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Preface to the Second Edition

In the revised and enlarged edition I corrected numerous errors and typos found in
the first edition. In the Chaps. 1, 2, 7 and 8 I have made, in the interests of clarity,
a large number of small changes. Some sections, which even I myself was not able
to understand 5 years after they were written, were rewritten again Several new
sections with applications of formalism were added: 1.7.7, 6.9, 8.7.1 and 8.7.2.
The main alteration in this edition consists of the incorporation of a new chapter
devoted to the description of a relativistic spinning particle in external fields. It can
be considered as a non-trivial application of the formalism of constrained systems
described in Chap. 8. A review of the achievements in this fascinating area before
1968 can be found in the book of Corben [58]. Contrary to Corben, who discussed
the problem on the level of equations of motion, my emphasis has been placed
on the Lagrangian and Hamiltonian variational formulations for the description of
rotational degrees of freedom and their influence on the trajectory of a spinning
body. I present the so-called vector model of spin and show that it provides a
unified conceptual framework, allowing to collect and tie together a lot of ideas and
achievements accumulated on the subject after publication of the Corben’s book.

Juiz de Fora, MG, Brazil Alexei Deriglazov
August 2016



Preface to the First Edition

Formalism of classical mechanics underlies a number of powerful mathematical
methods, widely used in theoretical and mathematical physics [1-11]. In these
lectures we present some selected topics of classical mechanics, which may be
useful for graduate-level students intending to work in one of the branches of a
vast field of theoretical physics. Except for the last chapter, which is devoted to
the discussion of singular theories and their local symmetries, the topics selected
correspond to the standard course of classical mechanics.

For the convenience of the reader, we have tried to make the material of different
chapters as independent as possible. So, the reader who is familiar with Lagrangian
mechanics can proceed to any one of Chaps. 3-8 after reading the second chapter.

In our presentation of the material we have tried, where possible, to replace
intuitive motivations and “scientific folklore” by exact proofs or direct compu-
tations. To illustrate how classical-mechanics formalism works in other branches
of theoretical physics, we have presented examples related to electrodynamics as
well as to relativistic and quantum mechanics. Most of the suggested exercises are
directly related to the main body of the text.

While in some cases the formalism is developed beyond the traditional level
adopted in the standard textbooks on classical mechanics [12—-14], the only mathe-
matical prerequisites are some knowledge of calculus and linear algebra.

In the frameworks of classical and quantum theories, the Hamiltonian and
Lagrangian formulations each have advantages and disadvantages. Since our focus
here is Hamiltonian mechanics, let us mention some of the arguments for using this
type of formalism.

» There is a remarkable democracy between variables of position and velocity in
Nature: being independent one from another, they contain complete information
on the properties of a classical system at a given instance. Besides, just the
positions and velocities at the initial instant of time are necessary and sufficient
to predict an evolution of the system. In Lagrangian formalism this democracy,
while reflected in the initial conditions, is not manifest in the course of evolution,
since only variables of position are treated as independent in Lagrangian

vii



viii Preface to the First Edition

equations. Hamiltonian formalism restores this democracy, treating positions and
velocities on equal footing, as independent coordinates that parameterize a phase
space.

e According to the canonical quantization paradigm, the construction of the
Hamiltonian formulation for a given classical system is the first necessary step
in the passage from classical to quantum theory. It is sufficient to point out that
quantum evolution in the Heisenberg picture is obtained from the Hamiltonian
equations through replacement of the phase-space variables by corresponding
operators. As to the operators, their commutators are required to resemble the
Poisson brackets of the phase-space variables.

* The conventional way to describe a relativistic theory is to formulate it in terms
of a singular Lagrangian (the singularity is the price we pay for the manifest rela-
tivistic invariance of the formulation). It implies a rather complicated structure of
Lagrangian equations, which may consist of both second- and first-order differ-
ential equations as well as algebraic ones. Besides, there may be identities present
among the equations, which implies functional arbitrariness in the corresponding
solutions. It should be mentioned that, in the modern formulation, physically
interesting theories (electrodynamics, gauge field theories, the standard model,
string theory, etc.) are of this type. In this case, Hamiltonian formulation
gives a somewhat clearer geometric picture of classical dynamics [8]: all the
solutions are restricted to lying on some surface in the phase space, while the
abovementioned arbitrariness is avoided by postulating classes of equivalent
trajectories. Physical quantities are then represented by functions defined in these
classes. The procedure for investigation of this picture is based entirely on the
use of special coordinates adopted to the surface, which in turn require a rather
detailed development of the theory of canonical transformations. Altogether
Hamiltonian formulation leads to a self-consistent physical interpretation of a
general singular theory, forming the basis for numerous particular prescriptions
and approaches to quantization of concrete theories [10].

Juiz de Fora, MG, Brazil Alexei Deriglazov
July 2010
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Notation and Conventions

The terminology of classical mechanics is not universal. To avoid any confusion, the
quantities of the configuration (phase) space are conventionally called Lagrangian
(Hamiltonian) quantities.

Generalized coordinates of the configuration space are denoted by g“. Latin
indices from the beginning of the alphabet a, b, c, and so on generally range from 1
ton,a=1,2,...,n.

Phase-space coordinates are often denoted by one letter Z' = (g% py). Latin
indices from the middle of the alphabet i, j, k, and so on generally range from 1 to
2n,i=1,2,...,2n.

Greek indices from the beginning of the alphabet o, 8, y are used to denote some
subgroup of the group of variables, for example ¢ = (¢'.¢%), o =2.,3,....n.

Repeated indices are generally summed, unless otherwise indicated. The “up”
and “down” position of the index of any quantity is fixed. For example, we write g“,
pp» and never any other way.

Time variable is denoted either by t or by 7. A dot over any quantity denotes the
time derivative of that quantity

o dq"
T 4o
while partial derivatives are denoted by
aL oH(Z
@ _ 5.1, @ _ .
aqa 0Z¢

The same symbol is generally used to denote a variable and a function. For example,
we write Z'' = Z'/(Z), instead of the expression Z" = fi(Z/) for the change of
coordinates.

XV



XVi Notation and Conventions
The notation

F(C], U)lU(Z) = F(qs U)|U=U(Z) = F(C], U)|,

implies the substitution of the function v*(z) in place of the variable v*®.
Minkowski metricis n = (—1, +1, +1, +1).



Chapter 1
Sketch of Lagrangian Formalism

Abstract

System of Particles To start with, we recall how a system of particles is described
in classical mechanics. Analytic description is achieved by introducing three-
dimensional Euclidean space equipped with a Cartesian coordinate system. When
equations can be supplemented by initial conditions that guarantee a unique
solution, we say that the equations admit formulation of the Cauchy problem. Using
this terminology, a normal system admits formulation of the Cauchy problem.

1.1 Newton’s Equation

System of Particles To start with, we recall how a system of particles is described
in classical mechanics. Analytic description is achieved by introducing three-
dimensional Euclidean space equipped with a Cartesian coordinate system. Then
its points are labeled by position vectors M <> 7 = (x!,x2,x%) = (x,y.z). The time
evolution of a particle is presented by a curve 7 = 7(f). The evolution is governed
by Newton’s equation

mi=FGh) & mi®=Fe, i), a=1,2,3. (1.1)
For a system of particles with the position vectors 7;, i = 1,2,..., N we write
mi;i :Fl(;:]s;tjvt) (12)

In classical mechanics the force F assumed to be a known function of indicated
arguments (or derivable from a potential). So Eq. (1.1) relates accelerations,
velocities and coordinates, that is, it represents a system of three ordinary differential
equations of second order for determining three functions x“(z).

© Springer International Publishing Switzerland 2017 1
A. Deriglazov, Classical Mechanics, DOI 10.1007/978-3-319-44147-4_1



2 1 Sketch of Lagrangian Formalism

Example Electric charges in movement produce electromagnetic force in the
space around them. This can be described by vectors of electric E(t,x")
and magnetic E(t,x”) fields given at each space-time point. Then Newton’s
equation of a particle with electric charge e in this external field is

mi = eE(1,7) + ir;’,é(t» 7). (1.3)

Here ﬁ E]“ = €3> B¢ is a vector product, and c is a universal constant (see
Sect. 1.3). Electric field E is directed from positive charge (proton) to infinity,
so the force e is opposite to E for the negative charge (electron). Concerning
the agreements on magnetic field, see Example 2 on page 67.

Particular and General Solutions Mathematically, Eq. (1.1) belong to the class
of normal systems, that is all higher derivatives X* are separated on the left-hand
side of the equations. According to the theory of differential equations, a normal
system has well-established properties. In particular, under known restrictions on
the right-hand side, the theorem of the existence and uniqueness of a solution holds:
given the numbers xj, vy, there is (at least locally) a unique solution x“(t) of the
system (1.1) that obeys the initial conditions x“(0) = xg, x*(0) = vg.

When equations can be supplemented by initial conditions that guarantee a
unique solution, we say that the equations admit formulation of the Cauchy problem.
Using this terminology, a normal system admits formulation of the Cauchy problem.

This theorem implies that ordinary differential equation admits an infinite
number of solutions. They can be described simultaneously using the notion of
a general solution. It is not difficult to forecast that the family of solutions can
be parameterized by six parameters. Roughly speaking, to kill two derivatives
acting, for example, on x!, we need to carry out two integrations. This implies the
appearance of two integration constants, say c', d', in the resulting expression. In
this way we arrive at the notion of a general solution defined as follows. A function
of (1 + 6) variables 7(z, ¢?, d*) is called a general solution to the system (1.1) if (a)
it satisfies the system for any values of ¢“, d%; (b) given the initial conditions g, Vo,
there are numbers &, d* such that 7(0, &, d*) = 7o, 7(0, &%, d*) = .

Exercise Confirm that any particular solution to the normal system is con-
tained in its general solution.

The physical content of these mathematical facts can be summarized as follows.
First, only positions and velocities at a given instance are necessary to predict the
future of a system (we need not know, for example, accelerations). It is said that 7,
o unambiguously determine the instantaneous state of a system. Second, a system



1.1 Newton’s Equation 3

evolves in time in a unique way. In contrast to quantum mechanics, evolution in
classical mechanics has a causal character. These properties of Newton’s universe
are known as Newton’s principle of determinism.

We recall some notions that will play a fundamental role in the discussion of
Lagrangian formalism.

Kinetic Energy Let 7(¢) be a solution to Eq. (1.1). The work done by the force F
is equal to the value of the line integral along the curve 7(¢), and using Newton’s
equation can be computed as follows:

My N 1 d_' 1 d 1 1
A= / Fdr = / m vf}dt: / ( ml_ﬁz) dt = _mv?
M n o dt n dt\2 2

The quantity 7 = ém?)z is called kinetic energy. It is said that the work produces a
change in the kinetic energy of a particle

5]

(1.4)

151

A=T(t)—T(). (1.5)

Potential Energy: Properties of Conservative Force To proceed further we
restrict ourselves to the case of a conservative system. A field of force is conser-
vative (or potential), if it can be derived as the gradient of a function U (x%)

ou
Fi=—_". 1.6
9xa (1.6)
This function is called the potential energy of a system. Note that U + const leads to
the same force as U. So, potential energy is defined with only an additive constant.
It is often used to choose a zero value for the potential energy at a desired point. For
the work done by the potential force we write

A——/MZ%Ud* here v=( 0 9.0 (1.7)
- M " T\oxl T ox2Tax3 ) '

Let us enumerate the properties of a conservative force

[V.F] =0, (1.8)
55?(17 =0, (1.9)
Y
/ Fdr = / Fdr, (1.10)
y(1,2) B(1,2)

A=—[U@F)—Um)]. (1.11)



4 1 Sketch of Lagrangian Formalism

Equation (1.8) states that a potential field is curl-free. This follows from direct
computation: [V, F]¢ = €%¢3,0.U = 0.

Equation (1.9) states that a potential field does not produce work along any closed
line y. This follows from (1.8) applying Stock’s theorem, gSy Fdr = fsy [%, I?]as =
0.

Equation (1.10) states that the work done by a potential field does not depend on
a choice of line (either y(1,2) or 8(1,2)) that connects points 1 and 2. To confirm
this, apply (1.9) to the closed line y(1,2) U 8(2, 1).

Finally, Eq. (1.11) states that the work done by a potential field is equal to the
difference of potential energies at the initial and final points. To see this, notice
that according to Eq. (1.10) we can compute the work (1.7) using any curve 7(f)
connecting M; and M,. We obtain

R 29U dr* 2 du
A= Fdr = — dt = — dt = —[U(t) — U(t1)]. 1.12
[ Rar=— [ = [ = e vl

It is known that on a plane the conditions (1.6), (1.8), (1.9), (1.10), and (1.11)
are mutually equivalent; any one of them can be taken as a definition of a (two-
dimensional) potential field.

Law of Conservation of Total Energy Let x“(¢) be a solution to Newton’s equation
with a conservative force

We _

mié +
dx4

(1.13)
Comparing (1.5) with (1.11) we conclude that in a movement from one point to
another, the change in kinetic energy is always balanced by a change in potential
energy. This can be written in the form of a law of conservation

[T+ Ully, = [T+ Ully, (1.14)

The quantity E = T + U is called the (fotal) energy of the system. Eq. (1.14)
represents the law of conservation of total energy stating that E of a conservative
system takes the same value along a trajectory of motion.

Exercise Above we have considered the case of time-independent potential.
Total energy is not preserved when the potential depends explicitly on time,
U(x, ). Explain why the reasoning presented above does not work for this
case.
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It is instructive to obtain this result once again, this time as a direct consequence of
the equations of motion. Multiplying Eq. (1.13) by x“(#) we obtain

U . dl1l _,
mi‘x® + 1= & mv- +U| =0. (1.15)

0x4 2

thatis E = ;mﬁz + U = const on the solutions. Energy is an example of a conserved
quantity, which can be defined as a function of positions and velocities that is
preserved along true trajectories of the system. Let us recall three more examples.

Law of Conservation of Angular Momentum Consider a particle in a central
field. The central field is defined by a potential depending only on a distance to a
given point. Choosing a coordinate system with its origin at that point, the potential
reads U = U(r), where r = [F| = /(x")2 + (x2)? 4 (x*)2. Then Newton’s equation
is

mr + =0. (1.16)

Computing the vector product with 7 we obtain

L d. L dUr d
|:r,mdtv:| + [r, o ri| —dtﬁ', mv] — m[v, V] + ﬁ" 7

d
= ,mv] = 0. 1.17
dt[; mv] (1.17)
This implies the law of conservation of angular momentum
L = [f,md] = const. (1.18)

One remarkable consequence of Eq. (1.18) is that the particle orbit in the central
field is a planar one, see Fig. 1.1 on page 6. To see this, take a solution 7(f) of
Newton’s equation (1.16). Note that its scalar product with L vanishes, 7@, Z) =
(7. [F.m¥]) = 0. That is, the position vector is orthogonal to the fired vector L at
any instant of motion. So, 7(¢) at any lies on a plane containing the center of force
and perpendicular to L. The vector L can be determined from the initial conditions:
L= [Fo, mVp]. So the plane of motion is the one that contains the vectors of the
initial position 7y and the initial velocity .

Runge-Lenz and Hamilton Vectors The Kepler’s problem consists of the descrip-
tion of a particle in a central field with a potential that is proportional to the inverse
degree of r

U=-% r=|fl = J&)2 + ()2 + ()%, a = const. (1.19)
r
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Fig. 1.1 Due to conservation of angular momentum, the trajectory lies on a plane perpendicular to

I So, in coordinates x, y, z, the three-dimensional Kepler’s problem reduces to a two-dimensional
one

Newtonian gravitational attraction and Coulomb interaction belong to this class of
central fields. Newton’s equation (1.16) acquires the form

mi? + =0, a=1,2,3. (1.20)

Computing the vector product of this equation with ril L and using the conservation

of angular momentum, L= 0, we obtain
g o 5 d - - O (535 39
0=[L+ LFFAl = ) 0+ | {fGH i) =
r dt r

d - -
dtﬁ,L] +a

1 d, dil
7 rr—
213 dt dt r

d (.- or
:dt%[?,L]— r}, (1.21)

where we have used the identities [A[é, 6]] = ]_73(;1, 6) - E‘(ﬁ, ]_?3) and —2i3 jtrz =
d1

4 - We obtained the conserved quantity

-

A=[nI]= " = const, (1.22)
r
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called Runge-Lenz vector. Computing its magnitude, we obtain

2EL?

y (1.23)

|A| = oe, where e = \/1 +

and E = ’;72 — % is the total energy. Hence |;1| is not an independent conserved
quantity but a combination of L and E.
By construction, the Runge-Lenz vector and the angular momentum vector L are

L

mutually perpendicular. Computing vector product of the conserved quantities ;

and A we obtain one more conserved quantity called Hamiltonian vector

o

. [L,7] = const. (1.24)
.

U=1[,Al=7-

L

The three vectors are mutually perpendicular. We obtain the geometric interpretation
of A and U in Example 2 of this section.

Law of Conservation of Total Momentum Consider now a two-particle system.
Supposing that forces acting upon the particles obey the third law of Newton, F, =
—F1, Newton equations read

mlil = 1_51, m2'7:2 = —ﬁl. (125)

Taking their sum, one immediately obtains the law of conservation of total
momentum

mivy + myl, = const. (1.26)
A law of conservation, being in fact a first-order differential equation, can be

used for simplification of equations of motion. Below we present examples of how
this works.

Examples

1. A one-particle conservative system on a straight line can be solved by
quadrature for an arbitrary potential. In this case, Newton’s equation

mi+ . =0, (1.27)

(continued)
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is equivalent' to the law of conservation of energy

1 dx\?
Zm(dt) + U(x) =E. (1.28)

So we can study the latter. It represents a first-order differential equation
that admits separation of variables, ¢ and x, and can then be immediately
integrated out

dx

dx
dt = , t—ty = .
2(E-UW) / J2E-U)

(1.29)

Computing the integral on r.h.s. we obtain t — #y = f(x, E). The inverse
function, x = g(z, ty, E) represents a general solution with two integration
constants 7, E.

2. Reduction of the three-dimensional Kepler’s problem to a two-
dimensional one. Consider the Kepler problem

mi® + =0, a=1,2,3. (1.30)

As we have seen above, the particle trajectory lies on a plane that passes
through the center of the field and is perpendicular to the constant vector
L. Runge-Lenz and Hamiltonian vectors are mutually perpendicular and
lie on this plane. So we can introduce the coordinate system (x, y, z) with
its axis along the vectors (A, U, Z); see Fig. 1.1 on page 6.

Equations of motion for the new variables x,y and z have the same
form (1.30) (this will be discussed in some detail in the next section).
In this coordinate system we have 7(f) = (x(),y(?),0), that is, the z-
coordinate has trivial dynamics. The third equation of the system (1.30)
is satisfied and can be omitted. So, conservation of the angular momentum
allows us to simplify the problem: the three-dimensional problem reduces

(continued)

'We have seen that (1.27) implies (1.28). Conversely, the derivative of (1.28) with respect to ¢
implies (1.27).
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to a two-dimensional one

ox oy

mx + , =0 my + , =
(% +y?)2 (2 +y?)2

0. (1.31)

The angular momentum, Runge-Lenz and Hamilton vectors in the chosen
system of coordinates read as follows: L = (0,0, m(xy — xy)), A =
(Ly— ", —Lx—",0), U= (—=L7'A,,L7'A;, 0). Note that components of
Hamilton vector turn out to be expressed through the Runge-Lenz vector.
Equations (1.30) imply conservation of energy as well as of these vectors

1 .
mit— % —E, (1.32)
2 r
m(xy —xy) =L, (1.33)
A, =Li+ P =0, (1.34)
r
Ar=Li— " = qe, (1.35)
r

where r = \/)c2 +y?%, and A; coincides with magnitude (1.23) of the
Runge-Lenz vector. Equation of trajectory can be obtained now by pure
algebraic manipulations. We substitute (1.34) and (1.35) into (1.33), this
gives

L2
r=p—ex, where p= . (1.36)
am
This is an equation of a conic section with eccentricity e (the hyperbola for
e > 1, the parabola for ¢ = 1 and the ellipse for 0 < e < 1), and with
focal parameter p (see Exercise 2 below). In what follows, we suppose that
the trajectory is an ellipse. According to (1.23), E < O for an ellipse. The
semi-major axis of the ellipse lies on the x -axis, and the right focus is in
the center of coordinate system, see Fig. 1.2 on page 10. Recalling that x-
axis has been chosen in the direction of IK, we conclude that Runge-Lenz
vector is directed towards the semi-major axis (perihelion) of the orbit. The
magnitude (1.23) of Runge-Lenz vector is equal to the orbit eccentricity e
times the coupling o, |;X| = oe. The Hamilton vector is directed towards
the semi-minor axis (aphelion).

(continued)
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\J

Fig. 1.2 Basic characteristics of an ellipse: a—semi-major axis (perihelion), b—semi-minor axis
(aphelion), c—focal distance, |FF,| = 2c, e = o —eccentricity, p = “ZZCZ —focal parameter.
For the case 0 < e < 1, the trajectory of motion in the central field is an ellipse with one focus at

the center of force

Computing square of Eq. (1.36), we obtain canonical equation of the
ellipse

(x+0)? N ¥

S A=l (1.37)

with the focal distance ¢, semi-major axis a and semi-minor axis b

L?e c I?
cC = s a = = s
am(1l — €2) e am(l—eé?)
LZ
b=vVa2—c2= ) (1.38)
amv/1 — &2

Using (1.23) we can express all basic parameters of the orbit through E
and L. Using this expression in Eq. (1.38) we obtain

a 2EL? o? I?
= 1 . at= . b= . 1.39
¢ 2E\/ T omert C T ap 2Em (139

(continued)



Newton’s Equation

A few words about the time-dependence of coordinates. Combining (1.31)
with (1.36) we obtain second-order equation for x(z)

mi+ O =0 (1.40)

p—ex

x(t) can be determined also from a first-order equation. Using (1.35)
and (1.36) we exclude y and r from the Eq.(1.32). This yields closed
equation for x(r)

dx

oc\/ ( x )\
=4 1- ) . (1.41)
dt L p—ex

Passing to the new variable p — ex = r, this can be presented as

dr il\/z (E+“) L (1.42)
= m —_ . .
dt m r 2

Exercises

1. Equations (1.30) imply Jmr? — ® = E = const and m[F, 7] = L = const.
Show that in turn, these equations imply (1.30). So the two systems are
equivalent.

2. We recall the geometric definition of an ellipse. Let F; and F» be two points
(foci) separated by the distance 2¢, and a < c. Ellipse is a set of points
M which obey the condition |MF| + |MF,| = 2a. Take the coordinate
system with x -axis passing through the foci and with center at the right

focus. Show that the geometric definition implies the following equation

& L'2

. , 2 .
of the ellipse: r = p — ex, where r = /x2 + y2, e = Candp =" .eis
called eccentricity, p is focal parameter. Note that p is the distance between

focus and the point of intersection of ellipse with y -axis.
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1.2 Galilean Transformations: Principle of Galilean
Relativity

Cartesian coordinates and the evolution parameter which appear in Newton equa-
tions represent an idealization of the data of the measurement devices (rulers and
clocks) used by an observer in his laboratory. The laboratory is called an observer
or (reference) frame.”

The first law of Newton states the existence of inertial frames with the following
property: motion of a free particle in any one of them looks as rectilinear motion
along a straight line, ¢ 42 = 0. The principle of Galilean relativity postulates the set
of transformations relating space-time coordinates of inertial frames. It also states
that equations of motion of any mechanical system, like the free one, retain their
form unchanged under the transformations, S/, = DS, (here S, = 0 (S, = 0)
stands for equations of motion written by observer O (0’), and D is an invertible
matrix). This property is called covariance of the equations. Below we present
the mathematical formulation of the principle of Galilean relativity and discuss its
physical content.

Formulation of the Galilean Principle Consider an n-particle system with a
potential that depends on the relative distances between the particles. That is U(rj)
represents a function of the variables ry, j < k

3
==l = | DG —xp)2. (143)
a=1
Newton equations read
d ; aU r; —
i Z TT_o it2..n (1.44)
aryg Tk

The equations describe a rather general class of interacting systems, including
Newtonian gravity and Coulomb forces.

A remarkable algebraic property of the equations is that they take the same form
if we make the substitution (called below the Galilean transformation)

7:(t) = R () + VI + C, (1.45)

2Due to the presence of the clocks, the term “reference frame” is used instead of “coordinate
system”.
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where
¢! =t—a. (1.46)

Here R® is an orthogonal matrix, RRT = 1, and \7, 6, a are arbitrary constants.
Denoting the Lh.s. of Eq. (1.44) as S;(7(¢)), one verifies that the equality

Si(#(1) = RSi(7' (1)), (1.47)

holds. This property is known as covariance of equations. Note that there are a
lot of transformations that do not leave the equations covariant (take, for example,
7:(f) = 7/ (t) + V1*). The covariance (1.47) of basic equations of classical mechanics
under Galilean transformations is known as the principle of Galilean relativity. Its
more rigorous mathematical formulation is as follows.

Consider the space of functions 7 : R — R 7 : t — 7(¢). Galilean
transformation is the following map in this space:

G:F(t) > 7'()=R" [?(r+a)—\7t—6]. (1.48)

If 7(¢) represents a solution of equations of motion, then 7/(¢) is a solution as well.

Physical Content of the Galilean Principle Its physical content is two-fold, due to
the possibility of two different geometric interpretations for the substitution (1.45).
In short, it can be treated either as the passage from one reference frame to another
(the so-called passive point of view), or as a displacement of the system under
investigation from one region of space-time to another (the active point of view).
Let us discuss these in further detail.

Passive Point of View In this case 7(f) and 7/(¢') are regarded as radius-vectors of
the same point in two reference frames, O and O’. The point is observed by O at the
instant r and by O’ at the instant #. Suppose the observers differ by displacement,
by orientation of axis and are in relative motion with constant velocity. In non-
relativistic mechanics it is postulated that formulas (1.45) and (1.46) represent the
law of transformation from one frame to the other. It consists of the following
transformations.

1. The transformation x* = x’* + C* represents the space displacement: O sees the
origin of O’ in the point with the position vector C.

2. The transformation x* = R%x", where RRT = 1, represents rotation: O sees
the coordinate axis of O’ rotated through R. To justify this, note that O and O’,
related by this transformation, have the same origin. Besides, it does not change
the value of scalar product among two position vectors, (71,72) = (7},75). In
particular, it preserves distances between points, |[7/| = |7|.



14 1 Sketch of Lagrangian Formalism

(a) (b)

Fig. 1.3 Rotation transformation. (a) Passive point of view. (b) Active point of view

Any rotation can be parameterized by three numbers. For instance, they can
be components of the vector @ = (!, a?, &®) directed along the rotation axis,
with a length equal to the rotation angle (see the end of this section for details).

3. The transformation x* = x* 4+ V* is known as the Galilean boost. O sees O’
moving with velocity V and passing through the origin of O at t = 0; see Fig. 1.4
on page 26. Then X’ are coordinates of the point 7 measured by O’ at the instant z.

4. The transformation 7(f) = 7/(t — a) is the time displacement®: O observed the
point 7 after than O’ by a time a. Notice that the time intervals measured by O
and O’ are the same, At = AY.

Note that the Galilean transformations form a family parameterized by ten
parameters: &, V., C and a.

In the passive interpretation, the covariance (1.47) implies that in all inertial
frames the physical system obeys equations of motion of the same form. All inertial
observers, each using his own coordinates, will discover the same laws of motion
studying a given physical system, see Fig. 1.3a on the page 14. From a practical
point of view, O, who discovered Eq. (1.44), need not worry how to write them, if
he intends to use another inertial frame—they will be the same. For instance, this
has been already used in Example 2 of the previous section; see the discussion after
Eq. (1.30).

Active Point of View In this case (7,7) and (¥',¢) are regarded as coordinates
of different space-time points in a given reference frame. Then (1.46) and (1.45)
represents the transformation that turns the primed point into an unprimed one.
For instance, imagine a physical system located in the vicinity of the observer’s
origin. Then the transformation (1.45) rotates it by R, displaces it over a distance
C and makes it move with velocity V. Besides, Eq. (1.46) means that the system is
considered by the observer at a later time.

3To see this, do the transformation in Newton’s equation with time-dependent potential U(f).
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In this interpretation, covariance means that two copies of a mechanical system,
related by the Galilean transformation, obey the same equations of motion, see
Fig. 1.3b on page 14. It implies that in this reference frame our space and time
look homogeneous as well as the fact that the space looks isotropic. Besides, a
mechanical system at rest and its copy in rectilinear motion along a straight line
have identical properties.

Let us summarize the discussion. Intuitively, the Galilean relativity princi-
ple (1.45), (1.46), and (1.47) can be summarized in two statements. First, different
inertial observers studying the same mechanical system will discover laws of motion
of the same form. Second, identical experiments made by inertial observers in their
laboratories will give identical results. Such properties as homogeneity and isotropy
are implicit in the second statement.

In relativistic mechanics the ideology remains the same. The only thing that
changes is the expression for the boost relating two frames in relative motion; see
the next section.

Structure of a Rotation Matrix An arbitrary 3 x 3 matrix a is determined by its
nine matrix elements a,,. So, the set of matrices forms a nine-dimensional space
with coordinates a,;,. The rotation matrices form a subset defined by the condition

R'TR=1, or RT =R\ (1.49)

Let us represent R as composed of three columns, R = (7{,72,73). Then (1.49)
implies that 7; form an orthonormal set. We note

1 0
R 0 :;1, R 1 =1, R 0 :;3, (150)
0 0 1

that is R rotates the three orthonormal vectors of the coordinate axis into the
orthonormal set 7;.

Since R”R is a symmetric matrix, the system (1.49) consists of six independent
equations. So the subset (1.49) can be parameterized by 9 — 6 = 3 coordinates
(intuitively, a rotation can be uniquely specified by the pointing of a vector & =
(o', a?, o) directed along the rotation axis, with a length equal to the rotation
angle).

To parameterize the set (1.49), we use the standard procedure known from group
theory. We will need to use the exponential of a matrix. Given the matrix a, its
exponential e? is a matrix defined by the power series

o .

oo
a’ 1
(€)ap = (Z n,) =8 + A + 5, Gactier + ... (1.51)
ab
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Some properties of the exponential are

if ab=ba, then &%’ ="t (1.52)

el = e“+b+é[“'b]+03(“‘b), where [a, b] = ab — ba; (1.53)
() = e (1.54)

() '=e (1.55)

From the definition it follows that ¢® = 1. Besides, if « is close to the null matrix,
then ¢ ~ 1 + a, that is ¢* will be close to the unit matrix. It is known that the
exponential establishes an isomorphism of a neighborhood of a null matrix onto a
neighborhood of a unit matrix.

Let us try to represent a small rotation R in the form of the exponential of another
matrix: R = ¢“. The condition of orthogonality of R gives (e”)” = (e”)”', or
e = e, or w7 = —ow, that is, the matrix @ must be antisymmetric. Conversely,
any antisymmetric matrix generates an orthogonal matrix by an exponential map.
An antisymmetric matrix is parameterized by three coordinates. Let us represent it
as follows

0 wp —wy
w = —w12 0 w73
w31 —wy 0

000 00 -1 010

=wy3| 001 +w3;;1000 +wp| —-100

0-10 10 0 000
=a!'T| + T + T3, (1.56)

where a! = wy3, 0% = w31, &® = Wiy, or, in a more compact form

a b

of = Ty, w5 = ejnak. (1.57)
Note the meaning of the exponential trick: resolution to the equation v’ = —w is a
much easier task than R = R™!!

Returning to the rotation matrix, it can now be presented as

R=¢""Te 14 a°T,, a=1,2,3. (1.58)
The matrices T, which appeared in the formalism are called generators of rotations.

Since exponential is an isomorphism, the coordinates a® of the matrix w can be
taken as coordinates of the orthogonal matrix as well, R = R(a). They have a
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simple geometric meaning. Note that the vector @ is invariant under the rotation,
R(@)a@ = @, so & is directed along the rotation axis.

This implies that, for instance, the matrix R = T3 represents a rotation around
the z-axis. To confirm this by direct computation, note the properties

n

100 -1 0 0
T =0 -10] = 0o (1D"0]; (1.59)
0 00 0 0 0
0 (=1)"0
(T = —==1)" 0 o], (1.60)
0 0 0
then (we denote o® = )
1
R=¢"T = Z:O n!Ol"(T:’,)n =
(_l)naZn (_l)na2n+1
(2n)! 2n+ 1)! cosa sina 0
o (D (=)™ o|=| —sinecosao | (1.61)
@n + 1)! @2n)! 0 0 1
0 0 1

The corresponding transformation

xcosa + ysino
7' =RfF=| —xsina + ycosa |, (1.62)
Z

is precisely the rotation by angle « around the z-axis.

Exercises

. Prove the properties (1.52), (1.53), (1.54), and (1.55).
. Prove that R(@)&@ = & (hint: compute «“T,& = w @ using (1.57)).
. Compute the rotation matrices ' and T2,

. Verify that the rotation generators satisfy the following algebra: [T, T;] =
T.Ty — TyT, = —€"T,.

R ENELOS T (S R
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1.3 Poincaré and Lorentz Transformations: The Principle
of Special Relativity

A very economic and clear presentation of the special theory of relativity can be
found in [15, 16]. For a detailed discussion, see [17-19]. Here we only discuss
the principle that represents the starting point in the formulation of relativistic
mechanics.

Formulation of the Principle of Special Relativity Similarly to the Galilean
principle, the special relativity principle postulates the set of transformations (called
Poincaré transformations) relating space-time coordinates of inertial frames, and
states that laws of motion are covariant under the Poincaré transformations. The
only difference between Galilean and Poincaré transformations is in the expression
for the boost relating moving observers.

Poincaré Transformations Differentiation of the Galilean boost x* = x* + V9
gives a simple transformation rule for a particle velocity

T=7+V. (1.63)

The velocity of a particle seen by O is equal to the velocity seen by O’ plus the
relative velocity between the frames. This rule contradicts the Michelson—Morley
experiment, which shows that the velocity of propagation of a light front in a vacuum
is the same in all inertial frames! The numerical value of this universal constant is
c = 2998 x 10'cm/s. According to the Michelson-Morley experiment, for the
case when both the light and the observer O’ move along the x-axis of the observer
0, we have ¢ = ¢ instead of Eq. (1.63).

Hence the Galilean boost is only approximately true, when velocity of the particle
and the relative velocity between the reference frames are small as compared with
this universal constant. We point out that this does not mean that relativistic effects
are always negligible at small velocities. For instance, a magnetic field produced by
an electric current passing through a wire represents a pure relativistic effect; see
[20].

So, we are forced to replace the Galilean boost by another transformation,
which must satisfy two requirements. First, it must be consistent with the observer-
independence of the speed of light. Second, it must reduce to the Galilean boost
at the non-relativistic limit ¢ — oo. It is instructive to discuss the problem in a
more general setting, looking for the most general transformation consistent with
the observer-independence of the speed of light.

Consider the propagation of a light between two nearby closed points, separated
by dt, dx* in the O-frame. O writes the law of motion —c?dt*> + (dx”)*> = 0, and

then computes the speed of light, \/ (d;; )2 = c. Similarly, the observer O’ writes

—c2df’? + (dx¥'*)? = 0, with the same c, in accordance with the Michelson—Morley
experiment. We look for the relation between #, X and ¢, X’ which transform the first
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equation into the second one. To simplify the notation, it is convenient to unify time
and space coordinates into a single object x* = (x°,x%) = (ct,x*), which labels
points of space-time (Minkowski space). So, any quantity endowed with a Greek
index has four components, ;t = 0, 1, 2, 3. The points of the Minkowski space often
called events, while curves are called worldlines. For instance, with the origin of the
laboratory O we associate the worldline (ct, 6). We also introduce a 4 x 4-matrix

—-1000
0100
= . 1.4
Ume 0010 (1.64)

0001
Then the law of motion for the light front reads
Nuwdxdx’ = 0. (1.65)

The left-hand side of this equation is similar to the expression for a distance in
Euclidean space, di> = 8,,dx*dx”, where, instead of the Euclidean metric 8, the
matrix 7, appears. The matrix 7, is called a Minkowski metric.

We look for a transformation x’# = x'*(x") relating two inertial frames. In the
special relativity theory the equation of motion (1.65) is postulated to be invariant*

Muwdx™ (X)dx" (x) = nepdx®dx’. (1.66)
Computing differentials on the Lh.s., it reads
Nuv 0 X" 0px"" = Nagp. (1.67)

This equation implies linearity of the transformation law. To see this, compute
the derivative with respect to x¥, 17,,0,(dex*0gx™) = 0, then do a cyclic
permutation of indexes in this expression and write the following combination
v 0y (VX 0px"") — 1,00 (X 0y x"") + 1,1, 0p(3,x"* dex”) = 0. Computing the
derivatives, this reduces to 21, 0,x""9g0,x’* = 0. Since both 1, and dox"* are
invertible matrices, this equation implies dgd,x’” = 0. That is, x’* is at most a
linear function of x”

= A* X+ at (1.68)

“Requirement of the covariance, 7,,dx*dx"” = k(x)n,s dxPdx®, is also consistent with observer-
independence of c. This leads to a broader set of transformations known as a conformal group.
In the theory with k # 1, transverse dimensions of a moving body experience contraction effects
[17].
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Inserting this result into Eq. (1.67) we get a restriction on the matrix A
M oaA g = e, or ATnA =1, (1.69)

where (A7), = A", (as always, the left index of any matrix element gives the
number of line). The transformations (1.68) are known as Poincaré transformations,
while those with a* = 0 are called Lorentz transformations.

Thus we have obtained all the transformations that keep Eq. (1.66) invariant and
hence are consistent with the independence of the speed of light on a choice of
a reference frame. These are given by Eq. (1.68), where a*, © = 0,1,2,3 are
arbitrary constants while A%, is a 4 x 4 matrix that obeys the restriction (1.69).

Equation (1.69) implies that A = =1, so the Lorentz matrix is invertible. An
inverse matrix is denoted as A, with the elements A%, Multiplying (1.69) by n
from the left and by A from the right, it reads A = nATn. So the inverse matrix
is

Ay =mp(A)g AV AP, =6 (1.70)
Consider the quantity
X = Nux” = (=%, x%). (1.71)

Using Egs. (1.68) and (1.70), it transforms with the help of the inverse
matrix

X, =x,A", +a,. (1.72)

Hence in Minkowski geometry the up and down position of the four-dimensional
index of any quantity is fixed and indicates the transformation law of the quan-
tity. Any index can be raised or lowered with the help of the Minkowski met-
ric, see (1.71). Our agreement (1.64) implies that, similarly to non-relativistic

mechanics, x* = x, for spatial components of x*. Another widely used agree-
ment is n = (+1,—1,—1,—1), this leads to the less convenient rule, x* =
—Xg.

Interval of Minkowski Space The quantity
ds® = = AXF AX" = A(AD? — (AP, (1.73)

associated with the events x* and x* + Ax*, has the same value in all inertial
frames and is called Minkowski interval. This has direct physical meaning in two
cases. First, for two events which occur at the same point, the four-interval is
proportional to time interval, df = —‘f. Second, for simultaneous events the four-
interval coincides with distance, dl = ds.
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The interval is called time-like if ds* > 0. In the frame O’, which moves with
velocity V¢ = AA":] with respect to O, the events happen at the same spatial point.
For the events separated by space-like interval, ds> < 0, there is a frame where they
are simultaneous. The events of emission and absorbtion of a light signal have null

interval, ds? = 0.

Vector (Tensor) Fields on Minkowski Space: Manifestly Covariant Equations
Consider the set

("), v (X)), .. ) (1.74)

where v/ (x") is a function representing a quantity in the frame O(x"); v'*(x"V)
represents this quantity in O'(x") and so on. The set is called a contravariant vector
field if

V() = A* LY (x), (1.75)

where the coordinates x'#, x* are related by the Poincaré transformation (1.68).
Similarly, a covariant vector field is defined by the transformation law

o/, (X) = 0, (YA, (1.76)

To every contravariant quantity there corresponds a covariant one, which is obtained
by lowering the up-index with help of the metric, and vice-versa. Quantities
equipped with more than one index are called tensor fields. For example, the third-
rank contravariant tensor is defined by the transformation law

SPP() = APy A g AP, s (x), (1.77)

while the second-rank covariant tensor transforms as
Sy () = sup(D)A® AP, (1.78)

Finally, a quantity without indexes that transforms as

¢'(x) = p(x), (1.79)

is called a scalar function.

Equation (1.69) can be written as 1, = 748 A ,J\ﬂ v» SO the Minkowski metric
represents a special example of an x-independent tensor field that has the same
components in all reference frames. The Minkowski space admits one more x-
independent tensor with similar property, called Levi-Civita symbol, €""?. 1t is
defined as follows. It is antisymmetric in any pair of indexes, so in the frame
O(x*) is completely determined by €”'>* = 1. Due to its antisymmetry, it obeys
€M = —¢,,p5. Let O'(X'*) be related to O(x*) by the Lorentz matrix A. If
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det A = 1, we take €’°'2 = 1 in the frame O'. If det A = —1, we define €013 = —1
in the frame O’. Then the transformation law

€1 = Ay A g AP NP1 (1.80)
holds. Indeed, the quantity on r.h.s. is antisymmetric in any pair of indexes, so
AV gAY g AP NPT = cel?, (1.81)

with some constant c. We can determine it calculating determinant of A according
to known formula £1 = det A = ;,e“"P‘ge“ﬂV”A“aA”,g AP, NSy = ’;'!e“””‘ge“””‘g =

cdet1 = c. With this ¢, Eq. (1.81) coincides with (1.80).

Examples

1. Note that tensors of a given rank form a linear space: if v*”, s*" are tensors,
then av*’ 4 bs* is a tensor as well.
2. Examples of scalar functions can be obtained contracting tensor indexes

w;,LUM7 r’}u)vusvg Su\}pn“pvv. (1.82)

3. Contraction of indexes can also be used to construct new tensors. For
example, if #,,, and v* are tensors, then #,,,v" is a second-rank covariant
tensor, while 7,,,,*v” is a covariant vector.

4. Starting from the scalar function, let us construct the set

[ g () A

dw T e (189

Wy _ ()

3’ (W () _ 3¢ (x)
From AxH - axk T v

ax’v

AV, we write the relation-
X (x)

ship between d),¢" and 0,,¢

¥ (x)

9,0 () = 0,0(x)A", (1.84)

that is, a derivative of a scalar function is a covariant vector. This example
shows that it is convenient to adopt the vector transformation law for a
partial derivative

=" A", (1.85)

(continued)
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Similarly, a derivative of a tensor is a tensor as well. For example, 0,,0,¢,
represents a third-rank covariant tensor.

Equations (1.75), (1.76), (1.77), (1.78), and (1.79) clearly show that the scalar,
vector and tensor quantities can be used for the construction of covariant equations.
For instance, if s#'* is a tensor, then s*"? = 0 represents a manifestly covariant
equation: if an observer O discovered a law s#"? = 0, all inertial observers can use
this tensor to write the law in their laboratories.

Structure of the Poincaré Transformation Similarly to the Galilean transforma-
tion, the Poincaré one is specified by ten parameters. So, let us compare them, to get
an idea about the structure of Poincaré transformations (1.68) and (1.69).

1. There are four translations presented, x'* = x* + a*, just as in the Galilean case,
¢ =t+a,xX* = x"+ ¢ Six more parameters are necessary to label the Lorentz
matrix A*,.

2. Consider the Lorentz transformation with A% = 1, and A’y = A% = 0, that is

10 0 0
0 Al AL, Al

M= e |- (1.86)
0 A3 A3, A3

Then Eq. (1.69) acquires the form AX;A%; = §;, that is, the 3 x 3-block A;

is the orthogonal matrix. The corresponding transformation represents a spacial
rotation

X0 =0, X= A‘:,-xj. (1.87)

3. Matrices with A%;, Afy # 0 produce a transformation that can be compared with
the Galilean boost (which is written on the r.h.s. below)

X0 =A% + A%, (7 =1); (1.88)
X4 =A%x" + A%x°, (= x* 4 V). (1.89)

The spatial part, Eq. (1.89), is similar to the Galilean boost, but it is accompanied
by the time boost, Eq. (1.88). This ultimately implies that both spacial and time
intervals between two events look different for observers in relative motion.
It is this part of the Poincaré group which essentially differ from the Galilean
one.
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Structure of the Lorentz Transformation To study Lorentz boosts in detail, we
parameterize an arbitrary Lorentz transformation

= A, ARG A s = e, (1.90)

using the same procedure that was used in the previous section for rotation matrices.
We try to represent the Lorentz transformation A in the form of the exponential of
another matrix: A = ¢“. The condition A’nA = 7 can be written as ne“’l n=e*°
and then as "' = ¢~ _ This implies nw’n = —ow, or, finally

(nw)" = —no. (1.91)

So, e will be the Lorentz matrix if and only if nw is antisymmetric. Any @ that
obeys (1.91) is specified by 6 parameters and can be written in the form (confirm
this!)

0 (,()01 02 03

w w
. o 0 w2 e
W02 012 0 ¥
W% 3 —B 0
01 02 03 12 31 23
w My +o0 "My +ow "My +ow "M+ o M3 + w0~ M), (1.92)

where (Mup)* | = 84 nvg— 8§ Nva- Mo, are called Lorentz-boost generators, and M,
are the rotation generators (it is convenient to label them by a pair of indexes). The
manifest form of the generators is as follows:

0100 0010
1000 0000
Mo=10000|"™M2=]1000]|
0000 0000
0001
0000
My; = ; 1.
03 0000 (1.93)
1000
0000 000 0
0010 000 —1
M, = M3 = ,
0-100 000 0
0000 010 0
0000
0000
My = . 1.94
2 00 0 1 (1.94)

00-10
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The sum (1.92) can be written in compact form if we duplicate a number of

parameters and generators defining w0 = —% M,y = —My;, and so on.

Then (1.92) reads w = éw“ﬁMa,g, where the sum is now performed over all values

of a, B. The parameters ®? in this expression form an antisymmetric matrix.
Returning to the Lorentz transformation, it can now be presented as

. 1
A= e2™Map 1 4 Zw“ﬂMaﬁ, a,f=0,1,23. (1.95)

. . . . 23 31 12
According to the previous section, the transformations e®” 23, ¢ M31 and ¢© M2
produce spacial rotations about the axis x', x> and x*.

Commutators of the matrices M, have the following form:

[M/wsMocﬁ] = _(nuanﬁ — NusMye — NvaMyp + nvﬁM;wz)- (1.96)
Interpretation of the Lorentz Boost Consider, for example
A = Mo a =o' (1.97)

To find its manifest form, note that (M01)2” has only non-zero matrix elements
(Mo1)°, = 1, (Mo1)', = 1, while (Mo;)*"™! = My,. Then we compute

2 4
1
A% =AY =1+02{! +(z! +...= 2(e‘"+e_"[)=coshoc,
3 5 1
A=Ay =a+ i' + 05" o= (e = ™) = sinha, (1.98)

and the Lorentz-boost matrix is

cosha sinha 00
sinha cosha 0 0

A = Mot = 1.99
¢ 0 0 10 (1.99)
0 0 01
This produces the transformation (x° = ct, x° = ct)
.
Y =tcosha +  sinhea,
C
X' = tcsinha + x' coshe,
X2 =2, X3 = (1.100)

In the special theory of relativity it is postulated that this transformation relates the
coordinates of observer O’, who moves along the x! axis of O at speed V, passing
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Fig. 1.4 Both Galilean and /
Lorentz boosts prescribe a y y
law of transtormat19n . -V
between observers in relative
motion
Vit
s mm—m - =
0 o’
=
X x/

through its origin at t = 0; see Fig. 1.4 on page 26. Then its origin has the coordinate

. 1 . . .
x! at the instant r = " - Coordinates of this event in the frame O" are ¢, x’ I'=o.
Using these values in the second equation from (1.100), we obtain

1

_ 1
—tanl 20{ - _ C ’
Vicuila - J1-vel o1y

1=V /e

cosha =

\%4
tanha = — , then .
c sinha = tanho cosha = —

So, the final form of the Lorentz boost is

V.1 1

t_ —

;o X XV a0 s B (1102)
J1-Vv2/e V1=V

The expressions can be inverted (do this!), with the result being

t/ + Vx/l x/l Vl_/
t= e ,oxl = + L =47 P =3 (1.103)
V1—=Vv2/c2 V1—=Vv2/c?

Comments 1. Note that at the limit ¢ — oo this reduces to the Galilean boost.
When V > ¢, the transformations have no sense.
2. Equation (1.102) implies the following transformation rule for velocity

o — X  dx—Vdt v-V (1.104)
dr dr=Vax o 1= '

As it should be, v = ¢ implies v’ = ¢, in accordance with Michelson-Morley
experiment.

3. The time interval between two events looks different for observers in relative
motion. Consider two events (for example, two flashes) that happen at the same
pointx’! of O’ at the instants 7| and 7,. That is, the O’-clock registers the interval
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AY = t, —t}. From Eq. (1.103) we have

o+ ! ty+ Lt
= ¢ , = ¢ . (1.105)
V1=V2/c? V1=v2/e2
So the O-clock will register the interval
AY
At = > AY, (1.106)
V1=v2/c2

that is, a clock moving with respect to O ticks more slowly as compared with a
clock at rest.

4. The spacial interval between two events looks different for observers in relative
motion. Take a pivot at rest with respect to O’ and placed along its x'! axis. Its
lengthin 0’ is I = X} — % 1. To find its length in O, one needs to compute the
coordinates of the ends of the pivot at the same instant t. Use the second equation
from (1.102) with , =t

l
r_ 1 1] 11
I'=x, —x \/1 22 > =x,—x, (1.107)

that is, a pivot moving with respect to O looks shorter as compared with the pivot
at rest. Material bodies experience contraction in the direction of motion.

5. We have discussed particular cases of the Lorentz transformations: rotations and
Lorentz boost in (x°, x') -plane. General Lorentz transformation can be presented
as a product of two rotations and the Lorentz boost (1.102) in the direction of
motion of observer 0’/

A= AR(ﬁ) X AV X AR(Q), (1108)
see Fig. 1.5 on page 28.

Mechanical Covariants and Invariants Poincaré transformations of the coordi-
nates of Minkowski space are linear, xX* = A*,x" 4+ a*. They induce a certain
transformation law of the functions x“(¢) which describe the evolution of a system.
The problem is that the induced transformations are higher nonlinear ones (see
Sect.7.4). While the relativistic equations of motion can be formulated in terms
of x“(t), the Poincaré covariance of such a formulation is not under control. The
conventional way to avoid the problem is as follows.

With the function x“(r) we associate the set of points M (x**) of Minkowski space
with the coordinates x’ = ct, x* = x%(t). Let us introduce parametric equations of
the resulting worldline

2 =22, x4 = x(1), (1.109)
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where 7 is a parameter along the line. For the coordinates x* () of the Minkowski
space we have the linear transformation law, x*(t) = A*,x"(r) + a*. So, in
contrast to x“(¢), the functions x*(t) transform as coordinates. Then the quantity
x(r) = ‘Z‘: transforms homogeneously, X¥* = A#,x", that is, it represents a
contravariant vector.

To construct the manifestly covariant quantities we have now the building blocks

. d
Nuvs (1), Jr’ €Lvph- (1.110)
So

() =0, X, =n,i" =0, i*=0,

(G =0,  €uui’ =0, (1.111)
are examples of the manifestly Poincaré-covariant equations, while

3),@
e ClLey .. Loy 2
X dt = xR, fEEY), €t P X

(1.112)
represent invariants (scalar functions). Note that f (%, x*) is the only invariant that
does not involve higher derivatives.

It is important to note that the functions x*(r) have no direct physical
meaning. The observer O measures space-time coordinates #, x?, that is, he
deals with the functions x%(¢), not with x*(t). By construction, they are
related by x“(f) = x%(7)|c@, where t(¢f) is the solution to the equation
X0 =x%).

Arp)

Fig. 1.5 General Lorentz transformation can be decomposed into two rotations and a boost, A =
AR(ﬂ) X Ay X AR(a)
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Proper Time Parametrization Natural parametrization s along the world-
line (1.109) can be constructed as follows. Using x“(f), let us construct the function

1 [ \/ dxt dxv 1 ! &\’
- Ay =1 - diy/e? - . 1.113
s¢) c/O M axan c/O \/c (d,x) (1.113)

s(t) represents the interval computed along the world-line, and is invariant under the
Poincaré transformations. Besides, Z‘: =! Ve2 — |32 > 0 since for the massive
particle |v| < c¢. Hence s(¢) is an increasing function of 7, and can be taken as a
parameter along the curve.

This has a simple interpretation for the particle moving with constant velocity.
Consider the frame that moves with the particle, then the world-line is x* = (ct, 6),
and from (1.113) we obtain s = ¢. Hence s is equal to the proper time of the particle,

that is the time measured in the frame where the particle is at rest.

Exercise Consider the curve x“(f) which passes through the origin at r =
0, x*(0) = 0. The interval between the events (0,x%(0)) and (ct,x*(¢)) is
s(t) = i \/ —x,x*. Verify if the interval can be used as a parameter of the
world-line.

1.4 Principle of Least Action

We have seen that the sum of kinetic and potential energy is an important quantity
characterizing a physical system. Surprisingly enough, their difference, T — U, also
plays a very special role, being a basic quantity used in the formulation of the least
action principle. In modern mechanics this underlies equations of motion.

Construction. With a mechanical system with the position variables ¢ we associate
the function of Lagrange L(¢“, ¢°, T), which in many cases is given by the difference,
L = T — U. We can compute the mean value’ of the Lagrangian along any curve
q“(7) at a fixed interval [y, 15]

Slql = /Q dtL(q.q.7). (1.114)

This integral is called the Lagrangian action of the system. It associates the number
S[g] to each curve g“(7). We can compare the numbers S[g] calculated for the curves

5The mean value would be S divided by the interval T = 1, — ;. Since we are interested only in
curves over the fixed interval, the common factor 7! can be omitted.
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q(1y)

q(v)+8q(1)

q(ty)

Fig. 1.6 The variational problem is formulated on a class of curves with the same initial and final
points

that join two given points over the time interval chosen; see Fig. 1.6 on page 30. We
restrict ourselves to this class of curves.

According to the principle of least action (or Hamilton’s principle), with a
mechanical system can be associated a Lagrangian function L. The system moves
between two given points along the curve that provides the minimum of the
Lagrangian action.

This statement of the existence of a Lagrangian is rather general. In particular, for
a mechanical system that obeys the Hamiltonian equations of motion (see below),
the existence of a Lagrangian function can be proved. While in some cases it
requires the use of rather sophisticated methods, Lagrangians have been found
for most fundamental equations of mathematical physics. Hence they follow the
principle of least action.

To provide the minimum, ¢“(7) must obey certain second-order differential
equations constructed in terms of L. While we discuss this in the next section, it
may be instructive to carry out an intuitive computation that illustrates a relationship
between the quantity L and equations of motion. Take the harmonic oscillator with
L= ém)c2 — ékxz. Consider the curve x(¢) and another one, close to it, x(f) + §x(t),
and with the same initial and final points. This implies dx(¢;) = x(f2) = 0. Let us
compute the variation of the function L for the two curves in a linear order on §x
(that is, the differential) at a fixed #; see Fig. 1.6 on page 30. We obtain

dL = [L(x + 8x) — L()]| o5y = ; [m( + 83)* — k(x + 6x)* — mi® — kx?] |0(8X)
= —(mX + kx)éx + (x6x)". (1.115)

Note that mX 4+ kx = 0 is equation of motion of the harmonic oscillator. That is the
differential L consists of equations of motion plus a total derivative term. This can be
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removed if we integrate this equality on the interval [t;, ;]. The integral of the total
derivative [ dr(x6x) = x5x|;f vanishes due to the conditions §x(#;) = 6x(t;) = 0.
Then the integral of Eq. (1.115) reads

/dtdL = —/dt(mx+ kx)8x. (1.116)

Hence the differential of the Lagrangian integrated on the interval vanishes for the
curve x(7), which obeys the equations of motion, [ dtdL(x(r)) = 0. The last equality
represents a necessary condition of minimum of the Lagrangian action; see the next
section.

1.4.1 Variational Analysis

Definition of a Functional Consider a set of functions C = {¢°(7),q : R — R"}.
The functional S is a rule that associates a real number with any function of the set,
that is, S is the map

S:C—R, or S:q%)— Sg'(r)] e R. (1.117)

The straight brackets are used to distinguish functionals from functions.

In Lagrangian mechanics we are interested in a functional of a special form
called the Lagrangian action functional. A mechanical system can be characterized
by the function of Lagrange L(g, ¢, 7). Given the trajectory ¢“(z), t € [t1, 72], the
Lagrangian action functional is defined by the rule

Slql = /Q dtL(q.q.7). (1.118)

Below we systematically omit the integration limits as well as the time variable t in
the Lagrangian.

The variational problem for the Lagrangian action is formulated as follows.
Consider the class of curves joining two fixed points g1, g2 over a fixed time interval
[71, 7]

q“(t1) = ¢, q“(n) = 45, (1.119)

see Fig. 1.6 on page 30. The problem is to find the curve that provides the smallest
value of the action functional. According to the least action principle, this is the
curve the system with the Lagrangian L chooses as a trajectory of motion.

To analyze the problem, we define the functional analog for the differential of
a function called the variation of a functional. Given functions ¢“(t) and y*(t) of
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q(v)+9q(7)

q(Ty)

Fig. 1.7 A one-parameter family ¢(z, s) connecting the curves ¢(t) and ¢g(t) + 8¢(7)

the set C, let us introduce the function §¢“(t) = ¢“(r) — y*(r). Then we write
y* = ¢“ + §¢°. Let us also introduce the one-parameter family of curves ¢“(z, s) =
q“(t) + s8¢“(t) connecting ¢“(z) and ¢“(t) + 84°(7); see Fig. 1.7 on page 32. It
obeys the properties ¢*(z, 0) = ¢“(7), ¢*(t, 1) = ¢*(t) + §¢“(7).

Given ¢“(t) and 8¢“(t), with the functional S we associate the usual function of
the variable s

S(s) = S[g” + s6¢“]. (1.120)

Then the variation §S[q] of the functional S[q] “at the point ¢“(z7)” is defined by the
formula

d
= Slg+ s84q] . (1.121)
ds

ds s=0 s=0

So 8S[g] = 0 if and only if the function S(s) has an extremum at z = 0, §'(0) = 0.

Assertion If ¢“(t) represents a minimum of the variational problem (1.118)
and (1.119), then

3S[gl =0 forany 8q°(t). (1.122)

Indeed, let ¢ be a minimum. Choose some §¢“(7) and consider the function (1.120).
Since S(0) = S[g], the function S(s) has a local minimum at s = 0. This implies

di,(:) 0= 0. Taking into account (1.121), we conclude that §S[g] = 0.



1.4 Principle of Least Action 33

Let us look for manifest form of the condition §S[g] = 0. For the velocity-
independent functional, S = [ dtL(g), we obtain

oL
88 = /dt 8q4°, (1.123)
aq°

that is, the integrand represents the usual differential of the function L.
For the Lagrangian action (1.118) the variation (1.121) reads

58 = / dt (aL(q’ D gga 1 @D (Sq“)-) . (1.124)
aq° ag°

Here angf’) stands for a partial derivative with respect to the symbol ¢“. Notice
that the integrand looks like the linear term of the power expansion of the function
L(g+68q, g+ (8g)), if this is treated as a function of independent variables g and g.
It is the formal rule used for computation of the variation in practice (omitting the
variable s)

38 = (Slg + 3q] — SlaD hinear in 5q term (1.125)

This rule has been used in the previous section. Using integration by parts,
Eq. (1.124) can be written in the form

oL d oL JL
8S= [ d — S§q° S§q°
/ ’(aqa draqa) T g

2]

(1.126)

!

If the variation is computed on the class of functions (1.119), §¢° vanishes at the
limiting points, 8g“(71) = 8¢“(72) = 0. So the last term in (1.126) vanishes as well,
and we obtain the basic formula of variational analysis

§S[q] = / dt (aL(q’ 9 _d aL(?’é’)) 8q°. (1.127)
ag° dr  04°

The Eqgs. (1.122) and (1.127) imply that the minimum ¢“(z) obeys the condition
oL d oL
/dt — . 18¢°=0 forany 8q°(t). (1.128)
dq®  dt 9g°
In turn, this implies (this is proved at the end of the section)

d oL dL
- =0. 1.129

dt 3¢  0g° ( )

This system of ordinary second-order differential equations is known as Lagrangian

equations or Euler-Lagrange equations. Sometimes the 1.h.s. will be denoted as 88;, .
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Let us summarize the results. According to the least action principle, the true
trajectory of a physical system is a minimum of the variational problem with a
properly chosen Lagrangian. In turn, the extremum ¢“(t) obeys the Lagrangian
equations (1.129). Combining these statements we arrive at

Assertion The time evolution of a system described by the Lagrangian L(q, ¢, 7) is
governed by the Lagrangian equations (1.129).

We point out an ambiguity presented in the construction of a Lagrangian. We can
modify a given Lagrangian adding the total derivative of any function N(gq, 7). The
action

S = /dr |:L(q,q, 7) 4+ th(q, ‘L’)i|, (1.130)

leads to the same equations of motion as (1.118). To confirm this, note that
variation (1.121) of the extra term vanishes due to the boundary conditions §¢(72) =
8q(t1)) =0,8 [N = a;gz)Sq(rg) - a;gl)(?q(rl) = 0. Hence 85" = §S.

Examples

1. Let us confirm the validity of the least action principle for a system of
particles subject to potential forces. Let r; = (xil,x%,x?) stand for the
position vector of the i-particle of mass m;, i = 1,2,...,N, and the
function U(ry, ..., ry) describe the potential energy. Take a Lagrangian

as kinetic minus the potential energy and write the corresponding action

S = /dt[;mi(i'i)z - U(ri):| , (1.131)

In this case the Lagrangian equations (1.129) reduce to the second law of
Newton, as it should be:

ou

. i=12,...,N. (1.132)
3ri

m,-iﬁ = —

2. We specify the previous result for the case of N particles with the same
mass m connected by massless springs, see Fig. 1.8 on page 35. All the
springs are of the same length Ax and rigidity k. So the equilibrium
positions of the particles are x;(0) = 0, x,(0) = Ax, x3(0) = 2Aux,
.5 x(0) = (i—1)Ax, ..., xy(0) = (N — 1) Ax. Take the displacement
qi(t) = x;(t)—(i—1) Ax of the i-particle from the position of equilibrium as
its coordinate. The potential energy of the system is a sum of the energies

(continued)
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Fig. 1.8 Chain of springs. i-1 i i+l
(@) Equilibrium @« oo O AWAMWWASMWWA WS *
configuration, (b) !
instantaneous configuration ‘
K A VAYAYAVAVAVAVL L1 R
L e > i
N i 3 i X
(i-1)ax X

of the springs, Y ék(q,url — gi)?, so the action is given by

N N-1
1 .
S=, / dr [mZ(g»z—kZ(qu —qoz]. (1.133)
i=1 i=1
This implies the equations

mqy = k(g2 — q1), mgn = k(gn — gn-1),
mg; = k(gi+1 — qi) — k(q; — gi—1), i=23,....,N—1. (1.134)

Non-singular and Singular Theories Computing the derivative with respect to t
in the Lagrangian equations (1.129), these can be written as

Mau(q.9)§" = Ka(q. ), (1.135)
where
= PLUaD) _oa PL o, (1.136)
b= ggeagh T 0T e dgeagh

Exercise Multiplying (1.135) by ¢“, obtain the law of conservation of total
energy.

Lagrangian theories are classified according to the properties of the Hessian matrix
M which appears in front of the second-derivative terms. The theory is called non-
singular if det M # 0 (then there is an inverse matrix denoted M). Otherwise, it is
called a singular theory. Equations of the non-singular theory can be rewritten in
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the normal form

i = M (q.9)K(q. ). (1.137)

As has been mentioned above, this implies causal dynamics, as should be the case
for a classical-mechanics system. So, in classical mechanics we usually deal with
non-singular systems (while a system with holonomic constraints can be formulated
in terms of a singular Lagrangian as well, see Sect. 1.6.3). Singularity is a typical
property of manifestly relativistic theories. The formalism of classical mechanics
for singular theories is discussed in some detail in Chap. 8.

To conclude this section, we demonstrate the statement used in the passage
from (1.128) to (1.129):

Let

%)
/ dtf(q.q.q...)n(r) =0, for any function 7(7). (1.138)

7

Then f = 0.

Indeed, by reductio ad absurdum suppose that f > 0 on an interval [/, t”']. Take
any function 7(t) that has positive values on that interval and vanishes at all other
points. Then by construction

17”

(2} T
/ dtfn = / dtfn >0, (1.139)
71 T/

which contradicts (1.138).

1.4.2 Generalized Coordinates, Coordinate Transformations
and Symmetries of an Action

A change of coordinates is one of the powerful methods used for studying equations
of motion. In this section we show that it can be carried out directly in an action
functional instead of in equations of motion (in many cases this turns out to be
much more economic procedure).

We recall that a functional is an operation defined on a given class of functions,
so we should to decide how the functions and the functional change under the
transformation of coordinates. Here we present rather intuitive discussion of the
subject. A more consistent treatment will be given in Chap. 7.
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Configuration Space and Generalized Coordinates Consider a system of parti-
cles already discussed in Example 1 of the previous section

1
S = /dt [zm,-(f,-)2 — U/(r,-)} . (1.140)
First, we simplify the notation introducing the quantity q=¢“, a=1,2,...,3N =n

\/mlrl
q=| Y™ | (1.141)
«/mNrN

This can be regarded as the position vector of a point in n dimensional Euclidean
space. In this notation the action reads

— 1 cay2 2 n
S—/dr[z(q) U(q,q,...,q):|. (1.142)

This implies an elegant mathematical reinterpretation of the initial problem with N
particles: Eq. (1.142) looks like an action describing the motion of a unique particle
in abstract 3N dimensional space. It is called the configuration space of the system,
while g“ are called generalized coordinates (more generally, they are any coordinate
system of the configuration space).

Recall that Euclidean space has natural metrical properties, that is, we are able
to define the distance between points, the length of a curve and magnitude of a
vector, angles between vectors and so on. For two points with coordinates g{, ¢5 the
distance is

(As)? = 8 Ag? AP, (1.143)
where 8., is a unit matrix sometimes called the Euclidean metric and Ag“ stands
for the difference of coordinates, Ag* = g5 — ¢{. The metric determines the length
of a vector as well

[w)? = Sapww’. (1.144)

So the kinetic term in Eq. (1.142) is just half of the square of the velocity vector. For
the later use we also recall the formula for the length of a curve with the parametric
equation g = ¢“(t)

n
= / div/ 8. (1.145)
n
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Transformation of an Action Under a Change of Coordinates Let ¢’* be another
parametrization of the configuration space. Consider the change of coordinates,
q° — ¢, and let

q“ = q¢(q"). (1.146)

stand for the transition function. A change of coordinates is supposed to be an

. . . . . . a . a . . .
invertible transformation. This implies det g;’,,, # 0, that is, g;’,,, is an invertible

matrix. Substitution of the transition function into the initial Lagrangian function L
gives another function L/

a a
L’(q’“,(']’”) =L (qa(q/h)’ q q/b) . (1.147)
aq/b
We confirm that the corresponding action

S'lq] = / dtL' (¢, 4", (1.148)

leads to equations of motion that are equivalent to the initial ones. So it is matter
of convenience which one is used for obtaining equations of motion. To prove this,
write the Lagrangian equations following from (1.148)

d
dr dge g -

d ( oL 0q" oL 0q" oL g . b
dr \ 94° o) 04" dqgb o) 04" G |y dq"dq’"
d¢® (d oL  OL
? ( - ) : (1.149)
dg \dt 9q* 39" )|,y
that is
88 dg® 8S
=0 (1.150)
S 94 3¢y

. dqb . . . . 4 . . . .
Since 4, is an invertible matrix, 85,,, = 0 implies % = 0 and vice versa. To avoid
dq 8q 8q”

a confusion, note that Eq. (1.150) or, equivalently, S/ (¢') = 5;1:, S, (g), is different
from the covariance condition (1.47).
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In particular, replacing the Cartesian coordinates ¢* in Eq. (1.142) by some ¢’,
the action acquires the form

1 s a
S/ :/d‘[ |:2gab(q/)q/ q/b - U(q/ )i| 4

aq° d9q°

9q/ 8" U(q") = U(q(q)). (1.151)

8ab =

Equation (1.151) shows that equations of motion in Cartesian and non-Cartesian
coordinates generally have different forms. As an example, compare the Carte-
sian (1.31) and polar (1.167) equations of the Kepler‘s problem. In particular, in
non-Cartesian coordinates may appear velocity-dependent terms.

Metric of Configuration Space The matrix g,(¢") which appears in the action has
a simple geometric interpretation.® To see this, let us consider two infinitesimally
closed points of configuration space with coordinates ¢’* and ¢’ + dq". Using the
transition function (1.146), their coordinates in the Cartesian system read ¢“(¢") and
q°(¢’ + dq’). Let us compute the expression for the distance (1.143) in coordinates
¢'. Expanding the transition function ¢*(¢’ + dq’) in a power series up to the first
order we obtain

aqa aqb

2 a b
(ds)” =S Nq " NG” =~ Sup 8q 0"t

dq°dq"” = geqdq“dq’. (1.152)

Hence, to compute distances (and hence other metrical quantities) in coordinates ¢/,
we need to know the matrix g.,(q’). So, gu» plays the same role in the coordinates g™
as &4 in the Cartesian system: it determines the metrical properties of the space in
the coordinates ¢'. It is called the metric of configuration space in the coordinates q' .
The length of a vector and of a line can be obtained from (1.144), (1.145) replacing
Sab on gap (6]/)

[WI* = gan(g" )W w”. (1.153)

5]
l= / di/gan(q) " (1.154)

151

We point out that these expressions are exact, in contrast to the approximate
expression for the distance (1.152); see Chap. 6.

Symmetries of an Action This is a good place to discuss the notion of global
symmetry of an action as a special class of coordinate transformations. Consider the

A systematic discussion of the underlying geometry will be given in Chap. 6.
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Galilean transformation’ with a = V= 0
77 = Rr' +¢. (1.155)

Let us do this transformation in the action describing a system of particles 7;,i =
1,2,...n, with a potential that depends only on the relative distance between them

3
1 52 a
S = / dt [Zm,-r,- - U(r,-j):| . here (r;)> = a§=1: (¢ —x)2. (1.156)

Substituting (1.155) into (1.156), we obtain L(7(7')) = L(7), then the transformed
action (1.147) has the same form as the initial one

S’ = S[FFE)] = /dt[;m,-?ﬁz - U(rg,-)} = S[F]. (1.157)

Coordinate transformations with these property are called global symmetry of the
action. Thus the six-parameter family (1.155) is a symmetry of the action (1.156).
Generalizing this example, let us consider a family of coordinate transformations

¢ =q'(qd" 0. (1.158)

where w*, o« = 1,2, ...,k are parameters. Generally, the transformed Lagrangian
L’ (defined in (1.147)) as a function of its arguments is different from L, L' (¢, §’) #
L(q,q)|,—, (for instance, the Eq.(1.151) clearly shows this). But if it coincides
with L or differs on the total derivative term

a

dg° :
qbq/b) =L(¢.4) + N, (1.159)

v =L ("0,
aq’
then, up to boundary term, the transformed action has the same form the initial one

S'lq'] = Sla(q', ©*)] = S[gll4—4 + boundary term. (1.160)

Then the family of coordinate transformations (1.158) is called the global symmetry
of the action with k parameters. The action is called invariant under the transforma-
tions (up to a boundary term).

When a transformation represents the symmetry, it is not necessary to carry out
computations to obtain equations of motion in the new coordinates, for they appear

7The Galilean transformations involving time, 7(f) = R7’(t—a)+ V¢, can be regarded as coordinate
transformations of extended configuration space, see Chap. 7.
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from the equations in the initial coordinates by the replacement

N

=0. (1.161)
b

Sq a—q
Reparametrization-Invariant Functional Let t = &(z’) is an increasing (and
hence invertible) function, j;, > 0, the inverse function we denote as (7). Consider
two parameterizations of a given curve: ¢(t), T € [a,b] and ¢'(z) = g(a(7')), T’ €
[(a), @ (b)], and compare the values of an action functional for them: fah dtL(q,q)

and [ :(Zb)) dtL(¢',§’). To achieve this, we change the integration variable in the last

integral, T = «/(s), and use the equality fl‘f = (‘L’l‘;‘ )~! which follows from the

&—)&(r):| N
b4 da\"!
/a ds d(:L |:q(s), (d(j) c'](s):| .

T=0u(s)

differentiation of the identity &(c(s)) = s. We obtain

alh) a(b) do d
/Q(a) dtL[q(a(7)), g(@(1))] :/a(a) dtL |:q(5l(t))s d: d;

(1.162)
If L is a homogeneous function of velocities, L(kv) = kL(v), the value of the
functional does not depend on the choice of parametrization
a(b) b
[ artig@n.a@o = [ drtlaw. i (1163
a(a) a

The length of a curve (1.154) is an example of the reparametrization-invariant
functional. In the end of Sect. 7.2 we confirm that the reparametrization invariance
is an example of the local symmetry.

