge, discreteness of, 4-5 
Dirac delta function, see Delta function invariance of, 553-4 
Dirac magnetic monopole, 273f Electric dipole, see Dipole fields, Dipole 

moment Dirac quantization condition for electric charge, 
275 Electric displacement, definition of, 13, 153, 780 

Dirac relativistic equation of motion with radia- Electric field, E, of charge, in uniform relativis- 
tive reaction, 771 tic motion, 559 

Dirichlet boundary conditions, definition of, 37 limiting form as v — c, 573 
Discontinuity, at interface, of normal D and tan- definition of, 24—5, 777 

gential H, 18, 31 derivable from potentials, 30, 239 
of potential, across dipole layer, 34 near corners and edges, 78 

Discreteness, of charge, 4—5 relativistic transformation of, 558 
of number of photons, 4 Electric multipole fields, see Multipole fields 

Dispersion, and causality, 330f Electric permittivity tensor, 14, 154 
anomalous, 310 Electric polarization, 13-4, 152 
in dielectrics, 309f Electric susceptibility, definition of, 154 
in ionosphere, 317-8 ‘Electric’? waves, 359, 430-1 
in plasmas, 313 Electromagnetic energy and momentum, covari- 
and propagation of pulse, 322f, 335f ant expression for, 757f 
in water, 314-5 Electromagnetic energy density, 259, 287 

Dispersion relations, Kramers-Kronig, 333 effective, in media with dispersion and losses, 

263 Displacement, electric, D, 13, 153 
Displacement current, 238 Electromagnetic fields, explicit Lorentz transfor- 

mation of, 558 Dissipative effects, see Absorption; Attenuation; 

and Damping of localized oscillating source, general proper- 

ties of, 407f Divergence, in four dimensions, 543 

Divergence theorem, 29 multipole expansion of, 429f 

Doppler shift, Galilean, 519 in wave guide, orthonormal expansion of, 389f 

relativistic, 529-30 Electromagnetic field-strength tensor, 556 

transverse, 530 Electromagnetic momentum, 261 

Electromagnetic momentum density, 262 Drift, E x B, of particle in crossed electric and 

Electromotive force, 209 
e 

magnetic fields, 586—7 

Electron, charge of, 4 of guiding center, for particle in nonuniform 
classical model of, 750f, 759f magnetic fields, 588f 
difficulties with, 754—5 Drift velocity, gradient, 589 

radius of, classical, 604, 695, 755 curvature, 590-1 
Electron capture by nuclei, radiation emitted Dual field strength tensor, 556 

during, 732f Dual integral equations, involving Bessel func- 

tions, 132, 205 Electrostatic potential, definition of, 30 

Electrostatic potential energy, 40f Duality transformation of fields and sources, 274 
ELF communications, 316 Dyadic notation, 288 
Elliptic integrals, use of, 139, 182, 231, 232 Dynamics of relativistic charged particles in ex- 

ternal fields, 579f Energy, electromagnetic, covariant expression 

for, 758 of spin of relativistic particle in external fields, 

561f of bound particle, slow change of, caused by 

radiation damping, 749 

of charge distribution in external electric field, Earth-ionosphere system as resonant cavity, 374f 
150 Eddy currents, 218f 

conservation, see Poynting’s theorem Eigenfrequency, of resonant cavity, 369 
of current distribution in external magnetic Eigenfunctions, 127-8 

field, 190 in cylindrical cavity, 368f 
of dipoles in externa! fields, 150, 190 expansion of Green function in terms of, 128 
electromagnetic field, 260 for fields in wave guides, 360, 390 

in dispersive media with losses, 262f in rectangular guide, 361, 391 
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Faltung theorem of Fourier integrals, 330 Energy (Continued) 
electrostatic, in dielectric media, 165f Faraday effect, astrophysical, 346 

Faraday’s law of induction, 208f electrostatic potential, 40f 
in differential form, 211 hyperfine interaction, 190-1 
for moving circuit, 209-10 magnetic, 212f 

Ferromagnetism, definition of, 15-6 of magnetically permeable body, 214 
Feynman-Heaviside expressions for fields, see relativistic, of a particle, 537-8 

self-, 42, 754 Heaviside-Feynman expressions for fields 

Field, electric, see Electric field~ Energy conservation between particles and 
fields, 258f, 610-1 magnetic, see Magnetic field 

Fields, of charge in arbitrary motion, 664 Energy density, electromagnetic, 259 
of charge moving uniformly, in dielectric, electromagnetic, as (0,0) element of symmet- 

Fourier transforms of, 633-4 ric stress tensor, 609 

in vacuum, 559 effective, in dissipative media, 263 

in vacuum, Fourier transforms of, 650, 656 electrostatic, 40f 

of relativistic charge, equivalence of, to pulse Energy flow, 259 

of radiation, 560, 724f velocity of, 323, 325 

Field-strength tensors, 556 in wave guide, 363f 
Finite difference method, 47f Energy-level shift due to radiative reaction, 

763£ Finite element analysis (FEA), 79f 
Energy loss, Bethe’s quantum-mechanical for- FitzGerald-Lorentz contraction hypothesis, 517 

mula for, 627 Fizeau’s experiment, 517, 570 

Bohr’s classical formula for, 627 Fluctuations, in density of fluid, and scattering, 

468-9 density effect in, 631f 

in electronic plasma, 656-7 in energy loss, 631 

fluctuations in, 631 Force, between charge and image charge, 60, 61, 

62 by magnetic monopole, 658 

radiative, in collisions, nonrelativistic, 718 on charged surface of conductor, 42-3 

in collisions, relativistic, 723-4 Coulomb’s law of, 24 

per revolution in circular orbit, 667 between current-carrying circuits, 178, 777 

Energy-momentum 4-vector, 538 on current distribution in magnetic field, 188f 
Energy radiated, by accelerated charge, angular on dielectric body, 167, 169 

Lorentz, 3, 260, 579 and frequency distribution of, 673f 

in covariant form, 557, 580 by accelerated magnetic moment, angular and 

frequency distribution of, 704 on magnetically permeable body, 214 
Energy transfer, in Coulomb collision, 625f on magnetic dipole in nonuniform field, 189 

to harmonically bound charge, 655 on permanent magnets, 230 

reconciliation of classical and quantum, 630 between point charge and sphere, 60, 61, 62 
Equations of motion with radiative reaction, radiative reaction, 748-9, 771-2 

748-50, 771-2 between two parallel wires, 178, 777 
Ether, 515 Force density, and divergence of stress tensor, 

