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Preface to the Second Edition

In the revised and enlarged edition I corrected numerous errors and typos found in
the first edition. In the Chaps. 1, 2, 7 and 8 I have made, in the interests of clarity,
a large number of small changes. Some sections, which even I myself was not able
to understand 5 years after they were written, were rewritten again Several new
sections with applications of formalism were added: 1.7.7, 6.9, 8.7.1 and 8.7.2.
The main alteration in this edition consists of the incorporation of a new chapter
devoted to the description of a relativistic spinning particle in external fields. It can
be considered as a non-trivial application of the formalism of constrained systems
described in Chap. 8. A review of the achievements in this fascinating area before
1968 can be found in the book of Corben [58]. Contrary to Corben, who discussed
the problem on the level of equations of motion, my emphasis has been placed
on the Lagrangian and Hamiltonian variational formulations for the description of
rotational degrees of freedom and their influence on the trajectory of a spinning
body. I present the so-called vector model of spin and show that it provides a
unified conceptual framework, allowing to collect and tie together a lot of ideas and
achievements accumulated on the subject after publication of the Corben’s book.

Juiz de Fora, MG, Brazil Alexei Deriglazov
August 2016
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Preface to the First Edition

Formalism of classical mechanics underlies a number of powerful mathematical
methods, widely used in theoretical and mathematical physics [1–11]. In these
lectures we present some selected topics of classical mechanics, which may be
useful for graduate-level students intending to work in one of the branches of a
vast field of theoretical physics. Except for the last chapter, which is devoted to
the discussion of singular theories and their local symmetries, the topics selected
correspond to the standard course of classical mechanics.

For the convenience of the reader, we have tried to make the material of different
chapters as independent as possible. So, the reader who is familiar with Lagrangian
mechanics can proceed to any one of Chaps. 3–8 after reading the second chapter.

In our presentation of the material we have tried, where possible, to replace
intuitive motivations and “scientific folklore” by exact proofs or direct compu-
tations. To illustrate how classical-mechanics formalism works in other branches
of theoretical physics, we have presented examples related to electrodynamics as
well as to relativistic and quantum mechanics. Most of the suggested exercises are
directly related to the main body of the text.

While in some cases the formalism is developed beyond the traditional level
adopted in the standard textbooks on classical mechanics [12–14], the only mathe-
matical prerequisites are some knowledge of calculus and linear algebra.

In the frameworks of classical and quantum theories, the Hamiltonian and
Lagrangian formulations each have advantages and disadvantages. Since our focus
here is Hamiltonian mechanics, let us mention some of the arguments for using this
type of formalism.

• There is a remarkable democracy between variables of position and velocity in
Nature: being independent one from another, they contain complete information
on the properties of a classical system at a given instance. Besides, just the
positions and velocities at the initial instant of time are necessary and sufficient
to predict an evolution of the system. In Lagrangian formalism this democracy,
while reflected in the initial conditions, is not manifest in the course of evolution,
since only variables of position are treated as independent in Lagrangian
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viii Preface to the First Edition

equations. Hamiltonian formalism restores this democracy, treating positions and
velocities on equal footing, as independent coordinates that parameterize a phase
space.

• According to the canonical quantization paradigm, the construction of the
Hamiltonian formulation for a given classical system is the first necessary step
in the passage from classical to quantum theory. It is sufficient to point out that
quantum evolution in the Heisenberg picture is obtained from the Hamiltonian
equations through replacement of the phase-space variables by corresponding
operators. As to the operators, their commutators are required to resemble the
Poisson brackets of the phase-space variables.

• The conventional way to describe a relativistic theory is to formulate it in terms
of a singular Lagrangian (the singularity is the price we pay for the manifest rela-
tivistic invariance of the formulation). It implies a rather complicated structure of
Lagrangian equations, which may consist of both second- and first-order differ-
ential equations as well as algebraic ones. Besides, there may be identities present
among the equations, which implies functional arbitrariness in the corresponding
solutions. It should be mentioned that, in the modern formulation, physically
interesting theories (electrodynamics, gauge field theories, the standard model,
string theory, etc.) are of this type. In this case, Hamiltonian formulation
gives a somewhat clearer geometric picture of classical dynamics [8]: all the
solutions are restricted to lying on some surface in the phase space, while the
abovementioned arbitrariness is avoided by postulating classes of equivalent
trajectories. Physical quantities are then represented by functions defined in these
classes. The procedure for investigation of this picture is based entirely on the
use of special coordinates adopted to the surface, which in turn require a rather
detailed development of the theory of canonical transformations. Altogether
Hamiltonian formulation leads to a self-consistent physical interpretation of a
general singular theory, forming the basis for numerous particular prescriptions
and approaches to quantization of concrete theories [10].

Juiz de Fora, MG, Brazil Alexei Deriglazov
July 2010
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Notation and Conventions

The terminology of classical mechanics is not universal. To avoid any confusion, the
quantities of the configuration (phase) space are conventionally called Lagrangian
(Hamiltonian) quantities.

Generalized coordinates of the configuration space are denoted by qa. Latin
indices from the beginning of the alphabet a, b, c, and so on generally range from 1
to n, a D 1; 2; : : : ; n.

Phase-space coordinates are often denoted by one letter Zi D .qa; pb/. Latin
indices from the middle of the alphabet i, j, k, and so on generally range from 1 to
2n, i D 1; 2; : : : ; 2n.

Greek indices from the beginning of the alphabet ˛, ˇ, � are used to denote some
subgroup of the group of variables, for example qa D .q1; q˛/, ˛ D 2; 3; : : : ; n.

Repeated indices are generally summed, unless otherwise indicated. The “up”
and “down” position of the index of any quantity is fixed. For example, we write qa,
pb and never any other way.

Time variable is denoted either by � or by t. A dot over any quantity denotes the
time derivative of that quantity

Pqa D dqa

d�
;

while partial derivatives are denoted by

@L.q/

@qa
D @aL;

@H.Z/

@Zi
D @iH:

The same symbol is generally used to denote a variable and a function. For example,
we write Z0i D Z0i.Zj/, instead of the expression Z0i D f i.Zj/ for the change of
coordinates.

xv



xvi Notation and Conventions

The notation

F.q; �/j�.Z/ � F.q; �/j�D�.Z/ � F.q; �/j;

implies the substitution of the function �a.z/ in place of the variable �a.
Minkowski metric is � D .�1;C1;C1;C1/.



Chapter 1
Sketch of Lagrangian Formalism

Abstract

System of Particles To start with, we recall how a system of particles is described
in classical mechanics. Analytic description is achieved by introducing three-
dimensional Euclidean space equipped with a Cartesian coordinate system. When
equations can be supplemented by initial conditions that guarantee a unique
solution, we say that the equations admit formulation of the Cauchy problem. Using
this terminology, a normal system admits formulation of the Cauchy problem.

1.1 Newton’s Equation

System of Particles To start with, we recall how a system of particles is described
in classical mechanics. Analytic description is achieved by introducing three-
dimensional Euclidean space equipped with a Cartesian coordinate system. Then
its points are labeled by position vectors M $ Er D .x1; x2; x3/ � .x; y; z/. The time
evolution of a particle is presented by a curve Er D Er.t/. The evolution is governed
by Newton’s equation

mREr D EF.Er; PEr; t/ , mRxa D Fa.xb; Pxb; t/; a D 1; 2; 3: (1.1)

For a system of particles with the position vectors Eri, i D 1; 2; : : : ;N we write

mi
REri D EFi.Erj;

PErj; t/: (1.2)

In classical mechanics the force EF assumed to be a known function of indicated
arguments (or derivable from a potential). So Eq. (1.1) relates accelerations,
velocities and coordinates, that is, it represents a system of three ordinary differential
equations of second order for determining three functions xa.t/.

© Springer International Publishing Switzerland 2017
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2 1 Sketch of Lagrangian Formalism

Example Electric charges in movement produce electromagnetic force in the
space around them. This can be described by vectors of electric EE.t; xa/

and magnetic EB.t; xa/ fields given at each space-time point. Then Newton’s
equation of a particle with electric charge e in this external field is

mREr D eEE.t; Er/C e

c
ŒPEr; EB.t; Er/�: (1.3)

Here ŒPEr; EB�a D �abc PxbBc is a vector product, and c is a universal constant (see
Sect. 1.3). Electric field EE is directed from positive charge (proton) to infinity,
so the force eEE is opposite to EE for the negative charge (electron). Concerning
the agreements on magnetic field, see Example 2 on page 67.

Particular and General Solutions Mathematically, Eq. (1.1) belong to the class
of normal systems, that is all higher derivatives Rxa are separated on the left-hand
side of the equations. According to the theory of differential equations, a normal
system has well-established properties. In particular, under known restrictions on
the right-hand side, the theorem of the existence and uniqueness of a solution holds:
given the numbers xa

0, v
a
0 , there is (at least locally) a unique solution xa.�/ of the

system (1.1) that obeys the initial conditions xa.0/ D xa
0, Pxa.0/ D va

0 .
When equations can be supplemented by initial conditions that guarantee a

unique solution, we say that the equations admit formulation of the Cauchy problem.
Using this terminology, a normal system admits formulation of the Cauchy problem.

This theorem implies that ordinary differential equation admits an infinite
number of solutions. They can be described simultaneously using the notion of
a general solution. It is not difficult to forecast that the family of solutions can
be parameterized by six parameters. Roughly speaking, to kill two derivatives
acting, for example, on x1, we need to carry out two integrations. This implies the
appearance of two integration constants, say c1, d1, in the resulting expression. In
this way we arrive at the notion of a general solution defined as follows. A function
of (1C 6) variables Er.t; ca; da/ is called a general solution to the system (1.1) if (a)
it satisfies the system for any values of ca, da; (b) given the initial conditions Er0, Ev0,
there are numbers Qca, Qda such that Er.0; Qca; Qda/ D Er0, PEr.0; Qca; Qda/ D Ev0.

Exercise Confirm that any particular solution to the normal system is con-
tained in its general solution.

The physical content of these mathematical facts can be summarized as follows.
First, only positions and velocities at a given instance are necessary to predict the
future of a system (we need not know, for example, accelerations). It is said that Er0,
Ev0 unambiguously determine the instantaneous state of a system. Second, a system
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evolves in time in a unique way. In contrast to quantum mechanics, evolution in
classical mechanics has a causal character. These properties of Newton’s universe
are known as Newton’s principle of determinism.

We recall some notions that will play a fundamental role in the discussion of
Lagrangian formalism.

Kinetic Energy Let Er.t/ be a solution to Eq. (1.1). The work done by the force EF
is equal to the value of the line integral along the curve Er.t/, and using Newton’s
equation can be computed as follows:

A D
Z M2

M1

EFEdr D
Z t1

t1

m
dEv
dt

Evdt D
Z t1

t1

d

dt

�
1

2
mEv2

�
dt D 1

2
mEv2

ˇ̌
ˇ̌t2
t1

: (1.4)

The quantity T D 1
2
mEv2 is called kinetic energy. It is said that the work produces a

change in the kinetic energy of a particle

A D T.t2/ � T.t1/: (1.5)

Potential Energy: Properties of Conservative Force To proceed further we
restrict ourselves to the case of a conservative system. A field of force is conser-
vative (or potential), if it can be derived as the gradient of a function U.xa/

Fa D � @U

@xa
: (1.6)

This function is called the potential energy of a system. Note that U Cconst leads to
the same force as U. So, potential energy is defined with only an additive constant.
It is often used to choose a zero value for the potential energy at a desired point. For
the work done by the potential force we write

A D �
Z M2

M1

ErUdEr; here Er �
�
@

@x1
;
@

@x2
;
@

@x3

�
: (1.7)

Let us enumerate the properties of a conservative force

Œ Er; EF� D 0; (1.8)I
�

EFdEr D 0; (1.9)

Z
�.1;2/

EFdEr D
Z
ˇ.1;2/

EFdEr; (1.10)

A D � �U.Er2/ � U.Er1/
�
: (1.11)
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Equation (1.8) states that a potential field is curl-free. This follows from direct
computation: Œ Er; EF�a D �abc@b@cU D 0.

Equation (1.9) states that a potential field does not producework along any closed
line � . This follows from (1.8) applying Stock’s theorem,

H
�

EFdEr D R
S�
Œ Er; EF�Eds D

0.
Equation (1.10) states that the work done by a potential field does not depend on

a choice of line (either �.1; 2/ or ˇ.1; 2// that connects points 1 and 2. To confirm
this, apply (1.9) to the closed line �.1; 2/[ ˇ.2; 1/.

Finally, Eq. (1.11) states that the work done by a potential field is equal to the
difference of potential energies at the initial and final points. To see this, notice
that according to Eq. (1.10) we can compute the work (1.7) using any curve Er.t/
connecting M1 and M2. We obtain

A D
Z t2

t1

EFdEr D �
Z t2

t1

@U

@ra

dra

dt
dt D �

Z t2

t1

dU

dt
dt D �ŒU.t2/ � U.t1/�: (1.12)

It is known that on a plane the conditions (1.6), (1.8), (1.9), (1.10), and (1.11)
are mutually equivalent; any one of them can be taken as a definition of a (two-
dimensional) potential field.

Law of Conservation of Total Energy Let xa.t/ be a solution to Newton’s equation
with a conservative force

mRxa C @U.x/

@xa
D 0: (1.13)

Comparing (1.5) with (1.11) we conclude that in a movement from one point to
another, the change in kinetic energy is always balanced by a change in potential
energy. This can be written in the form of a law of conservation

ŒT C U�jM1
D ŒT C U�jM2

; (1.14)

The quantity E � T C U is called the (total) energy of the system. Eq. (1.14)
represents the law of conservation of total energy stating that E of a conservative
system takes the same value along a trajectory of motion.

Exercise Above we have considered the case of time-independent potential.
Total energy is not preserved when the potential depends explicitly on time,
U.x; t/. Explain why the reasoning presented above does not work for this
case.
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It is instructive to obtain this result once again, this time as a direct consequence of
the equations of motion. Multiplying Eq. (1.13) by Pxa.t/ we obtain

mRxa Pxa C @U

@xa
Pxa D d

dt

�
1

2
mEv2 C U

�
D 0: (1.15)

that is E D 1
2
mEv2CU D const on the solutions. Energy is an example of a conserved

quantity, which can be defined as a function of positions and velocities that is
preserved along true trajectories of the system. Let us recall three more examples.

Law of Conservation of Angular Momentum Consider a particle in a central
field. The central field is defined by a potential depending only on a distance to a
given point. Choosing a coordinate system with its origin at that point, the potential
reads U D U.r/, where r D jErj D p

.x1/2 C .x2/2 C .x3/2. Then Newton’s equation
is

mREr C dU

dr

Er
r

D 0: (1.16)

Computing the vector product with Er we obtain
�
Er;m d

dt
Ev
�

C
�
Er; dU

dr

Er
r

�
D d

dt
ŒEr;mEv� � mŒEv; Ev�C 1

r

dU

dr
ŒEr; Er�

D d

dt
ŒEr;mEv� D 0: (1.17)

This implies the law of conservation of angular momentum

EL � ŒEr;mEv� D const: (1.18)

One remarkable consequence of Eq. (1.18) is that the particle orbit in the central
field is a planar one, see Fig. 1.1 on page 6. To see this, take a solution Er.t/ of
Newton’s equation (1.16). Note that its scalar product with EL vanishes, .Er.t/; EL/ D
.Er; ŒEr;mEv�/ D 0. That is, the position vector is orthogonal to the fixed vector EL at
any instant of motion. So, Er.t/ at any t lies on a plane containing the center of force
and perpendicular to EL. The vector EL can be determined from the initial conditions:
EL D ŒEr0;mEv0�. So the plane of motion is the one that contains the vectors of the
initial position Er0 and the initial velocity Ev0.
Runge-Lenz and Hamilton Vectors The Kepler’s problem consists of the descrip-
tion of a particle in a central field with a potential that is proportional to the inverse
degree of r

U D �˛
r
; r D jErj D

p
.x1/2 C .x2/2 C .x3/2; ˛ D const: (1.19)
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yz

x

x1

x2

x3

V0

L

R0

Fig. 1.1 Due to conservation of angular momentum, the trajectory lies on a plane perpendicular to
EL. So, in coordinates x, y, z, the three-dimensional Kepler’s problem reduces to a two-dimensional
one

Newtonian gravitational attraction and Coulomb interaction belong to this class of
central fields. Newton’s equation (1.16) acquires the form

mRxa C ˛xa

r3
D 0; a D 1; 2; 3: (1.20)

Computing the vector product of this equation with 1
m

EL and using the conservation

of angular momentum, PEL D 0, we obtain

0 D ŒREr; EL�C ˛

r3
ŒErŒEr; PEr�� D d

dt
ŒPEr; EL�C ˛

r3

n
Er.Er; PEr/ � PErr2

o
D

d

dt
ŒPEr; EL�C ˛

�
Er 1
2r3

d

dt
r2 � dEr

dt

1

r

	
D d

dt

�
ŒPEr; EL� � ˛Er

r

	
; (1.21)

where we have used the identities ŒEAŒEB; EC�� D EB.EA; EC/ � EC.EA; EB/ and � 1
2r3

d
dt r

2 D
d
dt
1
r . We obtained the conserved quantity

EA D ŒPEr; EL� � ˛Er
r

D const; (1.22)
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called Runge-Lenz vector. Computing its magnitude, we obtain

jEAj D ˛e; where e D
s
1C 2EL2

m˛2
; (1.23)

and E D m
2

PEr 2 � ˛
r is the total energy. Hence jEAj is not an independent conserved

quantity but a combination of L and E.
By construction, the Runge-Lenz vector and the angular momentum vector EL are

mutually perpendicular. Computing vector product of the conserved quantities EL
L2

and EA we obtain one more conserved quantity called Hamiltonian vector

EU D Œ
EL

L2
; EA� D PEr � ˛

rL2
ŒEL; Er� D const: (1.24)

The three vectors are mutually perpendicular.We obtain the geometric interpretation
of EA and EU in Example 2 of this section.

Law of Conservation of Total Momentum Consider now a two-particle system.
Supposing that forces acting upon the particles obey the third law of Newton, EF2 D
�EF1, Newton equations read

m1
REr1 D EF1; m2

REr2 D �EF1: (1.25)

Taking their sum, one immediately obtains the law of conservation of total
momentum

m1Ev1 C m2Ev2 D const: (1.26)

A law of conservation, being in fact a first-order differential equation, can be
used for simplification of equations of motion. Below we present examples of how
this works.

Examples

1. A one-particle conservative system on a straight line can be solved by
quadrature for an arbitrary potential. In this case, Newton’s equation

mRx C dU

dx
D 0; (1.27)

(continued)
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is equivalent1 to the law of conservation of energy

1

2
m

�
dx

dt

�2
C U.x/ D E: (1.28)

So we can study the latter. It represents a first-order differential equation
that admits separation of variables, t and x, and can then be immediately
integrated out

dt D dxq
2
m .E � U.x//

; t � t0 D
Z

dxq
2
m .E � U.x//

: (1.29)

Computing the integral on r.h.s. we obtain t � t0 D f .x;E/. The inverse
function, x D g.t; t0;E/ represents a general solution with two integration
constants t0, E.

2. Reduction of the three-dimensional Kepler’s problem to a two-
dimensional one. Consider the Kepler problem

mRxa C ˛xa

r3
D 0; a D 1; 2; 3: (1.30)

As we have seen above, the particle trajectory lies on a plane that passes
through the center of the field and is perpendicular to the constant vector
EL. Runge-Lenz and Hamiltonian vectors are mutually perpendicular and
lie on this plane. So we can introduce the coordinate system .x; y; z/ with
its axis along the vectors .EA; EU; EL/; see Fig. 1.1 on page 6.

Equations of motion for the new variables x; y and z have the same
form (1.30) (this will be discussed in some detail in the next section).
In this coordinate system we have Er.t/ D .x.t/; y.t/; 0/, that is, the z-
coordinate has trivial dynamics. The third equation of the system (1.30)
is satisfied and can be omitted. So, conservation of the angular momentum
allows us to simplify the problem: the three-dimensional problem reduces

(continued)

1We have seen that (1.27) implies (1.28). Conversely, the derivative of (1.28) with respect to t
implies (1.27).
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to a two-dimensional one

mRx C ˛x

.x2 C y2/
3
2

D 0; mRy C ˛y

.x2 C y2/
3
2

D 0: (1.31)

The angular momentum, Runge-Lenz and Hamilton vectors in the chosen
system of coordinates read as follows: EL D .0; 0;m.xPy � Pxy//, EA D
.LPy � ˛x

r ;�LPx � ˛y
r ; 0/,

EU D .�L�1A2;L�1A1; 0/. Note that components of
Hamilton vector turn out to be expressed through the Runge-Lenz vector.
Equations (1.30) imply conservation of energy as well as of these vectors

1

2
mPEr 2 � ˛

r
D E; (1.32)

m.xPy � Pxy/ D L; (1.33)

�A2 D LPx C ˛y

r
D 0; (1.34)

A1 D LPy � ˛x

r
D ˛e; (1.35)

where r D p
x2 C y2, and A1 coincides with magnitude (1.23) of the

Runge-Lenz vector. Equation of trajectory can be obtained now by pure
algebraic manipulations. We substitute (1.34) and (1.35) into (1.33), this
gives

r D p � ex; where p D L2

˛m
: (1.36)

This is an equation of a conic section with eccentricity e (the hyperbola for
e > 1, the parabola for e D 1 and the ellipse for 0 < e < 1), and with
focal parameter p (see Exercise 2 below). In what follows, we suppose that
the trajectory is an ellipse. According to (1.23), E < 0 for an ellipse. The
semi-major axis of the ellipse lies on the x -axis, and the right focus is in
the center of coordinate system, see Fig. 1.2 on page 10. Recalling that x-
axis has been chosen in the direction of EA, we conclude that Runge-Lenz
vector is directed towards the semi-major axis (perihelion) of the orbit. The
magnitude (1.23) of Runge-Lenz vector is equal to the orbit eccentricity e
times the coupling ˛, jEAj D ˛e. The Hamilton vector is directed towards
the semi-minor axis (aphelion).

(continued)
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Fig. 1.2 Basic characteristics of an ellipse: a—semi-major axis (perihelion), b—semi-minor axis
(aphelion), c—focal distance, jF1F2j D 2c, e D c

a—eccentricity, p D a2�c2

a —focal parameter.
For the case 0 < e < 1, the trajectory of motion in the central field is an ellipse with one focus at
the center of force

Computing square of Eq. (1.36), we obtain canonical equation of the
ellipse

.x C c/2

a2
C y2

a2 � c2
D 1; (1.37)

with the focal distance c, semi-major axis a and semi-minor axis b

c D L2e

˛m.1 � e2/
; a D c

e
D L2

˛m.1 � e2/
;

b D
p

a2 � c2 D L2

˛m
p
1 � e2

: (1.38)

Using (1.23) we can express all basic parameters of the orbit through E
and L. Using this expression in Eq. (1.38) we obtain

c D � ˛

2E

s
1C 2EL2

m˛2
; a2 D ˛2

4E2
; b2 D � L2

2Em
: (1.39)

(continued)
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A few words about the time-dependence of coordinates. Combining (1.31)
with (1.36) we obtain second-order equation for x.t/

mRx C ˛x

p � ex
D 0: (1.40)

x.t/ can be determined also from a first-order equation. Using (1.35)
and (1.36) we exclude Py and r from the Eq. (1.32). This yields closed
equation for x.t/

dx

dt
D ˙˛

L

s
1 �

�
x

p � ex

�2
: (1.41)

Passing to the new variable p � ex D r, this can be presented as

dr

dt
D ˙ 1

m

r
2m



E C ˛

r

�
� L2

r2
: (1.42)

Exercises

1. Equations (1.30) imply 1
2
mPEr2 � ˛

r D E D const and mŒEr; PEr� D EL D const.
Show that in turn, these equations imply (1.30). So the two systems are
equivalent.

2. We recall the geometric definition of an ellipse. Let F1 and F2 be two points
(foci) separated by the distance 2c, and a < c. Ellipse is a set of points
M which obey the condition jMF1j C jMF2j D 2a. Take the coordinate
system with x -axis passing through the foci and with center at the right
focus. Show that the geometric definition implies the following equation
of the ellipse: r D p � ex, where r D p

x2 C y2, e D c
a and p D a2�c2

a . e is
called eccentricity, p is focal parameter. Note that p is the distance between
focus and the point of intersection of ellipse with y -axis.
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1.2 Galilean Transformations: Principle of Galilean
Relativity

Cartesian coordinates and the evolution parameter which appear in Newton equa-
tions represent an idealization of the data of the measurement devices (rulers and
clocks) used by an observer in his laboratory. The laboratory is called an observer
or (reference) frame.2

The first law of Newton states the existence of inertial frames with the following
property: motion of a free particle in any one of them looks as rectilinear motion
along a straight line, d2xa

dt2
D 0. The principle of Galilean relativity postulates the set

of transformations relating space-time coordinates of inertial frames. It also states
that equations of motion of any mechanical system, like the free one, retain their
form unchanged under the transformations, S0

a D DabSb (here Sa D 0 (S0
a D 0/

stands for equations of motion written by observer O (O0/, and D is an invertible
matrix). This property is called covariance of the equations. Below we present
the mathematical formulation of the principle of Galilean relativity and discuss its
physical content.

Formulation of the Galilean Principle Consider an n-particle system with a
potential that depends on the relative distances between the particles. That is U.rjk/

represents a function of the variables rjk, j < k

rjk D jErj � Erkj D
vuut 3X

aD1
.xa

j � xa
k/
2: (1.43)

Newton equations read

mi
d2Eri

dt2
C

nX
kD1

@U

@rik

Eri � Erk

rik
D 0; i D 1; 2; : : : ; n: (1.44)

The equations describe a rather general class of interacting systems, including
Newtonian gravity and Coulomb forces.

A remarkable algebraic property of the equations is that they take the same form
if we make the substitution (called below the Galilean transformation)

Eri.t/ D REri
0.t0/C EVt0 C EC; (1.45)

2Due to the presence of the clocks, the term “reference frame” is used instead of “coordinate
system”.
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where

t0 Dt � a: (1.46)

Here Rab is an orthogonal matrix, RRT D 1, and EV , EC, a are arbitrary constants.
Denoting the l.h.s. of Eq. (1.44) as ESi.Er.t//, one verifies that the equality

ESi.Er.t// D R ESi.Er 0.t0//; (1.47)

holds. This property is known as covariance of equations. Note that there are a
lot of transformations that do not leave the equations covariant (take, for example,
Eri.t/ D Eri

0.t/C EVt3). The covariance (1.47) of basic equations of classical mechanics
under Galilean transformations is known as the principle of Galilean relativity. Its
more rigorous mathematical formulation is as follows.

Consider the space of functions Er W R ! R
3; Er W t ! Er.t/. Galilean

transformation is the following map in this space:

G W Er.t/ ! Er 0.t/ D R�1
h
Er.t C a/� EVt � EC

i
: (1.48)

If Er.t/ represents a solution of equations of motion, then Er 0.t/ is a solution as well.

Physical Content of the Galilean Principle Its physical content is two-fold, due to
the possibility of two different geometric interpretations for the substitution (1.45).
In short, it can be treated either as the passage from one reference frame to another
(the so-called passive point of view), or as a displacement of the system under
investigation from one region of space-time to another (the active point of view).
Let us discuss these in further detail.

Passive Point of View In this case Er.t/ and Er 0.t0/ are regarded as radius-vectors of
the same point in two reference frames, O and O0. The point is observed by O at the
instant t and by O0 at the instant t0. Suppose the observers differ by displacement,
by orientation of axis and are in relative motion with constant velocity. In non-
relativistic mechanics it is postulated that formulas (1.45) and (1.46) represent the
law of transformation from one frame to the other. It consists of the following
transformations.

1. The transformation xa D x0a C Ca represents the space displacement: O sees the
origin of O0 in the point with the position vector EC.

2. The transformation xa D Rabx0b, where RRT D 1, represents rotation: O sees
the coordinate axis of O0 rotated through R. To justify this, note that O and O0,
related by this transformation, have the same origin. Besides, it does not change
the value of scalar product among two position vectors, .Er1; Er2/ D .Er 0

1; Er 0
2/. In

particular, it preserves distances between points, jEr 0j D jErj.
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α
y/

y

x

x/

O

O 
/

x

y

x/

y 

/

α

(b)(a)

Fig. 1.3 Rotation transformation. (a) Passive point of view. (b) Active point of view

Any rotation can be parameterized by three numbers. For instance, they can
be components of the vector Ę D .˛1; ˛2; ˛3/ directed along the rotation axis,
with a length equal to the rotation angle (see the end of this section for details).

3. The transformation xa D x0a C Vat is known as the Galilean boost. O sees O0
moving with velocity EV and passing through the origin of O at t D 0; see Fig. 1.4
on page 26. Then x0a are coordinates of the point Er measured by O0 at the instant t.

4. The transformation Er.t/ D Er 0.t � a/ is the time displacement3: O observed the
point Er after than O0 by a time a. Notice that the time intervals measured by O
and O0 are the same, 4t D 4t0.

Note that the Galilean transformations form a family parameterized by ten
parameters: Ę, EV , EC and a.

In the passive interpretation, the covariance (1.47) implies that in all inertial
frames the physical system obeys equations of motion of the same form. All inertial
observers, each using his own coordinates, will discover the same laws of motion
studying a given physical system, see Fig. 1.3a on the page 14. From a practical
point of view, O, who discovered Eq. (1.44), need not worry how to write them, if
he intends to use another inertial frame—they will be the same. For instance, this
has been already used in Example 2 of the previous section; see the discussion after
Eq. (1.30).

Active Point of View In this case .Er; t/ and .Er 0; t0/ are regarded as coordinates
of different space-time points in a given reference frame. Then (1.46) and (1.45)
represents the transformation that turns the primed point into an unprimed one.
For instance, imagine a physical system located in the vicinity of the observer’s
origin. Then the transformation (1.45) rotates it by R, displaces it over a distance
EC and makes it move with velocity EV . Besides, Eq. (1.46) means that the system is
considered by the observer at a later time.

3To see this, do the transformation in Newton’s equation with time-dependent potential U.t/.
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In this interpretation, covariance means that two copies of a mechanical system,
related by the Galilean transformation, obey the same equations of motion, see
Fig. 1.3b on page 14. It implies that in this reference frame our space and time
look homogeneous as well as the fact that the space looks isotropic. Besides, a
mechanical system at rest and its copy in rectilinear motion along a straight line
have identical properties.

Let us summarize the discussion. Intuitively, the Galilean relativity princi-
ple (1.45), (1.46), and (1.47) can be summarized in two statements. First, different
inertial observers studying the same mechanical system will discover laws of motion
of the same form. Second, identical experiments made by inertial observers in their
laboratories will give identical results. Such properties as homogeneity and isotropy
are implicit in the second statement.

In relativistic mechanics the ideology remains the same. The only thing that
changes is the expression for the boost relating two frames in relative motion; see
the next section.

Structure of a Rotation Matrix An arbitrary 3 � 3 matrix a is determined by its
nine matrix elements aab. So, the set of matrices forms a nine-dimensional space
with coordinates aab. The rotation matrices form a subset defined by the condition

RTR D 1; or RT D R�1: (1.49)

Let us represent R as composed of three columns, R D .Er1; Er2; Er3/. Then (1.49)
implies that Eri form an orthonormal set. We note

R

0
@10
0

1
A D Er1; R

0
@01
0

1
A D Er2; R

0
@00
1

1
A D Er3; (1.50)

that is R rotates the three orthonormal vectors of the coordinate axis into the
orthonormal set Eri.

Since RTR is a symmetric matrix, the system (1.49) consists of six independent
equations. So the subset (1.49) can be parameterized by 9 � 6 D 3 coordinates
(intuitively, a rotation can be uniquely specified by the pointing of a vector Ę D
.˛1; ˛2; ˛3/ directed along the rotation axis, with a length equal to the rotation
angle).

To parameterize the set (1.49), we use the standard procedure known from group
theory. We will need to use the exponential of a matrix. Given the matrix a, its
exponential ea is a matrix defined by the power series

.ea/ab D
 1X

nD0

an

nŠ

!

ab

D ıab C aab C 1

2Š
aacacb C : : : : (1.51)
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Some properties of the exponential are

if ab D ba; then eaeb D eaCbI (1.52)

eaeb D eaCbC 1
2 Œa;b�CO3.a;b/; where Œa; b� D ab � baI (1.53)

.ea/T D eaT I (1.54)

.ea/�1 D e�a: (1.55)

From the definition it follows that e0 D 1. Besides, if a is close to the null matrix,
then ea � 1 C a, that is ea will be close to the unit matrix. It is known that the
exponential establishes an isomorphism of a neighborhood of a null matrix onto a
neighborhood of a unit matrix.

Let us try to represent a small rotation R in the form of the exponential of another
matrix: R D e! . The condition of orthogonality of R gives .e!/T D .e!/�1, or
e!

T D e�! , or !T D �!, that is, the matrix ! must be antisymmetric. Conversely,
any antisymmetric matrix generates an orthogonal matrix by an exponential map.
An antisymmetric matrix is parameterized by three coordinates. Let us represent it
as follows

! D
0
@ 0 !12 �!31

�!12 0 !23

!31 �!23 0

1
A

D !23

0
@0 0 0

0 0 1

0 �1 0

1
AC !31

0
@0 0 �1
0 0 0

1 0 0

1
AC !12

0
@ 0 1 0

�1 0 0
0 0 0

1
A

� ˛1T1 C ˛2T2 C ˛3T3; (1.56)

where ˛1 D !23, ˛2 D !31, ˛3 D !12, or, in a more compact form

˛a D 1

2
�abc!bc; !ij D �ijk˛

k: (1.57)

Note the meaning of the exponential trick: resolution to the equation !T D �! is a
much easier task than RT D R�1!

Returning to the rotation matrix, it can now be presented as

R D e˛
aTa � 1 C ˛aTa; a D 1; 2; 3: (1.58)

The matrices Ta which appeared in the formalism are called generators of rotations.
Since exponential is an isomorphism, the coordinates ˛a of the matrix ! can be
taken as coordinates of the orthogonal matrix as well, R D R. Ę/. They have a
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simple geometric meaning. Note that the vector Ę is invariant under the rotation,
R. Ę/ Ę D Ę, so Ę is directed along the rotation axis.

This implies that, for instance, the matrix R D e˛
3T3 represents a rotation around

the z-axis. To confirm this by direct computation, note the properties

.T3/
2n D

0
@�1 0 0

0 �1 0
0 0 0

1
A

n

D
0
@ .�1/

n 0 0

0 .�1/n 0
0 0 0

1
A I (1.59)

.T3/
2nC1 D

0
@ 0 .�1/n 0

�.�1/n 0 0

0 0 0

1
A ; (1.60)

then (we denote ˛3 D ˛)

R D e˛T3 D
1X

nD0

1

nŠ
˛n.T3/

n D
0
BBBB@

P .�1/n˛2n

.2n/Š

P .�1/n˛2nC1

.2n C 1/Š
0

�P .�1/n˛2nC1

.2n C 1/Š

P .�1/n˛2n

.2n/Š
0

0 0 1

1
CCCCA D

0
@ cos˛ sin˛ 0

� sin ˛ cos˛ 0
0 0 1

1
A : (1.61)

The corresponding transformation

Er 0 D REr D
0
@ x cos˛ C y sin˛

�x sin˛ C y cos˛
z

1
A ; (1.62)

is precisely the rotation by angle ˛ around the z-axis.

Exercises

1. Prove the properties (1.52), (1.53), (1.54), and (1.55).
2. Prove that R. Ę/ Ę D Ę (hint: compute ˛aTa Ę D ! Ę using (1.57)).
3. Compute the rotation matrices e˛

1T1 and e˛
2T2 .

4. Verify that the rotation generators satisfy the following algebra: ŒTa;Tb� �
TaTb � TbTa D ��abcTc.
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1.3 Poincaré and Lorentz Transformations: The Principle
of Special Relativity

A very economic and clear presentation of the special theory of relativity can be
found in [15, 16]. For a detailed discussion, see [17–19]. Here we only discuss
the principle that represents the starting point in the formulation of relativistic
mechanics.

Formulation of the Principle of Special Relativity Similarly to the Galilean
principle, the special relativity principle postulates the set of transformations (called
Poincaré transformations) relating space-time coordinates of inertial frames, and
states that laws of motion are covariant under the Poincaré transformations. The
only difference between Galilean and Poincaré transformations is in the expression
for the boost relating moving observers.

Poincaré Transformations Differentiation of the Galilean boost xa D x0a C Vat
gives a simple transformation rule for a particle velocity

Ev D Ev0 C EV: (1.63)

The velocity of a particle seen by O is equal to the velocity seen by O0 plus the
relative velocity between the frames. This rule contradicts the Michelson–Morley
experiment, which shows that the velocity of propagation of a light front in a vacuum
is the same in all inertial frames! The numerical value of this universal constant is
c D 2998 � 1010 cm=s: According to the Michelson–Morley experiment, for the
case when both the light and the observer O0 move along the x-axis of the observer
O, we have c D c0 instead of Eq. (1.63).

Hence the Galilean boost is only approximately true, when velocity of the particle
and the relative velocity between the reference frames are small as compared with
this universal constant. We point out that this does not mean that relativistic effects
are always negligible at small velocities. For instance, a magnetic field produced by
an electric current passing through a wire represents a pure relativistic effect; see
[20].

So, we are forced to replace the Galilean boost by another transformation,
which must satisfy two requirements. First, it must be consistent with the observer-
independence of the speed of light. Second, it must reduce to the Galilean boost
at the non-relativistic limit c ! 1. It is instructive to discuss the problem in a
more general setting, looking for the most general transformation consistent with
the observer-independence of the speed of light.

Consider the propagation of a light between two nearby closed points, separated
by dt, dxa in the O-frame. O writes the law of motion �c2dt2 C .dxa/2 D 0, and

then computes the speed of light,
q
. dxa

dt /
2 D c. Similarly, the observer O0 writes

�c2dt02 C .dx0a/2 D 0, with the same c, in accordance with the Michelson–Morley
experiment. We look for the relation between t; Ex and t0; Ex0 which transform the first



1.3 Poincaré and Lorentz Transformations: The Principle of Special Relativity 19

equation into the second one. To simplify the notation, it is convenient to unify time
and space coordinates into a single object x	 D .x0; xa/ D .ct; xa/, which labels
points of space-time (Minkowski space). So, any quantity endowed with a Greek
index has four components,	 D 0; 1; 2; 3. The points of the Minkowski space often
called events, while curves are called worldlines. For instance, with the origin of the
laboratory O we associate the worldline .ct; E0/. We also introduce a 4 � 4-matrix

�	
 D

0
BB@

�1 0 0 0
0 1 0 0

0 0 1 0

0 0 0 1

1
CCA : (1.64)

Then the law of motion for the light front reads

�	
dx	dx
 D 0: (1.65)

The left-hand side of this equation is similar to the expression for a distance in
Euclidean space, dl2 D ıabdxadxb, where, instead of the Euclidean metric ıab, the
matrix �	
 appears. The matrix �	
 is called a Minkowski metric.

We look for a transformation x0	 D x0	.x
/ relating two inertial frames. In the
special relativity theory the equation of motion (1.65) is postulated to be invariant4

�	
dx0	.x/dx0
.x/ D �˛ˇdx˛dxˇ: (1.66)

Computing differentials on the l.h.s., it reads

�	
@˛x0	@ˇx0
 D �˛ˇ: (1.67)

This equation implies linearity of the transformation law. To see this, compute
the derivative with respect to x� , �	
@� .@˛x0	@ˇx0
/ D 0, then do a cyclic
permutation of indexes in this expression and write the following combination
�	
@� .@˛x0	@ˇx0
/ � �	
@˛.@ˇx0	@�x0
/C �	
@ˇ.@�x0	@˛x0
/ D 0. Computing the
derivatives, this reduces to 2�	
@˛x0	@ˇ@�x0
 D 0. Since both �	
 and @˛x0	 are
invertible matrices, this equation implies @ˇ@�x0
 D 0. That is, x0	 is at most a
linear function of x


x0	 D ƒ	

x

 C a	: (1.68)

4Requirement of the covariance, �	
dx0	dx0
 D k.x/��ıdx�dxı , is also consistent with observer-
independence of c. This leads to a broader set of transformations known as a conformal group.
In the theory with k ¤ 1, transverse dimensions of a moving body experience contraction effects
[17].
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Inserting this result into Eq. (1.67) we get a restriction on the matrix ƒ

�	
ƒ
	
˛ƒ



ˇ D �˛ˇ; or ƒT�ƒ D �; (1.69)

where .ƒT/˛
	 � ƒ	

˛ (as always, the left index of any matrix element gives the
number of line). The transformations (1.68) are known as Poincaré transformations,
while those with a	 D 0 are called Lorentz transformations.

Thus we have obtained all the transformations that keep Eq. (1.66) invariant and
hence are consistent with the independence of the speed of light on a choice of
a reference frame. These are given by Eq. (1.68), where a	, 	 D 0; 1; 2; 3 are
arbitrary constants while ƒ	


 is a 4 � 4 matrix that obeys the restriction (1.69).
Equation (1.69) implies that ƒ D ˙1, so the Lorentz matrix is invertible. An

inverse matrix is denoted as Q�, with the elements Qƒ	

 . Multiplying (1.69) by �

from the left and by Qƒ from the right, it reads Qƒ D �ƒT�. So the inverse matrix
is

Qƒ�
	 D ��ˇ.ƒ

T/ˇ

�
	; Qƒ�

	ƒ
	
˛ D ı�˛ : (1.70)

Consider the quantity

x	 D �	
x

 D .�x0; xa/: (1.71)

Using Eqs. (1.68) and (1.70), it transforms with the help of the inverse
matrix

x0
	 D x
 Qƒ


	 C a	: (1.72)

Hence in Minkowski geometry the up and down position of the four-dimensional
index of any quantity is fixed and indicates the transformation law of the quan-
tity. Any index can be raised or lowered with the help of the Minkowski met-
ric, see (1.71). Our agreement (1.64) implies that, similarly to non-relativistic
mechanics, xa D xa for spatial components of x	. Another widely used agree-
ment is � D .C1;�1;�1;�1/, this leads to the less convenient rule, xa D
�xa.

Interval of Minkowski Space The quantity

ds2 D ��	
4x	4x
 D c2.4t/2 � .4Er/2; (1.73)

associated with the events x	 and x	 C 4x	, has the same value in all inertial
frames and is called Minkowski interval. This has direct physical meaning in two
cases. First, for two events which occur at the same point, the four-interval is
proportional to time interval, dt D � ds

c . Second, for simultaneous events the four-
interval coincides with distance, dl D ds.
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The interval is called time-like if ds2 > 0. In the frame O0, which moves with
velocity Va D 4xa

4t with respect to O, the events happen at the same spatial point.
For the events separated by space-like interval, ds2 < 0, there is a frame where they
are simultaneous. The events of emission and absorbtion of a light signal have null
interval, ds2 D 0.

Vector (Tensor) Fields on Minkowski Space: Manifestly Covariant Equations
Consider the set

fv	.x
/; v0	.x0
/; : : :g; (1.74)

where v	.x
/ is a function representing a quantity in the frame O.x
/; v0	.x0
/
represents this quantity in O0.x0
/ and so on. The set is called a contravariant vector
field if

v0	.x0/ D ƒ	

v

.x/; (1.75)

where the coordinates x0	, x	 are related by the Poincaré transformation (1.68).
Similarly, a covariant vector field is defined by the transformation law

!0
	.x

0/ D !
.x/ Qƒ

	: (1.76)

To every contravariant quantity there corresponds a covariant one, which is obtained
by lowering the up-index with help of the metric, and vice-versa. Quantities
equipped with more than one index are called tensor fields. For example, the third-
rank contravariant tensor is defined by the transformation law

s0	
�.x0/ D ƒ	
˛ƒ



ˇƒ

�
� s˛ˇ� .x/; (1.77)

while the second-rank covariant tensor transforms as

s0
	
.x

0/ D s˛ˇ.x/ Qƒ˛
	

Qƒˇ

: (1.78)

Finally, a quantity without indexes that transforms as

' 0.x0/ D '.x/; (1.79)

is called a scalar function.
Equation (1.69) can be written as �	
 D �˛ˇ Qƒ˛

	
Qƒˇ


 , so the Minkowski metric
represents a special example of an x-independent tensor field that has the same
components in all reference frames. The Minkowski space admits one more x-
independent tensor with similar property, called Levi-Civita symbol, �	
�ı . It is
defined as follows. It is antisymmetric in any pair of indexes, so in the frame
O.x	/ is completely determined by �0123 D 1. Due to its antisymmetry, it obeys
�	
�ı D ��	
�ı . Let O0.x0	/ be related to O.x	/ by the Lorentz matrix ƒ. If
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detƒ D 1, we take �00123 D 1 in the frame O0. If detƒ D �1, we define �00123 D �1
in the frame O0. Then the transformation law

�0	
�ı D ƒ	
˛ƒ



ˇƒ

�
�ƒ

ı
�
˛ˇ� ; (1.80)

holds. Indeed, the quantity on r.h.s. is antisymmetric in any pair of indexes, so

ƒ	
˛ƒ



ˇƒ

�
�ƒ

ı
�
˛ˇ� D c�	
�ı; (1.81)

with some constant c. We can determine it calculating determinant of ƒ according
to known formula ˙1 D det� D 1

nŠ �
	
�ı�˛ˇ�ƒ	

˛ƒ


ˇƒ

�
�ƒ

ı
 D c

nŠ �
	
�ı�	
�ı D

c det 1 D c. With this c, Eq. (1.81) coincides with (1.80).

Examples

1. Note that tensors of a given rank form a linear space: if v	
 , s	
 are tensors,
then av	
 C bs	
 is a tensor as well.

2. Examples of scalar functions can be obtained contracting tensor indexes

!	v
	; �	
v

	s
; s	
��
	�v
: (1.82)

3. Contraction of indexes can also be used to construct new tensors. For
example, if t	
� and v	 are tensors, then t	
�v	 is a second-rank covariant
tensor, while t	
�v	v� is a covariant vector.

4. Starting from the scalar function, let us construct the set

�
@'.x/

@x	
;
@' 0.x0/
@x0	 ; : : :

	
: (1.83)

From @'0.x0.x//
@x	 D @'0.x0/

@x0


ˇ̌
ˇ
x0.x/

@x0


@x	 D @'0.x0/

@x0


ˇ̌
ˇ
x0.x/

ƒ

	 we write the relation-

ship between @0
	'

0 and @	'

@0
	'

0.x0/ D @
'.x/ Qƒ

	; (1.84)

that is, a derivative of a scalar function is a covariant vector. This example
shows that it is convenient to adopt the vector transformation law for a
partial derivative

@

@x0	 D @

@x

Qƒ


	: (1.85)

(continued)
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Similarly, a derivative of a tensor is a tensor as well. For example, @	@
 t�
represents a third-rank covariant tensor.

Equations (1.75), (1.76), (1.77), (1.78), and (1.79) clearly show that the scalar,
vector and tensor quantities can be used for the construction of covariant equations.
For instance, if s	
� is a tensor, then s	
� D 0 represents a manifestly covariant
equation: if an observer O discovered a law s	
� D 0, all inertial observers can use
this tensor to write the law in their laboratories.

Structure of the Poincaré Transformation Similarly to the Galilean transforma-
tion, the Poincaré one is specified by ten parameters. So, let us compare them, to get
an idea about the structure of Poincaré transformations (1.68) and (1.69).

1. There are four translations presented, x0	 D x	 C a	, just as in the Galilean case,
t0 D t C a, x0a D xa C ca. Six more parameters are necessary to label the Lorentz
matrix ƒ	


 .
2. Consider the Lorentz transformation with ƒ0

0 D 1; andƒi
0 D ƒ0

i D 0, that is

ƒ	

 D

0
BB@
1 0 0 0

0 ƒ1
1 ƒ

1
2 ƒ

1
3

0 ƒ2
1 ƒ

2
2 ƒ

2
3

0 ƒ3
1 ƒ

3
2 ƒ

3
3

1
CCA : (1.86)

Then Eq. (1.69) acquires the form ƒk
iƒ

k
j D ıij, that is, the 3 � 3-block ƒi

j

is the orthogonal matrix. The corresponding transformation represents a spacial
rotation

x00 D x0; x0i D ƒi
jx

j: (1.87)

3. Matrices with ƒ0
i; ƒ

i
0 ¤ 0 produce a transformation that can be compared with

the Galilean boost (which is written on the r.h.s. below)

x00 Dƒ0
0x
0 Cƒ0

bxb; .t0 D t/I (1.88)

x0a Dƒa
bxb Cƒa

0x
0; .x0a D xa C Vat/: (1.89)

The spatial part, Eq. (1.89), is similar to the Galilean boost, but it is accompanied
by the time boost, Eq. (1.88). This ultimately implies that both spacial and time
intervals between two events look different for observers in relative motion.
It is this part of the Poincaré group which essentially differ from the Galilean
one.
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Structure of the Lorentz Transformation To study Lorentz boosts in detail, we
parameterize an arbitrary Lorentz transformation

x0	 D ƒ	

x

; �	
ƒ

	
˛ƒ



ˇ D �˛ˇ; (1.90)

using the same procedure that was used in the previous section for rotation matrices.
We try to represent the Lorentz transformation ƒ in the form of the exponential of
another matrix:ƒ D e! . The condition ƒT�ƒ D � can be written as �e!

T
� D e�!

and then as e�!
T� D e�! . This implies �!T� D �!, or, finally

.�!/T D ��!: (1.91)

So, e! will be the Lorentz matrix if and only if �! is antisymmetric. Any ! that
obeys (1.91) is specified by 6 parameters and can be written in the form (confirm
this!)

! D

0
BB@
0 !01 !02 !03

!01 0 !12 �!31
!02 �!12 0 !23

!03 !31 �!23 0

1
CCA D

!01M01 C !02M02 C !03M03 C !12M12 C !31M31 C !23M23; (1.92)

where .M˛ˇ/
	



D ı
	
˛ �
ˇ �ı	ˇ�
˛ . M0a are called Lorentz-boost generators, and Mab

are the rotation generators (it is convenient to label them by a pair of indexes). The
manifest form of the generators is as follows:

M01 D

0
BB@
0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

1
CCA ;M02 D

0
BB@
0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

1
CCA ;

M03 D

0
BB@
0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

1
CCA I (1.93)

M12 D

0
BB@
0 0 0 0

0 0 1 0

0 �1 0 0
0 0 0 0

1
CCA ;M31 D

0
BB@
0 0 0 0

0 0 0 �1
0 0 0 0

0 1 0 0

1
CCA ;

M23 D

0
BB@
0 0 0 0

0 0 0 0

0 0 0 1

0 0 �1 0

1
CCA : (1.94)
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The sum (1.92) can be written in compact form if we duplicate a number of
parameters and generators defining !10 � �!01, M10 � �M01, and so on.
Then (1.92) reads ! D 1

2
!˛ˇM˛ˇ , where the sum is now performed over all values

of ˛, ˇ. The parameters !˛ˇ in this expression form an antisymmetric matrix.
Returning to the Lorentz transformation, it can now be presented as

ƒ D e
1
2 !

˛ˇM˛ˇ � 1 C 1

2
!˛ˇM˛ˇ; ˛; ˇ D 0; 1; 2; 3: (1.95)

According to the previous section, the transformations e!
23M23 , e!

31M31 and e!
12M12

produce spacial rotations about the axis x1, x2 and x3.
Commutators of the matrices M	
 have the following form:

ŒM	
;M˛ˇ� D �.�	˛M
ˇ � �	ˇM
˛ � �
˛M	ˇ C �
ˇM	˛/: (1.96)

Interpretation of the Lorentz Boost Consider, for example

ƒ D e˛M01 ; ˛ � !01: (1.97)

To find its manifest form, note that .M01/
2n has only non-zero matrix elements

.M01/
0
0 D 1, .M01/

1
1 D 1, while .M01/

2nC1 D M01. Then we compute

ƒ0
0 D ƒ1

1 D 1C ˛2

2Š
C ˛4

4Š
C : : : D 1

2
.e˛ C e�˛/ D cosh˛;

ƒ0
1 D ƒ1

0 D ˛ C ˛3

3Š
C ˛5

5Š
C : : : D 1

2
.e˛ � e�˛/ D sinh ˛; (1.98)

and the Lorentz-boost matrix is

ƒ D e˛M01 D

0
BB@
cosh˛ sinh ˛ 0 0
sinh˛ cosh˛ 0 0
0 0 1 0

0 0 0 1

1
CCA : (1.99)

This produces the transformation (x0 D ct, x00 D ct0)

t0 D t cosh˛ C x1

c
sinh ˛;

x01 D tc sinh ˛ C x1 cosh˛;

x02 D x2; x03 D x3: (1.100)

In the special theory of relativity it is postulated that this transformation relates the
coordinates of observer O0, who moves along the x1 axis of O at speed V , passing
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Fig. 1.4 Both Galilean and
Lorentz boosts prescribe a
law of transformation
between observers in relative
motion

x x/

y y 

/

V

Vt

O O       

/

through its origin at t D 0; see Fig. 1.4 on page 26. Then its origin has the coordinate
x1 at the instant t D x1

V . Coordinates of this event in the frame O0 are t0, x01 D 0.
Using these values in the second equation from (1.100), we obtain

tanh˛ D �V

c
; then

8<
:
cosh˛ D 1p

1�tanh2 ˛
D 1p

1�V2=c2
;

sinh˛ D tanh˛ cosh˛ D � V=cp
1�V2=c2

: (1.101)

So, the final form of the Lorentz boost is

t0 D t � V
c2

x1p
1 � V2=c2

; x01 D x1 � Vtp
1 � V2=c2

; x02 D x2; x03 D x3: (1.102)

The expressions can be inverted (do this!), with the result being

t D t0 C V
c2

x01
p
1 � V2=c2

; x1 D x01 C Vt0p
1 � V2=c2

; x2 D x02; x3 D x03: (1.103)

Comments 1. Note that at the limit c ! 1 this reduces to the Galilean boost.
When V > c, the transformations have no sense.

2. Equation (1.102) implies the following transformation rule for velocity

v0 D dx0

dt0
D dx � Vdt

dt � V
c2

dx
D v � V

1 � vV
c2

: (1.104)

As it should be, v D c implies v0 D c, in accordance with Michelson-Morley
experiment.

3. The time interval between two events looks different for observers in relative
motion. Consider two events (for example, two flashes) that happen at the same
point x01 of O0 at the instants t01 and t02. That is, the O0-clock registers the interval
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4t0 D t02 � t01. From Eq. (1.103) we have

t1 D t01 C V
c2

x01
p
1 � V2=c2

; t2 D t02 C V
c2

x01
p
1 � V2=c2

: (1.105)

So the O-clock will register the interval

4t D 4t0p
1 � V2=c2

> 4t0; (1.106)

that is, a clock moving with respect to O ticks more slowly as compared with a
clock at rest.

4. The spacial interval between two events looks different for observers in relative
motion. Take a pivot at rest with respect to O0 and placed along its x01 axis. Its
length in O0 is l0 D x01

2 � x01
1. To find its length in O, one needs to compute the

coordinates of the ends of the pivot at the same instant t. Use the second equation
from (1.102) with t2 D t1

l0 D x0
2
1 � x0

1
1 D lp

1 � V2=c2
> l D x12 � x11; (1.107)

that is, a pivot moving with respect to O looks shorter as compared with the pivot
at rest. Material bodies experience contraction in the direction of motion.

5. We have discussed particular cases of the Lorentz transformations: rotations and
Lorentz boost in .x0; x1/ -plane. General Lorentz transformation can be presented
as a product of two rotations and the Lorentz boost (1.102) in the direction of
motion of observer O0

ƒ D ƒR.ˇ/ �ƒV �ƒR.˛/; (1.108)

see Fig. 1.5 on page 28.

Mechanical Covariants and Invariants Poincaré transformations of the coordi-
nates of Minkowski space are linear, x0	 D ƒ	


x
 C a	. They induce a certain
transformation law of the functions xa.t/ which describe the evolution of a system.
The problem is that the induced transformations are higher nonlinear ones (see
Sect. 7.4). While the relativistic equations of motion can be formulated in terms
of xa.t/, the Poincaré covariance of such a formulation is not under control. The
conventional way to avoid the problem is as follows.

With the function xa.t/ we associate the set of points M.x	/ of Minkowski space
with the coordinates x0 D ct, xa D xa.t/. Let us introduce parametric equations of
the resulting worldline

x0 D x0.�/; xa D xa.�/; (1.109)
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where � is a parameter along the line. For the coordinates x	.�/ of the Minkowski
space we have the linear transformation law, x0	.�/ D ƒ	


x
.�/ C a	. So, in
contrast to xa.t/, the functions x	.�/ transform as coordinates. Then the quantity
Px	.�/ � dx	

d� transforms homogeneously, Px0	 D ƒ	

 Px
 , that is, it represents a

contravariant vector.
To construct the manifestly covariant quantities we have now the building blocks

�	
; Px	.�/; d

d�
; �	
��: (1.110)

So

Px	.�/ D 0; Px	 � �	
 Px
 D 0; Rx	 D 0;

.f .Px
 Px
/Px	/� D 0; �	
�� Px� Rx� D 0; (1.111)

are examples of the manifestly Poincaré-covariant equations, while

Px	 Px	 � �	
 Px	 Px
; f .Px	 Px	/; �	
�� Px	 Rx
 .3/x �.4/x �; (1.112)

represent invariants (scalar functions). Note that f .Px	 Px	/ is the only invariant that
does not involve higher derivatives.

It is important to note that the functions x	.�/ have no direct physical
meaning. The observer O measures space-time coordinates t, xa, that is, he
deals with the functions xa.t/, not with x	.�/. By construction, they are
related by xa.t/ D xa.�/j�.t/, where �.t/ is the solution to the equation
x0 D x0.�/.

ΛR(α) ΛV
ΛR(β)

Vt

V

α

β

Fig. 1.5 General Lorentz transformation can be decomposed into two rotations and a boost, ƒ D
ƒR.ˇ/ �ƒV �ƒR.˛/
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Proper Time Parametrization Natural parametrization s along the world-
line (1.109) can be constructed as follows. Using xa.t/, let us construct the function

s.t/ D 1

c

Z t

0

d�

r
��	
 dx	

d�

dx


d�
D 1

c

Z t

0

d�

s
c2 �

�
dEx
d�

�2
: (1.113)

s.t/ represents the interval computed along the world-line, and is invariant under the
Poincaré transformations. Besides, ds

dt D 1
c

p
c2 � jEvj2 > 0 since for the massive

particle jEvj < c. Hence s.t/ is an increasing function of t, and can be taken as a
parameter along the curve.

This has a simple interpretation for the particle moving with constant velocity.
Consider the frame that moves with the particle, then the world-line is x	 D .ct; E0/,
and from (1.113) we obtain s D t. Hence s is equal to the proper time of the particle,
that is the time measured in the frame where the particle is at rest.

Exercise Consider the curve xa.t/ which passes through the origin at t D
0, xa.0/ D 0. The interval between the events .0; xa.0// and .ct; xa.t// is
s.t/ D 1

c

p�x	x	. Verify if the interval can be used as a parameter of the
world-line.

1.4 Principle of Least Action

We have seen that the sum of kinetic and potential energy is an important quantity
characterizing a physical system. Surprisingly enough, their difference, T � U, also
plays a very special role, being a basic quantity used in the formulation of the least
action principle. In modern mechanics this underlies equations of motion.

Construction. With a mechanical system with the position variables qa we associate
the function of Lagrange L.qa; Pqa; �/, which in many cases is given by the difference,
L D T � U. We can compute the mean value5 of the Lagrangian along any curve
qa.�/ at a fixed interval Œ�1; �2�

SŒq� D
Z �2

�1

d�L.q; Pq; �/: (1.114)

This integral is called the Lagrangian action of the system. It associates the number
SŒq� to each curve qa.�/. We can compare the numbers SŒq� calculated for the curves

5The mean value would be S divided by the interval T D �2 � �1. Since we are interested only in
curves over the fixed interval, the common factor T�1 can be omitted.
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q(τ1)

q(τ2)

q(τ)

q(τ) + δ q(τ)

Fig. 1.6 The variational problem is formulated on a class of curves with the same initial and final
points

that join two given points over the time interval chosen; see Fig. 1.6 on page 30. We
restrict ourselves to this class of curves.

According to the principle of least action (or Hamilton’s principle), with a
mechanical system can be associated a Lagrangian function L. The system moves
between two given points along the curve that provides the minimum of the
Lagrangian action.

This statement of the existence of a Lagrangian is rather general. In particular, for
a mechanical system that obeys the Hamiltonian equations of motion (see below),
the existence of a Lagrangian function can be proved. While in some cases it
requires the use of rather sophisticated methods, Lagrangians have been found
for most fundamental equations of mathematical physics. Hence they follow the
principle of least action.

To provide the minimum, qa.�/ must obey certain second-order differential
equations constructed in terms of L. While we discuss this in the next section, it
may be instructive to carry out an intuitive computation that illustrates a relationship
between the quantity L and equations of motion. Take the harmonic oscillator with
L D 1

2
mPx2 � 1

2
kx2. Consider the curve x.t/ and another one, close to it, x.t/C ıx.t/,

and with the same initial and final points. This implies ıx.t1/ D ıx.t2/ D 0. Let us
compute the variation of the function L for the two curves in a linear order on ıx
(that is, the differential) at a fixed t; see Fig. 1.6 on page 30. We obtain

dL D ŒL.x C ıx/� L.x/�jO.ıx/ D 1

2

�
m.Px C ı Px/2 � k.x C ıx/2 � mPx2 � kx2

�ˇ̌
O.ıx/

D �.mRx C kx/ıx C .xıx/�: (1.115)

Note that mRx C kx D 0 is equation of motion of the harmonic oscillator. That is the
differential L consists of equations of motion plus a total derivative term. This can be
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removed if we integrate this equality on the interval Œt1; t2�. The integral of the total
derivative

R
dt.xıx/: D xıxjt2t1 vanishes due to the conditions ıx.t1/ D ıx.t2/ D 0.

Then the integral of Eq. (1.115) reads

Z
dtdL D �

Z
dt.mRx C kx/ıx: (1.116)

Hence the differential of the Lagrangian integrated on the interval vanishes for the
curve x.t/, which obeys the equations of motion,

R
dtdL.x.t// D 0. The last equality

represents a necessary condition of minimum of the Lagrangian action; see the next
section.

1.4.1 Variational Analysis

Definition of a Functional Consider a set of functions C D fqa.�/; q W R ! R
ng.

The functional S is a rule that associates a real number with any function of the set,
that is, S is the map

S W C ! R; or S W qa.�/ ! SŒqa.�/� 2 R: (1.117)

The straight brackets are used to distinguish functionals from functions.
In Lagrangian mechanics we are interested in a functional of a special form

called the Lagrangian action functional. A mechanical system can be characterized
by the function of Lagrange L.q; Pq; �/. Given the trajectory qa.�/, � 2 Œ�1; �2�, the
Lagrangian action functional is defined by the rule

SŒq� D
Z �2

�1

d�L.q; Pq; �/: (1.118)

Below we systematically omit the integration limits as well as the time variable � in
the Lagrangian.
The variational problem for the Lagrangian action is formulated as follows.
Consider the class of curves joining two fixed points q1, q2 over a fixed time interval
Œ�1; �2�

qa.�1/ D qa
1; qa.�2/ D qa

2; (1.119)

see Fig. 1.6 on page 30. The problem is to find the curve that provides the smallest
value of the action functional. According to the least action principle, this is the
curve the system with the Lagrangian L chooses as a trajectory of motion.

To analyze the problem, we define the functional analog for the differential of
a function called the variation of a functional. Given functions qa.�/ and ya.�/ of
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q(τ1)

q(τ2)

q(τ)

q(τ) + δq(τ) q(τ, s)

Fig. 1.7 A one-parameter family q.�; s/ connecting the curves q.�/ and q.�/C ıq.�/

the set C, let us introduce the function ıqa.�/ � qa.�/ � ya.�/. Then we write
ya D qa C ıqa. Let us also introduce the one-parameter family of curves qa.�; s/ �
qa.�/ C sıqa.�/ connecting qa.�/ and qa.�/ C ıqa.�/; see Fig. 1.7 on page 32. It
obeys the properties qa.�; 0/ D qa.�/, qa.�; 1/ D qa.�/C ıqa.�/.

Given qa.�/ and ıqa.�/, with the functional S we associate the usual function of
the variable s

S.s/ � SŒqa C sıqa�: (1.120)

Then the variation ıSŒq� of the functional SŒq� “at the point qa.�/” is defined by the
formula

ıSŒq� � dS.s/

ds

ˇ̌
ˇ̌
sD0

D d

ds
SŒq C sıq�

ˇ̌
ˇ̌
sD0

: (1.121)

So ıSŒq� D 0 if and only if the function S.s/ has an extremum at t D 0, S0.0/ D 0.

Assertion If qa.�/ represents a minimum of the variational problem (1.118)
and (1.119), then

ıSŒq� D 0 for any ıqa.�/: (1.122)

Indeed, let qa be a minimum. Choose some ıqa.�/ and consider the function (1.120).
Since S.0/ D SŒq�, the function S.s/ has a local minimum at s D 0. This implies
dS.s/

ds

ˇ̌
ˇ
sD0 D 0. Taking into account (1.121), we conclude that ıSŒq� D 0.
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Let us look for manifest form of the condition ıSŒq� D 0. For the velocity-
independent functional, S D R

d�L.q/, we obtain

ıS D
Z

d�
@L

@qa
ıqa; (1.123)

that is, the integrand represents the usual differential of the function L.
For the Lagrangian action (1.118) the variation (1.121) reads

ıS D
Z

d�

�
@L.q; Pq/
@qa

ıqa C @L.q; Pq/
@Pqa

.ıqa/:
�
: (1.124)

Here @L.q;Pq/
@Pqa stands for a partial derivative with respect to the symbol Pqa. Notice

that the integrand looks like the linear term of the power expansion of the function
L.q C ıq; Pq C .ıq/:/, if this is treated as a function of independent variables q and Pq.
It is the formal rule used for computation of the variation in practice (omitting the
variable s)

ıS D .SŒq C ıq�� SŒq�/jlinear in •q term (1.125)

This rule has been used in the previous section. Using integration by parts,
Eq. (1.124) can be written in the form

ıS D
Z

d�

�
@L

@qa
� d

d�

@L

@Pqa

�
ıqa C @L

@Pqa
ıqa

ˇ̌
ˇ̌�2
�1

: (1.126)

If the variation is computed on the class of functions (1.119), ıqa vanishes at the
limiting points, ıqa.�1/ D ıqa.�2/ D 0. So the last term in (1.126) vanishes as well,
and we obtain the basic formula of variational analysis

ıSŒq� D
Z

d�

�
@L.q; Pq/
@qa

� d

d�

@L.q; Pq/
@Pqa

�
ıqa: (1.127)

The Eqs. (1.122) and (1.127) imply that the minimum qa.�/ obeys the condition

Z
d�

�
@L

@qa
� d

d�

@L

@Pqa

�
ıqa D 0 for any ıqa.�/: (1.128)

In turn, this implies (this is proved at the end of the section)

d

d�

@L

@Pqa
� @L

@qa
D 0: (1.129)

This system of ordinary second-order differential equations is known as Lagrangian
equations or Euler-Lagrange equations. Sometimes the l.h.s. will be denoted as ıS

ıqa .
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Let us summarize the results. According to the least action principle, the true
trajectory of a physical system is a minimum of the variational problem with a
properly chosen Lagrangian. In turn, the extremum qa.�/ obeys the Lagrangian
equations (1.129). Combining these statements we arrive at

Assertion The time evolution of a system described by the Lagrangian L.q; Pq; �/ is
governed by the Lagrangian equations (1.129).

We point out an ambiguity presented in the construction of a Lagrangian.We can
modify a given Lagrangian adding the total derivative of any function N.q; �/. The
action

S0 D
Z

d�

�
L.q; Pq; �/C d

d�
N.q; �/

�
; (1.130)

leads to the same equations of motion as (1.118). To confirm this, note that
variation (1.121) of the extra term vanishes due to the boundary conditions ıq.�2/ D
ıq.�1/ D 0, ı

R PN D @N
@q.�2/

ıq.�2/� @N
@q.�1/

ıq.�1/ D 0. Hence ıS0 D ıS.

Examples

1. Let us confirm the validity of the least action principle for a system of
particles subject to potential forces. Let ri D .x1i ; x

2
i ; x

3
i / stand for the

position vector of the i-particle of mass mi, i D 1; 2; : : : ;N, and the
function U.r1; : : : ; rN/ describe the potential energy. Take a Lagrangian
as kinetic minus the potential energy and write the corresponding action

S D
Z

dt

�
1

2
mi.Pri/

2 � U.ri/

�
; (1.131)

In this case the Lagrangian equations (1.129) reduce to the second law of
Newton, as it should be:

mi Rri D �@U

@ri
; i D 1; 2; : : : ;N: (1.132)

2. We specify the previous result for the case of N particles with the same
mass m connected by massless springs, see Fig. 1.8 on page 35. All the
springs are of the same length 4x and rigidity k. So the equilibrium
positions of the particles are x1.0/ D 0, x2.0/ D 4x, x3.0/ D 24x,
: : :, xi.0/ D .i � 1/4x, : : :, xN.0/ D .N � 1/4x. Take the displacement
qi.t/ D xi.t/�.i�1/4x of the i-particle from the position of equilibrium as
its coordinate. The potential energy of the system is a sum of the energies

(continued)



1.4 Principle of Least Action 35

Fig. 1.8 Chain of springs.
(a) Equilibrium
configuration, (b)
instantaneous configuration

x

. . .

. . .

. . .

. . .

i−1 i i+1

(a)

(b)

(i−1)   x xi

qi

i

of the springs,
P

1
2
k.qiC1 � qi/

2, so the action is given by

S D 1

2

Z
dt

"
m

NX
iD1

.Pqi/
2 � k

N�1X
iD1

.qiC1 � qi/
2

#
: (1.133)

This implies the equations

mRq1 D k.q2 � q1/; mRqN D k.qN � qN�1/;

mRqi D k.qiC1 � qi/� k.qi � qi�1/; i D 2; 3; : : : ;N � 1: (1.134)

Non-singular and Singular Theories Computing the derivative with respect to �
in the Lagrangian equations (1.129), these can be written as

Mab.q; Pq/Rqb D Ka.q; Pq/; (1.135)

where

Mab � @2L.q; Pq/
@Pqa@Pqb

; Ka � @L

@qa
� @2L

@Pqa@qb
Pqb: (1.136)

Exercise Multiplying (1.135) by Pqa, obtain the law of conservation of total
energy.

Lagrangian theories are classified according to the properties of the Hessian matrix
M which appears in front of the second-derivative terms. The theory is called non-
singular if detM ¤ 0 (then there is an inverse matrix denoted QM/. Otherwise, it is
called a singular theory. Equations of the non-singular theory can be rewritten in
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the normal form

Rqa D QMab.q; Pq/Kb.q; Pq/: (1.137)

As has been mentioned above, this implies causal dynamics, as should be the case
for a classical-mechanics system. So, in classical mechanics we usually deal with
non-singular systems (while a system with holonomic constraints can be formulated
in terms of a singular Lagrangian as well, see Sect. 1.6.3). Singularity is a typical
property of manifestly relativistic theories. The formalism of classical mechanics
for singular theories is discussed in some detail in Chap. 8.

To conclude this section, we demonstrate the statement used in the passage
from (1.128) to (1.129):

Let
Z �2

�1

d� f .q; Pq; Rq; : : :/�.�/ D 0; for any function �.�/: (1.138)

Then f D 0.
Indeed, by reductio ad absurdum suppose that f > 0 on an interval Œ� 0; � 00�. Take

any function �.�/ that has positive values on that interval and vanishes at all other
points. Then by construction

Z �2

�1

d� f� D
Z � 00

� 0

d� f� > 0; (1.139)

which contradicts (1.138).

1.4.2 Generalized Coordinates, Coordinate Transformations
and Symmetries of an Action

A change of coordinates is one of the powerful methods used for studying equations
of motion. In this section we show that it can be carried out directly in an action
functional instead of in equations of motion (in many cases this turns out to be
much more economic procedure).

We recall that a functional is an operation defined on a given class of functions,
so we should to decide how the functions and the functional change under the
transformation of coordinates. Here we present rather intuitive discussion of the
subject. A more consistent treatment will be given in Chap. 7.
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Configuration Space and Generalized Coordinates Consider a system of parti-
cles already discussed in Example 1 of the previous section

S D
Z

d�

�
1

2
mi.Pri/

2 � U0.ri/

�
: (1.140)

First, we simplify the notation introducing the quantity q=qa, a=1; 2; : : : ; 3N � n

q D

0
BB@

p
m1r1p
m2r2
: : :p
mNrN

1
CCA : (1.141)

This can be regarded as the position vector of a point in n dimensional Euclidean
space. In this notation the action reads

S D
Z

d�

�
1

2
.Pqa/2 � U.q1; q2; : : : ; qn/

�
: (1.142)

This implies an elegant mathematical reinterpretation of the initial problem with N
particles: Eq. (1.142) looks like an action describing the motion of a unique particle
in abstract 3N dimensional space. It is called the configuration space of the system,
while qa are called generalized coordinates (more generally, they are any coordinate
system of the configuration space).

Recall that Euclidean space has natural metrical properties, that is, we are able
to define the distance between points, the length of a curve and magnitude of a
vector, angles between vectors and so on. For two points with coordinates qa

1, qa
2 the

distance is

.4s/2 D ıab4qa4qb: (1.143)

where ıab is a unit matrix sometimes called the Euclidean metric and 4qa stands
for the difference of coordinates, 4qa D qa

2 � qa
1. The metric determines the length

of a vector as well

j Ewj2 D ıabwawb: (1.144)

So the kinetic term in Eq. (1.142) is just half of the square of the velocity vector. For
the later use we also recall the formula for the length of a curve with the parametric
equation qa D qa.t/

l D
Z t2

t1

dt
p
ıab Pqa Pqb: (1.145)
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Transformation of an Action Under a Change of Coordinates Let q0a be another
parametrization of the configuration space. Consider the change of coordinates,
qa ! q0a, and let

qa D qa.q0b/; (1.146)

stand for the transition function. A change of coordinates is supposed to be an
invertible transformation. This implies det @qa

@q0b ¤ 0, that is, @qa

@q0b is an invertible
matrix. Substitution of the transition function into the initial Lagrangian function L
gives another function L0

L0.q0a; Pq0a/ � L

�
qa.q0b/;

@qa

@q0b Pq0b
�
: (1.147)

We confirm that the corresponding action

S0Œq0� D
Z

d�L0.q0a; Pq0a/; (1.148)

leads to equations of motion that are equivalent to the initial ones. So it is matter
of convenience which one is used for obtaining equations of motion. To prove this,
write the Lagrangian equations following from (1.148)

d

d�

@L0

@Pq0a � @L0

@q0a D

d

d�

 
@L

@Pqb

ˇ̌
ˇ̌
q.q0/

@qb

@q0a

!
� @L

@qb

ˇ̌
ˇ̌
q.q0/

@qb

@q0a � @L

@Pqc

ˇ̌
ˇ̌
q.q0/

@2qc

@q0a@q0b Pq0b D

@qb

@q0a

�
d

d�

@L

@Pqa
� @L

@qa

�ˇ̌
ˇ̌
q.q0/

; (1.149)

that is

ıS0

ıq0a D @qb

@q0a
ıS

ıqb

ˇ̌
ˇ̌
q.q0/

: (1.150)

Since @qb

@q0a is an invertible matrix, ıS0

ıq0a D 0 implies ıS
ıqb D 0 and vice versa. To avoid

a confusion, note that Eq. (1.150) or, equivalently, S0
a.q

0/ D @qb

@q0a Sb.q/, is different
from the covariance condition (1.47).



1.4 Principle of Least Action 39

In particular, replacing the Cartesian coordinates qa in Eq. (1.142) by some q0a,
the action acquires the form

S0 D
Z

d�

�
1

2
gab.q

0/Pq0a Pq0b � U.q0a/
�
;

gab �
X

c

@qc

@q0a
@qc

@q0b ; U.q0/ � U.q.q0//: (1.151)

Equation (1.151) shows that equations of motion in Cartesian and non-Cartesian
coordinates generally have different forms. As an example, compare the Carte-
sian (1.31) and polar (1.167) equations of the Kepler‘s problem. In particular, in
non-Cartesian coordinates may appear velocity-dependent terms.

Metric of Configuration Space The matrix gab.q0/which appears in the action has
a simple geometric interpretation.6 To see this, let us consider two infinitesimally
closed points of configuration space with coordinates q0a and q0a C dq0a. Using the
transition function (1.146), their coordinates in the Cartesian system read qa.q0/ and
qa.q0 C dq0/. Let us compute the expression for the distance (1.143) in coordinates
q0. Expanding the transition function qa.q0 C dq0/ in a power series up to the first
order we obtain

.ds/2 D ıab4qa4qb � ıab
@qa

@q0c
@qb

@q0d dq0cdq0d D gcddq0cdq0d: (1.152)

Hence, to compute distances (and hence other metrical quantities) in coordinates q0,
we need to know the matrix gab.q0/. So, gab plays the same role in the coordinates q0a
as ıab in the Cartesian system: it determines the metrical properties of the space in
the coordinates q0. It is called the metric of configuration space in the coordinates q0.
The length of a vector and of a line can be obtained from (1.144), (1.145) replacing
ıab on gab.q0/

j Ewj2 D gab.q
0/w0aw0b: (1.153)

l D
Z t2

t1

dt
p

gab.q0/Pq0a Pq0b: (1.154)

We point out that these expressions are exact, in contrast to the approximate
expression for the distance (1.152); see Chap. 6.

Symmetries of an Action This is a good place to discuss the notion of global
symmetry of an action as a special class of coordinate transformations. Consider the

6A systematic discussion of the underlying geometry will be given in Chap. 6.
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Galilean transformation7 with a D EV D 0

Er.Er 0/ D REr 0 C Ec: (1.155)

Let us do this transformation in the action describing a system of particles Eri; i D
1; 2; : : : n, with a potential that depends only on the relative distance between them

S D
Z

dt

�
1

2
mi

PEri
2 � U.rij/

�
; here .rij/

2 D
3X

aD1
.xa

i � xa
j /
2: (1.156)

Substituting (1.155) into (1.156), we obtain L.Er.Er 0// D L.Er/, then the transformed
action (1.147) has the same form as the initial one

S 0ŒEr 0� � SŒEr.Er 0/� D
Z

dt

�
1

2
mi

PEr 0
i

2 � U.r0
ij/

�
D SŒEr 0�: (1.157)

Coordinate transformations with these property are called global symmetry of the
action. Thus the six-parameter family (1.155) is a symmetry of the action (1.156).

Generalizing this example, let us consider a family of coordinate transformations

qa D qa.q0b; !˛/; (1.158)

where !˛ , ˛ D 1; 2; : : : ; k are parameters. Generally, the transformed Lagrangian
L0 (defined in (1.147)) as a function of its arguments is different from L, L0.q0; Pq0/ ¤
L.q; Pq/jq!q0

(for instance, the Eq. (1.151) clearly shows this). But if it coincides
with L or differs on the total derivative term

L0.q0; Pq0/ � L

�
qa.q0b; !˛/;

@qa

@q0b Pq0b
�

D L.q0; Pq0/C PN; (1.159)

then, up to boundary term, the transformed action has the same form the initial one

S 0Œq0� � SŒq.q0; !˛/� D SŒq�jq!q0 C boundary term: (1.160)

Then the family of coordinate transformations (1.158) is called the global symmetry
of the action with k parameters. The action is called invariant under the transforma-
tions (up to a boundary term).

When a transformation represents the symmetry, it is not necessary to carry out
computations to obtain equations of motion in the new coordinates, for they appear

7The Galilean transformations involving time, Er.t/ D REr 0.t�a/CEVt, can be regarded as coordinate
transformations of extended configuration space, see Chap. 7.
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from the equations in the initial coordinates by the replacement

ıS

ıqb

ˇ̌
ˇ̌
q!q0

D 0: (1.161)

Reparametrization-Invariant Functional Let � D Q̨ .� 0/ is an increasing (and
hence invertible) function, d�

d� 0

> 0, the inverse functionwe denote as ˛.�/. Consider
two parameterizations of a given curve: q.�/, � 2 Œa; b� and q0.� 0/ � q. Q̨ .� 0//, � 0 2
Œ˛.a/; ˛.b/�, and compare the values of an action functional for them:

R b
a d�L.q; Pq/

and
R ˛.b/
˛.a/ d�L.q0; Pq0/. To achieve this, we change the integration variable in the last

integral, � D ˛.s/, and use the equality d Q̨
d�

ˇ̌
ˇ
�D˛.s/ D . d˛

ds /
�1 which follows from the

differentiation of the identity Q̨ .˛.s// D s. We obtain

Z ˛.b/

˛.a/
d�L Œq. Q̨ .�//; Pq. Q̨ .�//� D

Z ˛.b/

˛.a/
d�L

"
q. Q̨ .�//; d Q̨

d�

dq

d Q̨
ˇ̌
ˇ̌

Q̨!Q̨.�/

#
D

Z b

a
ds

d˛

ds
L

"
q.s/;

�
d˛

ds

��1
Pq.s/

#
:

(1.162)

If L is a homogeneous function of velocities, L.kv/ D kL.v/, the value of the
functional does not depend on the choice of parametrization

Z ˛.b/

˛.a/
d�L Œq. Q̨ .�//; Pq. Q̨ .�//� D

Z b

a
d�LŒq.�/; Pq.�/�: (1.163)

The length of a curve (1.154) is an example of the reparametrization-invariant
functional. In the end of Sect. 7.2 we confirm that the reparametrization invariance
is an example of the local symmetry.

Examples

1. Kepler’s problem in polar coordinates.According to Sect. 1.1, trajectory
of a particle in the central field lies on a plane. The particle can be described
by the action

S D
Z

dt

"
1

2
m
�Px2 C Py2C ˛p

x2 C y2

#
: (1.164)

(continued)
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This implies the Newton equations (1.31). The factor x2 C y2 in these
equations prompts that they should simplify in the polar coordinates

x D r cos �; y D r sin �: (1.165)

For the derivatives we obtain Px D Pr cos ��r P� sin � , Py D Pr sin � D r P� cos � .
Then the action acquires the form

S D
Z

dt

�
1

2
m



Pr2 C r2 P�2
�

C ˛

r

�
: (1.166)

This implies the Lagrangian equations

Rr � r P�2 C ˛

mr2
D 0; .r2 P�/: D 0: (1.167)

We can also substitute the polar coordinates into the expressions for
conserved quantities (1.32)–(1.35). The resulting first-order equations can
be expressed in the form

mPr2 D 2.E � ˛

r
/ � L2

mr2
; (1.168)

P� D L

mr2
; (1.169)

Pr � ˛e

L
sin � D 0; (1.170)

r P� � ˛

L
.1C e cos �/ D 0: (1.171)

Note that (1.168) looks as a one-dimensional problem (1.32) with the
effective potential energy ˛

r C L2

2mr2
. The second-order equations (1.167)

are consequences of this system (check this!) and can be omitted from
consideration. Using (1.169), we exclude P� from (1.171), this yields the
equation of trajectory

r D p

1C e cos �
; where p D L2

˛m
: (1.172)

(continued)
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This is an equation of a conic section (1.37) in polar coordinates (the ellipse
for eccentricity 0 < e < 1, the parabola for e D 1 and the hyperbola for
e > 1/.
As it should be, the Eq. (1.168) coincides with (1.42). This can be
integrated out giving the law of evolution of the particle, r.t/. With this
r.t/ we can integrate out the Eq. (1.169), this gives time-dependence of
�-coordinate.

2. Two body problem. One of the important problems of classical mechanics
that admits an analytic solution consists of the analysis of motion of two
particles subject to the potential that depends only on relative distance
between them. We consider a system with an inverse degree potential. The
corresponding action

S D
Z

dt

�
1

2
m1

PEr12 C 1

2
m2

PEr22 C ˛

jEr2 � Er1j
�
; (1.173)

leads to the Lagrangian equations

mi
REri D � ˛Eri

jEr2 � Er1j3 ; i D 1; 2: (1.174)

These have complicated right-hand sides that depend on all six variables of
the problem. To improve this, notice that introducing the vector Er D Er2�Er1,
we simplify the potential term in the action. So let us define the relative
position vector Er D Er2 � Er1 and the center of mass vector ER D m1Er1Cm2Er2

m1Cm2
.

These equalities can be inverted

Er1 D ER � m2Er
m1 C m2

; Er2 D ER C m1Er
m1 C m2

: (1.175)

According to (1.175), the point with radius-vector ER lies on the interval
connecting the points Er1 and Er2. For the latter use we introduce also
the vectors

Er 0
1 D Er1 � ER; Er 0

2 D Er2 � ER; (1.176)

(continued)
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so Er 0
2 � Er 0

1 D Er, see Fig. 1.9 on page 45. Let us pass to the generalized

coordinates, .Er1; Er2/ ! .ER; Er/. In the new variables the action reads

S D s dt

�
1

2
M PER2 C 1

2
mPEr2 C ˛

jErj
�
; (1.177)

where M D m1 C m2 and m D m1m2
m1Cm2

. It describes two fictitious particles

with radius-vectors ER and Er. Equations of motion for them are

RER D 0; mREr C ˛Er
jErj3 D 0: (1.178)

The center-of-mass “particle” moves with constant velocity along the
straight line, ER.t/ D ER0 C EVt. Er-particle moves in the central field, so
we have the Kepler problem (1.30). Its trajectory is a conic section on the
plane orthogonal to the vector of angular momentum EL D mŒEr; PEr� D const.
Let it be an ellipse with the semi-axis a and b. Given vectors ER.t/, Er.t/, the
evolution of true particles is obtained according to Eq. (1.175) or (1.176)

Er1 D ER C Er 0
1; Er2 D ER C Er 0

2: (1.179)

So, dynamics of the particle with the radius-vector Er1 is a composition of
two motions: the vector Er 0

1 moves on the plane of ellipse Er, while the plane
moves in the direction of EV .
A qualitative picture of motion of the particles Er 0

1 and Er 0
2 can be described

as follows. Comparing (1.177) and (1.176) we have

Er 0
1 D � m2

m1 C m2

Er; Er 0
2 D m1

m1 C m2

Er: (1.180)

Hence the trajectory of the Er 0
1-particle is the ellipse of the Er-particle

suppressed by the factor m2
m1Cm2

, which has the semi-axis m2a
m1Cm2

, m2b
m1Cm2

. For
the Er 0

2-particle, the ellipse is suppressed by m1
m1Cm2

. According to (1.180),
Er 0
1 and Er 0

2 are antiparallel at any instant. Hence the trajectories of these
particles are ellipses with one focus at the center of mass and with parallel
semi-major axis. At each instant of motion, a straight line connecting the
particles passes through the center of mass; see Fig. 1.10 on page 45.
A cartesian system with center at the point ER.t/ is called center-mass
coordinate system, see Fig. 1.9 on page 45. Transformation between the
initial and center of mass coordinates is given by Galilean transformation
Er.t/ D Er 0.t/C ER0 C EVt.
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Fig. 1.9 The point F represents origin of a laboratory system. The center-of-mass “particle” M
moves with constant velocity along a straight line. Er-particle moves in a central field

. x/

m1

m2

m

y 

/

M

Fig. 1.10 Two-body problem in the center-mass coordinates. Ellipses of m1 and m2-particles are
obtained from an ellipse of a fictitious m-particle according to (1.180)
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Exercises

1. It is instructive to obtain polar equations (1.167) by substitution of (1.165)
into the Cartesian equations (1.31).

2. Compute components of the Runge-Lenz vector in polar coordinates and
compare the result with (1.170) and (1.171) (hint: under transformation of
coordinates qa D qa.q0b/, the components of a vector field transform as
A0a.q0/ D @q0a

@qb Ab.q/).

1.5 Examples of Continuous (Field) Systems

While initially formalism of classical mechanics has been developed for finite-
dimensional systems, many of its methods can be generalized for the description
of physical systems with an infinite (non-countable) number of degrees of freedom.
In this case the configuration of a system is determined by a function of the space-
time point, say 'B.�; xa/, B D 1; 2; : : : ; n called a field. Hence to determine an
instantaneous configurationwe need to specify n numbers'A, at each point of space.

Here we present a few illustrative examples of the field systems, and outline the
relevant results of variational analysis that will be used later.

Small Oscillations of a Non-stretchable String Consider a non-stretchable string
of length L and linear mass density �. The string is fixed at one end but can slide
without friction at the other end; see Fig. 1.11 on page 47. It is under the constant
force T applied to the free end (imagine the mass M hanged on that end, then T D
Mg/. T is called the string tension. The tension acts as a return force when the string
is replaced out of its position of equilibrium.

The configuration of the string can be described by the displacement function
'.t; x/; see Fig. 1.11 on page 47. It is an example of a continuous system:
instantaneous configuration is determined by the function '.x/, x 2 Œ0;L� instead
of a set of numbers qa. Intuitively, it is convenient to imagine that we deal with an
infinite number of coordinates 'x.t/ � '.x; t/ labeled by a “continuous index” x
instead of qa.t/ with the discrete index a.

To write an action, we consider the approximation of a small oscillation, ' � L,
of the light string, �L � M, and suppose that points of the string can move in a
vertical direction only.

The potential energy is equal to the work performed by the force T in the
displacement of the mass M, U D Th, where h is the difference of lengths of

instantaneous and initial configurations h D Linst � L, Linst D R L
0

dx

r
1C



@'

@x

�2 �
L C 1

2

R L
0

dx. @'
@x /

2 (the integrand has been expanded in a power series up to a linear
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T = Mgh

x

ϕ

ϕ (t, x)

x x

l

Fig. 1.11 Instantaneous configuration of a string is described by the displacement function '.t; x/

order). Thus the potential energy is

U D T
Z L

0

dx

�
@'

@x

�2
: (1.181)

To compute the kinetic energy, consider first a small section 4l of the string. Its
kinetic energy is approximated by (x0 stands for a point inside4l/ 1

2
�4l. @'.t;x0/

@t /2 D
1
2
�

q
1C .

@'

@x /
24x. @'

@t /
2 D 1

2
�.1C. @'

@x /
2/4x. @'

@t /
2 � 1

2
�.

@'

@t /
24x. Integration along

the string gives the total kinetic energy

T D 1

2
�

Z L

0

dx

�
@'

@t

�2
: (1.182)

The Lagrangian action reads

S D 1

2

Z
dtdx

"
�

�
@'

@t

�2
� T

�
@'

@x

�2#
: (1.183)

As compared with a finite-dimensional system, see for example Eq. (1.133), the sum
on the discrete label i is now replaced by an integral on the continuous label x.

Exercise Confirm that the same action arises for a stretchable string with
fixed ends, supposing that potential energy is proportional to its stretch.
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A Continuous System as a Limit of a Discrete One To study longitudinal
vibrations of an elastic pivot, we first approximate it by a chain of N particles
connected by springs. The description of the pivot arises at the limit N ! 1.
Note that this gives an intuitive explanation why the methods first developed for a
system with a finite number of degrees of freedom work for continuous systems as
well.

Starting from a spring chain of N particles (see Example 2 of Sect. 1.4.1) let us
try to find the limit when the number of particles on the fixed interval Œ0; .N �1/4x�
tends to infinity, N ! 1 (this implies 4x ! 0/. In the process, we also vary the
mass of each particle and the rigidity of each spring according the rules m D �4x,

k D T
4x , where �, T are fixed numbers. Note that � has the dimension kg

m , which is

of linear mass density, while T has the dimension of the tension (force) kg�m
sec2 . The

action (1.133) reads

S D 1

2

Z
dt

"
�

NX
iD1

.Pqi/
24x � T

N�1X
iD1


qiC1 � qi

4x

�24x

#
: (1.184)

To understand what happens at the limit, it is convenient to plot the displacements qi

(at some fixed instant t/ on the plane .x; q/; see Fig. 1.12 on page 48. Clearly, when
N ! 1, the sequence fqi.t/g approximates to a function q D '.t; x/, which is
defined by the condition '.t; xi/ D qi.t/. Then sums in the integrand of Eq. (1.184)
are just the partial integral sums of the functions .@t'/

2 and .@x'/
2. Hence at the

. . . . . . 

q =     (t, x)ϕ

q

x

Ni−1 i

q
i−1

q
i

1 2 3

Fig. 1.12 When the number of springs tends to infinity, their displacements qi define the function
'.t; x/ according to the rule '.t; xi/ D qi.t/
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limit we obtain

NX
iD1

.Pqi/
24x D

NX
iD1

P'2.t; xi/4x
N!1�!

Z
dx

�
@'

@t

�2
;

N�1X
iD1


qiC1 � qi

4x

�24x D
N�1X
iD1

�
'.t; xiC1/� '.t; xi/

4x

�2
4x

N!1�!

Z
dx

�
@'

@x

�2
: (1.185)

That is, the action acquires the form

S D 1

2

Z
dtdx

"
�

�
@'

@t

�2
� T

�
@'

@x

�2#
: (1.186)

Note that we have arrived at the same final expression as in the previous example;
see (1.183). Both the transverse and longitudinal vibrations of a string obey the same
equation.

Lagrangian Action and Equations of Field Theory The previous example
suggests formal rules for the transition from the finite- dimensional formalism to
the field one. We have the table

i ! xa; qb
i ! 'b.xa/; qb

i .t/ ! 'b.t; xa/;
X

i

!
Z

d3x: (1.187)

The least action principle works for field systems as well. For the later use, we
outline the resulting formulas for the case of a field with components 'B.�; xa/,
B D 1; 2; : : : ; n. To adapt our results to this case, it is sufficient to apply the table
presented above to the basic formulas of Sect. 1.4.1.

A Lagrangian function often has the form L.'B; @�'
B; @a'

B; �; xa/, and the
Lagrangian action functional is given by the integral

SŒ'� D
Z
˙
d�d3xL.'B; @�'

B; @a'
B; �; xa/; (1.188)

over a space-time region ˙. A variational problem consists in searching for the
function 'B.t; x/ that provides an extremum of the functional in an appropriately-
chosen class of functions. The choice of the class depends on the particular problem
under consideration. We often work with the functions that acquire the prescribed
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values at the initial �1 and the final �2 instants of time and vanish at spatial infinity

'B.�1; x/ D 'B
1 .x/; '

B.�2; x/ D 'B
2 .x/; initial conditions,

lim
x!1'B D 0; boundary condition. (1.189)

The analogy of Eq. (1.126) is

ıS D
Z

d�d3x

�
@L

@'B
� @�

@L

@.@�'B/
� @a

@L

@.@a'B/

�
ı'B

C@�
�

@L

@.@�'B/
ı'B

�
C @a

�
@L

@.@a'B/
ı'B

�
: (1.190)

An extremum is a solution to the following system of partial differential equations

@�
@L

@.@�'B/
C @a

@L

@.@a'B/
� @L

@'B
D 0; B D 1; 2; : : : ; n: (1.191)

which generalizes the Lagrangian equations for the case of a field system. In
relativistic theories, temporal and spatial coordinates are unified in a unique quantity
x	 D .x0; xi/, where x0 D ct. So the previous formulas acquire a more compact form

SŒ'� D
Z
˙
d4xL.'B; @	'

B; x	/; (1.192)

@	
@L

@.@	'B/
� @L

@'B
D 0: (1.193)

Applying the rules to the string action (1.186) we obtain the equation

.@2t � c2@2x/' D 0; where c2 D T

�
: (1.194)

The constant c has the dimension of velocity m
sec . This is one of the basic equations

of mathematical physics, known as the (one-dimensional) wave equation. Without
going into detail, we present a few examples of its solutions.

Examples of Solutions to the Wave Equation: 1. Infinite String Solutions to
a partial differential equation, in contrast to an ordinary one, generally depend on
arbitrary functions. To see this for the present case, write (1.194) in the form

.@t � c@x/.@t C c@x/' D 0: (1.195)

Then it is clear that ' D F.ct � x/ and ' D G.ct C x/, where F and G are arbitrary
functions of the indicated arguments, obey the wave equation. Take, for example,
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(a) (b)

x

1+cos ζ

ζ

−π π

F(ct+x)F(ct−x)

2

ϕ (t, x)

c −c

Fig. 1.13 (a) Any function F.�/ can be used to construct a solution to the wave equation: ' D
F.ct � x/. (b) Since the wave equation is linear, two wave packets pass right through each other

the following wave packet (see Fig. 1.13a on page 51)

F.�/ D
8<
:

0 � < ��;
1C cos �; �� � � � �;

0 � > �

(1.196)

The corresponding solution ' D F.ct � x/ describes the evolution of this
perturbation along the string. The packet travels to the right with velocity c, without
changing its form, that is, it behaves like a particle.

The wave equation is linear, that is, it has the property that any linear combination
of solutions is itself a solution. For instance, the solution ' D F.ct � x/C F.ct C x/
describes two packets travelling in opposite directions; see Fig. 1.13b on page 51.
During the interval t < ��

c they approach one another; then they “scatter” near the
point x D 0 during the interval ��

c < t < �
c ; and then diverge, keeping their initial

profiles unaltered after the scattering. Linearity of the wave equation will be spoiled
when we include in the action interaction terms (like '3; '4; : : :/. This would lead
to non-trivial scattering effects.

Note that the solutions have been obtained without taking into account any type
of boundary conditions. So, they correspond to the case of an infinite string.

Exercises

1. Confirm that ' D 1
2
g.x � ct/C 1

2
g.x C ct/C 1

2c

R xCct
x�ct v.�/d� is a solution

to the wave equation that obeys the initial conditions '.0; x/ D g.x/,
@t'.0; x/ D v.x/.

2. Consider the case g.�/ D 0, v.�/ D F.�/, where F is given by Eq. (1.196).
Compute and draw '.t; x/ at an instant t0 > �

c . Suggestion: consider
separately the following intervals of variation for x: xCct 2��1;��Œ[��
�; �Œ[��;�� C 2ctŒ[� � � C 2ct; � C 2ctŒ[�� C 2ct;1Œ.



52 1 Sketch of Lagrangian Formalism

2. String with Fixed Ends Consider the wave Eq. (1.194) with the boundary
conditions

'.t; 0/ D '.t;L/ D 0: (1.197)

The linearity of the wave equation allows us to use a powerful tool of the Fourier
series expansion to look for solutions. Any function that belong to the class (1.197)
can be presented by the Fourier series in terms of sin �n

L x

'.t; x/ D
1X

nD1
cn.t/ sin

�n

L
x: (1.198)

Substitution into Eq. (1.194) turns the partial differential equation into a system of
ordinary equations for the coefficients cn.t/; n D 1; 2; : : :

Rcn C

�nc

L

�2
cn D 0; then cn D an sin

�nc

L
t C bn cos

�nc

L
t: (1.199)

So we have found a set of elementary solutions

'n.t; x/ D



an sin
�nc

L
t C bn cos

�nc

L
t
�
sin

�n

L
x

D dn sin
�n

L
x sin


�nc

L
t C ˛n

�
; (1.200)

where dn D p
a2n C b2n, ˛n D arctan bn

an
. These are called standing waves. The

standing wave with n D 3 is drawn in Fig. 1.14 on page 53. The string points with
x D 0; L

3
; 2L
3
;L are at rest at any instant of time. Other points accomplish harmonic

oscillations with the same frequency 3�c
L and the amplitude A that depends on x,

A D dn sin �n
L x.

According to (1.198), any solution to the problem (1.194), (1.197) is given by
sum of the standing waves

'.t; x/ D
1X

nD1



an sin

�nc

L
t C bn cos

�nc

L
t
�
sin

�n

L
x: (1.201)

Exercises

1. Confirm that the general solution (1.201) can be written in the form

'.t; x/ D
1X

nD�1
˛n
�
ei!n.ct�x/ � ei!n.ctCx/


; (1.202)

(continued)
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ϕ (t, x)

0 L / 3 2L / 3 L

x

Fig. 1.14 Standing wave with n D 3

where !n D �n
L , ˛�n D ˛�

n .
2. Find a solution to the wave Eq. (1.194) with the following boundary

conditions: '.t; 0/ D 0, '.t;L/ D f sinˇt, where f Dconst, ˇ Dconst.
They correspond to a periodic force applied to the right-hand side of the
string. (Suggestion: instead of using the Fourier series, look for a solution
to the form '.t; x/ D T.t/X.x//.

1.6 Action of a Constrained System

While the Lagrangian function can often be written as the difference between kinetic
and potential energy, L D T � U, this rule is not universal. There are a lot of rather
simple systems when it does not work. Take, for example, a mathematical pendulum
on a plane, see Fig. 1.15 on page 54. It is clear that the difference

T � U D 1

2
m
�Px2 C Py2 � mgy; (1.203)

being considered as the system Lagrangian, leads to wrong equations of motion.
These describe a free fall in a gravitational field, and do not take into account the
constraint x2 C y2 D l2 that must be satisfied at any instant of motion. Note also
that it is impossible to simply add the constraint to the equations of motion, since it
would lead to an incompatible system (confirm this!).
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Fig. 1.15 Mathematical
pendulum

x

y

mg

θ l

1.6.1 The Recipe

The pendulum is an example of a system with a holonomic (or kinematic) constraint
(generally, a holonomic constraint is an algebraic restriction on variables of
configuration space, G.qa; �/ D 0, that must be satisfied at any instant). In this
section we discuss a recipe suitable for the construction of a Lagrangian for this
case.

Roughly speaking it can be formulated as follows. First, forget the constraints,
and write the Lagrangian of the unconstrained system (it may be L D T � U/.
Second, find a solution to constraints and write L in terms of the independent
variables.

For the pendulum, one possibility is y D �p
l2 � x2, then Py D xPxp

l2�x2
.

Substitution into Eq. (1.203) gives the action

SŒx� D
Z

dt

"
1

2
m

�
1 �


x

l

�2��1
Px2 C mgl

r
1 �


x

l

�2#
: (1.204)

This implies the Lagrangian equation

Rx C g

l
x

r
1 �


x

l

�2 C xPx2
l2


1 � �

x
l

2� D 0: (1.205)

In the approximation of small displacements x
l � 1 this reduces to the well-known

equation of harmonic oscillations

Rx C g

l
x D 0: (1.206)

Let us discuss the recipe from the geometric point of view. Possible positions of the
pendulum lie on the circle (one-dimensional subspace of the plane) x2 C y2 D l2.
In the vicinity of the point .0;�l/ we are interested in, the variable x can be taken
as a coordinate of the subspace. So the recipe consist of restriction of unconstrained
Lagrangian function on the subspace.
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It is important to notice a freedom implied by the recipe. First, we are free to
choose the parametrization of the subspace. Take, for example, the angle � as a
coordinate. Then the parametric equations of the circle are x D l sin � , y D �l cos � .
They solve the constraint, so can be used in (1.203). This gives a Lagrangian in terms
of �

L.�/ D 1

2
ml2 P�2 C mgl cos �; (1.207)

and the equation of motion is

R� C g

l
sin � D 0: (1.208)

For a small � one approximates sin � � � obtaining the equation of harmonic
oscillations for � , R� C g

l � D 0.
Second, we could use the generalized coordinates writing an anzatz (1.203) for

L. This can be done, for example, in polar coordinates x D r sin � , y D �r cos � ,
which gives L.r; �/ D 1

2
m.Pr2C r2 P�2/Cmgr cos � . Then we use the constraint r D l

obtaining Eqs. (1.207) and (1.208) once again.

General Recipe Generalizing, consider a system with the generalized coordinates
qa, a D 1; 2; : : : ; n constrained to move on a k-dimensional surface

Gi.q
a/ D 0; i D 1; 2; : : : ; n � k: (1.209)

Equations of the surface are assumed to be functionally independent

rank
@Gi.qa/

@qb
D n � k: (1.210)

Suppose also that in the absence of constraints the system can be described by
the Lagrangian L.qa; Pqa/. To write a Lagrangian of the constrained system, choose
some coordinates (parametrization) s˛ , ˛ D 1; 2; : : : ; k on the surface, and write
parametric equations of the surface

qa D qa.s˛/: (1.211)

By construction, these solve the constraints, Gi.qa.s˛// � 0. Substitution of the
parametric equations into L.qa/ gives a Lagrangian of the constrained system

L.s˛; Ps˛/ � L .qa.s˛/; Pqa.s˛// : (1.212)

Using the basic formula (1.129), the Lagrangian equations are

ıSŒs�

ıs˛
� d

d�

@L.s/

@Ps˛ � @L.s/

@s˛
D 0 ˛ D 1; 2; : : : ; k: (1.213)
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Using Eq. (1.212) as well as the formula for the derivative of a composed function,
the equations can be written in terms of the initial Lagrangian

ıSŒs�

ıs˛
D ıSŒq�

ıqa

ˇ̌
ˇ̌
qa.s˛/

@qa

@s˛
D 0: (1.214)

Exercises

1. Check the equality (1.214).
2. Show that if the unconstrained Lagrangian is non-singular, the same is true

for the Lagrangian of the constrained system (1.212).