Examples

1. Kepler’s problem in polar coordinates. According to Sect. 1.1, trajectory
of a particle in the central field lies on a plane. The particle can be described
by the action

_ 15 o
S—/dt|:2m(x +37) + \/x2+y2]' (1.164)

(continued)
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This implies the Newton equations (1.31). The factor x> + y? in these
equations prompts that they should simplify in the polar coordinates

x =rcos0, y = rsin6. (1.165)

For the derivatives we obtain x = i cos —rf sin 6,y = 7sin = rf cos 6.
Then the action acquires the form

_ 1 .2 242 o
S_/dt[zm(r+re)+r]. (1.166)

This implies the Lagrangian equations

Forb®+ =0, () = 0. (1.167)

mr
We can also substitute the polar coordinates into the expressions for
conserved quantities (1.32)—(1.35). The resulting first-order equations can

be expressed in the form

L2
m? =2E-")- ", (1.168)

r mr

L
b= ", (1.169)

mr-
i~ “sing =0, (1.170)

L
.«

r@—L(l—}-ecosH) =0. (1.171)

Note that (1.168) looks as a one-dimensional problem (1.32) with the
effective potential energy 7 + erner' The second-order equations (1.167)
are consequences of this system (check this!) and can be omitted from
consideration. Using (1.169), we exclude 6 from (1.171), this yields the
equation of trajectory

L2

p where p= . (1.172)

r= ,
14 ecosf oam

(continued)
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This is an equation of a conic section (1.37) in polar coordinates (the ellipse
for eccentricity 0 < e < 1, the parabola for e = 1 and the hyperbola for
e>1).

As it should be, the Eq.(1.168) coincides with (1.42). This can be
integrated out giving the law of evolution of the particle, r(¢). With this
r(t) we can integrate out the Eq.(1.169), this gives time-dependence of
f-coordinate.

2. Two body problem. One of the important problems of classical mechanics
that admits an analytic solution consists of the analysis of motion of two
particles subject to the potential that depends only on relative distance
between them. We consider a system with an inverse degree potential. The
corresponding action

1 59 1 39 o
S = dt zmlrl +2le}’2 + s (1.173)

72 — 71|
leads to the Lagrangian equations

3 o ;i .
mir == L, i=1,2. (1.174)
Iry — 11
These have complicated right-hand sides that depend on all six variables of
the problem. To improve this, notice that introducing the vector 7 = 7, —71,

we simplify the potential term in the action. So let us define the relative

position vector 7 = 7, — 71 and the center of mass vector R = ”’i;;ig;’z
These equalities can be inverted
N - mﬁ" N - mﬁ"
1 =R-— , =R+ . (1.175)
my + my my + my

According to (1.175), the point with radius-vector R lies on the interval
connecting the points 7, and 7,. For the latter use we introduce also
the vectors

(1.176)

St
o~
Il
3
|
]

Fl=7—R,

(continued)
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so 75 — '} = T, see Fig. 1.9 on page 45. Let us pass to the generalized
coordinates, (71,72) — (R, 7). In the new variables the action reads

1 = 1 -
S=d| MR+ m?+ & |, (1.177)
2 2 [7|
where M = my + my and m = n;’l”fnzlz It describes two fictitious particles

with radius-vectors R and 7. Equations of motion for them are

R=0, mi+ 2 —o. (1.178)
[7?

The center-of-mass “particle” moves with constant velocity along the
straight line, i?(t) = i@o + Vi. 7-particle moves in the central field, so
we have the Kepler problem (1.30). Its trajectory is a conic section on the
plane orthogonal to the vector of angular momentum L= m[F, ;;'] = const.
Let it be an ellipse with the semi-axis a and b. Given vectors k(t), 7(t), the
evolution of true particles is obtained according to Eq. (1.175) or (1.176)

H=R+7,, F=R+F) (1.179)

So, dynamics of the particle with the radius-vector 7 is a composition of
two motions: the vector 7| moves on the plane of ellipse 7, while the plane

moves in the direction of V.
A qualitative picture of motion of the particles 7/ and 7/ can be described
as follows. Comparing (1.177) and (1.176) we have
> my - >/
ri=- 7, rh =
my + myp my + my

m

7. (1.180)

Hence the trajectory of the 7/-particle is the ellipse of the 7-particle
suppressed by the factor | "2 . which has the semi-axis " mi"j’:ﬂ - For
the 7/-particle, the ellipse is suppressed by ml’:‘_‘mz. According to (1.180),
71 and 7/, are antiparallel at any instant. Hence the trajectories of these
particles are ellipses with one focus at the center of mass and with parallel
semi-major axis. At each instant of motion, a straight line connecting the
particles passes through the center of mass; see Fig. 1.10 on page 45.

A cartesian system with center at the point I_é(t) is called center-mass
coordinate system, see Fig. 1.9 on page 45. Transformation between the

initial and center of mass coordinates is given by Galilean transformation
1) =7'(t) + Ry + Vt.
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Fig. 1.9 The point F represents origin of a laboratory system. The center-of-mass “particle” M

moves with constant velocity along

a straight line. 7-particle moves in a central field

Fig. 1.10 Two-body problem in the center-mass coordinates. Ellipses of m; and m;-particles are
obtained from an ellipse of a fictitious m-particle according to (1.180)
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Exercises

1. Itis instructive to obtain polar equations (1.167) by substitution of (1.165)
into the Cartesian equations (1.31).

2. Compute components of the Runge-Lenz vector in polar coordinates and
compare the result with (1.170) and (1.171) (hint: under transformation of
coordinates ¢ = ¢“(¢’"), the components of a vector field transform as

A“(g) = G, A"(@).

1.5 Examples of Continuous (Field) Systems

While initially formalism of classical mechanics has been developed for finite-
dimensional systems, many of its methods can be generalized for the description
of physical systems with an infinite (non-countable) number of degrees of freedom.
In this case the configuration of a system is determined by a function of the space-
time point, say ¢®(z,x%), B = 1,2,...,n called a field. Hence to determine an
instantaneous configuration we need to specify n numbers ¢*, at each point of space.

Here we present a few illustrative examples of the field systems, and outline the
relevant results of variational analysis that will be used later.

Small Oscillations of a Non-stretchable String Consider a non-stretchable string
of length L and linear mass density p. The string is fixed at one end but can slide
without friction at the other end; see Fig. 1.11 on page 47. It is under the constant
force T applied to the free end (imagine the mass M hanged on that end, then T =
Mg). T is called the string tension. The tension acts as a return force when the string
is replaced out of its position of equilibrium.

The configuration of the string can be described by the displacement function
@(t,x); see Fig.1.11 on page 47. It is an example of a continuous system:
instantaneous configuration is determined by the function ¢(x), x € [0, L] instead
of a set of numbers g,. Intuitively, it is convenient to imagine that we deal with an
infinite number of coordinates ¢,(f) = ¢(x,t) labeled by a “continuous index” x
instead of ¢,(¢) with the discrete index a.

To write an action, we consider the approximation of a small oscillation, ¢ < L,
of the light string, pL < M, and suppose that points of the string can move in a
vertical direction only.

The potential energy is equal to the work performed by the force T in the
displacement of the mass M, U = Th, where h is the difference of lengths of

2
instantaneous and initial configurations & = L,y — L, Liyyy = fOL dx\/ 1+ (%ﬁ) ~

L+ ; fOL dx( g‘;’ )? (the integrand has been expanded in a power series up to a linear
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i o

Fig. 1.11 Instantaneous configuration of a string is described by the displacement function ¢(z, x)

order). Thus the potential energy is

L 2
U:T/ dx(a(p) . (1.181)
0 Bx

To compute the kinetic energy, consider first a small section Al of the string. Its
kinetic energy is approximated by (x, stands for a point inside Al) épAl ( aw(g;xo) )2 =

o \/1 + (33? )2 Ax( %‘f 2=Ip(1+ (38‘)‘; )2 Ax( %‘f )~ 1 p( ng )2 Ax. Integration along
the string gives the total kinetic energy

1 L dp 2
T = d . 1.182
o e (5) (1182
The Lagrangian action reads
1 3 \? dp\*
= 1 -T . 1.1
S 2/ddx|:’0(8t) (8x) (1.183)

As compared with a finite-dimensional system, see for example Eq. (1.133), the sum
on the discrete label i is now replaced by an integral on the continuous label x.

Exercise Confirm that the same action arises for a stretchable string with
fixed ends, supposing that potential energy is proportional to its stretch.
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A Continuous System as a Limit of a Discrete One To study longitudinal
vibrations of an elastic pivot, we first approximate it by a chain of N particles
connected by springs. The description of the pivot arises at the limit N — oo.
Note that this gives an intuitive explanation why the methods first developed for a
system with a finite number of degrees of freedom work for continuous systems as
well.

Starting from a spring chain of N particles (see Example 2 of Sect. 1.4.1) let us
try to find the limit when the number of particles on the fixed interval [0, (N — 1) Ax]
tends to infinity, N — oo (this implies Ax — 0). In the process, we also vary the
mass of each particle and the rigidity of each spring according the rules m = pAx,
11(1% , which is

kgxm
sec? - The

k= ATX, where p, T are fixed numbers. Note that p has the dimension

of linear mass density, while 7" has the dimension of the tension (force)
action (1.133) reads

| v Nl — a2
S = Z/dt [p;(q,-)ZAx—TZ(‘”‘AX q) Ax]. (1.184)

i=1

To understand what happens at the limit, it is convenient to plot the displacements g;
(at some fixed instant 7) on the plane (x, g); see Fig. 1.12 on page 48. Clearly, when
N — oo, the sequence {g;(f)} approximates to a function g = ¢(t,x), which is
defined by the condition ¢(t, x;) = ¢;(¢). Then sums in the integrand of Eq. (1.184)
are just the partial integral sums of the functions (9,¢)> and (d,¢)>. Hence at the

Fig. 1.12 When the number of springs tends to infinity, their displacements ¢’ define the function
@(t, x) according to the rule ¢(t, x') = ¢'(¢)
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limit we obtain

N N N dp 2
)2 Ax =S G2t x) A _m/d ,
;(q) X ;qo (t, x)Ax — x Y

N—1 N—1 2
gi+1 — i\ 2 @t xi1) — @(t,x;) N—>o0
Z( Ax )Ax:Z( Ax )Ax—)

i=1 i=1

dp 2
[dx(ax) . (1.185)

That is, the action acquires the form

1 dp 2 dp 2
S_Z/dtdx[p(f)t) —T(ax):|. (1.186)

Note that we have arrived at the same final expression as in the previous example;
see (1.183). Both the transverse and longitudinal vibrations of a string obey the same
equation.

Lagrangian Action and Equations of Field Theory The previous example
suggests formal rules for the transition from the finite- dimensional formalism to
the field one. We have the table

i > gl = (). gl () = ¢"(t.x), > — /d3x. (1.187)

The least action principle works for field systems as well. For the later use, we
outline the resulting formulas for the case of a field with components ¢?(z, x%),
B = 1,2,...,n. To adapt our results to this case, it is sufficient to apply the table
presented above to the basic formulas of Sect. 1.4.1.

A Lagrangian function often has the form L(g?,d.¢?, 0,08, 7,x%), and the
Lagrangian action functional is given by the integral

Sle] = / drd®xL(¢®, 3.9®, 3,¢%, 7, xY), (1.188)

over a space-time region '. A variational problem consists in searching for the
function ¢®(z, x) that provides an extremum of the functional in an appropriately-
chosen class of functions. The choice of the class depends on the particular problem
under consideration. We often work with the functions that acquire the prescribed
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values at the initial 7; and the final 7, instants of time and vanish at spatial infinity

OB (r1,x) = qof (x), 98 (12, x) = (pf (x), initial conditions,

lim (pB =0, boundary condition. (1.189)

X—>00

The analogy of Eq. (1.126) is

oL oL JL
88 = | did® -9, -3, Y
/ f x[asoB 3(d.¢") 3(3a<p3)} v
JL oL
9, 80P 9, S0P ). 1.190
* (a(afgoB) ¢ )+ (a(aa¢3> v ) (1190

An extremum is a solution to the following system of partial differential equations

aL oL oL

0, d4 - =0, B=1,2,...,n. 1.191
00,05 T 30,05 3P " (1190

which generalizes the Lagrangian equations for the case of a field system. In
relativistic theories, temporal and spatial coordinates are unified in a unique quantity
x* = (1%, x%), where x° = ct. So the previous formulas acquire a more compact form

Slg] = / dxL(0®, 6" X, (1.192)

oL oL

d - = 0. 1.193
Ho(Dupm) 0B (1199

Applying the rules to the string action (1.186) we obtain the equation

T
(0> = *0%)p =0, where ¢* = » (1.194)

The constant ¢ has the dimension of velocity sglc:' This is one of the basic equations
of mathematical physics, known as the (one-dimensional) wave equation. Without
going into detail, we present a few examples of its solutions.

Examples of Solutions to the Wave Equation: 1. Infinite String Solutions to
a partial differential equation, in contrast to an ordinary one, generally depend on
arbitrary functions. To see this for the present case, write (1.194) in the form

(3, — cdy) (0, + cd,)¢ = 0. (1.195)

Then it is clear that ¢ = F(ct —x) and ¢ = G(ct + x), where F and G are arbitrary
functions of the indicated arguments, obey the wave equation. Take, for example,
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(@) (b)
I+cos{ ¢ &x)

F(ct-x) F(ct+x)

2 C —C

‘:N A\

-7 T

Fig. 1.13 (a) Any function F(§) can be used to construct a solution to the wave equation: ¢ =
F(ct — x). (b) Since the wave equation is linear, two wave packets pass right through each other

the following wave packet (see Fig. 1.13a on page 51)

O S < -,
F()=41+cosé, —m=<E=<m, (1.196)
0 E>m
The corresponding solution ¢ = F(ct — x) describes the evolution of this

perturbation along the string. The packet travels to the right with velocity ¢, without
changing its form, that is, it behaves like a particle.

The wave equation is linear, that is, it has the property that any linear combination
of solutions is itself a solution. For instance, the solution ¢ = F(ct—x) + F(ct + x)
describes two packets travelling in opposite directions; see Fig. 1.13b on page 51.
During the interval 1 < —7 they approach one another; then they “scatter” near the
point x = 0 during the interval —7 < < 7 and then diverge, keeping their initial
profiles unaltered after the scattering. Linearity of the wave equation will be spoiled
when we include in the action interaction terms (like @3, ¢*,...). This would lead
to non-trivial scattering effects.

Note that the solutions have been obtained without taking into account any type
of boundary conditions. So, they correspond to the case of an infinite string.

Exercises

1. Confirm that ¢ = ég(x— ct) + ;g(x + ct) + 2IC xx_t_ft v(&)dE is a solution

to the wave equation that obeys the initial conditions ¢(0,x) = g(x),
%¢(0,x) = v(x).

2. Consider the case g(§) = 0, v(§) = F(§), where F is given by Eq. (1.196).
Compute and draw ¢(z,x) at an instant 1o, > 7. Suggestion: consider
separately the following intervals of variation for x: x4 ct €]—o0, —m[U]—
7, w[Ulm, —m + 2ct]U] — 7w 4 2¢t, w + 2ct[U]mr + 2ct, <.
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2. String with Fixed Ends Consider the wave Eq. (1.194) with the boundary
conditions

@(1,0) = o(t,L) = 0. (1.197)

The linearity of the wave equation allows us to use a powerful tool of the Fourier
series expansion to look for solutions. Any function that belong to the class (1.197)
can be presented by the Fourier series in terms of sin /" x

> n
t,x) = (1) si . 1.198
v (1) ;c()sm L (1.198)

Substitution into Eq. (1.194) turns the partial differential equation into a system of
ordinary equations for the coefficients ¢,(f), n=1,2,...

mn

. mne\?2 . c Tne
Q+(L)Q=Qmm%=%mlf+mmst (1.199)

So we have found a set of elementary solutions

. mnc Tne N . 7n
on(t,x) = (an sin I t+ b, cos I t) sin I X

= d, sin jmxsin(jmct+oc ) (1.200)
- n L L n ’ .

where d, = /a2 + b2, o, = arctan . These are called standing waves. The
standing wave with n = 3 is drawn in Fi”g. 1.14 on page 53. The string points with
x =0, é, 23L , L are at rest at any instant of time. Other points accomplish harmonic
oscillations with the same frequency and the amplitude A that depends on x,
A = dysin 7'x.

According to (1.198), any solution to the problem (1.194), (1.197) is given by
sum of the standing waves

3nce
L

o0
mn

o(t,x) = Z (a,, sin ﬁzct + b, cos ﬂzct) sin I X. (1.201)

n=1

Exercises

1. Confirm that the general solution (1.201) can be written in the form

o0
(p(t’ x) — Z o, (eia)n(ct—x) _ Eiw”(Ct+x)) , (1202)

n=—0o0

(continued)
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¢ (t, x)

0 L/3\U/T/2L/3 L

Fig. 1.14 Standing wave withn = 3

where w,, = ”L", oy =0

2. Find a solution to the wave Eq. (1.194) with the following boundary
conditions: ¢(¢,0) = 0, ¢(¢t,L) = fsin B¢, where f =const, § =const.
They correspond to a periodic force applied to the right-hand side of the
string. (Suggestion: instead of using the Fourier series, look for a solution

to the form ¢(t, x) = T(1)X(x)).

1.6 Action of a Constrained System

While the Lagrangian function can often be written as the difference between kinetic
and potential energy, L = T — U, this rule is not universal. There are a lot of rather
simple systems when it does not work. Take, for example, a mathematical pendulum
on a plane, see Fig. 1.15 on page 54. It is clear that the difference

1
T-—U= 2m(;c2 +3%) — mgy, (1.203)

being considered as the system Lagrangian, leads to wrong equations of motion.
These describe a free fall in a gravitational field, and do not take into account the
constraint x> + y*> = [* that must be satisfied at any instant of motion. Note also
that it is impossible to simply add the constraint to the equations of motion, since it
would lead to an incompatible system (confirm this!).
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Fig. 1.15 Mathematical
pendulum y

mg

1.6.1 The Recipe

The pendulum is an example of a system with a holonomic (or kinematic) constraint
(generally, a holonomic constraint is an algebraic restriction on variables of
configuration space, G(¢“,t) = 0, that must be satisfied at any instant). In this
section we discuss a recipe suitable for the construction of a Lagrangian for this
case.

Roughly speaking it can be formulated as follows. First, forget the constraints,
and write the Lagrangian of the unconstrained system (it may be L = T — U).
Second, find a solution to constraints and write L in terms of the independent
variables.

For the pendulum, one possibility is y = —+/2—x2, then y = «/1)20(— "
Substitution into Eq. (1.203) gives the action

S[] = /dt |:;m (1 - (7)2)_15(2 " mgl\/l - (7)2] . (1.204)

This implies the Lagrangian equation

2

2
pa é;x\/l—();) * (1?(7)2) —o. (1.205)

In the approximation of small displacements ; < 1 this reduces to the well-known
equation of harmonic oscillations

P4 fx=0. (1.206)

Let us discuss the recipe from the geometric point of view. Possible positions of the
pendulum lie on the circle (one-dimensional subspace of the plane) x*> 4+ y> = 2.
In the vicinity of the point (0, —/) we are interested in, the variable x can be taken
as a coordinate of the subspace. So the recipe consist of restriction of unconstrained
Lagrangian function on the subspace.
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It is important to notice a freedom implied by the recipe. First, we are free to
choose the parametrization of the subspace. Take, for example, the angle 6 as a
coordinate. Then the parametric equations of the circle are x = [sin 6,y = —Ilcos 6.
They solve the constraint, so can be used in (1.203). This gives a Lagrangian in terms
of 6

1 .
L(0) = 2m1292 + mglcos 6, (1.207)
and the equation of motion is
. g .
0+ ; sinf = 0. (1.208)

For a small 6 one approximates sinf ~ 6 obtaining the equation of harmonic
oscillations for 6, 6 4 96 = 0.

Second, we could use the generalized coordinates writing an anzatz (1.203) for
L. This can be done, for example,_in polar coordinates x = rsinf, y = —rcos9,
which gives L(r, 0) = [m(i* + r?6?) + mgr cos 6. Then we use the constraint r = /
obtaining Eqs. (1.207) and (1.208) once again.

General Recipe Generalizing, consider a system with the generalized coordinates
q*,a=1,2,...,nconstrained to move on a k-dimensional surface

Gi(¢") =0, i=12,...,n—k (1.209)
Equations of the surface are assumed to be functionally independent

3G (¢
rank 2O _ (1.210)
dqgb

Suppose also that in the absence of constraints the system can be described by
the Lagrangian L(¢%, §*). To write a Lagrangian of the constrained system, choose
some coordinates (parametrization) s, « = 1,2,...,k on the surface, and write
parametric equations of the surface

q“ = q°(s"). (1.211)

By construction, these solve the constraints, G;(¢*(s*)) = 0. Substitution of the
parametric equations into L(g%) gives a Lagrangian of the constrained system

L(:°.5%) = L(g"("). 4" (")) (1.212)
Using the basic formula (1.129), the Lagrangian equations are

88[s] _ d 9L(s) _ IL(s) _

= =1,2,...,k 1.213
§s¢ T dr 0 | dse “ (1.213)
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Using Eq. (1.212) as well as the formula for the derivative of a composed function,
the equations can be written in terms of the initial Lagrangian

8S[s] _ 8S[ql dq*

=0. 1.214
3s® 8q° 0s® ( )

q°(s*)

Exercises

1. Check the equality (1.214).
2. Show that if the unconstrained Lagrangian is non-singular, the same is true
for the Lagrangian of the constrained system (1.212).

For later use, we specify the results for a particular case of parametrization of the
surface (1.209). Equation (1.210) guarantees that the constraints can be resolved
with respect to (n — k) variables among ¢, say ¢'. Let the solution be

q =4q"). (1.215)

Then g* can be taken as coordinates of the surface. Then the Lagrangian is given by

L(g".4*) = L(4'(¢%). 4" 4'(¢°).4") . (1.216)

while the Lagrangian equations acquire the form

5S[q” 8S[q° g’
] ] = (1.217)
8q 4'(q%) 8q q'(q%) dq
If the constraints depend on time, G;(¢%,7) = O, it is considered to be a fixed

parameter of the problem. The recipe remains the same; it is sufficient to replace
q“(s*) by g“(s*, t) in the previous formulas.

Example (Thomson-Tait Pendulum) This consists of two equal masses m
connected by a massless pivot of length 2b, the middle of which is attached
to the end of a massless pivot of length a, see Fig. 1.16 on page 57. The a-
pivot can rotate freely in the (x, y)-plane while the b-pivot can rotate freely in
a vertical plane.

The position of the masses can be described by the vectors 7, 7», that is, the
configuration space is six-dimensional. The masses are constrained to move

(continued)
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on two-dimensional surface determined by

(p’"l,;z],ﬁ) =0, (?1 +;2,ﬁ) =0, |;1 —;2| =2b, |;1 +;2| = 2a,
(1.218)

where 7 is a unit vector in the direction of the z-axis, (, ) is a scalar product
and [, ] is a vector product. Forgetting the constraints, the action is written

I /. s
S = /dtzm <r12+r22). (1.219)

Let us take the angles ¢ and 6 as coordinates on the surface. Expressions for
7; through the coordinates are

x] =asing —bcosfBsing, y =acosp —bcosfcosep, 1z =bsinb;

X, =asing + bcosfOsing, y, =acosg + bcosfcosep, 7z =—bsinb.
(1.220)

These equations solve the constraints (1.218). Substituting them into (1.219)
we obtain the action of the Thomson—Tait pendulum

S = /dtm (b2é2 + (a* + b? cos? 9)¢2) . (1.221)

(continued)

Fig. 1.16 Thomson-Tait pendulum. The a-pivot can rotate freely in the (x, y)-plane while the b-
pivot can rotate freely in a vertical plane
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This implies the equations of motion
[(@ + b?cos? 0)¢] =0. 6+ ¢*cosOsinb = 0. (1.222)

Note that it would not be an easy task to find these equations directly, without
using variational analysis. The first equation implies (a®> + b?cos®>0)¢ =
¢ =const. This can be used to exclude ¢ from the second equation. Then the
system acquires the form

. c b ¢ cos O sinf _0 (1223)
Y= 24 prcostg (@ 4+ b2cos26)? '

Note that the motion of the masses is not a composition of two circular
motions with constant angular velocity, as might naively be expected.

Exercise Explain why gravity does not contribute to the expression (1.219).

Exercises In the exercises below, masses move without friction on the plane
X,y, a spring has an unstretched length / and rigidity k. Springs and pivots are
massless.

1. The mass m is attached to a spring; see Fig. 1.17a on page 59. (A) Find the
action in the Cartesian coordinates x, y. (B) Find the action and equations
of motion in coordinates r, ¢, where r is the instantaneous length of the
spring.

2. Consider a pendulum with varying length s = s(), where s(¢) is a given
function; see Fig. 1.17b on page 59. (A) Find the action in terms of y. (B)
Find the action and equations of motion in terms of ¢.

3. The masses M and m are attached to the ends of a pivot of length s. The
mass M can move freely along the x-axis, while m oscillates in the x,y
plane; see Fig. 1.17c on page 59. Find the action and equations of motion
in coordinates z, ¢.

4. A pivot with masses M and m is attached to one end of a spring. The
mass M can move along the y-axis, while m oscillates in the x,y plane;
see Fig. 1.18d on page 60. (A) Find the action in coordinates z, y. (B) Find
the action and equations of motion in coordinates z, ¢.

(continued)
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() (b) ©

Fig. 1.17 Exercises

10.

11.

12.

. The mass M can slide freely along a pendulum of length s; see Fig. 1.18e on

page 60. Find action of the system and equations of motion in coordinates
r, ¢, where r is the distance of M from the origin.

. Consider a double pendulum on the plane x, y; see Fig. 1.18f on page 60.

Find the action and equations of motion in coordinates ¢, 6.

. A pivot with masses M and m is attached to a spring; see Fig. 1.19g on

page 60. M can move along the x-axis, while m oscillates in the x, y-plane.
Find the action and equations of motion in coordinates x, ¢.

. Two masses M and m are attached to a rope of length s. The rope can slide

freely around a disk of radius R; see Fig. 1.19h on page 60. Find the action
and equations of motion in terms of y.

. Consider a pivot of length s with masses M and m at the ends; see Fig. 1.19k

on page 60. M can move along the y-axis, while m can move along the x-
axis. Find the action and equations of motion in terms of ¢.

The masses M and m are attached to the ends of a spring; see Fig. 1.201
on page 60. The mass M can move freely along the x-axis, while m can
move along the horizontal string A, at a distance s from the x-axis. Find the
action in coordinates x, ¢.

The masses M and m are attached to the ends of a pivot of length s; see
Fig. 1.20m on page 60. The masses can move along the circle of radius R.
Find the action and equations of motion of the system.

The ends of two pendulums of the same length 4 are connected by a spring
of unstretched length /; see Fig. 1.20n on page 60. Find the action and
equations of motion in coordinates ¢, 6.

59
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Fig. 1.20 Exercises

1.6.2 Justification of the Recipe

Holonomic constraints represent the idealization of a very strong force directed
towards a surface of configuration space, and forcing a particle to move near
the surface. This suggests a natural way [2] to confirm the recipe (1.212) for
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Lagrangian of the constrained-system.® We start from a system with a potential
that produces the strong force (among others), and then take the limit of infinite
force. Since the dimension of the configuration space is not essential for the
discussion, we take a system with two generalized coordinates x, y and with the
action being

S = /dt |:;x2 + ;yz —U(x,y) —s(y — g(x))2:| ) (1.224)

This depends on the parameter s =const. To put this in concrete terms, we
suppose U > 0 in the region of interest. The second term of the potential
energy grows when the particle goes away from the line y = g(x). We con-
sider a particle that starts on that line and has initial velocity tangent to the
line

x(0) = xo, x(0) = vo,
y(0) = g(xo), y(0) = g(xo). (1.225)

Let us show that at the limit s — oo, an action describing a particle in potential U
and subject to the constraint y = g(x) appears.
To confirm this, it is convenient to write the action in coordinates x, y = y — g(x)

1 . . - -
S = /dr [258 +,0+ g — U5+ gx) — sy2i| . (1.226)
Then the equations of motion are
. i . dg ad ~
I+0+8) "+, Uxy+gx) =0, (1.227)
dx  ox
5. au -
y+8(x) + % + 2sy = 0. (1.228)
We can estimate the y coordinate using the law of conservation of energy, £ =
T + U + sy, as follows: y(1) = 572 \/Z(E— T-U) < s_%\/ZE. Hence, the
particle with total energy E can not move far from the curve (in y-direction) more

than a distance proportional to \}S. Then y = 0, or y(7) iy g(x(7)), that is at

the limit our particle is confined to move on the line. At this limit the Eq. (1.227)
for the x-coordinate reads

de 9
¥4 5 di + 5 Uleg() = 0. (1.229)

8We will need to use the law of conservation of energy. So the motivation works only for time-
independent constraints.
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The final observation is that this can be obtained from the action
1, 1,
S=|[dr 2x + 2y -Ux,y) |, (1.230)

where y is replaced according the constraint, y = g(x). Thus, we have arrived at the
recipe (1.216).

1.6.3 Description of Constrained System by Singular Action

To describe a constrained system, our ideology was to reduce the number of
variables, from ¢*,a = 1,2,...,nto s* o = 1,2,...k < n. Unfortunately, this
can result in the loss of some properties that were presented in the initial variables.

For example, both the unconstrained action (1.219) and the constraints (1.218)
of the Thomson-Tait pendulum have a manifest rotational symmetry” 7 — R7. This
is hidden in the formulation (1.221) (in which only the rotational symmetry in the
(x,y)-plane, ¢ — ¢ + const is evident).

The same happens if we use some of the initial variables to parameterize the
constraint surface. For example, take a free particle on a circle of radius /. Both
the unconstrained Lagrangian ém()'c2 + %) and the constraint x> 4+ y> = [
have the rotation symmetry 7 — R7. This is not manifest in the Lagrangian

im (1 - ()1‘)2) l %2 which appears after using the constraint y = 4+/12 — x2.

Since symmetries often play a fundamental role in the analysis of a theory, it
would be desirable to find a way to keep them untouched. This implies that we
continue to use the initial variables of configuration space for the description of
a constrained system. Strange as it may seem, this can be achieved following the
opposite ideology: instead of reducing the configuration space we extend it, adding
new variables into the formulation.

As before, we take a system with an unconstrained Lagrangian L(g“, §*) and the
constraints G;(¢*) = 0,i = 1,2,...,n — k. Introduce (2n — k)-dimensional space
with the independent coordinates g“, A, and consider the action

S = / dt [L(¢".¢") + M'Gi(¢")] . (1.231)

Since the initial coordinates are untouched, the formulation does not spoil the
symmetry properties of a theory. The price we pay is the appearance of the additional
variables A’ that have no direct physical interpretation. They do not participate in
determining the configuration of the system (positions, velocities, energies of the

Generally, a symmetry is called manifest if it is expressed by a linear transformation.
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particles and so on). So we can not (and need not!) measure them. For this reason
they are called unphysical (or auxiliary) degrees of freedom.

In all other respects, we treat the auxiliary variables on equal footing with others.
In particular, we write and solve equations of motion for both g% and A'.

Since the action does not contain derivatives of A, it represents an example of a
singular theory. The Hessian matrix has vanishing blocks, . f,zaSN =0, fl.zasqa =0
So its rank is less than dimension 2n — k of extended space.

We demonstrate now that the new formulation (1.231) implies the same evolution
for g* as the old one (1.212). Hence they are equivalent. It will be convenient to write
separately equations of motion for the variables ¢’ and g* (these were described in

Eq. (1.215)). Applying the principle of least action, we find

5S AL d AL ..9G,
= _ Mo =0, 1.232
Sq* g droge T age (1.232)

§S L d AL 3G,

= — + M T =0, 1.233

8¢ 0dq' dt dqg + a4 ( )
3S .

=G, q%) =0. 1.234

S (¢'.q%) ( )

Note that the constraints (1.234) appeared as a part of equations of motion. From
this system we get closed equations for ¢*. They can be obtained as follows. We
suppose that the solution ¢' = ¢'(¢%) of (1.234) has been substituted into (1.232)

and (1.233). Differentiation of the identity G;(¢'(¢*), ¢*) = 0 gives ggﬂ = —aajf g;’;
Using this expression in (1.232), the latter reads
oL  d oL . 0G; 9g;
( — _a) —W 0. (1.235)
dg*  dv 09* /| g 0q" | iy 09

Now Eq. (1.233) allows us to exclude'® the term A/ ?S{ from (1.235). The result is

oL d oL +3L_d3L
dq*  dt 9g* )| i) dg' dt 04

which is precisely Eq. (1.217).

To be sure of the self-consistency of the new formulation, let us discuss the
structure of solutions of the entire system (1.236), (1.233) and (1.234). The last of
these equations has been already solved by ¢'(¢%). Let ¢* = ¢%(t) be a solution
to (1.236). We substitute the functions ¢*(t), ¢'(¢*(t)) into Eq. (1.233). This

gives an algebraic equation for determining A’. Since by construction det ajf # 0,

P i
7o, (1.236)
dign 0

Eq. (1.233) can be resolved with respect to A’. Note a consequence: since all A’

19To avoid the possibility A’ = 0, we could to start from the Lagrangian with . instead of A’.
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are determined algebraically, we need not impose initial conditions for the auxiliary
variables.

1.6.4 Kinetic Versus Potential Energy: Forceless Mechanics
of Hertz

Here we discuss one more example of using an auxiliary variable. In this case, it
allows us to reformulate potential motion in n-dimensional configuration space as
a free fall in (fictitious) space of n + 1-dimensions. This explains the terminology
“forceless mechanics” for the new formulation developed by H. Hertz [21].

Take a system with the generalized coordinates ¢, a = 1,2, ..., n and potential
Ulg*)
a 1 a2
Slgl = [ dr| ()"~ U@)]. (1.237)
This leads to the equations
ou
¢ =—_ . (1.238)
dg*

We could also work using the generalized coordinates with the non-trivial metric
gar(q), as in Eq. (1.151); this would not alter the final results.

We introduce n + 1-dimensional space with the coordinates ¢' = (g%, ¢"*') and
write the following potential-free action

. 1 .
Slg'] = / e 2@l = (1239)
1 ay2 1 cn+1-n+1
/d‘( [2(61) + 4Uq q } (1.240)

This looks like the action of a free particle in generalized coordinates (see (1.151)),
with a metric that has only a g,+ ,+-component nontrivial

10...00
01...00
gi=\|:i 00| (1.241)
00...10
00...0 .}

2U
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As compared with the initial formulation, the potential is now hidden in the kinetic
term. We impose initial conditions both for ¢g* and ¢" ! as follows:

q“(0) = g5, q“(0) = vg,
IO =g o) =2U(4h). (1.242)
Due to the special choice of initial condition for Q’”'l, the formulation (1.239),

(1.242) leads to the same equations of motion for g* as the initial one (1.237). To
see this, write equations of motion for (1.239)

. 1 oU . 11\
4= — " , 1.243
q 402 30 @) ( )

1 .

- n+1 - n+1 a
=0 = =2cU . 1.244

(ZUq ) q cU(q") ( )

n+1

Initial condition for ¢"*! implies ¢ = 1. Substituting the result, §"*! = 2U,
into (1.243) we obtain Eq. (1.238) of the initial formulation.

In the new formulation the potential energy acquires a geometric origin. Recall
that according to Sect. 1.4.2, the metric that appears in Eq. (1.239) has a certain
geometric interpretation: it determines distances between points of configuration
space. As will be explained in Chap. 6, trajectories of a theory with such an action
also have a remarkable geometric interpretation: they represent lines of minimal
length with respect to the metric g;. Hence they are similar to straight lines of
Euclidean space and are called geodesic lines. It is known that trajectories of
particles in general relativity theory have the same property. So, the motion of the
g'-particle described by (1.239) is analogous to free fall in a gravitational field. An
intuitive picture of motion in the new formulation is presented in Fig. 1.21 on page
66. A fictitious g'-particle moves freely along the shortest line of (n+1)-dimensional
space with the metric g;;(U). Physical trajectory is its projection on configuration
space ¢ and corresponds to potential motion, with the potential being U(g“).

Since ¢"*! represents an auxiliary variable, we are not able to experimentally
fix its initial condition qﬁ“. Fortunately, this does not lead to inconsistency: since
equations for ¢* and ¢"*! have been separated, different choices of qﬁ“ imply the
same physical dynamics, which is given by (1.238). Geometrically, the solutions
g'.y',...in extended space that correspond to different choices of qﬁ“ project on
the same physical trajectory ¢“, see Fig. 1.21 on page 66.

Although we have discussed the case of a scalar potential, the construction can be
adapted for the vector potential as well. An example of a force with a vector potential
is electromagnetic force (with the vector potential being A,,). Being appropriately
generalized for that case, the construction leads to the Kaluza—Klein theory, which
formally unifies four-dimensional gravity and electromagnetism into a unique five-
dimensional theory [22].
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1

q
/

Fig. 1.21 According to Hertz, free fall in n+ 1-dimensional curved space is equivalent to potential
motion in n-dimensional space

1.7 Electromagnetic Field in Lagrangian Formalism

Here we apply Lagrangian formalism to the analysis of Maxwell equations describ-
ing electric and magnetic phenomena. While it is not evident in the initial formu-
lation, Maxwell equations obey the principle of special relativity, that is they are
covariant under the Poincaré transformations. We start from a description of an
electromagnetic field in terms of a three-dimensional vector potential. In this case
electrodynamics can be formulated on a base of nonsingular Lagrangian action.
Like the Maxwell equations themselves, this three-dimensional formalism is not
manifestly Poincaré invariant. We then go on to discuss the manifestly invariant
formulation. This is achieved in terms of a four-dimensional vector potential and
implies the use of singular Lagrangian action.

1.7.1 Maxwell Equations

Moving electric charges can be described using the charge density p(#, x*) and the
current density vector 7 (t, x*) = p(t,x*)v(t,x*), where ¥ is the velocity of a charge
at t, x*. They produce the electric E (¢, x*) and the magnetic E(t, x%) fields. The fields
obey the Maxwell equations

10E - - 1-
—[V.Bl=-J, (1.245)
c ot c
1B - -
+[V,E] =0, (1.246)
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(V,E) = p, (1.247)
(V.B) = 0. (1.248)
We use the following notation:
> d ad 0
V == 3 ) == a ) a b a ’
(3x1 0x2 3x3) (91,92, 93)
divergence : (%, E) = 01E1 + 0,E, + 03E3,
curl : [%, Ely = €apcOpEe.,
gradient : Va = (01, 070, 030),
Ap = (01 + 35+ 33)p. (1.249)

Examples of Solutions

1. Electric field of a point charge. Consider the charge g at rest at the origin

of a coordinate system. Then J = 0, while the charge density can be
described as p = ¢83(x), where §*(X) is the Dirac §-function. Then the
total charge is Q = [ d*xp = q. Maxwell equations with these densities
are solved by

qx
IX[*”

lq]

|q|2), B=0. (1.250)
X

E= (then |E | =
This is the Coulomb law: the electric field of a point charge is spherically
symmetric, directed from positive charge (proton) to infinity, with its
magnitude equal to the inverse square of the distance to the charge.

When X # 0, the direct computation gives d, I?Iz = 0. So the Maxwell
equation (V, E) = ¢83(¥) is satisfied for any ¥ # 0. For ¥ = 0 it holds
as an equality among generalized functions, that is we multiply both sides
of 9, \[?IZ = ¢8°(x) on a test function f(x) and integrate over space. Using
integration by parts, the resultis — [ d°x ‘q}’ﬁ 0f (X) = [ d*xq8* (x)f (X). This
equality can be proved after a careful definition of the function |§T3 atx =
0. We integrate over the region R*\S,, where S, is a ball of radius € around
the point X, and then take the limit ¢ — 0. See, [23] for details. The field
of a moving charge will be obtained in Sect. 1.7.8.

. Magnetic field of a straight wire. Consider a neutral wire placed along
the x*-axis, with the current density J = (0, 0, pVs (x1)8(x2)), where p is
the linear density of moving charges. The Maxwell equations are solved

(continued)
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Fig. 1.22 (a) The magnetic field is tangent to a circle surrounding a wire (electric current j
directed from sheet to the reader). (b) An electromagnetic wave consists of two standing waves

by E =0and
" Vi V! V.R
B:(— pYx . b ,)=p[q], (1.251)
c[(xh)? + ()] c[(x)? + (x?)?] c|RJ?
where R = (x',x%,0). The magnitude |B| = Ul is known as Biot-Savart

clR|
law.
The solution is drawn in Fig. 1.22a on page 68.
3. Electromagnetic wave. Maxwell equations in absence of the charge and
the current densities

(V.B) =0, (1.252)
admit nontrivial solutions called waves. An example is

E= (0, D sin(wx!) sin(cwt), 0), B= (0,0, D cos(wx') cos(cwr)),
(1.253)

where D, @ are constants. The solution consists of two standing waves (see
Sect. 1.5), the E-wave in the (x!, x*)-plane, and the B-wave in the (x!, x*)-
plane; see Fig. 1.22b on page 68. When the amplitude of E decreases, the
amplitude of B increases and vice versa. In particular, at the instances t =
IL‘Z) we have E = 0, B = 4D cos(wx'). That is, when E vanishes, B has
its maximum amplitude at each space point. Intuitively, the fields Eand B
turn into one another during the time evolution.
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Consistency Condition: Conservation of Charge Maxwell equations imply an
important consistency condition on p, 7 called the continuity equation. To find it,
take the divergence of both sides of Eq. (1.245). Using the identity (% [% 79]) =0
as well as Eq. (1.247), we obtain

dp+ (V,J) = 0. (1.254)

So, the charge and current densities can not be taken as arbitrary, but must obey the
continuity equation. To see the meaning of this, we write it in the integral form. Let
us integrate both sides of the continuity equation over a volume V surrounded by
the closed surface S

a,/d3xp = —/d%c(%j) = —/(}, ds). (1.255)
\%4 \%4 S

The last equality is due to the Gauss theorem. So we have

30y = — / (7,4ds), (1.256)
S

where Qy stands for the charge contained in the volume V. Hence the continuity
equation states that an electric charge must be locally conserved: the rate of variation
of a charge in a volume is equal to its flow (amount of charge that leaves or enters
through the surface per unit of time).

. . . . . - x'—>00
If we integrate over all space, the right-hand side vanishes owing to J/ — 0
(charges can not escape to infinity). Then d,Q = 0, that is, the total electric charge
is conserved.

1.7.2 Nonsingular Lagrangian Action of Electrodynamics

The aim of this section is to show that electromagnetic forces can be described in
terms of a unique vector field (called a three-dimensional vector potential A) instead
of E, B. The vector potential obeys a second-order partial differential equation,
which can be obtained by applying the least action principle to a nonsingular
Lagrangian action. The fields E and B can be restored from given A.

According to Maxwell, an electromagnetic field is described by six functions E,
B subject to eight equations. There are six equations of the first order with respect
to time, (1.245) and (1.246). Two more Eqgs. (1.247) and (1.248) do not involve the
time derivative and hence represent the field analogy of kinematic constraints. We
first reduce the number of equations from 8 to 6. A specific property of the Maxwell
system is that the constraint equations can be replaced by properly-chosen initial
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conditions for the problem. Indeed, consider the following problem

10E - - 1-
—[V.Bl=-J, (1.257)
c ot c
10B - -
+[V.E] =0, (1.258)
c ot
with the initial conditions
[(%,E) - p] -0, (V,B| =o. (1.259)
=0 =0

This is equivalent to the problem (1.245), (1.246), (1.247), and (1.248). Any solution
to (1.245), (1.246), (1.247), and (1.248) satisfies the Eqgs. (1.257), (1.258), (1.259).
Conversely, let E B be the solution to the problem (1.257), (1.258), and (1 259)
Takmg the dlvergence of Eq. (1.257), we obtain the consequence 9 (V E) +
(V J) = Bt[(V E) p] = 0. The initial condition (1.259)) then implies (V E) p=
0, that is, Eq. (1.247). In the same way, taking the divergence of Eq. (1.258) we
arrive at Eq. (1.248).

To proceed further, it is convenient to unify the vectors E, B into the complex
field
W = B+ iFE. (1.260)

Then Egs. (1.257), (1.258), and (1.259) can be written in a more compact form
i - . 1= . .
( 3, + VX) W=7 [(v, W) — lp]‘ —0. (1.261)
C C =0

If we look for a solution of the form W = (—;'ar + %x) A, the equations that

appear for A turn out to be real. They read
1 5= - oo = 1-
L, A= AA+ V(V,A) = J, (1.262)
c c
[a,(%,lx) + cp]‘ =0, (1.263)
=
where we have used the identity

€cab€cmn = 8¢1m5bn - 8¢1n8bmv then

[V.[V.A]] = —AA + V(V,A). (1.264)



1.7 Electromagnetic Field in Lagrangian Formalism 71

Hence it is consistent to take A as a real function. Thus, any real solution A(t, x) of
Eq. (1.262) determines a solution

- -

. . 1 -
B=[V.,A, E=— 0A, (1.265)
C

of the Maxwell equations. A is called a (three-dimensional) vector potential of the
electromagnetic field.'!

Conversely, any given solution E, B of the Maxwell equations can be used to
construct the vector potential which obeys (1.265), (1.262) and (1.263). This is
given by

t
A(t,x) = —c/ dtE(7,x") + K(x), (1.266)
0
where K is any solution to the equation
[V.K] = B(0,x%). (1.267)

The existence of the solution K is guaranteed by the Eq. (1.259). By direct
substitution, we can verify that the field constructed obeys the Eqs. (1.265), (1.262)
and (1.263). . .

For the stationary electromagnetic field, d,F = 9,B = 0, the Eq.(1.246) turns
into [%, E] = 0, so the electric field has a potential which we write in the form

- 1- N
E=—- VU®x). (1.268)
e
Then the vector potential is
- ct= =g
AX) = VUR) + KX). (1.269)
e

It is not difficult to construct a Lagrangian action that implies equations of
motion (1.262) for the vector potential. It is

1 - - 1 - - - - 1 - =
S:/dtd3x[ , (A, 9,A) — _([V,A],[V,A]) + (A,J)i|
2c 2 c

[ 1 1 , 1
= / did’x | 8iAu0iAc—  (BaAb— 0Ad)* +  Adla

2c 4 c

1 -, - 1 - -
= / dtd3x[2(E2—Bz)+ (A,J)] (1.270)
C

A similar procedure will be used in Sect. 2.9.1 where we obtain a scalar potential for the quantum
mechanical wave function.
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In the last line the substitution (1.265) is implied. To confirm that this leads to the
desired equations, let us compute the variation of the action

0,A, Ja
88 = / did*x [ " 0,840 — (0pAq — 04A)0p8A, + SAJ ) (1.271)
c c
Using integration by parts, we can extract §4,, obtaining the expression
3 L., 1
§S = [ did’x | | — ,0;Aq + (3p0pAq — 0a0pAp) +  Ju | SA+
c c
1
5 01(0:A48A,4) — 05(3pA00A0 — E)aA;,8Aa)i| . (1.272)
c

The total-derivative terms do not contribute to the variation due to the boundary
conditions of the variational problem

/ dtd®xd,(9,A,84,) =
/ dx [0,Ac8AL|l2 =0 since 8A4(ti,x) =0,
/ Atd*x0,(0pAu8A — 0,Ap8A,) =
/ AH(IpAuSAs — BuAYSAL)dS, = 0 since Ay —S° 0. (1.273)

Then the extremum condition
58S =

1 1
/ did’x [— L 074 + 0505A0 — 0a0pAp + Ja:| A, =0, (1.274)
C Cc

implies the Eq. (1.262).
In short, an electromagnetic field can be described starting from the nonsingular
action

R 1~ -
S:/dtd3x (0,A,0,A) — _([V.AL[V.AD + (A.J)], (1.275)
2¢? 2 c

which implies the equations of motion Clz 8,22\ — M+ %(%A) = ij . They must
be solved under the initial condition [3,(%,;1) + cp]) .= 0. Any solution A(t, X)
1=
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to the problem determines the solution

- -

- S 1 -
= [V, A], E=— 0A, (1.276)
Cc

to the Maxwell equatlons (1. 245) (1.246), (1.247), and (1.248). Note that the
solutions A(t x%) and A(t x4 + Voz(x") where «(x?) is an arbitrary function,
determine the same E B. Conversely, any given solution to the Maxwell equations
determines A according to (1.266). The potential obeys (1.262), (1.263) and (1.265).

Exercises

1. Find A of the following electromagnetic field: E= I%I% , B = const.
2. Show that the problem

1 - - - =2 = 1—> — -
Go= ,00A-—AA+V(V,A)— J=0, D=03(V,A)+cp=0,
C C
(1.277)

is equivalent to the problem (1.262), (1.263).

3. Verify the identity d,D — cz(%, é) = 0 among these equations.

4. Confirm that the action (1.275) is invariant under the transformation A=
A+ %oe, where a(x%) is an arbitrary function.

Non-relativistic Particle in an Electromagnetic Background Three-vector
potential can be used to formulate variational problem for the Lorentz-force
equation. The action of a charged particle in a given electromagnetic field with
the potential A, is

S = / dt[’;l()'c“)z + iAa(t,xb))'c“]. (1.278)

The particle placed at the point x(¢) interacts with the potential at that point,
Aq(t.2°(0)).

Recall the arbitrariness A, — A, + Baa(x”) presented in the definition of the
vector potential. Replacing A, by A, + d,a(x?) in the action, we obtain an extra
term that is the total derivative d,0x* = &. Hence it does not modify equations of
motion.

The variation of the action reads

58S = / di [—mx — “0A0 + € (8aAy — a,,Aa)x”] 8. (1.279)
C C
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Taking into account Eq. (1.276), the extremum condition 6S = 0 implies the well-
known equation of motion

s . e
mr = eE + [F,B). (1.280)
c

Accordmg to Eq (1.268), for the stationary electromagnetic field this reads mr =
VU + ﬁ B] Contracting this equation with 7, we conclude that the energy

1. .
E = 2r2+U(x), (1.281)

is conserved. Magnetic field does not contribute into the total energy of the particle.

1.7.3 Manifestly Poincaré-Invariant Formulation in Terms
of a Singular Lagrangian Action

We start by presenting the Maxwell equations (1.245), (1.246), (1.247), and (1.248)
in terms of a four-component quantity A, = (Ao, A,) called a (four-dimensional)
vector potential. Consider first the homogeneous Egs. (1.248) and (1.246). Since

a magnetic field has zero divergence, (%, ]_?3) = 0, it can be presented as a curl of
a vector, B = [V, A] (this is proved at the end of this section). Substituting this
expression into Eq. (1.246), the latter reads [V, ia,A + E] = 0. A field with zero

curl can be presented as a gradient of a function, so iBtA +E= %Ao. Hence any
given solution of the homogeneous Maxwell equations can be presented as

E=— +VAy, B=I[V.A] (1.282)

through some functions AO,A. It is convenient to use four-dimensional notations
introducing x* = @ = ct,x9, A, = (Ao, A,). Besides, we define an anti-
symmetric matrix called the field strength of the vector potential

Fuo = ,A, — 0,A,. (1.283)

Then Eq. (1.282) acquires the form

1
—E, = Fy,, B, = Zéachbcv (then Fap = eachc)s (1284’)
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that is E and B can be identified with components of the field strength matrix

0 —E; —E;, —E3
E, 0 By —B
E,-B; 0 B
E; B, —B; 0O

Fuy = (1.285)

Exercise Show that the homogeneous Maxwell equations in these notations
reads 0, F,, 4 0,F . + 9,F,, = 0. As should be the case, they are identically
satisfied by (1.283).

Substituting Eq. (1.283) into the inhomogeneous equations (1.247) and (1.245), they
read 0, F*° = —p, 9,F' = — iJ“, where F*' = n#*n"fF,5. Denoting J* =
(p, iJ“), they can be written in four-dimensional form

§' =9, " 4" =0, or ,0"A" —3"(0,AM) = —J". (1.286)

They follow from variation the action
4 1 v 0
S=[dx —4F,wF +AJH, (1.287)

with respect to A,.
Exercise Obtain (1.286) from (1.287).

Poincaré Invariance Let us postulate that A, and J* are Minkowski - space vector
fields. Under the Poincaré transformations (1.68) they transform as

/ AN AV / AN v
A,(X) =A, A", JHEE) = AF TV (0), (1.288)
Then F, is the second-rank covariant tensor and the Lagrangian —  F,,, F* +A , J#
is a scalar function, see Sect. 1.3. Hence the action (1.287) is invariant'> under
the Poincaré transformations, while equations of motion (1.286) are manifestly

Poincaré-covariant (generally, invariance of a Lagrangian action implies covariance
of the corresponding equations of motion; see Sect. 7.5 below). According to the

2Remember that according to mathematical analysis, an integration measure changes as d*x’ =
| det A|d*x.
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terminology introduced in Sect. 1.4.2, Poincaré transformations represent a family
of global symmetries (with ten parameters) of the action (1.287).

Electric and magnetic fields were identified with components of F,, according
to (1.285). This determines their transformation law under the Lorentz transforma-
tions. Under a rotation they behave as three-dimensional vectors, while the Lorentz
boost mixes E with é, see Sect. 1.7.8.

To conclude with, we discuss two statements that were used at the beginning of
this section. L L

Given field B with zero curl, [V, B] = 0, there is a function ¢ such that B = V.
To construct it, let us fix the point Xy, and let ¥ (/, X) be a curve connecting Xy with a
pointX, thatis, ¥(0,X) = Xo, (1, %) = X (take, for example, y (I, X) = Xo+I1(X—Xp)).
Then

a a
90:/ B,(y(1,%)) Y(l x) L. (1.289)

By direct computations, we verify that %(p = B. Note also that the integral in
Eq. (1.289) is just the line integral of the vector function, ¢ = fy (B,dl).

Given field B with zero divergence, (%,E) = 0, there is a vector A such that
= [V, A]. It is given by

1 - -

Vb(l’ x) VC(LX) - -

A, = cdB [, x))dl + 0,a, 1.290

[T i+ (1.290)

where « is an arbitrary function.

1.7.4 Notion of Local (Gauge) Symmetry

From Egs. (1.283) and (1.284) it follows that a potential of the form Au = duQ,
where «(x*) is an arbitrary space-time function, leads to zero field strength,
F w = 0, so it does not produce electric and magnetic fields. As a consequence,
the potentials A, and A, = A, + 0,, determine the same electromagnetic field.
The ambiguity in the representation of an electromagnetic field through a potential
can be used for various reformulations of equations of motion (1.286).

For instance, for a given potential A, the function o can be chosen such that
Ay = 0 (it is sufficient to solve the equation dopor = —Ag). Hence there is a
potential of the form A/ = (0,A]), that produces the same electromagnetic field
as A,. Hence, if we w1sh, we can look for solutions of this form resolving the
Eq. (1.286). Knowledge of this solution of a special form is sufficient to reconstruct
the electromagnetic field created by a given distribution of charges. When Ag = 0,



1.7 Electromagnetic Field in Lagrangian Formalism 77

Fig. 1.23 The space of
potentials decomposes into
non-intersecting classes A,, of
equivalent potentials.
Electromagnetic fields are in
one-to-one correspondence
with the classes, (E 1;’) ~ ;‘u'
In each class there are
representatives of the form
A= (0.A)

{Ay+dj o}

the Eq. (1.286) reduce to the system (1.277) obtained in the previous section,!? while
the action (1.287) turns into (1.270).

The procedure described is called fixation of a gauge. The condition Ay = 0 is
known as a unitary gauge.

To make the relationship between (E , E) and A, clearer, we define an equivalence
relation on the space of functions A, (x"). The potentials A, and A;L are equivalent,
A}, ~ Ay, if they differ by the divergence of some function, A} = A, + ,0.
Equivalent potentials form a set called a class of equivalent potentials. The set is
denoted by ;\M = {A, + 0,0, where « is an arbitrary function}. According to
the known theorems of algebra, given the equivalence relation, the initial space
decomposes on non-intersecting classes of equivalent potentials, see Fig. 1.23 on
page 77. Electromagnetic fields are in one-to-one correspondence with the classes,
(75, E) <~ Aw As we have discussed, in each class there is a representative of the
form (0, A,). Fixation of the unitary gauge means that solving equations of motion
we look for a representative of this special form in each class.

Another often-used gauge is the Lorentz gauge, 9,A* = 0. One of its advantages
is that it does not spoil the manifest Poincaré covariance of the problem. Another
advantage is that in this gauge the left hand side of Eq. (1.286) acquires the form of
a wave equation (see Sect. 1.5)

9,0"A" = —J". (1.291)

Exercise Find the solution to Eq. (1.291) that produces the electromagnetic
wave of Example 3 on page 68.

3Given Ay, the equivalent potential with vanishing time-component reads A; = (A).A) =
(0,A,—9, [ dx®Ag+ d,c(x")), where c(x*) stands for an arbitrary function. For the free electrody-
namics, the arbitrariness can be used for further specification of the potential. For example, we can
find A/ with 9,4/ = 0. It implies the following equation for c: 32c(x’) = —0,A, + 32 [ dx"A,.
The equation is consistent, since its r.h.s. does not depend on x°: 9y(—0,A4, + 32 f dx’Ag) =
—9,F*0 = 0, and thus can be resolved. The potential then obeys the three-dimensional wave
equation. For the more detailed discussion of this point see Sect. 8.4.
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The action (1.287) also reflects the ambiguity in the representation of E and B
through a potential: it has the same value for all representatives of a given class.
Indeed, the substitution

Ay =Al — 0, (1.292)

leaves the action (1.287) invariant, S[A(A”)] = S[A’]. So it represents a symmetry
transformation on the space of fields. In contrast to the global Poincaré symmetry
discussed above, the symmetry (1.292) involves an arbitrary function o (x*) instead
of numeric parameter. Intuitively, the transformation law varies from one point
to another, transformations of a potential “here” and “there” are different. For
this reason the transformation is called local (or gauge) symmetry of the action.
In what follows we discuss some characteristic properties of locally-invariant
theories.

Singular Character of the Locally-Invariant Action Let us separate the terms
with temporal derivatives in the action (1.287)

1 1
s:/ﬁ%[f%%—@mf—4ﬁwhyﬂ} (1.293)

Note that it does not contain the time derivative of Ay. Hence the Hessian matrix
(see Sect. 1.4.2) is degenerate

0000
9’L 0100

L = , 1.294

9A,04, 0010 ( )
0001

and we deal with a singular theory.

Arbitrariness in Solutions of Locally-Invariant Theory Recall that a nonsingu-
lar theory leads to a normal system of equations, which admits formulation of the
Cauchy problem. This is impossible in a locally-invariant theory: independently of
the type and the number of initial and boundary conditions imposed, a solution
to the equations of locally-invariant theory is not unique, and involves arbitrary
functions. Indeed, suppose that A, represents a solution to the Eq. (1.286) with
some initial and boundary conditions imposed. Take a function «(x") such that 9,,&
(together with its time derivatives, if necessary), vanishes at the initial instance
and on the boundary. Then A, + 0, is a solution of the same problem as
Ay,

Structure of Equations of Motion One consequence of singularity is that not all
equations of motion are of the second order with respect to a temporal variable. Let
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us write Eq. (1.286) in three-dimensional notations
S() = AA() — 80(8;,Ab) —p = O, (1295)

1
Sy = (02 — A)A, — 04(00Ag — IpAp) — CJa =0. (1.296)

Equation (1.295) does not contain Bé. Another consequence is the identity presented
among the equations

3,8 = 0. (1.297)

Finally, similarly to the three-dimensional formulation, Eq. (1.295) can be
replaced by an appropriate initial condition. To see this, compute the divergence
of Eq. (1.296). Using 8Mj“ = 0 we obtain 9,5, = 09[AAy — 0p(0pAp) —
p] = 0. Hence (1.296) implies Sy = f(x), and Eq. (1.295) will hold at
any instance if it has been satisfied at the initial instant of time. Hence the
system (1.295), (1.296) is equivalent to Eq. (1.296) supplemented by the initial
condition [AAg — 99(dpAp) — p] |;=0 = O.

There is a profound relationship between the properties enumerated above and
the local invariance of a theory. This will be discussed in Chap. 8.

1.7.5 Lorentz Transformations of Three-Dimensional
Potential: Role of Gauge Symmetry

So far was not demonstrated that the formulation of electrodynamics in terms of
the three-dimensional potential A, obeys the principle of special relativity. Here
we present the relevant computation. The computation also clarifies, why we
prefer the formalism which implies a set of redundant variables subject to local
transformations instead of a set of independent and gauge-invariant variables.

Consider two observers related by the Lorentz transformation x'* = A#,x".
Suppose they study a given electromagnetic field. As we have seen, the four-
dimensional potentials are related by combination of the Lorentz and the gauge
transformations

Al =AAY ), + 0,0 (1.298)

Suppose the observers decided to use a three-dimensional formalism to describe
the given field. Then O describes it by the potential A, = (A9 = 0,A,), while 0’
uses A}, = (A = 0, A}). The question is if the formalism is a Lorentz covariant,
that is, whether the two descriptions are related by a Lorentz transformation. It is
clear that the linear Lorentz transformation of four-dimensional formulation does
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not relate these A’ and A, since transformation of (0,A,) leads to a potential with
Ay = ApAPy #£ 0. A general gauge transformation also implies A{, # 0.

It can be said that neither the Lorentz nor the gauge symmetry of four-
dimensional formulation survive in the gauge Ay = 0. But we can look for
a combination that does not spoil the gauge condition. So, given the Lorentz
transformation A, we ask whether there is a «(A) such that Ay =0.

Taking 4 = O-component of Eq. (1.298) and requiring A, = 0, we find
a([\) = —C,A¢), where C. is a primitive function of A, dgC. = A.. Then the
three-dimensional potentials are related by

Al = AN, — 8,C.A. (1.299)

The transformation turns out to be highly non-linear (even non local with respect to
A,!), involving the primitive function C, of the potential.

This computation shows the role of auxiliary variables and local symmetries
associated with them. Introducing the auxiliary variable Ay, we arrive at the
formulation where the non-linearly realized global symmetry (1.299) decomposes
on a linear global symmetry (Lorentz transformations) plus a local symme-
try, (1.298).

1.7.6 Relativistic Particle in Electromagnetic Field

The free-particle Lagrangian ’5‘()'c“(t))2 does not determine a relativistic theory. It
admits solutions x* = x{ + v“t with any velocity v, so it does not take into account
the existence of a maximum speed in nature. To resolve the problem, let us consider
the action

S = —me / div/c? — (7). (1.300)

It has the following properties.

1. The action has no meaning when X> > ¢2, so we do not expect it to admit motions

with v > c. Indeed, this implies the equations

d x4 x4
. =0, then . =D (1.301)
dt \/c2 —Xx2 ¢z —x2
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This implies Y. = b2, then V32 = ¢ _ . Using this equality in
232 V142
Eq. (1.301), it reads x* = cb __, so the general solution is
V1452
cb*
x(H) = vt + x5, where v = o (1.302)
V145

and b?, xj are arbitrary constants. The square of velocity is given by 02 =2 15_27]2 .

It is less then ¢? for any integration constant b°.

2. When #> <« ¢?, we expand the Lagrangian in a power series obtaining

35 Y 22 . P ..
—meV e =32 = —me? + émx 2402 (fz ), so in the nonrelativistic limit ¢ — oo

it reduces to the standard Lagrangian émfcz.

3. The action can be presented in a Poincaré invariant form. To achieve this, we
follow the procedure discussed at the end of Sect. 1.3. Let x* = x°(7), x* = x“(7)

be parametric equations of the curve (ct,x*(f)). Then d;j; = ‘s(: j;, and the
action acquires a manifestly Poincaré-invariant form
dx* dx¥
S=- dr \/ —Npuw . 1.303
mc/ (L dt dt ( )

Recall that functions of n,,x*x" are the only Poincaré-invariant quantities
without higher derivatives, see Sect. 1.3.

Exercises

1. Confirm that (1.303) is a singular action.
2. Confirm that the action is invariant under reparametrizations T = «(z7’).
Note that , ' ¢ is a reparametrization-invariant quantity.

v o dt
\/ XX

It is instructive to solve the manifestly covariant equations that result from this
action. We have

d i "
St = ( v ) -0, then . =" (1.304)
dt \ /—x,x¥ N =T,V

where ¥ = % and b* are constants subject to the restriction b, b* = —1.

Exercise Confirm the identity x,S* = 0.
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The functions
x*(t) = bf(x) + d¥, (1.305)

where f(7) is an arbitrary function, represent a solution to Eq. (1.304). Moreover,
any solution to the problem has this form; see Exercise on page 221. Hence we have
found all of them.

According to the ideology discussed at the end of Sect. 1.3, the physical trajectory
x4(¢) is obtained excluding t from the parametric equations x° = b°f(t) + d°,
x* = b (tr) + d°. This leads to the expression

x(H) = vt + x5, where v’ = , xg=d" — , (1.306)

which reproduces our previous result (1.302).
The motion of the relativistic particle in a given electromagnetic field can be
described starting from the action

dxt dx’ e
S=|dt|— - A M. 1.307
/{mc\/ n“”dtdr+c“x:| (1.307)

The term A, x* is known as the minimal interaction.

Exercise Verify that the action is invariant both under the gauge and the
reparametrization transformations.

This leads to the equations

N0 0z x” ) e v
—mcd + F,o0.x" =0, 1.308
! (\/_arxvatxv c ( )
Due to reparametrization invariance, equations for the physical trajectory x“(¢) can
be obtained if we take "LO as the parameter along the trajectory, 7 = "LO = t. Then
x*(t) = (ct,x(2)), 3. x* — (c,x(t) = df), and the equations acquire the form

d o S V=2 -2 (1.309)
= WX0 0 =nxtxt =t —v7, .
di \ /=it i mc? e
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or, in three-dimensional notations

3d 1 -a
G =mc | —eEx" =0, (1.310)
dt \/cz—?c2
54 d X E, — S epei®B =0 (1311)
= mc —eLg—  €gpcX =Y :
dt \/cz—);c2 ™

Note that x*’S* = G, so the first equation is a consequence of others and can be
omitted from consideration. At the non-relativistic limit, x2 < ¢2, the term x?2

inside the square root can be omitted, and the remaining three equations coincide
with Eq. (1.280).

1.7.7 Speed of Light and Critical Speed in External Field

We will use the following terminology. The speed v, that a particle can not
exceed during its evolution in an external field is called critical speed.'* The
observer-independent scale ¢ of special relativity is called, as usual, the speed of
light. We show that the particle (1.309) can not exceed ¢ during its evolution in
electromagnetic field, that is its critical speed coincides with the speed of light. Then
we consider rather exotic examples of equations which yield v, different from c. We
achieve this assuming a non-minimal interaction with electromagnetic field. These
toy models have the same basic properties as the Eq. (1.309): reparametrization and
gauge-invariance, as well as Poincaré-covariance. In Chap.9 this subject will be
discussed for more realistic case of a particle with spin.

Particle with Minimal Interaction Due to the relativistic-contraction factor ¢> —
v? = 0, the Eq. (1.309) became singular at the value of speed v = c. The singularity
determines behavior of the particle in ultra-relativistic limit. To see this, we rewrite
the equations in the form of second law of Newton and analyze an acceleration. We
present (1.311) as follows:

4 wd ¢ g 1312
x/cz—vz+xdfx/c2—vz_m02 v (1312

Using Eq. (1.310) we obtain the three-acceleration vector
V2 —v2 |: e(Ev)
a= eE —

v+ eva]. (1.313)
mc C

c?

14We prefer the term critical speed instead of maximum speed since in some examples v, is a
field-dependent quantity, see below.
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This can be used to obtain the acceleration along the direction of velocity

2_ 2 3
va= € ) ) (). (1314)
mc
The same expression can be obtained computing the time-derivative in Eq. (1.310).
The acceleration vanishes as |v| — c. Hence the singularity in Eq. (1.309) implies
that during its evolution in the external field, our particle can not exceed the speed
of light c.

Particle with Non minimal Interaction The field strength F,, can be used to
modify the Eq. (1.309) preserving its basic properties: reparametrization and gauge-
invariance, as well as Poincaré-covariance. We discuss two modifications which
could yield non vanishing longitudinal acceleration as |v| — c. First, we replace
the usual relativistic factor —xnx by

— gk’ = —ini" — ek(iFF%) = ¢ — v* — ek(iFF%), €= *£1.

(1.315)

We have denoted XxFFx = x*F,“F,,x". The right dimension can be supplied by the
constant k with dimension ez(mec2 )*. Second, we modify the expression for Lorentz
force and write the following equation

d i e K2
=ft = FH 5" — O (FF) i 1.316
dt ( ) f me2 vX \/—)'cg)'cx ( )ocﬁx ( )

Here k is one more coupling constant. Repeating for this case the calculations made
above, we obtain the longitudinal acceleration in terms of the force components

2 22
va = /—igi [Vf— cho} = \/—)'cg)'c|:c . Vg0 +x“f,L] (1.317)

In this expression x* = (c,v = ‘2’:). The acceleration vanishes at the values of
speed which annulate r.h.s. of this equation. If in physical-time parametrization the
four-force obeys the identity x,f* = 0, we have two special points, |v| = ¢, and v’
determined from igx = 0. In absence of the identity, and if X, f* # 0 as |v| — c,
the speed of light does not represent a special point of (1.317).

Ifk = 0, we obtain

va = e(VI;:) J—igi(c —v?). (1.318)
mc

Besides the usual special point, v2 = ¢2, there is one more, say v’ = |V/|, determined
by xgx = 0. This surface is slightly different from the sphere ¢ — v> = 0.



1.7 Electromagnetic Field in Lagrangian Formalism 85

So the second special point generally differs from the speed of light. To see this
in more detail, we compute the last term in (1.315)

Vivj

—iFFi = CE; (8= ) B + BNy, (1319)

2

Here Nj = §;; — ”;'Zf is projection operator on the plane orthogonal to the vector v,

so we can write BVB = (NB)? = Bﬁ_. Then the factor (1.315) reads
_kgi= P — v ek [czE(l ~"E+ szi] . (1.320)
c

The quantity 8;; — UC"_;}-" turns into the projection operator N when |v| = ¢. Hence

ek U kB + B, (1.321)

If E and B are not mutually parallel in the laboratory system, this expression does
not vanish for any orientation of v. This implies that the factor (1.315) does not
vanish at |v| = c.

We confirmed that longitudinal acceleration generally vanishes at two different
values of speed, ¢ and v’. Then Eq. (1.318) implies the following possibilities.

(A) Let e = +1, then from (1.320) we conclude ¢ < v’, and speed of the particle
approximates to ¢. The second special point v’ turns out to be irrelevant. So
Ver = C.

(B) Let ¢ = —1, then v’ < ¢, and the particle with small initial velocity will
approximate to the critical velocity v.,, = v’ < ¢. So it never approximates to
the speed of light.

Consider now the case k # 0, and the factor (1.315) with ¢ = +1. As we have
seen above, this implies ¢ < v’, where v’ is a solution of xgx = 0. Besides, we take
non-parallel, homogeneous and non-stationary fields with growing tension

. . d d
JE =9d'B =0, E|l >0, B| >0, 1.322
JEI>0. B> (1322)

then the longitudinal acceleration of the particle (1.316) reads

722
va=a,(v) + a(v) = e(VI? V—igi(c? —v?) — k Z X 9 (FF)x. (1.323)
mc: c? ot

We have a;(c) = 0, while ax(c) is positive according to Egs. (1.319) and (1.322). So
the particle overcomes the light barrier. In the region ¢ < v < v’ we have a;(v) < 0
and a,(v) > 0, so the particle will continue to accelerate up to critical velocity v,
determined by the equation a; + a; = 0. If a; > |a,| in the region, the particle will
accelerate up to the value v, = v’. Above this velocity the Eq.(1.323) becomes
meaningless.
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The toy examples show that critical speed in a manifestly relativistic and
reparametrization-invariant theory does not always coincide with the speed of light,
if we assume the usual special-relativity definitions of time and distance. In general
case, we expect that v, is a field-dependent quantity.

1.7.8 Poincaré Transformations of Electric and Magnetic
Fields

Recall that E, and B, have been identified with matrix elements of the field strength

F,.,,, which transforms as the second-rank tensor

Fl,, () = Fap()A“, AP, (1.324)

Using this equation as well as (1.284), we obtain the following expression for the
transformation of an electromagnetic field

E/(X) = Eq(x)(A?, A% — A4A°,) + Ba(x)eae A oA Co,

~ ~ 1 ~ ~
B;(-x/) = Ed(x)AdbébcaAOc + 2Bd(x)6dmnAmbAncébca- (1325)

Here x’ and x are related by the Poincaré transformation (1.68).

For a spacial rotation, the Lorentz matrix is /~\00 =1, /~\“0 = 1~\Oa =0, 1~\“;, =
Ru», RTR = 1. Substituting this into Eq. (1.325) we immediately obtain (remember
that €.pcRuaRppRey = €apy, therefore €pcRugRppg = €apyRey)

E| = E,Rys. B, = ByRy,. (1.326)

As was expected, E and B behave like three-dimensional vectors under the spacial
rotations.

To find matrix elements of A for the case of Lorentz boost, we lower the indexes
in Eq. (1.102) obtaining

\%4 \%4
)C(/) =y (XO + cxl) s x’l =y (cx() +x1) s x/2’3 = X33, (1.327)

1
where we have denoted y = (1 - ‘C/zz ) ? . Hence the A-matrix has the following

non-zero components

Vv
c

A=A =y, A =Av=y ., A% =268%, ab=223. (1.328)
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Substituting them into Eq. (1.325) we obtain
/ / V ! V .
Elel, E2:]/ E, — CB3 R E3:)/ E; + CBZ ; (1.329)
/ / V / V
B1:BlsB2:V CE3 + By ,B3:]/ —CE2+B3 . (1.330)

Making the changes E' < E, B < B, V. — —V, we obtain the inverse
transformation

— _ / V/ _ / 14 /N .
Ei=E, E=y|E+ CB3 , Ezs=y|E5— C32 ;
— R _ V/ / _ V/ /
Bi=B,, B=y(- Ex+B|, Bi=y| E+B5). (1.331)

According to Egs. (1.329) and (1.330), when O registers only an electric field E, the

observer O’ will register both electric and magnetic fields. When B=0, Eq. (1.330)
can be written in the vector form

Bl
C

V.E. (1.332)

Hence the vectors E’ and B’ are mutually orthogonal in the O'-frame.