611 Ether drift experiments, 519-22 
Evanescent modes in wave guide, 360 on surface of good conductor, 396 
Excitation of waves in wave guide, by localized Force equation, Abraham-Lorentz, 748 

source, 392f, 419f approximation to, 749 
Expansion, of arbitrary fields in wave guide in with radiative reaction, Dirac’s relativistic, 711 

normal modes, 392 approximation to, 772 
of circularly polarized vector plane wave in integrodifferential, 772 

multipole fields, 471f Forward scattering amplitude, relation of, to the 
of Green function, e“*/R, in spherical waves, total cross section, 502 

428 relation to dielectric constant, 504 
of |x — x’|“!, in cylindrical coordinates, 126, 4-current, 554 

140 4-divergence, 543 
in plane waves, 128 4-Laplacian, 543 
in spherical coordinates, 102, 111 4-tensors of rank k, 540-1 

of scalar plane wave, in spherical harmonics, 4-vector, contravariant and covariant, definitions 
471 of, 540-1 

Expansions, see Orthonormal expansions 4-vector potential, 555 
Extinction coefficient, see Absorption coefficient 4-velocity, of particle, 532 
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Fourier integrals, 69, 243, 253, 330 Goos-Hianchen effect, 308, 342 
Fourier series, 68 Gradient, contravariant and covariant in special 

summation of, example, 74-5 relativity, 543 
Fourier-Bessel series, 115, 138 of electric field, and force on electric dipole, 

171 Fourier transform, of exponentially damped 
wave, 372, 765 and quadrupole interaction, 150-1 

of fields of charge in uniform motion, in di- of magnetic induction, and associated particle 
electric, 633-4 drift velocity, 588-9 

in vacuum, 650, 656 and force on magnetic dipole, 189 
of wave packet, 323, 327, 336 in rectangular, cylindrical, and spherical coor- 

Fraunhofer diffraction, definition of, 491. See dinates, end papers 
also Diffraction in spherical form with L, 472 

Green function, definition of, in electrostatics, Frequency distribution of radiation, emitted by 

38 electron in classical equivalent of hydro- 

gen atom, 704—5 e*®/R, spherical wave expansion of, 428 
emitted by extremely relativistic charge, quali- for Helmholtz wave equation, 244 

tative aspects of, 671-3 invariant, for wave equation, 612f 

retarded and advanced, 244, 614 emitted by relativistic charge in instanta- 

neously circular motion, 681-2 for scalar diffraction by plane screen, 480 

explicit formulas for, 675-6 symmetry of electrostatic, 40 

from the sun, 467 for time-dependent wave equation, 245 
of transition radiation, 653 Green function in electrostatics, 38-40 

from undulators and wigglers, 691, 693 for concentric spheres, 122 

for cylindrical box, 143 Frequency shift, Aw, in resonant cavity, 374 

of resonant line of oscillator with radiation examples of use of, 64-5, 122f, 141, 142 

expansion of, in cylindrical coordinates, 125f damping, 763f 
in Legendre polynomials, 102 Frequency spectrum, see Frequency distribution 

of radiation in eigenfunctions, 127f 

Fresne! diffraction, definition of, 491. See also in spherical coordinates, 111, 119f 

Diffraction for Neumann boundary conditions, example 
of, 144 Fresnel formula for speed of light in moving 

media, 570 symmetry of, 40, 52 

Fresnel formulas for reflection and refraction, for rectangular box, 128-9 

305-6 for sphere, 64, 119f 

Fresnel’s rhombus, 308 for two-dimensional problems, 89-93, 127, 
142 

Galerkin’s method, in FEA, 79f for two parallel grounded planes, 140-1 
Green’s first identity, 36, end papers Galilean invariance, 515 
Green’s reciprocation theorem, 52 and Faraday’s law, 209-10 
Green’s theorem, 36, end papers of phase of wave, 519 

use of, in diffraction, 479 Galilean relativity, 515-6 
vector equivalent of, 482f Galilean transformation of time and space coor- 

Ground, concept of, 19-20 dinates, 515 
Group velocity, 325 Gauge, Coulomb, 241 

and phase velocity, 325 Coulomb and causality, 242, 291 
in wave guide, 364 Lorentz, 241 

Guides, see Wave guide radiation or transverse, 241 
Gyration frequency, of particle in magnetic Gauge invariance, 240 

field, 317, 585 Gauge transformation, 181, 240 
Gyration radius, 586 and Dirac string, 279-80 
Gyrotropic media, phenomenological expression and particle Lagrangian, 583 

for polarization in, 273 and Schrédinger equation, 280 

Gaussian pillbox, 17 
Half-width, of resonant line shape, 765 Gaussian units, basic electrodynamic equations 

relation to Q value of resonant cavity, 372 in, 781. See also Units 
Hall effect, phenomenological expression for, Gauss’s law, 27-9 

289 differential form of, 29 
Hamiltonian, of charged particle in external g-factor, of electron, 548 

fields, 582, 585 and muon, numerical values of, 565 
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and magnetic energy, 215 Hamiltonian density for fields, as (0,0) compo- 
mutual, of two current loops, 234 nent of symmetric stress tensor, 609 
self, of transmission lines, 232 Hankel function of order v, 113. See also Bessel 

function units of, 783 

Induction, Faraday’s law of, 208f- Hankel transform, 118 
Infinitesimal generators of the Lorentz group, Heaviside-Feynman expressions for fields, 248, 

284 546, 548 

Inhomogeneous plane wave, 298 Helical path of particle in magnetic field, 586 
~ ~ 

Inner bremsstrahlung, 732 synchrotron radiation associated with, 703 
Integral equations of the first kind, dual, 132 Helicity, connection to circular polarization, 300 
Interaction energy, see Energy Hemispheres, at different potentials, 65f, 101 
Interface between two media, boundary condi- Hertz vectors, 280f 

tions at, 16f Hidden momentum, 189, 618 

Internal field, at position of molecule in dielec- High-frequency behavior of dielectric constant, 
tric, 160 313, 333 

Invariance, see Adiabatic invariance, Relativistic Hole, circular, in conducting plane, electric 
invariance fields near, 134 

Inverse distance between two points, expansion effective dipole moments of, 133, 205, 422-4 
in Bessel functions, 126, 140 magnetic fields near, 206 

expansion, in Legendre polynomials, 102 Huygens’s principle, 478 

Hydrodynamic equations for conducting fluid, m spherical harmonics, 111 

319-20 Fourier integral representation of, 128 

Hyperfine interaction energy, 190-1 Inverse square law, precise verification of, 5f 