For later use, we specify the results for a particular case of parametrization of the
surface (1.209). Equation (1.210) guarantees that the constraints can be resolved
with respect to .n � k/ variables among qa, say qi. Let the solution be

qi D qi.q˛/: (1.215)

Then q˛ can be taken as coordinates of the surface. Then the Lagrangian is given by

L.q˛; Pq˛/ � L
�
qi.q˛/; q˛; Pqi.q˛/; Pq˛ ; (1.216)

while the Lagrangian equations acquire the form

ıSŒqa�

ıq˛

ˇ̌
ˇ̌
qi.q˛/

C ıSŒqa�

ıqi

ˇ̌
ˇ̌
qi.q˛/

@qi

@q˛
D 0: (1.217)

If the constraints depend on time, Gi.qa; �/ D 0, it is considered to be a fixed
parameter of the problem. The recipe remains the same; it is sufficient to replace
qa.s˛/ by qa.s˛; �/ in the previous formulas.

Example (Thomson-Tait Pendulum) This consists of two equal masses m
connected by a massless pivot of length 2b, the middle of which is attached
to the end of a massless pivot of length a, see Fig. 1.16 on page 57. The a-
pivot can rotate freely in the .x; y/-plane while the b-pivot can rotate freely in
a vertical plane.
The position of the masses can be described by the vectors Er1, Er2, that is, the
configuration space is six-dimensional. The masses are constrained to move

(continued)
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on two-dimensional surface determined by

.ŒEr1; Er2�; En/ D 0; .Er1 C Er2; En/ D 0; jEr1 � Er2j D 2b; jEr1 C Er2j D 2a;
(1.218)

where En is a unit vector in the direction of the z-axis, ( , ) is a scalar product
and [ , ] is a vector product. Forgetting the constraints, the action is written

S D
Z

dt
1

2
m

PEr1 2 C PEr2 2

�
: (1.219)

Let us take the angles ' and � as coordinates on the surface. Expressions for
Eri through the coordinates are

x1 D a sin' � b cos � sin'; y1 D a cos' � b cos � cos'; z1 D b sin � I
x2 D a sin' C b cos � sin '; y2 D a cos' C b cos � cos'; z2 D �b sin �:

(1.220)

These equations solve the constraints (1.218). Substituting them into (1.219)
we obtain the action of the Thomson–Tait pendulum

S D
Z

dtm



b2 P�2 C .a2 C b2 cos2 �/ P'2
�
: (1.221)

(continued)
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Fig. 1.16 Thomson-Tait pendulum. The a-pivot can rotate freely in the .x; y/-plane while the b-
pivot can rotate freely in a vertical plane



58 1 Sketch of Lagrangian Formalism

This implies the equations of motion

�
.a2 C b2 cos2 �/ P'�: D 0; R� C P'2 cos � sin � D 0: (1.222)

Note that it would not be an easy task to find these equations directly, without
using variational analysis. The first equation implies .a2 C b2 cos2 �/ P' D
c Dconst. This can be used to exclude P' from the second equation. Then the
system acquires the form

P' D c

a2 C b2 cos2 �
; R� C c2 cos � sin �

.a2 C b2 cos2 �/2
D 0: (1.223)

Note that the motion of the masses is not a composition of two circular
motions with constant angular velocity, as might naively be expected.

Exercise Explain why gravity does not contribute to the expression (1.219).

Exercises In the exercises below, masses move without friction on the plane
x; y, a spring has an unstretched length l and rigidity k. Springs and pivots are
massless.

1. The mass m is attached to a spring; see Fig. 1.17a on page 59. (A) Find the
action in the Cartesian coordinates x; y. (B) Find the action and equations
of motion in coordinates r; ', where r is the instantaneous length of the
spring.

2. Consider a pendulum with varying length s D s.t/, where s.t/ is a given
function; see Fig. 1.17b on page 59. (A) Find the action in terms of y. (B)
Find the action and equations of motion in terms of '.

3. The masses M and m are attached to the ends of a pivot of length s. The
mass M can move freely along the x-axis, while m oscillates in the x; y
plane; see Fig. 1.17c on page 59. Find the action and equations of motion
in coordinates z; '.

4. A pivot with masses M and m is attached to one end of a spring. The
mass M can move along the y-axis, while m oscillates in the x; y plane;
see Fig. 1.18d on page 60. (A) Find the action in coordinates z; y. (B) Find
the action and equations of motion in coordinates z; '.

(continued)
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Fig. 1.17 Exercises

5. Themass M can slide freely along a pendulumof length s; see Fig. 1.18e on
page 60. Find action of the system and equations of motion in coordinates
r; ', where r is the distance of M from the origin.

6. Consider a double pendulum on the plane x; y; see Fig. 1.18f on page 60.
Find the action and equations of motion in coordinates '; � .

7. A pivot with masses M and m is attached to a spring; see Fig. 1.19g on
page 60. M can move along the x-axis, while m oscillates in the x; y-plane.
Find the action and equations of motion in coordinates x; '.

8. Two masses M and m are attached to a rope of length s. The rope can slide
freely around a disk of radius R; see Fig. 1.19h on page 60. Find the action
and equations of motion in terms of y.

9. Consider a pivot of length s with masses M andm at the ends; see Fig. 1.19k
on page 60. M can move along the y-axis, while m can move along the x-
axis. Find the action and equations of motion in terms of '.

10. The masses M and m are attached to the ends of a spring; see Fig. 1.20l
on page 60. The mass M can move freely along the x-axis, while m can
move along the horizontal string A, at a distance s from the x-axis. Find the
action in coordinates x; '.

11. The masses M and m are attached to the ends of a pivot of length s; see
Fig. 1.20m on page 60. The masses can move along the circle of radius R.
Find the action and equations of motion of the system.

12. The ends of two pendulums of the same length h are connected by a spring
of unstretched length l; see Fig. 1.20n on page 60. Find the action and
equations of motion in coordinates ', � .
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Fig. 1.20 Exercises

1.6.2 Justification of the Recipe

Holonomic constraints represent the idealization of a very strong force directed
towards a surface of configuration space, and forcing a particle to move near
the surface. This suggests a natural way [2] to confirm the recipe (1.212) for
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Lagrangian of the constrained-system.8 We start from a system with a potential
that produces the strong force (among others), and then take the limit of infinite
force. Since the dimension of the configuration space is not essential for the
discussion, we take a system with two generalized coordinates x, y and with the
action being

S D
Z

d�

�
1

2
Px2 C 1

2
Py2 � U.x; y/� s.y � g.x//2

�
: (1.224)

This depends on the parameter s Dconst. To put this in concrete terms, we
suppose U � 0 in the region of interest. The second term of the potential
energy grows when the particle goes away from the line y D g.x/. We con-
sider a particle that starts on that line and has initial velocity tangent to the
line

x.0/ D x0; Px.0/ D v0;

y.0/ D g.x0/; Py.0/ D Pg.x0/: (1.225)

Let us show that at the limit s ! 1, an action describing a particle in potential U
and subject to the constraint y D g.x/ appears.

To confirm this, it is convenient to write the action in coordinates x, Qy � y � g.x/

S D
Z

d�

�
1

2
Px2 C 1

2
.PQy C Pg.x//2 � U.x; Qy C g.x// � sQy2

�
: (1.226)

Then the equations of motion are

Rx C .RQy C Rg.x//dg

dx
C @

@x
U.x; Qy C g.x// D 0; (1.227)

RQy C Rg.x/C @U

@Qy C 2sQy D 0: (1.228)

We can estimate the Qy coordinate using the law of conservation of energy, E D
T C U C sQy2, as follows: Qy.�/ D s� 1

2

p
2.E � T � U/ � s� 1

2

p
2E. Hence, the

particle with total energy E can not move far from the curve (in Qy-direction) more

than a distance proportional to 1p
s
. Then Qy s!1�! 0, or y.�/

s!1�! g.x.�//, that is at
the limit our particle is confined to move on the line. At this limit the Eq. (1.227)
for the x-coordinate reads

Rx C Rg.x/dg

dx
C @

@x
U.x; g.x// D 0: (1.229)

8We will need to use the law of conservation of energy. So the motivation works only for time-
independent constraints.



62 1 Sketch of Lagrangian Formalism

The final observation is that this can be obtained from the action

S D
Z

d�

�
1

2
Px2 C 1

2
Py2 � U.x; y/

�
; (1.230)

where y is replaced according the constraint, y D g.x/. Thus, we have arrived at the
recipe (1.216).

1.6.3 Description of Constrained System by Singular Action

To describe a constrained system, our ideology was to reduce the number of
variables, from qa; a D 1; 2; : : : ; n to s˛, ˛ D 1; 2; : : : k < n. Unfortunately, this
can result in the loss of some properties that were presented in the initial variables.

For example, both the unconstrained action (1.219) and the constraints (1.218)
of the Thomson-Tait pendulum have a manifest rotational symmetry9 Er ! REr. This
is hidden in the formulation (1.221) (in which only the rotational symmetry in the
.x; y/-plane, ' ! ' C const is evident).

The same happens if we use some of the initial variables to parameterize the
constraint surface. For example, take a free particle on a circle of radius l. Both
the unconstrained Lagrangian 1

2
m.Px2 C Py2/ and the constraint x2 C y2 D l2

have the rotation symmetry Er ! REr. This is not manifest in the Lagrangian
1
2
m


1 � �

x
l

2��1 Px2 which appears after using the constraint y D ˙p
l2 � x2.

Since symmetries often play a fundamental role in the analysis of a theory, it
would be desirable to find a way to keep them untouched. This implies that we
continue to use the initial variables of configuration space for the description of
a constrained system. Strange as it may seem, this can be achieved following the
opposite ideology: instead of reducing the configuration space we extend it, adding
new variables into the formulation.

As before, we take a system with an unconstrained Lagrangian L.qa; Pqa/ and the
constraints Gi.qa/ D 0, i D 1; 2; : : : ; n � k. Introduce .2n � k/-dimensional space
with the independent coordinates qa; �i, and consider the action

S D
Z

d�
�
L.qa; Pqa/C �iGi.q

a/
�
: (1.231)

Since the initial coordinates are untouched, the formulation does not spoil the
symmetry properties of a theory. The price we pay is the appearance of the additional
variables �i that have no direct physical interpretation. They do not participate in
determining the configuration of the system (positions, velocities, energies of the

9Generally, a symmetry is called manifest if it is expressed by a linear transformation.
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particles and so on). So we can not (and need not!) measure them. For this reason
they are called unphysical (or auxiliary) degrees of freedom.

In all other respects, we treat the auxiliary variables on equal footing with others.
In particular, we write and solve equations of motion for both qa and �i.

Since the action does not contain derivatives of �, it represents an example of a
singular theory. The Hessian matrix has vanishing blocks, @2S

@P�i@P�j D 0, @2S
@P�i@Pqa D 0.

So its rank is less than dimension 2n � k of extended space.
We demonstrate now that the new formulation (1.231) implies the same evolution

for qa as the old one (1.212). Hence they are equivalent. It will be convenient to write
separately equations of motion for the variables qi and q˛ (these were described in
Eq. (1.215)). Applying the principle of least action, we find

ıS

ıq˛
� @L

@q˛
� d

d�

@L

@Pq˛ C �j @Gj

@q˛
D 0; (1.232)

ıS

ıqi
� @L

@qi
� d

d�

@L

@Pqi
C �j @Gj

@qi
D 0; (1.233)

ıS

ı�i
� Gi.q

i; q˛/ D 0: (1.234)

Note that the constraints (1.234) appeared as a part of equations of motion. From
this system we get closed equations for q˛. They can be obtained as follows. We
suppose that the solution qi D qi.q˛/ of (1.234) has been substituted into (1.232)

and (1.233). Differentiation of the identity Gj.qi.q˛/; q˛/ D 0 gives @Gj

@q˛ D � @Gj

@qi
@qi

@q˛ .
Using this expression in (1.232), the latter reads

�
@L

@q˛
� d

d�

@L

@Pq˛
�ˇ̌
ˇ̌
qi.q˛/

� �j @Gj

@qi

ˇ̌
ˇ̌
qi.q˛/

@qi

@q˛
D 0: (1.235)

Now Eq. (1.233) allows us to exclude10 the term �j @Gj

@qi from (1.235). The result is

�
@L

@q˛
� d

d�

@L

@Pq˛
�ˇ̌
ˇ̌
qi.q˛/

C
�
@L

@qi
� d

d�

@L

@Pqi

�ˇ̌
ˇ̌
qi.q˛/

@qi

@q˛
D 0; (1.236)

which is precisely Eq. (1.217).
To be sure of the self-consistency of the new formulation, let us discuss the

structure of solutions of the entire system (1.236), (1.233) and (1.234). The last of
these equations has been already solved by qi.q˛/. Let q˛ D q˛.�/ be a solution
to (1.236). We substitute the functions q˛.�/, qi.q˛.�// into Eq. (1.233). This
gives an algebraic equation for determining �i. Since by construction det @Gj

@qi ¤ 0,

Eq. (1.233) can be resolved with respect to �i. Note a consequence: since all �i

10To avoid the possibility �i D 0, we could to start from the Lagrangian with 1
�i instead of �i.
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are determined algebraically, we need not impose initial conditions for the auxiliary
variables.

1.6.4 Kinetic Versus Potential Energy: Forceless Mechanics
of Hertz

Here we discuss one more example of using an auxiliary variable. In this case, it
allows us to reformulate potential motion in n-dimensional configuration space as
a free fall in (fictitious) space of n C 1-dimensions. This explains the terminology
“forceless mechanics” for the new formulation developed by H. Hertz [21].

Take a system with the generalized coordinates qa, a D 1; 2; : : : ; n and potential
U.qa/

SŒqa� D
Z

d�

�
1

2
.Pqa/2 � U.q/

�
: (1.237)

This leads to the equations

Rqa D � @U

@qa
: (1.238)

We could also work using the generalized coordinates with the non-trivial metric
gab.q/, as in Eq. (1.151); this would not alter the final results.

We introduce n C 1-dimensional space with the coordinates qi � .qa; qnC1/ and
write the following potential-free action

SŒqi� D
Z

d�
1

2
gij.q/Pqi Pqj � (1.239)

Z
d�

�
1

2
.Pqa/2 C 1

4U
PqnC1 PqnC1

�
: (1.240)

This looks like the action of a free particle in generalized coordinates (see (1.151)),
with a metric that has only a gnC1 nC1-component nontrivial

gij D

0
BBBBB@

1 0 : : : 0 0

0 1 : : : 0 0
:::
:::
: : :

:::
:::

0 0 : : : 1 0

0 0 : : : 0 1
2U

1
CCCCCA
: (1.241)
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As compared with the initial formulation, the potential is now hidden in the kinetic
term. We impose initial conditions both for qa and qnC1 as follows:

qa.0/ D qa
0; Pqa.0/ D va

0;

qnC1.0/ D qnC1
0 ; PqnC1.0/ D 2U.qa

0/: (1.242)

Due to the special choice of initial condition for PqnC1, the formulation (1.239),
(1.242) leads to the same equations of motion for qa as the initial one (1.237). To
see this, write equations of motion for (1.239)

Rqa D � 1

4U2

@U

@qa
.PqnC1/2; (1.243)

�
1

2U
PqnC1

�:
D 0 ) PqnC1 D 2cU.qa/: (1.244)

Initial condition for PqnC1 implies c D 1. Substituting the result, PqnC1 D 2U,
into (1.243) we obtain Eq. (1.238) of the initial formulation.

In the new formulation the potential energy acquires a geometric origin. Recall
that according to Sect. 1.4.2, the metric that appears in Eq. (1.239) has a certain
geometric interpretation: it determines distances between points of configuration
space. As will be explained in Chap. 6, trajectories of a theory with such an action
also have a remarkable geometric interpretation: they represent lines of minimal
length with respect to the metric gij. Hence they are similar to straight lines of
Euclidean space and are called geodesic lines. It is known that trajectories of
particles in general relativity theory have the same property. So, the motion of the
qi-particle described by (1.239) is analogous to free fall in a gravitational field. An
intuitive picture of motion in the new formulation is presented in Fig. 1.21 on page
66. A fictitious qi-particle moves freely along the shortest line of .nC1/-dimensional
space with the metric gij.U/. Physical trajectory is its projection on configuration
space qa and corresponds to potential motion, with the potential being U.qa/.

Since qnC1 represents an auxiliary variable, we are not able to experimentally
fix its initial condition qnC1

0 . Fortunately, this does not lead to inconsistency: since
equations for qa and qnC1 have been separated, different choices of qnC1

0 imply the
same physical dynamics, which is given by (1.238). Geometrically, the solutions
qi; yi; : : : in extended space that correspond to different choices of qnC1

0 project on
the same physical trajectory qa, see Fig. 1.21 on page 66.

Although we have discussed the case of a scalar potential, the construction can be
adapted for the vector potential as well. An example of a force with a vector potential
is electromagnetic force (with the vector potential being A	). Being appropriately
generalized for that case, the construction leads to the Kaluza–Klein theory, which
formally unifies four-dimensional gravity and electromagnetism into a unique five-
dimensional theory [22].
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q1

q2

q
n+1

q 

a (τ )

q 

i (τ )

y 

i (τ )

Fig. 1.21 According to Hertz, free fall in nC1-dimensional curved space is equivalent to potential
motion in n-dimensional space

1.7 Electromagnetic Field in Lagrangian Formalism

Here we apply Lagrangian formalism to the analysis of Maxwell equations describ-
ing electric and magnetic phenomena. While it is not evident in the initial formu-
lation, Maxwell equations obey the principle of special relativity, that is they are
covariant under the Poincaré transformations. We start from a description of an
electromagnetic field in terms of a three-dimensional vector potential. In this case
electrodynamics can be formulated on a base of nonsingular Lagrangian action.
Like the Maxwell equations themselves, this three-dimensional formalism is not
manifestly Poincaré invariant. We then go on to discuss the manifestly invariant
formulation. This is achieved in terms of a four-dimensional vector potential and
implies the use of singular Lagrangian action.

1.7.1 Maxwell Equations

Moving electric charges can be described using the charge density �.t; xa/ and the
current density vector EJ.t; xa/ D �.t; xa/Ev.t; xa/, where Ev is the velocity of a charge
at t; xa. They produce the electric EE.t; xa/ and the magnetic EB.t; xa/ fields. The fields
obey the Maxwell equations

1

c

@EE
@t

� Œ Er; EB� D �1
c

EJ; (1.245)

1

c

@EB
@t

C Œ Er; EE� D 0; (1.246)
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. Er; EE/ D �; (1.247)

. Er; EB/ D 0: (1.248)

We use the following notation:

Er D
�
@

@x1
;
@

@x2
;
@

@x3

�
D .@1; @2; @3/;

divergence W . Er; EE/ D @1E1 C @2E2 C @3E3;

curl W Œ Er; EE�a D �abc@bEc;

gradient W Er˛ D .@1˛; @2˛; @3˛/;

4� D .@21 C @22 C @23/�: (1.249)

Examples of Solutions

1. Electric field of a point charge. Consider the charge q at rest at the origin
of a coordinate system. Then EJ D 0, while the charge density can be
described as � D qı3.Ex/, where ı3.Ex/ is the Dirac ı-function. Then the
total charge is Q D R

d3x� D q. Maxwell equations with these densities
are solved by

EE D qEx
jExj3 ; .then jEEj D jqj

jExj2 /;
EB D 0: (1.250)

This is the Coulomb law: the electric field of a point charge is spherically
symmetric, directed from positive charge (proton) to infinity, with its
magnitude equal to the inverse square of the distance to the charge.

When Ex ¤ 0, the direct computation gives @a
qxa

jExj3 D 0. So the Maxwell

equation . Er; EE/ D qı3.Ex/ is satisfied for any Ex ¤ 0. For Ex D 0 it holds
as an equality among generalized functions, that is we multiply both sides
of @a

qxa

jExj3 D qı3.x/ on a test function f .x/ and integrate over space. Using

integration by parts, the result is� R d3x qxa

jExj3 @af .Ex/ D R
d3xqı3.x/f .Ex/. This

equality can be proved after a careful definition of the function xa

jExj3 at Ex D
0. We integrate over the regionR3nS� , where S� is a ball of radius � around
the point Ex, and then take the limit � ! 0. See, [23] for details. The field
of a moving charge will be obtained in Sect. 1.7.8.

2. Magnetic field of a straight wire. Consider a neutral wire placed along
the x3-axis, with the current density EJ D �

0; 0; �Vı.x1/ı.x2/

, where � is

the linear density of moving charges. The Maxwell equations are solved

(continued)
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.

x1

x2

x3

E

B

(b)
B

(a)

Fig. 1.22 (a) The magnetic field is tangent to a circle surrounding a wire (electric current EJ
directed from sheet to the reader). (b) An electromagnetic wave consists of two standing waves

by EE D 0 and

EB D
�

� �Vx2

cŒ.x1/2 C .x2/2�
;

�Vx1

cŒ.x1/2 C .x2/2�
; 0

�
D �ŒEV; ER�

cjERj2 ; (1.251)

where ER D .x1; x2; 0/. The magnitude jEBj D jEJj
cjERj is known as Biot-Savart

law.
The solution is drawn in Fig. 1.22a on page 68.

3. Electromagnetic wave. Maxwell equations in absence of the charge and
the current densities

@� EE � cŒ Er; EB� D 0; @� EB C cŒ Er; EE� D 0; . Er; EE/ D 0;

. Er; EB/ D 0; (1.252)

admit nontrivial solutions called waves. An example is

EE D .0;D sin.!x1/ sin.c!t/; 0/; EB D .0; 0;D cos.!x1/ cos.c!t//;
(1.253)

where D, ! are constants. The solution consists of two standing waves (see
Sect. 1.5), the E-wave in the .x1; x2/-plane, and the B-wave in the .x1; x3/-
plane; see Fig. 1.22b on page 68. When the amplitude of EE decreases, the
amplitude of EB increases and vice versa. In particular, at the instances t D
k�
c! we have EE D 0, EB D ˙D cos.!x1/. That is, when EE vanishes, EB has

its maximum amplitude at each space point. Intuitively, the fields EE and EB
turn into one another during the time evolution.
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Consistency Condition: Conservation of Charge Maxwell equations imply an
important consistency condition on �, EJ called the continuity equation. To find it,
take the divergence of both sides of Eq. (1.245). Using the identity . Er; Œ Er; EB�/ D 0

as well as Eq. (1.247), we obtain

@t�C . Er; EJ/ D 0: (1.254)

So, the charge and current densities can not be taken as arbitrary, but must obey the
continuity equation. To see the meaning of this, we write it in the integral form. Let
us integrate both sides of the continuity equation over a volume V surrounded by
the closed surface S

@t

Z
V

d3x� D �
Z

V
d3x. Er; EJ/ D �

Z
S
.EJ; EdS/: (1.255)

The last equality is due to the Gauss theorem. So we have

@tQV D �
Z

S
.EJ; EdS/; (1.256)

where QV stands for the charge contained in the volume V . Hence the continuity
equation states that an electric chargemust be locally conserved: the rate of variation
of a charge in a volume is equal to its flow (amount of charge that leaves or enters
through the surface per unit of time).

If we integrate over all space, the right-hand side vanishes owing to EJ xa!1�! 0

(charges can not escape to infinity). Then @tQ D 0, that is, the total electric charge
is conserved.

1.7.2 Nonsingular Lagrangian Action of Electrodynamics

The aim of this section is to show that electromagnetic forces can be described in
terms of a unique vector field (called a three-dimensional vector potential EA) instead
of EE, EB. The vector potential obeys a second-order partial differential equation,
which can be obtained by applying the least action principle to a nonsingular
Lagrangian action. The fields EE and EB can be restored from given EA.

According to Maxwell, an electromagnetic field is described by six functions EE,
EB subject to eight equations. There are six equations of the first order with respect
to time, (1.245) and (1.246). Two more Eqs. (1.247) and (1.248) do not involve the
time derivative and hence represent the field analogy of kinematic constraints. We
first reduce the number of equations from 8 to 6. A specific property of the Maxwell
system is that the constraint equations can be replaced by properly-chosen initial
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conditions for the problem. Indeed, consider the following problem

1

c

@EE
@t

� Œ Er; EB� D �1
c

EJ; (1.257)

1

c

@EB
@t

C Œ Er; EE� D 0; (1.258)

with the initial conditions
h
. Er; EE/ � �

iˇ̌
ˇ
tD0 D 0; . Er; EB/

ˇ̌
ˇ
tD0 D 0: (1.259)

This is equivalent to the problem (1.245), (1.246), (1.247), and (1.248). Any solution
to (1.245), (1.246), (1.247), and (1.248) satisfies the Eqs. (1.257), (1.258), (1.259).
Conversely, let EE, EB be the solution to the problem (1.257), (1.258), and (1.259).
Taking the divergence of Eq. (1.257), we obtain the consequence @t. Er; EE/ C
. Er; EJ/ D @tŒ. Er; EE/��� D 0. The initial condition (1.259)) then implies . Er; EE/�� D
0, that is, Eq. (1.247). In the same way, taking the divergence of Eq. (1.258) we
arrive at Eq. (1.248).

To proceed further, it is convenient to unify the vectors EE, EB into the complex
field

EW � EB C iEE: (1.260)

Then Eqs. (1.257), (1.258), and (1.259) can be written in a more compact form

�
i

c
@t C Er�

�
EW D 1

c
EJ;

h
. Er; EW/� i�

iˇ̌
ˇ
tD0 D 0: (1.261)

If we look for a solution of the form EW D


� i

c@t C Er�
� EA, the equations that

appear for EA turn out to be real. They read

1

c2
@2t

EA � 4EA C Er. Er; EA/ D 1

c
EJ; (1.262)

h
@t. Er; EA/C c�

iˇ̌
ˇ
tD0 D 0; (1.263)

where we have used the identity

�cab�cmn D ıamıbn � ıanıbm; then

Œ Er; Œ Er; EA�� D �4EA C Er. Er; EA/: (1.264)
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Hence it is consistent to take EA as a real function. Thus, any real solution EA.t; x/ of
Eq. (1.262) determines a solution

EB D Œ Er; EA�; EE D �1
c
@t EA; (1.265)

of the Maxwell equations. EA is called a (three-dimensional) vector potential of the
electromagnetic field.11

Conversely, any given solution EE, EB of the Maxwell equations can be used to
construct the vector potential which obeys (1.265), (1.262) and (1.263). This is
given by

EA.t; xa/ D �c
Z t

0

d� EE.�; xa/C EK.xa/; (1.266)

where K is any solution to the equation

Œ Er; EK� D EB.0; xa/: (1.267)

The existence of the solution K is guaranteed by the Eq. (1.259). By direct
substitution, we can verify that the field constructed obeys the Eqs. (1.265), (1.262)
and (1.263).

For the stationary electromagnetic field, @t EE D @t EB D 0, the Eq. (1.246) turns
into Œ Er; EE� D 0, so the electric field has a potential which we write in the form

EE D �1
e

ErU.Ex/: (1.268)

Then the vector potential is

EA.Ex/ D ct

e
ErU.Ex/C EK.Ex/: (1.269)

It is not difficult to construct a Lagrangian action that implies equations of
motion (1.262) for the vector potential. It is

S D
Z

dtd3x

�
1

2c2
.@t EA; @t EA/� 1

2
.Œ Er; EA�; Œ Er; EA�/C 1

c
.EA; EJ/

�

�
Z

dtd3x

�
1

2c2
@tAa@tAa � 1

4
.@aAb � @bAa/

2 C 1

c
AaJa

�

�
Z

dtd3x

�
1

2
.EE2 � EB2/C 1

c
.EA; EJ/

�
: (1.270)

11A similar procedure will be used in Sect. 2.9.1 where we obtain a scalar potential for the quantum
mechanical wave function.
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In the last line the substitution (1.265) is implied. To confirm that this leads to the
desired equations, let us compute the variation of the action

ıS D
Z

dtd3x

�
@tAa

c2
@tıAa � .@bAa � @aAb/@bıAa C Ja

c
ıAa

�
: (1.271)

Using integration by parts, we can extract ıAa, obtaining the expression

ıS D
Z

dtd3x

��
� 1

c2
@2t Aa C .@b@bAa � @a@bAb/C 1

c
Ja

�
ıAaC

1

c2
@t.@tAaıAa/� @b.@bAaıAa � @aAbıAa/

�
: (1.272)

The total-derivative terms do not contribute to the variation due to the boundary
conditions of the variational problem

Z
dtd3x@t.@tAaıAa/ D

Z
d3x Œ@tAaıAa�jt2

t1 D 0 since ıAa.ti; x/ D 0;

Z
dtd3x@b.@bAaıAa � @aAbıAa/ D

Z
dt.@bAaıAa � @aAbıAa/dSb D 0 since Aa

xa!1�! 0: (1.273)

Then the extremum condition

ıS D
Z

dtd3x

�
� 1

c2
@2t Aa C @b@bAa � @a@bAb C 1

c
Ja

�
ıAa D 0; (1.274)

implies the Eq. (1.262).
In short, an electromagnetic field can be described starting from the nonsingular

action

S D
Z

dtd3x

�
1

2c2
.@t EA; @t EA/� 1

2
.Œ Er; EA�; Œ Er; EA�/C 1

c
.EA; EJ/

�
; (1.275)

which implies the equations of motion 1
c2
@2t

EA � 4EA C Er. Er; EA/ D 1
c
EJ. They must

be solved under the initial condition Œ@t. Er; EA/C c��
ˇ̌
ˇ
tD0 D 0. Any solution EA.t; x/
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to the problem determines the solution

EB D Œ Er; EA�; EE D �1
c
@t EA; (1.276)

to the Maxwell equations (1.245), (1.246), (1.247), and (1.248). Note that the
solutions EA.t; xa/ and EA.t; xa/ C Er˛.xa/, where ˛.xa/ is an arbitrary function,
determine the same EE, EB. Conversely, any given solution to the Maxwell equations
determines EA according to (1.266). The potential obeys (1.262), (1.263) and (1.265).

Exercises

1. Find EA of the following electromagnetic field: EE D ˛Ex
jExj3 , EB D const.

2. Show that the problem

Ga � 1

c2
@2t

EA � 4EA C Er. Er; EA/ � 1

c
EJ D 0; D � @t. Er; EA/C c� D 0;

(1.277)

is equivalent to the problem (1.262), (1.263).
3. Verify the identity @tD � c2. Er; EG/ � 0 among these equations.
4. Confirm that the action (1.275) is invariant under the transformation EA D

EA0 C Er˛, where ˛.xa/ is an arbitrary function.

Non-relativistic Particle in an Electromagnetic Background Three-vector
potential can be used to formulate variational problem for the Lorentz-force
equation. The action of a charged particle in a given electromagnetic field with
the potential Aa is

S D
Z

dt
hm

2
.Pxa/2 C e

c
Aa.t; x

b/Pxa
i
: (1.278)

The particle placed at the point xa.t/ interacts with the potential at that point,
Aa.t; xb.t//.

Recall the arbitrariness Aa ! Aa C @a˛.xb/ presented in the definition of the
vector potential. Replacing Aa by Aa C @a˛.xb/ in the action, we obtain an extra
term that is the total derivative @a˛Pxa D P̨ . Hence it does not modify equations of
motion.

The variation of the action reads

ıS D
Z

dt
h
�mRxa � e

c
@tAa C e

c
.@aAb � @bAa/Pxb

i
ıxa: (1.279)



74 1 Sketch of Lagrangian Formalism

Taking into account Eq. (1.276), the extremum condition ıS D 0 implies the well-
known equation of motion

mREr D eEE C e

c
ŒPEr; EB�: (1.280)

According to Eq. (1.268), for the stationary electromagnetic field this reads mREr D
� ErU C e

c Œ
PEr; EB�. Contracting this equation with PEr, we conclude that the energy

E D 1

2
PEr 2 C U.Ex/; (1.281)

is conserved. Magnetic field does not contribute into the total energy of the particle.

1.7.3 Manifestly Poincaré-Invariant Formulation in Terms
of a Singular Lagrangian Action

We start by presenting the Maxwell equations (1.245), (1.246), (1.247), and (1.248)
in terms of a four-component quantity A	 D .A0;Aa/ called a (four-dimensional)
vector potential. Consider first the homogeneous Eqs. (1.248) and (1.246). Since
a magnetic field has zero divergence, . Er; EB/ D 0, it can be presented as a curl of
a vector, EB D Œ Er; EA� (this is proved at the end of this section). Substituting this
expression into Eq. (1.246), the latter reads Œ Er; 1c@t EA C EE� D 0. A field with zero

curl can be presented as a gradient of a function, so 1
c@t EA C EE D ErA0. Hence any

given solution of the homogeneous Maxwell equations can be presented as

EE D �1
c

@EA
@t

C ErA0; EB D Œ Er; EA�; (1.282)

through some functions A0; EA. It is convenient to use four-dimensional notations
introducing x	 D .x0 � ct; xa/, A	 D .A0;Aa/. Besides, we define an anti-
symmetric matrix called the field strength of the vector potential

F	
 � @	A
 � @
A	: (1.283)

Then Eq. (1.282) acquires the form

� Ea D F0a; Ba D 1

2
�abcFbc; .then Fab D �abcBc/; (1.284)
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that is EE and EB can be identified with components of the field strength matrix

F	
 D

0
BB@
0 �E1 �E2 �E3

E1 0 B3 �B2
E2 �B3 0 B1
E3 B2 �B1 0

1
CCA : (1.285)

Exercise Show that the homogeneous Maxwell equations in these notations
reads @	F
�C@
F�	C@�F	
 D 0. As should be the case, they are identically
satisfied by (1.283).

Substituting Eq. (1.283) into the inhomogeneous equations (1.247) and (1.245), they
read @	F	0 D ��, @	F	a D � 1

c Ja, where F	
 D �	˛�
ˇF˛ˇ . Denoting J	 D
.�; 1c Ja/, they can be written in four-dimensional form

S
 � @	F	
 C J
 D 0; or @	@
	A
 � @
.@	A	/ D �J
: (1.286)

They follow from variation the action

S D
Z

d4x

�
�1
4

F	
F
	
 C A	J	

�
; (1.287)

with respect to A	.

Exercise Obtain (1.286) from (1.287).

Poincaré Invariance Let us postulate that A	 and J	 are Minkowski - space vector
fields. Under the Poincaré transformations (1.68) they transform as

A0
	.x

0/ D A
.x/ Qƒ

	; J0	.x0/ D ƒ	


J

.x/; (1.288)

Then F	
 is the second-rank covariant tensor and the Lagrangian� 1
4
F	
F	
CA	J	

is a scalar function, see Sect. 1.3. Hence the action (1.287) is invariant12 under
the Poincaré transformations, while equations of motion (1.286) are manifestly
Poincaré-covariant (generally, invariance of a Lagrangian action implies covariance
of the corresponding equations of motion; see Sect. 7.5 below). According to the

12Remember that according to mathematical analysis, an integration measure changes as d4x0 D
j detƒjd4x.
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terminology introduced in Sect. 1.4.2, Poincaré transformations represent a family
of global symmetries (with ten parameters) of the action (1.287).

Electric and magnetic fields were identified with components of F	
 according
to (1.285). This determines their transformation law under the Lorentz transforma-
tions. Under a rotation they behave as three-dimensional vectors, while the Lorentz
boost mixes EE with EB, see Sect. 1.7.8.

To conclude with, we discuss two statements that were used at the beginning of
this section.

Given field EB with zero curl, Œ Er; EB� D 0, there is a function ' such that EB D Er'.
To construct it, let us fix the point Ex0, and let E�.l; Ex/ be a curve connecting Ex0 with a
point Ex, that is, E�.0; Ex/ D Ex0, E�.1; Ex/ D Ex (take, for example, E�.l; Ex/ D Ex0Cl.Ex�Ex0//.
Then

' D
Z 1

0

Ba.E�.l; Ex//@�a.l; Ex/
@l

dl: (1.289)

By direct computations, we verify that Er' D EB. Note also that the integral in
Eq. (1.289) is just the line integral of the vector function, ' D R

� .
EB; Edl/.

Given field EB with zero divergence, . Er; EB/ D 0, there is a vector EA such that
EB D Œ Er; EA�. It is given by

Aa D
Z 1

0

�b.l; Ex/
@l

�c.l; Ex/
@xa

�bcdBd.E�.l; Ex//dl C @a˛; (1.290)

where ˛ is an arbitrary function.

1.7.4 Notion of Local (Gauge) Symmetry

From Eqs. (1.283) and (1.284) it follows that a potential of the form NA	 � @	˛,
where ˛.x	/ is an arbitrary space-time function, leads to zero field strength,
NF	
 D 0, so it does not produce electric and magnetic fields. As a consequence,
the potentials A	 and A0

	 D A	 C @	˛, determine the same electromagnetic field.
The ambiguity in the representation of an electromagnetic field through a potential
can be used for various reformulations of equations of motion (1.286).

For instance, for a given potential A	, the function ˛ can be chosen such that
A0
0 D 0 (it is sufficient to solve the equation @0˛ D �A0/. Hence there is a

potential of the form A0
	 D .0;A0

a/, that produces the same electromagnetic field
as A	. Hence, if we wish, we can look for solutions of this form resolving the
Eq. (1.286). Knowledge of this solution of a special form is sufficient to reconstruct
the electromagnetic field created by a given distribution of charges. When A0 D 0,
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Fig. 1.23 The space of
potentials decomposes into
non-intersecting classes QA	 of
equivalent potentials.
Electromagnetic fields are in
one-to-one correspondence
with the classes, .EE; EB/ � QA	.
In each class there are
representatives of the form
QA	 D .0;Aa/

A    = (0, A  )

~

μ

μ μ μ

a

A    = {A  +d     α}

the Eq. (1.286) reduce to the system (1.277) obtained in the previous section,13 while
the action (1.287) turns into (1.270).

The procedure described is called fixation of a gauge. The condition A0 D 0 is
known as a unitary gauge.

To make the relationship between .EE; EB/ and A	 clearer, we define an equivalence
relation on the space of functions A	.x
/. The potentials A	 and A0

	 are equivalent,
A0
	 	 A	, if they differ by the divergence of some function, A0

	 D A	 C @	˛.
Equivalent potentials form a set called a class of equivalent potentials. The set is
denoted by QA	 D fA	 C @	˛, where ˛ is an arbitrary function}. According to
the known theorems of algebra, given the equivalence relation, the initial space
decomposes on non-intersecting classes of equivalent potentials, see Fig. 1.23 on
page 77. Electromagnetic fields are in one-to-one correspondence with the classes,
.EE; EB/ $ QA	. As we have discussed, in each class there is a representative of the
form .0;Aa/. Fixation of the unitary gauge means that solving equations of motion
we look for a representative of this special form in each class.

Another often-used gauge is the Lorentz gauge, @	A	 D 0. One of its advantages
is that it does not spoil the manifest Poincaré covariance of the problem. Another
advantage is that in this gauge the left hand side of Eq. (1.286) acquires the form of
a wave equation (see Sect. 1.5)

@	@
	A
 D �J
: (1.291)

Exercise Find the solution to Eq. (1.291) that produces the electromagnetic
wave of Example 3 on page 68.

13Given A	, the equivalent potential with vanishing time-component reads A0

	 D .A0

0;A
0

a/ D
.0;Aa �@a

R
dx0A0C@ac.xa//, where c.xa/ stands for an arbitrary function. For the free electrody-

namics, the arbitrariness can be used for further specification of the potential. For example, we can
find A0

a with @aA0

a D 0. It implies the following equation for c: @2ac.xb/ D �@aAa C @2a
R

dx0A0.
The equation is consistent, since its r.h.s. does not depend on x0: @0.�@aAa C @2a

R
dx0A0/ D

�@	F	0 D 0, and thus can be resolved. The potential then obeys the three-dimensional wave
equation. For the more detailed discussion of this point see Sect. 8.4.
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The action (1.287) also reflects the ambiguity in the representation of EE and EB
through a potential: it has the same value for all representatives of a given class.
Indeed, the substitution

A	 D A0
	 � @	˛; (1.292)

leaves the action (1.287) invariant, SŒA.A0/� D SŒA0�. So it represents a symmetry
transformation on the space of fields. In contrast to the global Poincaré symmetry
discussed above, the symmetry (1.292) involves an arbitrary function ˛.x	/ instead
of numeric parameter. Intuitively, the transformation law varies from one point
to another, transformations of a potential “here” and “there” are different. For
this reason the transformation is called local (or gauge) symmetry of the action.
In what follows we discuss some characteristic properties of locally-invariant
theories.

Singular Character of the Locally-Invariant Action Let us separate the terms
with temporal derivatives in the action (1.287)

S D
Z

d4x

�
1

2
.@0Ab � @bA0/

2 � 1

4
F2ab C A	J	

�
: (1.293)

Note that it does not contain the time derivative of A0. Hence the Hessian matrix
(see Sect. 1.4.2) is degenerate

@2L

@ PA	@ PA

D

0
BB@
0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1
CCA ; (1.294)

and we deal with a singular theory.

Arbitrariness in Solutions of Locally-Invariant Theory Recall that a nonsingu-
lar theory leads to a normal system of equations, which admits formulation of the
Cauchy problem. This is impossible in a locally-invariant theory: independently of
the type and the number of initial and boundary conditions imposed, a solution
to the equations of locally-invariant theory is not unique, and involves arbitrary
functions. Indeed, suppose that A	 represents a solution to the Eq. (1.286) with
some initial and boundary conditions imposed. Take a function ˛.x
/ such that @	˛
(together with its time derivatives, if necessary), vanishes at the initial instance
and on the boundary. Then A	 C @	˛ is a solution of the same problem as
A	.

Structure of Equations of Motion One consequence of singularity is that not all
equations of motion are of the second order with respect to a temporal variable. Let
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us write Eq. (1.286) in three-dimensional notations

S0 � 4A0 � @0.@bAb/� � D 0; (1.295)

Sa � .@20 � 4/Aa � @a.@0A0 � @bAb/� 1

c
Ja D 0: (1.296)

Equation (1.295) does not contain @20. Another consequence is the identity presented
among the equations

@
S
 � 0: (1.297)

Finally, similarly to the three-dimensional formulation, Eq. (1.295) can be
replaced by an appropriate initial condition. To see this, compute the divergence
of Eq. (1.296). Using @	EJ	 D 0 we obtain @aSa D @0Œ4A0 � @0.@bAb/ �
�� D 0. Hence (1.296) implies S0 D f .Ex/, and Eq. (1.295) will hold at
any instance if it has been satisfied at the initial instant of time. Hence the
system (1.295), (1.296) is equivalent to Eq. (1.296) supplemented by the initial
condition Œ4A0 � @0.@bAb/ � �� jtD0 D 0.

There is a profound relationship between the properties enumerated above and
the local invariance of a theory. This will be discussed in Chap. 8.

1.7.5 Lorentz Transformations of Three-Dimensional
Potential: Role of Gauge Symmetry

So far was not demonstrated that the formulation of electrodynamics in terms of
the three-dimensional potential Ab obeys the principle of special relativity. Here
we present the relevant computation. The computation also clarifies, why we
prefer the formalism which implies a set of redundant variables subject to local
transformations instead of a set of independent and gauge-invariant variables.

Consider two observers related by the Lorentz transformation x0	 D ƒ	

x
 .

Suppose they study a given electromagnetic field. As we have seen, the four-
dimensional potentials are related by combination of the Lorentz and the gauge
transformations

A0
	 D A
 Qƒ


	 C @	˛: (1.298)

Suppose the observers decided to use a three-dimensional formalism to describe
the given field. Then O describes it by the potential A	 D .A0 D 0;Aa/, while O0
uses A0

	 D .A0
0 D 0; A0

a/. The question is if the formalism is a Lorentz covariant,
that is, whether the two descriptions are related by a Lorentz transformation. It is
clear that the linear Lorentz transformation of four-dimensional formulation does
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not relate these A0 and A, since transformation of .0;Aa/ leads to a potential with
A0
0 D Ab Qƒb

0 ¤ 0. A general gauge transformation also implies A0
0 ¤ 0.

It can be said that neither the Lorentz nor the gauge symmetry of four-
dimensional formulation survive in the gauge A0 D 0. But we can look for
a combination that does not spoil the gauge condition. So, given the Lorentz
transformation Qƒ, we ask whether there is a ˛. Qƒ/ such that A0

0 D 0.
Taking 	 D 0-component of Eq. (1.298) and requiring A0

0 D 0, we find
˛. Qƒ/ D �Cc Qƒc

0, where Cc is a primitive function of Ac, @0Cc D Ac. Then the
three-dimensional potentials are related by

A0
b D Ac Qƒc

b � @bCc Qƒc
0: (1.299)

The transformation turns out to be highly non-linear (even non local with respect to
Aa!), involving the primitive function Cc of the potential.

This computation shows the role of auxiliary variables and local symmetries
associated with them. Introducing the auxiliary variable A0, we arrive at the
formulation where the non-linearly realized global symmetry (1.299) decomposes
on a linear global symmetry (Lorentz transformations) plus a local symme-
try, (1.298).

1.7.6 Relativistic Particle in Electromagnetic Field

The free-particle Lagrangian m
2
.Pxa.t//2 does not determine a relativistic theory. It

admits solutions xa D xa
0 Cvat with any velocity va, so it does not take into account

the existence of a maximum speed in nature. To resolve the problem, let us consider
the action

S D �mc
Z

dt
p

c2 � .Pxa/2: (1.300)

It has the following properties.

1. The action has no meaning when PEx2 > c2, so we do not expect it to admit motions
with v > c. Indeed, this implies the equations

d

dt

 
Pxap

c2 � PEx 2

!
D 0; then

Pxap
c2 � PEx 2

D ba: (1.301)
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This implies
PEx 2

c2�PEx 2 D Eb2, then
p

c2 � PEx 2 D cp
1CEb2

. Using this equality in

Eq. (1.301), it reads Pxa D cbap
1CEb2

, so the general solution is

xa.t/ D vat C xa
0; where va D cbap

1C Eb2
; (1.302)

and ba, xa
0 are arbitrary constants. The square of velocity is given by Ev2 D c2 Eb2

1CEb2 .
It is less then c2 for any integration constant ba.

2. When Px2 � c2, we expand the Lagrangian in a power series obtaining

�mc
p

c2 � PEx 2 D �mc2C 1
2
mPEx 2CO2


 PEx 2
c2

�
, so in the nonrelativistic limit c ! 1

it reduces to the standard Lagrangian 1
2
mPEx2.

3. The action can be presented in a Poincaré invariant form. To achieve this, we
follow the procedure discussed at the end of Sect. 1.3. Let x0 D x0.�/, xa D xa.�/

be parametric equations of the curve .ct; xa.t//. Then dxa

dt D dxa

d� =
dt
d� , and the

action acquires a manifestly Poincaré-invariant form

S D �mc
Z

d�

r
��	
 dx	

d�

dx


d�
: (1.303)

Recall that functions of �	
 Px	 Px
 are the only Poincaré-invariant quantities
without higher derivatives, see Sect. 1.3.

Exercises

1. Confirm that (1.303) is a singular action.
2. Confirm that the action is invariant under reparametrizations � D ˛.� 0/.

Note that 1p�Px	 Px	
d

d� is a reparametrization-invariant quantity.

It is instructive to solve the manifestly covariant equations that result from this
action. We have

S	 � d

d�

� Px	p�Px
 Px

�

D 0; then
Px	p�Px
 Px
 D b	; (1.304)

where Px D dx
d� and b	 are constants subject to the restriction b	b	 D �1.

Exercise Confirm the identity Px	S	 � 0.
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The functions

x	.�/ D b	f .�/C d	; (1.305)

where f .�/ is an arbitrary function, represent a solution to Eq. (1.304). Moreover,
any solution to the problem has this form; see Exercise on page 221. Hence we have
found all of them.

According to the ideology discussed at the end of Sect. 1.3, the physical trajectory
xa.t/ is obtained excluding � from the parametric equations x0 D b0f .�/ C d0,
xa D baf .�/C da. This leads to the expression

xa.t/ D vat C xa
0; where va D cbap

1C Eb2
; xa

0 D da � d0bap
1C Eb2

; (1.306)

which reproduces our previous result (1.302).
The motion of the relativistic particle in a given electromagnetic field can be

described starting from the action

S D
Z

d�

"
�mc

r
��	
 dx	

d�

dx


d�
C e

c
A	 Px	

#
: (1.307)

The term A	Px	 is known as the minimal interaction.

Exercise Verify that the action is invariant both under the gauge and the
reparametrization transformations.

This leads to the equations

�mc@�

�
�	
@�x
p�@�x
@�x


�
C e

c
F	
@�x


 D 0; (1.308)

Due to reparametrization invariance, equations for the physical trajectory xa.t/ can
be obtained if we take x0

c as the parameter along the trajectory, � D x0

c D t. Then
x	.�/ ! .ct; x.t//, @�x	 ! .c; Pxa.t/ D dxa

dt /, and the equations acquire the form

d

dt

 
Px	p��	
 Px	 Px


!
D e

mc2
F	
 Px
; ��	
 Px	 Px
 D c2 � Ev 2; (1.309)
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or, in three-dimensional notations

G � mc3
d

dt

 
1p

c2 � PEx2

!
� eEa Pxa D 0; (1.310)

Sa � mc
d

dt

 
Pxap

c2 � PEx2

!
� eEa � e

c
�abc PxbBc D 0: (1.311)

Note that PxaSa � G, so the first equation is a consequence of others and can be
omitted from consideration. At the non-relativistic limit, PEx 2 � c2, the term PEx 2
inside the square root can be omitted, and the remaining three equations coincide
with Eq. (1.280).

1.7.7 Speed of Light and Critical Speed in External Field

We will use the following terminology. The speed vcr that a particle can not
exceed during its evolution in an external field is called critical speed.14 The
observer-independent scale c of special relativity is called, as usual, the speed of
light. We show that the particle (1.309) can not exceed c during its evolution in
electromagnetic field, that is its critical speed coincides with the speed of light. Then
we consider rather exotic examples of equationswhich yield vcr different from c. We
achieve this assuming a non-minimal interaction with electromagnetic field. These
toy models have the same basic properties as the Eq. (1.309): reparametrization and
gauge-invariance, as well as Poincaré-covariance. In Chap. 9 this subject will be
discussed for more realistic case of a particle with spin.

Particle with Minimal Interaction Due to the relativistic-contraction factor c2 �
v2 D 0, the Eq. (1.309) became singular at the value of speed v D c. The singularity
determines behavior of the particle in ultra-relativistic limit. To see this, we rewrite
the equations in the form of second law of Newton and analyze an acceleration. We
present (1.311) as follows:

Rxa

p
c2 � v2

C Pxa d

dt

1p
c2 � v2

D e

mc2
Fa


 Px
: (1.312)

Using Eq. (1.310) we obtain the three-acceleration vector

a D
p

c2 � v2

mc

�
eE � e.Ev/

c2
v C e

c
v � B

�
: (1.313)

14We prefer the term critical speed instead of maximum speed since in some examples vcr is a
field-dependent quantity, see below.
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This can be used to obtain the acceleration along the direction of velocity

va D e.c2 � v2/
3
2

mc3
.Ev/: (1.314)

The same expression can be obtained computing the time-derivative in Eq. (1.310).
The acceleration vanishes as jvj ! c. Hence the singularity in Eq. (1.309) implies
that during its evolution in the external field, our particle can not exceed the speed
of light c.

Particle with Non minimal Interaction The field strength F	
 can be used to
modify the Eq. (1.309) preserving its basic properties: reparametrization and gauge-
invariance, as well as Poincaré-covariance. We discuss two modifications which
could yield non vanishing longitudinal acceleration as jvj ! c. First, we replace
the usual relativistic factor �Px�Px by

� Px	g	
 Px
 D �Px	�	
 Px
 � �k.PxFFPx/ D c2 � v2 � �k.PxFFPx/; � D ˙1:
(1.315)

We have denoted PxFF Px D Px	F	˛F˛
 Px
 . The right dimension can be supplied by the
constant k with dimension e2. e

mc2
/4. Second, we modify the expression for Lorentz

force and write the following equation

d

dt

� Px	p�PxgPx
�

D f	 � e

mc2
F	
 Px
 �

Qk2p�PxgPx Px˛@	.FF/˛ˇ Pxˇ: (1.316)

Here Qk is one more coupling constant. Repeating for this case the calculations made
above, we obtain the longitudinal acceleration in terms of the force components

va D p�PxgPx
�

vf � v2

c
f 0
�

� p�PxgPx
�

c2 � v2

c
f 0 C Px	f	

�
: (1.317)

In this expression Px	 D .c; v D dx
dt /. The acceleration vanishes at the values of

speed which annulate r.h.s. of this equation. If in physical-time parametrization the
four-force obeys the identity Px	f	 D 0, we have two special points, jvj D c, and v0
determined from PxgPx D 0. In absence of the identity, and if Px	f	 ¤ 0 as jvj ! c,
the speed of light does not represent a special point of (1.317).

If Qk D 0, we obtain

va D e.vE/
mc3

p�PxgPx.c2 � v2/: (1.318)

Besides the usual special point, v2 D c2, there is onemore, say v0 D jv0j, determined
by PxgPx D 0. This surface is slightly different from the sphere c2 � v2 D 0.
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So the second special point generally differs from the speed of light. To see this
in more detail, we compute the last term in (1.315)

� PxFFPx D c2Ei



ıij � vivj

c2

�
Ej C v2BiNijBj: (1.319)

Here Nij � ıij � vivj

v2 is projection operator on the plane orthogonal to the vector v,
so we can write BNB D .NB/2 D B2?. Then the factor (1.315) reads

� PxgPx D c2 � v2 C �k
h
c2E.1 � vv

c2
/E C v2B2?

i
: (1.320)

The quantity ıij � vivj

c2
turns into the projection operator N when jvj D c. Hence

� PxgPx jvj!c�! �kc2ŒE2? C B2?�: (1.321)

If E and B are not mutually parallel in the laboratory system, this expression does
not vanish for any orientation of v. This implies that the factor (1.315) does not
vanish at jvj D c.

We confirmed that longitudinal acceleration generally vanishes at two different
values of speed, c and v0. Then Eq. (1.318) implies the following possibilities.

(A) Let � D C1, then from (1.320) we conclude c < v0, and speed of the particle
approximates to c. The second special point v0 turns out to be irrelevant. So
vcr D c.

(B) Let � D �1, then v0 < c, and the particle with small initial velocity will
approximate to the critical velocity vcr D v0 < c. So it never approximates to
the speed of light.

Consider now the case Qk ¤ 0, and the factor (1.315) with � D C1. As we have
seen above, this implies c < v0, where v0 is a solution of PxgPx D 0. Besides, we take
non-parallel, homogeneous and non-stationary fields with growing tension

@iE D @iB D 0;
d

dt
jEj > 0; d

dt
jBj > 0; (1.322)

then the longitudinal acceleration of the particle (1.316) reads

va D a1.v/C a2.v/ � e.vE/
mc3

p�PxgPx.c2 � v2/ � Qk2v2
c2

Px @
@t
.FF/Px: (1.323)

We have a1.c/ D 0, while a2.c/ is positive according to Eqs. (1.319) and (1.322). So
the particle overcomes the light barrier. In the region c < v < v0 we have a1.v/ < 0
and a2.v/ > 0, so the particle will continue to accelerate up to critical velocity vcr

determined by the equation a1 C a2 D 0. If a2 > ja1j in the region, the particle will
accelerate up to the value vcr D v0. Above this velocity the Eq. (1.323) becomes
meaningless.
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The toy examples show that critical speed in a manifestly relativistic and
reparametrization-invariant theory does not always coincide with the speed of light,
if we assume the usual special-relativity definitions of time and distance. In general
case, we expect that vcr is a field-dependent quantity.

1.7.8 Poincaré Transformations of Electric and Magnetic
Fields

Recall that Ea and Ba have been identified with matrix elements of the field strength
F	
 , which transforms as the second-rank tensor

F0
	
.x

0/ D F˛ˇ.x/ Qƒ˛
	

Qƒˇ

: (1.324)

Using this equation as well as (1.284), we obtain the following expression for the
transformation of an electromagnetic field

E0
a.x

0/ D Ed.x/. Qƒd
a Qƒ0

0 � Qƒd
0

Qƒ0
a/C Bd.x/�dbc Qƒb

a Qƒc
0;

B0
a.x

0/ D Ed.x/ Qƒd
b�bca Qƒ0

c C 1

2
Bd.x/�dmn Qƒm

b Qƒn
c�bca: (1.325)

Here x0 and x are related by the Poincaré transformation (1.68).
For a spacial rotation, the Lorentz matrix is Qƒ0

0 D 1, Qƒa
0 D Qƒ0

a D 0, Qƒa
b D

Rab, RTR D 1. Substituting this into Eq. (1.325) we immediately obtain (remember
that �abcRa˛RbˇRc� D �˛ˇ� , therefore �abcRa˛Rbˇ D �˛ˇ�Rc� /

E0
a D EbRba; B0

a D BbRba: (1.326)

As was expected, EE and EB behave like three-dimensional vectors under the spacial
rotations.

To find matrix elements of Qƒ for the case of Lorentz boost, we lower the indexes
in Eq. (1.102) obtaining

x0
0 D �

�
x0 C V

c
x1

�
; x0

1 D �

�
V

c
x0 C x1

�
; x0

2;3 D x2;3; (1.327)

where we have denoted � D


1 � V2

c2

�� 1
2
. Hence the Qƒ-matrix has the following

non-zero components

Qƒ0
0 D Qƒ1

1 D �; Qƒ0
1 D Qƒ1

0 D �
V

c
; Qƒa

b D ıa
b; a; b D 2; 3: (1.328)
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Substituting them into Eq. (1.325) we obtain

E0
1 D E1; E0

2 D �

�
E2 � V

c
B3

�
; E0

3 D �

�
E3 C V

c
B2

�
I (1.329)

B0
1 D B1; B0

2 D �

�
V

c
E3 C B2

�
; B0

3 D �

�
�V

c
E2 C B3

�
: (1.330)

Making the changes E0 $ E, B0 $ B, V ! �V , we obtain the inverse
transformation

E1 D E0
1; E2 D �

�
E0
2 C V

c
B0
3

�
; E3 D �

�
E0
3 � V

c
B0
2

�
I

B1 D B0
1; B2 D �

�
�V

c
E0
3 C B0

2

�
; B3 D �

�
V

c
E0
2 C B0

3

�
: (1.331)

According to Eqs. (1.329) and (1.330), when O registers only an electric field EE, the
observer O0 will register both electric and magnetic fields. When EB D 0, Eq. (1.330)
can be written in the vector form

EB0 D 1

c
ŒEV ; EE0�: (1.332)

Hence the vectors EE0 and EB0 are mutually orthogonal in the O0-frame.
For a boost with V � c, we can disregard V2

c2
-terms in Eqs. (1.329) and (1.330).

The approximate expressions can be written in the vector form

EE0 � EE � 1

c
ŒEV; EB�; EB0 � EB C 1

c
ŒEV ; EE�: (1.333)

The Lorentz boost transformation can be used to find new solutions to the
Maxwell equations from a known solution. We present an example of this kind
below.

Example (Electromagnetic Field of a Moving Charge) Consider the charge
q that moves with constant velocity V along the x1-axis of the frame O.x	/,
passing through its origin at t D 0. Introduce also the frame O.x0	/ which
moves with the charge. Since the charge is at rest in O0, its electromagnetic
field is EE0 D qEx0

jExj3 , EH0 D 0. Then the field in O can be obtained from

(continued)
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Eq. (1.331)

E1.x/ D qx01

jEx0j3 ; E2.x/ D �
qx02

jEx0j3 ; E3.x/ D �
qx03

jEx0j3 ;

B1.x/ D 0; B2.x/ D �� V

c

qx03

jEx0j3 ; B3.x/ D �
V

c

qx02

jEx0j3 ; (1.334)

where we need to substitute x0	 through x	 according to Eq. (1.102)

x00 D �.x0 � V

c
x1/; x01 D �.x1 � V

c
x0/; x02 D x2; x03 D x3: (1.335)

We first compute

jEx0j3 D �3
�
.x1 � Vt/2 C 1

�2
Œ.x2/2 C .x3/2�

� 3
2

D �3
�
.x1 � Vt/2 C .x2/2 C .x3/2 C

�
1

�2
� 1

�
Œ.x2/2 C .x3/2�

� 3
2

:

(1.336)

Introduce the vector from the position of charge q to the observation
point, ER D .x1 � Vt; x2; x3/; see Fig. 1.24 on page 88. Then
.x2/2 C .x3/2 D jERj2 sin2 � , where � is the angle between EV and ER. So

(continued)

x1

x’1

x2

x3

x’2

x’3

V
q

.

R

θ

Fig. 1.24 The electric field of a moving charge depends on the angle �
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Fig. 1.25 (a) Electric field of a charge at rest. (b) Field of a moving charge

jEx0j3 D �3jERj3


1 � V2

c2
sin �

� 3
2
. Now the Eq. (1.334) read

EE D qER
jERj3

1 � V2

c2

1 � V2

c2
sin2 �

� 3
2

; EB D q

c
ŒEV ; EE�: (1.337)

These expressions give the electromagnetic field of a moving charge. The
electric field is directed to the charge, with a magnitude that increases with
� . The electric field in the direction of motion, .� D 0/, has the minimal

magnitude jEEj D q

jERj2


1 � V2

c2

�
, and in the orthogonal direction, � D �

2
, it

acquires the maximum value jEEj D q

jERj2
1r
1� V2

c2

. The electric and the magnetic

field fields of the moving charge are shown in Figs. 1.25b on page 89 and 1.26
on page 90.
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Fig. 1.26 Magnetic field of a
moving charge
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Chapter 2
Hamiltonian Formalism

Abstract As we have discussed, Lagrangian formulation of classical mechanics is
based on Euler–Lagrange (Newton) equations of motion, which represent a system
of second-order differential equations, written for a set of variables that describe
the position of a physical system of interest. Hamiltonian formulation suggests
an equivalent description in terms of first-order equations written for independent
variables describing the position and velocity of the system. The aim of this section
is to establish an equivalence of the two descriptions.

2.1 Derivation of Hamiltonian Equations

As we have discussed, Lagrangian formulation of classical mechanics is based
on Euler–Lagrange (Newton) equations of motion, which represent a system of
second-order differential equations, written for a set of variables that describe
the position of a physical system of interest. Hamiltonian formulation suggests
an equivalent description in terms of first-order equations written for independent
variables describing the position and velocity of the system. The aim of this section
is to establish an equivalence of the two descriptions.

2.1.1 Preliminaries

Hamiltonian equations can be obtained fromLagrangian ones by successive applica-
tion of two well-known procedures in a theory of differential equations: reduction of
order and change of variables. Both procedures are intended to obtain an equivalent
system of equations from a given system. So, we recall here some elementary facts
from the theory of ordinary differential equations, which will be used below.

Reduction of the Order of a System A second-order system of n equations for n
independent variables qa.�/,

Fa.qa; Pqb; Rqc/ D 0; (2.1)

© Springer International Publishing Switzerland 2017
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92 2 Hamiltonian Formalism

is equivalent to the first-order system of 2n equations for 2n independent variables
qa.�/, �b.�/

Pqa D va; Fa.qa; vb; Pvc/ D 0; (2.2)

in the following sense:

(a) If qa.�/ obeys Eq. (2.1), then the functions qa.�/; va.�/ � Pqa.�/ obey Eq. (2.2);
(b) If the functions qa.�/; va.�/ obey Eq. (2.2), then qa.�/ obeys Eq. (2.1).

In other words, there is a one-to-one correspondence among solutions to the
systems. The system (2.2) is referred to as the first-order form of the system (2.1).

Normal Form of a System We restrict ourselves to the first-order system

Gi.z j; Pz k/ D 0: (2.3)

It is said to be presented in the normal form if all the equations are solved
algebraically with respect to higher derivatives

Pzi D gi.z j/: (2.4)

Any system with det @Gi

@Pzj ¤ 0 can (locally) be rewritten in the normal form.
According to the theory of differential equations, a normal system has well
established properties. In particular, under known restrictions to functions gi, the
theorem for the existence and uniqueness of a solution holds: let zi

0 be given
numbers, then locally there exists a unique solution z i.�/ of the system (2.4) that
obeys the initial conditions z i.0/ D zi

0. Physically it means the causal dynamics and,
in turn, a possibility of interpretation of the system (2.3) as the equations of motion
for some physical system of classical mechanics.

Change of Variables Let ' i.z j/ be given functions, with the property

det
@' i

@z j
¤ 0: (2.5)

Starting from the system (2.3) in original parametrization zi, functions ' i.z j/ can
be used to define another parametrization z0i, namely z0i D ' i.z j/. According to
the condition (2.5), change of variables z i ! z0i is invertible: the expressions
z0i D ' i.z j/ can be resolved with relation to z i, with the result being z i D  i.z0j/.
The change of variables induces the map on the set of functions (dynamical
variables): z i.�/ ! z0i.�/ D ' i.z j.�//. Once the functions ' i.z j/ have been chosen,
we can use the new coordinates to analyze the system (2.3). Namely, we look for
solutions of the form z i D  i.z0j/. The system

Gi. j.z0k/; P j.z0k// D 0; (2.6)



2.1 Derivation of Hamiltonian Equations 93

where P j.z0k/ D @ i

@z0k Pz0k, is equivalent to the initial system (2.3): if z i.�/ obeys the
system (2.3), then z0i.�/ � ' i.z j.�// obeys (2.6), and vice versa.

Below we prefer to use the notation

Gi.z j; Pzj/
ˇ̌
zD .z0/

D 0; (2.7)

instead of (2.6), since sometimes caution is needed in making use of the substitution,
see, for example, Eqs. (2.34) and (2.35) below. Besides, we will often use the same
letter z0i to denote the function .z/ and the new coordinate, as long as this does not
lead to any misunderstanding.

More generally, we can look for solutions of the form

z i.�/ D  i.z0j.�/; �/; (2.8)

where 2n functions of 2n C 1 variables  i.z0j; �/ obey

det
@ i

@z0j ¤ 0; for any �: (2.9)

So the relations (2.8) can be resolved with respect to z0

z0i D ' i.z j; �/: (2.10)

Substituting z in the form (2.8) into the Eq. (2.3), we obtain an equivalent problem
in terms of z0.

By construction, there are identities (for  and ' considered as functions of their
arguments)

' i. .z0; �/; �/ � z0i;  i.'.z; �/; �/ � z i: (2.11)

From this we obtain more identities

@'k.z; �/

@z i

ˇ̌
ˇ̌
zD .z0;�/

@ i.z0; �/
@z0j D ık

j;

@' i.z; �/

@�

ˇ̌
ˇ̌
zD .z0;�/

D � @' i.z; �/

@z j

ˇ̌
ˇ̌
zD .z0;�/

@ j.z0; �/
@�

;

@ i.z0; �/
@�

ˇ̌
ˇ̌
z0D'.z;�/

D � @ i.z0; �/
@z0j

ˇ̌
ˇ̌
z0D'.z;�/

@' j.z; �/

@�
: (2.12)

The first identity relates Jacobi matrices of inverse and direct transformations: the
matrices turn out to be opposites. The second identity relates derivatives with respect
to � of the direct (') and the inverse ( ) transformations. The third identity differs
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from the second one by changing ' $  , as should be the case (it is a matter of
convenience which transformation is called the “direct” and the “inverse” one).

Comment We stress that (2.8) represents a transformation on the space of
functions z.�/. Discarding the time-dependence, the expressions

z i D  i.z0j; �/; (2.13)

can be considered as one-parametric family of coordinate transformations in 2n -
dimensional space with coordinates z i. We could introduce the extended space with
coordinates .�; z i/, then coordinate transformation of a general form in this space
are

�
�

z i

�
$
�
� 0
z0i
�
;

(
� 0 D f .z; �/

z0i D ' i.z; �/
(2.14)

In this space, (2.13) can be considered as coordinate transformation of special form,
with � 0 D � . Let .�; z i.�// be parametric equations of a curve in extended space.
Then .�; z0i.�// represents the curve in the transformed coordinates.

Hamiltonian System Let qa, pa, a D 1; 2; : : : ; n be independent variables. The
normal system

Pqa D Qa.q; p; �/; Ppa D Pa.q; p; �/; (2.15)

with the given functions Q, P is called the Hamiltonian system, if there is a function
H.q; p; �/, such that

Qa D @H

@pa
; Pa D � @H

@qa
: (2.16)

In accordance with this, the Hamiltonian system can be written in the form

Pqa D @H

@pa
; Ppa D � @H

@qa
: (2.17)

Equation (2.16) implies the necessary conditions for the system to be a Hamiltonian
one

@Qa

@qb
D �@Pb

@pa
;

@Qa

@pb
D @Qb

@pa
;

@Pa

@qb
D @Pb

@qa
: (2.18)
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2.1.2 From Lagrangian to Hamiltonian Equations

Let qa; a D 1; 2; : : : ; n represent generalized coordinates of the configuration space
for a mechanical system with the Lagrangian being L.qa; Pqa/. Then the dynamics is
governed by the second-order Euler-Lagrange equations

d

d�

�
@L.q; Pq/
@Pqa

�
� @L.q; Pq/

@qa
D 0: (2.19)

For any Lagrangian system there is an equivalent Hamiltonian system. We demon-
strate this mathematically notable fact for the particular case of a nonsingular
Lagrangian

det
@2L.q; Pq/
@Pqa@Pqb

¤ 0: (2.20)

In this case, the system (2.19) can be rewritten in the first-order normal form. Then
in specially chosen coordinates it acquires the Hamiltonian form. It basically gives
the Hamiltonian formulation of mechanics.

Computing the derivative with respect to � in Eq. (2.19), the latter can be
written as

Mab Rqb D Ka; (2.21)

where it was denoted

Mab.q; Pq/ � @2L.q; Pq/
@Pqa@Pqb

; Ka.q; Pq/ � @L

@qa
� @2L

@Pqa@qb
Pqb: (2.22)

Let us start with construction of the first-order form for the system (2.21). We find it
instructive to present here a less formal reasoning, as compared to that of Sect. 2.1.1.
We introduce 2n-dimensional configuration-velocity space parameterized by inde-
pendent coordinates qa; vb (sometimes the coordinates vb are called generalized
velocities). Let us define evolution in this space according to the equations

Mab Rqb D Ka; va D Pqa; (2.23)

with M.q; Pq/, K.q; Pq/ given by Eq. (2.22). As before, time dependence of the
coordinates qa.�/ is determined by Lagrangian equations (2.21), while va.�/

accompanies Pqa.�/: va.�/ is determined from the known qa.�/, taking its derivative.
Evidently, systems (2.21) and (2.23) are equivalent. Further, we can use one of
the equations of the system in other equations, obtaining an equivalent system.
Substitution of the second equation from (2.23) into the first one gives the desired
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first order system

Pqa D va; NMab Pvb D NKa; (2.24)

where NM; NK are obtained from (2.22) by the replacement Pq ! v, for example

NMab � Mab.q; Pq/jPqa!va D @L.q; v/

@va@vb
: (2.25)

According to Eq. (2.20), the matrix NM is invertible. Applying the inverse matrix QNM,

the Eqs. (2.24) can be presented in the normal form Pq D v, Pv D QNM NK. The right-hand
sides of these equations do not obey Eq. (2.18). So in terms of the variables q, v the
system is not a Hamiltonian one.

Making the variable change q ! q.q0; v0/, v ! v.q0; v0/ in Eq. (2.24), we could
look for the new variables that imply the Hamiltonian form of the system. The point
here is that there is a wide class of so-called canonical transformations that preserve
the Hamiltonian form of an arbitrary Hamiltonian system (see Sect. 2.7 below).
Hence the variables under discussion are not unique.1 The remarkable observation
made by W. R. Hamilton was that the change of variables (with v0 conventionally
denoted as p)

�
qa

vb

�
$
�

q0a
pb

�
; where q0a � qa; pb D @L.q; v/

@vb
; (2.26)

turns the system (2.24) into the Hamiltonian one. Due to Eq. (2.20) we have
det @pb.q;v/

@vc ¤ 0. The latter condition guarantees invertibility of the transforma-
tion (2.26). Let us denote the inverse transformation as

va D va.q; p/: (2.27)

This implies the identities

@L

@va

ˇ̌
ˇ̌
v.q;p/

� pa;
@pa

@vb
D @2L

@va@vb
D Mab.q; v/: (2.28)

Let us confirm that in terms of the variables q, p the system (2.24) acquires the
Hamiltonian form.

1If the change q.q0; v0/, v.q0; v0/ transforms the system (2.24) into the Hamiltonian one, and
q0.q00; v00/, v0.q00; v00/ is the canonical transformation, then the change q.q0.q00; v00/; v0.q00; v00//,
v.q0.q00; v00/; v0.q00; v00// transforms (2.24) into the Hamiltonian system as well.
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According to Sect. 2.1.1, the dynamics for the new variables is obtained
from (2.24) by substitution v ! v.q; p/. We have

Pqa D va.q; p/; (2.29)

NMab

ˇ̌
v.q;p/

@vb

@pc
Ppc D NKa

ˇ̌
v.q;p/

� NMab

ˇ̌
v.q;p/

@vb

@qc
vc.q; p/

D @L.q; v/

@qa

ˇ̌
ˇ̌
v.q;p/

�
�
@2L.q; v/

@qc@va

ˇ̌
ˇ̌� @2L.q; v/

@va@vb

ˇ̌
ˇ̌ @vb

@qc

�
vc.q; p/: (2.30)

The l.h.s. of (2.30) is just pa, as is implied2 by Eq. (2.28). Besides, the expression

inside the brackets vanishes since it is @
@qc



@L
@va

ˇ̌
v.q;p/

�
D @pa

@qc D 0. So the Eqs. (2.29)

and (2.30) acquire the form

Pqa D va.q; p/; Ppa D @L.q; v/

@qa

ˇ̌
ˇ̌
v.q;p/

: (2.31)

Comment. More economic derivation of these equations could be as follows. We
introduce 2n -dimensional space parameterized by qa; pb, where qa obeys (2.19),
while pa accompanies evolution of qa according to the equation pa D @L.q;Pq/

@Pqa . Using
this equation in (2.19), we have the system

Ppa D @L.q; Pq/
@qa

; pa D @L.q; Pq/
@Pqa

: (2.32)

To write this system in the normal form, we resolve the second equation with respect
to Pqa

Ppa D @L.q; Pq/
@qa

; Pqa D va.p; p/; (2.33)

and substitute this Pqa into the first equation, arriving at (2.31). Our presentation
above was a somewhat more detailed, this turns out to be useful for the analysis of
singular Lagrangians in Chap. 8.

2Recall that the Jacobi matrices of direct and inverse transformations are opposites: from the

identity z i.z0j.z k// D z i we have @z i

@z0j

ˇ̌
ˇ
z0.z/

@z0j

@z k D ıi
k. See also Exercise 2.1.2 on page 99.
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To substitute va.q; p/ into the Eq. (2.31), let us compute

@

@qa
L.q; v.q; p// D @L.q; v/

@qa

ˇ̌
ˇ̌
v.q;p/

C @L.q; v/

@vb

ˇ̌
ˇ̌
v.q;p/

@vb

@qa

D @L.q; v/

@qa

ˇ̌
ˇ̌
v.q;p/

C pb
@vb

@qa
; (2.34)

which implies

@L.q; v/

@qa

ˇ̌
ˇ̌
v.q;p/

D � @

@qa

�
pbv

b.q; p/� L.q; v.q; p//

: (2.35)

Let us denote

H.q; p/ D pbv
b.q; p/� L.q; v.q; p//; (2.36)

where v.q; p/ is given in implicit form by Eq. (2.26). Then the expression (2.35)
reads

@ NL.q; v/
@qa

ˇ̌
ˇ̌
v.q;p/

D �@H.q; p/

@qa
: (2.37)

The function H.q; p/ is called the Hamiltonian of the physical system. To complete
the derivation of the Hamiltonian equations, note the following property of the
Hamiltonian:

@H

@pa
D va.q; p/C pb

@vb

@pa
� @L.q; v/

@vb

ˇ̌
ˇ̌
v.q;p/

@vb

@pa
D va.q; p/: (2.38)

Using these results, the equations of motion (2.31) acquire the Hamiltonian form

Pqa D @H

@pa
; Ppa D � @H

@qa
; (2.39)

and are known as Hamiltonian equations of motion. Note that the first equation is
the Eq. (2.29) written in another notation.

The coordinates pa defined by Eq. (2.26) are called conjugated momenta for qa.
The configuration-velocity space parameterized by the coordinates qa, pb is referred
to as the phase space of the system.

The passage (2.36) from L.q; v/ to H.q; p/ is known as Legendre transformation.
Its basic properties are presented by Eqs. (2.38), (2.37). Note its meaning: if the
change of variables va ! pb (the variables qa are considered as parameters) is “gen-
erated” by the function L.v/ according to Eq. (2.26), pa D @L

@va , then the Legendre
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transformation gives the generating function H of the inverse transformation (2.27),
va D @H

@pa
. See also Exercise 5 below.

To sum up, in this section we have demonstrated that for the case of a nonsingular
system, the Lagrangian equations of motion (2.19) for the configuration space
variables qa are equivalent to the Hamiltonian equations (2.39) for independent
phase-space variables qa; pb. According to our procedure, the Hamiltonian formu-
lation of mechanics is the first order form of the Lagrangian formulation, further
rewritten using the special coordinates qa; pb of the configuration-velocity space.
Schematically we write

qa ! .qa; vb/ $ .qa; pb/: (2.40)

Exercises

1. Check that the function va.q; p/ defined by (2.26) obeys the equation
@vb.q;p/
@pc

D QNMbc.q; v/
ˇ̌
ˇ
v.q;p/

, where QNM is the inverse matrix for NM.

2. Derive the identity @va

@qc D � QMab @2 NL
@vb@qc

ˇ̌
ˇ
v.q;p/

.

3. Work out the Lagrangian equations (2.23) from the Hamiltonian
ones (2.39) and (2.36).

4. Confirm that all the results of this section remain true for the time-
dependent Lagrangian L.q; Pq; �/.

5. Legendre transformation. Check the following properties.

(a) Let the vector function pa.v
b/ is generated by L.vb/, that is pa D @L

@va ,
and va.pb/ is inverse function of pa.v

b/. Then its generating function
is pbv

b.p/� L.v.p//.
(b) Observe that for a one-dimensional case the Legendre transformation

gives a simple formula for the indefinite integral of the inverse
function.

(c) If L depends on the parameters qa, L.qa; vb/, then derivatives of the

generating functions with respect to qa are the same, @L
@qa

ˇ̌
ˇ
v.q;p/

D
@
@qa .pbv

b � L/.

2.1.3 Short Prescription for Hamiltonization Procedure,
Physical Interpretation of Hamiltonian

The passage from a Lagrangian to a Hamiltonian description of a system is
referred to as the Hamiltonization procedure. Note that the resulting Hamiltonian
equations (2.39) do not contain the velocities va. Then we expect the existence of a
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formal recipe for the Hamiltonization procedure that, in particular, does not mention
the velocities. Let

S D
Z

d�L.qa; Pqa/; (2.41)

be the Lagrangian action of some nonsingular system. Inspection of the previous
section allows us to formulate the recipe as follows.

(1) Write the conjugated momenta for the variables qa according to the equations
(see Eq. (2.26))

pa D @L.q; Pq/
@Pqa

: (2.42)

(2) Resolve the equations algebraically in relation to Pqa: Pqa D va.q; p/, and find the
Hamiltonian (see Eq. (2.36))

H.q; p/ D



pb Pqb � L.q; Pq/
�ˇ̌
ˇPqDv.q;p/ : (2.43)

(3) Write the Hamiltonian equations (2.39).

According to the previous section, the resulting equations are equivalent to the
Lagrangian equations of motion for the action (2.41).

The function H.q; p/ turns out to be a basic object of Hamiltonian formalism. To
reveal the physical interpretation of the Hamiltonian, let us consider a particle in the
presence of a potential U.x/. The corresponding action is

S D
Z

d�

�
1

2
m.Pxa/2 � U.xa/

�
: (2.44)

To construct the Hamiltonian formulation, we have the momenta pa D mPxa. This
implies Pxa D 1

m pa, and leads to the Hamiltonian H.x; p/ D 1
2m .p

a/2 C U.x/.
Making the inverse change, we obtain the position-velocity function: E.x; Px/ �
H.x; p/jpDmPx D 1

2
m.Pxa/2 C U.xa/ which represents the total energy of the particle.

The reasoning works equally for a system of particles. Thus the Hamiltonian of
nonsingular Lagrangian theory in Cartesian coordinates represents the total energy
of a system written in terms of the phase space variables.3

3The case of generalized coordinates will be discussed below; see Exercise 3 on page 161.
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Exercise Bearing in mind the ambiguity presented in the Hamiltonization
procedure (see the discussion just before Eq. (2.26)), let us define momenta
for the model (2.44) according to the rule Pxa D 1

m pa C Aa.xb/, where Aa.xb/

is a given function. Write the equations of motion for x and p and work out
conditions for Aa which imply their Hamiltonian form (that is the form (2.39)
with a function QH/. Write the corresponding Hamiltonian QH. Does it have an
interpretation as the energy of the particle? Derive the Lagrangian equations
from the Hamiltonian ones.

2.1.4 Inverse Problem: From Hamiltonian to Lagrangian
Formulation

Let H.q; p/ be the Hamiltonian of some non-singular Lagrangian system. The
problem is to restore the corresponding Lagrangian, that is, to construct a function
L.q; Pq/ which would lead to the given H.q; p/ after the Hamiltonization procedure.
For this purpose we have the phase-space expression (2.36), which determines the
desired L as a function of q, p: L.q; v.q; p// D pav

a � H.q; p/. According to
Sect. 2.1.2, phase space and configuration-velocity space quantities are related by
the change of variables (2.26) and (2.27). Then L, as a function of q, v, is obtained
by making this change in the previous expression

L.q; v/ D �
pav

a � H.q; p/
ˇ̌

p.q;v/ : (2.45)

To find the transition functions p.q; v/, it is sufficient to recall Eq. (2.38), which
determines the inverse functions: va.q; p/ D @H.q;p/

@pa
. We resolve the equalities va D

@H.q;p/
@pa

with respect to p: pa D pa.q; v/, which gives the desired transition functions.
The resulting formal prescription can be formulated without mentioning the

velocities: starting from a given H.q; p/, solve the part of Hamiltonian equa-
tions Pqa � @H.q;p/

@pa
D 0 with respect to p: p D p.q; Pq/. Then L.q; Pq/ D

Œpa Pqa � H.q; p/�jp.q;Pq/.

2.2 Poisson Bracket and Symplectic Matrix

Here we introduce standard notation and conventions used to deal with Hamiltonian
equations. Let fA.q; p/;B.q; p/; : : :g be a set of phase-space functions.
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Definition 1 The Poisson bracket is an application that with any two phase-space
functions A, B associates a third function denoted fA;Bg, according to the rule

fA;Bg D @A

@qa

@B

@pa
� @B

@qa

@A

@pa
: (2.46)

The definition implies the following properties of the Poisson bracket:

(a) antisymmetry

fA;Bg D �fB;AgI (2.47)

(b) linearity with respect to both arguments, as a consequence of (2.47). Linearity
with respect to second argument is

fA; �B C �Cg D �fA;Bg C �fA;Cg; �; � D constI (2.48)

(c) Leibnitz rule

fA;BCg D fA;BgC C BfA;CgI (2.49)

(d) Jacobi identity

fA; fB;Cgg C fB; fC;Agg C fC; fA;Bgg D 0: (2.50)

Exercise Verify (2.50) by direct computations. Hint: consider separately all
the terms involving, for example, two derivatives of B.

Poisson brackets among phase-space variables are called fundamental brackets.
They are:

fqa; pbg D ıa
b; fqa; qbg D 0; fpa; pbg D 0: (2.51)

Poisson brackets can be used to rewrite Hamiltonian equations in the form:

Pqa D fqa;Hg; Ppa D fpa;Hg: (2.52)

Hence the Poisson bracket of q and p with the Hamiltonian determines their rate
of variation with time. Moreover, the same is true for any phase-space function: if
qa.�/; pb.�/ is a solution to the Hamiltonian equations, the rate of variation of the
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function A.q.�/; p.�// can be computed as:

PA.q; p/ D @A

@qa
Pqa C @A

@pa
Ppa D @A

@qa
fqa;Hg C @A

@pa
fpa;Hg

D fA;Hg: (2.53)

Thus fA.q; p/;Hg D 0 implies that A is a conserved quantity, that is, it has a
fixed value throughout any given solution. As an example, let us apply this result
to compute the rate of variation of a Hamiltonian. We have PH D fH;Hg D 0, due
to the antisymmetry of the Poisson bracket. Hence the Hamiltonian is the conserved
quantity, which gives a further argument in support of its interpretation as the total
energy.

Below it will be convenient to work with phase-space quantities by using the
following notation. For the phase-space coordinates we use the unique symbol:
.qa; pb/ � z i; i D 1; 2; : : : ; 2n, or, equivalently, for a; b D 1; 2; : : : ; n we have
za D qa and znCb D pb. Thus Latin indices from the middle of the alphabet run from
1 to 2n. Let us also introduce the 2n � 2n-dimensional symplectic matrix composed
of four n � n blocks

!ij D
�

0 1
�1 0

�
: (2.54)

In more detail, for a; b D 1; 2; : : : ; n one writes !ab D 0, !a;nCb D ıab, !nCa;b D
�ıab, !nCa;nCb D 0. The symplectic matrix is antisymmetric: !ij D �!ji and
invertible, with the inverse matrix being

!ij D
�

0 �1
1 0

�
: (2.55)

In this notation the Poisson brackets (2.46) and (2.51) acquire a more compact form

fA;Bg D @A

@z i
!ij @B

@z j
; fz i; z jg D !ij; (2.56)

while the Hamiltonian equations can be written as

Pzi D !ij @H

@z j
; or Pzi D fz i;Hg: (2.57)

Exercise Verify the Jacobi identity with use of the representation (2.56).
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2.3 General Solution to Hamiltonian Equations

As a first application of Hamiltonian formalism, we find here a general solution to
Hamiltonian equations in terms of power series with respect to � .

We start from the case of time-independent Hamiltonian. Consider the differen-
tial operator defined by the formal series

eh@ D 1C h@C 1

2
a@.h@/C : : : D

1X
nD0

1

nŠ
.h@/n: (2.58)

where h D const, and @ D @
@z0

. This obeys the properties eh@ z0 D z0 C h,

eh@f .z0/ D f .eh@z0/, as can be verified by expansion in power series of both sides
of these equalities. There is a generalization of the last equality for the case of a
function h.z0/

eh.z0/@f .z0/ D f
�
eh.z0/@ z0


: (2.59)

Exercise Verify the validity of Eq. (2.59) up to the third order of power
expansion.

Due to the identity (2.59), the series z.�; z0/ D e�h.z0/@ z0 turns out to be a formal
solution to the problem

Pz D h.z/; z.0; z0/ D z0: (2.60)

This observation can be further generalized for the case of several variables: the

functions z i.�; z j
0/ D e

�hk.z
j
0/

@

@zk
0 zi
0 obey the problem

Pz i D hi.z j/; z i.0; z j
0/ D z i

0: (2.61)

Note that the Hamilton equations Pzi D fz i;Hg represent a system of this type. So its
solution is

z i.�/ D e
�fzk

0;H.z0/g @

@zk
0 zi
0: (2.62)

In particular, the position of a system as a function of 2n constants is given by

qa.�; q0; p0/ D e
�fzk

0;H.z0/g @

@zk
0 qa

0: (2.63)
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For the Hamiltonian H D Ep2
2m C U.q/ it implies

qa.�; q0; p0/ D e�.
1
m Ep0� Er� ErU� Erp0/qa

0: (2.64)

We illustrate the formula (2.62) with several examples.

Examples

1. For a free particle with the Hamiltonian H D Ep2
2m we have

xa.t/ D et 1m Ep0� Erxa
0

D
�
1C t

1

m
Ep0 
 Er C t2

2Šm2
.Ep0 
 Er/.Ep0 
 Er/C : : :

�
xa
0

D xa
0 C 1

m
p0at;

pa.t/ D et 1m Ep0� Erp0a

D
�
1C t

1

m
Ep0 
 Er C t2

2Šm2
.Ep0 
 Er/.Ep0 
 Er/C : : :

�
p0a D p0a: (2.65)

2. For a one-dimensional harmonic oscillator with the Hamiltonian H D
p2

2m C 1
2
kx2 we obtain

x.t/ D et. 1m p0@x�kx@p/x0

D x0 C p0
1

m
t � x0

k

m

t2

2Š
� p0

k

m2

t3

3Š
C x0

k2

m2

t4

4Š
C p0

k2

m3

t5

5Š
� : : : :

(2.66)

Bringing together even and odd degrees of t, it gives the expected result

x.t/ D x0

�
1 � k

m

t2

2Š
C k2

m2

t4

4Š
� : : :

�

C p0

�
1

m
t � k

m2

t3

3Š
C k2

m3

t5

5Š
� : : :

�

D x0

1X
nD0

.�1/n
.2n/Š

 r
k

m
t

!2n

C p0p
km

1X
nD0

.�1/n
.2n C 1/Š

 r
k

m
t

!2nC1

D x0 cos

r
k

m
t C p0p

km
sin

r
k

m
t: (2.67)

(continued)
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3. Kepler’s problem. As we have seen in Sect. 1.4.2, trajectory of motion in
the central field with potential U D � 1

r is a conic section (1.172). Let us
reproduce this result using the formula (2.62). In the polar coordinates, the
system is described by the action

S D
Z

dt

m

2
Pr2 C m

2
r2 P�2 C ˛

r

�
: (2.68)

Denoting conjugated momenta for r, � as p, p� , the Hamiltonian reads

H D 1

2m
p2 C 1

2mr2
p2� � ˛

r
: (2.69)

It leads to the equations

Pr D 1

m
p; Pp D 1

mr3
p2� � ˛

r2
;

P� D 1

mr2
p� ; Pp� D 0: (2.70)

The last equation implies p� D l D const. We are interested in finding
a form of trajectory, r.�/, p.�/. The relevant equations can be obtained
from (2.70). Considering r D r.t/, p D p.t/, � D �.t/ as parametric
equations of the trajectory, we write r0 � dr

d� D Pr
P� , p0 � dp

d� D Pp
P� .

Using (2.70) in these expressions, we obtain the equations

r0 D r2

l
p; p0 D l

r
� ˛m

l
: (2.71)

They do not form a Hamiltonian system (see the necessary condi-
tions (2.18)). Introducing the new variable q D 1

r , they read

q0 D �1
l

p; p0 D lq � ˛m

l
: (2.72)

and form a Hamiltonian system,4 with the Hamiltonian being

H.r; p/ D � 1

2l
p2 � l

2
q2 C ˛m

l
q: (2.73)

(continued)

4Notice that (2.71) is not a Hamiltonian system. The regular way to construct Hamiltonian
equations for a trajectory will be discussed in Sect. 6.1.2 below.
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Using Eq. (2.62) with this Hamiltonian, we obtain the solution

q.�/ D e�.�
p0
l @q0C.lq0� ˛m

l /@p0//q0

D q0 � 1

l
p0� �



q0 � ˛m

l2

� �2
2Š

C 1

l
p0
�3

3Š
�



q0 � ˛m

l2

� �4
4Š

D ˛m

l2
C



q0 � ˛m

l2

� 1X
nD0

.�1/n �
2n

.2n/Š
� p0

l

1X
nD0

.�1/n �2nC1

.2n C 1/Š

D ˛m

l2
C



q0 � ˛m

l2

�
cos � � p0

l
sin �: (2.74)

Returning to the variable r D 1
q , we have

l2

˛mr.�/
D 1C

�
l2

˛mr0
� 1

�
cos � � lp0

˛m
sin �

� 1C A cos � � B sin �

D 1C
p

A2 C B2
�

Ap
A2 C B2

cos � � Bp
A2 C B2

sin �

�
: (2.75)

ComparingA2CB2 with the Hamiltonian (2.69), we obtain A2CB2 D 1C 2l2E
˛2m

,

where E D p20
2m C l2

2mr20
� ˛

r0
represents the total energy. Besides, since


Ap
A2CB2

�2C
 Bp
A2CB2

�2 D 1, there is an angle �0 such that Ap
A2CB2

D cos �0,
Bp

A2CB2
D sin �0. Taking this into account, the equation of the trajectory

acquires the form

r.�/ D l2.˛m/�1

1C
q
1C 2l2E

˛2m
cos.� C �0/

: (2.76)

If we take the initial condition in (2.74) to be p0 D 0, we obtain �0 D 0.
Then (2.76) coincides with our previous result (1.172).
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The problem with time-dependent Hamiltonian

dz i

d�
D fz i;H.z j; �/g; z i.�0/ D z i

0; (2.77)

can be reduced to the previous one. We associate with (2.77) the following system:

d�

ds
D 1; �.0/ D �0;

dyi

ds
D fyi;H.z j.s/; �.s//g; yi.0/ D z i

0; (2.78)

with one more variable �.s/. As a consequence, we have a system of the form (2.61)
without manifest dependence on s on the right hand sides. The problems (2.77)
and (2.78) turn out to be equivalent. If z i.�/ obeys (2.77), then �.s/ D s C �0,
yi.s/ D z i.s C �0/ is a solution of (2.78). If �.s/, yi.s/ obey (2.78), then z i.�/ D
yi.� � �0/ is a solution of (2.77). Using the last equality, we obtain the following
solution to time-dependent problem:

z i.�; zi
0/ D e

.���0/
�
fzk
0;H.z

k
0;�0/g @

@zk
0

C @
@�0

�
zi
0: (2.79)

2.4 Picture of Motion in Phase Space

Here we illustrate some advantages of Hamiltonian formalism as compared with the
Lagrangian one. In particular it will be seen that a general solution to Hamiltonian
equations has useful interpretations in the framework of hydrodynamics and
differential geometry.

General Solution as the Phase-Space Flux Hamiltonian equations (2.57) repre-
sent a normal system of 2n first-order differential equations for 2n variables z i.�/.
According to the general theory of differential equations, the theorem of existence
and uniqueness of a solution holds for the case: for given numbers zi

0, locally there is
a unique solution z i.�/ of the system, which obeys the initial conditions: z i.0/ D zi

0.
Let us recall also the definition of a general solution: 2n functions of 2nC1 variables
z i.�; cj/ are called a general solution of the system (2.57), if: (a) they obey the
system for all ci; (b) for given initial conditions zi

0, there are numbers Qcj such that
z i.0; Qcj/ D zi

0.
Owing to the above-mentioned theorem, a general solution to the normal system

contains all particular solutions (trajectories) of the system, any one of them
appearing after the appropriate choice of the constants ci.
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q2

q1

p

q

Fig. 2.1 Trajectory flows on configuration and phase spaces

These results imply a remarkable picture of motion in phase space: trajectories
of the Hamiltonian system (2.57) do not intercept each other. To confirm this, let us
suppose that two trajectories have interception at some point zi

0. These numbers
can be taken as initial conditions of the problem (2.57), and, according to the
theorem, there is only one trajectory which passes through zi

0, contrary to the initial
supposition. Thus, trajectories of a Hamiltonian system in phase space form a flow,
similarly to the picture of the motion of a fluid. Moreover, the “fluid” turns out to be
incompressible, see Sect. 4.4.1. Note that it is very different from the corresponding
picture of motion in the configuration space; see Fig. 2.1 on page 109.

Geometric Interpretation of the Symplectic Matrix In contrast to Lagrangian
equations, Hamiltonian ones have a simple interpretation in the framework of
differential geometry. Let us consider the right-hand sides of Hamiltonian equations
as components Hi of a vector field in the phase space: Hi.z k/ � !ij @H

@z j . Then the
Hamiltonian equations Pzi D Hi.z/ state that any solution to equations of motion
is a trajectory of this vector field (according to differential geometry, a line is
the trajectory of a given vector field, if vectors of the field are tangent vectors to
the line at each point). Hamiltonian vector field Hi also has certain interpretation.
Let H.z/ D const represent a surface of constant energy. Then the vector field
Hi D @H

@z i � .grad H/ijHDconst is normal to the surface at each point. The scalar
product of Hi with the vector grad H vanishes: Hi.grad H/i D @jH!ji@iH D 0, that
is, the Hamiltonian vector field Hi is tangent to the surface. Hence each trajectory
z i.�/ lies on one of the surfaces of constant energy, as should be the case, see Fig. 2.2
on page 110. Now, observe the remarkable role played by the symplectic matrix !ij.
There is a whole hyperplane of the vectors, which are normal to grad H at a given
point. It is the matrix ! that transforms the normal vector grad H into the tangent
vector to a trajectory!
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H = const

z  (τ)i

(grad H)i = Hi

application ω:Hi

Hi

Hi

Fig. 2.2 Solutions lie on the surfaces of constant energy of the phase space. They are trajectories
of the Hamiltonian vector field, constructed from H: Hi.z k/ D !ij.grad H/j

Note that in terms of the coordinates zi the vector field Hi is divergenceless:
@iHi D 0. Now, let us consider the field Hi.z k/ in the coordinates: zj � zl!lj.

Exercise Write H.z i/ D q � p2 in terms of the variables zi.

The Hamiltonian, as a function of zi, is H.zi/ � H.z i.zj//. Since !ik @
@z k zj D ıi

j,

the derivative associated with zj is @i D @
@zi

� !ik @
@z k . The Hamiltonian vector

field Hi.zk/ in these coordinates is Hi.zk/ D @iH.zk/, and turns out to be curl-free
(conservative): @jHi � @iHj D 0. This result will be explored in Chap. 4.

2.5 Conserved Quantities and the Poisson Bracket

Definition 2 A function Q.z i; �/ is called a conserved charge, if for any solution
z i.�/ of the Hamiltonian equations, Q retains a constant value:

Q.z.�/; �/ D c; or
d

d�
Q D 0 on-shell: (2.80)

Here “on-shell” stands for “for an arbitrary solution to equations of motion”, while
“off-shell” means “for an arbitrary function z i.�/”. Of course c may change when
we pass from one trajectory to another. In the current literature, a conserved charge
is also referred to as integral of motion, first integral, constant of motion, conserved
quantity, conservation law or dynamical invariant—according to taste. Hereafter
we use the term (conserved) charge, as the shortest among these expressions.

There is an important necessary and sufficient condition for a quantity Q to be a
conserved charge.
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Assertion Q.z i; �/ represents a conserved charge if and only if

@Q

@�
C fQ;Hg D 0 for all values of �; z i: (2.81)

We stress that Q.z i; �/ should obey this equation as a function of its arguments. For

example, the function Q D x � pt
m obeys (2.81) with H D p2

2m . In particular, the
quantity Q.z i/ (without manifest dependence on �) is conserved if and only if its
bracket with the Hamiltonian vanishes

fQ;Hg D 0: (2.82)

Proof For any given function z.�/ we write identically

dQ

d�
D @Q

@�
C fQ;Hg C @Q

@z i
.Pzi � fz i;Hg/: (2.83)

The condition (2.81) implies (2.80). Conversely, suppose that (2.80) is true. Given
a phase-space point zi

0 and a value �0, let z i.�/ represent the trajectory that passes
through zi

0 at the instant �0. Inserting the solution into the Eq. (2.82) and taking
� D �0 we obtain

@0Q.�0;z0/
@�0

C fQ.�0; z0/;H.z0; �0/g D 0 for any given �0, z0, as has
been stated.

An example of a charge is the Hamiltonian of a conservative system (see page
103). The search for the charges turns out to be an important task. From a pragmatic
point of view, knowledge of them allows us to simplify (sometimes to solve)
equations of motion of a system (it is sufficient to recall that conservation of angular
momentum allows us to reduce the three-dimensional Kepler problem to a two-
dimensional one). Let us point out also that in quantum theory the concept of a
trajectory does not survive and is replaced by an abstract state space associated with
the system. But the notion of conserved charges survives, and they play a crucial
role in the interpretation of the state space, establishing a correspondence between
the states and physical particles.

A powerful method for obtaining charges for a system which exhibits certain
symmetries is provided by the Noether theorem, which is discussed in Chap. 7. Here
we describe some general properties of a set of charges.

If Q is a charge, an arbitrary function f .Q/ will also be a charge. If Q1;Q2

are charges, their product and linear combinations with numerical coefficients also
represent charges. It is convenient to introduce the notion of independent charges
as follows: the charges Q˛.z i; �/, ˛ D 1; 2; : : :, k � 2n are called functionally
independent, if

rank
@Q˛

@z i
D k: (2.84)
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This implies that the expressions Q˛.z i; �/ D c˛ can be resolved with respect to k
variables z˛ among zi:

z˛ D G˛.za; c˛; �/; (2.85)

where za are the remaining variables of the set zi. As will be discussed in Sect. 7.9,
knowledge of k functionally independent charges immediately reduces the order of
equations of motion by k units: the initial system of 2n equations of second order
can be replaced by an equivalent system of 2n � k equations of second order plus k
equations of first order.

It is a simple matter to confirm the existence of 2n independent charges for a
given dynamical system. Let the functions f i.�; cj/ represent a general solution to

the Hamiltonian equations. This implies, in particular, that det @f i

@cj
¤ 0. If we write

the equations z i D f i.�; cj/, they can be resolved with respect to c: Qj.z i; �/ D cj,
giving 2n functionsQj.z i; �/. By construction, substitution of any solution z i.�/ into
Qj turns them into constants. Thus Qj.z i; �/, represent the conserved charges.

Of course, in practice the problem is the opposite: it is interesting to reveal
as many charges as possible by independent methods, and use them to search
for a general solution to equations of motion. In particular, inverting the previous
discussion, we conclude that the knowledge of 2n independent charges is equivalent
to knowledge of the general solution.

The set of charges is endowed with a remarkable algebraic structure in relation
to the Poisson bracket: the bracket of two charges is also a charge. This is proved by
direct computation

d

d�
fQ1;Q2g D @

@�
fQ1;Q2g C ffQ1;Q2g;Hg D

�
@Q1

@�
;Q2

	
C
�

Q1;
@Q2

@�

	
� ffQ2;Hg;Q1g � ffH;Q1g;Q2g D

�
@Q1

@�
C fQ1;Hg;Q2

	
C
�

Q1;
@Q2

@�
C fQ2;Hg

	
D 0: (2.86)

Here the Jacobi identity was used for the transition from the first to the second line.
The last line is equal to zero since Q1, Q2 obey Eq. (2.81). Thus Q3 � fQ1;Q2g is
conserved. Of course, it can be identically null or can be functionally dependent on
Q1, Q2. If not, the Poisson bracket can be used to generate new charges from the
known ones.

As an illustration, consider a free-moving particle, with the Hamiltonian H D
1
2m .p

i/2, i D 1; 2; 3, and the correspondingHamiltonian equations Pxi D 1
m pi, Ppi D 0.

Besides the Hamiltonian, the conserved charges are the momenta pi D ci D const
(as follows from their equations), and angular momentum Li D �ijkxjpk D di D
const (since on-shell PLi D 1

2m�
ijkp jpk � 0/. H can be omitted, since it forms a

functionally dependent set with pi. As to the remaining six charges, only five of
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them are functionally independent (imagine that all they are independent. Then it
would be possible to solve the equations Qi.z i/ D ci, obtaining a general solution
to the equations of motion in the form z i D f i.ci/, and arriving at the rather strange
result that the particle cannot move! Of course, their dependence can be verified by
direct computation of the corresponding Jacobian). By choosing pi and L2, L3 as
independent quantities, we find the dynamics of pi, x2, x3 in terms of x1: pi D ci,
x2 D c2

c1
x1 � d3

c1
, x3 D c3

c1
x1 C d2

c1
. Thus, to find a general solution to the equations

of motion, we need to solve only one of them, namely Px1 D c1

2m , which gives the

time-dependent charge x1 D c1

2m t C b.