For a boost with V < ¢, we can disregard ‘C/zz -terms in Egs. (1.329) and (1.330).
The approximate expressions can be written in the vector form

-

. I o o o o 1 o o
E'~E- [V.B. B~B+ [V.E] (1.333)

The Lorentz boost transformation can be used to find new solutions to the
Maxwell equations from a known solution. We present an example of this kind
below.

Example (Electromagnetic Field of a Moving Charge) Consider the charge
g that moves with constant velocity V along the x!-axis of the frame O(x*),
passing through its origin at # = 0. Introduce also the frame O(x'*) which
moves with the charge. Since the charge is at rest in (', its electromagnetic
field is E/ = %,, H = 0. Then the field in O can be obtained from

RN

(continued)
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Eq. (1.331)
_ qxll _ qxxz _ qx/3
El(x) - |3€v,|3’ EZ(X) - y |3€v,|3’ E3(X) - y |3€v,|3’
Vv qx/?) qu/2
Bi(x) =0, B(x)=-y ... Bix)=y _ .. (1.334)
c [¥'] c [¥']
where we need to substitute x’# through x* according to Eq. (1.102)
1% Vv
=y = x), X =y = X0, 2 =42 K= (1.335)
& &

We first compute
1 2
PF =y [ v 2+ ]
14

_ ) [(xl _V? 4 () + () + (;2 - 1) 2 + (x?’)z]}z .

(1.336)
Introduce the vector from the position of charge g to the observation
point, R = (x! — V&, x>, x%); see Fig.1.24 on page 88. Then
(x*)2 4+ (x*)> = |R|*sin* @, where 0 is the angle between V and R. So
(continued)
VX x’2
R ! o
| | ' R
: : 0 x'1
! ! @ v
_______________ 1 X,3
<3

Fig. 1.24 The electric field of a moving charge depends on the angle 6
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(a) (b)
|
[~
L / S E L / ——
~ \\ ~ E
\\/\‘ \\/
\ \ \
\/\ \‘/V
\ | \
\'%

Fig. 1.25 (a) Electric field of a charge at rest. (b) Field of a moving charge

3

I¥? = y3|R? (1 - ‘6/22 sin 9)2. Now the Eq. (1.334) read

I S o
E= ¢ ., B="[V.E]L (1.337)

R|3
IR| (1 — ‘C/ZZ sin? 9)2

These expressions give the electromagnetic field of a moving charge. The
electric field is directed to the charge, with a magnitude that increases with

0. The electric field in the direction of motion, (8 = 0), has the minimal

. jud 2 . . . .
magnitude |E| = \ieq| ) (1 — ‘;2 ), and in the orthogonal direction, 8 = 7, it
acquires the maximum value |E |= 4 1

P . The electric and the magnetic
V
)

field fields of the moving charge are shown in Figs. 1.25b on page 89 and 1.26
on page 90.
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Fig. 1.26 Magnetic field of a
moving charge




Chapter 2
Hamiltonian Formalism

Abstract As we have discussed, Lagrangian formulation of classical mechanics is
based on Euler—Lagrange (Newton) equations of motion, which represent a system
of second-order differential equations, written for a set of variables that describe
the position of a physical system of interest. Hamiltonian formulation suggests
an equivalent description in terms of first-order equations written for independent
variables describing the position and velocity of the system. The aim of this section
is to establish an equivalence of the two descriptions.

2.1 Derivation of Hamiltonian Equations

As we have discussed, Lagrangian formulation of classical mechanics is based
on Euler—Lagrange (Newton) equations of motion, which represent a system of
second-order differential equations, written for a set of variables that describe
the position of a physical system of interest. Hamiltonian formulation suggests
an equivalent description in terms of first-order equations written for independent
variables describing the position and velocity of the system. The aim of this section
is to establish an equivalence of the two descriptions.

2.1.1 Preliminaries

Hamiltonian equations can be obtained from Lagrangian ones by successive applica-
tion of two well-known procedures in a theory of differential equations: reduction of
order and change of variables. Both procedures are intended to obtain an equivalent
system of equations from a given system. So, we recall here some elementary facts
from the theory of ordinary differential equations, which will be used below.

Reduction of the Order of a System A second-order system of n equations for n
independent variables ¢“(7),

F(q".¢4".§) =0, @.1)

© Springer International Publishing Switzerland 2017 91
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is equivalent to the first-order system of 2n equations for 2n independent variables
q(1), v’ (1)

§* = v, F(¢%,v", 1) = 0, (2.2)

in the following sense:

(a) If ¢“(r) obeys Eq. (2.1), then the functions ¢“(t), v*(r) = ¢“(r) obey Eq. (2.2);
(b) If the functions ¢“(t), v*(t) obey Eq. (2.2), then ¢“(t) obeys Eq. (2.1).

In other words, there is a one-to-one correspondence among solutions to the
systems. The system (2.2) is referred to as the first-order form of the system (2.1).

Normal Form of a System We restrict ourselves to the first-order system
G'(z/.z" =o. (2.3)

It is said to be presented in the normal form if all the equations are solved
algebraically with respect to higher derivatives

#=g'@E). (2.4)
Any system with det %(; # 0 can (locally) be rewritten in the normal form.
According to the theory of differential equations, a normal system has well
established properties. In particular, under known restrictions to functions g', the
theorem for the existence and uniqueness of a solution holds: let z) be given
numbers, then locally there exists a unique solution z'(z) of the system (2.4) that
obeys the initial conditions z'(0) = z},. Physically it means the causal dynamics and,

in turn, a possibility of interpretation of the system (2.3) as the equations of motion
for some physical system of classical mechanics.

Change of Variables Let ¢(z/) be given functions, with the property

40, 2.5)

Starting from the system (2.3) in original parametrization z', functions ¢’(z/) can
be used to define another parametrization 7, namely 7 = ¢'(z/). According to
the condition (2.5), change of variables 7' — 7' is invertible: the expressions
7" = ¢/(z/) can be resolved with relation to z/, with the result being z' = v (¥).
The change of variables induces the map on the set of functions (dynamical
variables): z/(t) — (1) = ¢'(z/(t)). Once the functions ¢(z/) have been chosen,
we can use the new coordinates to analyze the system (2.3). Namely, we look for
solutions of the form z' = v(z¥). The system

G/, ¥/(") =0, (2.6)
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where /(%) = g;’f; 7, is equivalent to the initial system (2.3): if z'(z) obeys the
system (2.3), then 7/(t) = ¢'(z/(t)) obeys (2.6), and vice versa.
Below we prefer to use the notation

G'(z/.%)| 0, 2.7)

=y(E)
instead of (2.6), since sometimes caution is needed in making use of the substitution,
see, for example, Eqgs. (2.34) and (2.35) below. Besides, we will often use the same
letter 7" to denote the function ¥ (z) and the new coordinate, as long as this does not
lead to any misunderstanding.

More generally, we can look for solutions of the form

Z(0) =y (). 1), 2.8)
where 2n functions of 2n + 1 variables ¥(z/, T) obey

Jy

det 920

#0, forany 7. 2.9)

So the relations (2.8) can be resolved with respect to 7/
7' = ¢l ). (2.10)

Substituting z in the form (2.8) into the Eq. (2.3), we obtain an equivalent problem
in terms of 7.

By construction, there are identities (for ¥ and ¢ considered as functions of their
arguments)

. 0.0 =" Y(ek1).1) =7 @2.11)

From this we obtain more identities

¢k (z, 7) W' 1) 5
3z azi 7
Z Z=T//(Z/.,‘L') Z
d¢'(z, 7) _ 99z D) I, T)
af =y (1) BZJ =y (1) BT ’
W@ 1) _ @) Ip(z.7) 2.12)
BT z/=<p(z,t) aZU Z/=<p(z,t) af

The first identity relates Jacobi matrices of inverse and direct transformations: the
matrices turn out to be opposites. The second identity relates derivatives with respect
to 7 of the direct (¢) and the inverse () transformations. The third identity differs
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from the second one by changing ¢ <> V¥, as should be the case (it is a matter of
convenience which transformation is called the “direct” and the “inverse” one).

Comment We stress that (2.8) represents a transformation on the space of
functions z(t). Discarding the time-dependence, the expressions

2=y, 1), (2.13)

can be considered as one-parametric family of coordinate transformations in 2z -
dimensional space with coordinates z'. We could introduce the extended space with
coordinates (z, z'), then coordinate transformation of a general form in this space

are
(T)e(t) gf/.:f(.z’t) (2.14)
Z Z Z/z — (pl(Z, 'L')

In this space, (2.13) can be considered as coordinate transformation of special form,
with 7/ = 7. Let (,z/(r)) be parametric equations of a curve in extended space.
Then (t, 7/(t)) represents the curve in the transformed coordinates.

Hamiltonian System Let ¢°, p,, @ = 1,2,...,n be independent variables. The
normal system

q“ = 0q.p. 1), Pa = Pu(q.p. 7). (2.15)

with the given functions Q, P is called the Hamiltonian system, if there is a function
H(q,p, t), such that

0H 0H
o=, Po=—_ . (2.16)
P

In accordance with this, the Hamiltonian system can be written in the form

_a_aH . 0H 2.17)
7= 3Pa’ Pa= aqa. .

Equation (2.16) implies the necessary conditions for the system to be a Hamiltonian
one

Q° 0Py 90 Q" P, 0Py 2.18)
b s’ o, pa’ dgb  dge’ '
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2.1.2 From Lagrangian to Hamiltonian Equations

Letg®, a =1,2,..., nrepresent generalized coordinates of the configuration space
for a mechanical system with the Lagrangian being L(¢%, ¢°). Then the dynamics is
governed by the second-order Euler-Lagrange equations

d (0dL(q,q dL(q, 4
(.9)) _0La.9) _ o (2.19)
dt ag° ag°
For any Lagrangian system there is an equivalent Hamiltonian system. We demon-
strate this mathematically notable fact for the particular case of a nonsingular
Lagrangian

9L(q.9)

det
 dgeagh

# 0. (2.20)

In this case, the system (2.19) can be rewritten in the first-order normal form. Then
in specially chosen coordinates it acquires the Hamiltonian form. It basically gives
the Hamiltonian formulation of mechanics.

Computing the derivative with respect to t in Eq.(2.19), the latter can be
written as

Mui® = Ko, 2.21)

where it was denoted

. ®L(g.9) . oL *L
Ma ) = . . ) Ka ’ = - . :
h(q q) aq“aqb (q q) aqa aqaaqb 4

(2.22)
Let us start with construction of the first-order form for the system (2.21). We find it
instructive to present here a less formal reasoning, as compared to that of Sect. 2.1.1.
We introduce 2n-dimensional configuration-velocity space parameterized by inde-
pendent coordinates ¢, v’ (sometimes the coordinates v? are called generalized
velocities). Let us define evolution in this space according to the equations

My = K, v = ¢, (2.23)

with M(q,q), K(q,q) given by Eq.(2.22). As before, time dependence of the
coordinates ¢g“(t) is determined by Lagrangian equations (2.21), while v*(t)
accompanies ¢“(7): v*(7) is determined from the known ¢“(t), taking its derivative.
Evidently, systems (2.21) and (2.23) are equivalent. Further, we can use one of
the equations of the system in other equations, obtaining an equivalent system.
Substitution of the second equation from (2.23) into the first one gives the desired
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first order system

@ =v" Mad" =K, (2.24)
where M, K are obtained from (2.22) by the replacement § — v, for example

_ _ 0L(g,v)

May = Map(@. Q) ljpse = 3" 1o - (2.25)

According to Eq. (2.20), the matrix M is invertible. Applying the inverse matrix M ,

the Eqs. (2.24) can be presented in the normal form § = v, © = MK. The right-hand
sides of these equations do not obey Eq. (2.18). So in terms of the variables g, v the
system is not a Hamiltonian one.

Making the variable change ¢ — g(q’, v'), v — v(q’, v’) in Eq. (2.24), we could
look for the new variables that imply the Hamiltonian form of the system. The point
here is that there is a wide class of so-called canonical transformations that preserve
the Hamiltonian form of an arbitrary Hamiltonian system (see Sect.2.7 below).
Hence the variables under discussion are not unique.' The remarkable observation
made by W. R. Hamilton was that the change of variables (with v’ conventionally
denoted as p)

a /a JdL , U
(€)o(£). o e o0

turns the system (2.24) into the Hamiltonian one. Due to Eq.(2.20) we have
det a"g(ﬂ’”) # 0. The latter condition guarantees invertibility of the transforma-
tion (2.26). Let us denote the inverse transformation as

v =v%(q.p). (2.27)
This implies the identities
oL Pa 9°L
| o=pe = = Mu(q.v). (2.28)
V|4 v dvedv

Let us confirm that in terms of the variables g, p the system (2.24) acquires the
Hamiltonian form.

'If the change ¢(¢’,v’), v(q’,v’) transforms the system (2.24) into the Hamiltonian one, and
g (q",v"), v'(q"”,v"”) is the canonical transformation, then the change g(q¢’(¢”,v”), v’ (", v")),
v(q'(q",v"),v'(¢",v")) transforms (2.24) into the Hamiltonian system as well.
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According to Sect.2.1.1, the dynamics for the new variables is obtained
from (2.24) by substitution v — v(g, p). We have

6.1‘1 = Ua(Qs p), (2.29)
]\_/I 3vb - I_( 1\_4 av ¢
ab|v(61s17) apcpf = a|v(q,p) - ”biv(q,p) aq"v (g,p)
8L(61, U) azL(q7 U) 82L(q’ U) avb -
) B B “(4:p)- 2.30
9" lutap) ( dg°dve dvadub | dge v'(a.p) (2.30)

The Lh.s. of (2.30) is just p,, as is implied® by Eq. (2.28). Besides, the expression
oL 0pa _
vw)) = ¥ = 0. So the Eqgs. (2.29)

inside the brackets vanishes since it is agf ( P

and (2.30) acquire the form

_ dL(q,v)

q* =v"q.p).  Pa= aq (23D

v(q.p)

Comment. More economic derivation of these equations could be as follows. We

introduce 2n -dimensional space parameterized by ¢“, pp, where ¢“ obeys (2.19),
— 0L(g.9)

while p, accompanies evolution of ¢g* according to the equation p, = b Using
this equation in (2.19), we have the system
_ ) . 232
a aqa ’ a aqa . .

To write this system in the normal form, we resolve the second equation with respect
to ¢¢

_ (g, 9

s q* =v'(p,p), (2.33)
q

a

and substitute this ¢“ into the first equation, arriving at (2.31). Our presentation
above was a somewhat more detailed, this turns out to be useful for the analysis of
singular Lagrangians in Chap. 8.

2Recall that the Jacobi matrices of direct and inverse transformations are opposites: from the

identity z'(z7 (z¥)) = z' we have gf,j. o gzz = §/,. See also Exercise 2.1.2 on page 99.
< z/ Z <
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To substitute v¢(g, p) into the Eq. (2.31), let us compute

F) aL(q, v) dL(q, v) vt
g V@) =" Sub 90
q g lu(gp) U7 lugp) %4
dL(q, v’
Z a0 (2.34)
8q v(q.p) Bq
which implies
dL(g, v d
gqa ) =—, (pr¥"(q.p) — L(g.v(q.p))). (2.35)
q v(g.p) 8q
Let us denote
H(q.p) = ppv"(q.p) — L(q. v(q.p)). (2.36)

where v(gq,p) is given in implicit form by Eq.(2.26). Then the expression (2.35)
reads

dL(g, v)

_ _0H(q.p)
aq° '

== o (2.37)

v(q.p)

The function H(q, p) is called the Hamiltonian of the physical system. To complete
the derivation of the Hamiltonian equations, note the following property of the
Hamiltonian:

v
5 =v%(q,p). (2.38)
v(gp) Pa

oH o’ B dL(g,v)

s =v(q,p) +p» e b

Using these results, the equations of motion (2.31) acquire the Hamiltonian form

.. OH . oH
= . Pa=—. . (2.39)
0pa dq°

and are known as Hamiltonian equations of motion. Note that the first equation is
the Eq. (2.29) written in another notation.

The coordinates p, defined by Eq. (2.26) are called conjugated momenta for ¢
The configuration-velocity space parameterized by the coordinates g“, p, is referred
to as the phase space of the system.

The passage (2.36) from L(q, v) to H(q, p) is known as Legendre transformation.
Its basic properties are presented by Eqgs. (2.38), (2.37). Note its meaning: if the
change of variables v* — p;, (the variables ¢ are considered as parameters) is “‘gen-
erated” by the function L(v) according to Eq.(2.26), p, = L, then the Legendre

ove
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transformation gives the generating function H of the inverse transformation (2.27),
ve = 3815 . See also Exercise 5 below.

To sum up, in this section we have demonstrated that for the case of a nonsingular
system, the Lagrangian equations of motion (2.19) for the configuration space
variables ¢“ are equivalent to the Hamiltonian equations (2.39) for independent
phase-space variables g, p,. According to our procedure, the Hamiltonian formu-
lation of mechanics is the first order form of the Lagrangian formulation, further
rewritten using the special coordinates g“, p;, of the configuration-velocity space.
Schematically we write

q“ — (¢“,v") < (g*. ). (2.40)

Exercises

1. Check that the function v“(q,p) defined by (2.26) obeys the equation
a”;(”“’) = M"(q, v)‘ . where M is the inverse matrix for M.
v(g

Pe )
: : : o __ _ ygab 92L
2. Derive the identity o = M 0 |y )
3. Work out the Lagrangian equations (2.23) from the Hamiltonian

ones (2.39) and (2.36).

4. Confirm that all the results of this section remain true for the time-
dependent Lagrangian L(q, ¢, 7).

5. Legendre transformation. Check the following properties.

(a) Let the vector function p,(v?) is generated by L(v®), that is p, = L,

and v%(p®) is inverse function of p,(v?). Then its generating function
is ppv” (p) — L(v(p)).

(b) Observe that for a one-dimensional case the Legendre transformation
gives a simple formula for the indefinite integral of the inverse
function.

(c) If L depends on the parameters ¢°, L(¢%, v?), then derivatives of the

generating functions with respect to ¢* are the same, .- =

, 9 [y,
g (p;,v” — L).

2.1.3 Short Prescription for Hamiltonization Procedure,
Physical Interpretation of Hamiltonian

The passage from a Lagrangian to a Hamiltonian description of a system is
referred to as the Hamiltonization procedure. Note that the resulting Hamiltonian
equations (2.39) do not contain the velocities v. Then we expect the existence of a
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formal recipe for the Hamiltonization procedure that, in particular, does not mention
the velocities. Let

S = /dtL(q“,é]“), (2.41)

be the Lagrangian action of some nonsingular system. Inspection of the previous
section allows us to formulate the recipe as follows.

(1) Write the conjugated momenta for the variables g* according to the equations
(see Eq.(2.26))

_ iLG.4)

2.42
e (2.42)

a

(2) Resolve the equations algebraically in relation to ¢*: ¢* = v*(g, p), and find the
Hamiltonian (see Eq. (2.36))

H(g.p) = (poi’ — 1(a. D). (2.43)

i=vqp)
(3) Write the Hamiltonian equations (2.39).

According to the previous section, the resulting equations are equivalent to the
Lagrangian equations of motion for the action (2.41).

The function H(g, p) turns out to be a basic object of Hamiltonian formalism. To
reveal the physical interpretation of the Hamiltonian, let us consider a particle in the
presence of a potential U(x). The corresponding action is

S = / dt Bm(;c")2 — U(x“)i| . (2.44)

To construct the Hamiltonian formulation, we have the momenta p, = mx“. This
implies x* = l}lpa, and leads to the Hamiltonian H(x,p) = 2;1 PH?* + U®).
Making the inverse change, we obtain the position-velocity function: E(x,x) =
Hx,p)|p=pi = ém()'c")2 + U(x*) which represents the total energy of the particle.
The reasoning works equally for a system of particles. Thus the Hamiltonian of
nonsingular Lagrangian theory in Cartesian coordinates represents the total energy

of a system written in terms of the phase space variables.’

3The case of generalized coordinates will be discussed below; see Exercise 3 on page 161.
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Exercise Bearing in mind the ambiguity presented in the Hamiltonization
procedure (see the discussion just before Eq. (2.26)), let us define momenta
for the model (2.44) according to the rule x* = ylnpa + Aa(x”), where A, (x")
is a given function. Write the equations of motion for x and p and work out
conditions for A, which imply their Hamiltonian form (that is the form (2.39)
with a function H). Write the corresponding Hamiltonian H. Does it have an
interpretation as the energy of the particle? Derive the Lagrangian equations
from the Hamiltonian ones.

2.1.4 Inverse Problem: From Hamiltonian to Lagrangian
Formulation

Let H(gq,p) be the Hamiltonian of some non-singular Lagrangian system. The
problem is to restore the corresponding Lagrangian, that is, to construct a function
L(q, g) which would lead to the given H(g, p) after the Hamiltonization procedure.
For this purpose we have the phase-space expression (2.36), which determines the
desired L as a function of ¢, p: L(g,v(q,p)) = p.,v* — H(q,p). According to
Sect.2.1.2, phase space and configuration-velocity space quantities are related by
the change of variables (2.26) and (2.27). Then L, as a function of g, v, is obtained
by making this change in the previous expression

L(g.v) = (pav® —H(q.p))| (2.45)

p(gv)
To find the transition functions p(g, v), it is sufficient to recall Eq. (2.38), which
determines the inverse functions: v¢(gq, p) = BHBSI‘P ). We resolve the equalities v =

3%%;,; ) with respect to p: p, = p4(g, v), which gives the desired transition functions.

The resulting formal prescription can be formulated without mentioning the
velocities: starting from a given H(q,p), solve the part of Hamiltonian equa-
tions §* aH(””’) 0 with respect to p: p = p(q,q). Then L(q,q) =

[Paq - H(C] p)]|p(q Q)

2.2 Poisson Bracket and Symplectic Matrix

Here we introduce standard notation and conventions used to deal with Hamiltonian
equations. Let {A(q, p), B(q,p), - . .} be a set of phase-space functions.
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Definition 1 The Poisson bracket is an application that with any two phase-space
functions A, B associates a third function denoted {A, B}, according to the rule

0A 0B 0B 0A

A,B} = — . 2.46
{A. B} 87 Ipa  0q° Opa (2.46)
The definition implies the following properties of the Poisson bracket:
(a) antisymmetry

{A,B} = —{B,A}; (2.47)

(b) linearity with respect to both arguments, as a consequence of (2.47). Linearity
with respect to second argument is

{A, LB+ 1C} = MA, B} + n{A,C}, A, = const; (2.48)
(c) Leibnitz rule
{A,BC} = {A,B}C + B{A.C}; (2.49)
(d) Jacobi identity
{A,{B.C}} + {B.{C.A}} + {C.{A.B}} = 0. (2.50)

Exercise Verify (2.50) by direct computations. Hint: consider separately all
the terms involving, for example, two derivatives of B.

Poisson brackets among phase-space variables are called fundamental brackets.
They are:

g py =8  {g".q"}=0.  {pap}=0. 2.51)
Poisson brackets can be used to rewrite Hamiltonian equations in the form:
qa = {qasH}v Pa = pa- H}. (2.52)

Hence the Poisson bracket of ¢ and p with the Hamiltonian determines their rate
of variation with time. Moreover, the same is true for any phase-space function: if
q“(7), pp(7) is a solution to the Hamiltonian equations, the rate of variation of the
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function A(g(7), p(t)) can be computed as:

, A . 0A 9A
Alg:p) = o 4+ o o=y A4 Hy+ o {paH)
q Pa dq IPa
= {A,H}. (2.53)

Thus {A(g,p),H} = 0 implies that A is a conserved quantity, that is, it has a
fixed value throughout any given solution. As an example, let us apply this result
to compute the rate of variation of a Hamiltonian. We have H= {H,H} = 0, due
to the antisymmetry of the Poisson bracket. Hence the Hamiltonian is the conserved
quantity, which gives a further argument in support of its interpretation as the total
energy.

Below it will be convenient to work with phase-space quantities by using the
following notation. For the phase-space coordinates we use the unique symbol:
(¢%.py) = z', i = 1,2,...,2n, or, equivalently, for a,b = 1,2,...,n we have
7% = ¢ and 7'*? = pj,. Thus Latin indices from the middle of the alphabet run from
1 to 2n. Let us also introduce the 2n x 2n-dimensional symplectic matrix composed
of four n x n blocks

ol = ( 0 1). (2.54)

-10
In more detail, for a,b = 1,2, ...,n one writes ®® = 0, w®"t? = §2_ rtaeb =
—§, @"tentb — (. The symplectic matrix is antisymmetric: @/ = —@/ and
invertible, with the inverse matrix being
0-1
Wi = . 2.55

In this notation the Poisson brackets (2.46) and (2.51) acquire a more compact form

0A . 0B o .
{A,B}= _ o_ {z',7} = ", (2.56)
dz! 07/

while the Hamiltonian equations can be written as

=0, or #={ H). (2.57)

Exercise Verify the Jacobi identity with use of the representation (2.56).
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2.3 General Solution to Hamiltonian Equations

As a first application of Hamiltonian formalism, we find here a general solution to
Hamiltonian equations in terms of power series with respect to t.

We start from the case of time-independent Hamiltonian. Consider the differen-
tial operator defined by the formal series

[e.]

1 1
M =1+hd+ adhd)+...=) (ho)" (2.58)
2 o n!
where h = const, and d = 320‘ This obeys the properties ¢"?zy = zo + h,

e"f(z0) = f(e"z), as can be verified by expansion in power series of both sides
of these equalities. There is a generalization of the last equality for the case of a
function %(zp)

M7y = (eh(zo)a ZO) ) (2.59)

Exercise Verify the validity of Eq.(2.59) up to the third order of power
expansion.

Due to the identity (2.59), the series z(7,20) = e™"@0)3 7 turns out to be a formal
solution to the problem

z=h@,  z0,20) = z0. (2.60)
This observation can be further generalized for the case of several variables: the

K Jy 0
. . : (zp) . .
functions z/(z,z)) = e o 2, obey the problem

P =HE),  Z0,7) = 2. (2.61)

Note that the Hamilton equations 7' = {z/, H} represent a system of this type. So its
solution is

g Heob

) =e 67, (2.62)
In particular, the position of a system as a function of 2n constants is given by

b HY ),

q“(t.q0.po) = e 0 (. (2.63)
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For the Hamiltonian H = g’:ﬂ + U(g) it implies

42, o po) = eIV g (2.64)

We illustrate the formula (2.62) with several examples.

Examples

_ 7

o WE have
m

1. For a free particle with the Hamiltonian H
-
xX(t) = e'mPVxf

1. = 72 . = . =
=(1+th0'V+ (PO'V)(PO'V)‘F---)XS

21m?
1
= xg + Poat,
m

Pa(t) = et”l"BOﬁPOa
1. - 2 . - . =

=147 po-V+ = Po-V)Po-V)+...|poa=poa  (2.65)
m 2!m

2. Fg)r a one-dimensional harmonic oscillator with the Hamiltonian H =
gm + ékx2 we obtain

x(1) = e/ (nPods—hidy)
k2 kP [ kP

m21 P2 3 +x0m2 4! +pom3 510
(2.66)

1
=Xo+po t—Xxo
m

Bringing together even and odd degrees of ¢, it gives the expected result

o : kt2+k2 *
X = X - — ...
0 m2!  m?4l

N 1t kB N e
po m m23!  md5
( 1)n k 2n 00 ( 1)n k 2n+1
_ o _
= t t
x(’; n)! (\/m) + ¢km; 2n + 1)! (\/m)

k Po . \/k
= X( COS t+ sin 1. (2.67)
0 \/m km m

(continued)
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3. Kepler’s problem. As we have seen in Sect. 1.4.2, trajectory of motion in
the central field with potential U = —i is a conic section (1.172). Let us
reproduce this result using the formula (2.62). In the polar coordinates, the

system is described by the action

S = /dt(’;fz n ’;rzéz + O‘). (2.68)
r

Denoting conjugated momenta for r, 6 as p, pg, the Hamiltonian reads

1 1 o
H=_ p’ - . 2.69
om? + 2P (2.69)
It leads to the equations
.1 . 1 , «
r = R = —_ .
m? P= Po™ 2
. 1 .
b= " po =0 (2.70)
mr

The last equation implies pg = [ = const. We are interested in finding
a form of trajectory, r(0), p(6). The relevant equations can be obtained
from (2.70). Considering r = r(1), p = p(t), 0 = 6(1) as parametric

equations of the trajectory, we write ¥/ = % =1 p = ZS = g,
Using (2.70) in these expressions, we obtain the equations
, 7 , 1 am
r=_p, p= - . (2.71)
/ r )

They do not form a Hamiltonian system (see the necessary condi-
tions (2.18)). Introducing the new variable g = i, they read

, 1 am

q :—lp, p/=lq— ;- (2.72)

and form a Hamiltonian system,* with the Hamiltonian being

1 l am
Hr.pp=—_p — ¢+

. 27
2 T2 19 (2.73)

(continued)

“Notice that (2.71) is not a Hamiltonian system. The regular way to construct Hamiltonian
equations for a trajectory will be discussed in Sect. 6.1.2 below.
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Using Eq. (2.62) with this Hamiltonian, we obtain the solution

q(0) = e9(—p,0 3q0+(1<10—"f")3p0))q0

=qo— 11709 - (610 - am) o + IPOQ3 - (6]0 - o:l;n) o

2J20 1773 4!
o0 o
am am g2n Do g2n+1
= — —1 n _ -1 n
p (a0 12)§( " 2y 1’;( a0+ 1)1
- O;T n (qo - 02'2") cos 6 — plo sin 0. (2.74)
Returning to the variable r = {l], we have
2 2 I}
=1+ -1 cos@—po sin 0
amr(6) amry am

=1+4+Acosf —Bsinf

=1+ /A2 +B2( 2B . sine). (2.75)

A 9
COS —
VA2 + B? VA2 + B

Comparing A2+ B? with the Hamiltonian (2.69), we obtain A2+B? = 1+ %4E

aZm’

2 2 . .
where £ = g::: + 2;”2 — f(‘) represents the total energy. Besides, since
0

2 2
A B _ . A _
(«/A2+Bz) +(«/A2+32) = 1, there is an angle 6 such that g = cos 6y,
«/AzBJrB2 = sin . Taking this into account, the equation of the trajectory

acquires the form

P(am)™!

() = i .
1+ \/1 + 20E cos(60 + )

(2.76)

If we take the initial condition in (2.74) to be po = 0, we obtain 6y = 0.
Then (2.76) coincides with our previous result (1.172).
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The problem with time-dependent Hamiltonian

dz'

P (Z HE. 0}, () =2 2.77)

can be reduced to the previous one. We associate with (2.77) the following system:

d

dZ =1, 7(0) = 19,

dy’ i i i i

gs = VLHE (), ()}, ¥(0) =z, (2.78)

with one more variable 7(s). As a consequence, we have a system of the form (2.61)
without manifest dependence on s on the right hand sides. The problems (2.77)
and (2.78) turn out to be equivalent. If z/(z) obeys (2.77), then t(s) = s + 7o,
yi(s) = z'(s + 7o) is a solution of (2.78). If 7(s), y'(s) obey (2.78), then zi(t) =
y'(t — 1) is a solution of (2.77). Using the last equality, we obtain the following
solution to time-dependent problem:

(f—fo)[{zlé,H(sz,to)} a?k + afo} i
% o

Zi(T,ZB) =¢ (2.79)

2.4 Picture of Motion in Phase Space

Here we illustrate some advantages of Hamiltonian formalism as compared with the
Lagrangian one. In particular it will be seen that a general solution to Hamiltonian
equations has useful interpretations in the framework of hydrodynamics and
differential geometry.

General Solution as the Phase-Space Flux Hamiltonian equations (2.57) repre-
sent a normal system of 2n first-order differential equations for 2n variables z'(7).
According to the general theory of differential equations, the theorem of existence
and uniqueness of a solution holds for the case: for given numbers z), locally there is
a unique solution z/(7) of the system, which obeys the initial conditions: z'(0) = z,.
Let us recall also the definition of a general solution: 2n functions of 2n+-1 variables
zi(z, ) are called a general solution of the system (2.57), if: (a) they obey the
system for all ¢'; (b) for given initial conditions zé, there are numbers & such that
2/(0,7) = 2.

Owing to the above-mentioned theorem, a general solution to the normal system
contains all particular solutions (trajectories) of the system, any one of them
appearing after the appropriate choice of the constants c'.
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Fig. 2.1 Trajectory flows on configuration and phase spaces

These results imply a remarkable picture of motion in phase space: trajectories
of the Hamiltonian system (2.57) do not intercept each other. To confirm this, let us
suppose that two trajectories have interception at some point zj. These numbers
can be taken as initial conditions of the problem (2.57), and, according to the
theorem, there is only one trajectory which passes through zj), contrary to the initial
supposition. Thus, trajectories of a Hamiltonian system in phase space form a flow,
similarly to the picture of the motion of a fluid. Moreover, the “fluid” turns out to be
incompressible, see Sect. 4.4.1. Note that it is very different from the corresponding
picture of motion in the configuration space; see Fig. 2.1 on page 109.

Geometric Interpretation of the Symplectic Matrix In contrast to Lagrangian
equations, Hamiltonian ones have a simple interpretation in the framework of
differential geometry. Let us consider the right-hand sides of Hamiltonian equations
as components H' of a vector field in the phase space: H(z¥) = ¥ gg Then the
Hamiltonian equations 7' = H'(z) state that any solution to equations of motion
is a trajectory of this vector field (according to differential geometry, a line is
the trajectory of a given vector field, if vectors of the field are tangent vectors to
the line at each point). Hamiltonian vector field H' also has certain interpretation.

Let H(z) = const represent a surface of constant energy. Then the vector field
H; = gg = (grad H)i|gy— ons 15 normal to the surface at each point. The scalar

product of H' with the vector grad H vanishes: H'(grad H); = 3;Ho/'9;H = 0, that
is, the Hamiltonian vector field H' is tangent to the surface. Hence each trajectory
z!(7) lies on one of the surfaces of constant energy, as should be the case, see Fig. 2.2
on page 110. Now, observe the remarkable role played by the symplectic matrix w?.
There is a whole hyperplane of the vectors, which are normal to grad H at a given
point. It is the matrix o that transforms the normal vector grad H into the tangent
vector to a trajectory!
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—_—

(grad H);=H,

>

H=const

‘ ol — i

Fig. 2.2 Solutions lie on the surfaces of constant energy of the phase space. They are trajectories
of the Hamiltonian vector field, constructed from H: H'(z*) = w¥(grad H);

Note that in terms of the coordinates z' the vector field H' is divergenceless:
9;H' = 0. Now, let us consider the field H! (zk) in the coordinates: z; = zla)lj.

Exercise Write H(z') = ¢ — p? in terms of the variables z;.

The Hamiltonian, as a function of z;, is H(z;)) = H(z'(z)). Since o’ agsz = §%,

the derivative associated with z is " = ;) = ™’ The Hamiltonian vector
i

field H'(z;) in these coordinates is H'(z;) = 9'H(z), and turns out to be curl-free
(conservative): ¥H' — 0'H/ = 0. This result will be explored in Chap. 4.

2.5 Conserved Quantities and the Poisson Bracket

Definition 2 A function Q(z/, 1) is called a conserved charge, if for any solution
z'(t) of the Hamiltonian equations, Q retains a constant value:

0(@z(r), 1) =¢, or der =0 on-shell. (2.80)

Here “on-shell” stands for “for an arbitrary solution to equations of motion”, while
“off-shell” means “for an arbitrary function z'(z)”. Of course ¢ may change when
we pass from one trajectory to another. In the current literature, a conserved charge
is also referred to as integral of motion, first integral, constant of motion, conserved

quantity, conservation law or dynamical invariant—according to taste. Hereafter
we use the term (conserved) charge, as the shortest among these expressions.

There is an important necessary and sufficient condition for a quantity Q to be a
conserved charge.
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Assertion Q(z', T) represents a conserved charge if and only if

00

5 +{Q,H} =0 forall values of ,z'. (2.81)
T

We stress that Q(z', ) should obey this equation as a function of its arguments. For

example, the function Q = x — f’rf obeys (2.81) with H = é’; In particular, the
quantity Q(z’) (without manifest dependence on 7) is conserved if and only if its

bracket with the Hamiltonian vanishes
{Q,H} = 0. (2.82)
Proof For any given function z(t) we write identically

0 _ 90 +{0.H} + aQ(zi —{z',HY)). (2.83)
dr ot az!

The condition (2.81) implies (2.80). Conversely, suppose that (2.80) is true. Given
a phase-space point z)) and a value 7o, let z'(t) represent the trajectory that passes

through z, at the instant 7). Inserting the solution into the Eq.(2.82) and taking

d00(0,20)

T = 19 We obtain ot + {0O(%0,20), H(z0, T0)} = 0 for any given 1o, 2o, as has

been stated.

An example of a charge is the Hamiltonian of a conservative system (see page
103). The search for the charges turns out to be an important task. From a pragmatic
point of view, knowledge of them allows us to simplify (sometimes to solve)
equations of motion of a system (it is sufficient to recall that conservation of angular
momentum allows us to reduce the three-dimensional Kepler problem to a two-
dimensional one). Let us point out also that in quantum theory the concept of a
trajectory does not survive and is replaced by an abstract state space associated with
the system. But the notion of conserved charges survives, and they play a crucial
role in the interpretation of the state space, establishing a correspondence between
the states and physical particles.

A powerful method for obtaining charges for a system which exhibits certain
symmetries is provided by the Noether theorem, which is discussed in Chap. 7. Here
we describe some general properties of a set of charges.

If Q is a charge, an arbitrary function f(Q) will also be a charge. If Oy, 0,
are charges, their product and linear combinations with numerical coefficients also
represent charges. It is convenient to introduce the notion of independent charges
as follows: the charges Q,(z, 1), « = 1,2,..., k < 2n are called functionally
independent, if

904
dz!

rank = k. (2.84)
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This implies that the expressions Q,(z', T) = ¢, can be resolved with respect to k
variables z% among z:

= G"(¢% ¢cq, 7), (2.85)

where z° are the remaining variables of the set 7. As will be discussed in Sect. 7.9,
knowledge of k functionally independent charges immediately reduces the order of
equations of motion by k units: the initial system of 2n equations of second order
can be replaced by an equivalent system of 2n — k equations of second order plus k
equations of first order.

It is a simple matter to confirm the existence of 2n independent charges for a
given dynamical system. Let the functions f*(z, ¢;) represent a general solution to

the Hamiltonian equations. This implies, in particular, that det ; af l # 0. If we write

the equations z' = fi(z, cj) they can be resolved with respect to c: Qi(z', r) = ¢j,
giving 2n functions Q;(z', 7). By construction, substitution of any solution z'(7) into
Q; turns them into constants. Thus Q;(z", 7), represent the conserved charges.

Of course, in practice the problem is the opposite: it is interesting to reveal
as many charges as possible by independent methods, and use them to search
for a general solution to equations of motion. In particular, inverting the previous
discussion, we conclude that the knowledge of 2n independent charges is equivalent
to knowledge of the general solution.

The set of charges is endowed with a remarkable algebraic structure in relation
to the Poisson bracket: the bracket of two charges is also a charge. This is proved by
direct computation

4101001 = | 101,02} + 1101, 03, H =

{aQ‘ o:f {01 " - om0 -ttt 01,03 =

00>

{aan +{Q1,H},Q2} + {Qh + {0, H}; =0. (2.86)
T at

Here the Jacobi identity was used for the transition from the first to the second line.
The last line is equal to zero since Q;, O, obey Eq. (2.81). Thus Q3 = {01, 0>} is
conserved. Of course, it can be identically null or can be functionally dependent on
01, 0. If not, the Poisson bracket can be used to generate new charges from the
known ones.

As an illustration, consider a free-moving particle, with the Hamiltonian H =
2m(p )2,i = 1,2, 3, and the corresponding Hamiltonian equations &' = p' pi=0.
Besides the Hamiltonian, the conserved charges are the momenta p' = ¢/ = const
(as follows from their equat10ns) and angular momentum L' = e‘kafp =d =
const (since on-shell L = 2 ‘/kp p* = 0). H can be omitted, since it forms a
functionally dependent set with p'. As to the remaining six charges, only five of
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them are functionally independent (imagine that all they are independent. Then it

would be possible to solve the equations Q;(z°) = c;, obtaining a general solution

to the equations of motion in the form z' = f%(c;), and arriving at the rather strange

result that the particle cannot move! Of course, their dependence can be verified by

direct computation of the corresponding Jacobian). By choosing p’ and L?, L* as

independent quantities, we find the dynamics of p/, x%, x> in terms of x': p' = ¢/,
2 A _d 3

3 2 . .
x=Gx =0, = z_l o+ ‘Zl . Thus, to find a general solution to the equations

. . ! . .
of motion, we need to solve only one of them, namely &' = 5> Which gives the

: 1 _ !
time-dependent charge x* = J 1+ b.

Exercises

1. Compute the number of functionally independent charges for the case of a
free particle in n-dimensional space, n > 3.
2. Confirm the algebra of Poisson brackets of the charges:

(LU} = €MLY, {L'.p'} = "ph. (2.87)

2.6 Phase Space Transformations and Hamiltonian
Equations

In many interesting cases, the Lagrangian equations can be simplified with use of
the coordinate transformations ¢ — ¢’(g) in the configuration space. In particular,
if the system in question exhibits certain symmetries, they can be taken into account
to search for adapted coordinates. This often leads to separation of variables in
Lagrangian equations. Well-known examples are the use of polar coordinates in the
Kepler problem and the use of center-of-mass variables in the two-body problem.
The Hamiltonian formulation gives supplementary possibilities due to the fact that
a set of transformations in the phase space is much larger, allowing us to mix
position and velocity variables: ¢ — ¢'(q,p), p — p’(g,p). In this section we
find out how Hamiltonian equations transform under the substitution (2.8). Slightly
abusing terminology, the change of dynamical variables is called (time-dependent)
phase-space transformation. It will be seen that an arbitrary transformation spoils
the canonical form of the Hamiltonian equations. So it is reasonable to choose
the subset which preserves their form. Transformations of this subset are called
canonical transformations, they will be discussed in the next section.
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Starting from Hamilton equations

) 0H (%
N L T (2.88)
az/
let us look for solutions of the form
=y ). (2.89)

According to (2.6), equations for 7’ arise after substitution of z in the form (2.89)
into (2.88)

Wk — o - (2.90)
aZ’k aZ] =y () at
To make the substitution 27 , we first compute
% =y @)
HYE) _ 9HE| v o)
31”‘ N aZi =y () 31”‘ . '

. . . . k
Contracting this expression with Ba‘pj
Z

) and using Eq.(2.12), we obtain the
= 4
desired result

OH OH(Y () d¢*
. _ H{Y()) ¢ . (2.92)
027 | —y () oz’ 027 | —y )
Then the Hamiltonian equations for 7 are
dpk 09! 0H ’ dpk
sk (0' Wl 90' W (. 1) 4 @ ’ (2.93)
dz! 0z 07"l 0T Jmyw o)

Hereafter we use simplified notation, similar to that used in differential geometry.
Instead of 7/ = ¢'(z/, ) and z' = ¥'(Z”, T) we write

=7 ), 7=z 1), (2.94)
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Thus the new coordinate (value of function) and the transition function itself are
denoted by the same symbol. The notation for partial derivatives® is

ad ]
. =0, v =0,
az! @ az/
a —_ 9 ij a — 9/
a7/t =9, wjazl,i =9
d
= J,. 2.
9 d (2.95)

Also, we sometimes omit the operation of substitution:
A@) |,y = A2) or AD)]. (2.96)

If the left and right hand sides of an expression have wrong “balance of variables”,
we need to substitute z(z') on the left or on the right hand side. In this notation we
can write, for example

7z, 1), 1) = 7" instead of (2.11). (2.97)
The identities (2.12) can now be written as follows

1k i /i i
92" 0z = sk az’iz—az 9.2’ azi=—az
dz! 07/ P 9z v T 0z

9.2, (2.98)
where, for example, the last equation implies substitution of z/(z, t) on Lh.s. and
in the first term on r.h.s. Equivalently, we can substitute z(Z’, T) in the last term on
r.h.s. Note that in these notations, the rule (2.92) formally looks as the chain rule of
differentiation

0H  0H 07"
= o ALt (2.99)
dz/  dz'* 9z
Equations of motion (2.93) acquire the form
0H(z(7, 1)) 0%z 1)
<1k 'k 1 ’ ’
=4 L+ : (2.100)
*\& 32 81’ 2(Z.7)
where {7/*, 7'} is the Poisson bracket computed with respect to z.
SNote that 0" represents the usual partial derivative with respect to variable z; = z¥wy,, since

¥ (z*wn) = §}.



116 2 Hamiltonian Formalism
2.7 Definition of Canonical Transformation

From comparison of Egs.(2.88) and (2.93) we conclude that phase-space trans-
formation generally does not preserve the initial form of Hamiltonian equations.
It justifies the following

Definition 3 The transformation 7/ = ¢'(z/, 7) is called canonical if for any
Hamiltonian system it preserves the canonical form of the Hamiltonian equations:

OH >t LOH(Z, 7)
L/ = =¥

07/ oz’

I=w any H, some H. (2.101)

It will be seen below that H is related to H according to a simple rule (in
particular, for the case of time-independent canonical transformation, we have
H(Z) = cH(z(Z))), ¢ = const).

Transformations that do not alter a given Hamiltonian system are called canonoid
transformations.

By construction, the composition of canonical transformations is also a canonical
transformation : if z — 7/ = 7(z,7), and 7 — 7" = 7’(Z, t) are canonical, then
z— 7" = 7"(Z(z, 1), T) is a canonical transformation. The set of canonical transfor-
mations form a group, with a product defined by this law of composition. This allows
us to describe the ambiguity present in the Hamiltonization procedure: besides

Eq.(2.26), any change of the form (¢,v) — (¢'(q.p(q,v).7).p'(q.p(q,v),7),
where p(q,v) = gﬁ and ¢'(g,p,7), p'(g,p,7) is a canonical transformation,
transforms Eq. (2.24) into the Hamiltonian system.

From Egs. (2.100) and (2.101) it follows that the canonical transformation 7' (z, )

obeys

{75, '] o HGEE D) + 824, 1)

= oM¥H(Z ), anyH, someH. (2.102)

2(Z\1) 22 7)

From this expression we immediately obtain two useful consequences. First, taking
derivative 82 of Eq. (2.102) we have

a; ({z”‘, z’l}ziz(z,l)) NH(2(Z, 7)) + 3,(0:75(z, T)|or.0)) = 0. (2.103)

Since this is true for any H, the first and second terms vanish separately. In particular,
the derivative of the Poisson bracket must be zero, hence {z*, " }Z’z("’ n = (),

where ¥ does not depend on Z'. So, the substitution of z(z, T) can be omitted, and
we have

(%, 1. = M. (2.104)
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Second, denoting the left hand side of Eq. (2.102) by J'*, it can be written as J* =
0’*H. From this it follows: 9% = 8J". Denoting

Wi = {71, ; (2.105)
2(.7)
we obtain
27T
(W' — (i < j)) 0} H—
(W*o/ — (i < j)) 03H = 0, (2.106)
Since this is true for any H, we write separately
' (8rz/j(z, r)‘ ) —(ioj)=0,
2(Z/.7)
a/aWbd _ a/hWad =0
Wkt — Wk + Wil — wilp* = 0. (2.107)

The Egs. (2.104) and (2.107) hold for an arbitrary canonical transformation and will
be the starting point for our analysis below. In particular, it will be shown in Chap. 4,
that the system (2.107) is equivalent to a simple statement that the symplectic matrix
is invariant under the canonical transformation (disregarding the constant c):

k 1
07" .07

ol = oM,
07! a7/

¢ = const. (2.108)
Equivalently, we can speak on invariance of fundamental Poisson brackets

(7%, "), = c{zk, 2. (2.109)

Transformations with ¢ = 1 are called univalent canonical transformations.

2.8 Generalized Hamiltonian Equations: Example
of Non-canonical Poisson Bracket

Here we discuss the form that the Hamiltonian equations acquire in an arbitrary
parametrization of the configuration-velocity space.

In Sect.2.2 the Hamiltonian equations were written in terms of the Poisson
bracket

d={ H}, {7} =0", (2.110)
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with the numeric matrix w?, see Eq. (2.54). According to Eq. (2.100), after the time-
independent transformation z' — 7" = 7//(z/), the equations read

LOH(Z)

r=w 320 = { H))W, (2.111)

where H(Z') = H(z(Z)), and W is now a z/-dependent matrix

;) 97" 97
wi= % % 2.112)
aZk aZZ 2(2)
This was used in Eq. (2.111) to define a non-canonical Poisson bracket
dA . 0B
{A). B = " wi (2.113)
a7 097/

It can be shown that this obeys all the properties (2.47), (2.48), (2.49), and (2.50) of
the Poisson bracket. Equations of the form (2.111) with the non-canonical Poisson
bracket are known as generalized Hamiltonian equations.

For the latter use, we rewrite (2.111) in the parametrization

(qa’pb) N (q/a — qa’p;} =Dpp + bb(q))’ (2114)

where by,(q) is a given function. Computing the symplectic form we obtain

i 0 1 b, by
WY = , W, = - . 2.115
(_ : Wab) D=0 (2.115)
This implies the fundamental brackets
{q.4"}" = 0. {q". 3" = b P} = Wan(q), (2.116)

The transformed Hamiltonian is

H(q.p') = H(q". P}, — b»())
= (= b)V" = L(g-0)) | sy - (2.117)
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Using these expressions, we obtain manifest form of the generalized Hamiltonian
equations (2.111)

o _ H(q.p)
ap,
. 0H(q,p") b, oby\ ,
= — a4 p — bp). 2.118
a aqa + aqb aqa v (q Py b) ( )

As it should be, the same result appears if we apply the usual Hamiltonization
procedure to the Lagrangian L(g,v) using the change of variables composed
by (2.26) and (2.114)

dL(g.v)
ava

a a

9, v = ¢ ph= + ba(q). (2.119)
For any given function b,(q), the Lagrangian equations obtained from L and the
Eq. (2.118) are equivalent.

Non-canonical brackets (2.113), (2.115), and (2.116) naturally appear in the
description of a system with velocity-dependent interactions. As an example,
consider the Lagrangian action of non-relativistic particle in an electromagnetic field
(see Sect. 1.7.2)

1
§ = / dr (2@“)2 + q“Aa(q)). (2.120)
The standard definition of momentum p, = z?qLa = ¢, + As(q) leads to the
Hamiltonian
1 2
H(C],p) = 2(pa _Aa) s (2121)

which implies the Hamiltonian equations

.a a . 0A
i == A= UG HY b= (= A) = puH) (2.122)

with the canonical Poisson bracket.

Now, using Eq. (2.119) as a definition of momentum: p/, = ¢, + A.(q) + ba(q),
it is natural to take b, = —A,, which leads to the expression p, = §,. Hence
we look for Hamiltonian formulation in the original parametrization (g, v) of the
configuration-velocity space. Eq. (2.117) gives the Hamiltonian

1
H(q.p) = 2(p;)z. (2.123)
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According to Eq. (2.118) the Hamiltonian equations are

¢ =p,=1{q¢".HY, p,=—Fup,={p,. H}. (2.124)

with the non-canonical Poisson bracket

9°.d" =0, {q".p} = 8w Pyph) = Far(@). (2.125)
Here F is a field strength of the vector potential: F,, = g;‘g — 32,’;. It is easy to see
that both (2.122) and (2.124) imply the same Lagrangian equations §* = —F ¢".

Note that the Hamiltonian (2.123) formally coincides with the free-particle one.
In this sense, in the second formulation the interaction is encoded in the non-
canonical Poisson bracket.® Inclusion of the velocity-dependent interactions into
a non-canonical bracket was suggested in [6].

Let us return to the Egs. (2.114) and look for the function b, (g) that preserves the
canonical form of Hamiltonian equations. The Eqs. (2.118) will be in the canonical
form if the last term vanishes.

Exercise Show that (2% — 1) v® = 0 implies 0% — i = 0.
In turn, the latter equation implies that b, = aaja for a function g. So, after the
transformation
dg(q)
q/a — qa’ p; = pa =+ aqa s (2126)

we obtain canonical equations with the Hamiltonian

- ag

H=H|q¢,p,— . 2.127

5The canonical Hamiltonian (2.121) depends on A and leads to the Schrodinger equation with
explicit dependence on A. The generalized Hamiltonian (2.123) does not contain A. It nevertheless
reappears in the course of quantization. In fact, the operators, which reproduce the brackets (2.125),
should contain A: ¢ — §* = ¢°, p, = pu = 33[, + A,. This leads to the same Schrodinger
equation, with explicit dependence on A, and implies interesting consequences. Contrary to the
conclusions of classical mechanics, the vector potential can affect the motion of charged particles,
even in the region where the electric and the magnetic fields vanish. This effect [25, 26], known as
the Aharonov-Bohm effect, has been confirmed by experiment.
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According to the terminology of Sect.2.7, Eq.(2.126) represents an example of a
canonical transformation.

Exercises

1. Show that the symplectic form (2.115) is invertible; find the inverse matrix
W;;. Show that the latter obeys the equation

8[le/,;,~] = akW,;; + 8,-W,~k + ajWk,’ =0. (2.128)

A two-form with this property is called a closed form.

2. Let W¥(z) be an antisymmetric invertible matrix, with the inverse matrix
obeying the Eq. (2.128). Show that the bracket (2.113), constructed from
this W, obeys properties (2.47), (2.48), (2.49), and (2.50).

3. Show that the bracket (2.113) with W given by Eq. (2.112) obeys proper-
ties (2.47), (2.48), (2.49), and (2.50).

4. Starting from the theory L(q, v), find the non-canonical bracket and the
generalized Hamiltonian equations in the initial parametrization (g¢, v?)
of the configuration-velocity space.

2.9 Hamiltonian Action Functional

Similarly to Lagrangian equations, Hamiltonian ones can be obtained from an
appropriately formulated variational problem. The Hamiltonian action functional
is given by

Su = / dr(pagf* = H(g", py. 7)) (2.129)

For the case, the formulation of variational problem is a somewhat different and
is as follows. We look for a curve z/(r) with fixed initial and final positions
q“(t1) = ¢{, q°(r2) = ¢4 and arbitrary momenta, that would give a minimum
for the functional (see Fig. 2.3 on page 122). The variation of the functional is

0H oH
Sy = /dt ((Q“ . . )5Pa - (Pa + 3qa) 8q° + (pafsq")ﬁf) . (2.130)

Owing to the boundary conditions we have: 8g“(f;) = 8¢“(t,) = 0, so the last term
vanishes. Therefore §Sy = 0 implies the Hamiltonian equation (2.39).
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Fig. 2.3 Variational problem for the Hamiltonian action functional

Exercises

1. The addition of a total derivative term to the Lagrangian does not alter
the Lagrangian equations of motion. Is the same true for the Hamiltonian
action? See also the exercise on page 161.

2. Disregarding the boundary term, the Hamiltonian action can be written in
the form

Sy = /dr (;z"wl»jzf —H(zi)) ) (2.131)

Is it possible to formulate a consistent variational problem for this func-
tional, which should lead to the Hamiltonian equations?

2.9.1 Schriodinger Equation as the Hamiltonian System

Hamiltonian action appears in applications more often than one might expect. As
an example, consider the quantum mechanics of a particle subject to the potential
V(t,x'). The Schrodinger equation for the complex wave function \V(t, x')

. H?
hW=—_ AU+ VY, (2.132)
2m
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is equivalent to the system of two equations for two real functions (the real and
imaginary parts of ¥, W = ¢ + ip). We have

hz
h¢=—( A—V)p, (2.133)
2m
h2
hp:( A—V) ?. (2.134)
2m

Recall the notation A = ,, V = aii’ ¢ =0,0= a"gt’xi) . We can treat ¢(t, x') and

Oxi2
p(t,x') as coordinate and conjugated momentum of the field ¢ at the spatial point
x. Then the system has the Hamiltonian form ¢ = {¢,H}, p = {p,H}, with the

Hamiltonian being

1 - o~ - -
H= / &x [VoVe + VpVp] + Vi +p* ). (2.135)
2h 2m

Hence the Egs.(2.133) and (2.134) arise from the variation problem with the
Hamiltonian action obtained according to Eq. (2.129)

Sy = / did®x [pgp—

1 (2 - - .o
o (2m (VoVo + VpVp) + V(p* + pz)):| ) (2.136)

Disregarding the boundary term (in this relation, see Exercise 2 of previous section),
this functional can be rewritten in terms of the wave function W and its complex
conjugate W*

ho B
Sl = /dtd3x [’2 WG )~ VOV - vqj*qf} : (2.137)
m

2.9.2 Lagrangian Action Associated with the Schrodinger
Equation. Analogies Between Quantum Mechanics and
Electrodynamics

Due to the Hamiltonian nature of the Schrodinger equation, it is natural to search for
a Lagrangian formulation of the system (2.133) and (2.134), that is a second-order
equation with respect to the time derivative’ for the real function ¢(, x'). According

7In fact, the problem has already been raised by Schrodinger [27]. Equation (2.139) below was
tested by Schrodinger as a candidate for the wave function equation and then abandoned.
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to Sect.2.1.4, we need to solve (2.133) with respect to p and then to substitute
the result either in Eq.(2.134) or into the Hamiltonian action (2.136). This leads

—1
immediately to the rather formal non-local expression p = # (— ;’; A— V) 0:¢.

So, the Schrodinger system cannot be obtained starting from a (nonsingular)
Lagrangian. Nevertheless, for the case of time-independent potential V(x'), there
is a Lagrangian field theory with the property that any solution to the Schrodinger
equation can be constructed from a solution to this theory. To find it let us look for
solutions of the form

2
w:-(h A—v)¢+ih¢5, (2.138)
2m

where ¢ (z, x') is a real function. Inserting (2.138) into (2.132) we conclude that ¥
will be a solution to the Schrédinger equation if ¢ obeys the equation

- 2 2
h ¢+(2mA—V) ¢ =0, (2.139)

which follows from the Lagrangian action

B s [h.. 1 (R h2
S = /dtdx|:2¢>¢— o (ZmA—V)¢>(2mA—V) ¢] (2.140)

This can be treated as the classical theory of field ¢ on the given external background
V(x'). The action contains Planck’s constant as a parameter. After the rescaling
(t,x, ) — (ht,hxi, Vhe) it appears in the potential only, V(Ax'), and thus plays
the role of a coupling constant of the field ¢ with the background.

The formula (2.138) implies that after introduction of the field ¢ into the for-
malism, its mathematical structure becomes analogous to that of electrodynamics.
The dynamics of the magnetic B and electric E fields is governed by first-order
Maxwell equations with respect to the time variable. Equivalently, we can use the
vector potential A,, which obeys the second-order equations following from the
Lagrangian action discussed in Sect. 1.7.2. A, represents the potential for magnetic
and electric fields, generating them according to B= [%A], E=— i dA. Similarly
to this, the field ¢ turns out to be a potential for the wave function, generating its
real and imaginary parts according to Eq. (2.138), see also Fig. 2.4 on the page 125.

In quantum mechanics the quantity W*W has an interpretation as a probability
density, that is the expression W*(z,x')W(t, x')dx represents the probability of
finding a particle in the volume d>x around the point x' at the instant ¢. According to
the formula (2.138), we write

2 2
U = k2 ()% + [(—;’mA + v) ¢>] = 2hE, (2.141)
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Electrodynamics

Quantum mechanics

There is the Lagrangian formulation

in terms of A,

The same in terms of ¢

A, represents the potential for mag-
netic and electric fields, one has B =
Vx A B=—19,4

U=p+ip=—(A—V)p+ihdho

While the Maxwell equations are
written in terms of E, E, the field
E is the conjugate momenta for A
but not for B

While the Schrodinger equation is
written in terms of ¢, p, the field p
is the conjugate momenta for ¢ but
not for ¢

Maxwell equations form the gener-
alized Hamiltonian system with the
Hamiltonian ~ E2 + B2

Schrodinger equation forms the gen-
eralized Hamiltonian system with

the Hamiltonian ~ p? + ¢?

125

Fig. 2.4 Real field ¢ as the wave function potential

where E = T+ U is the energy density of the field ¢. Equation (2.141) states that the
probability density is the energy density of the wave potential ¢. So the preservation
of probability is just an energy conservation law of the theory (2.140).

It is instructive to compare also the Hamiltonian equations of the theory (2.140)

1> :
2m

with the Schrddinger system. Note the following correspondence among solutions to
these systems: (a) If the functions ¢, p obey Eqgs. (2.133), (2.134), then the functions

¢ =¢, — (;’; A — V) p obey Eq. (2.142). (b) If the functions ¢, p obey Eq. (2.142),

hé = p, (2.142)

then ¢ = — (;’;A - v) ¢, p obey Egs. (2.133) and (2.134). The kernel of the map

(p,p) — (¢,p) is composed of pure imaginary time-independent wave functions
W = iII(x'), where IT is any solution to the stationary Schrodinger equation
(ha-v)m=o.

Any solution to the field theory (2.140) determines a solution to the Schrodinger
equation according to Eq. (2.138). We should ask whether an arbitrary solution to the
Schrodinger equation can be presented in the form (2.138). An affirmative answer
can be obtained as follows.

Let W = ¢ + ip be a solution to the Schrodinger equation. Consider the
expression (2.138) as an equation for determining ¢

1
¢ = 4P (2.143)
hz
( A— v) ¢ =—o, (2.144)
2m



126 2 Hamiltonian Formalism

Here the right-hand sides are known functions. Take Eq.(2.144) at t = 0,
(;’;A — V) ¢ = —(0,x"). The elliptic equation can be solved (at least for the

analytic function ¢(x%)); let us denote the solution as C(x). Then the function

o(t,x) = ;l / drp(z,x') + C(x'), (2.145)
0

obeys the Eqgs. (2.143) and (2.144). They imply the desired result: any solution to the
Shrodinger equation can be presented through the field ¢ and its momenta according
to (2.138). Finally, note that Egs. (2.143) and (2.144) together with Egs. (2.133)
and (2.134) imply that ¢ obeys Eq. (2.139).

Let us finish this section with one more comment. As we have seen, treating a
Schrodinger system as a Hamiltonian one, it is impossible to construct the corre-
sponding Lagrangian formulation owing to the presence of the spatial derivatives
of momentum in the Hamiltonian. To avoid this problem, we can try to treat the
Schrodinger system as a generalized Hamiltonian system. We rewrite (2.133) in the
form

g ={p.HY, p={p.HY, (2.146)

where H' is the “free field” generalized Hamiltonian

1 1
H = /d3x2h(p2+q02) = /d3x2h‘ll*\11, (2.147)

and the non-canonical Poisson bracket is specified by

{p.0) ={p.py =0,

h2

{p(t.x),p(t,y)} = - (2mA - V) 8 x—y). (2.148)

In contrast to H, the Hamiltonian H’ does not contain the spatial derivatives of
momentum.

A non-canonical bracket represents a typical property of singular Lagrangian
theories discussed in Chap. 8. There we obtain a more systematic treatment of the
observations made above: there is a singular Lagrangian theory subject to second
class constraints underlying both the Schrodinger equation and the classical field
theory (2.140).
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2.9.3 Probability as a Conserved Charge via the Noether
Theorem

In quantum mechanics the quantity W*W has an interpretation of a probability
density, that is the expression W*(¢,x')W(z, x')d*x represents the probability of
finding a particle in the volume d>x around the point x' at the instant . Consistency
of the interpretation implies that, for the given solution W(z,x'), the probability
of finding the particle anywhere in space, P() = fR3 d*xW*W must be the same
number at any instant (the number can be further normalized to be 1), or ffi’; = 0 for
any solution. That is, P must be the conserved charge of the theory. In Chap.7 we
will discuss the Noether theorem that gives a deep relationship among the symmetry
properties of an action and the existence of conserved charges for the corresponding
equations of motion. Here we obtain this relationship for a particular example
of the Schrodinger equation, showing that the preservation of probability can be
considered as a consequence of a symmetry presented in the functional (2.137).
Given the number 6, let us make the following substitution

U — e, (2.149)

in the expression (2.137). Since this involves only products of a wave function with
its complex conjugate, W* W, the functional does not change

Sy [ W] — §},[W] = 0. (2.150)

According to Sect. 1.4.2, the functional is invariant under (2.149). The symmetry

transformation has a simple geometric interpretation as a rotation through the angle
0 of a two-dimensional vector space spanned by (¢, p).

What are the consequences of the invariance? Take an expansion of ¢/ W in the

power series at § = 0, keeping only a linear term, ¢? W = W 4 §W, where §¥ =
iV6. Then Eq. (2.150) implies (confirm that!)

That is variation of the functional vanishes as well. On other hand the variation can
be presented through the equations of motion as in (1.190), for the case

N
88y, = /dtd3x [(ih‘l’ +, AV — V\I/) SU* + (c.c)5 W+
m
if —h?
5 3, (U*6W — §W* W) + 5 3 (8U* 9, W + a»p*sm} =0, (2.152)
m

where (c.c.) stands for a complex conjugation of the previous bracket. Supposing ¥
obeys the Schrodinger equation, the first and the second terms vanish, and (omitting
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the factor —#) we conclude that

9J + 9:.J' =0, (2.153)
where
. —ih . -
J=wvrw,  J= 2l (W VW — VO D). (2.154)
m

Hence invariance of the action implies the continuity equation (2.153) that holds on
solutions to the Schrodinger equation. It is further used to construct the conserved
charge P integrating the quantity J

P= / d’xJ] = / d*xU* 0. (2.155)
The total probability is preserved as a consequence of the continuity equation

dp . o
= / &xd,J = — / &xd,J = / Jds = 0. (2.156)
d[ ]R3 ]R3 3]R3

The third equality is due to Gauss’s theorem while the last one follows from the
standard supposition that W vanishes in spatial infinity (a particle cannot escape to
infinity during a finite time interval).

Exercises

1. Confirm the preservation of probability, ‘flf = 0, by direct computation
with use of the Schrodinger equation.
2. To make the transformation (2.149) in the Hamiltonian action (2.136)

we note that ¥/ = %W implies ¢’ = ¢@cosf — psinf, p' =
psinf + pcosf, then p'¢) = pg + [,(¢? — p?)sin26 — pysin® 0],
or, in linear order, (pp) = g(q)z — p?[. Then the transformed

and the initial actions differ on the total derivative term, S[e”¥] —
S[w] = [}(@*—p?)sin20 — ppsin> 6]’ According to Eq.(1.159), the
action (2.136) is invariant under (2.149).

Obtain the charge P using the Hamiltonian action functional (2.136).
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2.9.4 First-Order Action Functional, Routhian and All That

Here we describe a very elegant Hamiltonization recipe [10, 28] based on manipu-
lations with the Lagrangian action. Let

S = / dtL(¢", §%). (2.157)

be a Lagrangian action of a non-singular system. Let us introduce an extended phase
space parameterized by independent coordinates g, p,, v*. With the action (2.157),
we associate the following first-order action on the extended space

S = /dr [L(g“, v*) + pa(q® — v)]. (2.158)
This implies the equations of motion

F=v pe=HEV o, OHaY) (2.159)
aqa ava

The last equation determines the conjugate momenta (see (2.26)), while the first
two equations coincide with the first-order equations of motion for the initial
action (2.157), see Eq.(2.31). So the action (2.158) represents an equivalent
formulation for the theory (2.157). In this formulation, equations for canonical
momenta (2.26) appear as part of the equations of motion. The remainder of the
Hamiltonization recipe consists of using the third equation to expel v* from the
first two equations. The corresponding computations coincide with those made in
Sect. 2.1.2, starting from Eq. (2.31), and give the Hamiltonian equations (2.39).

We finish this section with a comment on the formal relationship between the
different actions. Let us take the first order action as a basic object. The Lagrangian
action can be obtained from S; by using the first equation from (2.159).

Solving the last equation from (2.159), v = v(q, p), and substituting the result
into Sy, we obtain the Hamiltonian action, f pq—H.

We can also substitute p, of the last equation from (2.159) into S; obtaining the
following action in v, p space

aL(q,v) .
S, = /dr [L(q“,v“) n ;q V) g — v“):|. (2.160)
v(l
The corresponding equations of motion are
38y aL d oL PL .,
- — — =0, 2.161
S0 = age  dvdve T agappr @~ V) (2.161)
88, 9’L
G —v") =0. (2.162)

Sve  Quadub
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For non-degenerate theory, (2.162) implies ¢” — v? = 0, then (2.163) is just the
Lagrangian equation of the theory. Hence the action S, can also be used to analyze
the system.

Sometimes it is convenient to work with variational the problem consisting of
second-order action for one part of variables and second-order action for another
part. The combined action functional is called Routhian. Starting from a second-
order action, the is Routhian obtained by Hamiltonization of a part of variables. For
example, for the two-dimensional problem

1., 1.
S=/>ﬁ+2f—U@w, (2.163)

let us introduce momentum for x only, p = gﬁ = x,thenH = px—L = é p*— é V+U
and the Routhian is

1 1
R:/m—H:/m—fﬂdV—Mw) (2.164)

We look for an extremum of the functional with fixed boundary conditions for
x, y and with an arbitrary p. This gives the Lagrangian equation for y and the
Hamiltonian equations for x and p.

2.10 Hamiltonization of a Theory with Higher-Order
Derivatives

Here we discuss a theory which involves the higher-order derivatives. Inclusion of
the higher derivatives into equations of motion is one of the ways to treat with the
problem of divergences in perturbative quantum gravity theory. If such terms are
added to the Einstein gravity, then the resulting quantum theory is renormalizable
[29]. Detailed discussion of the subject can be found in [30].

2.10.1 First-Order Trick

We start from a particular example of the action

S = /dTL(ql,él,il'l), (2.165)
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where we use the condensed notation ¢; = (¢', 4>, ....q") for the configuration-
space vector. This leads to the equations of motion of the fourth order
oL d (dL d 0L
- .= . | =0. (2.166)
dqy dt \dq; dt dq

. . 9L
We suppose that the theory is nondegenerate, that is det dgadsp # 0.

The simplest way to obtain a Hamiltonian formulation is to apply the first-order
trick of previous section to the ¢;. We introduce the extended configuration space
with the coordinates ¢, s, ¢, and write the action

5 = / 4t L. 1. 5) + ga(Gis — )] 2.167)

= /df [L(q1,q1,5) — G241 — q25] . (2.168)

In contrast to (2.165), this leads to the second-order equations of motion

) oL
Q=5 = (2.169)
S
oL d (0L
- g, = 0. 2.170
dg1  dr (aql) ta (2.170)

Using Eqgs.(2.169) in (2.170) we reproduce the initial higher-order equa-
tions (2.166), hence the two actions are equivalent.

The functional (2.168) represents one more example of a singular action. So,
its Hamiltonian formulation is obtained according to the formalism that will be
discussed in Chap. 8. For the later use, we present the final result for Hamiltonian
equations of the variables g1, 2, p1, P2

. . oL
q1 = —D2, P = 5
0q1
. oL .
G2=-p1— ., . p2= s, (2.171)
ap2

where L = L(q1, —p2,s). Excluding the momenta, the reader can verify that they
imply (2.169) and (2.170).
Let us exclude the variable s from these equations. According to the rank

condition det a;jizaL'qb # 0, the second equation from (2.169), g, = aL(q‘é;p 29) can be

resolved with respect to s, s = s(q1, g2, p2). Substituting the function s(q1, g2, p2)
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into Eq. (2.171), they read

aL oL as

QI = —PpP2, 151 = = — S
dq1|, g 0q1
. aL oL os .
92 = —P1— =-—pP1— + g2 ) P2 = s, (2.172)
apz s apZ apZ

where on the rh.s. we have L = L(q;, —p2,5(q1,q2,p2)). They follow from the
Hamiltonian:

H = —pip> — L(q1, —p2.5(q1, 2. p2)) + q25(q1, g2, p2), (2.173)

with the standard fundamental brackets {g5,pgp} = 0ap8%, @, fp = 1,2 a,b =
1,2,...,n.

2.10.2 Ostrogradsky Method

Consider the Hamiltonization of a theory with an action that depends on time
derivatives up to N-th order. The procedure has been developed by Ostrogradsky
[31]. Consider the action

A o)) N
S=/dtL(q1,q1,q1,...,q1), =G4 . (2.174)

Disregarding a total derivative, variation of the action reads

N N ;
L _ () ;d 0L
8S—/dr §' j (i)é’ql—/dt Z(—l) o |8 (2.175)
i=0 3(]1 i=0 3!11

so the Lagrangian equations are

L d (3L d oL dN1 oL
— - ey . b =0, 2.176
T B A A ny (2.176)
or, equivalently
aL d (oL d [aL d [ oL d [ oL _0
dq1 dt \dg; dr |9 dr agl) dr a(ql\/l)

(2.177)
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Computing derivatives with respect to T we conclude that the equations have the
following structure

(2N) 2
. (2N-1) 0°L
Lap qll7 = Ka(qlv qi,..., q1 )7 Ly = w W . (2178)
04704y

Hence the Lagrangian with N-th order derivatives implies 2N-th order equations.
The theory is called non degenerate if

detL,, # 0. (2.179)

In this case the equations can be written in the normal form, with higher derivatives
separated on Lh.s. of the equations. Specification of the position g; as well as its
2N — 1 derivatives at some instant implies unique solution to the Cauchy problem.