Hysteresis, magnetic, 193 Inversion, see Spatial inversion 

Ionosphere, propagation of waves in, 316f, 346-7 

Irrotational vector, definition of, 242 Idealizations in electromagnetism, 19f 

Image charges, see Images 

Jacobian, in Lorentz transformation of 4-dimen- Images, method of, 57f 

sional volume element, 555 for conducting sphere in uniform field, 62f 

in transformation of coordinates for delta for dielectrics, 155-7 

function, 120 for magnetically permeable media, 229 

for point charge near conducting sphere, 58f Jefimenko’s expressions for fields, 246f 
for two charged spheres, 86-7 

Impact parameter, and scattering angle, 655 Kinematics, relativistic, examples of, 573f 

maximum effective, in Coulomb collisions, notation for, 565-6 

626, 627 Kirchhoff diffraction, see Diffraction 
minimum effective, in Coulomb collisions, Kirchhoff’s integral, in diffraction, 479 

626, 629 vector equivalents of, 482f 

Klein-Nishina formula, 697 in method of virtual quanta, 725, 729 

quantum-mechanical, 629 effects of, in method of virtual quanta, 730 
Impedance, of free space, 297 Kramers-Kronig relations, 333f, 348-9 

surface, 355, 475 

of two-terminal device, general definition of, Lagrangian, Darwin, for charged particle inter- 
264f actions, 597 

wave, in wave guide, 359 for electromagnetic fields, 598f 
Incoherent scattering from collection of Proca, for massive photons, 600f 

scatterers, 462 for relativistic charged particle in external 
Index of refraction, 296, 303 fields, 579 

analytic properties of, 337 Lagrangian density, for continuous fields, 598-9 
and phase and group velocities, 325 Lamb shift, 766 
relation to forward scattering amplitude, 504 Laplace equation, 34 
of water, as function of frequency, 314-6 boundary conditions for, 37 
see also Dielectric constant in cylindrical coordinates, 111f 

Inductance, 215f general solution of, in cylindrical coordinates, 
117-9 accurate result for circular loop, 234 

coefficients of mutual and self, 215-6 in rectangular coordinates, 71-2 
estimation of self, 216 in spherical coordinates, 110 
high-frequency compared to low-frequency, in two-dimensional coordinates, 77, 89 

1 in rectangular coordinates, 70f 
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in spherical coordinates, 95 Lorentz invariant differential photon spectrum, 
in two-dimensions, Cartesian coordinates, 72f 710, 720 
in two-dimensions, polar coordinates, 76 Lorentz-Lorenz relation, 162 
uniqueness of solution of, 37-8 Lorentz transformation, 524f 

Laplace transform, use of, 222 of electric and magnetic fields, 558 
Laplacian operator, and angular momentum op- explicit matrix form of, 546-7 

erator, 429 of 4-vector, 526 
in four dimensions, 543 generators of, § and K, 546 

Larmor formula for radiated power, 665 matrix representation of, 543f 
relativistic generalization of, 666 noncommutativity of, 548 

Legendre differential equation, 96 proper and improper, definitions of, 544 
Legendre functions, associated, 108 of time and space coordinates, 525 

see also Relativistic transformation asymptotic form for large v, in terms of Bessel 
function, 106 Loss, see Attenuation, Power loss 

of order v, 105 
Legendre polynomials, 97 Macroscopic averages, 249-50 

expansion of inverse distance in, 102 Macroscopic electromagnetic quantities, 250f 
explicit forms of, 97 Macroscopic equations, elementary derivation 
integrals of products of, with powers of cos 0, of, for electrostatics, 151f 

100-1 for magnetostatics, 191f 
orthogonality of, 99 Macroscopic fields, 13, 250, 255-6 
recurrence relations for, 100 Macroscopic Maxwell equations, 13, 238 
Rodrigues’s formula for, 98 derivation of, 248f 
see also Spherical harmonics Magnet, permanent, 16, 200 

Lenz’s law, 209 energy of, in external field, 190 

Level shift, of oscillator frequency, from radia- method of treating magnetostatic boundary 
tion damping, 763f value problems involving, 196 

Liénard’s generalization of Larmor power for- Magnetic dipole, see Dipole fields; Dipole 

moment mula, 666 

Liénard-Wiechert potentials, 661f Magnetic charge and current densities, 273-4 

Lifetime, of pi mesons in relativistic motion, transformation properties of, 274 

529 Magnetic diffusion, 221-3 

see Transition probability Magnetic field, H, boundary conditions on, 18, 

194 Light, speed of, 3, 776 
definition of, 14, 192, 257 Light cone, 527 
see also Magnetic induction Limiting speed, 518 

Magnetic flux density, see Magnetic induction Linear superposition, of electric fields, 26 
Magnetic induction, B, boundary conditions on, of plane waves, 296, 322f 

18, 194 of potentials, example of, 61 
of charge in uniform relativistic motion, 559 validity of, 9f 

Line breadth, of oscillator with radiation damp- of charge, limiting form as v — c, 573 
of circular loop, 182f ing, 763f 
of current element, 175 Localized source, in wave guide, 392-3 
definition of, 174, 178 see also Dipole; Multipole; and Multipole 

moment of long straight wire, 176 

of magnetized sphere, 198 London penetration depth, 604 
of nonrelativistic moving charge, 176, 560 Longitudinal vector, definition of, 242 
relativistic transformation of, 558 Lorenz condition, 240, 294, 555 

Lorentz condition. See Lorenz condition. Magnetic moment, adiabatic invariance of, 

592f Lorentz force, 3, 260, 553, 579 
anomalous, of the electron and muon, 565 in covariant form, 557, 563, 580 
density, 186, 256 density, 611 
effective, of hole in conductor, 205 Lorenz gauge, 241 
of electron, 548 Lorentz group, 540 
force on, in nonuniform magnetic field, 189 infinitesimal generators of, 546, 548 
intrinsic, caused by circulating currents, 191 Lorentz invariance, of electric charge, experi- 
radiation emitted, in disappearance of, 735-6 mental evidence for, 554 

when in motion, 704 of radiated power, 666 

see also Relativistic invariance radiation from time-varying, 413f, 442 
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Microwaves, see Diffraction; Resonant cavity; Magnetic moment (Continued) 
and Wave guide cattering by induced, 457, 460 

Mirror, magnetic, 595-6 torque on, 174, 189-90 

see also Dipole moment Mixed boundary conditions, 38, 129, 205 
MKSA units, see Units Magnetic monopole, 273f 

Modes, in cylindrical cavity, 3688 ° and quantization of electric charge, 275f 
in cylindrical dielectric wave guide, 388-9 vector potential of, 278, 290-1 