Exercises

1. Compute the number of functionally independent charges for the case of a
free particle in n-dimensional space, n > 3.

2. Confirm the algebra of Poisson brackets of the charges:

fLi;Ljg D �ijkLk; fLi; p jg D �ijkpk: (2.87)

2.6 Phase Space Transformations and Hamiltonian
Equations

In many interesting cases, the Lagrangian equations can be simplified with use of
the coordinate transformations q ! q0.q/ in the configuration space. In particular,
if the system in question exhibits certain symmetries, they can be taken into account
to search for adapted coordinates. This often leads to separation of variables in
Lagrangian equations. Well-known examples are the use of polar coordinates in the
Kepler problem and the use of center-of-mass variables in the two-body problem.
The Hamiltonian formulation gives supplementary possibilities due to the fact that
a set of transformations in the phase space is much larger, allowing us to mix
position and velocity variables: q ! q0.q; p/, p ! p0.q; p/. In this section we
find out how Hamiltonian equations transform under the substitution (2.8). Slightly
abusing terminology, the change of dynamical variables is called (time-dependent)
phase-space transformation. It will be seen that an arbitrary transformation spoils
the canonical form of the Hamiltonian equations. So it is reasonable to choose
the subset which preserves their form. Transformations of this subset are called
canonical transformations, they will be discussed in the next section.
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Starting from Hamilton equations

Pzi D !ij @H.z k/

@z j
; i; j D 1; 2; : : : ; 2n; (2.88)

let us look for solutions of the form

z i D  .z0i; �/: (2.89)

According to (2.6), equations for z0 arise after substitution of z in the form (2.89)
into (2.88)

@ i

@z0k Pz0k D !ij @H

@z j

ˇ̌
ˇ̌
zD .z0/

� @ i

@�
: (2.90)

To make the substitution @H
@z

ˇ̌
ˇ
zD .z0/

, we first compute

@H. .z0//
@z0k D @H.z/

@z i

ˇ̌
ˇ̌
zD .z0/

@ 

@z0k : (2.91)

Contracting this expression with @'k

@z j

ˇ̌
ˇ
zD .z0/

and using Eq. (2.12), we obtain the

desired result

@H

@z j

ˇ̌
ˇ̌
zD .z0/

D @H. .z0//
@z0k

@'k

@z j

ˇ̌
ˇ̌
zD .z0/

: (2.92)

Then the Hamiltonian equations for z0 are

Pz0k D
�
@'k

@z i
!ij @'

l

@z j

@H. .z0; �//
@z0l C @'k

@�

�ˇ̌
ˇ̌
zD .z0;�/

; (2.93)

Hereafter we use simplified notation, similar to that used in differential geometry.
Instead of z0i D ' i.z j; �/ and z i D  i.z0j; �/ we write

z0i D z0i.z j; �/; z i D z i.z0j; �/; (2.94)
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Thus the new coordinate (value of function) and the transition function itself are
denoted by the same symbol. The notation for partial derivatives5 is

@

@z i
� @i; !ij @

@z j
� @i;

@

@z0i � @0
i; !ij @

@z0j � @0i;

@

@�
� @� : (2.95)

Also, we sometimes omit the operation of substitution:

A.z/jz.z0/ ! A.z/ or A.z/j: (2.96)

If the left and right hand sides of an expression have wrong “balance of variables”,
we need to substitute z.z0/ on the left or on the right hand side. In this notation we
can write, for example

z0i.z.z0; �/; �/ � z0i instead of (2.11): (2.97)

The identities (2.12) can now be written as follows

@z0k

@z i

@z i

@z0j D ık
j; @� z

0i D �@z0i

@z j
@� z

j; @� z
i D � @z i

@z0j @� z
0j; (2.98)

where, for example, the last equation implies substitution of z0.z; �/ on l.h.s. and
in the first term on r.h.s. Equivalently, we can substitute z.z0; �/ in the last term on
r.h.s. Note that in these notations, the rule (2.92) formally looks as the chain rule of
differentiation

@H

@z j
D @H

@z0k
@z0k

@z j
: (2.99)

Equations of motion (2.93) acquire the form

Pz0k D fz0k; z0lgz

ˇ̌
z.z0;�/

@H.z.z0; �//
@z0l C @z0k.z; �/

@�

ˇ̌
ˇ̌
z.z0;�/

; (2.100)

where fz0k; z0lgz is the Poisson bracket computed with respect to z.

5Note that @i represents the usual partial derivative with respect to variable zl � z k!kl, since
@i.z k!kl/ D ıi

l .
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2.7 Definition of Canonical Transformation

From comparison of Eqs. (2.88) and (2.93) we conclude that phase-space trans-
formation generally does not preserve the initial form of Hamiltonian equations.
It justifies the following

Definition 3 The transformation z0i D ' i.z j; �/ is called canonical if for any
Hamiltonian system it preserves the canonical form of the Hamiltonian equations:

Pzi D !ij @H

@z j

z!z0

! Pz0i D !ij @
QH.z0; �/
@z0j ; anyH; some QH: (2.101)

It will be seen below that QH is related to H according to a simple rule (in
particular, for the case of time-independent canonical transformation, we have
QH.z0/ D cH.z.z0//; c D const/.

Transformations that do not alter a given Hamiltonian system are called canonoid
transformations.

By construction, the composition of canonical transformations is also a canonical
transformation : if z ! z0 D z0.z; �/, and z0 ! z00 D z00.z0; �/ are canonical, then
z ! z00 D z00.z0.z; �/; �/ is a canonical transformation. The set of canonical transfor-
mations form a group, with a product defined by this law of composition. This allows
us to describe the ambiguity present in the Hamiltonization procedure: besides
Eq. (2.26), any change of the form .q; v/ ! .q0.q; p.q; v/; �/; p0.q; p.q; v/; �/,
where p.q; v/ D @L

@v
and q0.q; p; �/, p0.q; p; �/ is a canonical transformation,

transforms Eq. (2.24) into the Hamiltonian system.
From Eqs. (2.100) and (2.101) it follows that the canonical transformation z0.z; �/

obeys

fz0k; z0lgz

ˇ̌
z.z0;�/

@0
lH.z.z

0; �//C @� z
0k.z; �/

ˇ̌
z.z0;�/

D !kl@0
l

QH.z0; �/; anyH; some QH: (2.102)

From this expression we immediately obtain two useful consequences. First, taking
derivative @0

k of Eq. (2.102) we have

@0
k



fz0k; z0lgz

ˇ̌
z.z0;�/

�
@0

lH.z.z
0; �//C @0

k.@� z
0k.z; �/jz.z0;�// D 0: (2.103)

Since this is true for anyH, the first and second terms vanish separately. In particular,
the derivative of the Poisson bracket must be zero, hence fz0k; z0lgz

ˇ̌
z.z0;�/

D ckl.�/,

where ckl does not depend on zi. So, the substitution of z.z0; �/ can be omitted, and
we have

fz0k; z0lgz D ckl.�/: (2.104)
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Second, denoting the left hand side of Eq. (2.102) by J0k, it can be written as J0k D
@0k QH. From this it follows: @0iJ0j D @0jJ0i. Denoting

Wij � fz0i; z0jgz

ˇ̌
ˇ
z.z0;�/

; (2.105)

we obtain

@0i
�
@� z

0j.z; �/
ˇ̌
ˇ
z.z0;�/

�
� .i $ j/C

�
@0iWjl � .i $ j/


@0

lH�
�
Wik!jl � .i $ j/


@02

kl H D 0; (2.106)

Since this is true for any H, we write separately

@0i
�
@� z

0j.z; �/
ˇ̌
ˇ
z.z0;�/

�
� .i $ j/ D 0;

@0aWbd � @0bWad D 0;

Wik!jl � Wjk!il C Wil!jk � Wjl!ik D 0: (2.107)

The Eqs. (2.104) and (2.107) hold for an arbitrary canonical transformation and will
be the starting point for our analysis below. In particular, it will be shown in Chap. 4,
that the system (2.107) is equivalent to a simple statement that the symplectic matrix
is invariant under the canonical transformation (disregarding the constant c):

@z0k

@z i
!ij @z0l

@z j
D c!kl; c D const: (2.108)

Equivalently, we can speak on invariance of fundamental Poisson brackets

fz0k; z0lgz D cfz k; zlgz: (2.109)

Transformations with c D 1 are called univalent canonical transformations.

2.8 Generalized Hamiltonian Equations: Example
of Non-canonical Poisson Bracket

Here we discuss the form that the Hamiltonian equations acquire in an arbitrary
parametrization of the configuration-velocity space.

In Sect. 2.2 the Hamiltonian equations were written in terms of the Poisson
bracket

Pzi D fz i;Hg; fz i; z jg D !ij; (2.110)
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with the numeric matrix !ij, see Eq. (2.54). According to Eq. (2.100), after the time-
independent transformation z i ! z0i D z0i.z j/, the equations read

Pz0i D Wij @
QH.z0/
@z0j � fz0i; QH.z0/g.W/; (2.111)

where QH.z0/ � H.z.z0//, and W is now a z0-dependent matrix

Wij D @z0i

@z k
!kl @z0j

@zl

ˇ̌
ˇ̌
z.z0/

: (2.112)

This was used in Eq. (2.111) to define a non-canonical Poisson bracket

fA.z0/;B.z0/g.W/ � @A

@z0i Wij @B

@z0j : (2.113)

It can be shown that this obeys all the properties (2.47), (2.48), (2.49), and (2.50) of
the Poisson bracket. Equations of the form (2.111) with the non-canonical Poisson
bracket are known as generalized Hamiltonian equations.

For the latter use, we rewrite (2.111) in the parametrization

.qa; pb/ ! .q0a D qa; p0
b D pb C bb.q//; (2.114)

where bb.q/ is a given function. Computing the symplectic form we obtain

Wij D
�

0 1
�1 Wab

�
; Wab.q/ � @ba

@qb
� @bb

@qa
: (2.115)

This implies the fundamental brackets

fqa; qbg.W/ D 0; fqa; p0
bg.W/ D ıab; fp0

a; p
0
bg.W/ D Wab.q/; (2.116)

The transformed Hamiltonian is

QH.q; p0/ � H.qa; p0
b � bb.q//

D �
.p0

a � ba/v
a � L.q; v/

ˇ̌
v.q;p0�b/

: (2.117)
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Using these expressions, we obtain manifest form of the generalized Hamiltonian
equations (2.111)

Pqa D @ QH.q; p0/
@p0

a

;

Pp0
a D �@

QH.q; p0/
@qa

C
�
@ba

@qb
� @bb

@qa

�
vb.qa; p0

b � bb/: (2.118)

As it should be, the same result appears if we apply the usual Hamiltonization
procedure to the Lagrangian L.q; v/ using the change of variables composed
by (2.26) and (2.114)

qa; va ! qa; p0
a D @L.q; v/

@va
C ba.q/: (2.119)

For any given function ba.q/, the Lagrangian equations obtained from L and the
Eq. (2.118) are equivalent.

Non-canonical brackets (2.113), (2.115), and (2.116) naturally appear in the
description of a system with velocity-dependent interactions. As an example,
consider the Lagrangian action of non-relativistic particle in an electromagnetic field
(see Sect. 1.7.2)

S D
Z

d�

�
1

2
.Pqa/2 C PqaAa.q/

�
: (2.120)

The standard definition of momentum pa D @L
@Pqa D Pqa C Aa.q/ leads to the

Hamiltonian

H.q; p/ D 1

2
.pa � Aa/

2; (2.121)

which implies the Hamiltonian equations

Pqa D pa � Aa � fqa;Hg; Ppa D .pb � Ab/
@Ab

@qa
� fpa;Hg; (2.122)

with the canonical Poisson bracket.
Now, using Eq. (2.119) as a definition of momentum: p0

a D Pqa C Aa.q/C ba.q/,
it is natural to take ba D �Aa, which leads to the expression p0

a D Pqa. Hence
we look for Hamiltonian formulation in the original parametrization .q; v/ of the
configuration-velocity space. Eq. (2.117) gives the Hamiltonian

H.q; p/ D 1

2
.p0

a/
2: (2.123)
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According to Eq. (2.118) the Hamiltonian equations are

Pqa D p0
a � fqa;Hg0

; Pp0
a D �Fabp0

b � fp0
a;Hg0

; (2.124)

with the non-canonical Poisson bracket

fqa; qbg0 D 0; fqa; p0
bg0 D ıab; fp0

a; p
0
bg0 D Fab.q/: (2.125)

Here F is a field strength of the vector potential: Fab D @Aa
@qb � @Ab

@qa . It is easy to see

that both (2.122) and (2.124) imply the same Lagrangian equations Rqa D �Fab Pqb.
Note that the Hamiltonian (2.123) formally coincides with the free-particle one.

In this sense, in the second formulation the interaction is encoded in the non-
canonical Poisson bracket.6 Inclusion of the velocity-dependent interactions into
a non-canonical bracket was suggested in [6].

Let us return to the Eqs. (2.114) and look for the function bb.q/ that preserves the
canonical form of Hamiltonian equations. The Eqs. (2.118) will be in the canonical
form if the last term vanishes.

Exercise Show that


@ba
@qb � @bb

@qa

�
vb D 0 implies @ba

@qb � @bb
@qa D 0.

In turn, the latter equation implies that ba D @g
@qa for a function g. So, after the

transformation

q0a D qa; p0
a D pa C @g.q/

@qa
; (2.126)

we obtain canonical equations with the Hamiltonian

QH D H

�
qa; p0

b � @g

@qb

�
: (2.127)

6The canonical Hamiltonian (2.121) depends on A and leads to the Schrodinger equation with
explicit dependence on A. The generalized Hamiltonian (2.123) does not contain A. It nevertheless
reappears in the course of quantization. In fact, the operators, which reproduce the brackets (2.125),
should contain A: qa ! Oqa D qa, p0

a ! Opa D @
@qa C Aa. This leads to the same Schrodinger

equation, with explicit dependence on A, and implies interesting consequences. Contrary to the
conclusions of classical mechanics, the vector potential can affect the motion of charged particles,
even in the region where the electric and the magnetic fields vanish. This effect [25, 26], known as
the Aharonov-Bohm effect, has been confirmed by experiment.
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According to the terminology of Sect. 2.7, Eq. (2.126) represents an example of a
canonical transformation.

Exercises

1. Show that the symplectic form (2.115) is invertible; find the inverse matrix
Wij. Show that the latter obeys the equation

@ŒkWij� � @kWij C @iWjk C @jWki D 0: (2.128)

A two-form with this property is called a closed form.
2. Let Wij.z/ be an antisymmetric invertible matrix, with the inverse matrix

obeying the Eq. (2.128). Show that the bracket (2.113), constructed from
this W, obeys properties (2.47), (2.48), (2.49), and (2.50).

3. Show that the bracket (2.113) with W given by Eq. (2.112) obeys proper-
ties (2.47), (2.48), (2.49), and (2.50).

4. Starting from the theory L.q; v/, find the non-canonical bracket and the
generalized Hamiltonian equations in the initial parametrization .qa; vb/

of the configuration-velocity space.

2.9 Hamiltonian Action Functional

Similarly to Lagrangian equations, Hamiltonian ones can be obtained from an
appropriately formulated variational problem. The Hamiltonian action functional
is given by

SH D
Z

d�
�
pa Pqa � H.qa; pb; �/


: (2.129)

For the case, the formulation of variational problem is a somewhat different and
is as follows. We look for a curve z i.�/ with fixed initial and final positions
qa.�1/ D qa

1; qa.�2/ D qa
2 and arbitrary momenta, that would give a minimum

for the functional (see Fig. 2.3 on page 122). The variation of the functional is

ıSH D
Z

d�

��
Pqa � @H

@pa

�
ıpa �

�
Ppa C @H

@qa

�
ıqa C .paıq

a/jt2
t1

�
: (2.130)

Owing to the boundary conditions we have: ıqa.t1/ D ıqa.t2/ D 0, so the last term
vanishes. Therefore ıSH D 0 implies the Hamiltonian equation (2.39).
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p

qq1
q2

Fig. 2.3 Variational problem for the Hamiltonian action functional

Exercises

1. The addition of a total derivative term to the Lagrangian does not alter
the Lagrangian equations of motion. Is the same true for the Hamiltonian
action? See also the exercise on page 161.

2. Disregarding the boundary term, the Hamiltonian action can be written in
the form

SH D
Z

d�

�
1

2
z i!ijPzj � H.z i/

�
: (2.131)

Is it possible to formulate a consistent variational problem for this func-
tional, which should lead to the Hamiltonian equations?

2.9.1 Schrödinger Equation as the Hamiltonian System

Hamiltonian action appears in applications more often than one might expect. As
an example, consider the quantum mechanics of a particle subject to the potential
V.t; xi/. The Schrödinger equation for the complex wave function ‰.t; xi/

i„ P‰ D � „2
2m
�‰C V‰; (2.132)
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is equivalent to the system of two equations for two real functions (the real and
imaginary parts of ‰, ‰ D ' C ip/. We have

„ P' D �
� „2
2m
� � V

�
p; (2.133)

„Pp D
� „2
2m
� � V

�
': (2.134)

Recall the notation � D @2

@xi2 , Er D @
@xi , P' � @t' D @'.t;xi/

@t . We can treat '.t; xi/ and
p.t; xi/ as coordinate and conjugated momentum of the field ' at the spatial point
xi. Then the system has the Hamiltonian form P' D f';Hg, Pp D fp;Hg, with the
Hamiltonian being

H D 1

2„
Z

d3x

� „2
2m
Œ Er' Er' C Erp Erp�C VŒ'2 C p2�

�
: (2.135)

Hence the Eqs. (2.133) and (2.134) arise from the variation problem with the
Hamiltonian action obtained according to Eq. (2.129)

SH D
Z

dtd3x Œp P'�

1

2„
� „2
2m
. Er' Er' C Erp Erp/C V.'2 C p2/

��
: (2.136)

Disregarding the boundary term (in this relation, see Exercise 2 of previous section),
this functional can be rewritten in terms of the wave function ‰ and its complex
conjugate‰*

S0
H D

Z
dtd3x

�
i„
2
.‰� P‰ � P‰�‰/� „2

2m
Er‰� Er‰ � V‰�‰

�
: (2.137)

2.9.2 Lagrangian Action Associated with the Schrödinger
Equation. Analogies Between Quantum Mechanics and
Electrodynamics

Due to the Hamiltonian nature of the Schrödinger equation, it is natural to search for
a Lagrangian formulation of the system (2.133) and (2.134), that is a second-order
equation with respect to the time derivative7 for the real function '.t; xi/. According

7In fact, the problem has already been raised by Schrödinger [27]. Equation (2.139) below was
tested by Schrödinger as a candidate for the wave function equation and then abandoned.
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to Sect. 2.1.4, we need to solve (2.133) with respect to p and then to substitute
the result either in Eq. (2.134) or into the Hamiltonian action (2.136). This leads

immediately to the rather formal non-local expression p D „


� „2
2m� � V

��1
@t'.

So, the Schrödinger system cannot be obtained starting from a (nonsingular)
Lagrangian. Nevertheless, for the case of time-independent potential V.xi/, there
is a Lagrangian field theory with the property that any solution to the Schrödinger
equation can be constructed from a solution to this theory. To find it let us look for
solutions of the form

‰ D �
� „2
2m
� � V

�
� C i„ P�; (2.138)

where �.t; xi/ is a real function. Inserting (2.138) into (2.132) we conclude that ‰
will be a solution to the Schrödinger equation if � obeys the equation

„2 R� C
� „2
2m
� � V

�2
� D 0; (2.139)

which follows from the Lagrangian action

S D
Z

dtd3x

�„
2

P� P� � 1

2„
� „2
2m
� � V

�
�

� „2
2m
� � V

�
�

�
: (2.140)

This can be treated as the classical theory of field � on the given external background
V.xi/. The action contains Planck’s constant as a parameter. After the rescaling
.t; xi; �/ ! .„t; „xi;

p„�/ it appears in the potential only, V.„xi/, and thus plays
the role of a coupling constant of the field � with the background.

The formula (2.138) implies that after introduction of the field � into the for-
malism, its mathematical structure becomes analogous to that of electrodynamics.
The dynamics of the magnetic EB and electric EE fields is governed by first-order
Maxwell equations with respect to the time variable. Equivalently, we can use the
vector potential Aa, which obeys the second-order equations following from the
Lagrangian action discussed in Sect. 1.7.2. Aa represents the potential for magnetic
and electric fields, generating them according to EB D Œ Er; EA�, EE D � 1

c@t EA. Similarly
to this, the field � turns out to be a potential for the wave function, generating its
real and imaginary parts according to Eq. (2.138), see also Fig. 2.4 on the page 125.

In quantum mechanics the quantity ‰�‰ has an interpretation as a probability
density, that is the expression ‰�.t; xi/‰.t; xi/d3x represents the probability of
finding a particle in the volume d3x around the point xi at the instant t. According to
the formula (2.138), we write

‰�‰ D „2. P�/2 C
��

� „2
2m
�C V

�
�

�2
D 2„E; (2.141)
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Fig. 2.4 Real field � as the wave function potential

where E D TCU is the energy density of the field '. Equation (2.141) states that the
probability density is the energy density of the wave potential �. So the preservation
of probability is just an energy conservation law of the theory (2.140).

It is instructive to compare also the Hamiltonian equations of the theory (2.140)

„ P� D p; „Pp D �
� „2
2m
� � V

�2
�; (2.142)

with the Schrödinger system. Note the following correspondence among solutions to
these systems: (a) If the functions '; p obey Eqs. (2.133), (2.134), then the functions

� � ', �



„2
2m� � V

�
p obey Eq. (2.142). (b) If the functions�; p obey Eq. (2.142),

then ' � �



„2
2m� � V

�
�, p obey Eqs. (2.133) and (2.134). The kernel of the map

.'; p/ ! .�; p/ is composed of pure imaginary time-independent wave functions
‰ D i….xi/, where … is any solution to the stationary Schrödinger equation


„2
2m� � V

�
… D 0.

Any solution to the field theory (2.140) determines a solution to the Schrödinger
equation according to Eq. (2.138).We should ask whether an arbitrary solution to the
Schrödinger equation can be presented in the form (2.138). An affirmative answer
can be obtained as follows.

Let ‰ D ' C ip be a solution to the Schrödinger equation. Consider the
expression (2.138) as an equation for determining �

P� D 1

„p; (2.143)

� „2
2m
� � V

�
� D �'; (2.144)
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Here the right-hand sides are known functions. Take Eq. (2.144) at t D 0,

„2
2m� � V

�
� D �'.0; xi/. The elliptic equation can be solved (at least for the

analytic function '.xi//; let us denote the solution as C.xi/. Then the function

�.t; xi/ D 1

„
Z t

0

d�p.�; xi/C C.xi/; (2.145)

obeys the Eqs. (2.143) and (2.144). They imply the desired result: any solution to the
Shrödinger equation can be presented through the field � and its momenta according
to (2.138). Finally, note that Eqs. (2.143) and (2.144) together with Eqs. (2.133)
and (2.134) imply that � obeys Eq. (2.139).

Let us finish this section with one more comment. As we have seen, treating a
Schrödinger system as a Hamiltonian one, it is impossible to construct the corre-
sponding Lagrangian formulation owing to the presence of the spatial derivatives
of momentum in the Hamiltonian. To avoid this problem, we can try to treat the
Schrödinger system as a generalized Hamiltonian system. We rewrite (2.133) in the
form

P' D f';H0g0; Pp D fp;H0g0; (2.146)

where H0 is the “free field” generalized Hamiltonian

H0 D
Z

d3x
1

2„.p
2 C '2/ D

Z
d3x

1

2„‰
�‰; (2.147)

and the non-canonical Poisson bracket is specified by

f'; �g0 D fp; pg0 D 0;

f'.t; x/; p.t; y/g0 D �
� „2
2m
� � V

�
ı3.x � y/: (2.148)

In contrast to H, the Hamiltonian H0 does not contain the spatial derivatives of
momentum.

A non-canonical bracket represents a typical property of singular Lagrangian
theories discussed in Chap. 8. There we obtain a more systematic treatment of the
observations made above: there is a singular Lagrangian theory subject to second
class constraints underlying both the Schrödinger equation and the classical field
theory (2.140).
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2.9.3 Probability as a Conserved Charge via the Noether
Theorem

In quantum mechanics the quantity ‰�‰ has an interpretation of a probability
density, that is the expression ‰�.t; xi/‰.t; xi/d3x represents the probability of
finding a particle in the volume d3x around the point xi at the instant t. Consistency
of the interpretation implies that, for the given solution ‰.t; xi/, the probability
of finding the particle anywhere in space, P.t/ D R

R3
d3x‰�‰ must be the same

number at any instant (the number can be further normalized to be 1), or dP
dt D 0 for

any solution. That is, P must be the conserved charge of the theory. In Chap. 7 we
will discuss the Noether theorem that gives a deep relationship among the symmetry
properties of an action and the existence of conserved charges for the corresponding
equations of motion. Here we obtain this relationship for a particular example
of the Schrödinger equation, showing that the preservation of probability can be
considered as a consequence of a symmetry presented in the functional (2.137).

Given the number � , let us make the following substitution

‰ ! ei�‰; (2.149)

in the expression (2.137). Since this involves only products of a wave function with
its complex conjugate,‰�‰, the functional does not change

S0
HŒe

i�‰�� S0
HŒ‰� D 0: (2.150)

According to Sect. 1.4.2, the functional is invariant under (2.149). The symmetry
transformation has a simple geometric interpretation as a rotation through the angle
� of a two-dimensional vector space spanned by .'; p/.

What are the consequences of the invariance? Take an expansion of ei�‰ in the
power series at � D 0, keeping only a linear term, ei�‰ D ‰ C ı‰, where ı‰ D
i‰� . Then Eq. (2.150) implies (confirm that!)

ıS0
H D SHŒ‰ C ı‰�jO.�/ � SHŒ‰� D 0: (2.151)

That is variation of the functional vanishes as well. On other hand the variation can
be presented through the equations of motion as in (1.190), for the case

ıS0
H D

Z
dtd3x

��
i„ P‰ C „2

2m
�‰ � V‰

�
ı‰� C .c:c/ı‰C

i„
2
@t.‰

�ı‰ � ı‰�‰/C �„2
2m

@i.ı‰
�@i‰ C @i‰

�ı‰/
�

D 0; (2.152)

where .c:c:/ stands for a complex conjugation of the previous bracket. Supposing‰
obeys the Schrödinger equation, the first and the second terms vanish, and (omitting
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the factor �„/ we conclude that

@tJ C @iJ
i D 0; (2.153)

where

J D ‰�‰; EJ D �i„
2m

.‰� Er‰ � Er‰�‰/: (2.154)

Hence invariance of the action implies the continuity equation (2.153) that holds on
solutions to the Schrödinger equation. It is further used to construct the conserved
charge P integrating the quantity J

P D
Z

d3xJ D
Z

d3x‰�‰: (2.155)

The total probability is preserved as a consequence of the continuity equation

dP

dt
D
Z
R3

d3x@tJ D �
Z
R3

d3x@iJ
i D

Z
@R3

EJEdS D 0: (2.156)

The third equality is due to Gauss’s theorem while the last one follows from the
standard supposition that ‰ vanishes in spatial infinity (a particle cannot escape to
infinity during a finite time interval).

Exercises

1. Confirm the preservation of probability, dP
dt D 0, by direct computation

with use of the Schrödinger equation.
2. To make the transformation (2.149) in the Hamiltonian action (2.136)

we note that � 0 D ei�� implies ' 0 D ' cos � � p sin � , p0 D
' sin � C p cos � , then p0 P' 0 D p P' C �

1
4
.'2 � p2/ sin 2� � p' sin2 �

�P,
or, in linear order, ı.p P'/ D �

2
.'2 � p2�P. Then the transformed

and the initial actions differ on the total derivative term, SŒei�� � �
SŒ� � D �

1
4
.'2 � p2/ sin 2� � p' sin2 �

�P. According to Eq. (1.159), the
action (2.136) is invariant under (2.149).

Obtain the charge P using the Hamiltonian action functional (2.136).
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2.9.4 First-Order Action Functional, Routhian and All That

Here we describe a very elegant Hamiltonization recipe [10, 28] based on manipu-
lations with the Lagrangian action. Let

S D
Z

d�L.qa; Pqa/; (2.157)

be a Lagrangian action of a non-singular system. Let us introduce an extended phase
space parameterized by independent coordinates qa; pa; v

a. With the action (2.157),
we associate the following first-order action on the extended space

S1 D
Z

d� ŒL.qa; va/C pa.Pqa � va/� : (2.158)

This implies the equations of motion

Pqa D va; Ppa D @L.q; v/

@qa
; pa D @L.q; v/

@va
: (2.159)

The last equation determines the conjugate momenta (see (2.26)), while the first
two equations coincide with the first-order equations of motion for the initial
action (2.157), see Eq. (2.31). So the action (2.158) represents an equivalent
formulation for the theory (2.157). In this formulation, equations for canonical
momenta (2.26) appear as part of the equations of motion. The remainder of the
Hamiltonization recipe consists of using the third equation to expel va from the
first two equations. The corresponding computations coincide with those made in
Sect. 2.1.2, starting from Eq. (2.31), and give the Hamiltonian equations (2.39).

We finish this section with a comment on the formal relationship between the
different actions. Let us take the first order action as a basic object. The Lagrangian
action can be obtained from S1 by using the first equation from (2.159).

Solving the last equation from (2.159), v D v.q; p/, and substituting the result
into S1, we obtain the Hamiltonian action,

R
pPq � H.

We can also substitute pa of the last equation from (2.159) into S1 obtaining the
following action in v; p space

Sv D
Z

d�

�
L.qa; va/C @L.q; v/

@va
.Pqa � va/

�
: (2.160)

The corresponding equations of motion are

ıSv
ıqa

D @L

@qa
� d

d�

@L

@va
C @2L

@qa@vb
.Pqb � vb/ D 0; (2.161)

ıSv
ıva

D @2L

@va@vb
.Pqb � vb/ D 0: (2.162)
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For non-degenerate theory, (2.162) implies Pqb � vb D 0, then (2.163) is just the
Lagrangian equation of the theory. Hence the action Sv can also be used to analyze
the system.

Sometimes it is convenient to work with variational the problem consisting of
second-order action for one part of variables and second-order action for another
part. The combined action functional is called Routhian. Starting from a second-
order action, the is Routhian obtained by Hamiltonization of a part of variables. For
example, for the two-dimensional problem

S D
Z
1

2
Px2 C 1

2
Py2 � U.x; y/; (2.163)

let us introducemomentum for x only, p D @L
@Px D Px, thenH D pPx�L D 1

2
p2� 1

2
Py2CU

and the Routhian is

R D
Z

pPx � H D
Z

pPx � 1

2
p2 C 1

2
Py2 � U.x; y/: (2.164)

We look for an extremum of the functional with fixed boundary conditions for
x, y and with an arbitrary p. This gives the Lagrangian equation for y and the
Hamiltonian equations for x and p.

2.10 Hamiltonization of a Theory with Higher-Order
Derivatives

Here we discuss a theory which involves the higher-order derivatives. Inclusion of
the higher derivatives into equations of motion is one of the ways to treat with the
problem of divergences in perturbative quantum gravity theory. If such terms are
added to the Einstein gravity, then the resulting quantum theory is renormalizable
[29]. Detailed discussion of the subject can be found in [30].

2.10.1 First-Order Trick

We start from a particular example of the action

S D
Z

d�L.q1; Pq1; Rq1/; (2.165)
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where we use the condensed notation q1 � .q1; q2; : : : ; qn/ for the configuration-
space vector. This leads to the equations of motion of the fourth order

@L

@q1
� d

d�

�
@L

@Pq1 � d

d�

@L

@Rq1
�

D 0: (2.166)

We suppose that the theory is nondegenerate, that is det @2L
@Rqa@Rqb ¤ 0.

The simplest way to obtain a Hamiltonian formulation is to apply the first-order
trick of previous section to the Rq1. We introduce the extended configuration space
with the coordinates q1; s; q2, and write the action

S1 D
Z

d� ŒL.q1; Pq1; s/C q2.Rq1 � s/� (2.167)

D
Z

d� ŒL.q1; Pq1; s/ � Pq2 Pq1 � q2s� : (2.168)

In contrast to (2.165), this leads to the second-order equations of motion

Rq1 D s; q2 D @L

@s
; (2.169)

@L

@q1
� d

d�

�
@L

@Pq1
�

C Rq2 D 0: (2.170)

Using Eqs. (2.169) in (2.170) we reproduce the initial higher-order equa-
tions (2.166), hence the two actions are equivalent.

The functional (2.168) represents one more example of a singular action. So,
its Hamiltonian formulation is obtained according to the formalism that will be
discussed in Chap. 8. For the later use, we present the final result for Hamiltonian
equations of the variables q1; q2; p1; p2

Pq1 D �p2; Pp1 D @L

@q1
;

Pq2 D �p1 � @L

@p2
; Pp2 D �s; (2.171)

where L D L.q1;�p2; s/. Excluding the momenta, the reader can verify that they
imply (2.169) and (2.170).

Let us exclude the variable s from these equations. According to the rank
condition det @2L

@Rqa@Rqb ¤ 0, the second equation from (2.169), q2 D @L.q1;�p2;s/
@s , can be

resolved with respect to s, s D s.q1; q2; p2/. Substituting the function s.q1; q2; p2/
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into Eq. (2.171), they read

Pq1 D �p2; Pp1 D @L

@q1

ˇ̌
ˇ̌
s

D @L

@q1
� q2

@s

@q1
;

Pq2 D �p1 � @L

@p2

ˇ̌
ˇ̌
s

D �p1 � @L

@p2
C q2

@s

@p2
; Pp2 D �s; (2.172)

where on the r.h.s. we have L � L.q1;�p2; s.q1; q2; p2//. They follow from the
Hamiltonian:

H D �p1p2 � L.q1;�p2; s.q1; q2; p2//C q2s.q1; q2; p2/; (2.173)

with the standard fundamental brackets fqa
˛; pˇbg D ı˛ˇı

a
b, ˛; ˇ D 1; 2; a; b D

1; 2; : : : ; n.

2.10.2 Ostrogradsky Method

Consider the Hamiltonization of a theory with an action that depends on time
derivatives up to N-th order. The procedure has been developed by Ostrogradsky
[31]. Consider the action

S D
Z

d�L.q1; Pq1; Rq1; : : : ; .N/q1/; q1 � .q1; q2; : : : ; qn/: (2.174)

Disregarding a total derivative, variation of the action reads

ıS D
Z

d�
NX

iD0

@L

@
.i/
q1
ı
.i/
q1 D

Z
d�

0
@ NX

iD0
.�1/i di

d� i

@L

@
.i/
q1

1
A ıq1; (2.175)

so the Lagrangian equations are

@L

@q1
� d

d�

0
@ @L

@Pq1 � d

d�

@L

@Rq1 C : : :C .�1/N�1 dN�1

d�N�1
@L

@
.N/
q1

1
A D 0; (2.176)

or, equivalently

@L

@q1
� d

d�

0
@ @L

@Pq1 � d

d�

0
@ @L

@Rq1 � d

d�

0
@ @L

@
.3/
q1

� : : : � d

d�

0
@ @L

@
.N/
q1

1
A : : :

1
A
1
A
1
A D 0;

(2.177)
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Computing derivatives with respect to � we conclude that the equations have the
following structure

Lab

.2N/

qb
1 D Ka.q1; Pq1; : : : ; .2N�1/

q1 /; Lab � @2L

@
.N/
qa
1 @

.N/

qb
1

: (2.178)

Hence the Lagrangian with N-th order derivatives implies 2N-th order equations.
The theory is called non degenerate if

detLab ¤ 0: (2.179)

In this case the equations can be written in the normal form, with higher derivatives
separated on l.h.s. of the equations. Specification of the position q1 as well as its
2N � 1 derivatives at some instant implies unique solution to the Cauchy problem.

To present the system in the Hamiltonian form, we introduce 2N �n dimensional
phase space spanned by the coordinates qi; pi, i D 1; 2; : : : ;N. Let us specify their
dynamics as follows. The variable q1 obeys the Eq. (2.176), while other variables
accompany its evolution according the equations

qi D .i�1/
q1 ; or qi D Pqi�1 i D 2; 3; : : : ;N; (2.180)

pi D
NX

jDi

.�1/j�i dj�i

d� j�i

@L

@
.j/
q1
; i D 1; 2; : : : ;N: (2.181)

The momenta pi coincide with the expressions inside the brackets in (2.177), so
this equation reads @L

@q1
� Pp1 D 0. Combining Eqs. (2.181) we obtain the following

expressions

pi D @L

@Pqi
� PpiC1; i D 1; 2; : : : ;N � 1; (2.182)

pN D @L.q1; Pq1; Rq1; : : : ; .N/q1/

@
.N/
q1

D @L.q1; q2; : : : ; qN ; PqN/

@PqN
: (2.183)

According to the condition (2.179), the last equation can be resolved algebraically
with respect to PqN . Let us denote the solution by sN

PqN D sN.q1; q2; : : : ; qN ; pN/: (2.184)
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In the result, our equations of motion (2.180), (2.177), (2.182) and (2.184) acquire
the first-order normal form

Pqi�1 D qi; (2.185)

PqN D sN.q1; q2; : : : ; qN ; pN/; (2.186)

Pp1 D @L

@q1

ˇ̌
ˇ̌
sN

� � @

@q1
.pNsN � L.qi; sN/ ; (2.187)

Ppi D �pi�1 C @L

@qi

ˇ̌
ˇ̌
sN

� � @

@qi
.pi�1qi C pNsN � L.qi; sN// : (2.188)

Here i D 2; 3; : : : ;N. At last, introducing the Hamiltonian

H.qi; pj/ D p1q2 C p2q3 C : : :C pN�1qN C pNsN � L.qi; sN/; (2.189)

the system (2.185), (2.186), (2.187), and (2.188) acquires the Hamiltonian form

Pqi D @H

@pi
� fqi;Hg; Ppi D �@H

@qi
� fpi;Hg: (2.190)

The Poisson brackets are defined by

fqb
i ; pjbg D ıi

jıab: (2.191)

Equations (2.190) follow from the Hamiltonian action functional

SH D
Z

d�.pi Pqi � H/: (2.192)

In resume, for an N-th order Lagrangian, the Hamiltonian formulation implies
introducing 2N � n dimensional phase space with the Poisson brackets (2.191).

The working recipe for construction the corresponding Hamiltonian can be
formulated as follows. Define the momenta pN according to the Eq. (2.183) and

resolve it with respect to
.N/
q1 . Then the Hamiltonian is

H.qi; pj/ D
NX

iD1
pi

.i/
q1 �L.q1; Pq1; Rq1; : : : .N/q1/; (2.193)

where one substitutes qiC1 instead of
.i/
q1, i D 1; 2; : : : ;N � 1, and sN of Eq. (2.184)

instead of
.N/
q1 .
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In conclusion, we point out that Eqs. (2.185), (2.186) can not be resolved with
respect to the momenta, that is the Ostrogradsky equations (2.190) can not be
obtained from a Lagrangian (without higher derivatives). To avoid the difficulty,
one needs to make an appropriate canonical transformation. For instance, for the
case of the Lagrangian L.q1; Pq1; Rq1/ it is sufficient to make the transformation
q2 ! �p2, p2 ! q2. After that, the Hamiltonian (2.189) and the Ostrogradsky
equations (2.190) turn out into Eqs. (2.173) and (2.172).



Chapter 3
Canonical Transformations of Two-Dimensional
Phase Space

Abstract It is common in textbooks on classical mechanics to discuss canonical
transformations on the basis of the integral form of the canonicity conditions and
a theory of integral invariants [1, 12, 14]. We prefer to deduce all the properties
of canonical transformations by direct analysis of the canonicity conditions given
by Eqs. (2.104) and (2.107). For convenience, we have made the subject matter
of the next chapter independent from this one, so the reader can omit this and
continue from the next chapter. It is worth noting that time-independent canonical
transformations are an important tool to analyze the structure of a general singular
theory.

It is common in textbooks on classical mechanics to discuss canonical transforma-
tions on the basis of the integral form of the canonicity conditions and a theory
of integral invariants [1, 12, 14]. We prefer to deduce all the properties of canonical
transformations by direct analysis of the canonicity conditions given by Eqs. (2.104)
and (2.107). We start the discussion from the case of two-dimensional phase space
zi D .q; p/, where all the basic properties of canonical transformations can be
obtained by elementary calculations. For convenience, we have made the subject
matter of the next chapter independent from this one, so the reader can omit this and
continue from the next chapter.

3.1 Time-Independent Canonical Transformations

3.1.1 Time-Independent Canonical Transformations and
Symplectic Matrix

It is worth noting that time-independent canonical transformations are an important
tool to analyze the structure of a general singular theory.

Discarding the dependence on � in Eq. (2.94) we arrive at the time-independent1

coordinate transformation z0i D z0i.zj/ or, q0 D q0.q; p/; p0 D p0.q; p/. In terms of

1Sometimes these are called contact transformations.
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the new coordinates, the Hamiltonian equations acquire the form (see (2.100))

Pz0k D fz0k; z0lgz

ˇ̌
z.z0/

@H.z.z0//
@z0l ; (3.1)

while the definition of canonical transformation (2.101) implies (see (2.102))

fz0k; z0lgz

ˇ̌
z.z0/

@H.z.z0/
@z0l D !kl @

QH.z0/
@z0l ; any H; some QH: (3.2)

As the first basic result, we show that the group of canonical transformations
can be identified with a group of coordinate transformations, leaving invariant
(disregarding the multiplicative constant) the symplectic matrix !ij. More exactly,
one has:

Assertion Transformation z0i D z0i.zj/ is canonical if and only if

@z0k

@zi
!ij @z0l

@zj
D c!kl; or fz0k; z0lgz D c!kl; c D const: (3.3)

Proof Let the transformation be canonical, hence it obeys the system (3.2). In more
detail, one has two equations

fq0; p0gˇ̌ @H

@p0 D @ QH
@p0 ;� fq0; p0gˇ̌ @H

@q0 D �@ QH
@q0 : (3.4)

Computing the derivative of the first (second) equation with respect to q0 (p0/
correspondingly, and adding the resulting expressions, one obtains

@

@q0
�fq0; p0gj @H

@p0 � @

@q0
�fq0; p0gj @H

@q0 D 0: (3.5)

Since this is true for any H, one concludes @
@q0

fq0; p0gj D 0, @
@q0

fq0; p0gj D 0, which
in turn implies fq0; p0g D c D const. The remaining Poisson brackets are fq0; q0g D
0; fp0; p0g D 0. Combining the brackets, one has the desired result: fz0k; z0lgz D
c!kl. Besides, substitution of Eq. (3.3) into Eq. (3.2) gives a relationship between
the original and the transformed Hamiltonians

QH.z0/ D cH.z.z0//: (3.6)

The inverse affirmation is evident: Eq. (3.3) implies (3.2) with QH given by Eq. (3.6).

Comments 1. Equation (3.3) can be rewritten in an equivalent form

@zi

@z0j

ˇ̌
ˇ̌
z.z0/

D c�1!ik @z0l

@zk
!lj; (3.7)

and shows how an inverse of the matrix @kz0l can be computed.
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2. Let us define a Poisson bracket in relation to z0 variables as follows: fz0i; z0jgz0 D
!ij. For the case of univalent canonical transformation (c=1), Eq. (3.3) can be
written as

fz0i.z/; z0j.z/gz D fz0i; z0jgz0 : (3.8)

In accordance with this, for any two phase-space functions one obtains

fA.z/;B.z/gzjz.z0/ D fA.z.z0//;B.z.z0//gz0 : (3.9)

These expressions mean that univalent canonical transformation and computation of
the Poisson bracket are commuting operations. For this reason, Eqs. (3.8) and (3.9)
are sometimes referred to as a property of invariance of the Poisson bracket under
univalent canonical transformation.

3.1.2 Generating Function

Let q ! q0 D q0.q; p/; p ! p0 D p0.q; p/ be canonical transformation. Suppose that
the second equation can be resolved with respect to p: p0 D p0.q; p/ ) p D p.q; p0/.
Transformations with this property are called free canonical transformations. Using
the latter equation, one can represent the variables q0; p in terms of q; p0:

q0 D q0.q; p.q; p0// � q0.q; p0/; p D p.q; p0/ (3.10)

By construction, these expressions can in turn be solved with respect to q0; p0. So,
one can deal with a canonical transformation in the form (3.10), where q; p0 are
considered as independent variables, instead of its original form, with q; p being
independent. The identities (2.98) acquire the form

@q.q0; p0/
@q0

ˇ̌
ˇ̌
q0.q;p0/

@q0.q; p0/
@q

D 1;

@q.q0; p0/
@q0

ˇ̌
ˇ̌
q0.q;p0/

@q0.q; p0/
@p0 D �@q.q; p0/

@p0 : (3.11)

In this section we demonstrate that there is a simple way to construct a free canonical
transformation starting from any given function S.q; p0/, see Eq. (3.15) below.
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Assertion For a given transformation zi ! z0i.z/, the following conditions are
equivalent:

(a) the transformation is canonical:

fzi; zjgz0 D c�1!ij; c D const; (3.12)

(b) there is a function F.q0; p0/ such that

cp
@q

@q0 � p0 D @F

@q0 ; cp
@q

@p0 D @F

@p0 ; (3.13)

where q D q.q0; p0/, p D p.q0; p0/.

Proof Let the transformation be canonical. The system (3.12) contains only one
nontrivial equation: fq; pgz0 D c�1, or @q

@q0

@p
@p0

� @q
@p0

@p
@q0

D c�1, which can otherwise
be rewritten as

@

@p0

�
cp
@q

@q0 � p0
�

� @

@q0

�
cp
@q

@p0

�
D 0: (3.14)

This means that a vector field with the components F1.q0; p0/ D cp @q
@q0

�
p0;F2.q0; p0/ D cp @q

@p0

is curl-free, @1F2 � @2F1 D 0. Then there is the potential
F.q0; p0/ which obeys Eq. (3.13). The inverse affirmation is also true: differentiating
Eq. (3.13) with respect to q0 and p0 and adding the resulting expressions, one obtains
fq; pgz0 D c�1.

Assertion Let zi ! z0i.z/ be a free canonical transformation, hence it can be
presented in the form (3.10). There is a function S.q; p0/ such that @2S

@q@p0

¤ 0, and

q0.q; p0/ D @S

@p0 ; cp.q; p0/ D @S

@q
: (3.15)

The function S is called the generating function of the canonical transformation.

Proof The following function

S.q; p0/ D F.q0.q; p0/; p0/C p0q0.q; p0/ (3.16)

obeys the desired conditions, as can be demonstrated by direct computations with
use of Eqs. (3.13) and (3.11). Notice that S is defined on .q; p0/ space.

Thus we have seen that with a given canonical transformation one can associate
the corresponding generating function. It is natural to ask whether a given function
S.q; p0/ defines a canonical transformation. This seems to be true. In particular, the
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Assertion above can be inverted in the following sense:

Assertion Let S.q; p0/ be a function with @2S
@q@p0

¤ 0. Let us solve the algebraic

equations q0 D @S.q;p0/

@p0

; cp D @S.q;p0/

@q with respect to q, p (one solves the first
equation for q and substitutes the result into the second one). Then the solution

q D q.q0; p0/; p D c�1 @S

@q

ˇ̌
ˇ̌
q.q0;p0/

� p.q0; p0/; (3.17)

is the free canonical transformation.

Proof It is sufficient to demonstrate that fq; pgz0 D c�1; see Eq. (3.12). Let us denote
q0 � @S.q;p0/

@p0

� G.q0; q; p0/. From the identity G.q0; q.q0; p0/; p0/ � 0, one finds the
consequences

@q

@q0 D 1

Sqp0

;
@q

@p0 D �Sp0p0

Sqp0

; (3.18)

where it was denoted Sqq D @2S
@2q

ˇ̌
ˇ
q.q0;p0/

, and so on. Further, the last equation

from (3.17) implies

@p

@q0 D c�1Sqq
@q

@q0 D c�1 Sqq

Sqp0

;

@p

@p0 D c�1
�

Sqp0 C Sqq
@q

@p0

�
D c�1

�
Sqp0 � SqqSp0p0

Sqp0

�
: (3.19)

These expressions allows one to compute the desired Poisson bracket, with the result
being fq; pgz0 D c�1.

Exercise Do this calculation.

3.2 Time-Dependent Canonical Transformations

Here we repeat the analysis of Sect. 3.1 for the case of time-dependent transforma-
tions in two-dimensional phase space. As compared with the previous case, the only
difference in the final results is, in fact, a non-trivial form of a transformed Hamil-
tonian, see Eq. (3.29) below. Owing to this property, the time-dependent canonical
transformations can be used for the simplification of Hamiltonian equations, see
below.
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3.2.1 Canonical Transformations and Symplectic Matrix

For the case of time-dependent transformation q0 D q0.q; p; �/; p0 D p0.q; p; �/,
the Hamiltonian equations in terms of q0; p0 acquire the form (2.100)), while the
definition of canonical transformation (2.101) implies Eqs. (2.102), (2.103), (2.104),
(2.105), (2.106), and (2.107). As before, the set of canonical transformations can be
identified with the set of coordinate transformations leaving invariant (disregarding
a constant) the symplectic matrix !ij:

Assertion The transformation z0i D z0i.zb; �/ is canonical if and only if:

@z0k

@zi
!ij @z0l

@zj
D c!kl; or fz0k; z0lgz D c!kl; c D const: (3.20)

Proof (A) Let the transformation be canonical, hence it obeys the system (2.102).
Repeating analysis of section (3.1.1) one arrives at the system

@

@q0 .fq0; p0gj/ D 0;
@

@p0 .fq0; p0gj/ D 0; (3.21)

@

@q0

 
@q0.z; �/
@�

ˇ̌
ˇ̌
z.z0;�/

!
C @

@p0

 
@p0.z; �/
@�

ˇ̌
ˇ̌
z.z0;�/

!
D 0: (3.22)

Equation (3.21) implies fq0; p0g D c.�/, or

c.�/ D @q0

@q

@p0

@p
� @p0

@q

@q0

@p
: (3.23)

Equation (3.22) states that a vector field with the componentsN1 D @p0

@�
j;N2 D � @q0

@�
j

is curl-free, so there is the potential N.q0; p0; �/

@p0

@�
D @N

@q0

ˇ̌
ˇ̌ ; �@q0

@�
D @N

@p0

ˇ̌
ˇ̌ : (3.24)

Let us demonstrate that this implies dc
d� D 0, that is, c D const. Differentiating

Eq. (3.24) one obtains

� @2q0

@zj@�
D @2N

@z0i@p0

ˇ̌
ˇ̌ @z0i

@zj
;

@2p0

@zj@�
D @2N

@z0i@q0

ˇ̌
ˇ̌ @z0i

@zj
: (3.25)

Therefore the derivative of Eq. (3.23) with respect to � turns out to be zero, as a
consequence of Eq. (3.25).
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(B) Suppose that the transformation z0i D z0i.z; �/ obeys Eq. (3.20). First, note that
the Assertion on page 140 is true for the present case of time-dependent trans-
formations as well (since in the corresponding proof only partial derivatives
with respect to z0a were used). Equation (3.20) thus implies Eq. (3.13), and
differentiating the latter with respect to � we obtain:

c
@p

@�

@q

@z0a C cp
@2q

@�@z0a D @2F.z0; �/
@z0a@�

: (3.26)

Second, under condition (3.20), Hamiltonian equations for z0 (2.100) acquire the
form

Pz0i D c!ij @H.z.z0; �//
@z0j � c!ij @zl

@z0j!lk
@zk

@�
D

c!ij @H.z.z0; �//
@z0j C !ij @

@z0j

�
@F

@�
� cp

@q

@�

�
; (3.27)

where Eqs. (2.98) and (3.7) were used in the first line, and Eq. (3.26) was used in
the transition from the first to the second line. Thus condition (3.20) implies the
canonical form of the Hamilton equations

Pz0i D !ij @

@z0j

�
cH.z.z0; �/ � cp

@q

@�
C @F

@�

�
; (3.28)

which completes the proof.

Besides, comparing this result with Eq. (2.101), one obtains a relationship
between the original and the transformed Hamiltonians:

Consequence Let za ! z0i D z0i.z; �/ be a canonical transformation. Then there is
a function F such that

QH.z0; �/ D cH.z.z0; �// � cp.z0; �/
@q.z0; �/
@�

C @F.z0; �/
@�

: (3.29)

Transformation properties of the Hamiltonian action under canonical transformation
will be discussed in Sect. 4.5.

Comment As compared to the time-independent canonical transformations, the
transformed Hamiltonian now acquires some extra terms. It allows one to formulate
the following problem: find the canonical transformation z0i D z0i.z; �/ that
simplifies the Hamiltonian as much as possible, for example2 QH D 0. The
desired canonical transformation can be found in some interesting cases by using

2Note that this is not possible in the time-independent case: if H.z/ depends essentially on all the
variables, then the same is true for QH D H.z.z0//, see Eq. (3.6).
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the Hamilton–Jacobi method; see Sect. 4.7 below. In the new coordinates, the
Hamiltonian equations would be trivial: Pz0i D 0, and can immediately be solved:
z0i D Ci. Further, solving the algebraic equations z0i.z; �/ D Ci (where the functions
z0i.zj; �/ are known from the canonical transformation), one obtains a general
solution to the equations of motion in the initial parametrization: zi D zi.�;Cj/.

3.2.2 Generating Function

Assertion Let q ! q0 D q0.q; p; �/; p ! p0 D p0.q; p; �/ be free canonical
transformation, hence from these expressions one writes

q0 D q0.q; p.q; p0; �/; �/ � q0.q; p0; �/; p D p.q; p0; �/: (3.30)

Then

(a) there is a function S.q; p0; �/, with @S
@q@p0

¤ 0, such that

q0.q; p0; �/ D @S

@p0 ; cp.q; p0; �/ D @S

@q
I (3.31)

(b) the transformed Hamiltonian (3.29) in terms of the variables q; p0 acquires the
form

QH.z0; �/
ˇ̌
q0.q;p0;�/

D cH.q; p.q; p0; �//C @S.q; p0; �/
@�

: (3.32)

Proof (a) The proof is similar to that given for Eq. (3.15), since only partial
derivatives with respect to q; p were used there. (b) To substitute q0.q; p0; �/ into
Eq. (3.29) one needs two identities. First, from q.q0.q; p0; �/p0; �/ � q it follows:

@q.q0; p0; �/
@�

ˇ̌
ˇ̌
q0.q;p0;�/

D � @q

@q0

ˇ̌
ˇ̌
q0

@q0.q; p0; �/
@�

: (3.33)

Second, from the expression:

@

@�
F.q0.q; p0; �/; p0; �/ D @F.z0; �/

@q0

ˇ̌
ˇ̌
q0.q;p0;�/

@q0

@�
C @F.z0; �/

@�

ˇ̌
ˇ̌
q0.q;p0;�/

(3.34)
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one finds:

@F.z0; �/
@�

ˇ̌
ˇ̌
q0.q;p0;�/

D
 

�cp
@q.z0; �/
@q0

ˇ̌
ˇ̌
q0.q;p0 ;�/

C p0
!
@q0.q; p0; �/

@�

C @

@�
F.q0.q; p0; �/; p0; �/; (3.35)

where Eq. (3.13) was used. Equation (3.32) follows from Eq. (3.29) by using these
equalities as well as the manifest form of S, see Eq. (3.16).

As before, this result can be inverted in the following sense:

Assertion Let S.q; p0; �/ be a function with @2S
@q@p0

¤ 0, for any � . Let us solve

the algebraic equations q0 D @S.q;p0;�/

@p0

; cp D @S.q;p0;�/

@q in relation to q; p. Then the
solution

q D q.q0; p0; �/; p D c�1 @S

@q

ˇ̌
ˇ̌
q.q0;p0 ;�/

� p.q0; p0; �/; (3.36)

is the free canonical transformation.
The proof is the same as before (see page 140), since only partial derivatives with

respect to q0; p0 were used there.



Chapter 4
Properties of Canonical Transformations

Abstract As we have seen in Sect. 2.7, the canonical form of Hamiltonian
equations is not preserved by general phase-space transformations. Those that
leave the form of the equations unaltered were called canonical transformations. In
this chapter, we discuss their properties for the case of phase space of an arbitrary
dimension.

We start from the demonstration that the equation fz0i; z0jgz D fzi; zjgz, which
represents the invariance of the Poisson bracket under a transformation z ! z0.z; �/,
can be rewritten in the following equivalent form: @0iEj.z0/ � @0jEi.z0/ D 0. This
means that Ei are components of a conservative vector field, and therefore there
is a potential E, such that Ei D @0iE. Thus, the invariance of the Poisson bracket
is equivalent to the statement, that the transition functions z0i.z; �/ can be used
to construct a conservative field. In turn, this allows us to prove the following
two facts. First, canonical transformations are the only ones that leave the Poisson
bracket invariant (up to a constant). This gives a simple rule for checking whether a
given transformation is a canonical one. Second, with any canonical transformation1

can be associated a generating function. Its partial derivatives give the transition
functions of the transformation. The generating function can be obtained from the
above-mentioned potential according to a simple rule. Among other things, it gives
a simple way to construct examples of canonical transformations.

Further, it will be seen that the Hamiltonian has a rather non-trivial transforma-
tion law under time-dependent canonical transformation (it does not transform as
a scalar function). This implies the possibility of looking for the transformation
which trivializes the Hamiltonian function (and thus trivializes the equations of
motion) in the new coordinate system. By this means, the problem of finding a
general solution to Hamiltonian equations can be replaced by the problem of finding
a generating function of the transformation. The generating function obeys the
so-called Hamilton–Jacobi equation, which can be solved in many interesting cases.

1Below, we discuss only a free canonical transformation. For an arbitrary canonical transformation,
the situation is similar, see [14].

© Springer International Publishing Switzerland 2017
A. Deriglazov, Classical Mechanics, DOI 10.1007/978-3-319-44147-4_4

147



148 4 Properties of Canonical Transformations

4.1 Invariance of the Poisson Bracket (Symplectic Matrix)

General phase-space transformation alters a form of the Hamiltonian equations
according to (2.93)

Pz0k D
�
@z0k

@zi
!ij @z0l

@zj

�ˇ̌
ˇ̌
z.z0;�/

@H.z.z0; �//
@z0l C @z0k

@�

ˇ̌
ˇ̌
z.z0;�/

: (4.1)

From this equation we expect that form-invariance may be closely related with the
symmetry properties of the symplectic matrix. In fact, at least for time-independent
transformations, invariance of !: @iz0k!ij@jz0l D !kl implies form-invariance of
Hamiltonian equations. We can also speak of an invariance of the Poisson bracket,
since the above equation can also be written as fz0k; z0lgz D fzk; zlgz; see (2.100).
In this section we establish an exact relationship: the set of transformations, which
preserves the canonical form of Hamiltonian equations, coincides with a set which
leaves the Poisson bracket invariant (up to a constant).

Assertion Transformation zi ! z0i D z0i.zj; �/ is canonical if and only if it obeys:

@z0k

@zi
!ij @z0l

@zj
D c!kl; or fz0k; z0lgz D c!kl; c D const: (4.2)

Comment Denoting the Jacobi matrix @z0k

@zi of the transformation as Jk
j, Eq. (4.2) is of

the form J!JT D c!. Taking the determinant of both sides for the case of univalent
canonical transformation, we have

det J D ˙1; for all z; �: (4.3)

Proof

(A) Let the transformation be canonical, hence it obeys the system (2.107), which
we repeat here:

@0i


@� z

0j.z; �/
ˇ̌
z.z0;�/

�
� .i $ j/ D 0; (4.4)

@0iWjl � @0jWil D 0; (4.5)

Wik! jl � Wjk!il C Wil! jk � Wjl!ik D 0; (4.6)

where:

Wij � fz0i; z0jgz

ˇ̌
z.z0;�/

: (4.7)

We need to show that Wij D c!ij.
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Equation (4.4) states that a vector field with the components @� z0kj is curl-free.
Therefore it can be presented locally as the divergence of a function N: @� z0kj D
@0kN.z0; �/ or, in other words, @� z0k D !kl @N

@z0l j. Below we will use a derivative of this
expression

@2z0k.z; �/
@zi@�

D !kl @
2N.z0; �/
@z0n@z0l

ˇ̌
ˇ̌
z0.z;�/

@z0n

@zi
: (4.8)

Similarly, Eq. (4.5) implies Wjl D 2@0jGl for any fixed l. Since W is antisymmetric,
this equation implies the following restriction on Gl: @0jGl D �@0lG j for any j, l.
It allows us to rewrite the expression for W in an explicitly antisymmetric form:
Wjl D @0jGl � @0lG j. The last two equations can be used to show that W does not
depend on z0i. Indeed, substitution of the last equation back into (4.5) gives the
expression �@0i@0lG j C @0j@0lGi D @0lWji D 0, for any i, j, l. Hence W does not
depend on z0 and can be a function only of � W Wij D Wij.�/.

Now, contraction of Eq. (4.6) with !li gives immediately

Wjk D c.�/! jk; (4.9)

where c.�/ � 1
n Wil.�/!li D 1

n
@z0k

@zi !
ij @z0l

@zj

ˇ̌
ˇ
z.z0;�/

!lk or, equivalently, c.�/ D
1
n
@z0k

@zi !
ij @z0l

@zj !lk. The derivative of this expression with respect to � gives, by using
Eq. (4.8)

dc

d�
D 2

n

@2z0k

@�@zi
!ij @z0l

@zi
!lk D

2

n

@2N

@z0n@z0l

ˇ̌
ˇ̌ @z0n

@zi
!ij @z0l

@zj
: (4.10)

This expression vanishes since it is symmetric on n, l and antisymmetric on i, j.
Thus the coefficient c in Eq. (4.9) is a constant, which completes the first part of the
proof.

(B) Supposing that z0i.zj; �/ obeys Eq. (4.2), the latter can be rewritten in an
equivalent form

@z0i

@zl

ˇ̌
ˇ̌
z.z0;�/

D c!ij @zk

@z0j!kl: (4.11)

By using Eqs. (4.2), (2.98) and (4.11), Hamiltonian equations for the variables
z0 (2.100) can be written as

Pz0k D c!kl @H.z.z0; �//
@z0l � c!kl @zi

@z0l!ij
@zj.z0; �/
@�

: (4.12)
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To confirm that they have the canonical form, it is sufficient to show that the last
term can be written as !kl @

@z0l .: : :/. We need the following:

Lemma 1 Let zi ! z0i D z0i.zj; �/ be a phase-space transformation. Then the
following conditions are equivalent:

(a) the symplectic form is invariant

@z0k

@zi
!ij @z0l

@zj
D c!kl; c D constI (4.13)

(b) there is a function E.z0; �/ such that

czj.z0; �/!ji
@zi.z0; �/
@z0l C !ljz

0j D 2
@E.z0; �/
@z0l : (4.14)

Proof Suppose (a) is true. By using Eq. (4.11), it can be rewritten in an equivalent
form2 (recall that @

@z0

k
D !kl @

@z0l /:

c
@zj

@z0
k

!jn
@zn

@z0
l

D �!kl: (4.15)

Owing to the antisymmetry of k, l this can be further rewritten

c
@zj

@z0
k

!jn
@zn

@z0
l

� c
@zj

@z0
l

!jn
@zn

@z0
k

D �2!kl; (4.16)

or

@

@z0
k

�
czj!jn

@zn

@z0
l

C z0l
�

� @

@z0
l

�
czj!jn

@zn

@z0
k

C z0k
�

D 0: (4.17)

That is, the condition (4.13) of invariance of the Poisson bracket is rewritten as the
conservativity condition of a vector field. This implies:

czj!jn
@zn

@z0
l

C z0l D 2
@E

@z0
l

� 2!ln @E

@z0n ; (4.18)

or

czj!jn
@zn

@z0i C !inz0n D 2
@E

@z0i ; (4.19)

as has been stated.

2The left-hand side of this expression is known as a Lagrange bracket.
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Now suppose that (b) is true. This implies (4.17) and, since the computation can
be inverted, we obtain Eq. (4.15). An equivalent form of this expression is c @zi

@z0j D
!ik @z0l

@zk !lj. Using this expression in Eq. (4.15), we have the desired result (4.13).
To analyze the last term in Eq. (4.12), we need the derivative of Eq. (4.14) with

respect to � . We obtain:

2
@

@z0l
@E

@�
D c

@zj

@�
!ji
@zi

@z0l C czj!ji
@2zi

@�@z0l D

� c
@zi

@z0l!ij
@zj

@�
C @

@z0l

�
czj!ji

@zi

@�

�
� c

@zj

@z0l!ji
@zi

@�
D

� 2c
@zi

@z0l!ij
@zj

@�
C @

@z0l

�
czj!ji

@zi

@�

�
; (4.20)

or

�c
@zi

@z0l!ij
@zj

@�
D @

@z0l

�
@E

@�
� c

2
zi!ij

@zj

@�

�
: (4.21)

Using this result in Eq. (4.12), it can be written in the canonical form

Pz0k D !kl @

@z0l

�
cH.z.z0; �// � c

2
zi!ij @zj

@�
C @E.z0; �/

@�

�
; (4.22)

which completes the proof.
From Eqs. (4.17) and (4.18) it follows that one can add to E an arbitrary function

e.�/. Note that this does not contribute to the Eq. (4.21).
The result obtained means that the invariance (4.2) of the Poisson bracket can be

taken as a definition for the canonical transformation.
Comparing our result (4.22) with Eq. (2.101), we have an exact relationship

between the original and the transformed Hamiltonians.

Consequence Let zi ! z0i D z0i.z; �/ be a canonical transformation. Then there is
a function E (which obeys Eq. (4.14)) such that:

QH.z0; �/ D cH.z.z0; �//� c

2
zi!ij

@zj

@�
C @E.z0; �/

@�
: (4.23)

Note that for a univalent time-independent canonical transformation the Hamilto-
nian transforms as a scalar function:

QH.z0/ D H.z.z0//: (4.24)

Hence, if H.z/ represents the energy of a system, the same is true for QH.z0/.
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Exercise Show that transition to polar coordinates on two-dimensional phase
space is not a canonical transformation, but slightly modified polar coordi-
nates

q D p
2P cos S; p D p

2P sin S; (4.25)

represent a univalent canonical transformation, fP; Sgq;p D 1.

As an example, let us consider the Shrödinger equation (2.132). We represent the
wave function ‰ D ' C ip in terms of the probability density P and the phase S as
follows:

' C ip D p
Pe

i
„

S: (4.26)

This is the canonical transformation of valence c D 2„, fP; Sgq;p D 2„. Hence
the Schrödinger system (2.133) and (2.134) acquires the form PP D fP; QHgP;S, PS D
fS; QHgP;S, where:

QH D 2„H.'.P; S/; p.P; S//

D
Z

d3xP

�
1

2m
ErS ErS C V C „2

8m

1

P2
ErP ErP

�
: (4.27)

The system reads:

PP C 1

m
Er.P ErS/ D 0;

PS C 1

2m
ErS ErS C V � „2

4m

 
4P

P
�

ErP ErP

2P2

!
D 0: (4.28)

The Schrödinger system in this representation turns out to be the starting point for a
semiclassical approximation [4] in quantum mechanics as well as forming the basis
of the de Broglie-Bohm interpretation of quantum mechanics [32].

Exercise Obtain the Eqs. (4.28) by direct substitution of (4.26) into the
Schrödinger system (2.133) and (2.134).
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Example Let us consider the transformation qa ! q0a D qa, pa ! p0
a D pa C

Aa.q/. We have fq0a; q0bgz D 0, fq0a; p0
bgz D ıa

b, fp0
a; p

0
bgz D � @Ab

@qa C @Aa
@qb . This

will be zero for curl-free vector field: Aa D @A
@qb , then q0a D qa, p0

a D pa C @A
@qa

represents a canonical transformation.

Exercise Work out an example of a canonical transformation of the form
zi ! z0i D zi C Bi.zj/.

4.2 Infinitesimal Canonical Transformations: Hamiltonian as
a Generator of Evolution

Intuitively, infinitesimal canonical transformation is not very different from the
identity transformation: Qzi D zi C ızi, ızi � 1. Its remarkable property is that it
is generated by some function through the Poisson bracket: ızi D fzi; ˆg. As will
be seen below, finite canonical transformations have a similar (but not identical)
structure.

Definition 1 Consider a family of transformations that are linear on the parameter�

Qzi.zj; �/ D zi C Gi.z/�: (4.29)

They are called infinitesimal canonical transformations, if they obey the canonicity
condition (4.2) in linear order on �, that is

fQzi; Qzjg D !ij C O.�2/; (4.30)

or, in other words:

@Gi

@zk
!kj C !ik @G j

@zk
D 0: (4.31)

Example Consider a family of univalent canonical transformations parame-
terized by �, which includes an identity transformation at � D 0

zi ! z0i.zj; �/; z0i.zj; 0/ D zi: (4.32)

(continued)
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Write the Taylor expansion about � D 0. Ignoring all the higher order terms
we have:

z0i.zj; �/ � Qzi D zi C Gi.z/�; (4.33)

where Gi D @�z0i.z; �/
ˇ̌
�D0. This turns out to be an infinitesimal canonical

transformation. For a small value of the parameter, � � 1, the second term
gives a leading contribution to the complete transformation z0i.

4.2.1 Generator of Infinitesimal Canonical Transformation

Assertion Qzi D zi C Gi.z/� represents an infinitesimal canonical transformation if
and only if there is a functionˆ.z/ such that

Gi D fzi; ˆg D !ij@jˆ: (4.34)

Accordingly, any infinitesimal canonical transformation has the form

Qzi D zi C fzi; ˆg�: (4.35)

Hence, properties of the infinitesimal canonical transformation are determined by a
unique functionˆ.z/. It is called a generator of infinitesimal transformation.

Proof Supposing that (4.29) represents an infinitesimal canonical transformation,
then Eq. (4.31) is satisfied. Contracting it with !mi!jn we obtain the equation
@n.!mkGk/ � @m.!nkGk/ D 0. This states that !mkGk are components of the curl-
free vector field. Therefore there is a potential, !mkGk D @mˆ, which proves the
statement (4.34).

Conversely, consider a transformation of the form:

zi ! Qzi D zi C fzi; ˆg�; (4.36)

determined by the function ˆ. Using the Jacobi identity we obtain:

fQzi; Qzjg D !ij C .fzi; fzj; ˆgg C ffzi; ˆg; zj; g/�C O.�2/

D !ij C .ffzi; zjg; ˆg�C O.�2/ D !ij C O.�2/: (4.37)

Coordinate transformations z ! z0 can be used to define a map on the space of
phase functions A.z/. By definition, the function A is mapped into A0 according to
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the rule:

z ! z0 ) A ! A0; where A0.z0/ D A.z/: (4.38)

That is, a value of the transformed function A0 at z0 coincides with the value of A at
the point z. The difference

ıf A.z/ � A0.z/� A.z/; (4.39)

is called the variation in form of the function. For the case of an infinitesimal
canonical transformation, the variation in form is governed by a generator:

ıf A.z/ D fˆ;Ag�C O.�2/: (4.40)

To confirm this, let us substitute Eq. (4.43) into the definition (4.38): A0.z C
fzi; ˆg�C O.�2// D A.z/, or

A0.z/C @iA
0.z/fzi; ˆg�C O.�2/ D A.z/; (4.41)

which implies

ıf A.z/ D fˆ;A0.z/g�C O.�2/ D
fˆ;A.z/� O.�/g�C O.�2/ D fˆ;Ag�C O.�2/: (4.42)

In the passage from the first to the second line we have used Eq. (4.41) once again.

From Infinitesimal to Finite Canonical Transformations It is worth noting that
an infinitesimal canonical transformation is generally not a canonical transforma-
tion. But it can be used to construct a canonical transformation in terms of a power
series of �.

Assertion Given an infinitesimal canonical transformation Qzi D zi C Gi� D zi C
fzi; ˆ.z/g�, the formula:

z0i D e�fzk;ˆ.z/g @

@zk zi; (4.43)

represents a canonical transformation.

Proof We need to confirm that z0i obeys Eq. (4.2). Remember that z0i obeys the
equation (see Sect. 2.3):

@z0i

@�
D Gi.z0k/: (4.44)
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As a consequence, the function Wij.�/ � fz0i; z0jg obeys the problem:

@Wij

@�
D fWij; ˆg; Wij.0/ D !ij: (4.45)

Note that the symplectic matrix !ij solves the problem. Since the problem has a
unique solution, we conclude that Wij D !ij, that is, fz0i; z0jg D !ij.

Evolution of a System as a Canonical Transformation: Hamiltonian as a
Generator of Evolution According to Sect. 2.3, a general solution to Hamiltonian
equations of a system with the Hamiltonian H.z/ has the form

zi.�/ D e
�fzk

0;H.z0/g @

@zk
0 zi
0: (4.46)

This formula can be considered as a family of coordinate transformations param-
eterized by � that relates the initial z0 and the final z positions of the system.
Comparing (4.46) with (4.43), we conclude that the general solution represents an
example of canonical transformation with the generator being the Hamiltonian of a
system. For a small value of � , an approximate solution is given by the linear term
of the power expansion

zi.z0; �/ � zi
0 C fzi

0;H.z0/g�; (4.47)

and turns out to be an infinitesimal canonical transformation. We conclude that
the evolution of a dynamical system is a canonical transformation. Moreover, the
Hamiltonian turns out to be the generator of the transformation.

4.3 Generating Function of Canonical Transformation

In this section we discuss a fairly large class of transformations called free
canonical transformations. They have the remarkable property of being generated
by phase-space functions (transition functions of the free transformation appear as
partial derivatives of the generating function, see Eq. (4.57) below). Intuitively, this
property can be expected from the observation that any canonical transformation is
related to a conservative vector field, see Eqs. (4.17), (4.18) and (4.19). The potential
of the field represents, in fact, the generating function.
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4.3.1 Free Canonical Transformation and Its Function
F.q0; p0; �/

Given the canonical transformation qa ! q0a D q0a.q; p; �/, pa ! p0
a D p0

a.q; p; �/
suppose that equations for q0 can be resolved with respect to p: q0a D q0a.q; p; �/ )
pa D pa.q; q0; �/. Transformations with this property are called free canonical
transformations. Using this last equation, we can represent the variables p, p0 in
terms of q, q0:

pa D pa.q; q
0; �/; p0

a D p0
a.q; q

0; �/ � p0
a.q; p.q; q

0; �/; �/: (4.48)

By construction, these expressions can in turn be resolved with respect to q0, p0. So,
we can work with the canonical transformation in the form (4.48), where q, q0 are
considered as independent variables, instead of its original form, with q, p being
independent.

For later use we now rewrite the potential E.z0; �/, defined by Eq. (4.14), in an
equivalent, but less symmetric form. Namely, let us write parts of the system (4.14)
for q0 and p0 separately

� cqb @pb

@q0a C cpb
@qb

@q0a � p0
a D 2

@E.z0; �/
@q0a ;

� cqb @pb

@p0
a

C cpb
@qb

@p0
a

C q0a D 2
@E.z0; �/
@p0

a

: (4.49)

We immediately note that for the function:

F.z0; �/ � E.z0; �/C c

2
qb.z0; �/pb.z

0; �/ � 1

2
q0bp0

b; (4.50)

the equations acquire more simple form:

cpb
@qb

@q0a � p0
a D @F.z0; �/

@q0a ; cpb
@qb

@p0
a

D @F.z0; �/
@p0

a

: (4.51)

Hence the Lemma on page 150 can be formulated in terms of F: the invariance of
the symplectic form (4.13) under a transformation is equivalent to the existence of
the potential F, which obeys Eq. (4.51).

As we have seen in the previous section, a general solution to the Hamiltonian
equations can be identified with a canonical transformation relating the initial and
final positions of a system. The generating function F of the transformation turns
out to be the Hamiltonian action; see Sect. 4.8.
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Exercise Show that under a canonical transformation, the original and the
transformed Hamiltonians are related as follows:

QH.z0; �/ D cH.z.z0; �// � cpa.z
0; �/

@qa.z0; �/
@�

C @F.z0; �/
@�

: (4.52)

4.3.2 Generating Function S.q; q0; �/

The equalities (4.51) and (4.52) acquire a remarkably simple form in the variables
q, q0. Let us introduce the generating function S.q; q0; �/ according to the rule:

S.q; q0; �/ D F.q0; p0.q; q0; �/; �/; (4.53)

Using the identities @qc

@p0

b

ˇ̌
ˇ @p0

b.q;p
0;�/

@qa D ıc
a,

@qc

@q0a

ˇ̌
ˇC @qc

@p0

b

ˇ̌
ˇ @p0

b
@q0a D 0, which follow from

qc.q0; p0.q; q0; �/; �/ � qc and Eq. (4.51), we can calculate:

@S

@qa
D @F.z0; �/

@p0
b

ˇ̌
ˇ̌
p0.q;q0;�/

@p0
b

@qa

D cpc
@qc

@p0
b

ˇ̌
ˇ̌ @p0

b

@qa
D cpa;

@S

@q0a D @F.z0; �/
@q0a

ˇ̌
ˇ̌C @F.z0; �/

@p0
b

ˇ̌
ˇ̌ @p0

b

@q0a

D cpc
@qc

@q0a

ˇ̌
ˇ̌ � p0

a C cpc
@qc

@p0
b

ˇ̌
ˇ̌ @p0

b

@q0a D �p0
a: (4.54)

The Hamiltonian (4.52) in the variables q, q0 acquires the form:

QH.q0; p0; �/jp.q;q0;�/ D cH.q; p.q; q0; �/; �/

� cpa.q
0; p0; �/jp0

@qa.q0; p0; �/
@�

ˇ̌
ˇ̌
p0

C @F.q0; p0; �/
@�

ˇ̌
ˇ̌
p0

D cH.q; p.q; q0; �/; �/�

cpa.q; q
0; �/

�
@qa.q0; p0.q; q0; �/; �/

@�
� @qa

@p0
b

ˇ̌
ˇ̌ @p0

b

@�

�
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C @F.q0; p0.q; q0; �/; �/
@�

� @F.q0; p0; �/
@p0

b

ˇ̌
ˇ̌ @p0

b

@�

D cH.q; p.q; q0; �/; �/C @S

@�
: (4.55)

Thus we have obtained the following

Assertion Let qa ! q0a D q0a.q; p; �/; pa ! p0
a D p0

a.q; p; �/ be a free canonical
transformation. From these expressions we write:

pa D pa.q; q
0; �/; p0

a D p0
a.q; q

0; �/ � p0
a.q; p.q; q

0; �/; �/: (4.56)

Then

(a) there is a generating function, S.q; q0; �/, with det @2S
@qa@q0b ¤ 0, such that:

cpa D @S

@qa
; p0

a D � @S

@q0a : (4.57)

If the function F.z0; �/ (4.50) is known, the generating function can be
constructed as follows

S.q; q0; �/ D F.q0; p0.q; q0; �/; �/: (4.58)

(b) the transformed Hamiltonian (4.52), presented as a function of q, q0, has the
form

QH.z0; �/
ˇ̌
p0.q;q0 ;�/

D cH.q; p.q; q0; �/; �/C @S.q; q0; �/
@�

: (4.59)

This result can be inverted, giving a simple recipe for constructing a free
canonical transformation:

Assertion Let S.qa; q0
b; �/ be some function with det @2S

@qa@q0b ¤ 0, for any � . Let us

solve the algebraic equations cpa D @S
@qa , p0

a D � @S
@q0a with respect to q, p. Then the

solution

pa D 1

c

@S

@qa

ˇ̌
ˇ̌
q.q0;p0;�/

� pa.q
0; p0; �/; qa D qa.q0; p0; �/; (4.60)

is a free canonical transformation of valence c.
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Proof We need to show that the functions zi.z0; �/ satisfy the relationship
@zi

@z0k!
kl @zj

@z0l D c�1!ij. Let us consider, for example

@qa

@q0c
@pb

@p0
c

� @pb

@q0c
@qa

@p0
c

D c�1ıa
b: (4.61)

We use below notation of the type @2S.q;q0 ;�/

@q0b@qa

ˇ̌
ˇ
q.q0;p0;�/

D �
Sq0q


ba
. The identity

p0
a � � @S

@q0a

ˇ̌
ˇ
q.q0;p0 ;�/

implies @qa

@q0c D �



S�1
q0q

�ad
.Sq0q0/dc,

@qc

@p0

b
D �



S�1

q0q

�ca
.

Further, the identity pa D c�1 @S
@qb

ˇ̌
ˇ
q.q0;p0;�/

and the previous expressions imply

@pb
@p0

c
D �c�1.Sqq/bd



S�1

q0q

�dc
, @pb
@q0c D �c�1.Sqq/bd



S�1

q0q

�dg
.Sq0q0/gc C c�1.Sqq0/bc.

Substitution of these expressions into l.h.s. of Eq. (4.61) turn it into an identity.

There are other types of generating functions that depend on any one of three
pairs of variables: .q; p0/, .q0; p/, . p; p0/. They generate a free canonical transfor-
mations written in terms of the indicated variables. For instance, in the previous
chapter we have discussed the generating function in terms of .q; p0/-variables.
The generating functions are related by means of the Legendre transformation (see
Exercise 5 on page 99). As an example, let us construct the generating function
S.q; p0; �/ starting from S.q; q0; �/. Suppose the function p0

a.q
0; : : :/ � @

@q0a .�S/ has
an inverse one, q0a D q0a.p0; : : :/ (here the dots stand for the variables q, � considered
as parameters). According to the Legendre theorem, its generating function is

S.q; p0; �/ D �
p0

aq0a C S.q; q0; �/
ˇ̌

q0.q;p0;�/

� �
p0

aq0a C F.q; p0; �/
ˇ̌

q0.q;p0;�/
: (4.62)

This implies:

q0a D @S.q; p0; �/
@p0

a

; pa D @S.q; p0; �/
@qa

: (4.63)

The Hamiltonian QH as a function of q, p0 is given by:

QH.z0; �/
ˇ̌
q0.q;p0;�/

D cH.q; p.q; p0; �/�/C @S.q; p0; �/
@�

: (4.64)
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Exercises

1. Let zi ! z0i.z; �/ be a canonical transformation. Show that there is no
generating function of the form: z0i D @S.z;�/

@zi .
2. Find the canonical transformation relating the Hamiltonian formulations

obtained from two Lagrangians which differ by a total derivative term: L
and L C dN.q/

d� .
3. Let qa ! q0a.qb/ be a general coordinate transformation of the config-

uration space. Find its extension q0a.qb/, p0
a.q

b; pc/, which represents a
univalent time-independent canonical transformation of the phase space
(this result, together with Eq. (4.59), imply that the Hamiltonian of a
nonsingular Lagrangian theory in generalized coordinates represents the

total energy of a system). Answer: q0a D q0a.q/, p0
a D @qb.q0/

@q0a pb, that is, pa

transforms as a vector under the general coordinate transformation of qa.

4.4 Examples of Canonical Transformations

4.4.1 Evolution as a Canonical Transformation: Invariance of
Phase-Space Volume

Let zi D f i.cj; �/ be the general solution to the Hamiltonian equations

dzi

d�
D !ij @H0

@zj
; (4.65)

Given the point z0i of the phase space, the numbers ci can be chosen in such a way
that the trajectory passes through the point at the moment � D 0: f i.cj; 0/ D z0i.
The latter equation can be resolved: cj D cj.z0/. Substitution of this result into the
general solution gives it as a function of the initial position: f i.z0j; �/, f i.z0j; 0/ D z0i.
Its substitution into Eq. (4.65) implies the identity

df i.z0; �/
d�

� !ij @H0.z/

@zj

ˇ̌
ˇ̌
f .z0;�/

: (4.66)

We can consider the function zi D f i.z0; �/ as a transition function between the
coordinate systems .z0; �/ and .z; �/ of the extended phase space. Thus we have the
transformation

�
�

z0i
�

$
�

�

zi D f i.z0j; �/

�
: (4.67)
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z1(τ)

z’1
 = z1(0)

z’2
  =  z2(0)

τ

z2(τ)

z(τ)

z’    

evolution

canon. transf.

z(z’,τ)

Fig. 4.1 The evolution of a system generates a canonical transformation

By construction, all points of the curve zi D f i.z0j
1 ; �/ have the same z0-coordinate

z0 D z0
1 in the system .�; z0/. That is, the curve is presented by the vertical straight

line z0i D z0i
1 in the coordinates .�; z0/. We demonstrate now the validity of the

equation

ff i.z0; �/; f j.z0; �/gz0 D !ij; (4.68)

Hence, the evolution of a physical system can be identified with the univalent time-
dependent canonical transformation (4.67), see Fig. 4.1 on page 162.

Denote the l.h.s. of Eq. (4.68) as Wij. We look for a differential equation for the
function W. By using Eq. (4.66), we obtain immediately

@

@�
Wij D !ikHklW

lj � ! jkHklW
li; for all z0i; (4.69)

where Hkl � @k@lH0.z/jf . Besides, since f i.z0; 0/ D z0i, the Eq. (4.68) implies the
initial conditions Wij.0/ D !ij. Note that Wij.�/ D !ij represents a solution with
these initial conditions. It is the only solution, since the normal system (4.69) has a
unique solution for given initial conditions.

Exercise Check the validity of Eq. (4.68) up to the third order on � by direct
computations, using the Taylor expansion: zi D f i.z0; �/ D f i.z0; 0/C@� f ij0�C
1
2
@2� f

ij0�2 C : : :.

According to the definition of canonical transformation, the result obtained can also
be formulated as follows. Consider a dynamical system with the Hamiltonian H

dzi

d�
D !ij @H.z/

@zj
: (4.70)
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Then the transformation inverse to (4.67), generated by the Hamiltonian flow of

H0, preserves the canonical form of Eq. (4.70): dz0i

d� D !ij @ QH.z0;�/

@z0j . In particular, the

transformation inverse to (4.67) turns the system (4.65) into a system with QH0 D 0:
dz0i

d� D 0. It follows from the earlier observation that the curve zi D f i.z0; �/ is
presented by the vertical straight line z0 D const in the system .�; z0/.

Exercise Confirm this by direct computationswith use of Eqs. (2.100), (2.98)
and (4.68).

Hence, according to Eq. (4.59), the generating function of the transformation (4.67)
obeys the equation

@S

@�
D �H0: (4.71)

The univalent character of the canonical transformation has an interesting geometric
interpretation. Consider a domain D0 of the phase space with the volume V 0 DR

D0

d2nz0. During the evolution, points z0i of the domain are displaced into zi.z0; �/,
and form the domain D, see Fig. 4.2 on page 163. Let us compute the volume of
D. Making the change of variables zi.z0; �/ in a 2n-dimensional integral, we obtain

V D R
D d2nz D R

D0

ˇ̌
ˇdet @zk

@z0i

ˇ̌
ˇd2nz0 D R

D0

d2nz0 D V 0. Here Eq. (4.3) was used. Thus
the volume of a phase-space domain retains a constant value during the evolution:
V D V 0.

z’(z, 0)

q

p

V’

V

z’(z, τ)

Fig. 4.2 Volume of a phase-space domain retains a constant value during the evolution: V D V0
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4.4.2 Canonical Transformations in Perturbation Theory

Now, let us consider a dynamical system with the Hamiltonian being the sum of two
terms

dzi

d�
D !ij @.H0.z/C H1.z//

@zj
: (4.72)

It is said that the initial system with H0 is “perturbed” by H1. Suppose that a general
solution to the unperturbed system H0 is known. Then the associated canonical
transformation (4.78) turns the system (4.72) into a Hamiltonian system with the
Hamiltonian H1:

dz0i

d�
D !ij @H1.z.z0; �//

@z0j : (4.73)

Actually, since the transformation is canonical, the new Hamiltonian is (see
Eq. (4.59)) H0 C H1 C @�S, but @�S D �H0 due to Eq. (4.71).

Exercise Work out this result by direct computations with use of
Eqs. (2.100), (2.98), (4.68).

If z0i.cj; �/ represents the general solution to the problem (4.73), we obtain a
general solution to the problem (4.72) by taking a composition with the unperturbed
solution (4.78), zi D zi.z0j.ck; �/; �/.

We have shown, through the use of canonical transformations, how the perturbed
problem (4.72) can be treated in the framework of the unperturbed one (4.66).
According to the final result, zi D zi.z0j.ck; �/; �/, perturbation in the energy
of a system can be reformulated as perturbation of the initial conditions for the
unperturbed problem. This observation turns out to be useful in quantummechanics
and in quantum field theory, where we can equally use either the Schrodinger, or
the Heisenberg or the interaction pictures [33] to study an evolution of the quantum
system.

Exercise Apply this method to a one-dimensional problem with the Hamil-
tonian H0 C H1 D 1

2
p2 � e�

q��p .
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qi, pjq1

q’1

p1

F(z) = 0

Fig. 4.3 Coordinates z0i, adapted to the surface, can be chosen to be canonical

4.4.3 Coordinates Adjusted to a Surface

Consider the algebraic equation F.qa; pb/ D 0. Suppose that it can be resolved with
respect to one of the variables, say p1: p1 D f .qa; p2; p3; : : : ; pn/. We show here
that there is a canonical transformation such that in the new coordinates the surface
F D 0 is described by the equation p0

1 D 0, where p0
1 D p1 � f , see Fig. 4.3.

This result appears to be interesting in the context of singular theories. In that
case the system of Hamiltonian equations necessarily contains both differential
equations (in the canonical form) and algebraic equations F˛ D 0 called Dirac
constraints. So, all solutions to the equations of motion lie on a surface defined
by these algebraic equations. Then it is natural to choose special coordinates
such that the surface looks like a hyperplane in these coordinates: z0̨ D 0. We
demonstrate that the corresponding transformation can be chosen to be canonical,
that is, the canonical form of the Hamiltonian equations will not be spoiled in the
new coordinates. This greatly simplifies analysis of the Hamiltonian equations and
physical interpretation of a general singular theory [10].

It will be convenient to use the following notation: zi D .q1; p1; z˛/, that is z˛ are
all canonical pairs except .q1; p1/. Let us look for the new coordinates in the form

q01 D q1; p0
1 D p1 � f .q1; z˛/; z0˛ D z˛ C h˛.q1; z˛/; (4.74)

with undetermined functions h˛. We impose for them the following conditions:

h˛.0; z˛/ D 0: (4.75)

The functions h˛ can be chosen in such a way that the canonicity conditions

fq01; q01gz Dfp0
1; p

0
1gz D 0; fq01; p0

1gz D 1; fq01; z0˛gz D 0; (4.76)

fp0
1; z

0˛gz D 0 , @h˛

@q1
D fz0˛; f gz; (4.77)
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fz0˛; z0ˇgz D !˛ˇ: (4.78)

hold. Indeed, the Eqs. (4.76) are already satisfied. Equation (4.77) represents a
first-order partial differential equation @h˛

@q1
C @f

@zˇ
!ˇ� @h˛

@z� D !˛� @f
@z� . The Cauchy

problem (4.75) for it has a unique solution h˛.q1; z˛/; see, for example [4].
The solution automatically obeys Eq. (4.78). To confirm this, we write an

equation for the function fz0˛; z0ˇg by differentiating the commutator with respect
to q1. Using Eq. (4.77) and the Jacobi identity, we obtain

@

@q1
fz0˛; z0ˇg D ffz0˛; z0ˇg; f g for any fixed ˛; ˇ; (4.79)

while Eq. (4.75) implies the boundary condition:

fz0˛; z0ˇgˇ̌q1D0 D !˛ˇ: (4.80)

Note that the matrix !˛ˇ obeys Eqs. (4.79) and (4.80). Since, as before, the problem
has a unique solution, one concludes that (4.78) holds.

The adjusted coordinates can be equally constructed for a system of equations
F� .qa; pb/ D 0. This is achieved by multiple repetition of the above procedure.
After completing the first step described above, we substitute the coordinates (4.74)
into the remaining equations, repeat the procedure for one of them, and so on.

4.5 Transformation Properties of the Hamiltonian Action

According to Sect. 2.9, Hamiltonian equations (2.88) can be obtained by application
of the principle of least action to the Hamiltonian action

SH D
Z

d�. pa Pqa � H.q; p//; (4.81)

while for canonically transformed variables q0, p0 the corresponding equations
follow from a similar expression with the Hamiltonian given by (4.52). It is
interesting to see the deformation of the integrand in (4.81) after the substitution
of z.z0; �/. By direct substitution, we obtain

�
pa Pqa � H.z/

ˇ̌
z.z0;�/

D c�1 �p0
a Pq0a�

�
cH.z.z0; �// � cpa.z

0; �/
@qa.z0; �/
@�

C @F

@�

�
C dF

d�

�
: (4.82)

where F.z0; �/ is precisely the function specified in Eq. (4.51). Note that the
transformed Hamiltonian (4.52) appears on r.h.s. of the integrand. For a univalent
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transformation we write

pa Pqa � H.q; p/ D p0
a Pq0a � QH.q0; p0; �/C dF.q0; p0; �/

d�
: (4.83)

The relationship among the integrands is a consequence of the previously obtained
properties of canonical transformations. Assuming that the Eq. (4.83) holds for a
canonical transformation, we easily find most of their properties, see [1, 12, 13].

Exercise Does the Hamiltonian equations (4.22) follow from the principle
of least action applied to Hamiltonian action with the integrand (4.82)?
Consider also the cases of univalent and univalent time-independent canonical
transformations.

4.6 Summary: Equivalent Definitions for Canonical
Transformation

In Sect. 2.7 canonical transformations were defined as those preserving the standard
form of Hamiltonian equations. In subsequent sections we have found a number of
equivalent definitions. For convenience, we present here the resulting list:

Let zi ! z0i.zj; �/ be a phase-space transformation. Then the following state-
ments are equivalent and any one of them can be taken as a definition for the
canonical transformation:

1. The transformation preserves the canonical form of Hamiltonian equations for
any Hamiltonian system:

Pzi D !ij @H

@zj

z!z0

! Pz0i D !ij @
QH.z0; �/
@z0j ; any H; some QH: (4.84)

2. The transformation leaves the symplectic matrix invariant (disregarding a con-
stant c)

@z0k

@zi
!ij @z0l

@zj
D c!kl; or fz0k; z0lgz D c!kl; c D const: (4.85)

3. There is a function E.z0; �/ such that

czj.z0; �/!ji
@zi.z0; �/
@z0l C !ljz

0j D 2
@E.z0; �/
@z0l : (4.86)
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4. There is a function F.z0; �/ such that

cpb
@qb

@q0a � p0
a D @F.z0; �/

@q0a ; cpb
@qb

@p0
a

D @F.z0; �/
@p0

a

: (4.87)

If the function E.z0; �/ (4.86) is known, F.z0; �/ can be constructed as follows

F.z0; �/ � E.z0; �/C c

2
qb.z0; �/pb.z

0; �/ � 1

2
q0bp0

b; (4.88)

5. For the free transformation, there is a generating function S.q; q0; �/, with
det @2S

@qa@q0b ¤ 0, such that

cpa.q; q
0; �/ D @S

@qa
; p0

a.q; q
0; �/ D � @S

@q0a : (4.89)

If the function F.z0; �/ (4.87) is known, the generating function can be con-
structed as follows

S.q; q0; �/ D F.q0; p0; �/
ˇ̌
p0.q;q0;�/

: (4.90)

4.7 Hamilton–Jacobi Equation

According to Eq. (4.52), the Hamiltonian has a nontrivial transformation law under
the time-dependent canonical transformation. The transformed Hamiltonian QH
depends on the function F.z0; �/, which determines the transformation according
to Eqs. (4.87) and (4.89). We can look for the F that makes QH as simple as possible,
which implies an interesting method to look for a general solution to Hamiltonian
equations

Pzi D !ij @H

@zj
: (4.91)

Performing the univalent canonical transformation

zi ! z0i D z0i.z; �/; (4.92)

we have equations of motion for the new variables, z0 D fz0; QHg, namely

Pz0i D !ij @

@zj

�
H.z.z0; �//� pa.z

0; �/
@qa.z0; �/
@�

C @F.z0; �/
@�

�
(4.93)



4.7 Hamilton–Jacobi Equation 169
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z’(τ)=constM
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τ

Fig. 4.4 Geometric interpretation of the Hamilton–Jacobi method: while coordinates of the point
M in the system z are defined by projection along MO, in the system z0 they are defined by
projection along MA

Suppose we have found the transformation (4.92) which annihilates QH:

@F.z0; �/
@�

� .pa@�q
a � H.z//jz.z0;�/ D 0; (4.94)

then (4.93) acquires the form Pz0i D 0, and can be immediately solved: z0i D ci D
const. In the new coordinates the system is at rest. Now let us return to the initial
variables: one substitutes this result into l.h.s. of Eq. (4.92) and solves them in
relation to z:

zi D zi.�; cj/: (4.95)

By construction, this gives the general solution to equations of motion (4.91).
The geometric interpretation of this procedure is very simple: we search for a

special coordinate system .z0i; �/ of the extended phase space, such that trajectories
of the dynamical system look like vertical straight lines at these coordinates, see
Fig. 4.4 on page 169.

According to this scheme, the problem (4.91) is replaced by the problem (4.94),
which contains 2n C 1 unknown functions zi.z0j; �/, F.z0i; �/. By construction they
obey 2n Eqs. (4.87). Supposing that the transformation under investigation is free,
the system (4.94) and (4.87) can be equally analyzed in terms of independent
variables q, q0 instead of q0, p0. According to Eqs. (4.59) and (4.58), in the variables
q, q0 the system acquires the form3

@S.q; q0; �/
@�

C H.q; p.q; q0; �// D 0; (4.96)

3Since the general solution (4.95) determines the canonical transformation (4.92), the Eq. (4.97)
state that we search for the generating function of the evolution.
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pa D@S.q; q0; �/
@qa

; p0
a D �@S.q; q0; �/

@q0a : (4.97)

Using the first equation from (4.97) in Eq. (4.96), the equation for S can be separated
from those for p; p0. The closed equation for S.qa; �/ is

@S.qa; �/

@�
C H

�
qa;

@S.qa; �/

@qb

�
D 0; (4.98)

where q0b have been omitted since they enter into the resulting equation as param-
eters. This partial differential equation is known as a Hamilton–Jacobi equation.
Remind that solutions to partial differential equations generally depend on arbitrary
functions. In particular, we can look for the so called complete solution that depends
on n arbitrary numbers q0b. Let S.qa; q0b; �/, with det @S

@qa@q0b ¤ 0 be such a
solution. Then Eq. (4.97) determines the free canonical transformation (4.92) which
annihilates the Hamiltonian QH. According to the previous analysis, solving the
algebraic Eqs. (4.97) for zi D qa; pb, we obtain the general solution zi D zi.z0j; �/, to
the Hamiltonian equations (4.91).

In short, the Hamilton–Jacobi method for solving Hamiltonian equations (4.91)
can be formulated as follows:

1. Find the solution S.qa; q0b; �/, det @2S
@qa@q0b ¤ 0 to the Hamilton–Jacobi equation

@S.qa; �/

@�
C H

�
qa;

@S.qa; �/

@qb

�
D 0; (4.99)

which depends on n arbitrary numbers q0b.
2. Write the expressions

pa D @S.q; q0; �/
@qa

; p0
a D �@S.q; q0; �/

@q0a ; (4.100)

and resolve them in relation to q, p:

qa D qa.q0; p0; �/; pa D pa.q
0; p0; �/: (4.101)

These functions represent the general solution to the Eq. (4.91), with 2n integra-
tion constants q0a; p0

a.

Summing up, the problem to find a general solution to 2n ordinary differential
equations (4.91) can be replaced by the problem to find the solution S of partial
differential equation (4.99) which depends on n arbitrary constants.
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Example Using the method of separation of variables, a one-dimensional
Hamilton–Jacobi equation can be solved for an arbitrary time-independent
potential. Consider a particle on a straight line in the potential U.x/, L D
1
2m Px2 � U. Its Hamiltonian reads H D 1

2m p2 C U, hence the Hamilton–Jacobi
equation is:

@S

@t
C 1

2m

�
@S

@x

�2
C U D 0: (4.102)

We look for a solution to the form S.t; x/ D S1.t/C S2.x/. After substitution
of this expression into (4.102) the variables t and x separate:

�@S1.t/

@t
D 1

2m

�
@S2.x/

@x

�2
C U.x/: (4.103)

This implies @S1
@t D �x0, 1

2m



@S2
@x

�2CU.x/ D x0, where x0 stands for a number.

This represents the total energy of the system, as we can see from comparison
of the last equation with the Hamiltonian. The equations can be immediately
integrated out, we obtain

S D S1 C S2 D �x0t C
Z

dx
p
2m.x0 � U/: (4.104)

Then Eq. (4.100) reads:

p D
p
2m.x0 � U/; p0 D �t C m

Z
dxp

2m.x0 � U/
: (4.105)

It gives the general solution x.t; x0; p0/, p.t; x0; p0/ written in an implicit form.
For example, for the free particle, U D 0, we obtain:

p D p
2mx0; x D

p
2mx0
m

t C
p
2mx0p0

m
; (4.106)

which is the expected expression x D c1
m t C c2, where c1 � p

2mx0 represents
the initial momentum and c2 �

q
2x0

m p0 is the initial position of the particle.

Let us consider also the harmonic oscillator, U D k
2
x2. Equation (4.105)

acquires the form

p D
p
2mx0 � kmx2;

(continued)
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p0 D �t C m
Z

dxq
2m.x0 � k

2
x2/

D �t C
r

m

k
arcsin

r
k

2x0 x: (4.107)

Solving these equalities with respect to x, p we obtain the general solution

x.t/ D
r
2x0
k

sin.!t C ı/ D x0 cos!t C p0p
km

sin!t;

p.t/ D p
2mx0 cos.!t C ı/ D p0 cos!t � p

kmx0 sin!t; (4.108)

where ! �
q

k
m ; ı �

q
k
m p0, and the initial position and momentum are given

by x0 D
q

2x0

k sin ı; p0 D p
2mx0 cos ı.

4.8 Action Functional as a Generating Function of Evolution

In the Sect. 4.4.1 we have seen that a general solution to Hamiltonian equations can
be identified with a canonical transformation. It was demonstrated in Sect. 4.2 that
the Hamiltonian represents the generator of the corresponding infinitesimal trans-
formation. Here we construct the generating function of the finite transformation.
When the general solution to the Hamiltonian equations is known, it is possible
to construct the complete solution S of the Hamilton–Jacobi equation in closed
form in terms of the Hamiltonian action SH, see Eq. (4.113) below. According to
the previous section, this S represents the generating function of the evolution.

Let

z D z.z0; �/; z.z0; �0/ D z0; (4.109)

be a general solution to the Hamiltonian equations as a function of initial values z0
(see discussion at the end of Sect. 4.2). Let us substitute (4.109) into Eq. (4.94)

@F.z0; �/
@�

D �
pa@�q

a � H.z/
ˇ̌

z.z0;�/
: (4.110)

This is the Hamilton–Jacobi equation written in terms of F. Equation (4.87), taken
at � D 0, implies that F.q0; p0; �0/ D const. Since F is defined up to a constant, we
omit it in the following:

F.q0; p0; �0/ D 0: (4.111)
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Since the r.h.s. of Eq. (4.110) now represents the known function of � , we immedi-
ately find its solution subject to the initial condition (4.111)

F.q0; p0; �/ D
Z �

�0

d� . pPq � H/jz.z0;�/ : (4.112)

The r.h.s. is just the Hamiltonian action written as a function of the initial position
and momentum z0 of the system. Using the relationship (4.90) between F and the
generating function, we obtain:

S.q; q0; �/ D F.q0; p0; �/
ˇ̌
p0.q;q0;�/

D
�Z �

�0

d� . pPq � H/jz.z0;�/

�ˇ̌
ˇ̌
p0.q;q0;�/

: (4.113)

Being a complete solution to the Hamilton–Jacobi equation, S represents the gen-
erating function of the canonical transformation z0 ! z associated with the general
solution. The expression on the r.h.s. is the Hamiltonian action represented as a
function of initial and final position. Hence it can be said that the Hamiltonian action
is the generating function of canonical transformation along true trajectories: it
transforms the system coordinates from one time to another.

According to the previous section, knowledge of the complete integral of
the Hamilton–Jacobi equation allows us to construct the general solution to the
Hamiltonian equations of motion. Here this result has been inverted. Hence, we have
the mathematically notable fact that searching for a complete solution to the partial

differential equation @S
@�

C H



qa; @S
@qb

�
D 0 is equivalent to searching for a general

solution to the system of ordinary differential equations Pqa D @H
@pa

, Ppa D � @H
@qa .

Example As an illustration, we use a general solution to the harmonic
oscillator equations of motion and the formula (4.113) to construct the corre-
sponding generating function. Substitution of Eq. (4.108) into the expressionR t
0 . pPx � H/ D R t

0 .
1
2m p2 � k

2
x2/, it reads:

Z t

0

�
.
1

2m
p20 � k

2
x20/ cos 2!� � !x0p0 sin 2!�

�
d�

D 1

!
.
1

2m
p20 � k

2
x20/ sin!t cos!t � x0p0 sin

2 !t: (4.114)

From Eq. (4.108) we find the initial momentum p0 presented as a function
of initial and final position, p0 D p

km.x � x0 cos!t/ sin�1 !t. According
to (4.113), the generating function is obtained substituting p0 into Eq. (4.114).

(continued)
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After some computations we arrive at:

S.x0; x; t/ D
p

km

2
.x2 � x20/ arctan!t � p

kmxx0 sin
�1 !t: (4.115)

By direct substitution we verify that it obeys the Hamilton–Jacobi equa-
tion (4.102).
Exercise. Show by direct substitution that S of Eq. (4.113) obeys the
Hamilton–Jacobi equation.



Chapter 5
Integral Invariants

Abstract This chapter is devoted to the discussion of the theory of integral invari-
ants, which reveals an interesting structure of the general solution to Hamiltonian
equations. We discuss the basic Ponicaré-Cartan and Ponicaré integral invariants
that represent line integrals of a special vector field defined on extended phase
space. The integrals retain the same value for any closed contour taken on a given
two-dimensional surface formed by solutions to the Hamiltonian equations. As will
be discussed in Sect. 5.1.3, this property could be taken as a basic principle of
mechanics, instead of the principle of least action. Besides their applications in
mechanics, integral invariants are widely used in the theory of differential equations.