To present the system in the Hamiltonian form, we introduce 2N x n dimensional
phase space spanned by the coordinates ¢g;, p;, i = 1,2, ..., N. Let us specify their
dynamics as follows. The variable g; obeys the Eq.(2.176), while other variables
accompany its evolution according the equations

qi = q1 , or qi:qi_l i:2,3,...,N, (2180)
N P
_d™ oL
i = —-1y= , i =1,2,...,N. 2.181
P ;( Pagigor (2.181)

The momenta p; coincide with the expressions inside the brackets in (2.177), so
this equation reads aa(i — p1 = 0. Combining Egs. (2.181) we obtain the following
expressions

IL
pi= g P =12 .N-1 (2.182)

1

- o) .
_ 0L(q1,q1,G1,---,q1) _ OL(q1,q2 ..., qNs GN)

(V) 04
dq qn

PN (2.183)

According to the condition (2.179), the last equation can be resolved algebraically
with respect to gy. Let us denote the solution by sy

QN = SN(Ql,qz,---,!ZN,PN)- (2.184)



134 2 Hamiltonian Formalism

In the result, our equations of motion (2.180), (2.177), (2.182) and (2.184) acquire
the first-order normal form

gi-1 = qi, (2.185)
gn = sn(q1.92, ..., qnN. PN), (2.186)

. oL d
= =—_ (pnsy —L(qi,sn) (2.187)

q1 |5y g1

. oL
pi = —pi-1 +
aqi SN
d

=-— o1 (pi—19i + pnsny — L(gi, sn)) - (2.188)

Herei = 2,3,...,N. At last, introducing the Hamiltonian

H(gi,pj)) = p192 + P2g3 + ... + Pn—19n + Pysy — L(qi, sn)s (2.189)
the system (2.185), (2.186), (2.187), and (2.188) acquires the Hamiltonian form

. OH i o0H
qi = = {qi,H}, pi = — = {pi,H}. (2190)
opi q;

l

The Poisson brackets are defined by

{q}. i} = 8. (2.191)

Equations (2.190) follow from the Hamiltonian action functional

SH = /dT(piqi—H). (2192)

In resume, for an N-th order Lagrangian, the Hamiltonian formulation implies

introducing 2N x n dimensional phase space with the Poisson brackets (2.191).
The working recipe for construction the corresponding Hamiltonian can be

formulated as follows. Define the momenta py according to the Eq.(2.183) and

S ) . N
resolve it with respect to g;. Then the Hamiltonian is

N
(i) L @)
H(gi.p) =Y _piqi —L(g1.q1. 41, ... q1). (2.193)

i=1

where one substitutes g;+ instead of 1(1?, i=1,2,...,N—1,and sy of Eq.(2.184)

. )
instead of ¢; .
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In conclusion, we point out that Eqs. (2.185), (2.186) can not be resolved with
respect to the momenta, that is the Ostrogradsky equations (2.190) can not be
obtained from a Lagrangian (without higher derivatives). To avoid the difficulty,
one needs to make an appropriate canonical transformation. For instance, for the
case of the Lagrangian L(q,q1,q;) it is sufficient to make the transformation
q» — —Dp2, P2 — q». After that, the Hamiltonian (2.189) and the Ostrogradsky
equations (2.190) turn out into Eqgs. (2.173) and (2.172).



Chapter 3
Canonical Transformations of Two-Dimensional
Phase Space

Abstract It is common in textbooks on classical mechanics to discuss canonical
transformations on the basis of the integral form of the canonicity conditions and
a theory of integral invariants [1, 12, 14]. We prefer to deduce all the properties
of canonical transformations by direct analysis of the canonicity conditions given
by Egs. (2.104) and (2.107). For convenience, we have made the subject matter
of the next chapter independent from this one, so the reader can omit this and
continue from the next chapter. It is worth noting that time-independent canonical
transformations are an important tool to analyze the structure of a general singular
theory.

It is common in textbooks on classical mechanics to discuss canonical transforma-
tions on the basis of the integral form of the canonicity conditions and a theory
of integral invariants [1, 12, 14]. We prefer to deduce all the properties of canonical
transformations by direct analysis of the canonicity conditions given by Egs. (2.104)
and (2.107). We start the discussion from the case of two-dimensional phase space
7 = (g,p), where all the basic properties of canonical transformations can be
obtained by elementary calculations. For convenience, we have made the subject
matter of the next chapter independent from this one, so the reader can omit this and
continue from the next chapter.

3.1 Time-Independent Canonical Transformations

3.1.1 Time-Independent Canonical Transformations and
Symplectic Matrix

It is worth noting that time-independent canonical transformations are an important
tool to analyze the structure of a general singular theory.

Discarding the dependence on 7 in Eq. (2.94) we arrive at the time-independent!
coordinate transformation 7' = 7(7) or, ¢ = ¢/(¢,p),p’ = p'(¢q,p). In terms of

'Sometimes these are called contact transformations.
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the new coordinates, the Hamiltonian equations acquire the form (see (2.100))

: 0H (2('))
Z/k — {Z/k,Z/l}ZL(Z/) 81’1 N (3.1)
while the definition of canonical transformation (2.101) implies (see (2.102))
OH (z(7 0H (7 .
(7'} (@) _ X! @ ), any H, some H. (3.2)

2(Z) 97! 97!

As the first basic result, we show that the group of canonical transformations
can be identified with a group of coordinate transformations, leaving invariant
(disregarding the multiplicative constant) the symplectic matrix w¥. More exactly,
one has:

Assertion Transformation 7/ = 7"/(/) is canonical if and only if

az/k “az/l
Y =co", or {57}, =co, ¢ = const. (3.3)

07 07

Proof Let the transformation be canonical, hence it obeys the system (3.2). In more
detail, one has two equations

OH 0H OH oH

Bp/ = ap/,_ {qup/}| Bq/ = _aq/. (3.4)

{d.p}
Computing the derivative of the first (second) equation with respect to ¢’ (p')
correspondingly, and adding the resulting expressions, one obtains

, LnOH @, OH
A ({q'.p'}) o " o ({d".p"}) Bq,—O- 3.5)

Since this is true for any H, one concludes ag,{q’,p’}| =0, 32, {¢’,p'}| = 0, which
in turn implies {¢’, p’} = ¢ = const. The remaining Poisson brackets are {¢’, ¢’} =
0,{p’.p’t} = 0. Combining the brackets, one has the desired result: {z*,7"}, =
co*!. Besides, substitution of Eq.(3.3) into Eq.(3.2) gives a relationship between

the original and the transformed Hamiltonians
H(Z) = cH(z(?)). (3.6)

The inverse affirmation is evident: Eq. (3.3) implies (3.2) with H given by Eq. (3.6).

Comments 1. Equation (3.3) can be rewritten in an equivalent form

o7 w07
aZ/] o =C a)l azk wlja (37)
2z

and shows how an inverse of the matrix d;z" can be computed.
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2. Let us define a Poisson bracket in relation to 7’ variables as follows: {z%, 77}, =
wY. For the case of univalent canonical transformation (c=1), Eq.(3.3) can be
written as

{(Z'(2). 2" (@)}, = 4", "} (3.8)

In accordance with this, for any two phase-space functions one obtains

{A@), B(2)}:.) = {AG()). B(z(2))}2 - (3.9)

These expressions mean that univalent canonical transformation and computation of
the Poisson bracket are commuting operations. For this reason, Egs. (3.8) and (3.9)
are sometimes referred to as a property of invariance of the Poisson bracket under
univalent canonical transformation.

3.1.2 Generating Function

Letg — ¢ = ¢'(q.p).p — p’ = p'(q, p) be canonical transformation. Suppose that
the second equation can be resolved with respect to p: p’ = p’(¢.p) = p = p(q.p)).
Transformations with this property are called free canonical transformations. Using
the latter equation, one can represent the variables ¢, p in terms of ¢, p’:

4 =4'(q.pq.p)=4q.p). p=pp) (3.10)

By construction, these expressions can in turn be solved with respect to ¢’, p’. So,
one can deal with a canonical transformation in the form (3.10), where ¢, p’ are
considered as independent variables, instead of its original form, with ¢, p being
independent. The identities (2.98) acquire the form

aq'(q.p")

Iq(q".p') _ 1
dq ’

aq’

q'(q.p")

9q'(q.p) _ _9q(q.p)
/ ap/

dq(q’.p")

9 . @3.11)

q'(q.p") p

In this section we demonstrate that there is a simple way to construct a free canonical
transformation starting from any given function S(g, p’), see Eq. (3.15) below.
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Assertion For a given transformation 77 — z(z), the following conditions are
equivalent:

(a) the transformation is canonical:

1

(7,7 = o, ¢ = const, (3.12)

(b) there is a function F(q’, p’) such that

dq , OF dq oF
— = , = , 3.13
P aq’ p aq’ P ap’  dp’ ( )

where g = 4(q'.p"). p = p(q'.p").
Proof Let the transformation be canonical. The system (3.12) contains only one

nontrivial equation: {g,p}, = ¢!, or 2 % _ 9 % — =1 which can otherwise

aq o' ~ dp’ oq
be rewritten as
ad dq , ad dq
c — — C =0. 3.14
3p’(p3q’ p) 3q’(p317’ (19
This means that a vector field with the components Fi(¢,p’) = «cp ;’;’, —

p . Fy(q.p) = cp 331?’ is curl-free, d;F, — d,F; = 0. Then there is the potential
F(q', p’) which obeys Eq. (3.13). The inverse affirmation is also true: differentiating

Eq. (3.13) with respect to ¢’ and p’ and adding the resulting expressions, one obtains

{g.p}y =c".

Assertion Let 77 — 7(z) be a free canonical transformation, hence it can be
. . . 2
presented in the form (3.10). There is a function S(g, p’) such that 8282 , #0,and

as as
q@q.r)=,,. cp@p)= . (3.15)
ap dq

The function S is called the generating function of the canonical transformation.

Proof The following function

S(q.p") = F(q'(q.p).P) + P'd'(q.7)) (3.16)

obeys the desired conditions, as can be demonstrated by direct computations with
use of Egs. (3.13) and (3.11). Notice that S is defined on (g, p) space.

Thus we have seen that with a given canonical transformation one can associate
the corresponding generating function. It is natural to ask whether a given function
S(gq, p’) defines a canonical transformation. This seems to be true. In particular, the
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Assertion above can be inverted in the following sense:

2 .
agaf;’ # 0. Let us solve the algebraic

equations ¢’ = cp with respect to g, p (one solves the first
equation for ¢ and substitutes the result into the second one). Then the solution

Assertion Let S(g,p’) be a function with
a8(q.p") — 08(qp)
a0 = 9

_ 38

g=q(q.p). p= 3 =p(q.p). (3.17)
9lq(q »)

is the free canonical transformation.

Proof Itis sufficient to demonstrate that {g, p}» = ¢~ !; see Eq.(3.12). Let us denote

- 35%{[1},/[/) = G(¢', q,p’). From the identity G(¢’, q(¢', p’),p’) = 0, one finds the
consequences
d 1 d S
7T- - (3.18)
aq’ So’ ap’ Sop'
where it was denoted S,, = ngj o and so on. Further, the last equation
q(q'
from (3.17) implies
0 0 S
(. 18, 9 _ .~ @
aq’ aq’ Sap
ap 1 dq -1 SaaSp'p'
ap/ = (qu/ + Sqq ap’ = qu/ — qu/ . (319)

These expressions allows one to compute the desired Poisson bracket, with the result

being {g,p}, = ¢ .

Exercise Do this calculation.

3.2 Time-Dependent Canonical Transformations

Here we repeat the analysis of Sect. 3.1 for the case of time-dependent transforma-
tions in two-dimensional phase space. As compared with the previous case, the only
difference in the final results is, in fact, a non-trivial form of a transformed Hamil-
tonian, see Eq.(3.29) below. Owing to this property, the time-dependent canonical
transformations can be used for the simplification of Hamiltonian equations, see
below.
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3.2.1 Canonical Transformations and Symplectic Matrix

For the case of time-dependent transformation ¢ = ¢'(¢,p,7),p’ = p'(¢,p, 1),
the Hamiltonian equations in terms of ¢/, p’ acquire the form (2.100)), while the
definition of canonical transformation (2.101) implies Egs. (2.102), (2.103), (2.104),
(2.105), (2.106), and (2.107). As before, the set of canonical transformations can be
identified with the set of coordinate transformations leaving invariant (disregarding
a constant) the symplectic matrix w¥:

Assertion The transformation 7/ = 7(z”, t) is canonical if and only if:

9 1k ;) 71
AN coX, or (%71, =co, ¢ = const. (3.20)
a7l 07
Proof (A) Let the transformation be canonical, hence it obeys the system (2.102).
Repeating analysis of section (3.1.1) one arrives at the system

ad ad
(g} =0, (4.} =0, (3.21)
dq p
d [ 94 (z a [ dp'(z,
™ (z.7) + O (z.7) —0. (3.22)
dq 0T | ap 0T o
Equation (3.21) implies {¢, p’} = ¢(7), or
dq' op" _ dp" dq
= — . 3.23
c(7) dg dp g dp (3.23)
Equation (3.22) states that a vector field with the components N; = %f; ' [, Ny = — %‘{ |
is curl-free, so there is the potential N(¢, p’, )
op’ ON dg  ON
P I L , (3.24)
at aq’ at ap’

Let us demonstrate that this implies j;

Eq. (3.24) one obtains

= 0, that is, ¢ = const. Differentiating

0%q’ 0°N

0T dZiop

azli azp/ 2N

o7’ 079t~ 971dq

9 Z/i

y 2
3z (329

Therefore the derivative of Eq.(3.23) with respect to t turns out to be zero, as a
consequence of Eq. (3.25).
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(B) Suppose that the transformation 7¥ = 7//(z, t) obeys Eq. (3.20). First, note that
the Assertion on page 140 is true for the present case of time-dependent trans-
formations as well (since in the corresponding proof only partial derivatives
with respect to 7% were used). Equation (3.20) thus implies Eq. (3.13), and
differentiating the latter with respect to T we obtain:

dp g Pq  PFE.1)

“or 97/ dtdze 3799t (3.26)

Second, under condition (3.20), Hamiltonian equations for 7' (2.100) acquire the
form

i ca)” aH(Z(Zly t)) . C(,L)” aZl w 3Zk
© = 0z 3z 9t
L 0H (z(Z, 1)) .0 (OF g
ij ij _
c«w 0z @ 9z/ \ 0t Por ) (3.27)

where Eqs. (2.98) and (3.7) were used in the first line, and Eq. (3.26) was used in
the transition from the first to the second line. Thus condition (3.20) implies the
canonical form of the Hamilton equations

, 0 dg OF
i i / N
7= a)]f}z’f (cH(z(z ,T) CpBr + 31’) , (3.28)

which completes the proof.

Besides, comparing this result with Eq.(2.101), one obtains a relationship
between the original and the transformed Hamiltonians:

Consequence Let z° — 7" = 7//(z, T) be a canonical transformation. Then there is
a function F such that

) dq(Z,v) 4 oF(Z, 1) '

H(Z,7) = cH(z(Z, 7)) —ep(Z. T
Jt Jt

(3.29)
Transformation properties of the Hamiltonian action under canonical transformation
will be discussed in Sect. 4.5.

Comment As compared to the time-independent canonical transformations, the
transformed Hamiltonian now acquires some extra terms. It allows one to formulate
the following problem: find the canonical transformation 7/ = Z7(z,7) that
simplifies the Hamiltonian as much as possible, for example? H = 0. The
desired canonical transformation can be found in some interesting cases by using

2Note that this is not possible in the time-independent case: if H(z) depends essentially on all the
variables, then the same is true for H = H(z(Z)), see Eq. (3.6).
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the Hamilton—Jacobi method; see Sect.4.7 below. In the new coordinates, the
Hamiltonian equations would be trivial: ¥ = 0, and can immediately be solved:
/i = C'. Further, solving the algebraic equations 7" (z, 7) = C' (where the functions
& (zi ,7) are known from the canonical transformation), one obtains a general
solution to the equations of motion in the initial parametrization: ' = z/(z, C).

3.2.2 Generating Function

Assertion Let ¢ — ¢ = ¢'(¢.p.7).p — p' = p'(g.p,t) be free canonical
transformation, hence from these expressions one writes

q =q(q.r(q.r.0).7)=4@pr.1), p=pqgpr.o. (3.30)
Then
(a) there is a function S(q, p’, 7), with a;asp/ # 0, such that
as aS
q@pr. 0=,  cplgp. 0= ; (331
dp dq
(b) the transformed Hamiltonian (3.29) in terms of the variables ¢, p’ acquires the
form
- 35(q.p'. 7)
’ _ ’
HE. Ol o = cH@pl@.p. o)+ 0 (3.32)

Proof (a) The proof is similar to that given for Eq.(3.15), since only partial
derivatives with respect to g, p were used there. (b) To substitute ¢'(g,p’, T) into
Eq. (3.29) one needs two identities. First, from g(¢'(q, p’, T)p’, T) = q it follows:

a /’ /’ a 3 / , /’
q9(q’.p',7) __ % q(q.p’.7) (3.33)
dt 7o) oq’ | dt
Second, from the expression:
0 0F(Z, 1) og OF(Z,t
; F(q(q.p. ). P, 1) = (.() ) aq + E; ) (3.34)
T q g qp0 T T lg@r o
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one finds:
0F (7, 7)
dt q'(q.p'.7)
9q(z, 7) 2\ 94 (q.p'.7)
—cp 3’ +p 9
4 lg@r.o T
a / / /
+8rF(q (g.p,7).p, 1), (3.35)

where Eq. (3.13) was used. Equation (3.32) follows from Eq. (3.29) by using these
equalities as well as the manifest form of S, see Eq. (3.16).

As before, this result can be inverted in the following sense:

Assertion Let S(g,p’, t) be a function with azzi' # 0, for any 7. Let us solve

the algebraic equations ¢’ = BS(%;’,/’T) ,cp = BS(%’Z "9 in relation to q,p. Then the
solution
N
g=4qq.p.v), p=c" 3 =p(d.p". 1), (3.36)
qlg(q p' 1)

is the free canonical transformation.
The proof is the same as before (see page 140), since only partial derivatives with
respect to ¢’, p’ were used there.



Chapter 4
Properties of Canonical Transformations

Abstract As we have seen in Sect.2.7, the canonical form of Hamiltonian
equations is not preserved by general phase-space transformations. Those that
leave the form of the equations unaltered were called canonical transformations. In
this chapter, we discuss their properties for the case of phase space of an arbitrary
dimension.

We start from the demonstration that the equation {z",z7}, = {Z/,7}., which
represents the invariance of the Poisson bracket under a transformation z — 7'(z, 1),
can be rewritten in the following equivalent form: "F/(7') — 0E(7) = 0. This
means that E' are components of a conservative vector field, and therefore there
is a potential E, such that E' = 9"E. Thus, the invariance of the Poisson bracket
is equivalent to the statement, that the transition functions 7/(z, T) can be used
to construct a conservative field. In turn, this allows us to prove the following
two facts. First, canonical transformations are the only ones that leave the Poisson
bracket invariant (up to a constant). This gives a simple rule for checking whether a
given transformation is a canonical one. Second, with any canonical transformation'
can be associated a generating function. Its partial derivatives give the transition
functions of the transformation. The generating function can be obtained from the
above-mentioned potential according to a simple rule. Among other things, it gives
a simple way to construct examples of canonical transformations.

Further, it will be seen that the Hamiltonian has a rather non-trivial transforma-
tion law under time-dependent canonical transformation (it does not transform as
a scalar function). This implies the possibility of looking for the transformation
which trivializes the Hamiltonian function (and thus trivializes the equations of
motion) in the new coordinate system. By this means, the problem of finding a
general solution to Hamiltonian equations can be replaced by the problem of finding
a generating function of the transformation. The generating function obeys the
so-called Hamilton—Jacobi equation, which can be solved in many interesting cases.

IBelow, we discuss only a free canonical transformation. For an arbitrary canonical transformation,
the situation is similar, see [14].
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4.1 Invariance of the Poisson Bracket (Symplectic Matrix)

General phase-space transformation alters a form of the Hamiltonian equations
according to (2.93)

#* = (8z’f‘ w” 8z"l)
a7 07

From this equation we expect that form-invariance may be closely related with the
symmetry properties of the symplectic matrix. In fact, at least for time-independent
transformations, invariance of w: 9;7%w? sz/l = o implies form-invariance of
Hamiltonian equations. We can also speak of an invariance of the Poisson bracket,
since the above equation can also be written as {z’*, 7"}, = {Z*,z'}.; see (2.100).
In this section we establish an exact relationship: the set of transformations, which

preserves the canonical form of Hamiltonian equations, coincides with a set which
leaves the Poisson bracket invariant (up to a constant).

0H(z(z, 1))  0z%

4.1
8Z’l at 2 7) ( )

(1)

Assertion Transformation 77 — 7 = 7/(z, t) is canonical if and only if it obeys:

azlk B azll
o Y 0 = co, or {757}, =co®, ¢ =const. 4.2)
Z z

3Z/k
ozl
the form JoJ” = cw. Taking the determinant of both sides for the case of univalent
canonical transformation, we have

Comment Denoting the Jacobi matrix %, of the transformation as J*;, Eq. (4.2) is of

detJ = £+1, forall zt. “4.3)

Proof

(A) Let the transformation be canonical, hence it obeys the system (2.107), which
we repeat here:

3/i (3;27(2, T)iz(z/,f)) - (l (—)J) = 0’ (44)
Wil — 3wt = 0, @5
Wika)/l _ ijwil + Wilek _ lewik =0. 4.6)

where:

Wi = {27} (4.7

(7)) ”

We need to show that W9 = cw¥.
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Equation (4.4) states that a vector field with the components d,z%| is curl-free.
Therefore it can be presented locally as the divergence of a function N: 9,7%| =
"N (7, ) or, in other words, 3,7* = X N |. Below we will use a derivative of this

97!
expression
PHer) _ PN D) 9" 4.8)
aZlaf az/naz/l ) BZl

Similarly, Eq. (4.5) implies W/ = 29YG' for any fixed /. Since W is antisymmetric,
this equation implies the following restriction on G': 3"G' = —9"'G/ for any j, .
It allows us to rewrite the expression for W in an explicitly antisymmetric form:
Wil = 3G! — 9""G/. The last two equations can be used to show that W does not
depend on 7. Indeed, substitution of the last equation back into (4.5) gives the
expression —3"9"G/ + 979"'G' = "W/ = 0, for any i, j, . Hence W does not
depend on 7’ and can be a function only of 7 : W/ = W¥(z).

Now, contraction of Eq. (4.6) with w;; gives immediately

Wk = c(v)w', (4.9)
where ¢(r) = WD)y = | % @id wy or, equivalently, c(r) =
— n li n 07 a7 2.7) Tk > €q Y
1 az/k i az/l . . . . . . .
n oz @7 %5 @i The derivative of this expression with respect to ¢ gives, by using

Eq.(4.8)

de 2 9% 97"

y

dt  n BIaziw a7 Pl =
2 aZN aZ/n '_az/l
ij
n 0707 | 0z @ 07 (4.10)

This expression vanishes since it is symmetric on 7, [ and antisymmetric on i, j.
Thus the coefficient c in Eq. (4.9) is a constant, which completes the first part of the
proof.

(B) Supposing that 7(z,t) obeys Eq.(4.2), the latter can be rewritten in an
equivalent form

07" 5 02"
= Ccw 9 i Wi
Z<

@.11)
aZl 2(Z.7)

By using Egs.(4.2), (2.98) and (4.11), Hamiltonian equations for the variables
Z (2.100) can be written as

Pk — M 0H(z(7, 7)) N o7 MBZj(z’,r)'

52/ c WL (4.12)
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To confirm that they have the canonical form, it is sufficient to show that the last

term can be written as o afﬁ (...). We need the following:

Lemmal Let 77 — 7' = 7(d, 1) be a phase-space transformation. Then the
following conditions are equivalent:

(a) the symplectic form is invariant

9 1k ) /1
BZ' w? 3Zj =coM, ¢ = const (4.13)
z Z

(b) there is a function E(Z, ) such that

07(Z, 1)

0E(Z, 1)
aZ/l :

by (4.14)

cZ(. T)wj; wyl =2

Proof Suppose (a) is true. By using Eq. (4.11), it can be rewritten in an equivalent
il kl 0

2 — K 9.
form~ (recall that 0 = g’

J n
07 0z x

CBZ;(@;" b = —w". (4.15)

Owing to the antisymmetry of k, [ this can be further rewritten

9z 9" 9d 9" K
= o = 2wk, 4.16
CBzfc i 0z cazj @ 0z, @ (4.16)
or
0 N ad R
0z, (CZ}wj" 9z * ZU) o (cz}wjn 0z, * Z/k) =0 @17

That is, the condition (4.13) of invariance of the Poisson bracket is rewritten as the
conservativity condition of a vector field. This implies:

;oo L 28E Dl oE 4.18)
c?wj, = =2w , .
oy T T Ny a"
or
07" . o0E
c?wjy a7 + wp" =2 e (4.19)

as has been stated.

2The left-hand side of this expression is known as a Lagrange bracket.
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Now suppose that (b) is true. This implies (4.17) and, since the computation can

be inverted, we obtain Eq. (4.15). An equivalent form of this expression is ¢ gj,l]
w* ?é: wyj. Using this expression in Eq. (4.15), we have the desired result (4.13).

To analyze the last term in Eq. (4.12), we need the derivative of Eq. (4.14) with
respect to 7. We obtain:

9 OE 07 3 07’ + cdoo 027
=c ji CT Wji =
7! 9t ar "oz 19797
a7 9d 9 37 a7 o7
T e T \ g, ) T o @iy, =
97 o7 9 .97
_ zcaz’lwﬁf}f + 92! (cz’a)jiat) , (4.20)

or

a2 97 9 (dE ¢, 37
- i = — Zwy 4.21
oo T oy (ac 2° Wiy ) “421)
Using this result in Eq. (4.12), it can be written in the canonical form
0 c, 07 OE(Z, 1)
<tk ki / i ’
F=w 921 (cH(z(z ,T)) — 2z a)/ar + 97 , (4.22)

which completes the proof.

From Egs. (4.17) and (4.18) it follows that one can add to E an arbitrary function
e(7). Note that this does not contribute to the Eq. (4.21).

The result obtained means that the invariance (4.2) of the Poisson bracket can be
taken as a definition for the canonical transformation.

Comparing our result (4.22) with Eq.(2.101), we have an exact relationship
between the original and the transformed Hamiltonians.

Consequence Letz' — 7/ = 7//(z, T) be a canonical transformation. Then there is
a function E (which obeys Eq. (4.14)) such that:

07 0E(Z.7)

H(Z,7) = cH(z(Z, 7)) — ;Ziw[j 9 + 97

(4.23)

Note that for a univalent time-independent canonical transformation the Hamilto-
nian transforms as a scalar function:

H() = Hz()). (4.24)

Hence, if H(z) represents the energy of a system, the same is true for H(Z').
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Exercise Show that transition to polar coordinates on two-dimensional phase
space is not a canonical transformation, but slightly modified polar coordi-
nates

g = ~2PcosS,  p=~/2PsinS§, (4.25)

represent a univalent canonical transformation, {P, S},, = 1.

As an example, let us consider the Shrédinger equation (2.132). We represent the
wave function W = ¢ 4+ ip in terms of the probability density P and the phase S as
follows:

¢+ ip = V/Peh®. (4.26)
This is the canonical transformation of valence ¢ = 24, {P,S},, = 2h. Hence
the Schrodinger system (2.133) and (2.134) acquires the form P = {P,H}ps, S =
{S,H}ps, where:

H = 2hH(¢(P.S).p(P.S))

1 - - /SR
3
= “xP VSV VPVP|. 4.27
/dx (Zm SS+V+8mP2 ) (4.27)
The system reads:
N
P+ V(PVS) =0,
m
R R n* (AP VPVP
S VSVS +V — — =0. 4.28
+ 2m + 4dm ( P 2p?2 ) (4.28)

The Schrodinger system in this representation turns out to be the starting point for a
semiclassical approximation [4] in quantum mechanics as well as forming the basis
of the de Broglie-Bohm interpretation of quantum mechanics [32].

Exercise Obtain the Eqs.(4.28) by direct substitution of (4.26) into the
Schrodinger system (2.133) and (2.134).
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Example Let us consider the transformation ¢ — ¢"* = ¢*, p, = p, = pa+
Ad(q). We have {g%, ¢"*}. = 0, (g% ph}. = 8%, {pl.p)}. = _g/;g + gzg_ This
will be zero for curl-free vector field: A, = 4, then ¢ = ¢°, pl, = p, + 5’2,

. . - aqh ’
represents a canonical transformation.

Exercise Work out an example of a canonical transformation of the form
7 — 7' =7 + Bi(?).

4.2 Infinitesimal Canonical Transformations: Hamiltonian as
a Generator of Evolution

Intuitively, infinitesimal canonical transformation is not very different from the
identity transformation: 7 = 7' + 87, §Z <« 1. Its remarkable property is that it
is generated by some function through the Poisson bracket: §z' = {7/, ®}. As will
be seen below, finite canonical transformations have a similar (but not identical)
structure.

Definition 1 Consider a family of transformations that are linear on the parameter A
7@ A =7+ G (). (4.29)

They are called infinitesimal canonical transformations, if they obey the canonicity
condition (4.2) in linear order on A, that is

(7,7} = 0’ + 0(1?), (4.30)
or, in other words:

aG! b i 9G!

azkw/ +w 52k =0. (4.31)

Example Consider a family of univalent canonical transformations parame-
terized by A, which includes an identity transformation at A = 0

7= 7,0, 77, 0) = 7. (4.32)

(continued)
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Write the Taylor expansion about A = 0. Ignoring all the higher order terms
we have:

7N~ =7+ G ()N, (4.33)

where G' = 0,7(z, )L)| 5o+ This turns out to be an infinitesimal canonical
transformation. For a small value of the parameter, A < 1, the second term
gives a leading contribution to the complete transformation z”.

4.2.1 Generator of Infinitesimal Canonical Transformation

Assertion 7' = 7 + G'(z)A represents an infinitesimal canonical transformation if
and only if there is a function ®(z) such that

G = {7, ®} = 09;0. (4.34)
Accordingly, any infinitesimal canonical transformation has the form
F=7+ {zi, DI, (4.35)

Hence, properties of the infinitesimal canonical transformation are determined by a
unique function ®(z). It is called a generator of infinitesimal transformation.

Proof Supposing that (4.29) represents an infinitesimal canonical transformation,
then Eq.(4.31) is satisfied. Contracting it with w,,;wj, we obtain the equation
0, (Wi G*) — 0,y (0, G*) = 0. This states that ,,xG* are components of the curl-
free vector field. Therefore there is a potential, 0 G* = 0,,D, which proves the
statement (4.34).

Conversely, consider a transformation of the form:
d =7 =7+ O, (4.36)
determined by the function ®. Using the Jacobi identity we obtain:

7.7} =o' + (£ {7, @)} + ({Z, @}, 7, DA + 0(1%)
= ol + ({{, 7}, D}A + 0(A?) = 0 + O(A?). (4.37)

Coordinate transformations z — 7’ can be used to define a map on the space of
phase functions A(z). By definition, the function A is mapped into A’ according to
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the rule:
z—7 = A=A, where A(7)=A(~2). (4.38)

That is, a value of the transformed function A" at 7’ coincides with the value of A at
the point z. The difference

8iA(z) = A'(2) — A(2), (4.39)

is called the variation in form of the function. For the case of an infinitesimal
canonical transformation, the variation in form is governed by a generator:

8;A(z) = {@,A}A + O(A). (4.40)

To confirm this, let us substitute Eq.(4.43) into the definition (4.38): A'(z +
{z', ®}A + O(A?)) = A(z), or

A'(2) + %A (2){z, PIA + O(A?) = A(z), (4.41)
which implies

8AG) = {®.A'(D)}A + O(A?) =
(@,4@) — 0)iA +007) = {®, 414 + 0(X%). (4.42)

In the passage from the first to the second line we have used Eq. (4.41) once again.

From Infinitesimal to Finite Canonical Transformations It is worth noting that
an infinitesimal canonical transformation is generally not a canonical transforma-
tion. But it can be used to construct a canonical transformation in terms of a power
series of A.

Assertion Given an infinitesimal canonical transformation 7 = 7/ + G'A = 7/ +
{7, ®(2)} A, the formula:

. k J .
¢ =MD g (4.43)

represents a canonical transformation.

Proof We need to confirm that 7/ obeys Eq.(4.2). Remember that 7 obeys the
equation (see Sect.2.3):

a Z/i

_ ik
2 =G@. (4.44)
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As a consequence, the function W¥(1) = {7, 7/} obeys the problem:

WY

2 = (Wi oy,  Wi0) = (4.45)

Note that the symplectic matrix w? solves the problem. Since the problem has a
unique solution, we conclude that W/ = ¥, that is, {7, 7/} = w¥.

Evolution of a System as a Canonical Transformation: Hamiltonian as a
Generator of Evolution According to Sect. 2.3, a general solution to Hamiltonian
equations of a system with the Hamiltonian H(z) has the form

d
ki

t{zf.H(z0)}
O ad i (4.46)

() =e

This formula can be considered as a family of coordinate transformations param-
eterized by t that relates the initial zp and the final z positions of the system.
Comparing (4.46) with (4.43), we conclude that the general solution represents an
example of canonical transformation with the generator being the Hamiltonian of a
system. For a small value of t, an approximate solution is given by the linear term
of the power expansion

220, 1) ~ 7 + {2, H(zo0)} . (4.47)

and turns out to be an infinitesimal canonical transformation. We conclude that
the evolution of a dynamical system is a canonical transformation. Moreover, the
Hamiltonian turns out to be the generator of the transformation.

4.3 Generating Function of Canonical Transformation

In this section we discuss a fairly large class of transformations called free
canonical transformations. They have the remarkable property of being generated
by phase-space functions (transition functions of the free transformation appear as
partial derivatives of the generating function, see Eq. (4.57) below). Intuitively, this
property can be expected from the observation that any canonical transformation is
related to a conservative vector field, see Egs. (4.17), (4.18) and (4.19). The potential
of the field represents, in fact, the generating function.
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4.3.1 Free Canonical Transformation and Its Function
Fq,p',7)

Given the canonical transformation ¢* — ¢’* = ¢"(q,p, t), pa — P, = p.(q,p, )
suppose that equations for ¢’ can be resolved with respect to p: ¢ = ¢"*(¢q,p, ) =
Pa = pal(q.q', 7). Transformations with this property are called free canonical
transformations. Using this last equation, we can represent the variables p, p’ in
terms of g, ¢':

Pa=1a(q.4.7), p,=p,q.q9.7)=p,(q.p(q.q 1) 7). (4.48)

By construction, these expressions can in turn be resolved with respect to ¢/, p’. So,
we can work with the canonical transformation in the form (4.48), where ¢, ¢’ are
considered as independent variables, instead of its original form, with ¢, p being
independent.

For later use we now rewrite the potential E(Z, 7), defined by Eq. (4.14), in an
equivalent, but less symmetric form. Namely, let us write parts of the system (4.14)
for ¢’ and p’ separately

opp 0q" 0E(Z, 1)
b !
- + - - 2 )
cq aq/a Po aq/a pﬂ aq/a
opy dqb E(Z, 1)
b la 5
Do, T ey, T T o e
We immediately note that for the function:
FE.0) = EC.0) + S om0 — ") (4.50
) = 5 2q <, pb <, 2q pbv .
the equations acquire more simple form:
a¢® , OF(.1) g OF(Z,1)
—p = , = ) 4.51
Pb g ra P d'a Py oy (4.51)

Hence the Lemma on page 150 can be formulated in terms of F: the invariance of
the symplectic form (4.13) under a transformation is equivalent to the existence of
the potential F, which obeys Eq. (4.51).

As we have seen in the previous section, a general solution to the Hamiltonian
equations can be identified with a canonical transformation relating the initial and
final positions of a system. The generating function F of the transformation turns
out to be the Hamiltonian action; see Sect. 4.8.
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Exercise Show that under a canonical transformation, the original and the
transformed Hamiltonians are related as follows:

H(Z.1) = cH(z(Z. 1)) — cpa(@. 7) 9q ng’ v + aF(BZT’ T). (4.52)

4.3.2 Generating Function S(q,q’, T)

The equalities (4.51) and (4.52) acquire a remarkably simple form in the variables
g, q'. Let us introduce the generating function S(q, ¢', t) according to the rule:

S(g.q'.1) = F(q'.P'(q.4 . 7). 7). (4.53)

Using the identities 7, o 2(””;/’” =8, dq* | o /%1 = 0, which follow from
ap), dq g ap), | oq

q‘(qd',p'(q.q',7),7) = ¢ and Eq. (4.51), we can calculate:

S OF(Z.7) ap),
dq° Ip ;’ r'(q.9'.7) dq°
dq° | dp;,
= c = CPa,
AR
S IF(Z,7) 0F(Z,v)| apj,
aq/a - 3q/a 3p;] 3q/a
og* , dq° | ap), ,
= ¢p, — . =—p. 4.54
Pe Pyt cp op, | dge Pa (4.54)

The Hamiltonian (4.52) in the variables g, ¢’ acquires the form:

I:I(q/v p/’ T) |[7(q.,61’,1') = CH(q’ p(q’ q/v T)’ T)

dq°(q’.p'. 1)
- Cpa(q/s pls T)|P/

oF /, /,
(C] p T)
ot

P 31’

/

)4
= CH(C], p(qs q/s T)s T)_
, dq°(¢'.p'(q.4'.v).t)  3q°| p),
cpa(q.q', ) - 9

0t ap},
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IF(q'.p'(q.q.7).T) _ OF(q".p'.7)| dpj,

* 0t ap), 0t

as
= cH(q.p(q.q’. 7). 7) + oy (4.55)

Thus we have obtained the following

Assertion Let ¢° — ¢“ = ¢'“(q,p, 1), pa = P, = P, (g.p, ) be a free canonical
transformation. From these expressions we write:

Pa=ra(q.4.7).  p,=p,(q.49.v)=p,(q.p(q.q 1) 7). (4.56)

Then

. . . . 2
(a) there is a generating function, S(q, q', t), with det aqiaf/b # 0, such that:

as as

, =% 4.57
aqa Pa aq/a ( )

CPa =

If the function F(7/,7) (4.50) is known, the generating function can be
constructed as follows

S(q.q'.7) = F(q'.p'(q.4'. 7). 7). (4.58)

(b) the transformed Hamiltonian (4.52), presented as a function of g, ¢’, has the
form

~ aS bl /’
H(Z, 1) =cH(q,p(q.4',7),7) + (qaf T). (4.59)

P'(q.q'.7)

This result can be inverted, giving a simple recipe for constructing a free
canonical transformation:

Assertion Let S(¢“, ¢, T) be some function with det aqzzaz » # 0, for any t. Let us
solve the algebraic equations cp, = ;qs,, P =— 3‘215,1 with respect to g, p. Then the
solution
1 aS
Pa= o, =pd.p. 0, ¢ =4q"q.p.0), (4.60)
€ 99" lgq p'v)

is a free canonical transformation of valence c.
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Proof We mneed to show that the functions 7(Z,t) satisfy the relationship
;’ZZ,’,C K gj, = ¢~ 'w¥. Let us consider, for example
dq* dpp  Opp 9q*

—1 ¢a
_ — 89, . 4.61
dq’c dp..  dq’c dp.. ¢ b ( )

: 828(q.q'\7) . .

We use below notation of the type W |y 0 (Sq/q) »e- The identity
d . ca

/o= _ 9 e 9t (o-1)° ¢ _ (o1

Pa = 361/“‘[1((1/![,/![) lmplles dg’c T (Sq’q) (Sq’q’)dc, 3[)//7 = Sq/q .

Further, the identity p, = ¢! ;’; ‘q(q/ o and the previous expressions imply

p -1 —1\* op - 1)\ % -1

8p£ = —C (Sqq)bd (Sq/q) 5 3(1/:- = —C (Sqq)bd (Sq,q) (Sq/q/)gc + c (Sqq’)bc~

Substitution of these expressions into Lh.s. of Eq. (4.61) turn it into an identity.

There are other types of generating functions that depend on any one of three
pairs of variables: (¢, p’), (¢',p), (p,p’). They generate a free canonical transfor-
mations written in terms of the indicated variables. For instance, in the previous
chapter we have discussed the generating function in terms of (g, p’)-variables.
The generating functions are related by means of the Legendre transformation (see
Exercise 5 on page 99). As an example, let us construct the generating function
S(g,p', ©) starting from S(g, ¢’, 7). Suppose the function p/,(¢,...) = 35,0 (—=S) has
aninverse one, g = ¢"(p’, . ..) (here the dots stand for the variables ¢, T considered
as parameters). According to the Legendre theorem, its generating function is

S(q.p'.7) = (P,d"" + S(g.4. 7))

q'(g.p',0)
= (pad" + F@.0'" O)| oy - (4.62)
This implies:
o 08(qg.p',7) 3S(q,.p'. 1)
g'="""", Pa= . (4.63)
ap,, aq°
The Hamiltonian H as a function of g, p’ is given by:
7 aS(q.p'. T
H(Z,7) S = cH(q,p(q.p’,7)T) + . ). (4.64)

0t
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Exercises

1. Let 77 — Zi(z,t) be a canonical transformation. Show that there is no
generating function of the form: 7" 83(“,”

2. Find the canonical transformation relating the Hamiltonian formulations
obtained from two Lagrangians which differ by a total derivative term: L
and L 4+ (")

3. Let ¢* — q’”(q”) be a general coordinate transformation of the config-
uration space. Find its extension ¢'“(¢”), p.(q”, p.), which represents a
univalent time-independent canonical transformation of the phase space
(this result, together with Eq.(4.59), imply that the Hamiltonian of a

nonsingular Lagrangian theory in generalized coordinates represents the

total energy of a system). Answer: ¢ = ¢'“(q), p,, = 3”’3;,3 ) pp, that is, pa

transforms as a vector under the general coordinate transformation of g“.

4.4 Examples of Canonical Transformations

4.4.1 Evolution as a Canonical Transformation: Invariance of
Phase-Space Volume

Let 7/ = fi(c/, T) be the general solution to the Hamiltonian equations

o, (4.65)

Given the point z of the phase space, the numbers ¢’ can be chosen in such a way
that the trajectory passes through the point at the moment t = 0: fi(¢/,0) = 7.
The latter equation can be resolved: ¢/ = /(7). Substitution of this result into the
general solution gives it as a function of the initial position: f(z”, 7), (7, 0) = 7.
Its substitution into Eq. (4.65) implies the identity

dfi(Z, . OH,
fZ.7) =o' O(Z) . (4.66)
de 07y
We can consider the function 72 = fi(Z, 7) as a transition function between the

coordinate systems (7, t) and (z, 7) of the extended phase space. Thus we have the

transformation
T T
i JRAN . S . 4.67
(z”) (z’ = £, r)) Hon
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T
evolution !
7(1) !
72 = 22(0) 23(T)
2'=2'0) /7 ___ _canon. transf.
i r2Z) el
zv ~ T R

Fig. 4.1 The evolution of a system generates a canonical transformation

By construction, all points of the curve 7' = f (z/lj, 7) have the same 7’-coordinate
7 = z] in the system (z,z’). That is, the curve is presented by the vertical straight
line ¥ = z{ in the coordinates (t,7’). We demonstrate now the validity of the
equation

{fi(zlv t)vfj(zlv t)}z’ = wlj7 (468)

Hence, the evolution of a physical system can be identified with the univalent time-
dependent canonical transformation (4.67), see Fig. 4.1 on page 162.

Denote the Lh.s. of Eq. (4.68) as W¥. We look for a differential equation for the
function W. By using Eq. (4.66), we obtain immediately

0 Wi = o*Hy WY — o*HyW", forall 7" (4.69)
T

where Hy = 0,0,Ho(z)|s. Besides, since f/(z,0) = 7", the Eq.(4.68) implies the
initial conditions W7(0) = w”. Note that W¥(t) = w? represents a solution with
these initial conditions. It is the only solution, since the normal system (4.69) has a
unique solution for given initial conditions.

Exercise Check the validity of Eq. (4.68) up to the third order on t by direct
computations, using the Taylor expansion: 7' = (7, ) = fi(Z, 0)+0.f"|ot+
éa%filo‘[z + ...

According to the definition of canonical transformation, the result obtained can also
be formulated as follows. Consider a dynamical system with the Hamiltonian H

d7t o 0H (2)

Jr oy (4.70)
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Then the transformation inverse to (4.67), generated by the Hamiltonian flow of
ij 0H( v

8z ~
transformation inverse to (4.67) turns the system (4.65) into a system with Hy = 0:

‘ZZ: = 0. It follows from the earlier observation that the curve 7' = fi(7, 1) is

presented by the vertical straight line 7 = const in the system (z, 7').

Hy, preserves the canonical form of Eq. (4.70): ‘if: = . In particular, the

Exercise Confirm this by direct computations with use of Egs. (2.100), (2.98)
and (4.68).

Hence, according to Eq. (4.59), the generating function of the transformation (4.67)
obeys the equation

0
S = _h. @.71)
T

The univalent character of the canonical transformation has an interesting geometric
interpretation. Consider a domain D’ of the phase space with the volume V' =
I~ d*'7 . During the evolution, points z” of the domain are displaced into z'(Z, 7),

and form the domain D, see Fig.4.2 on page 163. Let us compute the volume of
D. Making the change of variables z'(/, T) in a 2n-dimensional integral, we obtain

V= [,d"z= [, |det g;f, d*7 = [, d**7 = V'. Here Eq. (4.3) was used. Thus
the volume of a phase-space domain retains a constant value during the evolution:

Vv=V.

Yo

Fig. 4.2 Volume of a phase-space domain retains a constant value during the evolution: V = V’
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4.4.2 Canonical Transformations in Perturbation Theory

Now, let us consider a dynamical system with the Hamiltonian being the sum of two
terms

dZ 3(Ho(2) + Hi(2)
= . .

Jr 92 4.72)

It is said that the initial system with H is “perturbed” by H;. Suppose that a general
solution to the unperturbed system Hj is known. Then the associated canonical
transformation (4.78) turns the system (4.72) into a Hamiltonian system with the
Hamiltonian H;:

d7' 0H (z(Z, 7))
— ol 2 47
dt @ 077 (4.73)

Actually, since the transformation is canonical, the new Hamiltonian is (see
Eq.(4.59)) Hy + H, + 0.5, but 9,.S = —H, due to Eq. (4.71).

Exercise Work out this result by direct computations with use of
Eqgs. (2.100), (2.98), (4.68).

If 7/(c/, 7) represents the general solution to the problem (4.73), we obtain a
general solution to the problem (4.72) by taking a composition with the unperturbed
solution (4.78), 7' = 7/(z%(c*, 1), 7).

We have shown, through the use of canonical transformations, how the perturbed
problem (4.72) can be treated in the framework of the unperturbed one (4.66).
According to the final result, 77 = z/(zY(c, 1), r), perturbation in the energy
of a system can be reformulated as perturbation of the initial conditions for the
unperturbed problem. This observation turns out to be useful in quantum mechanics
and in quantum field theory, where we can equally use either the Schrodinger, or
the Heisenberg or the interaction pictures [33] to study an evolution of the quantum
system.

Exercise Apply this method to a one-dimensional problem with the Hamil-
tonian Hy + H, = épz —y j

e
—1p°



4.4 Examples of Canonical Transformations 165

P:

e

F(z)=0=—=p’ =0

Fig. 4.3 Coordinates 7/, adapted to the surface, can be chosen to be canonical

4.4.3 Coordinates Adjusted to a Surface

Consider the algebraic equation F'(¢%, p») = 0. Suppose that it can be resolved with
respect to one of the variables, say pi: p1 = f(¢° p2,p3,...,pn). We show here
that there is a canonical transformation such that in the new coordinates the surface
F = 01is described by the equation p| = 0, where p| = p; — f, see Fig.4.3.

This result appears to be interesting in the context of singular theories. In that
case the system of Hamiltonian equations necessarily contains both differential
equations (in the canonical form) and algebraic equations F, = 0 called Dirac
constraints. So, all solutions to the equations of motion lie on a surface defined
by these algebraic equations. Then it is natural to choose special coordinates
such that the surface looks like a hyperplane in these coordinates: z, = 0. We
demonstrate that the corresponding transformation can be chosen to be canonical,
that is, the canonical form of the Hamiltonian equations will not be spoiled in the
new coordinates. This greatly simplifies analysis of the Hamiltonian equations and
physical interpretation of a general singular theory [10].

It will be convenient to use the following notation: 7' = (gq', py,z%), that is z* are
all canonical pairs except (¢!, p1). Let us look for the new coordinates in the form

d'=4".  pi=pi—f(¢".). *=+n"q".%). 4.74)

with undetermined functions A*. We impose for them the following conditions:
h*(0,z%) = 0. (4.75)
The functions A% can be chosen in such a way that the canonicity conditions

{d".q" =l.p}-=0, {d".pi}. =1 {4".2%). =0, (4.76)
o

oh
=0 e o =1 (4.77)
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(7% 7P}, = 0. (4.78)

hold. Indeed, the Egs.(4.76) are already satisfied. Equation (4.77) represents a

first-order partial differential equation gZT + aazj; P gﬁ: = o 332{; . The Cauchy

problem (4.75) for it has a unique solution h%(g', z%); see, for example [4].

The solution automatically obeys Eq.(4.78). To confirm this, we write an
equation for the function {7, 7#} by differentiating the commutator with respect
to ¢'. Using Eq. (4.77) and the Jacobi identity, we obtain

0
» {79 7Py = %, 7Py} for any fixed o, B, (4.79)

while Eq. (4.75) implies the boundary condition:
{227 1o = 0. (4.80)

Note that the matrix w*? obeys Eqs. (4.79) and (4.80). Since, as before, the problem
has a unique solution, one concludes that (4.78) holds.

The adjusted coordinates can be equally constructed for a system of equations
F,(¢° pp) = 0. This is achieved by multiple repetition of the above procedure.
After completing the first step described above, we substitute the coordinates (4.74)
into the remaining equations, repeat the procedure for one of them, and so on.

4.5 Transformation Properties of the Hamiltonian Action

According to Sect. 2.9, Hamiltonian equations (2.88) can be obtained by application
of the principle of least action to the Hamiltonian action

S = / dt(paif' — H(g.p)). @381

while for canonically transformed variables ¢’, p’ the corresponding equations
follow from a similar expression with the Hamiltonian given by (4.52). It is
interesting to see the deformation of the integrand in (4.81) after the substitution
of z(/, 7). By direct substitution, we obtain

/ - la

(Pait = H@) .oy = < (Pl

(cH(z(z’, 7)) —cpa(Z, 7) 3q”6()zr, 2 + 21:) + ZI:) . (4.82)

where F(Z/,7) is precisely the function specified in Eq.(4.51). Note that the
transformed Hamiltonian (4.52) appears on r.h.s. of the integrand. For a univalent
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transformation we write

dF(q'.p'.7)

e (4.83)

Pag* —H(g.p) = p,d* — H(g'.p'.7) +
The relationship among the integrands is a consequence of the previously obtained
properties of canonical transformations. Assuming that the Eq. (4.83) holds for a
canonical transformation, we easily find most of their properties, see [1, 12, 13].

Exercise Does the Hamiltonian equations (4.22) follow from the principle
of least action applied to Hamiltonian action with the integrand (4.82)?
Consider also the cases of univalent and univalent time-independent canonical
transformations.

4.6 Summary: Equivalent Definitions for Canonical
Transformation

In Sect. 2.7 canonical transformations were defined as those preserving the standard
form of Hamiltonian equations. In subsequent sections we have found a number of
equivalent definitions. For convenience, we present here the resulting list:

Let 77 — Z'(Z, 1) be a phase-space transformation. Then the following state-
ments are equivalent and any one of them can be taken as a definition for the
canonical transformation:

1. The transformation preserves the canonical form of Hamiltonian equations for
any Hamiltonian system:

LOH —7 . BFI /, 7
O 25 i i & f), any H, some H. (4.84)

I =w .
a7 a7

2. The transformation leaves the symplectic matrix invariant (disregarding a con-
stant c)

a% 07"
o wY 0 = co, or (%71, =coM, ¢ = const. (4.85)
Z z

3. There is a function E(Z/, t) such that

07 (7, 1)

0E(Z, 1)
azll :

I Dy o

wy! =2 (4.86)
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4. There is a function F(Z/, t) such that

a¢ , OF(.7) dq” _ OF(Z.7)

—pl = : = 4.87
Poge ~Pe ™ age P op, I, 87

If the function E(Z’, t) (4.86) is known, F(z/, T) can be constructed as follows
c 1
F@.0) = B0 + 4", 0 0) = d"p) (4.88)

5. For the free transformation, there is a generating function S(q,q’,t), with
0%
det dgadth # 0, such that

as

B (4.89)

aS
cpalq. 4’ 7) = dge’ Pa(q.q' . 7) = —

If the function F(Z',t) (4.87) is known, the generating function can be con-
structed as follows

S(g.q4'.t) = F(¢'.p',7)| (4.90)

Paqd. 0’

4.7 Hamilton—Jacobi Equation

According to Eq. (4.52), the Hamiltonian has a nontrivial transformation law under
the time-dependent canonical transformation. The transformed Hamiltonian H
depends on the function F(Z/, t), which determines the transformation according
to Egs. (4.87) and (4.89). We can look for the F that makes H as simple as possible,
which implies an interesting method to look for a general solution to Hamiltonian
equations

F=wl . (4.91)
Performing the univalent canonical transformation
7=, (4.92)

we have equations of motion for the new variables, 7 = {Z, H }, namely

0q°(7, 1) L oF (7, r)) (4.93)

<i ij H(=(7 —pu(2,
' =w 8zj( (z(z', 1)) = pal@, 1) 97 97
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T T

z—=17
/é M 7’ (T)=const
7(T) !

Wiy | s

[y T

Fig. 4.4 Geometric interpretation of the Hamilton—Jacobi method: while coordinates of the point
M in the system z are defined by projection along MO, in the system ' they are defined by
projection along MA

Suppose we have found the transformation (4.92) which annihilates H:

dF (7, 7) Y

9 (Pa0:q" —H(@)|,v ) = 0, (4.94)
then (4.93) acquires the form 7 = 0, and can be immediately solved: 7 = ¢/ =
const. In the new coordinates the system is at rest. Now let us return to the initial
variables: one substitutes this result into Lh.s. of Eq.(4.92) and solves them in
relation to z:

7 =7(1, 7). (4.95)

By construction, this gives the general solution to equations of motion (4.91).

The geometric interpretation of this procedure is very simple: we search for a
special coordinate system (2, 7) of the extended phase space, such that trajectories
of the dynamical system look like vertical straight lines at these coordinates, see
Fig.4.4 on page 169.

According to this scheme, the problem (4.91) is replaced by the problem (4.94),
which contains 21 + 1 unknown functions 7'(z/, t), F(Z, ). By construction they
obey 2n Egs. (4.87). Supposing that the transformation under investigation is free,
the system (4.94) and (4.87) can be equally analyzed in terms of independent
variables ¢, ¢’ instead of ¢/, p’. According to Egs. (4.59) and (4.58), in the variables
g, ¢ the system acquires the form?

38(q.4'. 1)

5,  THar@ q. 1)) =0, (4.96)

3Since the general solution (4.95) determines the canonical transformation (4.92), the Eq. (4.97)
state that we search for the generating function of the evolution.
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3S(q.4'. 38(q.4'.
_¥@d.m) P = — (@.q".7) 4.97)
aqa aq/a

Using the first equation from (4.97) in Eq. (4.96), the equation for S can be separated
from those for p, p’. The closed equation for S(¢%, 7) is

B0y (q“, 5 ’T)) =0, (4.98)
it dqgb
where ¢’ have been omitted since they enter into the resulting equation as param-
eters. This partial differential equation is known as a Hamilton—Jacobi equation.
Remind that solutions to partial differential equations generally depend on arbitrary
functions. In particular, we can look for the so called complete solution that depends
on n arbitrary numbers ¢’*. Let S(g% ¢".t), with det qugq,b # 0 be such a
solution. Then Eq. (4.97) determines the free canonical transformation (4.92) which
annihilates the Hamiltonian H. According to the previous analysis, solving the
algebraic Egs. (4.97) for 7' = ¢“, p,, we obtain the general solution 7' = 7/(z”, 1), to
the Hamiltonian equations (4.91).

In short, the Hamilton—Jacobi method for solving Hamiltonian equations (4.91)
can be formulated as follows:

1. Find the solution S(¢“, ¢"*, 7), det aqizai/b # 0 to the Hamilton—Jacobi equation

aS(q°, aS(q*,
@0 (0, 89D 2, (4.99)
at dqgb
which depends on 7 arbitrary numbers ¢”°.
2. Write the expressions
35(q.4', 95(q.4',
D = @.4.7) P = (@.4'7). (4.100)
aqa aq/a
and resolve them in relation to g, p:
4" =44 .p. 0.  pa=palqd.p.7) 4.101)

These functions represent the general solution to the Eq. (4.91), with 2n integra-
tion constants ¢’“, p/,.

Summing up, the problem to find a general solution to 2n ordinary differential
equations (4.91) can be replaced by the problem to find the solution S of partial
differential equation (4.99) which depends on » arbitrary constants.
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Example Using the method of separation of variables, a one-dimensional
Hamilton—Jacobi equation can be solved for an arbitrary time-independent
potential. Consider a particle on a straight line in the potential U(x), L =
Zlm)'cz — U. Its Hamiltonian reads H = Zlmp2 + U, hence the Hamilton—Jacobi
equation is:

s 1 (a5’
U=0. 4.102

ot + 2m (3x) + ¢ )
We look for a solution to the form S(z,x) = S;(¢) + S>(x). After substitution
of this expression into (4.102) the variables # and x separate:

1) 1 (351
oy _Zm( o ) + U(x). (4.103)

351 — J 1 352
a = Noom ax

This represents the total energy of the system, as we can see from comparison
of the last equation with the Hamiltonian. The equations can be immediately
integrated out, we obtain

2
This implies ) + U(x) = x/, where x’ stands for a number.

S=8+8=—xt+ [dx\/2m(x’ —U). (4.104)
Then Eq. (4.100) reads:

p=+2m(x-U), p=—t+m (4.105)

/ \/2m(6.1x)’c —U)

It gives the general solution x(¢, X', p’), p(¢, X', p’) written in an implicit form.
For example, for the free particle, U = 0, we obtain:

2 / 2 !/
:\/mxt+\/mxp
m m

p=~2mx', «x , (4.106)

which is the expected expression x = ¢!t + ¢, where ¢; = V/2mx' represents

the initial momentum and ¢, = \/ 2:; p’ is the initial position of the particle.

Let us consider also the harmonic oscillator, U = ’Z‘xz. Equation (4.105)
acquires the form

p= V2mx' — kma2,

(continued)
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m . k
=—1+ m/ =—t+ \/ arcsin \/ X. (4.107)
\/2 k 2x
m(x' —

Solving these equalities with respect to x, p we obtain the general solution

2x . ) Z
x(1) = sin(wt + 6) = xp coswt + sin wt,
0 \/ L sin(t +8) = xo o

p(t) = V2mx' cos(wt + 8) = po cos wt — v/ kmx sin wt, (4.108)

where w = \/ k= \/ y’; p’, and the initial position and momentum are given

by xo = \/2" siné, po = +/2mx’ cos§.

4.8 Action Functional as a Generating Function of Evolution

In the Sect. 4.4.1 we have seen that a general solution to Hamiltonian equations can
be identified with a canonical transformation. It was demonstrated in Sect. 4.2 that
the Hamiltonian represents the generator of the corresponding infinitesimal trans-
formation. Here we construct the generating function of the finite transformation.
When the general solution to the Hamiltonian equations is known, it is possible
to construct the complete solution S of the Hamilton—Jacobi equation in closed
form in terms of the Hamiltonian action Sy, see Eq. (4.113) below. According to
the previous section, this S represents the generating function of the evolution.
Let

=2z, 1), 27 w0) =7, (4.109)

be a general solution to the Hamiltonian equations as a function of initial values 7’
(see discussion at the end of Sect. 4.2). Let us substitute (4.109) into Eq. (4.94)

oF (7, 1)

ar = (Padeg’ —H@) (- (4.110)

This is the Hamilton—Jacobi equation written in terms of F. Equation (4.87), taken
at T = 0, implies that F(¢', p’, 7p) = const. Since F is defined up to a constant, we
omit it in the following:

F(q'.p'. %) = 0. (4.111)
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Since the r.h.s. of Eq. (4.110) now represents the known function of r, we immedi-
ately find its solution subject to the initial condition (4.111)

T
F(¢d.p.7) = / dt (pg—H)| ) - 4.112)

70

The r.h.s. is just the Hamiltonian action written as a function of the initial position
and momentum 7" of the system. Using the relationship (4.90) between F and the
generating function, we obtain:

S(g.4".7) = F(q'. 0. 0| g o)

- [/ dt (pg — H)|z(z’,r):|

Being a complete solution to the Hamilton—Jacobi equation, S represents the gen-
erating function of the canonical transformation 77 — z associated with the general
solution. The expression on the r.h.s. is the Hamiltonian action represented as a
function of initial and final position. Hence it can be said that the Hamiltonian action
is the generating function of canonical transformation along true trajectories: it
transforms the system coordinates from one time to another.

According to the previous section, knowledge of the complete integral of
the Hamilton—Jacobi equation allows us to construct the general solution to the
Hamiltonian equations of motion. Here this result has been inverted. Hence, we have
the mathematically notable fact that searching for a complete solution to the partial

(4.113)

P'(q.q4',7)

differential equation gf + H (qa, 33;7) = 0 is equivalent to searching for a general
OH

. . . . . . 9H -
solution to the system of ordinary differential equations ¢* = opa? Pa = —pgu-

Example As an illustration, we use a general solution to the harmonic
oscillator equations of motion and the formula (4.113) to construct the corre-
sponding generating function. Substitution of Eq. (4.108) into the expression

Jo (px—H) = [, (,} p* — £x?), it reads:

t
1 , &
— . X3)cos2wT — in2wt | d
/0|:(2mp0 20)cos WwT — wxopo Sin 2wt | dt

1 1 k
= p% — x%) sin wt cos wt — xopo sin® wf. 4.114)

w 2m 2
From Eq. (4.108) we find the initial momentum p, presented as a function
of initial and final position, pg = +km(x — xo cos wr) sin~!' wt. According
to (4.113), the generating function is obtained substituting p, into Eq. (4.114).

(continued)
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After some computations we arrive at:

Vk

S(xo,x,1) = 2’" (2 — x2) arctan wt — ~/kmxxo sin~" wt. (4.115)

By direct substitution we verify that it obeys the Hamilton—Jacobi equa-
tion (4.102).

Exercise. Show by direct substitution that S of Eq.(4.113) obeys the
Hamilton—Jacobi equation.



Chapter 5
Integral Invariants

Abstract This chapter is devoted to the discussion of the theory of integral invari-
ants, which reveals an interesting structure of the general solution to Hamiltonian
equations. We discuss the basic Ponicaré-Cartan and Ponicaré integral invariants
that represent line integrals of a special vector field defined on extended phase
space. The integrals retain the same value for any closed contour taken on a given
two-dimensional surface formed by solutions to the Hamiltonian equations. As will
be discussed in Sect.5.1.3, this property could be taken as a basic principle of
mechanics, instead of the principle of least action. Besides their applications in
mechanics, integral invariants are widely used in the theory of differential equations.

This chapter is devoted to the discussion of the theory of integral invariants, which
reveals an interesting structure of the general solution to Hamiltonian equations. We
discuss the basic Poincaré-Cartan and Poincaré integral invariants that represent line
integrals of a special vector field defined on extended phase space. The integrals
retain the same value for any closed contour taken on a given two-dimensional
surface formed by solutions to the Hamiltonian equations. As will be discussed in
Sect. 5.1.3, this property could be taken as a basic principle of mechanics, instead
of the principle of least action. Besides their applications in mechanics, integral
invariants are widely used in the theory of differential equations, see [1, 4].

5.1 Poincaré-Cartan Integral Invariant

5.1.1 Preliminaries

We recall here some facts related to the description of a surface and a curve
in Euclidean space. Consider the space R*'*! parameterized by the coordinates
“,7v) = @ pp.7), i = 1,2,...,2n, a,b = 1,2,...n. Let S be the two-
dimensional cylindrical surface embedded in R***! (see Fig.5.1 on page 176).
Henceforth this will be called a tube. Let 8, o, « C [0, [] be the coordinates of a
coordinate system established on S. Then the points M(z, ') of the surface have the
corresponding coordinates 3, &. This implies the parametric equations that describe
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Fig. 5.1 Point M(,7') on the tube has the coordinates 8, @. This implies parametric equations of
the tube 7 = Z'(B,«), v = (B, ®). If 7 is taken as one of the coordinates: f = 7, we have the
parametric equations 7' = 7'(t, &), T =1

the embedding of the surface in R?*+!

=7 ),
&{r=dﬂ®. (5.1)

By construction, we have 7(8,0) = (8, 1), Z/(8,0) = Z'(B. ).
Suppose that the curve C on S can be described by the equation 8 = B(«). Then
the parametric equations

. 7= Zi(,B(Ol),Ol) = Zi(Ol),
« % T =1(f(a), @) = (), (5.2)

describe its embedding in R?"*1.
We will be interested in the surfaces formed by a one-parameter family z'(z, &)
of solutions to the first-order system'

¢ = 0%4q.p), Pa = Pa(q.p). (5.3)

where Q, P are given functions. Remind that the Hamiltonian system is a particular
case of (5.3), when there is a function H(q, p), such that

o= p M (5.4)
P

T All the results of this section remain true for the functions Q, P with the manifest dependence on
time.
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T

trajectory
(T, 0p)

closed
contour
C: 1(o0)

Fig. 5.2 The tube of trajectories can be constructed starting from the “initial-value” curve ¢ =
fi(cr). The Poincaré-Cartan integral is defined by using an arbitrary closed contour C C §

Comments To construct an example of the family, suppose that the general solution
7(1,d),7(0,¢) = ¢ of (5.3) is known. Let ¢ = fi(a), T = 0 be the parametric
equations of a closed curve in R*"*!, Then 7/(r,a) = Z/(r, /(ar)) represents an
example of the one-parameter family; see Fig. 5.2 on page 177.

For the tube formed by solutions to Eq.(5.3), one can take t as one of the
coordinates on the surface. That is, the coordinate system on Sis now 7, o, o C [0, ].
Then the parametric equations of the surface are:

s )7 =@, (5.5)
T =T
By construction:
Z(1,0) = Z'(z, 1), (5.6)

and for any fixed @ = «, the curve z'(t, ap) represents a solution to Eq. (5.3).
Let a curve C C S be described by the equation t = t(«). Then the
corresponding parametric equations of its embedding into R?**! are:

7 =7(t(e),a) =7 (a),

¢ T = 1().

(5.7)

5.1.2 Line Integral of a Vector Field, Hamiltonian Action,
Poincaré-Cartan and Poincaré Integral Invariants

Consider the vector field V(Z,7) = (va(Z. 7). u’(Z, 7). v(Z, 7)) defined on the
extended phase space R¥'*!. Then we define the line integral of the vector field
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M=M,

Fig. 5.3 To define the line integral of the vector field V, we replace the oriented curve by a
sequence of the following displacement vectors: Cy;;; —> UIUV=1 Ar,

along the oriented curve C,,;, see Fig. 5.3 on page 178:

Je Vdi = [ vadgq® + udpy, + vdr

N —— 5.8
= lim Y (VM) Ary), G9
—>OO‘}=1

where (\7, R) is the scalar product v,Ag* + u’ Ap, + vAz. If C is given in the
parametric form z' = z(y), T = 7(y), the line integral can be presented in terms of
the definite integral as follows:

C r2 dq® d, dr
[P = [Cwn T T o an 69)
c 7 4 dy dy

where V(y) = V(&' (y). 7(¥)).

Let C: t = t(«) be a closed contour on the tube of solutions (5.5). The line
integral (5.8) is called the first-order integral invariant, if its value does not depend
on the choice of the contour on the tube. If C: T = const is the closed contour
composed of simultaneous points of the tube, the integral reduces to

95 Vid7 = ¢ Vadg® + ubdpy, (5.10)
C C

and is called the first-order universal integral invariant.
We will be mainly interested in a rather particular case of the vector field given
by the expression

V(G®, ppr ©) = (par 0, —H (g% pp)), (5.11)
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where H is the Hamiltonian of the system (5.3) and (5.4). Note that Vis orthogonal
to any p-axis. The line integral acquires the form

/ Padq® — Hdx. (5.12)
C

For the curve allowed as a trajectory of the system (5.3) and (5.4), the line
integral (5.12) can be identified with the Hamiltonian action. Indeed, consider
the curve that can be described in the parametric form as follows: 7' = 7/(7),
71 < 7 < 1p. Then Eq. (5.12) acquires the form

12)
/ (Pag” — Hydt = Sy. (5.13)
L

Now, consider a curve that corresponds to the closed contour. The line integral (5.12)
along the closed contour is called the Poincaré-Cartan integral invariant

I= ¢padq“ — Hdr. (5.14)
c

Note that, unlike the previous case, the closed contour cannot be the allowed
trajectory of the system (5.3) and (5.4). For the simultaneous contour C: T = const,
the integral reduces to I} = _(ﬁc padq® and is called the Poincaré (universal) integral
invariant.

We specify the expression of the Poincaré-Cartan integral for the closed contour
that lies on the tube of trajectories S (5.5). Let C: t = t() be the equation of
the contour in the coordinate system established on S. Then the corresponding
parametric equations are (5.7), and the Poincaré-Cartan integral is represented by
the definite integral

_ ! dg(t(a), o) dt
I = /0 do (p(r(a),a) Jo —H(z(r(a),(x))da). (5.15)

Summing up, we have seen that a line integral of the vector field (5.11), being
computed along the proper classes of curves, reduces either to the Hamiltonian
action, or to the Poincaré-Cartan integral, or to the Poincaré universal integral.
By construction, the Poincaré-Cartan integral could depend on a choice of the
contour C: I = Ic. Remarkably enough, it happens to be contour-independent: /
does not change its value in the case of an arbitrary displacement (with deformation)
of the contour along the tube. This is one of the results discussed in the next section.



180 5 Integral Invariants
5.1.3 Invariance of the Poincaré-Cartan Integral

Here we demonstrate that 7 has the same value for any contour taken on a given tube
of trajectories of the Hamiltonian system. Conversely, the contour-independence of 1
(constructed with the help of a function H) on a tube of solutions to the system (5.3)
implies that the system is the Hamiltonian one. More exactly, we have

Assertion For the system

¢ = 0“q.p), Pa = Pa(q.p). (5.16)

let Z/(7, ), @ C [0,1] be a one-parameter family of solutions which form a tube:
7(7,0) = 7/(z, ). Then the following statements are equivalent:

(a) The system is a Hamiltonian one: there is a function H(z) such that

oH oH
oo="" p,=-" (5.17)
pa

(b) There is a function H(z) such that a value of the Poincaré—Cartan integral

I= %padq“ — Hdr. (5.18)
c

does not depend on the choice of the closed contour C on the tube.

Proof Henceforth we will frequently use the following notation: 7/ = "%, 7/ =
BZi(r,a)
da °

(A) Let the system (5.16) be a Hamiltonian one. The invariance of / turns out to
be closely related to the properties of the Hamiltonian action in the passage
from one trajectory to another. Consider two closed contours C;: 7 («) and C5:
72(o) on the tube S, see Fig. 5.4 on page 181. For any fixed «, we write the line
integral (5.12) along the solution z'(t, @) to the system (5.16)

w(a) a
Su(a) = / " (pa(r, 0% ;Z’“) —H(z(r,a)))dt. (5.19)

This gives the value of the Hamiltonian action for the trajectory. So, the
function Sy (o) describes the variation of the Hamiltonian action in the passage
from one trajectory to another. Since the values o = 0, [ correspond to the same
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trajectory
(T, 0p)

Cy: T5(0)

o=0y a=0 p

Fig. 5.4 For any fixed @ = «y, the function Sy (c) is the Hamiltonian action computed along the
solution z(7, ) of Eq. (5.16) between the points o (79) and o, (zp). The Poincaré-Cartan integral
has the remarkable property: I¢, = Ic,

trajectory, we have

Su(l) = Su(0), (5.20)
from this it follows:
Las
/ 1@ 4y — o0, (5.21)
0 do

Let us compute the variation rate

dSu(e) _ (p g _ H)
da dr

(@) 9 oOH OH
/ (p/éz +p., 4d— ., p— q’) dr. (5.22)
71() a‘L' ap aq

d T

—(n—> 1)+
(a) do

Integration by parts of the second term gives

, () n(@) ,.
q —/ q pdr. (5.23)
1@ o
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Then the variation rate is

dSu(@) . dv,
I =p(n(a), o) | 4l da T q/|r2<a>

Hm,@) 7~ (0 )

@ o (  OH (. OH
n / o la="") =g (p+ dr. (5.24)
71 (@) ap aq

The last line vanishes due to Egs. (5.16) and (5.17), while the first line is equal

to pjg. Thus we have

dSy(a)
do

dq(ra(a), o)
do

—(1 — ). (5.25)

—p((@). ) - H(m@.0)

Note that the r.h.s. of (5.25) coincides with the integrand of the Poincaré-Cartan
integral (5.15). Inserting this expression into Eq. (5.21), we obtain the desired
result: /¢, = I¢, for any closed contours C; on S.