404 Magnetic multipole fields, see Multipoles, Multi- 
~~ 

normal, in wave guide, 389f pole fields 

Magnetic permeability, 14-5, 193 propagating and cutoff or evanescent, 360 
TE and TM, in wave guide, 359 Magnetic polarization, 13-4 

in slab dielectric guide, 385f Magnetic pressure, 320 

Magnetic scalar potential, 180, 195 in spherical geometry, definition of, 375 

Magnetic shielding, 201f, 228-9 in wave guide, 360 

Magnetic tension, 320 Molecular multipole moments, 252, 256 
“Magnetic” waves, 359, 430 Molecular polarizability, 151 

models for, 162f Magnetization, definition of macroscopic, 192, 256 

of current density distribution, 186 Momentum, canonical, for particle in external 
fields, 582 divergence of, as effective magnetic charge 

density, 196 conservation of, between particles and fields 

261, 611 effective current density of, 192 

radiation by time-varying, 439f electromagnetic, covariant expression for, 758 

hidden mechanical, 189, 618 Magnetized sphere, 198f 

in external field, 200-1 relativistic, of particle, 536 
Magnetohydrodynamics, equations of, 320 Momentum density, electromagnetic, 262 

Magnetostatics, basic equations of, 180, 194 and co-moving mechanical momentum in di- 

electric, 262, 294 methods of solving boundary-value problems 

in, 194f as part of covariant symmetric stress tensor 

609 Mass of photon, consideration of, using Proca 

Lagrangian, 600f in macroscopic media, 262 

Momentum transfer, in Coulomb collision, 625 impossibility of measuring, using lumped cir- 
cuits, 601-2 maximum effective, in bremsstrahlung, 713 

limits on, 7-9 715, 718 
modification of the earth’s dipole field by, 621 minimum effective, in bremsstrahlung, 716 

717, 718, 721-2 Maximum and minimum impact parameters, see 

Impact parameters Monopole radiation fields, absence of, 410 
Maximum and minimum scattering angles, in 

3 
Mossbauer effect, use in ether drift experiments 

521-2 elastic scattering by atoms, 641-2 
Maxwell equations, 2, 238 use to detect transverse Doppler shift, 530 

in covariant form, 557 Motion, of charged particle in uniform static 
derived from a Lagrangian, 599-600 magnetic field, 585-6 

see also Particle motion in different systems of units, 781 
macroscopic, 13f, 238, 248f Moving charge, fields of, 549, 573, 664 
plane wave solutions of, 295f Moving circuits and law of induction, 209-10 
spherical wave solutions of, 429f Multiple scattering of particles by atoms, 643f 

Maxwell stress tensor, 261 Multipole, electrostatic, 146 
electrostatic, Cartesian, 146-7 Mean-square angle of scattering, 643-4 

Mean-value theorem, for electric field, 149 spherical, 146 
for electrostatic potential, 52 magnetostatic, 184f 
for magnetic field, 188 radiating, general aspects of, 407f 

Meissner effect, 603 time-varying, 407f, 439f 
Metals, actual distribution of charge at surface see also Dipole moment; Magnetic moment 

of, 21 and Multipole moment 
ultraviolet transparency of, 314 Multipole expansion, of electromagnetic fields 

429f Method of Images, see Images 
Metric tensor of special relativity, 542 of electrostatic potential, 145f 
Michelson-Morley experiment, 517 of Green function for wave equation, 428 

modern successors to, for detection of ether of interaction energy, 150 
drift, 519f of localized source in wave guide, 419f 
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of radiation by linear antenna, 444f Operator relations, see Gradient; Laplacian 
of scalar plane wave, 471 Optical fibers, attenuation in, 383, 470-1 
of vector plane wave, 471f circular, 387f 

Multipole fields, 429f eikonal approximation for, 380f 
angular momentum of, 433-5 graded index for, 380, 384, 402 
connection to sources, 439f meridional and skew rays in, 381 
electric and magnetic, 430-1 modal dispersion in, 383, 403 
energy of, 433 modes in, 385f 
expansion of arbitrary source-free fields in, 431 propagation in, 378f, 385f 
near-zone properties of, 432 slab, 385f 
parity properties of, 436 Optical theorem, proof of, 500f 
radiation-zone properties, 433 Orthogonal functions and expansions, 67f 
use of, in description of scattering, 473f Orthogonality, of Bessel functions on finite in- 

Multipole moment, electrostatic, 146-7 terval, 115, 138 
estimates of, for radiating atoms and nuclei, of Bessel functions on infinite interval, 118, 

442f 119 
of linear center-fed antenna, 446 of complex exponentials on infinite interval, 
magnetostatic, 184f 

of oscillating source, exact expressions for, of Legendre polynomials, 99 
440 of sines and cosines, 68 

long-wavelength approximations for, 441-2 of spherical harmonics, 108 
see also Dipole moment; Magnetic moment; of vector spherical harmonics, 431 

and Quadrupole moment Orthogonal transformations, 268 

Orthonormal, definition of, 67 Multipole radiation, angular distributions of, 

437f Orthonormal expansions, 67f 

Fourier, on finite interval, 68 by atoms and nuclei, 442f 

on infinite interval, 69 by linear center-fed antenna, 444f 

Fourier-Bessel, 115, 118, 138-9 lowest order, elementary discussion of, 410f 

on infinite interval, 118-9 quantum-mechanical selection rules for, 436 

sources of, 439f Legendre, 99 

total power radiated in, 439 spherical Bessel function, 119 
spherical harmonic, 110 

vector, for fields in wave guide, 390-1 Neumann boundary conditions, definition of, 37 
Oscillations, see Radiation; Waves use of, in generalized Kirchhoff diffraction 
Oscillator, absorption of energy by, 655 theory, 480-1 

in model for dielectric constant, 162, 309 Neumann function, 113. See also Bessel 
functions with radiation damping, 763f 

scattering and absorption of radiation by, Nonlinear electrodynamic effects, 10f 
766f Nonlinear optics, 16 

Oscillator strength, 310, 627, 634, 765 Nonlocality, in time, in connection between D 
and E, 330 

Paramagnetism, definition of, 15 in time and space, 14-5, 331-2 
Parity, of multipole fields, 436. See also Spatial Normalization of fields in wave guide, 391 

Inversion Normal mode expansion of fields in wave guide, 
389f Parseval’s theorem, example of, 674 

Particle motion, in crossed E and B, 586f Nuclear quadrupole moment, 151 
in dipole field of earth, 619 interaction energy of, 150, 171 
in external fields, 579f Nuclei, estimates of multipole transition rates in, 