This chapter is devoted to the discussion of the theory of integral invariants, which
reveals an interesting structure of the general solution to Hamiltonian equations. We
discuss the basic Poincaré-Cartan and Poincaré integral invariants that represent line
integrals of a special vector field defined on extended phase space. The integrals
retain the same value for any closed contour taken on a given two-dimensional
surface formed by solutions to the Hamiltonian equations. As will be discussed in
Sect. 5.1.3, this property could be taken as a basic principle of mechanics, instead
of the principle of least action. Besides their applications in mechanics, integral
invariants are widely used in the theory of differential equations, see [1, 4].

5.1 Poincaré-Cartan Integral Invariant

5.1.1 Preliminaries

We recall here some facts related to the description of a surface and a curve
in Euclidean space. Consider the space R

2nC1 parameterized by the coordinates
.zi; �/ � .qa; pb; �/, i D 1; 2; : : : ; 2n, a; b D 1; 2; : : : n. Let S be the two-
dimensional cylindrical surface embedded in R

2nC1 (see Fig. 5.1 on page 176).
Henceforth this will be called a tube. Let ˇ, ˛, ˛ � Œ0; l� be the coordinates of a
coordinate system established on S. Then the points M.�; zi/ of the surface have the
corresponding coordinates ˇ; ˛. This implies the parametric equations that describe

© Springer International Publishing Switzerland 2017
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Fig. 5.1 Point M.�; zi/ on the tube has the coordinates ˇ, ˛. This implies parametric equations of
the tube zi D zi.ˇ; ˛/; � D �.ˇ; ˛/. If � is taken as one of the coordinates: ˇ D � , we have the
parametric equations zi D zi.�; ˛/; � D �

the embedding of the surface in R
2nC1

S W
�

zi D zi.ˇ; ˛/;

� D �.ˇ; ˛/:
(5.1)

By construction, we have �.ˇ; 0/ D �.ˇ; l/, zi.ˇ; 0/ D zi.ˇ; l/.
Suppose that the curve C on S can be described by the equation ˇ D ˇ.˛/. Then

the parametric equations

C W
�

zi D zi.ˇ.˛/; ˛/ � zi.˛/;

� D �.ˇ.˛/; ˛/ � �.˛/;
(5.2)

describe its embedding in R2nC1.
We will be interested in the surfaces formed by a one-parameter family zi.�; ˛/

of solutions to the first-order system1

Pqa D Qa.q; p/; Ppa D Pa.q; p/; (5.3)

where Q, P are given functions. Remind that the Hamiltonian system is a particular
case of (5.3), when there is a function H.q; p/, such that

Qa D @H

@pa
; Pa D � @H

@qa
: (5.4)

1All the results of this section remain true for the functions Q, P with the manifest dependence on
time.
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q
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τ
trajectory
z(τ, α0)

α0

closed
contour
C: τ(α)

S

ci=fi(α)

Fig. 5.2 The tube of trajectories can be constructed starting from the “initial-value” curve ci D
f i.˛/. The Poincaré-Cartan integral is defined by using an arbitrary closed contour C � S

Comments To construct an example of the family, suppose that the general solution
zi.�; cj/; zi.0; cj/ D cj of (5.3) is known. Let ci D f i.˛/, � D 0 be the parametric
equations of a closed curve in R

2nC1. Then zi.�; ˛/ � zi.�; cj.˛// represents an
example of the one-parameter family; see Fig. 5.2 on page 177.

For the tube formed by solutions to Eq. (5.3), one can take � as one of the
coordinates on the surface. That is, the coordinate system on S is now � , ˛, ˛ � Œ0; l�.
Then the parametric equations of the surface are:

S W
�

zi D zi.�; ˛/;

� D �:
(5.5)

By construction:

zi.�; 0/ D zi.�; l/; (5.6)

and for any fixed ˛ D ˛0, the curve zi.�; ˛0/ represents a solution to Eq. (5.3).
Let a curve C � S be described by the equation � D �.˛/. Then the

corresponding parametric equations of its embedding into R2nC1 are:

C W
�

zi D zi.�.˛/; ˛/ � zi.˛/;

� D �.˛/:
(5.7)

5.1.2 Line Integral of a Vector Field, Hamiltonian Action,
Poincaré-Cartan and Poincaré Integral Invariants

Consider the vector field EV.zi; �/ D .va.zi; �/; ub.zi; �/; v.zi; �// defined on the
extended phase space R

2nC1. Then we define the line integral of the vector field
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Fig. 5.3 To define the line integral of the vector field EV , we replace the oriented curve by a

sequence of the following displacement vectors: CM QM ! SN

D1

E4r


along the oriented curve CM QM , see Fig. 5.3 on page 178:

R
C

EVdEr D R
C vadqa C ubdpb C vd�

� lim
N!1

NP

D1

.
����!
V.M
/;

��!4r
/;
(5.8)

where .EV;��!4r
/ is the scalar product va4qa C ub4pb C v4� . If C is given in the
parametric form zi D zi.�/, � D �.�/, the line integral can be presented in terms of
the definite integral as follows:

Z
C

EVdEr D
Z �2

�1

.va.�/
dqa

d�
C ub.�/

dpb

d�
C v.�/

d�

d�
/d�; (5.9)

where EV.�/ D EV.zi.�/; �.�//.
Let C: � D �.˛/ be a closed contour on the tube of solutions (5.5). The line

integral (5.8) is called the first-order integral invariant, if its value does not depend
on the choice of the contour on the tube. If C: � D const is the closed contour
composed of simultaneous points of the tube, the integral reduces to

I
C

Vidzi D
I

C
vadqa C ubdpb; (5.10)

and is called the first-order universal integral invariant.
We will be mainly interested in a rather particular case of the vector field given

by the expression

EV.qa; pb; �/ D .pa; 0;�H.qa; pb//; (5.11)



5.1 Poincaré-Cartan Integral Invariant 179

where H is the Hamiltonian of the system (5.3) and (5.4). Note that EV is orthogonal
to any p-axis. The line integral acquires the form

Z
C

padqa � Hd�: (5.12)

For the curve allowed as a trajectory of the system (5.3) and (5.4), the line
integral (5.12) can be identified with the Hamiltonian action. Indeed, consider
the curve that can be described in the parametric form as follows: zi D zi.�/,
�1 � � � �2. Then Eq. (5.12) acquires the form

Z �2

�1

.pa Pqa � H/d� � SH: (5.13)

Now, consider a curve that corresponds to the closed contour. The line integral (5.12)
along the closed contour is called the Poincaré-Cartan integral invariant

I D
I

C
padqa � Hd�: (5.14)

Note that, unlike the previous case, the closed contour cannot be the allowed
trajectory of the system (5.3) and (5.4). For the simultaneous contour C: � D const,
the integral reduces to I1 D H

C padqa and is called the Poincaré (universal) integral
invariant.

We specify the expression of the Poincaré-Cartan integral for the closed contour
that lies on the tube of trajectories S (5.5). Let C: � D �.˛/ be the equation of
the contour in the coordinate system established on S. Then the corresponding
parametric equations are (5.7), and the Poincaré-Cartan integral is represented by
the definite integral

I D
Z l

0

d˛

�
p.�.˛/; ˛/

dq.�.˛/; ˛/

d˛
� H.z.�.˛/; ˛//

d�

d˛

�
: (5.15)

Summing up, we have seen that a line integral of the vector field (5.11), being
computed along the proper classes of curves, reduces either to the Hamiltonian
action, or to the Poincaré-Cartan integral, or to the Poincaré universal integral.

By construction, the Poincaré-Cartan integral could depend on a choice of the
contour C: I D IC. Remarkably enough, it happens to be contour-independent: I
does not change its value in the case of an arbitrary displacement (with deformation)
of the contour along the tube. This is one of the results discussed in the next section.
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5.1.3 Invariance of the Poincaré–Cartan Integral

Here we demonstrate that I has the same value for any contour taken on a given tube
of trajectories of the Hamiltonian system. Conversely, the contour-independenceof I
(constructed with the help of a function H) on a tube of solutions to the system (5.3)
implies that the system is the Hamiltonian one. More exactly, we have

Assertion For the system

Pqa D Qa.q; p/; Ppa D Pa.q; p/; (5.16)

let zi.�; ˛/, ˛ � Œ0; l� be a one-parameter family of solutions which form a tube:
zi.�; 0/ D zi.�; l/. Then the following statements are equivalent:

(a) The system is a Hamiltonian one: there is a function H.z/ such that

Qa D @H

@pa
; Pa D � @H

@qa
: (5.17)

(b) There is a function H.z/ such that a value of the Poincaré–Cartan integral

I D
I

C
padqa � Hd�: (5.18)

does not depend on the choice of the closed contour C on the tube.

Proof Henceforth we will frequently use the following notation: Pzi � @zi.�;˛/

@�
, z0i �

@zi.�;˛/

@˛
.

(A) Let the system (5.16) be a Hamiltonian one. The invariance of I turns out to
be closely related to the properties of the Hamiltonian action in the passage
from one trajectory to another. Consider two closed contours C1: �1.˛/ and C2:
�2.˛/ on the tube S, see Fig. 5.4 on page 181. For any fixed ˛, we write the line
integral (5.12) along the solution zi.�; ˛/ to the system (5.16)

SH.˛/ D
Z �2.˛/

�1.˛/

�
pa.�; ˛/

@qa.�; ˛/

@�
� H.z.�; ˛//

�
d�: (5.19)

This gives the value of the Hamiltonian action for the trajectory. So, the
function SH.˛/ describes the variation of the Hamiltonian action in the passage
from one trajectory to another. Since the values ˛ D 0; l correspond to the same
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q

p

τ

trajectory
z(τ, α0)

α = α0
α = 0

S

C1: τ1(α)

C2: τ2(α)

Fig. 5.4 For any fixed ˛ D ˛0, the function SH.˛0/ is the Hamiltonian action computed along the
solution z.�; ˛0/ of Eq. (5.16) between the points ˛1.�0/ and ˛2.�0/. The Poincaré-Cartan integral
has the remarkable property: IC1 D IC2

trajectory, we have

SH.l/ D SH.0/; (5.20)

from this it follows:

Z l

0

dSH.˛/

d˛
d˛ D 0: (5.21)

Let us compute the variation rate

dSH.˛/

d˛
D
�

p
@q

d�
� H

�ˇ̌
ˇ̌
�2.˛/

d�2
d˛

� .�2 ! �1/C
Z �2.˛/

�1.˛/

�
p0 Pq C p

@

@�
q0 � @H

@p
p0 � @H

@q
q0
�

d�: (5.22)

Integration by parts of the second term gives

pq0
ˇ̌
ˇ�2.˛/
�1.˛/

�
Z �2.˛/

�1.˛/

q0 Ppd�: (5.23)
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Then the variation rate is

dSH.˛/

d˛
D p.�2.˛/; ˛/

�
Pqj�2.˛/

d�2
d˛

C q0ˇ̌
�2.˛/

�

�H.z.�2.˛/; ˛//
d�2
d˛

� .�2 ! �1/

C
Z �2.˛/

�1.˛/

�
p0
�

Pq � @H

@p

�
� q0

�
Pp C @H

@q

��
d�: (5.24)

The last line vanishes due to Eqs. (5.16) and (5.17), while the first line is equal
to p dq

d˛ . Thus we have

dSH.˛/

d˛
Dp.�2.˛/; ˛/

dq.�2.˛/; ˛/

d˛
� H.z.�2.˛/; ˛//

d�2
d˛

�.�2 ! �1/: (5.25)

Note that the r.h.s. of (5.25) coincides with the integrand of the Poincaré-Cartan
integral (5.15). Inserting this expression into Eq. (5.21), we obtain the desired
result: IC1 D IC2 for any closed contours Ci on S.

(B) Suppose that the integral (5.18) with a given function H is contour-independent
on the tube of the system (5.16). Let C0: � 0.˛/ be an arbitrary closed
contour near C: �.˛/, and let us denote � 0.˛/ � �.˛/ � ı�.˛/. Due to the
contour independence, we have IC0 � IC D 0. This implies that the variation
vanishes: ıI D .IC0 � IC/jlinear part on ı� D 0. On the other hand, it can
be computed directly, performing an expansion of IC0 around the point �.˛/
(below, the notation j means the substitution of �.˛//. Using z.�.˛/Cı�; ˛/ D
z.�.˛/; ˛/C @z.�;˛/

@�

ˇ̌
ˇ ı� C O2.ı�/, we obtain:

ıI D
Z l

0

d˛

�
Ppj dq.�.˛/; ˛/

d˛
ı�C

p.�.˛/; ˛/
d

d˛
. Pqj ı�/ � H

dı�

d˛
�

@H

@q
Pq
ˇ̌
ˇ̌ d�

d˛
ı� � @H

@p
Pp
ˇ̌
ˇ̌ d�

d˛
ı�

�
: (5.26)

The first line can be presented as

Ppq0ˇ̌ ı� C PpPqj d�

d˛
ı�; (5.27)
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while integration by parts in the second line leads to the expressions

Z l

0

�
� p0 Pqˇ̌ ı� � PpPqj d�

d˛
ı�

�
d˛ C pPqj ı� jl0 ; (5.28)

Z l

0

�
@H

@q

�
Pq d�

d˛
C q0

�ˇ̌
ˇ̌ ı�C

@H

@p

�
Pp d�

d˛
C p0

�ˇ̌
ˇ̌ ı�

�
d˛ � Hı�jl

0 : (5.29)

Since the values ˛ D 0; l correspond to the same point on the tube, the last
terms in Eqs. (5.28) and (5.29) vanish. Bringing together the remaining terms,
we obtain

ıI D
Z l

0

d˛

�
q0
�

Pp C @H

@q

�ˇ̌
ˇ̌� p0

�
Pq � @H

@p

�ˇ̌
ˇ̌
�
ı�.˛/: (5.30)

Using Eq. (5.16) and the contour independence ıI D 0, we have:

Z l

0

d˛

"
q0ˇ̌ �P C @H

@q

�ˇ̌
ˇ̌
z.�.˛/;˛/

�

p0ˇ̌ �Q � @H

@p

�ˇ̌
ˇ̌
z.�.˛/;˛/

#
ı�.˛/ D 0: (5.31)

Being true for any ı�.˛/ as well as for any contour �.˛/, this equality implies
Eq. (5.17).

The affirmation demonstrated means, in particular, that for a given Poincaré–
Cartan integral there is a unique system of differential equations that admits this
integral as the integral invariant. This statement could be taken as the basic principle
of mechanics, instead of the principle of least action.

5.2 Universal Integral Invariant of Poincaré

Let us consider a particular case of the Poincaré-Cartan invariant I D H
padqa �

Hd� , when the closed contour C is formed by simultaneous points of the system.
It corresponds to the points of intersection of the tube with the hyperplane � D
�0 D const, see Fig. 5.5 on page 184. We have d� D 0 and the Poincaré–Cartan
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q1

p1

C1:

τ = τ0

τ

q1
 = q1(τ0, α)

p1 = p1(τ0, α)A1

zi
 = zi(τ0, α)

C :

zα
 = τ = 0

Fig. 5.5 Closed contour of simultaneous points C and its projection C1 on the plane .q1; p1/

invariant acquires the form

I1 D
I

C
padqa: (5.32)

This is called the Poincaré (universal) integral invariant. The equation of the
contour is � D �0, and the corresponding parametric equations are � D �0,
zi D zi.�0; ˛/. This implies the following expression for I1 in terms of the definite
integral

I1 D
Z l

0

pa.�0; ˛/
@qa.�0; ˛/

@˛
d˛: (5.33)

Being a particular case of I, the Poincaré integral invariant has similar properties.
In particular, the Assertion of the previous section can be reformulated for I1 as
follows:

Assertion For the system

Pqa D Qa.q; p/; Ppa D Pa.q; p/; (5.34)

let zi.�; ˛/, ˛ � Œ0; l� be a one-parameter family of solutions which form a tube:
zi.�; 0/ D zi.�; l/. Then the following statements are equivalent:

(a) The system is a Hamiltonian one: there is a function H.z/ such that

Qa D @H

@pa
; Pa D � @H

@qa
: (5.35)
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(b) The value of the Poincaré integral

I1 D
I

C
padqa�: (5.36)

does not depend on the choice of the simultaneous closed contour C on the tube.

Since H is not presented in the expression for I1, it is an invariant of any
Hamiltonian system. This explains the terminology “universal”.

It should be stressed that I1 is invariant under the replacement C ! C0, where
both contours are simultaneous. So, C0 can be considered as the result of the
evolution of the points of C for the same time interval. Recall that the evolution is
an example of a canonical transformation. This explains why the Poincaré integral
invariant can be used to study properties of canonical transformations; see, for
example [14]. Note also, that according to Eq. (5.33), the invariance of I1 implies
I1.�0/ D I1.� 0/. That is, I1 does not depend on time.

The Poincaré integral invariant has an interesting geometric interpretation. To
discuss this interpretation, let us recall that the following line integral

A D
I

D
pdq; (5.37)

on the two-dimensional plane parameterized by q and p, gives an area of the region
limited by the closed contour D. In the extended phase space, let us consider
the contour C1: q1 D q1.�0; ˛/, p1 D p1.�0; ˛/, z˛ D 0, � D 0. This is the
projection of the integration contour C: zi D zi.�0; ˛/, � D �0 of the Poincaré
integral invariant (5.32) on the .q1; p1/-plane (see Fig. 5.5 on page 184). According
to Eq. (5.37), the area inside C1 can be computed as

A1 D
I

C1

p1dq1 D
Z l

0

p1.�0; ˛/
@q1.�0; ˛/

@˛
d˛: (5.38)

Comparing the expressions (5.33) and (5.38), we conclude that the Poincaré integral
invariant represents a sum of the areas Aa

I1 D
I

C
padqa D

X
Aa: (5.39)

While the contoursC,Ca and their areas can vary during an evolution, the sum (5.39)
of the areas Aa, being equal to the invariant I1, remains unaltered. This gives the
geometric interpretation of the Poincaré integral invariant.

Let us enquire about the structure of the universal invariant of the general
form (5.10). In other words, we are interested in finding the most general form of
the vector field that implies the invariance of the integral.
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Assertion Let the line integral QI1 of the vector field Vi.zj; �/ D .va; ua/ be the
universal integral invariant. Then

1. The field has the form

Vi D 1

2
czj!ji C @i˘.zj; �/; ou

(
va D 1

2
cpa C @˘

@qa ;

ua D � 1
2
cqa C @˘

@pa
;

(5.40)

where !ij is the symplectic matrix and ˘ is a function.
2. The integral QI1 is proportional to the Poincaré integral invariant

QI1 �
I

C
vadqa C ubdpb D cI1 � c

I
C

padqa; c D const: (5.41)

This last statement means that the Poincaré integral invariant is essentially a unique
universal integral invariant.

Proof Let C: � D const be the closed simultaneous contour on the tube (5.5)
of solutions to the Hamiltonian system H. Using the parametric equations of the
contour zi D zi.�; ˛/, � D const, QI1 can be presented as the definite integral

QI1.�/ D
Z l

0

�
va.z.�; ˛/; �/q

0a.�; ˛/C ua.z.�; ˛/p0
a.�; ˛/


d˛

�
Z l

0

Vi.z.�; ˛/; �/z
0id˛ (5.42)

Owing to the invariance QI1.�/ D QI1.� 0/, we have dQI1
d� D 0. Direct computation of the

derivative gives the definite integral corresponding to the line integral

I
C

Gi.z; �/dzi D 0; (5.43)

where

Gi � �Wij!
jk@kH C @Vi

@�
;

Wij � @iVj � @jVi: (5.44)

Since the previous analysis was carried out for an arbitrary tube, the integral (5.43)
vanishes for any contour on the hyperplane � Dconst, in other words, it is contour-
independent. That is, Gi is the conservative field, @lGi �@iGl D 0. The explicit form
of this expression is

.@jWli/!
jk@kH C @

@�
Wli C Wlj!

jk@k@iH � Wij!
jk@k@lH D 0: (5.45)
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Due to the universality of QI1, Eq. (5.45) is true for any H, therefore

@jWli D @

@�
Wli D 0;

Wlj!
jk@k@iH � Wij!

jk@k@lH D 0: (5.46)

The first line implies that W is the numeric matrix.

Exercise Verify that the second line implies Wij D c!ij, where c D const.

Accordingly, we write @iVj �@jVi D c!ij, or, equivalently @i.Vj � 1
2
czk!kj/�@j.Vi �

1
2
czk!ki/ D 0. In turn, it implies Vi � 1

2
czk!ki D @i˘. That is, Vi has the form

Vi D 1
2
czk!ki C @i˘, as has been stated.

Integration of the vector field along a contour gives QI1 D H
C Vidzi D

1
2
c
H

C padqa � qadpa C H
C @i˘dzi D c

H
C padqa. All the integrated terms vanish

due to the closeness of the contour. Thus, any universal integral invariant differs
from the Poincaré one only by a numeric factor.



Chapter 6
Some Mechanical Problems in a Geometric
Setting

Abstract The Maupertuis variational principle is the oldest least-action principle
of classical mechanics. Its precise formulation was given by Euler and Lagrange;
for its history, see Yourgrau and Mandelstam (Variational Principles in Dynamics
and Quantum Theory. Pitman/W.B. Sanders, London/Philadelphia, 1968). However,
the traditional formulation (as a variational problem subject to the constraint that
only the motions with fixed total energy are considered), remained problematic, as
emphasized by V. Arnold (double citation): “In his Lectures on Dynamics (1842–
1843), C. Jacobi commented: “In almost all textbooks, even the best, this Principle
is presented in such a way that it is impossible to understand”. I do not choose to
break with tradition” (Arnold, Mathematical Methods of Classical Mechanics, 2nd
edn. Springer, New York, 1989).

6.1 Analysis of Trajectories and the Principle of Maupertuis

The Maupertuis variational principle is the oldest least-action principle of classical
mechanics. Its precise formulation was given by Euler and Lagrange; for its history,
see [34]. However, the traditional formulation (as a variational problem subject to
the constraint that only the motionswith fixed total energy are considered), remained
problematic, as emphasized by V. Arnold (double citation): “In his Lectures on
Dynamics (1842–1843), C. Jacobi commented: “In almost all textbooks, even the
best, this Principle is presented in such a way that it is impossible to understand”. I
do not choose to break with tradition” [2].

In this section we present the principle of Maupertuis as an unconstrained
variational problem.We discuss a conservative Lagrangian system. Its evolution can
be obtained according to the least action principle. In a full analogy, the principle of
Maupertuis can be formulated as the least action principle leading to the equations
for trajectories, without mentioning the time evolution along them.

In greater detail, the strategy of this section is as follows.
Given the solution qa D qa.�/ of the Lagrangian equations, we can exclude

the time � , thus obtaining the functions q˛.q1/ describing a trajectory of motion.
We are interested in an analysis of the trajectories. It is possible to write a system
of differential equations describing the trajectories. The system shows a number
of very interesting properties, that form in fact the contents of the principle of
Maupertuis. On the phase space, equations for the trajectories form a Hamiltonian

© Springer International Publishing Switzerland 2017
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190 6 Some Mechanical Problems in a Geometric Setting

system (with q1 playing the role of an “evolution parameter”). So, we are able to find
the corresponding Hamiltonian action. Equations for trajectories can be obtained
as stationarity conditions of the Hamiltonian action. This variational problem for
trajectories is precisely the principle of Maupertuis. Further, from the Hamiltonian
formulation we can restore a Lagrangian one, thus obtaining the Lagrangian version
of the principle of Maupertuis. The Hamiltonian and Lagrangian for the trajectories
q˛.q1/ will be found below in terms of the initial Hamiltonian and Lagrangian for
qa.�/.

This formalism will be further applied to describe a conservative mechanical
system in geometric terms.

6.1.1 Trajectory: Separation of Kinematics from Dynamics

Let qa D qa.�/ denote any solution to the Lagrangian equations (2.21), which we
write here in the normal form

Rqa D Ka.qa; Pqa/; Ka � QMabKb: (6.1)

The Lagrangian has no manifest time-dependence.
Geometrically, the solution qa D qa.�/ is a set of points in the configuration

space together with a given parametrization. The set itself (which is an image of the
interval Œ�1; �2� in the configuration space) is called a trajectory. At least locally, it
can be described without mentioning the evolution parameter. Suppose that one of
the functions describing the solution, say q1 D q1.�/, can be resolved with respect
to � W � D �.q1/. The substitution of this function into the remaining ones gives
expressions determining the trajectory

q˛.q1/ � q˛.�.q1//; ˛ D 2; 3; : : : ; n: (6.2)

By construction, we have the following representation of the functions q˛.�/ in
terms of q˛.q1/ defined by Eq. (6.2)

q˛.�/ D q˛.q1/
ˇ̌
q1!q1.�/

� q˛.q1/
ˇ̌
: (6.3)

Besides the notation Pqa � dqa.�/

d� , in this section we will use also the notation q;a �
dqa.q1/

dq1
. From Eqs. (6.3) and (6.1) we can write

Pq˛ D q;˛jPq1; Rq˛ D q;;˛j.Pq1/2 C q;˛jK1.qa; Pq1; q;˛ Pq1/: (6.4)

Starting from the system (6.1), it is possible to write closed equations determining
the trajectory (6.2). This possibility is due to the fact that the order of any system
admitting a first integral can be reduced by two units. Let us describe the procedure
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for the case of the total energy first integral. The energy conservation law

@L

@Pqa
Pqa � L D h D const; (6.5)

being a consequence of the system, can be added to this. Using the first equation
from (6.4), we write Eq. (6.5) in terms of q;˛j, Pq1 and resolve it algebraically for the
symbol Pq1:

Pq1 D Pq1.q1; q˛; q;˛; h/j: (6.6)

Replacement of Pqa, Rq˛ in the equations Rq˛ D K˛ according to Eqs. (6.4) and (6.6),
with subsequent substitution of the function �.q1/ in place of � , gives the desired
equations for variables q˛.q1/ that do not contain the variable �

q;;˛.q1/ D 1

.Pq1/2
�
K˛ � q;˛K1


: (6.7)

Solving these equations, we substitute the result into Eq. (6.6), which leads to a
closed equation for the function �.q1/

d�

dq1
D 1

Pq1.q1; h/ : (6.8)

This can be immediately integrated out, giving the time interval for the transition
from qa

1 to qa
2

4� D
Z q12

q11

dq1

Pq1.q1; h/ : (6.9)

It determines time evolution q1.�/ in implicit form.
In short, for the time-independent Lagrangian, the Lagrangian equations admit a

separation of variables: we are able to write a closed system of n�1 equations (6.7)
for the trajectory q˛.q1/.

Let us specify these results for the case of a particle moving in a potential. From
the action

S D
Z

d�

�
1

2
.Pqa/2 � U.qa/

�
; (6.10)

we have the equations of motion

Rqa C @aU D 0: (6.11)
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Equations (6.5) and (6.6) acquire the form

.Pq1/2 1
2
.q;a/2 C U.q/ D h ) 1

Pq1 D d�

dq1
D
s

.q;a/2

2.h � U/
: (6.12)

By using Eq. (6.4), we obtain equations for the trajectory of the particle

q;;˛ C 1C .q;ˇ/2

2.h � U/

�
@U

@q˛
� q;˛

@U

@q1

�
D 0: (6.13)

Equations (6.11) are equivalent to the system (6.12) and (6.13). In this system the
description of the dynamics is separated from the description of the trajectory (that
is, of the kinematics).

The solutions qa.�/ give an extremum of the variational problem (2.34). In the
next sections we will show that the trajectories q˛.q1/ can also be obtained from the
unconstrained variational problem known as the principle of Maupertuis.

6.1.2 Equations for Trajectory in the Hamiltonian Formulation

The previous discussion can be repeated in the Hamiltonian formulation, leading to
the conclusion that equations for the trajectory q˛.q1/, p˛.q1/, ˛ D 2; 3; : : : ; n form
a Hamiltonian system. We find here the corresponding Hamiltonian.

Let H.qa; pa/ stand for a Hamiltonian of the system L.q; Pq/. Conservation of
energy, being a consequence of Hamiltonian equations, can be added to this:

Pza D !ab @H

@zb
; (6.14)

H.q1; q˛; p1; p˛/ D h: (6.15)

Let us resolve the Eq. (6.15) algebraically with respect to p1. The solution is given
as

p1 D � QH.q1; q˛; p˛; h/: (6.16)

By construction, we have the identity:

H.q1; q˛;� QH.q1; q˛; p˛; h/; p˛; h/ � h; (6.17)
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which implies:

@ QH
@q˛

D
 
@H

@p1

ˇ̌
ˇ̌
p1D� QH

!�1
@H

@q˛

ˇ̌
ˇ̌
p1D� QH

;

@ QH
@p˛

D
 
@H

@p1

ˇ̌
ˇ̌
p1D� QH

!�1
@H

@p˛

ˇ̌
ˇ̌
p1D� QH

: (6.18)

Exercise Using the above identities, show that the equation Pp1 D � @H
@q1

is a
consequence of other equations of the system (6.14) and (6.15) and thus can
be omitted.

Similarly to the previous section, let za.�/ D .qa.�/, pa.�// be a solution to
Eq. (6.14), and z˛.q1/, p1.q1/ be the corresponding phase-space trajectory. Then
Eq. (6.14) implies

Pq˛ D q;˛ Pq1 D q;˛
@H

@p1
; Pp˛ D p;˛ Pq1 D p;˛

@H

@p1
: (6.19)

This allows us to write equations for z˛.q1/ (which are known as Whittaker
equations). They arise from Eq. (6.14) by using Eqs. (6.19), (6.16) and (6.18)

dq˛

dq1
D @ QH
@p˛

;
dp˛
dq1

D � @ QH
@q˛

: (6.20)

Together with the equations

p1 D � QH.q1; q˛; p˛; h/; Pq1 D @H

@p1
; (6.21)

they form an equivalent to the Eq. (6.14) system. So, the Eq. (6.20) give trajectories
of (2.21) with the fixed energy h. Notice that the Eq. (6.20) form a Hamiltonian
system, with the Hamiltonian QH obtained as a solution to Eq. (6.17). Integrating
2n � 2Whittaker’s equations (6.20), one substitutes the result into the first equation
from (6.21), thus obtaining the expressions q˛.q1/, pa.q1/ for the phase-space
trajectory. Substitution of these functions into the second equation from (6.21) gives
the equation

d�

dq1
D
�
@H

@p1

��1
; (6.22)

for the function �.q1/, which can immediately be integrated out.
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6.1.3 The Principle of Maupertuis for Trajectories

As we have seen in the previous section, the trajectory q˛.q1/, p˛.q1/, obeys the
Hamiltonian equations (6.20). According to Sect. 2.9, the equations can be obtained
from the variational problem for the Hamiltonian action

QS QH
Z

dq1
�
p˛q;˛ � QH.q˛; p˛; q1; h/

�

�
Z

p˛dq˛ � QHdq1 �
Z

padqa: (6.23)

Here QH is constructed according to Eqs. (6.15) and (6.16). The problem is known
as the principle of Maupertuis (the notation padqa is due to (6.16)). This states that
among all the phase-space trajectories with a given energy H.qa; pa/ D h, a system
follows the trajectory that supplies an extremum to the functional (6.23). Notice that
the construction of QH, which enters into Eq. (6.23), implies knowledge of the initial
system Hamiltonian.

Due to the Hamiltonian character of equations for trajectory, in any particular
example one can restore the corresponding Lagrangian QL.q˛; q;˛; q1; h/ / by apply-
ing the procedure described in Sect. 2.1.4. We now discuss how this L can be
constructed from the initial Lagrangian L in the general case.1

6.1.4 Lagrangian Action for Trajectories

Consider the action with the time-independent Lagrangian

S D
Z

d�L.qa; Pqa/: (6.24)

Construction Let us write the energy conservation law in terms of q;˛ , Pq1, see
Eq. (6.4)

�
@L

@Pq1 C @L

@Pq˛ q;˛
�

Pq1 � L.qa; Pq1; q;˛ Pq1/ D h: (6.25)

Resolving this equation algebraically for the symbol Pq1

Pq1 D Pq1.qa; q;˛; h/ � Pq1.q;˛/; (6.26)

1Equation (6.7) can also be taken as a starting point for obtaining QL.
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we construct the following action for the variables q˛.q1/:

QS D
Z

dq1
1

Pq1 .L.q
a; Pqa/C h/jPqa!q;a Pq1 jPq1DPq1.q;˛/

�
Z

dq1 QL.q˛; q;˛; q1; h/ (6.27)

In the rest of this section, the symbol j denotes the double substitution indicated in
this equation.

We demonstrate now that the trajectories q˛.q1; h/ of the theory QL with a given
energy h can be obtained as solutions to the variational problem (6.27). For this
purpose, it is sufficient to confirm that a Hamiltonian of the theory QL obeys the
Eq. (6.17); see the discussion after Eq. (6.21).

Consider the Hamiltonian formulation for the theory (6.27). We write equations
for the momenta and the corresponding solutions: Qp˛ D @ QL

@q;˛ ) q;˛ D Qv˛.qa; Qp˛/.
Using Eqs. (6.27) and (6.25), the derivative of QL can be written in terms of L as

follows: @ QL
@q;˛ � @L

@Pq˛
ˇ̌
ˇ. Combining these equations, the momenta can be presented in

terms of L

@L

@Pq˛
ˇ̌
ˇ̌
ˇ̌
ˇ̌
q;D Qv

� Qp˛: (6.28)

The Hamiltonian of the system (6.27) can also be presented in terms of L:

QH.qa; Qp˛; h/ D . Qp˛q;˛ � QL/ˇ̌
q;D Qv

D � @L

@Pq1
ˇ̌
ˇ̌
ˇ̌
ˇ̌
q;D Qv

: (6.29)

The Hamiltonian corresponding to L is given by:

H.qa; pa/ D pav
a � L.qa; va/: (6.30)

Here va.qb; pb/ represents a solution to the equation pa D @L
@Pqa , so:

va

�
qb;

@L

@Pqb

�
� Pqa: (6.31)

Now, let us substitute the function � QH. Qp˛/ into the expression for H in place of p1.
The substitution reads

@L

@Pq1
ˇ̌
ˇ̌ v1

�
@L

@Pq1
ˇ̌
ˇ̌ ; p˛

�
C p˛v

˛

�
@L

@Pq1
ˇ̌
ˇ̌ ; p˛

�
� L

�
qa; va

�
@L

@Pq1
ˇ̌
ˇ̌ ; p˛

��
: (6.32)
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To see that it is equal to the constant h, we express the symbol p˛ according to the
identity (6.28) and use Eq. (6.31), thus obtaining:

.
@L

@Pqa
Pqa � L.qa; Pqa//jjq;D Qv: (6.33)

From Eqs. (6.25) and (6.26), the expression in brackets is equal to h. Thus we
have obtained the Lagrangian version of the principle of Maupertuis: trajectories
q˛.q1; h/ of the system L.qa.�/; Pqa.�// with a given energy h can be obtained as
solutions to the variational problem (6.27).

In particular, application of the Eqs. (6.25), (6.26) and (6.27) to a particle moving
in a potential, see Eq. (6.10), gives the following action for the trajectory

QS.q˛/ D
Z

dq1
p
2.h � U/ıabq;aq;b D

s dq1
p
2.h � U/.1C .q;˛/2/: (6.34)

Corresponding equations of the trajectory can be presented in the form

q;;˛ C O�˛bcq;bq;c D 0; (6.35)

where

O�˛bc D �˛bc � q;˛�1bc;

�a
bc D � 1

2.h � U/
.ıa

c@bU C ıa
b@cU � ıb

c@aU/: (6.36)

This form of equation will be useful in the next section. Substitution of the
coefficients �a

bc into Eq. (6.35) gives (6.13).

Exercise Obtain the Eq. (6.35) from the variational problem.

To sum up, we have discussed trajectories of the conservative Lagrangian system.
Equations for the trajectories (6.7) also form the Lagrangian system, so they can
be obtained from a variational problem with an appropriately chosen Lagrangian,
which has been constructed in a closed form in terms of the initial Lagrangian, see
Eq. (6.27).

The principle of Maupertuis represents the Hamiltonian version of this vari-
ational problem: phase-space equations for trajectories form the Hamiltonian
system (6.20), and hence can be obtained as stationarity conditions of the Hamil-
tonian action functional (6.23).
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6.2 Description of a Potential Motion in Terms of a Pair
of Riemann Spaces

The trajectory of a free moving particle is a straight line. From the geometric point
of view, straight lines in Euclidean space represent a very special class, being the
shortest lines between two points. So, one can say in a geometric interpretation of
free motion, that among all the trajectories, the particle chooses the shortest one.
Generally, the trajectory is not a straight line for a potential system. Nevertheless,
there is an interesting possibility of a similar geometric treatment for that case.

In differential geometry there is a class of so called Riemann spaces with
the metrical and parallel transport properties generally different from those of
the Euclidean space. Instead of the standard expression for infinitesimal distance:
ds D p

ıabdqadqb, in the Riemann space we have the expression ds D p
gabdqadqb.

The metrical properties are determined by the set of functions gab.qa/ known as
the metric of the space. Since the metric depends on qa, the metrical properties
change from one point to another as well as differing in various directions from a
given point. The analogy of a straight line (that is, the analogy of free motion) in
the Riemann space is a geodesic line representing the curve of a minimal length
between two points.2 Parallel transport is defined by an independent quantity called
the affine connection.

From the previous section we know that the description of a trajectory of motion
can be separated from the description of the dynamics along it; see Eqs. (6.12)
and (6.13) for the case of potential motion. Here we show that the configuration
space of the system can be equipped with a metric (constructed with the help of
the potential) in such a way that trajectories turn out to be the shortest lines of
this metric. On the kinematic level, potential motion in flat Euclidean space is
thus equivalent to free motion in curved Riemann space. Intuitively, presence of a
potential can be treated as leading to the deformation of the metrical properties of the
initially flat configuration space. This in turn causes deviation of the trajectory from
the straight line, keeping it the shortest line with respect to the metric. Moreover,
the dynamics (time of evolution) also has an invariant geometric meaning. Potential
motion in this framework looks like an inertial motion, in a full (but formal) analogy
with the inertial motion in the presence of gravity in Einstein’s general theory of
relativity.

Here we give only an elementary discussion of the problem. The subsequent
sections are devoted to a more detailed discussion. For our present purposes it is
sufficient to bear in mind that the shortest line in Riemann space can be described
in the parametric form, qa.�/, by so-called geodesic equations in canonical
parametrization (for an elementary demonstration of this fact see a sequence of

2More exactly, the notions of a geodesic and a minimal length line coincide only in the Riemann
space with a Riemann connection. Here we do not distinguish these notions. They are discussed in
more detail in the following sections.



198 6 Some Mechanical Problems in a Geometric Setting

exercises at the end of this section)

Rqa C �a
bc Pqb Pqc D 0; (6.37)

subject to the conditions

qa.�1/ D qa
1; qa.�2/ D qa

2: (6.38)

The conditions mean that we look for the path from the point qa
1 to qa

2. The functions
�a

bc are constructed from the metric as follows

�a
bc D 1

2
gad.@bgdc C @cgbd � @dgbc/: (6.39)

These are known as a Riemann connection or Christoffel symbols.
Now we proceed as in Sect. 6.1.1, rewriting the system (6.37) in an equivalent

form, with the kinematics separated from the dynamics.

Exercise Verify the conservation of the charge:

d

d�

�
gab Pqa Pqb

 D 0; (6.40)

for solutions to the problem (6.37).

For solutions with the charge equal to v2 this implies

v
d�

dq1
D
p

gabq;aq;b: (6.41)

Using Eqs. (6.37), (6.4) and (6.41), we obtain the following equation for the
trajectory q˛.q1/:

q;;˛ C O�˛bcq;bq;c D 0; O�˛bc � �˛bc � q;˛�1bc: (6.42)

Under the boundary conditions q˛.q11/ D q˛1 , q˛.q12/ D q˛2 , it has a unique solution
q˛.q1/.

Now we are ready to compare these equations with those of potential
motion (6.12) and (6.35), which we write here once again

d�

dq1
D
s

ıab

2.h � U/
q;aq;b; (6.43)
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q;;˛ C O�˛bcq;bq;c D 0: (6.44)

The coefficients O� are given in terms of the potential U by Eq. (6.36). It is sufficient
to specify the metric as follows

gab D 2.h � U/ıab: (6.45)

Then the geodesic Eq. (6.42) coincide with Eq. (6.44) for the potential motion with
total energy h. That is, the trajectory of potential motion represents the shortest line
of this metric. Complete equations are not equivalent, as is clear from comparison
of Eqs. (6.41) and (6.43). So, an interesting task would be to find the equations of
geometric origin equivalent to the complete problem (6.11). This will be done in
Sect. 6.8. Here we only point out that the dynamics (6.43) also has an invariant
geometric meaning. Let us write the solution q˛.q1/ in the parametric form q1 D � ,
q˛ D q˛.�/, and compute a length of the curve with respect to the metric

Gab D ıab

2.h � U/
; (6.46)

constructed with help of an inverse potential. Comparing an expression for the
length

l D
Z �Dq12

�Dq11

d�
p

Gab Pqa Pqb D
Z q12

q11

dq1

s
ıab

2.h � U/
q;aq;b; (6.47)

with the Eq. (6.43), one concludes that the propagation time can be identified with
the length of the trajectory in space with the metric (6.46).

In this way, one can speak of a formal geometrization of mechanics: with a
system of total energy h propagating in a given potential U.qa/, we associate a
pair of Riemann spaces. The influence of the potential on the motion is encoded
in the metrical properties of these spaces. The trajectory of the potential motion in
the Euclidean configuration space coincides with the shortest line in Riemann space
gab D 2.h � U/ıab, while the time of motion coincides with the length of this line
in Riemann space Gab D ıab

2.h�U/ .
This geometrization has been called formal since the metric has no relationship

with the physical space-time metric that appears in the general relativity for the
description of gravity. Besides, the metric associated with a given system depends on
its total energy. That is, the configuration-space particles with different total energy
probe different geometries.
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Exercises

1. Verify that we have a similar situation in a more general case of the action

S D
Z

d�.
1

2
cab.q/Pqa Pqb � U.qa//: (6.48)

Here the corresponding Riemann spaces are gab D 2.h � U/cab and Gab D
cab

2.h�U/ .
2. Show that the geodesic equations in canonical parametrization (6.37)

follow from the action functional

S D
Z

d�
1

2
gab Pqa Pqb: (6.49)

3. Show that the corresponding action (6.27) for trajectories is given by

QS D
Z

dq1
p

gabq;aq;b (6.50)

Note a geometric interpretation of QS: since its integrandpgabq0aq0b gives a
distance between nearby closed points of the line q˛.q1/, QS itself represents
a length of the line. Therefore, solving the variational problem (6.27), we
look for the shortest path.

4. Show that the Eq. (6.42) for a trajectory follow from this action functional.

6.3 Basic Notions of Riemann Geometry

Here we briefly describe some basic notions of differential geometry of Riemann
space, with the aim of giving a more systematic description of a potential motion as
free motion in Riemann space. Besides, our purpose is to discuss certain concepts
such as covariance and coordinate independence, which are important for a proper
understanding of modern physical theories, including gravity and gauge fields.

6.3.1 Riemann Space

Without going into details,3 an n-dimensional manifold M is a set equipped with a
(local) coordinate system in the vicinity of any point q0 2 M; that is, a continuous

3Detailed discussion of the coordinate formulation of Riemann geometry for non-mathematicians
can be found, for example, in [15]. For the coordinate-free formulation, see [35].
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.

.

.
q1

q
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ψ. ϕ−1f=    
q’

Fig. 6.1 Local coordinate systems and the transition function

bijective map of this vicinity on a neighborhood of zero of Rn: ' W q ! qa D 'a.q/,
a D 1; 2; : : : ; n, is established. We immediately note that the coordinate system is
not unique: if f a.qb/, with det @f a

@qb ¤ 0, are given functions, then the map � f ı ' W
q ! q0a D f a.'b.q//, also represents a coordinate system. In abuse of notation, we
write f a.qb/ � q0a.qb/. The transition from one description to another

qa ! q0a D q0a.qb/; (6.51)

is called a transformation of coordinates. The function q0a.qb/ is known as a
transition function. For the given coordinate systems ',  , the transition function is
defined by f �  ı '�1, see Fig. 6.1 on page 201. There is no preferable coordinate
system on M; all of them are considered on equal footing. Accordingly, a well-
defined construction onM is one that is defined in relation to each coordinate system
or, in other words, it must be specified in all the systems simultaneously. In this
section, it is taken for granted that the reader is familiar with the definition and
basic properties of tensor fields on M; see Chap. 4 in [15]. For later use, we recall
the definition of a contravariant vector field or .1; 0/ -rank tensor). It is said that
the contravariant vector field �.q/ is defined on M, if in any coordinate system qa

the set of functions �a.qb/ is given, such that the coordinate transformation (6.51)
implies

� 0a.q0c/ D @q0a

@qb
�b.qc/: (6.52)

So, by the vector (tensor) field in the coordinate formulation of differential
geometry, we mean a totality of the sets �a, symbolically

�.q/ D f�a.qb/; � 0a.q0b/; : : :g: (6.53)
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For the covariant vector (or .0; 1/ -rank tensor) one has

� 0
a.q

0c/ D @qb

@q0a �b.q
c/: (6.54)

As compared with a general transformation of the form � 0a.q0c/ D Fa.�b; qc//,
the tensor transformation law (6.52) is linear and homogeneous with respect to �a.
Owing to this fact, tensor fields form a linear space: a linear combination of tensors
of the same rank is a tensor. In particular, vector fields form a (infinite-dimensional)
linear space, while vectors at a given point q form an n-dimensional linear space
Tq.M/ known as the tangent space to M. Besides, one can define the product and
contraction of the tensor fields. In practical computations it is often convenient to
use the notation

qa0 � q0a; �a0 � � 0a; (6.55)

and so on. This allows us to better control the position of the indices in various
equations. In particular, Eq. (6.52) in this notation acquires the form

�a0 D @qa0

@qa
�a; (6.56)

where a and a0 stand for different indices.

Example (and exercises)

1. According to Eq. (6.52), if all the components of a vector vanish in a
coordinate system, they also vanish in any other system. That is, the
set (6.53) of columns composed of zeros is an example of a vector.

2. Consider a scalar function defined by the transformation law h0.q0a/ �
h.qa.q0b//. Check that the set @h.q/ D f@ah.qb/; @a0h0.q0b/; : : :g is a .0; 1/-
rank tensor.

3. Let us define the set 4q D f4qa;4q0a; : : :g, where 4qa D qa
2 � qa

1 is
the difference of coordinates of the points q1, q2 in the system qa, and so
on. Show that the set does not transform as a vector. Hence, in contrast to
the Euclidean case, the vectors cannot be identified with ordered pairs of
points (oriented intervals) of M, and do not belong to M.

4. Consider the vector field �.q/. Check that the set @� D
f@a�

b.qc/; @a0� 0b.q0c/; : : :g is not a tensor. Hence the partial derivative @a is
not an operation defined on the space of tensor fields.

(continued)
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5. Differentiate components of the field �.q/ in the system qa: @a�
b � �b

a .
Starting from these functions, define

�b0

a0

� @qa

@qa0

@qb0

@qb
�b

a : (6.57)

in the system q0a, and so on. By construction, the set f�b
a ; �

b0

a0

; : : :g deter-
mines the .1; 1/ rank tensor field. However, it would not be natural to
identify it with a derivative of the vector field �.q/ since if we start from
the components � 0b.q0c/ instead of �b.qc/ and repeat the construction, we
obtain a tensor field which is different from the previous one.

These two examples show that the usual derivative is not a very useful notion
on the space of tensors.

Construction Generalizing the last example, it is easy to construct examples of
vector (tensor) fields. Starting from the given functions �a.qb/ referring to the
system qa, one defines the functions � 0a.q0b/ referring to the system q0b according to
the expression consistent with Eq. (6.52)

� 0a.q0c/ � @q0a

@qb
�b.qc/

ˇ̌
ˇ̌
qa.q0b/

; (6.58)

and so on. Below we do not write explicitly the substitution of qa.q0b/. The resulting
set �.q/ D f�a.qb/; � 0a.q0b/; : : :g determines the vector field.

It is worth noting that applying the above construction to the components �a.qb/

of the given vector field �.q/, we obtain the field itself.

Let � be a variable of the interval .�1; �2/ 2 R. The curve on M is an injective
continuous map4

c W .�1; �2/ ! M; � ! q D c.�/: (6.59)

If qa are local coordinates, the map c induces a map R ! R
n defined as

qa D 'a.c.�// � qa.�/. It gives an analytic description of the curve in the local
coordinates in terms of n functions qa D qa.�/; see Fig. 6.2 on page 204. In the
system q0a, we obtain the functions q0a D  a.c.�// � q0a.�/. They are related
according to q0a.�/ D  a.c.�// D f a.'b.c.�/// D f a.qb.�//, or, as should be the

4Note that this definition does not mention coordinates, representing an example of the coordinate-
free definition of differential geometry.
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Fig. 6.2 In the local
coordinates, the curve c.�/ is
described by n functions
qa.�/. The line � is the image
of the interval .�1; �2/
applying the map c
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case,

q0a.�/ D q0a.qb.�//; (6.60)

where q0a.qb/ are the transition functions (6.51); see Fig. 6.3 on page 204.
According to the above definition, the curve is a set of points inM together with a

given parametrization. The set itself is called5 line � . In other words, a set � 2 M is
the line, if there is a curve c.�/ such that � D Imagec. Various curves can determine
the same line and sometimes are called its parameterizations. In particular, if the
curve qa.�/ parameterizes � and �.� 0/ is a given function, the curve qa.�.� 0// also
represents a parametrization of � . It is easy to see that any two parameterizations of
� are related in this way. Now, let the curves qa D 'a.c.�//, and ya D 'a.c0.� 0//

5The line was called the trajectory in Sects. 6.1 and 6.2.



6.3 Basic Notions of Riemann Geometry 205

correspond to the same line. Then

ya.� 0/ D 'a.c ı c�1c0.� 0// D 'a.c.�.� 0/// D ya.�.� 0//; (6.61)

where �.� 0/ � c�1 ı c0.� 0/.
A curve determines a tangent vector � to the curve at each point qa.�/ according

to the rule6

�a D dqa

d�
� Pqa: (6.62)

Exercise Verify that the components �a transform according to Eq. (6.52).

It can be shown that any vector of the tangent space Tq.M/ can be considered as the
tangent vector to a curve.

Two basic quantities defined on a manifold are the metric and the affine
connection. The metric onM is a symmetric .2; 0/-rank tensor

gab.q/ ! ga0b0.q0/ D @qa

@qa0

@qb

@qb0

gab.q/; (6.63)

which is non-degenerated: det gab ¤ 0, and positively defined:

gab�
a�b � 0; for all � ¤ 0: (6.64)

The inverse tensor is denoted as gab: gabgbc D ıa
c. The manifold endowed with the

metric is called the Riemann space. The metric determines a scalar product on the
space Tq.M/

g.�; �/ D gab�
a�b: (6.65)

Exercise Verify that the scalar product is invariant under the change of
coordinates (6.51): g0.� 0; �0/ D g.�; �/.

With the metric in hand, we define the length of a line and, finally, introduce the
notion of a distance between points of the Riemann space. We return to this task in
Sect. 6.7.

6Accordingly, any vector proportional to � is called a tangent vector to the line determined by the
curve.
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Affine connection7 on a manifold is a set of functions �a
bc, �a

bc D �a
cb, given

in each coordinate system, with the non-tensor transformation law

�a0

b0c0 D @qa0

@qa

@qb

@qb0

@qc

@qc0

�a
bc � @qa

@qb0

@qb

@qc0

@2qa0

@qa@qb

� @qa0

@qa

@qb

@qb0

@qc

@qc0

�a
bc C @2qa

@qb0

@qc0

@qa0

@qa
: (6.66)

The last equality follows from the differentiation of the identity ıa0

b0 D @qa

@qb0

@qa0

@qa

with respect to qc0

.

6.3.2 Covariant Derivative and Riemann Connection

According to Exercises 4 and 5 of the previous section, the quantity @a�
b cannot

be considered as a reasonable notion of derivative on tensor space (the same is true
for the derivative along the curve qa.�/: d�a.q.�//

d� /. The proper generalization is as
follows. Starting from the vector field �.q/, let us construct the set

D� D fDb�
a;D0

b�
0a; : : :g; (6.67)

where

Db�
a � @b�

a C �a
bc�

c; (6.68)

and so on. The set turns out to be a .1; 1/-rank tensor, that is Eq. (6.68) defines the
map D of .1; 0/-rank tensor space in the space of .1; 1/-rank tensors. It is called the
covariant derivative of the vector field �. The tensor transformation law of Db�

a

is supplied by the non-tensor transformation law (6.66) of the affine connection.
Construction of the covariant derivative for an arbitrary rank tensor is clear from the
following example

DdAab
c � @dAab

c C �a
dkAkb

c C �b
dkAak

c � �k
dcAab

k: (6.69)

In particular, for the scalar function h.qa/, the covariant derivative coincides with
the usual one (see also Exercise 2 of the previous section)

Dah D @ah: (6.70)

7We consider only torsion-free affine connections.
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Exercise Show that Eq. (6.69) implies the Leibnitz rule, for example
Da.AbcBd/ D .DaAbc/Bd C AbcDaBd as well as a commutativity with
contractions, for example Da.AbcBc/ D .DaAbc/Bc C AbcDaBc.

So, the covariant derivative (6.69) is a map that takes .k;m/-rank tensors to tensors
of .k;m C1/-rank, and has the usual properties of a derivative: it is a linear map that
obeys the Leibnitz rule. Besides, it commutes with the contractions.

The vector (tensor) field is called a covariantly-constant field if it obeys the
equation

Db�
a D 0: (6.71)

A covariantly constant field in Riemann space is an analogy8 of a constant field in
Euclidean space.

Affine connection on a manifold is not unique (any set of functions �a
bc, given

in the system qa, can be used to create an affine connection (6.66) using the
construction described in the previous section). In Riemann space we can fix the
connection from the requirement that it must respect the metrical properties. In
Euclidean space the scalar product of the constant fields has the same value at
any point; that is, a derivative of the scalar product vanishes: @c.�; �/ D 0. So,
for the covariantly constant fields in Riemann space it is natural to demand the same
condition

@cg.�; �/ D .Dcgab/�
a�b C gab.Dc�

a/�b C gab�
aDc�

b D 0; (6.72)

which is equivalent to the covariant constancy of the metric

Dcgab D 0: (6.73)

These equations can be treated as determining � in terms of a given metric. They
can be resolved algebraically. Equation (6.73) implies

Dcgab C Dagbc � Dbgca D 0: (6.74)

For the case of symmetric affine connection this is equivalent to

�a
bc.g/ D 1

2
gad.@bgdc C @cgbd � @dgbc/: (6.75)

8Parallel transport of the covariantly constant field along any line takes it into itself, see below.
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Exercise Verify that the connection transforms according to Eq. (6.66).

If the affine connection is not an independent quantity and has been chosen
according to Eq. (6.75), it is called a Riemann connection. Note that for a given
metric, the symmetric Riemann connection is unique.

For a given vector field �a, the covariant derivative along the field is defined as:

D��
a � �bDb�

a: (6.76)

For a given curve qa.�/, the covariant derivative along the curve is defined as:

D�a � d�a.q.�//

d�
C �a

bc.q.�//Pqb�c.q.�// D Pqb .Db�
a/jq.�/ : (6.77)

6.3.3 Parallel Transport: Notions of Covariance
and Coordinate Independence

Vectors of the tangent space Tq.M/ form a linear space, hence two vectors can be
compared by comparing their coordinates. In the Euclidean case, it is possible to
connect tangent spaces at different points introducing a natural notion of parallel
transport. This possibility is based on two properties: (a) the vector can be identified
with the ordered pair of points of E, (b) the only straight line parallel to a given
one passes through a point of E. Since the transport is defined in a unique way, we
have the possibility of comparing vectors taken at different points. While Riemann
space does not admit such properties, a useful notion of parallel transport along a
line can also be established. However, it does not resemble all the properties of the
Euclidean case (the transport generally depends on the line; therefore, it does not
imply a way to compare tangent spaces at different points).

Parallel transport of the vector �1 given at the point q1 along the line � can be
defined as follows. Consider the manifold M with an affine connection. Let � be
a line between q1 and q2; c: .�1; �2/ ! M represents the corresponding curve and
qa.�/ is its expression in local coordinates. Let �1 be a vector at q1.

Definition The set

� D f�a.�/; � 0a.�/; : : :g; (6.78)

composed by solutions to the equation

D�a � d�a

d�
C �a

bc Pqb�c D 0; (6.79)
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with the initial condition

�a.�1/ D �a
1 ; (6.80)

determines a vector field along the line.9 It is called the parallel transport of �1.
Sometimes we write D.q.�// instead of D to emphasize that the problem (6.79) is
formulated for a particular parametrization qa.�/ of the line.

The vector field �a.q/, given along the line qa.�/, is called parallel if it obeys
the Eq. (6.79). In this case the parallel transport of the vector �a.q1/ to the point q2
gives the vector that coincides with �a.q2/.

We need to verify the consistency of the definition: whether the set (6.78) really
does give the vector field, as well as its independence from the parametrization
implied in the definition.

Let us confirm that the set (6.78) actually determines a vector field. Let the
functions �a.�/ obey the problem (6.79), (6.80) in the coordinates qa (note that the
problem has a unique solution since the Eq. (6.79) form the normal system), while
� 0a.�/ obey the problem

D0� 0a D d� 0a

d�
C � 0a

bc Pq0b� 0c D 0; � 0a.�1/ D � 0a
1 ; (6.81)

in the coordinates q0a D q0a.qb/. Using Eqs. (6.60) and (6.66), the parallel transport
Eq. (6.79) can be identically rewritten in the form

0 D D�a D @qa

@q0b D0
�
@q0b

@qc
�c

�
; (6.82)

whereD0 is just the covariant derivative (6.81) in the primed system. Since det @qa

@q0b ¤
0, the equation D� D 0 turns out to be equivalent to D0



@q0

@q �
�

D 0. That is, if �

obeys (6.79), the quantity @q0

@q � obeys Eq. (6.81). Since its solution is unique, one
concludes

@q0b

@qc
�c D � 0b: (6.83)

Hence the problem (6.79) and (6.80) actually determines the vector field.

9Components �a.qb/ at the point qb D qb.�/ are defined as �a.qb/ � �a.�/.
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Reparametrization Independence Consider the solutions �a.�/ and �a.� 0/ of the
problem (6.79) and (6.80) in the parameterizations qa.�/ and ya.� 0/

D.q.�//�a D 0 ) �a.�/; (6.84)

D.y.� 0//�a D 0 ) �a.� 0/: (6.85)

We show that the corresponding vector fields � and � coincide. Let the point q0
corresponds to values of the parameters being �0 and � 0

0. We have �0 D �.� 0
0/, where

the function �.� 0/ has been defined in Eq. (6.61). We need to show that the fields
� and � coincide at q0: �a.�0/ D �a.� 0

0/. Starting from the given functions �a.�/,
�.� 0/, let us construct the following function of � 0: �a.� 0/ � �a.�.� 0//. It obeys the
Eq. (6.85)

d�a.� 0/
d� 0 D d�a.�/

d�

ˇ̌
ˇ̌
�.� 0/

d�

d� 0 D � �a
bc

dqb

d�
�c.�/

ˇ̌
ˇ̌
�.� 0/

d�

d� 0

D ��a
bc

dqb.�.� 0//
d� 0 �c.�.� 0// D ��a

bc
dyb.� 0/

d� 0 �c.� 0/: (6.86)

Here Eqs. (6.84) and (6.61) have been used. Since the problem (6.85) has a unique
solution, we conclude

�a.� 0/ D �a.�.� 0//; (6.87)

in particular �a.� 0
0/ D �a.�.� 0

0//. Since �.�
0
0/ D �0, one finally has �a.� 0

0/ D �a.�0/.
In short, parallel transport of a vector can be performed according to Eq. (6.79)

using any coordinate system and parametrization.

Exercise Verify that for the case of the Riemann connection, parallel trans-
port preserves the scalar product of the transported vectors

d

d�
g.�; �/ D 0: (6.88)

Therefore, both the length of the vector and the angle between the vectors are
preserved.

Comments 1. Covariance of Equations and Coordinate Independence. Let us
mention a slightly different treatment frequently implicit in coordinate constructions
of the type (6.79). We can find the solution �a.�/ in the coordinate system qa,
then construct the functions � 0a (6.52) in the system q0a, and so on, according
to the procedure described on page 203. By construction, it gives a vector field.
In this case we need to confirm that the resulting field does not depend on the
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choice of the particular coordinate system qa used in its construction. We now
demonstrate that this coordinate independence is guaranteed by a property of the
defining equation (6.79) known as its covariance.

For the present treatment of the problem, all the constituents of Eq. (6.79) have
the well-established transformation properties (6.52), (6.66) and (6.60) under the
coordinate transformations (6.51). Using them, the equation can be identically
rewritten in terms of the quantities related with the system q0a. We obtain

D�a D @qa

@q0b D0� 0b D 0; (6.89)

where

D0� 0b D d� 0b

d�
C � 0b

cd Pq0c� 0d D 0; (6.90)

which is precisely Eq. (6.79) in the primed system. Further, since det @qa

@q0b ¤ 0, the
equation D� D 0 is equivalent to D0� 0 D 0. Hence, the equation of parallel transport
preserves its form when we pass from one system to another. This property is called
covariance of the equation under coordinate transformations. Note that covariance
is neither a general nor a self-evident fact. For example, the equation of a circle
x2 C y2 D 1 in polar coordinates acquires the form r D 1 instead of r2 C �2 D 1,
and hence is non-covariant.

Now we are ready to prove the coordinate independence. Suppose that the
parallel field has been constructed starting from the system q0a: D0�a D 0,
�.�1/ D � 0a

1. Note that the functions �
0a.�/ obey this problem due to the covariance

property (6.89): D0� 0a 	 D�a D 0, then �a D � 0a. Hence �a.�/ determines the same
field �.�/, which shows its coordinate independence.

2. Parallel and Covariantly Constant Fields. According to the known theorem,
parallel transport turns out to be line-independent in Riemann space with curvature
tensor equal to zero. In the general case, parallel transport depends on the line,
as the defining Eq. (6.79) contains Pq.�/. Nevertheless it can happen that parallel
transport of a particular vector is line-independent. As an example, let us consider
the covariantly constant field �a.q/. Due to Eq. (6.71), it turns out to be parallel
along any curve

D�a D Pqb ŒDb�
a�jq.�/ D 0: (6.91)

Accordingly, parallel transport of �.q1/ to a point q2 along any line, gives a vector
of the field itself at q2. Hence the transport of �.q1/ does not depend on the line
chosen.10

Let us finish this section with two illustrative examples.

10Let us point out that Eq. (6.79) itself cannot be rewritten in terms of Db.
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Second Law of Newton in Curvilinear Coordinates Consider Euclidean space
parameterized by the Cartesian coordinates xa0

. We admit now an arbitrary non-
degenerated transformation of the coordinates xa0 ! qa D qa.xb0

/. The Euclidean
scalar product, rewritten in the curvilinear coordinates qa, acquires the form
.Ev; Ew/ D ıa0b0va0

wb0 D ıa0b0@axa0

@bxb0

vawb. Hence the metric components in the
system qa are given by gab D ıa0b0@axb0

@bxb0

. They are built starting from the matrix
ıa0b0 according to the construction described on page 203. In turn, the derivative of
the vector field Ev reads

@va0

@xb0

D @qb

@xb0

@xa0

@qa

 
@va

@qb
C @qa

@xd0

@2xd0

@qb@qc
vc

!
: (6.92)

and is identified with the covariant derivative (6.68). The connection �a
bc D

@c0qa@2bcxc0

is built from �a0

b0c0 D 0 according to the same construction. One
can verify that it coincides with the Riemann connection (6.75) of the metric
constructed above. Following the same lines, the second law of Newton Rxa0 D
�@a0 U.x0/ can be written in the form DPqa D �gab@bU.q/. On the left-hand side
the covariant derivative (6.79) of the vector Pqa appears. In Sect. 6.8 we show how
the potential U can be incorporated into the connection coefficients, thus obtaining
the interpretation of the law of Newton in terms of parallel transport.

Free Motion on a Sphere Riemann geometry naturally arises in the description
of dynamical systems with kinematical constraints. Consider the unit-mass particle
constrained to move on the sphere .xi/2 D 1. We choose xa, a D 1; 2 as the local
coordinates on the upper half sphere, then its parametric equations are x1 D x1,
x2 D x2, x3 D p

1 � .xa/2.
The variables xa can be taken as the configuration-space coordinates of the

particle. As we have seen in Sect. 1.6, the Lagrangian action for xa.�/ is obtained
from the free particle action S D R

d� 1
2
.Pxi/2 by substitution of the constraint

x3 D p
1 � .xa/2 into the integrand. The substitution reads S D R

d� 1
2
gab Pxa Pxb,

where gab D ıab C xaxb
1�.xa/2

is the metric on the sphere induced by the Euclidean
scalar product of the environment space. The corresponding Riemann connection
can be computed according to Eq. (6.75); the result is �a

bc D xagbc.x/. The variation
of the action leads to the equations of motion Rxa C �a

bcPxb Pxc D 0, where the
Riemann connection coefficients appear automatically in the course of the variation.
According to Eq. (6.79), the equations of motion mean that the velocity Pxa is the
parallel vector field along the particle trajectory. It implies that the trajectory is the
shortest line on the sphere; see Sect. 6.7.
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6.4 Definition of Covariant Derivative Through Parallel
Transport: Formal Solution to the Parallel Transport
Equation

The covariant derivative (6.77) of a given vector field �a.q/ along the curve qa.�/

can be written as follows:

D�a D d�a

d�
C �a

bc Pqb�c D

lim4�!0

�a.� C 4�/C �a
bc Pqb�cj�4� � �a.�/

4� : (6.93)

Let us carry out parallel transport of the vector �a.� C 4�/ to the point � . That is,
we solve the problem:

d�a

d�
C �a

bc Pqb�c D 0; �a.� C 4�/ D �a.� C 4�/: (6.94)

Expanding the resulting vector �.�/ in a Taylor series at � C 4� we have,
disregarding 4�2 terms

�a.�/ D �a.� C 4� � 4�/ D �a.� C 4�/� P�aj�C4�4� C : : :

D �a.� C 4�/C �a
bc Pqb�cj�4� C : : : : (6.95)

Comparing this expression with Eq. (6.93) we conclude that the covariant derivative
can be defined through parallel transport according to the formula

D�a D lim4�!0

�a.�/ � �a.�/

4� ; (6.96)

where �a.�/ represents the result of parallel transport of the vector �a.� C 4�/ to
the point � . It also implies an approximate expression for the transported vector in
terms of the initial one:

�a.� C 4�/jparallel transported at � D �a.�/C 4�D�a.�/C : : : : (6.97)

Consider the vector �a
0 at the point qa.0/ of the curve qa.�/. We present a

generalization of the previous formula that gives a formal solution to the parallel
transport equation:

D�a D 0; �aj�D0 D �a
0 : (6.98)
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Let �a.�/, �a.0/ D �a
0 be a vector field along the curve. Then the field

�a.�/ D �a � �D�a C 1

2
�2D2�a C : : : ; (6.99)

obeys the transport equation, as can be verified by direct substitution.

6.5 The Geodesic Line and Its Reparametrization Covariant
Equation

A straight line in Euclidean space can be characterized by any one of the following
properties: (a) a tangent vector to the straight line remains a tangent in the course
of its parallel transport along the line; (b) among all the lines between two points
the straight line has the minimal length. In the Riemann case, the first property is
taken as a basis for the notion of a geodesic line, while the second one defines the
shortest line. Since the metrical and parallel transport properties are determined by
two independent quantities (by the metric tensor and by affine connection), the lines
are different, unless a Riemann connection in Riemann space is chosen. As will
be seen in Sect. 6.8, classical mechanics prefers Riemann space with special affine
connection.

6.5.1 Reparametrization Covariant Equation of the Geodesic
Line

Definition The line � 2 M is called a geodesic line if its tangent vector remains a
tangent under parallel transport along the line.

Let us obtain a differential equation determining the geodesic line . Let qa.�/,
qa.�1/ D qa

1 be a parametrization of the geodesic line, and �a.�/ is the parallel
vector field obtained by the transport of a vector �1.q1/ tangent to the geodesic line.
According to the above definition we can write

˛.�/�a.�/ D Pqa.�/; (6.100)

where ˛.�/ is some function. This allows us to rewrite equations of parallel
transport (6.79) in terms of qa and ˛

Rqa C �a
bc Pqb Pqc � P̨

˛
Pqa D 0: (6.101)

They are accompanied by the initial conditions

qa.�1/ D qa
1; Pqa.�1/ D ˛1�

a
1 ; (6.102)
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where ˛1 D ˛.�1/. Hence, if � is the geodesic line, any parametrization qa.�/ of it
obeys this equation for a certain ˛.�/. Conversely, if the functions qa.�/, ˛.�/ obey
the problem (6.101), (6.102), the tangent field �a � 1

˛
Pqa obeys Eq. (6.79) and thus

is a parallel field along the curve qa.�/. Hence the curve parameterizes a geodesic
line.

The Eq. (6.101) represent a system of n second order equations for nC1 unknown
functions qa.�/, ˛.�/. This implies that the solution to the problem (6.101), (6.102)
is not unique. This ambiguity is not surprising, since the geodesic line, being a set of
points in Riemann space, can be parameterized in various ways. We show now that
this ambiguity is exclusively due to the reparametrizations. Besides, any particular
parametrization is specified by the choice of the function ˛.

To start with, we show that any solution to the problem (6.101), (6.102)
determines the same geodesic line. In other words, a unique geodesic line passes
through a given point in a given direction. We also show that, given two solutions to
the problem, qa.�/; ˛.�/ and ya.� 0/; ˇ.� 0/, the functions qa.�/ and ya.� 0/ represent
parameterizations of the same line.

Starting from the solution qa.�/, ˛.�/, consider the functions q˛.q1/ describing
the corresponding line. Substitution of Eq. (6.4) into the geodesic equation leads to
the equations for the trajectory q˛.q1/

q;;˛ C O�˛bcq;bq;c D 0; O�˛bc � �˛bc � q;˛�1bc; (6.103)

which do not contain ˛. Subject to the initial conditions11 following from (6.102),
q˛.q11/ D q˛1 , q;˛.q11/ D �˛1

�11
, it has a unique solution. So, all solutions to the

problem (6.101), (6.102) give the same line q˛.q1/.
Now we demonstrate that the set of solutions fq˛.�/; ˛.�/g is in one-to-one

correspondencewith the set fqa.�/g of all possible parameterizations of the geodesic
line.

Let qa.�/, ˛.�/ and ya.� 0/, ˇ.� 0/ be two solutions. Since the functions qa.�/,
ya.� 0/ parameterize the same line, they are related according to

ya.� 0/ D qa.�.� 0//; (6.104)

where �.� 0/ is some function, see Eq. (6.61). We substitute this expression into the
equation for y

Rya C �a
bcPybPyc �

P̌
ˇ

Pya D 0; (6.105)

11Note that they do not depend on ˛ or on the length of �a.
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and compare the result with Eq. (6.101). This gives the relationship between ˛ and ˇ

ˇ.� 0/ D d�

d� 0˛.�.�
0//: (6.106)

So, any two solutions are related by Eqs. (6.104) and (6.106) with a function �.� 0/.
This implies that different functions ˛ ¤ ˇ lead to different parameterizations qa ¤
ya. We can say that the set of solutions is “parameterized” by an arbitrary function
˛.�/.

Combining the results, the problem (6.101), (6.102) is ambiguous, the complete
set of solutions being composed of the pairs qa.�/, ˛.�/, where ˛.�/ is an
arbitrary function and qa.�/ is the unique solution to the problem with ˛ substituted
into Eq. (6.101). The set is in one-to-one correspondence with the set fqa.�/g of
parameterizations of the same geodesic line. The fixation of the function ˛ in the
geodesic Eq. (6.101) is thus equivalent to a choice of a particular parametrization of
the geodesic line.

Let us stress that, being of geometric origin, problem (6.101) itself has no
dynamical content: while it determines the geodesic line, it does not imply any
definite dependence on the parameter � . For each given parametrization qa.�/ of
the line, there is ˛.�/ such that the pair qa, ˛ obeys the problem. The dynamics can
be “created” by hand, and we do this below specifying the function ˛.�/.

Equation (6.100) shows that Pqa.�/ is not a parallel field unless ˛ ¤ const. The
same conclusion follows from the comparison of Eqs. (6.79) and (6.101).

Geodesic Equation in Canonical Parametrization According to the previous
analysis, the function ˛ in the geodesic Eq. (6.101) acquires any desired form after
an appropriate choice of parametrization. In particular, there is a parametrization
such that ˛ D 1. Then Eq. (6.101) acquires a more simple form

Rqa C �a
bc Pqb Pqc D 0: (6.107)

Comparing it with the parallel transport Eq. (6.79) we conclude that in this
parametrization the tangent vector Pqa to the curve qa.�/ turns out to be a parallel
field. The parametrization is known as the canonical parametrization of the
geodesic line. In contrast to Eq. (6.101), the Eq. (6.107) is not covariant under
reparametrizations.

Recall that parallel transport preserves the length of the transported vector:
g.PqPq/ D v2 D const for all � . Then the curve Qqa � qa

�
1
v
�

represents the

canonical parametrization with the unit tangent vector. It is known as the natural
parametrization.
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6.6 Example: A Surface Embedded in Euclidean Space

The surface S in the three-dimensional Euclidean space E can be naturally endowed
with the Riemann space structure, which is induced by the Euclidean geometry
of E. Then various Riemann space constructions acquire a simple geometric
interpretation in terms of the Euclidean geometry of the environment space.

Let Er.qa/ be the parametric equation of the surface. The notation we use is Er D
xiEei, where xi, i D 1; 2; 3; stands for the cartesian coordinates of E, and qa, a D 1; 2;

are the local coordinates on the surface. Let qa.�/ be a curve on S. The equation
Er.�/ � Er.qa.�// describes its embedding into E. Consider the tangent vector to the

curve. Being a vector of E, it has the components Vi D dxi.�/

d� . Being the tangent

vector to the surface, it has the coordinates va D dqa

d� in the local system qa. They
are related by

EV D @Er
@qa

va: (6.108)

The surface can be endowed with a Riemann space structure as follows. The
Euclidean scalar product .EV; EW/ defines the induced metric gab on the surface
according to the rule

.EV; EW/ D @xi

@qa

@xi

@qb
vavb � gabv

avb: (6.109)

This can be used to construct the Riemann connection (6.75), the covariant
derivative (6.68), and so on.

At each point M of the surface we construct a basis of E adapted to the surface.
The coordinate curves q1 D � , q2 D q2M and q1 D q1M , q2 D � in the vicinity of M
determine the tangent vectors E!a at the point M

E!1 D dEr.q1; q2M/
dq1

ˇ̌
ˇ̌
q1M

; E!2 D dEr.q1M; q2/
dq2

ˇ̌
ˇ̌
q2M

: (6.110)

They form a basis of the tangent space TM.S/ called coordinate basis. This can
be completed up to a basis of E by addition of the unit normal vector to the
surface, which is constructed with the help of the vector product: En D ŒE!1; E!2�

jŒE!1; E!2�j .
The construction of the adapted basis is illustrated in Fig. 6.4 on page 218.

Now we are ready to rewrite the Riemann space quantities in terms of the
Euclidean space basis . E!a, En/.
Metric This is presented through the Euclidean scalar product of E!a as follows:

gab D . E!a; E!b/: (6.111)
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Fig. 6.4 For the semisphere
x3 D p

1� .x1/2 � .x2/2 we
take x1 , x2 as the local
coordinates q1, q2. Then the
coordinate lines through the
point q are obtained by
intersection of the sphere
with the planes parallel to the
coordinate planes .x2; x3/,
.x1; x3/. The induced metric
is given by the Euclidean
scalar product gab D . E!a; E!b/ ω2

ω1

n

x1

x2

x3

q

Connection The variation rate of E!a along the coordinate lines is given by the
Euclidean vectors @ E!a

@qb . They can be decomposed in relation to the adapted basis; we
write

@ E!a

@qb
D �c

ab E!c C NabEn: (6.112)

Computing the scalar product of this expression with E!d we obtain

�c
ab D gcd. E!d; @b E!a/ � 1

2
gcd.@agdb C @bgad � @dgab/: (6.113)

That is the coefficients � appeared in Eq. (6.112) represent the Riemann connection.
Hence, Eq. (6.112) states that the Riemann connection determines the tangential part
of the coordinate basis variation.12

Covariant Derivative Let EV D @Er
@qa v

a be the vector field defined along a curve
qa.�/. Using Eqs. (6.110), (6.111) and (6.112), its derivative along the curve can be
written as follows:

d

d�
EV D Dva E!a C Nabv

a PqbEn; (6.114)

where Dva stands for the covariant derivative (6.77). This means that the covariant
derivative determines the tangential part of the variation rate of the vector EV along
the curve, see Fig. 6.5 on page 219.

Parallel Transport According to Eqs. (6.109) and (6.88), parallel transport along
a curve of S preserves the (Euclidean) angle between any pair of transported vectors
EV and EW. Let the curve be the geodesic line and EW represent its tangent vector.
Then parallel transport preserves the angle between EV and the line; see Fig. 6.6 on
page 219.

12Nab are known as the coefficients of second quadratic form of the surface.
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n

ω1

ω2

Dv

dV
dτ

Fig. 6.5 Tangent spaces at distinct point of the surface can have distinct orientations, so the

derivative dEV
d�

ˇ̌
ˇ
q
of the vector field EV does not generally lie on the tangent space TS.q/. The covariant

derivative EDv is the tangential part of dEV
d�

x2

x1

ζ
A

B

C

x3

Fig. 6.6 The figure shows the vector field obtained by parallel transport of the vector E� along the
closed contour on a sphere. The contour is formed by the geodesic lines: AB [ BC [ CA

6.7 Shortest Line and Geodesic Line: One More Example
of a Singular Action

A metric allows us to define the length of a line and also to introduce the notion of
the distance between points in Riemann space.

Consider the Riemann space M with the metric gab. Let qa.�/ be a parametriza-
tion of the line � . The length of the line is the number

S D
Z �2

�1

d�
p

gab.q/Pqa Pqb; (6.115)
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which is a value of the functional S: fqa.�/g ! R computed for any curve
qa.�/ corresponding to the line. Let us confirm that Eq. (6.115) actually associates
a unique number to the given line. First, S does not depend on the choice of
coordinates, since the scalar product g.Pq; Pq/ is invariant under the coordinate
transformations. Second, S does not depend on the parametrization of the line: if
ya.� 0/ D qa.�.� 0// is another parametrization (see Eq. (6.61)), we obtain

S.ya.� 0// D
Z � 0

2

� 0

1

d� 0
�

gab.y.�
0//

dya

d� 0
dyb

d� 0

� 1
2

D
Z � 0

2

� 0

1

d� 0
�

gab.q.�.�
0///

dqa.�.� 0//
d� 0

dqb.�.� 0//
d� 0

� 1
2

D
Z � 0

2

� 0

1

d� 0 d�

d� 0

 
gab.q.�//

dqa.�/

d� 0
dqb.�/

d� 0

ˇ̌
ˇ̌
�.� 0/

! 1
2

D
Z �2

�1

d�
�
gab Pqa Pqb

 1
2 D S.qa.�//; (6.116)

that is:

S.ya.� 0// D S.qa.�//: (6.117)

In physical applications, this property is known as the reparametrization invariance
of the functional S.

Let � be the shortest line connecting the points q1, q2 (that is S.�/ � S.ˇ/,
where ˇ is any other line between the points). Then the length of � is called the
distance between q1 and q2: d.q1; q2/ D S.�/. Accordingly, to find d one looks for
the function q.�/ that gives a minimum of the functional S. That is, we need to solve
the variational problem (6.115) with fixed ends. Owing to the reparametrization
invariance of S, solution of the variational problem is not unique, as it is clear
from Eq. (6.117). To analyze the ambiguity, let us find the equations determining
the shortest line. The variation of the functional (6.115) gives

…a
b
�Rqb C �b

cd.g/Pqc Pqd
� D 0; (6.118)

where

…a
b D ıa

b � Pqa Pqcgcb

g.Pq; Pq/ � ıa
b �ƒa

b; (6.119)

and �b
cd.g/ is the Riemann connection (6.75), which arises automatically in the

course of the variation.
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Exercise Obtain these equations.

Some important relativistic models (particle, string, membrane) are usually for-
mulated in terms of the reparametrization invariant action functionals (in this
formulation a relativistic invariance turns out to be manifest, see Sects. 1.7.4 and
Sect. 7.4). So, the functional (6.115) represents a good laboratory for discussion
of this kind of model. If we try to treat Eq. (6.115) as an action functional of a
mechanical system with the Lagrangian L D p

g.Pq; Pq/, we find @2L
@Pqa@Pqb 	 …a

b. From

Eq. (6.119) it follows that the matrix… possesses the null vector Pqb:

…a
b Pqb D 0; (6.120)

So det… D det @
2L

@Pq@Pq D 0. Hence Eqs. (6.115) and (6.118) represent an example of
singular Lagrangian theory. It can be shown that the singularity is a direct conse-
quence of the reparametrization invariance of the functional. The reparametrization
invariance (6.117) clearly shows that the Eq. (6.118) do not specify any definite
law for propagation of the “particle” qa along the line. This means that in the
reparametrization invariant Lagrangian theory the parameter � cannot be considered
to be a parameter of evolution.

The geodesic line Eq. (6.101) has similar properties; see page 216. Moreover,
comparing Eqs. (6.107) and (6.118), we conclude that any solution to the geodesic
equation in canonical parametrization obeys (6.118). We now demonstrate that this
is not merely a coincidence.

Consider a Riemann space with the metric g and the Riemann connection �.g/.
Then we can write both the geodesic Eq. (6.101) and the shortest line Eq. (6.118).

We show an equivalence of the problems, establishing a one-to-one correspon-
dence between their solutions.

(A) According to Eq. (6.120), any solution qa D f a.�/ of Eq. (6.101) obeys
Eq. (6.118)

…a
b.Rf b C �b

cd Pf cPf d/ D …a
b. Pf b P̨

˛
/ D 0: (6.121)

(B) Let qa D f a.�/ be a solution to Eq. (6.118). Denoting

Rf C � Pf Pf D t; (6.122)

we have …t D 0, or, according to Eq. (6.119) t D ˜t D Pf R, where R � g. Pf ;t/
g. Pf ; Pf / .

Then Eq. (6.122) reads Rf C � Pf Pf � Pf R � 0. That is, f obeys Eq. (6.101) with
˛ D exp

R
d�R.
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Thus, in Riemann space equipped with the Riemann connection, a geodesic line
from q1 to q2 turns out to be the shortest line between these points. This means, in
particular, that we can use Eq. (6.101) instead of Eq. (6.118) to analyze the shortest
line, just as we did in Sect. 6.2.

Exercise Equations of the free relativistic particle

�
Px	p
.Px	/2

�
� D 0 represent

a particular case of (6.118), so they are equivalent to the system Rx	� P̨
˛

Px	 D 0.
Show that any solution of the system has the form x	.�/ D b	f .�/Cx	0 , where
b	, x	0 are constants, and f .�/ is arbitrary function.

Projectors Ambiguity in solutions to Eq. (6.118) is related to pure algebraic
properties of the matrices …, ƒ, which have a simple geometric interpretation. By
construction, they have the properties

ƒ2 D ƒ; …2 D …; (6.123)

…ƒ D 0; (6.124)

1 D …Cƒ; (6.125)

Matrices with these properties are called projectors. Equation (6.125) implies
decomposition of an arbitrary vector into two parts

� D .…Cƒ/� D …� Cƒ� � �? C �k: (6.126)

Given Pqa that specifies the projectors (6.119), we have

�a
k D .ƒ�/a D g.Pq; �/

g.Pq; Pq/ Pqa; or �a
k 	 Pqa; (6.127)

g.Pq; �?/ � 0: (6.128)

Hence, an arbitrary vector can be decomposed into a sum of its longitudinal and
transverse parts with respect to Pq: according to Eq. (6.127), �k is a projection of �
on the direction of Pq, while Eq. (6.128) shows that �? is a projection of � on the
orthogonal to Pq subspace.

In particular, let us decompose the vector t from Eq. (6.122): t D tk C t?. Then
the shortest-line Eq. (6.118) reads t? D 0, giving a restriction on the transverse part
only. The longitudinal part of t can be arbitrary, which gives an algebraic explanation
of the ambiguity presented in solutions to the problem (6.118).

It has already been mentioned that det… D 0. Let us demonstrate

rank… D n � 1: (6.129)
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From det… D 0 it follows that rank … � n � 1. Suppose rank … < n � 1. Then…
has at least one more independent null vector � ¤ cPq, c D const. Equations (6.125)
and (6.127) then lead to the contradiction: � D …�Cƒ� D ƒ� 	 Pq.

Owing to the non-invertibility of…, the system (6.118) does not have the normal
form. Equation (6.129) implies that … has an invertible .n � 1/ � .n � 1/-block.
Hence the system (6.118) is equivalent to a normal system of n � 1 equations for n
variables.

Exercise Supposing invertibility of the block …˛
ˇ , ˛; ; ˇ D 2; 3; : : : ; n,

obtain equations for the trajectory (6.42) from (6.118).

6.8 Formal Geometrization of Mechanics

According to Sect. 6.2, equations for the trajectory of a potential motion can be
identified with the geodesic line equations in canonical parametrization. As we
have seen, in this parametrization the evolution parameter � does not correspond to
the physical (classical mechanical) time. Our purpose now is to find the geometric
condition that picks out physical time among all the possible parameterizations of
the geodesic line. First we look for the equations of geometric origin that could
describe the complete problem. We demonstrate that equations of motion in a given
potential can be identified with the geodesic equation in a special parametrization
on a manifold with the affine connection specified by the potential. Further, the
manifold can be equipped with an appropriate metric, which is also specified by the
potential. Then, the special parametrization can be fixed from the pure geometric
condition that the tangent vector to the geodesic curve has a unit length in this
metric. That is we have geodesic motion with unit speed. In this way, we arrive
at the fully geometric treatment of the potential motion problem.

Consider the action

S D
Z

d�.
1

2
cab.q/Pqa Pqb � U.qa//; (6.130)

in the generalized coordinates qa.�/. Here 1
2
cab.q/Pqa Pqb is the kinetic energy and

U.qa/ is a potential. This leads to the equations of motion

Rqa C �a
bc.c/Pqb Pqc C cab@bU D 0; (6.131)

where the coefficients �.c/ are given by Eq. (6.75). We wish to hide the potential
term in the connection coefficients. So, let us write �a

bc.cde/ D �a
bc.

1
�

gde/,
where gab � �cde, and try to choose the function �.U/ that allows us to identify
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the equations of motion with the geodesic equations. In this notation Eq. (6.131)
acquires the form

Rqa C �a
bc.g/Pqb Pqc �

P�
�

Pqa C gab

�
1

2�
g.Pq; Pq/@b� C �@bU

�
D 0: (6.132)

Except for the last term, it is similar to the geodesic equation. The last term depends
on the velocity and cannot be generally canceled by the choice of �. But it can be
achieved for solutions with a fixed total energy. Indeed, let qa.�/ be a solution with
the total energy h

1

2�
g.Pq; Pq/C U.q/ D h: (6.133)

If we substitute the solution into Eq. (6.132), the last term of the equation acquires
the form @c�.h � U/ � �@c.h � U/. It vanishes if we take � 	 .h � U/. The
conventional choice is � D 2.h�U/. Then any solution to (6.131) with fixed energy
h obeys the equation

Rqa C �a
bc.2.h � U/c/Pqb Pqc C PU

h � U
Pqa D 0: (6.134)

This is identical to the geodesic Eq. (6.101) in the parametrization (the factor 2
below is also conventional)

˛ D 2.h � U/; (6.135)

on a manifold with the affine connection �a
bc.2.h � U/c/ (so far without a metric!).

By analogy with Eq. (6.107), the Eq. (6.134) can be called the geodesic equation in
dynamical parametrization.13

The equation obtained is not yet of geometric origin, since the particular
parametrization has little sense from the geometric point of view. We now improve
it by pointing out a geometric condition equivalent to the parametrization. In the
above construction we dealt with n differential equations for n unknown functions
qa.�/. The geometric condition can be formulated in a slightly different context of
n C 1 equations for n C 1 variables. We return to the reparametrization-covariant
Eq. (6.101) with an arbitrary function ˛.�/, and add one more equation that implies
fixation of ˛ according to (6.135). For the equation, the natural candidate is the
constant energy condition (6.133), which we write in the form

Gab Pqa Pqb D 1; Gab � cab

2.h � U/
: (6.136)

13For the case of the Riemann connection, dynamical parametrization is precisely the natural
parametrization, see page 216.
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Let us equip the manifold with the metric Gab. Then the equation states that the
vector Pqa is of unit length. Now, on the Riemann manifold with the metric G and the
affine connection �.2.h � U/c/ let us consider the system

Rqa C �a
bc.2.h � U/c/Pqb Pqc C P̨

˛
Pqa D 0; (6.137)

Gab Pqa Pqb D 1: (6.138)

This problem turns out to be equivalent to the potential motion problems (6.130)
and (6.131). To confirm this statement, let qa.�/, ˛.�/ be a solution to the problem.
The Eq. (6.137) implies that the vector field �a D 1

˛
Pqa is parallel along the geodesic

line; see Sect. 6.5. Since our affine connection looks like the Riemann connection
constructed on the base of tensor gab D 2.h � U/cab, the vector � obeys (see
Eq. (6.88)) g.�; �/ D v2 D const, or, equivalently, 2.h�U/cab

˛2
Pqa Pqb D v2. Using

Eq. (6.138), we conclude that ˛ D 2.h�U/
v

. With this ˛, the Eq. (6.137) coincides
with the Eq. (6.134). Therefore the functions qa.�/ describe the potential motion.

To sum up, the potential motion problem (6.130), (6.131) can be described in
geometric terms as follows. The configuration space is endowed with the Riemann
space structure introducing the metric Gab D cab

2.h�U/ and the affine connection (6.75)
constructed on the base of the tensor gab D 2.h � U/cab. Then the configuration
space particle qa.�/ with total energy h moves along the geodesic line with unit
speed computed with respect to the metric G. The motion can be described by
equations of geometric origin (6.137) and (6.138). Equation (6.137) states that the
particle chooses the geodesic line as the trajectory of motion. Equation (6.138)
means that among all the parameterizations of the geodesic line, the particle chooses
the one that implies its unit speed with respect to the metric G.

6.9 Three-Dimensional Acceleration and Speed of Light
in General Relativity

To describe gravitational forces in the theory of general relativity [15, 16], we
replace the Minkowski space by a four-dimensional Lorentz manifold (that is a
manifold with metric of signature .�;C;C;C/)

M.1;3/ D fx	; g	
.x
�/; g00 < 0g: (6.139)

This implies that instead of Lorentz transformations we now deal with a general
transformations of coordinates (6.51), so equations of general relativity should
be written in a covariant form with respect to these transformations. For a given
distribution of material bodies, metric is determined according to Einstein equations.
The metric represents a gravitational force in the following sense: equations of
motion of a point particle follows from the variational problem (6.115), that is its
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trajectory is a geodesic line. Hence in a gravitational field the particle follows a
shortest line of the metric g	
 , instead of a straight line in absence of the gravity.

To discuss the physics behind this abstract four-dimensional construction, we
should establish a correspondence between the quantities computed in an arbitrary
coordinates of the Riemann space and the three-dimensional quantities used by
an observer in his laboratory. We discuss the most simple part of this problem
which consist in determining of basic differential quantities of three-dimensional
geometry: infinitesimal distances, time intervals, velocity and acceleration.

An interesting subject that will be discussed in this context is the notion of speed
of light in general relativity. By construction of Lorentz transformations, the speed
of light in special relativity is an observer-independent quantity. In a curved space
we replace the Lorentz transformations on the general-coordinate ones, so we need
to ensure the coordinate-independence of the speed of light for that case. It turns
out that this essentially determines the relationship between the four and three-
dimensional geometries. In particular, we define the three-dimensional acceleration
which guarantees that the particle propagating along a four-dimensional geodesic
can not exceed the speed of light. These results will be used in Chap. 9 for discussion
of a rotating body in general relativity in the ultra-relativistic limit.

Coordinate Independence of Speed of Light Consider an observer that label
events by some coordinates of pseudo Riemann space (6.139) to describe the motion
of a particle in a gravitational field with metric g	
 . Formal definitions of the
three-dimensional quantities can be obtained representing four-interval in 1 C 3

block-diagonal form

�ds2 D g	
dx	dx
 D

�c2
�p�g00

c
.dx0 C g0i

g00
dxi/

�2
C
�

gij � g0ig0j

g00

�
dxidxj:

This prompts to introduce infinitesimal time interval, distance and speed as follows:

dt D
p�g00

c
.dx0 C g0i

g00
dxi/ � � g0	dx	

c
p�g00

: (6.140)

dl2 D .gij � g0ig0j

g00
/dxidxj � �ijdxidxj; v D dl

dt
: (6.141)

Therefore the conversion factor between intervals of the world time dx0

c and the time
dt measured by laboratory clock is

dt

dx0
D

p�g00
c

.1C g0i

g00

dxi

dx0
/: (6.142)
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Introduce also the three-velocity vector v with components

vi D
�

dt

dx0

��1 dxi

dx0
; (6.143)

or, symbolically, vi D dxi

dt . We stress that contrary to d
dx	 , the set . d

dt ;
d

dxi / is non-
holonomic basis of tangent space. This does not represent any special problem for
our discussion since we are interested in the differential quantities, such as velocity
and acceleration.

The Eq. (6.143) is consistent with the above definition of v: v2 D �
dl
dt

2 D v2 D
vi�ijv

j. In the result, the interval acquires the form similar to special relativity (but
now we have v2 D v�v)

� ds2 D �c2dt2 C dl2 D �c2dt2
�
1 � v2

c2

�
: (6.144)

This equality holds in any coordinate system x	. Hence a particle with the
propagation law ds2 D 0 has the speed v2 D c2, and this is a coordinate-independent
statement. The value of the constant c, introduced by hand, is fixed from the flat
limit: Eq. (6.140) implies dt D cdx0 when g	
 ! �	
 .

For the latter use we also introduce the four-dimensional quantity

v	 D
�

dt

dx0

��1 dx	

dx0
D
 �

dt

dx0

��1
; v

!
: (6.145)

Combining the Eqs. (6.143) and (6.142), we can present the conversion factor in
terms of three-velocity as follows:

�
dt

dx0

��1
D v0 D cp�g00

� g0iv
i

g00
: (6.146)

These rather formal tricks are based [16] on the notion of simultaneity in general
relativity and on the analysis of flat limit. As we saw in Sect. 1.3, four-interval of
special relativity has direct physical interpretation in two cases. First, for two events
which occur at the same point, the four-interval is proportional to time interval, dt D
� ds

c . Second, for simultaneous events the four-interval coincides with distance, dl D
ds. Assuming that the same holds in general relativity, let us analyze infinitesimal
time interval and distance between two events with coordinates x	 and x	 C dx	.
The world line y	 D .y0; y D const/ is associated with laboratory clock placed at
the spatial point y. So the time-interval between the events .y0; y/ and .y0 C dy0; y/
measured by the clock is

dt D �ds

c
D

p�g00
c

dy0: (6.147)
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Fig. 6.7 Definition of
simultaneous events. The
vertical line represents a
world-line of the laboratory
clock. The points y0.1/ and y0.2/
nave have null-interval with
x	. Then the middle point y0

represents the event
simultaneous with x	

Consider the event x	 infinitesimally closed to the world line .y0; y D const/. To
find the event on the world line which is simultaneous with x	, we first look for the
events y	.1/ and y	.2/ which have null-interval with x	, ds.x	; y	.a// D 0. The equation

g	
dx	dx
 D 0 with dx	 D x	 � y	 has two solutions dx0˙ D g0idxi

�g00
˙

p
dx�dxp�g00

, then

y0.1/ D x0 � dx0C and y0.2/ D x0 � dx0�. Second, we compute the middle point

y0 D 1

2
.y0.1/ C y0.2// D x0 C g0idxi

g00
: (6.148)

By definition,14 the event .y0; y/ with the null-coordinate (6.148) is simultaneous
with the event .x0; x/, see Fig. 6.7 on page 228. By this way we synchronized clocks
at the spatial points x and y. According to (6.148), the simultaneous events have
different null-coordinates, and the difference dx0 obeys the equation

dx0 C g0idxi

g00
D 0: (6.149)

Consider a particle which propagated from x	 to x	 C dx	. Let us compute time-
interval and distance between these two events. According to (6.148), the event

�
x0 C dx0 C g0idxi

g00
; x
�
; (6.150)

at the spatial point x is simultaneous with x	 C dx	, see Fig. 6.8 on page 229. Time
and distance between the events x	 and x	 C dx	. Equation (6.150) determines the
event A (at spatial point x) simultaneous with x	Cdx	. So the time interval between
x	 and x	 C dx	 coincide with the interval between x	 e A, and is given by (6.151).

14In the flat limit the sequence y	.1/, x	, y	.2/ of events can be associated with emission, reflection
and absorbtion of a photon with the propagation law ds D 0. Then the middle point (6.148) should
be considered simultaneous with x0.
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Fig. 6.8 Time and distance between the events x	 and x	 C dx	. Equation (6.150) determines
the event A (at spatial point x) simultaneous with x	 C dx	. So the time interval between x	 and
x	 C dx	 coincide with the interval between x	 e A, and is given by (6.151). Distance between x	

and x	 C dx	 coincide with the distance between x	 C dx	 and A, the latter is given in (6.152)

Distance between x	 and x	Cdx	 coincide with the distance between x	Cdx	 and
A, the latter is given in (6.152).

According to (6.147) and (6.148), the time interval between the events x	

and (6.150) is

dt D
p�g00

c
.dx0 C g0i

g00
dxi/: (6.151)

Since the events x	 C dx	 and (6.150) are simultaneous, this equation gives also
the time interval between x	 and x	 C dx	. Further, the difference of coordinates
between the events x	 C dx	 and (6.150) is dz	 D .� g0idxi

g00
; dxi/. As they are

simultaneous, the distance between them is

dl2 D �ds2 D g	
dz	dz
 D .gij � g0ig0j

g00
/dxidxj � �ijdxidxj: (6.152)

Since (6.150) occur at the same spatial point as x	, this equation gives also the
distance between x	 and x	 C dx	. The Eqs. (6.151) and (6.152) coincide with the
formal definitions presented above, Eqs. (6.140) and (6.141).

Three-Dimensional Acceleration We now turn to the definition of three-
acceleration. As we saw above, the particle in general relativity follows a
geodesic line. If we take the proper time to be the parameter, geodesics obey
the system (6.107)

Ds
dx	

ds
� d2x	

ds2
C � 	

˛ˇ

dx˛

ds

dxˇ

ds
D 0; g	


dx	

ds

dx


ds
D �1; (6.153)
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where

� 	
˛ˇ D 1

2
g	
.@˛g
ˇ C @ˇg˛
 � @
g˛ˇ/: (6.154)

Due to this definition, the system (6.153) obeys the identity g	
 dx	

ds Ds
dx


ds D 0. The
system in this parametrization has no sense for the case we are interested in, ds2 !
0. So we rewrite it in arbitrary parametrization �

d�

ds

d

d�

�
d�

ds

dx	

d�

�
C
�

d�

ds

�2
� 	

˛ˇ.g/
dx˛

d�

dxˇ

d�
D 0;

d�

ds
D 1p�PxgPx ;

this yields the equation of geodesic line in reparametrization-invariant form (this is
another form of Eq. (6.118))

1p�PxgPx
d

d�

� Px	p�PxgPx
�

D �� 	
˛ˇ.g/

Px˛p�PxgPx
Pxˇp�PxgPx : (6.155)

The formalism (6.140)–(6.144) remains manifestly covariant under subgroup of
spacial transformations x0 D x00, xi D xi.x0j/, @xi

@x0 j � ai
j.x0/. Under these

transformations g00 is a scalar function, g0i is a vector while gij and �ij are tensors.
Since gij�jk D ıi

k, the inverse metric of �ij turns out to be .��1/ij D gij. Introduce
the covariant derivatives Dk of a vector field � i.x0; xk/

Dk�
i D @� i

@xk
C Q� i

kj.�/�
j: (6.156)

The three-dimensional Christoffel symbols Q� i
jk.�/ are constructed with help of

three-dimensional metric �ij.x0; xk/ written in Eq. (6.141), where x0 is considered
as a parameter

Q� i
jk.�/ D 1

2
� ia.@j�ak C @k�aj � @a�jk/: (6.157)

As a consequence, the metric � is covariantly constant, Dk�ij D 0.
The velocity (6.143) behaves as a vector, vi.x0/ D ai

j.x0k.x0//v0j.x0/, so below
we use also the covariant derivative

D0v
i D dvi

dx0
C Q� i

jk.�/
dxj

dx0
vk: (6.158)

We associated with M.1;3/ the one-parameter family of three-dimensional spaces
M3

x0
D fxk; �ij; Dk�ij D 0g. Note that velocity has been defined above as a tangent

vector to the curve which cross the family and is parameterized by this parameter,
xi.x0/.



6.9 Three-Dimensional Acceleration and Speed of Light in General Relativity 231

To define an acceleration of a particle in the three-dimensional geometry, we
need the notion of a constant vector field (or, equivalently, the parallel-transport
equation). In the case of stationary field, g	
.xk/, we can identify the curve xi.x0/
of M.1;3/ with that of any one of M3

x0
D fxk; �ij.xk/g. So we have the usual

three-dimensional Riemann geometry, and an analog of a constant vector field of
Euclidean geometry is the covariantly-constant field along the line xi.x0/, D0�

i D 0.
For the field of velocity, its deviation from the covariant constancy is the acceleration

ai D
�

dt

dx0

��1
D0v

i D
�

dt

dx0

��1 dvi

dx0
C Q� i

jk.�/v
jvk: (6.159)

To define an acceleration in general case, �ij.x0; xi/, we need to adopt some notion
of a constant vector field along the trajectory xi.x0/, that cross the family M3

x0
. In

Euclidean space the scalar product of two constant fields does not depend on the
point where it was computed. In particular, taking the scalar product along a line
xi.x0/, we have d

dx0
.�; �/ D 0. For the constant fields in our case it is natural to

demand the same (necessary) condition: d
dx0
Œ� i.x0/�ij.x0; xi.x0//�i.x0/� D 0. Taking

into account that Dk�ij D 0, this condition can be written as follows

.D0� C 1

2
�@0��

�1; �/C .�;D0�C 1

2
��1@0��/ D 0:

So we take the parallel-transport equation to be

D0�
i C 1

2
.�@0��

�1/i D 0: (6.160)

Deviation from the constant field is an acceleration. So we define the acceleration
with respect to physical time as follows:

ai D
�

dt

dx0

��1 �
D0v

i C 1

2
.v@0���1/i

�
: (6.161)

For the special case of stationary field, g	
.xi/, the definition (6.161) reduces to that
of Landau and Lifshitz, see page 251 in [16].

Maximum Speed of a Particle in Gravitational Field The extra-term appeared
in this equation plays an essential role to provide that longitudinal acceleration
of geodesic particle vanishes as v ! c. As a consequence, the particle in a
gravitational field can not exceed the speed of light. To show this, we compute the
longitudinal acceleration .v�a/ implied by geodesic equation (6.155). Take � D x0,
then

p�PxgPx D dt
dx0

p
c2 � v�v, and spatial part of (6.155) is

�
dt

dx0

��1 d

dx0
vip

c2 � v�v
D f ip

c2 � v�v
; (6.162)
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where

f i.v	/ D �
�

dt

dx0

��2
� i

00 � � i
jkv

jvk � 2
�

dt

dx0

��1
� i

0kv
k D �� i

	
v
	v
;

(6.163)

is non-singular function as v ! c. Computing derivative on the l.h.s. of (6.162),
we complete dvi

dx0
up to covariant derivative D0v

i

d

dx0
vip

c2 � v�v
D D0v

i � Q� i
jk.�/v

jvk dt

dx0
C vi

2.c2 � v�v/
d

dx0
.v�v/: (6.164)

For the derivative contained in the last term we find, using covariant constancy of �

d

dx0
Œv�.x0; xi/v� D 2v�D0v C v@0�v C vD0�v D 2v�D0v C v@0�v: (6.165)

Then (6.162) acquires the form

�
dt

dx0

��1 �
Mi

jD0v
j C .v@0�v/

2.c2 � v�v/
vi

�
D f i C Q� i

klv
kvl; (6.166)

where

Mi
j D ıi

j C vi.v�/j
c2 � v�v

: (6.167)

We apply the inverse matrix

QMi
j D ıi

j � vi.v�/j
c2

; (6.168)

and use the identity

QMi
jv

j D c2 � v�v
c2

vi; (6.169)

then

�
dt

dx0

��1 �
D0v

i C .v@0�v/
2c2

vi

�
D QMi

j
�
f j C Q� j

klv
kvl
�
: (6.170)
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Next, we complete D0v
i up to the acceleration (6.161). Then (6.170) yields

ai D 1

2

�
dt

dx0

��1 �
.v@0���1/i � .v@0�v/

c2
vi

�
C

QMi
jŒ�� j

	
v
	v
 C Q� j

kl.�/v
kvl�: (6.171)

Contracting this with .v�/i, we use .v�/i QMi
j D c2�v�v

c2
.v�/j and obtain the

longitudinal acceleration

v�a D 1

2

�
dt

dx0

��1 �
.v@0�v/� .v@0�v/

.v�v/
c2

�
C



1 � v�v

c2

�
.v�/iŒ�� i

	
v
	v
 C Q� i

kl.�/v
kvl�: (6.172)

This implies v�a ! 0 as v�v ! c2.
The last term in (6.161) yields the important factor .v@0�v/ in Eq. (6.172). As the

equations of motion (6.171) and (6.172) do not contain the square root
p

c2 � v�v,
they have sense even for v > c. Without this factor, we would have v�a ¤ 0 as
v�v ! c2, so the particle in gravitational field could exceed c and then continues
accelerate. The same happen if we try to define an acceleration using usual derivative
instead of the covariant one.