(B) Suppose that the integral (5.18) with a given function H is contour-independent
on the tube of the system (5.16). Let C': t/(«) be an arbitrary closed
contour near C: 7(«), and let us denote t'(o) — t(e) = (). Due to the
contour independence, we have I-» — I = 0. This implies that the variation
vanishes: 81 = (Icr — Ic)jipear partons: = 0. On the other hand, it can
be computed directly, performing an expansion of /¢ around the point 7(«)
(below, the notation | means the substitution of t(«)). Using z(t(«) + 87, ) =

d(ra) | 5+ 02(87), we obtain:

(@), @) + 5
(! . dq(t(a), @)
81—/0 do (p| o dt+

d dé
p(@).a) \ (4ld0)—H "~

8H,‘d18 8H,‘d18t)'

5.26
3 q T o (5.20)

do” ap P
The first line can be presented as

d
pd| 8t + pal " s, (5.27)
do
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while integration by parts in the second line leads to the expressions
! ’. .., dt . /
-p q| 8t — pg| i 0t Jdo + pg|ét|,, (5.28)
0 o

/l 0H (. dt d

o \ Jg qdoz i

0H (. dt Yy

ap pd(x p
Since the values o« = 0,/ correspond to the same point on the tube, the last

terms in Eqgs. (5.28) and (5.29) vanish. Bringing together the remaining terms,
we obtain

!
81 = / do [q’ (1'7 + %H)‘ - (i] - %H)H 8t(a). (5.30)
0 q P

Using Eq. (5.16) and the contour independence 61 = 0, we have:

! , oH
da | g \ P+
0 aq z2(t(),@)

| _0H
b (Q 3p)

Being true for any §7(«) as well as for any contour t(x), this equality implies
Eq.(5.17).

St+

az) da — Hétl|) . (5.29)

:| dt(a) = 0. (5.31)
z(t(a),0)

The affirmation demonstrated means, in particular, that for a given Poincaré—
Cartan integral there is a unique system of differential equations that admits this
integral as the integral invariant. This statement could be taken as the basic principle
of mechanics, instead of the principle of least action.

5.2 Universal Integral Invariant of Poincaré

Let us consider a particular case of the Poincaré-Cartan invariant I = ¢ p,dg® —
Hdt, when the closed contour C is formed by simultaneous points of the system.
It corresponds to the points of intersection of the tube with the hyperplane t =
79 = const, see Fig.5.5 on page 184. We have dt = 0 and the Poincaré—Cartan
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zi=zi(‘to, o)

C:9 =1,
=
1 @ Ci: < pP1=pi(Tp,

7%=1=0

Fig. 5.5 Closed contour of simultaneous points C and its projection C; on the plane (ql ,P1)

invariant acquires the form

I = ggpadqa. (5.32)
C

This is called the Poincaré (universal) integral invariant. The equation of the
contour is T = 7, and the corresponding parametric equations are T = Ty,
7 = 7'(t0, @). This implies the following expression for /; in terms of the definite
integral

] a
Iy = / pa(ro,a)aq E;O’a)da- (5.33)
0 o

Being a particular case of I, the Poincaré integral invariant has similar properties.
In particular, the Assertion of the previous section can be reformulated for /; as
follows:

Assertion For the system

¢ =0Q%q.p).  Pa=Palg.p), (5.34)
let Z'(z,a), @ C [0, ] be a one-parameter family of solutions which form a tube:
7(t,0) = 7Z/(z, ). Then the following statements are equivalent:

(a) The system is a Hamiltonian one: there is a function H(z) such that

Q= aH, P,=— aH. (5.35)
opa
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(b) The value of the Poincaré integral

I = 9£padq”‘r. (5.36)
C

does not depend on the choice of the simultaneous closed contour C on the tube.

Since H is not presented in the expression for I;, it is an invariant of any
Hamiltonian system. This explains the terminology “universal”.

It should be stressed that /; is invariant under the replacement C — C’, where
both contours are simultaneous. So, C’' can be considered as the result of the
evolution of the points of C for the same time interval. Recall that the evolution is
an example of a canonical transformation. This explains why the Poincaré integral
invariant can be used to study properties of canonical transformations; see, for
example [14]. Note also, that according to Eq. (5.33), the invariance of /; implies
I1(t0) = I, (7). That is, I; does not depend on time.

The Poincaré integral invariant has an interesting geometric interpretation. To
discuss this interpretation, let us recall that the following line integral

A= 9§pdq, (5.37)
D

on the two-dimensional plane parameterized by ¢ and p, gives an area of the region
limited by the closed contour D. In the extended phase space, let us consider
the contour Ci: ¢! = ¢'(w, ), p' = p'(r0,2), 2% = 0, T = 0. This is the
projection of the integration contour C: 7' = z'(19,@), T = 71 of the Poincaré
integral invariant (5.32) on the (¢!, p1)-plane (see Fig. 5.5 on page 184). According
to Eq. (5.37), the area inside C; can be computed as

l 9 1
q (‘C()v Ol)
Ay =¢ pidg' = / pi(t0. @) P (5.38)
Ci 0 o
Comparing the expressions (5.33) and (5.38), we conclude that the Poincaré integral
invariant represents a sum of the areas A,

n= 95 Padg’ =) Aa. (5.39)
C

While the contours C, C, and their areas can vary during an evolution, the sum (5.39)
of the areas A,, being equal to the invariant /;, remains unaltered. This gives the
geometric interpretation of the Poincaré integral invariant.

Let us enquire about the structure of the universal invariant of the general
form (5.10). In other words, we are interested in finding the most general form of
the vector field that implies the invariance of the integral.
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Assertion Let the line integral I; of the vector field Vi(Z,7) = (v,, u®) be the
universal integral invariant. Then

1. The field has the form

1 . ) Ve = lc 4 a‘m
Vi= _cdwji+97(Z.1), ou 211’““ 9. (5.40)
2 Ug = _2cq + opa’
where w;; is the symplectic matrix and ” is a function.
2. The integral I, is proportional to the Poincaré integral invariant
[, = 95 v.dg® + u”dp;, =ch = c%padq”, ¢ = const. (5.41)
c c

This last statement means that the Poincaré integral invariant is essentially a unique
universal integral invariant.

Proof Let C: T = const be the closed simultaneous contour on the tube (5.5)
of solutions to the Hamiltonian system H. Using the parametric equations of the
contour 7' = z/(r, @), T = const, /; can be presented as the definite integral

1
il (T) = /O (Ua(Z(T, O{)a T)q/a(tv O{) + ua(Z(T’ O{)p;(tv (){))d()l
1
= / Vi(z(t, &), 1) da (5.42)
0

Owing to the invariance I,(v) = I;(«'), we have ‘fl[t‘ = 0. Direct computation of the

derivative gives the definite integral corresponding to the line integral

95 Gi(z.1)d7 =0, (5.43)
c
where
. aV;
G,’ = —W,](UlkakH + s
0t
Wi = aLVj - ajVi. (5.44)

Since the previous analysis was carried out for an arbitrary tube, the integral (5.43)
vanishes for any contour on the hyperplane T =const, in other words, it is contour-
independent. That is, G; is the conservative field, d,G; — 9;G; = 0. The explicit form
of this expression is

. d . .
OWi)e OeH + | Wi+ Wy 0ud;H — Wy 0,0 = 0. (5.45)
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Due to the universality of 71, Eq. (5.45) is true for any H, therefore

oW, = aW—O
'j Z'_Br =Y,

Wiy 0,.0;H — Wjj™ 0,0,H = 0. (5.46)

The first line implies that W is the numeric matrix.
Exercise Verify that the second line implies W;; = cw;;, where ¢ = const.

Accordingly, we write 9;V; — 8;V; = cwy;, or, equivalently 3;(V; — ) cz*ayg) — 8;(V; —
;czkwki) = 0. In turn, it implies V; — écz"a)ki = 0,;°. That is, V; has the form
Vi = éczkwki + 9;”, as has been stated.

Integration of the vector field along a contour gives I; = gﬁc Vidy =
Ve @-padq® — q°dpa + §.0:7dz" = c@.padg®. All the integrated terms vanish
due to the closeness of the contour. Thus, any universal integral invariant differs
from the Poincaré one only by a numeric factor.



Chapter 6
Some Mechanical Problems in a Geometric
Setting

Abstract The Maupertuis variational principle is the oldest least-action principle
of classical mechanics. Its precise formulation was given by Euler and Lagrange;
for its history, see Yourgrau and Mandelstam (Variational Principles in Dynamics
and Quantum Theory. Pitman/W.B. Sanders, London/Philadelphia, 1968). However,
the traditional formulation (as a variational problem subject to the constraint that
only the motions with fixed total energy are considered), remained problematic, as
emphasized by V. Arnold (double citation): “In his Lectures on Dynamics (1842—
1843), C. Jacobi commented: “In almost all textbooks, even the best, this Principle
is presented in such a way that it is impossible to understand”. I do not choose to
break with tradition” (Arnold, Mathematical Methods of Classical Mechanics, 2nd
edn. Springer, New York, 1989).

6.1 Analysis of Trajectories and the Principle of Maupertuis

The Maupertuis variational principle is the oldest least-action principle of classical
mechanics. Its precise formulation was given by Euler and Lagrange; for its history,
see [34]. However, the traditional formulation (as a variational problem subject to
the constraint that only the motions with fixed total energy are considered), remained
problematic, as emphasized by V. Arnold (double citation): “In his Lectures on
Dynamics (1842-1843), C. Jacobi commented: “In almost all textbooks, even the
best, this Principle is presented in such a way that it is impossible to understand”. I
do not choose to break with tradition” [2].

In this section we present the principle of Maupertuis as an unconstrained
variational problem. We discuss a conservative Lagrangian system. Its evolution can
be obtained according to the least action principle. In a full analogy, the principle of
Maupertuis can be formulated as the least action principle leading to the equations
for trajectories, without mentioning the time evolution along them.

In greater detail, the strategy of this section is as follows.

Given the solution ¢ = ¢“(t) of the Lagrangian equations, we can exclude
the time 7, thus obtaining the functions ¢%(g') describing a trajectory of motion.
We are interested in an analysis of the trajectories. It is possible to write a system
of differential equations describing the trajectories. The system shows a number
of very interesting properties, that form in fact the contents of the principle of
Maupertuis. On the phase space, equations for the trajectories form a Hamiltonian
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system (with ¢! playing the role of an “evolution parameter”). So, we are able to find
the corresponding Hamiltonian action. Equations for trajectories can be obtained
as stationarity conditions of the Hamiltonian action. This variational problem for
trajectories is precisely the principle of Maupertuis. Further, from the Hamiltonian
formulation we can restore a Lagrangian one, thus obtaining the Lagrangian version
of the principle of Maupertuis. The Hamiltonian and Lagrangian for the trajectories
g*(q") will be found below in terms of the initial Hamiltonian and Lagrangian for
q“(7).

This formalism will be further applied to describe a conservative mechanical
system in geometric terms.

6.1.1 Trajectory: Separation of Kinematics from Dynamics

Let ¢* = ¢“(r) denote any solution to the Lagrangian equations (2.21), which we
write here in the normal form

i =K(q".¢"). K'=M"K, (6.1)

The Lagrangian has no manifest time-dependence.

Geometrically, the solution ¢* = ¢“(7) is a set of points in the configuration
space together with a given parametrization. The set itself (which is an image of the
interval [71, 72] in the configuration space) is called a trajectory. At least locally, it
can be described without mentioning the evolution parameter. Suppose that one of
the functions describing the solution, say ¢! = ¢'(z), can be resolved with respect
to T : T = 7(g"). The substitution of this function into the remaining ones gives
expressions determining the trajectory

*“(¢") = ¢"(z(¢"), a=2.3,....n (6.2)

By construction, we have the following representation of the functions ¢*(t) in
terms of ¢%(q') defined by Eq. (6.2)

4" (1) = 4" (@) 1 ey = 4" (@] (6.3)

Besides the notation % = dq;(r) ,
T

dq;;f’l). From Eqs. (6.3) and (6.1) we can write

in this section we will use also the notation g =

@ =q°d".  § =q1EG") + "K' " " a%d"). (6.4)

Starting from the system (6.1), it is possible to write closed equations determining
the trajectory (6.2). This possibility is due to the fact that the order of any system
admitting a first integral can be reduced by two units. Let us describe the procedure
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for the case of the total energy first integral. The energy conservation law

oL .
. ¢ —L = h=const, (6.5)
ag°

being a consequence of the system, can be added to this. Using the first equation

from (6.4), we write Eq. (6.5) in terms of ¢'|, ' and resolve it algebraically for the
symbol ¢':

' =44 " g% h). (6.6)

Replacement of ¢%, g* in the equations g* = K* according to Egs. (6.4) and (6.6),
with subsequent substitution of the function 7(g') in place of z, gives the desired
equations for variables g%(g') that do not contain the variable t

qq) = ., (K" —q°K'). 6.7)

(@'

Solving these equations, we substitute the result into Eq. (6.6), which leads to a
closed equation for the function (gq")

dt 1

aq' = i ©%

This can be immediately integrated out, giving the time interval for the transition
from ¢ to g5

B dg

q

Ar = / , , 6.9)
4 4'(q'.h)

It determines time evolution ¢' () in implicit form.

In short, for the time-independent Lagrangian, the Lagrangian equations admit a
separation of variables: we are able to write a closed system of n— 1 equations (6.7)
for the trajectory ¢%(q").

Let us specify these results for the case of a particle moving in a potential. From
the action

5= / dt (;(W - U(q“)) , (6.10)

we have the equations of motion

g +9,U = 0. (6.11)
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Equations (6.5) and (6.6) acquire the form

el a0 _ I dr (q)?
@), @) +U@=h = i dg \/2(h—U)‘ (6.12)

By using Eq. (6.4), we obtain equations for the trajectory of the particle

g +

B2
1+ (aU ’“aU)=o. (6.13)

2h—0) \age 1 ag!

Equations (6.11) are equivalent to the system (6.12) and (6.13). In this system the
description of the dynamics is separated from the description of the trajectory (that
is, of the kinematics).

The solutions ¢“(t) give an extremum of the variational problem (2.34). In the
next sections we will show that the trajectories g%(g') can also be obtained from the
unconstrained variational problem known as the principle of Maupertuis.

6.1.2 Equations for Trajectory in the Hamiltonian Formulation

The previous discussion can be repeated in the Hamiltonian formulation, leading to
the conclusion that equations for the trajectory ¢%(¢'), po(¢"), @ = 2,3, ... ,nform
a Hamiltonian system. We find here the corresponding Hamiltonian.

Let H(g" p,) stand for a Hamiltonian of the system L(g, ). Conservation of
energy, being a consequence of Hamiltonian equations, can be added to this:

u 0H
b’

H(q'.q".p1.po) = h. (6.15)

~a

I =w (6.14)

Let us resolve the Eq. (6.15) algebraically with respect to p;. The solution is given
as

p1=—H(q'. q" . pa, h). (6.16)

By construction, we have the identity:

H(g'. q%. —H(q". ¢%. par 1), pa, ) = B, (6.17)
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which implies:

- -1
oH [ 0H oH
aqa 3[71 pi=—H Bqa pr=—H 7
- -1
0H oH oH
= . (6.18)
Ipa dp1 pi=—H Ipa pr=—H
Exercise Using the above identities, show that the equation p; = —gg isa

consequence of other equations of the system (6.14) and (6.15) and thus can
be omitted.

Similarly to the previous section, let z°(r) = (¢°(t), ps(r)) be a solution to
Eq.(6.14), and z%(q"), pi(q") be the corresponding phase-space trajectory. Then
Eq. (6.14) implies

0H 0H

o ol o . -1 6
B 4 S ’ = ’ . .19
q q q q 3 | pa paq paa . ( )

This allows us to write equations for z%(q') (which are known as Whittaker
equations). They arise from Eq. (6.14) by using Egs. (6.19), (6.16) and (6.18)

dg®  H d OH
7 _ % Pa _ _ 0 (6.20)
dqg'  Opq dq! q®
Together with the equations
70,1« -1 oH
P11 = _H(q ,q 7p0(sh)s q = a 5 (6'21)
D1

they form an equivalent to the Eq. (6.14) system. So, the Eq. (6.20) give trajectories
of (2.21) with the fixed energy h. Notice that the Eq.(6.20) form a Hamiltonian
system, with the Hamiltonian H obtained as a solution to Eq.(6.17). Integrating
2n — 2 Whittaker’s equations (6.20), one substitutes the result into the first equation
from (6.21), thus obtaining the expressions ¢%(q'), p.(¢') for the phase-space
trajectory. Substitution of these functions into the second equation from (6.21) gives
the equation

dt OH\ !
- , 6.22
dq' (3171) (022

for the function 7(g'), which can immediately be integrated out.
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6.1.3 The Principle of Maupertuis for Trajectories

As we have seen in the previous section, the trajectory ¢%(q'), po(q'), obeys the
Hamiltonian equations (6.20). According to Sect. 2.9, the equations can be obtained
from the variational problem for the Hamiltonian action

Sg/dql [Peq® — H(q" Pa.q" . h)]
= /padqa —I—Nqu1 = /padqa. (6.23)

Here H is constructed according to Eqgs. (6.15) and (6.16). The problem is known
as the principle of Maupertuis (the notation p,dq® is due to (6.16)). This states that
among all the phase-space trajectories with a given energy H(¢%, p,) = h, a system
follows the trajectory that supplies an extremum to the functional (6.23). Notice that
the construction of H, which enters into Eq. (6.23), implies knowledge of the initial
system Hamiltonian.

Due to the Hamiltonian character of equations for trajectory, in any particular
example one can restore the corresponding Lagrangian i(q“, q“,q"', h)) by apply-
ing the procedure described in Sect.2.1.4. We now discuss how this L can be
constructed from the initial Lagrangian L in the general case.’

6.1.4 Lagrangian Action for Trajectories
Consider the action with the time-independent Lagrangian

S = / deL(¢", ). (6.24)

Construction Let us write the energy conservation law in terms of ¢, §', see
Eq.(6.4)

( oL oL

ot T age 4’“) ' —L(¢".q".q“q") = h. (6.25)

Resolving this equation algebraically for the symbol ¢!

q'=4q'(¢". g% h) = §'(q%). (6.26)

Equation (6.7) can also be taken as a starting point for obtaining L.
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we construct the following action for the variables ¢%(g'):
q 1 1 a :a
S = dq ql (L(q ,q ) + h)li]"—>q-“c}1 |c'11=£11(q~°‘)
= / dg'L(g".q* 4" . h) (6.27)

In the rest of this section, the symbol | denotes the double substitution indicated in
this equation.

We demonstrate now that the trajectories g*(g', i) of the theory L with a given
energy h can be obtained as solutions to the variational problem (6.27). For this
purpose, it is sufficient to confirm that a Hamiltonian of the theory L obeys the
Eq. (6.17); see the discussion after Eq. (6.21).

Consider the Hamiltonian formulation for the theory (6.27). We write equations

for the momenta and the corresponding solutions: p, = a?;u = g% = 1°(q“, Pa)-

Using Eqgs. (6.27) and (6.25), the derivative of L can be written in terms of L as
L _— oL

follows: dgr = g |- Combining these equations, the momenta can be presented in
terms of L
aL -
se|| =P (6.28)
9" |lg=v

The Hamiltonian of the system (6.27) can also be presented in terms of L:

H(qasﬁash) = (ﬁdq’a _i)‘q.:g

=— a,L (6.29)
¢ |, =5
The Hamiltonian corresponding to L is given by:
H(q",pa) = pav* — L(g*, V). (6.30)
Here v%(g”, py) represents a solution to the equation p, = qu,,, so:
ve (q”, ;;) = - (6.31)

Now, let us substitute the function —H(p,) into the expression for H in place of p;.

The substitution reads
oL
Do | — L g v° | Pa . (6.32)
ag!

oL| . (oL e
aél ap()t pO{ aql

3!
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To see that it is equal to the constant &, we express the symbol p, according to the
identity (6.28) and use Eq. (6.31), thus obtaining:

aL . a a -da
(a'aq = L(q" ¢Dlg=5- (6.33)
q

From Egs. (6.25) and (6.26), the expression in brackets is equal to h. Thus we
have obtained the Lagrangian version of the principle of Maupertuis: trajectories
q“(¢q', h) of the system L(¢“(t),§"*(t)) with a given energy / can be obtained as
solutions to the variational problem (6.27).

In particular, application of the Egs. (6.25), (6.26) and (6.27) to a particle moving
in a potential, see Eq. (6.10), gives the following action for the trajectory

St¢") = [ dg'V2h- V)sngeg? =
[ dg'V2(h = U)(1 + (@)?). (6:34)
Corresponding equations of the trajectory can be presented in the form
g% + [%.q"q° =0, (6.35)

where

e = (8%:0,U + 8%0.U — §°.0,U). (6.36)

1
2(h—U)

This form of equation will be useful in the next section. Substitution of the
coefficients I'?;, into Eq. (6.35) gives (6.13).

Exercise Obtain the Eq. (6.35) from the variational problem.

To sum up, we have discussed trajectories of the conservative Lagrangian system.
Equations for the trajectories (6.7) also form the Lagrangian system, so they can
be obtained from a variational problem with an appropriately chosen Lagrangian,
which has been constructed in a closed form in terms of the initial Lagrangian, see
Eq. (6.27).

The principle of Maupertuis represents the Hamiltonian version of this vari-
ational problem: phase-space equations for trajectories form the Hamiltonian
system (6.20), and hence can be obtained as stationarity conditions of the Hamil-
tonian action functional (6.23).
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6.2 Description of a Potential Motion in Terms of a Pair
of Riemann Spaces

The trajectory of a free moving particle is a straight line. From the geometric point
of view, straight lines in Euclidean space represent a very special class, being the
shortest lines between two points. So, one can say in a geometric interpretation of
free motion, that among all the trajectories, the particle chooses the shortest one.
Generally, the trajectory is not a straight line for a potential system. Nevertheless,
there is an interesting possibility of a similar geometric treatment for that case.

In differential geometry there is a class of so called Riemann spaces with
the metrical and parallel transport properties generally different from those of
the Euclidean space. Instead of the standard expression for infinitesimal distance:
ds = +/8apdqdgt, in the Riemann space we have the expression ds = /ga»dqdgP.
The metrical properties are determined by the set of functions g,,(¢%) known as
the metric of the space. Since the metric depends on ¢“, the metrical properties
change from one point to another as well as differing in various directions from a
given point. The analogy of a straight line (that is, the analogy of free motion) in
the Riemann space is a geodesic line representing the curve of a minimal length
between two points.? Parallel transport is defined by an independent quantity called
the affine connection.

From the previous section we know that the description of a trajectory of motion
can be separated from the description of the dynamics along it; see Eqgs. (6.12)
and (6.13) for the case of potential motion. Here we show that the configuration
space of the system can be equipped with a metric (constructed with the help of
the potential) in such a way that trajectories turn out to be the shortest lines of
this metric. On the kinematic level, potential motion in flat Euclidean space is
thus equivalent to free motion in curved Riemann space. Intuitively, presence of a
potential can be treated as leading to the deformation of the metrical properties of the
initially flat configuration space. This in turn causes deviation of the trajectory from
the straight line, keeping it the shortest line with respect to the metric. Moreover,
the dynamics (time of evolution) also has an invariant geometric meaning. Potential
motion in this framework looks like an inertial motion, in a full (but formal) analogy
with the inertial motion in the presence of gravity in Einstein’s general theory of
relativity.

Here we give only an elementary discussion of the problem. The subsequent
sections are devoted to a more detailed discussion. For our present purposes it is
sufficient to bear in mind that the shortest line in Riemann space can be described
in the parametric form, ¢“(tr), by so-called geodesic equations in canonical
parametrization (for an elementary demonstration of this fact see a sequence of

2More exactly, the notions of a geodesic and a minimal length line coincide only in the Riemann
space with a Riemann connection. Here we do not distinguish these notions. They are discussed in
more detail in the following sections.
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exercises at the end of this section)
G+ T%:4"¢ =0, (6.37)
subject to the conditions

q“(t1) = qf, q“(r2) = 45. (6.38)

The conditions mean that we look for the path from the point g{ to ¢5. The functions
"¢, are constructed from the metric as follows

1
Iy = Zgad(abgdc + 0c&bd — 0a8be)- (6.39)

These are known as a Riemann connection or Christoffel symbols.
Now we proceed as in Sect. 6.1.1, rewriting the system (6.37) in an equivalent
form, with the kinematics separated from the dynamics.

Exercise Verify the conservation of the charge:

d

4, (gwd'd’) =0, (6.40)

for solutions to the problem (6.37).

For solutions with the charge equal to v? this implies

dt

Vo = Veawqq®. (6.41)
q

Using Egs.(6.37), (6.4) and (6.41), we obtain the following equation for the
trajectory ¢%(¢'):

A

g+ g =0, T% =T —¢°T". (6.42)

Under the boundary conditions ¢*(¢}) = ¢, ¢*(g3) = 45, it has a unique solution
q*(q").

Now we are ready to compare these equations with those of potential
motion (6.12) and (6.35), which we write here once again

dt Sab b
= agb, 6.43
dg' \/Z(h— 0?1 049
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¢+ I%.q"q° = 0. (6.44)

The coefficients I" are given in terms of the potential U by Eq. (6.36). It is sufficient
to specify the metric as follows

8ab = 2(h— U)bap. (6.45)

Then the geodesic Eq. (6.42) coincide with Eq. (6.44) for the potential motion with
total energy A. That is, the trajectory of potential motion represents the shortest line
of this metric. Complete equations are not equivalent, as is clear from comparison
of Egs. (6.41) and (6.43). So, an interesting task would be to find the equations of
geometric origin equivalent to the complete problem (6.11). This will be done in
Sect. 6.8. Here we only point out that the dynamics (6.43) also has an invariant
geometric meaning. Let us write the solution g%(g') in the parametric form ¢' = t,
q* = ¢“(t), and compute a length of the curve with respect to the metric

Sab

Ga = s
T am-U)

(6.46)

constructed with help of an inverse potential. Comparing an expression for the
length

=q, @ §
= dt\/G, 'a'b:/ dg' @ qagb, 6.47
/m,; 7V Gauritq . T\ - 1)?"? (6.47)

with the Eq. (6.43), one concludes that the propagation time can be identified with
the length of the trajectory in space with the metric (6.46).

In this way, one can speak of a formal geometrization of mechanics: with a
system of total energy h propagating in a given potential U(g"), we associate a
pair of Riemann spaces. The influence of the potential on the motion is encoded
in the metrical properties of these spaces. The trajectory of the potential motion in
the Euclidean configuration space coincides with the shortest line in Riemann space
gap = 2(h — U)d,4p, while the time of motion coincides with the length of this line
in Riemann space G, = 2(2”_”U).

This geometrization has been called formal since the metric has no relationship
with the physical space-time metric that appears in the general relativity for the
description of gravity. Besides, the metric associated with a given system depends on
its total energy. That is, the configuration-space particles with different total energy
probe different geometries.
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Exercises

1. Verify that we have a similar situation in a more general case of the action

1
5= / d(ea@id’ ~ Ulg") (6.48)

Here the corresponding Riemann spaces are g, = 2(h— U)cyy and G, =

Cab
2(h—U)"
2. Show that the geodesic equations in canonical parametrization (6.37)

follow from the action functional
I ..
S=[dr 2g¢,bq q . (6.49)

3. Show that the corresponding action (6.27) for trajectories is given by
S = / dg' v gawvqq” (6.50)

Note a geometric interpretation of S: since its integrand \/ gabq'°q" gives a
distance between nearby closed points of the line ¢g%(g'), S itself represents
a length of the line. Therefore, solving the variational problem (6.27), we
look for the shortest path.

4. Show that the Eq. (6.42) for a trajectory follow from this action functional.

6.3 Basic Notions of Riemann Geometry

Here we briefly describe some basic notions of differential geometry of Riemann
space, with the aim of giving a more systematic description of a potential motion as
free motion in Riemann space. Besides, our purpose is to discuss certain concepts
such as covariance and coordinate independence, which are important for a proper
understanding of modern physical theories, including gravity and gauge fields.

6.3.1 Riemann Space

Without going into details,? an n-dimensional manifold M is a set equipped with a
(local) coordinate system in the vicinity of any point go € M that is, a continuous

3Detailed discussion of the coordinate formulation of Riemann geometry for non-mathematicians
can be found, for example, in [15]. For the coordinate-free formulation, see [35].
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Fig. 6.1 Local coordinate systems and the transition function

bijective map of this vicinity on a neighborhood of zero of R": ¢ : ¢ — ¢ = ¢“(q),
a=1,2,...,n, is established. We immediately note that the coordinate system is
not unique: if f%(¢), with det 3’; 2 # 0, are given functions, then the map ¢ = fo ¢ :
q — ¢'* = f*(¢%(g)), also represents a coordinate system. In abuse of notation, we
write f*(¢”) = ¢’*(¢"). The transition from one description to another

4 — 4" = 4. 6.51)

is called a transformation of coordinates. The function ¢’*(¢”) is known as a
transition function. For the given coordinate systems ¢, ¥, the transition function is
defined by f = v o ¢!, see Fig. 6.1 on page 201. There is no preferable coordinate
system on M all of them are considered on equal footing. Accordingly, a well-
defined construction on M is one that is defined in relation to each coordinate system
or, in other words, it must be specified in all the systems simultaneously. In this
section, it is taken for granted that the reader is familiar with the definition and
basic properties of tensor fields on M; see Chap. 4 in [15]. For later use, we recall
the definition of a contravariant vector field or (1,0) -rank tensor). It is said that
the contravariant vector field £(gq) is defined on M, if in any coordinate system g“
the set of functions £%(¢”) is given, such that the coordinate transformation (6.51)
implies

i a ra )
£(d°) = aqb £ (q). (6.52)
q

So, by the vector (tensor) field in the coordinate formulation of differential
geometry, we mean a totality of the sets £, symbolically

(@) = {6, §(d"), .. ). (6.53)
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For the covariant vector (or (0, 1) -rank tensor) one has

!¢ IC 8qb C
§4) = 5 5p(4)- (6.54)
q
As compared with a general transformation of the form £“(¢*°) = F*(&,q°)),

the tensor transformation law (6.52) is linear and homogeneous with respect to £°.
Owing to this fact, tensor fields form a linear space: a linear combination of tensors
of the same rank is a tensor. In particular, vector fields form a (infinite-dimensional)
linear space, while vectors at a given point ¢ form an n-dimensional linear space
T,(M) known as the tangent space to M. Besides, one can define the product and
contraction of the tensor fields. In practical computations it is often convenient to
use the notation

qa/ = qla’ ga/ = g/a’ (655)

and so on. This allows us to better control the position of the indices in various
equations. In particular, Eq. (6.52) in this notation acquires the form

o 3qa/

£ = e £ (6.56)

where a and @’ stand for different indices.

Example (and exercises)

1. According to Eq.(6.52), if all the components of a vector vanish in a
coordinate system, they also vanish in any other system. That is, the
set (6.53) of columns composed of zeros is an example of a vector.

2. Consider a scalar function defined by the transformation law '(¢'*) =
h(g*(g"®)). Check that the set dh(q) = {d.h(q), 3,1 (¢"?),...}isa (0, 1)-
rank tensor.

3. Let us define the set Ag = {Ag®, Ag",...}, where Ag® = ¢5 — ¢f is
the difference of coordinates of the points g;, ¢, in the system ¢“, and so
on. Show that the set does not transform as a vector. Hence, in contrast to
the Euclidean case, the vectors cannot be identified with ordered pairs of
points (oriented intervals) of M, and do not belong to M.

4. Consider the vector field £(g). Check that the set 9§ =
{0.6°(q°), 0,E™ ("), . ..} is not a tensor. Hence the partial derivative d,, is
not an operation defined on the space of tensor fields.

(continued)
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5. Differentiate components of the field £(g) in the system ¢%: 9, = £°.
Starting from these functions, define
. 3 0g”
b b
) = , . 6.57
%-“ aqa aqb a ( )

in the system g%, and so on. By construction, the set {£?, Ef,/ ...} deter-
mines the (1, 1) rank tensor field. However, it would not be natural to
identify it with a derivative of the vector field £(g) since if we start from
the components £°(¢’“) instead of £”(¢°) and repeat the construction, we
obtain a tensor field which is different from the previous one.

These two examples show that the usual derivative is not a very useful notion
on the space of tensors.

Construction Generalizing the last example, it is easy to construct examples of
vector (tensor) fields. Starting from the given functions £(¢%) referring to the
system ¢“, one defines the functions £"*(g"*) referring to the system ¢’ according to
the expression consistent with Eq. (6.52)

la /c 3 @ C
g9 =" @] (6.58)
dq q“(q")

and so on. Below we do not write explicitly the substitution of ¢*(¢’*). The resulting
set £(q) = {£%(¢Y), £%(¢’"), ...} determines the vector field.

It is worth noting that applying the above construction to the components £%(g")
of the given vector field £(g), we obtain the field itself.

Let 7 be a variable of the interval (71, 7o) € R. The curve on M is an injective
continuous map*

c:(t1, ) > M, T — q = c(7). (6.59)

If ¢g* are local coordinates, the map ¢ induces a map R — R” defined as
q° = ¢%(c(r)) = ¢°(v). It gives an analytic description of the curve in the local
coordinates in terms of n functions ¢* = ¢“(t); see Fig.6.2 on page 204. In the
system ¢, we obtain the functions ¢* = ¥%(c(r)) = ¢'“(t). They are related
according to ¢“(t) = ¥(c(1)) = f*(¢*(c())) = f*(¢*(1)), or, as should be the

“Note that this definition does not mention coordinates, representing an example of the coordinate-
free definition of differential geometry.
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Fig. 6.2 In the local

coordinates, the curve c(7) is T T Ty
described by n functions } 2 } R
¢“(7). The line y is the image

of the interval (ty, 12)

applying the map ¢ q2 (T)=0%c(71)

Fig. 6.3 Two
parameterizations ¢“(7) and
q'“(t) of the line y. Since
g=¢ocandq =y oc,
they are related by the
transition function f

case,

q“(v) = ¢“(¢"(x)). (6.60)

where ¢’“(g”) are the transition functions (6.51); see Fig. 6.3 on page 204.
According to the above definition, the curve is a set of points in M together with a
given parametrization. The set itself is called® line y. In other words, a set y € M is
the line, if there is a curve ¢(7) such that y = Imagec. Various curves can determine
the same line and sometimes are called its parameterizations. In particular, if the
curve ¢“(t) parameterizes y and t(7’) is a given function, the curve ¢*(z(z")) also
represents a parametrization of y. It is easy to see that any two parameterizations of
y are related in this way. Now, let the curves ¢ = ¢“(c(1)), and y* = ¢*(c'(z'))

The line was called the trajectory in Sects. 6.1 and 6.2.
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correspond to the same line. Then

Y() = ¢cocTd (@) = ¢ (c(x () = ¥ (z(1), (6.61)

where 7(7') = ¢! o ¢/ (7).
A curve determines a tangent vector & to the curve at each point ¢“(t) according
to the rule®

dq*
dt

g9 = . (6.62)

Exercise Verify that the components £ transform according to Eq. (6.52).

It can be shown that any vector of the tangent space T, (M) can be considered as the
tangent vector to a curve.

Two basic quantities defined on a manifold are the metric and the affine
connection. The metric on M is a symmetric (2, 0)-rank tensor
a b

aq® o
(@) = gaw (@) = -0 g, (6.63)
g% dq

which is non-degenerated: det g, # 0, and positively defined:
gaE'E” >0, forall £ #0. (6.64)
The inverse tensor is denoted as g*’: g’ g, = 8¢.. The manifold endowed with the

metric is called the Riemann space. The metric determines a scalar product on the
space T, (M)

g(E,n) = guwEn". (6.65)

Exercise Verify that the scalar product is invariant under the change of
coordinates (6.51): g'(¢', ') = g(&, n).

With the metric in hand, we define the length of a line and, finally, introduce the
notion of a distance between points of the Riemann space. We return to this task in
Sect. 6.7.

6 Accordingly, any vector proportional to £ is called a tangent vector to the line determined by the
curve.
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Affine connection’ on a manifold is a set of functions I'%., ['%, = "%, given
in each coordinate system, with the non-tensor transformation law

Fa' B aqa’ aqb dg° . dg” aqb azqa’
b = aqa aqb/ aqc/ bc aqh/ aqc/ 3qaaqb
aa/abac 92q° aa/
= ey T (6.66)
aqa aqb aqc aqb aqc aqa
The last equality follows from the differentiation of the identity 8¢y = ;;1; %‘i;

with respect to q.

6.3.2 Covariant Derivative and Riemann Connection

According to Exercises 4 and 5 of the previous section, the quantity d,£” cannot
be considered as a reasonable notion of derivative on tensor space (the same is true
for the derivative along the curve ¢“(7): déa((iqr(r)) ). The proper generalization is as
follows. Starting from the vector field £(g), let us construct the set

D& = {Dy§“. D,E", .. .}, (6.67)
where
DpE® = 058" + TE°, (6.68)

and so on. The set turns out to be a (1, 1)-rank tensor, that is Eq. (6.68) defines the
map D of (1, 0)-rank tensor space in the space of (1, 1)-rank tensors. It is called the
covariant derivative of the vector field £. The tensor transformation law of D,&¢
is supplied by the non-tensor transformation law (6.66) of the affine connection.
Construction of the covariant derivative for an arbitrary rank tensor is clear from the
following example

DA = 04A + T/4AY . + TP g A% — T Ay (6.69)

In particular, for the scalar function h(g%), the covariant derivative coincides with
the usual one (see also Exercise 2 of the previous section)

Doh = d4h. (6.70)

7We consider only torsion-free affine connections.
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Exercise Show that Eq.(6.69) implies the Leibnitz rule, for example
Da(A”CBd) = (DaA”C)Bd + AD,B; as well as a commutativity with
contractions, for example Da(A”CBC) = (DaA”C)BC + A’D,B,.

So, the covariant derivative (6.69) is a map that takes (k, m)-rank tensors to tensors
of (k, m+ 1)-rank, and has the usual properties of a derivative: it is a linear map that
obeys the Leibnitz rule. Besides, it commutes with the contractions.

The vector (tensor) field is called a covariantly-constant field if it obeys the
equation

DyE" = 0. 6.71)

A covariantly constant field in Riemann space is an analogy® of a constant field in
Euclidean space.

Affine connection on a manifold is not unique (any set of functions I'“;., given
in the system ¢°, can be used to create an affine connection (6.66) using the
construction described in the previous section). In Riemann space we can fix the
connection from the requirement that it must respect the metrical properties. In
Euclidean space the scalar product of the constant fields has the same value at
any point; that is, a derivative of the scalar product vanishes: d.(§,7) = 0. So,
for the covariantly constant fields in Riemann space it is natural to demand the same
condition

dc8(&,m) = (chab)é“”ﬂb + gab(Dcsa)nh + gahSaDcnb =0, (6.72)

which is equivalent to the covariant constancy of the metric
chab =0. (673)

These equations can be treated as determining I" in terms of a given metric. They
can be resolved algebraically. Equation (6.73) implies

chab + Dagbc - Dbgca =0. (674)

For the case of symmetric affine connection this is equivalent to

1
e (g) = zgad(abgdc + 0c&bd — 048be)- (6.75)

8Parallel transport of the covariantly constant field along any line takes it into itself, see below.
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Exercise Verify that the connection transforms according to Eq. (6.66).

If the affine connection is not an independent quantity and has been chosen
according to Eq.(6.75), it is called a Riemann connection. Note that for a given
metric, the symmetric Riemann connection is unique.

For a given vector field ?, the covariant derivative along the field is defined as:

D,£* = n" Dyt (6.76)
For a given curve ¢“(t), the covariant derivative along the curve is defined as:

_ @) |

Da
5 dt

T (q(2)3"6(a(0) = ¢ (DpE") |y - (6.77)

6.3.3 Parallel Transport: Notions of Covariance
and Coordinate Independence

Vectors of the tangent space T,(M) form a linear space, hence two vectors can be
compared by comparing their coordinates. In the Euclidean case, it is possible to
connect tangent spaces at different points introducing a natural notion of parallel
transport. This possibility is based on two properties: (a) the vector can be identified
with the ordered pair of points of E, (b) the only straight line parallel to a given
one passes through a point of [E. Since the transport is defined in a unique way, we
have the possibility of comparing vectors taken at different points. While Riemann
space does not admit such properties, a useful notion of parallel transport along a
line can also be established. However, it does not resemble all the properties of the
Euclidean case (the transport generally depends on the line; therefore, it does not
imply a way to compare tangent spaces at different points).

Parallel transport of the vector &; given at the point ¢; along the line y can be
defined as follows. Consider the manifold M with an affine connection. Let y be
a line between ¢; and ¢»; c¢: (71, 72) — M represents the corresponding curve and
q“(7) is its expression in local coordinates. Let £; be a vector at ¢ .

Definition The set

£ ={&().)....}. (6.78)
composed by solutions to the equation

d a
DE = di + 19476 =0, (6.79)
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with the initial condition

£(n) = &, (6.80)

determines a vector field along the line.’ It is called the parallel transport of &.
Sometimes we write D(g(t)) instead of D to emphasize that the problem (6.79) is
formulated for a particular parametrization ¢“(7) of the line.

The vector field £(q), given along the line ¢(7), is called parallel if it obeys
the Eq. (6.79). In this case the parallel transport of the vector £%(g;) to the point g,
gives the vector that coincides with £%(¢»).

We need to verify the consistency of the definition: whether the set (6.78) really
does give the vector field, as well as its independence from the parametrization
implied in the definition.

Let us confirm that the set (6.78) actually determines a vector field. Let the
functions £%(t) obey the problem (6.79), (6.80) in the coordinates ¢* (note that the
problem has a unique solution since the Eq. (6.79) form the normal system), while
&’“(1) obey the problem

D/ la __ dgla ta  =thelc __ la _ &la
§0 = TTed?8" =0 &) =§. (6.81)
in the coordinates ¢’ = ¢’“(¢"). Using Egs. (6.60) and (6.66), the parallel transport
Eq. (6.79) can be identically rewritten in the form

. 3qa aq/b .
0= Dg* = aq/bD/ ( e ) ’ (6.82)

where D’ is just the covariant derivative (6.81) in the primed system. Since det g;’; #
0, the equation D¢ = 0 turns out to be equivalent to D’ (3;;/5 ) = 0. That is, if £

obeys (6.79), the quantity aa‘f;é obeys Eq. (6.81). Since its solution is unique, one
concludes

9 q/b

c __ &b
achs = g7, (6.83)

Hence the problem (6.79) and (6.80) actually determines the vector field.

“Components £%(g”) at the point ¢* = ¢®(t) are defined as £%(¢%) = £%(z).
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Reparametrization Independence Consider the solutions £9(t) and n%(z’) of the
problem (6.79) and (6.80) in the parameterizations ¢“(t) and y*(z’)

D(q(r))¢* = 0 = £(v), (6.84)
D) =0 = 51°(7)). (6.85)

We show that the corresponding vector fields ¢ and 7 coincide. Let the point ¢
corresponds to values of the parameters being 7y and tj. We have 1o = t(z(), where
the function t(z’) has been defined in Eq.(6.61). We need to show that the fields
¢ and 7 coincide at go: £%(10) = n°(ty). Starting from the given functions §%(7),
7(1'), let us construct the following function of t’: £%(z’) = £%(z(z’)). It obeys the
Eq. (6.85)

ded(t')  dE(r) dt . dqb ., dt
dr’ = d dr’ =-T bc d E (t) dt’
T T | dt T e dT
dg’(z (¢’ ay’(¢/
= 14 T ey = e, Y e, (6.86)
dt dt

Here Eqs. (6.84) and (6.61) have been used. Since the problem (6.85) has a unique
solution, we conclude

n'(t) = &4z (")), (6.87)

in particular n°(z;) = £%(z(t)). Since t(z;) = 70, one finally has n*(z}) = (7).
In short, parallel transport of a vector can be performed according to Eq. (6.79)
using any coordinate system and parametrization.

Exercise Verify that for the case of the Riemann connection, parallel trans-
port preserves the scalar product of the transported vectors

d
J g, n) =0. (6.88)
T

Therefore, both the length of the vector and the angle between the vectors are
preserved.

Comments 1. Covariance of Equations and Coordinate Independence. Let us
mention a slightly different treatment frequently implicit in coordinate constructions
of the type (6.79). We can find the solution £“(7) in the coordinate system ¢,
then construct the functions & (6.52) in the system ¢, and so on, according
to the procedure described on page 203. By construction, it gives a vector field.
In this case we need to confirm that the resulting field does not depend on the
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choice of the particular coordinate system g“ used in its construction. We now
demonstrate that this coordinate independence is guaranteed by a property of the
defining equation (6.79) known as its covariance.

For the present treatment of the problem, all the constituents of Eq. (6.79) have
the well-established transformation properties (6.52), (6.66) and (6.60) under the
coordinate transformations (6.51). Using them, the equation can be identically
rewritten in terms of the quantities related with the system ¢’%. We obtain

a a
D¢ = aZ/;,D’E”’ =0, (6.89)
where
ds/b
D/E/b = dt + F/deq/cgld =0, (6.90)

which is precisely Eq. (6.79) in the primed system. Further, since det ;)5; # 0, the
equation DE = 0 is equivalent to D'E’ = 0. Hence, the equation of parallel transport
preserves its form when we pass from one system to another. This property is called
covariance of the equation under coordinate transformations. Note that covariance
is neither a general nor a self-evident fact. For example, the equation of a circle
x* +y? = 1 in polar coordinates acquires the form r = 1 instead of r*> + 6% = 1,
and hence is non-covariant.

Now we are ready to prove the coordinate independence. Suppose that the
parallel field has been constructed starting from the system ¢“: D'n® = 0,
n(t1) = &'{. Note that the functions £“(z) obey this problem due to the covariance
property (6.89): D' ~ DE® = 0, then n* = &'“. Hence n“(t) determines the same
field £(t), which shows its coordinate independence.

2. Parallel and Covariantly Constant Fields. According to the known theorem,
parallel transport turns out to be line-independent in Riemann space with curvature
tensor equal to zero. In the general case, parallel transport depends on the line,
as the defining Eq.(6.79) contains ¢(t). Nevertheless it can happen that parallel
transport of a particular vector is line-independent. As an example, let us consider
the covariantly constant field £(g). Due to Eq.(6.71), it turns out to be parallel
along any curve

DE" = ¢ [Dy§]| o) = 0. (6.91)
Accordingly, parallel transport of £(g;) to a point ¢, along any line, gives a vector
of the field itself at ¢,. Hence the transport of £(g;) does not depend on the line

chosen.!”
Let us finish this section with two illustrative examples.

10et us point out that Eq. (6.79) itself cannot be rewritten in terms of Dj,.
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Second Law of Newton in Curvilinear Coordinates Consider Euclidean space
parameterized by the Cartesian coordinates x*. We admit now an arbitrary non-
degenerated transformation of the coordinates ¥ - q* = q° (xb/). The Euclidean
scalar product, rewritten in the curvilinear coordinates g“, acquires the form
(0, %) = Sy v? W = 8y d.x” 8px” v*wP. Hence the metric components in the
system ¢ are given by gu» = 8y 9,4 9,7 . They are built starting from the matrix
8.1 according to the construction described on page 203. In turn, the derivative of
the vector field v reads

a b i a a 2.d
W’ dg ox (av dg® x4 ) 6.92)

o = o dge \ag T axe aghage”

and is identified with the covariant derivative (6.68). The connection I'?,, =
ach“aﬁcx"/ is built from F“/b/c/ = 0 according to the same construction. One
can verify that it coincides with the Riemann connection (6.75) of the metric
constructed above. Following the same lines, the second law of Newton ¥ =
—3,U(x') can be written in the form D§* = —g®8,U(q). On the left-hand side
the covariant derivative (6.79) of the vector g appears. In Sect. 6.8 we show how
the potential U can be incorporated into the connection coefficients, thus obtaining
the interpretation of the law of Newton in terms of parallel transport.

Free Motion on a Sphere Riemann geometry naturally arises in the description
of dynamical systems with kinematical constraints. Consider the unit-mass particle
constrained to move on the sphere (x')> = 1. We choose x, a = 1,2 as the local
coordinates on the upper half sphere, then its parametric equations are x' = x',
=22 = /1 - (x9)2

The variables x* can be taken as the configuration-space coordinates of the
particle. As we have seen in Sect. 1.6, the Lagrangian action for x*(7) is obtained

from the free particle action S = [ dr;(jci)z by substitution of the constraint
x* = /1 — (x9)? into the integrand. The substitution reads S = [ dv ) gapii?,
where gup = Sap + lf‘zif;)z is the metric on the sphere induced by the Euclidean
scalar product of the environment space. The corresponding Riemann connection
can be computed according to Eq. (6.75); the result is I'“;. = x“gp.(x). The variation
of the action leads to the equations of motion X* + I%,.x’%° = 0, where the
Riemann connection coefficients appear automatically in the course of the variation.
According to Eq. (6.79), the equations of motion mean that the velocity x* is the
parallel vector field along the particle trajectory. It implies that the trajectory is the
shortest line on the sphere; see Sect. 6.7.
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6.4 Definition of Covariant Derivative Through Parallel
Transport: Formal Solution to the Parallel Transport
Equation

The covariant derivative (6.77) of a given vector field £“(¢) along the curve ¢“(t)
can be written as follows:

dg .
Dga — + Fabcqhsc —

dt

a A re C'b CTA _ ¢a
L BT AT+ T A= (D) 69
At—0 At

Let us carry out parallel transport of the vector £*(t + A7) to the point 7. That is,
we solve the problem:
dn?

ot D" =0, 1%t + A1) = £(x + A7). (6.94)

Expanding the resulting vector 7n(zr) in a Taylor series at t + At we have,
disregarding At? terms

n'(r) = n'(t + At — A1) = n( + A7) = [ ac DT + ..
= £t + A1) + T4 PE | At + . . .. (6.95)

Comparing this expression with Eq. (6.93) we conclude that the covariant derivative
can be defined through parallel transport according to the formula

pet — fim O E®

6.96
Ar—0 AT ( )

where n“(7) represents the result of parallel transport of the vector £%(z + A7) to
the point 7. It also implies an approximate expression for the transported vector in
terms of the initial one:

Ea(r + A‘L—)|];)arallel transported at © = %-a(t) + Atl)%‘a(‘[) +.... (697)

Consider the vector & at the point g“(0) of the curve g“(r). We present a
generalization of the previous formula that gives a formal solution to the parallel
transport equation:

Dy =0,  n%=o = £~ (6.98)



214 6 Some Mechanical Problems in a Geometric Setting

Let £9(7), £(0) = & be a vector field along the curve. Then the field
1
n%(t) = £ — tDE + 212025“ +..., (6.99)

obeys the transport equation, as can be verified by direct substitution.

6.5 The Geodesic Line and Its Reparametrization Covariant
Equation

A straight line in Euclidean space can be characterized by any one of the following
properties: (a) a tangent vector to the straight line remains a tangent in the course
of its parallel transport along the line; (b) among all the lines between two points
the straight line has the minimal length. In the Riemann case, the first property is
taken as a basis for the notion of a geodesic line, while the second one defines the
shortest line. Since the metrical and parallel transport properties are determined by
two independent quantities (by the metric tensor and by affine connection), the lines
are different, unless a Riemann connection in Riemann space is chosen. As will
be seen in Sect. 6.8, classical mechanics prefers Riemann space with special affine
connection.

6.5.1 Reparametrization Covariant Equation of the Geodesic
Line

Definition The line y € M is called a geodesic line if its tangent vector remains a
tangent under parallel transport along the line.

Let us obtain a differential equation determining the geodesic line . Let ¢%(7),
q“(t1) = ¢ be a parametrization of the geodesic line, and §“(t) is the parallel
vector field obtained by the transport of a vector &;(g;) tangent to the geodesic line.
According to the above definition we can write

a(r)é(r) = ¢“(v), (6.100)

where «(t) is some function. This allows us to rewrite equations of parallel
transport (6.79) in terms of ¢“ and o

.
§* + Ted"g" — L4 =0 (6.101)

They are accompanied by the initial conditions

q“(t1) = qf, q“(t1) = a1 &y, (6.102)
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where o; = (). Hence, if y is the geodesic line, any parametrization ¢“(7) of it
obeys this equation for a certain «(7). Conversely, if the functions ¢*(7), a(7) obey
the problem (6.101), (6.102), the tangent field £¢ = O{qa obeys Eq. (6.79) and thus
is a parallel field along the curve ¢“(t). Hence the curve parameterizes a geodesic
line.

The Eq. (6.101) represent a system of n second order equations for n+ 1 unknown
functions ¢“(7), «(t). This implies that the solution to the problem (6.101), (6.102)
is not unique. This ambiguity is not surprising, since the geodesic line, being a set of
points in Riemann space, can be parameterized in various ways. We show now that
this ambiguity is exclusively due to the reparametrizations. Besides, any particular
parametrization is specified by the choice of the function «.

To start with, we show that any solution to the problem (6.101), (6.102)
determines the same geodesic line. In other words, a unique geodesic line passes
through a given point in a given direction. We also show that, given two solutions to
the problem, ¢“(7), a(t) and y*(z’), B(7’), the functions ¢“(t) and y*(z’) represent
parameterizations of the same line.

Starting from the solution ¢*(t), a(t), consider the functions g%(g') describing
the corresponding line. Substitution of Eq. (6.4) into the geodesic equation leads to
the equations for the trajectory ¢%(q")

q,,a + f‘abcq’bq’c = Oa 1ﬁm{bc = Fabc - q’arlbm (6103)

which do not contain «. Subject to the initial conditions'! following from (6.102),

@) = 4%, q%(q) = ?1, it has a unique solution. So, all solutions to the
1

problem (6.101), (6.102) give the same line ¢*(g").

Now we demonstrate that the set of solutions {¢“(t),«(r)} is in one-to-one
correspondence with the set {g“(t)} of all possible parameterizations of the geodesic
line.

Let ¢“(7), (z) and y*(z’), B(z’) be two solutions. Since the functions ¢*(7),
y4(7’) parameterize the same line, they are related according to

Y(r') = ¢"(x(x), (6.104)

where 7(z’) is some function, see Eq. (6.61). We substitute this expression into the
equation for y

94 T3Py — g =0, (6.105)

Note that they do not depend on « or on the length of £¢.
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and compare the result with Eq. (6.101). This gives the relationship between « and

B(<) = :;T/a(t(r’)). (6.106)
T

So, any two solutions are related by Egs. (6.104) and (6.106) with a function t(z’).
This implies that different functions & # B lead to different parameterizations ¢* #
y*. We can say that the set of solutions is “parameterized” by an arbitrary function
(7).

Combining the results, the problem (6.101), (6.102) is ambiguous, the complete
set of solutions being composed of the pairs ¢“(r), a(r), where a(r) is an
arbitrary function and ¢“(7) is the unique solution to the problem with « substituted
into Eq.(6.101). The set is in one-to-one correspondence with the set {¢“(t)} of
parameterizations of the same geodesic line. The fixation of the function « in the
geodesic Eq. (6.101) is thus equivalent to a choice of a particular parametrization of
the geodesic line.

Let us stress that, being of geometric origin, problem (6.101) itself has no
dynamical content: while it determines the geodesic line, it does not imply any
definite dependence on the parameter r. For each given parametrization ¢“(7) of
the line, there is «(7) such that the pair g%, o obeys the problem. The dynamics can
be “created” by hand, and we do this below specifying the function « (7).

Equation (6.100) shows that g*(t) is not a parallel field unless @ # const. The
same conclusion follows from the comparison of Egs. (6.79) and (6.101).

Geodesic Equation in Canonical Parametrization According to the previous
analysis, the function « in the geodesic Eq. (6.101) acquires any desired form after
an appropriate choice of parametrization. In particular, there is a parametrization
such that « = 1. Then Eq. (6.101) acquires a more simple form

§ + %P4 = 0. (6.107)

Comparing it with the parallel transport Eq.(6.79) we conclude that in this
parametrization the tangent vector ¢“ to the curve ¢“(t) turns out to be a parallel
field. The parametrization is known as the canonical parametrization of the
geodesic line. In contrast to Eq.(6.101), the Eq.(6.107) is not covariant under
reparametrizations.

Recall that parallel transport preserves the length of the transported vector:
8(gq) = v* = const for all 7. Then the curve ¢ = ¢ (!7) represents the
canonical parametrization with the unit tangent vector. It is known as the natural
parametrization.
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6.6 Example: A Surface Embedded in Euclidean Space

The surface S in the three-dimensional Euclidean space [E can be naturally endowed
with the Riemann space structure, which is induced by the Euclidean geometry
of E. Then various Riemann space constructions acquire a simple geometric
interpretation in terms of the Euclidean geometry of the environment space.

Let 7(g¢*) be the parametric equation of the surface. The notation we use is 7 =
x'e;, where x', i = 1,2, 3, stands for the cartesian coordinates of E, and q‘,a=1,2,
are the local coordinates on the surface. Let ¢“(7) be a curve on S. The equation
7(t) = 7(¢“(t)) describes its embedding into E. Consider the tangent vector to the

curve. Being a vector of E, it has the components V' = df;(f) . Being the tangent
vector to the surface, it has the coordinates v¢ = ‘fl‘f: in the local system g“. They
are related by
o O (6.108)
= V. .
aq°

The surface can be endowed with a Riemann space structure as follows. The
Euclidean scalar product (V, W) defines the induced metric g,, on the surface
according to the rule

I
(V.W) = v o v’ = guvi?. (6.109)
dq dgq®

This can be used to construct the Riemann connection (6.75), the covariant
derivative (6.68), and so on.

At each point M of the surface we construct a basis of E adapted to the surface.
The coordinate curves ¢' = 7, ¢*> = qlzw and ¢' = ‘111w ¢*> = 7 in the vicinity of M
determine the tangent vectors @, at the point M

o = dra’.ai) &, = @)
! dq! . dq? 2

Im am

(6.110)

They form a basis of the tangent space Ty (S) called coordinate basis. This can

be completed up to a basis of E by addition of the unit normal vector to the
[@1,02]

surface, which is constructed with the help of the vector product: n = G1dall”

The construction of the adapted basis is illustrated in Fig. 6.4 on page 218.
Now we are ready to rewrite the Riemann space quantities in terms of the
Euclidean space basis (&, 17).

Metric This is presented through the Euclidean scalar product of @, as follows:

8ab = (B, @p). (6.111)
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Fig. 6.4 For the semisphere X3
X = \/1 — ()2 — (x2)2 we
take x', 2 as the local
coordinates g', ¢*. Then the
coordinate lines through the
point g are obtained by
intersection of the sphere q
with the planes parallel to the
coordinate planes (x?, x*),

i

X
(x', x*). The induced metric . /\U i
is given by the Euclidean Wy
scalar product gg, = (&g, @p) o o

Connection The variation rate of @, along the coordinate lines is given by the

Euclidean vectors g‘jg . They can be decomposed in relation to the adapted basis; we
write

D) - -

an = Twdc + Napii. (6.112)

Computing the scalar product of this expression with @&, we obtain

N
I = gdg, 0p@dy) = 58 Dagap + OpGad — 0agab)- (6.113)

That is the coefficients I' appeared in Eq. (6.112) represent the Riemann connection.
Hence, Eq. (6.112) states that the Riemann connection determines the tangential part
of the coordinate basis variation.'?

Covariant Derivative Let V = 33; v® be the vector field defined along a curve
q°(7). Using Egs. (6.110), (6.111) and (6.112), its derivative along the curve can be
written as follows:

d

) V = Dv%@, + Nupv“d'n, (6.114)
T

where Dv? stands for the covariant derivative (6.77). This means that the covariant
derivative determines the tangential part of the variation rate of the vector V along
the curve, see Fig. 6.5 on page 219.

Parallel Transport According to Eqgs. (6.109) and (6.88), parallel transport along
a curve of S preserves the (Euclidean) angle between any pair of transported vectors
V and W. Let the curve be the geodesic line and W represent its tangent vector.
Then parallel transport preserves the angle between V and the line; see Fig. 6.6 on
page 219.

12N, are known as the coefficients of second quadratic form of the surface.
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Fig. 6.5 Tangent spaces at distinct point of the surface can have distinct orientations, so the
av

derivative ¢
T

‘ of the vector field V does not generally lie on the tangent space Ts(q). The covariant
q

derivative Dv is the tangential part of ‘(‘:,V
T

x3

x!

Fig. 6.6 The figure shows the vector field obtained by parallel transport of the vector § along the
closed contour on a sphere. The contour is formed by the geodesic lines: AB U BC U CA

6.7 Shortest Line and Geodesic Line: One More Example
of a Singular Action

A metric allows us to define the length of a line and also to introduce the notion of
the distance between points in Riemann space.

Consider the Riemann space M with the metric g,,. Let ¢*(t) be a parametriza-
tion of the line y. The length of the line is the number

)
5= / At/ g (@i, 6.115)
71
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which is a value of the functional S: {¢“(tr)} — R computed for any curve
q“(t) corresponding to the line. Let us confirm that Eq. (6.115) actually associates
a unique number to the given line. First, S does not depend on the choice of
coordinates, since the scalar product g(g,g) is invariant under the coordinate
transformations. Second, S does not depend on the parametrization of the line: if
¥ (z") = ¢*(z(z')) is another parametrization (see Eq. (6.61)), we obtain

‘L'é d a d b é
s = [a (suoeny) o)

% e
- /, de’ (gab(q(r(c’))) dg“(z(7")) dg”(z(z )))

dt’ dt’
1
5 de dg'(v)y dg ()| )’
= d ! a
/r{ T dr’ (g »(q(7)) ' dr |,
[9) 1
= / dr (2avq°d")* = S(g"(0)). (6.116)
7
that is:
SO“(c") = S(¢“(v)). 6.117)

In physical applications, this property is known as the reparametrization invariance
of the functional S.

Let y be the shortest line connecting the points q;, ¢» (that is S(y) < S(f),
where § is any other line between the points). Then the length of y is called the
distance between g; and ¢»: d(q1,q2) = S(y). Accordingly, to find d one looks for
the function ¢(7) that gives a minimum of the functional S. That is, we need to solve
the variational problem (6.115) with fixed ends. Owing to the reparametrization
invariance of S, solution of the variational problem is not unique, as it is clear
from Eq. (6.117). To analyze the ambiguity, let us find the equations determining
the shortest line. The variation of the functional (6.115) gives

1 [4” + Tea(g)g 4’| = 0. (6.118)
where
Hab — Sab _ q q g‘cb = Sab _ Aab7 (6119)
8(4.9)

and T'?.4(g) is the Riemann connection (6.75), which arises automatically in the
course of the variation.
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Exercise Obtain these equations.

Some important relativistic models (particle, string, membrane) are usually for-
mulated in terms of the reparametrization invariant action functionals (in this
formulation a relativistic invariance turns out to be manifest, see Sects. 1.7.4 and
Sect.7.4). So, the functional (6.115) represents a good laboratory for discussion
of this kind of model. If we try to treat Eq.(6.115) as an action functional of a
mechanical system with the Lagrangian L = \/ g(q, q), we find 3;,%.1 » ~ I1%,. From

Eq. (6.119) it follows that the matrix IT possesses the null vector ¢°:
144" =0, (6.120)

So det IT = det 33;36.1 = 0. Hence Egs. (6.115) and (6.118) represent an example of
singular Lagrangian theory. It can be shown that the singularity is a direct conse-
quence of the reparametrization invariance of the functional. The reparametrization
invariance (6.117) clearly shows that the Eq.(6.118) do not specify any definite
law for propagation of the “particle” g* along the line. This means that in the
reparametrization invariant Lagrangian theory the parameter t cannot be considered
to be a parameter of evolution.

The geodesic line Eq.(6.101) has similar properties; see page 216. Moreover,
comparing Eqgs. (6.107) and (6.118), we conclude that any solution to the geodesic
equation in canonical parametrization obeys (6.118). We now demonstrate that this
is not merely a coincidence.

Consider a Riemann space with the metric g and the Riemann connection I"(g).
Then we can write both the geodesic Eq. (6.101) and the shortest line Eq. (6.118).

We show an equivalence of the problems, establishing a one-to-one correspon-
dence between their solutions.

(A) According to Eq.(6.120), any solution ¢* = f“(r) of Eq.(6.101) obeys
Eq.(6.118)
(7 + T 7% = M4 %) = 0, (6.121)
o
(B) Let ¢g* = f“(7) be a solution to Eq. (6.118). Denoting

f+Tif =1, (6.122)

o =exp [ dtR.
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Thus, in Riemann space equipped with the Riemann connection, a geodesic line
from ¢q; to g, turns out to be the shortest line between these points. This means, in
particular, that we can use Eq. (6.101) instead of Eq. (6.118) to analyze the shortest
line, just as we did in Sect. 6.2.

Exercise Equations of the free relativistic particle ( ) " = O represent

xH
V@2
a particular case of (6.118), so they are equivalent to the system x* — g')'c" =0.
Show that any solution of the system has the form x(t) = b*f(t)+x; , where

b*, xg are constants, and f(7) is arbitrary function.

Projectors Ambiguity in solutions to Eq.(6.118) is related to pure algebraic
properties of the matrices I1, A, which have a simple geometric interpretation. By
construction, they have the properties

A% = A, n? =1, (6.123)
A =0, (6.124)
1=T1+A, (6.125)

Matrices with these properties are called projectors. Equation (6.125) implies
decomposition of an arbitrary vector into two parts

E=MI+ANE=TIE+AE=61 +§. (6.126)

Given ¢“ that specifies the projectors (6.119), we have

e N 6.127)
g(g,€1) =0. (6.128)

Hence, an arbitrary vector can be decomposed into a sum of its longitudinal and
transverse parts with respect to g: according to Eq. (6.127), & is a projection of §
on the direction of ¢, while Eq. (6.128) shows that &) is a projection of & on the
orthogonal to ¢ subspace.

In particular, let us decompose the vector ¢ from Eq. (6.122): t = ¢ + 7. Then
the shortest-line Eq. (6.118) reads #; = 0, giving a restriction on the transverse part
only. The longitudinal part of # can be arbitrary, which gives an algebraic explanation
of the ambiguity presented in solutions to the problem (6.118).

It has already been mentioned that det IT = 0. Let us demonstrate

rank [T =n—1. (6.129)
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From det IT = 0 it follows that rank I1 < n — 1. Suppose rank I1 < n — 1. Then I1
has at least one more independent null vector n # cg, ¢ = const. Equations (6.125)
and (6.127) then lead to the contradiction: n = I1n + An = An ~q.

Owing to the non-invertibility of IT, the system (6.118) does not have the normal
form. Equation (6.129) implies that IT has an invertible (n — 1) x (n — 1)-block.
Hence the system (6.118) is equivalent to a normal system of n — 1 equations for n
variables.

Exercise Supposing invertibility of the block I1%, «,,8 = 2,3,...,n,
obtain equations for the trajectory (6.42) from (6.118).

6.8 Formal Geometrization of Mechanics

According to Sect. 6.2, equations for the trajectory of a potential motion can be
identified with the geodesic line equations in canonical parametrization. As we
have seen, in this parametrization the evolution parameter t does not correspond to
the physical (classical mechanical) time. Our purpose now is to find the geometric
condition that picks out physical time among all the possible parameterizations of
the geodesic line. First we look for the equations of geometric origin that could
describe the complete problem. We demonstrate that equations of motion in a given
potential can be identified with the geodesic equation in a special parametrization
on a manifold with the affine connection specified by the potential. Further, the
manifold can be equipped with an appropriate metric, which is also specified by the
potential. Then, the special parametrization can be fixed from the pure geometric
condition that the tangent vector to the geodesic curve has a unit length in this
metric. That is we have geodesic motion with unit speed. In this way, we arrive
at the fully geometric treatment of the potential motion problem.
Consider the action

1
S=/ﬁﬂfm@¢¢—vwn (6.130)

in the generalized coordinates ¢“(t). Here ;cab(q)é]“c}b is the kinetic energy and
U(q) is a potential. This leads to the equations of motion

i+ T%(0)¢"G + ¢ 0,U = 0, (6.131)

where the coefficients I'(c) are given by Eq. (6.75). We wish to hide the potential
term in the connection coefficients. So, let us write ['“y.(cge) = F“;,C(ql& 8de),

where g, = ¢cqe, and try to choose the function ¢ (U) that allows us to identify
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the equations of motion with the geodesic equations. In this notation Eq. (6.131)
acquires the form

¢

4 D)

1
g + g (2 ¢g(i1, §)0pd + ¢a;,U) =0. (6.132)

Except for the last term, it is similar to the geodesic equation. The last term depends
on the velocity and cannot be generally canceled by the choice of ¢. But it can be
achieved for solutions with a fixed total energy. Indeed, let g“(7) be a solution with
the total energy &

(I B
5 ¢g(q, g9+ Ulg) = h. (6.133)

If we substitute the solution into Eq. (6.132), the last term of the equation acquires
the form d.¢(h — U) — ¢pd.(h — U). It vanishes if we take ¢ ~ (h — U). The
conventional choice is ¢ = 2(h— U). Then any solution to (6.131) with fixed energy
h obeys the equation

&+ T%2Mh— U)o)i g + =0. (6.134)

h—u?
This is identical to the geodesic Eq.(6.101) in the parametrization (the factor 2
below is also conventional)

a=2(h-U), (6.135)

on a manifold with the affine connection I"“;.(2(h — U)c) (so far without a metric!).
By analogy with Eq. (6.107), the Eq. (6.134) can be called the geodesic equation in
dynamical parametrization."?

The equation obtained is not yet of geometric origin, since the particular
parametrization has little sense from the geometric point of view. We now improve
it by pointing out a geometric condition equivalent to the parametrization. In the
above construction we dealt with n differential equations for » unknown functions
q“(7). The geometric condition can be formulated in a slightly different context of
n + 1 equations for n 4 1 variables. We return to the reparametrization-covariant
Eq. (6.101) with an arbitrary function «(7), and add one more equation that implies
fixation of o according to (6.135). For the equation, the natural candidate is the
constant energy condition (6.133), which we write in the form

Cab

Gud'dd =1, Gy = )
bq 4 b 2(h—U)

(6.136)

BFor the case of the Riemann connection, dynamical parametrization is precisely the natural
parametrization, see page 216.



6.9 Three-Dimensional Acceleration and Speed of Light in General Relativity 225

Let us equip the manifold with the metric G,,. Then the equation states that the
vector ¢“ is of unit length. Now, on the Riemann manifold with the metric G and the
affine connection I"'(2(h — U)c) let us consider the system

. b a,
G+ T%Q2Mh—U)e)d " + aq“ =0, (6.137)
Gui'q" = 1. (6.138)

This problem turns out to be equivalent to the potential motion problems (6.130)
and (6.131). To confirm this statement, let ¢*(t), «(7) be a solution to the problem.
The Eq. (6.137) implies that the vector field §&¢ = ;qﬂ is parallel along the geodesic
line; see Sect.6.5. Since our affine connection looks like the Riemann connection
constructed on the base of tensor g, = 2(h — U)cap, the vector £ obeys (see
Eq.(6.88)) g(£,6) = v?> = const, or, equivalently, 2(11—(1121)c-,,,, g°q® = v>. Using
Eq. (6.138), we conclude that « = 2(hv_U). With this «, the Eq. (6.137) coincides
with the Eq. (6.134). Therefore the functions ¢“(t) describe the potential motion.

To sum up, the potential motion problem (6.130), (6.131) can be described in
geometric terms as follows. The configuration space is endowed with the Riemann
space structure introducing the metric G, = 2(2“—1’0) and the affine connection (6.75)
constructed on the base of the tensor g, = 2(h — U)cy. Then the configuration
space particle ¢“(t) with total energy & moves along the geodesic line with unit
speed computed with respect to the metric G. The motion can be described by
equations of geometric origin (6.137) and (6.138). Equation (6.137) states that the
particle chooses the geodesic line as the trajectory of motion. Equation (6.138)
means that among all the parameterizations of the geodesic line, the particle chooses
the one that implies its unit speed with respect to the metric G.

6.9 Three-Dimensional Acceleration and Speed of Light
in General Relativity

To describe gravitational forces in the theory of general relativity [15, 16], we
replace the Minkowski space by a four-dimensional Lorentz manifold (that is a
manifold with metric of signature (—, +, +, +))

M3 = (-, (), goo < 0}. (6.139)

This implies that instead of Lorentz transformations we now deal with a general
transformations of coordinates (6.51), so equations of general relativity should
be written in a covariant form with respect to these transformations. For a given
distribution of material bodies, metric is determined according to Einstein equations.
The metric represents a gravitational force in the following sense: equations of
motion of a point particle follows from the variational problem (6.115), that is its
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trajectory is a geodesic line. Hence in a gravitational field the particle follows a
shortest line of the metric g, , instead of a straight line in absence of the gravity.

To discuss the physics behind this abstract four-dimensional construction, we
should establish a correspondence between the quantities computed in an arbitrary
coordinates of the Riemann space and the three-dimensional quantities used by
an observer in his laboratory. We discuss the most simple part of this problem
which consist in determining of basic differential quantities of three-dimensional
geometry: infinitesimal distances, time intervals, velocity and acceleration.

An interesting subject that will be discussed in this context is the notion of speed
of light in general relativity. By construction of Lorentz transformations, the speed
of light in special relativity is an observer-independent quantity. In a curved space
we replace the Lorentz transformations on the general-coordinate ones, so we need
to ensure the coordinate-independence of the speed of light for that case. It turns
out that this essentially determines the relationship between the four and three-
dimensional geometries. In particular, we define the three-dimensional acceleration
which guarantees that the particle propagating along a four-dimensional geodesic
can not exceed the speed of light. These results will be used in Chap. 9 for discussion
of a rotating body in general relativity in the ultra-relativistic limit.

Coordinate Independence of Speed of Light Consider an observer that label
events by some coordinates of pseudo Riemann space (6.139) to describe the motion
of a particle in a gravitational field with metric g,,. Formal definitions of the
three-dimensional quantities can be obtained representing four-interval in 1 4 3
block-diagonal form

—ds* = guvdxldx” =
2 |:J—goo( L 8% g )i| ( 25— gOing) ddid
¢ 800 ‘ 800

This prompts to introduce infinitesimal time interval, distance and speed as follows:

_ > At
dr = V780 (g0 4 8O iy = Soudr" (6.140)
c 800 C\/—goo
; dl
P = (g;— 5" go’)dx dr = yyarad.  v=". (6.141)

Therefore the conversion factor between intervals of the world time % " and the time
dt measured by laboratory clock is

dt - i dx!