442f in inhomogeneous B, 588f, 592f 
with radiation reaction, 748-50, 769, 771-2 Numerical methods, in electrostatics, 47f, 79f 
in uniform static B, 585-6 in magnetostatics, 206f 

Penetration depth, see Skin depth 

in superconductivity, 604 Obliquity factor in diffraction, 482 
Perfect conductor, definition of, for magnetic Obstacles in wave guides, 394 

fields, 204 Ohm’s law, 14, 219, 312, 356 
Permanent magnetization, 16 covariant generalization of, 572 
Permeability, incremental, 193 in moving medium, 320 

magnetic, 14, 193 nonlocality of, in conductors at high frequen- 
Permittivity, electric, 14 cies, 332 
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Polarization effects in energy loss, 631f Perturbation of boundary conditions, method of, 
Polarization of radiation, by reflection, 307 366f, 374, 401 

from accelerated charges, 665, 676, 678, 706 for degenerate modes, 402 
in bremsstrahlung, 712 Phase difference, and elliptic polarization, 299 
Cherenkov, 639 between E and B in conductor, 221, 354 
circular, elliptical, linear, 299f Phase of plane wave, relativistic invariance of, 

519, 529 left- and right-handed, definition of, 300 
from multipoles, 411, 414, 437 Phase shift for scattering by sphere, 476 

~ 

scattered by atmosphere, 468° Phase velocity, and group velocity, 325-6 

of Alfvén waves, 321 scattered by small conducting sphere, 460-1 
scattered by small dielectric sphere, 459 and group velocity, in wave guide, 364 

of whistlers, 319 Stokes parameters for description of state of, 
301-2 of plane waves, 296 

in wave guide, 361 from synchrotron, 678-9, 706 

in Thomson scattering, 695 Photon, angular momentum of multipole, 435-6 
Photon mass, effective, in superconductors, 604 x-ray, 712 

limits on, 7-9 Polarization potentials, 280f 

Polarization vectors, 297, 299f treatment of, using Proca Lagrangian, 600f 

Polar substances, 164 Photon spectrum, emitted during collisions, 709- 

10 Polar vector, definition of, 270 

Potential, electrostatic, 30 Lorentz-invariant expression for, 710 

see also Bremsstrahlung; Radiation of dipole layer, 33 

Plane wave, electromagnetic, 295f expansion, in Bessel functions, 118 
inhomogeneous, 298 in Legendre polynomials, 101f 
magnetohydrodynamic, 321 in spherical harmonics, 110 
reflection and refraction of, 302f of line charge in cylindrical coordinates, 127 
scalar, propagation in dispersive medium, near small hole in conducting plane, 133 

322f, 326f of point charge, between grounded planes, 

141-2 expansion of, in spherical harmonics, 471 

vector, expansion of, in spherical harmonics, in cylindrical box, 143 
473 expansion in cylindrical coordmates, 126 

Plasma, confinement of, by magnetic mirrors, expansion in spherical coordinates, 102, 
595-6 111, 122 

energy loss in, 656-7 Fourier integral representation of, 128 
transverse waves in, 313 in rectangular box, 128-9 

in external magnetic field, 316f, 347 polarization (Hertz vectors), 280f 
Plasma frequency, and first precursor, 338 in rectangular box, 71-2 

of dielectric medium, 313 scalar and vector, for time-varying fields, 239 
sum rule for, 335 in two dimensions, 72f 

Poincaré stresses, 755f, 760f vector, see Vector potential 
Poisson equation, 34 Potential energy, see Energy 

equivalent integral equation, 36-7 Power, instantaneous radiated, by accelerated 
examples of solution of, 123, 124, 137-8 charge, 665-6, 701 
formal solution with Green function, 38f radiated by, charge in arbitrary periodic mo- 
uniqueness of solution of, 37-8 tion, 702 
see also Green function in electrostatics charged particles in linear and circular ac- 

Polarizability, electronic, 163, 309-10 celerators, 667 
effective, of aperture in conducting plane, electrons in undulators, 689-91 

423-4 linear antenna, angular distributions of, 
models of, 162f 417, 447 
molecular, 162f (J, m) multipole, 437 
orientation, 164 oscillating dipole, 411-2, 437 

Polarization, charge density, 153, 156 oscillating quadrupole, 414-5, 437 
macroscopic, electric, 14, 152, 255 Power flow, see Energy flow 

magnetic, 14, 192, 256 Power loss, because of finite conductivity, 221, 
355-6 magnetic, see Magnetization 

surface-charge density, 156, 159 in resonant cavity, 371f 
transition radiation from, 647, 649f in wave guide, 363f 
of vacuum, 11-13 per unit area, at surface of conductor, 356 
see also Magnetization see also Attentuation 
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Poynting’s theorem, 258f from electric quadrupole, 414-5 
covariant generalization of, 607, 610 from linear antenna, 416f, 444f 
for dispersive and dissipative media, 262f from localized source, 407f, 439f 
for harmonic fields, 264f£ from magnetic dipole, 413-4 

Poynting vector, 259 multipole, see Multipole radiation 
for plane wave, 298 by relativistic charge in instantaneously circu- 
uniqueness, 259 lar orbit, 676f 
in wave guide, 363 invariant and coordinate-free form, 702 

Precession, of spin, Thomas, 548f, 564 from short antenna, 412 
Precession frequency, of particle in magnetic synchrotron, 681-3 

field, 317, 585 transition, see Transition radiation 
Precursor, Brillouin (second), 338 from undulators and wigglers, 683f 

Sommerfeld (first), 338 Radiation condition for asymptotic fields, 479 
Pressure, radiation, 288 Radiation cross section, definition of, 715 
Proca Lagrangian, 600 for classical bremsstrahlung, 716 
Propagation, in anisotropic dielectric, 346 in complete screening limit, 722 

in dispersive medium, 322f, 326f for nonrelativistic bremsstrahlung, 717 
in ionosphere, 316f, 345 for relativistic bremsstrahlung, 718-9 
of signal incident on dispersive medium, 335f Radiation damping, see Radiative reaction 
see also Signal propagation Radiation fields, 408—9 

Proper time, 528 of charge in arbitrary motion, 664 
Pseudoscalar, -tensor, -vector, definitions of, 270 of (/, m) multipole, 433 

Radiation length, 724 
Q, of resonant cavity, definition of, Radiation pressure, 288 

371 Radiation resistance, 267 
physical interpretation of, 373 of short linear antenna, 412-3 

Radiation zone, 408 of right circular cylindrical cavity, 373 

of Schumann resonances, 377, 399 in diffraction, 491 
of spherical cavity, 455 Radiative energy loss, in accelerators, 667-8 