Let us confirm that c is the only special point of the function (6.172). Using
Eqs. (6.154), (6.141)–(6.145), (6.157) and the identities

�ijg
jk D ıi

k; �ijg
j0 D � g0i

g00
; (6.173)

we can present the right hand side of Eq. (6.172) in terms of initial metric as follows

v�a D c2 � v�v
2c

p�g00

(
cp�g00

Œ

�
dt

dx0

��1
@0g00 C vk@kg00��

@0g00

�
dt

dx0

��2
� 2@0g0k

�
dt

dx0

��1
vk � @0gklv

kvl

)
�

c2 � v�v
2c

p�g00

�
cp�g00

v	@	g00 � @0g	
v	v

	
: (6.174)

The quantity v	 has been defined in (6.145). Excluding v0 according to this
expression, we obtain

v�a D c2 � v�v
2
p�g00

�
vk@kg00p�g00

� 2@0
�

g0ip�g00

�
vi � 1

c
@0�ijv

ivj

	
: (6.175)
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For the stationary metric, g	
.xk/, the Eq. (6.175) acquires a specially simple form

v�a D �.c2 � v�v/
vk@kg00
2g00

: (6.176)

This shows that the longitudinal acceleration has only one special point, v�a ! 0

as v�v ! c2. Hence the spinless particle in the stationary gravitational field can not
overcome the speed of light. Then the same is true in general case (6.174), at least
for the metric which is sufficiently slowly varied in time.

While we have discussed the geodesic equation, the computation which leads to
the formula (6.172) can be repeated for a more general equation. Using the factorp�PxgPx we construct the reparametrization-invariant derivative

D D 1p�PxgPx
d

d�
: (6.177)

Consider the reparametrization-invariant equation of the form

DDx	.�/ D F	.Dx
; : : :/; (6.178)

and suppose that the three-dimensional geometry is defined by g	
 according to
Eqs. (6.140)–(6.143). Then Eq. (6.178) implies the three-acceleration

ai D QMi
j
�
.c2 � v�v/F j C Q� j

kl.�/v
kvl
�C

1

2

�
dt

dx0

��1 �
.v@0���1/i � vi

c2
.v@0�v/

�
; (6.179)

and the longitudinal acceleration

v�a D .c2 � v�v/2

c2
.v�F/C

c2 � v�v
c2

"
.v�/i Q� i

kl.�/v
kvl C 1

2

�
dt

dx0

��1
.v@0�v/

#
: (6.180)

The spatial part of the force is F i D F i. v
p
c2�v�v

/, where v	 is given by (6.145),

and the connection Q� i
kl.�/ is constructed with help of the three-dimensional metric

�ij D .gij � g0ig0j

g00
/ according to (6.157). For the geodesic equation in this notation

we have F i D �� i
	


v	v


c2�v�v . With this F i the Eqs. (6.179) and (6.180) coincide
with (6.171) and (6.172).

Eq. (6.180) shows that potentially dangerous forces are of degree four or more,
F j 	 .Dx/4.



Chapter 7
Transformations, Symmetries and Noether
Theorem

Abstract It was mentioned in Sect. 2.5 that conservation laws play an important
role in the analysis of classical and quantum systems. This chapter is mainly devoted
to discussion of the first Noether theorem (Noether, Invariant variation problems.
Gott. Nachr. 235 (1918); Transp. Theory Stat. Phys. 1(3), 183, 1971) which gives
the relationship between the existence of conservation laws for the system in
question, and global symmetries of the associated action functional. The symmetries
usually have a certain physical interpretation; in particular, they may reflect some
fundamental properties assumed for our space-time: homogeneity, isotropy, . . . .
In this case, the Noether theorem states that conservation laws are consequences
of these properties. For example, symmetry under spatial translations implies the
conservation of the total momentum of a system.

It was mentioned in Sect. 2.5 that conservation laws play an important role in
the analysis of classical and quantum systems. This chapter is mainly devoted
to discussion of the Noether theorem, which gives the relationship between the
existence of conservation laws for the system in question, and symmetries of
the associated action functional. The symmetries usually have a certain physical
interpretation; in particular, they may reflect some fundamental properties assumed
for our space-time: homogeneity, isotropy, . . . . In this case, the Noether theorem
states that conservation laws are consequences of these properties. For example,
symmetry under spatial translations implies the conservation of the total momentum
of a system.

To demonstrate an idea of the Noether theorem, let us consider the following
special situation. Starting from any given trajectory qa.�/, let q0a.�/ D qa.�/ C
Ra.q.�//! be a family of trajectories parameterized by the parameter !. Here
Ra.q/ is a given function. Suppose that the Lagrangian action is invariant under the
substitution q ! q0, that is SŒq0� D SŒq�, for any given q.�/ and !. In particular, the

variation of the action must also be zero: ıS D SŒq0�
ˇ̌
ˇ
linear on !part

� SŒq� D 0. On

other hand, the variation is given by the well-known expression ıS D ıS
ıq R C . @L

@Pq R/�.
Due to invariance, we obtain . @L

@Pq R/� D � ıS
ıq R. The identity holds for any q.�/. In

particular, if q.�/ is a solution to the equations of motion: ıS
ıq D 0, the identity

implies . @L
@Pq R/� D 0. That is the quantity @L

@Pqa Ra is a constant throughout any solution.
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Besides the Noether theorem, we discuss some closely-related topics: the notion
of local symmetry, the notion of symmetry for equations of motion, its relationship
with the symmetry of an action, the relationship between the Lagrangian and
Hamiltonian symmetries, Galileo and Poincaré symmetry groups and so on. The
reader who is interested only in the Noether theorem can skip to the corresponding
section after reading the first one.

7.1 The Notion of Invariant Action Functional

Here we discuss the intuitive notion of invariant action with simple examples. Exact
definitionswill be given in the next section. Consider a free particle action functional

S D 1

2

Z
dtPxa Pxa: (7.1)

Given the numeric matrix Rab, let us make the following formal substitution

xa ! Rabxb; (7.2)

in Eq. (7.1). It gives a functional that is generally different from (7.1),
1
2

R
dt.RTR/ab Pxa Pxb. But for the orthogonal matrix, RTR D 1, the substitution does

not change the Lagrangian as well as the action functional

1

2

Z
dt.RTR/ab Pxa Pxb D 1

2

Z
dtPxa Pxa; that is SŒRx� D SŒx�: (7.3)

In this case it is said that the action is invariant, and the corresponding substitution
is called a symmetry transformation of the action.

It should be noted that an action functional is an operation defined on functions
f a.�/ instead of coordinates xa. So consistent treatment of Eq. (7.3) implies that we
work with the function xa D f a.�/ and assign to it the function xa D f 0a.�/ �
Rabf b.�/ induced by the substitution (7.2). Bearing in mind this correction, the
above-mentioned terminology is reasonable.

To show the meaning of invariance property (7.3) we remind its two applica-
tions.

(A) The symmetry turns solutions to equations of motion into other solutions. So
in practice it can be used to construct new solutions from known ones.

To confirm this, take a trajectory xa D f a.t/, and construct another one,
xa D f 0a.t/ � Rabf b.t/, induced by the substitution (7.2). Invariance implies
that the action has the same value on these trajectories, SŒ f 0� D SŒ f �. Consider
now a set of trajectories ff a; ga; : : :g with the same initial and final points, and
let f represent the true trajectory, that is SŒ f � � SŒg� for all g of the set. All the
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transformed trajectories ff 0; g0; : : :g have the same initial and final points. Due
to the invariance, one obtains SŒ f 0� � SŒg0�.

(B) Recall that an orthogonal matrix corresponds to a rotation of the cartesian axis.
So we identify the substitution (7.2) with a transformation relating cartesian
coordinates xa and x0a used by two observers, O and O0

x0a D Rabxb; (7.4)

Now x and x0 stand for coordinates of the same point of configuration space. If
O uses the functions xa D f a.t/ to describe a trajectory, the observer O0 will
describe it by the function x0a D Rabf b.t/. According to Sect. 1.4.2, to study the
motion, O0 can use an action obtained from (7.1) by the change of variables,
xa D QRabx0b, where QR is the inverse matrix for R. It reads

S0Œx0� D 1

2

Z
dt. QRT QR/ab Px0a Px0b D 1

2

Z
dtPx0a Px0a D SŒx0�: (7.5)

The second equality is due to the invariance. That is an invariance guarantees
that O0, describing the system, can take the same action as O, simply using his
own coordinates x0 instead of x. This implies an identical form of equations of
motion in the two systems. If F.x; Px/ D 0 stands for an equation obtained by
O, then F.x0; Px0/ D 0 with the same F represents this equation in the system O0.
One can say that physical laws have an identical form in the coordinate systems
O and O0.

Disregarding the total derivative term, the action (7.1) is also invariant under the
Galileo boost t ! t, xa ! x0a D xa C vat, va D const

S D 1

2

Z
dt.Pxa C va/2 D 1

2

Z
dt

�
.Pxa/2 C d

dt
.2vaxa C v2t/

�
: (7.6)

Although now SŒ f 0� ¤ SŒ f �, it still turns solutions into solutions. Hence it would be
reasonable to admit a total derivative term in the definition of an action symmetry.

One more example is the relativistic particle

S D �mc
Z

dt
p

c2 � Pxa Pxa; a D 1; 2; 3: (7.7)

The Lorentz boost, that is the substitution

t ! t0 D 1q
1� v2

c2



t � v

c2
x1
�
; x1 ! x01 D 1q

1 � v2

c2

.x1 � vt/;

x2 !x2; x3 ! x3: (7.8)

leaves the action invariant for any value of the numeric parameter v.
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Exercise Verify the invariance, SŒt0; x0� D SŒt; x�, using the rules for derivative
of a parametric function (we will confirm them in the next section)

dx01

dt0
D

dx01

dt
dt0

dt

;
dx˛

dt0
D

dx˛

dt
dt0

dt

; ˛ D 1; 2: (7.9)

This symmetry mixes space coordinates with time variables, that is, here we deal
with coordinate transformation of the extended configuration space t, xa.

As an example of non-linear symmetry, consider the action

S D 1

2

Z
dt

�
ı˛ˇ C x˛xˇ

1 � .x� /2

�
Px˛ Pxˇ; ˛; ˇ; � D 1; 2: (7.10)

This describes a free particle moving on a two-dimensional semisphere of unit
radius. Besides the two-dimensional rotations, x0˛ D R˛ˇxˇ , RTR D 1, it is invariant
under the transformation

x1 ! x1; x2 ! x02 D x2 cos' C
p
1 � .x� /2 sin '; (7.11)

for any value of the parameter '. One more symmetry is obtained from (7.11)
replacing x1 $ x2.

Exercise Show the invariance. Hint: First notice that the Lagrangian can be
written as 1

2
..Px˛/2C.Px3/2/, where x3 � p

1 � .x˛/2. Second, show that (7.11)
implies x03 D �x2 sin ' C x3 cos'.

According to these examples, we should define the notion of invariant action under
the family of coordinate transformations of extended space of the form

�
�

qa

�
$
�
� 0 D ˛.�; qa; !˛/

q0a D  a.�; qa; !˛/

�
: (7.12)

When the family is parameterized by a set of numeric parameters !˛ , we deal with
the global symmetry. When !˛ are functions of � , we deal with the local symmetry.
In the latter case we can consider a more general expression for the transformations,
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admitting the terms with derivatives of the parameters

�
�

qa

�
$
�
� 0 D ˛.�; qa; !˛; P!˛; R!˛; : : :/

q0a D  a.�; qa; !˛; P!˛; R!˛; : : :/
�
: (7.13)

These transformationswill be taken as the starting point of our discussion in the next
section. The definitions given below equally work for global and local symmetries.

Comments (1) An example of a transformation with � 0 dependent on qa is the
relativistic particle. An example of a transformation with q0 dependent on � is the
Galileo boost. We also point out that a typical form of transformations in classical
(non relativistic) mechanics is either � 0 D ˛.�/, q0 D q; or � 0 D � , q0 D  .�; q/.
That is, either � or q remains unaffected. In contrast, the form (7.12) turns out to
be typical for symmetry transformations in field theories (with the corresponding
substitutions � ! x	, qa ! 'a.x	/ ).

(2) In general, neither a composition nor an inverse transformation are guaranteed
to be members of a family. But the families arising in physical applications typically
possess these additional properties, forming the so called Lie groups.

Suppose a family of transformations obeys the following properties. (A) The
product (that is, a consecutive application) of two transformations of the family
is a member of the family as well: g.!2/g.!1/ D g.!3.!2; !1//. (B) The family
contains a unit. It is an element e with the property eg D ge D g for any g (for our
case it is the identity transformation, e D g.0/, see (7.17)). (C) For any g an inverse
transformation Qg is a member of the family, that is Qg D g.!/ for some !. A family
equipped with a product obeying these properties is precisely a Lie group.

(3) The families of transformations discussed above are examples of a Lie group.
Specifically, for the Galileo boosts g.va/ W xa ! x0a D xa C vat, note that x00a D
x0a Cva

2 t D xa C.va
2Cva

1/t. That is, the product gives a boost parameterized by sum,
g.v2/g.v1/ D g.v2 C v1/. The unit element is e D g.0/, and an inverse for g.va/ is
given by Qg D g.�va/.

Exercises

(1) Show that the family (7.11) form a Lie group with the same composition
law as for Galileo boosts: g.'2/g.'1/ D g.'2 C '1/.

(2) Show that the transformations g.R; a/ W x ! x0 D Rx C a;R ¤ 0 of
one-dimensional space parameterized by x form a Lie group. Find the
composition law, a unit and an inverse element.
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7.2 Coordinate Transformation, Induced Transformation
of Dynamical Variables and Symmetries of an Action

We present here two equivalent definitions for an action symmetry.We start from the
definition that makes the concept clear and then deduce from it the other one, usually
used in practical calculations. It is worth noting that the notion of symmetry and the
Noether theorem work both for mechanical and field theories that can be described
by equations of motion obtained from the variational problem for a functional. It
can be a Lagrangian or Hamiltonian action functional, or some other. We start from
the Euler–Lagrange equations. The Hamiltonian version of the Noether theorem is
discussed in Sect. 7.12.

Consider a dynamical system described by equations of motion following from
the action functional

SŒq� D
Z �2

�1

d�L.qa; Pqa; �/; (7.14)

defined in the space of functions qa D f a.�/, � � Œ�1; �2�. In this section it will
be convenient to use a different notation for coordinates: qa, and for the curves:
qa D f a.�/, that is for maps f W R D f�g �! R

n D fqag.
Consider the extended configuration space parameterized by the coordinates � ,

qa: RnC1 D R � R
n D f.�; qa/g, and a family G D fg.!˛/g of coordinate

transformations specified by given functions ˛,  a, and parameterized by k numeric
parameters !˛ , ˛ D 1; 2; : : : ; k

g.!˛/ W .�; q˛/ �! .� 0; q0a/ D .˛.�; qa; !a/;  a.�; qa; !˛//: (7.15)

We adopt “an active point of view”, that is the transformation g turns
a point with coordinates (� , q/ into another point, with the coordinates
.˛.�; qa; !˛/;  a.�; qa; !˛//. That is .� 0; q0a/ are labels of the transformed point
in the same coordinate system. The transformation is presumed to be invertible

det
@.˛;  a/

@.�; qb/
¤ 0: (7.16)

Suppose also that the parametrization has been chosen in such a way that transfor-
mation with !˛ D 0 is the identity transformation

˛.�; qa; 0/ D �;  a.�; qa; 0/ D qa: (7.17)

Where this cannot lead to confusion, we suppress the parameters !˛ (as well as the
indices of the coordinates: qa ! q,  a !  and so on).
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Fig. 7.1 Coordinate
transformation g induces the
map �g W f ! f 0 in the space
of functions

q’

q

q

ττ τ

Γf ~ q=f(  )

*g Γf

*g
τ

’

~ q’=f’(τ )

g

Equation (7.15) represents a coordinate transformation, while an action func-
tional is an operation defined on functions. To formulate consistently how S is
affected by a coordinate transformation, we need to decide how the map g acts
on a function f a.�/. We identify the function with its graph in extended space (see
Fig. 7.1 on page 241)

�f D f.�; f a.�//; � � Œ�1; �2�g: (7.18)

The map g transforms it into another graph, �f 0 , and the problem is to find the
corresponding function f 0.�/. This leads to the following rule for transformation of
a function:

�g W f a.�/ ! f 0a.�/ �  a. Q̨.�/; f . Q̨.�///; � � Œ˛.�1; f .�1//; ˛.�2; f .�2//�:
(7.19)

Here Q̨.�/ is, for each given f (�), an inverse function for ˛.�; f .�/; !˛/ considered
as a function of � , that is:

˛. Q̨.�/; f . Q̨.�// D Q̨.˛.�; f .�// D �: (7.20)

Indeed, under the map g the point � D ; q D f ./ goes over to the point with
coordinates

� D ˛.; f .//; q D  .; f .//: (7.21)

The equalities represent the parametric equations of the graph �f 0 . Resolving the
first equation with respect to ;  D Q̨.�/, and using this to eliminate the parameter
from the second equation, we arrive at Eq. (7.19).
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Now, for a given function f a.�/, let us construct the image f 0a.�/, and compute
the same functional (7.14) on f 0

SŒ f 0� D SŒ�g f � D
Z ˛.�2;f .�2//

˛.�1;f .�1//
d�L. f 0a; Pf 0a; �/: (7.22)

Definition 1 Coordinate transformations (7.15), represent symmetry of the
action (7.14) (variational symmetry), if for any f a.�/ and !˛ there is a function
N.f ; Pf ; �; !/ such that:

Z ˛.�2;f .�2//

˛.�1;f .�1//
d�L. f 0a; Pf 0a; �/ D

Z �2

�1

d�

�
L. f a; Pf a; �/C dN

d�

�
: (7.23)

Let us stress that Eq. (7.23) represents equality of two numbers. In particular,
in many practically interesting cases, one has N D 0, then for any f and the
corresponding f 0, the number SŒ f 0� must be equal to the number S[f ].

Note that the inverse function Q̨ appeared in (7.19) depends on a particular f , so
the obtained representation is rather formal. Let us rewrite the invariance condition
in terms of ˛ and . As it is written, the invariance condition is presented in terms of
the same functional computed on two different functions (initial and transformed).
We now come back to the initial function on the l.h.s. of Eq. (7.23), thus obtaining
the invariance condition in terms of the initial and some transformed functionals,
both computed on the same function. At the end, we obtain the invariance condition
in a form which is convenient for applications, as an algebraic property of a
Lagrangian function under the coordinate transformations (7.15).

To achieve this, we make a change of variables in the definite integral on l.h.s. of
Eq. (7.23), � D ˛.s; f .s//. Using the identity

df 0.�/
d�

ˇ̌
ˇ̌
�D˛.s;f .s//

D
�

d˛

ds

��1 df 0.˛/
ds

; (7.24)

the Eq. (7.23) acquires the form

Z �2

�1

d� P̨L. .�; f .�//; . P̨ /�1 d .�; f .�//

d�
; ˛/ D

Z �2

�1

d�

�
L. f .�/; Pf ; �/C dN

d�

�
; (7.25)

where it has been used the equality f 0.�/j�D˛.�;f .�// D  .s; f .s//, which follows
from the representation (7.19) and from the identity (7.20). The l.h.s. of Eq. (7.25)
looks as a new functional Sg computed for the initial function f .�/. So, it can be said
that under the transformation (7.15) the initial action transforms into another action.
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Definition 2 The action

SgŒq� �
Z �2

�1

d� P̨L. .�; q/; . P̨ /�1 P .�; q/; ˛/; (7.26)

is called the transformation of the action (7.14) under the coordinate transformations

g W � ! � 0 D ˛.�; qa; !˛/; qa ! q0a D  a.�; qa; !˛/: (7.27)

As we have just shown, (7.22) is equal to (7.26). That is, symbolically

SŒ�gf � D SgŒf �: (7.28)

In terms of the transformed action, the invariance condition is formulated as follows:

Definition 3 The action (7.14) is invariant, if, disregarding the total derivative, the
transformed action coincides with the initial one

SgŒq� D SŒq�C
Z

d�
dN

d�
: (7.29)

Since this equality must be satisfied for any integration interval, the integrals can be
omitted. This gives the invariance condition as an algebraic property of a Lagrangian
under the coordinate transformations

P̨L. .�; q/; . P̨ /�1 P .�; q/; ˛/ D L.q; Pq; �/C dN

d�
: (7.30)

7.3 Examples of Invariant Actions, Galileo Group

Example 1 Consider rotations of the two-dimensional space (� , q/

� W .�; q/ ! .� 0; q0/ D .� cos � � q sin �; � sin � C q cos�/: (7.31)

Let us find the image of the linear function q D f .�/ D a� C b. According to
Eqs. (7.19) and (7.21), we need to eliminate  from the equations � D  cos � �
.a C b/ sin �; q D  sin � C .a C b/ cos� , which again gives the linear function
q D a0� C b0 (one straight line is rotated into another straight line)

q D f 0.�/ D sin � C a cos�

cos � � a sin �
� C b

cos � � a sin �
: (7.32)
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Example 2 Consider translations of the evolution parameter

a W .�; qa/ ! .� 0; q0a/ D .� C a; qa/; a D const; (7.33)

The image of the function f (�) is obtained from the parametric equations � D Ca,
q0a D f a./. We find

qa D f 0a.�/ D f a.� � a/: (7.34)

Translations are the symmetry of any action which does not explicitly depend on
� : S D R

d�L.q; Pq/. The transformed functional is obtained according to Eq. (7.22),
and coincides with the initial one after the change of variables � ! � C a

Z �2Ca

�1Ca
d�L. f .� � a/;

d

d�
f .� � a// D

Z �2

�1

d�L. f .�/; Pf .�// (7.35)

Thus the condition (7.23) is satisfied with N D 0.

Intuitively, the physical interpretation of the time translations is that an experi-
ment carried out during the time interval Œ�1; �2�, can be repeated at a different time:
Œ�1 C a; �2 C a�. The invariance of the action implies that the same experiment
carried out “today” and “tomorrow” gives identical results, since in both cases
the same trajectory is an extremum of the functional (see Fig. 7.2 on page 244).
Equations (7.33) and (7.35) can be thought of as the mathematical formulation of
homogeneity in time: the properties of a physical system at different times are the
same. As will be seen below, symmetry under time translations implies the energy
conservation law. That is, energy conservation is a consequence of homogeneity in
time.

Example 3 Consider the Galileo boosts, which is a three-parameter family of
transformations of 7.3 R � R

3

v W � ! � 0 D �; xi ! x0i D xi C vi�; vi D const: (7.36)

Fig. 7.2 Time translation:
the same trajectory turns out
to be an extremum of a
functional at a different time

q

f(  )τ τ

τ τ1 τ τ τ2 1 2+ a + a

f’(   ’)



7.3 Examples of Invariant Actions, Galileo Group 245

In three-dimensional Euclidean space, these equations can be thought of as related
coordinates of two observers O and O0, with the latter moving at velocity vi in rela-
tion to O, and passing through the point .0; 0; 0/ at � D 0. Since time is unchanged,
the induced transformation of functions coincides with the x-transformation

� v W f i.�/ ! f 0i.�/ D f i.�/C vi�: (7.37)

The action of a free moving particle is invariant under the boosts. Indeed, Eq. (7.29)
turns out to be satisfied

Z
d�
1

2
mŒ.xi C vi�/��2 D

Z
d�

�
1

2
m.Pxi/2 C dN

d�

�
; (7.38)

with nontrivialN.x; �; v/ D xiviC m
2
.vi/2� . The same is true for a system of particles

subject to a potential which depends only on relative distances among the particles.
Equations (7.36) and (7.38) represent the mathematical formulation of the principle
of Galilean relativity for the case of boosts: the properties of a given system as
studied in laboratories O and O0 are the same.

Example 4 Kepler’s problem. Consider the action of a particle under a central field

S D
Z

d�

m

2
.Pxi/2 � U.r/

�
; where r D .xi/2: (7.39)

Besides the time translations, symmetries of this action are transformations gener-
ated by real orthogonal matrices

R W � ! � 0 D �; xi ! x0i D Rijxj; where RT D R�1: (7.40)

Its invariance can be immediately verified, in accordance with Eq. (7.29), by
substituting x0i instead of xi into Eq. (7.39). Notice that the Galileo boosts are not
symmetries of the action.

Example 5 A system of two particles labeled by Euclidean coordinates xi
.1/, xi

.2/,
with a potential which depends on the relative distance between them, is described
by the action

S D
Z

d�

�
1

2
m1.Pxi

.1//
2 C 1

2
m2.Pxi

.2//
2 � U.r12/

�
; (7.41)

where .r12/2 D P3
iD1 .xi

.2/ � xi
.1//

2. Besides the time translations, rotations and the

Galilean boosts, there is a symmetry under spatial translations with the parameters ci

c W � ! � 0 D �; xi
.a/ ! x0i

.a/ D xi
.a/ C ci; a D 1; 2: (7.42)
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Generalizing, let us write the action

S D
Z

d�

 
1

2

lX
aD1

m.a/.Pxi
.a//

2 � U.rab/

!
; (7.43)

where .rab/
2 D P3

iD1 .xi
.b/ � xi

.a//
2. It describes a system of l particles, x1.a/, x2.a/, x3.a/

which are Euclidean coordinates of a particle with the number a, a D 1; 2; : : : ; l.
They are under a potential U.rab/, which is a function of the variables rab, a; b D
1; 2; : : : ; l. The action is invariant under the ten-parameter Galileo group

� ! � 0 D � C a;

xi
.a/ ! x0i

.a/ D Rijxj
.a/ C vi� C ci: (7.44)

As we have discussed in Sect. 1.2, in classical mechanics it is postulated that the
Galileo group relates different inertial frames. The invariance can be verified, in
accordance with Eq. (7.29), by substituting � 0, x0i instead of � , xi into Eq. (7.43).

7.4 Poincaré Group, Relativistic Particle

As an example of the coordinate transformations of a general form (7.15) (when � 0
depends on qa/, we discuss here a free-moving relativistic particle in terms of its
physical coordinates.

Let us consider the action functional

S D �mc
Z

dx0

s
1 �

�
dxa

dx0

�2
; (7.45)

on the space of functions xa D f a.x0/. According to Sect. 1.7.6, it describes a
particle which moves along a straight line with constant velocity . dxa

dt /
2 < c2. Let

us confirm that the system obeys the principle of special relativity. We need to show
that the action admits the Poincaré group as a symmetry group. Invariance under the
translations is evident, so, let us discuss the Lorentz transformations

x0 ! x00 D ƒ0
0x
0 Cƒ0

bxb;

xi ! x0a D ƒa
0x
0 Cƒa

bxb:
(7.46)

Note that they represent an example of coordinate transformations, when trans-
formed time x00 depends on spatial coordinates xa. Starting from a function
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xa D f a.x0/, the transformed function xa D f 0a.x0/ can be found in a parametric
form

x0 D ƒ0
0 Cƒ0

bf b./;

xa D ƒa
0 Cƒa

bf b./:
(7.47)

In the general case, the parameter  cannot be eliminated from these equations by
analytic methods, and we are not able to find closed expression for f 0a.x0/. In other
words, it can be said that the Lorentz group acts on the physical dynamical variables
f a.x0/ in a higher non-linear way, in contrast to its linear realization in coordinate
space (7.46). This represents a serious obstacle to the investigation of relativistic
theories in terms of physical variables, since the relativistic invariance is not under
control.1 Fortunately, to check an invariance of the action, we do not need to know
f 0. According to Eq. (7.26), it is sufficient to replace x	 in Eq. (7.45) by x0	 given in
Eq. (7.46), and to confirm the validity of the condition (7.29).

Exercise Verify this invariance.

Since the description based on the physical variables f a.t/ is not very convenient,
let us see what happens, when we try to avoid this problem. Consider the action

S D �mc
Z

d�
p
�	
 Px	 Px
; where Px	 � dx	

d�
; (7.48)

in the space of functions x	 D f	.�/. Now the evolution parameter is � , while
both x0 and xa are the configuration-space coordinates. Lorentz transformations are
defined in extended space .�; x	/ according to � ! � 0 D � , x	 ! x0	 D ƒ	


x
 ,
and represent symmetry of the action. As compared with the action (7.45), the
advantages are:

(A) Invariance of the action is evident, since �	
 Px	 Px
 is a scalar function with
respect to the transformations.

(B) The evolution parameter � is not affected by the transformations. According
to (7.19), the transformation law for the function x	 D f	.�/coincides with the
one for the coordinates x	: f 0	.�/ D ƒ

	

 f 
.�/.

1For a free particle, solutions to equations of motion xa.x0/ are linear functions, and Eq. (7.47) can
be resolved; see Example 1. Serious problems arise for particle and field theories with interaction.
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Of course, there is a price to pay. First, the formulation contains an additional
variable (actually, it involves two evolution parameters, � and x0/. Second, the
theory is singular: det @2L

@Px	@Px
 D 0. The lesson is that formulation of a relativistic
theory in a manifestly Lorentz invariant form (that is with linearly realized Lorentz
transformations on dynamical variables) implies a singular action which involves
the auxiliary variables.

7.5 Symmetries of Equations of Motion

As before, let g be the coordinate transformation (7.15) (not necessarily a symmetry
of an action), and �g W f .�/ ! f 0.�/ represent the induced transformation (7.19).
Consider the equations of motion Fa.qa; Pqa; Rqa; �/ D 0 following from the action
functional (7.14).

Definition g is a symmetry of the equations of motion, if it maps any solution into
a solution

Fa.f ; : : :/ D 0 ) Fa. f 0; : : :/ D 0: (7.49)

From a pragmatic point of view, the existence of the symmetry facilitates the search
for a general solution to the equations of motion: starting from the known particular
solution qa D f a.�/, one immediately obtains a family of solutions applying the
transformation �g: qa D �g 
 f a.�/ D f 0a.�; !˛/, which depends on k arbitrary
constants !˛ . Sometimes, when the family is large enough, it is sufficient to find
only one particular solution to generate the general solution.

As an illustration, consider a free particle Rxi D 0. The six-parameter transforma-
tions g.Ev; Ea/ W � ! � 0 D � , xi ! x0i D xi C vi� C ai form a symmetry group. In
this case, the induced transformations coincide with the coordinate ones. Note that
xi.�/ D 0 is a solution to the equations of motion, then x0i D 0C vi� C ai turns out
to be the general solution. Intuitively, a free-moving particle can be obtained from a
particle at rest by the Galileo transformation.

As one more example, consider the system Rxi C xi D 0, i D 1; 2, which admits a
symmetry generated by arbitrary non-degenerate matrices

a W � ! � 0 D �; xi ! x0i D ai
jx

j; where det a ¤ 0: (7.50)

The general solution x1 D A cos.t C ˛/, x2 D B sin.t C ˇ/ can be generated from
the particular solution x1 D cos t, x2 D sin t by the application of a symmetry
transformation of the form

a D
�

A cos˛ �A sin˛
B cosˇ �B sinˇ

�
: (7.51)
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There are non-trivial applications of this resource, see Sect. 1.7.8, where we
computed the electromagnetic field of a moving charge. In a similar way can be
obtained complete set of independent solutions to the Dirac equation (describing an
electron in the relativistic field theory), see [37].

Exercise For the second example, find (an invertible) symmetry transforma-
tion such that .cos t; 0/ ! .0; sin t/.

Before discussing the relationship between symmetries of an action and symme-
tries of the corresponding equations of motion, let us consider the following task.
Let f 0 be the image of f under a transformation �g. Supposing that f is an extremum
of the functional (7.14), let us to find the functional that has f 0 as an extremum.

The transformations (7.15) are invertible, see Eq. (7.16). Let us denote the inverse
transformation as g�1. Applied to the point � , q it reads

g�1 W � ! � 0 D Q̨.�; q/; qa ! q0a D Q a.�; q/: (7.52)

This implies transformation of the function f

�g�1 W f .�/ ! f 00.�/: (7.53)

Exercise Suppose f is the solution to the equations of motion F.q; Pq; Rq; �/ D
0. Write equations of motion for f 0 (see Sect. 2.1.1).

Starting from the action (7.14), the inverse transformation can be equally used to
construct a transformed action according to Eq. (7.26). We obtain

Sg�1 Œq� D SŒ f 00� D SŒ�g�1f � D
Z

d� PQ̨L. Q .�; q/; . PQ̨/�1 PQ .�; q/; Q̨/: (7.54)

Computing Sg�1 on f 0, we have Sg�1 Œf 0� D SŒ�g�1�gf � D SŒ f �. So, if f 0 is the image
of a function f under the transformation (7.15), then

Sg�1 Œf 0� D SŒ f �: (7.55)

This resolves the task formulated above: if f is an extremum of S, then f 0 will be
an extremum of Sg�1 . In other words, if f represents a solution to the equations of
motion following from S, then f 0 obeys equations of motion obtained from Sg�1 .

Comments It should be mentioned that, if g � G, the inverse transformation is
not generally an element of the family. Nevertheless, if g is a symmetry of the
functional (7.14), the same is true for the inverse transformation (prove this by using
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Definition 1 of Sect. 7.2). If the family is a Lie group, an inverse transformation
belongs to the group. Suppose that the transformation (7.15) is parameterized by !˛ ,
and Q!˛ are parameters corresponding to the inverse element. Then, by construction,
the functions Q̨, Q are the group functions: Q̨.!/ D ˛. Q!/, Q .!/ D  . Q!/. The
action (7.54) then simply coincides with (7.26), where ! ! Q!.

We are ready to demonstrate the following remarkable fact: transformations
leaving an action invariant, map solutions to equations of motion into solutions.

Affirmation If the family G is a symmetry of the functional SŒq� DR
d�L.qa; Pqa; �/, then G is a symmetry of the corresponding equations of motion.

Proof As we saw above, together with g, the transformation g�1 represents a
symmetry of the action. The invariance condition for g�1 reads SŒ�g�1f � D SŒ f �CR

d� PN, or, equivalently

Sg�1 Œq� D SŒq�C
Z

d� PN (7.56)

Let f be a solution to the equations of motion derived from S. According to
Eq. (7.55), f 0a is a solution to equations of motion derived from Sg�1 Œq�. According
to (7.56), the equations obtained from Sg�1 .q/ and SŒq� coincide. Thus f and f 0 obey
the same equation.

We emphasize that the inverse statement is not true. To confirm this, it is sufficient
to return to the second example of the previous section. Equations Rxi Cxi D 0 follow
from the action S D S

R
d�..Pxi/2 � .xi/2/. The symmetry (7.50) of the equations is

not a symmetry of the action (unless the matrix a is orthogonal).

7.6 Noether Theorem

We present here the Noether theorem in the form normally used by physicists.2 Let
G be a k-parameter family of coordinate transformations

� ! � 0 D ˛.�; qa; !˛/ D � C G˛.�; q
a/!˛ C O.!2/;

G˛ � @˛

@!˛

ˇ̌
ˇ̌
!D0

;

qa ! q0a D  a.�; qa; !˛/ D qa C Ra
˛.�; q

a/!˛ C O.!2/;

Ra
˛ � @ a

@!˛

ˇ̌
ˇ̌
!D0

: (7.57)

2See [38] for discussion of the most general form of the Noether theorem.
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Here, with use of Eq. (7.17), the transition functions have been expanded, up to a
linear order, in a power series at ! D 0. So, infinitesimal transformations (! � 1/

are characterized by the functionsG and R, called generators of the transformations.
We combine them into the quantity3

Da
˛ � Ra

˛ � PqaG˛; (7.58)

and impose the following technical condition

rank Da
˛ D Œ˛� D k; (7.59)

A family of transformations with this property is called a family with k essential
parameters.

Noether Theorem Let the action (7.14) be invariant under the family of transfor-
mations (7.57) with k essential parameters, that is

Z �2

�1

d� P̨L. ; . P̨ /�1 P ; ˛/ D
Z �2

�1

d�

�
L.q; Pq; �/C dN.q; Pq; �/

d�

�
: (7.60)

Then there are k functions Q˛.q; Pq; �/ called Noether charges, namely

Q˛ D � @L

@Pqa
.Ra

˛ � PqaG˛/� LG˛ C N˛; N˛ � @N

@!˛

ˇ̌
ˇ̌
!D0

; (7.61)

which retain a constant value throughout any solution to equations of motion

dQ˛

d�

ˇ̌
ˇ̌
ıS
ıq D0

D 0: (7.62)

For the case of nonsingular theory the charges do not vanish identically. Moreover,
they are functionally independent: rank @Q

@.q;Pq/ D k.

Comments The Noether theorem gives the charges in terms of generators. It is
possible to write an inverse formula for the generators through a given conserved
charges, see Eq. (7.146) below.

Proof As has been discussed in Sect. 7.2, the integrals in Eq. (7.60) can be omitted.
Further, the integrands can be expanded in a power series of !. Since ! are arbitrary
parameters, the identity (7.60) must be satisfied for each power order separately.
The result we are interested in appears in the linear order. Let A.!/ D B.!/ be a

3As we will see below, D determines an infinitesimal transformation of a function.
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symbolic notation for the integrand of Eq. (7.60). Then the linear on the ! part is

@A

@!˛

ˇ̌
ˇ̌
!D0

D @B

@!˛

ˇ̌
ˇ̌
!D0

: (7.63)

Let us write an explicit form of this expression. The right-hand side is

d

d�

@N

@!˛

ˇ̌
ˇ̌
!D0

� d

d�
N˛; (7.64)

with the known function N˛ . With the use of Eqs. (7.57) and (7.17), the derivative
of the left-hand side is

@.l:h:s:/

@!˛

ˇ̌
ˇ̌ D L PG˛ C @L

@qa
Ra

˛ � @L

@Pqa
PG˛ Pqa C @L

@Pqa
PRa
˛ C @L

@�
G˛ (7.65)

Here L � L.q; Pq; �/. Extracting a total derivative with respect to � from the first and
fourth terms, we write

�
LG˛ C @L

@Pqa
Ra

˛

��
� @L

@qa
G˛ Pqa � @L

@Pqa
.G˛ Pqa/� C Ra

˛

ıS

ıqa
: (7.66)

Further, extracting a total derivative from the third term in (7.66) we obtain

�
LG˛ C @L

@Pqa
.Ra

˛ � PqaG˛/

��
C .Ra

˛ � PqaG˛/
ıS

ıqa
: (7.67)

Substitute (7.64) and (7.67) into (7.63). This gives the desired result: the linear with
respect to ! part of Eq. (7.60) implies

.Ra
˛ � PqaG˛/

ıS

ıqa
D dQ˛

d�
; forany qa.�/; (7.68)

with Q given by Eq. (7.61). We emphasize that this equality is an identity, that
is, it is true for any function qa.�/. So, invariance of an action implies that some
combinations of the equations of motion form total derivatives of the charges Q˛ .
The Eq. (7.68) are called Noether identities. We discuss below how the Noether
identities can be used to simplify the equations of motion.

The Noether theorem follows immediately from Eq. (7.68): when the equations
of motion holds, ıS

ıqa D 0, one has dQ˛
d� D 0. The charges Q˛ do not vanish iden-

tically; besides that, they are linearly independent. Indeed, suppose, for example,
Q1 D 0 for any q.�/. Then the identity (7.68) acquires the form (see (2.21))
Da
1.Mab Rqb � Ka/ D 0. This implies that the matrix M has the null-vector D1,
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which contradicts the nonsingular character of the theory.4 Linear dependence of
Q˛ would contradict the condition (7.59). Functional independence of the charges
will be demonstrated in Sect. 7.9.

Exercises

1. Confirm that Nj!D0 D 0.
2. Work out the quadratic term of the power expansion of Eq. (7.60). What is

the information contained in it?

7.7 Infinitesimal Symmetries

The reader possibly observed that only the linear part of the power expansion was
used in the proof of the Noether theorem (we will return to the discussion of that
point in the next section). This justifies the notions of infinitesimal transformation
and infinitesimal symmetry discussed here.

The linear on !˛ coordinate transformation

� ! � 0 D � C G˛.�; q
a/!˛ � � C ı�

qa ! q0a D qa C Ra
˛.�; q

a/!˛ � qa C ıqa; (7.69)

is called infinitesimal transformation. The functions G˛ , Ra
˛ are called generators.

With any coordinate transformation can be associated an infinitesimal transforma-
tion. It is obtained keeping the first two terms of the power expansion, two see
Eq. (7.57).

Similarly to the general case discussed in Sect. 7.2, the infinitesimal transforma-
tion (7.69) induces transformation of functions, �g W qa D f a.�/ ! qa D f 0a.�/,
where f 0a.�/ is given in parametric form by

� D  C G˛.; f a.//!˛

qa D f a./C Ra
˛.; f a.//!˛;

(7.70)

According to Eq. (7.19) this induces the transformation of a function

f 0a.�/ D f a. Q̨.�//C Ra
˛. Q̨.�/; f . Q̨.�//!˛; (7.71)

4Note that in singular theory it can happen that Q � 0, which implies identities among the
equations of motion. This is closely related with the presence of local symmetries, see Chap. 8.
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where Q̨.�/ is the inverse function for the following function of � : �CG˛.�; f .�//!˛ .
In the linear approximation it reads Q̨ D � � G˛.�; f .�//!˛ C O2.!/. This implies

@ Q̨
@!˛

ˇ̌
ˇ̌
!D0

D �G˛: (7.72)

In the linear approximation, there is a simple formula for transformed function in
terms of the initial one. Using Eqs. (7.71) and (7.72) this reads

f 0a.�/ D f 0a.�/
ˇ̌
!D0 C @f 0a.�/

@!˛

ˇ̌
ˇ̌
!D0

!˛ C O2.!/

D f a.�/C
�

Ra
˛.�; f .�//C Pf a.�/

@ Q̨
@!˛

ˇ̌
ˇ̌
!D0

�
!˛ C O2.!/

D f a.�/C �
Ra

˛.�; f .�// � Pf a.�/G˛.�; f .�//

!˛ C O2.!/: (7.73)

We come back to our notation f .�/ D q.�/, then Eq. (7.73) implies

qa.�/ ! q0a.�/ D qa.�/C Qıqa; Qıqa � ıqa � Pqaı� � Da
˛!

˛; (7.74)

with ı�; ıqa specified in (7.69), and D is given by (7.58). The symbol Qı is used
for variation of a function. In the books on quantum field theory it is called an
infinitesimal transformation of form of a field (function).

An infinitesimal transformation (7.69) is an infinitesimal symmetry of an action,
if

Z �2CG˛.�2;f .�2//!˛

�1CG˛.�1;f .�1//!˛
d�L. f 0a; Pf 0a; �/

ˇ̌
ˇ̌
ˇ
O.!/

D
Z �2

�1

d�

�
L. f a; Pf a; �/C dN

d�

�
: (7.75)

Here f 0 is given by Eq. (7.71), and the notation O(!) means that we keep only the
linear term of the expansion in power series of ! around ! D 0. As compared
with the symmetry condition (7.23), we now require it to be satisfied only in linear
order with respect to !. So each symmetry (7.15) implies an infinitesimal symmetry,
which appears as linear in the !˛ part of the symmetry transformation. Note that an
infinitesimal symmetry is not generally a symmetry.

Let us compute the left-hand side of Eq. (7.75). First, take into account integra-
tion limits that give an extra total derivative term

R �2
�1

d�ŒL. f 0a; Pf 0a; �/jO.!/ C d
d� .LG˛!

˛/
i

D R �2
�1

d�
�
L. f a; Pf a; �/C dN

d�

�
:

(7.76)
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Second, substitute (7.74) and omit the integration, thus obtaining

L.qa C Qıqa; .qa C Qıqa/:; �/
ˇ̌
ˇ
O. Qıq/ � L.q; Pq; �/ D d

d�
.N � LG˛!

˛/: (7.77)

Note that the left-hand side is just the usual variation of a Lagrangian due to the
variation of coordinates Qıqa. Hence the invariance condition (7.75) is equivalent
to the statement that the variation can be presented as a total derivative of some
function. Computing the variation according to the known formula (1.127), we
reproduce the Noether identities (7.68)

ıS

ıqa
Qıqa D d

d�

�
@L

@Pqa
Qıqa � Lı� C N

�
: (7.78)

Recall that the invariance condition (7.23) is equivalent to Eq. (7.30). The
infinitesimal invariance condition (7.75) can also be written in a similar form; it
is sufficient to replace ˛ ! � C ı� ,  ! q C ıq in Eq. (7.30) and keep only the
linear part. It reads

.1C .ı�/:/L.q C ıq; .q C ıq/:; � C ı�/jO.ı�;ıq/ � L.q; Pq; �/ D dN

d�
: (7.79)

Computing the linear part, we arrive at the Noether identities once again (do the
computation!).

We can generalize the notion of infinitesimal symmetry, allowing the generator
R in (Eq. (7.71)) to depend on time derivatives of f .

Example An infinitesimal transformation with ı� D 0; ıqa D Bab ıS
ıqb , where

Bab is an antisymmetric matrix, represents an infinitesimal symmetry of any
action. Omitting a total derivative, the variation of a Lagrangian reads ıL D
ıS
ıqb Bab ıS

ıqb D 0. This is called a trivial infinitesimal symmetry. Being present
in any action, the trivial symmetry does not lead to physical consequences. In
particular, the corresponding charge vanishes on equations of motion.

In short, we have obtained two formal recipes allowing us to check whether an
infinitesimal transformation (7.69) represents an infinitesimal symmetry of an action
functional. According to Eq. (7.77), we can compute the usual variation of the action
under transformations of the form (7.74) and see whether it can be presented as a
total derivative of some function. Equivalently, we can see whether the left-hand
side of Eq. (7.79) forms a total derivative.

We have also demonstrated that the infinitesimal symmetry condition (7.75),
being equivalent to the Noether identities (7.78), implies the conserved charges.
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7.8 Discussion of the Noether Theorem

Let us return to the discussion of the Noether theorem.A brief inspection of Sect. 7.6
shows that invariance of an action under the symmetry transformations (7.57) is
not necessary in the proof of the Noether theorem. Since only the linear on !˛
part of Eq. (7.60) has been used in the proof, the conservation law is already
guaranteed by the infinitesimal symmetry. This was shown once again in the
previous section: the infinitesimal symmetry condition (7.75) is equivalent to the
Noether identities (7.78), which imply conservation of the charges, Eq. (7.62).

As we saw above, symmetries of an action reflect fundamental properties
assumed for our space-time. Since an infinitesimal symmetry is not generally a
symmetry, the question arises whether such properties as homogeneity, isotropy,
and so on are actually related to the existence of conservation laws. Here we fill
this gap by showing that invariance of an action under an infinitesimal symmetry
implies its invariance under certain symmetry.

Recall that, due to the identity ea.x/@xG.x/ D G
�
ea.x/@xx


, the function f .�; x/ D

e�a.x/@xx is a formal solution to the equation (see Sect. 2.3)

@f

@�
D a.f /: (7.80)

Besides, it obeys the initial condition f .0; x/ D x.
Now, starting from the infinitesimal symmetry (7.69), construct the functions

˛.�; q˛; �!˛/ D eG˛�!˛@�CRa
˛�!

˛@a�;

 a.�; q˛; �!˛/ D eG˛�!˛@�CRa
˛�!

˛@a qa:
(7.81)

These obey the multi-variable generalization of the Eq. (7.80)

@˛

@�
D G˛.˛;  

a/!˛;

@ a

@�
D Ra

˛.˛;  
a/!˛; (7.82)

as well as the initial conditions ˛.� D 0/ D � ,  a.� D 0/ D qa.
We show that the transformation

g.!/ W � ! � 0 D ˛.�; q˛; !˛/; qa ! q0a D  a.�; q˛; !˛/; (7.83)

represents a symmetry of the action (7.14). Let us construct the function S(�)
transforming the action (7.26) by means of (7.81)

S.�/ D Sg.�!/Œq� D
Z �2

�1

d� P̨L. ; . P̨ /�1 P ; ˛/: (7.84)
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Note that S.0/ D SŒq�, while S.1/ D Sg.!/Œq� is transformation of the action (7.26)
under (7.83). Using Eq. (7.82) we compute

@S.�/

@�
D
Z

d�

�
Lj.G˛j/P C P̨ @L

@qa
Ra

˛jC

P̨ @L

@Pqa
j


�. P̨ /�2.G˛j/P P a C . P̨ /�1.Ra

˛j/P
�

C P̨ @L

@�
G˛j

�
!˛: (7.85)

Here the notation A.�; q/j implies substitution of the functions (7.81) instead of � ,
q. Integrating by parts (the computation is similar to the one leading to Eq. (7.68)),
we obtain

@S.�/

@�
D
Z

d�

�
�dQ˛j

d�
C P̨ .Ra

˛ � PqaG˛/
ıS

ıqa
j C .N˛j/P

�
!˛: (7.86)

Since the transformation (7.69) is an infinitesimal symmetry, the first two terms
cancel each other (see Eqs. (7.24) and (7.68)), and we have

@S.�/

@�
D
Z

d�
d

d�
N˛j!˛: (7.87)

Computing the integral of this expression with respect to � on the interval Œ0; 1�, we
arrive at the invariance condition (7.60).

7.9 Use of Noether Charges for Reduction of the Order
of Equations of Motion

As we have seen, the invariance of an action functional implies a special structure
of the corresponding equations of motion. This is given by Eq. (7.68). Since some
combinations of the equations of motion are total derivatives, they can immediately
be integrated, which simplifies (sometimes solves) the problem to find a general
solution. Let us discuss this point in further detail. We demonstrate that knowledge
of k Noether charges allows us to replace the initial system of n second-order Euler-
Lagrange equations by an equivalent system, which has only n � k second-order
equations.

According to the Noether theorem, the equations PQ˛ D 0 are consequences of
equations of motion. So, they can be added to the system, which gives an equivalent
system

ıS

ıqa
D 0; PQ˛ D 0: (7.88)
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Now some k among the Euler–Lagrange equations are consequences of others, and
thus can be omitted. Indeed, Eq. (7.68) states that there are identities present among
equations of the system (7.88). Suppose that a minor rank of the matrix D is placed
in the upper k lines (if not, this can be achieved by reordering the initial variables qa

in an appropriate way). Thus we write: Da
˛ D .Dˇ

˛ ;Di
˛/, detD

ˇ
˛ j ıS

ıq D0 ¤ 0. Then the

identity (7.68) can be written in the form ( QD is the inverse matrix for D�
˛)

ıS

ıq˛
D QD�

˛.
PQ� � Di

�

ıS

ıqi
/; (7.89)

that is, the equations ıS
ıq˛ D 0 are consequences of other equations of the

system (7.88). Then the initial system is equivalent to

ıS

ıqi
D 0; i D 1; 2; : : : ; n � k;

Q˛.q; Pq/ D c˛ D const; ˛ D 1; 2; : : : ; k: (7.90)

This contains n � k second-order equations and k first-order equations, that is, the
order has been decreased by k units.

Q˛ are functionally independent, otherwise some of them could be omitted from
the system (7.90). Then we should have a system with a number of equations less
than the number of variables. But this would contradict the theorem of the existence
of a unique solution for normal system of equations.

7.10 Examples

In Sect. 7.3, it was mentioned that the Lagrangian action for a system of particles
subject to distance-dependent forces is invariant under a ten-parameter Galileo
group, which includes translations, rotations and boosts. Here we write the corre-
sponding Noether charges. To put this in concrete terms, we consider two particles
with Euclidean coordinates xi

.1/, xi
.2/, i D 1; 2; 3

S D
Z

d�

�
1

2
m1.Pxi

.1//
2 C 1

2
m2.Pxi

.2//
2 � U.r12/

�
: (7.91)

In this case, the expression for the Noether charge (7.61) is

Q˛ D �m1 Pxi
.a/

h
Ri
.a/˛ � Pxi

.a/G˛

i
� LG˛ C N˛: (7.92)
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Example 6 For the time translations � 0 D � C a, x0i
.a/ D xi

.a/, we have G D 1,

Ri
.a/ D 0, N D 0, and the Noether charge is the total energy of the system

E D 1

2
m1.Pxi

.1//
2 C 1

2
m2.Pxi

.2//
2 C U.r12/: (7.93)

Intuitively, homogeneity in time implies conservation of the total energy of a closed
system.

Example 7 For the space translations � 0 D � , x0i
.a/ D xi

.a/ � ci, we have G D 0,

Ri
.a/j D ıi

j, Ni D 0, which leads to conservation of total momentum

Pi D m1 Pxi
.1/ C m2 Pxi

.2/ D pi
.1/ C pi

.2/: (7.94)

Thus conservation of the total momentum is a consequence of homogeneity of
space. In the present case, the total momentum turns out to be the sum of the
conjugated momenta of the particles. Note also, that the individual momenta are
not conserved during the evolution, as soon as Ppi

.a/ D @U
@xi
.a/

¤ 0.

Example 8 For the Galileo boosts � 0 D � , x0i
.a/ D xi

.a/ C vi� , we have G D 0,

Ri
.a/j D �ıi

j, N D .m1xi
.1/ C m2xi

.2//v
i C 1

2
.m1 C m2/.v

i/2� , Ni D m1xi
.1/ C m2xi

.2/,
which gives the conserved charge

�.m1 Pxi
.1/ C m2 Pxi

.2//� C m1x
i
.1/ C m2x

i
.2/ D Di D const: (7.95)

Let us write this in the form

m1x
i
.1/ C m2x

i
.2/ D Di C Pi�: (7.96)

We conclude that during the evolution of two particles, the point5 Xi D
1

m1Cm2
.m1xi

.1/ C m2xi
.2// moves along a straight line with a velocity proportional to

the total momentum. In other words, from the Noether theorem we have discovered
the concept of center of mass of a system. Since the dynamics of Xi is already
known, the convenient coordinates for description of the particles are Xi and, for
example, Yi D 1

m1Cm2
.m1xi

.1/ � m2xi
.2//.

Example 9 Consider the rotations (see Sect. 1.2)

� 0 D �; x0i
.a/ D .e!/ij xj

.a/ D xi
.a/ C !ijxj

.a/ C O.!2/; (7.97)

where !ij D �!ji are three independent parameters. We have G D 0, N˛ D 0.
To find the generators R, we need to represent Eq. (7.97) in the form x0i

.a/ D xi C

5It is reasonable to divide by m1 C m2, then X has the dimension of a length.
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Ri
12!

12CRi
13!

13CRi
23!

23, and then to find an explicit form of these nine quantities
Ri

jk. To avoid the problem,6 we look for a sum of the charges, and then separate them

Q˛!
˛ D � @L

@Pqa
Ra

˛!
˛ D �

3X
i;jD1

 
@L

@Pxi
.1/

!ijxj
.1/ C @L

@Pxi
.2/

!ijxj
.2/

!
D

2X
aD1

h

x1.a/p

2
.a/ � x2.a/p

1
.a/

�
!12 C



x2.a/p

3
.a/ � x3.a/p

2
.a/

�
!23C



x1.a/p

3
.a/ � x3.a/p

1
.a/

�
!13

i
: (7.98)

Thus, the isotropy of a space implies three charges which turn out to be components
of the total angular momentum of the system

Ji D
2X

aD1
�ijkxj

.a/p
k
.a/: (7.99)

Summing up, we have seen that conservation of energy, momentum and angular
momentum can be thought as a consequence of the homogeneity of time and space
and isotropy of space.

Exercises

1. Check by direct computations that the infinitesimal rotations x0i
.a/ D xi

.a/ C
!ijxj

.a/ represent symmetry of the action (7.91).
2. Check by direct computations a preservation of the charges obtained in this

section.
3. Check whether the angular momentum of each particle separately is a

conserved quantity.
4. Warning exercise. Try to find the charges (7.98) directly, repeating the

computation carried out in the proof of the Noether theorem (that is, by
extracting the terms of the transformed action that are linear on !ij/.

5. Find the Noether charges of the relativistic particle in the formula-
tions (7.45) and (7.48).

6. Verify that the action S D R
d� 1

2
gabPya Pyb, a D 1; 2, where gab � ıab C .l2�

y2/�1yayb, l D const, has infinitesimal symmetry with the parameters �ab,

(continued)

6Of course, the problem can easily be solved. We write !ijxj � 1
2
.ıikxj � ıijxk/!kj. Then the

quantities Ri
kj D 1

2
.ıikxj � ıijxk/ with k < j represent the generators.
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ca

y0a D ya C �abyb C .l2 � y2/
1
2 ca; (7.100)

where �12 D ��21, �aa D 0. Derive the corresponding Noether charges.
Verify by direct computations that they are actually conserved.

7.11 Reparametrization Invariance as a Local Symmetry

Consider the family of transformations (7.13) with ˛ D � C �.�/ and  a D qa,
where �.�/ is the local parameter. That is the coordinate transformations are

g W .�; qa/ ! .� 0 D ˛.�/; q0a D qa/: (7.101)

According to (7.19), this induces the map of functions

�g W qa.�/ ! qa. Q̨.�//: (7.102)

The invariance condition (7.23) acquires the form

Z
d�LŒqa. Q̨.�//; Pqa. Q̨.�//� D

Z
d�LŒqa.�/; Pqa.�/�; (7.103)

while the equivalent invariance condition (7.26)–(7.29) reads

Z
d� P̨LŒqa.�/; . P̨ /�1 Pqa.�/� D

Z
d�LŒqa.�/; Pqa.�/�: (7.104)

Comparing these expressions with those discussed at the end of Sect. 1.4.2, we
conclude that the local symmetry (7.101) is just the reparametrization invariance.

Infinitesimal form of (7.102) is ıqa D �� Pqa.

Exercise Confirm the invariance of the action of relativistic particleR
d�
p�Px	 Px	 under the infinitesimal reparametrizations ıx	 D ��Px	.

Note that an expression for a local symmetry has the following ambiguity: we can
extract any function from the local parameter, this does not spoil the invariance. For
instance, for the relativistic particle we can write ıx	 D � Px	p�Px2 instead of ıx	 D
��Px	.
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7.12 Symmetries of Hamiltonian Action

It has already been mentioned that the notion of symmetry and the Noether theorem
machinery can be applied to any system of differential equations arising from a
variational problem. So it is true for Hamiltonian equations as they follow from the
Hamiltonian action functional

SH D
Z �2

�1

d�.pa Pqa � H.qa; pa; �//: (7.105)

The basic notions of the previous sections remain true for this case, with the
corresponding replacements: qa ! zi D .qa; pb/, L ! pPq � H.q; p/. Below we
present this reformulation. It is interesting for the following reasons.

(a) The formalism can be applied to Hamiltonian systems that do not admit a
Lagrangian formulation. We have already discussed the Schrödinger equation
as an example of this kind; see Sect. 2.9.1.

(b) Due to certain specific properties of a phase space, we can go further in
the analysis of Hamiltonian symmetries as compared with Lagrangian ones.
Moreover, this allows us to obtain additional information on Lagrangian
symmetries, giving an expression for Lagrangian symmetry in terms of the
Noether charge; see Eq. (7.146) below.

(c) The tool developed below can be applied to much more complicated case of
local symmetries, see Chap. 8.

7.12.1 Infinitesimal Symmetries Given by Canonical
Transformation and by Charge

In this section we obtain the necessary and sufficient condition for an infinitesimal
canonical transformation to be an infinitesimal symmetry. In the next section, with
infinitesimal symmetry of a general form (that is with ı� ¤ 0) we associate an
infinitesimal symmetry given by canonical transformation of the form (4.29). The
two symmetries are equivalent in the sense that they yield the same concerved
charge. Hence, looking for infinitesimal symmetries of SH we can restrict our scope
and look for them in the class of canonical transformations.

In the extended phase space .�; zi/ D .�; qa; pb/ consider an infinitesimal
canonical transformation

ı� D 0; ızi D �fzi;Qg; (7.106)

with the generator Q D Q˛.z; �/!˛ . Notice that instead of Q one can equally take
Q0 D Q C h˛.�/!˛ where h˛ stands for an arbitrary z-independent function. The
generators Q and Q0 are equivalent since they produce the same transformation.
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Assertion A canonical transformation (7.106) is an infinitesimal symmetry of the
Hamiltonian action if and only if its generator obeys the equation

@Q

@�
C fQ;Hg D 0; for any z.�/: (7.107)

Eq. (7.107) implies, in particular, that the generator is a conserved charge, that is
dQ
d� D 0 on equations of motion.

Proof As ı� D 0, the induced transformation of a function has the same form as
ızi. According to Sect. 7.7, ızi will be a symmetry of SH , if its variation yields a
total derivative. The variation reads (see Eq. (2.130))

ıSH D
Z

d� Œ.Ppa � fpa;Hg/ıqa � .Pqa � fqa;Hg/ıpa C .paıq
a/:�

D
Z

d�

�
�@Q

@�
� fQ;Hg C d

d�
.Q � pafqa;Qg/

�
: (7.108)

If Q satisfies Eq. (7.107) for any z.�/, the variation is a total derivative, so
Eq. (7.106) represents a symmetry. Conversely, suppose that ıSH D R

d� dN
d� , where

N D N˛!˛ . Then Eq. (7.108) implies the Noether identity

.Ppa � fpa;Hg/ıqa � .Pqa � fqa;Hg/ıpa D d

d�
.�paıq

a C N/: (7.109)

Computing the derivative with respect to � which appears on the right-hand side of
Eq. (7.109), the latter reads

Pqa

�
�ıpa C pb

@ıqb

@qa
� @N

@qa

�
C Ppa

�
2ıqa C pb

@ıqb

@pa
� @N

@pa

�

C @

@�
.paıq

a � N/C fQ;Hg D 0: (7.110)

Since this is true for any functions q(�), p(�), the terms in front of Pq, Pp vanish
separately. So Eq. (7.110) decomposes into three identities. Taking into account the
expression (7.106) for ız, they can be written in the form

fqa; pbıq
b � N � Qg D 0; fpa; pbıq

b � N � Qg D 0; (7.111)

@

@�
.paıq

a � N/C fQ;Hg D 0: (7.112)
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Equation (7.111) implies pbıqb � N � Q D h.�/. If h ¤ 0, we replace the initial Q
with an equivalent generator Q0 D Q C h. Then Eq. (7.112) states that Q0 satisfies
the Eq. (7.107).

To see that Q represents a conserved charge, notice that Eq. (7.107) can be
identically rewritten as

dQ

d�
D @Q

@qa
.Pqa � fqa;Hg/C @Q

@pa
.Ppa � fpa;Hg/; (7.113)

so dQ
d� D 0 on equations of motion.

Assertion Infinitesimal canonical transformation (7.110) with the generator Q
being a concerved charge is an infinitesimal symmetry of SH.

Proof According to Sect. 2.5, Q obeys (7.111), then Eq. (7.112) implies that ıSH is
a total derivative.

7.12.2 Structure of Infinitesimal Symmetry of a General Form

The general form of an infinitesimal transformation with k essential parameters
!˛ is

� ! � 0 D � C G˛.�; z
i/!˛ � � C ı�;

zi ! z0i D zi C Ri
˛.�; z

i/!˛ � zi C ızi: (7.114)

The generator R contains two blocks: Ri
˛ D .Ra

˛;Tb˛/, where Ra
˛ corresponds to

qa and Tb˛ corresponds to pb.
The coordinate transformation induces the transformation of a function, zi D

f i.�/ ! zi D f 0i.�/, where f 0i.�/ is given in parametric form by

� D  C G˛.; f
i.//!˛;

f 0i D f i./C Ri
˛.; f

i.//!˛; (7.115)

Denoting by Q̨.�/ the inverse function to � C G˛.�; f i.�//!˛ we obtain

f 0i.�/ D f i. Q̨.�//C Ri
˛. Q̨.�/; f . Q̨.�//!˛

Df i.�/C �
Ri
˛.�; f .�//� Pf i.�/G˛.�; f .�//


!˛ C O2.!/; (7.116)

or, in condensed notation, the transformed function in linear approximation is

zi.�/ ! z0i.�/ D zi.�/C Qızi; Qızi � ızi � Pziı�; (7.117)

with ı�; ızi specified in Eq. (7.114).
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An infinitesimal transformation (7.114) is an infinitesimal symmetry of SH , if

Z �2CG˛!˛

�1CG˛!˛
d�. f 0

aPf 0a � H. f 0i; �/

ˇ̌
ˇ̌
ˇ
O.!/

D
Z �2

�1

d�

�
fa Pf a � H. f i; �/C dN

d�

�
:

(7.118)

Here f 0 is given by Eq. (7.116). Computing the left-hand side of (7.118) (the
computation is similar to those on page (254), we conclude that the invariance
condition is equivalent to the following Noether identity for SH

d

d�
.�paıq

a C Hı� C N/ D .Pqa � fqa;Hg/ Qıpa � .Ppa � fpa;Hg/ Qıqa: (7.119)

The Hamiltonian Noether charge

Q˛.q; p; �/ � �paıq
a C Hı� C N˛; (7.120)

has the following two properties. First, it is preserved on solutions to equations of
motion. Second, it obeys the equation (see Sect. 2.5)

@Q˛

@�
C fQ˛;Hg D 0; for any z.�/: (7.121)

In turn, this guarantees (see the previous section) that the following canonical
transformation

QQı� D 0;
QQızi D �fzi;Q˛g!˛; (7.122)

represents an infinitesimal symmetry of SH. The general (7.114) and canoni-
cal (7.122) symmetry transformations are equivalent since they produce the same
conserved charge Q˛ .

Analysing the Noether identities we can find an explicit form of QQızi in terms
of ı�; ızi. We compute a derivative with respect to � which appears on l.h.s. of
Eq. (7.119). Then it reads7

Pqa

�
�ıpa � pb

@ıqb

@qa
C H

@ı�

@qa
C @N

@qa

�

C Ppa

�
�pb

@ıqb

@pa
C H

@ı�

@pa
C @N

@pa

�

� pb
@ıqb

@�
C @Hı�

@�
C @N

@�
C @H

@pb
ıpb C @H

@qb
ıqb D 0: (7.123)

7One cannot compute the bracket fzi;Qg directly, since Q contains the unspecified function N.
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Since this is true for any functions q(�), p(�), the terms in front of Pq, Pp vanish
separately. So Eq. (7.123) decomposes into three identities. Taking into account the
expression (7.120) for the Noether charge, they can be written in the form

ıqa � @H

@pa
ı� D �@Q˛

@pa
!˛ � �fqa;Q˛g!˛;

ıpa C @H

@qa
ı� D @Q˛

@qa
!˛ � �fpa;Q˛g!˛; (7.124)

@Q˛

@�
!˛ D � @H

@pa
ıpa � @H

@qa
ıqa: (7.125)

Equation (7.124) gives the desired Poisson bracket fzi;Q˛g in terms of ı�; ızi.

Comparing (7.124) with (7.122) we find QQı through ı
QQı� D 0;

QQızi D ızi � fzi;Hgı�: (7.126)

It is also instructive to compare transformations of a function induced by ı�; ızi and

by QQızi. Comparing (7.117) with (7.126) we write

Qızi D QQızi C ı0z
i; (7.127)

where ı0zi D �.Pzi�fzi;Hg/ı� . ı0zi turns out to be a trivial symmetry of SH. To check
that it obeys the invariance condition, it is sufficient to confirm that the variation
of SH under the transformation can be presented as a total derivative. We obtain
(see (2.130)) ıSH D .Pqa �fqa;Hg/ı0pa � .Ppa �fpa;Hg/ı0qa C .paıqa/: � .paı0qa/:.
In this case N D paıoqa, ı0� D 0, so the Noether charge (7.120) produced by the

symmetry vanishes identically. Hence Qız and QQız are equivalent, leading to the same
Noether identity, conserved charge and so on.

The remaining Eq. (7.125) does not contain any new information. Actually, its
right-hand side reads

� @H

@pa
ıpa � @H

@qa
ıqa � � @H

@pa

QQıpa � @H

@qa
QQıqa

D � @H

@pa

@Q˛

@qa
!˛ C @H

@qa

@Q˛

@pa
!˛ D �fQ˛;Hg!˛; (7.128)

so (7.125) is simply the Eq. (7.121).
The results obtained can be summarized as follows. Let ı�; ızi be an infinitesimal

symmetry of SH , Qızi stands for the induced transformation of a function and
Q˛.zi; �/ is the corresponding Noether charge, dQ˛

d� D 0 on-shell. Being a conserved



7.12 Symmetries of Hamiltonian Action 267

phase-space quantity, it also obeys the equation

@Q˛

@�
C fQ˛;Hg D 0; for any zi.�/: (7.129)

With the symmetry one associates the transformation

QQı� D 0;
QQızi D ızi � fzi;Hgı�; (7.130)

which does not affect the time variable. Then

(a) QQızi is a canonical transformation with the generator being the charge Q,

QQızi D fzi;Q˛g!˛: (7.131)

(b) Equation (7.129) implies that QQızi is an infinitesimal symmetry of SH. The
corresponding Noether charges are Q˛ .

(c) The transformations ı�; ızi and QQızi are equivalent, as soon as they generate the
same Noether charges. This can also be seen from comparison of the induced
transformations of a function that coincide except for the trivial symmetry
ı0zi D �.Pzi � fzi;Hg/ı�

Qızi D QQızi C ı0z
i: (7.132)

Finite Symmetries of a General Form and Canonical Transformations We
finish this section with two comments on the relationship between finite canonical
and symmetry transformations of SH.

1. Let z0i.zk; �/ stand for a univalent canonical transformation. Since time is not
affected, the induced transformation of the function zi.�/ has the same form. The
formula for the corresponding transformation of SH was obtained in Sect. 4.5

pa Pqa � H.z/ D p0
a Pq0a � QH.z0; �/C dF.z0; �/

d�
: (7.133)

So, the canonical transformation is a symmetry of SH if and only if it does not
modify the Hamiltonian, QH.z0/ D H.z/.

2. We have seen above that an infinitesimal symmetry of SH of a general form can be
replaced by an infinitesimal symmetry that represents a canonical transformation.
And what about a finite symmetry transformation? Let us take the exponential
of an infinitesimal canonical transformation (7.122) associated with the general
symmetry (7.114)

z0i D e�!˛fzk;Q˛g@k zi: (7.134)

According to Sect. 7.8 it is a symmetry transformation of SH . At the same time,
according to Sect. 4.2, it represents a canonical transformation.
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7.12.3 Hamiltonian Versus Lagrangian Global Symmetry

Lagrangian and Hamiltonian symmetries have been discussed in the previous
sections in an independent manner. Remember that Lagrangian and Hamiltonian
formulations are related by a change of variables that in practice reduces to the
substitution Pqa ! va.q; p; �/; see Sect. 2.1.2. So each property of a Lagrangian
formulation has its Hamiltonian counterpart.

The aim of this section is to show the relationship between the infinitesimal
Lagrangian and Hamiltonian symmetries. Among other things, we find a remarkable
expression for Lagrangian symmetry in terms of the Hamiltonian Noether charge,
Qıqa D �!˛ fqa;QH˛gjp! @L

@Pq
.

We start with a couple of auxiliary formulas. Let AH stand for the Hamiltonian
counterpart of a Lagrangian quantity A.q; Pq; �/, that is, AH � A.q; Pq; �/jPq!v.q;p;�/.
Then

@A.q; Pq; �/
@Pqa

ˇ̌
ˇ̌
Pq!v.q;p;�/

D Mab
@AH

@pb
; (7.135)

@A.q; Pq; �/
@qa

ˇ̌
ˇ̌
Pq!v.q;p;�/

D @AH

@qa
� @AH

@pc
Mcb

@vb

@qa
; (7.136)

@A.q; Pq; �/
@qa

Pqa

ˇ̌
ˇ̌
Pq!v.q;p;�/

D fAH;Hg � @AH

@pc
Mcbfvb;Hg: (7.137)

The last equality is the previous one multiplied by va D fqa;Hg, see (2.38).
Let

ı� D G˛.q; Pq; �/!˛; ıqa D Ra
˛.q; Pq; �/!˛; (7.138)

be an infinitesimal Lagrangian symmetry, Q˛.q; Pq; �/ is the corresponding Noether
charge, and QH˛.q; p; �/ � Q˛.q; v.q; p/; �/ stands for its Hamiltonian counterpart.
Let us introduce the infinitesimal canonical transformation generated by QH

ıHzi D �fzi;QH˛g!˛: (7.139)

We show that it is a symmetry of SH.
Computing the time derivative in the expression for the Lagrangian Noether

identity

ıS

ıqa
Da

˛ D d

d�
.� @L

@Pqa
Da

˛ � LG˛ C N˛/; (7.140)
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this reads

@L

@qa
Da

˛ D � @L

@Pqa

�
@Da

˛

@qb
Pqb C @Da

˛

@Pqb
Rqb C @Da

˛

@�

�
C

@.�LG˛ C N˛/

@qb
Pqb C @.�LG˛ C N˛/

@Pqb
Rqb C @.�LG˛ C N˛/

@�
: (7.141)

Since this is true for arbitrary functions qa.�/, the term in front of Rqa vanishes
separately. So Eq. (7.141) implies two identities

� @L

@Pqa

@Da
˛

@Pqb
C @.�LG˛ C N˛/

@Pqb
D 0; (7.142)

@L

@qa
Da
˛ C @L

@Pqa

@Da
˛

@qb
Pqb C @.�LG˛ C N˛/

@qb
Pqb D

� @L

@Pqa

@Da
˛

@�
C @.�LG˛ C N˛/

@�
: (7.143)

We cast Eq. (7.142) into the Hamiltonian form substituting v(q, p, �) instead of Pq.
Using Eq. (7.135) and the fact that M is invertible we have

�pa
@Da

H˛

@pb
C @.�LHGH˛ C NH˛/

@pb
D 0; (7.144)

or, equivalently,

fqa;QH˛g C Da
H˛ D 0: (7.145)

Remind that D determines the transformation of a function induced by the
Lagrangian symmetry, see (7.74). So, comparing (7.145) with (7.139), we conclude
that D is a Lagrangian counterpart of the canonical transformation generated by

the Hamiltonian Noether charge, ıHqa D �fqa;QH˛g!˛ D D˛
Ha!˛ D Qıqa

ˇ̌
ˇPq!v

.

Carrying out the inverse transformation, we obtain a formula giving an expression
for Lagrangian symmetry through the Noether charge

Qıqa D �!˛ fqa;QH˛gjp! @L
@Pq
: (7.146)
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The Hamiltonian form of Eq. (7.143) is obtained using the identities (2.37)
and (7.137). The result is

fpa;HgDa
˛ C pafDa

˛;Hg C fLG˛ � N˛;HgC�
�pa

@Da
˛

@pb
C @.�LG˛ C N˛/

@pb

�
Mbcfvc;Hg

D �pa
@Da

˛

@�

ˇ̌
ˇ̌
v

C @.�LG˛ C N˛/

@�

ˇ̌
ˇ̌
v

: (7.147)

The last bracket on l.h.s. of this expression vanishes due to the identity (7.144).
Further, using the identity

@A.q; Pq; �/
@�

ˇ̌
ˇ̌
Pq!v.q;p;�/

D @A

@�
� @A

@pc
Mcb

@vc

@�
; (7.148)

that follows from (7.135), we substitute v into r.h.s. of Eq. (7.147). Again the terms
containing derivatives with respect to p vanish due to the identity (7.144). Then
Eq. (7.147) acquires the form @Q˛

@�
C fQ˛;Hg D 0.

In the result, the Lagrangian Noether identity (7.68), being rewritten in phase-
space variables, acquires the form

fqa;QH˛g D �Da
H˛ � �.Ra

H˛ � fqa;HgGH˛/; (7.149)

@QH˛

@�
C fQH˛;Hg D 0: (7.150)

As we know, Eq. (7.150) implies that an infinitesimal canonical transforma-
tion (7.139) associated with the initial Lagrangian symmetry (7.138) is an infinites-
imal symmetry of SH.



Chapter 8
Hamiltonian Formalism for Singular Theories

Abstract Modern particle and field theories often involve auxiliary variables which
have no direct physical meaning. We have seen examples of this kind at the end
of first chapter: Lagrangian multipliers for holonomic constraints, forceless Hertz
mechanics, electrodynamics and the relativistic particle. Their auxiliary character is
supplied either by local symmetries presented in the Lagrangian action, or by the
algebraic character of equations of motion for these variables. So, in Lagrangian
formalism we deal with a singular theory. Equations of motion can have rather
a complicated structure, including in general differential equations of the second
and the first order as well as algebraic equations. Besides, identities among the
equations can be present in the formulation. As a consequence, there is an ambiguity
in solutions for any given initial conditions. So, the physical content of a theory with
local symmetry is not a simple question. Hamiltonian formalism is well adapted for
the investigation of a singular theory.

Modern particle and field theories often involve auxiliary variables which have
no direct physical meaning. We have seen examples of this kind at the end of
first chapter: Lagrangian multipliers for holonomic constraints, forceless Hertz
mechanics, electrodynamics and the relativistic particle.

Their auxiliary character is supplied either by local symmetries presented in the
Lagrangian action, or by the algebraic character of equations of motion for these
variables. So, in Lagrangian formalism we deal with a singular theory. Equations
of motion can have rather a complicated structure, including in general differential
equations of the second and the first order as well as algebraic equations. Besides,
identities among the equations can be present (see Eq. (1.297) for the case of
electrodynamics). As a consequence, there is an ambiguity in solutions for any given
initial conditions. So, the physical content of a theory with local symmetry is not a
simple question.

We point out that the appearance of auxiliary variables is mostly due to our
desire to incorporate the manifest Poincaré invariance (and locality) as the leading
principle of formalism. As we have discussed in Sect. 1.7.5, the auxiliary variables
allow us to “decompose” a nonlinear global symmetry carried out on physical
dynamical variables into a linear global symmetry plus a local symmetry.

Hamiltonian formalism is well adapted for the investigation of a singular theory.
The phase-space description allows us to automatically separate the dynamical

© Springer International Publishing Switzerland 2017
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272 8 Hamiltonian Formalism for Singular Theories

part of equations of motion from the algebraic part as well as to analyze the
ambiguity present in solutions of equations of motion. Besides, the transition to
Hamiltonian formulation is a necessary step in the process of canonical quantization
of classical theory. Systematic analysis of an arbitrary singular theory was started
in the pioneer works of Dirac [8] and Bergmann [39], and is posed at present on a
solid mathematical ground [10, 11].

Notation In this chapter it will be convenient to change the notation as follows.
Generalized coordinates of the configuration space are denoted by qA, where A
ranges from 1 to [A], that is [A] stands for the number of variables qA. For the
phase-space variables we write z � .qA; pB/.

8.1 Hamiltonization of a Singular Theory: The Recipe

Here we discuss the working recipe for Hamiltonization of a singular theory.We first
illustrate the recipe on two simple examples that reveal the improvements that are
necessary when we apply a Hamiltonization procedure of Sect. 2.1.3 to a singular
theory.

8.1.1 Two Toy Models

Example 1 Consider the Lagrangian action

S D 1

2

Z
d�
�
Œ.xy/� �2 C x2 C y2

�
; (8.1)

written for the configuration variables x.�/, y.�/. Its Hessian is degenerate

detM D det
@2L

@PqA@PqB
D det

�
y2 xy
xy x2

�
D 0; (8.2)

so we deal with a singular theory. Lagrangian equations can be presented in the form

.x2/PP D 1; x2 � y2 D 0; (8.3)

and can be integrated out

x D ˙
r
1

2
�2 C c� C d; y D ˙x: (8.4)
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To find the Hamiltonian formulation, the first step is to solve the defining equations
for momenta

p D @L

@Px D y2 Px C xyPy; � D @L

@Py D x2 Py C xyPx: (8.5)

The first equation can be resolved with respect to Px

Px D p

y2
� xPy

y
: (8.6)

Its substitution into the second equation gives

G � xp � y� D 0: (8.7)

This is the first characteristic property of a singular theory: only some of the
equations determining momenta can be resolved with respect to velocities. The
remaining equations do not contain velocities at all, representing algebraic equations
relating coordinates and momenta. They are called primary constraints of the Dirac
procedure.

As the second step, let us try to construct a Hamiltonian according to the standard
prescription: we write H0 D pPx C � Py � L and use Eqs. (8.6) and (8.7) to exclude all

the velocities from this expression. This gives the expression H0 D p2

2y2
� 1

2
x2 � 1

2
y2.

Using the recipe Pz D fz;H0g, we obtain the equations

Px D p

y2
; Pp D x; Py D 0; P� D p2

y3
C y: (8.8)

Multiply the first equation by x, compute a derivative of the resulting expression and
use the other equations of the system, obtaining the consequence .x2/PP D 2 C 2Px2.
This is different from Eq. (8.3).

So, the recipe of Sect. 2.1.3 does not lead to the right Hamiltonian and must be
modified. According the Dirac procedure, the modification is rather nontrivial and is
as follows. We introduce an extended phase space with the coordinates x; y; p; �; v,
where v.�/ is an additional variable. It is sometimes called the Lagrangian
multiplier. On the reason that will become clear in the next section, we will call
it a velocity. The right Hamiltonian is given by

H D p2

2y2
� 1

2
x2 � 1

2
y2 C v.xp � y�/; (8.9)

that is, we add to H0 the primary constraint multiplied by v. H is called the complete
Hamiltonian.

This is the second characteristic property of a singular theory: the rule for
constructing the Hamiltonian of the theory must be modified according to Eq. (8.9).
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Of course, now we need to do a little work to show that this H leads to the right
dynamics. The Poisson bracket on the extended space is defined in the standard
way, fzi; z jg D !ij, that is it does not involve v: fv; zig D 0. Then (8.9) implies the
Hamiltonian equations

Px D p

y2
C vx; Pp D x � vp; Py D �vy; P� D p2

y3
C y C v�: (8.10)

Together with the primary constraint (8.7), there are five equations for five variables.
We can try to use the algebraic Eq. (8.7) to obtain more algebraic consequences

of the system (8.10), (8.7), if any. This works as follows. Compute the derivative
of G, PG D Pxp C xPp � Py� � y P� D 0. Use Eq. (8.10) to exclude all the derivatives
appearing in this expression. This gives

T � x2 � y2 D 0: (8.11)

So, the Eqs. (8.10) and (8.7) imply one more algebraic equation; occasionally it is
the second equation from (8.3). This is called the secondary constraint of the Dirac
procedure or the second-stage constraint.

In turn, the derivative of T implies

PT D 2

�
xp

y2
C vx2 C vy2

�
D 0; then v D � p

2x3
: (8.12)

Instead of a new constraint, we have obtained an algebraic expression for v in terms
of the phase-space variables. The derivative of this equation can not lead to new
algebraic equations since the equations at our disposal do not allow us to exclude Pv.

Exercise Show that the derivative of a constraint can be computed according
to the formula

PG D fG;Hg; (8.13)

which is usually used in practice. Reproduce Eqs. (8.11) and (8.12) using this
formula.

Not all equations of the complete system (8.10), (8.7), (8.11) and (8.12) are
independent. Keeping the independent equations only, they read

Px D p

2x2
; Pp D x C p2

2x3
I (8.14)
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y2 D x2; � D ˙p: (8.15)

Note that the auxiliary variable v has disappeared from the final equations.
Equations for the pair x, p do not involve y, � , and form a normal system. Equations
for y, � are algebraical.

Now we are ready to confirm that the Hamiltonian equations are equivalent to
the Lagrangian ones. Multiply the first equation from (8.14) by x, and compute
the derivative of the resulting expression. Using the Eq. (8.14), it reads .x2/PP D 1.
Together with the first equation from (8.15), this reproduces the Lagrangian
dynamics (8.3).

Example 2 Consider SO.3/-invariant action

S D
Z

d�
P!N P!
2!2

; Nab D ıab � !a!b

!2
; (8.16)

on three-dimensional Euclidean space !.�/ D .!1; !2; !3/. We denote !2 D
!a!a, P!N P! D P!aNab P!b and so on. ! is a null-vector of the matrix N

N! D 0; (8.17)

so detN D 0. As a consequence, the Hessian vanishes

det
@2S

@ P!a@ P!b
D det

Nab

!2
D 0; (8.18)

and we deal with a singular theory. The matrix N maps vectors on the plane
orthogonal to !. Together with QNab D !a!b

!2
this forms a pair of projectors with

the properties

N C QN D 1; N2 D N; QN2 D QN; N QN D 0: (8.19)

Any vector v can be decomposed on the transverse and longitudinal parts with
respect to !, v D v? C vk, where v? D Nv, then .v?;!/ D 0 and vk D QNv D
.v!/

!2
! 	 !.
The Lagrangian (8.16) can be expressed in a number of equivalent forms as

follows:

.N P!/2
2!2

D 1

2!2

�
P!2 � .! P!/2

!2

�
D .!/2. P!/2 � .! P!/2

2.!2/2
D .Œ!; P!�/2

2.!2/2
D S2

2.!2/2
:

(8.20)

By S we have denoted the angular momentum

S D Œ!; P!�: (8.21)
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The substitution !a ! !0a D �.�/!a, where the parameter �.�/ is an arbitrary
function, represents the local symmetry of the model. Indeed, due to the properties

!02 D �2!2 and Œ!0; P!0� D �2Œ!; P!�, the Lagrangian .Œ!; P!�/2
2.!2/2

is invariant, L.!0/ D
L.!/. This has a simple interpretation: while the variational problem determines the
direction of !, it does not determine its length.

Consider the Hamiltonian formulation. The equation determining the momentum
� is

� D N P!
!2

: (8.22)

Together with (8.17), this equality implies the primary constraint

!� D 0: (8.23)

We note the equalities � P! D 2L, �2 D 2
!2

L, then H0 D � P! � L D 2L � L D L D
1
2
�2!2. Hence the total Hamiltonian reads

H D 1

2
�2!2 C v.!�/: (8.24)

Using Eq. (8.13) we conclude that time-derivative of the primary constraint van-
ishes, d

d� .!�/ D f!�; 1
2
�2!2 C v.!�/g D 0. So there is no new constraint nor an

equation for determining the velocity v. In the result, the dynamics is governed by
the Hamiltonian equations following from (8.24)

P! D !2� C v!; P� D ��2! � v�: (8.25)

These are accompanied by the primary constraint !� D 0.

Neither the dynamical equations, nor the constraint determine the velocity v.�/.
Its presence in equations of motion implies that evolution of our basic variables is
ambiguous. Indeed, for an arbitrary chosen v.�/ the functions

! D e
R t
0 v.�/d�

�
b cosb2t C c sinb2t

�
; then !2 D b2e2

R t
0 vd�;

� D e� R t
0 v.�/d�

��b sin b2t C c cosb2t
�
; then �2 D b2e�2 R t

0 vd�; (8.26)

with the integration constants b and c subject to the conditions bc D 0 and b2 D
c2, obey the Eqs. (8.25) and (8.23). According to Eq. (8.26), !a and �a is a pair
of mutually orthogonal vectors rotating in their own plane (or, equivalently, in the
plane determined by b and c). The function v.�/ determines time variation of their
magnitudes.

This is one more characteristic property of a singular theory: the velocities that
have not been determined in the course of the Dirac procedure are not determined
by the complete system of equations of motion either. They enter into solutions
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as arbitrary functions. The advantage of the Hamiltonian formalism is that the
arbitrariness is detected and described automatically in the course of the procedure.

By analogy with electrodynamics (see Sect. 1.7.4), dynamical variables with
ambiguous evolution are called non physical variables. Variables with unambiguous
dynamics are called physical variables or observables. Let us look for the observ-
ables of this model. Consider the variables y D !

j!j , p D j!j� and S D Œ!;�� (note
that the latter coincides with S defined in (8.21)). As a consequence of (8.25), their
equations do not involve v

Py D p; Pp D �p2y; PS D 0: (8.27)

So all them are candidates for the observables. Since S D Œy;p�, we can take four
variables y and p as the independent observables. The general solution to their
equations of motion reads

y D 1

jbj
�
b cosb2t C c sin b2t


; p D jbj ��b sin b2t C c cosb2t


; (8.28)

then jyj D 1 and jpj D b2. The pair rotates in the plane of the vectors b and c with
constant angular velocity equal to b2. As it should be, the local transformations
presented in the model do not alter the observables. To see this, note that Eq. (8.22)
together with the transformation law !a ! �!a imply �a ! 1

�
�a. The observables

are invariants of these transformations.
Note that the two examples of a singular theory have essentially different

structure of equations of motion. When all the velocities have been determined
in the course of the Dirac procedure, the singular theory is called non-degenerate
[10]. Otherwise, it is called a singular degenerate theory. It will be seen below
that the difference is encoded in the algebraic properties of constraints with respect
to the Poisson bracket. Local symmetry is a characteristic property of a singular
degenerate theory.

8.1.2 Dirac Procedure

Now we are ready to discuss the Dirac recipe for an arbitrary singular theory

S D
Z

d�L.qA; PqA/; det
@2L

@PqA@PqB
D 0: (8.29)

We impose the following rank condition on the Hessian matrix M:

rank MAB � rank
@2L

@PqA@PqB
D Œi� < ŒA�: (8.30)
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The first stage of the Dirac procedure consists of Hamiltonization of the theory.

(1) Introduce conjugate momenta for the variables qA according to the equations

pA D @L.q; Pq/
@PqA

: (8.31)

They are considered as algebraic equations for determining the velocities
PqA. According to the well-known theorem about implicit function, Eq. (8.30)
guarantees that some [i] velocities among PqA, say Pqi, i D 1; 2; : : : ; Œi�, can be
found from these equations. Let us denote the solution as1

Pqi D vi.qA; pj; Pq˛/: (8.32)

These expressions can be substituted into the remaining [˛] equations for the
momenta (8.31). By construction, the resulting expressions do not depend2 on
Pq˛ and represent the primary constraintsˆ˛.q; p/ of the theory. They read

ˆ˛ � p˛ � f˛.q
A; pj/ D 0; ˛ D 1; 2; : : : ; Œ˛� D ŒA� � Œi�; (8.33)

where

f˛.q
A; pj/ � @L

@Pq˛
ˇ̌
ˇ̌
PqiDvi.qA;pj;Pq˛/

: (8.34)

The Eqs. (8.32) and (8.33) are thus equivalent to the system (8.31).
(2) Introduce an extended phase space parameterized by the coordinates qA; pA; v

˛ ,
and define a complete Hamiltonian H according to the rule

H.qA; pA; v
˛/ D pA PqA � L.qA; PqA/C v˛ˆ˛.q

A; pB/

� H0.q
A; pj/C v˛ˆ˛.q

A; pB/; (8.35)

where we use Eqs. (8.32) and (8.33) to exclude all the velocities PqA, that is

H0.q
A; pj/ D �

pA PqA � L.qA; PqA/
�ˇ̌
(8.32),(8.33) : (8.36)

H0 is called the Hamiltonian of the theory.

1Latin indices from the middle of the alphabet, i, j, k, are reserved for those coordinates whose
velocities can be found from (8.31). Greek indices from the beginning of the alphabet, ˛, ˇ, � , are
used to denote the remaining coordinates.
2Indeed, if they depended on one of Pq˛ , it would be possible to find it in terms of others q and p,
contradicting the rank condition (8.30).
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Exercise Show that H0 does not depend on v˛ and p˛:
@H0
@v˛

D 0, @H0
@p˛

D 0.

(3) Write the equations of motion

PqA D fqA;Hg D fqA;H0g C v˛fqA; ˆ˛g;
PpA D fpA;Hg D fpA;H0g C v˛fpA; ˆ˛g; (8.37)

ˆ˛.q
A; pB/ D 0; (8.38)

where fqA; pBg D ıA
B stands for the Poisson bracket. For later use, we write the

Hamiltonian equations in detail

Pqi D @H0

@pi
� @fˇ
@pi
vˇ;

Ppi D �@H0

@qi
C @fˇ
@qi
vˇI (8.39)

Pq˛ D v˛; (8.40)

Pp˛ D �@H0

@q˛
C @fˇ
@q˛

vˇ: (8.41)

The system is equivalent to the Lagrangian equations for the action (8.29). This
equivalence will be proved in the next section.

Exercise Consider the Hamiltonian action SH D R
d� pA PqA � ŒH0 C v˛ˆ˛�.

Verify that variation with respect to independent variables qA, pA and v˛

implies the Hamiltonian equations (8.37) and (8.38). That is, by construction
of SH, the variational equation ıSH

ıqA D 0 is equivalent to the Hamiltonian

equation PqA D fqA;Hg, and so on. SH gives us additional opportunities
to study the Hamiltonian equations. For instance, any ˆ˛.q; p/ does not
depends on velocities, and can be considered as a kinematic constraint of the
variational problem. According to Sect. 1.6.3, we can solve the constraint and
substitute the result back into SH, this gives an equivalent variational problem.

The second, third, . . . stages of the Dirac procedure consist in revealing all the
algebraic consequences of the system (8.37) and (8.38).

According to Eq. (8.38), all the solutions are confined to lying on a surface of the
extended phase space defined by the algebraic equationsˆ˛ D 0. It may happen that
the system (8.37) and (8.38) contains in reality more then [˛] algebraic equations.
Indeed, computing the derivative of the primary constraints with respect to time and
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using (8.37), we obtain the algebraic consequences of the system

fˆ˛;Hg � fˆ˛;ˆˇgvˇ C fˆ˛;H0g D 0: (8.42)

Henceforth they are called second-stage equations of the Dirac procedure. They can
be added to Eqs. (8.37) and (8.38), which gives an equivalent system.

After that the dynamical equations Pp˛ D fp˛;Hg turn into consequences of other
equations of the system, as the following computation shows:

P̂
˛ D @ˆ˛

@zA



PzA � fzA;Hg

�
C @ˆ˛

@zA
fzA;Hg

D ı˛ˇ
�Ppˇ � fpˇ;HgC fˆ˛;Hg D Pp˛ � fp˛;Hg: (8.43)

So they can be omitted from consideration. In many cases we will keep them, with
the aim to preserve the symmetric form of the system (8.37).

Let us analyze the structure of the second-stage system. It is considered as a
system of linear equations for determining the velocities v˛ . According to known
theorems of linear algebra, if

rankfˆ˛;ˆˇg D Œ˛0� � Œ˛�; (8.44)

then [˛0] equations can be used to represent some v˛
0

through other variables. The
velocities v˛

0

thus determined can be substituted into the remaining Œ˛00� � Œ˛��Œ˛0�
equations; the resulting expressions do not contain v˛ at all. After doing this, the
second-stage system acquires the form

v˛
0 D v˛

0

.qA; pj; v
˛00

/; ˆ˛00.qA; pj/ D 0: (8.45)

Functionally-independent equations among ˆ˛00 D 0, if any, represent the second-
stage Dirac constraints. Thus all the solutions of the system (8.37) and (8.38) are
confined to lying on the surface defined by ˆ˛ D 0 and by the Eq. (8.45).

The velocities that have been determined can be substituted into the expression
for the complete Hamiltonian.3

The procedure described above can be now repeated for the second-stage
constraints, which can produce non-trivial third-stage algebraic equations,

fˆ00̨;Hg D 0: (8.46)

This may determine some of the velocities and may produce new constraints.
As above, adding them to the system (8.37), (8.38) and (8.42), some of the

3Note that we can substitute the velocities v˛.z; v Nˇ/ into the complete Hamiltonian before
computing the Poisson brackets, which does not alter the resulting equations of motion. This
follows from the fact that the velocities enter into H multiplied by the primary constraints. So,
on the constraint surface, fz; v˛

0

.z/ˆ˛g D fz; ˆ˛gv˛0

.z/C fz; v˛
0

.z/gˆ˛ D fz; ˆ˛gv˛0

.
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q

p

v

ΦI = 0

Fig. 8.1 All the trajectories of a singular theory lie on the surface ˆ˛ D 0, fˆI ;Hg D 0. The
surface belongs to the cylindrical surface ˆI D 0 of the extended phase space

dynamical equations can be omitted from consideration. If the system (8.46) implies
new constraints, we start the fourth stage of the Dirac procedure, and so on.

Since the number of functionally-independent constraints can not be more than
dimension 2[A] of the phase space, the procedure necessarily stops at some stage,
say N.

The complete set of higher-stage constraints is denoted by ˆa.qA; pj/ D 0 (Latin
indices from the beginning of the alphabet, a, b, c, are used to denote the higher-
stage constraints). Then the complete constraint system is

ˆI � .ˆ˛;ˆa/ D 0; a D 1; 2; : : : Œa�: (8.47)

Then all the higher-stage algebraic equations are given by the system

fˆI;Hg D 0: (8.48)

All the solutions to Eqs. (8.37) and (8.38) are confined to lying on the surface defined
by the equationsˆ˛ D 0 and (8.48); see Fig. 8.1 on page 281. By construction, after
substitution of the velocities v˛ determined in the course of the Dirac procedure, the
Eq. (8.48) hold on the complete constraint surfaceˆI D 0.

In short, after completing the Dirac procedure, the theory can be described by
Hamiltonian equations (8.37) which are accompanied by the constraints (8.47).
Besides, some of the velocities (or all of them) have been determined in the process.
Equivalently, the complete system of equations is given by formulas (8.37), (8.38)
and (8.48). We also repeat (see page 280) that [I] dynamical equations are
consequences of other equations of the complete system (where [I] is the number of
all constraints).
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Exercise Construct the Hamiltonian formulation for the action (2.168) and
find the Eq. (2.171).

8.2 Justification of the Hamiltonization Recipe

Recall that the Lagrangian equations for the action (8.29)

d

d�

�
@L.q; Pq/
@PqA

�
� @L.q; Pq/

@qA
D 0: (8.49)

can be identically rewritten in the form

MAB RqB D KB; (8.50)

where MAB.q; Pq/ stands for the Hessian matrix, and KB.q; Pq/ has been specified in
Eq. (1.136).

To construct the corresponding Hamiltonian formulation, we basically follow
the same ideology as in Sect. 2.1.2. First we rewrite the Lagrangian equations in
a first-order form, and then we look for the change of variables that supplies the
Hamiltonian form of these equations.

8.2.1 Configuration-Velocity Space

We introduce 2[A]-dimensional configuration-velocity space parameterized by inde-
pendent coordinates qA; vB (sometimes the coordinates vB are called (generalized)
velocities). Let us define the evolution of these variables according to the equations
MAB RqB D KB, vA D PqA. As before, time dependence of the coordinates qA.�/ is
determined by the Lagrangian equations (8.50), while vA.�/ accompanies PqA.�/:
vA.�/ is determined from the known qA.�/ taking its derivative. Evidently, this
system is equivalent to (8.50). Substitution of the second equation into the first one
gives the desired first-order system

PqA D vA; NMAB PvB D NKA; (8.51)

where NM; NK are obtained from M, K by the replacement Pq ! v, for example

NMAB � MAB.q; Pq/jPqA!vA D @L.q; v/

@vA@vB
: (8.52)

For a quantity defined on the configuration space we indicate its arguments
manifestly: A.q; Pq/. Where arguments of a quantity are not indicated, we adopt
the following conventions. Symbols with a bar are used to denote functions on
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the configuration-velocity space: NA � A.q; v/, while symbols without a bar denote
functions on the space qA; pj; v

˛ (see below):

A D A.qA; pj; v
˛/ � A.qA; vB/jvj!vj.qA;pj;v˛ /: (8.53)

To analyze the system (8.51), we suppose that the rank minor of the matrix M is
placed in the upper left corner.4 Then, according to the rank condition (8.30), our
variables can be decomposed into two groups, qA D .qi; q˛/, i D 1; 2; : : : ; Œi�, ˛ D
1; 2; : : : ; Œ˛� D ŒA� � Œi�. The Hessian matrix reads

NMAB D
� NMij NMiˇ

NM˛j NM˛ˇ

�
; det NMij ¤ 0: (8.54)

Thus, the Latin indices from the middle of the alphabet, i, j, k, correspond to the
coordinates related with the invertible block of matrix M. Greek indices from the
beginning of the alphabet, ˛, ˇ, � , are used to denote the remaining variables.

The inverse matrix for NMij is denoted QNMij, we have NMij
QNMjk D ı k

i . The equations
of motion (8.51) read

NMij Pv j C NMiˇ Pvˇ D Ki; (8.55)

NM˛j Pv j C NM˛ˇ Pvˇ D K˛: (8.56)

According to the rank condition, the Eq. (8.55) can be resolved with respect to Pvi,

Pvi D QNMij.Kj � NMj˛ Pv˛/, and then substituted into the Eq. (8.56) with the result being
Œ NM˛ˇ � NM˛i

QNMij NMjˇ� Pvˇ D NK˛ � NM˛i
QNMij NKj. It must be rankŒ NM˛ˇ � NM˛i

QNMij NMjˇ� D 0

(otherwise, we would be able to resolve the equations in relation to some of Pv˛ ,
contradicting (8.30)). Hence the matrix M obeys the identity

NM˛ˇ � NM˛i
QNMij NMjˇ D 0: (8.57)

Exercise Show that the quantities

NC˛A �


� NM˛j

QNMji; ı˛
ˇ
�
; (8.58)

form a basis on the space of null vectors of the matrix NMAB

NC˛A NMAB D 0: (8.59)

4If not, the initial variables qA can be re-numbered to achieve this.
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In the result, the equations of motion (8.51) are presented in the equivalent form

PqA D vA; (8.60)

Pvi D QNMij. NKj � NMj˛ Pv˛/; (8.61)

NK˛ � NM˛i
QNMij NKj D 0: (8.62)

The Eq. (8.62) are algebraic ones. As will be seen below, they coincide with second-
stage equations of the Dirac procedure, fˆ˛;Hg D 0. For the first example of the
previous section, this is x2 � y2 D 0.

8.2.2 Hamiltonization

The next step is to show whether the Eqs. (8.60) and (8.61) form a Hamiltonian
system in suitably chosen coordinates of the configuration-velocity space. Our aim
now will be to demonstrate the following

Assertion Given the singular theory (8.29) and (8.30), consider the following
change of variables

0
@ qA

v˛

vi

1
A $

0
@ qA

v˛

pi

1
A ; where pi D @L.qA; vi; v˛/

@vi
: (8.63)

According to the rank condition (8.54), it is invertible. Let us denote the inverse
transformation as5

vi D vi.qA; pj; v
˛/: (8.64)

We also introduce the reduced Poisson bracket, that is the Poisson bracket computed
with respect to .qi, pj/-variables only. For the functions A.qA; pi; v

˛/, B.qA; pi; v
˛/

this reads

fA;BgR D @A

@qi

@B

@pi
� @A

@pi

@B

@qi
: (8.65)

5The velocities v˛ which “survive” after the variable change are just the Lagrangian multipliers of
the Dirac recipe, see below.
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Then, in the variables qA; pi; v
˛ , the equations of motion (8.60), (8.61) and (8.62)

acquire the form

Pqi D fqi;HRgR D @H0

@pi
� @fˇ
@pi
vˇ;

Ppi D fpi;HRgR D �@H0

@qi
C @fˇ
@qi
vˇ (8.66)

Pq˛ D v˛; (8.67)

M˛ˇ .q
A; pj/v

ˇ C H˛.q
A; pj/ D 0: (8.68)

The basic quantity of the Hamiltonian formulation turns out to be

HR � H0.q
A; pj/� f˛.q

A; pj/v
˛; (8.69)

where

H0.q
A; pj/ D

�
@ NL
@vA

vA � NL
�ˇ̌
ˇ̌
vi

�
�

piv
i � NL.q; v/C v˛

@ NL
@v˛

�ˇ̌
ˇ̌
vi

; (8.70)

is just the Hamiltonian of the Dirac recipe. It is also denoted

f˛.q
A; pj/ � @ NL

@v˛

ˇ̌
ˇ̌
vi

; (8.71)

M˛ˇD ff˛; fˇgR �
�
@f˛
@qˇ

� @fˇ
@q˛

�
;

H˛ D �ff˛;H0gR � @H0

@q˛
: (8.72)

According to the Assertion, equations for the .qi; pj/-sector are presented in the
Hamiltonian form (8.66). As compared with the Dirac system (8.38), (8.39), (8.40)
and (8.41), there are no conjugate momenta for the variables q˛. Hence, we have not
yet arrived at the Dirac recipe.