_ i g00(1+ goi dx

0 . o i (6.142)
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Introduce also the three-velocity vector v with components

: dr \ 7 dxl
v={ o) o (6.143)

or, symbolically, vl = dd);'. We stress that contrary to dffw the set (jt, d‘)‘;,.) is non-
holonomic basis of tangent space. This does not represent any special problem for
our discussion since we are interested in the differential quantities, such as velocity
and acceleration.

The Eq. (6.143) is consistent with the above definition of v: v? = (Zﬁ)z =v=
v'y;v. In the result, the interval acquires the form similar to special relativity (but

now we have v2 = vyv)

2
—ds® = —2dP + dPP = —2d? (1 — ZZ) . (6.144)
This equality holds in any coordinate system x*. Hence a particle with the
propagation law ds®> = 0 has the speed v> = ¢?, and this is a coordinate-independent
statement. The value of the constant ¢, introduced by hand, is fixed from the flat
limit: Eq. (6.140) implies df = cdx” when g, — 1y
For the latter use we also introduce the four-dimensional quantity

dt \ 7! axt dr\ !
ot = (dxo) o = ((de) , v). (6.145)

Combining the Egs. (6.143) and (6.142), we can present the conversion factor in
terms of three-velocity as follows:

dt -1 i i
( 0) 0= ¢ _su (6.146)
dx J—8w &

These rather formal tricks are based [16] on the notion of simultaneity in general
relativity and on the analysis of flat limit. As we saw in Sect. 1.3, four-interval of
special relativity has direct physical interpretation in two cases. First, for two events
which occur at the same point, the four-interval is proportional to time interval, dt =
— “;‘. Second, for simultaneous events the four-interval coincides with distance, dl =
ds. Assuming that the same holds in general relativity, let us analyze infinitesimal
time interval and distance between two events with coordinates x* and x* + dx*.
The world line y* = (y°,y = const) is associated with laboratory clock placed at
the spatial point y. So the time-interval between the events (y°,y) and (,° + d)°,y)
measured by the clock is

d —
dr = 95 Z V780 0 (6.147)
Cc Cc
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Fig. 6.7 Definition of J
simultaneous events. The

vertical line represents a -,
world-line of the laboratory P
clock. The points y?l) and y?z) s
nave have null-interval with unoo & 0_ l 0 + 0
x*. Then the middle point y° X < y= 2 (y(l) Y(z))
represents the event ~
simultaneous with x* ~

—0 0
L y(ol )_X 'dX +

Consider the event x* infinitesimally closed to the world line (y°,y = const). To
find the event on the world line which is simultaneous with x*, we first look for the
events yi‘l) and yé) which have null-interval with x*, ds(x*, yf;)) = 0. The equation

guvdxtdx” = 0 with dx* = x* — y* has two solutions dx’, = goidx' 4 “/dfydx, then
800 /—800

Yoy = &% —dx% and y{,) = x* — dx?. Second, we compute the middle point

goidx'
800 '

1
W=, 00 ) =X+ (6.148)

By definition,'* the event (y°,y) with the null-coordinate (6.148) is simultaneous
with the event (x°, x), see Fig. 6.7 on page 228. By this way we synchronized clocks
at the spatial points x and y. According to (6.148), the simultaneous events have
different null-coordinates, and the difference dx” obeys the equation

idx!
ax® + S o, (6.149)

8oo

Consider a particle which propagated from x* to x* + dx*. Let us compute time-
interval and distance between these two events. According to (6.148), the event

idx!
(xo a4 S x) , (6.150)
800

at the spatial point x is simultaneous with x* 4 dx*, see Fig. 6.8 on page 229. Time
and distance between the events x* and x* + dx*. Equation (6.150) determines the
event A (at spatial point X) simultaneous with x* 4-dx*. So the time interval between
x* and x* + dx* coincide with the interval between x* e A, and is given by (6.151).

141 the flat limit the sequence y’é ) xH, yt‘z) of events can be associated with emission, reflection
and absorbtion of a photon with the propagation law ds = 0. Then the middle point (6.148) should
be considered simultaneous with x°.
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Fig. 6.8 Time and distance between the events x* and x* + dx*. Equation (6.150) determines
the event A (at spatial point X) simultaneous with x* + dx*. So the time interval between x** and
x"* 4+ dx" coincide with the interval between x* e A, and is given by (6.151). Distance between x**
and x* + dx* coincide with the distance between x* + dx* and A, the latter is given in (6.152)

Distance between x* and x* + dx* coincide with the distance between x* + dx* and
A, the latter is given in (6.152).

According to (6.147) and (6.148), the time interval between the events x*
and (6.150) is

80i
800

dr = V78 (0 1 8 i), (6.151)
Cc

Since the events x* 4 dx* and (6.150) are simultaneous, this equation gives also
the time interval between x* and x* + dx*. Further, the difference of coordinates
between the events x* + dx* and (6.150) is dz/* = (— g;ixl,dx"). As they are
simultaneous, the distance between them is

80i80j Ydxidy' = yjdx'dx. (6.152)

dP = —ds* = g,,dz"d7" = (g; —
800

Since (6.150) occur at the same spatial point as x*, this equation gives also the
distance between x* and x* + dx*. The Eqgs. (6.151) and (6.152) coincide with the
formal definitions presented above, Eqs. (6.140) and (6.141).

Three-Dimensional Acceleration We now turn to the definition of three-
acceleration. As we saw above, the particle in general relativity follows a
geodesic line. If we take the proper time to be the parameter, geodesics obey
the system (6.107)

dxt d2xt dx® dxP dx* dx”
Ry o7 Y20, g T =21 (6.153)
ds ds

= rH,
ds ds? + b ds ds

N
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where
n Lo
r aff = 28 (aagvﬂ + aﬂgow - avgaﬂ)- (6154)

Due to this definition, the system (6.153) obeys the identity g,,, dzl‘:l Dy ‘Z‘; = 0. The
system in this parametrization has no sense for the case we are interested in, ds* —

0. So we rewrite it in arbitrary parametrization t

dvd (dvdety (de ZFM ()dxadxﬁ_o v 1
ds dv \ ds dv ds P g ar T ds | J—igi

this yields the equation of geodesic line in reparametrization-invariant form (this is
another form of Eq. (6.118))

1 d [ i+ i P
=-TI#, . 6.155
J—igi d (J—xgx) P8 gt i (153
The formalism (6.140)—(6.144) remains manifestly covariant under subgroup of
spacial transformations x° = X0, x¥ = x(xV), g;‘,l] = da'j(x'). Under these

transformations goo is a scalar function, go; is a vector while g;; and y;; are tensors.
Since gly; = 8, the inverse metric of y; turns out to be (y )7 = g¥. Introduce
the covariant derivatives Dy of a vector field £/ (x°, x¥)

i

0 = .
3%‘ + Flkj()/)éj. (6.156)
Xk

D =
The three-dimensional Christoffel symbols fijk(y) are constructed with help of
three-dimensional metric y;(x°, xX) written in Eq. (6.141), where x° is considered
as a parameter

o 1 .
Iy(y) = ZV'“(ajVak + 0kYaj — 0aVi)- (6.157)

As a consequence, the metric y is covariantly constant, Dyy; = 0.
The velocity (6.143) behaves as a vector, v/(x°) = a’;(x’*(x°))v”(x), so below
we use also the covariant derivative

;oodv - v
Dov' =+ T v (6.158)

We associated with M(1¥ the one-parameter family of three-dimensional spaces
M?, = {x*, y;, Dryy = 0}. Note that velocity has been defined above as a tangent
vector to the curve which cross the family and is parameterized by this parameter,
X (x9).



6.9 Three-Dimensional Acceleration and Speed of Light in General Relativity 231

To define an acceleration of a particle in the three-dimensional geometry, we
need the notion of a constant vector field (or, equivalently, the parallel-transport
equation). In the case of stationary field, g, (x), we can identify the curve x(x°)
of M- with that of any one of M3, = {x*, y;(x")}. So we have the usual
three-dimensional Riemann geometry, and an analog of a constant vector field of
Euclidean geometry is the covariantly-constant field along the line x'(x°), Doé’ = 0.
For the field of velocity, its deviation from the covariant constancy is the acceleration

; dt -1 , dt -1 dvi . .
@ = (dxo) Dov’ = (dxo) g0 T TRV (6.159)

To define an acceleration in general case, y;; (xo, x'), we need to adopt some notion
of a constant vector field along the trajectory x'(x°), that cross the family Mio. In
Euclidean space the scalar product of two constant fields does not depend on the
point where it was computed. In particular, taking the scalar product along a line
x'(x°), we have dZO (¢,n7) = 0. For the constant fields in our case it is natural to
demand the same (necessary) condition: /% [&'(x) y;(x%, x'(x)) 7 (x)] = 0. Taking
into account that Dyy;; = 0, this condition can be written as follows

1 - 1 _
(Do§ + §doyy L) + (&, Don + 57 '9oym) = 0.

So we take the parallel-transport equation to be

R 1 X
Do’ + 2(Saow“)‘ =0. (6.160)

Deviation from the constant field is an acceleration. So we define the acceleration
with respect to physical time as follows:

-1
ad = ( dt) [Dovi + ;(V30yy_l)i:|. (6.161)

dx?

For the special case of stationary field, g, (x%), the definition (6.161) reduces to that
of Landau and Lifshitz, see page 251 in [16].

Maximum Speed of a Particle in Gravitational Field The extra-term appeared
in this equation plays an essential role to provide that longitudinal acceleration
of geodesic particle vanishes as v — c¢. As a consequence, the particle in a
gravitational field can not exceed the speed of light. To show this, we compute the
longitudinal acceleration (vya) implied by geodesic equation (6.155). Take T = x°,

then /—igt = % /c2 — vyv, and spatial part of (6.155) is

dx0

i\ d vl fi

- , (6.162)
(dxo) dx® \fe2 —vyv  \Je2—vyv
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where

dt
dx°

dt

2 1
) F‘OO—F‘jkv’vk—Z(dxo) Fl()kvk = —]—;ivvllv‘f’

(6.163)

Fr) = - (

is non-singular function as v — c¢. Computing derivative on the Lh.s. of (6.162),

i . . . i
we complete Z;)() up to covariant derivative Dyv'

d v dt vl d

= Dov' — I (y)v/v* . (6.164
dx° /2 —yyvy ov #(y)vv dx® + 2(c? — vyv) dx0 NEAZEE )

For the derivative contained in the last term we find, using covariant constancy of y

d .
40 [vy(x°, x)V] = 2vyDov + vdoyVv + vDoyv = 2vyDov 4+ vdpyv.  (6.165)

Then (6.162) acquires the form

"' . ; (vdoyv) A
M Do/ = f 4 Dk, 6.166
(deo) oo, 20 ] = Pt w60
where
M =6+ I;(Vy)f . (6.167)
c? —Vyv

We apply the inverse matrix

=6 " (CVZV)J', (6.168)
and use the identity
2 — .
M= TV (6.169)
C

then

dr\7" : 9 . o
(d 0) [Dov’ L+ v Oyv)v’} = M [ + '], (6.170)
X C
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Next, we complete Dyv’ up to the acceleration (6.161). Then (6.170) yields

-1
a = ! ( i ) |:(V30VV_1)i - (VB;)zyv) vi:| +

2 \ax?
MY[=TI 0" + Ply(y)v*o’]. (6.171)
Contracting this with (vy);, we use (vy)M/ = CZ_CZV"V(V)/)J- and obtain the

longitudinal acceleration

-1
vya = ! ( di ) [(vaoyv) — (vdoyv) (vyv):| +

T2 \dx® c?
(1="07) oL + Pl (6.172)
This implies vya — 0 as vyv — 2.

The last term in (6.161) yields the important factor (vdyyv) in Eq. (6.172). As the
equations of motion (6.171) and (6.172) do not contain the square root \/ 2 —vyv,
they have sense even for v > c¢. Without this factor, we would have vya # 0 as
vyv — 2, so the particle in gravitational field could exceed c and then continues
accelerate. The same happen if we try to define an acceleration using usual derivative
instead of the covariant one.

Let us confirm that ¢ is the only special point of the function (6.172). Using
Egs. (6.154), (6.141)—(6.145), (6.157) and the identities

ji j 8oi
vig* =8*  yd®=-"", (6.173)
8oo

we can present the right hand side of Eq. (6.172) in terms of initial metric as follows

2 —vyv ¢ dr\ !
vya v [( ) 0800 + v*drgo0]—

"~ 2c/—800 | /=800 \dx°
dt \ 2 dr\ 7!
90800 (dxo) — 20080k (dxo) vk — aog;dvkvl} =
2 —vyv c oy
26‘\/—g00 \/—goo v aug()o — 80g,wv v . (6.174)

The quantity v* has been defined in (6.145). Excluding v° according to this
expression, we obtain

 —vyv (vF0 ;

14 { k800 _230( 80

vya =
2/—800 | /=800 V=800

A | o
) v — BOyijv’v’} . (6.175)
c
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For the stationary metric, g, (x*), the Eq. (6.175) acquires a specially simple form

5
vya = —(c — vpv) vzg"j)OO. (6.176)

This shows that the longitudinal acceleration has only one special point, vya — 0
as vyv — c2. Hence the spinless particle in the stationary gravitational field can not
overcome the speed of light. Then the same is true in general case (6.174), at least
for the metric which is sufficiently slowly varied in time.

While we have discussed the geodesic equation, the computation which leads to
the formula (6.172) can be repeated for a more general equation. Using the factor
/—Xgx we construct the reparametrization-invariant derivative

D = b (6.177)
- J—kgrdr’ '
Consider the reparametrization-invariant equation of the form
DDx*(t) = FH¥(Dx',...), (6.178)

and suppose that the three-dimensional geometry is defined by g, according to
Eqgs. (6.140)—(6.143). Then Eq. (6.178) implies the three-acceleration

a = M;[(? = vyv)F + [y(y)v*o'] +

1 (dr\"! i
z(dxto) [(Vaow‘l)’—;(vao)fV)] (6.179)

and the longitudinal acceleration

2 —vyv)?
vya:( Czy ) (VvyF) +

2 -1

- —Vyv ~i g, L[ dt
2 |:(V7/)if w)vvt (dxo)

v

The spatial part of the force is F' = ]-""(\/; ), where v* is given by (6.145),
2—vyv

(VB())/V):| . (6.180)

and the connection I «(y) is constructed with help of the three-dimensional metric
Vi = (8ij — g;i)g()of' ) according to (6.157). For the geodesic equation in this notation

we have F' = —I'i,, "' With this F' the Egs. (6.179) and (6.180) coincide

KV 2—yyy
with (6.171) and (6.172).
Eq. (6.180) shows that potentially dangerous forces are of degree four or more,
FI ~ (Dx)*.



Chapter 7
Transformations, Symmetries and Noether
Theorem

Abstract It was mentioned in Sect. 2.5 that conservation laws play an important
role in the analysis of classical and quantum systems. This chapter is mainly devoted
to discussion of the first Noether theorem (Noether, Invariant variation problems.
Gott. Nachr. 235 (1918); Transp. Theory Stat. Phys. 1(3), 183, 1971) which gives
the relationship between the existence of conservation laws for the system in
question, and global symmetries of the associated action functional. The symmetries
usually have a certain physical interpretation; in particular, they may reflect some
fundamental properties assumed for our space-time: homogeneity, isotropy, ....
In this case, the Noether theorem states that conservation laws are consequences
of these properties. For example, symmetry under spatial translations implies the
conservation of the total momentum of a system.

It was mentioned in Sect.2.5 that conservation laws play an important role in
the analysis of classical and quantum systems. This chapter is mainly devoted
to discussion of the Noether theorem, which gives the relationship between the
existence of conservation laws for the system in question, and symmetries of
the associated action functional. The symmetries usually have a certain physical
interpretation; in particular, they may reflect some fundamental properties assumed
for our space-time: homogeneity, isotropy, .... In this case, the Noether theorem
states that conservation laws are consequences of these properties. For example,
symmetry under spatial translations implies the conservation of the total momentum
of a system.

To demonstrate an idea of the Noether theorem, let us consider the following
special situation. Starting from any given trajectory ¢“(z), let ¢“(r) = ¢“(r) +
R%(q(r))w be a family of trajectories parameterized by the parameter w. Here
R%(q) is a given function. Suppose that the Lagrangian action is invariant under the
substitution ¢ — ¢/, that is S[g'] = S[g], for any given ¢(z) and w. In particular, the

variation of the action must also be zero: §S = S[¢'] —S[g] = 0.0n

linear on w part
other hand, the variation is given by the well-known expression §S = ij + (BL. R).

g
Due to invariance, we obtain (ggR)' = —‘g;R. The identity holds for any g(7). In
particular, if g(t) is a solution to the equations of motion: gfz = 0, the identity

implies (gg R)" = 0. That is the quantity aaqLa R“ is a constant throughout any solution.
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Besides the Noether theorem, we discuss some closely-related topics: the notion
of local symmetry, the notion of symmetry for equations of motion, its relationship
with the symmetry of an action, the relationship between the Lagrangian and
Hamiltonian symmetries, Galileo and Poincaré symmetry groups and so on. The
reader who is interested only in the Noether theorem can skip to the corresponding
section after reading the first one.

7.1 The Notion of Invariant Action Functional

Here we discuss the intuitive notion of invariant action with simple examples. Exact
definitions will be given in the next section. Consider a free particle action functional

1

5=, / At (7.1)

Given the numeric matrix R, let us make the following formal substitution
x* = Rapx’, (7.2)

in Eq.(7.1). It gives a functional that is generally different from (7.1),
é [ dt(RTR) »x“". But for the orthogonal matrix, RTR = 1, the substitution does
not change the Lagrangian as well as the action functional

1 1
5 / dt(RTR) 53" = 5 / dri®x”, thatis S[Rx] = S[x]. (7.3)

In this case it is said that the action is invariant, and the corresponding substitution
is called a symmetry transformation of the action.

It should be noted that an action functional is an operation defined on functions
f“(7) instead of coordinates x“. So consistent treatment of Eq. (7.3) implies that we
work with the function x* = f“(t) and assign to it the function x* = f"“(1r) =
Ruf?(t) induced by the substitution (7.2). Bearing in mind this correction, the
above-mentioned terminology is reasonable.

To show the meaning of invariance property (7.3) we remind its two applica-
tions.

(A) The symmetry turns solutions to equations of motion into other solutions. So
in practice it can be used to construct new solutions from known ones.

To confirm this, take a trajectory x* = f“(¢), and construct another one,
x4 = f%t) = Ruf’(f), induced by the substitution (7.2). Invariance implies
that the action has the same value on these trajectories, S[f’] = S[f]. Consider
now a set of trajectories {f, g%, ...} with the same initial and final points, and
let f represent the true trajectory, that is S[f] < S[g] for all g of the set. All the
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transformed trajectories {f’, g, ...} have the same initial and final points. Due
to the invariance, one obtains S[f] < S[g'].

(B) Recall that an orthogonal matrix corresponds to a rotation of the cartesian axis.
So we identify the substitution (7.2) with a transformation relating cartesian
coordinates x* and x'* used by two observers, O and O’

X4 = Rypx?, (7.4)

Now x and x’ stand for coordinates of the same point of configuration space. If
O uses the functions x* = f%(¢) to describe a trajectory, the observer 0" will
describe it by the function X'* = R,,f"(f). According to Sect. 1.4.2, to study the
motion, O’ can use an action obtained from (7.1) by the change of variables,

x4 = Ra;,x where R is the inverse matrix for R. It reads

1
S’ = 5 / dt(RTR) " = 5 / a3 = S[x']. (7.5)

The second equality is due to the invariance. That is an invariance guarantees
that O’, describing the system, can take the same action as O, simply using his
own coordinates x” instead of x. This implies an identical form of equations of
motion in the two systems. If F(x,x) = 0 stands for an equation obtained by
O, then F(x', X') = 0 with the same F represents this equation in the system O’.
One can say that physical laws have an identical form in the coordinate systems
Oand O'.

Disregarding the total derivative term, the action (7.1) is also invariant under the
Galileo boost t — t, x* — X' = x* + v%, v* = const

S = ; / dr(x® + v")? = ; / dr ((5;“)2 + jt(zu“x“ + vzt)) . (7.6)

Although now S[f’] # S[f], it still turns solutions into solutions. Hence it would be
reasonable to admit a total derivative term in the definition of an action symmetry.
One more example is the relativistic particle

S = —mc/dt«/cz — X%, g=1,2,3. (7.7)

The Lorentz boost, that is the substitution

1 v 1
t—>1t = (t— 2xl), x =X = (! —vr),
\/1 _ 2 C \/1 2
L.Z C2
X =X, X=X, (7.8)

leaves the action invariant for any value of the numeric parameter v.
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Exercise Verify the invariance, S[¢’, x'] = S[t, x], using the rules for derivative
of a parametric function (we will confirm them in the next section)

/1
dx’! dfh dx® d;f
= =4 a=12 (7.9)
t dt dt
dt t

This symmetry mixes space coordinates with time variables, that is, here we deal
with coordinate transformation of the extended configuration space #, x*.
As an example of non-linear symmetry, consider the action

1 xxP o
S = Z/dt(aaﬁ + 1—(x3’)2)x WP, oaBy=102. (7.10)

This describes a free particle moving on a two-dimensional semisphere of unit
radius. Besides the two-dimensional rotations, X'* = Raﬁxﬂ ,RTR = 1, it is invariant
under the transformation

xt =, = X2 =x*cosp + /1 — (x)2sing, (7.11)

for any value of the parameter ¢. One more symmetry is obtained from (7.11)
replacing x' < x%.

Exercise Show the invariance. Hint: First notice that the Lagrangian can be
written as J ((i%)? + (i*)?), where x> = /1 — (x)2. Second, show that (7.11)
implies x> = —x?sinp + x* cos ¢.

According to these examples, we should define the notion of invariant action under
the family of coordinate transformations of extended space of the form

T v = a(t, ¢, o%)
(qa) < (q/a — wa(t’ qa’wa)) . (712)

When the family is parameterized by a set of numeric parameters w®, we deal with
the global symmetry. When w® are functions of 7, we deal with the local symmetry.
In the latter case we can consider a more general expression for the transformations,
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admitting the terms with derivatives of the parameters

! a o N S\
(qt" ) < (qz =_ ;‘(‘E;qq;ww;‘wd);‘wd)‘;. )) ) ' (7.13)
These transformations will be taken as the starting point of our discussion in the next
section. The definitions given below equally work for global and local symmetries.

Comments (1) An example of a transformation with t’ dependent on ¢* is the
relativistic particle. An example of a transformation with ¢’ dependent on t is the
Galileo boost. We also point out that a typical form of transformations in classical
(non relativistic) mechanics is either ' = (1), ¢ = q;or v/ = 7,4 = ¥ (z,q).
That is, either T or g remains unaffected. In contrast, the form (7.12) turns out to
be typical for symmetry transformations in field theories (with the corresponding
substitutions T — x*, ¢* — @*(x*) ).

(2) In general, neither a composition nor an inverse transformation are guaranteed
to be members of a family. But the families arising in physical applications typically
possess these additional properties, forming the so called Lie groups.

Suppose a family of transformations obeys the following properties. (A) The
product (that is, a consecutive application) of two transformations of the family
is a member of the family as well: g(w;)g(w) = g(ws(wz, w1)). (B) The family
contains a unit. It is an element e with the property eg = ge = g for any g (for our
case it is the identity transformation, e = g(0), see (7.17)). (C) For any g an inverse
transformation g is a member of the family, that is § = g(w) for some w. A family
equipped with a product obeying these properties is precisely a Lie group.

(3) The families of transformations discussed above are examples of a Lie group.
Specifically, for the Galileo boosts g(v?) : x* — x™* = x* + v, note that X" =
X+ vir = x*+ (v§ +v{)r. That is, the product gives a boost parameterized by sum,
g(v2)g(v1) = g(v2 + v1). The unit element is e = g(0), and an inverse for g(v?) is
given by g = g(—v%).

Exercises

(1) Show that the family (7.11) form a Lie group with the same composition
law as for Galileo boosts: g(¢2)g(¢1) = g(@2 + ¢1).

(2) Show that the transformations g(R,a) : x — ¥ = Rx + a,R # 0 of
one-dimensional space parameterized by x form a Lie group. Find the
composition law, a unit and an inverse element.
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7.2 Coordinate Transformation, Induced Transformation
of Dynamical Variables and Symmetries of an Action

We present here two equivalent definitions for an action symmetry. We start from the
definition that makes the concept clear and then deduce from it the other one, usually
used in practical calculations. It is worth noting that the notion of symmetry and the
Noether theorem work both for mechanical and field theories that can be described
by equations of motion obtained from the variational problem for a functional. It
can be a Lagrangian or Hamiltonian action functional, or some other. We start from
the Euler—Lagrange equations. The Hamiltonian version of the Noether theorem is
discussed in Sect. 7.12.

Consider a dynamical system described by equations of motion following from
the action functional

S[q]z/ dtL(¢%, 4% 1), (7.14)

defined in the space of functions ¢ = f*(t), t C [r1, T2]. In this section it will
be convenient to use a different notation for coordinates: g“, and for the curves:
q* = f*(v), thatis formaps f : R = {r} — R" = {¢“}.

Consider the extended configuration space parameterized by the coordinates t,
¢ R = R x R" = {(r,¢%)}, and a family G = {g(w%)} of coordinate
transformations specified by given functions o, ¥“, and parameterized by k numeric
parameters %, o = 1,2,...,k

8(@”) : (.4") — (7'.¢") = (a(r.¢", ). ¥“(z.¢". ©")). (7.15)

We adopt “an active point of view”, that is the transformation g turns
a point with coordinates (z, ¢) into another point, with the coordinates
(a(z, g%, 0%), ¥(z,¢% w*)). That is (', ¢"*) are labels of the transformed point
in the same coordinate system. The transformation is presumed to be invertible

(o, ¥)
a(t.qb)

Suppose also that the parametrization has been chosen in such a way that transfor-
mation with ®* = 0 is the identity transformation

det # 0. (7.16)

a(r,q%,0) =1, v (z,q% 0) = ¢“. (7.17)

Where this cannot lead to confusion, we suppress the parameters w* (as well as the
indices of the coordinates: g — ¢, ¥* — ¥ and so on).
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Fig. 7.1 Coordinate q
transformation g induces the
map *g : f — f in the space
of functions

g~ q'=f (1)

Equation (7.15) represents a coordinate transformation, while an action func-
tional is an operation defined on functions. To formulate consistently how S is
affected by a coordinate transformation, we need to decide how the map g acts
on a function (7). We identify the function with its graph in extended space (see
Fig.7.1 on page 241)

Iy = {(z.f(1)), © C[r1, o} (7.18)

The map g transforms it into another graph, I'y/, and the problem is to find the
corresponding function /(7). This leads to the following rule for transformation of
a function:

xg 1 f(1) = f(v) = Y(d(r).f(d(1). T C la(t.f(n)). a(n.f(r2))].
(7.19)

Here d(7) is, for each given f(t), an inverse function for «(z,f (), w*) considered
as a function of 7, that is:

a(@(7).f(a(r) = ala(r.f(r) =T (7.20)

Indeed, under the map g the point t = 0,9 = f(0) goes over to the point with
coordinates

t=a(0.f(0),  gq=V(O.f0). (7.21)

The equalities represent the parametric equations of the graph I'. Resolving the
first equation with respect to o, 0 = &(t), and using this to eliminate the parameter
from the second equation, we arrive at Eq. (7.19).
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Now, for a given function /“(z), let us construct the image f*(z), and compute
the same functional (7.14) on f”

a(r2.f(2))

SLf] = Slxgf] = / e (7.22)

Definition 1 Coordinate transformations (7.15), represent symmetry of the
action (7.14) (variational symmetry), if for any f“(r) and w* there is a function
N(f,f, 7, w) such that:

a(n2.f(12)) . () . dN
/ dtL(f"".f° t) = / dt |:L(fa,fa, ) + i| . (7.23)
a(nr (1) . dt

Let us stress that Eq.(7.23) represents equality of two numbers. In particular,
in many practically interesting cases, one has N = 0, then for any f and the
corresponding f’, the number S[f] must be equal to the number S[f].

Note that the inverse function & appeared in (7.19) depends on a particular f, so
the obtained representation is rather formal. Let us rewrite the invariance condition
in terms of & and V. As it is written, the invariance condition is presented in terms of
the same functional computed on two different functions (initial and transformed).
We now come back to the initial function on the Lh.s. of Eq. (7.23), thus obtaining
the invariance condition in terms of the initial and some transformed functionals,
both computed on the same function. At the end, we obtain the invariance condition
in a form which is convenient for applications, as an algebraic property of a
Lagrangian function under the coordinate transformations (7.15).

To achieve this, we make a change of variables in the definite integral on l.h.s. of
Eq.(7.23), T = a(s,f(s)). Using the identity

da\ "' df
- ( “) (@) (7.24)
r=a(sf)  \ 9 ds

daf'(v)
dt

the Eq. (7.23) acquires the form

dy (z,f(7)) o) =
dt T

/ dre L (e f (D). (@)

3

/ ? dt [L( f(o).f, 1) + dN} ; (7.25)
7] dt

where it has been used the equality f'(7)|;=a(rf(x)) = Y (s.f(s)), which follows
from the representation (7.19) and from the identity (7.20). The Lh.s. of Eq. (7.25)
looks as a new functional S, computed for the initial function f (7). So, it can be said
that under the transformation (7.15) the initial action transforms into another action.
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Definition 2 The action

Selal = / dra LY (v g). (6) "V (1.9). @), (7.26)

7

is called the transformation of the action (7.14) under the coordinate transformations
g T — T/ — (X(T, qa’wa)’ qa — q/a — wa(f’ qa’wa)' (727)

As we have just shown, (7.22) is equal to (7.26). That is, symbolically

S[xgf] = Slf]- (7.28)

In terms of the transformed action, the invariance condition is formulated as follows:

Definition 3 The action (7.14) is invariant, if, disregarding the total derivative, the
transformed action coincides with the initial one

dN
Selql = Slq] + / dt dr (7.29)

Since this equality must be satisfied for any integration interval, the integrals can be
omitted. This gives the invariance condition as an algebraic property of a Lagrangian
under the coordinate transformations

. d
GLO (5.9). @) (0.9).0) = Lig.4.0) + ) (730)

7.3 Examples of Invariant Actions, Galileo Group

Example 1 Consider rotations of the two-dimensional space (z, q)
0:(t,q) — (t',¢) = (tcos @ —gsin 0, tsind + gcosH). (7.31)

Let us find the image of the linear function ¢ = f(tr) = at + b. According to
Eqgs. (7.19) and (7.21), we need to eliminate o from the equations 7 = o cos 6 —
(ac + b)sinf,q = osin O + (ac + b) cos 6, which again gives the linear function
q = d't + b’ (one straight line is rotated into another straight line)

sinf + acosf b
T .
cos —asinf cosf —asinf

g=Ff(0) = (7.32)
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Example 2 Consider translations of the evolution parameter
a:(t.q¢) = (', = (t +a,9%, a = const, (7.33)

The image of the function f(7) is obtained from the parametric equations t = o0 +a,
q* = f%o). We find

q' =f"(v) =f'(r —a). (7.34)

Translations are the symmetry of any action which does not explicitly depend on
8= f dtL(q, §). The transformed functional is obtained according to Eq. (7.22),
and coincides with the initial one after the change of variables T — v + a

T

+a d 2 .
| ae-a. pse-a = [ ange.io) (1.39)

1ta 71

Thus the condition (7.23) is satisfied with N = 0.

Intuitively, the physical interpretation of the time translations is that an experi-
ment carried out during the time interval 11, 7], can be repeated at a different time:
[t1 + a, 172 + a]. The invariance of the action implies that the same experiment
carried out “today” and “tomorrow” gives identical results, since in both cases
the same trajectory is an extremum of the functional (see Fig.7.2 on page 244).
Equations (7.33) and (7.35) can be thought of as the mathematical formulation of
homogeneity in time: the properties of a physical system at different times are the
same. As will be seen below, symmetry under time translations implies the energy
conservation law. That is, energy conservation is a consequence of homogeneity in
time.

Example 3 Consider the Galileo boosts, which is a three-parameter family of
transformations of 7.3 R x R3

vit—>1T =1, X = xX"=x+v'r, v! = const. (7.36)

Fig. 7.2 Time translation:
the same trajectory turns out
to be an extremum of a
functional at a different time

I

I
o) E £(1)
I
I

Ty :Tl+'d Trt+a T
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In three-dimensional Euclidean space, these equations can be thought of as related
coordinates of two observers O and O’, with the latter moving at velocity v’ in rela-
tion to O, and passing through the point (0, 0, 0) at 7 = 0. Since time is unchanged,
the induced transformation of functions coincides with the x-transformation

xv:fi(t) > f(t) =f(r) + v't. (7.37)

The action of a free moving particle is invariant under the boosts. Indeed, Eq. (7.29)
turns out to be satisfied

1 i iN12 1 o2, dN
/dtzm[(x +v't)] = /dt (Zm(x) + dr)’ (7.38)

with nontrivial N (x, 7, v) = x'v+ > (v')?t. The same is true for a system of particles
subject to a potential which depends only on relative distances among the particles.
Equations (7.36) and (7.38) represent the mathematical formulation of the principle
of Galilean relativity for the case of boosts: the properties of a given system as
studied in laboratories O and O’ are the same.

Example 4 Kepler’s problem. Consider the action of a particle under a central field

S = [ dr (’Z(;d’)2 — U(r)), where r = (x)2. (7.39)

Besides the time translations, symmetries of this action are transformations gener-
ated by real orthogonal matrices

Rt =1, x¥—>xX"=Ri¥, whereRT =R (7.40)

Its invariance can be immediately verified, in accordance with Eq.(7.29), by
substituting x instead of x’ into Eq.(7.39). Notice that the Galileo boosts are not
symmetries of the action.

Example 5 A system of two particles labeled by Euclidean coordinates xil), xiz),
with a potential which depends on the relative distance between them, is described
by the action

1. 1 .
S = /dr (zml()'c’(l))z + 2m2()'c’(2))2 - U(m)) : (7.41)

where (r11)? = Z?=1 (x’('z) — xil))z. Besides the time translations, rotations and the
Galilean boosts, there is a symmetry under spatial translations with the parameters ¢

cit—>1t =1, xéa)%xzz)zxia)-i—ci, a=1,2. (7.42)
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Generalizing, let us write the action

1< y
S = / dt (2 > ma )’ - U(ra;,)) : (7.43)

a=1

2 _ \3 i i \2 : : 1 3
Wh'ere (rap)® = Z =1 (x’(b) - x’(a)) It descFlbes a system of [ particles, X (g x(za), X4
which are Euclidean coordinates of a particle with the number a, a = 1,2,...,L
They are under a potential U(r,), which is a function of the variables r,, a,b =
1,2,..., 1 The action is invariant under the ten-parameter Galileo group

T>17=1+4a,
x‘@ — x”('a) = Rijx’(‘¢1) + o't + ¢ (7.44)

As we have discussed in Sect. 1.2, in classical mechanics it is postulated that the
Galileo group relates different inertial frames. The invariance can be verified, in
accordance with Eq. (7.29), by substituting 7/, x" instead of t, x' into Eq. (7.43).

7.4 Poincaré Group, Relativistic Particle

As an example of the coordinate transformations of a general form (7.15) (when t’
depends on ¢%), we discuss here a free-moving relativistic particle in terms of its
physical coordinates.

Let us consider the action functional

2
S = —mc/dxo\/l - (j;) , (7.45)

on the space of functions x* = f¢(x"). According to Sect.1.7.6, it describes a
particle which moves along a straight line with constant velocity (ddx:)2 < 2. Let
us confirm that the system obeys the principle of special relativity. We need to show
that the action admits the Poincaré group as a symmetry group. Invariance under the
translations is evident, so, let us discuss the Lorentz transformations

K= 20 = A%+ A (7.46)

X=X = A0 + AP, '
Note that they represent an example of coordinate transformations, when trans-
formed time x° depends on spatial coordinates x“. Starting from a function
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x* = f*(x), the transformed function x* = f*(x°) can be found in a parametric
form

0 _ A0 0 £b

A
=AY )
In the general case, the parameter o cannot be eliminated from these equations by
analytic methods, and we are not able to find closed expression for f*(x"). In other
words, it can be said that the Lorentz group acts on the physical dynamical variables
F4(X°) in a higher non-linear way, in contrast to its linear realization in coordinate
space (7.46). This represents a serious obstacle to the investigation of relativistic
theories in terms of physical variables, since the relativistic invariance is not under
control.! Fortunately, to check an invariance of the action, we do not need to know
f'. According to Eq. (7.26), it is sufficient to replace x* in Eq. (7.45) by x’** given in
Eq. (7.46), and to confirm the validity of the condition (7.29).

Exercise Verify this invariance.

Since the description based on the physical variables f“(¢) is not very convenient,
let us see what happens, when we try to avoid this problem. Consider the action

dxH

, 7.48
Jr (7.48)

S = —mc/dr\/nwkl‘k”, where " =

in the space of functions x* = f#(r). Now the evolution parameter is 7, while
both x° and x¢ are the configuration-space coordinates. Lorentz transformations are
defined in extended space (z,x*) accordingto 7 — v/ = 7, x* — X* = AF X",
and represent symmetry of the action. As compared with the action (7.45), the
advantages are:

(A) Invariance of the action is evident, since 7,,¥*x" is a scalar function with
respect to the transformations.

(B) The evolution parameter t is not affected by the transformations. According
to (7.19), the transformation law for the function x* = f*(t)coincides with the
one for the coordinates x*: f'*(t) = Af"(1).

!For a free particle, solutions to equations of motion x?(x°) are linear functions, and Eq. (7.47) can
be resolved; see Example 1. Serious problems arise for particle and field theories with interaction.
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Of course, there is a price to pay. First, the formulation contains an additional

variable (actually, it involves two evolution parameters, T and xo). Second, the
theory is singular: det agfach , = 0. The lesson is that formulation of a relativistic
theory in a manifestly Lorentz invariant form (that is with linearly realized Lorentz
transformations on dynamical variables) implies a singular action which involves

the auxiliary variables.

7.5 Symmetries of Equations of Motion

As before, let g be the coordinate transformation (7.15) (not necessarily a symmetry
of an action), and *g : f(tr) — f'(7) represent the induced transformation (7.19).
Consider the equations of motion F,(¢%, ¢, §*, ) = 0 following from the action
functional (7.14).

Definition g is a symmetry of the equations of motion, if it maps any solution into
a solution

Fof...) =0 = Fuf,..)=0. (7.49)

From a pragmatic point of view, the existence of the symmetry facilitates the search
for a general solution to the equations of motion: starting from the known particular
solution ¢* = f“(r), one immediately obtains a family of solutions applying the
transformation *g: ¢ = xg - f%(t) = f"“(zr,®*), which depends on k arbitrary
constants w*. Sometimes, when the family is large enough, it is sufficient to find
only one particular solution to generate the general solution.

As an illustration, consider a free particle ¥’ = 0. The six-parameter transforma-
tions g(v,a) : T - v/ = 1,x — ¥ = x' + vt + o' form a symmetry group. In
this case, the induced transformations coincide with the coordinate ones. Note that
x'(t) = 01is a solution to the equations of motion, then X’ = 0 4+ v't + a' turns out
to be the general solution. Intuitively, a free-moving particle can be obtained from a
particle at rest by the Galileo transformation.

As one more example, consider the system ¥ +x' =0,i=1,2, which admits a
symmetry generated by arbitrary non-degenerate matrices

a:1—>17T=1, ¥—=>x"= aijxj, where deta # 0. (7.50)

The general solution x! = A cos(t + «), x> = Bsin(t + ) can be generated from
the particular solution x! = cost, x> = sint by the application of a symmetry
transformation of the form

Acosa —Asina
= . 7.51
“ (Bcosﬁ —Bsinﬁ) (751)
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There are non-trivial applications of this resource, see Sect.1.7.8, where we
computed the electromagnetic field of a moving charge. In a similar way can be
obtained complete set of independent solutions to the Dirac equation (describing an
electron in the relativistic field theory), see [37].

Exercise For the second example, find (an invertible) symmetry transforma-
tion such that (cost,0) — (0, sin¥).

Before discussing the relationship between symmetries of an action and symme-
tries of the corresponding equations of motion, let us consider the following task.
Let f be the image of f under a transformation *g. Supposing that /' is an extremum
of the functional (7.14), let us to find the functional that has f’ as an extremum.

The transformations (7.15) are invertible, see Eq. (7.16). Let us denote the inverse
transformation as g~'. Applied to the point 7, g it reads

g it =1 =d(t,9), ¢ — ¢ = y(1.q). (7.52)

This implies transformation of the function f

xg ' f(2) = f(2). (7.53)

Exercise Suppose f is the solution to the equations of motion F(q, ¢, g, 7) =
0. Write equations of motion for f” (see Sect. 2.1.1).

Starting from the action (7.14), the inverse transformation can be equally used to
construct a transformed action according to Eq. (7.26). We obtain

Se-1lgl = S[f"] = S[xg~'f] = / deaL(J (1, q), (&) 'Y (x. q). ). (7.54)

Computing S,—1 onf’, we have S 1 [f'] = S[xg~" % gf] = S[f]. So, if f” is the image
of a function f under the transformation (7.15), then

S = S[f]- (7.55)

This resolves the task formulated above: if f is an extremum of S, then f” will be
an extremum of S,—1. In other words, if f represents a solution to the equations of
motion following from S, then " obeys equations of motion obtained from S,-:.

Comments It should be mentioned that, if g C G, the inverse transformation is
not generally an element of the family. Nevertheless, if g is a symmetry of the
functional (7.14), the same is true for the inverse transformation (prove this by using
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Definition 1 of Sect.7.2). If the family is a Lie group, an inverse transformation
belongs to the group. Suppose that the transformation (7.15) is parameterized by o?,

and @ are parameters corresponding to the inverse element. Then, by construction,

the functions &, v are the group functions: ¢(w) = o(®), V(w) = ¥(@). The
action (7.54) then simply coincides with (7.26), where ® — o.

We are ready to demonstrate the following remarkable fact: transformations
leaving an action invariant, map solutions to equations of motion into solutions.

Affirmation If the family G is a symmetry of the functional S[g] =
[ dtL(¢", 4", 1), then G is a symmetry of the corresponding equations of motion.

Proof As we saw above, together with g, the transformation g~' represents a

symmetry of the action. The invariance condition for g~! reads S[xg~'f] = S[f] +
[ dtN, or, equivalently

ilg] = Skql + / dei (7.56)

Let f be a solution to the equations of motion derived from S. According to
Eq.(7.55), f* is a solution to equations of motion derived from S,-1[g]. According
to (7.56), the equations obtained from S,-1(g) and S[g] coincide. Thus f and f” obey
the same equation.

We emphasize that the inverse statement is not true. To confirm this, it is sufficient
to return to the second example of the previous section. Equations ¥ +x' = 0 follow
from the action § = § [ dr((x')?> — (x')?). The symmetry (7.50) of the equations is
not a symmetry of the action (unless the matrix a is orthogonal).

7.6 Noether Theorem

We present here the Noether theorem in the form normally used by physicists.” Let
G be a k-parameter family of coordinate transformations

Tt = a(1,¢", 0%) = T+ Gu(r, 40" + 0(0”),

O
Goc = d w=07
qa — q/a — 1//“(1’, qa’wa) — qa +Raa(‘f, qa)wa + 0((1)2),
a a
RY = I/fa (7.57)
dw 0=0

2See [38] for discussion of the most general form of the Noether theorem.
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Here, with use of Eq.(7.17), the transition functions have been expanded, up to a
linear order, in a power series at w = 0. So, infinitesimal transformations (v < 1)
are characterized by the functions G and R, called generators of the transformations.
We combine them into the quantity?

D'y =R — ilaGou (7.58)
and impose the following technical condition
rank D%, = [a] =k, (7.59)

A family of transformations with this property is called a family with k essential
parameters.

Noether Theorem Let the action (7.14) be invariant under the family of transfor-
mations (7.57) with k essential parameters, that is

© N © dN 9 7 9
[ iyt = [Car (a0 + M4EY) a0
T1 7] dT
Then there are k functions Qy (¢, ¢, t) called Noether charges, namely
aL oN
Ouw=—.. (R —G°Gy) — LGy + Ny, Ny = , (7.61)
aqa dw® =0
which retain a constant value throughout any solution to equations of motion
dQq
Q =0. (7.62)
dt 85—
3q

For the case of nonsingular theory the charges do not vanish identically. Moreover,

they are functionally independent: rank | quq) =k.

Comments The Noether theorem gives the charges in terms of generators. It is
possible to write an inverse formula for the generators through a given conserved
charges, see Eq. (7.146) below.

Proof As has been discussed in Sect. 7.2, the integrals in Eq. (7.60) can be omitted.
Further, the integrands can be expanded in a power series of w. Since w are arbitrary
parameters, the identity (7.60) must be satisfied for each power order separately.
The result we are interested in appears in the linear order. Let A(w) = B(w) be a

3 As we will see below, D determines an infinitesimal transformation of a function.
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symbolic notation for the integrand of Eq. (7.60). Then the linear on the w part is

0A JB
= (7.63)
do® w=0 do® w=0
Let us write an explicit form of this expression. The right-hand side is
d ON d
= N, (7.64)
dr dw®|,_, drt

with the known function N,,. With the use of Eqgs. (7.57) and (7.17), the derivative
of the left-hand side is

3(Lh.s. . AL L .
(hs)l e+ O ga, Ga® +
dw®

oL . aL
ey Rig + . Gy (7.65)
aqa aqa a

aq 0T

Here L = L(q, ¢, t). Extracting a total derivative with respect to t from the first and
fourth terms, we write

aL " dL oL 88
LGy + .. R% ) — . Gug®— .. (Gug”) +R% . . (7.66)
aqa aqa aqa 56]“

Further, extracting a total derivative from the third term in (7.66) we obtain

oL ' 5S
. (R%—G'Gy) ) + (R —4°Gy) . . (7.67)
0g° 8q°

(LGa +
Substitute (7.64) and (7.67) into (7.63). This gives the desired result: the linear with
respect to w part of Eq. (7.60) implies

S  dQq
(R — q°Gy) = Q, forany ¢“(7), (7.68)
8q° dt

with Q given by Eq.(7.61). We emphasize that this equality is an identity, that
is, it is true for any function ¢“(7). So, invariance of an action implies that some
combinations of the equations of motion form total derivatives of the charges Q,.
The Eq.(7.68) are called Noether identities. We discuss below how the Noether
identities can be used to simplify the equations of motion.

The Noether theorem follows immediately from Eq. (7.68): when the equations
of motion holds, f‘i = 0, one has dde = 0. The charges Q% do not vanish iden-
tically; besides that, they are linearly independent. Indeed, suppose, for example,
Q1 = 0 for any ¢g(t). Then the identity (7.68) acquires the form (see (2.21))

D‘I’(Mab&}b — K,) = 0. This implies that the matrix M has the null-vector Dy,
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which contradicts the nonsingular character of the theory.* Linear dependence of
Q. would contradict the condition (7.59). Functional independence of the charges
will be demonstrated in Sect. 7.9.

Exercises

1. Confirm that N|,=o = 0.
2. Work out the quadratic term of the power expansion of Eq. (7.60). What is
the information contained in it?

7.7 Infinitesimal Symmetries

The reader possibly observed that only the linear part of the power expansion was
used in the proof of the Noether theorem (we will return to the discussion of that
point in the next section). This justifies the notions of infinitesimal transformation
and infinitesimal symmetry discussed here.

The linear on w® coordinate transformation

T =17 =174+ Gu(r,qY0% =1+ 87
qﬂ N q/ﬂ — qa + Raa(r, qﬂ)wa = qa + Sqa’ (7.69)

is called infinitesimal transformation. The functions G,, R“, are called generators.
With any coordinate transformation can be associated an infinitesimal transforma-
tion. It is obtained keeping the first two terms of the power expansion, two see
Eq. (7.57).

Similarly to the general case discussed in Sect. 7.2, the infinitesimal transforma-
tion (7.69) induces transformation of functions, *g : ¢* = f“(r) — ¢* = f“(7),
where f(7) is given in parametric form by

T =0 + Gy(0.f*(0))0”

a a a a (770)
q* =f*(0) + R (0.f*(0)) 0",
According to Eq. (7.19) this induces the transformation of a function
() = f4(6(0) + R (a@(r).f(@())e”, (7.71)
“Note that in singular theory it can happen that 9 = 0, which implies identities among the

equations of motion. This is closely related with the presence of local symmetries, see Chap. 8.
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where &(7) is the inverse function for the following function of t: T+G, (z,f(7))w®.
In the linear approximation it reads @ = 7 — G, (7, f(1))w® + O*(w). This implies

acl

= —Gy,. 7.72
9 (1.72)

w=0

In the linear approximation, there is a simple formula for transformed function in
terms of the initial one. Using Eqs. (7.71) and (7.72) this reads

' (x)

o* + 0*(w)
dw®

w=0

f@) = 0] oo +

. Jda
=70 + (R o)+ ),

) o* + 0*(w)

w=0

=0 + (R%(0.f(1) = [ (D)Ga(z.f (1)) 0 + O* (). (7.73)
We come back to our notation f(7) = ¢(t), then Eq. (7.73) implies
q'(t) = ¢“(v) = ¢“(1) + 8¢".  8q" = 8q" — §'81 = D*40", (7.74)

with 87, §g* specified in (7.69), and D is given by (7.58). The symbol § is used
for variation of a function. In the books on quantum field theory it is called an
infinitesimal transformation of form of a field (function).

An infinitesimal transformation (7.69) is an infinitesimal symmetry of an action,
if

1+Ga(12f(12))0” .
/ dtL(f".f°, t)
T

= /Q dt [L(f”,f'“,r) + dN] (7.75)
0 dt

1+Gy (11, f(11))0* 0(w)
Here f’ is given by Eq.(7.71), and the notation O(w) means that we keep only the
linear term of the expansion in power series of w around @ = 0. As compared
with the symmetry condition (7.23), we now require it to be satisfied only in linear
order with respect to . So each symmetry (7.15) implies an infinitesimal symmetry,
which appears as linear in the w, part of the symmetry transformation. Note that an
infinitesimal symmetry is not generally a symmetry.

Let us compute the left-hand side of Eq. (7.75). First, take into account integra-
tion limits that give an extra total derivative term

[ de L. Dlow + & (LGaa)“)]

I a fa (7.76)
e + 4],
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Second, substitute (7.74) and omit the integration, thus obtaining
a ¢ a a ¢ a . d o
L(g* +8¢°, (¢“ + 8¢°), 1) . —L(g.q. 1) = . (N—LGy0"). (7.77)
0(8q) dt

Note that the left-hand side is just the usual variation of a Lagrangian due to the
variation of coordinates §¢“. Hence the invariance condition (7.75) is equivalent
to the statement that the variation can be presented as a total derivative of some
function. Computing the variation according to the known formula (1.127), we
reproduce the Noether identities (7.68)

855 _d (oL
8q° i dt

a C8q" — L8t + N) . (7.78)
ag°
Recall that the invariance condition (7.23) is equivalent to Eq.(7.30). The
infinitesimal invariance condition (7.75) can also be written in a similar form; it
is sufficient to replace « — t + 87, ¥ — g + 8¢ in Eq. (7.30) and keep only the
linear part. It reads

. dN
(1+ (67))L(g + 8q,(q + 8q)'. T + 3D o9 — L(g. ¢, T) = dr (7.79)

Computing the linear part, we arrive at the Noether identities once again (do the
computation!).

We can generalize the notion of infinitesimal symmetry, allowing the generator
R in (Eq.(7.71)) to depend on time derivatives of f.

Example An infinitesimal transformation with §t = 0, 8¢ = B% 58;% where
B is an antisymmetric matrix, represents an infinitesimal symmetry of any
action. Omitting a total derivative, the variation of a Lagrangian reads §L =
885,, B® 88:” = 0. This is called a trivial infinitesimal symmetry. Being present
in any action, the trivial symmetry does not lead to physical consequences. In

particular, the corresponding charge vanishes on equations of motion.

In short, we have obtained two formal recipes allowing us to check whether an
infinitesimal transformation (7.69) represents an infinitesimal symmetry of an action
functional. According to Eq. (7.77), we can compute the usual variation of the action
under transformations of the form (7.74) and see whether it can be presented as a
total derivative of some function. Equivalently, we can see whether the left-hand
side of Eq. (7.79) forms a total derivative.

We have also demonstrated that the infinitesimal symmetry condition (7.75),
being equivalent to the Noether identities (7.78), implies the conserved charges.
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7.8 Discussion of the Noether Theorem

Let us return to the discussion of the Noether theorem. A brief inspection of Sect. 7.6
shows that invariance of an action under the symmetry transformations (7.57) is
not necessary in the proof of the Noether theorem. Since only the linear on w,
part of Eq.(7.60) has been used in the proof, the conservation law is already
guaranteed by the infinitesimal symmetry. This was shown once again in the
previous section: the infinitesimal symmetry condition (7.75) is equivalent to the
Noether identities (7.78), which imply conservation of the charges, Eq. (7.62).

As we saw above, symmetries of an action reflect fundamental properties
assumed for our space-time. Since an infinitesimal symmetry is not generally a
symmetry, the question arises whether such properties as homogeneity, isotropy,
and so on are actually related to the existence of conservation laws. Here we fill
this gap by showing that invariance of an action under an infinitesimal symmetry
implies its invariance under certain symmetry.

Recall that, due to the identity e*@%G(x) = G (e*®%x), the function f (e, x) =
e€“®%x is a formal solution to the equation (see Sect.2.3)

gf = a(f). (7.80)
€

Besides, it obeys the initial condition f(0, x) = x.
Now, starting from the infinitesimal symmetry (7.69), construct the functions

O{(‘C, qa’ewa) — eGaew"E)f+R"aew°‘3aT’
o a o 7.81
wa(f’ qa’ewa) — eGaew 0 +Ryew Baqa‘ ( )
These obey the multi-variable generalization of the Eq. (7.80)
oo
= Gq(a, 1/f“)wa,
de
a a
VR e, (7.82)
de
as well as the initial conditions «(e = 0) = 7, ¥*(e = 0) = ¢“.
We show that the transformation
gw): -1t =a(t,g" 0%, ¢*— g =y, q" 0%, (7.83)

represents a symmetry of the action (7.14). Let us construct the function S(¢)
transforming the action (7.26) by means of (7.81)

ﬂaz%wmszmuw@4WM. (7.84)

T
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Note that S(0) = S[g], while S(1) = Sgw)lg] is transformation of the action (7.26)
under (7.83). Using Eq. (7.82) we compute

08(e) _ /dt (L|(Ga|).+ o O ga+
de 0g*°
aL . : aL
iy (@G + @) RD) + Gl ) o (7.85)
q 0T

Here the notation A(z, g)| implies substitution of the functions (7.81) instead of t,
q. Integrating by parts (the computation is similar to the one leading to Eq. (7.68)),
we obtain

3 o . . .
S _ /dr _ 40| + a(R% — ¢“Gy) 55 [+ (Vo) ) . (7.86)
de dt 8q°

Since the transformation (7.69) is an infinitesimal symmetry, the first two terms
cancel each other (see Egs. (7.24) and (7.68)), and we have

aS(e) d a
% = /drdrNa|a) . (7.87)

Computing the integral of this expression with respect to € on the interval [0, 1], we
arrive at the invariance condition (7.60).

7.9 Use of Noether Charges for Reduction of the Order
of Equations of Motion

As we have seen, the invariance of an action functional implies a special structure
of the corresponding equations of motion. This is given by Eq. (7.68). Since some
combinations of the equations of motion are total derivatives, they can immediately
be integrated, which simplifies (sometimes solves) the problem to find a general
solution. Let us discuss this point in further detail. We demonstrate that knowledge
of k Noether charges allows us to replace the initial system of n second-order Euler-
Lagrange equations by an equivalent system, which has only n — k second-order
equations.

According to the Noether theorem, the equations Q, = 0 are consequences of
equations of motion. So, they can be added to the system, which gives an equivalent
system

=0, 0, = 0. (7.88)
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Now some k among the Euler-Lagrange equations are consequences of others, and

thus can be omitted. Indeed, Eq. (7.68) states that there are identities present among

equations of the system (7.88). Suppose that a minor rank of the matrix D is placed

in the upper £ lines (if not, this can be achieved by reordering the initial variables g*

in an appropriate way). Thus we write: Df, = (Dg ,D')), det Dg | 55— # 0. Then the
q

identity (7.68) can be written in the form (5 is the inverse matrix for D})

88 L N
= D! -D, ), 7.89
Sqa a(Q)/ Y Sql) ( )
that is, the equations 5 = 0 are consequences of other equations of the

5 o
system (7.88). Then the ir({itial system is equivalent to

N
=0, i=1,2,....,n—k,
84
04(q,q) =cy =const, a=1,2,...,k (7.90)

This contains n — k second-order equations and k first-order equations, that is, the
order has been decreased by k units.

Q. are functionally independent, otherwise some of them could be omitted from
the system (7.90). Then we should have a system with a number of equations less
than the number of variables. But this would contradict the theorem of the existence
of a unique solution for normal system of equations.

7.10 Examples

In Sect.7.3, it was mentioned that the Lagrangian action for a system of particles
subject to distance-dependent forces is invariant under a ten-parameter Galileo
group, which includes translations, rotations and boosts. Here we write the corre-
sponding Noether charges. To put this in concrete terms, we consider two particles

with Euclidean coordinates xil), Xy i=1,2,3

1 L 1 L
S = /dt (2m1(x(1))2 + 2m2(x(2))2 — U(m)) . (7.91)
In this case, the expression for the Noether charge (7.61) is

0u = —miify [Rigye = ¥y G ] = LGu + No. (7.92)
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Example 6 For the time translations 7/ = 7 + q, xﬁl) = x‘@, we have G = 1,
R’('a) = 0, N = 0, and the Noether charge is the total energy of the system

1 y 1 g
E = Zml(x(1))2 + 2m2(x(2))2 + U(r2). (7.93)

Intuitively, homogeneity in time implies conservation of the total energy of a closed
system.

Example 7 For the space translations 7/ = t, x;’a) = x’@ — ¢, we have G = 0,

Ri

@ = 8%, N; = 0, which leads to conservation of total momentum

Thus conservation of the total momentum is a consequence of homogeneity of
space. In the present case, the total momentum turns out to be the sum of the
conjugated momenta of the particles. Note also, that the individual momenta are
not conserved during the evolution, as soon as p'('a) = ai{] # 0.

@

Example 8 For the Galileo boosts 7/ = t, x;[a) = x’@ + vir, we have G = 0,
C . . S ) . . .
R‘(a)j = .r(S’j, N = (mlxl(l) + mzx‘(z))v’ + 5, (m + mp)(v')°T, N; = mlx‘(l) + mgxl(z),

which gives the conserved charge

—(mix(yy + mak(y))T + mix(;, + myx(,) = D' = const. (7.95)

Let us write this in the form
mlxil) + mzxéz) =D+ P'r. (7.96)
We conclude that during the evolution of two particles, the point® X' =
- }rmz (mlxl(l) + mle(z)) moves along a straight line with a velocity proportional to
the total momentum. In other words, from the Noether theorem we have discovered
the concept of center of mass of a system. Since the dynamics of X' is already

known, the convenient coordinates for description of the particles are X' and, for
i1 i i
example, Y’ = —— (mlx(l) mzx(z)).

Example 9 Consider the rotations (see Sect. 1.2)
v =1 X, = (")’ xf() = xi, + 0'x{, + 0(?), (7.97)

where w¥ = —w/' are three independent parameters. We have G = 0, N, = 0.
To find the generators R, we need to represent Eq. (7.97) in the form x@) =x +

31t is reasonable to divide by m; + m,, then X has the dimension of a length.
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R‘lza)12 +Ri;0" + Ry;0%, and then to find an explicit form of these nine quantities
- To avoid the problem,® we look for a sum of the charges, and then separate them

A (oL
Oy0® =—_, Riyw :_Z< x1(1)+ . a)xl(z))
)

9 03y diy)
2
1 2 2 1 12 2 3 3 .2 23
Z[(xm)l’(a) - x(aﬂ’(a)) o+ (x(a)p(a) - x(aﬂ”(a)) 0T+
a=1

1 3 31 13
(x(a)p(a) — x(a)p(a)) w ] . (7.98)

Thus, the isotropy of a space implies three charges which turn out to be components
of the total angular momentum of the system

2
=Y ™5l Pl (7.99)

a=1

Summing up, we have seen that conservation of energy, momentum and angular
momentum can be thought as a consequence of the homogeneity of time and space
and isotropy of space.

Exercises

1. Check by direct computations that the infinitesimal rotations x;ia) = x’@ +

w x’ ) Tepresent symmetry of the action (7.91).

2. Check by direct computations a preservation of the charges obtained in this
section.

3. Check whether the angular momentum of each particle separately is a
conserved quantity.

4. Warning exercise. Try to find the charges (7.98) directly, repeating the
computation carried out in the proof of the Noether theorem (that is, by
extracting the terms of the transformed action that are linear on w?).

5. Find the Noether charges of the relativistic particle in the formula-
tions (7.45) and (7.48).

6. Verify that the action § = fdrzga;,j) )') a=1,2,where g,y = 8, + ?-

y?)~ly*y?, I = const, has infinitesimal symmetry with the parameters €,
(continued)
S0f course, the problem can easily be solved. We write 0¥ = é(S"kxf — 8Ux*)wh. Then the

quantities Rj; = ) (8% — §7x*) with k < j represent the generators.
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y/a — ya + Eabyh + (12 _yZ)%Ca’ (7100)

where €!? = —¢?!, €% = (. Derive the corresponding Noether charges.

Verify by direct computations that they are actually conserved.

7.11 Reparametrization Invariance as a Local Symmetry

Consider the family of transformations (7.13) with « = 7 4 €(7) and ¥* = ¢,
where €(7) is the local parameter. That is the coordinate transformations are

g:(t.q") = (7' = a(r). 4 = ¢. (7.101)
According to (7.19), this induces the map of functions
xg 1 q(r) — q“(a(r)). (7.102)

The invariance condition (7.23) acquires the form

/de[CI“(&(T)),Q"(d"(f))] = /er[q"(f),EJ"(f)], (7.103)

while the equivalent invariance condition (7.26)—(7.29) reads

/dde[q”(f),(d)_lff(f)] = /de[q”(f),fz”(f)]- (7.104)

Comparing these expressions with those discussed at the end of Sect.1.4.2, we
conclude that the local symmetry (7.101) is just the reparametrization invariance.
Infinitesimal form of (7.102) is §¢* = —eg“.

Exercise Confirm the invariance of the action of relativistic particle
Jdt \/ —X#Xx, under the infinitesimal reparametrizations §x* = —ex*.

Note that an expression for a local symmetry has the following ambiguity: we can

extract any function from the local parameter, this does not spoil the invariance. For

instance, for the relativistic particle we can write dx* = € ju, , instead of Sxt =
—X

—ext.
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7.12 Symmetries of Hamiltonian Action

It has already been mentioned that the notion of symmetry and the Noether theorem
machinery can be applied to any system of differential equations arising from a
variational problem. So it is true for Hamiltonian equations as they follow from the
Hamiltonian action functional

5}
Sy = / dt(p.g* — H(q", pa, T)). (7.105)
71

The basic notions of the previous sections remain true for this case, with the
corresponding replacements: ¢ — 7z = (¢%. p»), L — pg — H(q,p). Below we
present this reformulation. It is interesting for the following reasons.

(a) The formalism can be applied to Hamiltonian systems that do not admit a
Lagrangian formulation. We have already discussed the Schrodinger equation
as an example of this kind; see Sect.2.9.1.

(b) Due to certain specific properties of a phase space, we can go further in
the analysis of Hamiltonian symmetries as compared with Lagrangian ones.
Moreover, this allows us to obtain additional information on Lagrangian
symmetries, giving an expression for Lagrangian symmetry in terms of the
Noether charge; see Eq. (7.146) below.

(c) The tool developed below can be applied to much more complicated case of
local symmetries, see Chap. 8.

7.12.1 Infinitesimal Symmetries Given by Canonical
Transformation and by Charge

In this section we obtain the necessary and sufficient condition for an infinitesimal
canonical transformation to be an infinitesimal symmetry. In the next section, with
infinitesimal symmetry of a general form (that is with §T # 0) we associate an
infinitesimal symmetry given by canonical transformation of the form (4.29). The
two symmetries are equivalent in the sense that they yield the same concerved
charge. Hence, looking for infinitesimal symmetries of Sy we can restrict our scope
and look for them in the class of canonical transformations.

In the extended phase space (t,z)) = (t,q“ pp) consider an infinitesimal
canonical transformation

§t=0, 67 =—{.0}, (7.106)
with the generator Q = Q,(z, 7)w®. Notice that instead of Q one can equally take

Q' = Q + hy(r)w® where h, stands for an arbitrary z-independent function. The
generators Q and Q' are equivalent since they produce the same transformation.
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Assertion A canonical transformation (7.106) is an infinitesimal symmetry of the
Hamiltonian action if and only if its generator obeys the equation

g?Jr{Q,H}:O, forany z(7). (7.107)

Eq. (7.107) implies, in particular, that the generator is a conserved charge, that is

‘(‘E = 0 on equations of motion.

Proof As 6t = 0, the induced transformation of a function has the same form as
87'. According to Sect.7.7, 8z will be a symmetry of Sy, if its variation yields a
total derivative. The variation reads (see Eq. (2.130))

5y = / 0t (o — par HDSG — (G — (" H})Spa + (puBe®]
d
- / dr [— ° om+ | <Q—pa{q“,Q})]. (7.108)
T dt

If Q satisfies Eq.(7.107) for any z(t), the variation is a total derivative, so
dN

Eq. (7.106) represents a symmetry. Conversely, suppose that §Sy = [ dt “r» Where

N = N,w“. Then Eq. (7.108) implies the Noether identity

d
(—padq® + N). (7.109)

(bu = {pu HDSG" = 0" — (" H]opa =

Computing the derivative with respect to  which appears on the right-hand side of
Eq. (7.109), the latter reads

o 8qg® AN . . 38q® N
q“ | —6pa + po - + pa | 284" + p» -
aqa aqa BPa apa
9
ta, (padq” —N) +{0.H} = 0. (7.110)

Since this is true for any functions g(t), p(t), the terms in front of ¢, p vanish
separately. So Eq. (7.110) decomposes into three identities. Taking into account the
expression (7.1006) for §z, they can be written in the form

(" p8g" —N—Q} =0,  {pappdgd® —N—Q} =0, (7.111)

aar (Padq* —N) +{0Q,H} = 0. (7.112)
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Equation (7.111) implies p;8q® — N — Q = h(t). If h # 0, we replace the initial Q
with an equivalent generator Q' = Q + h. Then Eq. (7.112) states that Q' satisfies
the Eq. (7.107).

To see that Q represents a conserved charge, notice that Eq.(7.107) can be
identically rewritten as

dg _ 90

9
g = (¢"—{q". H}) + Q(pa—{pa,H}), (7.113)
T dq P

SO Zg = 0 on equations of motion.

Assertion Infinitesimal canonical transformation (7.110) with the generator Q
being a concerved charge is an infinitesimal symmetry of Sg.

Proof According to Sect. 2.5, Q obeys (7.111), then Eq. (7.112) implies that §Sp is
a total derivative.

7.12.2 Structure of Infinitesimal Symmetry of a General Form

The general form of an infinitesimal transformation with k essential parameters
o is

T =17 =14 Gu(t,Z)o* = 1 + 81,
=" =7+R,(1,7)0" =7 +87. (7.114)

The generator R contains two blocks: Ry, = (R%, Tps), Where R, corresponds to
q“ and T}, corresponds to py.

The coordinate transformation induces the transformation of a function, 77 =
fi(r) — 7' = f'(t), where f//(t) is given in parametric form by

T=0+ Ga(o—sfi(o-))was
f=f(0) + R ,(0,f (o))", (7.115)

Denoting by &(7) the inverse function to T + G (z,f (t))w® we obtain

fi(r) =f(@(1)) + R (@(). f(d(r))o”
=f'(t) + (R, (1.f(2)) = f (1) Ga (1. f(1))) ®* + O*(w), (7.116)

or, in condensed notation, the transformed function in linear approximation is
7(1) = (1) =7 (x) + 8, 87 =67 —F6e, (7.117)

with 8z, 87' specified in Eq. (7.114).
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An infinitesimal transformation (7.114) is an infinitesimal symmetry of Sy, if

_ / Cdr (ff _ugo+ W )
T dt
(7.118)

(%) +Gua)u X
/ de(fF — H(f )

1 +Gow®

O(w)

Here f” is given by Eq.(7.116). Computing the left-hand side of (7.118) (the
computation is similar to those on page (254), we conclude that the invariance
condition is equivalent to the following Noether identity for Sy

d _ 3
Jr (=padq” + HST + N) = (¢" —{q", H})dpa — (Pa — {pa> H})8q". (7.119)

The Hamiltonian Noether charge
0u(q,p, 1) = —pubq° + HST + Ny, (7.120)

has the following two properties. First, it is preserved on solutions to equations of
motion. Second, it obeys the equation (see Sect.2.5)

aaQ: + {0, H} = 0, for any z(). (7.121)

In turn, this guarantees (see the previous section) that the following canonical
transformation

§1=0, 62 =—{7. Qula. (7.122)

represents an infinitesimal symmetry of Sy. The general (7.114) and canoni-
cal (7.122) symmetry transformations are equivalent since they produce the same
conserved charge Q.

Analysing the Noether identities we can find an explicit form of 87 in terms

of 87,87. We compute a derivative with respect to © which appears on Lh.s. of
Eq. (7.119). Then it reads’
. 984" 06T ON
a (_Sp“ TP age T o Bq“)
e (—pb 38q" . H88t n BN)
0pa s 0pa
8q® OHST ON 9

+ + . + H8 +8H8"—0 (7.123)
P 5 at it Opy P dg® ¢ =" '

7One cannot compute the bracket {7/, Q} directly, since Q contains the unspecified function N.
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Since this is true for any functions g(t), p(t), the terms in front of ¢, p vanish
separately. So Eq. (7.123) decomposes into three identities. Taking into account the
expression (7.120) for the Noether charge, they can be written in the form

a aH aQa o a o
8q° — 0t = — o = —{¢°, Oy }0%,
0pa 0pa
oH 004
$pa+ , Ot = Q 0" = —{pg, Qo }0°, (7.124)
aqa aqa
00 0% = — oH 8pa — oH 8q°. (7.125)
at opa aq°

Equation (7.124) gives the desired Poisson bracket {z', Oy} in terms of 8z, 87
Comparing (7.124) with (7.122) we find § through §

St =0, §d =87 — {z, H}St. (7.126)

Itis also instructive to compare transformations of a function induced by 87,87 and
by 87, Comparing (7.117) with (7.126) we write

§7 = 87 + 807, (7.127)

where 807" = —(3'—{z', H})87. 8,7’ turns out to be a trivial symmetry of Sz. To check
that it obeys the invariance condition, it is sufficient to confirm that the variation
of Sy under the transformation can be presented as a total derivative. We obtain
(see (2.130)) 88y = (¢ —{q". H)Sopa— (pa— {Pas H)S0q" + (paBd) = (pubod®) -
In this case N = p,8,4°, 8ot = 0, so the Noether charge (7.120) produced by the
symmetry vanishes identically. Hence 8z and 8z are equivalent, leading to the same
Noether identity, conserved charge and so on.

The remaining Eq. (7.125) does not contain any new information. Actually, its
right-hand side reads

oH oH oH = 0H =
- ) a 3q" = — ) a 3q"
opa P aq° d opa P aq° 9
0H 00, 0H 00,
=— 0 w* + 0 w* = —{Q,, H}w*, (7.128)
pa 0g° aq® Opa

so (7.125) is simply the Eq. (7.121).
The results obtaiged can be summarized as follows. Let 87, §7' be an infinitesimal
symmetry of Sy, 8z stands for the induced transformation of a function and

Q.(Z', 7) is the corresponding Noether charge, ddQI‘* = 0 on-shell. Being a conserved
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phase-space quantity, it also obeys the equation

9Qu

a5, T {Qy,H} = 0, forany z'(7). (7.129)

With the symmetry one associates the transformation

§t=0, &7 =67— 1 Ht, (7.130)
which does not affect the time variable. Then

(a) 87 is a canonical transformation with the generator being the charge Q,
87 = {7, Qu}wa. (7.131)

(b) Equation (7.129) implies that 87 is an infinitesimal symmetry of Sy. The
corresponding Noether charges are Q.

(¢) The transformations §7, 8z and 8z are equivalent, as soon as they generate the
same Noether charges. This can also be seen from comparison of the induced

transformations of a function that coincide except for the trivial symmetry
8oz’ = —(' —{z', H})dt

§i = 67 + 8o (7.132)

Finite Symmetries of a General Form and Canonical Transformations We
finish this section with two comments on the relationship between finite canonical
and symmetry transformations of Sy.

1. Let 7/(z*, ) stand for a univalent canonical transformation. Since time is not
affected, the induced transformation of the function z/(z) has the same form. The
formula for the corresponding transformation of Sy was obtained in Sect. 4.5

dF (7, 71)

Pad* —H(z) =pLd“ —H( . 7) + e

(7.133)
So, the canonical transformation is a symmetry of Sy if and only if it does not
modify the Hamiltonian, H (') = H(z).