Quadrupole moment, electrostatic, 146 in collisions, nonrelativistic, 718 

relativistic, 723 interaction of, with field gradient, 150, 171 

nuclear, 151 Radiative reaction, 745f 

characteristic time 7 of, 746 of oscillating source, 414 

effective force of, 748, 749 see also Multipole moment 

Quantization of charge, Dirac’s argument for, equation of motion including, Dirac’s, 771 

275f integrodifferential equation of motion includ- 

Quantum-mechanical modifications, in brems- ing, 772 

and line breadth, 763f strahlung, 717 

in elastic scattering, 641 and shift of oscillator frequency, 763f 

in energy loss, 629-30 simple equation of motion including, 748, 

749 Quasi-static approximation, 218 
slow changes of energy and angular momen- 

tum from, 749-50, 769-70 Radiated electromagnetic energy, Lorentz trans- 
Radius, classical, of electron, 604, 695, 755 formation properties of, 617 

gyration, of particle in magnetic field, 586 Radiation, by accelerated charge, angular distri- 
bution of, 668f Rapidity, definition of, 526 

use of, in relativistic kinematics, 539 Larmor formula for power, 665-6 
Ray, in optical fibers, 378f angular distribution of, for relativistic parti- 

meridional and skew, 381 cles, 668f 
Rayleigh’s, approximation in diffraction, 481 angular and frequency distribution of, for 

approximation in scattering, 464 charge in periodic motion, 702 
explanation of blue sky, 462f for charge in arbitrary motion, 675—6 
law of scattering, 457 for moving magnetic moment, 704 

Rayleigh scattering, 466 for relativistic charge, qualitative aspects of, 

671-3 Reactance, definition of, in terms of fields, 267 

in undulators. 689-91 Reciprocation theorem of Green, 52 
Reflection, from sphere, in diffraction, 497-9 emitted in, beta decay, 730f 

of charged particle from region of high mag- collisions, 709f. See also Bremsstrahlung 
netic field, 595 orbital electron capture, 732f 

of plane wave at interface, 302f from electric dipole, 411 
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Resonant cavity, 368f Reflection (Continued) 
earth and ionosphere as, 374f. polarization by, 306-7 

energy stored in, 373 of radio waves by ionosphere, 317-8 

total internal, 307 modes of oscillation in circular cylinder, 369- 
71 Refraction, of plane wave at interface, 302f. See 

also Index of refraction power losses in walls of, 373 
Relativistic addition of velocities, 530f QO of, 371, 455 

Relativistic effects in angular and frequency dis- 
~~ 

resonant frequencies of, 369 

tributions of radiation, 669-70, 672-3, spherical, 455 
678f, 686f, 701f, 712 spherical concentric shell, 399 

Relativistic covariance, of electrodynamics, Resonant frequency, in cavity, shift of, because 
553f of power loss, 374 

of atomic oscillator, 162, 309, 627, 655, 764 of physical laws under Lorentz transforma- 

tions, 517, 540 shift of, by radiative reaction, 764—6 
Relativistic invariance, of action integral, Resonant line shape, 372, 765 

580 Retarded Green function, 245, 614 

Retarded time, 245, 662-3 of electric charge, 554 

of 4-dimensional Laplacian, 543 Rodrigues’s formula for Legendre polynomials, 

98 of 4-dimensional volume element, 555 

Rotations, 267f of 4-vector scalar products, 526, 541 

use of, in kinematics, 573-4 as Lorentz transformations, 546-7 
of phase of plane wave, 529 transformation properties of physical quanti- 

ties under, 271 of photon differential spectrum, 710 

of radiated power, 666 Rutherford scattering, connection between an- 
of radiation cross section, 720 gle and impact parameter in, 655 

cross section, 625 of speed of light, experiment on, 522-3 

Relativistic kinematics, notation and units for, in terms of momentum transfer, 625, 714 
565-6 

Relativistic transformation, of acceleration, Scalar, under Lorentz transformations, 540 
569 under ordinary rotations, 268 

of charge and current densities, 554 Scalar potential, 30 
from cm system to laboratory, 575 connection to work done, 30 
of coordinates, 525 in magnetostatics, 196 
of electromagnetic fields, 558, 586-7 for time-varying fields, 239 
of charge in uniform motion, 559, 572 see also Potential, electrostatic 
of 4-vectors and tensors, 526, 540f Scalar product of two 4-vectors, 527, 541 
of 4-velocity, 532 Scattering amplitude, forward, relation to dielec- 
of momentum and energy, 533f tric constant, 504 
of potentials, 555 relation to total cross section, 502 
of spin vector, 562 integral expression for, 485 
and Thomas precession, 548f multipole expansion of, 509 
of velocities, 530f Scattering cross section, for particles, classical, 
of wave vector and frequency, 530 definition of, in terms of impact parame- 
see also Lorentz transformation ter, 655 

Relativity, special theory of, 514f for radiation, definition of, 457, 694 
experiments testing, 518f see also Scattering of particles; Scattering of 
mathematical structure of, 539f radiation 
postulates of, 517-8 Scattering of particles, by atoms, 640f 

Relaxation method, in electrostatics, 47f effects of, electronic screening on, 641 
in magnetostatics, 206f finite nuclear size on, 641-2 

Resistance, definition of, in terms of fields, 266— mean square angle of, 643 
7. See also Conductivity; Ohm’s law; Ra- multiple, 643f 
diation resistance; Surface resistance Rutherford, 625 

Resonance fluorescence, 767 single, tail on multiple scattering distribution, 
645 Resonance, in cavity, 372 

Schumann, 376 total atomic cross section for, 643 
width I of, definition of, 372 Scattering of radiation, at long wavelengths, 456f 

Resonant absorption, 310, 768 coherent and incoherent, 462 
and anomalous dispersion, 310, 334 Compton, and Klein-Nishina formula, 696-7 



Index 805 

Delbriick, 10 Spatial inversion, 269-70 
by density fluctuations of fluid, 468f opposite behavior of electric and magnetic 
of light by light, 10 charge densities under, 274 
multipole description of, 473f transformation properties of physical quanti- 
by oscillator with radiative reaction, 766f ties under, 271 
perturbation treatment of, 462f Special theory of relativity, see Relativity 
by point charge, 694f Speed of light, experimental constancy, indepen- 

quantum-mechanical modifications of, dent of frequency, 523-4 
696-7 experimental constancy, independent of mo- 