Proof of the Assertion To prove the assertion, we will need to know properties
of the transition function vi.qA; pj; v

˛/, which is given in an implicit form by
Eq. (8.63), as well as a structure of the Lagrangian as a function of qA; pj; v

˛ ,
L.qA; pj; v

˛/ � NL.qA; vi; v˛/jvi .

Derivatives of the identity pi � @NL.qA;vi;v˛ /

@vi jvi.qA;pj ;v˛ / give the relationships

@vi

@pj
D QMij;

@vi

@v˛
D � QMijMj˛;

@vi

@qA
D � QMij @2 NL

@vj@qA

ˇ̌
ˇ̌
vi

: (8.73)
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Then the identity (8.57) acquires the form @
@v˛



@NL
@vˇ

jvi

�
D 0, so the quantity

f˛.q
A; pj/ � @ NL

@v˛

ˇ̌
ˇ̌
vi

; (8.74)

does not depend on v˛ . Its derivative reads

@f˛.qA; pj/

@pi
D QMijMj˛; (8.75)

so the quantity QMijMj˛ does not depend on v˛ as well. Remember that a quantity
without a bar denotes a function defined on the space qA; pj; v

˛; see our nota-
tion (8.53).

Using the known formula for the derivative of a composite function, Eq. (8.74)
can be identically rewritten in terms of L

f˛.q
A; pj/ D � @

@v˛



piv

i � L
�
; (8.76)

which implies that the quantity

HR.q
A; pj; v

˛/ � piv
i � L; (8.77)

is at most linear on v˛ . Integrating out the Eq. (8.76) we obtain

HR.q
A; pj; v

˛/ D H0.q
A; pj/� v˛f˛.q

A; pj/; (8.78)

where H0 stands for an integration constant. It can be found in terms of the initial
Lagrangian by comparison of Eqs. (8.77) and (8.78)

H0.q
A; pj/ D

�
@ NL
@vA

vA � NL
�ˇ̌
ˇ̌
vi

: (8.79)

From Eq. (8.77) we obtain useful relationships

@HR

@pi
D vi;

@HR

@qA
D � @ NL

@qA

ˇ̌
ˇ̌
vi

;
@HR

@v˛
D �f˛.q

A; pj/: (8.80)

In particular, the first equation together with (8.78) implies that vi is at most linear
on v˛ and has the representation

vi.qA; pj; v
˛/ D @H0

@pi
� @f˛
@pi
v˛: (8.81)
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This implies (see Eq. (8.73)) that the matrix QMij is at most linear on v˛ , and has the
representation QMij D @2HR

@pi@pj
. Finally, Eqs. (8.77), (8.78) and (8.81) imply that L is at

most linear on v˛ and has the representation

L.qA; pj; v
˛/ D pi

@HR

@pi
� HR: (8.82)

Let us summarize the results. Given singular theory, both the transition func-
tion (8.64) and the Lagrangian L.qA; pi; v

˛/ are linear functions of the velocities
v˛ . The Lagrangian has been presented in terms of the function HR, which is a
linear function of v˛ as well. Besides, the Hamiltonian H0 and the function f˛ do
not depend on v˛ .

Using these formulas, the reader can check that Eqs. (8.66), (8.67), (8.68), (8.69),
(8.70), (8.71) and (8.72) can be obtained by direct substitution of the transition
function into the first-order Eqs. (8.60), (8.61) and (8.62). Therefore the two
formulations are equivalent.

As in the case of the Dirac procedure, we could now start to look for, from
Eq. (8.68), all the algebraic consequences of the system (8.66), (8.67) and (8.68).
Instead, we now establish the equivalence of the formulation (8.66), (8.67)
and (8.68) with the more symmetric Dirac formulation (8.38), (8.39), (8.40)
and (8.41).

8.2.3 Comparison with the Dirac Recipe

In the previous section the first-order equations of motion (8.60), (8.61) and (8.62)
were identically rewritten in special coordinates of 2[A]-dimensional configuration-
velocity space. Let us compare the resulting system (8.66), (8.67) and (8.68) with the
Dirac system (8.38), (8.39), (8.40) and (8.41). The latter is formulated in 2ŒA�C Œ˛�-
dimensional space, where the additional variables are the conjugate momenta p˛ for
q˛. So, to see the equivalence of the two formulations, we need to extend our space
adding the auxiliary variables

.qA; pi; v
˛/ �! .qA; pi; p˛; v

˛/: (8.83)

We also complete the reduced bracket (8.65) up to the Poisson bracket, defining
fq˛; pˇg D ı˛ˇ. Let us define the dynamics on this space as follows. By definition,
the initial variables .qA; pj; v

˛/ obey Eqs. (8.66), (8.67) and (8.68). As the “equations
of motion” for p˛ we take

ˆ˛ � p˛ � f˛.q
A; pj/ D 0; or p˛ D @L

@v˛

ˇ̌
ˇ̌
vi

; (8.84)
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that is primary Dirac constraints (compare them also with Eq. (8.63). By construc-
tion, the system (8.66), (8.67) and (8.68), (8.84) is equivalent to (8.66), (8.67)
and (8.68). On the other hand, it is equivalent to the Dirac system.

To see this, we notice the relationship between the complete Hamiltonian (8.35)
of the Dirac recipe and our basic quantity HR: H D HR C p˛v˛ , and make the
following observations.

(a) We can replace HR ! H in the Eq. (8.66) without altering their form. They then
coincide with (8.39).

(b) Equation (8.67) coincides with (8.40).
(c) Using the complete Poisson bracket, Eq. (8.68) can be written in the form

fˆ˛;Hg D 0, that is, it represents the second-stage system of the Dirac
procedure.

(d) The equation

Pp˛ D � @H

@q˛
(8.85)

is a consequence of Eqs. (8.66), (8.67) and (8.68) and (8.84), as the following
computation shows:

0 D P̂
˛ D Pp˛ � @f˛

@qA

�PqA � fqA;Hg� � @f˛
@pi

ŒPpi � fpi;Hg�

� @f˛
@qA

fqA;Hg � @f˛
@pi

fpi;Hg

D Pp˛ � ff˛;Hg D Pp˛ � fp˛;Hg C fˆ˛;Hg D Pp˛ � @H

@q˛
: (8.86)

Thus we have reproduced the Dirac system (8.38), (8.39), (8.40) and (8.41),
together with its consequence, which is the second-stage system fˆ˛;Hg D 0.

In the result, we have demonstrated that the Dirac procedure produces a
Hamiltonian formulation which is equivalent to the initial Lagrangian formulation.
The procedure of Hamiltonization can be schematically resumed as follows

.qA; PqA/ ! .qA; vi; v˛/ $ .qA; pi; v
˛/ ! .qA; pi; p˛; v

˛/: (8.87)

Some relevant comments are in order.

1. The mysterious Lagrangian multipliers of the Dirac recipe represent just the
velocities that remain “untouched” by the change of variables (8.63).

2. In an arbitrary singular theory, the Hamiltonian H0.qA; pi/ does not depends
on p˛.

3. Our discussion reveals that the only role played by the momenta p˛ is to represent
equations of motion in a completely symmetric form, with the Poisson bracket
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defined in relation to all variables qA; pA. The momenta p˛ are, in fact, the
auxiliary variables of a singular theory.

4. Primary and secondary6 constraints have very different origins. The secondary
constraints represent, in fact, part of the initial equations of motion, rewritten in
the Hamiltonian form. The primary constraints, together with the momenta p˛,
have been added by hand, with the aim of obtaining a more symmetric formalism.

Exercise Obtain Eqs. (8.66), (8.67), (8.68), (8.69), (8.70), (8.71) and (8.72)
by direct substitution of the transition function into the first-order
Eqs. (8.60), (8.61) and (8.62).

8.3 Classification of Constraints

Let the matrix KI
J.qA; pB/ be invertible on the constraint surface

detKI
J
ˇ̌
ˆID0 ¤ 0: (8.88)

Then the functions KI
JˆJ are called constraints that are equivalent to the initial

constraints ˆI . Note that the equations ˆI D 0 and KI
JˆJ D 0 determine the same

surface in the phase space.
As will be seen below, the structure of Hamiltonian equations (8.37), (8.38)

and (8.48) essentially depends on properties of the constraints ˆI with respect to
the Poisson bracket.

Definition 1 Let ˆ be either one of the constraints among ˆI or a combination of
ˆI . The constraintˆ is called a first class constraint if its bracket with any constraint
is proportional to the constraints

fˆ;ˆJg 	 ˆL; J D 1; 2; : : : ; ŒJ�: (8.89)

Any subset of constraints, say ˆI2 , I2 D 1; 2; : : : ; ŒI2�, for which the matrix of
Poisson brackets is invertible on the constraint surface, is called a set of second-
class constraints. That is they obey

fˆI2 ; ˆJ2g DMI2J2 ; where det MI2J2

ˇ̌
ˇ
ˆID0

¤ 0: (8.90)

6Remember that the secondary constraints consist of the second-stage, third-stage, . . . constraints.
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Now we demonstrate the central result on the structure of a constraint system.
Let us denote the Poisson bracket of all constraints by M

fˆI; ˆJg DMIJ .q
A; pB/: (8.91)

Suppose that its rank on the constraint surface is equal to a number ŒI2�,
rank MIJ jˆID0 D ŒI2� < ŒI�. We demonstrate that there is an equivalent system
of constraints formed by ŒI2� second-class constraints, and by ŒI1� D ŒI� � ŒI2�
first-class constraints.

To see this, we note that according to the rank condition, there are ŒI1� D I � ŒI2�
independent null-vectors EKI1 .q

A; pB/ of the matrix M on the surface ˆI D 0. We
denote their components KI1

J. Then, for the combinations Q̂ I1 � KI1
JˆJ , we find

f Q̂ I1 ; ˆLg D fKI1
J ; ˆLgˆJ C KI1

J MJL	 ˆI ; (8.92)

since K M vanishes on surface ˆI D 0. Hence ˆI1 represent ŒI1� first-class
constraints.

Exercise Show that the presence of n first-class constraints amongˆI implies
rank MIJjˆID0 � ŒI� � n.

We can choose the vectors EKI2 .q
A; pj/ to complete EKI1 up to a basis of [I]-

dimensional vector space. By construction, the matrix

KI
J �

�
KI1

J

KI2
J

�
; (8.93)

is invertible. Let us denote Q̂ I � . Q̂ I1 , Q̂ I2 /, where Q̂ I1 � KI1
JˆJ , Q̂ I2 � KI2

JˆJ .
The system Q̂ I is equivalent to the initial system of constraints ˆI . The constraintsQ̂ I2 form the second-class subset (prove this!).

Therefore, properties of the set Q̂ I can be summarized as follows

f Q̂ I ; Q̂ Jg DMIJ .q
A; pB/;

f Q̂ I1 ; ˆJg D cI1J
K.qA; pB/ˆK ; f Q̂ I2 ;

Q̂ J2g DMI2J2 .q
A; pB/; (8.94)

where

rank MIJ jˆID0 D ŒI2�; det MI2J2 jˆID0 ¤ 0: (8.95)
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For later use we mention one more property

f Q̂ I1 ; H0g D bI1
J.qA; pB/ˆJ ; (8.96)

which follows from the conservation of the first-class constraints in time, Eq. (8.48).

8.4 Classical Observables and Physical Content
of a Degenerate Theory

After completing the Dirac procedure, we deal with equations of motion

Pz D fz;Hg; ˆ˛ D 0; fˆI;Hg D 0; (8.97)

where z D .qA; pB/ and ˆI D .ˆ˛;ˆa/. We have also seen that some of
the dynamical equations of the system are a consequence of other equations. To
continue the analysis, we now separate independent equations.

Since the constraints ˆI D 0 are functionally independent, we can resolve them
with respect to [I] phase-space variables. That is, they can be presented in the form

zI � f I.zNa/ D 0; (8.98)

where ŒNa� D Œ2A�� ŒI�. Exactly the equations for zI are the consequences, as follows
from the computation

0 D P̂ I D @ˆI

@z
ŒPz � fz;Hg�C @ˆI

@z
fz;Hg

D @ˆI

@zJ

�PzJ � fzJ;Hg�C @ˆI

@zNa
�PzNa � fzNa;Hg�C fˆI;Hg

D @ˆI

@zJ

�PzJ � fzJ;Hg� : (8.99)

Besides, the higher-stage equations allow us to present some of the velocities, say
v˛ , through other variables, vˇ D dˇ N̨ .z/ Nv N̨ . Using all this, the Eq. (8.97) are
equivalent to

PzNa D hNa.zNa; Nv N̨ /; (8.100)

zI D f I.zNa/; vˇ D dˇ N̨ .zA/ Nv N̨ ; (8.101)

where7hNa D fzNa;H.zNa; zI ; v˛.z; Nv N̨ /; Nv N̨ /gˇ̌zIDf I .zNa/
.

7Recall that we can substitute the velocities v˛.z; Nv Nˇ/ into the complete Hamiltonian before
computing the Poisson brackets, which does not alter the resulting equations of motion.
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Now it is clear that the velocities Nv N̨ are not determined by these equations, and
“parameterize” the ambiguity presented in solutions of the problem. Indeed, let us
fix Nv N̨ .�/ in some way. Then the Eq. (8.100) represent a normal system and can be
solved under a given initial conditions, for example zNa.0/ D zNa

0. Then we determine
zI , vˇ according to (8.101). The solution of the Cauchy problem is not unique, since
taking some other functions Nv0 N̨ .�/ such that Nv0 N̨ .0/ D Nv N̨ .0/, we obtain a different
solution which obeys the same initial conditions.

Moreover, a solution is not unique even for any other set of initial conditions!
To illustrate this, let us discuss the two-dimensional example, Pz D h.z; v/. We solve
the equation with respect to v, v D Qh.z; Pz/. Then the set z.�/, Qh.z.�/; Pz.�// with an
arbitrary function z.�/ is a solution of the problem. Due to this, the problemwith the
initial conditions z.0/, Pz.0/, : : :, z.n/.0/, v.0/ D Qh.z.0/; Pz.0//, has infinite solutions.

Therefore, for a singular theory, in which some of velocities have not been
determined in the course of the Dirac procedure, it is impossible to formulate
the Cauchy problem for original variables. Given initial conditions, a solution of
the problem is not unique. Moreover, the example 2 of Sect. 8.1.1 shows that
all original variables can have an ambiguous dynamics, in contradiction with an
expected causal evolution of a system. Therefore the original variables generally
have no physical meaning. To find the physical content of a degenerate theory, we
look for combinations of original variables with unambiguous dynamics. Certainly,
constraints are of this type, but they have a trivial dynamics. Are there any more
variables with unambiguous dynamics in a degenerate theory? The answer was
given in a remarkable theorem proved by Gitman and Tyutin [10]. It guarantees
that besides the constraints, there are 2ŒA� � ŒI2� � 2ŒI1� independent variables with
unambiguous dynamics. The variables (or functions of them) sometimes are called
physical variables or observables. The subspace of observables is called physical
sector of the theory. Let us briefly discuss the corresponding formalism.

Singular Theory in Special Coordinates As we saw in Sect. 4.4.3, there is time-
independent canonical transformation such that the constraints (8.98) turn into a
part of coordinates of the new system, say �I D zI � f I.zNa/. Then all solutions to
equations of motion lie on the hyper-plane �I = 0. Further progress in analysis
of equations of motion can be achieved in these new coordinates called special
coordinates. They can be described as follows. The set� consist of 1

2
ŒI2� conjugated

pairs .y; �/ equivalent to second-class constraints from (8.98), and of momenta NP
and QP, they are equivalent to primary and higher-stage first-class constraints. So
we have � D f.y; �/; NP; QPg. The coordinates corresponding to the momenta are
denoted Q D . NQ; QQ/. The remaining conjugated pairs of the special system we
denote !. Thus the special coordinates are .!;�;Q/.

According to the Gitman-Tyutin theorem [10], in the canonical coordinates the
equations of motion (8.97) acquire the form

P! D f!;Hph.!/g; � D 0; PNQ D Nv; PQQ D B.!; NQ; QQ/; (8.102)

where Hph and B are known functions of indicated arguments, and Nv are the
undetermined velocities.
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Now the ambiguity in solutions becomes transparent: varying the functions Nv,
we alter only the variables Q D . NQ; QQ/. The variables ! have unambiguous
dynamics, since the equations for them are separated from others. Equations for
! are Hamiltonian, with the Hamiltonian being Hph.

A classical-mechanics system has unambiguous behavior. If we wish to describe
it by a degenerate theory, we need some convention that will remove the discrepancy
between causal evolution of a physical system and the ambiguity presented in
solutions of Eq. (8.102). The form of these equations suggests the natural possibility
of doing this: the physical dynamics should be associated with the !-sector of a
singular theory. Let us adopt the following terminology:

A. Two solutions (trajectories) Z D .!;�;Q; Nv/ and Z0 D .!0; �0;Q0; Nv0/ to
the system (8.102) are said to be equivalent, Z0 	 Z, if !0 D !. According
to the equivalence relationship, the space of solutions decomposes into non-
intersecting classes QZ of mutually equivalent solutions.

B. A function A is called physical function (observable), if it has the same
values at equal-time points of equivalent trajectories, that is A.Z0; PZ0; RZ0; : : :/ D
A.Z; PZ; RZ; : : :/, when Z0 	 Z.

C. Two observables are equivalent, A 	 A0, if their values coincide on all
trajectories. The space of observables decomposes into non-intersecting classes
QA of mutually equivalent observables.

Some relevant comments are in order. We start from two properties8 of a class of
equivalent trajectories QZ.
1. Ambiguous evolution implies the existence of intersecting trajectories which

obey Z.�0/ D Z0.�0/ at some �0. Note that intersecting trajectories belong to
the same equivalence class.

2. Let Z.�/ D .!;�; NQ; QQ; Nv/ be a solution of (8.102), and ı, 4, 41, 42, : : :,
4k given numbers. Then there is an equivalent solution Z0.�/ (that is with
the same !.�/), which obeys the conditions QQ0.0/ D QQ.0/ C ı, NQ0.0/ D
NQ.0/C 4, dn NQ0.0/

d�n D dn NQ.0/
d�n C 4n, n D 1; 2: : : : ; k. Indeed, the desired solution is

Z0.�/ D .!;�; NQ C u; QQ0; Nv C Pu/, where u is a function which obey u.0/ D 4,
dnu.0/

d�n D 4n, n D 1; 2: : : : ; k, and QQ0.�/ is solution to the Cauchy problem
PQQ0.�/ D B.�; QQ0/ � BŒ!.�/; NQ.�/C u.�/; QQ0�, QQ0.0/ D QQ.0/C ı.
Some properties of a class of observables QA.

3. The dynamical variables !.�/ (as well as the functions a.!/) represent examples
of observables.

4. If A 2 QA, then Aj�D0 and A C f�g are observables of the same class. Here f�g
is any function proportional to the constraints, f�g D fI.Z/�I .

5. In each class QA there is an observable of the form a.!/. As a consequence,
observables have unambiguous dynamics. Indeed, let A1.Z; PZ; RZ; : : :/ is an
observable from QA. Using Eq. (8.102), it can be presented through !, QQ, NQ

8For a detailed description of the class, see [10].
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and derivatives of NQ: A2.!;�; QQ; NQ; PNQ; RNQ; : : :/. This function also belong to QA.
Then A2j�D0 D a.!; QQ; NQ; PNQ; RNQ; : : :/ 2 QA. According to Item 2, it must obey

a.!; QQ; PNQ; RNQ; : : :/ D a.!; QQ C ı; NQ C 4; PNQ C 41;
RNQ C 42; : : :/, and hence is a

function of !, a.!/.
In view of this, we can adopt the following interpretation of a degenerate

theory: we assume that observables describe the measurable quantities.
Since an observable acquires the same value for all trajectories of a given

class, it is not necessary to know all the trajectories for the description of physical
quantities. Since all observables of a class QA describe the same measurable
quantity, we can use only one of them, for instance the representative a.!/.

6. According to this interpretation, the Cauchy problem is formulated for the !-
variables, !.0/ D !0.

7. Another consequence of the interpretation adopted is that the same physical
system can be described by theories with different equations and even with
different numbers of variables.

Consider the theory with the variables ! and the equations of motion P! D
f!;Hphg. It is obtained from the original theory disregarding all the ambiguous
variables. It has the same physical content as the theory (8.102). Note also that it
is a non-singular theory.

Other examples of equivalent formulations can be obtained either by partial
or by complete fixation of the ambiguity presented in Eq. (8.102).

For instance, we can partially fix the dynamics (8.102), adding the equations
NQ D 0, then Nv D 0. Note that there remains the ambiguity related to the choice
of initial conditions for the variables QQ.

Adding the equations NQ D 0, and replacing the last set of equations
from (8.102) by QQ D Y.!/, where Y.!/ are given functions, we completely
remove the ambiguity. Note that the number of equations that must be added to
completely remove the ambiguity is equal to the number of first-class constraints
of the theory.

The transition from the original formulation to the other one, with the
variables of the ambiguous sector fixed in one or another way, is called the
fixation of gauge. The resulting theory is called a gauge of the original theory.
When we work in special coordinates, the original theory and its gauge have the
same physical content.

8. An observable of the form a.!/, being rewritten in the original variables z D
.qA; pB/, has the form a.z/ � a.!.z//. Hence measurable quantities can be
described using the observables which are functions of z only. Let Qa be the class
of observables of the form A.z/, with the representative a.z/. To establish the
structure of A.z/, we consider it in special coordinates, A.z/ D A.!;�;Q/ D
A.!;Q/ C f�g D a.!/ C f�g. The last equality is owing to Item 5. In the
original coordinates it reads A.z/ D a.z/C fI.z/ˆI .

For an observable of this form we have

fA.z/; ˆI1g D fˆg: (8.103)
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Therefore the observables of the form A.z/ commute with all first-class con-
straints. Note that the observables a.z/ � a.!.z// commute with all constraints.

9. In practical computations, complete fixation of the ambiguity in original vari-
ables is achieved according the following scheme. Let FI1 .z

A/ be functions such
that the functions ˆ D .ˆI ;FI1 / are functionally independent and form the
second-class set on the surface ˆ D 0

detfˆ;ˆgjˆD0 ¤ 0: (8.104)

We add the equations F.zA/ D 0 to the original system, Pz D fz;Hg and ˆI D
0. The equations are called gauge conditions imposed on the theory. In special
coordinates we will have the Eq. (8.102) accompanied by F.!;�; NQ; QQ/ D 0.
The condition (8.104) guarantees that the gauge conditions can be resolved with
respect to Q. So they can be written in the equivalent form, NQ D NF.!/ and
QQ D QF.!/ (possible dependence of F on � can be discarded in the complete
system). Using them in other equations of the system, we present it as follows:

P! D f!;Hph.!/g; � D 0; PNF.!/ D Nv; PQF.!/ D B.!; NF.!/; QF.!//;
NQ D NF.!/; QQ D QF.!/:

If the fourth equation is satisfied as a consequence of the first equation, we
achieved our goal: the theory Pz D fz;Hg, ˆI D 0, FI1 D 0 is self-consistent,
has unambiguous dynamics and the same physical content as the original theory.

To avoid a confusion, we emphasize that complete fixation of a gauge in original
coordinates generally does not mean that we have specified the physical sector of
the theory.

Search for Observables in Original Coordinates To find the special coordi-
nates, we need to solve a complicated system of partial differential equations,
see Sect. 4.4.3. In many cases it is easier to find an observables in the origi-
nal coordinates. The analysis of a theory in special coordinates yields certain
hints how we can do this. Since the basic property of an observable is its
causal evolution, we just search for 2ŒA� � ŒI2� � 2ŒI1� independent combinations
zobs.qA; pB/, with unambiguous dynamics governed by closed system of equations.
By closed we mean the system which involves only the variables zobs. According to
Eq. (8.103), the observables necessarily have vanishing brackets with all first-class
constraints.
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8.5 Theory with Second-Class Constraints: Dirac Bracket

Consider a singular theory that, after completing the Dirac procedure, leads to the
equations of motion

Pz D fz;Hg; ˆ˛ D 0; fˆI;H0g C fˆI; ˆˇgvˇ D 0; (8.105)

where all the constrains ˆI form the second-class set

fˆI; ˆJg DMIJ ; det MIJ jˆKD0 ¤ 0: (8.106)

The inverse matrix for M is denoted by QMIJ , QMIJ MJKD ıI
K .

Applying QM˛I and QMaI to the last equation from (8.105), we obtain

v˛ D � QM˛IfˆI;H0g; (8.107)

QMaIfˆI;H0g 	 ˆJ : (8.108)

Substituting these into the first equation from (8.105), we obtain Pz D fz;H0g �
fz; ˆ˛g QM˛JfˆJ ;H0g. Using Eq. (8.108), this can be written in a more symmetric
form

Pz D fz;H0g � fz; ˆIg QMIJfˆJ;H0g: (8.109)

Repeating the analysis carried out in Sect. 8.4 (see Eqs. (8.98), (8.99), (8.100)
and (8.101) ), we conclude that the dynamics of the theory is governed by

PzNa D hNa.zNa/; (8.110)

zI D f I.zNa/; v˛ D � QM˛IfˆI ;H0g: (8.111)

Thus, in a singular theory with second-class constraints, all the velocities are
determined algebraically through the phase-space variables. The dynamics is
unambiguous. The variables zNa obey the first-order equations, so there is a natural
formulation of the Cauchy problem, zNa.0/ D zNa

0. The variables zI , v˛ are determined
algebraically through zNa, so they have no independent temporal evolution.

Dirac Bracket The equations of motion (8.109) can be written in a compact form

Pz D fz;H0gD; (8.112)

if we introduce the Dirac bracket constructed with help of the set of second-class
constraintsˆI

fA;BgD D fA;Bg � fA; ˆIg QMIJfˆJ;Bg: (8.113)
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This possesses all the properties of the Poisson bracket, see Eqs. (2.47), (2.48), (2.49)
and (2.50). Besides, the remarkable property is that the Dirac bracket of the
constraintˆI with any function vanishes

fˆI;AgD D 0; I D 1; 2; : : : ; ŒI�; (8.114)

in particular

fˆI; ˆJgD D 0: (8.115)

This implies, in particular, that second-class constraints can be taken into account
inside the Dirac bracket (that is, before computing the bracket).

This can be used to write the function hNa in Eq. (8.110) in terms of the Dirac
bracket. Indeed, let us write equations for zNa which are contained in (8.112),
PzNa D fzNa;H0gD. Using the constraints (8.111), zI can be substituted into H0 before
computing the Dirac bracket. In the result, the dynamical variables zNa obey the
equations

PzNa D fzNa;H0.z
Na/gD; where H0.z

Na/ D H0.z
Na; zI.zNa//: (8.116)

Exercises

1. Show that the rank of the matrix of fundamental brackets fzA; zBgD on the
surface ˆI D 0 is equal to Œ2A� � ŒI�. (Hint: compute the fundamental
brackets for the special coordinates .!;�;Q/ specified in Sect. 8.4.

2. Consider the following variational problem for configuration-space vari-
ables qA and yB: S0 D R

d� yA PqA � H.q; y/. Find Hamiltonian action,
construct Dirac brackets and use them to exclude yB and their conjugate
momenta from the Hamiltonian action. Compare the result with S0.

Canonical Quantization and Second-Class Constraints The quantummechanics
of a classical system with non singular Lagrangian L.qA; PqB; t/ can be obtained
using the canonical quantization procedure. To achieve this, we rewrite the system
in the Hamiltonian formalism. The basic quantities now are the Poisson brackets
fqA; pBg D ıA

B and the Hamiltonian H.qA; pB; t/. According to the canonical
quantization paradigm, we associate with the phase-space variables the operators9

9The operators Oq, Op are taken as hermitian, which guarantees that their eigenvalues are real
numbers. Since the commutator of Hermitian operators is an anti-Hermitian operator, the factor
i appears on the r.h.s. of Eq. (8.117).
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with commutators resembling the Poisson brackets

OqA OpB � OpB OqA � ŒOqA; OpB� D i„ıA
B;

ŒOqA; OqB� D ŒOpA; OpB� D 0: (8.117)

They act on space of wave functions �.t; qA/. On this base, we postulate the
Schrödinger equation for the wave function

i„ @
@t
� D OH�; OH D H.Oq; Op; t/: (8.118)

For a theory with second-class constraints, the recipe (8.117) would not be consis-
tent. Indeed, since in classical theory ˆI D 0, one expects that the corresponding
operators vanish on physical state vectors, Ô I‰ph D 0. Quantizing the theory by
means of the Poisson bracket, we obtain . Ô I Ô J � Ô J Ô I/‰ph DMIJ ‰ph. The left-
hand side of this expression vanishes, but the right-hand side does not.

The problem is resolved by postulating commutators that resemble the Dirac
bracket instead of the Poisson one

ŒOqA; OpB� D i„ fqA; pBgD

ˇ̌
z!Oz D i„ MAB : (8.119)

Owing to Eq. (8.115), this is consistent with the condition Ô I‰ph D 0.

The Problem with Time-Dependent Second-Class Constraints The prescription
formulated above does not work in a theory with time-dependent second-class
constraints. Such a kind situation generally arises when we consider a constrained
system in external fields in the physical-time parametrization, see Sect. 9.7.3. To
simplify our discussion, consider a theory which involves only the primary time-
dependent second-class constraints

H D H0.z; t/C˚˛.z; t/v
˛: (8.120)

All true trajectories lie on the surface ˚˛.z; t/ D 0 which has his own prescribed
dynamics. This dynamics yield an additional contribution into equations of motion
for z. Indeed, from the preservation in time of the constraints we obtain

P̊
ˇ D @t˚ˇ C f˚ˇ;H0g C f˚ˇ;˚˛gv˛ D 0; (8.121)
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then

v˛ D �f˚˛;˚ˇg�1f˚ˇ;H0g � f˚˛;˚ˇg�1@t˚ˇ: (8.122)

As compared with the standard case, we have the extra term, fz; ˚˛gf˚˛;˚ˇg�1
@t˚ˇ, which takes into account dynamics of the constraint surface. Substitution of
this expression into (8.120) gives the Hamiltonian

H D H0 �˚˛f˚˛;˚ˇg�1f˚ˇ;H0g � ˚˛f˚˛;˚ˇg�1@t˚ˇ: (8.123)

Equations of motion have the Hamiltonian form (with the Hamiltonian (8.123)) with
respect to Poisson bracket

Pz D fz;H0g � fz; ˚˛gf˚˛;˚ˇg�1f˚ˇ;H0g � fz; ˚˛gf˚˛;˚ˇg�1@t˚ˇ: (8.124)

Let us rewrite them using the Dirac bracket

Pz D fz;H0gD � fz; ˚˛gf˚˛;˚ˇg�1@t˚ˇ: (8.125)

Due to the last term, they do not form a generalized Hamiltonian system with respect
to the Dirac bracket.Without a Hamiltonian,we are not able to write the Schrödinger
equation.

To avoid this difficulty, we introduce the new variables

zw D z � ˚˛f˚˛;˚ˇg�1@t˚ˇ: (8.126)

They coincide with z on the constraint surface, so we call them weak variables. We
rewrite (8.125) in the form

d

d�
.z � ˚˛f˚˛;˚ˇg�1@t˚ˇ/ D fz;H0.z/gD : (8.127)

As the constraints can be used before computing of the Dirac bracket, Eq. (8.127)
can be rewritten in closed form for zw

Pzw D fzw;H0.zw/gD ; (8.128)

and represents the Hamiltonian system for zw. So, the weak variables admit the
standard canonical quantization: we could search for the operators Ozw with the
Dirac-bracket commutators, and then to impose the Schrödinger equation i„@t� D
H.Ozw/� . To compute mean values of the initial operators z, we need to invert the
transformation (8.126).
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Formal Quantum Realization of the Dirac Bracket Quantum realization of the
Poisson bracket can be achieved in a well-known way

OqA D qA; OpA D �i„ @

@qA
: (8.129)

This implies ŒOqA; OpB� D i„ıA
B, as should be the case. To find the quantum realization

for the Dirac bracket, we explore the weak variables introduced above. Let us
associate the function Aw with a phase-space function A.q; p/ as follows:

Aw.q; p/ D A.q; p/� fA; ˆIg QMIJˆJ : (8.130)

On the constraint surface ˆI D 0 they coincide: Aw D A. Note that the Poisson
bracket of w-functions on the constraint surface coincides with the Dirac bracket of
the initial functions

fAw;BwgP D fA;BgD: (8.131)

Since the quantum realization of the Poisson bracket is known, we can now realize
the Dirac bracket, associating the following operators10 with the classical quantities
A.q; p/

A.q; p/ ! OAw D Aw.q; p/jq!Oq;p!Op (8.132)

with Oq, Op specified in Eq. (8.129). Commutators of these operators resemble the
Dirac bracket.

In particular, operators corresponding to the phase-space variables are

qA ! OqA
w D OqA � Œ OqA; ˆI � QMIJˆJ ;

pA ! OpwA D OpA � Œ OpA; ˆI � QMIJˆJ ; (8.133)

Note also that in this realization the constraints become null operators:
ˆI ! Ô wI D 0.

10We do not discuss the problem of ordering of operators which must be solved in each concrete
case.
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8.6 Examples of Theories with Second-Class Constraints

8.6.1 Mechanics with Kinematic Constraints

Consider a mechanical system with configuration variables qa, which is confined to
move on the non-degenerate surface

Gi.q
a/ D 0; rank

@Gi

@qa
D Œi� < Œa� (8.134)

Suppose that in the absence of the constraints the theory is described by a
nonsingular Lagrangian L0.qa; Pqa/. Then, as we have seen in Sect. 1.6.3, the theory
can be described by an action with the Lagrangian multipliers �i.�/

S D
Z

d�
�
L0.q; Pq/C �iGi.q/

�
: (8.135)

Let us construct the Hamiltonian formulation. Since L0 is non singular, equations
for the momenta pa, pa D @L0

@Pqa , can be resolved with respect to Pqa. Let Pqa D f a.q; p/
be a solution:

@L0
@Pqa

ˇ̌
ˇ̌
PqDf .q;p/

� pa; det
@f a

@pb
¤ 0: (8.136)

Conjugated momenta for �i represent [i] primary constraints of the theory, p�i D 0.
Then we obtain the complete Hamiltonian

H D H0 � �iGi.q/C vi
�p�i; H0 � paf a � L0.q; f /: (8.137)

Conservation in time of the primary constraints: Pp�i D fp�i;Hg D 0

implies secondary constraints Gi.q/ D 0. In turn, conservation of Gi, PGi D
fGi;Hg D 0, gives the third-stage constraints. Using Eq. (8.136), they read
Fi � Gia.q/f a.q; p/ D 0, where Gia � @Gi

@qa . The Poisson brackets of the constraints

are fGi;Fjg D Gia
@f c

@pa
Gjc �Mij. Since det @f a

@pb
¤ 0 and rank Gia D Œi�, the known

theorem of linear algebra guarantees det Mij¤ 0. The inverse matrix for M is
denoted as QMij. Further, the condition PFi D 0 implies fourth-stage constraints
�i � QMijfFj;H0g D 0. Finally, conservation in time of these constraints determines
all the velocities: vi

� D f QMijfFj;H0g;H0��kGkg. Thus, the Hamiltonian formulation
of a Lagrangian theory with [i] kinematic constraints implies 4Œi� second-class
Hamiltonian constraints

p�i D 0; Gi D 0; f aGia D 0; �i � QMijfFj;H0g D 0: (8.138)
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Let us specify these results for the free particle constrained to move on a 2 -sphere
of radius c. The action is

S D
Z

d3x

�
1

2
mPx2 C �.x2 � c2/

�
: (8.139)

This implies the following chain of four second-class constraints

p� D 0; x2 � c2 D 0; xp D 0; p2 C 2mc2� D 0; (8.140)

as well as v� D 0. Using the complete Hamiltonian

H D 1

2m
p2 � �.x2 � c2/; (8.141)

we obtain the equations mPxi D pi, Ppi D 2�xi. Using the last constraint from (8.140),
this leads to closed equations for the .x; p/-sector. They read

mPxi D pi; Ppi D � p2

mc2
xi: (8.142)

These imply the following second-order equations for x:

c2 Rxi D �Px2xi: (8.143)

The Dirac brackets for the .x; p/-sector are

fxi; xjgD D 0; fxi; pjgD D ıij � 1

x2
xixj;

fpi; pjgD D � 1

x2
.xipj � xjpi/: (8.144)

Exercises

1. Obtain the Eqs. (8.141), (8.142), (8.143) and (8.144).
2. Confirm that the Hamiltonian equations (8.142) can be written in the form

Pz D fz;H0gD.
3. Write the Lagrangian equations following from the action (8.139). Obtain

Eq. (8.143) from the resulting system.
4. We know that the quantities Li D �ijkxjpk obey the angular-momentum

algebra with respect to the Poisson bracket. Confirm that the same is true
for the Dirac brackets (8.144): fLi;LjgD D �ijkLk.

(continued)
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5. Construct the Hamiltonian formulation for the field theory (called sigma-
model on a sphere)

S D
Z

d4x

�
1

2
.@	�

a/2 C �..�a/2 � 1/

�
: (8.145)

8.6.2 Singular Lagrangian Action Underlying the Schrödinger
Equation

In Sect. 2.9.2 we discussed the remarkable similarity existing between mathematical
structures of electrodynamics and quantum mechanics. As electric and magnetic
fields can be obtained from the vector potential Aa, the real and imaginary parts of
the wave function can be obtained from the scalar potential �, see Eq. (2.138). The
real field � obeys the equation

„2 R� C .M �V/2� D 0; (8.146)

which follows from the Lagrangian action

SŒ�� D
Z

dtd3x

�„
2

P� P� � 1

2„ Œ.M �V/��2
�
: (8.147)

Here we obtain a further relationship between the Shrödinger and the scalar potential
equations, following the work [40]. We show that there is a Lagrangian theory
subject to second-class constraints underlying both the Schrödinger equation and
the classical field theory (8.146). This possibility is based on the fact that in a theory
with second-class constraints, we can take different subsets as the independent
variables when we look for a solution of the constraints. For the model presented
below, there are two natural possibilities to choose the independent variables. By one
option, they obey the Hamiltonian equationswhich correspond to the theory (8.147).
By the other option we reach the Schrödinger system (2.133) and (2.134).

Consider the following Lagrangian theory:

SŒ�; '� D
Z

dtd3x

�„
2

P� P� C 1

2„'
2 C 1

„'.M �V/�

�
; (8.148)

written for two real fields �.t; xi/, '.t; xi/ on the given external background V.xi/.
This implies the Lagrangian equations

„2 R� � .M �V/' D 0; ' D �.M �V/�: (8.149)
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As a consequence, both � and ' obey the second-order equation (8.146). After the
shift Q' � ' C .M �V/�, the action acquires the form SŒ�; '� D SŒ�� C 1

2„
R Q'2,

where SŒ�� is the action (8.147). Hence in this parametrization the fields � and Q'
decouple, and the only dynamical variable is �. Once again, its evolution is governed
by Eq. (8.146). Although it is natural, this is not the only possible parametrization
of the dynamical sector. To find another relevant parametrization, we would like
to construct a Hamiltonian formulation of the theory. We introduce the conjugate
momenta p, � for the fields �, ' and define their evolution according to the standard
rule

p D @L

@ P� D „ P�; � D @L

@ P' D 0: (8.150)

The second equation represents a primary constraint of the theory. Then the
complete Hamiltonian is

H D
Z

d3x

�
1

2„.p
2 � '2/� 1

„'.M �V/� C v�

�
; (8.151)

Preservation in time of the primary constraint, P� D f�;Hg D 0, implies the
secondary one ' C .M �V/� D 0. In turn, its preservation in time determines the
velocity v D � 1

„ .M �V/p. Hence the Dirac procedure stops at this stage. Evolution
of the phase-space variables is governed by the Hamiltonian equations

P� D 1

„p; Pp D 1

„ .M �V/';

P' D v D �1„ .M �V/p; P� D 0; (8.152)

and by the constraints

� D 0; ' C .M �V/� D 0: (8.153)

The system implies that both � and ' obey Eq. (8.146). Computing the Poisson
bracket of the constraints, we obtain an on-shell non-vanishing result f' C .M
�V/�; �g D ı3.x � y/. So the constraints form a second-class system.

Let us construct the Dirac bracket corresponding to the constraints

fA;BgD DfA;Bg � fA; �gf' C .M �V/�;Bg
C fA; ' C .M �V/�gf�;Bg: (8.154)

This implies f�;AgD D 0, f�; 'gD D 0, as well as

f�; pgD D ı3.x � y/; f�; �gD D fp; pgD D 0I (8.155)
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f'; pgD D �.M �V/ı3.x � y/;

f'; 'gD D fp; pgD D 0: (8.156)

Note that for the pair �; p the Dirac brackets coincide with the Poisson ones. For the
pair '; p the Dirac brackets coincide exactly with the non-canonical ones, (2.148).

According to the constraints (8.153), either '; p or �; p can be taken to
parameterize the dynamical sector of the theory.

Parameterizing it by the pair '; p, the Eq. (8.152) reduce to the Schrödinger sys-
tem (2.133) and (2.134), while the Hamiltonian (8.151) acquires the form (2.147).
Note that p is the conjugatemomenta for � but not for '. Using this Hamiltonian and
the Dirac bracket (8.156), Eqs. (2.133) and (2.134) can also be obtained according
to the rule (8.116).

Parameterizing the dynamical sector by the pair �; p, the Eq. (8.152) reduce to

the system „ P� D p, „Pp D �



„2
2m M �V

�2
�, while the Hamiltonian (8.151) acquires

the form

H.�; p/ D
Z

d3x
1

2„
�
p2 C Œ.M �V/��2

�
: (8.157)

This is precisely the Hamiltonian formulation of the theory (8.146), (8.147).
Hence the classical field theory (8.146) and the Schrödinger equation can be

identified with two possible parameterizations of the dynamical sector of the
singular Lagrangian theory (8.148).

8.7 Examples of Theories with First-Class Constraints

8.7.1 Classical Mechanics in Reparametrization-Invariant
Form and the Schrödinger Equation

This formulation of classical mechanics is interesting for two reasons. First, it is
close to the description of a relativistic particle on the base of Minkowski space.
Second, this yields an elegant way for canonical quantization of a classical system.
Consider a particle with the potential energy U.x; t/

S W x.t/ 2 R
3 ! RI S D

Z
dt

"
m

2

�
dx
dt

�2
� U.x; t/

#
: (8.158)

We make the change of variables t D t.�/ in the indefinite integral (8.158), this
yields the expression

S W .t.�/; x.�// 2 R � R
3 ! RI S D

Z
d�

�
mPx2
2Pt � PtU.x; t.�//

�
; (8.159)
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where the dots state for derivativewith respect to � . The new functional is defined on
functions of four-dimensional space R � R

3. Novel property of the functional is its
reparametrization-invariance: the substitution � D �.� 0/ does not change its form,
in contrast to (8.158). As a consequence, if t.�/, x.�/ is an extremum of (8.159),
then t.f .�//, x.f .�//, with an arbitrary function f .�/, will give an extremum as well.
That is the new variational problem determines an extremal line as a set of points in
R � R

3, but does not specify any definite evolution along the line. Physically, there
is no the notion of “time” in the formulation. The same can be seen on the level
of equations of motion. To illustrate this, let us consider the free particle, U D 0.
Then (8.159) implies the equations of motion . Px

Pt /
: D 0, . Px2

Pt2 /
: D 0. The general

solution to these equations contains, besides the integration constants v and x0, an
arbitrary function f .�/

x D vf .�/C x0; t D f .�/: (8.160)

These expressions, although determining a straight line, does not specify a particular
evolution law along the line. Nevertheless, the new functional can be used to
describe dynamics the system (8.158). Excluding � from the parametric equa-
tions (8.160), we obtain evolution of the physical variables, x.t/ D vt C x0.
Moreover, we can use reparametrization-invariance of the formalism to set � D t
at any instance of calculation, this should reproduce the corresponding result of
original formulation. For instance, setting � D t in (8.159) we obtain (8.158).

Any classical-mechanics system can be reformulated in the reparametrization -
invariant form, see Exercise 1 on page 307.

Dynamical and Non Dynamical Variational Problems Mathematically, the vari-
ational problems (8.158) and (8.159) are not equivalent. Nevertheless, we have seen
that the second problem can be used to describe dynamics of the original system. In
this relation, the following terminology seems to be convenient.

Parameterized line in R
n is a map of an interval of R into R

n, � W � ! q.�/.
Image of the map (that is the set of points inRn) is called a line. So the parameterized
line is a line together with some fixed parametrization along it. Consider the
variational problem S D R

d�L.q; Pq/ with given boundary conditions (we fix initial
and final points, q0 and q1). Variational problem is called dynamical if its solution
is a parameterized line. Variational problem is called non dynamical if its solution
is a line.

The functionals (8.159) and (6.115) represent examples of a non dynamical
variational problem. Another important example is the Einstein-Hilbert action
which yields Einstein equations of gravitational field.

The problem (8.159) is defined on configuration space with the coordinates xi; t.
So in the Hamiltonian formulation we introduce the phase space parameterized by
xi, pi, t, pt with the Poisson brackets

fxi; p jg D ıij; ft; ptg D 1: (8.161)
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The momenta are

pi D @L

@Pxi
D mPxi

Pt ; pt D @L

@Pt D �mPx2
2Pt2 � U: (8.162)

These equations imply the primary constraint

˚ � pt C 1

2m
p2 C U D 0; (8.163)

which is satisfied for any solution to equations of motion. The constraint can be
written as pt D �H, where H is the physical Hamiltonian of original formulation.
For this reason, energy is often called conjugated momentum for the time variable.
Since H0 D piPxi C ptPt � L D 0 (see also Exercise 2 on page 307), the complete
Hamiltonian is composed from the constraint

QH D v.pt C 1

2m
p2 C U/; (8.164)

and vanishes on the constraint surface.
Equations of motion Px D v

m p, Pp D �v @U
@x , Pt D v and Ppt D �v @U

@t are ambiguous
due to the presence of v.�/, so all the variables are non observable quantities.
The last equation is a consequence of the constraint (8.163) and can be omitted.
For the free particle the second equation implies p D const. Then from the first
equation x D pf .�/C x0, where f .�/ D R

vd� . By the way, we have demonstrated
that (8.160) is a general solution of the problem (8.159). The reparametrization-
invariant variables have unambiguous equations, dx

dt � Px
Pt D p

m ,
dp
dt � Pp

Pt D � @U
@x .

Schrödinger Equation To quantize the system (8.159), we replace the phase-space
variables by operators that resemble the brackets (8.161)

t ! Ot D t; pt ! Opt D �i„@t;

xi ! Oxi D xi; pi ! Opi D �i„@i:
(8.165)

Since the constraint˚ vanishes in classical theory, we expect that the corresponding
quantum-mechanical operator annihilates the wave function, O̊� D 0. This yields
the Schrödinger equation

i„@t� D .� „2
2m

4 C V/�: (8.166)

In summary, in the reparametrization-invariant formulation of classical mechanics
there is no necessity to introduce the Schrödinger equation as one of independent
postulates of canonical quantization. This arises automatically, as the quantum
counterpart of the constraint (8.163).
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Exercises

1. With given non singular action
R

dtL.qA;
dqA

dt ; t/ we associate the

reparametrization-invariant action
R

d�PtL.qA; PqA

Pt ; t/. Work out the Hamil-
tonian formulation and obtain the Schrödinger equation.

2. Canonical Hamiltonian H0 of a reparametrization-invariant theory van-
ishes (sometimes this fact is called zero-Hamiltonian phenomenon).
Indeed, reparametrization invariance of the functional

R
d�L.q; Pq/ implies

@� 0

@�
L.q; @�

@� 0

Pq/ D L.q; Pq/. Hence L is a homogeneous function of Pq,
L.q; ˛ Pq/ D ˛L.q; Pq/. Computing derivative with respect to ˛ at ˛ D 1

we obtain Pq @L
@Pq � L D 0.

8.7.2 Relativistic Particle: Three Basic Formulations

Here we describe and compare three Lagrangian formulations widely used for
description of a relativistic particle in an external electromagnetic field.

1. Physical Lagrangian Let xi.t/, i D 1; 2; 3 be the position of a particle. In this
section the dot means derivative with respect to physical time, Px D dx

dt . In terms
of the physical variables, the relativistic particle can be described by non singular
Lagrangian

S D
Z

dt � mc
p

c2 � Px2 C eA0 C e

c
APx: (8.167)

The particle interacts with an arbitrary electromagnetic backgroundA0.t; x/, A.t; x/.
When jPxj

c << 1, we can retain only the leading term of the expansion
p
1 � a2 �

1� 1
2
a2, this gives the standard Lagrangian of non relativistic particle, L D �mc2 C

mv2

2
C eA0 C e

c APx. The action implies equations of motion

d

dt

�
mcPxp
c2 � Px2

�
D eE C e

c
Px � B; (8.168)

Note that cp
c2�Px2 D 1p

1�. v
c /
2

D � , where � is the relativistic-contraction factor. For

the case, this is the factor among the laboratory system and the particle’s rest-frame.
Equations of the free particle (A	 D 0) have been solved in Sect. 1.7.6. The free
particle moves along a straight line with constant velocity less then the speed of
light.
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According to Eq. (1.15), total energy in non relativistic mechanics can be found
through the following computation: 0 D Pxa ıS

ıxa D .E/P. We note the identity

Pxi.
Pxip

c2�Px2 /PD . c2p
c2�Px2 /P. Then Eq. (8.168) implies the consequence

Pxi
ıS

ıxi
D d

dt

�
mc3p
c2 � Px2

�
� ePxE D 0: (8.169)

In non relativistic approximation this reads .mv2

2
C : : :/P D ePxE, so mc3p

c2�Px2 is the
kinetic energy of the relativistic particle. Recall that the work of a force along the
trajectory x.t/ is

R
dxF D e

R
dtPxE. So Eq. (8.169) states that the work performed

by an electromagnetic field is spend on the change of (relativistic) kinetic energy
of the particle. A magnetic field does not perform a work. For the stationary
electromagnetic field we have E D � 1

erU.x/, see Eq. (1.268), and Eq. (8.169)
implies the conserved charge

mc3p
c2 � Px2 C U D const: (8.170)

In the non relativistic limit this coincides with Eq. (1.281). So we identify (8.170)
with total energy of the relativistic particle.

To see how the Lorentz force (1.3) is modified in relativistic theory, we compute
time derivative on the left-hand side of Eq. (8.168)

mcp
c2 � Px2Rij Rxj D eEi C e

c
ŒPx;B�i D 0; (8.171)

where

Rij D ıij C Pxi Pxj

c2 � PEx 2
; and inverse matrix is QRij D ıij � Pxi Pxj

c2
: (8.172)

Applying the inverse matrix we obtain (note QRijŒPx;B�j D ŒPx;B�i)

mRr D
p

c2 � v2

c

�
eE � e.Ev/

c2
v C e

c
v � B

�
: (8.173)

Besides the common relativistic-contraction factor, the r. h. s. contains an extra-term
of order e

c2
in the direction of particle’s velocity.

Hamiltonian Formulation The equation for conjugated momentum pi D @L
@Pxi

D
mcPxip
c2�Px2 C e

c Ai we write in the form

Pi D mcPxip
c2 � Px2 : (8.174)
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We have introduced the canonical momentum

Pi.p; x; t/ � pi � e

c
Ai.t; Ex/: (8.175)

According to (8.174), this represents Hamiltonian counterpart of velocity scaled by
relativistic-contraction factor. In contrast to pi, the canonical momentum is a gauge-
invariant (and hence an observable) quantity. This has the Poisson brackets

fxi;Pjg D ıij; fPi;Pjg D e

c
Fij: (8.176)

Taking square of Eq. (8.174) we obtain the “conversion” formulas between
Lagrangian and Hamiltonian formulations

Px2 D c2P2

.mc/2 C P2
; then

p
c2 � Px2 D mc2q

.mc/2 C P2

: (8.177)

This allow us to resolve the Eq. (8.174) with respect to velocities

Pxi D cPiq
.mc/2 C P2

D Pi

m
q
1C .Pmc/

2

: (8.178)

Then Hamiltonian reads

H D pPx � L D c
q
.mc/2 C P2 � eA0: (8.179)

Using the conversion formula (8.177) we write Lagrangian counterpart of H

H.x; Px/ D mc3p
c2 � Px2 � eA0: (8.180)

Comparing (8.180) with (8.169) we note that the latter can be used to compute
rate of variation of the Hamiltonian, PH D � e

c@tA	 Px	. As it should be, for a time-
independent potential the Hamiltonian does not change with time.

Due to presence of A0, the Hamiltonian (as well as the difference H.x/ � H.y/
at two points) is not a gauge-invariant quantity. Hence classical Hamiltonian of
a particle interacting with electromagnetic field does not represent an energy.
Surprisingly enough, eigenvalues of the corresponding quantum operator turn out
to be gauge-invariant quantities, see Sect. 10.2 in [50].
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Hamiltonian equations read Px D fx;Hg, Pp D fp;Hg. We write equation for
gauge-invariant variable Pi instead of pi

Pxi D cPiq
.mc/2 C P2

; (8.181)

PPi D eŒP;B�iq
.mc/2 C P2

C eEi: (8.182)

Obtaining (8.182), we have taken into account that the quantity P manifestly
depends on t through Ai, so PPi D fPi;Hg � e

c@tAi. To restore the Lagrangian formu-
lation, it is enough to exclude momenta from these equations. We solve (8.181) with
respect to P , this gives (8.174), and substitute the result into (8.182). This yields the
Lagrangian equations (8.168).

Hamiltonian and Energy Consider the stationary electromagnetic field. The
Hamiltonian (8.179) is not a gauge-invariant quantity. In particular, generally it does
not represent the energy (8.170). We could also start with the variational problem
based on the three-vector potential, it is enough to set A0 D 0 in Eq. (8.167). In this

case the three-potential (1.269), and hence the Hamiltonian H D c
q
.mc/2 C P2

explicitly depend on time. As before, H does not coincide with E.
Nevertheless, the gauge invariance can be used to choose a particular A	 that

provides the coincidence of H with E. Indeed, in the stationary case the electric
field has a potential, Ei D � 1

e@iU (see Eq. (1.268)), so we can find a stationary
potential of the form A	.x/ D .� 1

e U;A/, where Œr ;A� D B. For this choice we
obtain

H D c
q
.mc/2 C P2 C U D mc3p

c2 � Px2 C U; (8.183)

and the Hamiltonian can be used to compute total energy of the particle.

2. Square-Root Lagrangian The Lorentz transformations act on the dynamical
variables xi.t/ in a highly nonlinear way. So the relativistic invariance of previous
formulation is not manifest. To improve this, we proceed in the same way as in
Sect. 8.7.1. We make the change of variable t D t.�/ in the integral (8.167)

S D
Z

d�
dt

d�

2
4�mc

s
c2 �

�
d�

dt

�2 � dEx
d�

�2
C eA0 C e

c
Ai

d�

dt

dxi

d�

3
5 : (8.184)

If we restrict ourselves to the class of increasing parameterizations

dt

d�
> 0; (8.185)
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the action reads

S D
Z

d� � mc
p

�.Px	/2 C e

c
A	 Px	: (8.186)

(Assuming dt
d� < 0we arrive at another Lagrangian, L D mc

p�Px2C e
c A	 Px	.) In this

section we denote Px	 � dx	

d� , where x	.�/ are parametric equations of the worldline
(in Minkowski space) associated with the physical trajectory xi.t/. As compare
with (8.167), the advantage of (8.186) is its manifest invariance under Poincaré
transformations x0	 D �	


x
 C a	. The price to pay is that we now deal with
the non-dynamical variational problem. Local symmetries of the action (8.186) are
the reparametrizations11 � D �.� 0/ and the gauge transformations A0

	 D A	 C @	˛.
The action implies equations of motion

ıS

ıx	
D �mc

� Px	p�Px2
�

PC e

c
F	
 Px
 D 0; orR	
 Rx
 D e

p�Px2
mc2

F	
 Px
; (8.187)

where

R	
 D �	
 � Px	 Px

Px2 ; then Px	R	
 D 0: (8.188)

In three-dimensional notation we have

�
mc3Ptp
c2 � Px2

�
PD ePxE; (8.189)

�
mcPxip
c2 � Px2

�
PD eEiPt C e

c
ŒPx;B�i: (8.190)

As compare with previous formulation (see Eq. (8.172)), the matrix R	
 is not
invertible, so equations of motion can not be written in normal form. Together with
QR	
 � Px	 Px


Px2 , the matrix R	
 forms a pair of projectors R C QR D 1, R2 D N, QR2 D QR,
R QR D 0. Any vector V	 can be decomposed on the transverse and longitudinal parts
with respect to Px	, V	 D V	

? C V	

k , where V	

? D R	
V
; then V	

? Px	 D 0, and

V	

k D QR	
V
 D .PxV/
Px2 Px	 	 Px	.

Contracting Px	 with second equation from (8.187) and using (8.188) we conclude
that there is identity among the equations of motion, Px	 ıS

ıx	 D 0. So we have only
three independent equations for four variables x	. Let us confirm the correspondence
with previous formulation. Due to the identity, Eq. (8.189) is a consequence

11We point out that, contrary to electrodynamics, each class of equivalent configurations, Qx D
f.cf .�/; x. f .�///; x is a given function, df

d� > 0g, contains a representative which is an observable
quantity: x	.�/ D .c�; x.�//.
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of (8.190) and can be omitted. Due to reparametrization invariance, we are free
to use any parametrization to analyze the system (8.190). Taking � D t, the
equations coincide with (8.168). Note also that in physical-time parametrization
equation (8.189) coincides with (8.169).

The free Lagrangian equations and the ambiguity presented in the solutions have
been discussed in Sect. 1.7.6.

Hamiltonian Formulation As before, the equations for conjugate momenta p	 D
@L
@Px	 we write in terms of canonical momenta as follows:

P	 D mc
Px	p�Px2 ; where P	 D p	 � e

c
A	: (8.191)

Due to (8.185) we have P0 > 0. Taking square of (8.191) we obtain the primary
constraint

P2 C .mc/2 D 0; (8.192)

or, equivalently

� cp0 D c
q
.mc/2 C P2 � eA0: (8.193)

The right-hand side of this expression coincides with the physical Hamilto-
nian (8.179). Recall that in accordance with general theory, in the Lagrangian
formulation there is no first-order equation that could be associated with the primary
constraint (8.192).

The Eq. (8.191) imply pPx � P Px C e
c A	 Px	 D L, so the canonical Hamiltonian

vanishes H0 D pPx � L D 0. Thus the complete Hamiltonian is

H D v

2

h
.p	 � e

c
A	/2 C .mc/2

i
: (8.194)

The Poisson brackets are

fx	; p
g D ı	
; (8.195)

then fP	;P
g D e
c F	
 . This immediately gives the Hamiltonian equations

Px	 D vP	; (8.196)

PP	 D v
e

c
F	
P
: (8.197)

The restrictions Pt > 0 and P0 > 0 imply v > 0. The Eqs. (8.191), (8.196)
and (8.197) can be obtained also from the Hamiltonian variational problem for
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the variables x	, p	 and v:

SH D
Z

d� pPx � v

2

h
.p	 � e

c
A	/2 C .mc/2

i
: (8.198)

This has the same local symmetries as (8.186). To compare the Hamiltonian and
the Lagrangian equations, we exclude v and P	 from the system (8.192), (8.196)
and (8.197). First, we take the square of (8.196), Px2 D v2P2. Together with (8.192)

this determines v, v D
p�Px2

mc . We substitute this into (8.196) and (8.197).
Then (8.192) is a consequence of (8.196) and can be omitted. Second, we substitute
P	 obtained from (8.196) into (8.197), this gives the Lagrangian equations (8.187).

The Role of v In the system (8.192) and (8.196) the equation PP0 D v e
c F0iPi is

a consequence of other equations and can be omitted. We have 8 equations for
9 variables x	, P	 and v. Given function v.�/, we have the normal system for
determining x	 and p	. Hence v.�/ is not determined by these equations. As a
consequence, dynamics of x	 and p	 turns out to be ambiguous. As v.�/ enters into
the equations for x	 and p	, their general solution contains, besides the arbitrary
integration constants, the arbitrary function v.�/

x	 D x	.�; x	0 ; p


0; v.�//; p	 D p	.�; x	0 ; p



0; v.�//: (8.199)

Hence x	 and p	 have a one-parameter ambiguity due to v.�/. The variable v is the
“measure” of ambiguity presented in the formulation.

Physical variables obeys unambiguous equations. To obtain them, we note that
Eq. (8.196 ) imply the equalities without v, Pxi

Px0 D PP i

P0 and
PP i

Px0 D e
P0c

. The expression
Pxi

Px0 prompts to consider x	.�/ as parametric equations for xi.x0/. The variables xi.x0/
and P i.x0/ represent the physical variables.

Equivalently, we can use reparamatrization invariance to set � D t. Then the first
equation from (8.196) is c D �vP0. We use this together with (8.193) to exclude v
and P0 from other equations of the system

dxi

dt
D cPiq

.mc/2 C P2

;
dPi

dt
D e

FijPjq
.mc/2 C P2

C eFi0: (8.200)

The result coincides with Eqs. (8.181), (8.182) of previous section. Then the
physical Hamiltonian is given by (8.179). We have also an equation for P0. As we
show below, P0 is an auxiliary variable of Hamiltonian formulation that does not
carry any information about dynamics of our particle. So we omit it.

Equivalently, the Eq. (8.200) can be obtained using the known formula for

derivative of a function given in parametric form, dxi
dt D c Pxi.�/

Px0.�/ ,
dPi
dt D c

PPi.�/

Px0.�/ .
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We could construct Hamiltonian on the base of constraint (8.193) instead
of (8.192)

H D �Œcp0 C c
q
.mc/2 C P2 � eA0�: (8.201)

This gives the equations (as before, we omit the equation for PP0)

Px0 D c�; Pxi D c�Piq
.mc/2 C P2

; PPi D e�Œ
FijPjq

.mc/2 C P2

C Fi0�:

(8.202)
Taking � D t, the first equation implies � D 1. With this �, the remaining equations
coincide with (8.200). The first term of the Hamiltonian (8.201) does not contribute
into equations for physical variables (8.200). So the physical Hamiltonian can be
obtained from (8.201) if we omit p0 and set � D 1.

More systematically, let us set � D t in the Hamiltonian action functional p0 Px0 C
piPxi � H, then

SH D
Z

dt cp0 C piPxi � �Œcp0 C c
q
.mc/2 C P2 � eA0�: (8.203)

the term in square brackets can be considered as the kinematic constraint of
the variational problem. According to Sect. 1.6.3, we can resolve the constraints,
presenting p0 through other variables, and substitute the result back into (8.203).
This gives an equivalent variational problem

SH D
Z

dt pi Pxi � Œc
q
.mc/2 C P2 � eA0�; (8.204)

where the last term is exactly the physical Hamiltonian.

The Role of p0 and P2 C .mc/2 D 0 Here we construct the Hamiltonian
formulation of the model (8.186) following the procedure of Sects. 8.2.2 and 8.2.3.
We show that p0 is an auxiliary variable of Hamiltonian formulation, with the
dynamics prescribed by hand as follows: p0 D @L

@v0
. This is exactly the Eq. (8.193),

the latter is equivalent to P2 C .mc/2 D 0.
It is enough to consider the free theory, so we set F	
 D 0 in Eq. (8.187), then

it reads R	
 Rx
 D 0. We introduce eight-dimensional configuration-velocity space
with coordinates x	; v	 and define evolution as follows: R	
 Rx
 D 0, v	 D Px	. That
is x	 obeys the same equations as in initial formulation, whereas v	 accompanies
evolution of x	. Substituting the second equation into the first one, we obtain the
first-order system

Px	 D v	; R	
 Pv
 D 0: (8.205)
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Consider the time and the spatial parts of second equation, R00 Pv0 C R0i Pvi D 0,
viv0 Pv0
.v	/2

C Ri
j Pv j D 0. Using the inverse matrix, QRij D ıij � vivj

.v0/2
for Rij, we find Pvi

from second equation, Pvi D Pv0
v0
vi. Substituting this into the first one, we see that it

is identically satisfied, and can be omitted.12 Hence the system (8.205) is equivalent
to Px0 D v0, Pxi D vi, Pvi D Pv0

v0
vi. The last two equations acquires Hamiltonian form

after the change of variables

vi ! pi D @L

@vi
D mcvip�.v	/2 ; then vi D v0pip

.mc/2 C .p/2
: (8.206)

In the result, the initial Lagrangian equations R	
 Pv
 D 0 are equivalent to the
following system

Px0 D v0; Pxi D v0
pip

.mc/2 C .p/2
D fxi;HRg; Ppi D fpi;HRg D 0: (8.207)

We have introduced the restricted Hamiltonian

HR D v0
p
.mc/2 C .p/2; (8.208)

and Poisson brackets constructed on the base of xi and pi. The subsystem xi; pj has
a Hamiltonian form.

To make the formalism more symmetric (and manifestly Lorentz-covariant), we
introduce the auxiliary variable p0, with the dynamics determined by (compare this
with Eq. (8.206))

p0 D @L

@v0
D mcv0p�.v	/2 : (8.209)

Equations (8.206) and (8.209) imply p2 C .mc/2 D 0. In the Dirac formalism it
appeared as the primary constraint. If we introduce the Poisson bracket fx0; p0g D 1,
then the Hamiltonian H D HR C v0p0 implies (8.207) and Pp0 D 0. In the result
we have reproduced all the dynamical equations and the constraint of previous
formulation.

3. Quadratic Lagrangian In this section we denote Px	 � dx	

d� , where x	.�/ is the
worldline of Minkowski space associated with the physical trajectory xi.t/. Consider
the following action on configuration space with variables x	.�/ and g.�/ > 0

S D
Z

d�
1

2g
.Px	/2 � g

2
m2c2 C e

c
A	 Px	: (8.210)

12This is not a surprise, since we already noticed that (8.189) is a consequence of (8.190).
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This is both reparametrization and manifestly Poincaré invariant (the variable g.�/
transforms as a density under reparametrizations, g D d� 0

d� g0). To compare this with
previous formulations we use reparametrization-invariance to set � D t (we thus
loose reparametrization invariance and manifest Lorentz-invariance)

S D
Z

dt � 1

2g
.c2 � Px2/� g

2
m2c2 C eA0 C e

c
APx: (8.211)

This implies 2 ıS
ıg D c2�Px2

g2
� .mc/2 D 0, then g > 0 yields g D

p
c2�Px2
mc . Using this g

in the equation for x

ıS

ıx
D �

� Px
g

�
PC eE C e

c
Px � B D 0; (8.212)

we obtain (8.168). In arbitrary parametrization we have from (8.210) �2 ıS
ıg D Px2

g2
C

.mc/2 D 0, then g D
p�Px2

mc . Using this expression, we exclude g from

ıS

ıx	
D �

� Px	
g

�
PC e

c
F	
 Px
 D 0: (8.213)

The resulting equation coincides with (8.187). Hence the formulation (8.210) can
be equally used for description of a relativistic particle.

Note, however, that the present problem involves the extra-variable g which
requires an interpretation. Strange as it may seen, g.�/ play the same role as v.�/
appeared in (8.199), that is g.�/ responsable for an ambiguity presented in solutions.
Due to the reparametrizations, the ambiguity is expected. This is expected also from
the following identity between equations of motion: gPx	 ıS

ıx	 � 1
2
. ıS
ıg /PC Pg

g
ıS
ıg D 0. We

have eight equations for nine variables.
The advantage of the present formulation is that the ambiguity is made manifest

already in the initial action.
To analyze the ambiguity, consider equations of motion of the free theory Px2

g2
C

.mc/2 D 0,



Px	
g

�
P D 0. They can be immediately integrated out (this is one more

advantage of the quadratic action) for a given g.�/

x	 D x	0 C p	
Z

d�g.�/; where p	 D const; and p2 D �.mc/2: (8.214)

Hamiltonian Formulation As the action does not depend on Pg, conjugated
momentum for g vanishes, pg D @L

@Pg D 0. Hence we have the primary constraint

pg D 0. The expressions for conjugate momenta p	 D @L
@Px	 can be resolved with
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respect to velocities (as before, we denote P	 D p	 � e
c A	)

P	 D 1

g
Px	; ! Px	 D gP	: (8.215)

This implies the Hamiltonian

H D g

2
ŒP2 C .mc/2�C vpg: (8.216)

Preservation in time of the primary constraint leads to the secondary one

P2 C .mc/2 D 0: (8.217)

Its derivative vanishes, so there is no new constraint nor equation for determining of
v. In contrast to the square-root formulation, the secondary constraint (8.217) is the
Hamiltonian analog of the Lagrangian equation Px2

g2
C .mc/2 D 0.

The fundamental Poisson brackets are fx	; p
g D �	
 , fg; pgg D 1, then
fP	;P
g D e

c F	
 . Hamiltonian equations are

Pg D v; Ppg D 0;

Px	 D gP	; PP	 D g
e

c
F	
P
: (8.218)

They are accompanied by the constraints pg D 0 and P2 C .mc/2 D 0. These
equations do not determine v.�/, the latter enter into equations for x and p through
g.�/, as it is seen from solution to free equations

g D
Z

d�v; pg D 0;

x	 D x	0 C p	
Z

d�g; p	 D const; p2 D �.mc/2: (8.219)

If we set � D t in the Eq. (8.218), they turn into the equations for physical
variables (8.181) and (8.182), while the constraint (8.217) states that the variable
p0.t/ represents the physical Hamiltonian (8.179).

Hamiltonian Formulation in the Physical-Time Parametrization Due to
reparametrization invariance of (8.210) we can set � D t, then x	 D .ct; Ex.t//,
Px	 D dx	

dt D .c; PEx/, and (8.210) acquires the form (8.211). This implies the primary
constraint pg D 0 and the following expressions for momenta:

P D 1

g
Px; ! Px D gP; where P D p � e

c
A: (8.220)
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Then the Hamiltonian reads

H D g

2

�P2 C .mc/2
�C c2

2g
� eA0 C �gpg: (8.221)

Preservation in time of the primary constraint leads to the secondary one

g D cq
.mc/2 C P2

: (8.222)

The two constraints form a second-class pair and can be taken into account by
transition to the Dirac bracket. Dirac brackets of the basic variables x and P
coincide with the Poisson one. Using the constraints in (8.221) we obtain the
physical Hamiltonian

H D c
q
.mc/2 C P2 � eA0: (8.223)

This implies the Hamiltonian equations (8.181) and (8.182).

8.7.3 Electrodynamics

Remember that a free electromagnetic field can be described by the action

S D
Z

d4x

�
�1
4

F	
F
	


�

D
Z

d4x

�
1

2
.@0Ab � @bA0/

2 � 1

4
F2ab

�
: (8.224)

written for the four-dimensional vector potential A	. We have denoted F	
 �
@	A
 � @
A	. In the second line we have separated the terms containing temporal
derivatives.

Equations determining the conjugate momenta are

p0 D @L

@ PA0
D 0; (8.225)

pa D @L

@ PAa
D @0Aa � @aA0 D �Ea; then @0Aa D �pa C @aA0: (8.226)

So there is one primary constraint (8.225). Computing the Hamiltonian H0 D
pa@0Aa � L and adding the primary constraint multiplied by the velocity v0, the
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complete Hamiltonian reads

H D
Z

d3x

�
1

2
p2a � pa@aA0 C 1

4
F2ab C v0p0

�
D
Z

d3x

�
1

2
.E2 C B2/C Ea@aA0

�
:

(8.227)

Note that the electric field E represents conjugated momentum for the three-vector
potential A. In the formulation of Sect. 1.7.2 (or, equivalently, in the gauge A0 D 0),
the Hamiltonian is 1

2
.E2 C B2/.

Conservation in time of the primary constraint produces the second-stage
constraint13

Pp0.x/D fp0.x/;Hg D fp0.x/;�
Z

d3xpa@aA0g

D
Z

d3yfp0.x/; @apa.y/A0.y/g

D �
Z

d3x@apa.y/ı
3.x � y/ D �@apa.x/ D 0: (8.228)

Carrying out a similar computation, the reader can verify that it preserves in time,
f@apa;Hg D 0, so the Dirac procedure stops at the second stage. In the result, the
evolution is governed by the Hamiltonian equations

PA0 D v0; Pp0 D 0; (8.229)

PAa D �pa C @aA0; Ppb D �@aFab: (8.230)

These are accompanied by two first-class constraints

p0 D 0; @apa D 0: (8.231)

Exercise Show that the Lagrangian equations @	F	
 D 0 follow from the
system (8.230) and (8.231).

13Poisson bracket in field theory is defined by fA.x/;B.y/g D R
d3z

h
ıA.x/
ı�A.z/

ıB.y/
ıpA.z/

� ıA.x/
ıpA.z/

ıB.y/
ı�A.z/

i
. A

and B are taken at the same instance of time. The working formula for computing the variational

derivative is ıA.�.x/;@b�.x//
ı�A.z/ D @A

@�A

ˇ̌
ˇ
�!�.x/

ı3.x � z/C @A
@@b�A

ˇ̌
ˇ
�!�.x/

@
@xb ı

3.x � z/.
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According to Sect. 8.4, the unique representative in a class of equivalent trajectories
can be obtained imposing two gauge conditions. They can be taken as

A0 D 0; @aAa D 0: (8.232)

In this gauge, the Eqs. (8.230) and (8.231) imply the wave equation for the three-
dimensional vector potential.

8.8 Local Symmetries and Constraints

Aswe have seen in various examples, infinitesimal local symmetries of a Lagrangian
action and first-class constraints of the corresponding Hamiltonian formulation
represent characteristic properties of a degenerate theory. After the successful use
of local symmetry in the construction of Yang-Mills gauge theory, it becomes a
tradition to study ambiguities of constrained theories in terms of the associated
symmetries. So it would be interesting to establish a detailed relationship between
symmetries and constraints for a general degenerate action. It is instructive to
demonstrate the relation on a simple example. Consider a relativistic particle with
the Lagrangian L D p�.Px	/2. This implies the Hamiltonian constraint T �
1
2
.p2 C 1/, as well as the local symmetry14 of the Lagrangian action, ıx	 D � Px	p�Px2 .

This can be rewritten as follows

ıx	 D �fx	;Tgjp	! @L
@Px	
: (8.233)

So the local symmetry can be constructed with the help of the constraint, and
represents the Lagrangian counterpart of the canonical transformation generated by
the constraint on the phase space. It would be interesting to find an appropriate
generalization of this recipe for obtaining local symmetry in general case. Since
the Hamiltonian constraints can be found in the course of the Dirac procedure, this
would give a regular method for obtaining the symmetries.

The general form of infinitesimal local symmetry is

ıqB D �aR.0/a
B C P�aR.1/a

B C R�aR.2/a
B C : : :C .N�1/a

� R.N�1/aB; (8.234)

where
.k/
� a � dk�a

d�k . It will be called
.N�1/
� -type symmetry. P�-type symmetry is called

gauge symmetry. The set of functions R.k/aB.q; Pq; : : :/ is called the generator of the
symmetry.

14After rescaling the parameter, � D �p�Px2�0, it acquires the standard form of a reparametriza-
tion.
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In the next section we suppose that an infinitesimal symmetry is known, and
discuss the restrictions that this fact implies on the Hamiltonian formulation of
a theory (for a more general theory of local symmetries, see [43, 44]). Then we
develop the so-called formalism of extended Lagrangian,which allows us to analyze
the inverse task: how the local symmetries can be reconstructed from the known
system of constraints. At the end, we obtain the generalization (8.307), (8.308)
of Eq. (8.233) to the case of an arbitrary singular degenerate theory in extended
formalism.

8.8.1 Symmetries of Lagrangian and Hamiltonian
Formulations

Analysis of the general case (8.234) implies rather tedious algebraic manipulations,
see [45]. So we restrict ourselves to the simplest case of P�-type symmetry. This is
sufficient to illustrate all the affirmations that remain true for the general case as
well. For the convenience of the reader, we first summarize the affirmations.

Consider infinitesimal local transformations with at most one derivative acting
on the parameters �a.�/

ıqA D �aR0a
A.q; Pq/C P�aR1a

A.q; Pq/; (8.235)

and suppose that an action is invariant

ıS D
Z

d�.�a!0a C P�a!1a/
:; (8.236)

where !0a; !1a are some functions. Then

1. The quantities R1a
A represent null-vectors of the Hessian matrix

R1a
AMAB � 0; (8.237)

that is we are dealing with a singular theory.
2. There are the following identities among equations of motion

�
ıS

ıqA
R1a

A

�:
� ıS

ıqA
R0a

A � 0: (8.238)



8.8 Local Symmetries and Constraints 323

3. As any other Lagrangian quantity, the identities can be rewritten in terms of the
coordinates qA; pB; v

˛ of the extended phase space. The result is the following
system

R1a
i D fqi; ˆ˛gR1a

˛;

R0a
i D fqi; ˆ˛gR0a

˛ �
n
qi;R1a

˛fˆ˛;Hg
o
: (8.239)

@

@vˇ
.R1a

˛fˆ˛;Hg/ � 0; (8.240)

R0a
˛fˆ˛;Hg � fR1a

˛fˆ˛;Hg;Hg � 0: (8.241)

The equations have a simple meaning. Equation (8.239) states that in arbitrary
theory not all the generators are independent: the i-generators R0a

i, R1a
i are

expressed through the ˛-generators.
Remember that fˆ˛;Hg D 0 is the second-stage algebraic system of the

Dirac procedure, see Eq. (8.42). So, Eq. (8.240) states that the combinations
Ta � R1a

˛fˆ˛;Hg do not depend on v˛ and thus represent [a] second-stage
constraints.

Equation (8.241) involves the Poisson bracket of these constraints with H, so
the resulting quantity fTa;Hg is a part of the third-stage algebraic system of the
Dirac procedure. Hence Eq. (8.241) states that this part of the third-stage system
coincides with the combinations R0a

˛fˆ˛;Hg of the second-stage system. That
is, the constraints Ta do not produce new constraints or equations for determining
the velocities.

4. The symmetry transformations (8.235) can be used to construct local symmetry
of the first-order action (2.158)

ıqA D �a NR0a
A C P�a NR1a

A;

ıpA D @2 NL
@qA@vB

ıqB C �a @

@qA
. NKA NR1a

A/;

ıvA D .ı�q
A/�; (8.242)

where NA D A.qA; PqA/jPq!v .
5. They can be used to construct local symmetry of the Hamiltonian action pPq � H

as well:

ıqA D fqA;Gg; ıpA D fpA;Gg;
ıv˛ D fH; �aR0a

˛ C P�aR1a
˛g; (8.243)

where

G D .�aR0a
˛ C P�aR1a

˛/ˆ˛ � �aTa: (8.244)
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Hence the infinitesimal Lagrangian symmetry, rewritten in the Hamiltonian form,
represents, in the sector qA; pA, a canonical transformation with the generator G
constructed from the primary ˆ˛ and the secondary Ta constraints.

Analogous affirmations hold for the general case (8.234) as well. In particular,
.N�1/
� -type symmetry implies the appearance of constraints at the N-th stage of the

Dirac procedure.
In the rest of this section we demonstrate the affirmations made above.

Lagrangian Identities in First-Order Formalism To analyze Eq. (8.236), we
write it in the form of a power series with respect to derivatives of �a

Z
d�

�
@L

@qA
R0a

A C @L

@PqA
PR0a

A

�
�aC

�
@L

@qA
R1a

A C @L

@PqA

�
R0a

A C PR1a
A
� P�aC

R�a @L

@PqA
R1a

A D
Z

d�. P!0a�
a C .!0a C P!1a/P�a C !1a R�a/:

Since it is fulfilled for an arbitrary �a.�/, we have

@L

@PqA
R1a

A D !1a; (8.245)

@L

@qA
R1a

A C @L

@PqA
R0a

A C @L

@PqA
PR1a

A D !0a C P!1a; (8.246)

@L

@qA
R0a

A C @L

@PqA
PR0a

A D P!0a: (8.247)

Substitution of Eq. (8.245) into (8.246) gives the expression for !0a

ıS

ıqA
R1a

A C @L

@PqA
R0a

A D !0a; (8.248)

which can be used in Eq. (8.247) and gives the Noether identities in the form

�
ıS

ıqA
R1a

A

�:
� ıS

ıqA
R0a

A � 0: (8.249)

This expression can be presented in the form of a power series with respect to
derivatives of qA. It is convenient to introduce the notation

Kia.q; Pq/ � Ria
AKA; i D 1; 2; (8.250)
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whereKA is the right-hand side of Lagrangian equations, see (1.136). Then the series
looks like

�
K0a � PqC @

@qC
K1a

�
� RqA

�
MABR0a

B C @

@PqA
K1aC

�
PqC @

@qC
C RqC @

@PqC

�
MABR1a

B

�
C .3/

q A
�
MABR1a

B
� � 0: (8.251)

Since this is true for any qA.�/, the square brackets in Eq. (8.251) must vanish
separately. This gives the final form of the Lagrangian identities. Since they are
fulfilled for any qA.�/, they will remain identities after the substitution PqA.�/ �!
vA.�/. In the result we obtain identities of first-order formalism

NMAB.q; v/ NR1a
B.q; v/ � 0; (8.252)

NMAB NR0a
B C @

@vA
NK1a � 0; (8.253)

NK0a � vB @

@qB
NK1a � 0: (8.254)

Hamiltonian Form of the Identities Let us obtain the Hamiltonian form of the
identities, i.e. we perform substitution of the velocities vi.qA; pj; v

˛/, see (8.32),
into Eqs. (8.252), (8.253) and (8.254). We first mention an auxiliary formula

� @2 NL
@qB@vA

vB NRA

ˇ̌
ˇ̌
vi

D @H

@pA

@ˆˇ

@qA
Rˇ C vB @v

i

@qB
MiARA: (8.255)

Here NRA.q; v/ is any function. If it is a null vector of the matrix NMAB: NMAB NRB D 0,
the formula acquires the form

NRA

�
@ NL
@qA

� @2 NL
@qB@vA

vB

�ˇ̌
ˇ̌
vi

D R˛ fˆ˛;Hg : (8.256)

In accordance with our division of the index: A D .i; ˛/, Eq. (8.252) can be
rewritten as

NR1a
i D � QNMij NMj˛ NR1a

˛; (8.257)

. NM˛ˇ � NM˛i
QNMij NMjˇ/ NR1a

ˇ D 0: (8.258)

Substituting the velocities vi into (8.257), it reads

R1a
i D fqi; ˆ˛gR1a

˛; (8.259)
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while Eq. (8.258) holds automatically, see Eq. (8.57). Similarly, Eq. (8.253) is
equivalent to the pair

R0a
i � � QMijMj˛R0a

˛ � @

@pi
.K1a/; (8.260)

@

@vˇ
.K1a/ � 0; (8.261)

where Eqs. (8.257) and (8.258) were used. By using Eqs. (8.73), (8.81) and (8.256)
we find finally

R0a
i � fqi; ˆ˛gR0a

˛ � fqi;R1a
˛fˆ˛;Hgg; (8.262)

@

@vˇ
.R1a

˛fˆ˛;Hg/ � 0: (8.263)

To substitute the multipliers vi.qA; pj; v
˛/ into the first term of Eq. (8.254) we use

Eqs. (8.80), (8.255) and (8.260), with the result being

K0a D R0a
˛fˆ˛;Hg C @H

@qA

@

@pA
.R1a

˛fˆ˛;Hg/

C vB @v
i

@qB
MiAR0a

A: (8.264)

For the second term of Eq. (8.254) we obtain after some algebra

�
�
vB @

@qB
NK1a

�ˇ̌
ˇ̌
vi

D �vB

ˇ̌
ˇ̌
vi

@

@qB
K1aC

vB @v
i

@qB

�
@

@vi
NK1a

�ˇ̌
ˇ̌
vi

D

� @H

@pA

@

@qA
.R1a

˛ fˆ˛;Hg/ � vBjvi
@vi

@qB
MiAR0a

A; (8.265)

where Eqs. (8.256) and (8.253) were used. Combining the Eqs. (8.264) and (8.265),
we find the Hamiltonian form of Eq. (8.254)

R0a
˛ fˆ˛;Hg � fR1a

˛ fˆ˛;Hg ;Hg � 0: (8.266)

Bringing together all the results, we arrive at the Hamiltonian form of the identities,
Eqs. (8.239), (8.240) and (8.241).
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Local Symmetry of the First-Order Action Invariance of the first-order
action (2.158) under the transformations (8.242) can be demonstrated by direct
computation. Variation under ıq, ıv given in Eq. (8.242), and under some ıp reads
(disregarding the total derivatives)

ıSv D
Z

d� �a NK0a C P�a NK1a � PvA NMAB.�
a NR0a

B C P�a NR1a
B/

C
�
ıpA � @2 NL

@qA@vB
ı�q

B

�
.PqA � vA/ (8.267)

D
Z

d� P�avA NMAB NR1a
B C �a

�
NK0a � vA @

@qB
NK1a

�

� �a PvA

�
NMAB NR0a

B C @

@vA
NK1a

�

C
�
ıpA � @2 NL

@qA@vB
ı�q

B � �a @

@qA
NK1a

�
.PqA � vA/; (8.268)

where we have carried out integration by parts in the second term of Eq. (8.267).
The first and the second lines in Eq. (8.268) vanish due to Eqs. (8.252), (8.253)
and (8.254). Then the variation ıSv will be a total derivative, if we choose ıpA

according to Eq. (8.242).

Local Symmetry of the Hamiltonian Action One may expect that the transfor-
mations (8.242) with the velocities vi.qA; pj; v

˛/ substituted will be a symmetry of
the Hamiltonian action pPq � H. Let us find their manifest form. Using Eq. (8.239),
we obtain for the variation ı�qijvi

ıqijvi D �
�aR0a

ˇ C P�aR1a
ˇ
 fqi; ˆˇg � �a

˚
qi;R1a

ˇfˆˇ;Hg� : (8.269)

The variation ı�q˛jvi can be identically rewritten in a similar form

ıq˛jvi D �aR0a
˛ C P�aR1a

˛ �
�
�aR0a

ˇ C P�aR1a
ˇ
 fq˛;ˆˇg � �afq˛;R1a

ˇfˆˇ;Hgg; (8.270)

since fq˛;ˆˇg D ı˛ˇ and since the quantity R1a
ˇfˆˇ;Hg does not depend on p˛ . For

the variation ıpAjvi we have

ıpAjvi D
�

� @2 NL
@qA@vB

ı�q
B C �a @

@qA
NK1a

�ˇ̌
ˇ̌
vi

D

�
 
@

@qA

�
@ NL
@vB

ˇ̌
ˇ̌
vi

�
� @2 QL
@vi@vB

ˇ̌
ˇ̌
ˇ
vi

@vi

@qA

!
ı�q

Bjvi C



328 8 Hamiltonian Formalism for Singular Theories

�a @K1a

@qA
� �a @v

i

@qA

@ NK1a

@vi

ˇ̌
ˇ̌
vi

D

�@ˆ˛
@qA

ı�q
˛ � MBijvi

@vi

@qA

�
�aR0a

B C P�aR1a
B
C

�a @

@qA
.R1a

˛fˆ˛;Hg/C �aMBi
@vi

@qA
R0a

B D

.�aR0a
˛ C P�aR1a

˛/ fpA; ˆ˛g � �a fpA;R1a
˛fˆ˛;Hgg : (8.271)

where Eqs. (8.256), (8.252) and (8.253) were used.
The Hamiltonian action is invariant under these transformations, as a conse-

quence of the identities (8.240) and (8.241). Disregarding total derivatives, the
variation of pPq can be expressed as follows

ı.pA PqA/ D ˆ˛.ıq
˛/: � P�aR1a

˛fˆ˛;Hg � �a Pvˇ @

@vˇ
.R1a

˛fˆ˛;Hg/ ;

while for the variation of H we have

� ıH D �ˆ˛.ıq˛/: C P�aR1a
˛fˆ˛;Hg

C �a .R0a
˛fˆ˛;Hg � fR1a

˛fˆ˛;Hg;Hg/ :

combining these terms and using Eqs. (8.240) and (8.241) we have ı�SH D div.
To find the final form of the symmetry, we identically rewrite the transformations

obtained in the form

ıqA D fqA;Gg � fqA; ı�q
˛gˆ˛; ıpA D fpA;Gg � fpA; ı�q

˛gˆ˛;
ıv˛ D fH; ıq˛g � .�.ıq˛/� C fH; ıq˛g/ ;

where G is given in (8.244). We note that the transformations

NıqA D fqA; ıq˛gˆ˛; NıpA D fpA; ıq
˛gˆ˛;

Nıv˛ D �.ıq˛/� C fH; ıq˛g:

represent a trivial symmetry of the Hamiltonian action, and thus can be omitted. The
remaining part is precisely Eq. (8.243).
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8.8.2 Local Symmetry Does Not Imply a Conserved Charge

Since in the expression for local symmetry (8.235) the parameters � are arbitrary
functions, we can take � D const. So, local symmetry implies global symmetry.
Let us construct the corresponding Noether charge. When � D const, the invariance
condition (8.236), instead of Eqs. (8.245), (8.246) and (8.247) implies only one of
them, Eq. (8.247). The latter can be identically rewritten as follows

�
@L

@PqA
R0a

A � !0a

�:
D ıS

ıqA
R0a

A; (8.272)

So the Noether charge is

Qa D @L

@PqA
R0a

A � !0a; (8.273)

At the same time, in our theory there is the identity (8.248). Using this in the
previous expression, we obtain

Qa D � ıS

ıqA
R1a

A: (8.274)

Hence a Noether charge of a local symmetry vanishes on equations of motion and
thus cannot be used to characterize physical states. The same is true for gauge field
theories.

8.8.3 Formalism of Extended Lagrangian

To continue the analysis of local symmetries in a singular theory, we associate
with the initial Lagrangian (8.29) the so-called extended Lagrangian [46]. This is
formulated on the extended configuration space .qA; sa/, where sa stand for auxiliary
variables associated with all the higher-stage constraints ˆa. One of the advantages
of the extended formalism is that the Dirac procedure, being applied to the extended
Lagrangian, always stops at the third stage. Hamiltonian equations of the extended
formulation have a more symmetric form, which essentially simplifies the analysis
of their structure. Here we construct the extended Lagrangian formulation and
demonstrate its equivalence with the initial one. Local symmetries will be discussed
in the next two sections.
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Construction of the Extended Lagrangian Let

!i.q
A; PqA; sa/; (8.275)

be a solution to the following equation15

Pqi � vi.qA; !j; Pq˛/� sa @ˆa.qA; !j/

@!i
D 0: (8.276)

Here the functions vi.qA; !j; Pq˛/, ˆa.qA; !j/ are taken from the initial formulation,
see (8.32) and (8.47). The extended Lagrangian QL.qA; PqA; sa/ for L.qA; PqA/ is
defined by

QL.qA; PqA; sa/ DL
�
qA;D�q

i; Pq˛

C sa

�
!i
@ˆa.qa; !i/

@!i
�ˆa.q

A; !i/

�
; (8.277)

where D�qi is a quantity resembling the covariant derivative

Pqi ! D�q
i D Pqi � sa @ˆa.qa; !i/

@!i
: (8.278)

The second line in (8.277) disappears when the higher-stage constraints are
homogeneous on momenta. For example, for the constraints of the form ˆa D pa,
where pa is a part of the momenta pi D .pa; p0

i/, the extended action acquires the
form

QL D L.qA; Pqa � sa; Pq0i; Pq˛/: (8.279)

For the case ˆa D ha
i.q/pi the extended Lagrangian is

QL D L.qA; Pqi � saha
i; Pq˛/: (8.280)

Let us discuss some properties of the extended Lagrangian.
First, we confirm that Eq. (8.276) can be resolved with respect to ! in the

vicinity of the point sa D 0. Indeed, when sa D 0, this equation coincides with
Eq. (8.32) of the initial formulation, which can be resolved, see (8.31). Hence

det
@.Eq:(8.276)/i

@!j
¤ 0 at the point sa D 0. Then the same is true in the vicinity

of this point, and Eq. (8.276) can thus be resolved.

15As will be shown below, Eq. (8.275) represents a solution to the equation Qpj D @ QL
@Pqj defining the

conjugate momenta Qpj of the extended formulation.



8.8 Local Symmetries and Constraints 331

Second, by construction, the following properties hold:

!i.q
A; PqA; sa/

ˇ̌
saD0 D @L

@Pqi
; (8.281)

QL.qA; PqA; sa/jsaD0 D L.qA; PqA/; (8.282)

@ QL
@!i

ˇ̌
ˇ̌
ˇ
!.q;Pq;s/

D 0; (8.283)

@ QL
@Pqi

D !i.q
A; PqA; sa/; (8.284)

@ QL
@Pq˛ D @L.qA; vi; Pq˛/

@Pq˛
ˇ̌
ˇ̌
vi.q;!;Pq˛/

D f˛.q
A; !j.q; Pq; s//: (8.285)

In Eq. (8.283), QL is considered as a function of !. This formula greatly simplifies
computations in the extended formalism. The r. h. s. of Eq. (8.285) can be compared
with the function f˛.qA; pj/ of Eq. (8.34).

Exercise Prove these properties.

Using Eq. (8.276), the extended Lagrangian can be rewritten in the equivalent form

QL.qA; PqA; sa/ D L.qA; vi.qA; !j; Pq˛/; Pq˛/C
!i.Pqi � vi.qA; !j; Pq˛// � saˆa.q

A; !j/; (8.286)

where the functions vi; !i are specified by Eqs. (8.32) and (8.276).

Hamiltonian Formulation for the Extended Lagrangian and Comparison with
the Original Formulation According to Eqs. (8.284) and (8.285), the conjugate
momenta QpA, �a for qA; sa are

Qpi D @ QL
@Pqi

D !i.q
A; PqA; sa/; (8.287)

Qp˛ D @ QL
@Pq˛ D f˛.q

A; !j/;

�a D @ QL
@Psa

D 0: (8.288)
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That is, Qpi is precisely the solution to our basic Eq. (8.276). Taking this into account,
the system (8.287) and (8.288) is equivalent to the following one

Pqi D vi.qA; Qpj; Pq˛/C sa @ˆa.qA; Qpj/

@ Qpi
; (8.289)

Qp˛ � f˛.q
A; Qpj/ D 0; (8.290)

�a D 0: (8.291)

So, in the extended formulation the primary constraints (8.33) of the initial
formulation are present. Besides, there are the trivial constraints (8.291) in a number
equal to the number of all the higher-stage constraints of the initial formulation.

Using the definition (8.36), we obtain the Hamiltonian

QH0 D H0 C saˆa; (8.292)

where H0 is precisely the Hamiltonian of the initial formulation. Then the complete
Hamiltonian for QL reads

QH D H0.q
A; Qpj/C saˆa.q

A; Qpj/C v˛ˆ˛.q
A; QpB/C va�a: (8.293)

It is also called the extended Hamiltonian for L.
This expression, together with the results of Sect. 1.6.3, allows to confirm an

equivalence of original and extended formulations. Indeed, consider the Hamilto-
nian variational problem for the extended dynamics

Sext D
Z

d� QpA PqA C �aPsa � ŒH0 C v˛ˆ˛ C saˆa C va�a� : (8.294)

It can equally be considered as the variational problem

S D
Z

d� QpA PqA � ŒH0 C v˛ˆ˛ C saˆa� ; (8.295)

with trivial kinematic constraints �a D 0. In turn, this expression can be considered
as the variational problem SH D R

d� QpA PqA � ŒH0 C v˛ˆ˛� with the kinematic
constraintsˆa D 0. But this is just our original problem.

By the way, Eq. (8.295) shows that in a singular theory, all the higher-stage
constraints (multiplied by their own Lagrangian multipliers sa) can be added to the
complete Hamiltonian H0 C v˛ˆ˛ .

Let us continue our analysis of the extended formulation. Due to the very
special structure of the Hamiltonian, Eq. (8.292), preservation in time of the primary
constraints �a, P�a D f�a;H0 C saˆag D �ˆa D 0 implies the equations ˆa D 0.
Hence all the higher-stage constraints of the initial formulation appeared as second-
stage constraints of the extended theory.
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Preservation in time of the primary constraints ˆ˛ leads to the equations
fˆ˛; QHg D fˆ˛;H0g C fˆ˛;ˆˇgvˇ C fˆ˛;ˆbgsb D 0. In turn, preservation
of the secondary constraints ˆa leads to the equations fˆa; QHg D fˆa;H0g C
fˆa; ˆˇgvˇ C fˆa; ˆbgsb D 0. To continue the analysis, it is convenient to unify
them as follows:

fˆI ;H0g C fˆI; ˆJgSJ D 0: (8.296)

Here ˆI are all the constraints of the initial formulation, and SJ � .v˛; sa/. Using
the matrix (8.93), the system (8.296) can be rewritten in the equivalent form

˚ Q̂ I1 ;H0

�C O.ˆI/ D 0; (8.297)
˚ Q̂ I2 ;H0

�C f Q̂ I2 ; ˆJgSJ D O.ˆI/: (8.298)

Equation (8.297) does not contain any new information, since the first class
constraints commute with the Hamiltonian, see Eq. (8.96). Let us analyze the
system (8.298). First, note that due to the rank condition rankf Q̂ I2 ; ˆJgˇ̌

ˆI
D

ŒI2� D max, exactly ŒI2� variables among SI can be determined from the system.
According to the Dirac prescription, we need to determine the maximal number
of the multipliers v˛ . To do this, let us restore v-dependence in Eq. (8.298):
f Q̂ I2 ; ˆ˛gv˛ C f Q̂ I2 ;H0g C f Q̂ I2 ; ˆbgsb D 0. Since the matrix f Q̂ I2 ; ˆ˛g is the same
as in the initial formulation, from these equations we determine a group of variables
v˛2 through the remaining variables v˛1 , where Œ˛2� is the number of second-class
constraints among ˆ˛ . After substitution of the result into the remaining equations
of the system (8.298), this acquires the form

v˛2 D v˛2.q; Qp; sa; v˛1 /; Qa2b.q; Qp/sb C Pa2 .q; Qp/ D 0; (8.299)

where Œa2� is the number of higher-stage second-class constraints of the initial
theory. It must be P � 0, since when sb D 0, the system (8.298) is a subsystem of
fˆI;Hg D 0, but the latter vanishes after substitution of the multipliers determined
during the procedure; see the discussion after Eq. (8.48). Besides, note that rank
Q D Œa2� D max. Indeed, suppose that rank Q D Œa0� < Œa2�. Then from Eq. (8.298)
only Œ˛2� C Œa0� < ŒI2� variables among SI can be determined, contradicting the
conclusion reached before. In short, the system (8.296) for determining the second-
stage and third-stage constraints and multipliers is equivalent to

v˛2 D v˛2.q; Qp; sa1 ; v˛1 /; (8.300)

sa2 D QQa2
b1 .q; Qp/sb1 ; (8.301)



334 8 Hamiltonian Formalism for Singular Theories

Conservation in time of the constraints (8.301) leads to the equations for determin-
ing the multipliers

va2 D ˚
Qa2

b1 .q; Qp/sb1 ; QH� : (8.302)

Since there are no new constraints, the Dirac procedure for QL stops at this stage. All
the constraints of the theory have been revealed after completing the third stage.

The dynamics in extended theory is governed by the Hamiltonian equations

PqA D fqA;Hg C safqA; ˆag; PQpA D f QpA;Hg C sa f QpA; ˆag ;
Psa D va; P�a D 0; (8.303)

as well as by the constraints

ˆ˛ D 0; ˆa D 0; (8.304)

�a1 D 0; (8.305)

�a2 D 0; sa2 D Qa2
b1 .q; Qp/sb1 : (8.306)

Here H is the complete Hamiltonian of the initial theory (8.35), and the Poisson
bracket is defined on the phase space qA; sa; QpA; �a. The constraints �a1 D 0 can be
replaced by the combinations�a1 C�a2Q

a2
a1 .q; Qp/ D 0, which represent a first-class

subset. The constraints (8.306) are of second class.
Note that each solution of the extended theory with sa D 0 represents a solution

of the original theory as well.

8.8.4 Local Symmetries of the Extended Lagrangian: Dirac
Conjecture

Here we discuss one of advantages of the extended Lagrangian action: there is a
closed formula for its local symmetries in terms of constraints.

According to the analysis carried out in the previous section, the primary
constraints of the extended formulation are ˆ˛ D 0, �a D 0. Among ˆ˛ D 0

first-class constraints are present, in a number equal to the number of primary first-
class constraints of L. Among �a D 0, we have found the first-class constraints
�a1 � �a2Q

a2
a1 .q; p/ D 0, in a number equal to the number of all the higher-stage

first-class constraints of L. Thus the number of primary first-class constraints of QL
coincides with the number ŒI1� of all the first-class constraints of L. We obtain now
exact formula for ŒI1� local symmetries of the extended formulation QL.
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The symmetries are given by

ıI1q
A D �I1 fqA; Q̂ I1 .q

A; QpB/g
ˇ̌

Qpi! @ QL
@Pqi
; (8.307)

ıI1s
a D �P�I1KI1

a C �I1
�
bI1

a C sbcI1b
a C PqˇcI1ˇ

a
�ˇ̌

Qpi! @ QL
@Pqi
: (8.308)

Here �I1 .�/, I1 D 1; 2; : : : ; ŒI1�, are the local parameters, and K is the conversion
matrix, see Eq. (8.93). Note that Eq. (8.307) represents an infinitesimal canonical
transformation, with the generators being the first-class constraints of initial for-
mulation. We point out that these formulas represent a direct generalization of our
illustrative example, see Eq. (8.233).

According to Eq. (8.308) the variation of some sa involves the derivative of
parameters. Hence they can be identified with gauge fields for the symmetry. At
this point, it is instructive to discuss what happens with local symmetries when

we pass from L to QL. As we have seen in Sect. 8.8,
.N�1/
� -type symmetry implies

N-th stage constraints in the Hamiltonian formulation for L. Replacing L with QL,
we arrive at the formulation with at most second-stage first-class constraints and
the corresponding P�-type symmetries (8.307). That is each symmetry (8.234) of L
“decomposes” into N gauge symmetries of QL.

We now show that the variation of QL under the transformation (8.307) is
proportional to the higher-stage constraints Ta. So, it can be cancelled by appropriate
variation of sa, which is given by Eq. (8.308). In the subsequent computations
we omit all the total derivatives. Besides, the notation Aj implies the substitution
indicated in Eqs. (8.307) and (8.308).

To give a proof, it is convenient to represent the extended Lagrangian (8.277)
in terms of the initial Hamiltonian H0, instead of the initial Lagrangian L. Using
Eq. (8.70) we write

QL.qA; PqA; sa/ D!i Pqi C f˛.q
A; !j/Pq˛

� H0.q
A; !j/ � saTa.q

A; !j/; (8.309)

where the functions !i.q; Pq; s/, f˛.q; !/ are defined by Eqs. (8.275), (8.34). Accord-
ing to the identity (8.283), the variation of QL with respect to !i does not give
any contribution. Taking this into account, the variation of Eq. (8.309) under the
transformation (8.307) can be written in the form

ı QL D � P!i.q; Pq; s/ @
Q̂ I1

@ Qpi

ˇ̌
ˇ̌
ˇ �I1 � Pf˛.q; !.q; Pq; s/ @

Q̂ I1

@ Qp˛

ˇ̌
ˇ̌
ˇ �I1

�
�
@H0.qA; Qpj/

@qA
C Pq˛ @ˆ˛.q

A; QpB/

@qA
C sa @ˆa.qA; Qpj/

@qA

�ˇ̌
ˇ̌ fqA; QGI1g

ˇ̌
�I1

� ıI1s
aˆa.q

A; !j/:
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To see that ı QL is a total derivative, we add the following zero

0 �
"
@ QL
@!i

ˇ̌
ˇ̌
ˇ
!i

f Qpi; Q̂ I1g

�
�
@H0

@ Qpˇ C Pq˛ @ˆ˛
@ Qpˇ C sa @ˆa

@ Qpˇ
�

f Qpˇ; Q̂ I1g C Pq˛f Qp˛; Q̂ I1g
�ˇ̌
ˇ̌ �I1 ;

to the r.h.s. of the previous expression. It then reads

ı QL D �P�I1 Q̂ I1 � �I1
�fH0; Q̂ I1g C Pq˛fˆ˛; Q̂ I1g C safˆa; Q̂ I1g

�ˇ̌

� ıI1s
aˆa.q

A; !j/ D
�P�I1 Q̂ I1 C �I1

�
bI1

I C Pq˛cI1˛
I C sbcI1b

I

ˆI
�ˇ̌� ıI1s

aˆa.q
A; !j/;

where b, c are coefficient functions of the constraint algebra (8.94). Using the
equalities ˆIj D .0; ˆa.qA; !j/, Q̂ I1

ˇ̌ D KI1
aˆa.qA; !j/, we finally obtain

ı QL D �P�I1KI1
a C �I1

�
bI1

a C Pq˛cI1˛
a C sbcI1b

a
 � ıI1s

a
�ˇ̌

Qpi! @ QL
@Pqi
ˆa:

Then the variation of sa given in Eq. (8.308) implies ı QL D div, as has been stated.