2. We have seen above that an infinitesimal symmetry of Sy of a general form can be
replaced by an infinitesimal symmetry that represents a canonical transformation.
And what about a finite symmetry transformation? Let us take the exponential
of an infinitesimal canonical transformation (7.122) associated with the general
symmetry (7.114)

7= e (7.134)

According to Sect. 7.8 it is a symmetry transformation of Sy. At the same time,
according to Sect. 4.2, it represents a canonical transformation.
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7.12.3 Hamiltonian Versus Lagrangian Global Symmetry

Lagrangian and Hamiltonian symmetries have been discussed in the previous
sections in an independent manner. Remember that Lagrangian and Hamiltonian
formulations are related by a change of variables that in practice reduces to the
substitution ¢ — v%(q,p, t); see Sect.2.1.2. So each property of a Lagrangian
formulation has its Hamiltonian counterpart.

The aim of this section is to show the relationship between the infinitesimal
Lagrangian and Hamiltonian symmetries. Among other things, we find a remarkable
expression for Lagrangian symmetry in terms of the Hamiltonian Noether charge,
8q" = —o" {q°, QHa}I,Hgﬁ-

We start with a couple of auxiliary formulas. Let Ay stand for the Hamiltonian
counterpart of a Lagrangian quantity A(q, g, t), that is, Ay = A(q, §, 7)|

G—>v(g.p.1)"
Then
0A(q,q,7) _M, Ay a135)
dg° G—v(g.p.7) oy
0A(q, q, 9A 9A P
@ ! ? = O, (7.136)
dq §—v(g.p.) g ape dq
0A(q.q. 1), 9A
(@ aq g q° = {Ag. H} — . " My,{", H}. (7.137)
g gG—v(g.p.7) ape

The last equality is the previous one multiplied by v* = {¢“, H}, see (2.38).
Let

8‘6 = Gll (Q’ qﬂ T)a)a7 Sqa = Ral)t (Qs Qs T)a)av (7138)

be an infinitesimal Lagrangian symmetry, Qy (g, g, ) is the corresponding Noether
charge, and Qpq(q,p, 7) = Qu(q, v(g, p), T) stands for its Hamiltonian counterpart.
Let us introduce the infinitesimal canonical transformation generated by Qg

Suz = —{z', Ona}0°. (7.139)

We show that it is a symmetry of Sg.
Computing the time derivative in the expression for the Lagrangian Noether
identity

8S d oL
DYy =  (—,. D% —LGy+ Ny), (7.140)
dt " 09¢°
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this reads
L b L (dD°, ., N e, ., N aD°, N
agr T o \agp T T app T T b
I—=LGy +N,) ., O(=LGy +N,)., 0(—=LGy + N,
( , )q”+ ( L, )qb+ ( ). (7.141)
dq aq at

Since this is true for arbitrary functions ¢“(7), the term in front of g vanishes
separately. So Eq. (7.141) implies two identities

L AD°,  d(—LGy +No) _

_ 0, 7.142
ac‘la aqb aqb ( )
OL ., AL D% ., d(—LGy+ Na),
‘ Lt y | qb , qb —
dg 9" dq dq
AL D" 3(—LGy + Ny
_oLary, | 0(-LGe +No). (7.143)
ag* 0t at

We cast Eq. (7.142) into the Hamiltonian form substituting v(g, p, t) instead of g.
Using Eq. (7.135) and the fact that M is invertible we have

a

D%, n 0(—LuGha + NHa) _

0, 7.144
ap apy ¢ )

or, equivalently,
{q¢". Ona} + Df;, = 0. (7.145)

Remind that D determines the transformation of a function induced by the
Lagrangian symmetry, see (7.74). So, comparing (7.145) with (7.139), we conclude
that D is a Lagrangian counterpart of the canonical transformation generated by

the Hamiltonian Noether charge, 6pq° = —{¢°, Qno}0* = D} 0® = gq“ o
q—>v
Carrying out the inverse transformation, we obtain a formula giving an expression
for Lagrangian symmetry through the Noether charge

8q" = —0* {4", Qua}l,, o - (7.146)
dq
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The Hamiltonian form of Eq.(7.143) is obtained using the identities (2.37)
and (7.137). The result is

{paﬂH}Daa +pa{Daa7H} + {LGOL _NavH}—‘f_

D% 3(—LGy + Nq
(_pa * + ( )) Mbc{vcv H}
apy apy
_ _p, W] ICLGa N (7.147)
Jr |, ik ;

The last bracket on Lh.s. of this expression vanishes due to the identity (7.144).
Further, using the identity

9A(q. 4. 7)

T (7.148)
ot T

g—>v(g.p,7)

that follows from (7.135), we substitute v into r.h.s. of Eq. (7.147). Again the terms
containing derivatives with respect to p vanish due to the identity (7.144). Then
Eq. (7.147) acquires the form aaQr” + {04, H} =0.

In the result, the Lagrangian Noether identity (7.68), being rewritten in phase-
space variables, acquires the form

{qav QHD(} = _DaHoz = _(Raoz - {CI“»H}GHa) (714‘9)
agf“ + {Qua. H} = 0. (7.150)

As we know, Eq.(7.150) implies that an infinitesimal canonical transforma-
tion (7.139) associated with the initial Lagrangian symmetry (7.138) is an infinites-
imal symmetry of Sy.



Chapter 8
Hamiltonian Formalism for Singular Theories

Abstract Modern particle and field theories often involve auxiliary variables which
have no direct physical meaning. We have seen examples of this kind at the end
of first chapter: Lagrangian multipliers for holonomic constraints, forceless Hertz
mechanics, electrodynamics and the relativistic particle. Their auxiliary character is
supplied either by local symmetries presented in the Lagrangian action, or by the
algebraic character of equations of motion for these variables. So, in Lagrangian
formalism we deal with a singular theory. Equations of motion can have rather
a complicated structure, including in general differential equations of the second
and the first order as well as algebraic equations. Besides, identities among the
equations can be present in the formulation. As a consequence, there is an ambiguity
in solutions for any given initial conditions. So, the physical content of a theory with
local symmetry is not a simple question. Hamiltonian formalism is well adapted for
the investigation of a singular theory.

Modern particle and field theories often involve auxiliary variables which have
no direct physical meaning. We have seen examples of this kind at the end of
first chapter: Lagrangian multipliers for holonomic constraints, forceless Hertz
mechanics, electrodynamics and the relativistic particle.

Their auxiliary character is supplied either by local symmetries presented in the
Lagrangian action, or by the algebraic character of equations of motion for these
variables. So, in Lagrangian formalism we deal with a singular theory. Equations
of motion can have rather a complicated structure, including in general differential
equations of the second and the first order as well as algebraic equations. Besides,
identities among the equations can be present (see Eq.(1.297) for the case of
electrodynamics). As a consequence, there is an ambiguity in solutions for any given
initial conditions. So, the physical content of a theory with local symmetry is not a
simple question.

We point out that the appearance of auxiliary variables is mostly due to our
desire to incorporate the manifest Poincaré invariance (and locality) as the leading
principle of formalism. As we have discussed in Sect. 1.7.5, the auxiliary variables
allow us to “decompose” a nonlinear global symmetry carried out on physical
dynamical variables into a linear global symmetry plus a local symmetry.

Hamiltonian formalism is well adapted for the investigation of a singular theory.
The phase-space description allows us to automatically separate the dynamical
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part of equations of motion from the algebraic part as well as to analyze the
ambiguity present in solutions of equations of motion. Besides, the transition to
Hamiltonian formulation is a necessary step in the process of canonical quantization
of classical theory. Systematic analysis of an arbitrary singular theory was started
in the pioneer works of Dirac [8] and Bergmann [39], and is posed at present on a
solid mathematical ground [10, 11].

Notation In this chapter it will be convenient to change the notation as follows.
Generalized coordinates of the configuration space are denoted by ¢*, where A
ranges from 1 to [A], that is [A] stands for the number of variables ¢*. For the
phase-space variables we write z = (¢, pp).

8.1 Hamiltonization of a Singular Theory: The Recipe

Here we discuss the working recipe for Hamiltonization of a singular theory. We first
illustrate the recipe on two simple examples that reveal the improvements that are
necessary when we apply a Hamiltonization procedure of Sect.2.1.3 to a singular
theory.

8.1.1 Two Toy Models

Example 1 Consider the Lagrangian action

S = ; /dt [[Cy) T + 22+ ¥, (8.1)

written for the configuration variables x(t), y(7). Its Hessian is degenerate

L ¥ xy
det M = det = det =0, 8.2
oM = detyiaggn = 4 (xy xZ) ®2

so we deal with a singular theory. Lagrangian equations can be presented in the form
o) =1, P-y*=0, (8.3)

and can be integrated out

1
xzﬂ:\/ztz—f—cr—i—d, y = +x. (8.4)
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To find the Hamiltonian formulation, the first step is to solve the defining equations
for momenta

iL iL
p= .. =ydtxy, = =x+ok (8.5)
0x ay

The first equation can be resolved with respect to x
x="="". (8.6)

Its substitution into the second equation gives
G=xp—ynr =0. 8.7

This is the first characteristic property of a singular theory: only some of the
equations determining momenta can be resolved with respect to velocities. The
remaining equations do not contain velocities at all, representing algebraic equations
relating coordinates and momenta. They are called primary constraints of the Dirac
procedure.

As the second step, let us try to construct a Hamiltonian according to the standard
prescription: we write Hy = px + wy — L and use Egs. (8.6) and (8.7) to exclude all

the velocities from this expression. This gives the expression Hy = 2[; 2 — ;xz - ; 2.
Using the recipe z = {z, Hy}, we obtain the equations
p P’
k=l b=x §=00 =l (8.8)

Multiply the first equation by x, compute a derivative of the resulting expression and
use the other equations of the system, obtaining the consequence (x2) = 2 + 2i%.
This is different from Eq. (8.3).

So, the recipe of Sect.2.1.3 does not lead to the right Hamiltonian and must be
modified. According the Dirac procedure, the modification is rather nontrivial and is
as follows. We introduce an extended phase space with the coordinates x, y, p, 7, v,
where v(t) is an additional variable. It is sometimes called the Lagrangian
multiplier. On the reason that will become clear in the next section, we will call
it a velocity. The right Hamiltonian is given by

1 1
H="_ — 2x2— 2y2+v(xp—y71), (8.9)

that is, we add to Hy the primary constraint multiplied by v. H is called the complete
Hamiltonian.

This is the second characteristic property of a singular theory: the rule for
constructing the Hamiltonian of the theory must be modified according to Eq. (8.9).
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Of course, now we need to do a little work to show that this H leads to the right
dynamics. The Poisson bracket on the extended space is defined in the standard
way, {7', 7/} = Y, that is it does not involve v: {v,z'} = 0. Then (8.9) implies the
Hamiltonian equations

. P . . . P
Xx= ,+uvx, p=x—vp, y=-vy, 7=, +y+om (8.10)
y y
Together with the primary constraint (8.7), there are five equations for five variables.
We can try to use the algebraic Eq. (8.7) to obtain more algebraic consequences
of the system (8.10), (8.7), if any. This works as follows. Compute the derivative
of G, G = ip + xp — ym —yr = 0. Use Eq.(8.10) to exclude all the derivatives
appearing in this expression. This gives

T=x—y =0 @.11)

So, the Eqgs. (8.10) and (8.7) imply one more algebraic equation; occasionally it is
the second equation from (8.3). This is called the secondary constraint of the Dirac
procedure or the second-stage constraint.

In turn, the derivative of T implies

T=2 (x’; + o + vyz) —0, then v=-1". (8.12)
y 2x

Instead of a new constraint, we have obtained an algebraic expression for v in terms
of the phase-space variables. The derivative of this equation can not lead to new
algebraic equations since the equations at our disposal do not allow us to exclude v.

Exercise Show that the derivative of a constraint can be computed according
to the formula

G = {G,H}, (8.13)

which is usually used in practice. Reproduce Eqs. (8.11) and (8.12) using this
formula.

Not all equations of the complete system (8.10), (8.7), (8.11) and (8.12) are
independent. Keeping the independent equations only, they read

2
. P . p
x= h2" p=x+2x3; (8.14)
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yo=x, T = %p. (8.15)

Note that the auxiliary variable v has disappeared from the final equations.
Equations for the pair x, p do not involve y, 7, and form a normal system. Equations
for y, w are algebraical.

Now we are ready to confirm that the Hamiltonian equations are equivalent to
the Lagrangian ones. Multiply the first equation from (8.14) by x, and compute
the derivative of the resulting expression. Using the Eq. (8.14), it reads (x?) = 1.
Together with the first equation from (8.15), this reproduces the Lagrangian
dynamics (8.3).

Example 2 Consider SO(3)-invariant action

®ONe owb
S=|d . NP =87 : 8.16
/ t 2w? ®? ( )
on three-dimensional Euclidean space w(7) = (', »? »?®). We denote w? =

0w ON® = NP and so on. @ is a null-vector of the matrix N
Now =0, (8.17)
so det N = 0. As a consequence, the Hessian vanishes

9%s Neb
= det =0, (8.18)

det
0w ot ®?

and we deal with a singular theory. The matrix N maps vectors on the plane
. . a b . . . .
orthogonal to ®. Together with N = ’”w‘; this forms a pair of projectors with

the properties
N+N=1, N*=N, N*=N, NN=0. (8.19)

Any vector v can be decomposed on the transverse and longitudinal parts with
respect to @, v = v + v, where v = Nv, then (v, @) = Oand v| = Nv =
(Z)“z’) ®~®.

The Lagrangian (8.16) can be expressed in a number of equivalent forms as
follows:

(No)* 1 (0.)2_ (0)0")2) (@)@ - (o) (e.e) 8
202 2w? w2 ) 2(w?)? O 2(w2)? 2(w?)?
(8.20)

By S we have denoted the angular momentum

S = [w,®]. (8.21)
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The substitution v — 0™ = y(r)w?, where the parameter y(7) is an arbitrary

function, represents the local symmetry of the model. Indeed, due to the properties
([@.0)?
2((4)2)2
L(®). This has a simple interpretation: while the variational problem determines the
direction of ®, it does not determine its length.

Consider the Hamiltonian formulation. The equation determining the momentum

T 1S

©"? = y’0? and [, 0] = y?*[w, ®], the Lagrangian is invariant, L(w’) =

T = . (8.22)
Together with (8.17), this equality implies the primary constraint
wmr = 0. (8.23)

We note the equalities tw = 2L, x?= wzzL, thenHy=nw —L=2L—L=L=

;nzwz. Hence the total Hamiltonian reads

1
H = anwz + v(wm). (8.24)

Using Eq. (8.13) we conclude that time-derivative of the primary constraint van-
ishes, df(wn) ={wn, énzwz + v(wm)} = 0. So there is no new constraint nor an
equation for determining the velocity v. In the result, the dynamics is governed by
the Hamiltonian equations following from (8.24)

® =0t +vw, T =-1’w—vr. (8.25)

These are accompanied by the primary constraint wx = 0.

Neither the dynamical equations, nor the constraint determine the velocity v (7).
Its presence in equations of motion implies that evolution of our basic variables is
ambiguous. Indeed, for an arbitrary chosen v(7) the functions

! ‘
® = el "D [pcosb’r + esinb’s],  then w? = bZe? o V@

T = e Jovdar [~bsinb?f + ccosb’s], then n* = b2e—2Ji vk, (8.26)

with the integration constants b and ¢ subject to the conditions be¢ = 0 and b> =
¢?, obey the Egs. (8.25) and (8.23). According to Eq.(8.26), ®* and 7¢ is a pair
of mutually orthogonal vectors rotating in their own plane (or, equivalently, in the
plane determined by b and ¢). The function v(t) determines time variation of their
magnitudes.

This is one more characteristic property of a singular theory: the velocities that
have not been determined in the course of the Dirac procedure are not determined
by the complete system of equations of motion either. They enter into solutions
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as arbitrary functions. The advantage of the Hamiltonian formalism is that the
arbitrariness is detected and described automatically in the course of the procedure.

By analogy with electrodynamics (see Sect. 1.7.4), dynamical variables with
ambiguous evolution are called non physical variables. Variables with unambiguous
dynamics are called physical variables or observables. Let us look for the observ-
ables of this model. Consider the variablesy = IZ\ ,Pp = |@w|r and S = [, 7] (note
that the latter coincides with S defined in (8.21)). As a consequence of (8.25), their
equations do not involve v

y=p. p=-py. S=0. (8.27)

So all them are candidates for the observables. Since S = [y, p], we can take four
variables y and p as the independent observables. The general solution to their
equations of motion reads

1
y= b| (bcosbzt + csinbzt) , p=1b| (—b sinb%r + ccosbzt) , (8.28)

then |y| = 1 and |p| = b?. The pair rotates in the plane of the vectors b and ¢ with
constant angular velocity equal to b?. As it should be, the local transformations
presented in the model do not alter the observables. To see this, note that Eq. (8.22)
together with the transformation law w* — yw® imply n¢ — }l/Jr“. The observables
are invariants of these transformations.

Note that the two examples of a singular theory have essentially different
structure of equations of motion. When all the velocities have been determined
in the course of the Dirac procedure, the singular theory is called non-degenerate
[10]. Otherwise, it is called a singular degenerate theory. It will be seen below
that the difference is encoded in the algebraic properties of constraints with respect
to the Poisson bracket. Local symmetry is a characteristic property of a singular
degenerate theory.

8.1.2 Dirac Procedure

Now we are ready to discuss the Dirac recipe for an arbitrary singular theory

. 9’L
S = /er(qA,qA), detac_IAan =0. (8.29)

We impose the following rank condition on the Hessian matrix M:
2

ran = ran . .
AB a.Aa.B l
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The first stage of the Dirac procedure consists of Hamiltonization of the theory.

(1) Introduce conjugate momenta for the variables ¢g* according to the equations

IL(q. )

= . 8.31

= g (8.31)

They are considered as algebraic equations for determining the velocities

¢*. According to the well-known theorem about implicit function, Eq. (8.30)

guarantees that some [i] velocities among ¢, say ¢', i = 1,2,...,[i], can be
found from these equations. Let us denote the solution as'

g =v'(q".pj.q%). (8.32)

These expressions can be substituted into the remaining [«] equations for the
momenta (8.31). By construction, the resulting expressions do not depend” on
g“ and represent the primary constraints ®, (g, p) of the theory. They read

O =pa—fulg".p) =0.  a=12.. . [=[@A-[] (833
where

oL

fulq".py) = 9o (8.34)

§'=vi(g" p;.q*)

The Eqgs. (8.32) and (8.33) are thus equivalent to the system (8.31).
(2) Introduce an extended phase space parameterized by the coordinates ¢, pa, v%,
and define a complete Hamiltonian H according to the rule

H(q" . pa, v*) = paq* — L(¢*. &) + v* @u(q*. Pp)
= Hy(¢".p)) + v* ®u(q". pp). (8.35)

where we use Egs. (8.32) and (8.33) to exclude all the velocities ¢, that is

Ho(q".p)) = [PAQA_L(QA’QA)]\(8_32),(8_33)- (8.36)

H, is called the Hamiltonian of the theory.

1 atin indices from the middle of the alphabet, i, j, k, are reserved for those coordinates whose
velocities can be found from (8.31). Greek indices from the beginning of the alphabet, «, 8, y, are
used to denote the remaining coordinates.

2Indeed, if they depended on one of 4%, it would be possible to find it in terms of others ¢ and p,
contradicting the rank condition (8.30).
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Exercise Show that Hy does not depend on v* and py: gljf =0, gﬁ;’ =0.

(3) Write the equations of motion
‘.IA = {qA’H} = {QA’HO} + vd{qA’ q)a}a
Pa = {pa. H} = {pa, Ho} + v*{pa, Do}, (8.37)
Do (q",pp) = 0, (8.38)

where {¢*, pp} = 85 stands for the Poisson bracket. For later use, we write the
Hamiltonian equations in detail

C 9H, 9
Ql _ 0 _ fﬁ vﬂ,
api op;
9H, o
b= 0o s (8.39)
dqt  dq’
g = v, (8.40)
Hy 9
pa:_a 0, b s (8.41)
g g

The system is equivalent to the Lagrangian equations for the action (8.29). This
equivalence will be proved in the next section.

Exercise Consider the Hamiltonian action Sy = [ dt pag* — [Ho + v*®,].
Verify that variation with respect to independent variables ¢*, ps and v®
implies the Hamiltonian equations (8.37) and (8.38). That is, by construction

of Sy, the variational equation fgf{’/;’ = 0 is equivalent to the Hamiltonian
equation ¢* = {¢*,H}, and so on. Sy gives us additional opportunities

to study the Hamiltonian equations. For instance, any ®,(g,p) does not
depends on velocities, and can be considered as a kinematic constraint of the
variational problem. According to Sect. 1.6.3, we can solve the constraint and
substitute the result back into Sy, this gives an equivalent variational problem.

The second, third, ...stages of the Dirac procedure consist in revealing all the
algebraic consequences of the system (8.37) and (8.38).

According to Eq. (8.38), all the solutions are confined to lying on a surface of the
extended phase space defined by the algebraic equations ®, = 0. It may happen that
the system (8.37) and (8.38) contains in reality more then [«] algebraic equations.
Indeed, computing the derivative of the primary constraints with respect to time and
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using (8.37), we obtain the algebraic consequences of the system
{®g, H} = {@y, Dp}v” + (P, Ho} = 0. (8.42)

Henceforth they are called second-stage equations of the Dirac procedure. They can
be added to Eqs. (8.37) and (8.38), which gives an equivalent system.

After that the dynamical equations p, = {py, H} turn into consequences of other
equations of the system, as the following computation shows:

= aq)a . 8d>a
by ="y 4 (z“‘ —{zA,H}) +
=6 (pp — {pp. H}) + {®@u. H} = pu — {pa. H}. (8.43)

So they can be omitted from consideration. In many cases we will keep them, with
the aim to preserve the symmetric form of the system (8.37).

Let us analyze the structure of the second-stage system. It is considered as a
system of linear equations for determining the velocities v*. According to known
theorems of linear algebra, if

rank{®,, Pp} = [¢'] < [o], (8.44)

then [«] equations can be used to represent some v through other variables. The
velocities v thus determined can be substituted into the remaining [o”] = [o]—[o/']
equations; the resulting expressions do not contain v* at all. After doing this, the
second-stage system acquires the form

v =0 (¢ pj o), Dy (g, p;) = 0. (8.45)

Functionally-independent equations among ®,~ = 0, if any, represent the second-
stage Dirac constraints. Thus all the solutions of the system (8.37) and (8.38) are
confined to lying on the surface defined by ®, = 0 and by the Eq. (8.45).

The velocities that have been determined can be substituted into the expression
for the complete Hamiltonian.?

The procedure described above can be now repeated for the second-stage
constraints, which can produce non-trivial third-stage algebraic equations,

(@ H} =0. (8.46)

This may determine some of the velocities and may produce new constraints.
As above, adding them to the system (8.37), (8.38) and (8.42), some of the

3Note that we can substitute the velocities v*(z, v#) into the complete Hamiltonian before
computing the Poisson brackets, which does not alter the resulting equations of motion. This
follows from the fact that the velocities enter into H multiplied by the primary constraints. So,
on the constraint surface, {z, v () @y} = {z, e }v¥ (2) + {2, V¥ (1)} Py = {2, Do }V% .
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q
/

Fig. 8.1 All the trajectories of a singular theory lie on the surface ®, = 0, {®;, H} = 0. The
surface belongs to the cylindrical surface ®; = 0 of the extended phase space

dynamical equations can be omitted from consideration. If the system (8.46) implies
new constraints, we start the fourth stage of the Dirac procedure, and so on.

Since the number of functionally-independent constraints can not be more than
dimension 2[A] of the phase space, the procedure necessarily stops at some stage,
say N.

The complete set of higher-stage constraints is denoted by ®,(¢*, p;j) = 0 (Latin
indices from the beginning of the alphabet, a, b, c, are used to denote the higher-
stage constraints). Then the complete constraint system is

O = (04, @) =0, a=12,...[d. (8.47)
Then all the higher-stage algebraic equations are given by the system
{®,. H} = 0. (8.48)

All the solutions to Egs. (8.37) and (8.38) are confined to lying on the surface defined
by the equations ®, = 0 and (8.48); see Fig. 8.1 on page 281. By construction, after
substitution of the velocities v* determined in the course of the Dirac procedure, the
Eq. (8.48) hold on the complete constraint surface ®; = 0.

In short, after completing the Dirac procedure, the theory can be described by
Hamiltonian equations (8.37) which are accompanied by the constraints (8.47).
Besides, some of the velocities (or all of them) have been determined in the process.
Equivalently, the complete system of equations is given by formulas (8.37), (8.38)
and (8.48). We also repeat (see page 280) that [/] dynamical equations are
consequences of other equations of the complete system (where [/] is the number of
all constraints).
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Exercise Construct the Hamiltonian formulation for the action (2.168) and
find the Eq. (2.171).

8.2 Justification of the Hamiltonization Recipe

Recall that the Lagrangian equations for the action (8.29)

d (0L(q,4 dL(q, q
.9\ _ g9 _ o (8.49)
dt agh dgt
can be identically rewritten in the form
Mypi® = Kg, (8.50)

where Myp(q, ¢) stands for the Hessian matrix, and Kg(q, §) has been specified in
Eq. (1.136).

To construct the corresponding Hamiltonian formulation, we basically follow
the same ideology as in Sect.2.1.2. First we rewrite the Lagrangian equations in
a first-order form, and then we look for the change of variables that supplies the
Hamiltonian form of these equations.

8.2.1 Configuration-Velocity Space

We introduce 2[A]-dimensional configuration-velocity space parameterized by inde-
pendent coordinates ¢*, v® (sometimes the coordinates v? are called (generalized)
velocities). Let us define the evolution of these variables according to the equations
Mypi® = Kp, v = §*. As before, time dependence of the coordinates ¢*(t) is
determined by the Lagrangian equations (8.50), while v*(z) accompanies ¢*():
vA(7) is determined from the known ¢” () taking its derivative. Evidently, this
system is equivalent to (8.50). Substitution of the second equation into the first one
gives the desired first-order system

QA =", Mupd® = Ky, (8.51)
where M, K are obtained from M, K by the replacement § — v, for example

dL(q,v)

aoABys (8.52)

Mpp = Map(q.)|op 0 =
For a quantity defined on the configuration space we indicate its arguments
manifestly: A(g,q). Where arguments of a quantity are not indicated, we adopt
the following conventions. Symbols with a bar are used to denote functions on
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the configuration-velocity space: A = A(g, v), while symbols without a bar denote
functions on the space qA, Dj» v* (see below):

A = A", pjsv*) =A@ V)i v (8.53)

To analyze the system (8.51), we suppose that the rank minor of the matrix M is
placed in the upper left corner.* Then, according to the rank condition (8.30), our
variables can be decomposed into two groups, ¢* = (¢',¢%),i = 1,2,....[i], @ =
1,2,...,[a] = [A] — [i]. The Hessian matrix reads

Mg = ( M giﬂ ) ., det My #0. (8.54)

Thus, the Latin indices from the middle of the alphabet, i, j, k, correspond to the
coordinates related with the invertible block of matrix M. Greek indices from the
beginning of the alphabet, «, 8, y, are used to denote the remaining variables.

The inverse matrix for MU is denoted M: i, we have MU M* = 8.~ k. The equations
of motion (8.51) read

M7 + MigiP = K, (8.55)
Mojo? + MogiP = K, . (8.56)

According to the rank condition, the Eq. (8.55) can be resolved with respect to v,
o' = Mi(K; — Mj,0), and then substituted into the Eq. (8.56) with the result being
[Mop — Mo MiMp]0P = Ko — Mo MIK;. Tt must be rank[Ms — Mo Mib;5] = 0
(otherwise, we would be able to resolve the equations in relation to some of v?,
contradicting (8.30)). Hence the matrix M obeys the identity

Mop — Moy MM = 0. (8.57)

Exercise Show that the quantities
Ct = (=g b, 8,°). (8.58)

form a basis on the space of null vectors of the matrix Mg

o

Mg = 0. (8.59)

4If not, the initial variables ¢" can be re-numbered to achieve this.
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In the result, the equations of motion (8.51) are presented in the equivalent form

g =", (8.60)
o = MI(K; — Mi0®). (8.61)
Ko — Mo MIK; = 0. (8.62)

The Eq. (8.62) are algebraic ones. As will be seen below, they coincide with second-
stage equations of the Dirac procedure, {®,, H} = 0. For the first example of the
previous section, this is x> — y?> = 0.

8.2.2 Hamiltonization

The next step is to show whether the Egs. (8.60) and (8.61) form a Hamiltonian
system in suitably chosen coordinates of the configuration-velocity space. Our aim
now will be to demonstrate the following

Assertion Given the singular theory (8.29) and (8.30), consider the following
change of variables

QA qA 3L(qA, Ui, Ua)

v | < | v* |, where p;= i . (8.63)
Ui Di v

According to the rank condition (8.54), it is invertible. Let us denote the inverse

transformation as’

v = (g, pj,v®). (8.64)

We also introduce the reduced Poisson bracket, that is the Poisson bracket computed
with respect to (¢, p;)-variables only. For the functions A(¢”, pi, v*), B(¢*, pi, v%)
this reads

0A 0B  0A OB

A,Blg = . — .
. Blx dq' 0p;  Op; 0q'

(8.65)

5The velocities v* which “survive” after the variable change are just the Lagrangian multipliers of
the Dirac recipe, see below.
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Then, in the variables qA,pi, v®, the equations of motion (8.60), (8.61) and (8.62)
acquire the form

i, ‘ 0Hy 9
i =1{q Help=", "~ o v,
api  Opi
d0H, a
b=t Hede = — 0 4 U0 (8.66)
agt g’
q* =", (8.67)
Bap (¢". VP + Holg".pj) = 0. (8.68)
The basic quantity of the Hamiltonian formulation turns out to be
Hy = Ho(q".p) — fu(q". p)V". (8.69)
where
oL . . oL
Ho(q".pj) = v —L = | piv' — L(g,v) + v* , (8.70)
vt o o /|,
is just the Hamiltonian of the Dirac recipe. It is also denoted
oL
fuldp) = g | (8.71)
U™ |y
fu  Ofp
AO{ = Va> - - )
p= oS8R (85]}3 dq”
0H,
Hy = —{fy. Holg — aqf‘ (8.72)

According to the Assertion, equations for the (g', pj)-sector are presented in the
Hamiltonian form (8.66). As compared with the Dirac system (8.38), (8.39), (8.40)
and (8.41), there are no conjugate momenta for the variables g“. Hence, we have not
yet arrived at the Dirac recipe.

Proof of the Assertion To prove the assertion, we will need to know properties
of the transition function v'(g*, p;, v*), which is given in an implicit form by
Eq.(8.63), as well as a structure of the Lagrangian as a function of ¢*,p;, v®,

L(qA,pj, V%) = i,(qA, Ui, Ua)lvi.

Derivatives of the identity p; = Bi(q/;,vvii,v"‘) lvi(¢ py.ve) give the relationships
L TV i o' - 0L
= M, = MM, U 8.73
ap; Py L widgh |, (8.73)
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Then the identity (8.57) acquires the form aga ( aaviﬁ |vi) = 0, so the quantity

oL
(G p) = , 8.74
fuld ) = (8.74)
does not depend on v®. Its derivative reads
) D -
f“(an P _ M, (8.75)
Di

so the quantity MUMW does not depend on v* as well. Remember that a quantity
without a bar denotes a function defined on the space ¢*,p;, v*; see our nota-
tion (8.53).

Using the known formula for the derivative of a composite function, Eq. (8.74)
can be identically rewritten in terms of L

d i
fu(d".p)) = — P (Piv - L), (8.76)
which implies that the quantity
HR(qu Pij» va) = Pivi —L, (8.77)

is at most linear on v®. Integrating out the Eq. (8.76) we obtain

Hr(q",p;,v®) = Ho(q", p)) — v*fo(d". D)), (8.78)

where Hj stands for an integration constant. It can be found in terms of the initial
Lagrangian by comparison of Egs. (8.77) and (8.78)

L -
Ho(q",p)) = (3 AV L) (8.79)
v vi
From Eq. (8.77) we obtain useful relationships
OHr dHg L dHg
- - _ , =— .Dj). 8.80
op: v 9g ran Jue fu(q" pj) ( )

In particular, the first equation together with (8.78) implies that v’ is at most linear
on v and has the representation

aI"IO afa o
— v,

vig* pj.v®) = o o (8.81)
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This implies (see Eq. (8.73)) that the matrix MY is at most linear on v¥, and has the

representation MY = aa;,lgﬁj Finally, Eqs. (8.77), (8.78) and (8.81) imply that L is at

most linear on v* and has the representation

0Hg

L(g*, pj, v*) = p; iy, e (8.82)

Let us summarize the results. Given singular theory, both the transition func-
tion (8.64) and the Lagrangian L(¢*, p;, v*) are linear functions of the velocities
v*. The Lagrangian has been presented in terms of the function Hg, which is a
linear function of v* as well. Besides, the Hamiltonian H, and the function f,, do
not depend on v*.

Using these formulas, the reader can check that Egs. (8.66), (8.67), (8.68), (8.69),
(8.70), (8.71) and (8.72) can be obtained by direct substitution of the transition
function into the first-order Eqgs. (8.60), (8.61) and (8.62). Therefore the two
formulations are equivalent.

As in the case of the Dirac procedure, we could now start to look for, from
Eq. (8.68), all the algebraic consequences of the system (8.66), (8.67) and (8.68).
Instead, we now establish the equivalence of the formulation (8.66), (8.67)
and (8.68) with the more symmetric Dirac formulation (8.38), (8.39), (8.40)
and (8.41).

8.2.3 Comparison with the Dirac Recipe

In the previous section the first-order equations of motion (8.60), (8.61) and (8.62)
were identically rewritten in special coordinates of 2[A]-dimensional configuration-
velocity space. Let us compare the resulting system (8.66), (8.67) and (8.68) with the
Dirac system (8.38), (8.39), (8.40) and (8.41). The latter is formulated in 2[A] + [«]-
dimensional space, where the additional variables are the conjugate momenta p,, for
q“. So, to see the equivalence of the two formulations, we need to extend our space
adding the auxiliary variables

(quPis Ua) - (quPi»Pou va)' (883)

We also complete the reduced bracket (8.65) up to the Poisson bracket, defining
{g*.pg} = 8%p. Let us define the dynamics on this space as follows. By definition,
the initial variables (¢*, pj, v*) obey Eqgs. (8.66), (8.67) and (8.68). As the “equations
of motion” for p, we take

oL

Dy = po _fa(qupj) =0, or p,= Sy

, (8.84)

vi
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that is primary Dirac constraints (compare them also with Eq. (8.63). By construc-
tion, the system (8.66), (8.67) and (8.68), (8.84) is equivalent to (8.66), (8.67)
and (8.68). On the other hand, it is equivalent to the Dirac system.

To see this, we notice the relationship between the complete Hamiltonian (8.35)
of the Dirac recipe and our basic quantity Hg: H = Hg + pov®, and make the
following observations.

(a) We can replace Hx — H in the Eq. (8.66) without altering their form. They then
coincide with (8.39).

(b) Equation (8.67) coincides with (8.40).

(c) Using the complete Poisson bracket, Eq.(8.68) can be written in the form
{®y,H} = 0, that is, it represents the second-stage system of the Dirac
procedure.

(d) The equation

Dy = — 8.85
P ag (8.85)

is a consequence of Egs. (8.66), (8.67) and (8.68) and (8.84), as the following
computation shows:

. oy r. oy .
0= b, = ju a]qu [ — tq" ] - aj; i — {pi, ]
afa afa
_an{quH}_ api{pi’H}

. . . oH
:Pa—{fa,H}:Pa—{Pa,H}‘F{q)a,H}:Pa_aqa- (8.86)
Thus we have reproduced the Dirac system (8.38), (8.39), (8.40) and (8.41),
together with its consequence, which is the second-stage system {®y, H} = 0.

In the result, we have demonstrated that the Dirac procedure produces a
Hamiltonian formulation which is equivalent to the initial Lagrangian formulation.
The procedure of Hamiltonization can be schematically resumed as follows

(qu qA) - (qu vis Ua) <~ (quPis Ua) - (quPi»Pou Ua)- (887)

Some relevant comments are in order.

1. The mysterious Lagrangian multipliers of the Dirac recipe represent just the
velocities that remain “untouched” by the change of variables (8.63).

2. In an arbitrary singular theory, the Hamiltonian Hy(g", p;) does not depends
on py.

3. Our discussion reveals that the only role played by the momenta p, is to represent
equations of motion in a completely symmetric form, with the Poisson bracket
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defined in relation to all variables ¢*,ps. The momenta p, are, in fact, the
auxiliary variables of a singular theory.

4. Primary and secondary® constraints have very different origins. The secondary
constraints represent, in fact, part of the initial equations of motion, rewritten in
the Hamiltonian form. The primary constraints, together with the momenta p,,
have been added by hand, with the aim of obtaining a more symmetric formalism.

Exercise Obtain Egs. (8.66), (8.67), (8.68), (8.69), (8.70), (8.71) and (8.72)
by direct substitution of the transition function into the first-order
Eqgs. (8.60), (8.61) and (8.62).

8.3 Classification of Constraints

Let the matrix K;” (¢*, pg) be invertible on the constraint surface
detK;| 4 _ # 0 (8.88)

Then the functions K;/®, are called constraints that are equivalent to the initial
constraints ®;. Note that the equations ®; = 0 and K’ ; = 0 determine the same
surface in the phase space.

As will be seen below, the structure of Hamiltonian equations (8.37), (8.38)
and (8.48) essentially depends on properties of the constraints ®; with respect to
the Poisson bracket.

Definition 1 Let ® be either one of the constraints among ®; or a combination of
®;. The constraint ® is called a first class constraint if its bracket with any constraint
is proportional to the constraints

{D,D;} ~ Oy, J=12,....J] (8.89)
Any subset of constraints, say ®;,, I» = 1,2,...,[l»], for which the matrix of

Poisson brackets is invertible on the constraint surface, is called a set of second-
class constraints. That is they obey

{@12, CDJZ} :Alzjz, where det A[zjz 7é 0. (8.90)

SRemember that the secondary constraints consist of the second-stage, third-stage, ... constraints.
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Now we demonstrate the central result on the structure of a constraint system.
Let us denote the Poisson bracket of all constraints by A

(@, @} =0y (¢*,ps). (8.91)

Suppose that its rank on the constraint surface is equal to a number [I;],
rank Aplg,—o = [l] < [I]. We demonstrate that there is an equivalent system
of constraints formed by [I5] second-class constraints, and by [I;]] = [I] — [I1]
first-class constraints.

To see this, we note that according to the rank condition, there are [I}] = I — [I5]
independent null-vectors I_f[l (¢*, pp) of the matrix A on the surface ®; = 0. We
denote their components KIIJ . Then, for the combinations &)Il = KIIJ ®,, we find

(D), D) = (K, PLYO; + Ky Ajp~ @y, (8.92)

since K A vanishes on surface ®; = 0. Hence &, represent [/;] first-class
constraints.

Exercise Show that the presence of r first-class constraints among ®; implies
rank Aglg,—o < [I] —n.

We can choose the vectors k,z(qA, pj) to complete k,l up to a basis of [I]-
dimensional vector space. By construction, the matrix

J
K’ = (K’l ) (8.93)

is invertible. Let us denote ®; = (®;,, ®;,), where &, = K;,’®,, &), = K,”®,.
The system ®; is equivalent to the initial system of constraints ®;. The constraints
&)12 form the second-class subset (prove this!).

Therefore, properties of the set @, can be summarized as follows

(@, @)} =4y (¢, p),
(@, @) = /X (@ pp) Pk, {Dp, @p,} =Ans, (¢, PB), (8.94)

where

rank Apylg,—o = [L]. det Apypyl = 7 0. (8.95)
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For later use we mention one more property

{®,, Ho} = by’ (4", pp) Dy, (8.96)

which follows from the conservation of the first-class constraints in time, Eq. (8.48).

8.4 Classical Observables and Physical Content
of a Degenerate Theory

After completing the Dirac procedure, we deal with equations of motion
= {z. H}, Q, =0, {®,H} =0, (8.97)

where z = (¢*.pp) and &, = (P,,D,). We have also seen that some of
the dynamical equations of the system are a consequence of other equations. To
continue the analysis, we now separate independent equations.

Since the constraints ®; = 0 are functionally independent, we can resolve them
with respect to [/] phase-space variables. That is, they can be presented in the form

d—fl =0, (8.98)

where [a] = [24] — [I]. Exactly the equations for 7' are the consequences, as follows
from the computation

. 0P Rl
0=d,="_"t—{zH+ . {z.H}
0z 0z
_ 0%, 0 iz
T o9 [Z {z vH}] + 97 [Z {z ,H}] + {®;,H}
0®
= 3ZJI [ —{.H}]. (8.99)

Besides, the higher-stage equations allow us to present some of the velocities, say
v®, through other variables, v» = d”3(z)0%. Using all this, the Eq.(8.97) are
equivalent to

=K, 09, (8.100)
d=1GY, o =dla)”, (8.101)

where’h® = {z%, H(*, 2, v¥(z, 1), 1_)&)}|Zl=f1(za)-

"Recall that we can substitute the velocities v¥(z, v#) into the complete Hamiltonian before
computing the Poisson brackets, which does not alter the resulting equations of motion.
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Now it is clear that the velocities 1% are not determined by these equations, and
“parameterize” the ambiguity presented in solutions of the problem. Indeed, let us
fix 9%(7) in some way. Then the Eq. (8.100) represent a normal system and can be
solved under a given initial conditions, for example z%(0) = zf’). Then we determine
0P according to (8.101). The solution of the Cauchy problem is not unique, since
taking some other functions " () such that 3*(0) = ©%(0), we obtain a different
solution which obeys the same initial conditions.

Moreover, a solution is not unique even for any other set of initial conditions!
To illustrate this, let us discuss the two-dimensional example, z = h(z, v). We solve
the equation with respect to v, v = /(z, z). Then the set z(t), h(z(2). z(7)) with an
arbitrary function z(7) is a solution of the problem. Due to this, the problem with the
initial conditions z(0), z(0), . . ., 2% (0), v(0) = A(z(0), z(0)), has infinite solutions.

Therefore, for a singular theory, in which some of velocities have not been
determined in the course of the Dirac procedure, it is impossible to formulate
the Cauchy problem for original variables. Given initial conditions, a solution of
the problem is not unique. Moreover, the example 2 of Sect.8.1.1 shows that
all original variables can have an ambiguous dynamics, in contradiction with an
expected causal evolution of a system. Therefore the original variables generally
have no physical meaning. To find the physical content of a degenerate theory, we
look for combinations of original variables with unambiguous dynamics. Certainly,
constraints are of this type, but they have a trivial dynamics. Are there any more
variables with unambiguous dynamics in a degenerate theory? The answer was
given in a remarkable theorem proved by Gitman and Tyutin [10]. It guarantees
that besides the constraints, there are 2[A] — [I5] — 2[I;] independent variables with
unambiguous dynamics. The variables (or functions of them) sometimes are called
physical variables or observables. The subspace of observables is called physical
sector of the theory. Let us briefly discuss the corresponding formalism.

Singular Theory in Special Coordinates As we saw in Sect. 4.4.3, there is time-
independent canonical transformation such that the constraints (8.98) turn into a
part of coordinates of the new system, say ©2; = z/ — f/(z%). Then all solutions to
equations of motion lie on the hyper-plane 2; = 0. Further progress in analysis
of equations of motion can be achieved in these new coordinates called special
coordinates. They can be described as follows. The set 2 consist of é [I>] conjugated
pairs (y, r) equivalent to second-class constraints from (8.98), and of momenta P
and P, they are equivalent to primary and higher-stage first-class constraints. So
we have Q = {(y, ), P, P}. The coordinates corresponding to the momenta are
denoted 0 = (0, 0). The remaining conjugated pairs of the special system we
denote w. Thus the special coordinates are (w, 2, Q).

According to the Gitman-Tyutin theorem [10], in the canonical coordinates the
equations of motion (8.97) acquire the form

b ={o.Hy)}, =0 0=10 0=Bw.00). (8.102)

where H,, and B are known functions of indicated arguments, and v are the
undetermined velocities.
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Now the ambiguity in solutions becomes transparent: varying the functions v,
we alter only the variables Q0 = (0, Q). The variables @ have unambiguous
dynamics, since the equations for them are separated from others. Equations for
w are Hamiltonian, with the Hamiltonian being H,,.

A classical-mechanics system has unambiguous behavior. If we wish to describe
it by a degenerate theory, we need some convention that will remove the discrepancy
between causal evolution of a physical system and the ambiguity presented in
solutions of Eq. (8.102). The form of these equations suggests the natural possibility
of doing this: the physical dynamics should be associated with the w-sector of a
singular theory. Let us adopt the following terminology:

A. Two solutions (trajectories) Z = (w,2,0,7) and Z/ = (o', 2,0, 7’) to
the system (8.102) are said to be equivalent, Z' ~ Z, if ' = w. According
to the equivalence relationship, the space of solutions decomposes into non-
intersecting classes Z of mutually equivalent solutions.

B. A function A is called physical function (observable), if it has the same
values at equal-time points of equivalent trajectories, that is A(Z’, 7.7,..) =
A(Z,Z,7,...),whenZ ~ Z.

C. Two observables are equivalent, A ~ A’, if their values coincide on all
trajectories. The space of observables decomposes into non-intersecting classes
A of mutually equivalent observables.

Some relevant comments are in order. We start from two properties® of a class of
equivalent trajectories Z.

1. Ambiguous evolution implies the existence of intersecting trajectories which
obey Z(t9) = Z'(1p) at some 79. Note that intersecting trajectories belong to
the same equivalence class.

2. Let Z(1) = (0,9,0, Q v) be a solution of (8.102), and 8, A, Ay, A,, ...,
Ay given numbers. Then there is an equivalent solution Z'(t) (that is with
the same (7)), which obeys the conditions ¢’(0) = Q(0) + &, Q'(0) =
0(0) + &, 2O = 'O LAy =1,2.... .k Indeed, the desired solution is
7' (1) = (0. Q,0 +u, 0, ¥ + i), where u is a function which obey u(0) = A,

dzl"f(no) = A,,n=12....k and Q’ (7) is solution to the Cauchy problem

Q'(r) = B(r. Q') = Blo(7), 0(7) + u(r). 0], 0'(0) = Q(0) + 6.
Some properties of a class of observables A.

3. The dynamical variables w(7) (as well as the functions a(w)) represent examples
of observables.

4. If A € A, then A|g—o and A + {2} are observables of the same class. Here {Q}
is any function proportional to the constraints, {Q2} = f;(Z);.

5. In each class A there is an observable of the form a(w). As a consequence,
observables have unambiguous dynamics. Indeed, let A;(Z, z.7... .) is an
observable from A. Using Eq.(8.102), it can be presented through w, Q, O

8For a detailed description of the class, see [10].
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and derivatives of Q: Ay(w, .0, 0, 0.0, ...). This function also belong to A.
Then A;|qg=¢ = a(w, Q, Q, Q, Q ...) € A. According to Item 2, it must obey
a(@,0.0.0,..) =a(w.0+8.0+ A, 0+ A,O+ A,,...),and hence is a
function of w, a(w).

In view of this, we can adopt the following interpretation of a degenerate
theory: we assume that observables describe the measurable quantities.

Since an observable acquires the same value for all trajectories of a given
class, it is not necessary to know all the trajectories for the description of physical
quantities. Since all observables of a class A describe the same measurable
quantity, we can use only one of them, for instance the representative a(w).

6. According to this interpretation, the Cauchy problem is formulated for the w-
variables, w(0) = wy.

7. Another consequence of the interpretation adopted is that the same physical
system can be described by theories with different equations and even with
different numbers of variables.

Consider the theory with the variables w and the equations of motion & =
{w, Hpy}. It is obtained from the original theory disregarding all the ambiguous
variables. It has the same physical content as the theory (8.102). Note also that it
is a non-singular theory.

Other examples of equivalent formulations can be obtained either by partial
or by complete fixation of the ambiguity presented in Eq. (8.102).

For instance, we can partially fix the dynamics (8.102), adding the equations
Q = 0, then ¥ = 0. Note that there remains the ambiguity related to the choice
of initial conditions for the variables Q.

Adding the equations Q = 0, and replacing the last set of equations
from (8.102) by O = Y(w), where Y(w) are given functions, we completely
remove the ambiguity. Note that the number of equations that must be added to
completely remove the ambiguity is equal to the number of first-class constraints
of the theory.

The transition from the original formulation to the other one, with the
variables of the ambiguous sector fixed in one or another way, is called the
fixation of gauge. The resulting theory is called a gauge of the original theory.
When we work in special coordinates, the original theory and its gauge have the
same physical content.

8. An observable of the form a(w), being rewritten in the original variables z =
(¢*.pp), has the form a(z) = a(w(z)). Hence measurable quantities can be
described using the observables which are functions of z only. Let a be the class
of observables of the form A(z), with the representative a(z). To establish the
structure of A(z), we consider it in special coordinates, A(z) = A(w,2,Q0) =
A(w, Q) + {2} = a(w) + {R2}. The last equality is owing to Item 5. In the
original coordinates it reads A(z) = a(z) + f;(z) ;.

For an observable of this form we have

{A2), @1} = {P}. (8.103)



8.4 Classical Observables and Physical Content of a Degenerate Theory 295

Therefore the observables of the form A(z) commute with all first-class con-
straints. Note that the observables a(z) = a(w(z)) commute with all constraints.

9. In practical computations, complete fixation of the ambiguity in original vari-
ables is achieved according the following scheme. Let Fy, (') be functions such
that the functions ® = (&®;, F;,) are functionally independent and form the
second-class set on the surface ® = 0

det{®, ®}|y_, # O. (8.104)

We add the equations F(z') = 0 to the original system, 7 = {z,H} and ®; =
0. The equations are called gauge conditions imposed on the theory. In special
coordinates we will have the Eq. (8.102) accompanied by F(w, 22, Q, Q) =
The condition (8.104) guarantees that the gauge conditions can be resolved with
respect to Q. So they can be written in the equivalent form, Q0 = F(w) and
0=F (w) (possible dependence of F on 2 can be discarded in the complete
system). Using them in other equations of the system, we present it as follows:

o ={w Hp(w)}, =0, F(a)) =, I:"(a)) = B(w, F(w), F(w)),
0=F). Q=Fw).

If the fourth equation is satisfied as a consequence of the first equation, we
achieved our goal: the theory z = {z, H}, ®; = 0, F;, = 0 is self-consistent,
has unambiguous dynamics and the same physical content as the original theory.

To avoid a confusion, we emphasize that complete fixation of a gauge in original
coordinates generally does not mean that we have specified the physical sector of
the theory.

Search for Observables in Original Coordinates To find the special coordi-
nates, we need to solve a complicated system of partial differential equations,
see Sect.4.4.3. In many cases it is easier to find an observables in the origi-
nal coordinates. The analysis of a theory in special coordinates yields certain
hints how we can do this. Since the basic property of an observable is its
causal evolution, we just search for 2[A] — [I,] — 2[];] independent combinations
Zobs(q*, pg), With unambiguous dynamics governed by closed system of equations.
By closed we mean the system which involves only the variables z,,s. According to
Eq. (8.103), the observables necessarily have vanishing brackets with all first-class
constraints.
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8.5 Theory with Second-Class Constraints: Dirac Bracket

Consider a singular theory that, after completing the Dirac procedure, leads to the
equations of motion

t={z,H}, &, =0, {®Hy}+ {®;, P} =0, (8.105)
where all the constrains ®; form the second-class set

1@, @y} =Ap, det Aylg—g # 0. (8.106)

The inverse matrix for A is denoted by AV AU A = 8.
Applying A% and A% to the last equation from (8.105), we obtain

v* = —AY{D;, Hy}, (8.107)
A{®;, Hyt ~ ;. (8.108)

Substitu~ting these into the first equation from (8.105), we obtain z = {z, Hy} —
{z, ®u } AY{®;, Hy}. Using Eq.(8.108), this can be written in a more symmetric
form

z = {Zs HO} - {Zv qDI}AN”{CDJv HO} (8109)

Repeating the analysis carried out in Sect. 8.4 (see Egs.(8.98), (8.99), (8.100)
and (8.101) ), we conclude that the dynamics of the theory is governed by

# = W), (8.110)

d=11E v = AP Ho) 8.111)

Thus, in a singular theory with second-class constraints, all the velocities are
determined algebraically through the phase-space variables. The dynamics is
unambiguous. The variables z¢ obey the first-order equations, so there is a natural

formulation of the Cauchy problem, 2(0) = zf;. The variables z/, v* are determined
algebraically through z¢, so they have no independent temporal evolution.

Dirac Bracket The equations of motion (8.109) can be written in a compact form
z = {z,Ho}p, (8.112)

if we introduce the Dirac bracket constructed with help of the set of second-class
constraints ®;

{A,B}p = {A,B} — {A, ®;} AV {®,, B}. (8.113)
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This possesses all the properties of the Poisson bracket, see Egs. (2.47), (2.48), (2.49)
and (2.50). Besides, the remarkable property is that the Dirac bracket of the
constraint ®; with any function vanishes

{®1,A}p =0, I=1,2,...,[1], (8.114)
in particular
{®1. ®s}p = 0. (8.115)

This implies, in particular, that second-class constraints can be taken into account
inside the Dirac bracket (that is, before computing the bracket).

This can be used to write the function 4% in Eq.(8.110) in terms of the Dirac
bracket. Indeed, let us write equations for z* which are contained in (8.112),
= {z‘_‘ Hy}p. Using the constraints (8.111), 7! can be substituted into H,, before
computing the Dirac bracket. In the result, the dynamical variables z° obey the
equations

# =" Ho(z")}p, where Ho(z") = Ho(z",7 (")) (8.116)

Exercises

1. Show that the rank of the matrix of fundamental brackets {z*, z%},, on the
surface ®; = 0 is equal to [2A4] — [/]. (Hint: compute the fundamental
brackets for the special coordinates (w, 2, Q) specified in Sect. 8.4.

2. Consider the following variational problem for configuration-space vari-
ables ¢* and yp: Sy = Jdr yag* — H(q,y). Find Hamiltonian action,
construct Dirac brackets and use them to exclude yp and their conjugate
momenta from the Hamiltonian action. Compare the result with Sy.

Canonical Quantization and Second-Class Constraints The quantum mechanics
of a classical system with non singular Lagrangian L(g*, 4%,7) can be obtained
using the canonical quantization procedure. To achieve this, we rewrite the system
in the Hamiltonian formalism. The basic quantities now are the Poisson brackets
{¢".pp} = &'p and the Hamiltonian H(q*, pp.t). According to the canonical
quantization paradigm, we associate with the phase-space variables the operators’

°The operators g, p are taken as hermitian, which guarantees that their eigenvalues are real
numbers. Since the commutator of Hermitian operators is an anti-Hermitian operator, the factor
i appears on the r.h.s. of Eq. (8.117).
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with commutators resembling the Poisson brackets

a'ps — Peq" = (", ps] = ihd"p,
[&*.4°] = [pa. ps] = O. (8.117)

They act on space of wave functions ¥(t,¢*). On this base, we postulate the
Schrodinger equation for the wave function

ih aatw =HY, H=H@Gp. (8.118)
For a theory with second-class constraints, the recipe (8.117) would not be consis-
tent. Indeed, since in classical theory ®; = 0, one expects that the corresponding
operators vanish on physical state vectors, CTJI‘-IJPh = 0. Quantizing the theory by
means of the Poisson bracket, we obtain (<i>1<i> J — o JciJI)\IJph =Ay Yy The left-
hand side of this expression vanishes, but the right-hand side does not.

The problem is resolved by postulating commutators that resemble the Dirac
bracket instead of the Poisson one

[¢". sl = ih {q" . pB)p| 2 = ih Dag . (8.119)

Owing to Eq. (8.115), this is consistent with the condition (iDI\IJph =0.

The Problem with Time-Dependent Second-Class Constraints The prescription
formulated above does not work in a theory with time-dependent second-class
constraints. Such a kind situation generally arises when we consider a constrained
system in external fields in the physical-time parametrization, see Sect.9.7.3. To
simplify our discussion, consider a theory which involves only the primary time-
dependent second-class constraints

H = Hy(z,1) + ®y(z, 1)0". (8.120)
All true trajectories lie on the surface @,(z,7) = 0 which has his own prescribed
dynamics. This dynamics yield an additional contribution into equations of motion

for z. Indeed, from the preservation in time of the constraints we obtain

g = 0,05 + {Dp, Ho} + (D, Py }v” =0, (8.121)



8.5 Theory with Second-Class Constraints: Dirac Bracket 299

then
Vv = —{@y, g} H{Pp. Ho} — (@, B} "0, 0. (8.122)

As compared with the standard case, we have the extra term, {z, @o }{ @y, Pp} ™"
0,®g, which takes into account dynamics of the constraint surface. Substitution of
this expression into (8.120) gives the Hamiltonian

H = Hy — @y {®,, @ﬂ}_l{éﬂ,Ho} — Py { D, ®ﬂ}_13t®ﬂ. (8.123)

Equations of motion have the Hamiltonian form (with the Hamiltonian (8.123)) with
respect to Poisson bracket

z={z.Ho} — {z. @ }{Po. D}~ {Pp. Ho} — {z. Do }{ P, D}~ 0, Pp. (8.124)
Let us rewrite them using the Dirac bracket
& = {z. Holp — {z. Do} {(Pa, Py} ™ 9,5, (8.125)

Due to the last term, they do not form a generalized Hamiltonian system with respect
to the Dirac bracket. Without a Hamiltonian, we are not able to write the Schrodinger
equation.

To avoid this difficulty, we introduce the new variables

2y = 72— Po{ Py, P} 0,Dp. (8.126)

They coincide with z on the constraint surface, so we call them weak variables. We
rewrite (8.125) in the form

e Bl 940 By) = {2 o). (8.127)

As the constraints can be used before computing of the Dirac bracket, Eq. (8.127)
can be rewritten in closed form for z,,

zw = {Zwv HO(ZW)}D s (8128)

and represents the Hamiltonian system for z,,. So, the weak variables admit the
standard canonical quantization: we could search for the operators z,, with the
Dirac-bracket commutators, and then to impose the Schrodinger equation i%0,¥ =
H(Z,)¥. To compute mean values of the initial operators z, we need to invert the
transformation (8.126).
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Formal Quantum Realization of the Dirac Bracket Quantum realization of the
Poisson bracket can be achieved in a well-known way

@ =q", pa=—ih (8.129)

This implies [¢*, pp] = ih8* , as should be the case. To find the quantum realization
for the Dirac bracket, we explore the weak variables introduced above. Let us
associate the function A,, with a phase-space function A(q, p) as follows:

Aw(g.p) = A(q.p) — {A, @} AV @, (8.130)

On the constraint surface ; = 0 they coincide: A,, = A. Note that the Poisson
bracket of w-functions on the constraint surface coincides with the Dirac bracket of
the initial functions

{A,.B,}p = {A,B}p. (8.131)

Since the quantum realization of the Poisson bracket is known, we can now realize
the Dirac bracket, associating the following operators'® with the classical quantities

A(g.p)
A(g.p) = Aw = Au(@:P)ysgpsp (8.132)

with g, p specified in Eq.(8.129). Commutators of these operators resemble the
Dirac bracket.
In particular, operators corresponding to the phase-space variables are

7 =g, =q"—13" A" D,
Pa = Pun = Ppa — [Pa, P11AY @5, (8.133)

Note also that in this realization the constraints become null operators:
CD[ - CDW] =0.

10We do not discuss the problem of ordering of operators which must be solved in each concrete
case.
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8.6 Examples of Theories with Second-Class Constraints

8.6.1 Mechanics with Kinematic Constraints

Consider a mechanical system with configuration variables ¢, which is confined to
move on the non-degenerate surface

0G;
Gi(¢) =0, rank g0 = [i] < [a] (8.134)
q(l
Suppose that in the absence of the constraints the theory is described by a
nonsingular Lagrangian Ly (g%, §*). Then, as we have seen in Sect. 1.6.3, the theory
can be described by an action with the Lagrangian multipliers A/(t)

S = / dt [Lo(g.9) + A'Gi(q)] . (8.135)
Let us construct the Hamiltonian formulation. Since Ly is non singular, equations
for the momenta p,, p, = ggﬁf , can be resolved with respect to ¢*. Let ¢ = (¢, p)
be a solution:
aL af
° =p.  det 4 #£0. (8.136)
9 li=fap) py

Conjugated momenta for A’ represent [i] primary constraints of the theory, py; = 0.
Then we obtain the complete Hamiltonian

H = Hy— X'Gi(q) + vipri»  Ho = paf* — Lo(q.f)- (8.137)
Conservation in time of the primary constraints: py; = {ps,H = 0
implies secondary constraints G;(¢) = 0. In turn, conservation of G;, G; =

{Gi,H} = 0, gives the third-stage constraints. Using Eq.(8.136), they read
F; = Gi.(9)f*“(q,p) = 0, where G;, = ggg The Poisson brackets of the constraints

are {G;, Fj} =G gﬁ; Gjc =Aj. Since detg{; # 0 and rank G;;, = [i], the known
theorem of linear algebra guarantees det A;7# 0. The inverse matrix for A is
denoted as A¥. Further, the condition F; = 0 implies fourth-stage constraints
A — AU {F;, Hy} = 0. Finally, conservation in time of these constraints determines
all the velocities: vi = {AY{F;, Hy}, Hy—A*Gj}. Thus, the Hamiltonian formulation
of a Lagrangian theory with [i] kinematic constraints implies 4[i] second-class
Hamiltonian constraints

pi=0, G =0, fGi,=0, A —AV{F; Hy}=0. (8.138)
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Let us specify these results for the free particle constrained to move on a 2 -sphere
of radius c. The action is

S = /d3x Bmx2 +Ax>— cz)] ) (8.139)

This implies the following chain of four second-class constraints
=0 x*—c*=0, xp=0, p>+2mc*r=0, (8.140)

as well as vy = 0. Using the complete Hamiltonian

1
H= _ p’—Ax*-¢Y), (8.141)
2m

we obtain the equations mi’ = p’, p' = 2Ax'. Using the last constraint from (8.140),
this leads to closed equations for the (x, p)-sector. They read

p2

mi=p.  pi=—_ . (8.142)
mc
These imply the following second-order equations for x:

X = —X’x;. (8.143)

The Dirac brackets for the (x, p)-sector are

1
X, x3p =0, xipip = 8 — 2 5%

1

{pi.pjtp = — 2 (xipj — x;pi). (8.144)

Exercises

1. Obtain the Egs. (8.141), (8.142), (8.143) and (8.144).

2. Confirm that the Hamiltonian equations (8.142) can be written in the form
= {Z, H()}D.

3. Write the Lagrangian equations following from the action (8.139). Obtain
Eq. (8.143) from the resulting system.

4. We know that the quantities L; = €;x;px obey the angular-momentum
algebra with respect to the Poisson bracket. Confirm that the same is true
for the Dirac brackets (8.144): {L;, Lj}p = €jxLy.

(continued)
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5. Construct the Hamiltonian formulation for the field theory (called sigma-
model on a sphere)

1
S = / d*x [2(8M¢>“)2 + A((¢%)% — 1)} . (8.145)

8.6.2 Singular Lagrangian Action Underlying the Schrodinger
Equation

In Sect. 2.9.2 we discussed the remarkable similarity existing between mathematical
structures of electrodynamics and quantum mechanics. As electric and magnetic
fields can be obtained from the vector potential A,, the real and imaginary parts of
the wave function can be obtained from the scalar potential ¢, see Eq.(2.138). The
real field ¢ obeys the equation

g+ (A V)¢ =0, (8.146)

which follows from the Lagrangian action

ho..
Sl¢] = / did’x [2¢¢ - ;h [(A —V)¢]2] . (8.147)

Here we obtain a further relationship between the Shrodinger and the scalar potential
equations, following the work [40]. We show that there is a Lagrangian theory
subject to second-class constraints underlying both the Schrddinger equation and
the classical field theory (8.146). This possibility is based on the fact that in a theory
with second-class constraints, we can take different subsets as the independent
variables when we look for a solution of the constraints. For the model presented
below, there are two natural possibilities to choose the independent variables. By one
option, they obey the Hamiltonian equations which correspond to the theory (8.147).
By the other option we reach the Schrédinger system (2.133) and (2.134).
Consider the following Lagrangian theory:

h.o. 1 1
S[g. o] = /dtd3x[2¢¢+ 2h<p2+ hgo(A —V)¢], (8.148)

written for two real fields ¢ (¢, x%), ¢(t, x') on the given external background V(x).
This implies the Lagrangian equations

h—(A-V)p=0. ¢=—(A-V)p. (8.149)
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As a consequence, both ¢ and ¢ obey the second-order equation (8.146). After the
shift § = ¢ + (A —V)¢, the action acquires the form S[¢p, ¢] = S[p] + 21,1 [ %
where S[¢] is the action (8.147). Hence in this parametrization the fields ¢ and ¢
decouple, and the only dynamical variable is ¢. Once again, its evolution is governed
by Eq. (8.146). Although it is natural, this is not the only possible parametrization
of the dynamical sector. To find another relevant parametrization, we would like
to construct a Hamiltonian formulation of the theory. We introduce the conjugate
momenta p, i for the fields ¢, ¢ and define their evolution according to the standard
rule

= . =ho, = =0. 8.150
p 2 0] 7 9 ( )

The second equation represents a primary constraint of the theory. Then the
complete Hamiltonian is

_ 3 1 2_ 2 _1 _
H_/dx[zh(p ¥ =, e(d V)¢+vn], (8.151)

Preservation in time of the primary constraint, # = {x,H} = 0, implies the
secondary one ¢ + (A —V)¢ = 0. In turn, its preservation in time determines the
velocity v = — ;l (A —V)p. Hence the Dirac procedure stops at this stage. Evolution
of the phase-space variables is governed by the Hamiltonian equations

S| 1
= s p = A —V s
¢ 4P P h( )¢

1
p=v= —h(A —-V)p, w =0, (8.152)
and by the constraints
7 =0, o+ (A=V)p =0. (8.153)
The system implies that both ¢ and ¢ obey Eq.(8.146). Computing the Poisson
bracket of the constraints, we obtain an on-shell non-vanishing result {¢ + (A
—V)¢,m} = 83(x — y). So the constraints form a second-class system.

Let us construct the Dirac bracket corresponding to the constraints

{A,Bjp ={A, B} —{A, w}{g + (A V)¢, B}
+{A. ¢ + (A =V)p}{m.B}. (8.154)

This implies {7, A}p = 0, {¢, p}p = 0, as well as

{¢sp}D = 83()6—))), {d)v ¢}D = {pvp}D =0; (8155)
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{p.p}p=—(& -V)&(x—y),
{o.0}p = {p.pip = 0. (8.156)

Note that for the pair ¢, p the Dirac brackets coincide with the Poisson ones. For the
pair ¢, p the Dirac brackets coincide exactly with the non-canonical ones, (2.148).

According to the constraints (8.153), either ¢,p or ¢,p can be taken to
parameterize the dynamical sector of the theory.

Parameterizing it by the pair ¢, p, the Eq. (8.152) reduce to the Schrédinger sys-
tem (2.133) and (2.134), while the Hamiltonian (8.151) acquires the form (2.147).
Note that p is the conjugate momenta for ¢ but not for ¢. Using this Hamiltonian and
the Dirac bracket (8.156), Egs. (2.133) and (2.134) can also be obtained according
to the rule (8.116).

Parameterizing the dynamical sector by the pair ¢, p, the Eq. (8.152) reduce to

. 2
the system h¢p = p, hp = — (;’; A —V) ¢, while the Hamiltonian (8.151) acquires
the form

1
H(¢.p) = /d3x2h [p* + [(A =V)g]*]. (8.157)
This is precisely the Hamiltonian formulation of the theory (8.146), (8.147).
Hence the classical field theory (8.146) and the Schrodinger equation can be

identified with two possible parameterizations of the dynamical sector of the
singular Lagrangian theory (8.148).

8.7 Examples of Theories with First-Class Constraints

8.7.1 Classical Mechanics in Reparametrization-Invariant
Form and the Schrodinger Equation

This formulation of classical mechanics is interesting for two reasons. First, it is
close to the description of a relativistic particle on the base of Minkowski space.
Second, this yields an elegant way for canonical quantization of a classical system.
Consider a particle with the potential energy U(x, t)

2
S:x()eR} >R, S= /dt ["21 (‘Z) —Ux, t):| . (8.158)

We make the change of variables t = #(7) in the indefinite integral (8.158), this
yields the expression

%)
S:(t(r),x(r)) e RxR* > R; §= /dt I:m; — tU(x, t(t)):| , (8.159)
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where the dots state for derivative with respect to 7. The new functional is defined on
functions of four-dimensional space R x R3. Novel property of the functional is its
reparametrization-invariance: the substitution t = 7(z’) does not change its form,
in contrast to (8.158). As a consequence, if #(7), x(7) is an extremum of (8.159),
then #(f (7)), X(f()), with an arbitrary function f(z), will give an extremum as well.
That is the new variational problem determines an extremal line as a set of points in
R x R, but does not specify any definite evolution along the line. Physically, there
is no the notion of “time” in the formulation. The same can be seen on the level
of equations of motion. To illustrate this, let us consider the free particle, U = 0.
Then (8.159) implies the equations of motion (’;‘)' =0, (’;‘22)' = 0. The general
solution to these equations contains, besides the integration constants v and Xg, an
arbitrary function f(7)

X =vf(r) + %0, t=f(7). (8.160)

These expressions, although determining a straight line, does not specify a particular
evolution law along the line. Nevertheless, the new functional can be used to
describe dynamics the system (8.158). Excluding t from the parametric equa-
tions (8.160), we obtain evolution of the physical variables, x(f) = vt + X.
Moreover, we can use reparametrization-invariance of the formalism to set t = ¢
at any instance of calculation, this should reproduce the corresponding result of
original formulation. For instance, setting T = ¢ in (8.159) we obtain (8.158).

Any classical-mechanics system can be reformulated in the reparametrization -
invariant form, see Exercise 1 on page 307.

Dynamical and Non Dynamical Variational Problems Mathematically, the vari-
ational problems (8.158) and (8.159) are not equivalent. Nevertheless, we have seen
that the second problem can be used to describe dynamics of the original system. In
this relation, the following terminology seems to be convenient.

Parameterized line in R" is a map of an interval of R into R", y : = — ¢(7).
Image of the map (that is the set of points in R") is called a line. So the parameterized
line is a line together with some fixed parametrization along it. Consider the
variational problem S = [ dtL(q, ¢) with given boundary conditions (we fix initial
and final points, go and ¢g;). Variational problem is called dynamical if its solution
is a parameterized line. Variational problem is called non dynamical if its solution
is a line.

The functionals (8.159) and (6.115) represent examples of a non dynamical
variational problem. Another important example is the Einstein-Hilbert action
which yields Einstein equations of gravitational field.

The problem (8.159) is defined on configuration space with the coordinates x', .
So in the Hamiltonian formulation we introduce the phase space parameterized by
X, p', t, p, with the Poisson brackets

(ply =387 f{tp)=1 (8.161)
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The momenta are
p"za,: . = . =— . —U. (8.162)
These equations imply the primary constraint

1
d=p+_ pP+U=0, (8.163)
m

2
which is satisfied for any solution to equations of motion. The constraint can be
written as p, = —H, where H is the physical Hamiltonian of original formulation.
For this reason, energy is often called conjugated momentum for the time variable.
Since Hy = pi' + p;t — L = 0 (see also Exercise 2 on page 307), the complete
Hamiltonian is composed from the constraint

- 1
H=v(p,+ . p*+ ), (8.164)
2m

and vanishes on the constraint surface.

Equations of motionx = "p, p = —v’, i = v and p, = —v " are ambiguous
due to the presence of v(r), so all the variables are non observable quantities.
The last equation is a consequence of the constraint (8.163) and can be omitted.
For the free particle the second equation implies p = const. Then from the first
equation X = pf(t) + Xo, where f(7) = [ vdt. By the way, we have demonstrated
that (8.160) is a general solution of the problem (8.159). The reparametrization-

dx — %x _ p dp _p _ _ U

invariant variables have unambiguous equations, ' = 7 = |, /' =T = = .

Schrodinger Equation To quantize the system (8.159), we replace the phase-space
variables by operators that resemble the brackets (8.161)

t—t=1t p, — p = —ihd,
GG (8.165)

X=X =x, p = p' = —iho;.
Since the constraint @ vanishes in classical theory, we expect that the corresponding
quantum-mechanical operator annihilates the wave function, @¥ = 0. This yields
the Schrodinger equation

hz
ho W =(—_ A+V)¥ (8.166)
2m

In summary, in the reparametrization-invariant formulation of classical mechanics
there is no necessity to introduce the Schrodinger equation as one of independent
postulates of canonical quantization. This arises automatically, as the quantum
counterpart of the constraint (8.163).



308 8 Hamiltonian Formalism for Singular Theories

Exercises

1. With given non singular action f dtL(qA t) we associate the

) d, ,
reparametrization-invariant action [ drtL(qA, ., 1). Work out the Hamil-
tonian formulation and obtain the Schrodinger equation.

2. Canonical Hamiltonian Hy of a reparametrization-invariant theory van-
ishes (sometimes this fact is called zero-Hamiltonian phenomenon).
Indeed, reparametrization invariance of the functional | dtL(g, ¢) implies
%Z/L( ’ar'Q) = L(q,q). Hence L is a homogeneous function of ¢,
L(g,aq) = alL(q, ). Computing derivative with respect to « at @ = 1
we obtain qu —L=0.

8.7.2 Relativistic Particle: Three Basic Formulations

Here we describe and compare three Lagrangian formulations widely used for
description of a relativistic particle in an external electromagnetic field.