Rayleigh, and the blue sky, 466-7 tion of source, 522-3 
resonant, 767-8 numerical value of, 3, 776 
shadow, 496-7 Sphere, conducting, and point charge, 58, 60, 61 
at short wavelengths, by sphere, 495f electrostatic Green function for, 64—5 
by small conducting sphere, 459f, 477 general solution for potential in, 65, 122f 
by small dielectric sphere, 457f with hemispheres at different potentials, 65f 
Thomson, 694f scattering of radiation by, 457-8, 459-61, 473f, 

495f Scattering phase shift, 476 
Schumann resonances, 374f in uniform electric field, 62f, 157f 
Screening by atomic electrons, effect of, on uniformly magnetized, 198f 

bremsstrahlung, 721f in external field, 200f 
effect of, on small angle elastic scattering, 641 Spherical Bessel functions, see Bessel functions 

Sea water, attenuation constant of, 316 Spherical coordinates, 95 

delta function in, 120 Selection rules for multipole transitions, 436 

Self-energy, classical electrostatic, 754 Laplace equation in, 95 

Self-energy and momentum, 755f Spherical harmonics, Y,,,, 107f 

covariant definition of, 757f addition theorem for, 110-1 

Self-force, Abraham-Lorentz evaluation of, 750f and angular momentum, 428-9 

Self-stresses and Poincaré stresses, 755-7 completeness relation for, 108 

Separation of variables, 70 explicit forms of, 109 

in cylindrical coordinates, 112 orthogonality of, 108 

in rectangular coordinates, 70 raising and lowering operators for, 428 

sum rule for, 111 in spherical coordinates, 95-6 
vector, see Vector spherical harmonic Shielding, magnetic, with permeable shell, 201f 

of two-wire cable, with iron pipe, 228-9 Spherical wave, scalar, 425f 

vector, 429f Signal propagation in a dispersive media, 335f 
Spherical wave expansion, of, electromagnetic Brillouin percursor in, 338 

fields, 431 Sommerfeld precursor in, 338 
of Green function, e*/R, 428 steady-state signal in, 338 
of scalar plane wave, 471 Signal velocity, upper limit on, 337 
of vector plane wave, 473 Skin depth, 220, 354 

Spin, -orbit interaction, 552 and Q of cavity, 373 

and surface resistance, 356 relativistic equation of motion for, 561f 

Thomas precession of, 548f, 563-4 in plasma, 313 
Thomas’s relativistic equation of motion for, Smythe-Kirchhoff integral for diffraction of vec- 

564 tor fields, 487 
Stability, of classical charged particle, and Poin- approximation for diffraction by circular 

caré stresses, 755f, 759f opening, 490f 
Standards, units and, 775-6 Snell’s law, 303 
Standing waves in resonant cavity, 368 Soft photon emission, 709-10 
Stationary phase, method of, 338 equality of classical and quantum-mechanical 
Step function, @(¢), definition of, 222, 331 expressions for, 710-1 
Stokes parameters, 301 Solenoid, 225-6 
Stokes’s theorem, 31, end papers Solenoidal vector, definition of, 242 
Stress tensor, and conservation laws, 261, 606, Source, localized, in wave guide, 392f 

609, 611 of multipole radiation, 439f 
canonical, in 4 dimensions, 606 Space-like separation of two points in space- 
Maxwell, 261 time, 528 
self, of classical electron, 756, 760f Space-time, in special relativity, mathematical 
symmetric, in 4 dimensions, 608-9 description of, 539f 
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Thomas factor, 552 Structure factor, for scattering by collection of 
scatterers, 461 Thomas precession, 548f, 563-4. 

Thomas’s relativistic equation for motion of Sturm-Liouville equation, 126 
spin, 564 Sum rule, dipole, for oscillator strengths, 310 

Thomson cross section, 695 for plasma frequency, 335 
Thomson scattering, 694f Summation convention, for repeated indices, 

540-1 Thomson’s theorem, 53 
Time dilatation, 527f Superconvergence relation for dielectric con- 

stant, 335 experimental verification of, 529 ~ 
Time-like and space-like separation, 527-8 Superposition principle, see Linear 
Time reversal, 270 superposition 

transformation of physical quantities under, Surface-charge density, and discontinuity of nor- 
271 mal E and D, 18, 31, 154 

Torque, on current distribution, 178 on conducting sphere, 59, 64 
on magnetic dipole, 174, 190 effective magnetic, 197 

and force on surface of conductor, 43 on spin, 549 

near circular hole in conducting plane, 143 on spin, relativistic equation for, 561f 

Total cross section and optical theorem, 502 near conical hole or point, 106 

Transformation, see Galilean transformation, near edge or corner in 2 dimensions, 78 

Lorentz transformation, Relativistic polarization, 157, 159 

transformation potential of, 32 
on sphere with line charge inside, 124 Transformation properties of physical quantities 

Surface current, and discontinuity of H, 18, 194, under rotations, spatial reflections, and 

353 time reversal, 267f 
effective, 221, 356 table of, 271 
effective magnetic, 197 Transition probability, 442 

estimates of, in atoms and nuclei, 442f Surface distribution, of charge, 31-2 

of electric dipole moment, 32-4 in hydrogen-like atoms, 704, 769-70 

Transition radiation, 646f Surface impedance, definition of, 356 

use of as boundary condition in scattering, angular and frequency distribution of, 652 
475 effects of foil thickness and multiple foils on, 

658-9 Surface of conductor, charge density at, 21 

Surface resistance, of good conductor, 356 formation length for, 649 
Susceptibility, electric, 154, 158f qualitative considerations of, 646-9 
Synchrotron light source, 661, 683f Transmission coefficient, for diffraction by circu- 

examples of, 692-3 lar aperture, 493 
typical photon energy spectra from, 693 Transmission line, dominant mode in, 358 
undulators and wigglers in, 683f examples of, 397-8 

Synchrotron radiation, 676f relation between L and C for, 232 
angular and frequency distribution of, 678, Transparency, of water in the visible region, 315 

680, 682 ultraviolet, of metals, 314 
astrophysical examples of, 681-2 Transverse Doppler shift, 530 
by charge in helical path, 703 Transverse electric (TE) waves, attenuation of, 
polarization of, 678-9, 706 in wave guide, 365-6 

Systeme International (SI), standards of mass, connection of, with multipole moments, 441 
length and time, 776 cylindrical, in wave guide, 359 

electromagnetic units, 776, 779 in dielectric wave guide, 388 
in rectangular wave guide, 361-2, 391 

Tensor, electromagnetic angular momentum, spherical, 430 
288, 608, 610 in concentric sphere cavity, 375 

electromagnetic field-strength, 556 Transverse electromagnetic (TEM) waves, 358 
dual, 556 absence of in hollow wave guides, 358 