Example Consider a system with the configuration-space variables x	; e; g
(where x	 are coordinates of Minkowski space), and with the action being

S D
Z

d�

�
1

2e
.Px	 � gx	/2 C g2

2e

�
; a D const: (8.310)

This implies the complete Hamiltonian

H D 1

2
ep2 C g.xp/� g2

2e
C vepe C vgpg; (8.311)

as well as the constraints

ˆ1 � pe D 0; T1 � �1
2

�
p2 C g2

e2

�
D 0I (8.312)

ˆ2 � pg D 0; T2 � g

e
� .xp/ D 0: (8.313)

(continued)
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They can be reorganized with the aim of separating the first class constraints
Q̂
1 and QT1

Q̂
1 � pe C g

e
pg D 0;

QT1 � �1
2

�
p2 � g2

e2

�
� g

e


g

e
� .xp/

�
C g2

e
pg D 0I (8.314)

pg D 0;
g

e
� .xp/ D 0: (8.315)

In this case, the solution to the basic Eq. (8.276) is given by

!	 D 1

e � s2
.Px	 � .g � s2/x	/: (8.316)

Using the Eqs. (8.312), (8.313) and (8.316) we obtain the extended
Lagrangian (8.277)

QL D 1

2.e � s1/
.Px	 � .g � s2/x	/2 C g2

2e

�
1C s1

e

�
� g

e
s2: (8.317)

Two local symmetries of QL are obtained according to Eqs. (8.307) and (8.308),
using the expression (8.314) for the first-class constraints. They read

ı1x
	 D ��1



!	 C g

e
x	
�
; ı1e D 0; ı1g D �1

g2

e
;

ı1s
1 D P�1 � 2�1

�
gs1

e
� s2

�
; ı1s

2 D


�1

g

e

�� C �1
g2

e
I (8.318)

ı2x
	 D 0; ı2e D �2; ı2g D �2

g

e
;

ı2s
1 D �2; ı2s

2 D �2
g

e
: (8.319)

Invariance of QL under (8.319) can be easily verified. By tedious computations,
the reader can confirm that it is invariant under (8.318) as well, ı1 QL D
� 1
2
.�1.!	/2 C �1

� g
e

2
/:.
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Dirac Conjecture Consider a theory which involves only first-class constraints.
This implies that in the total Hamiltonian, H D H0Cv˛ˆ˛ , all the velocities remain
undetermined. According to Sect. 2.3 the solution to the Hamiltonian equations, in
linear order with respect to ı� , is

z.ı�/ D z.0/C ı�fz;H0g C ı�v˛fz; ˆ˛g; (8.320)

and depends on the arbitrary functions v˛ . According to Sect. 8.4, solutions which
correspond to different choices of v, z1.ı�; v1/ and z2.ı�; v2/, are equivalent, and
describe the same physical state.

Dirac observed that, according to (8.320), the solutions z1 and z2 are related
by canonical transformation with the generators being first-class constraints: ız D
�˛fz; ˆ˛g, �˛ D ı�4v˛. The Dirac conjecture is that the higher-state constraints
also generate transformations that do not change physical states.

We point out that (8.307) can be considered as a proof of the Dirac conjecture for-
mulated as follows: all first-class constraints of an initial Lagrangian are generators
of local symmetry of the extended Lagrangian.

8.8.5 Local Symmetries of the Initial Lagrangian

When only first-class constraints are present in the formulation, symmetries of the
extended Lagrangian can be used to restore those of the initial Lagrangian. In the
absence of second-class constraints, Eqs. (8.307) and (8.308) acquire the form

ıIq
A D �I fqA; ˆIg

ˇ̌
Qpi! @ QL

@Pqi
;

ıIs
a D �P�aıaI C �I

�
bI

a C sbcIb
a C PqˇcIˇ

a
�ˇ̌

Qpi! @ QL
@Pqi
: (8.321)

We note that the extended Lagrangian coincides with the original one for sa D 0:
QL.q; 0/ D L.q/, see Eq. (8.282). So the initial action will be invariant under any
transformation

ıqA D
X

I1

ıIq
A
ˇ̌
sD0; (8.322)

which obeys the system ısajsD0 D 0, that is

P�IKI
a C �I

�
bI

a C PqˇcIˇ
a
 D 0: (8.323)

We have [a] equations for Œ˛�CŒa� variables �I . In the work [47] it was demonstrated
that these equations can be solved by pure algebraic methods, which give some [a]
of � in terms of the remaining � and their derivatives of order less than N. This
allows us to find [˛] local symmetries of L.
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We present two examples of how it works.

Maxwell Action Consider the Maxwell action of an electromagnetic field

S D �1
4

Z
d4xF	
F

	
 D
Z

d4x

�
1

2
.@0Aa � @aA0/

2 � 1

4
.Fab/

2

�
: (8.324)

In this case, the functions vi from Eq. (8.32) are given by pa C @aA0. The action
implies primary and secondary constraints

p0 D 0; @apa D 0: (8.325)

Then the basic Eq. (8.276) acquires the form @0Aa � !a � @aA0 C @as D 0, and the
extended Lagrangian action is16

QS D
Z

d4x

�
1

2
.@0Aa � @aA0 C @as/2 � 1

4
.Fab/

2

�
: (8.326)

Its local symmetries can immediately be written according to Eq. (8.321); the non-
vanishing variations are

ıˇA0 D ˇ; ıˇs D ˇ;

ı˛Ab D �@b˛; ı˛s D @0˛: (8.327)

According to Eq. (8.322), the symmetry of the initial action appears as the following
combination

.ıˇ C ı˛/Ab D �@b˛;

.ıˇ C ı˛/A0 D ˇ; (8.328)

where the parameters obey the equation @0˛ C ˇ D 0. The substitution ˇ D �@0˛
into Eq. (8.328) gives the standard form of U.1/ gauge symmetry

A0
	 D A	 C @	˛: (8.329)

Example with Fourth-Stage Constraints Let us consider the Lagrangian

L D 1

2
Px2 C �x2; (8.330)

where x	.�/ are coordinates of Minkowski space and �.�/ is a scalar function.

16In the transition from mechanics to a field theory, derivatives are replaced by variational
derivatives. In particular, the last term in Eq. (8.276) reads ı

ı!i.x/

R
d3ysa.x/Ta.qA.y/; !i.y/.
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Denoting the conjugate momenta for x	; � as p	; p� , the complete Hamiltonian
reads

H0 D 1

2
p2 � �x2 C v�p� ; (8.331)

where v� is the velocity for the primary constraint p� D 0. The complete system of
constraints is

ˆ1 � p� D 0; T2 � x2 D 0; T3 � xp D 0; T4 � p2 D 0: (8.332)

In this case, the variable � plays the role of q˛, while x	 play the role of qi of the
general formalism.

The constraints form the first-class system

fˆI; ˆJg D cIJ
KˆK ; fˆI ;H0g D bI

JˆJ ; (8.333)

with the non-vanishing coefficient functions being

c23
2 D �c32

2 D 2; c24
3 D �c42

3 D 4; c34
4 D �c43

4 D 2I
b1
2 D 1; b2

3 D 2; b3
4 D 1; b3

3 D 2�; b4
3 D 4�:

In the present case, Eq. (8.276) acquires the form Px	 � !	 � s3x	 � 2s4!	 D 0, so

!	 D 1

1C 2s4
.Px	 � s3x	/: (8.334)

Then the extended Lagrangian (8.277) is given by

QL D 1

2.1C 2s4/
.Px	 � s3x	/2 C .� � s2/.x	/2: (8.335)

Using the Eq. (8.321) and the coefficient functions found before, four symmetries
can immediately be written as follows

ı1� D �1; ı1s
2 D �1I (8.336)

ı2s
2 D P�2 C 2�2s3; ı2s

3 D 2�2.1C 2s4/I
ı3x

	 D �3x	; ı3s
2 D 2�3.� � s2/; ı3s

3 D P�3; ı3s4 D �3.1C 2s4/I

ı4x
	 D 2�4

Px	 � s3x	

1C 2s4
; ı4s

3 D 4�4.� � s2/; ı4s
4 D P�4 � 2�4s3:

Since the initial Lagrangian L implies a unique chain of four first-class constraints,

we expect that it has one local symmetry of the
.3/
� -type. The symmetry can be found
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according to the defining Eq. (8.323). In this case, they read

�1 C P�2 C 2�3� D 0;

2�2 C P�3 C 4�4� D 0; (8.337)

�3 C P�4 D 0:

This allows us to find �1; �2; �3 in terms of �4 � �: �1 D � 1
2

.3/
� C4 P�� C 2� P� ,

�2 D 1
2

R��2��, �3 D �P�. According to Eq. (8.322), the local symmetry of the initial
Lagrangian (8.330) is given by

ıx	 D �P�x	 C 2�Px	; ı� D �1
2

.3/
� C4 P�� C 2� P�: (8.338)

In the presence of second-class constraints, local symmetries of L can not
generally be restored according to the trick (8.322) and (8.323). The reason is that
the number of equations of the system (8.323) can be equal to or greater than the
number of parameters �a.

The expression (8.335) for the extended Lagrangian suggests the following
redefinition of variables: 1 C 2s4 � e, � � s2 � �1; then it can be written in the
form

L.e; �1/ D 1

2e
.Px	 � s3x	/2 C �1.x

	/2: (8.339)

Let us write its symmetries. The symmetry (8.336) disappears, since L.e; �1/ is
constructed from gauge-invariant variables with respect to this symmetry. The
remaining symmetries acquire the form

ı2�1 D �P�2 � 2�2s3; ı2s
3 D 2e�2I (8.340)

ı3x
	 D �3x	; ı3�1 D �2�3�1; ı3s3 D P�3; ı3e D 2�3eI (8.341)

ı4x
	 D 2�4

e
.Px	 � s3x	/; ı4s

3 D 4�4�1; ı4e D 2.P�4 � 2�4s3/: (8.342)

The ı4-symmetry can be replaced by the combination ı� � ı
�
�4 D 1

2
�e
C ı.�3 D

�s3/C ı.�2 D ���1/, which has a simpler form

ı�x
	 D �Px	; ı��1 D .��1/

:; ı�s
3 D .�s3/:; ı�e D .�e/:; (8.343)

and represents the reparametrization invariance. As the independent symmetries of
L.e; �1/, we can take either Eqs. (8.340), (8.341) and (8.342), or Eqs. (8.340), (8.341)
and (8.343).
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8.8.6 Conversion of Second-Class Constraints by Deformation
of Lagrangian Local Symmetries

In this section we discuss invertible changes on the space of functions which
have the following form q.�/ ! f . Qq.�/; PQq.�/; : : :/. Owing to the invertibility
(and under certain conditions that will be discussed below), changes of this kind
lead to an equivalent Lagrangian. To understand their meaning, suppose that q
enters into the initial Lagrangian without derivatives, which implies the primary
constraint p D 0 in the Hamiltonian formulation. The transformed Lagrangian L0
will contain derivatives of the new variable Qq, so the constraint generally does not
appear in the formulation L0. As will be seen, in many cases a pair of second-class
constraints of the initial Lagrangian is replaced by a first-class constraint in the
transformed formulation. That is, the notion of first- and second-class constraints is
not “invariant” under such a change. In this section we follow the work [48].

To illustrate how this works, we analyze the following dynamically trivial model
defined on configuration space x.�/; y.�/; z.�/, with the Lagrangian action being

S D
Z

d�

�
1

2
.Px � y/2 C 1

2
z2
�
: (8.344)

This is invariant under the finite local symmetry with the parameter ˛.�/

ıx D ˛; ıy D P̨ ; ız D 0: (8.345)

So we have a formulation with P̨ -type symmetry. Moving on to Hamiltonian
formalism, we obtain the following chains of constraints:

Primary Secondary

First-class chain py D 0; px D 0; (8.346)

Second-class chain pz D 0; z D 0: (8.347)

Consider the transformation z D Qz C Py. For the new variables x; y; Qz, the action
acquires the form

S0 D
Z

d�

�
1

2
.Px � y/2 C 1

2
. Qz C Py/2

�
; (8.348)

and has R̨ -type symmetry

ıx D ˛; ıy D P̨ ; ı Qz D � R̨ : (8.349)

As we know, this implies the appearance of a constraint at the third stage of the Dirac
procedure. In the new formulation, this replaces the second-class chain (8.347).
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Computing the constraints of the formulation (8.348), we find the following first-
class chain

Primary Second-stage Third-stage
pQz D 0; py D 0; px D 0:

(8.350)

The reader can verify that the initial formulation is a gauge of the new one (it
corresponds to the gauge pQz D 0/. Hence, using the change, two second-class
constraints (8.347) have been replaced on the first-class constraint Qz D 0. In the
formulation S0 only the first-class constraints are present. The procedure is called a
conversion of second-class constraints. In the language of symmetries, the change
raises the order of a symmetry, leading to deformation of the constraints structure.

Let us describe the conversion trick in further detail. Let L.qA; PqA/ be the
Lagrangian of a theory with first- and second-class constraints. In the Lagrangian
formulation, the first-class constraints manifest themselves in invariance of the
action under some local symmetry transformations. Let

ıqA D .k/
� RA.q; Pq/C : : : ; (8.351)

be an infinitesimal form of one of the symmetries. The dots stand for all terms

with less then k-derivatives acting on a parameter. As we know,
.k/
� -type symmetry

generally implies the appearance of some constraint at the .k C1/-stage of the Dirac
procedure.

Let us divide coordinates qA into two groups: qA D .qi; q˛/. We change
the parametrization of the configuration space: qA �! QqA according to the
transformation which involves derivatives of q˛

qi D qi. QqA; PQq˛/; q˛ D q˛. Qqˇ/: (8.352)

We suppose that the transformation is invertible in the following sense

det
@qi

@ Qqj
¤ 0; det

@q˛

@ Qqˇ ¤ 0: (8.353)

This implies that QqA can be determined from (8.352): Qqi D Qqi.qA; Pq˛/, Qq˛ D Qq˛.qˇ/.
So, our theory can be equally analyzed in terms of the LagrangianL0 � L.q. Qq/; Pq. Qq/.
We further suppose that the transformation (8.352) has been chosen in such a way
that QL does not involve higher derivatives, disregarding the total-derivative terms
(we show below that this is possible in a singular theory)

L0. Qq; PQq; RQq/ D QL00
. Qq; PQq/C dF. Qq; PQq/

d�
: (8.354)
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Let us see what we can say about the structure of Hamiltonian constraints of our
theory in the new parametrization QL, as compared with L. We note that the local

symmetry for the set Qq is generally of
.kC1/
� -type: ı Qqi D .kC1/

� @ Qqi

@Pq˛ QR˛. QqA; PQqA; RQq˛/C
: : :. Since the order of the symmetry has been raised by one unit, at the .k C2/-stage
of the Dirac procedure an extra constraint appears. On the other hand, the physical
sector of QL is the same as for L. If the order of other symmetries (if any) was not
lowered, the only possibility17 is that the extra .k C 2/-stage constraint is first-class,
and it replaces a pair of second-class constraints of the initial formulation. In short,
an appropriate parametrization (8.352), (8.353) and (8.354) of the configuration
space implies a deformation of local symmetries which, in turn, can result in the
conversion of second-class constraints. Clearly, Eqs. (8.353) and (8.354) represent
only necessary conditions for the conversion.

Note that we can considermore general transformations: qi D qi. QqA; PQq˛; RQq˛; : : : ;
.s/
Qq˛/; q˛ D q˛. Qqˇ/, which involve higher derivatives of Qq˛ . These generally increase
the order of symmetry by s units, and 2s second-class constraints can be converted.
For an example of this kind, see [48].

As the example discussed earlier shows, the condition (8.354) can be easily
satisfied if some variable enters into the action without a derivative. In this
respect, let us point out that for a singular theory L.q; Pq/, there is an equivalent
formulation, L0.q0; Pq0/, with the desired property. Actually, starting from the singular
L, we construct the Hamiltonian H D H0.qA; pj/ C v˛ˆ˛ , where ˆ˛.qA; pB/ D
p˛ � f˛.qA; pj/ are primary constraints. As we know, the functions H0; f˛ do not
depend on p˛. We further separate a phase-space pair which corresponds to some
fixed ˛, for example ˛ D 1: ˛ D .1; ˛0/, .qA; pA/ D .q1; p1; z/. According to
Sect. 4.4.3, there is a canonical transformation .q1; p1; z/ ! .q01; p0

1; z
0/, such that

the Hamiltonian acquires the formH0 D H0
0.q

01; z0/Cv1p0
1Cv˛0

ˆ˛0 .q01; z0/. We can
restore the Lagrangian L0.q0; Pq0/ which reproducesH0 in Hamiltonian formalism. By

construction, L0 does not depend on Pq01.
We finish this section with three examples of application of the conversion trick.

8.8.6.1 Conversion in a Theory with Hidden SO.1; 4/ Global Symmetry

In this example, the initial formulation implies a non-linear realization of a global
symmetry, therefore is not convenient. The conversion reveals this hidden symmetry
that is present in the theory. Besides, the extra gauge freedom of the converted
version is used to find a parametrization which linearizes equations of motion.

17Here the condition (8.354) is important. A theory with higher derivatives, being equivalent to
the initial one, has more degrees of freedom than the number of variables qA, see Sect. 2.10. So
the extra constraints would be responsible for ruling out these hidden degrees of freedom. Our
condition (8.354) precludes the appearance of the hidden degrees of freedom.
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Consider a theory on the configuration space x	; e; g, and with the action

S D
Z

d�

�
1

2e
.Px	 � gx	/2 C 1

2e2
g2 � ag

�
; a D const: (8.355)

The model has a manifest SO.1; 3/ global symmetry. The only local symmetry is
the reparametrization invariance, which represents P̨ -type symmetry

ı� D 0; ıx	 D �˛Px	; ıe D �.˛e/:; ıg D �.˛g/: (8.356)

Moving on to Hamiltonian formalism we obtain the complete Hamiltonian (ve, vg

stand for velocities associated with the primary constraints)

H D e

2
p2 C g.xp/� g2

2e2
C ag C vepe C vgpg; (8.357)

as well as the constraints (the initial constraints have been reorganized with the aim
of separating the first-class ones)

pe C .xp C a/pg D 0; p2 C .xp C a/2 C 2ep2pg D 0I (8.358)

pg D 0; g � e.xp C a/ D 0: (8.359)

Equation (8.358) represent first-class constraints. The equations of motion for the
.e; x/-sector can be written as follow

Pe D ve; Ppe D 0;

Px	 D e.p	 C .xp C a/x	/; Pp	 D �e.xp C a/p	:
(8.360)

In terms of variables

X	 D ax	

xp C a
; P	 D ap	

xp C a
; (8.361)

they acquire a form similar to those of a free relativistic particle, namely

:

X	 D eP	;
:

P	 D 0; P2 D �a2: (8.362)

The presence of the conserved charge
:

P	 D 0 indicates a hidden global symmetry
related with the homogeneity of the configuration space. As will be seen below,
the conversion reveals the symmetry and allows us to find a manifestly-invariant
formulation of the theory.
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To convert a pair of second-class constraints (8.359) we need to raise the order of
symmetry (8.356) by one unit. From Eq. (8.356) we note that this can be achieved
by performing a shift of a variable on Pe. Since the variable g enters into the action
without a derivative, a shift of the type g D Qg C Pe does not lead to higher-derivative
terms in the action and thus realizes the conversion. It is convenient to accompany
the shift by an appropriate change of variables. Namely, let us make the invertible
transformation .x	; e; g/ �! . QxA D . Qx	; Qx4/; Qg/, where

Qx	 D e� 1
2 x	; Qx4 D e� 1

2 ; Qg D g � Pe
2e
: (8.363)

In terms of these variables the action (8.355) acquires the form

S0 D
Z

d�

�
1

2
.PQxA � Qg QxA/2 � a Qg

�
; �AB D .�;C;C;C;C/; (8.364)

The resulting action has a manifest SO.1; 4/ global symmetry. The conserved
currentP	 then corresponds to the symmetry under rotations in . Qx	; Qx4/-planes. The
local symmetry of the action (8.364) can be obtained from Eqs. (8.356) and (8.363),
and is of R̨ -type

ı� D 0; ı QxA D 1

2
P̨ QxA � ˛PQxA; ı Qg D 1

2
R̨ � P̨ Qg � ˛ PQg: (8.365)

Moving on to Hamiltonian formulation we obtain the Hamiltonian

H D 1

2
Qp2 C Qg QxA QpA C a Qg C v Qgp Qg; (8.366)

and the first-class constraints

Qp Qg D 0; QxA QpA C a D 0; QpA QpA D 0; (8.367)

Thus S0 represents the converted version of the action (8.355). Let us write equations
of motion for the xA-sector

PQxA D QpA C Qg QxA; PQpA D � Qg QpA: (8.368)

In the gauge Qg D Qx	 Qp	 C a; Qp4 D Qx	 Qp	 C a for the theory (8.364) we reproduce
the initial dynamics (8.360) (taken in the gauge e D 1/. Going over to the gauge
Qg D 0; Qp4 D a, we obtain the free Eq. (8.362). Hence the extra gauge freedom,
resulting from the conversion of second-class constraints, can be used to search for
the parametrization which implies the linear equations of motion.
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8.8.6.2 Classical Mechanics Subject to Kinematic Constraints as a Gauge
Theory

The conversion trick can be carried out in a theory which involves only second-class
constraints, that is in a theory without local symmetries in the initial formulation.
To begin with, we note that a given theory without local symmetry can be treated
as a gauge theory on appropriately extended configuration space. For instance, a
theory with the action S.qA/ can be equally considered as a theory on the space
qA; a, where a is one more configuration-space variable, with local transformations
defined by q0A D qA, a0 D a C ˛. Since a does not enter into the action, the latter is
invariant under local transformations!18 This trivial gauge symmetry of the extended
formulation can be further used for conversion of second-class constraints according
to our procedure.19

Let us see how this works on an example of classical mechanics with kinematic
constraints. In Sect. 8.6 we discussed this as a theory with the action

S D
Z

d�
�
L0.q; Pq/C �iGi.q/

�
; (8.369)

which implies 4[i] second-class constraints

p�i D 0; Gi D 0; f aGia D 0; �i � QMijfFj;H
0g D 0: (8.370)

Now we present it as a locally-invariant theory which involves only first-class
constraints.

Conversion can be carried out by making the following transformation in the
action (8.369)

�i D �i C Rei; (8.371)

where the auxiliary variable ei.�/ has been introduced. The modified action

S0 D
Z

d�
h
L0.q; Pq/� PeiGia Pqa C Q�iGi.q/

i
; (8.372)

18This is a general situation: given a locally-invariant action, there are special coordinates such that
the action does not depend on some of them [10].
19There are other possibilities for creating trivial local symmetries. For example, in a given
Lagrangian action with one of the variables being q, let us make the substitution q D ab, where
a, b represent new configuration space variables. The resulting action is equivalent to the initial
one, an auxiliary character of one of the new degrees of freedom is guaranteed by the trivial gauge
symmetry: a ! a0 D ˛a; b ! b0 D ˛�1b. Another simple possibility is to write q D a C b,
which implies the symmetry a ! a0 D a C ˛; b ! b0 D b � ˛. The well-known example of
this kind transformation is einbein formulation in gravity theory: g	
 D ea

	ea

 , which implies local

Lorentz invariance.
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does not contain higher-derivative terms and is invariant under the local transfor-

mations Q�i ! Q�0i D Q�i C R̨ i; ei ! e0i D ei � ˛i. Due to this R̨ -symmetry we
expect the appearance of 3[i] first class constraints in the Hamiltonian formulation
for the theory (8.372). To confirm this, let us write defining equations for conjugate
momenta

pa � @L

@Pqa
D @L0
@Pqa

� PeiGia; pei � @L

@Pei
D �Gia Pqa; p Q�i D 0: (8.373)

The last equation represents [i] primary constraints. The remaining equations can
be resolved with respect to the velocities Pqa; Pei, since the corresponding block of the
Hessian matrix is non-degenerate. It can easily be seen in special coordinates chosen
as follows. The initial coordinates qa can be reordered in such a way that the rank
minor of the matrix @Gi

@qa is placed on the right: qa D .q˛; qi/; det @Gi
@qj ¤ 0. Now, let

us make the invertible change of variables qa ! Qqa, where Qq˛ D q˛; Qqi D Gi.qa/.
In these variables our Lagrangian is

L0 D L0. Qq; PQq/� Pei PQqi C Q�i Qqi: (8.374)

From this expression we immediately find the determinant of the Hessian matrix:
det @2 QL

@2. Qq;e/ D det @2L0
@PQq˛@PQqˇ . It does not vanish since in classical mechanics the quadratic

form @2L0
@PQqa@PQqb

is positive defined.

Let us return to the analysis of the action (8.372). The complete Hamiltonian is

H D pa Pqa C peiPei � L0.q; Pq/C PeiGiaqa � Q�iGi.q/C vi
Q�p Q�i; (8.375)

where Pqa; Pei are solutions to Eq. (8.373). As before, the second-stage constraints
are Gi.q/ D 0. Their conservation in time can be easily computed by using of
Eq. (8.373): PGi D fGi; Hg D �pei, which gives the third-stage constraints pei D 0.
Then the complete constraint system is composed by 3[i] first class constraints

p Q�i D 0; Gi D 0; pei D 0: (8.376)

The first-class constraints pei D 0 state that the variables ei are pure gauge degrees of
freedom, as was expected. They can be removed from the formulation if we choose
the gauge ei D 0. The remaining 2[i] first-class constraints in Eq. (8.376) replace
4[i] second class-constraints (8.370) of the initial formulation.

As a particular example, we consider a particle on a 2-sphere of radius c, with
the action being

S D
Z

d3x

�
1

2
mPEx2 C �.Ex2 � c2/

�
: (8.377)
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This implies the following chain of four second-class constraints

p� D 0; Ex2 � c2 D 0; ExEp D 0; Ep2 C 2mc2� D 0: (8.378)

Conversion is achieved by the transformation � D Q� C 1
2
mRe, which generates the

symmetry Q� ! Q�0 D Q�C 1
2
m R̨ ; e ! e0 D e � ˛. The transformed action

S0 D
Z

d3x

�
1

2
mPEx2 � mPeExPEx C Q�.Ex2 � c2/

�
: (8.379)

implies first-class constraints only, namely

p Q� D 0; Ex2 � c2 D 0; pe D 0: (8.380)

O.N/-invariant non-linear sigma model

S D
Z

dDx

�
1

2
.@	�

a/2 C �..�a/2 � 1/
�
; (8.381)

represents an example of field theory with a similar structure of second-class
constraints. Hence the transformation � D Q� C @	@

	e gives the formulation with
first class constraints only

S0 D
Z

dDx

�
1

2
.@	�

a/2 � 2@	e�a@	�a C Q�..�a/2 � 1/
�
: (8.382)

8.8.7 Conversion in Maxwell–Proca Lagrangian for Massive
Vector Field

As one more example of the conversion in a theory with second-class constraints
only, we consider the massive vector field A	.x
/ in Minkowski space. It is
described by the following action:

S D
Z

d4x

�
�1
4

F	
F
	
 C 1

2
m2A	A	

�
; F	
 � @	A
 � @
A	: (8.383)

Moving on to Hamiltonian formulation we find the Hamiltonian

H D
Z

d3x

�
1

2
p2a � pa@aA0 C 1

4
F2ab � 1

2
m2A	A	 C v0p0

�
; (8.384)
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as well as the primary and secondary constraints

p0 D 0; @apa � m2A0 D 0: (8.385)

The system is second-class, with the Poisson bracket algebra being

f@apa � m2A0; p0g D �m2ı3.x � y/: (8.386)

Conservation in time of the secondary constraint determines the velocity v0 D
�@kAk. Equations of motion for the propagating modes are

@0Aa D �pa C @aA0; @0pa D �@bFba � m2Aa; (8.387)

while the modes A0; p0 are determined by the algebraic Eq. (8.385). In a converted
version these modes turn into the gauge degrees of freedom. In this case, a
transformation which creates the desirable P̨ - symmetry consists of introducing
the Stuckelberg field �.x	/

A	 D QA	 � @	�: (8.388)

According to our philosophy, we can think that, from the beginning, we have a
theory on configuration space A	; �, with the local symmetry being A0	 D A	,
�0 D � C ˛, and the action given by Eq. (8.383). The field � does not enter into the
action. In terms of the variables QA	; �, the transformed action reads

S0 D
Z

d4x

�
�1
4

QF	
 QF	
 C 1

2
m2. QA	 � @	�/. QA	 � @	�/

�
;

QF	
 D @	 QA
 � @
 QA	: (8.389)

This is invariant under the local transformations

� ! � 0 D � C ˛; QA	 ! QA0
	 D QA	 C @	˛; (8.390)

that is, QA	 transforms as an electromagnetic field. Due to this P̨ -symmetry,we expect
the appearance of two first-class constraints in the modified formulation. Indeed, the
primary constraint of the theory (8.389) is the same as before: Qp0 D 0. Then the
Hamiltonian is

H D
Z

d3x

�
1

2
Qp2a � Qpa@a QA0 C 1

4
QF2ab C 1

2m2
p2� C p� QA0C

1

2
m2. QAa C @a�/

2 C v0 Qp0
�
; (8.391)
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and implies the secondary constraint @a QpaCp� D 0. The complete constraint system

Qp0 D 0; @a Qpa C p� D 0; (8.392)

is first-class. The last constraint in Eq. (8.392) states that � is an auxiliary degree of
freedom. It can be removed by the gauge � D 0. The first-class constraint Qp0 D 0

replaces two second-class constraints (8.385) of the initial formulation, and states
that A0 is a gauge degree of freedom in the modified formulation (8.389). Equations
of motion for the propagating modes in the modified theory are slightly different

@0 QAa D � Qpa C @a QA0; @0 Qpa D �@b QFba � m2. QAa � @a�/: (8.393)

Nevertheless, in the gauge � D 0 they coincide with the Eq. (8.387) of the initial
formulation.



Chapter 9
Classical and Quantum Relativistic Mechanics
of a Spinning Particle

Abstract Search for the relativistic equations that describe evolution of rotational
degrees of freedom and their influence on the trajectory of a spinning body, repre-
sents a problemwith a long and fascinating history. Closely related problem consists
in establishing of classical equations that could mimic quantum mechanics of an
elementary particle with spin in a semiclassical approximation. The relationship
among classical and quantum descriptions has an important bearing, providing
interpretation of results of quantum-field-theory computations in usual terms:
particles and their interactions. In this Chapter we develop the Lagrangian and
Hamiltonian formulations of a particle with rotational degrees of freedom. Taking
a variational problem as the starting point, we avoid the ambiguities and confusion,
otherwise arising in the passage from Lagrangian to Hamiltonian description
and vice-versa. Besides, it essentially fixes the possible form of interaction with
external fields. We show that so called vector model of spin represents a unified
conceptual framework, allowing to collect and tie together a lot of remarkable ideas,
observations and results accumulated over almost a century of studying this subject.
On the classical level, the vector model adequately describes spinning particle in
an arbitrary gravitational and electromagnetic fields. Moreover, taking into account
the leading relativistic corrections it explains the famous one-half factor in non-
relativistic Hamiltonian. Canonical quantization of the model yields one-particle
relativistic quantum mechanics with positive-energy states.

Search for the relativistic equations that describe evolution of rotational degrees
of freedom and their influence on the trajectory of a spinning body, represents
a problem with a long and fascinating history. Closely related problem consists
in establishing of classical equations that could mimic quantum mechanics of
an elementary particle with spin in a semiclassical approximation [51–60]. The
relationship among classical and quantum descriptions has an important bearing,
providing interpretation of results of quantum-field-theory computations in usual
terms: particles and their interactions.

In this chapter we develop the Lagrangian and Hamiltonian formulations of a
particle with rotational degrees of freedom. Taking a variational problem as the
starting point, we avoid the ambiguities and confusion, otherwise arising in the
passage from Lagrangian to Hamiltonian description and vice-versa. Besides, it
essentially fixes the possible form of interaction with external fields. We show

© Springer International Publishing Switzerland 2017
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354 9 Classical and Quantum Relativistic Mechanics of a Spinning Particle

that so called vector model of spin represents a unified conceptual framework,
allowing to collect and tie together a lot of remarkable ideas, observations and
results accumulated over almost a century of studying this subject. In the vector
model appear both first and second class constraints, therefore it also represents a
non trivial application of the formalism described in Chap. 8.

We have not tried to establish a variational problem of the most general possible
form. Instead, the emphasis has been placed on the variational problem leading
to the equations which are widely considered the most promising candidates for
description of spinning particles in external fields. For the case of electromagnetic
field, the vector model leads to generalization of the approximate equations of
Frenkel and Bargmann, Michel and Telegdi (BMT) to the case of an arbitrary field.
Here the strong restriction on possible form of equations is that the reasonablemodel
should be in correspondencewith the Dirac equation. In this regard the vector model
is of interest because it yields a relativistic quantummechanics with positive-energy
states, and is closely related to the Dirac equation. Concerning the equations of a
rotating body in general relativity, the widely assumed candidates are theMathisson-
Papapetrou-Tulczyjew-Dixon (MPTD) equations. We show that they correspond to
the minimal interaction of vector model with gravity and turn out to be problematic
in ultra-relativistic limit. Then we construct a non minimal interaction through
gravimagnetic moment and show that a body with unit gravimagnetic moment is
free from the problems detected in MPTD-equations.

Notation Our variables are taken in arbitrary parametrization � , then Px	 D dx	

d� .
The square brackets mean antisymmetrization, !Œ	�
� D !	�
 � !
�	. For the
four-dimensional quantities we suppress the contracted indexes and use the notation
Px	G	
 Px
 D PxGPx, N	


 Px
 D .N Px/	, !2 D g	
!	!
 , 	; 
 D 0; 1; 2; 3. Notation for
the scalar functions constructed from second-rank tensors are �S D �	
S	
 , S2 D
S	
S	
 . When we work in four-dimensional Minkowski space with coordinates
x	 D .x0 D ct; xi/, we use the metric �	
 D .�;C;C;C/, then Px! D Px	!	 D
�Px0!0 C Pxi!i and so on. Suppressing the indexes of three-dimensional quantities,
we use bold letters, vi�ija j D v�a, viGi	v

	 D vGv, i; j D 1; 2; 3, and so on.

9.1 Vector Model of Spinning Particle: Non Relativistic Spin

The data of some experiments with elementary particles and atoms (Stern–Gerlach
experiment, fine structure of hydrogen atom, Zeeman effect) shows that the
Schrödinger equation for a one-componentwave function is not adequate to describe
the behavior of these systems in the presence of an electromagnetic field. This
implies a radical modification of the formalism, see, for example, the book [41] for
a detailed discussion. Roughly speaking, besides the position and the momentum,
the state of an electron is specified by some discrete numbers, which are eigenvalues
of suitably defined operators, called the operators of spin. The mathematical theory
of these operators is similar to the formalism of angular momentum. So, intuitively,
an elementary particle carries an intrinsic angular momentum called spin.
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To describe a particle with spin s D 1
2
(electron, proton, neutron), in quantum

mechanics we introduce the two-component wave function ‰˛, ˛ D 1; 2. The spin
operators OSi act on ‰˛ as 2 � 2-matrices, and are defined by

OSi D „
2
i; (9.1)

where i stands for the Pauli matrices, they form a basis of the vector space of
traceless and Hermitian 2 � 2-matrices,

1 D
�
0 1

1 0

�
; 2 D

�
0 �i
i 0

�
; 3 D

�
1 0

0 �1
�
: (9.2)

Their basic algebraical properties are

ij D i�ijkk C 1ıij; (9.3)

ij C ji D 2 � 1ıij; (9.4)

ij � ji � Œi; j� D 2i�ijkk; (9.5)

.i/
2 D 1; for any fixed i;

X
i

ii D 3 � 1; Œk;
X

i

ii� D 0: (9.6)

Note that the commutators (9.5) of -matrices are the same as for the angular-
momentumvector, see Eq. (2.87). The spin operators, being proportional to the Pauli
matrices, have similar properties, in particular

Œ OSi; OSj� D i„�ijk OSk; (9.7)

OS2 D „2s.s C 1/� 1 D 3„2
4

1: (9.8)

Consider Coulomb electric and a constant magnetic fields. The electromagnetic
potential can be taken in the form A0 D ˛

r and A D 1
2
ŒB � r�. Then evolution

of an electron immersed in this fields described by the equation

i„@‰
@t

D
�
1

2m
. Op � e

c
A/2 � eA0 C e.g � 1/

2m2c2
OSŒ Op � E� � eg

2mc
B OS
�
‰: (9.9)

The first and second terms in the Hamiltonian correspond to the minimal interaction
of a point particle with an electromagnetic potential, whereas the last two terms
represent interaction of spin with electric and magnetic fields. A numeric factor g is
called gyromagnetic ratio of the electron.1 The vector eg

2mc
OS is known as magnetic

moment of the particle.

1Quantum electrodynamics gives g D 2:002322 : : : due to radiative corrections.
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The equation is written in the Schrödinger picture, that is we ascribe time-
dependence to the wave function, whereas in semiclassical models we deal with
dynamical variables. We recall that the time-dependence can be ascribed to oper-
ators using the Heisenberg picture. Passing to the Heisenberg picture, we could
write dynamical equations for basic operators of the theory. According to Ehrenfest
theorem, expectation values of the operators approximately obey the classical
Hamiltonian equations with the brackets discussed in Sect. 8.5.

The Eq. (9.9) gives the structure and properties of the energy levels of hydrogen
atom in a good agreement with experiment. The fine structure of hydrogen atom
fixes the factor g � 1 in the third term, while Zeeman effect requires the factor g in
the last term.

To formulate the problem that we wish to discuss, we recall that quantum
mechanics of a spinless particle can be obtained applying the canonical quantization
procedure to a classical-mechanics systemwith the LagrangianL D 1

2
mx2�U.x/. To

achieve this, we construct a Hamiltonian formulation for the system, then associate
with the phase-space variables the operators with commutators resembling the
Poisson brackets, and write on this base the Schrödinger equation i„ P‰ D OH‰.

It is natural to ask whether this ideology can be realized for the spinning particle.
Since the quantum-mechanical description of a spin implies the use of three extra
operators OSi, the problem can be formulated as follows. We look for a classical-
mechanics system which, besides the position variables xi, contains additional
degrees of freedom, suitable for the description of a spin: in the Hamiltonian
formulation the spin should be described, in the end, by three variables with fixed
square (9.8) and with the classical brackets fSi; Sjg D �ijkSk. Then canonical quan-
tization of these variables will yield spin operators with the desired properties (9.7)
and (9.8). According to this, typical spinning-particle model consist of a point on a
world-line and some set of variables describing the spin degrees of freedom, which
form an inner space attached to that point.2 In fact, different spinning particles
discussed in the literature differ by the choice of the inner space. An exceptional
case is the rigid particle [62] which consist of only position variables, but with
the action containing higher derivatives. The model yields the Dirac equation [63],
hence it also can be used for description of spin.

It should be noted that Eq. (9.9) is written in the laboratory system, so (contrary
to some other books), we do not state that our classical variable Si is a quantity
defined in the instantaneous rest frame of the particle.

We intend to construct the spinning particle starting from a suitable variational
problem. This is the first task we need to solve, as the formulation of a variational
problem in closed form is known only for the case of a phase space equipped with
canonical Poisson bracket, say f!i; �jg D ıij. The number of variables and their

2There is an elegant formalism developed by Berezin and Marinov [42] based on using of
anticommuting (Grassmann) variables for the description of spin. We present here another
formulation based on commuting variables, without appealing to a rather formal methods of the
Grassmann mechanics.
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algebra are different from the number of spin operators and their commutators, (9.7).
May be the most natural way to arrive at the operator algebra (9.7) is to consider
spin as a composite quantity,

Si D �ijk!j�k; or S D ! � �; (9.10)

where !;� are coordinates of a phase space equipped with canonical Poisson
bracket. This immediately induces SO.3/-algebra for Si, fSi.!; �/; Sj.!; �/gPB D
�ijkSk. Unfortunately, this is not the whole story. First, we need some mechanism
which explains why S, not ! and � must be taken for the description of spin
degrees of freedom. Second, the basic space is six-dimensional, while the spin
manifold is two-dimensional (we remind that the square of spin operator has fixed
value, Eq. (9.8)). To improve this, we look for a variational problem which, besides
dynamical equations, implies the constraints

!� D 0; �2 � ˛

!2
D 0; where ˛ D 3„2

4
: (9.11)

They form the first-class set, so in the model with these constraints the spin sector
contains 6 � 2 � 2 D 2 physical degrees of freedom. Geometrically, the constraints
determine four-dimensional SO.3/-invariant surface of the six-dimensional phase
space. The constraints imply

S2 D !2�2 � .!�/2 D 3„2
4
: (9.12)

The same square of spin follows from the constraints

!2 D ˛2; �2 D ˇ2; !� D 0; (9.13)

if we put ˇ2 D 3„2
4˛2

, any ˛. The combination �2 � ˇ2 C ˇ2

˛2
.!2 � ˛2/ represents the

first-class constraint of the set (9.13). Hence the model with these constraints also
has the desired number of degrees of freedom, 6�2�1�2 D 2. The equalities (9.13)
determine essentially unique SO.3/-invariant three-dimensional surface of the phase
space. The set (9.11) turns out to be more convenient for generalization to the case
of a relativistic spin.

While S in (9.10) looks like an angular momentum, the crucial difference is due
to the presence of first-class constraints, and hence of a local symmetry which we
refer as spin-plane symmetry. The latter acts on the basic variables !, �, while
leaves invariant the spin variable S. Using analogywith classical electrodynamics,!
and � are similar to four-potentialA	 while S plays the role of F	
 . The coordinates
! of the “inner-space particle” are not physical (observable) quantities. The only
observable quantities are the gauge-invariant variables Si. So our construction
realizes, in a systematic form, the oldest idea about spin as the “hidden angular
momentum”.
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9.1.1 Description of Non Relativistic Spin on the Base of Two
Constraints

Spin-Sector Lagrangian and Hamiltonian As the Lagrangian which implies the
constraints (9.11), we take the expression

Lspin D
p
˛p
!2

p P!N P!; ˛ D 3„2
4
; (9.14)

where Nij is the projector (8.17) on the plane orthogonal to !. The equivalent forms
of the Lagrangian are

Lspin D
p
˛
p

!2. P!/2 � .! P!/2
!2

D
p
˛

p
S2

!2
; (9.15)

where Si D �ijk!j P!k. The model is manifestly invariant under global rotations,
!0

i D Rij!j, where RT D R�1. There are also two (finite) local symmetries:
reparametrizations t ! t0 D .t/ � t C �.t/, and the scale transformations
! ! �.t/!.

Let us construct the Hamiltonian formulation of the model. Equation for the

conjugated momentum reads � D @L
@ P! D

p
˛p

!2
N P!p P!N P! . This expression immediately

implies (9.11) as the primary constraints. We also note the equality � P! D L, that
is H0 D � P! � L D 0. So the complete Hamiltonian is composed from the primary
constraints, H D v.!�/C v1

�
�2 � ˛

!2


, and the Hamiltonian action reads

SH D
Z

dt � P! � v.!�/� v1



�2 � ˛

!2

�
: (9.16)

There are no of higher-stage constraints in the problem.
Let us write Hamiltonian counterparts of the Lagrangian local symmetries.

1. Reparametrizations in extended phase space are

t0 D .t/; !0 D !; � 0 D �;

v0 D . P/�1v; v0
1 D . P/�1v1: (9.17)

They induce the transformations of dynamical variables

!0.�/ D !. Q.�//; � 0.�/ D �. Q.�//;
v0.�/ D . P/�1v. Q.�//; v0

1.�/ D . P/�1v1. Q.�//: (9.18)

Their infinitesimal form read

ı! D �� P!; ı� D �� P�; ıv D �.�v/P; ıv1 D �.�v1/P: (9.19)
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2. Scale transformations of coordinates are

� 0 D �; !0 D �!; � 0 D 1

�
�; v0 D v C P�

�
; v0

1 D �2v1: (9.20)

Since � is not involved, the induced transformations of dynamical variables are
the same, for instance !0.�/ D �!.�/. Presenting � D 1 C � , infinitesimal
transformations of dynamical variables read

ı! D �!; ı� D ��� ıv D P�; ıv1 D 2�v1: (9.21)

Besides the constraints (9.11), the variational problem (9.16) implies the Hamilto-
nian equations

P! D �!2� C v!; P� D ���2! � v�: (9.22)

To make the system more symmetric, we have introduced the variable � D 2v1
!2

instead of v1.
According to general formalism of Chap. 9, neither the dynamical equations nor

the constraints determine the variables v and �. They enter as arbitrary functions
of time into general solution for the variables ! and � , making completely
undetermined their dynamics. Indeed, for any given functions v.t/ and �.t/, the
equations represent a normal system for determining! and � . Its general solution is

! D e
R t
0 vd�

�
b cos

�p
˛

Z t

0

�d�

�
C c sin

�p
˛

Z t

0

�d�

��
;

� D e� R t
0 vd�

�
�b sin

�p
˛

Z t

0

�d�

�
C c cos

�p
˛

Z t

0

�d�

��
; (9.23)

where the integration constants b and c are subject to the conditions

bc D 0; b2 D c2 D p
˛: (9.24)

This implies !2 D p
˛e2

R t
0 vd� and �2 D p

˛e�2 R t
0 vd� . According to these

expressions, the pair of orthogonal vectors ! and � rotates in their own plane (or,
equivalently, in the plane determined by b and c) with the variable angular velocity
prescribed by the function �.t/. The function v.�/ determines the variation of their
magnitudes. Choosing the functions v and � suitably, we can make the point with
radius-vector ! move along any prescribed line!

We point out that the two-parametric ambiguity is in correspondence with the
invariance of the action (9.16) under the two local symmetries described above.
Summing up, all the basic variables of our model are unobservable quantities.
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The spin-vector3 S D ! � � has unambiguous evolution

PS D 0: (9.25)

Note also that it is invariant of the local symmetries. Hence the spin-vector is a
candidate for an observable quantity. In interacting theory S will precess under the
torque exercised by a magnetic field, see below. Due to Eq. (9.11), the coordinates
Si obey (9.12).

An Equivalent Lagrangian Let us consider a slightly different Lagrangian

Lspin D 1

2
P!N P! C ˛

2!2
: (9.26)

The conjugated momentum � D N P! implies only one primary constraint !� D 0,
then the complete Hamiltonian reads

H D 1

2



�2 � ˛

!2

�
C v.!�/: (9.27)

Computing d
dt .!�/ D f!�;Hg, we obtain �2� ˛

!2
D 0 as the secondary constraint.

As compare with the previous case, the Hamiltonian equations

P! D � C v!; P� D � �2

!2
! � v�; (9.28)

have only one-parametric ambiguity due to v.t/. General solution to the equations is

! D e
R t
0 vd�

�
b cos

�Z t

0

e�2 R �0 vd�d�

�
C c sin

�Z t

0

e�2 R �0 vd�d�

��
;

� D e� R t
0 vd�

�
�b sin

�Z t

0

e�2 R �0 vd�d�

�
C c cos

�Z t

0

e�2 R �0 vd�d�

��
; (9.29)

with the integration constants (9.24). In the present formulation the arbitrary
function v.t/ dictates both magnitude and velocity of rotation of the orthogonal
vectors ! and �. As in the previous case, the only observable quantity is the spin-
vector. This obeys the Eq. (9.25). Summing up, the two formulations are equivalent
since they have the same physical sector.

Spin Surface and Associated Spin Fiber Bundle T
4 The passage from initial

variables ! and � to the observables S is not a change of variables, and acquires a
natural interpretation in the geometric terms. It should be noted that basic notions
of the theory of constrained systems have their analogs in differential geometry.
Second-class constraints imply that all true trajectories lie on a submanifold of
the initial phase-space. The Dirac bracket, constructed on the base of second-class

3Note that this coincides with S appeared in (9.15).
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constraints, induces canonical symplectic structure on the submanifold. If the first-
class constraints (equivalently, the local symmetries) are presented in the model,
a part of variables have ambiguous evolution. This also can be translated into the
geometric language: due to the ambiguity, the submanifold should be endowed
with a natural structure of a fiber bundle. Physical variables are (functions of) the
coordinates which parameterize the base of the fiber bundle. Let us describe, how
all this look like in our model.

Consider six-dimensional phase space equipped with canonical Poisson bracket

R
6 D f !i; �jI f!i; �jgPB D ıij g; (9.30)

and three-dimensional spin spaceR3 D fSig with the coordinates Si. Define the map

f W R
6 ! R

3; f W .!i; �j/ ! Si D �ijk!j�k;

or S D ! � �; rank
@.Si/

@.!j; �k/
D 3: (9.31)

Poisson bracket on R
6 together with the map induce SO.3/ Lie-Poisson bracket

on R3

fSi; Sjg � fSi.!; �/; Sj.!; �/gPB; then fSi; Sjg D �ijkSk: (9.32)

As we saw above, all the trajectories !.t/;�.t/ lie on SO.3/-invariant surface ofR6

determined by the constraints

T
4 D f !� D 0; �2 � ˛

!2
D 0 g; (9.33)

that is ! and � represent a pair of orthogonal vectors with their ends attached to the
hyperbole y D ˛

x .
When .!;�/ 2 T

4, we have S2 D !2�2 � .!�/2 D ˛. So, f maps the manifold
T
4 onto two-dimensional sphere (spin surface) of the radius

p
˛, f .T3/ D S

2.
Denote F2S 2 T

4 preimage of a point S 2 S
2, F2S D f �1.S/. Let .!;�/ 2 F

2
S. Then

the two-dimensional manifold F
2
S contains all pairs .�!; 1

�
�/, � 2 R

C, as well as

the pairs obtained by rotation of these .�!; 1
�
�/ in the plane of vectors .!;�/. So

elements of F2S are related by two-parametric transformations

!0 D �!; � 0 D � 1
�
�; (9.34)

!0 D ! cos� C �
j!j
j�j sin �; � 0 D �!

j�j
j!j sin � C � cos�: (9.35)

In the result, the manifold T4 acquires a natural structure of fiber bundle

T
4 D .S2;F2; f /; (9.36)
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with base S2, standard fiber F2, projection map f and structure group given by the
transformations (9.34) and (9.35). The adjusted with the structure of the fiber bundle
local coordinates are �, �, and two coordinates of the vector S. By construction, the
structure-group transformations leave inert points of the base, ıSi D 0.

Let us discuss the relationship between the structure group and local symmetries
of the Hamiltonian action (9.16). The structure transformation (9.34) can be identi-
fied with the scale transformation (9.20). Concerning the transformation (9.35), let
us apply it to the action (9.16). Inserting !0 and � 0 into the action and disregarding
the total derivative, we obtain the expression

SHŒq
0� D

Z
d� � P! � !�

�
v0 cos 2� C B � v0

1A
� �



�2 � ˛

!2

� �
v0
1 � C

�
;

where

A D j�j
j!j

�
1 � ˛

!2�2 C .!�/j!jj�j sin 2�
�
sin 2�;

B D
� j!jP

j!j � j�jP
j�j

�
sin2 �; C D P�!2

j!jj�j C p
˛
;

The action does not change, SHŒq0� D SHŒq�, if we adopt the following transforma-
tion law for v and v1

v0 D v � B C A.v1 C C/

cos 2�
; v0

1 D v1 C C: (9.37)

Hence we have found one more local symmetry of the action. Its infinitesimal form
reads

ı! D �
j!j
j�j�; ı� D �� j�j

j!j!;

ıv D 2�v1

j!jj�j


�2 � ˛

!2

�
; ıv1 D

P�!2

j!jj�j C p
˛
: (9.38)

The three infinitesimal symmetries (9.19), (9.21) and (9.38) are not independent
on the subspace of solutions to equations of motion. To see this, we note that the
following infinitesimal transformation:

ı� C ı�.�/ C ı�.�/; where �.�/ D �v; �.�/ D 2v1
j!j
j�j �; (9.39)
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being applied to any variable, turns out to be proportional to equations of motion.4

For instance, Œı� C ı�.�/ C ı�.�/�� D �� ıSH
ı�

� 2�v1!

!2
ıSH
ıv1

. Hence on the subspace
of solutions the infinitesimal reparametrization can be identified with a special
transformation of the structure group

ı� D �ı�.�/ � ı�.�/: (9.40)

In the result, the number of infinitesimal symmetries coincides with the number
of primary first-class constraints. Summing up, in the passage from geometric to
dynamical realization, the transformations of structure group of the spin fiber bundle
acts independently at each instance of time and turn into the local symmetries of
Hamiltonian action.

9.1.2 An Example of Classical Mechanics Without Observable
Trajectories

It is instructive to discuss here the notion of pseudo-classical mechanics, the term
by which we refer to models with a number of configuration-space observables
less than dimension of space of physical degrees of freedom. Just as it happens
in quantummechanics, such a kind classical mechanics does not admit the notion of
a trajectory within the position space. Classical models with such a strange property
can be constructed on the basis of a singular Lagrangian with a multi-parametric
group of local symmetries.

Consider a theory with N configuration-space variables qA and with k first-class
constraints. The original variables generally have ambiguous dynamics, but as we
saw in Sect. 8.4, the theory has the physical sector which consist of 2.N � k/
observables. The observables form N � k canonical pairs Nq.qA; pB/ and Np.qA; pB/.
It is natural to ask, whether there exist N � k observables of the form Nq.qA/. This
would mean that in the model there are trajectories within the position space. An
example of such a kind is the relativistic particle. As we saw on page 314, we
can take xi.x0/ as three configuration-space observables. The model (9.14) gives
an opposite example, without the position observables at all! To confirm this, let us
look for an observable of the form o.!/ in the theory (9.22). Using these equations,
we have Po D �!2.o0�/ C v.o0!/, where o0 D @o

@!
. The r.h.s. will not depend on

� and v only if o0 is orthogonal to � and !. So o0 	 ! � �, that is to satisfy the
desired condition, the observable o should depend on �.

Summing up, spin in vector model turns out to be essentially phase-space
quantity.

4On-shell symmetries considered as trivial symmetries, see [43].
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9.1.3 Description of Non Relativistic Spin on the Base of Three
Constraints

Spin-Sector Lagrangian and Hamiltonian In this section we follow the work
[68]. As the Lagrangian which implies the constraints (9.13), we could take the
expression Lspin D 1

2g P!2C 1
2
gˇ2� 1

2
�.!2�˛2/. We remind that in this model ˇ2 D

3„2
4˛2

, while ˛ is any given number. Variation with respect to auxiliary variables g.t/

and �.t/ gives the equations P!2 D g2ˇ2 and !2 D ˛2, the latter implies P!! D 0.
In the Hamiltonian formulation these equations turn into the desired constraints. We
can integrate out the variable g, presenting the Lagrangian in a more compact form

Lspin D ˇ
p

P!2 � 1

2
�.!2 � ˛2/: (9.41)

This also gives the desired constraints. The last term represents kinematic (velocity-
independent) constraint. So, we might proceed as in Sect. 1.6.3 and exclude �
as well. But this would lead to loss of the manifest rotational invariance of the
formalism.

Equation for the conjugated momentum � reads � D ˇ P!p
P!2
. This implies the

primary constraint �2 D ˇ2. Momentum for � turns out to be one more primary
constraint, �� D 0. The complete Hamiltonian reads

H D �

2
.!2 � ˛2/C v1

2
.�2 � ˇ2/C v2��: (9.42)

Applying the Dirac procedure, we obtain the following sequence of constraints and
equations for the velocities:�� D 0; ) !2�˛2 D 0 ) !� D 0; ) v1 D a2

ˇ2
�.

Hence all the desired constraints (9.13) appeared. The determined velocity v1 can
be substituted into (9.42). Besides the constraints, the Hamiltonian (9.42) implies
the dynamical equations

P� D v2; P�� D 0; (9.43)

P! D �
˛2

ˇ2
�; P� D ��!: (9.44)

Neither equations nor constraints determine the variable v2 and hence �, the latter
enters as an arbitrary function into general solution for the variables! and �. Given
�.t/, general solutionwith the integration constants b and c subject to the restrictions
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bc D 0 and b2 D c2 D ˇ2 reads

! D ˛

ˇ

�
b cos

�
˛

ˇ

Z t

0

�d�

�
C c sin

�
a

b

Z t

0

�d�

��
;

� D �b sin

�
˛

ˇ

Z t

0

�d�

�
C c cos

�
˛

ˇ

Z t

0

�d�

�
: (9.45)

The only observable which can be constructed from ! and � is the spin-
vector (9.10) with the free dynamics (9.25). Hence the models (9.41) and (9.14) are
equivalent.

Spin Surface and Associated Spin Fiber Bundle SO.3/ Similarly to the previous
section, we consider the map f W R

6.!;�/ ! R
3.S/, which guarantees the desired

brackets for the spin-vector, see Eqs. (9.30)–(9.32). Due to the constraints (9.13), all
the trajectories (9.45) lie on SO.3/-invariant surface of R6

T
3 D f!2 � ˛2 D 0; �2 � ˇ2 D 0; !� D 0g: (9.46)

T
3 can be identified with the groupmanifold SO.3/. Indeed, given! and�, consider
3 � 3 matrix with the lines 1

˛
!, 1

ˇ
� and 1

˛ˇ
! � �

R D

0
B@

1
˛
!
1
ˇ

�
1
˛ˇ

! � �

1
CA : (9.47)

Equation (9.46) imply RRT D 1 and detR D 1. The mapT3 ! SO.3/, .!;�/ ! R
given by Eq. (9.47) determines diffeomorphism of the manifolds.

When .!;�/ 2 T
3, we have S2 D !2�2 � .!�/2 D ˛2ˇ2. So, f maps the

manifold T3 onto two-dimensional sphere of the radius ˛ˇ, f .T3/ D S
2.

Denote FS 2 T
3 preimage of a point S 2 S

2, FS D f �1.S/. This set is composed
by all pairs .!;�/ which lie on the same plane and thus related by SO.2/ rotations
of the plane.

The manifold T3 acquires natural structure of fiber bundle

T
3 D .S2;F; f /; (9.48)

with base S
2, standard fiber F, projection map f and structure group SO.2/.

Transformations of he structure group read

!0 D ! cos� C � sin �;
� 0 D �! sin� C � cos�;

)
�
ı!i D ��i;

ı�i D ��!i:
(9.49)

By construction, they leave inert points of base, ıSi D 0.
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Let .!;�/ 2 T
3, !3 ¤ 0. As the local coordinates of T3 in vicinity of this point,

we can take S1.!;�/; S2.!;�/, and !3. These coordinates are agreed upon with the
structure of fibration. That is S1; S2 parameterize the base S2 while !3 parameterizes
the fiber F.

Exercise Confirm that the infinitesimal transformations (9.49), together with
a suitably chosen ı� and ıvi, represent a local symmetry of the extended
action Sext D R

dt � P! C �� P� � H C v3.!;�/.

9.2 Canonical Quantization and Pauli Equation

To test our formulation, we show that our spinning particle yields the Pauli equation
in a stationary magnetic field. Consider the action

S D
Z

dt

�
m

2
Px2 C e

c
APx C

p
˛p
!2

p
D!ND!

�
; (9.50)

D!i D P!i � ge

2mc
�ijk!jBk: (9.51)

The configuration-space variables are xi.t/ and !i.t/. Here xi represents the spatial
coordinates of the particle with the mass m, charge e and gyromagnetic ratio g. In
our classical model g appeared as a coupling constant of ! with the magnetic field
B D r � A in the last term of Eq. (9.51). At the end, it produces the Pauli term in
the quantum-mechanical Hamiltonian.

Let us construct Hamiltonian formulation for the model. Equations for the
conjugated momenta pi and �i reads

p D mPx C e

c
A; ) Px D 1

m
.p � e

c
A/; (9.52)

� D
p
˛p
!2

ND!p
D!ND!

: (9.53)

Eq. (9.53) implies the primary constraints !� D 0 and �2 � ˛
!2

D 0. The complete

Hamiltonian, H D P PQ � L C va˚a;Q D .x;!/;P D .p;�/, reads

H D 1

2m
.p � e

c
A/2 � eA0 � ge

2mc
.BS/C v.!�/C v1



�2 � ˛

!2

�
: (9.54)
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There are no of higher-stage constraints in the formulation. Besides the constraints,
the Hamiltonian (9.54) implies the dynamical equations

Pxi D 1

m
. pi � e

c
Ai/; Ppi D e

c
Pxj@iAj C ge

2mc
Sj@iBj; (9.55)

P!i D v!i C 2v1�i C ge

2mc
�ijk!jBk;

P�i D �v�i � 2v1
�2

!2
!i C ge

2mc
�ijk�jBk: (9.56)

As a consequence of these equations, the spin-vector Si D �ijk!j�k has unambiguous
evolution

PSi D ge

2mc
�ijkSjBk: (9.57)

This is the classical equation for precession of spin in an external magnetic field.
Due to Eq. (9.13), the coordinates Si obey (9.12). Equations (9.55) imply the second-
order equation for xi

mRxi D e

c
�ijk PxjBk C ge

2mc
Sk@iBk: (9.58)

Note that in the absence of interaction, the spinning particle does not experience a
self-acceleration. The last term gives non vanishing contribution into the trajectory
in unhomogeneous field and can be used for semiclassical description of Stern-
Gerlach experiment. Since S2 	 „2, the S-term disappears from Eq. (9.58) at the
classical limit „ ! 0. Then Eq. (9.58) reproduces the classical motion of a charged
particle subject to the Lorentz force.

Precession of Spin Let us denote � ge
2mc B D !p, then Eq. (9.57) reads

PS D !p � S: (9.59)

The vector PS is orthogonal to the plane of !p and S at any instant. Besides,
contracting Eq. (9.59) with S we see that magnitude of spin does not change,
S2 D const. In the result, the end point of S rotates around the axis !p, see Fig. 9.1
on page 368. This motion is called precession of spin-vector. Let S.0/ D S0 is
the initial position of spin. We present this vector as a sum of longitudinal and
transversal parts with respect to !p, S0 D S0? C S0jj. Then for the constant vector
!p, the general solution to Eq. (9.59) is

S D S0jj C jS0?j.e1 cos j!pjt C e2 sin j!pjt/: (9.60)
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Fig. 9.1 According to the
precession equation,
PS D !p � S, the vector S
rotates around the axis !p

with frequency j!pj

Hence the magnitude of vector !p from Eq. (9.59) is just the frequency of preces-
sion. Equation of trajectory (9.58) in the constant magnetic field is Pv D 2

g Œ!p � v�,

that is particle’s velocity precesses with the frequency 2
g !p. For a particle with

classical gyromagnetic ratio g D 2, the two frequences coincide and the angle
between velocity and spin preserves during the evolution. For the anomalous
magnetic moment, g ¤ 2, the frequences are different. The spin precession relative
to the velocity is used in a cyclotron experiments for measurement of anomalous
magnetic moment.

Canonical Quantization We quantize only the physical variables xi; pi; Si. Their
classical brackets are

fxi; pjg D ıij; fSi; Sjg D �ijkSk: (9.61)

As the last two terms in (9.54) does not contributes into equations of motion for the
physical variables, we omit them. This gives the physical Hamiltonian

H D 1

2m
.p � e

c
A/2 � ge

2mc
BS: (9.62)

The first equation from (9.61) implies the standard quantization of the variables x
and p, we take Oxi D xi, Opi D �i„@i. According to the second equation from (9.61),
we look for the wave-function space which is a representation of the group SO.3/.
Finite-dimensional irreducible representations of the group are numbered by spin
s, which is related with the values of Casimir operator as follows: S2 	 s.s C 1/.
Then Eq. (9.12) fixes the spin s D 1

2
, and Si must be quantized by OSi D „

2
i. The

operators act on the space of two-component complex columns � called spinors.
Quantum Hamiltonian is obtained from Eq. (9.62) replacing classical variables by
the operators. This immediately yields the Pauli equation, that is Eq. (9.9) with
E D 0.
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9.3 The Strange Quantum Mechanics of Dirac Equation,
or Why We Need a Semiclassical Model of Relativistic
Spin?

Dirac Equation We expect that a semiclassical relativistic model of spin should
be closely related to the Dirac equation normally used to describe the relativistic
spin in quantum theory. The consistent description of relativistic spin is achieved in
quantum electrodynamics, where the Dirac equation is considered as a quantum
field theory equation. But it also admits a quantum-mechanical interpretation
and thus represents an example of relativistic quantum mechanics. This is of
interest on various reasons. In particular, namely being considered as a quantum-
mechanical equation, the Dirac equation gives the correct energy levels of hydrogen
atom. As we saw in Sect. 9.1.1, dynamical equations for expectation values of
operators in quantum mechanics should resemble the Hamiltonian equations of the
corresponding classical system. Let us discuss these equations in the Dirac theory.
The Dirac equation is a relativistic-covariant first-order differential equation for the
four-component complex function�.x0; xi/ D .�1; �2; �3; �4/ called Dirac spinor.
Detailed discussion of the relevant formalism can be found in the classical textbooks
[36, 37] . Here we only present a few comments which are necessary for discussion
of a classical limit of the Dirac equation.

Under the infinitesimal Lorentz transformation ıx	 D !	
x
 , the column �
transforms as follows:

ı� D � i

4
!	
�

	
�; (9.63)

where

�	
 � Œ�	; �
� D i

2
.�	�
 � �
�	/; (9.64)

and the 4 � 4 � -matrices can be composed from -matrices of Pauli

�0 D
�
1 0

0 �1
�
; � i D

�
0  i

� i 0

�
: (9.65)

We use the representation with hermitian �0 and antihermitian � i. The matrices
do not commute with each other, and the basic formula for their permutation is as
follows

Œ�	; �
�C � �	�
 C �
�	 D �2�	
: (9.66)
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The Dirac equation in an external four-potential A	

h
�	.Op	 � e

c
A	/C mc

i
� D 0; where Op	 D �i„@	; (9.67)

turns out to be covariant under the transformation (9.63). Applying the operator
�	.Op	 � e

c A	/ � mc to (9.67), we see that the Dirac equation implies the Klein-
Gordon equation with non-minimal interaction

�
.Op	 � e

c
A	/2 � e„

2c
F	
�

	
 C m2c2
�
� D 0; (9.68)

where F	
 D @	A
 � @
A	.
For the latter use, let us analyze commutators of the matrices involved. The

commutators of � -matrices can not be presented through themselves, but produce
�	
-matrices as they are written in (9.64). The set �	, �	
 forms a closed algebra

Œ�	; �
� D �2i�	
; Œ�	
; �˛� D 2i.�	˛�
 � �
˛�	/;
Œ�	
; �˛ˇ� D 2i.�	˛�
ˇ � �	ˇ�
˛ � �
˛�	ˇ C �
ˇ�	˛/: (9.69)

As it was tacitly implied in Eq. (9.63), �	
-matrices obey SO.1; 3/-algebra of
Lorentz generators. The complete algebra (9.69) can be identified with the five-
dimensional Lorentz algebra SO.2; 3/ with generators JAB, A;B D .	; 5/ D
.0; 1; 2; 3; 5/, and with the metric �AB D .�;C;C;C;�/

ŒJAB; JCD� D 2i.�ACJBD � �ADJBC � �BCJAD C �BDJAC/; (9.70)

assuming �	 � J5	, �	
 � J	
 .

Observer-Independent Probability � can be used to construct the adjoint spinor
N� D ���0 with the transformation law ı N� D i

4
N��	
!	
 . Then N�� is a scalar,

N��	� is a vector5 and so on. The vector turns out to be a conserved current, that is

@	. N��	�/ D 0; (9.71)

on solutions to the Dirac equation. The time-component of the vector is ��� .
Assuming that symbols xi represent the position of a particle, the quantity

P.t/ D ���d3x; (9.72)

5With the factor � i
4
in (9.63) and with the standard transformation law for a vector, ıv	 D !	


v
 ,
the function v	 N��	� is a scalar function.
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is identified with relativistic-invariant probability to find a particle in the infinites-
imal volume d3x at the instant t D x0

c . To confirm this interpretation, we first note
that the probability density ��� is a positive function. Second, due to the continuity
equation (9.71), integral of the density over all space does not depend on time:

d
dx0

R
V d3x��� D R

V d3x@0. N��0�/ D � RV d3x@i. N�� i�/ D � R
@V d˝i. N�� i�/D0

for the solutions � that vanish on spatial infinity. Third, P coincides with the
manifestly Lorentz-invariant quantity

� 1

6
�	
˛ˇ. N��	�/dx
dx˛dxˇ; (9.73)

when it computed over equal-time surface x0 D const of Minkowski space. This
implies an observer-independence of the probability P: all inertial observers, when
they compute P using their coordinates, will compute the same number (9.73).

Thus the relativistic Dirac equation admits a probabilistic interpretation. How-
ever, it is well known that adopting the quantum-mechanical interpretation, we
arrive at a rather strange and controversial picture. We outline here the results of
analysis on the applicability of quantum-mechanical treatment to the free Dirac
equation made by Schrödinger6 in [64]. We multiply the Dirac equation on �0,
representing it in the Schrödinger-like form

i„@t� D OH�; OH D c˛i Opi C mc2ˇ; (9.74)

where ˛i D �0� i and ˇ D �0 are known as Dirac matrices. Then OH may be
interpreted as the Hamiltonian. Passing from the Schrödinger to Heisenberg picture,
the time derivative of an operator a is i„Pa D Œa;H�, and for the expectation values
of basic operators of the Dirac theory we obtain the equations

Pxi D c˛i; Ppi D 0;

i„ P̨ i D 2.cpi � H˛i/; i„ P̌ D �2c˛ipiˇ C mc2: (9.75)

Some properties of the equations are in order.

1. The wrong balance of the number of degrees of freedom. The first equation
in (9.75) implies that the operator c˛i represents the velocity of the particle. Then
physical meaning of the operator pi becomes rather obscure in the classical limit.

2. Zitterbewegung. The Eq. (9.75) can be solved, with the result for xi.t/ being xi D
ai C dpit C ciexp.� 2iH

„ t/. The first and second terms are expected and describe
a motion along the straight line. The last term on the r.h.s. of this equation states

6For an electron interacting with electromagnetic field this analysis has been repeated by Feynman
in [65].
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that the free electron experiences rapid oscillations with higher frequency 2H
„ 	

2mc2

„ .
3. Velocity of an electron. Since the velocity operator c˛i has eigenvalues ˙c, we

conclude that a measurement of a component of the velocity of a free electron is
certain to lead to the result ˙c.

4. Operator of relativistic spin. We expect that in the Dirac theory can be con-
structed the relativistic generalization of the spin operator (9.1). The question on
the definition of a conventional spin operator has been raised a long time ago
[66, 67] and is under discussion up to date.

Many people noticed that in the Dirac theory it is possible to construct another
operators that obey to a reasonable equations [58]. Presenting these equations,
Feynman accompanied them with the following comment (see p. 48 in [65]): “The
following relations may be verified as true but their meaning is not yet completely
understood, if at all: . . . ”.

In view of all this, it seem desirable to construct a semiclassical model of spin
that will be as close as possible to the Dirac equation. By this we mean the model
which, being quantized, yields the Dirac equation. In the following sections, we
will see how the vector model clarifies the issues discussed above. In a few words,
this can be resumed as follows. As we already saw above, the vector model is
necessarily invariant under the spin-plane local symmetry which determines its
physical sector formed by observables. We show that observables of the vector
model have an expected behavior on both classical and quantum level. Comparing
quantum mechanics of the vector model with that of Dirac equation in Sect. 9.12.4,
we obtain the rules for computation of probabilities and mean values of the vector
model observables using the Dirac equation. The operators (9.382) and (9.385),
which represent observables of spinning particle in the Dirac theory, turn out to be
different from ingenuous operators written in (9.75).

The time evolution implied by the rules (9.387) turn out to be different from the
ingenuous prescription (9.75).

9.4 Spin-Tensor of Frenkel and Lorentz Covariant Form
of Spin Fiber Bundle T4

To construct the relativistic spinning particle, we need a Lorentz-covariant descrip-
tion of the spin fiber bundle (9.166). We remind that our construction involves
basic and target spaces as well as the map f W R

6.!;�/ ! R
3.S/, see

Eqs. (9.30)–(9.32). We embed this SO.3/-covariant construction into its suitably
chosen SO.1; 3/-covariant extension. Let us start from the three-vector !. We
assume that relativistic spin can be described by a vector !	 of Minkowski space
such that !	 D .0;!/ for the particle at rest in the laboratory frame. This condition
expresses the Correspondence Principle: relativistic physics should approximate to
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the Newton physics in the limit of small velocities. To represent this condition in
a covariant form in an arbitrary frame, we assume that in our model there exists
a four-vector p	 which for the particle at rest has the components . p0; 0/. For
the case of a free particle, the natural candidate is a vector proportional to the
particle’s four-velocity. For the particle in external field, the form of this vector
is dictated by the structure of interaction, see below. With this p	, the Lorentz-
invariant statement p! D 0 is equivalent to the condition that !	 D .0;!/ for the
particle at rest. Following the same lines, we also assume the condition p� D 0 for
the conjugated momentum �	 for !	. Hence we replace the basic space R6.!;�/
by direct product of two Minkowski spaces with the following natural action of the
Lorentz group on it:

SO.1; 3/ W
�
!

�

�
!
�
!0
� 0
�

D
�
� 0

0 �

��
!

�

�
: (9.76)

The relativistic generalization of the surface (9.32) is given by the following
SO.1; 3/-invariant surface of the phase spaceM � M

T
4 D

n
!� D 0; �2 � a

!2
D 0; p! D 0; p� D 0

o
: (9.77)

Below we denote these constraints T2;T5;T3 and T4. The constraints p! D 0 and
p� D 0 are of second class, so we expect 8 � 2 � 2 � 2 D 2 physical degrees of
freedom in the spin-sector.

It should be noted that !	 and �	 turn out to be space-like vectors. Indeed, in the
frame where p	 D . p0; 0/ the constraints p! D p� D 0 imply !0 D �0 D 0. This
implies !2 � 0 and �2 � 0. Then from the constraint �2 � a

!2
D 0 we conclude

!2 > 0 and �2 > 0.
Let us consider the target space. To generalize the map Si D �ijk!j�k to the case

of four-dimensional quantities, we rewrite it in an equivalent form, using the known
isomorphism among three-vectors and antisymmetric 3 � 3-matrices

Si D 1

4
�ijkSjk; then Sij D 2�ijkSk: (9.78)

Then

Si D �ijk!j�k; is equivalent to Sij D 2.!i� j � !j� i/: (9.79)

The last equality has an evident generalization to the four-dimensional case: S	
 D
2.!	�
 � !
�	/. Hence the target space R

3.S/ should be extended to the six-
dimensional space R6.D;S/ of antisymmetric 4 � 4 matrices. We present them as
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follows:

S	
.D;S/ D

0
BB@
0 �D1 �D2 �D3

D1 0 2S3 �2S2
D2 �2S3 0 2S1
D3 2S2 �2S1 0

1
CCA ; (9.80)

or, equivalently

S	
 D .Si0 D Di; Sij D 2�ijkSk/: (9.81)

Lorentz group naturally acts on this space

SO.1; 3/ W S	
.D;S/ ! S	
.D0;S0/ D �	
˛�



ˇS˛ˇ.D;S/: (9.82)

This equation determines transformation rules of the columns D and S.

Exercise Confirm that D and S transform as three-vectors under the subgroup
of rotations of the Lorentz group.

The embedding (9.81) of three-dimensional spin-vector S into the four-dimensional
spin-tensor has been suggested by Frenkel [51]. So we call S	
 the Frenkel spin-
tensor. The vector D is called dipole electric moment of the particle [59].

Now we are ready to define the covariant version of the map (9.31)

f W M.!	/ � M.�
/ ! R
6.S	
/I .!	; �
/ ! S	
 D 2.!	�
 � !
�	/:

(9.83)

It has rank equals 5, and maps a point of M � M to a pair of orthogonal
three-dimensional vectors, DS D 0. By construction, f is compatible with the
transformations (9.76) and (9.82) of SO.1; 3/: if S0	
.D;S/ D 2.!0	� 0
 � !0
� 0	/,
then S	
.D;S/ D 2.!	�
 � !
�	/.

If M � M is considered as a symplectic space with canonical Poisson bracket,
f!	; �
g D �	
 , the map f induces SO.1; 3/-Lie-Poisson bracket on R6

fS	
.!; �/; S˛ˇ.!; �/g D 2.�	˛S
ˇ � �	ˇS
˛ � �
˛S	ˇ C �
ˇS	˛/: (9.84)

Consider the image S	
.!; �/ of a point of the surface (9.77). Using the identity
S	
S	
 D 8.!2�2 � .!�/2/ together with the Eq. (9.77), we obtain five covariant
equations which determine the spin-surface S2 in an arbitrary Lorentz frame

S	
S	
 D 8a D 6„2; (9.85)
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Fig. 9.2 Fiber bundle T4 associated with relativistic spin

S	
p
 D 0: (9.86)

As .S	
p
/p	 � 0, we have only four independent equations imposed on six
variables, therefore the spin-surface has dimension 2, as it should be. Denote
FS 2 T

4 preimage of a point S	
 of the base, FS D f �1.S	
/, that is the
standard fiber, see Fig. 9.2 on page 375. Its points are related by the structure-group
transformations (9.34) and (9.35).

Consider the rest frame of the vector p	, that is p	 D . p0; 0/ in this frame. The
surface (9.77) acquires the form

!� D 0; �2 � a

!2
D 0; �0 D 0 ; !0 D 0; (9.87)

and can be identified with the non relativistic spin-surface (9.33). Being restricted
to this surface, the map (9.83) reads

S	
jT4 D

0
BB@
0 0 0 0

0 0 2S3 �2S2
0 �2S3 0 2S1
0 2S2 �2S1 0

1
CCA ; S D ! � �: (9.88)

Hence in the rest frame the dipole electric moment vanishes, while the spatial part
of spin-tensor coincides with the non-relativistic spin. We conclude that SO.3/-
construction (9.30)–(9.166) is embedded into SO.1; 3/-covariant scheme.

Concerning the relativistic extension of SO.3/ spin fiber bundle of Sect. 9.1.3,
see [68].
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9.5 Four-Dimensional Spin-Vector, Pauli-Lubanski Vector
and Bargmann-Michel-Telegdi Vector

On the pure algebraic grounds, spin-tensor of Frenkel turns out to be equivalent to
a four-dimensional vector. So the latter could also be used for the description of
relativistic spin. Here we discuss the relevant formalism.

Levi-Civita symbol with �0123 D 1 obeys the identities

�abcd�ab	
 D �2.ıc
	ı

d

 � ıc


ı
d
	/; (9.89)

�	abc�	ijk D �Œıa
i.ı

b
jı

c
k � ıb

kı
c

j/� ıa
j.ı

b
iı

c
k � ıb

kı
c

i/C
ıa

k.ı
b

iı
c

j � ıb
jı

c
i/�: (9.90)

Given an antisymmetric matrix J	
 D �J
	 and a vector p	, we define the vectors

s	 D 1

4
p�p2

�	
˛ˇp
J˛ˇ; then s	p	 D 0I (9.91)

˚	 D J	
p
; then ˚	p	 D 0: (9.92)

When p and J represent generators of the Poincaré group, the vector (9.91) is called
Pauli-Lubanski vector. It turns out to be useful for the classification of irreducible
representations of the Poincaré group [49, 69, 70].

The tensor J	
 and its dual, �J	
 � 1
2
�	
abJab, can be decomposed on these

vectors as follows:

J	
 D ˚	p
 �˚
p	

p2
� 2p�p2

�	
abpasb; (9.93)

�	
abJab D 4
p	s
 � p
s	p�p2

� 2

p2
�	
abpa˚b: (9.94)

To prove (9.93), we contract (9.90) with papiJjk. Eq. (9.94) follows from (9.93)
contracted with �ab	
 . The definitions imply the identity relating the square of s	

with a “square” of J	


s	s	 D 1

8
J	
J	
 � 1

4p2
.J	
p
/

2: (9.95)

Frenkel spin-tensor obeys S	
p
 D 0, that is ˚	 D 0, and can be used to construct
four-vector of spin (below we also call it Pauli-Lubanski vector)

s	.�/ � 1

4
p�p2

�	
˛ˇp
S˛ˇ: (9.96)
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In the free theory p	 is independent on S	
 , so this equation is linear on S	
 and can
be inverted. According to Eq. (9.93) we have

S	
 D � 2p�p2
�	
˛ˇp˛sˇ; (9.97)

that is the two quantities are mathematically equivalent, and we could work with
s	 instead of S	
 . The Eq. (9.95) implies proportionality of their magnitudes. In the
interacting theory p	 contains S	
 , so (9.96) becomes a non linear equation.

Let us compare spatial components of s	 with the non-relativistic spin-vector S.
In the rest system of p	, p	 D . p0; 0/,

p�p2 D jp0j, we have s0 D 0 and

si D p0

4jp0j�
ijkSjk D p0

jp0jSi; (9.98)

that is the two vectors coincide. This explains our normalization for s	, Eq. (9.91).
Under the Lorentz boost, S transforms as the spatial part of a tensor whereas s	

transforms as a four-vector. So the two spins are different in all Lorentz frames
except the rest frame. The relation between them in an arbitrary frame follows from
Eq. (9.97)

Si D p0p�p2

�
ıij � pipj

. p0/2

�
sj : (9.99)

A four-dimensional vector s	bmt with the property u	s	bmt D 0, where u	 represents
a four-velocity of the particle, has been successively used by Bargmann Michel
and Telegdi to analyze the spin precession in uniform magnetic field, see [73] for
details. In our vector model, even in the case of interaction, the condition ps D 0

implies us D 0. So we expect that our equations of motion for s	 should represent a
generalization of the Bargmann-Michel-Telegdi equations to the case of an arbitrary
electromagnetic field.

In summary, the relativistic spin can be described by the Frenkel spin-
tensor (9.80) composed by the dipole electric moment D and the spin S. In our
vector model the Frenkel tensor is a composite quantity, see (9.83). In the rest frame
of the vector p	 we have D D 0, while S coincides with the vector of non-relativistic
spin. Intuitively, the Frenkel tensor shows how the non relativistic spin looks like in
an arbitrary Lorentz frame.

9.6 Search for the Lagrangian of Relativistic Spinning
Particle

9.6.1 Variational Problem for Prescribed Dirac’s Constraints

In the previous section we have discussed only the spin-sector of a spinning
particle. To construct a complete theory, we add the position x	.�/ and its



378 9 Classical and Quantum Relativistic Mechanics of a Spinning Particle

conjugated momentum p	.�/ taken in an arbitrary parametrization � . This implies
that we deal with the reparametrization-invariant theory. So besides the spin-sector
constraints (9.77) we expect also the mass-shell condition T1 D p2 C .mc/2 D 0.
Let us look for the Hamiltonian action which could produce these constraints.
According to general theory, it has the form

R
d� pPxC� P!�.H0C�iTi/where Ti are

the primary constraints of the theory.We expectH0 D 0 due to the reparametrization
invariance. As the suitable primary constraints, let us take p2 C .mc/2 C �2 � a

!2
,

T2;T3 and T4. Thus we consider the Hamiltonian variational problem

SH D
Z

d� pPx C � P! � Œ
�1

2
. p2 C .mc/2 C �2 � a

!2
/C

�2.!�/C �3. p!/C �4. p�/�: (9.100)

Due to the Poisson bracket fT2;T5g D 2T5, in this formulation T5 D 0 appears as
the secondary constraint. To arrive at the Lagrangian action, we could follow the
lines of Sect. 2.1.4. Excluding the conjugate momenta from SH according to their
equations of motion, we obtain an action with the auxiliary variables �i. Excluding
them, one after another, we obtain various equivalent forms of the Lagrangian
action. To simplify these computations, we proceed as follows. First, we note that
the constraints !� D 0 and p! D 0 always appear from the Lagrangian which
involves the projector N, that is we use N Px and N P! instead of Px and P!. So we set
�2 D �3 D 0 in Eq. (9.100). Second, we present the remaining terms in (9.100) in
the matrix form

S D
Z

d� . p; �/

� Px
P!
�

� �1

2
. p; �/

�
� ��

�� �

��
p
�

�
� �1

2

h
.mc/2 � ˛

!2

i
;

(9.101)

where � D �4
�1
. The matrix appeared in (9.101) is invertible, the inverse matrix is

1

1 � �2

�
� ���

��� �

�
: (9.102)

Equation (9.101) is the Hamiltonian variational problem of the form pPq� �1
2
. pApC

M2/, the latter follows from the Lagrangian �M
p�PqA�1 Pq, see Sect. 8.7.2. This

allows us to exclude the variable �1. As it was combined above, we then replace Px,
P! by N Px, N P! and obtain

S D �
Z

d�

r
.mc/2 � ˛

!2

vuut�.N Px;N P!/
 

�

1��2
���
1��2���

1��2
�

1��2

!�
N Px
N P!

�
D (9.103)

�
Z

d�

r
.mc/2 � ˛

!2

p
.1 � �2/�1 Œ�PxN Px � P!N P! C 2�PxN P!�: (9.104)
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To exclude the remaining auxiliary variable �, we compute variation of (9.104) with
respect to �, this gives the equation

.PxN P!/�2 � .PxN Px C P!N P!/�C .PxN P!/ D 0; (9.105)

which determines �

�˙ D .PxN Px C P!N P!/˙p
.PxN Px C P!N P!/2 � 4.PxN P!/2
2.PxN P!/ : (9.106)

We substitute �C into (9.104) and use �C�� D 1. Then (9.104) turns into the
following action

S D � 1p
2

Z
d�

r
m2c2 � ˛

!2
�

q
�PxN Px � P!N P! C

p
ŒPxN Px C P!N P!�2 � 4.PxN P!/2: (9.107)

The matrix N	
 is the projector on the plane orthogonal to !


N	
 D �	
 � !	!


!2
; then N	˛N˛
 D N	


; N	
!

 D 0: (9.108)

In the spinless limit, ˛ D 0 and !	 D 0, the functional (9.107) reduces to
the expected Lagrangian of spinless particle, �mc

p�Px	 Px	. As we know from
Sect. 8.7.2, the latter can be written in equivalent form using the auxiliary variable
�.�/ as follows: 1

2�
Px2 � �

2
m2c2. Similarly to this, (9.107) can be presented in the

equivalent form

S D
Z

d�
1

4�1

h
PxN Px C P!N P! �

p
ŒPxN Px C P!N P!�2 � 4.PxN P!/2

i
�

�1

2
Œ.mc/2 � ˛

!2
�: (9.109)

In summary, besides the “minimal” Lagrangian (9.107) we have obtained two its
equivalent formulations given by Eqs. (9.104) and (9.109). The Lagrangians provide
the appearance of equation p� D 0 as the primary constraint. In turn, this seems
crucial to introduce an interaction consistent with the constraints.

9.6.2 Interaction and the Problem of Covariant Formalism

In the formulation (9.107) without auxiliary variables, our model admits the
minimal interaction with electromagnetic field and with gravity. This does not
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spoil the number and algebraic structure of constraints presented in the free theory.
Interaction with an electromagnetic potential is achieved by adding the term

Sint D e

c

Z
d�A	 Px	: (9.110)

The minimal interaction with gravity is achieved [80, 81] by covariantization
of (9.107). We replace �	
 ! g	
 , and usual derivative by the covariant one,

P!	 ! r!	 D P!	 C �
	

˛ˇ Px˛!ˇ: (9.111)

Velocities Px	, r!	 and projector N	
 transform like contravariant vectors and
covariant tensor, so the action is manifestly invariant under the general-coordinate
transformations.

To introduce an interaction of spin with electromagnetic field, we use [82] the
formulation (9.109) with the auxiliary variable �1. We add to the action (9.109) the
term (9.110) and replace

P!	 ! D!	 � P!	 � �1 e	

c
F	
!
: (9.112)

We have denoted 	 D g
2
, where g is gyromagnetic ratio, this agreement simplifies

many of equations below. So we restore g only in the final answers. �1 in
this expression provides the homogeneous transformation law of D! under the
reparametrizations, D� 0!0 D @�

@� 0

D�!.
The interaction of spin with gravity through the gravimagnetic moment will be

achieved in the formulation (9.104), see below.
Concerning the interaction of spin with electromagnetic field, let us briefly

discuss an issue with nearly a century of history, that is not completely clarified
so far. While the complete relativistic Hamiltonian of the covariant formulation
will be obtained below, its linear on spin part can be predicted from a symmetry
considerations. Indeed, the only Lorentz and U.1/-invariant term which involves F
and S is F	
S	
 . Using the covariant condition (9.86) we obtain

Hrelspin 	 � e

4mc
F	
S

	
 D e

mc

�
1

mc
SŒp � E� � BS

�
: (9.113)

This can be compared with spin part of the Hamiltonian (9.9) with g D 2

Hspin D e

mc

�
1

2mc
SŒp � E� � BS

�
: (9.114)
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They differ by the famous and troublesome factor7 of 1
2
. The same conclusion

follows from comparison of equations of motion of the two formulations [60]. As
we saw in Sect. 9.1.1, the expression (9.114) has very strong experimental support.
The question, why a covariant formalism does not lead directly to the correct result,
has been raised in 1926 [51], and remain under discussion to date [60].

We show in Sect. 9.8 that the vector model provides an answer to this question
on a pure classical ground, without appeal to the Dirac equation. In a few words it
can be described as follows. The relativistic vector model involves a second-class
constraints (T3 and T4 of Eq. (9.77)), which we take into account by passing from the
Poisson to Dirac bracket. So in the covariant formulation we arrive at the relativistic
Hamiltonian (9.113) accompanied by non canonical classical brackets. To construct
the quantum mechanics, we could work with the relativistic Hamiltonian, but
in this case we need to find quantum realization of the non canonical brackets.
Equivalently, we can find the variables with canonical brackets and quantize them
in the standard way. The relativistic Hamiltonian (9.113), when written in the
canonical variables, just gives (9.114).

9.6.3 Particle with the Fundamental Length Scale

Our basic model yields the fixed value of spin, as it should be for an elementary
particle. Let us present the modification which leads to the theory with unfixed
spin, and, similarly to Hanson-Regge approach [71], with a mass-spin trajectory
constraint. Consider the following Lagrangian

L D � mcp
2

vuut�PxN Px � l2
P!N P!
!2

C
s�

PxN Px C l2
P!N P!
!2

�2
� 4l2

.PxN P!/2
!2

; (9.115)

where l is a parameter with the dimension of length. The Dirac procedure yields the
Hamiltonian

H D �1

2

�
p2 C m2c2 C �2!2

l2

�
C �2.!�/C �3. p!/C �4. p�/ ; (9.116)

which turns out to be combination of the first-class constraints p2Cm2c2C �2!2

l2
D 0,

!� D 0 and the second-class constraints p! D 0, p� D 0. The Dirac procedure
stops on the first stage, that is there are no of secondary constraints. As compared
with (9.107), the first-class constraint �2 � ˛

!2
D 0 does not appear in the present

7In discussing this factor often refer to Thomas precession [52]. We will not touch this delicate and
controversial issue [72, 73] because of the covariant formalism automatically accounts the Thomas
precession [15].



382 9 Classical and Quantum Relativistic Mechanics of a Spinning Particle

model. Due to this, square of spin is not fixed, S2 D 8.!2�2 � .!�/2/ � 8!2�2.
Using this equality, the mass-shell constraint acquires the form similar to the string
theory

p2 C m2c2 C 1

8l2
S2 D 0: (9.117)

It has a clear meaning: the energy of the particle grows with its spin. The model
has four physical degrees of freedom in the spin-sector. As the independent gauge-
invariant degrees of freedom, we can take three components Sij of the spin-tensor
together with any one product of conjugate coordinates, for instance, !0�0.

9.6.4 Classification of Vector Models

While we concentrate on themodel specified by Eq. (9.77), it is instructive to discuss
other sets of constraints that could be used for construction of a spinning particle.
The Eq. (9.95) relating the Poincaré and Lorentz spins

s	s	 D 1

8
S	
S	
 � 1

4p2
.S	
p
/

2 D

!2�2 � .!�/2 � 1

p2
Œ!2. p�/2 C �2. p!/2 � 2. p!/. p�/.!�/�; (9.118)

turns out to be useful in what follows.

1. Our basic model (9.77) with two degrees of freedom implies S	
p
 D 0. Then
Eq. (9.118) implies proportionality of the two spins, 8s2 D S2, whereas their
magnitudes are fixed due to the constraints T2 and T5. The variables x	; p	 and
S	
 have vanishing brackets with first-class constraints, so they are candidates
for observables.

2. The model with the constraints !2 D ˛2 and �2 D ˇ2 instead of �2 D ˛
!2

is
essentially equivalent to the basic model.

3. Let us replace T3 � p! D 0 by T 0
3 � p! � p

!2 D 0 in the set (9.77). These
constraints appear in the model of rigid particle [63], when it is considered using
the formalism described in Sect. 2.10.1. T4 and T5 can be taken as the second-
class constraints, while T2 and T 0

3 form the first-class subset. As a consequence,
the model has two degrees of freedom. The Poincaré and Lorentz spins are
proportional and have fixed magnitudes. The variables x	 and S	
 have non
vanishing brackets with first-class constraints. After canonical quantization, the
constraint T 0

3 D 0 turns into the Dirac equation. Hence this semiclassical model
can be used to study the relation among classical observables and operators of
the Dirac theory.
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4. Hanson and Regge developed their model of a relativistic top [71] on the base of
antisymmetric tensor S	
 without making of any special assumptions on its inner
structure. The tensor is subject to first-class constraints S	
p
 D 0. This implies
phase space with 2�6�2�3 D 6 degrees of freedom as well as proportional spins
with unfixed magnitude. A similar vector model could be constructed starting
from the Hamiltonian action

SH D
Z

d� pPx C � P! � �1

2
Œp2 C m2c2 C f .S2/�� �	S	
p
; (9.119)

where S	
 D 2.!	�
 � !
�	/. The variables x	 and S	
 are not observables in
this model.

5. To avoid the unobservable character of original variables in the model (9.119), we
could replace S	
p
 D 0 by the pair of second-class constraints p! D p� D 0.
They provide S	
p
 D 0 and 8 � 2 D 6 degrees of freedom.

6. Adding the first-class constraint !� D 0 to the model of Item 5 we arrive at the
Lagrangian (9.115) with four degrees of freedom.

7. There are models based on the light-like vector !	 [74]. Consider the first-class
constraints

!2 D 0; !� D 0; �2. p!/2 D const; then s2 D const; S2 D 0: (9.120)

This implies two degrees of freedom. The Poincaré and Lorentz spins, while are
fixed, do not correlate one with another. The variables x	, S	
 and s	 are not
observable quantities. We note also that S	
p
 ¤ 0, this complicates the analysis
of non relativistic limit.

8. Let us replace �2. p!/2 D const by
p
�2. p!/ D const in the set (9.120).

Similarly to Item 3, this constraint may be classical analog of the Dirac equation.
This model still has not been studied.

A common for the models 5–8 is the problem whether they admit an interaction
with external fields. Concerning the Hanson-Regge model, in their work [71] they
analyzed whether the spin-tensor interacts directly with an electromagnetic field,
and concluded on impossibility to construct the interaction in a closed form. In our
vector model an electromagnetic field interacts with the part !	 of the spin-tensor.

9.7 Interaction with Electromagnetic Field

In this rather technical section we demonstrate that our variational problem yields
a model of spinning particle with expected properties. In particular, our equations
of motion generalize an approximate equations of Frenkel and Bargmann-Michel-
Telegdi to the case of an arbitrary electromagnetic field.



384 9 Classical and Quantum Relativistic Mechanics of a Spinning Particle

9.7.1 Manifestly Covariant Hamiltonian Formulation

As we saw in previous section, interaction with an arbitrary electromagnetic field
can be described within the action

S D
Z

d�
1

4�

�
PxN Px C D!ND! �

q
ŒPxN Px C D!ND!�2 � 4.PxND!/2

�
�

�

2
.m2c2 � ˛

!2
/C e

c
APx; (9.121)

where the term

D!	 � P!	 � �e	

c
F	
!
; (9.122)

accounts the spin-field interaction.
Let us construct Hamiltonian formulation of the model. Conjugate momenta for

x	, !	 and � are denoted as p	, �	 and p�. We use also the canonical momentum
P	 � p	 � e

c A	. Contrary to p	, the canonical momentum is U.1/ gauge-invariant
quantity.

Since p� D @L
@P�D0, the momentum p� represents the primary constraint, p� D 0.

Expressions for the remaining momenta, p	 D @L
@Px	 and �	 D @L

@ P!	 , can be written in
the form

P	 D 1

2�
.N Px	 � K	/;

K	 � T� 1
2 Œ.PxN Px C D!ND!/ .N Px/	 � 2.PxND!/.ND!/	� ; (9.123)

�	 D 1

2�
.ND!	 � R	/;

R	 � T� 1
2 Œ.PxN Px C D!ND!/ .ND!/	 � 2.PxND!/.N Px/	� ; (9.124)

where T D ŒPxN Px C D!ND!�2 � 4.PxND!/2. The functions K	 and R	 obey the
following remarkable identities

K2 D PxN Px; R2 D D!ND!; KR D �PxND!;

PxR C D!K D 0; PxK C D!R D T
1
2 : (9.125)

Due to Eq. (9.108), contractions of the momenta with !	 vanish, that is we have the
primary constraints !� D 0 and P! D 0. One more primary constraint, P� D 0,
is implied by (9.125).
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Hence we deal with a theory with four primary constraints. Hamiltonian is
obtained excluding velocities from the expression

H D pPx C � P! � L C �iTi; (9.126)

where �i are the Lagrangian multipliers for the primary constraints Ti. To obtain its
manifest form, we note the equalities P2 D 1

2�2
ŒPxN Px � PxK�, �2 D 1

2�2
ŒD!ND! �

D!R�, and P Px C �D! D 2L1, where L1 is the first line in Eq. (9.121). Then,
using (9.125) we obtain

.P2 C �2/ D 2

�
L1: (9.127)

Further, using Eq. (9.125) we have

pPx C � P! � P Px C e

c
APx C �D! C �

e	

c
.�F!/ D

2L1 C e

c
APx � �e	

4c
.FS/; (9.128)

where appeared the Frenkel spin-tensor S	
 . Using (9.128) and (9.127) in (9.126),
the Hamiltonian reads

H D �

2



P2 � e	

2c
.FS/C m2c2 C �2 � ˛

!2

�
C

�2.!�/C �3.P!/C �4.P�/C �0p�: (9.129)

The fundamental Poisson brackets fx	; p
g D �	
 and f!	; �
g D �	
 imply

fx	;P
g D �	
; fP	;P
g D e

c
F	
; (9.130)

fS	
; S˛ˇg D 2.�	˛S
ˇ � �	ˇS
˛ � �
˛S	ˇ C �
ˇS	˛/: (9.131)

fS˛ˇ; !	g D 2�	Œ˛!ˇ�; fS˛ˇ; �	g D 2�	Œ˛�ˇ�: (9.132)

According to Eq. (9.131), the spin-tensor is generator of Lorentz algebra SO.1; 3/.
As !� , !2 and �2 are Lorentz-invariants, they have vanishing Poisson brackets with
S	
 . To reveal the higher-stage constraints we write the equations PTi D fTi;Hg D 0.
The Dirac procedure stops on third stage with the following equations

p� D 0 ) T1 � P2 � e	

2c
.FS/C m2c2 C �2 � ˛

!2
D 0

) �3C C �4D D 0 ; (9.133)

T2 � .!�/ D 0 ) T5 � �2 � ˛

!2
D 0 ; (9.134)
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T3 � .P!/ D 0 ) �4 D �2�c

e
aC ; (9.135)

T4 � .P�/ D 0 ) �3 D 2�c

e
aD : (9.136)

We have denoted

C D �e.	� 1/

c
.!FP/C e	

4c
.!@/.FS/;

D D �e.	 � 1/
c

.�FP/C e	

4c
.�@/.FS/; (9.137)

and the function a is written in (9.139). The last equation from (9.133) turns out to
be a consequence of (9.135) and (9.136) and can be omitted. Due to the secondary
constraint T5 appeared in (9.134) we can replace the constraint T1 on the equivalent
one

T1 � P2 � e	

2c
.FS/C m2c2 D 0: (9.138)

This can be compared with Eq. (9.68). The Dirac procedure revealed two secondary
constraints written in Eqs. (9.138) and (9.134), and fixed the Lagrangian multipliers
�3 and �4, the latter can be substituted into the Hamiltonian. The multipliers �0, �2
and the auxiliary variable � have not been determined. H vanishes on the complete
constraint surface, as it should be in a reparametrization-invariant theory.

We summarized the algebra of Poisson brackets between constraints in the
Table 9.1. The constraints p�, T1, T2 and T5 form the first-class subset, while
T3 and T4 represent a pair of second class. The presence of two primary first-

Table 9.1 Algebra of constraints

T1 T5 T2 T3 T4

T1 D P2� 0 0 0 �2C �2D
	e
2c .FS/C m2c2

T5 D �2 � ˛
!2

0 0 �2T5 	 0 �2T4 	 0 2˛
.!2/2

T3 	 0

T2 D !� 0 2T5 	 0 0 �T3 	 0 T4 	 0

T3 D P! 2C 2T4 	 0 T3 	 0 0 T1 C e
2ca

	 e
2ca

T4 D P� 2D � 2˛
.!2/2

T3 	 0 �T4 	 0 �T1 � e
2ca 0

	 � e
2ca
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class constraints p� and T2 is in correspondence with the fact that two lagrangian
multipliers remain undetermined within the Dirac procedure.

Below we will use the following notation. In the equation which relates velocity
and canonical momentum will appear the matrix T

T	
 D �	
 � .	 � 1/a.SF/	
; a D �2e

4m2c3 � e.2	C 1/.SF/
: (9.139)

Using the identity S	˛F˛ˇSˇ
 D � 1
2
.S˛ˇF˛ˇ/S	
 we find the inverse matrix

QT	
 D �	
 C .	� 1/b.SF/	
; b D �2e

4m2c3 � 3e	.SF/
: (9.140)

The two functions are related as follows: b D 2aŒ2C .	 � 1/a.SF/��1. The vector
Z	 is defined by

Z	 D b

4c
S	.@F˛ˇ/S

˛ˇ � b

4c
S	@ .FS/: (9.141)

This vanishes for homogeneous field, @F D 0. The evolution of the basic variables
obtained according the standard rule Pz D fz;Hg. The equations read

Px	 D �.T	
P
 C 	ca

b
Z	/; PP	 D e

c
.F Px/	 C �

	e

4c
@	.FS/; (9.142)

P!	 D �
e	

c
.F!/	 � �

2caC

e
P	 C �	 C �2!

	;

P�	 D �
e	

c
.F�/	 � �2caD

e
P	 � ˛

.!2/2
!	 � �52�

	: (9.143)

Neither constraints nor equations of motion do not determine the variables � and
�2, that is the interacting theory preserves both reparametrization and spin-plane
symmetries of the free theory. As a consequence, all the basic variables have
ambiguous evolution. x	 and P	 have one-parametric ambiguity due to � while
! and � have two-parametric ambiguity due to � and �2. The variables with
ambiguous dynamics do not represent observable quantities, so we need to search
for the variables that can be candidates for observables. We note that (9.143) imply
an equation for S	
 which does not contain �2

PS	
 D �
e	

c
.FS/Œ	
� C 2P Œ	Px
� : (9.144)

This proves that the spin-tensor is invariant under local spin-plane symmetry. The
remaining ambiguity due to � contained in Eqs. (9.142) and (9.144) is related with
reparametrization invariance and disappears when we work with physical dynamical
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variables xi.t/. So we will work with x	,P	 and S	
 . We remind that our constraints
imply the algebraic restrictions on spin-tensor

S	
P� D 0; S	
S	
 D 8˛: (9.145)

Equations (9.142) and (9.144), together with (9.145), form a closed system which
determines evolution of a spinning particle.

The quantities x	, P	 and S	
 , being invariant under spin-plane symmetry,
have vanishing brackets with the corresponding first-class constraints T2 and T5.
So, obtaining equations for these quantities, we can omit the corresponding terms
in the Hamiltonian (9.129). Further, we can construct the Dirac bracket for the
second-class pair T3 and T4. Since the Dirac bracket of a second-class constraint
with any quantity vanishes, we can now omit T3 and T4 from (9.129). Then the
relativistic Hamiltonian acquires an expected form (compare it with the square of
Dirac equation (9.68))

H D �

2



P2 � e	

2c
.FS/C m2c2

�
: (9.146)

The Eqs. (9.142) and (9.144) follow from this H with use of Dirac bracket, Pz D
fz;HgDB. The Dirac brackets in physical-time parametrization will be computed in
Sect. 9.7.3. The brackets in arbitrary parametrization can be found in [75].