Lorentz transformation properties of, 541 Transverse magnetic (TM) waves, attenuation 
Maxwell stress, 261 of, in wave guide, 365-6 
rotational definition of, 268 connection of, with multipole moments, 441 
stress, in 4 dimensions, see Stress tensor cylindrical, in wave guide, 359 

Test function, in finite element analysis, 79 in cylindrical cavity, 369 
Theorems from vector calculus, end papers in dielectric wave guide, 388 
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in rectangular wave guide, 391 of oscillating electric dipole, 410 
spherical, 430-1 of oscillating electric quadrupole, 414 

in earth-ionosphere cavity, 375 of oscillating magnetic dipole, 413 
Transverse vector field, definition of, 242 on surface of linear antenna, boundary condi- 
Transverse waves, in magnetohydrodynamics, tion for, 418 

321 Vector spherical harmonics, absolute square of, 
plane, 295f table, 437 

inhomogeneous, 298 definition of, 431 
Traveling wave solutions, 296, 324, 327, 348 orthogonality properties of, 431, 472 

for signal propagation in dispersive medium, sum rule for, 438 
335f Vector theorem, divergence, 29 

in wave guide, 357 Green’s, 482-3 

Stokes’s, 31 Two-dimensional corners and edges, fields and 
surface charge densities near, 78 involving surface and volume integrals, 482-3 

Two-dimensional potentials, 75f involving vector spherical harmonics, 472 

see end papers 
Uncertainty principle, 324, 329 Velocity, addition of, in special relativity, 530f 

E x B drift, 586 use of, in collision problems to obtain quan- 
tum-mechanical modifications of, 629, 4-vector, 532 
641, 642, 725 of light, see Speed of light 

relativistic transformation law of, 531 Undulators and wigglers, K parameter of, 685 

angular and frequency spectra from, 689-93 Velocity fields, of charge in arbitrary motion, 

663 average rest frame, dynamics and radiated 

power in, 687-9 Velocity selector, 587-8, 617 

see also Synchtrotron light sources Virtual quanta, method of, 724f 

Uniqueness theorem, for solutions of Poisson or spectrum of, for point charge, 727-8 

Laplace equation, 37-8 quantum-mechanical form of, 729 
use of, with Legendre polynomial expansion, treatment of relativistic bremsstrahlung, 729f 

102, 103-4, 234 use of, examples in atomic and nuclear colli- 

sions, 742-3 Units, and relative dimensions of electromag- 
Visible region, of frequency spectrum, reason netic quantities, 777f 

for, 314-5 appendix on, 775f 

basic versus derived, 775-6 

conversion between Gaussian and SJ, 782-3 Water, index of refraction and absorption coeffi- 
cient of, 315 Maxwell and other equations, in different sys- 

tems of, 781 Wave equation, 240, 243 
covariant form of, 555, 612 table for conversion of, 782-3 
Green functions for, 243f variant of electromagnetic system of, 782-3 
Helmholtz, 243 

for photons with mass, 601 Vacuum polarization, 11-2 
solutions of, in covariant form, 614-5 contribution to atomic potential, 12 
spherical wave solutions of, 425f Van Allen belts, of Jupiter, synchrotron radia- 
transverse two-dimensional, in wave guide, tion from, 682-3 

357, 360 problems illustrating principles of, 619 
Wave guide, 356f Variational principle, for capacitance, 53 

attenuation in, 363f, 367-8 in electrostatics, 43f 
“bound” state in, 405-6 for wave guides and cavities, 400 
boundary conditions in, 359 Vector, under rotations, definition of, 268 
cutoff frequency in, 360, 362 Vector field, decomposition of, into longitudinal 
dielectric, 385f. See Optical fibers and transverse parts, 242 

Vector Green’s theorem, 482-3 modes, propagating and evanescent, 360 
in rectangular, 361f, 391 Vector plane wave, spherical wave expansion of, 

obstacles in, 394 473 
orthonormal fields in rectangular, 391 Vector potential, for time-varying fields, 239 
sources in, 392f of localized oscillating source, 408f 
TE and TM modes in, 359 of magnetic dipole, 186 
variational methods in, 400 of magnetic monopole, 278, 290-1 

Wavelength in wave guide, 361 in magnetostatics, 180, 195 
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Whistler, 319, 349 Wave number, and frequency, as 4-vector, 530 

Wiggler, see Undulators and wigglers connection of, with frequency, as 4-vector 

296, 304, 313, 319, 327 Work, relation to potential energy, 30 
imaginary part of, because of losses, 310, 363, Work function of metal and i image charges, 61 

367 World line, 527 
Wronskian, definition of, 126 spread of, in wave packets, 324 

of Bessel functions, 126 in wave guide, 360, 364, 367 

Wave packets in one dimension, 322f, 348 of spherical Bessel functions, 427 
propagation in dispersive medium, 322f Width, finite, of frequency spectrum of cavity 

with losses, 372 spreading of, in time, 326f 

Waves, Alfvén, 321 finite, of frequency spectrum of oscillator with 
in ionosphere, 316f damping, 764 
magnetohydrodynamic, 319f 

magnetosonic, 322 x-rays, polarization of, in bremsstrahlung, 712 
see also Plane waves; Spherical waves; Trans- from synchrotron light sources, 693 

verse Waves 

Weizsicker-Williams method, see Virtual Yukawa potential, for scalar potential if photon 

has mass, 601 quanta, method of 









Where to Find Key Material 

on Special Functions 

SPHERICAL 

97-101 Legendre polynomials P,(x) 
~ ~™ 

108 Associated Legendre functions P7"(x) 
108-9 Spherical harmonics Y,,,(0, ¢) 

CYLINDRICAL 

113-4 Bessel functions J,(x), N,(x) 
116 Modified Bessel functions J, (x), K,(x) 

426-7 Spherical Bessel functions j,(x), 1,(x), A{(x) 
114 Roots of J,,(x) = 0 

370 Roots of J,,(x) = 0 

126, 132, 140, 205 Identities involving Bessel functions 

678 Airy integrals, connection to Bessel functions 

ORTHOGONAL FUNCTION EXPANSIONS 

114-5, 138-9 Bessel function (finite interval in p) 

118 Bessel function (infinite interval in p) 

127-8 Eigenfunction, of Green function 

Fourier series 68 

69-70 Fourier integral 

99 Legendre polynomial 

109 Spherical harmonic 

119 Spherical Bessel function 



Explicit Forms of 

Vector Operations 

Let e,, e2, e; be orthogonal unit vectors associated with the coordinate directions 

specified in the headings on the left, and A,, A, A; be the corresponding com- 

ponents of A. Then 
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