We could also use the constraint S	
P
 D 0 to represent S0i through Sij, then

H D �

2

�
P2 C eg

c

�
1

P0
SŒp � E� � BS

�
C m2c2

�
: (9.147)

9.7.2 Lagrangian Equations of Motion and Comparison
with Approximate Equations of Frenkel and
Bargmann-Michel-Telegdi

Lagrangian Equations We can exclude the momenta P and the auxiliary variable
� from the equations of motion. This yields second-order equation for the particle’s
position. To achieve this, we solve the first equation from (9.142) with respect to
P and use the identities .SFZ/	 D � 1

2
.SF/Z	, QT	
Z
 D b

a Z	, this gives P	 D
1
�

QT	
 Px
 � 	cZ	. Then the condition S	
P
 D 0 reads 1
�
.S QT Px/	 D 	c.SZ/	. Using

this equality, P2 can be presented as P2 D 1
�2
.PxGPx/C 	2c2Z2, where appeared the

symmetric matrix

G	
 D . QTT QT/	
 D Œ�C b.	 � 1/.SF C FS/C b2.	 � 1/2FSSF�	
: (9.148)

The matrix G is composed from the Minkowski metric �	
 plus spin and field-
dependent contribution, G	
 D �	
 C h	
.S/. So we call G the effective metric
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induced along the world-line by interaction of spin with electromagnetic field. We
substitute P2 into the constraint (9.138), this gives �

� D
p�PxGPx

mrc
; m2

r D m2 � 	e

2c3
.FS/� 	2Z2 : (9.149)

This shows that the presence of � in Eq. (9.122) implies highly non-linear interaction
of spinning particle with electromagnetic field. The final expression of canonical
momentum through velocity is

P	 D mrcp�PxGPx Œı
	

 C .	 � 1/b.SF/	
� Px
 � 	cZ	: (9.150)

Using (9.149) and (9.150), we exclude P	 and � from the Hamiltonian equa-
tions (9.142), (9.144) and (9.145). This gives closed system of Lagrangian equations
for the set x; S. It is convenient to work with reparametrization-invariant derivative

D D 1p�PxGPx
d

d�
: (9.151)

Then we have the dynamical equations

D
�
mr. QTDx/	

� D e

c2
.FDx/	 C 	e

4mrc3
@	.SF/C 	DZ	; (9.152)

DS	
 D e	

mrc2
.FŒ	˛S˛


� � 2bmrc.	 � 1/DxŒ	.SFDx/
� C 2	cDxŒ	Z
� ;

(9.153)

the Lagrangian counterpart of the condition S	
P
 D 0,

S	

"

Px
 C .	 � 1/b.SF Px/
 � 	
p�PxGPx

mr
Z


#
D 0; (9.154)

as well as the value-of-spin condition, S	
S	
 D 8˛.
In the absence of interaction we obtain an expected dynamics

d

d�

Px	p�Px2 D 0; PS	
 D 0; S	
 Px
 D 0: (9.155)

The trajectory is a straight line, while S	
 is a constant tensor.

Discussion Equations (9.152) and (9.154) show how spin modifies the Lorentz-
force equation (1.3). Let us discuss qualitatively the corresponding contributions.
Canonical momentum P	 D p	 � e

c A	 of a spinless particle is proportional to its
velocity, P	 D mcp�Px2 Px	. Interaction of spin with electromagnetic field modifies
the relation between the two quantities, see Eq. (9.150). Contribution of anomalous
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magnetic moment 	 ¤ 1 to the difference between Px	 and P	 is proportional to
J
c3

	 „
c3
, while the term with a gradient of field is proportional to J2

c3
	 „2

c3
. The

interaction also modifies the constraints. In particular, the condition S	
 Px
 D 0

of a free theory turns into S	
P
 D 0 with P
 ¤ Px
 . This has an important
consequence. If we adopt the standard special relativity notions of time and distance,
the components S0i vanish in the frame P	 D .P0; E0/ instead of the rest frame.
Hence our model predicts small dipole electric moment of the particle immersed in
an external field.

Other important point is the emergence of an effective metric (9.148) for the
particle in flat space. As we saw above, the incorporation of the constraints (9.145)
into a variational problem, as well as the search for an interaction consistent with
them turn out to be rather non trivial tasks, and the action (9.121) is probably the
only solution of the problem. So, the appearance of effective metric (9.148) in
equations of motion seems to be unavoidable in a systematically constructed model
of spinning particle. An important consequences will be discussed in Sect. 9.8.

Summing up, in general case the Lorentz force is modified due to the presence of
(time-dependent) radiation mass mr (9.149), the tetrad field QT , the effective metric
G and due to two extra-terms on right hand side of (9.152).

Consider the “classical” value of magnetic moment	 D 1. Then QT D � and G D
�. The Lorentz force is modified due to the presence of time-dependent radiation
mass mr, and two extra-terms on right hand side of (9.152).

Homogeneous Field The structure of our equations simplifies significantly for the
homogeneous field @˛F	
 D 0, then Z	 D 0. Contraction of (9.154) with F	

yields .SF/PD 0, that is S	
F	
 turns out to be the conserved quantity. This implies
Pmr D Pa D Pb D 0. Hence the Lorentz force is modified due to the presence of time-
independent radiation mass mr, the tetrad field QT and the effective metric G. The
Eqs. (9.152) and (9.154) read

d

d�

Px	p�PxGPx D e

mrc2
.TFPx/	 � .T PQT Px/	; (9.156)

PS	
 D e	
p�PxGPx
mrc2

FŒ	˛S˛
� � 2bmrc.	 � 1/p�PxGPx PxŒ	.SF Px/
�: (9.157)

They simplify more in the parametrization which implies

G	
 Px	 Px
 D �c2 : (9.158)

Since GPxPx D Px2CO.S2/, in the linear approximation on S this is just the proper-time
parametrization.

The equations become even more simple when 	 D g
2

D 1. Let us specify the
equation of precession of spin to this case, taking physical time as the parameter,
� D t. Then (9.154) reduces to the Frenkel condition, S	
 Px
 D 0, while (9.153)

reads PS	
 D e
p�Px2
mrc2

.FS/Œ	
�. We decompose spin-tensor on electric dipole moment



9.7 Interaction with Electromagnetic Field 391

D and Frenkel spin-vector S according to (9.81), then D D � 2
c S � v, while

precession of S is given by

dS
dt

D e
p

c2 � v2

mrc3
Œ�ŒE � Œv � S��C cS � B� : (9.159)

Comparison with Frenkel Equations Frenkel found equations of motion consis-
tent with the condition S	
 Px
 D 0 up to order O3.S;F; @F/. Besides, he considered
the case 	 D 1. Taking these approximations in our equations in the proper-time
parametrization

p�Px2 D c, we arrive at those of Frenkel (our S is 2mc
e of Frenkel S)

d

d�

h
.m � e

4mc3
.SF//Px	 C e

8m2c3
S	˛@˛.SF/

i
D e

c
.F Px/	 C e

4mc
@	.SF/;

(9.160)

PS	
 D e

mc

�
FŒ	˛S˛
� � 1

4mc2
PxŒ	S
�˛@˛.SF/

�
; S	
 Px
 D 0: (9.161)

Comparison with Bargmann-Michel-Telegdi Equations BMT-equations are

Rx	 D e

mc
.F Px/	; (9.162)

Ps	 D e	

mc
.Fs/	 � e

mc3
.	 � 1/.sFPx/Px	; s	 Px	 D 0: (9.163)

Obtaining their equations in homogeneous field, Bargmann, Michel and Telegdi
supposed that the motion of a particle is independent from the motion of spin.
Besides they looked for the equation linear on s	 and F	
 . It is convenient to
introduce BMT-tensor dual to s	

S	
BMT D 2

c
�	
˛ˇs˛ Pxˇ: (9.164)

Due to (9.163) this obeys the equation

PS	
BMT D e

mc
FŒ	˛S˛
�BMT C 	� 1

c2
PxŒ	.SBMTF Px/
�: (9.165)

Taking the proper-time parametrization and neglecting non linear on F and S terms
in our Eqs. (9.156) and (9.157), we obtain (9.162) and (9.165).

Exact Solution to Equations of Motion in a Constant Magnetic Field Compar-
ing Eqs. (9.156) and (9.162) we conclude that spin-field interaction modifies the
Lorentz-force equation even for the homogeneous magnetic field. To estimate the
influence, it is convenient to work with four-dimensional spin-vector (9.96) instead
of spin-tensor. The constraint S	
P
 D 0 implies s	 Px	 D 0, so s	 can be identified
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Fig. 9.3 Momentum EP , velocity E
, and spin Es of a spinning particle in the uniform magnetic field
EB

with BMT-vector of spin. As a consequence of Eqs. (9.142) and (9.144), it obeys the
equation

Ps	 D �
e	

c

�
.Fs/	 C 1

P2
.sFP/P	

�
� 1

P2
. PPs/P	: (9.166)

For the homogeneous magnetic field the Eqs. (9.142) and (9.166) has been solved
exactly [75], a qualitative picture of motion for 	 ¤ 1 is presented on Fig. 9.3
on page 392. Besides oscillations of spin first calculated by Bargmann, Michel
and Telegdi, the particle with anomalous magnetic moment experiences an effect
of magnetic Zitterbewegung of the trajectory. Usual circular motion in the plane
orthogonal to B is perturbed by slow oscillations along B with the amplitude of

order of Compton wavelength, EP
P0 �C. The Larmor frequency and the frequency of

spin oscillations are also shifted by small corrections.

9.7.3 Parametrization of Physical Time and Physical
Hamiltonian

Equations for physical variables xi.t/, P i.t/ and S	
.t/ follow from the formula
of derivative of parametric function dz

dt D c Pz
Px0 after the substitution of (9.142)

and (9.144) on the right hand side. Our task here is to find a conventional
Hamiltonian for these equations. Consider the Hamiltonian action associated with
the Hamiltonian (9.129),

R
d� pPxC� P!��iTi. The variational problem provides both

equations of motion and constraints of the vector model in arbitrary parametrization.
Using the reparametrization invariance of the functional, we take physical time as
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the evolution parameter, � D x0

c D t, then the functional reads

SH D
Z

dt c QP0 � eA0 C piPxi C �	 P!	 �

�

2



� QP2

0 C P2
i � e	

2c
.FS/C m2c2 C �2 � ˛

!2

�
� �iTi; (9.167)

where it is convenient to denote QP0 D p0 � e
c A0. We can treat the term associated

with � as a kinematic constraint of the problem. According to Sect. 1.6.2 we solve
the constraint,

QP0 D � QP0 D �
r
P2

i � e	

2c
.FS/C m2c2 C �2 � ˛

!2
; (9.168)

and substitute the result back into Eq. (9.167), this gives an equivalent form of the
functional

SH D
Z

dt pi Pxi C �	 P!	 �
�

c

r
P2

i � e	

2c
.FS/C m2c2 C �2 � ˛

!2
C eA0C

�2!	�
	 C �3P	!	 C �4P	�	

�
; (9.169)

where the substitution (9.168) is implied in the last two terms as well. The sign
in front of the square root in (9.168) was chosen according to the right spinless
limit (8.183) and (8.185). The expression in square brackets is the Hamiltonian.
The variational problem implies the first-class constraints T2 D !� D 0, T5 D
�2 � ˛

!2
D 0 and the second-class constraints

T3 D �P0!0 C P i!i D 0; T4 D �P0�0 C P i� i D 0; (9.170)

where

P0 �
r
P2

i � e	

2c
.FS/C m2c2: (9.171)

In all expressions below the symbol P0 represents the function (9.171).
To represent the Hamiltonian from (9.169) in a more familiar form, we take into

account the second-class constraints by passing from Poisson to Dirac bracket

fA;BgD D fA;Bg � fA;T3gfT4;T3g�1fT4;Bg �
fA;T4gfT3;T4g�1fT3;Bg: (9.172)
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Table 9.2 Auxiliary Poisson brackets

fP0;�g fT3;�g fT4;�g
xi � P i

P0 �!i C !0P i

P0 �� i C �0P i

P0

P i � e
P0c Œ.F EP/i C 	

4
@i.SF/� e!0

P0c Œ.F EP/i C 	

4
@i.SF/�� e�0

P0c Œ.F EP/i C 	

4
@i.SF/��

e
c .F E!/i e

c .F E�/i
P0 0 e

P0c Œ.	� 1/. EPF E!/C e
P0c Œ.	� 1/. EPF E�/C

	

4
!i@i.SF/� 	F0iP Œ0!i��

	

4
� i@i.SF/� 	F0iP Œ0� i��

!	 � e	
P0c .F!/

	 !0e	
P0c .F!/

	 �P	 C �0e	
P0c .F!/

	

�	 � e	
P0c .F�/

	 P	 C !0e	
P0c .F�/

	 �0e	
P0c .F�/

	

J	
 � e	
P0c .FS/Œ	
� !0e	

P0c .FS/Œ	
� � 2P Œ	!
�
�0e	
P0c .FS/Œ	
� � 2P Œ	�
�

To compute the Dirac brackets of our variables, we use an auxiliary Poisson brackets
shown in Table 9.2. We will use the notation (9.139) and

u0 D T0	P	 C 	ca

b
Z0;

4	
 D �2ca

eu0
P .0S	
/; P .0S	
/ D P0S	
 C P	S
0 C P
S0	;

K	
 D � 	ca

2eu0
S0	@
.SF/; L	
˛ D �2	a

u0
.FS/Œ	
�S0˛;

g	
 D �	
 � 2caP0

eu0
P	P
: (9.173)

Using the table, we obtain fT3;T4g D eu0

2caP0 . Then Dirac brackets among the
physical variables xi.t/, P i.t/ and S	
.t/ are

fxi; xjgD D 1

2
4ij; fxi;P jgD D ıij � e

2c

�4ikFkj � Kij
�
; (9.174)

fP i;P jgD D e

c
Fij � e2

2c2
�
Fik4knFnj � FŒikKkj�

�
; (9.175)

fS	
; S˛ˇgD D 2.g	˛S
ˇ � g	ˇS
˛ � g
˛S	ˇ C g
ˇS	˛/C L	
Œ˛Pˇ�; (9.176)

fS	
; xjgD D P Œ	4
�j C 1

2
L	
j; (9.177)

fS	
;P jgD D e

c

�
�P	.4
kFkj � K
j/ � .	 $ 
/C 1

2
L	
kFkj

�
: (9.178)
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To continue, let us restrict to the case of a stationary electromagnetic field. Then
constraints do not depend explicitly on time, therefore the second-class constraints
can be omitted from the Hamiltonian, see Sect. 8.5. So we omit the last two terms
in (9.169). The first-class constraints T2 and T5 can be omitted as well, as they do
not contribute into equations of motion for physical variables. In the result we obtain
the physical Hamiltonian

Hph D c

r
EP2 � e	

2c
F	
S	
 C m2c2 C eA0: (9.179)

The equations of motion that we discussed at the beginning of this section follow
from this Hamiltonian according the rule dz

dt D fz;HphgD.
Note that the Dirac brackets encode the most part of spin-field interaction, on this

reason we have arrived at a rather simple form of physical Hamiltonian.

9.8 First Relativistic Corrections and Fine Structure
of Hydrogen Spectrum

Here we discuss how the vectormodel resolves the problem of a covariant formalism
discussed in Sect. 9.6.2.

To quantize our relativistic theory we need to find quantum realization of highly
non linear classical brackets (9.174)–(9.178). They remain non canonical even in
absence of interaction. For instance, Eq. (9.174) in a free theory reads fxi; xjg D
1

2mcp0
Sij. We emphasize that non relativistic model has canonical brackets (9.61),

so the deformation arises as a relativistic correction induced by spin of a particle.
Technically, the deformation is due to the fact that the constraints (9.306) of
relativistic theory, used to construct the Dirac bracket, mixes up space-time and
inner-space coordinates.

Quantum realization of the brackets in a free theory will be obtained in Sect. 9.11,
while in an interacting theory its explicit form is unknown. Therefore we quantize
the interacting theory perturbatively [77], considering c�1 as a small parameter
and expanding all quantities in a power series. Let us consider the approximation
O.c�2/, that is we neglect c�3 and higher order terms. For the Hamiltonian (9.179)
we have Hph � mc2 C P2

2m � P4

8m3c2
� e	

4mc .FS/. Since the last term is of order
c�1, resolving the constraint S	
P
 D 0 with respect to Si0 we can approximate
P0 D mc, then Si0 D 1

mc SijP j. Using this expression together with Eqs. (9.78)
and (1.284) we obtain, up to order c�2

Hph � mc2 C P2

2m
� P4

8m3c2
C eA0 C e	

mc

�
1

mc
SŒP � E� � BS

�
: (9.180)



396 9 Classical and Quantum Relativistic Mechanics of a Spinning Particle

Due to the second and fourth terms, we need to know the operators OP i and Oxi up
to order c�2, while OSij should be found up to order c�1. With this approximation,
the commutators ŒOx; Ox�, ŒOx; OP �, and Œ OP ; OP � can be computed up to order c�2, while
the remaining commutators can be written only up to c�1. Therefore, we expand the
right hand sides of Dirac brackets (9.174)–(9.178) in this approximation

fxi; xjg D 1

2m2c2
Sij C O

�
1

c3

�
;

fxi;P jg D ıij C O

�
1

c3

�
;

fxi; Sjkg D 0C O

�
1

c2

�
; (9.181)

fP i;P jg D e

c
Fij C O

�
1

c4

�
;

fP i; Sjkg D O

�
1

c3

�
;

fSij; Sklg D 2.ıikSjl � ıilSjk � ıjkSil C ıjlSik/C O

�
1

c2

�
:

An operator realization of these brackets reads

OPi D �i„ @

@xi
� e

c
Ai.x/; (9.182)

Oxi D xi � „
4m2c2

�ijk OPjk; (9.183)

OSij D „�ijkk; (9.184)

then

OSi D 1

4
�ijkSjk D „

2
 i; (9.185)

OSi0 D „
mc
�ijk OPjk: (9.186)

By construction of a Dirac bracket, the operator OSi0 automatically obeys the desired
commutators up to order c�1. So we do not worried on this operator in the
computations above.
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We substitute these operators into the classical Hamiltonian (9.180). Expanding
A0.Ox/ in a power series, we obtain an additional contribution of order c�2 to the
potential due to non commutativity of the position operator

eA0



xi � .2mc/�2�ijk OPj OSk
�

� eA0.x/� e

2m2c2
OSŒ OP � OE�: (9.187)

The contribution has the same structure as fifth term in the Hamiltonian (9.180). In
the result, the quantum Hamiltonian up to order c�2 reads (we remind that 	 D g

2
)

OHph D mc2 C
OP2
2m

�
OP4

8m3c2
C eA0 C e.g � 1/

2m2c2
OSŒ OP � E� � eg

2mc
B OS: (9.188)

The first three terms corresponds to an increase of relativistic mass. The last two
terms coincides with those in Eq. (9.9). In the result, we have shown that non
commutativity of electron’s position in the vector model of spin is responsible for
the fine structure of hydrogen atom.

We could carry out the same reasoning in classical theory, by asking on the new
variables z0 that obey the canonical brackets (9.61) as a consequence of Eq. (9.181).
In the desired approximation they are P i D P 0i, xi D x0i � 1

4m2c2
S0ijP 0j and Sij D S0ij,

that is the first relativistic corrections modify only the position variable.

9.9 Fast Spinning Particle and Rainbow Geometry

Basic notions of Special and General Relativity have been formulated before the
discovery of spin, so they describe the properties of space and time as they are seen
by spinless test-particle. Here we discuss the question whether these notions remain
the same if the spinless particle is replaced by more realistic spinning test-particle.

Let us compare the Lagrangian equations of spinning (9.152) and spinless (1.309)
particle. For the spinning particle with 	 ¤ 1, the relativistic-contraction factor
(see (9.151)) contains the effective metric (9.148) instead of the Minkowski metric
�	
 . In the result, equations for trajectory (9.152) and for precession of spin (9.153)
became singular at the critical velocity which obeys the equation

PxGPx D 0: (9.189)

As we discussed in Sect. 1.7.7, the singularity determines behavior of the particle
in ultra-relativistic limit. The effective metric is composed from the Minkowski
one plus (spin and field-dependent) contribution, G D � C h.S/. So we need to
decide, which of them should be used to construct the three-dimensional geometry
discussed in Sect. 6.9. We first test the usual special-relativity notions, vi D dxi

dt ,

ai D dvi

dt and va D viai, that is we suppose that the particle sees � as the space-time
metric. We show that in this case acceleration vanishes at the critical speed which is
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different from the speed of light. Then we estimate the ultra-relativistic limit using
G to define the three-dimensional geometry (6.140)–(6.143). Then vcr D c, but
since G depends on spin, particles with different spins will probe slightly different
three-dimensional geometries.

Ultra Relativistic Limit Within the Usual Special-Relativity Notions It will
be sufficient to estimate the acceleration in the uniform and stationary field. We
take � D t in Eqs. (9.152)–(9.154) and compute the time derivative on l. h. s. of
Eq. (9.152) with 	 D 1; 2; 3. Then the equations read

ai � vi

2.�vGv/

d

dt
.�vGv/ D Ti




"
e
p�vGv

mrc2
.Fv/i � d

dt
QT
˛v˛

#
; (9.190)

d

dt
S	
 D e	

p�vGv

mrc2
.FS/Œ	
� � 2bmrc.	 � 1/p�vGv

vŒ	.SFv/
� ; (9.191)

.Sv/	 C b.	� 1/.SSFv/	 D 0; (9.192)

where v	 D .c; v/. Equations (9.192) and (9.148) imply

� vGv D �v QTv D c2 � v2 � .	� 1/b.vSFv/: (9.193)

We compute the time-derivatives in Eq. (9.190)

d

dt
.�vGv/ D �2.va/� .	 � 1/b

˚
Œv.FS C SF/�ia

iC

e	
p�vGv

mrc2
Œ.vFFSv/C .vFSFv/��

2bmrc.	 � 1/p�vGv
Œv2.vFSFv/� .vSFv/.vFv/�

	
; (9.194)

� Ti



d

dt
QT
˛v˛ D �e

p�vGv

mrc2
˚
	.	 � 1/b.FSFv/i�

	.	 � 1/a.SFFv/i � 	.	 � 1/2ab.SFFSFv/i
�C

2bmrc.	 � 1/p�vGv
Ti

Œv


.vFSFv/� .SFv/
.vFv/�: (9.195)

We note that all the potentially divergent terms (two last terms in (9.194) and
in (9.195)), arising due to the contribution from PS 	 1p�vGv

, disappear on the
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symmetry grounds. We substitute non vanishing terms into (9.190) obtaining the
expression

Mi
ja

j D e
p�vGv

mrc2
˚
.Fv/i � 	.	 � 1/b.FSFv/iC

.	 � 1/2a.SFFŒ�C 	bSF�v/i � vi	.	 � 1/b

2.�vGv/
.vFFSv/

	
; (9.196)

where the matrix

Mi
j D ıi

j C viv	˝	j

2.�vGv/
; with ˝	j D 2ı	j C .	 � 1/b.FS C SF/	j; (9.197)

has the inverse

QMi
j D ıi

j � viv	˝	j

2c2 � .	 � 1/bv	.FS C SF/	0v0
; (9.198)

with the property

QMi
jv

j D vi 2.�vGv/

2c2 � .	 � 1/bv	.FS C SF/	0v0
: (9.199)

Applying the inverse matrix we obtain the acceleration

ai D e
p�vGv

mrc2
˚ QMi

jŒ.Fv/
j � 	.	 � 1/b.FSFv/jC

.	 � 1/2a.SFFŒ�C 	bSF�v/j��

vi 	.	 � 1/b.vFFSv/

2c2 � .	 � 1/bv	.FS C SF/	0v0

	
: (9.200)

For the particle with non anomalous magnetic moment (	 D 1), the right hand side
reduces to the Lorentz force, so the expression in braces is certainly non vanishing
in the ultra-relativistic limit. Thus the acceleration vanishes only when v ! vcr,
where the critical velocity is determined by the equation vGv D 0.

Let us estimate the critical velocity. Using the consequence .PxSFPx/ D �b.	 �
1/.PxFSSFPx/ of the supplementary spin condition, and the expression S	˛S˛
 D
�4 ��2!	!
 C !2�	�


�
, we write

� .PxGPx/ D c2 � v2 C 4b2.	 � 1/2 ��2.!F Px/2 C !2.�F Px/2� : (9.201)

As � and ! are space-like vectors, the last term is non-negative, so vcr � c. We
show that generally this term is nonvanishing function of velocity, then vcr > c.
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Assume the contrary, that this term vanishes at some velocity, then

!F Px D �!0.Ev/C .!; cE C v � B/ D 0 ;

�F Px D ��0.Ev/C .�; cE C v � B/ D 0 : (9.202)

This implies c.DE/ C .D; v � B/ D 0. Consider the case B D 0, then it should
be .DE/ D 0. On other hand, for the homogeneous field the quantity S	
F	
 D
2 Œ.DE/C 2.SB/� D 2.DE/ is a constant of motion. Hence we can take the initial
conditions for spin such, that .DE/ ¤ 0 at any instant, this implies vcr > c.

Ultra-Relativistic Limit Within the Geometry Determined by Effective Metric
As we saw above, if we insist to preserve the usual special-relativity definitions
of time and distance, the speed of light does not represent special point of the
equation for trajectory. Acceleration of the particle with anomalous magnetic
moment generally vanishes at the speed slightly higher than the speed of light.
Hence we arrive at a rather surprising result that speed of light does not represent
maximum velocity of the manifestly relativistic equation (9.196). This state of
affairs is unsatisfactory because the Lorentz transformations have no sense above
c, so two observers with relative velocity c < v < vcr will not be able to compare
results of their measurements.

To keep the condition vcr D c, we use formal similarity of the matrix G
appeared in (9.148) with space-time metric. Then we can follow the general-
relativity prescription of Sect. 6.9 to define time and distance in the presence
of electromagnetic field. That is we use G of Eq. (9.148) to define the three-
dimensional geometry (6.140)–(6.143). The effective metric depends on xi via the
field strength F.x0; xi/, and on x0 via the field strength as well as via the spin-tensor
S.x0/. So the effective metric is time-dependent even in stationary electromagnetic
field. With these definitions we have, by construction, �PxGPx D . dt

dx0
/2.c2 � .v�v//,

so the critical speed coincides with the speed of light. The intervals of time and
distance are given now by Eq. (6.140) and (6.141), they slightly differ from those in
empty space.

In the present case, the expression for three-acceleration can be obtained in
closed form in an arbitrary electromagnetic field. We present Eq. (9.152) in the
form (6.177)

DDx	 D F	 D �Dx	
Dmr.S/

mr
� T	
D QT
˛.S/Dx˛ C

T	


�
e

mrc2
.FDx/
 C 	e

4m2
r c3
@
.SF/C 	

mr
DZ


	
: (9.203)

Then the acceleration is given by (6.179). The first two terms on right hand side
of (9.203) give potentially divergent contributions arising from the piece PS 	

1p
c2�v�v

of Eq. (9.153). In the previous section we have seen that the dangerous

contribution contained in the second term disappears. To analyze the first term, we
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substitute F i from (9.203) into (6.179).With use the property QMi
jv

j D vi c2�v�v
c2

, we
obtain the acceleration

ai D .c2 � v�v/

"
�vi Pmr

mrc2
�

QMi
jTj



PQT
˛v˛

c2 � v�v
C

QMi
jT

j



(
e

mrc2
p

c2 � v�v
.Fv/
 C 	e

4m2
r c3
@
.SF/C 	

mr

p
c2 � v�v

PZ

)#

C

QMi
j Q� j

kl.�/v
kvl C 1

2

�
dt

dx0

��1 �
.v@0���1/i � vi

c2
.v@0�v/

�
; (9.204)

so the divergency due to Pmr 	 1p
c2�v�v

is cancelled by the factor in front of

this term. In the result, the acceleration is finite as v ! c. Besides, taking into

account the property .v�/i QMi
j D .v�/j

c2�v�v
c2

, we conclude that the longitudinal
acceleration (6.180)

v�a D .c2 � v�v/2

c2
.v�F/C

c2 � v�v
c2

"
.v�/i Q� i

kl.�/v
kvl C 1

2

�
dt

dx0

��1
.v@0�v/

#
; (9.205)

vanishes in this limit.
In summary, to preserve the equality vcr D c, we are forced to assume that

particle in electromagnetic field probes the three-dimensional geometry determined
with respect to the effective metric instead of the Minkowski metric. This implies
rather unusual picture of the Universe with rainbow geometry.8 Since G depends
on spin, in this picture there is no unique space-time manifold for the Universe of
spinning particles: each particle will probe his own three-dimensional geometry. In
principle this could be an observable effect. With the effective metric (9.148), the
Eq. (6.140) implies that the time of life of muon in electromagnetic field and in
empty space should be different.

9.10 Interaction with Gravitational Field

Point particle in a gravitational field propagates along a geodesic line with the speed
less then speed of light, see Sect. 6.9. Here we study the influence of rotational
degrees of freedom on trajectory of the particle.

8Some models of doubly special relativity predict rainbow geometry at Planck scale [83].
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In this section r is the covariant derivative, rP	 D dP	

d� C �
	

˛ˇ Px˛Pˇ . The tensor

of Riemann curvature is R�	
 D @	�

�
 � @
�


�	 C � 

ˇ	�
ˇ
�
 � � 

ˇ
�
ˇ
�	.

9.10.1 Lagrangian of Spinning Particle with Gravimagnetic
Moment

As we saw in Sect. 9.6.2, minimal interaction with gravitational field can be
achieved by direct covariantization of the action (9.107). Unfortunately, the result-
ing equations becomes problematic in ultra-relativistic regime. We show this in
sect. 9.10.3. So we are forced to look for a non minimal interaction that could
suitably modify the equations in this regime. To understand how they might look, we
use the remarkable analogy existing between the gravitational and electromagnetic
fields. Hamiltonian formulations of the two minimally interacting theories become
very similar if we identify electromagnetic field strength with the Riemann tensor
contracted with spin, F	
 	 R	
˛ˇS˛ˇ. In particular, Hamiltonian action for both
theories is

SH D
Z

d� p	Px	 C �	 P!	 �
�
�

2



P2 C .mc/2 C �2 � ˛

!2

�
C �aTa

�
; (9.206)

where P	 D p	 � e
c A	 for electromagnetic field and P	 D p	 � �

ˇ
˛	!

˛�ˇ for
gravitational field. According to Eq. (9.129), interaction through gyromagnetic ratio
2	 implies the contribution � e	

2c F	
S	
 into the third term. So we expect that
non minimal interaction with gravity could be achieved replacing this term by
�1
32
�R˛ˇ	
S˛ˇS	
 . By analogy with the magnetic moment, the coupling constant � is

called gravimagnetic moment [60]. Thus we consider the variational problem

S� D
Z

d� p	Px	C�	 P!	�
�
�1

2



P2C�R˛ˇ	
!

˛�ˇ!	�
C.mc/2C�2� ˛

!2

�
C

�2.!�/C�3.P!/C�4.P�/� ; (9.207)

on the space of independent variables x	; p
 , !	; �
 and �a.
Let us look for the Lagrangian which in the phase space implies the variational

problem (9.207). First, we note that the constraints �! D P! D 0 always appear
from the Lagrangian which depends on N Px and N P! instead of Px and P!. So we set
�2 D �3 D 0 in (9.207). Second, we present the remaining terms in (9.207) in the
form

S� D
Z

d� p	Px	 C �	 P!	 � �1

2
.P; �/

�
g �g
�g 

��
P
�

�
� �1

2

h
.mc/2 � ˛

!2

i
;

(9.208)
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where we have introduced the symmetric matrix

	
 D g	
 C �R˛
	
ˇ

!˛!ˇ; then 	
!
 D !	: (9.209)

The matrix appeared in (9.208) is invertible, the inverse matrix is

�
K ��K

��K K

�
; where K D . � �2g/�1: (9.210)

When � D 0 we have K	
 D .1 � �2/�1g	
 , and (9.210) coincides with the matrix
appeared in the free Lagrangian (9.103). Third, we remind that the Hamiltonian
variational problem of the form pPq � �1

2
pAp follows from the reparametrization-

invariant Lagrangian
pPqA�1 Pq. So, we tentatively replace the matrix appeared

in (9.103) by (9.210) and switch on the minimal interaction of spin with gravity,
P! ! r!. This gives the following Lagrangian formulation of spinning particle
with gravimagnetic moment:

L D �
r
.mc/2 � ˛

!2

s
�.N Px;Nr!/

�
K ��K

��K K

��
N Px

Nr!
�

D (9.211)

�
r
.mc/2 � ˛

!2

p
�PxNKN Px � r!NKNr! C 2�PxNKNr!: (9.212)

Let us show that it does give the desired Hamiltonian formulation (9.207). The
matrixes  , K and N are symmetric and mutually commuting. Canonical momentum
for � vanishes and hence represents the primary constraint, p� D 0. Conjugate
momenta for x	 and !	 are p	 D @L

@Px	 and �	 D @L
@ P!	 respectively. Due to the

presence of Christoffel symbols in r!	, the conjugated momentum p	 does not
transform as a vector, so it is convenient to introduce the canonical momentum

P	 � p	 � � ˇ
˛	!

˛�ˇ; (9.213)

the latter transforms as a vector under general transformations of coordinates.
Manifest form of the momenta is as follows:

P	 D 1

L0

h
m2c2 � ˛

!2

i 1
2 �
.PxNKN/	 � �.r!NKN/	

�
; (9.214)

�	 D 1p
2L0

h
m2c2 � ˛

!2

i 1
2 �
.r!NKN/	 � �.PxNKN/	

�
; (9.215)
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where L0 is the second square root in (9.212). They immediately imply the primary
constraints !� D 0 and P! D 0. From the expressions

P2 D 1

L20

h
.mc/2 � ˛

!2

i �
.PxNKKN Px/C �2.r!NKKNr!/�

2�.PxNKKNr!/� ;

�� D 1

L20

h
.mc/2 � ˛

!2

i �
�2.PxNKKN Px/C .r!NKKNr!/�

2�.PxNKKNr!/� ;

2�P� D 1

L20

h
.mc/2 � ˛

!2

i ��2�2.PxNKKN Px/ � 2�2.r!NKKNr!/C

2�.PxNKKNr!/C 2�3.PxNKKNr!/� ; (9.216)

we verify that their sum does not depend on velocities and hence gives one more
constraint

P2 C �� C 2�P� D �
h
.mc/2 � ˛

!2

i
: (9.217)

Then Hamiltonian is H D pPx C � P! � L C �iTi � PPx C �r! � L C �iTi, where
the first and second terms have been identically rewritten in the general-covariant
form. From (9.214) and (9.215) we obtain PPx C �r! D L, so the Hamiltonian is
composed from primary constraints

H D �1

2

h
P2 C �R˛	ˇ
!

˛�	!ˇ�
 C .mc/2 C �2 � ˛

!2
C 2�.P�/

i
C

�2.!�/C �3.P!/: (9.218)

After the change of variables � ! �4 D 1
2
�1�, we arrive at the Hamiltonian

appeared in the variational problem (9.207).

Equations of Motion Variation of the Hamiltonian action (9.207) with respect to
�a gives the algebraic equations

P2 C �R˛ˇ	
!
˛�ˇ!	�
 C .mc/2 C �2 � ˛

!2
D 0; (9.219)

!� D 0; P! D 0; P� D 0; (9.220)

while variations with respect to the remaining variables yield dynamical equations
which can be written in the covariant form as follows

ıS�
ıp	

D 0 , Px	 D �1P
	 C �3!

	 C �4�
	; (9.221)
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ıS�
ıx	

D 0 , rP	 D �R	
˛ˇ Px
!˛�ˇ�1
2
�1�r	R
˛ˇ!

�
!˛�ˇ; (9.222)

ıS�
ı�	

D 0 , r!	 D �1�
	��1�R	˛ˇ
!

˛!ˇ�
C�2!	C�4P	; (9.223)

ıS�
ı!	

D 0 , r�	 D ��1˛
!4

!	��1�R	
˛ˇ�

!˛�ˇ��2�	��3P	: (9.224)

Equation (9.221) has been repeatedly used to obtain the final form (9.222)–(9.224)
of the equations ıS�

ıx	 D 0, ıS�
ı�	

D 0 and ıS�
ı!	

D 0. Computing time-derivative of the
algebraic equations (9.220) and using (9.221)–(9.224) we obtain the consequences

�2 � ˛

!2
D 0; (9.225)

�3 D 4a�1
�
2.1� �/R˛ˇ	
!˛�ˇ�	P
 C ��.rR	
˛ˇ/!

	�
!˛�ˇ
�
;

�4 D �4a�1
�
2.1� �/R˛ˇ	
!˛�ˇ!	P
 C �!.rR	
˛ˇ/!

	�
!˛�ˇ
�
:

(9.226)

Here and below we use the following notation. The gravitational analogy of
electromagnetic field strength is denoted

�	
 D R	
˛ˇS˛ˇ: (9.227)

In the equation which relates velocity and momentum will appear the matrix

T˛
 � ı˛
 � .� � 1/aS˛�
 ; a D 2

16m2c2 C .� C 1/.S�/
: (9.228)

Using the identity

.S�S/	
 D �1
2
.S�/S	
; where S� D S˛ˇ�˛ˇ; (9.229)

we find inverse of the matrix T

QT˛
 � ı˛
 C .� � 1/bS˛�
 ; b D 1

8m2c2 C �.S�/
: (9.230)
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The vector Z	 is defined by

Z	 D b

8c
S	.rR˛ˇ�ı/S

˛ˇS�ı � b

8c
S	r .S�/: (9.231)

This vanishes in a space with homogeneous curvature, rR D 0.
The time-derivatives of (9.219), (9.225) and (9.226) do not yield new alge-

braic equations. Due to (9.225) we can replace the constraint (9.219) on P2 C
�R˛ˇ	
!˛�ˇ!	�
 C .mc/2 D 0. The obtained expressions for �3 and �4 can be
used to exclude these variables from the Eqs. (9.221)–(9.224). The constraints T1,
T2 and T5 form the first-class subset, while T3 and T4 represent a pair of second
class.

Neither constraints nor equations of motion do not determine the functions �1
and �2, that is the non-minimal interaction preserves both reparametrization and
spin-plane symmetries of the theory. The presence of �1 and �2 in the Eqs. (9.223)
and (9.224) implies that evolution of the basic variables is ambiguous, so they
are not observable. To find the candidates for observables, we note once again
that (9.223) and (9.224) imply an equation for S	
 which does not contain �2. So
we rewrite (9.221) and (9.222) in terms of spin-tensor and add to them the equation
for S	
 , this gives the system

Px	 D �1

h
T	
P


 C �
ac

b
Z	
i
; (9.232)

rP	 D �1
4
�	
 Px
 � �1�

32
r	.S�/ ; (9.233)

rS	
 D ���1
4
.�S/Œ	
� C 2PŒ	 Px
� : (9.234)

Besides, the constraints (9.219), (9.220) and (9.225) imply

P2 C �

16
�S C .mc/2 D 0; (9.235)

S	
P
 D 0; S	
S	
 D 8˛ : (9.236)

The Eq. (9.236) imply that only two components of spin-tensor are independent, as
it should be for spin one-half particle. Equation (9.234), contrary to the equations
for ! and � , does not depend on �2. This proves that the spin-tensor is invariant
under local spin-plane symmetry. The remaining ambiguity due to �1 is related with
reparametrization invariance and disappears when we work with physical dynamical
variables xi.t/. Equations (9.232)–(9.234), together with (9.235) and (9.236), form
a closed system which determines evolution of the spinning particle.
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The Hamiltonian equations can be equally obtained computing Pz D fz;Hg, where
z D .x; p; !; �/, with the Hamiltonian given in square brackets of Eq. (9.207). Our
original variables fulfill the usual Poisson brackets fx	; p
g D ı

	

 and f!	; �
g D

ı
	

 , then fP	;P
g D R�	
�!

�, fP	; !
g D � 

	˛!

˛ , fP	; �
g D �� ˛
	
�˛ . For

the quantities x	, P	 and S	
 these brackets imply

fx	;P
g D ı	
 ; fP	;P
g D �1
4

R	
˛ˇS˛ˇ; fP	; S
˛ˇg D � ˛

	Sˇ � � ˇ
	S˛:

(9.237)

fS	
; S˛ˇg D 2.g	˛S
ˇ � g	ˇS
˛ � g
˛S	ˇ C g
ˇS	˛/: (9.238)

We can simplify the Hamiltonian introducing the Dirac bracket constructed with
help of second-class constraints

fA;BgD D fA;Bg � 1

8a
ŒfA;T3gfT4;Bg � fA;T4gfT3;Bg� : (9.239)

Since the Dirac bracket of a second-class constraint with any quantity vanishes, we
can now omit T3 and T4 from the Hamiltonian. The quantities x	, P	 and S	
 , being
invariant under spin-plane symmetry, have vanishing brackets with the first-class
constraints T2 and T5. So, obtaining equations for these quantities, we can omit the
last two terms in the Hamiltonian, arriving at the expected relativistic Hamiltonian

H1 D �1

2



P2 C �

16
.�S/C m2c2

�
: (9.240)

The Eqs. (9.232)–(9.234) can be obtained according the rule Pz D fz;H1gD.

Lagrangian Equations Let us exclude P	 and �1 from the Eqs. (9.233)
and (9.234). Using (9.230) we solve (9.232) with respect to P	. Using the resulting
expression in the constraint (9.235) we obtain �1

�1 D
p�PxGPx

mrc
; with m2

r � m2 C �

16c2
.S�/� �2Z2; (9.241)

where the effective metric now is given by

G	
 D QT˛	g˛ˇ QTˇ
: (9.242)

Then the expression for momentum in terms of velocity implied by (9.232) is

P	 D mrcp�PxGPx
QT	
 Px
 � �cZ	: (9.243)
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We substitute this P	 into (9.233), (9.234)

r
�

mrp�PxGPx
QT	
 Px


�
D � 1

4c
�	
 Px
 � �

p�PxGPx
32mrc2

r	.S�/C �rZ	; (9.244)

rS	
 D ��
p�PxGPx
4mrc

.�S/Œ	
� � 2mrc.� � 1/bp�PxGPx PxŒ	.S� Px/
� C 2�cPxŒ	Z
�: (9.245)

Together with (9.236), this gives us the Lagrangian equations for the spinning
particle with gravimagnetic moment.

Comparing our equations to those of spinning particle on electromagnetic
background (9.152)–(9.154), we see that the two systems have the same structure
after the identification � 	 	 and �	
 � R	
˛ˇS˛ˇ 	 F	
 , where 	 is the magnetic
moment. That is a curvature influences trajectory of spinning particle in the same
way as an electromagnetic field with the strength �	
 .

9.10.2 Mathisson-Papapetrou-Tulczyjew-Dixon (MPTD)
Equations of a Rotating Body and Spinning Particle
without Gravimagnetic Moment

Equations of motion of a rotating body in curved background formulated usually
in the multipole approach to description of the body, see [76] for the review. In
this approach, energy-momentum of the body is modelled by a set of quantities
called multipoles. The equations are then derived from conservation law for the
energy-momentum tensor, r	T	
 D 0. The first results were reported by Mathisson
[53] and Papapetrou [54]. They have taken the approximation which involves only
first two terms (the pole-dipole approximation). A manifestly covariant equations
were formulated by Tulczyjew [55] and Dixon [56]. In the current literature they
usually appear in the form given by Dixon (the equations (6.31)–(6.33) in [56]),
we will refer them as Mathisson-Papapetrou-Tulczyjew-Dixon (MPTD) equations.
They are widely used now to account spin effects in compact binaries and rotating
black holes, see [60].

We discuss MPTD-equations in the form studied by Dixon9

rP	 D �1
4

R	
˛ˇS˛ˇ Px
 � �1
4
.� Px/	 ; (9.246)

rS	
 D 2.P	Px
 � P
 Px	/ ; (9.247)

S	
P
 D 0; (9.248)

9Our S is twice of that of Dixon.
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and show that they essentially coincide with equations of spinning particle with
� D 0. In particular, we show that the effective metric G	
 also emerges in this
formalism. In the multipole approach, x	.�/ is called representative point of the
body, we take it in arbitrary parametrization � (contrary to Dixon, we do not assume
the proper-time parametrization, that is we do not add the equation g	
 Px	 Px
 D �c2

to the system above). S	
.�/ is associated with inner angular momentum, and P	.�/
is called momentum. The first-order equations (9.246) and (9.247) appear in the
pole-dipole approximation, while the algebraic equation (9.248) has been added by
hand. After that, the number of equations coincides with the number of variables.

To compare MPTD-equations with those of spinning particle, we first observe
some useful consequences of the system (9.246)–(9.248).

Take derivative of the constraint, r.S	
P
/ D 0, and use (9.246) and (9.247),
this gives the expression

.PPx/P	 D P2 Px	 C 1

8
.S� Px/	; (9.249)

which can be written in the form

P	 D P2

.PPx/
�
ı	
 C 1

8P2
.S�/	


�
Px
 � P2

.PPx/
QT 	


 Px
: (9.250)

Contract (9.249) with Px	. Taking into account that .PPx/ < 0, this gives .PPx/ D
�p�P2

p
�Px QT Px. Using this in Eq. (9.250) we obtain the relation between velocity

and momentum

P	 D
p�P2p

�Px QT Px
. QT Px/	; QT 	


 D ı	
 C 1

8P2
.S�/	
: (9.251)

For latter use we observe that in our model with composite S	
 we used the
identity (9.229) to invert T, then the Hamiltonian equation (9.232) has been written
in the form (9.243), the latter can be compared with (9.251).

Contracting (9.247) with S	
 and using (9.248) we obtain d
d� .S

	
S	
/ D 0, that
is, square of spin is a constant of motion. Contraction of (9.249) with P	 gives
.PS� Px/ D 0. Contraction of (9.249) with .Px�/	 gives .P� Px/ D 0. Contraction
of (9.246) with P	, gives d

d� .P
2/ D � 1

2
.P� Px/ D 0, that is P2 is one more constant

of motion, say k,
p�P2 D k D const (in our model this is fixed as k D mc).

Substituting (9.251) into the Eqs. (9.246)–(9.248) we now can exclude P	 from
these equations, modulo to the constant of motion k D p�P2.

Thus, square of momentum can not be excluded from the system (9.246)–(9.249),
that is MPTD-equations in this form do not represent a Hamiltonian system for the
pair x	;P	. To improve this point, we note that Eq. (9.251) acquires a conventional
form (as the expression for conjugatemomenta of x	 in the Hamiltonian formalism),
if we add to the system (9.246)–(9.248) one more equation, which fixes the
remaining quantity P2. To see, how the equation could look, we note that for
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non-rotating body (pole approximation) we expect equations of motion of spinless
particle, rp	 D 0, p	 D mcp

�PxgPx Px	, p2 C .mc/2 D 0. Independent equations of the

system (9.246)–(9.249) in this limit read rP	 D 0, P	 D
p�P2p�PxgPx Px	. Comparing

the two systems, we see that the missing equation is the mass-shell condition
P2C.mc/2 D 0. Returning to the pole-dipole approximation, an admissible equation
should be P2 C .mc/2 C f .S; : : :/ D 0, where f must be a constant of motion. Since
the only constant of motion in arbitrary background is S2, we have finally

P2 D �.mc/2 � f .S2/: (9.252)

With this value of P2, we can exclude P	 from MPTD-equations, obtaining closed
system with second-order equation for x	 (so we refer the resulting equations as
Lagrangian form of MPTD-equations). We substitute (9.251) into (9.246)–(9.248),
this gives

r . QT Px/	p
�Px QT Px

D � 1

4
p�P2

.� Px/	; (9.253)

rS	
 D 1

4
p�P2

p
�Px QT Px

PxŒ	.S� Px/
�; (9.254)

.SS� Px/	 D �8P2.SPx/	; (9.255)

where (9.252) is implied. They determine evolution of x	 and S	
 for each given
function f .S2/.

It is convenient to introduce the effective metric G composed from the “tetrad
field” QT

G	
 � g˛ˇ QT ˛
	

QT ˇ

: (9.256)

Eq. (9.255) implies the identity

Px QT Px D PxG Px; (9.257)

so we can replace
p

�Px QT Px in (9.253)–(9.255) by
p�PxG Px.

In resume, we have presented MPTD-equations in the form

P	 D
p�P2p�PxG Px .

QT Px/	; rP	 D �1
4
.� Px/	;

rS	
 D 2PŒ	 Px
�; S	
P
 D 0; (9.258)

P2 C .mc/2 C f .S2/ D 0; (9.259)

S2 is a constant of motion; (9.260)

with QT given in (9.251).
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We compare them with equations of our spinning particle with vanishing
gravimagnetic moment. Imposing � D 0 in Eqs. (9.232)–(9.236), we write them
in the form

P	 D mcp�PxGPx .
QT Px/	; rP	 D �1

4
.� Px/	;

rS	
 D 2PŒ	 Px
�; S	
P
 D 0; (9.261)

P2 C .mc/2 D 0; (9.262)

S2 D 8˛; (9.263)

with QT from Eq. (9.230) with � D 0 . Comparing the systems, we see that our
spinning particle has fixed values of spin and canonical momentum, while for
MPTD-particle the spin is a constant of motion and momentum is a function of
spin. We conclude that all the trajectories of a body with given m and S2 D ˇ are
described by our spinning particle with spin ˛ D ˇ

8
and with the mass equal toq

m2 C f 2.ˇ/
c2

. In this sense our spinning particle is equivalent to MPTD-particle.
We point out that our final conclusion remains true even we do not add (9.252)

to MPTD-equations: to study the class of trajectories of a body with
p�P2 D k and

S2 D ˇ we take our spinning particle with m D k
c and ˛ D ˇ

8
.

MPTD-equations in the Lagrangian form (9.253)–(9.255) can be compared
with (9.244)–(9.245).

9.10.3 Ultra-Relativistic Limit: The Problems
with MPTD-Equations

Setting � D 0 in (9.236), (9.244) and (9.245) we obtain

S	
 Px
 � 1

8.mc/2
.SS� Px/	 D 0: (9.264)

r
" QT	
 Px
p�PxGPx

#
D � 1

4mc
R	
˛ˇS˛ˇ Px
; (9.265)

rS	
 D 1

4mc
p�PxGPx PxŒ	S
��˛ Px˛: (9.266)

The equations for trajectory and for precession of spin become singular at critical
velocity which obeys the equation

PxGPx D 0: (9.267)
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The singularity determines behavior of the particle in ultra-relativistic limit. The
effective metric is composed from the original one plus (spin and field-dependent)
contribution,G D gCh.S/. So we need to decide, which of them the particle probes
as the space-time metric. Let us consider separately the two possibilities.

Let us use g to define the three-dimensional geometry (6.140)–(6.143). This
leads to two problems. The first problem is that the critical speed turns out to be
slightly more than the speed of light. To see this, we use the supplementary spin
condition (9.264) to write (9.267) in the form

�
�

dt

dx0

�2
PxGPx D �

c2 � v�v
C 1

.2m2c2/2
.v�SS�v/ D 0; (9.268)

with v	 defined in (6.145). Using S	
 D 2!Œ	�
�, we rewrite the last term as
follows:

�
c2 � v�v

C 1

.m2c2/2
�
�2.v�!/2 C !2.v��/2

 D 0: (9.269)

As � and ! are space-like vectors, the last term is non-negative, this implies jvcrj �
c. Let us confirm that generally this term is nonvanishing function of velocity, then
jvcrj > c. Assume the contrary, that this term vanishes at some velocity, then

v�! D �0i!
i C �i0v

i!0 D 0; (9.270)

v�� D �0i�
i C �i0v

i�0 D 0: (9.271)

We analyze these equations in the following special case. Consider a space with
covariantly-constant curvature r	R	
˛ˇ D 0. Then d

d� .�	
S
	
/ D 2�	
rS	
 , and

using (9.266) we conclude that �	
S	
 is an integral of motion. We further assume
that the only non vanishing is the electric part of the curvature, R0i0j D Kij. Then the
integral of motion acquires the form

�	
S
	
 D 2KijS

0iS0j: (9.272)

Let us take the initial conditions for spin such that KijS0iS0j ¤ 0, then this holds at
any future instant. Contrary to this, the system (9.270) implies KijS0iS0j D 0. Thus,
the critical speed does not always coincide with the speed of light and, in general
case, we expect that vcr is both field and spin-dependent quantity.

The second problem is that acceleration of MPTD-particle grows up in the ultra-
relativistic limit. In the spinless limit the Eq. (9.265) turn into the geodesic equation.
Spin causes deviations from the geodesic equation due to right hand side of this
equation, as well as due to the presence of the tetrad field QT and of the effective
metric G in the left hand side. Due to the dependence of the tetrad field on the
spin-tensor S, the singularity presented in (9.266) causes the appearance of the term
proportional to 1pPxGPx in the expression for longitudinal acceleration. In the result, the
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acceleration grows up to infinity as the particle’s speed approximates to the critical
speed. To see this, we separate derivative of QT in Eq. (9.265)

r
� Px	p�PxGPx

�
D �T	˛



r QT˛ˇ

� Pxˇp�PxGPx � 1

4mc
T	
.� Px/
: (9.273)

Using (9.266) we obtain

�r QT	

� Px
 D � S	˛

8m2c2

"
R˛
ˇ Pxˇ.S� Px/
2mc

p�PxGPx C Sˇ.rR˛
ˇ /

#
Px
: (9.274)

Using this expression together with the identity .TS/	
 D 8m2c2aS	
 , the
Eq. (9.273) reads

d

d�

� Px	p�PxGPx
�

D f	p�PxGPx ; (9.275)

where we denoted

f	 � aS	˛
"

R˛
ˇ Pxˇ.S� Px/
2mc

p�PxGPx C Sˇ.rR˛
ˇ /

#
Px
 �

.� PxPx/	 �
p�PxGPx
4mc

.T� Px/	 : (9.276)

It will be sufficient to consider static metric g	
.x/ with g0i D 0. Then three-
dimensional metric and velocity are

�ij D gij; vi D cp�g00

dxi

dx0
: (9.277)

Taking � D x0, the spatial part of Eq. (9.275) with this metric reads

�
dt

dx0

��1 d

dx0

�
vi

p�vGv

�
D f i.v/p�vGv

; (9.278)

with v	 defined in (6.145), for the case

v	 D .
cp�g00

; v/; (9.279)

and

� vGv D �v QTv D c2 � vgv C .vS�v/

8m2c2
: (9.280)
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In the result, we have presented the equation for trajectory in the form convenient
for analysis of acceleration, see (6.162). Using the definition of three-dimensional
covariant derivative (6.159), we present the derivative on the l.h.s. of (9.278) as
follows

d

dx0

�
vi

p�vGv

�
D 1p�vGv

�
Mi

kr0v
k � Q� .�/ijkv jvk dt

dx0
C Kvi

2.�vGv/

�
:

(9.281)

We have denoted

K D .r0G	
/v
	v
 � v	G	0v

k@k ln .�g00/;

Mi
k D ıi

k � viv	G	k

vGv
: (9.282)

The matrixMi
k has the inverse

QMi
k D ıi

k C viv	G	k

vG0v0
; then QMi

kv
k D vi vGv

vG0v0
: (9.283)

Combining these equations, we obtain the three-acceleration of our spinning particle

ai D
�

dt

dx0

��1
r0v

i D QMi
k

�
f k C . Q� vv/k�C Kvi

2vG0

: (9.284)

Finally, using manifest form of f i from (9.276) we have

ai D a QMi
k OSk

2mc
p�vGv

� c2 QMi
k

� kj@jg00
2g00

�
p�vGv

4mc
QMi

k.T�v/
k C

Kvi

2vG0

C a QMi
kSk˛R˛
ˇ I�Sˇv
v�: (9.285)

The longitudinal acceleration is obtained by projecting ai on the direction of
velocity, that is

.v�a/ D a.v� QM/k OSk

2mc
p�vGv

� c2.v� QM/k
� kj@jg00
2g00

�
p�vGv

4mc
.v� QM/k.T�v/

k C

K

2vG0

.v�v/C a.v� QM/kSk˛R˛
ˇ I�Sˇv
v�; (9.286)

where OSk D Sk	R	
˛ˇv
v˛.S�v/ˇ . As the speed of the particle closes to the critical
velocity, the longitudinal acceleration diverges due to the first term in (9.286). In
resume, assuming that MPTD-particle sees the original geometry g	
 , we have a
theory with unsatisfactory behavior in the ultra-relativistic limit.



9.10 Interaction with Gravitational Field 415

Let us consider the second possibility, that is we take G	
 to construct the
three-dimensional geometry (6.140)–(6.143). With these definitions we have, by
construction, �PxGPx D . dt

dx0
/2.c2 � .v�v//, so the critical speed coincides with

the speed of light. In the present case, the expression for three-acceleration can
be obtained in closed form for an arbitrary curved background. Taking � D x0 the
spatial part of (9.275) implies

�
dt

dx0

��1 d

dx0

"
vip

c2 � v�v

#
D f i.v/p

c2 � v�v
; (9.287)

where, from (9.276), f i is given by

f i � aSi˛

"
R˛
ˇvˇ.S�v/

2mc
p

c2 � v�v
C Sˇ .rR˛
ˇ /

#
v
 �

� i
	
.G/v

	vl
 �
p

c2 � v�v
4mc

.T�v/i : (9.288)

Equation (9.287) is of the form (6.162), so the acceleration is given by (6.171)
and (6.172) where, for the present case, �ij D Gij � G0iG0j

G00

ai D QMi
jŒ f

j C Q� j
kl.�/v

kvl�C 1

2

�
dt

dx0

��1 �
.v@0���1/i � .v@0�v/

c2
vi

�
; (9.289)

v�a D


1 � v�v

c2

�"
.v�/iŒ f i.v/C Q� i

kl.�/v
kvl�C 1

2

�
dt

dx0

��1
.v@0�v/

#
:

(9.290)

With f i given in (9.288), the longitudinal acceleration vanishes as v ! c.
Let us resume the results of this section. Assuming that spinning particle probes

the three-dimensional space-time geometry determined by the original metric g, we
have a theory with unsatisfactory ultra-relativistic limit. First, the critical speed,
which the particle can not overcome during its evolution in gravitational field,
can be more then the speed of light. Second, the longitudinal acceleration grows
up to infinity in the ultra-relativistic limit. Assuming that the particle sees the
effective metric G(S) as the space-time metric, we avoided the two problems. But
the resulting theory still possess the problem. The acceleration (9.289) contains
the singularity due to f i 	 1p

c2�.v�v/
, that is at v D c the acceleration becomes

orthogonal to the velocity, but remains divergent. We conclude that MPTD-
equations do not seem promising candidate for description of a relativistic rotating
body.
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9.10.4 Rotating Body with Gravimagnetic Moment �D1

The unexpected behavior of MPTD-particle originates from the fact that variation
rate of spin (9.266) diverges in the ultra-relativistic limit, rS 	 1pPxGPx , and

contributes into the expression for acceleration (9.286) through the tetrad field QT.S/.
Remarkably, for the non minimal interaction with � D 1, the undesirable term in
Eq. (9.245) vanishes. Besides this implies QT	
 D ı	
 , G	
 D g	
 , and crucially
simplifies the equations of motion.10 The Hamiltonian equations (9.232)–(9.234)
read

mrcp�PxgPx Px	 D P	 C cZ	; (9.291)

rP	 D �1
4
�	
 Px
 �

p�PxgPx
32mrc

r	.S�/ ; (9.292)

rS	
 D �
p�PxgPx
4mrc

.�S/Œ	
� C 2PŒ	Px
�; (9.293)

while the Lagrangian equations are composed now by the equation for trajectory

r
�

mr Px	p�PxgPx
�

D � 1

4c
�	
 Px
 �

p�PxgPx
32mrc2

r	.S�/C rZ	; (9.294)

and by the equation for precession of spin-tensor

rS	
 D �
p�PxgPx
4mrc

.�S/Œ	
� C 2cPxŒ	Z
�: (9.295)

These equations can be compared with (9.265) and (9.266). In the modified
theory:

1. Time interval and distance should be unambiguously defined within the original
space-time metric g	
 . So the critical speed is equal to the speed of light.

2. Covariant precession of spin (9.295) has a smooth behavior, in particular, for
homogeneous field, rR D 0, we have rS 	 p�PxgPx contrary to rS 	 1p

�PxgPx in

the Eq. (9.266).
3. Spin ceases to affect the trajectory in ultra-relativistic limit: the trajectory of

spinning particle becomes more and more close to that of spinless particle as
v ! c. Besides, the spin precesses with finite angular velocity in this limit.

10Besides S	
P
 D 0, there are known others supplementary spin conditions. In this respect we
point out that the MPTD theory implies this condition with certain P
 written in Eq. (9.258).
Introducing �, we effectively changed P
 and hence changed the supplementary spin condition. For
instance, when � D 1 and in the space with rR D 0, we have P	 D Qmc

p

�PxgPx
Px	 instead of (9.258).
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4. Even in homogeneous field we have modified dynamics for both x and S. The
Eq. (9.294) in the space with homogeneous curvature has the structure similar
to (1.309), hence we expect that longitudinal acceleration vanishes as v ! c. Let
us confirm this by direct computations.

To find the acceleration, we separate derivative of the radiation mass mr and write
Eq. (9.294) in the form

d

d�

� Px	p�PxgPx
�

D f	p�PxgPx ; (9.296)

where the force is

f	 � �� 	

˛ˇ Px˛ Pxˇ �
p�PxgPx
4mrc

�	
 Px
 C PxgPx
32m2

r c2
r	.S�/C

p�PxgPx
mr

rZ	 � Px	 Pmr

mr
: (9.297)

While this expression contains derivatives of spin due to Pmr-term, the resulting
expression is non singular function of velocity because rS is a smooth function.
Hence, contrary to Eq. (9.276), the force now is non singular function of velocity.
We take � D x0 in the spatial part of the system (9.296), this gives

�
dt

dx0

��1 d

dx0

"
vip

c2 � .v�v/

#
D f i.v/p

c2 � .v�v/
; (9.298)

where f i.v/ is obtained from (9.297) replacing Px	 by v	 of Eq. (6.145). This system
is of the form (6.162), so the acceleration is given by (6.171) and (6.172)

ai D QMi
jŒ f

j C Q� j
kl.�/v

kvl�C 1

2

�
dt

dx0

��1 �
.v@0���1/i � .v@0�v/

c2
vi

�
; (9.299)

v�a D


1 � v�v

c2

�"
.v�/iŒ f i.v/C Q� i

kl.�/v
kvl�C 1

2

�
dt

dx0

��1
.v@0�v/

#
:

(9.300)

With the smooth f i given in Eq. (9.297), and as v ! c, the acceleration (9.299)
remains finite while the longitudinal acceleration (9.300) vanishes. Due to the

identity (6.169), we have .v�/i f i v!c�! �.v�/i� i
˛ˇ Px˛ Pxˇ , that is the trajectory tends

to that of spinless particle in the limit.
In resume, contrary to MPTD-equations, the modified theory is consistent with

respect to the original metric g	
 . Hence the modified equations could be more
promising for description of the rotating objects in astrophysics.
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9.11 One-Particle Quantum Mechanics of a Spinning
Particle, Canonical Formalism

As we have seen above, on the classical level our vector model adequately
describes spinning particle in an arbitrary gravitational and electromagnetic fields.
Moreover, taking into account the leading relativistic corrections in quantized theory
with interaction, we have explained the famous one-half factor in non-relativistic
Hamiltonian (9.114), see Sect. 9.7.3. Now we turn to a systematic discussion of our
model on the quantum level. In this section we construct quantum mechanics of the
free theory (9.109) in the physical-time parametrization. This yields Schrödinger
equation (9.328), with the Hamiltonian c

p
p2 C .mc/2 acting on a space of two-

component wave functions. Note that all the solutions have positive energy. The
novel point is that the naive expressions, xi and  i, do not represent operators
of position and spin of our theory. This is due to the second-class constraints
p! D p� D 0 of the relativistic theory, which guarantee the supplementary
spin condition S	
p
 D 0. The constraints should be taken into account with
help of Dirac bracket, this implies a deformation of classical brackets which are
subject to quantization. In the result, the position and spin of a spinning particle are
represented by the operators (9.324) and (9.99). The remaining sections are devoted
to establishing of Lorentz covariance of the obtained quantum mechanics.

In the free Lagrangian (9.109) it is convenient to rescale ! ! p
�!, then

S D
Z

d�
1

4�

�
PxN Px C � P!N P! �

q
ŒPxN Px C � P!N P!�2 � 4�.PxN P!/2

�
�

�

2
m2c2 C ˛

2!2
: (9.301)

Repeating the computations made in Sect. 9.7.1, we arrive at the Hamiltonian actionR
d� pPx C � P! � H with the Hamiltonian

H D �

2

�
p2 C m2c2

C 1

2



�2 � ˛

!2

�
C

�2.!�/C �3. p!/C �4. p�/C �0p�: (9.302)

This can be compared with (9.129). Recall that the constraint �2 � ˛
!2

D 0

arises as a secondary constraint, from the condition of preservation in time of the
primary constraint !� D 0. The Hamiltonian action provides both equations of
motion and constraints of the vector model in an arbitrary parametrization. Using
the reparametrization invariance, we take physical time as the evolution parameter,
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� D x0

c D t, then the Hamiltonian action reads

SH D
Z

dt cp0 C pi Pxi C �	 P!	 � �

2

��p20 C p2i C m2c2
 �

1

2



�2 � ˛

!2

�
� �iTi: (9.303)

We can treat the term associated with � as a kinematic constraint of the variational
problem. According to Sect. 1.6.2 we solve the constraint,

� p0 D p0 D
q

p2i C m2c2; (9.304)

and substitute the result back into Eq. (9.167), this gives an equivalent form of the
functional

SH D
Z

dt piPxi C �	 P!	 �
�

c
q

p2i C m2c2 C 1

2



�2 � ˛

!2

�
C

�2!	�
	 C �3p	!

	 C �4p	�
	
�
; (9.305)

where the substitution (9.304) is implied in the last two terms as well. The sign
in front of the square root in (9.304) was chosen according to the right spinless
limit (8.183) and (8.185). The expression in square brackets is the Hamiltonian.
The variational problem implies the first-class constraints T2 D !� D 0, T5 D
�2 � ˛

!2
D 0 and the second-class constraints

T3 D �p0!0 C pi!i D 0; T4 D �p0�0 C pi� i D 0: (9.306)

In all expressions below the symbol p0 represents the function (9.304).
The action (9.305) implies the Hamiltonian equations

dxi

dt
D c

pi

p0
;

dpi

dt
D 0; (9.307)

P!	 D �	 C �2!
	 C �4p

	; P�	 D �!
	

!4
� �2�

	 � �3p
	: (9.308)

Equations (9.307) describe free-moving particle with the speed less then speed of
light

xi D xi
0 C vit; vi D c

pip
.mc/2 C p2

; pi D const: (9.309)



420 9 Classical and Quantum Relativistic Mechanics of a Spinning Particle

The spin-sector variables have ambiguous evolution, because a general solution
to (9.308) depends on an arbitrary function �2. So they do not represent the
observable quantities. As candidates for the physical variables of spin-sector, we
can take either the Frenkel spin-tensor,

dS	


dt
D 0; S	
p
 D 0; S2 D 6„2; (9.310)

or, equivalently, the Pauli-Lubanski vector (9.96)

ds	

dt
D 0; s	p
 D 0; s2 D 3„2

4
: (9.311)

To take into account the second-class constraints T3 and T4, we construct the Dirac
bracket (9.172). The non vanishing Dirac brackets are

fxi; xjgD D �ijksk

mcp0
D Sij

2mcp0
; fxi; p jgD D ıij; (9.312)

fS	
; S˛ˇgD D 2



g˛Œ	 S 
�ˇ � gˇŒ	 S 
�˛
�
; (9.313)

fx	; S˛ˇgD D 1

.mc/2
.S	Œˇ p ˛� � p	

p0
S0Œˇ p ˛�/ ; (9.314)

fsi; sjgD D p0

mc
�ijk

�
sk � .s p/pk

p20

�
; (9.315)

fxi; sjgD D
�

si � .s p/pi

p20

�
p j

.mc/2
; (9.316)

where

g	
 � �	
 � p	p


p2
: (9.317)

After transition to the Dirac brackets, the second-class constraints can be used as
strong equalities. In particular, we can present s0 in terms of independent variables

s0 D .s p/p
p2 C .mc/2

; (9.318)
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and in the expression for Hamiltonian (9.305) we can omit the last two terms.
Besides, we omit the second and third terms, as they do not contribute into equations
for observables. In the result, we obtain the physical Hamiltonian

Hph D cp0 D c
p

p2 C .mc/2: (9.319)

As it should be, the Eqs. (9.307), (9.310) and (9.311) follow from physical Hamil-
tonian with the use of Dirac bracket, Pz D fz;HphgD, where z D .p; x; S	
; s	/.

Both operators (except Opi) and abstract state-vectors of the physical-time formal-
ism we denote by capital letters, OZ, �.t; x/. In order to quantize the model, classical
Dirac-bracket algebra should be realized by operators, Œ OZi; OZj� D i„ fzi; zjgD

ˇ̌
zi! OZi

.
To find the quantum realization, we first look for classical variables which have
canonical Dirac brackets, thus simplifying the quantization procedure.We introduce
the variables Qxj, Qp j D p j and Qsj as follows [78]

Qxj D xj � 1

mc. p0 C mc/
� jkmskpm; Qsj D

�
ıjk � pjpk

p0. p0 C mc/

�
sk; (9.320)

then the inverse transformation is

xj D Qxj C 1

mc. p0 C mc/
� jkmQskpm; sj D

�
ıjk C pjpk

mc. p0 C mc/

�
Qsk: (9.321)

Note that in the expression for x and Qx we can replace Qs $ s. We point out
that the original and new variables obey the same equations of motion (9.307)
and (9.311), so they are indistinguishable in the free theory. In an interacting theory
their dynamics will be different.

The new variables have a canonical algebra with respect to Dirac brackets

fQxj; QxigD D 0; fQxi; p jgD D ıij; fQxj; QsigD D 0; fQsi; QsjgD D �ijkQsk: (9.322)

Besides, the constraints (9.311) on s	 imply Qs2 D 3
4
„2. So the corresponding

operators OQSj should realize an irreducible representation of SO.3/with spin s D 1=2.
Quantization in terms of these variables becomes straightforward. The Hilbert space
consists from two-component functions�a.t; x/, a D 1; 2. A realization of the Dirac
brackets by operators has the standard form

pj ! Opj D �i„@j ; Qxj ! OQXj D xj ; Qsj ! OQSj D „
2
 j: (9.323)

The conversion formulas (9.321) between canonical and original variables have
no ordering ambiguities, so we immediately obtain the operators OXj and OSj

PL
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corresponding to position and Pauli-Lubanski vector of classical theory

xi ! OXi D xi C „
2mc.Op0 C mc/

�ijkj Opk; (9.324)

sj ! OSj
PL D „

2

�
 j C 1

mc.Op0 C mc/
. Op� /Op j

�
; OS0PL D „

2mc
. Op� /; (9.325)

where the expression for OS0PL follows from (9.318) and (9.321). Using Eqs. (9.97)
and (9.78) relating the Pauli-Lubanski vector with Frenkel spin-tensor and three-
vector of spin, we obtain their quantum realization as follows:

OS0i D � „
mc
�ijk Opjk ; OSij D „

mc
�ijk

�
Op0k � 1

.Op0 C mc/
. Op� /Opk

�
; (9.326)

OSi D 1

4
�ijk OSjk D „

2mc

�
Op0 i � 1

.Op0 C mc/
. Op� /Opi

�
: (9.327)

The energy operator (9.319) determines the evolution of a state-vector according to
the Schrödinger equation

i„d�

dt
D c

p
Op 2 C .mc/2�; (9.328)

as well the evolution of operators by Heisenberg equations. The scalar product we
define as follows

h�;˚i D
Z

d3x��˚; (9.329)

then

P D ���; (9.330)

is a probability density for Qxi. We emphasize that an abstract vector�.t; x/ of Hilbert
space represents an amplitude of probability density of canonical coordinate Qxi.
The wave function for the original coordinate xi should be constructed according
to known rules of quantum mechanics.

Let us introduce the operator Op0 D �i„ d
dx0

. Then the Schrödinger equation reads

.Op0Cp Op 2 C .mc/2/� D 0, and applying the operator Op0�p Op 2 C .mc/2 we obtain
Klein-Gordon equation

.Op2 C m2c2/� D 0; Op2 D Op	 Op	: (9.331)
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Table 9.3 Position/spin operators for the relativistic electron [66]

ˇ D
 
1 0

0 �1
!
; ˛i D

 
0  i

 i 0

!
; ˙ i D

 
 i 0

0  i

!

Dirac representation, i„@t�D D c.˛ipi C mcˇ/�D

OXj
P.d/ xj C i„

2mcˇ


˛ j � ˛k

Opk Opj

.Op0/2

�

OSj
P.d/

1
2m2c2

�
m2c2˙ j � imcˇ� jkl˛k Opl



OXj
P.e/ D Oxj

FW xj C „

2Op0



iˇ˛ j C 1

Op0Cmc �
jkm Opk˙m � 1

Op0.Op0Cmc/ iˇ˛
k Opk Opj

�

OSj
P.e/ D OSj

FW
„

2Op0



mc˙ j � imˇ� jkl˛k Opl C ˙k

OpkOpj

Op0Cmc

�

OXj
P.c/ xj C „

2.Op0/2

�
� jkm Opk˙m C imcˇ˛ j



OSj
P.c/

„

2.Op0/2

�
m2c2˙ j � imcˇ� jkl˛k Opl C˙ k Opk Opj



Table 9.4 Position/spin operators for the relativistic electron [66]

ˇ D
 
1 0

0 �1

!
; ˙ i D

 
 i 0

0  i

!

F-W representation, i„@t� D cˇ Op0� Vector model

OXj
P.d/ xj � „

2mc.Op0Cmc/ �
jkm Opk˙m Position xj ! OXj, (9.324)

OSj
P.d/

„

2mcˇ



Op0˙ j � 1
.Op0Cmc/ Opk˙k Op j

�
Frenkel spin Sj ! OSj, (9.327)

OXj
P.e/ D Oxj

FW xj Qxj ! OQXj

OSj
P.e/ D OSj

FW
„

2
˙ j Qsj ! OQSj

OXj
P.c/ xj C „

2Op0.Op0Cmc/ �
jkm Opk˙m

OSj
P.c/

„

2Op0 ˇ



mc˙ j C 1
.Op0Cmc/ Opk˙k Op j

�
sj ! OSj

PL, (9.325)

Hence all solutions to the Schrödinger equation form the subspace of positive-
energy solutions to the manifestly-covariant Klein-Gordon equation for a two-
component wave functions.

Let us compare our operators with known in the literature. Pryce [66] studied
possible candidates for observables of the Dirac equation, they are marked as
P.d/, P.e/ and P.c/ in the Tables 9.3 and 9.4. He wrote his operators acting on
space of Dirac spinor �D, see Table 9.3. Foldy and Wouthuysen [67] found unitary
transformation which maps the Dirac equation i„@t�D D c.˛ipi C mcˇ/�D into the
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pair of square-root equations i„@t� D cˇ Op0� . Applying the FW transformation,
the Pryce operators acquire block-diagonal form on space � , see Table 9.4. Our
operators act on space of solutions of square-root equation (9.328), so we compared
them with positive-energy parts (upper-left blocks) of Pryce operators in the
Table 9.4.

Our operators of canonical variables OQXj D xj and OQSj correspond to the Pryce (e)
(	 Foldy-Wouthuysen 	 Newton-Wigner) position and spin operators.

However, operators of position xj and spin Sj of our model are OXj and OSj. They
correspond to the Pryce (d)-operators.

Operator of Pauli-Lubanski vector OSj
PL is the Pryce (c) spin (we remind the

normalization of our sj, see (9.96)).

9.12 Relativistic Covariance of Canonical Formalism

While we have started from the relativistic theory (9.301), working in the physical-
time parametrization we have lost, from the beginning, the manifest relativistic
covariance. Whether the quantum mechanics thus obtained is a relativistic theory?
In particular, are the scalar product (9.329) and probability (9.330) the Lorentz-
invariant quantities? Are the mean values h�; OXi˚i and h�; OSi˚i the Lorentz-
covariant quantities? To answer these questions, we follow the standard ideology
of quantum theory. First we associate with our theory the manifestly covariant
Hilbert space of representation of Poincare group. Second, using the covariant
formulation (9.302) of the classical theory, we find quantum realization of basic
variables by means of covariant operators acting in this space. The resulting
construction is called a covariant formalism. Third, we establish a correspondence
between the canonical and covariant pictures and show that the scalar products,
mean values and transition amplitudes of canonical formalism can be computed
using the covariant formalism. This proves the relativistic covariance of quantum
mechanics constructed in Sect. 9.11.

As we saw above, state-vectors of spinning particle belong to space of solutions
to the covariant two-component Klein-Gordon equation. So it is natural to construct
the covariant formalism on this base. We do this in the next subsection. The
covariant formalism based on the space of solutions to the Dirac equation will be
discussed in Sect. 9.12.4.

We emphasize that quantum mechanics of Sect. 9.11 already has a clear physical
interpretation: the state vector � describes a spinning particle with positive energy
in Qx-representation, the operator OX represents a position, OS represents a spin and so
on. Therefore there is no need to search physical interpretation of the covariant
formalism, and we will not do it. We consider the covariant formalism as an
auxiliary construction that has the only aim to prove the relativistic covariance of
the quantum mechanics formulated in Sect. 9.11.
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9.12.1 Relativistic Quantum Mechanics of Two-Component
Klein-Gordon Equation

We denote states and operators of covariant formalism by small letters, to distin-
guish them from the quantities of canonical formalism.

According to Wigner [49, 69, 70], with an elementary particle in quantum-field
theory we associate the Hilbert space of representation of Poincare group. The space
can be described in a manifestly covariant form as a space of solutions to Klein-
Gordon equation for properly chosen multicomponent field  a.x	/. The space of
one-component fields corresponds to spin-zero particle. It is well-known, that this
space has no quantum-mechanical interpretation. In contrast, two-componentKlein-
Gordon equation does admit the probabilistic interpretation. As we show below, the
four-vector (9.340) represents positively defined conserved current of this equation.
Using the current, we can define an invariant scalar product and hence the covariant
rules for computing mean values of covariant operators defined on this space.

The two-component Klein-Gordon equation has been considered by Feynman
and Gell-Mann [79] to describe weak interaction of spin one-half particle.

Using the Pauli matrices (9.2) we form the two sets

	 D .1;  i/; N	 D .�1;  i/: (9.332)

All the matrices are hermitian and obey the following rules of permutation of
indexes:

	 N
 D �
 N	 C 2�	
; N	
 D �N
	 C 2�	
: (9.333)

Further we define two more sets of 2 � 2-matrices

	
 D � i

2
.	 N
 � 
 N	/ D .0;�i i; i i; �ijkk/;

N	
 D � i

2
. N	
 � N
	/ D .0; i i;�i i; �ijkk/: (9.334)

We have shown the explicit form of their components 00, 0i, i0 and ij. They are
related by hermitian conjugation, 	
� D N	
 , and obey the identities

N˛	
 D N	
 N˛ � 2i�˛Œ	 N
�; ˛ N	
 D 	
˛ � 2i�˛Œ	
�: (9.335)

Using them, we verify that both 	
 and N	
 obey SO.1; 3/-algebra, for instance

Œ	
; ˛ˇ� D 2i.�	˛
ˇ � �	ˇ
˛ � �
˛	ˇ C �
ˇ	˛/; (9.336)

and thus can be taken as generators of linear representation of the Lorentz group
on space of two-component complex columns  D . 1;  2/ called the Weyl
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spinors. Under an infinitesimal Lorentz transformation with the parameters !	
 ,
ıx	 D !	
x
 , the column  transforms as follows:

ı D i

4
!	


	
 ; then ı � D � i

4
 � N	
!	
: (9.337)

Note that the contraction  �1 1 C  
�
2 2 is not an invariant of the transformation.

Using (9.335), we verify that the quantity �� N	 is a four-vector.11 If v˛ is a vector,
the combination � D v˛ N˛ transforms with help of N	
 , ı� D i

4
!	
 N	
�, then

ı�� D � i
4
��	
!	
 . So the quantity .vˇ Nˇ�/�	.v˛ N˛ / turns out to be a vector.

Introducing the space of two-component complex functions  .x	/ D . 1;  2/,
the generators of Poincaré transformations in this space read

j	
 D 1

2
.x	@
 � x
@	/C i

4
	
 ; @	 D @

@x	
: (9.338)

On the Poincaré-invariant subspace selected by two-component KG equation

.Op2 C m2c2/ D 0 ; (9.339)

we define an invariant and positive-defined scalar product as follows. The four-
vector

I	Œ ; �� D 1

m2c2
. N Op /�	 N Op� �  � N	� ; (9.340)

represents a conserved current of Eq. (9.339), that is @	I	 D 0, when  and �
satisfy to Eq. (9.339). We define the scalar product by means of invariant integral

. ; �/ D
Z

˝

d˝	I	 ; d˝	 D �1
6
�	
˛ˇdx
dx˛dxˇ; (9.341)

computed over a space-like three-surface˝ . Using the Gauss theorem for the four-
volume contained between the surfaces ˝1 and ˝2, we conclude that the scalar
product does not depend on the choice of the surface,

R
˝1

D R
˝2
. In particular, it

does not depend on time. So we can restrict ourselves to the hyperplane defined by
the equation x0 D const, then

. ; �/ D
Z

d3xI0: (9.342)

11Under the finite transformations x0	 D �	

.!/x
 , � 0 D D.!/� and � 0� D ��D�.!/, where

D D e
i
4 !	


	

, the N	 is an invariant tensor, that is .D� N	D/�	


 D N
 . For the proof, see [59, 61].
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Besides, the scalar product is positive-defined, since

I0Œ ;  � D 1

m2c2
. N Op /� N Op C  � > 0: (9.343)

So, this can be considered as a probability density of operator Ox D x. We point out
that transformation properties of the column  are in agreement with this scalar
product: only if  transforms as a (right) Weyl spinor, the quantity I	 represents a
four-vector.

Now we can confirm relativistic invariance of scalar product (9.329) of canonical
formalism. We write

. ; �/ D
Z

d3x
1

m2c2
. N Op /� N Op� C  �� D

Z
d3x

��
1

mc
N Op C i

�
 

�� �
1

mc
N Op C i

�
� D hW ;W�i; (9.344)

where the operator W D 1
mc N Op C i has an inverse, W�1 D 1

2Op0 .i Op C mc/. The

operator 1
Op0 is well-defined in momentum representation, see the next section.

Note also that W and W�1 commutes with the Schrödinger operator (9.328).
Equation (9.344) suggests the map of canonical space f�g onto subspace of
positive-energy solutions of covariant space f g, W�1 W f�g ! f g;  D W�1� .

The map respects the scalar products (9.329) and (9.342), and thus proves
relativistic invariance of the scalar product h�;˚i, h�;˚i D hW ;W�i D . ; �/.

We note that map W is determined up to an isometry, we can multiply W from the
left by an arbitrary unitary operator U, W ! W 0 D UW, U�U D 1. Here � denotes
Hermitian conjugationwith respect to scalar product h ; i. It is convenient to remove
the ambiguity [84] by requiring the Hermiticity of the operator. Positively defined
operator W�W > 0 has a unique square root, V D .W�W/1=2. We write identically
W D PV , where P D WV�1 is unitary, so we can omit P and use V instead of W.

We compute W�W D 2Op0
.mc/2

N Op, then

V D 1

mc

s
Op0

Op0 C mc
Œ. N Op/C mc�; V�1 D 1

2
pOp0.Op0 C mc/

Œmc �  Op�; (9.345)

and final form of the map between canonical and covariant spaces is

V�1 W f�g ! f g;  D V�1�; then h�;˚i D hV ;V�i D . ; �/: (9.346)

The transformation between state-vectors induces the map of operators

V�1 OQV D Oq; (9.347)
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acting in spaces � and . In the next section we use the covariant formulation of the
vector model to construct manifestly covariant operators which represent our basic
variables in the space  . Then we show that the map (9.347) relates operators of
canonical and covariant formalism, thus establishing covariant rules for computation
of mean values

h�; OQ˚i D . ; Oq�/: (9.348)

9.12.2 Covariant Operators of Vector Model

Let us return to the covariant formulation (9.301) and (9.302) of the classical
theory. To take into account the second-class constraints T3 D p	!	 D 0 and
T4 D p	�	 D 0, we construct the Dirac brackets (9.172) of the variables x	, p	,
S	
 and s	. The non vanishing Dirac brackets are as follows.

Spatial sector:

fx	; x
g D � 1

2p2
S	
; fx	; p
g D �	
; fp	; p
g D 0: (9.349)

Frenkel sector:

fS	
; S˛ˇg D 2.g	˛S
ˇ � g	ˇS
˛ � g
˛J	ˇ C g
ˇS	˛/; (9.350)

fx	; S˛ˇg D 1

p2
S	Œ˛pˇ�: (9.351)

Pauli-Lubanski-sector:

fs	; s
g D � 1p�p2
�	
˛ˇp˛sˇ D 1

2
S	
; (9.352)

fx	; s
g D � s	p


p2
D � 1

4
p�p2

�	
˛ˇS˛ˇ � s
p	

p2
: (9.353)

In the Eq. (9.350) it has been denoted g	
 � ı	
 � p	p

p2

.

In the covariant scheme, we need to construct operators Ox	; Op	; Oj	
; Os	 whose
commutators

ŒOq1; Oq2� D i„ fq1; q2gDjqi!Oqi
; (9.354)
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are defined by the Dirac brackets (9.349)–(9.353). Inspection of the classical
equations S2 D 3„2

4
and p2 C .mc/2 D 0 suggests that we can look for a realization

of operators in the Hilbert space constructed in Sect. 9.12.1.
With the spin-sector variables we associate the operators

s	 ! Os	PL D „
4
p�Op2 �

	
˛ˇ Op
˛ˇ; (9.355)

S	
 ! Os	
 � � 2p�Op2 �
	
˛ˇ Op˛ OsPLˇ D „	
 C „ Op	. Op/
 � Op
. Op/	

Op2 : (9.356)

They obey the desired commutators (9.354), (9.352), (9.350). To find the position
operator, we separate the inner angular momentum Os	
 in the expression (9.338) of
Poincaré generator

Oj	
 D 1

2

�
x	 C „. Op/	

2Op2
�

Op
 � 1

2

�
x
 C „. Op/


2Op2
�

Op	 C i

4
Os	
 : (9.357)

This suggests the operator of “relativistic position”

x	 ! Ox	rp D Ox	 C „
2Op2 . Op/	 ; (9.358)

where Ox	 D x	 . The operators Op	 D �i„@	, (9.355), (9.356) and (9.358) obey
the algebra (9.354), (9.349)–(9.353).

9.12.3 Proof of Relativistic Covariance

Relativistic invariance of the scalar product (9.329) has been already shown in
Sect. 9.12.1. Here we show how the covariant formalism can be used to compute
mean values of operators of canonical formulation, thus proving their relativistic
covariance. Namely, we confirm the following

Proposition Let

HC
can D f �.t; Ex/I i„d�

dt
D
p

Op 2 C .mc/2�; h�;˚i D
Z

d3x��˚ g; (9.359)
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be Hilbert space of canonical formulation and

Hcov D f  .x	/I .Op2 C m2c2/ D 0; . ; �/ D
Z

˝

d˝	I	;

I	 D 1

.mc/2
. N Op /�	 N Op� �  � N	� g; (9.360)

be Hilbert space of two-component KG equation. With a state-vector� we associate
 as follows:

 D V�1�; V�1 D 1

2
pOp0.Op0 C mc/

Œmc �  Op�: (9.361)

Then h�;˚i D . ; �/. Besides, mean values of the physical position and spin
operators (9.324)–(9.327) can be computed as follows

h�; OXi˚i D Re. ; Oxi
rp�/; h�; OSij˚i D . ; Osij�/;

h�; OSi˚i D 1

4
�ijk. ; Osjk�/; (9.362)

where Oxi
rp and Osij are spatial components of the manifestly-covariant opera-

tors (9.358) and (9.356).

It will be convenient to work in the momentum representation,  .x	/ DR
d4p . p	/e

i
„

px. Transition to the momentum representation implies the substi-
tution

Op	 ! p	; Ox	 ! i„ @

@p	
; (9.363)

in the expressions of covariant operators (9.355), (9.356), (9.358) and so on.
An arbitrary solution to the KG equation reads

 .t; x/ D
Z

d3p


 .p/e

i
„

!px0 C  �.p/e� i
„

!px0
�
e� i

„

.px/;

p0 D �p0 � !p D
p

p2 C .mc/2; (9.364)

where .p/ and �.p/ are arbitrary functions of three-momentum, they correspond
to positive and negative energy solutions. The scalar product can be written then as
follows

. ; �/ D 2

Z
d3p!p

m2c2
�
 �. Np/� �  ��.p/��

�
: (9.365)
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We see that this scalar product separates positive and negative energy parts of
state vectors. Since our classical theory contains only positive energies, we restrict
our further considerations by the positive-energy solutions. In the momentum
representation the scalar product (9.342) reads through non-trivial metric � and the
through V as follows:

. ; �/ D hW ;W�i D h ;W�W�i D
Z

d3p ��� D hV ;V�i D h�;˚i;

� D 2!p

m2c2
. Np/: (9.366)

Now our basic space is composed by arbitrary functions  .p/. The operators Oxi,
Os	 and Os	
 act on this space as before, with the only modification, that Op0 .p/ D
!p .p/. The operator Ox0 and, as a consequence, the operator Ox0rp, do not act in this
space. Fortunately, they are not necessary to prove the proposition formulated above.

Given operator OA we denoted its hermitian conjugated in space HC
can as OA�.

Hermitian operators in space HC
can have both real eigenvalues and expectation values.

Consider an operator Oa in space Hcov with real expectation values . ; Oa / D
. ; Oa /�. It should obey Oa�� D � Oa. That is, such an operator in Hcov should be
pseudo-Hermitian. We denote pseudo-Hermitian conjugation in Hcov as follows:
Oac D ��1 Oa��. Then pseudo-Hermitian part of an arbitrary operator Oa is given by
1
2
.Oa C Oac/.
Let us check the pseudo-Hermiticity properties of basic operators. From the

following identities:

.	
/�� D �

�
	
 C 2i

p2
.p/. p	 N
 � p
 N	/

�
;

.	
p
/
�� D � .	
p
 C 2iŒp	 � .p/ N	�/ ;

.Oxj
rp/

�� D �

�
Oxj

rp C i„
m2c2!p

�
m2c2

!p
p j � p j.EEp/

��
; (9.367)

we see that operators 	
 and Oxj
rp are non-pseudo-Hermitian, while operators Op	,

Os	PL, Os	
 and orbital part of Ojij are pseudo-Hermitian.
The transformation between state-vectors induces the map of operators

V�1 OQV D Oq; then h�; OQ˚i D . ; Oq�/: (9.368)

Due to Hermiticity of V , V� D V , pseudo-Hermitian operators, Oq�V2 D V2 Oq,
transform into Hermitian operators OQ� D OQ. For an operator Oq which commutes
with momentum operator, transformation (9.347) acquires the following form

OQ D 1

2
.Oq C Oq�/ � 1

2.!p C mc/
.Oq � Oq�/.EEp/: (9.369)
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Using this formula, we have checked by direct computations that covariant operators
Op, Os	
 and Os	PL transform into canonical operators Op, OS	
 and OS	PL (recall that the
spatial part of OS	
 , OSi D 1

4
�ijk OSjk represents the classical spin Si). This result

together with Eq. (9.348) implies that mean values of these operators of canonical
formulation are relativistic-covariant quantities.

Concerning the position operator, we first apply the inverse to Eq. (9.347) to our

canonical coordinate OQXi D i„ @
@pi in the momentum representation

OQxi
V D V�1 OQXiV D OQXi C ŒV�1; OQXi�V D i„ @

@pi
� i„pi.EEp/
2mc!p.!p C mc/

C i„pi

2!p
C i„
2mc

 i C „
2mc.!p C mc/

�ijkjpk: (9.370)

Our position operator (9.321) then can be mapped as follows:

Oxi
V D V�1

�
i„ @

@pi
C 1

mc.!p C mc/
�ijk OSPLjpk

�
V D i„ @

@pi
C i„pi.EEp/

2p2!p
C

i„pi

2!p
� i„
2p2

!p
i C „

2p2
�ijkpjk: (9.371)

We note that pseudo-Hermitian part of operator Oxi
rp coincides with the image Oxi

V ,

Oxi
V D 1

2



Oxi

rp C �Oxi
rp

�
c

�
: (9.372)

Since Ox	rp has explicitly covariant form, this also proves covariant character of
position operator OXi. Indeed, (9.347) means that matrix elements of OXi are expressed
through the real part of manifestly covariant matrix elements

h�; OXi˚i D . ; Oxi
V�/ D Re. ; Oxi

rp�/: (9.373)

In summary, we have proved the proposition formulated above. It could be
formulated also as follows. The operators Os	
 and Ox	rp, which act on the space of
two-component KG equation, represent manifestly-covariant form of the Pryce (d)-
operators.

Table 9.5 summarizes manifest form of operators of canonical formalism and
their images in covariant formalism.
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Table 9.5 Operators of canonical and manifestly covariant formulations in momentum represen-
tation

Canonical formalism �.p/ Covariant formalism  .p/

Opj ! Opj pj pj

OSi ! Osi „

2mc



!p

i � 1
.!pCmc/ .EpE/pi

�
„!p

2.mc/2

�
!p

i � .EpE/pi � i�imnpmn


OXi ! Oxi
V i„ @

@pi � „

2mc.!pCmc/ �
ijkpjk i„ @

@pi C i„pi.EEp/
2p2!p

C i„pi

2!p
� i„

2p2 !p
i C „

2p2 �
ijkpjk

OSij ! Osij „

mc �
ijk


!pk � 1

.!pCmc/ .EpE/pk

�
„!p

m2c2 �
ijk
�
!pk � .EpE/pk � i�kmnpmn


OS0i ! Os0i � „

mc �
ijkpjk � „

m2c2 �
ijk
�
!pk � i�kmlpm l


pj

OS0PL ! Os0PL
„

2mc .EpE/ „

2mc .EpE/
OSi
PL ! Osi

PL
„

2



 i C 1

mc.!pCmc/ .EpE/pi
�

„

2mc .!p
i C i�ijkpjk/

9.12.4 Relation with Dirac Equation

Here we demonstrate the equivalence of quantum mechanics of two-component
Klein-Gordon and Dirac equations. As a consequence, probabilities and mean val-
ues of canonical operators (9.324)–(9.99) can be computed, using an appropriately
constructed covariant operators on the space of Dirac spinors.

Let us replace two equations of second order, (9.339), by an equivalent system
of four equations of the first order. To achieve this, with the aid of the identity
Op	 Op	 D 	 Op	 N
 Op
 , we represent (9.339) in the form

	 Op	 N
 Op
 C m2c2 D 0: (9.374)

Consider an auxiliary two-component function N� (Weyl spinor of opposite chirality),
and define evolution of  and N� according the equations12

	 Op	. N
 Op
/ C m2c2 D 0; (9.375)

. N
 Op
/ � mc N� D 0: (9.376)

That is dynamics of  is determined by (9.374), while N� accompanies  : N�
is determined from the known  taking its derivative, N� D 1

mc. N Op/ . Evi-
dently, the systems (9.339) and (9.375), (9.376) are equivalent. Rewriting the
system (9.375), (9.376) in a more symmetric form, we recognize the Dirac equation

�
0 	 Op	

�N
 Op
 0

��
 
N�
�

C mc

�
 
N�
�

D 0; or .�
	
W Op	 C mc/�DW D 0;

(9.377)

12Note that N� can be considered as conjugated momentum for  , then the passage from (9.374)
to (9.377) is just the passage from a Lagrangian to Hamiltonian formulation. A similar interpreta-
tion was developed for the Schrodinger equation in Sect. 2.9.1.
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for the Dirac spinor �DW D �
 ; N� in the Weyl representation of � -matrices

�0W D
�
0 1
1 0

�
; � i

W D
�
0  i

� i 0

�
: (9.378)

This gives one-to-one correspondence among two spaces. With each solution  to
KG equation we associate the solution

�DW Œ � D
�

 
1

mc . N Op/ 
�
;

to the Dirac equation. Below we also use the Dirac representation of � -matrices

�0 D
�

1 0

0 �1

�
; � i D

�
0  i

� i 0

�
: (9.379)

In this representation, the Dirac spinor corresponding to  reads

�DŒ � D 1p
2

�
1 1

�1 1

��
 

1
mc . N Op/ 

�
D 1p

2mc

�
Œ. N Op/C mc� 
Œ. N Op/� mc� 

�
: (9.380)

The conserved current (9.340) of Klein-Gordon equation (9.339), being rewritten in
terms of Dirac spinor, coincides with the Dirac current (9.71). Therefore, the scalar
product (9.341) coincides with that of Dirac, .�D; ˚D/D D R

d3x N�D�
0�D

I	Œ 1;  2� D N�DŒ 1��
	�DŒ 2�; then . ; �/ D .�DŒ �; �DŒ��/D: (9.381)

This allows us to find manifestly-covariant operators in the Dirac theory which have
the same expectation values as Os	
 and Ox	rp . Consider the following analog of Os	
 on
the space of four-component Dirac spinors

Os	
D D „�	
 C „ Op	�
˛ Op˛ � Op
�	˛ Op˛
Op2 D „�	
 C i„

Op2 .Op
	�
 � Op
�	/ .� Op/;

(9.382)

where �	
 D i
2
.�	�
 � �
�	/. This definition is independent from a particular

representation of � -matrices. In the representation (9.379) this reads

�	
 D
�
	
 0

0 .	
/�

�
; (9.383)
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and can be used to prove the equality of matrix elements

.�DŒ �Os	
D ˚DŒ��/D D . ; Os	
�/; (9.384)

for arbitrary solutions  , � of two-component Klein-Gordon equation. The covari-
ant position operator can be defined as follows:

Ox	D D x	 C „�	˛ Op˛
2Op2 C i„.�5 � 1/Op	

2Op2 D x	 C i„�	
2Op2 .� Op/C i„�5 Op	

2Op2 ; (9.385)

where �5 D �i�0�1�2�3. Again, one can check that matrix elements in two theories
coincide

.�DŒ �Ox	D˚DŒ��/D D . ; Ox	rp�/: (9.386)

As a result, the manifestly-covariant operators Os	
D and Ox	D of the Dirac equation
represent position x and spin S of the spinning particle . Their mean values can be
computed as follows

h�; OXi˚i D 1

2
Re.�DŒ �; ŒOxi

D C Oxi�
D�˚DŒ��/D;

h�; OSi˚i D 1

4
�ijk.�DŒ �; Osjk

D˚DŒ��/D: (9.387)

We emphasize that the observables of vector model have an expected behavior
both on classical and quantum level. In particular, the position operator OXi does
not experiences Zitterbewegung. Note also that the covariant operator (9.385), that
represents the position of spinning particle in the Dirac theory, is different from the
naive expression used in Eq. (9.75).

For convenience, we collected our notation for different operators in the
Table 9.6.

The Map V and Foldy-Wouthuysen Transformation Our map V , that relates
canonical and two-component Klein-Gordon spaces, turns out to be in close relation
with the Foldy-Wouthuysen transformation. The latter is given by unitary operator

UFW D !p C mc C .E�Ep/p
2.!p C mc/!p

; (9.388)
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Table 9.6 Classical quantities and their operators in canonical and covariant formalisms

h�; OXi˚i D Re. ; Oxi
rp�/ D 1

2
Re.�DŒ �; ŒOxi

D C Oxi�
D �˚DŒ��/D;

h�; OSij˚i D . ; Osij�/;

h�; OSi˚i D 1

4
�ijk. ; Osjk�/ D 1

4
�ijk.�DŒ �; Osjk

D˚DŒ��/D

Canonical Covariant Covariant

Classical theory formalism, � Klein-Gordon,  Dirac, �D

Frenkel spin-tensor S	
 , (9.83) OS0i, OSij, (9.326) Os	
 , (9.356) Os	
D , (9.382)

Four-dimensional s	, (9.96) OSi
PL, OS0PL, (9.325) Os	PL , (9.355)

(Pauli-Lubanski)

spin-vector

Three-dimensional spin Si, (9.78) OSi, (9.327) OSi, (9.362)

Momentum p	 Opi, (9.323) Op	 Op	
Position x	 OXi, (9.324) x

	
rp , (9.358) x

	
D, (9.385)

Position with Qxi, (9.320) OQXi, (9.323)

canonical brackets

Spin with Qsi, (9.320) OQSi, (9.323)

canonical brackets

and relates the Dirac and four-component Klein-Gordon equations. Applying it to
the Dirac spinor �DŒ �, we obtain

UFW�DŒ � D
�

V 
0

�
D
�
�

0

�
: (9.389)

That is the operator V is a restriction of UFW to the space of positive-energy right
Weyl spinors  .

We completed construction of relativistic quantum mechanics for the vector
model of spinning particle. We emphasize once again, that we have not tried to
find an interpretation of negative-energy states presented in the covariant Klein-
Gordon and Dirac formalisms. The formalisms were considered as an auxiliary
constructions that allow us to prove relativistic covariance of the quantum mechan-
ics formulated in Sect. 9.11.
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of first order, 129
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of Lorentz, 25
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Poisson non canonical, 118
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Canonical quantization, 297
Cauchy problem, 2
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Change of variables, 92
Charge, 110

functionally independent, 111
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Closed two-form, 121
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Conjugate momenta, 98
Connection
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Conservation law, 110
of angular momentum, 5
of energy, 4
of momentum, 7

Conservative force, 3
Conserved quantity, 103, 110
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equivalent, 289
of first class, 289
holonomic, 54
kinematic, 54
primary, 273, 278
secondary, 274
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of second stage, 274, 280

Continuity equation, 128
Contraction of a moving body, 27
Conversion of second-class constraints,
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Coordinate basis of tangent space, 217
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generalized, 37
special, 292
transformations, 240

Coulomb law, 67
Covariance, 13
Covariant derivative, 206

along the curve, 208
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Covariant equation, 210, 211
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Energy

as a conjugated momentum, 307
kinetic, 3
potential, 3
total, 4
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of continuity, 69
of Euler-Lagrange, 33
Hamiltonian, 98
invariant, 19
of Klein-Gordon, 422
Lagrangian, 33, 95
of Maxwell, 66
of normal form, 36
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of second stage, 280
of third-stage, 280

Euler-Lagrange equations, 95
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F
Field, 46
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potential, 3

First integral, 110
First order form of a system, 92
Fixation of gauge, 294
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Galileo boosts, 244
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condition, 77, 295
of Lorentz, 77
symmetry, 321
unitary, 77

Generalized velocities, 95
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Generating function, 158, 159, 168
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Generator
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of Lorentz boost, 24
of rotation, 16

Geodesic equation
in canonical parametrization, 197
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reparametrization covariant equation,
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Geometry
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Group
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Gyromagnetic ratio, 355
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Hamiltonian, 98, 278

complete, 273, 278
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extended, 332

Hamiltonization procedure, 99
Hamilton-Jacobi equation, 170
Hessian matrix, 35
Homogeneity
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universal, 178

Integral of motion, 110
Interaction

minimal, 82
non minimal, 84
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Invariance
of action, 236
of the Poisson bracket, 139

J
Jacobi matrix, 93
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Kaluza-Klein theory, 65
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Lagrangian

action functional, 31
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function, 29
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nonsingular, 95
singular, 221

Law
of Biot-Savart, 68

Legendre transformation, 98
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Lie group, 239
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length, 219

Local coordinate system, 200
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Magnetic moment, 355
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Matrices
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Michelson-Morley experiment, 18
Moment
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Newton’s law
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third, 7

Noether charge, 251
Noether identities, 252
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Observable, 277, 292
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Operator of spin

non relativistic, 355
Operators
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P
Parallel transport, 209
Particle

relativistic, 80, 222, 237
Pauli equation, 368
Pauli matrices, 355
Pendulum
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Phase space, 98
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Precession

frequency, 368
of Thomas, 381

Principle
of Galilean relativity, 13
of Hamilton, 30
of least action, 30, 189
of Maupertuis, 192, 194, 196
of Newton’s determinism, 3
of special relativity, 18

Probability
relativistic invariant, 371

Projector, 222
Proper time, 29

R
Reference frame, 12
Reparametrization independence, 210
Reparametrization invariance, 41, 220
Riemann connection, 208
Riemann space, 197, 205
Rigid particle, 382
Routhian, 130

S
Scalar function, 21, 202
Scalar product, 205
Schrödinger equation, 122
Second Newton law, 212
Second quadratic form of a surface, 218
Separation of variables, 191
Singular theory

degenerate, 277
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adjoint, 370
of Dirac, 369
of Weyl, 426
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Symbol
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manifest, 62
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variational, 242

Symmetry transformation of action,
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System of equations

equivalent, 91
Hamiltonian, 94
normal, 2

T
Tangent space, 202
Tangent vector, 205
Tensor, 201

of Riemann curvature, 402
Theory

degenerate, 277
non singular, 35
singular, 35
of special relativity, 18

Total
angular momentum, 260
energy, 259
momentum, 259

Trajectory, 190

Transformation
of the action, 243
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Variational problem, 31
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Variation of functional, 32
Vector
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