1. Physical Lagrangian Let x'(), i = 1,2, 3 be the position of a particle. In this
section the dot means derivative with respect to physical time, X = ‘L’l’t‘ In terms
of the physical variables, the relativistic particle can be described by non singular

Lagrangian
. e . .
S = /dt —meN e — %2+ eAg+ Ax. (8.167)
c

The particle interacts with an arbitrary electromagnetic background Ay(z, X), A(z, X).
When "L‘_‘ << 1, we can retain only the leading term of the expansion V1i—a? ~

11— éaz, this gives the standard Lagrangian of non relativistic particle, L = —mc? +
’”ZVZ + €A + ¢ Ax. The action implies equations of motion
d mex e.
=e¢E+ xxB, (8.168)
V2 — 32 c

Note that \/l (o = y, where y is the relativistic-contraction factor. For

the case, thls is the factor among the laboratory system and the particle’s rest-frame.
Equations of the free particle (A, = 0) have been solved in Sect. 1.7.6. The free
particle moves along a straight line with constant velocity less then the speed of
light.
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According to Eq. (1.15), total energy in non relativistic mechanics can be found
through the following computation: 0 = x* gf, = (E). We note the identity

X;

Xi( e Y= chikz ). Then Eq. (8.168) implies the consequence

58S d me3
W — —exE = 0. 8.169
XSX,' dl(\/cz—)'(z) X ( )

In non relativistic approximation this reads (’"2v2 +...) = exE, so szcjkz is the
kinetic energy of the relativistic particle. Recall that the work of a force along the
trajectory x(¢) is [ dxF = e [ dixE. So Eq.(8.169) states that the work performed
by an electromagnetic field is spend on the change of (relativistic) kinetic energy
of the particle. A magnetic field does not perform a work. For the stationary
electromagnetic field we have E = —}_,VU(X), see Eq.(1.268), and Eq.(8.169)
implies the conserved charge

mc3

Ve —x2

In the non relativistic limit this coincides with Eq.(1.281). So we identify (8.170)
with total energy of the relativistic particle.

To see how the Lorentz force (1.3) is modified in relativistic theory, we compute
time derivative on the left-hand side of Eq. (8.168)

+ U = const. (8.170)

" Ry = eEi+ [%.B] =0 8.171
Je 2 ij_el_'_c[x’ li =0, (8.171)
where
XiX; . .= XiX;
Rj =68;+ . , andinverse matrix is Rj; = d;; — ) (8.172)
2732 c
Applying the inverse matrix we obtain (note Iéij[i{, B]; = [x,B])
Ve —v? E
mi= VTV |:eE—e( zv)v+eva]. (8.173)
c c c

Besides the common relativistic-contraction factor, the . h. s. contains an extra-term
of order j in the direction of particle’s velocity.

Hamiltonian Formulation The equation for conjugated momentum p; = gf =
«/’:;fo + ¢A; we write in the form
mex;
Pi = . (8.174)

V2 — 32
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We have introduced the canonical momentum
e -
Pi(p, X, l) =pi— CAi(l, x). (8175)

According to (8.174), this represents Hamiltonian counterpart of velocity scaled by
relativistic-contraction factor. In contrast to p;, the canonical momentum is a gauge-
invariant (and hence an observable) quantity. This has the Poisson brackets

X, Py =8y, {Pi, P} = iFij- (8.176)

Taking square of Eq.(8.174) we obtain the “conversion” formulas between
Lagrangian and Hamiltonian formulations

2P2 2
2= T then Ve-i= "0 0 @17
(mc) + P \/(mc)z 4 :PZ
This allow us to resolve the Eq. (8.174) with respect to velocities
Pi i
i = ¢ - P . (8.178)
Jmer + P2 m 14+ 2y
Then Hamiltonian reads
H=px—L= c\/(mc)z—l—’Pz—er. (8.179)

Using the conversion formula (8.177) we write Lagrangian counterpart of H

mc3

H(x, %) = e Xz—eAO. (8.180)
2

Comparing (8.180) with (8.169) we note that the latter can be used to compute
rate of variation of the Hamiltonian, H = —ia,AM)'c”. As it should be, for a time-
independent potential the Hamiltonian does not change with time.

Due to presence of Ay, the Hamiltonian (as well as the difference H(x) — H(y)
at two points) is not a gauge-invariant quantity. Hence classical Hamiltonian of
a particle interacting with electromagnetic field does not represent an energy.
Surprisingly enough, eigenvalues of the corresponding quantum operator turn out
to be gauge-invariant quantities, see Sect. 10.2 in [50].
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Hamiltonian equations read x = {x,H}, p = {p,H}. We write equation for
gauge-invariant variable P; instead of p;

&= A (8.181)
\/(mc)2 +P?

P = {P.Bl: | ¢E;. (8.182)
\/(mc)2 + P?

Obtaining (8.182), we have taken into account that the quantity 7P manifestly
depends on ¢ through A;, so P = {P:i, H} — ¢ 9,A;. To restore the Lagrangian formu-
lation, it is enough to exclude momenta from these equations. We solve (8.181) with
respect to P, this gives (8.174), and substitute the result into (8.182). This yields the
Lagrangian equations (8.168).

Hamiltonian and Energy Consider the stationary electromagnetic field. The
Hamiltonian (8.179) is not a gauge-invariant quantity. In particular, generally it does
not represent the energy (8.170). We could also start with the variational problem
based on the three-vector potential, it is enough to set Ag = 0 in Eq. (8.167). In this

case the three-potential (1.269), and hence the Hamiltonian H = c\/ (mc)? + P?
explicitly depend on time. As before, H does not coincide with E.

Nevertheless, the gauge invariance can be used to choose a particular A, that
provides the coincidence of H with E. Indeed, in the stationary case the electric
field has a potential, E; = —iaiU (see Eq.(1.268)), so we can find a stationary
potential of the form A, (x) = (— i U, A), where [V, A] = B. For this choice we
obtain

mc3

Hzc\/(mc)z—l—’Pz—i-U:\/z L, TU (8.183)
cc—X

and the Hamiltonian can be used to compute total energy of the particle.

2. Square-Root Lagrangian The Lorentz transformations act on the dynamical
variables x;(7) in a highly nonlinear way. So the relativistic invariance of previous
formulation is not manifest. To improve this, we proceed in the same way as in
Sect. 8.7.1. We make the change of variable ¢ = #(7) in the integral (8.167)

dt dr\? [ di\* e dtdx;
S=1[d — 2 — A A . (8.184
/ ‘e mc\/c (d;) (dt) ot Ay gr |- @18
If we restrict ourselves to the class of increasing parameterizations

dt
> 0, (8.185)
dt
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the action reads
S = /dt — mey/— ()2 + eA,ch". (8.186)
C

;,li < 0 we arrive at another Lagrangian, L = mc~/—x2 + ¢A,x".) In this

section we denote x* = ‘3‘: , where x*(7) are parametric equations of the worldline
(in Minkowski space) associated with the physical trajectory x;(f). As compare
with (8.167), the advantage of (8.186) is its manifest invariance under Poincaré
transformations x'* = A*,x” + a*. The price to pay is that we now deal with
the non-dynamical variational problem. Local symmetries of the action (8.186) are
the reparametrizations'! = 7(z’) and the gauge transformations A;L =A,+ 0,0

The action implies equations of motion

(Assuming

N oad )
——me 7 )+ P =0, orRLE = eV FUoR,  (8.187)
Sxt N =32 c mc?
where
Ly L xHx? . LV
RMY = pH¥ — 2 then x,R"" = 0. (8.188)

In three-dimensional notation we have

L 8.189
V2 —x2 - (8.189)

( meki N _ pi 4+ B (8.190)
= eL; X, i .
ez —x2 c

As compare with previous formulation (see Eq.(8.172)), the matrix R*" is not
invertible, so equations of motion can not be written in normal form. Together with
RW = X';ZXV , the matrix R*” forms a pair of projectors R + R = 1,R? =N, R? = Ié,
RR = 0. Any vector V* can be decomposed on the transverse and longitudinal parts
with respect to x4, V#* = V| + Vﬁ‘ , where V{| = R*, V¥, then Vi, =0, and
Vﬁ‘ =R,V = (i‘z/))'c" ~ xt.

Contracting x,, with second equation from (8.187) and using (8.188) we conclude
that there is identity among the equations of motion, x* sii = 0. So we have only
three independent equations for four variables x*. Let us confirm the correspondence
with previous formulation. Due to the identity, Eq.(8.189) is a consequence

"'We point out that, contrary to electrodynamics, each class of equivalent configurations, X =
{(cf (r.), x(f(7))),xis a given function, Z{ > 0}, contains a representative which is an observable
quantity: x*(7) = (ct1,x(7)).
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of (8.190) and can be omitted. Due to reparametrization invariance, we are free
to use any parametrization to analyze the system (8.190). Taking © = ¢, the
equations coincide with (8.168). Note also that in physical-time parametrization
equation (8.189) coincides with (8.169).

The free Lagrangian equations and the ambiguity presented in the solutions have
been discussed in Sect. 1.7.6.

Hamiltonian Formulation As before, the equations for conjugate momenta p* =

zg'cL we write in terms of canonical momenta as follows:
n
x* e
PH = mc\/ ) where PH = pt — AF, (8.191)
i c

Due to (8.185) we have P° > 0. Taking square of (8.191) we obtain the primary
constraint

P? + (mc)? =0, (8.192)

or, equivalently

—cpo = c\/(mc)2 + P? — eA,. (8.193)

The right-hand side of this expression coincides with the physical Hamilto-
nian (8.179). Recall that in accordance with general theory, in the Lagrangian
formulation there is no first-order equation that could be associated with the primary
constraint (8.192).

The Eq.(8.191) imply px = Px + (A, = L, so the canonical Hamiltonian
vanishes Hy = px — L = 0. Thus the complete Hamiltonian is

H= ; [(p“ - iA")Z + (mc)z] . (8.194)
The Poisson brackets are
x.po} = 8%, (8.195)
then {P#, P’} = ¢F". This immediately gives the Hamiltonian equations
it = vPH, (8.196)

pr = Fop,. (8.197)
Cc

The restrictions 7 > 0 and P° > 0 imply v > 0. The Egs.(8.191), (8.196)
and (8.197) can be obtained also from the Hamiltonian variational problem for
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the variables x*, p* and v:
Sy = / dt pi— ; [(p“ ~Came 4 (mc)z] . (8.198)
Cc

This has the same local symmetries as (8.186). To compare the Hamiltonian and
the Lagrangian equations, we exclude v and P* from the system (8.192), (8.196)
and (8.197). First, we take the square of (8.196), ¥> = v>P?2. Together with (8.192)

this determines v, v = “/mx We substitute this into (8.196) and (8.197).
Then (8.192) is a consequence of (8.196) and can be omitted. Second, we substitute
PH obtained from (8.196) into (8.197), this gives the Lagrangian equations (8.187).

The Role of v In the system (8.192) and (8.196) the equation P° = v°FY7P; is
a consequence of other equations and can be omitted. We have 8§ equations for
9 variables x*, P* and v. Given function v(t), we have the normal system for
determining x* and p*. Hence v(7) is not determined by these equations. As a
consequence, dynamics of x* and p* turns out to be ambiguous. As v(t) enters into
the equations for x* and p*, their general solution contains, besides the arbitrary
integration constants, the arbitrary function v(7)

x =2t xp.py.v(T), p = pH (T xg . pg. (D). (8.199)

Hence x* and p* have a one-parameter ambiguity due to v(t). The variable v is the
“measure” of ambiguity presented in the formulation.
Physical variables obeys unambiguous equatlons To obtain them, we note that

Eq. (8.196 ) imply the equalities without v, xO = 7>0 and . PI = .- The expression

;‘(I) prompts to consider x**(7) as parametric equations for x' (xo). The variables x'(x°)
and P!(x") represent the physical variables.

Equivalently, we can use reparamatrization invariance to set ¢ = ¢. Then the first
equation from (8.196) is ¢ = —v’Py. We use this together with (8.193) to exclude v
and Py from other equations of the system

dx; cP; dpi F,]'P

= , + eFj. (8.200)
dt \/(mc)2 + P? d \/(mc)2 + P?

The result coincides with Egs.(8.181), (8.182) of previous section. Then the
physical Hamiltonian is given by (8.179). We have also an equation for Py. As we
show below, Py is an auxiliary variable of Hamiltonian formulation that does not
carry any information about dynamics of our particle. So we omit it.

Equivalently, the Eq.(8.200) can be obtained using the known formula for
dy _ %) P _ Pi(r)

derivative of a function given in parametric form, ;" = ¢, °3" = €0y
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We could construct Hamiltonian on the base of constraint (8.193) instead
of (8.192)

H = Alcpo + c\/(mc)2 + P? — eAq]. (8.201)

This gives the equations (as before, we omit the equation for PO)
cAP;
\/ (mc)? + P?

FiP

) 'Pi =el|
\/(mc)2 + P?

)'CO:C/\, X = + Fj).
(8.202)

Taking t = ¢, the first equation implies A = 1. With this A, the remaining equations
coincide with (8.200). The first term of the Hamiltonian (8.201) does not contribute
into equations for physical variables (8.200). So the physical Hamiltonian can be
obtained from (8.201) if we omit py and set A = 1.

More systematically, let us set 7 = ¢ in the Hamiltonian action functional pox° +
pix’ — H, then

Sy = / dt cpo + pix' — Alepo + c\/(mc)2 + P? —eA). (8.203)

the term in square brackets can be considered as the kinematic constraint of
the variational problem. According to Sect. 1.6.3, we can resolve the constraints,
presenting p° through other variables, and substitute the result back into (8.203).
This gives an equivalent variational problem

Sy = /dtp,-)'ci - [c\/(mc)2 + P? — A, (8.204)

where the last term is exactly the physical Hamiltonian.

The Role of p° and P? + (mc)> = 0 Here we construct the Hamiltonian
formulation of the model (8.186) following the procedure of Sects. 8.2.2 and 8.2.3.
We show that p° is an auxiliary variable of Hamiltonian formulation, with the
dynamics prescribed by hand as follows: p° = ;ULO. This is exactly the Eq. (8.193),
the latter is equivalent to P? + (mc)? = 0.

It is enough to consider the free theory, so we set F,, = 0 in Eq.(8.187), then
it reads R*,x¥ = 0. We introduce eight-dimensional configuration-velocity space
with coordinates x*, v* and define evolution as follows: R* X" = 0, v# = x*. That
is x* obeys the same equations as in initial formulation, whereas v#* accompanies
evolution of x**. Substituting the second equation into the first one, we obtain the
first-order system

it =, R*,0" = 0. (8.205)
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Consider the time and the spatial parts of second equation, R0’ + R%;v' = 0,
0,020 T . . . D iVj
”(5,1)”2 + R0/ = 0. Using the inverse matrix, R; = §; — (Z(,v)’z

. . 50 . . .. .
from second equation, v; = 30 v;. Substituting this into the first one, we see that it
is identically satisfied, and can be omitted.'? Hence the system (8.205) is equivalent

. . P 50 . . . .
tox® =00, ¥ = v, 0 = ZO v'. The last two equations acquires Hamiltonian form
after the change of variables

for R;;, we find v;

oL mev; vOp; (8.206)
V] — pi = = s vV = . .
doi /=y V(o) + (p)?
In the result, the initial Lagrangian equations R*,v” = 0 are equivalent to the
following system
=00 k=00 P =g Hal = {pnHeb =0, (8.207)
V(me)? + (p)?
We have introduced the restricted Hamiltonian
Hy = v'v/(me)* + (p)%, (8.208)

and Poisson brackets constructed on the base of x; and p;. The subsystem x;, p; has
a Hamiltonian form.

To make the formalism more symmetric (and manifestly Lorentz-covariant), we
introduce the auxiliary variable pg, with the dynamics determined by (compare this
with Eq. (8.206))

_ oL _ mcyg (8.209)
Po= o0 = J(ony .

Equations (8.206) and (8.209) imply p? + (mc)> = 0. In the Dirac formalism it
appeared as the primary constraint. If we introduce the Poisson bracket {x°, po} =1,
then the Hamiltonian H = Hy + v%py implies (8.207) and po = 0. In the result
we have reproduced all the dynamical equations and the constraint of previous
formulation.

3. Quadratic Lagrangian In this section we denote x* = ‘Z‘: , where x* (1) is the
worldline of Minkowski space associated with the physical trajectory x;(f). Consider

the following action on configuration space with variables x*(t) and g(z) > 0

1
S = / dr . (@)% = SmPc® + A, (8.210)
2g 2 c

12This is not a surprise, since we already noticed that (8.189) is a consequence of (8.190).
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This is both reparametrization and manifestly Poincaré invariant (the variable g(t)
transforms as a density under reparametrizations, g = ‘Z g'). To compare this with
previous formulations we use reparametrization-invariance to set T = ¢ (we thus
loose reparametrization invariance and manifest Lorentz-invariance)

1
S = /dt— (=) — Smc? + eAg + © Ax. (8.211)
2g 2 c

v

This implies 22; = "zg_z"‘z — (mc)?> = 0, then g > 0 yields g = ‘;l;"‘z. Using this g

in the equation for x
:—(X)'+eE+es;xB=0, (8.212)
8 &

we obtain (8.168). In arbitrary parametrization we have from (8.210) —22; = ’; +

(mc)®> =0,theng = ‘/m_fz . Using this expression, we exclude g from

58 o
o = (xg )'+ iFMx —0. (8.213)

The resulting equation coincides with (8.187). Hence the formulation (8.210) can
be equally used for description of a relativistic particle.

Note, however, that the present problem involves the extra-variable g which
requires an interpretation. Strange as it may seen, g(t) play the same role as v(7)
appeared in (8.199), that is g(t) responsable for an ambiguity presented in solutions.
Due to the reparametrizations, the ambiguity is expected. This is expected also from
the following identity between equations of motion: gi* sii — é(g: )+ i gg =0.We
have eight equations for nine variables.

The advantage of the present formulation is that the ambiguity is made manifest
already in the initial action.

To analyze the ambiguity, consider equations of motion of the free theory ;z +

(mc)? = 0, ("; ) = 0. They can be immediately integrated out (this is one more

advantage of the quadratic action) for a given g(t)
X =xy +pt / drg(t), wherep” = const, andp®> = —(mc)>.  (8.214)

Hamiltonian Formulation As the action does not depend on g, conjugated
L

momentum for g vanishes, p, = e = 0. Hence we have the primary constraint
pg = 0. The expressions for conjugate momenta p,, = aiﬁ can be resolved with
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respect to velocities (as before, we denote P* = p* — A#)

1
Pr= i > =Pk, (8.215)
8

This implies the Hamiltonian
H= g [P? + (mc)?] + vp,. (8.216)
Preservation in time of the primary constraint leads to the secondary one
P? + (mc)® = 0. (8.217)

Its derivative vanishes, so there is no new constraint nor equation for determining of
v. In contrast to the square-root formulation, the secondary constraint (8.217) is the
Hamiltonian analog of the Lagrangian equation ;z + (mc)? = 0.

The fundamental Poisson brackets are {x*,p'} = n*", {g.p,} = 1, then
{P*,P"} = ¢F"". Hamiltonian equations are

g = ‘U7 ej)g = 07
it =gPt,  Ph=g FMP,. (8.218)
c

They are accompanied by the constraints p, = 0 and P? + (mc)?> = 0. These
equations do not determine v(7), the latter enter into equations for x and p through
g(7), as it is seen from solution to free equations

g=/drv, pe =0,

X =xy +pt / drg, p" = const, p* = —(mc)>. (8.219)

If we set T = t in the Eq.(8.218), they turn into the equations for physical
variables (8.181) and (8.182), while the constraint (8.217) states that the variable
po(?) represents the physical Hamiltonian (8.179).

Hamiltonian Formulation in the Physical-Time Parametrization Due to
reparametrization invariance of (8.210) we can set T = ¢, then x* = (ct, X(¢)),
dx

=% = (c jc), and (8.210) acquires the form (8.211). This implies the primary
constraint p, = 0 and the following expressions for momenta:

1
P= x, - x=gP, where P=p-— “A. (8.220)
g c



8.7 Examples of Theories with First-Class Constraints 319

Then the Hamiltonian reads

2
H= ;’ [P? + (me)?] + ;g — eAg + Agpy. (8.221)

Preservation in time of the primary constraint leads to the secondary one

c

g= . (8.222)
\/(mc)2 + P?

The two constraints form a second-class pair and can be taken into account by
transition to the Dirac bracket. Dirac brackets of the basic variables x and P
coincide with the Poisson one. Using the constraints in (8.221) we obtain the
physical Hamiltonian

H= c\/ (mc)? 4+ P?* — eA,. (8.223)

This implies the Hamiltonian equations (8.181) and (8.182).

8.7.3 Electrodynamics

Remember that a free electromagnetic field can be described by the action

S = / d*x [—1F,“,F’“’:|
4
4 1 2 1 2
= / d'x | (@oAp = 0pA0)* = FGy |- (8.224)

written for the four-dimensional vector potential A,. We have denoted F,, =
d,A, — 9,A,. In the second line we have separated the terms containing temporal
derivatives.

Equations determining the conjugate momenta are

oL
0
=4 =0 8.225
P 7 04, (8.225)
aL
Pa — BA = aOAa - aaAO = —E“, then aOAa = —Pa + aaAO- (8226)

So there is one primary constraint (8.225). Computing the Hamiltonian Hy =
p?dpA, — L and adding the primary constraint multiplied by the velocity vy, the
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complete Hamiltonian reads

1 1 1
H= /d3x I:Zpi _paaaAO + 4F3b + U0P0i| = /d3-x |:2(E2 + BZ) + EaaaA0i| .
(8.227)

Note that the electric field E represents conjugated momentum for the three-vector
potential A. In the formulation of Sect. 1.7.2 (or, equivalently, in the gauge A9 = 0),
the Hamiltonian is é(E2 + B?).

Conservation in time of the primary constraint produces the second-stage
constraint'?

P @= 0w, H) = (). / Pxpadado}
- / PP (). Bapa)Ao )}
__ / Pxdupa()8(x —y) = —dupalx) = O. (8.228)

Carrying out a similar computation, the reader can verify that it preserves in time,
{04pa, H} = 0, so the Dirac procedure stops at the second stage. In the result, the
evolution is governed by the Hamiltonian equations

Ag=vy, p'=0, (8.229)
Aa = —ps+ aaAOv f’b = _aaFab- (8230)

These are accompanied by two first-class constraints

p’ =0, dapa = 0. (8.231)

Exercise Show that the Lagrangian equations d,F*" = 0 follow from the
system (8.230) and (8.231).

13Poisson bracket in field theory is defined by {A(x), B(y)} = [ &*z [ S(KA(TZ)) ‘fl i((yz)) — ‘fl :(2) aiﬂtg)]' A

and B are taken at the same instance of time. The working formula for computing the variational

SA(P(x).0pp(x)) _  9A 3y 9A 9 @3,
WO = gy T | a2

derivative is
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According to Sect. 8.4, the unique representative in a class of equivalent trajectories
can be obtained imposing two gauge conditions. They can be taken as

Ao=0,  3,A.=0. (8.232)

In this gauge, the Eqs. (8.230) and (8.231) imply the wave equation for the three-
dimensional vector potential.

8.8 Local Symmetries and Constraints

As we have seen in various examples, infinitesimal local symmetries of a Lagrangian
action and first-class constraints of the corresponding Hamiltonian formulation
represent characteristic properties of a degenerate theory. After the successful use
of local symmetry in the construction of Yang-Mills gauge theory, it becomes a
tradition to study ambiguities of constrained theories in terms of the associated
symmetries. So it would be interesting to establish a detailed relationship between
symmetries and constraints for a general degenerate action. It is instructive to
demonstrate the relation on a simple example. Consider a relativistic particle with
the Lagrangian L = \/ —(x*)2. This implies the Hamiltonian constraint T =

;(p2 + 1), as well as the local symmetry'* of the Lagrangian action, §x* = € «/XLZ
This can be rewritten as follows
TRy ‘
St = ef{xt, T}ll’u—’ai-ﬁ . (8.233)

So the local symmetry can be constructed with the help of the constraint, and
represents the Lagrangian counterpart of the canonical transformation generated by
the constraint on the phase space. It would be interesting to find an appropriate
generalization of this recipe for obtaining local symmetry in general case. Since
the Hamiltonian constraints can be found in the course of the Dirac procedure, this
would give a regular method for obtaining the symmetries.

The general form of infinitesimal local symmetry is

. o (N_l)a
56]3 = éaR(o)aB + GaR(l)aB + éaR(z)aB + ...+ € R(N_l)aB, (8.234)

k a N—1
where (6) = ‘5; . It will be called ( € )-type symmetry. é-type symmetry is called
gauge symmetry. The set of functions R.”(q, ¢, .. .) is called the generator of the
symmetry.

14 After rescaling the parameter, € = —/—32€ it acquires the standard form of a reparametriza-
tion.
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In the next section we suppose that an infinitesimal symmetry is known, and
discuss the restrictions that this fact implies on the Hamiltonian formulation of
a theory (for a more general theory of local symmetries, see [43, 44]). Then we
develop the so-called formalism of extended Lagrangian, which allows us to analyze
the inverse task: how the local symmetries can be reconstructed from the known
system of constraints. At the end, we obtain the generalization (8.307), (8.308)
of Eq.(8.233) to the case of an arbitrary singular degenerate theory in extended
formalism.

8.8.1 Symmetries of Lagrangian and Hamiltonian
Formulations

Analysis of the general case (8.234) implies rather tedious algebraic manipulations,
see [45]. So we restrict ourselves to the simplest case of é-type symmetry. This is
sufficient to illustrate all the affirmations that remain true for the general case as
well. For the convenience of the reader, we first summarize the affirmations.

Consider infinitesimal local transformations with at most one derivative acting
on the parameters €“(7)

8q" = €“Roa*(q.9) + €“Ria* (9. 9), (8.235)

and suppose that an action is invariant
58S = /dt(e“w()a + éw1,), (8.236)

where wy,, w1, are some functions. Then

1. The quantities R, represent null-vectors of the Hessian matrix
R Mup =0, (8.237)

that is we are dealing with a singular theory.
2. There are the following identities among equations of motion

88 88
( g RlaA) - AROaA

0. (8.238)



8.8 Local Symmetries and Constraints 323

3. As any other Lagrangian quantity, the identities can be rewritten in terms of the
coordinates ¢*, pp, v* of the extended phase space. The result is the following
system

Rlai = {qi, q’a}Rlaav

Rod' = {4 ®a}Roa” = {g', Ria" (@0, H}. (8.239)
? (R1,{ Py, H}) = 0, (8.240)

ovP
Ro*{ @y, H} — {R1,*{Pu,H}, H} = 0. (8.241)

The equations have a simple meaning. Equation (8.239) states that in arbitrary
theory not all the generators are independent: the i-generators R, Ry, are
expressed through the o-generators.

Remember that {®,, H} = 0 is the second-stage algebraic system of the
Dirac procedure, see Eq.(8.42). So, Eq.(8.240) states that the combinations
T, = R,*{P,, H} do not depend on v and thus represent [a] second-stage
constraints.

Equation (8.241) involves the Poisson bracket of these constraints with H, so
the resulting quantity {7,, H} is a part of the third-stage algebraic system of the
Dirac procedure. Hence Eq. (8.241) states that this part of the third-stage system
coincides with the combinations Ry,*{®,, H} of the second-stage system. That
is, the constraints 7, do not produce new constraints or equations for determining
the velocities.

4. The symmetry transformations (8.235) can be used to construct local symmetry
of the first-order action (2.158)

SqA = GaROaA + éaRIaA’

PL - -
— a K R aA ,
8pa 8qA8v35q +e an( aR1.")
svt = (84, (8.242)

where A = A(¢", §*)|5—0-
5. They can be used to construct local symmetry of the Hamiltonian action pg — H
as well:

SqA = {qu G}v SPA = {PA, G}s
$v* = {H,€"Ro," + €“R1."}, (8.243)

where

G = (¢"Ros” + €°R1,°) Dy — €°T,. (8.244)
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Hence the infinitesimal Lagrangian symmetry, rewritten in the Hamiltonian form,
represents, in the sector qA, P4, a canonical transformation with the generator G
constructed from the primary ®, and the secondary 7, constraints.

Analogous affirmations hold for the general case (8.234) as well. In particular,
(N=1) . . .
€ -type symmetry implies the appearance of constraints at the N-th stage of the

Dirac procedure.
In the rest of this section we demonstrate the affirmations made above.

Lagrangian Identities in First-Order Formalism To analyze Eq.(8.236), we
write it in the form of a power series with respect to derivatives of €“

foe[ B B as] o
T a . a | €
dg* 0 ag* 0

oL oL .
R+ Ro.* + RiM) | €+
[an T g (Ro )
ca oL A . a . ca a
€ a(_]ARla = | dt(@ou€” + (woq + 014)€" + @1,€7).

Since it is fulfilled for an arbitrary €“(z), we have

aL
ac',ARlaA = w14, (8.245)
oL aL oL . _
8qAR1aA + g4 Ro.* + anRlaA = Woq + D14, (8.246)
oL oL . _
gt Ro* + Dt Roa™ = doa- (8.247)

oL

5 R 9 Ro." = woa, (8.248)

which can be used in Eq. (8.247) and gives the Noether identities in the form

5S )
RA) — " R =0. 8.249
(8qA 1 ) 5 0 ( )

This expression can be presented in the form of a power series with respect to
derivatives of ¢*. It is convenient to introduce the notation

Kia(q.9) = Ri*Ka, i=1,2, (8.250)
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where K} is the right-hand side of Lagrangian equations, see (1.136). Then the series
looks like

.c 0 . d
|:K0a —q° achla:| - |:MABROaB + 2 Kia+

ad 0 3)
7 G© MupR,,® A[MapR\®] = 0. 8.251
(f] 8qC+q 8c'1c) ABIX] :|+q [ ABIX1 ] ( )

Since this is true for any ¢*(z), the square brackets in Eq.(8.251) must vanish
separately. This gives the final form of the Lagrangian identities. Since they are
fulfilled for any ¢*(z), they will remain identities after the substitution §*(t) —>
v4(7). In the result we obtain identities of first-order formalism

Mup(q, v)R1.% (g, v) =0, (8.252)
o 9
MusRo® + |, Kia =0, (8.253)
v
Roo—v* ? Ki=0 (8.254)
Oa an la = Y. .

Hamiltonian Form of the Identities Let us obtain the Hamiltonian form of the
identities, i.e. we perform substitution of the velocities v'(g*, p;, v*), see (8.32),
into Eqgs. (8.252), (8.253) and (8.254). We first mention an auxiliary formula

2L -

OH 00 v’
— g VR = PRF 408" MR, (8.255)
q-ov

o Opa Ogh dg”

Here RA (g, v) is any function. If it is a null vector of the matrix Map: MugRE = 0,
the formula acquires the form

(L PL
dg*  0gPovt
In accordance with our division of the index: A = (i,®), Eq.(8.252) can be
rewritten as

= R (@, H}. (8.256)

vl

Rid = —MIM,R,°, (8.257)
(Mo — My MM )R P = 0. (8.258)
Substituting the velocities v’ into (8.257), it reads

Rlai = {qis qDa}Rlaav (8259)
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while Eq.(8.258) holds automatically, see Eq.(8.57). Similarly, Eq.(8.253) is
equivalent to the pair

. - d
ROal = _MUMiaR0¢la - ap (Kla)v (8260)

)
3y K1) = 0. (8.261)

where Eqgs. (8.257) and (8.258) were used. By using Eqs. (8.73), (8.81) and (8.256)
we find finally

ROai = {qis qDa}ROaa - {qi, Rlaa{q)av H}}s (8262)

9
gpp R 1P H}) = 0. (8.263)

To substitute the multipliers v'(¢*, p;, v*) into the first term of Eq. (8.254) we use
Eqgs. (8.80), (8.255) and (8.260), with the result being

0H

Koq = Ro“{®o, H
0 0a”{ }+8A8

(Rlaa{q)mH})

a i
+f a;B MisRo™. (8.264)

For the second term of Eq. (8.254) we obtain after some algebra

B

d
—( 3 BKm) y =—v y anK1a+
v [0 -
B
K )| =

" ags (3v’ : ) i
OH
~ 3o 9 A(th,“{cpa,H}) —vB|U, MiaRo*, (8.265)

where Eqs. (8.256) and (8.253) were used. Combining the Eqs. (8.264) and (8.265),
we find the Hamiltonian form of Eq. (8.254)

Roa" { @, H} — {R1," { o, H} ,H} = 0. (8.266)

Bringing together all the results, we arrive at the Hamiltonian form of the identities,
Egs. (8.239), (8.240) and (8.241).
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Local Symmetry of the First-Order Action Invariance of the first-order
action (2.158) under the transformations (8.242) can be demonstrated by direct
computation. Variation under é¢, §v given in Eq. (8.242), and under some dp reads
(disregarding the total derivatives)

8S, = / drt €“Ko, + €°K1q — 0 Myup(e°Ro.® + ¢°R1.P)

9*L

+ (8PA ~ dqhaus 8qu) (& —v" (8.267)

_ - _ J -
= /dT éaUAMABRlaB + € K()a — UA K]a
dg®

af - - d -
— €0  MaRo® + |, Kia
v

PL

9 -
_ B B_ a Ka > _ A , .2
+(8pA dgraus e < g 1)(q’* vh) (8.268)

where we have carried out integration by parts in the second term of Eq. (8.267).
The first and the second lines in Eq. (8.268) vanish due to Egs. (8.252), (8.253)
and (8.254). Then the variation 8S, will be a total derivative, if we choose §py
according to Eq. (8.242).

Local Symmetry of the Hamiltonian Action One may expect that the transfor-
mations (8.242) with the velocities v(¢”, p;, v*) substituted will be a symmetry of
the Hamiltonian action pg — H. Let us find their manifest form. Using Eq. (8.239),
we obtain for the variation §.g'|,

Sqi|vi — (GaRoaﬁ 4 éaRlaﬁ) {qi7 qDﬂ} s {qi7Rlaﬁ{Cbﬁ, H}} . (8.269)
The variation é.¢“|,: can be identically rewritten in a similar form
Sqa|vi = 6aR0aa + 6.aRlam =

(€“Roa” + ¢°R1P) {q®, @p} — €{q” Ri.{®p, H}, (8.270)

since {g%, P} = 8% and since the quantity R;,” {®p, H} does not depend on p, . For
the variation dp4 |, we have

9’L 0
Spalyi Seq® + € Kig =
paly ( PR +e 8! 1)vl_
0 oL 0°L o'
- - . 86 B vl
(an (31}3 uf) JviguB | an) q" i+
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a 8K1a a 8vi 81_{14
€ — € .
dgh dgh v

vi
0D,

v .
_ an SGqU‘ —MBi|vf an (eaROaB + eaRlaB) +

ot
Ro® =
dgh 0

(éaROaa + E.aRlao[) {PAs q)a} - éa {PAv Rlaa{q)as H}} . (8271)

d
€’ (R1a"{®o. H}) + €“Mp;
dgh

where Egs. (8.256), (8.252) and (8.253) were used.

The Hamiltonian action is invariant under these transformations, as a conse-
quence of the identities (8.240) and (8.241). Disregarding total derivatives, the
variation of pg can be expressed as follows

pa ~a a e, a
8(pad") = Pu(8") — ERia" (@o H} — €77 | (Ris" (@ H)),
while for the variation of H we have

—8H = —®,(8¢%) + €°R1,*{ Dy, H}
+ €’ (ROaa{cDas H} - {Rlaa{qDQvH}s H}) .

combining these terms and using Egs. (8.240) and (8.241) we have §.Sy = div.
To find the final form of the symmetry, we identically rewrite the transformations
obtained in the form

8¢" = 14", G} — 14" 84"} Pu.  8pa = {pa. G} — {Pa. 84"} P,
§v* = {H,8¢"} — (=(8¢") + {H.84"}).
where G is given in (8.244). We note that the transformations

SqA = {quSqa}CDOH SPA = {PA’gqa}q)a,
Sv® = —(8¢%) + {H. 84"}

represent a trivial symmetry of the Hamiltonian action, and thus can be omitted. The
remaining part is precisely Eq. (8.243).
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8.8.2 Local Symmetry Does Not Imply a Conserved Charge

Since in the expression for local symmetry (8.235) the parameters € are arbitrary
functions, we can take € = const. So, local symmetry implies global symmetry.
Let us construct the corresponding Noether charge. When € = const, the invariance
condition (8.236), instead of Eqgs. (8.245), (8.246) and (8.247) implies only one of
them, Eq. (8.247). The latter can be identically rewritten as follows

oL : 58S
Ror —woa | = Ro.2, 8.272
(851“ 0a" — o, ) s ( )

So the Noether charge is

oL _
Ou= ., Rod" — ®oa, (8.273)
agh
At the same time, in our theory there is the identity (8.248). Using this in the
previous expression, we obtain

N

s R, (8.274)

Qa:

Hence a Noether charge of a local symmetry vanishes on equations of motion and
thus cannot be used to characterize physical states. The same is true for gauge field
theories.

8.8.3 Formalism of Extended Lagrangian

To continue the analysis of local symmetries in a singular theory, we associate
with the initial Lagrangian (8.29) the so-called extended Lagrangian [46]. This is
formulated on the extended configuration space (¢*, s*), where s¢ stand for auxiliary
variables associated with all the higher-stage constraints ®,. One of the advantages
of the extended formalism is that the Dirac procedure, being applied to the extended
Lagrangian, always stops at the third stage. Hamiltonian equations of the extended
formulation have a more symmetric form, which essentially simplifies the analysis
of their structure. Here we construct the extended Lagrangian formulation and
demonstrate its equivalence with the initial one. Local symmetries will be discussed
in the next two sections.
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Construction of the Extended Lagrangian Let

wilq*, ¢, s, (8.275)

be a solution to the following equation'?

[ [ aq)a s Wj
i =@ @) — fA%)=0 (8.276)

i

Here the functions v'(¢*, @, ¢*), ®.(¢q", ®)) are taken from the initial formulation,
see (8.32) and (8.47). The extended Lagrangian L(¢*, ", s%) for L(¢",q") is
defined by

L. q".s") =L(q".D:q".q")

+s”[ 9u(q" ) _ g a)i| (8.277)
dw;

where D.¢' is a quantity resembling the covariant derivative

2 0Pu(q, i)
A .

8.278
b, ( )

i~ D =i -

The second line in (8.277) disappears when the higher-stage constraints are
homogeneous on momenta. For example, for the constraints of the form ®, = p,,
where p, is a part of the momenta p; = (p,, p), the extended action acquires the
form

L=L(". ¢ —5.¢".¢%). (8.279)
For the case ®, = h,/(q)p; the extended Lagrangian is
L=Lg" § —sh.q*. (8.280)

Let us discuss some properties of the extended Lagrangian.

First, we confirm that Eq.(8.276) can be resolved with respect to @ in the
vicinity of the point s* = 0. Indeed, when s = 0, this equation coincides with
Eq.(8.32) of the initial formulation, which can be resolved, see (8.31). Hence

a(Eq (8 276)) # 0 at the point s = 0. Then the same is true in the vicinity
of this pomt and Eq. (8.276) can thus be resolved.

15As will be shown below, Eq. (8.275) represents a solution to the equation p; = 335 defining the
conjugate momenta p; of the extended formulation.
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Second, by construction, the following properties hold:

A L
0@ q" ) umy = (8.281)
q
L & 5= = L(g*. &), (8.282)
oL =0, (8.283)
dw; .
(q.,q.5)
gL = wi(q". ¢, 5", (8.284)
q
a.L = aL(QA’.U 4 = fuld". 0i(q.4.5)). (8.285)
3‘10‘ aqa vi(q..G%) ’

In Eq.(8.283), L is considered as a function of w. This formula greatly simplifies
computations in the extended formalism. The r. h. s. of Eq. (8.285) can be compared
with the function f, (¢*, p;) of Eq. (8.34).

Exercise Prove these properties.

Using Eq. (8.276), the extended Lagrangian can be rewritten in the equivalent form

L ¢ s") = L(g* v (", 0. 6%). )+
wi(§ — V(g @, ¢%)) — " Pu(q, w)), (8.286)

where the functions v’, w; are specified by Eqs. (8.32) and (8.276).

Hamiltonian Formulation for the Extended Lagrangian and Comparison with
the Original Formulation According to Egs. (8.284) and (8.285), the conjugate
momenta py, 7, for g*, s* are

)
-

pi = wi(d", ¢, s9), (8.287)
. oL |
Poa = 9 —fa(quw])v

T, = o =0. (3.288)
054



332 8 Hamiltonian Formalism for Singular Theories

That is, p; is precisely the solution to our basic Eq. (8.276). Taking this into account,
the system (8.287) and (8.288) is equivalent to the following one

. . 9D, (g, p;
g =v'(q" .4 +5° qu 2 (8.289)
Pa —fulq".p)) =0, (8.290)
7 = 0. (8.291)

So, in the extended formulation the primary constraints (8.33) of the initial

formulation are present. Besides, there are the trivial constraints (8.291) in a number

equal to the number of all the higher-stage constraints of the initial formulation.
Using the definition (8.36), we obtain the Hamiltonian

Hy = Hy + s°®,,, (8.292)

where Hy is precisely the Hamiltonian of the initial formulation. Then the complete
Hamiltonian for L reads

H = Hy(q", ) + s"Pu(q", p)) + v*Pu (g, ) + v 70 (8.293)

It is also called the extended Hamiltonian for L.

This expression, together with the results of Sect. 1.6.3, allows to confirm an
equivalence of original and extended formulations. Indeed, consider the Hamilto-
nian variational problem for the extended dynamics

Sext = /dr ﬁAqA + 7,8 — [Hy + v* Dy + 57D, + vim,] . (8.294)
It can equally be considered as the variational problem
S = [ dt pag”* — [Ho + v* &y + s°®,], (8.295)

with trivial kinematic constraints 7, = 0. In turn, this expression can be considered
as the variational problem Sy = [ dt pag* — [Ho + v*®P,] with the kinematic
constraints ®, = 0. But this is just our original problem.

By the way, Eq.(8.295) shows that in a singular theory, all the higher-stage
constraints (multiplied by their own Lagrangian multipliers s*) can be added to the
complete Hamiltonian Hy + v* ®,.

Let us continue our analysis of the extended formulation. Due to the very
special structure of the Hamiltonian, Eq. (8.292), preservation in time of the primary
constraints ., 7, = {n,, Hy + s°®,} = —®, = 0 implies the equations ®, = 0.
Hence all the higher-stage constraints of the initial formulation appeared as second-
stage constraints of the extended theory.
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Preservation in time of the primary constraints ®, leads to the equations
{®y, HY = {Dg.Hy} + {Dy, PpJvP + {Dy, Dp}s® = 0. In turn, preservation
of the secondary constraints ®, leads to the equations {®,, H} = {®,, Ho} +
{®,, dD,g}vﬁ + {®,, ®,}s" = 0. To continue the analysis, it is convenient to unify
them as follows:

{®;. Ho} + {®1, ®,}8" = 0. (8.296)

Here ®; are all the constraints of the initial formulation, and §' = (v¥, s%). Using
the matrix (8.93), the system (8.296) can be rewritten in the equivalent form

{®),, Ho} + O(®)) = 0, (8.297)
(D1, Ho} + {Dp,, @138 = O(®)). (8.298)

Equation (8.297) does not contain any new information, since the first class
constraints commute with the Hamiltonian, see Eq.(8.96). Let us analyze the
system (8.298). First, note that due to the rank condition rank{®j,, @1}‘ o =

[I,] = max, exactly [I;] variables among S’ can be determined from the system.
According to the Dirac prescription, we need to determine the maximal number
of the multipliers v*. To do this, let us restore v-dependence in Eq.(8.298):
{CTDIZ, Dy 10" + {5312, Ho} + {CTDIZ, ®,}s” = 0. Since the matrix {5312, ®, } is the same
as in the initial formulation, from these equations we determine a group of variables
v*2 through the remaining variables v*!, where [a;] is the number of second-class
constraints among ®,,. After substitution of the result into the remaining equations
of the system (8.298), this acquires the form

v = v*(q,p, s, v™), Qurv(q. )" + Pay(q.p) = 0, (8.299)

where [a;] is the number of higher-stage second-class constraints of the initial
theory. It must be P & 0, since when s* = 0, the system (8.298) is a subsystem of
{®;, H} = 0, but the latter vanishes after substitution of the multipliers determined
during the procedure; see the discussion after Eq.(8.48). Besides, note that rank
0O = [a;] = max. Indeed, suppose that rank Q = [¢'] < [a3]. Then from Eq. (8.298)
only [as] + [@'] < [I] variables among S’ can be determined, contradicting the
conclusion reached before. In short, the system (8.296) for determining the second-
stage and third-stage constraints and multipliers is equivalent to

v = v*¥(q,p, s, v*), (8.300)

52 = 0", (g, p)s™, (8.301)
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Conservation in time of the constraints (8.301) leads to the equations for determin-
ing the multipliers

v = {0%,(q.p)s"  H} . (8.302)

Since there are no new constraints, the Dirac procedure for L stops at this stage. All
the constraints of the theory have been revealed after completing the third stage.
The dynamics in extended theory is governed by the Hamiltonian equations

é]A {quH}+Sa{quq>a}s I.;A = {ﬁAsH}+Sa{ﬁAv q>¢1}7

a a

5 =9, fra =0, (8.303)

as well as by the constraints

®, =0, ®, =0, (8.304)
g =0, (8.305)
gy = 0, 5% = 0%, (q,p)s". (8.306)

Here H is the complete Hamiltonian of the initial theory (8.35), and the Poisson
bracket is defined on the phase space ¢*, s, pa, 7. The constraints 7,, = 0 can be
replaced by the combinations 7, + 7., 0, (¢, p) = 0, which represent a first-class
subset. The constraints (8.306) are of second class.

Note that each solution of the extended theory with s* = 0 represents a solution
of the original theory as well.

8.8.4 Local Symmetries of the Extended Lagrangian: Dirac
Conjecture

Here we discuss one of advantages of the extended Lagrangian action: there is a
closed formula for its local symmetries in terms of constraints.

According to the analysis carried out in the previous section, the primary
constraints of the extended formulation are &, = 0, 7, = 0. Among &, = 0
first-class constraints are present, in a number equal to the number of primary first-
class constraints of L. Among 7, = 0, we have found the first-class constraints
Ty — T4, Q% ,,(q,p) = 0, in a number equal to the number of all the higher-stage
first-class constraints of L. Thus the number of primary first-class constraints of L
coincides with the number [/;] of all the first-class constraints of L. We obtain now
exact formula for [/;] local symmetries of the extended formulation L.



8.8 Local Symmetries and Constraints 335

The symmetries are given by

Sng* = €" {q". @y, (QAsﬁB)}|ﬁ__, oL (8.307)
1 iiq’
Sns® = [EMKn* + € (b + senp” + ¢Penp)]| ot - (8.308)
1 i)q’
Here €l (r), Iy = 1,2,...,[I1], are the local parameters, and K is the conversion

matrix, see Eq.(8.93). Note that Eq. (8.307) represents an infinitesimal canonical
transformation, with the generators being the first-class constraints of initial for-
mulation. We point out that these formulas represent a direct generalization of our
illustrative example, see Eq. (8.233).

According to Eq.(8.308) the variation of some s¢ involves the derivative of
parameters. Hence they can be identified with gauge fields for the symmetry. At
this point, it is instructive to discuss what happens with local symmetries when

we pass from L to L. As we have seen in Sect. 8.8, (Né l)-type symmetry implies
N-th stage constraints in the Hamiltonian formulation for L. Replacing L with L,
we arrive at the formulation with at most second-stage first-class constraints and
the corresponding é-type symmetries (8.307). That is each symmetry (8.234) of L
“decomposes” into N gauge symmetries of L.

We now show that the variation of L under the transformation (8.307) is
proportional to the higher-stage constraints 7. So, it can be cancelled by appropriate
variation of s, which is given by Eq.(8.308). In the subsequent computations
we omit all the total derivatives. Besides, the notation A| implies the substitution
indicated in Eqs. (8.307) and (8.308).

To give a proof, it is convenient to represent the extended Lagrangian (8.277)
in terms of the initial Hamiltonian Hy, instead of the initial Lagrangian L. Using
Eq. (8.70) we write

E(qu c.lAv sa) :wiéli +fa (qu wj)éa
— Ho(q", @) — s“T.(¢", w)), (8.309)

where the functions w;(q, ¢, ), fu (¢, ») are defined by Eqgs. (8.275), (8.34). Accord-
ing to the identity (8.283), the variation of L with respect to w; does not give
any contribution. Taking this into account, the variation of Eq.(8.309) under the
transformation (8.307) can be written in the form

. RI)
SL = — ai(q, §, 5) Bf‘
5

1

) B
" —fulg, (9.4, ) afl el
Do

Ho(q".p) | ., 0%a(q".PB) | ,0Pu(q".P)) 5 1
_( anAP/ y anPB T et Pj )‘{QA,GIIHGI

- 811sa¢a(qu (l)])
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To see that §L is a total derivative, we add the following zero

oL .
= D;,
|:3a)l w{p 11}
0Hy ., 00, 0B\ . ~ . -
—( g s ){pﬂ,th}‘i‘q {Pa,¢11}:| en,
app app app

to the r.h.s. of the previous expression. It then reads

Si = [éll &)11 - 611 ({HO’ gbll} + qa{cDas cNpll} + sa{cDas gbll })]|
- Sllsaq)a(qA,(,()j) =
[éll cFI‘DII + 611 (blll + ilaclldl + Sbcllbl) cI>I]| - 811 sana(qu wj)s

where b, ¢ are coefficient functions of the constraint algebra (8.94). Using the
equalities @] = (0, Pu(q*, @), 1| = K1,“Pu(q*, w)), we finally obtain

8L~ = [éllKlla =+ 611 (b[la + qaC]laa + SbC]lba) - 511Sa] |ﬁ dZ cDa-
ql

i—>
!

Then the variation of s* given in Eq. (8.308) implies 8L = div, as has been stated.

Example Consider a system with the configuration-space variables x*, e, g
(where x* are coordinates of Minkowski space), and with the action being

1 2
S = /d‘( (F* — gx")? + & , a = const. (8.310)
2e 2e

This implies the complete Hamiltonian

1 2
H = zep2 + g(xp) — ie + UePe + VgD, (8.311)
as well as the constraints

1 ) g2
@ =p. =0, T'=—_|p + =0; (8.312)

2 e?
@, =p, =0, = & (xp) = 0. (8.313)

e

(continued)



8.8 Local Symmetries and Constraints 337

They can be reorganized with the aim of separating the first class constraints
cbl and Tl
éi)l EPe‘*‘ipg:O,
- 1 2
T=- (pz—g)—g(g—(xp))ﬁpg:o; (8.314)
e \e e
8
pg =0, .~ =0. (8.315)
In this case, the solution to the basic Eq. (8.276) is given by
1. )
ot = Z(x“ — (g —s7)x"). (8.316)
e—s

Using the Egs.(8.312), (8.313) and (8.316) we obtain the extended
Lagrangian (8.277)

R R VA o SR DI (8.317)
2(e —sh) 2e e e’ '

Two local symmetries of L are obtained according to Egs. (8.307) and (8.308),
using the expression (8.314) for the first-class constraints. They read

2

Sixt = —¢! (w“ + gx“) , d1e =0, Sig = '
e e
1 1 1 gsl 2 2 18Y 182
8185 = € —2¢ ( —s ), 8187 = (6 ) +e€° ; (8.318)
e e e
Soxtt =0, Sre = 62, brg = €2ga
e
sl = €2, G52 = 28, (8.319)

Invariance of L under (8.319) can be easily verified. By tedious computations,

the reader can confirm that it is invariant under (8.318) as well, §;L =
2

_é(el(a)u)Z + 6l (8) )

e
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Dirac Conjecture Consider a theory which involves only first-class constraints.
This implies that in the total Hamiltonian, H = Hy + v* ®,, all the velocities remain
undetermined. According to Sect. 2.3 the solution to the Hamiltonian equations, in
linear order with respect to dt, is

2(8t) = z(0) + 8t{z, Ho} + dtv*{z, Do}, (8.320)

and depends on the arbitrary functions v*. According to Sect. 8.4, solutions which
correspond to different choices of v, z; (87, v1) and z,(87, vy), are equivalent, and
describe the same physical state.

Dirac observed that, according to (8.320), the solutions z; and z, are related
by canonical transformation with the generators being first-class constraints: §z =
€*{z, Dy}, €* = St Av*. The Dirac conjecture is that the higher-state constraints
also generate transformations that do not change physical states.

We point out that (8.307) can be considered as a proof of the Dirac conjecture for-
mulated as follows: all first-class constraints of an initial Lagrangian are generators
of local symmetry of the extended Lagrangian.

8.8.5 Local Symmetries of the Initial Lagrangian

When only first-class constraints are present in the formulation, symmetries of the
extended Lagrangian can be used to restore those of the initial Lagrangian. In the
absence of second-class constraints, Egs. (8.307) and (8.308) acquire the form

8iq"

85" = [ + € (b1 + s"en" + ¢Per”)] | ot - (8.321)

3t

1
€ {qA7 q)l}‘ﬁ’_)(;)qL: P

We note that the extended Lagrangian coincides with the original one for s = 0:
L(q,0) = L(gq), see Eq.(8.282). So the initial action will be invariant under any
transformation

5 = 81|,y (8.322)
I

which obeys the system §s|,_, = 0, that is
K+ € (bi" + §Pep”) = 0. (8.323)

We have [a] equations for [o] + [a] variables €. In the work [47] it was demonstrated
that these equations can be solved by pure algebraic methods, which give some [a]
of € in terms of the remaining ¢ and their derivatives of order less than N. This
allows us to find [«] local symmetries of L.
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We present two examples of how it works.

Maxwell Action Consider the Maxwell action of an electromagnetic field
1 4 v 4|1 2 1 2
S = ~4 d*xF,,F"" = [ d'x 2(80A¢, — 0,40)" — 4(Fal,) . (8.324)

In this case, the functions v’ from Eq.(8.32) are given by p, + 8,A¢. The action
implies primary and secondary constraints

po=0, aapa =0. (8.325)

Then the basic Eq. (8.276) acquires the form dpA, — w, — 9,A¢ + 9,5 = 0, and the
extended Lagrangian action is'®

N 1 1
S = / d*x [2(30Aa — 4A0 + 0us)? — 4(Fa,,)2:| . (8.326)

Its local symmetries can immediately be written according to Eq. (8.321); the non-
vanishing variations are

8Ao = B, dgs = B,
SQA;, = —3;,0(, 5as = 300{. (8.327)

According to Eq. (8.322), the symmetry of the initial action appears as the following
combination

(8p + 8a)Ap = —0pa,
(8p +80)A0 = B, (8.328)

where the parameters obey the equation dpor + 8 = 0. The substitution § = —do
into Eq. (8.328) gives the standard form of U(1) gauge symmetry

A;L =A,+ 0,0 (8.329)
Example with Fourth-Stage Constraints Let us consider the Lagrangian
1.,
L=+ £x2, (8.330)

where x*(t) are coordinates of Minkowski space and £(7) is a scalar function.

16In the transition from mechanics to a field theory, derivatives are replaced by variational
derivatives. In particular, the last term in Eq. (8.276) reads Sw(';(x) [ @yt )T (" ), 0:(y).
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Denoting the conjugate momenta for x*, £ as p,,, pg, the complete Hamiltonian
reads

1
Hy = 2p2 — &% + vepe, (8.331)

where vg is the velocity for the primary constraint ps = 0. The complete system of
constraints is

® =pe =0, T, =x>=0, T =xp=0, T4Ep2=0. (8.332)

In this case, the variable £ plays the role of ¢%, while x* play the role of ¢ of the
general formalism.
The constraints form the first-class system

(D), @)} =y g, {®;, Ho} = b/ ). (8.333)
with the non-vanishing coefficient functions being

3’ = —cp? =2, e’ = —cp® =4, et = —cpt =2;
b?=1, b’ =2, b3t =1, b3® = 2, by® = 4¢.

3

In the present case, Eq. (8.276) acquires the form #* — w* — s3x* — 2s*w” = 0, so

1

"=
@ 1+ 2s*

(K — s3x1). (8.334)

Then the extended Lagrangian (8.277) is given by

1

L= 51 s gy B =0 € =) (8.335)

Using the Eq.(8.321) and the coefficient functions found before, four symmetries
can immediately be written as follows

818 =€, §157 = €l (8.336)
8ys7 = €2 + 2€%5°, 8250 = 22(1 + 25%);
Saxt = €3x1, 8357 = 263 (E — %), 835° = &3, 835t = (1 + 25%);
it — 3k

Saxt = 2¢* ,
R ) g

84s® = 4e*(E —57), b5t = €t — 26t

Since the initial Lagrangian L implies a unique chain of four first-class constraints,

3
we expect that it has one local symmetry of the (6)-type. The symmetry can be found
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according to the defining Eq. (8.323). In this case, they read

e+ 2% =0,
22+ & 44t =0, (8.337)

e +ét=0.

3 .
This allows us to find €', €2, €3 in terms of €* = €: ¢! = —é (6)+4é§ + 2€é,
€2 = J&é—2¢k, € = —¢é. According to Eq. (8.322), the local symmetry of the initial

Lagrangian (8.330) is given by
. . e :
Oxt = —éxt 4 2ext, 8¢ = ~ € +4éE + 2€€. (8.338)

In the presence of second-class constraints, local symmetries of L can not
generally be restored according to the trick (8.322) and (8.323). The reason is that
the number of equations of the system (8.323) can be equal to or greater than the
number of parameters €“.

The expression (8.335) for the extended Lagrangian suggests the following
redefinition of variables: 1 4+ 2s* = e, £ — 2 = &1; then it can be written in the
form

L(e, &) = zle G — X2 + & ()% (8.339)

Let us write its symmetries. The symmetry (8.336) disappears, since L(e, &) is
constructed from gauge-invariant variables with respect to this symmetry. The
remaining symmetries acquire the form

8.6 = —€2 —2€%5°, 8,5 = 2e€’: (8.340)
Saxt = Ext, 838 = =263, 835° = &3, Sze = 2€%¢; (8.341)
2t 3 3 4 -4 43
Saxtt = (T —s7x1),  845” = 4€7E),  S4e = 2(E7 —2€75°). (8.342)
e

The 84-symmetry can be replaced by the combination §, = § (¢* = éee) +8(* =
€s®) + 8(e? = —e&), which has a simpler form

Sext = ex?, 8.8 = (¢£)), 8.5 = (e5), bee = (ee), (8.343)
and represents the reparametrization invariance. As the independent symmetries of

L(e, &), we can take either Egs. (8.340), (8.341) and (8.342), or Egs. (8.340), (8.341)
and (8.343).
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8.8.6 Conversion of Second-Class Constraints by Deformation
of Lagrangian Local Symmetries

In this section we discuss invertible changes on the space of functions which
have the following form ¢(t) — £(4(1),4(2), ...). Owing to the invertibility
(and under certain conditions that will be discussed below), changes of this kind
lead to an equivalent Lagrangian. To understand their meaning, suppose that g
enters into the initial Lagrangian without derivatives, which implies the primary
constraint p = 0 in the Hamiltonian formulation. The transformed Lagrangian L’
will contain derivatives of the new variable g, so the constraint generally does not
appear in the formulation L’. As will be seen, in many cases a pair of second-class
constraints of the initial Lagrangian is replaced by a first-class constraint in the
transformed formulation. That is, the notion of first- and second-class constraints is
not “invariant” under such a change. In this section we follow the work [48].

To illustrate how this works, we analyze the following dynamically trivial model
defined on configuration space x(t), y(t), z(t), with the Lagrangian action being

1 1
S = / dr| _(G—y)?*+ _22|. (8.344)
2 2
This is invariant under the finite local symmetry with the parameter o(7)

x = a, Sy =a, 8z =0. (8.345)

So we have a formulation with c-type symmetry. Moving on to Hamiltonian
formalism, we obtain the following chains of constraints:

Primary Secondary
First-class chain py =0, px =0, (8.346)
Second-class chain p. =0, z=0. (8.347)

Consider the transformation z = Z + y. For the new variables x, y, Z, the action
acquires the form

1 1
§ = / dt (z(x -2+ LG+ y)z) , (8.348)
and has @-type symmetry

Sx=a, Sy=da,  87=—d. (8.349)

As we know, this implies the appearance of a constraint at the third stage of the Dirac
procedure. In the new formulation, this replaces the second-class chain (8.347).
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Computing the constraints of the formulation (8.348), we find the following first-
class chain

Primary  Second-stage Third-stage (8.350)
p: =0, Py = 0, px=0.
The reader can verify that the initial formulation is a gauge of the new one (it
corresponds to the gauge p = 0). Hence, using the change, two second-class
constraints (8.347) have been replaced on the first-class constraint 7 = 0. In the
formulation S’ only the first-class constraints are present. The procedure is called a
conversion of second-class constraints. In the language of symmetries, the change
raises the order of a symmetry, leading to deformation of the constraints structure.
Let us describe the conversion trick in further detail. Let L(¢”, ") be the
Lagrangian of a theory with first- and second-class constraints. In the Lagrangian
formulation, the first-class constraints manifest themselves in invariance of the
action under some local symmetry transformations. Let

5" = €RNq.) + ... (8.351)

be an infinitesimal form of one of the symmetries. The dots stand for all terms

with less then k-derivatives acting on a parameter. As we know, (é)-type symmetry
generally implies the appearance of some constraint at the (k + 1)-stage of the Dirac
procedure.

Let us divide coordinates ¢* into two groups: ¢ =
the parametrization of the configuration space: ¢ —
transformation which involves derivatives of g*

( q“). We change

q,
¢ according to the

¢ =4@G@. ). ¢ =q@G). (8.352)

We suppose that the transformation is invertible in the following sense
aq' ag”
deta@, #0, det 2P # 0. (8.353)

This implies that §* can be determined from (8.352): ¢ = ¢ (¢*, ¢%), 3% = ¢*(¢?).
So, our theory can be equally analyzed in terms of the Lagrangian L’ = L(g(§), ¢(q)-
We further suppose that the transformation (8.352) has been chosen in such a way
that L does not involve higher derivatives, disregarding the total-derivative terms
(we show below that this is possible in a singular theory)

dF(§. ) ,

8.354
Jr ( )

~ 2 ~I .
L'(q.q.9 =L (q.9) +
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Let us see what we can say about the structure of Hamiltonian constraints of our
theory in the new parametrization L, as compared with L. We note that the local

symmetry for the set g is generally of (He—l)-type: 8¢ = H) aq RUG, ¢ ¢*) +

.. Since the order of the symmetry has been raised by one umt at the (k4 2)-stage
of the Dirac procedure an extra constraint appears. On the other hand, the physical
sector of L is the same as for L. If the order of other symmetries (if any) was not
lowered, the only possibility!” is that the extra (k + 2)-stage constraint is first-class,
and it replaces a pair of second-class constraints of the initial formulation. In short,
an appropriate parametrization (8.352), (8.353) and (8.354) of the configuration
space implies a deformation of local symmetries which, in turn, can result in the
conversion of second-class constraints. Clearly, Eqgs. (8.353) and (8.354) represent
only necessary conditions for the conversion.

Note that we can consider more general transformations: ¢' = ¢'(§*, i}“, 5‘)‘, ey

S
;j‘))‘), g* = ¢*(¢?), which involve higher derivatives of §*. These generally increase
the order of symmetry by s units, and 2s second-class constraints can be converted.
For an example of this kind, see [48].

As the example discussed earlier shows, the condition (8.354) can be easily
satisfied if some variable enters into the action without a derivative. In this
respect, let us point out that for a singular theory L(g, ¢), there is an equivalent
formulation, L' (¢, §), with the desired property. Actually, starting from the singular
L, we construct the Hamiltonian H = HO(qA,pj) + v*®,, where Dy (g4, pp) =

« — fa(q*, pj) are primary constraints. As we know, the functions Hy, f, do not
depend on p,. We further separate a phase-space pair which corresponds to some
fixed o, for example « = 1: o = (1,a), (¢*.pa) = (¢',p1,2). According to
Sect.4.4.3, there is a canonical transformation (¢', p1,2) — (¢'', P}.2), such that
the Hamiltonian acquires the form H' = H)(¢"",z)+v'p/, +v¥ @y (¢'", 7). We can
restore the Lagrangian L' (¢, ¢') which reproduces H' in Hamiltonian formalism. By
construction, L’ does not depend on q" !

We finish this section with three examples of application of the conversion trick.

8.8.6.1 Conversion in a Theory with Hidden SO(1, 4) Global Symmetry

In this example, the initial formulation implies a non-linear realization of a global
symmetry, therefore is not convenient. The conversion reveals this hidden symmetry
that is present in the theory. Besides, the extra gauge freedom of the converted
version is used to find a parametrization which linearizes equations of motion.

"Here the condition (8.354) is important. A theory with higher derivatives, being equivalent to
the initial one, has more degrees of freedom than the number of variables q", see Sect.2.10. So
the extra constraints would be responsible for ruling out these hidden degrees of freedom. Our
condition (8.354) precludes the appearance of the hidden degrees of freedom.
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Consider a theory on the configuration space x*, e, g, and with the action

1 1
S = /dt G —gx")?* +  g>—ag), a=const. (8.355)
2e e

The model has a manifest SO(1, 3) global symmetry. The only local symmetry is
the reparametrization invariance, which represents ¢-type symmetry

8t =0, &xf'=—-axt, be=—(ne), b6g=—(ag) (8.356)

Moving on to Hamiltonian formalism we obtain the complete Hamiltonian (v,, v,
stand for velocities associated with the primary constraints)

2

e
H="p+s0p)— % , T ag + vepe + vepg, (8.357)

2 2e

as well as the constraints (the initial constraints have been reorganized with the aim
of separating the first-class ones)

Pe + (xp + a)p, = 0, p2 + (xp + cz)2 + 2ep2pg =0; (8.358)
pe =0, g—elxp+a) =0. (8.359)

Equation (8.358) represent first-class constraints. The equations of motion for the
(e, x)-sector can be written as follow

€ = U, pe:o’

8.360
H= e+ (p ), = el + a)ph (8360
In terms of variables
1 I
xr= % puz (8.361)
xp +a xp +a

they acquire a form similar to those of a free relativistic particle, namely

Xl =ePt,  Ph=0, P=-d (8.362)

The presence of the conserved charge PH = 0 indicates a hidden global symmetry
related with the homogeneity of the configuration space. As will be seen below,
the conversion reveals the symmetry and allows us to find a manifestly-invariant
formulation of the theory.
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To convert a pair of second-class constraints (8.359) we need to raise the order of
symmetry (8.356) by one unit. From Eq. (8.356) we note that this can be achieved
by performing a shift of a variable on e. Since the variable g enters into the action
without a derivative, a shift of the type g = g + ¢ does not lead to higher-derivative
terms in the action and thus realizes the conversion. It is convenient to accompany
the shift by an appropriate change of variables. Namely, let us make the invertible
transformation (x*, e, g) —> (# = (F*,x*), §), where

Pttt P=e2, g=g— °. (8.363)
2e

In terms of these variables the action (8.355) acquires the form

y=/WGM—Wﬂ%®,W=Fﬁ££H, (8.364)

The resulting action has a manifest SO(1,4) global symmetry. The conserved
current P* then corresponds to the symmetry under rotations in (£, ¥*)-planes. The
local symmetry of the action (8.364) can be obtained from Eqgs. (8.356) and (8.363),
and is of a-type

1

1 .
6t =0, §H = it —ax?t, 8¢ =
2 2

0 —ag —ag. (8.365)
Moving on to Hamiltonian formulation we obtain the Hamiltonian
H= ;p‘z + g% P, + ag + vips, (8.366)
and the first-class constraints

pg=0, Ppat+a=0, p'pa=0, (8.367)

Thus S’ represents the converted version of the action (8.355). Let us write equations
of motion for the x*-sector

A=, =gt (8.368)

In the gauge ¢ = x*p,, + a, ps = x*p, + a for the theory (8.364) we reproduce
the initial dynamics (8.360) (taken in the gauge ¢ = 1). Going over to the gauge
g = 0, ps = a, we obtain the free Eq.(8.362). Hence the extra gauge freedom,
resulting from the conversion of second-class constraints, can be used to search for
the parametrization which implies the linear equations of motion.
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8.8.6.2 Classical Mechanics Subject to Kinematic Constraints as a Gauge
Theory

The conversion trick can be carried out in a theory which involves only second-class
constraints, that is in a theory without local symmetries in the initial formulation.
To begin with, we note that a given theory without local symmetry can be treated
as a gauge theory on appropriately extended configuration space. For instance, a
theory with the action S(¢”) can be equally considered as a theory on the space
qA, a, where a is one more configuration-space variable, with local transformations
defined by q’A = qA, a = a + «. Since a does not enter into the action, the latter is
invariant under local transformations!'® This trivial gauge symmetry of the extended
formulation can be further used for conversion of second-class constraints according
to our procedure. '’

Let us see how this works on an example of classical mechanics with kinematic
constraints. In Sect. 8.6 we discussed this as a theory with the action

S = / dr [Lo(g, §) + A'Gi(q)], (8.369)

which implies 4[] second-class constraints
pi=0, Gi=0, f'Giu=0, A—AU{F,H}=0. (8.370)

Now we present it as a locally-invariant theory which involves only first-class
constraints.

Conversion can be carried out by making the following transformation in the
action (8.369)

A=A 8 (8.371)

where the auxiliary variable ¢(z) has been introduced. The modified action

s = [ dr[La.d) - #6Guit + TGi0)]. 8372

18This is a general situation: given a locally-invariant action, there are special coordinates such that
the action does not depend on some of them [10].

YThere are other possibilities for creating trivial local symmetries. For example, in a given
Lagrangian action with one of the variables being ¢, let us make the substitution ¢ = ab, where
a, b represent new configuration space variables. The resulting action is equivalent to the initial
one, an auxiliary character of one of the new degrees of freedom is guaranteed by the trivial gauge
symmetry: a — a’ = aa, b — b’ = a~'b. Another simple possibility is to write ¢ = a + b,
which implies the symmetry a = @’ = a + «, b — b’ = b — «. The well-known example of
this kind transformation is einbein formulation in gravity theory: g,., = ej ey, which implies local
Lorentz invariance.
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does not contain higher-derivative terms and is invariant under the local transfor-
~. ~/ ~, i . . . . . .

mations ' — A = Al + @, e — € = ¢ — a'. Due to this a-symmetry we

expect the appearance of 3[] first class constraints in the Hamiltonian formulation

for the theory (8.372). To confirm this, let us write defining equations for conjugate

momenta

aL  dLy aL .
Pa= . = 5. — &'Giq, Pei = .. = —quas Pii = 0. (8.373)

ad a¢ét
The last equation represents [i] primary constraints. The remaining equations can
be resolved with respect to the velocities ¢, &, since the corresponding block of the
Hessian matrix is non-degenerate. It can easily be seen in special coordinates chosen
as follows. The initial coordinates g° can be reordered in such a way that the rank
minor of the matrix qua’ is placed on the right: ¢* = (¢%, ¢'), det%f;’ # 0. Now, let
us make the invertible change of variables ¢ — §¢, where ¢* = ¢%, §' = G;(¢%).
In these variables our Lagrangian is

L' =Ly(G,§) —é'q + Mg (8.374)

From this expression we immediately find the determinant of the Hessian matrix:

det 232~L = det ?2&1 . It does not vanish since in classical mechanics the quadratic
9%(q.0) dge dgP

21, .
form aiagg , 1s positive defined.
7*0q

Let us return to the analysis of the action (8.372). The complete Hamiltonian is
H= paéla +peiéi - LO(Q» Q) + éiqua - iiGi(CI) + U%Pji, (8375)

where ¢%, &' are solutions to Eq.(8.373). As before, the second-stage constraints
are Gi(q) = 0. Their conservation in time can be easily computed by using of
Eq. (8.373): G; = {G;, H} = —p,;, which gives the third-stage constraints p,; = 0.
Then the complete constraint system is composed by 3[i] first class constraints

p;; =0,  Gi=0,  p;=0. (8.376)

The first-class constraints p,; = 0 state that the variables ¢’ are pure gauge degrees of
freedom, as was expected. They can be removed from the formulation if we choose
the gauge ¢/ = 0. The remaining 2[i] first-class constraints in Eq. (8.376) replace
4[i] second class-constraints (8.370) of the initial formulation.

As a particular example, we consider a particle on a 2-sphere of radius ¢, with
the action being

S = /d3x Bm}z + AR — cz)i| . (8.377)
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This implies the following chain of four second-class constraints
=0 P-3=0, Ip=0,  p+2mPr=0. (8.378)

Conversion is achieved by the transformation A = A+ ;mé, which generates the

symmetry Ao =1 + ;m(i, e — ¢ = e — a. The transformed action
1 5 > &
S = /d3x I:zmx2 —méxx + A3 — cz)i| . (8.379)
implies first-class constraints only, namely
pr =0, ¥-ct=0, p.=0. (8.380)
O(N)-invariant non-linear sigma model
1
S = / dPx [z(aﬂqs“)z + A((9")* — 1)} , (8.381)

represents an example of field theory with a similar structure of second-class
constraints. Hence the transformation A = A + 9,,0"e gives the formulation with
first class constraints only

S = / dPx B(auw)2 —20,e¢ P + A((¢9)? — 1)} . (8.382)

8.8.7 Conversion in Maxwell-Proca Lagrangian for Massive
Vector Field

As one more example of the conversion in a theory with second-class constraints
only, we consider the massive vector field A*(x") in Minkowski space. It is
described by the following action:

1 1
S = / d'x [—4FWF’” + ZmZA"AM} . Fu=0,A,—0,A,. (8.383)

Moving on to Hamiltonian formulation we find the Hamiltonian

1 1 1
H= / d*x [ng — PalaAo + 4F3,,, - 2m2A"AM + vopo] : (8.384)
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as well as the primary and secondary constraints
p’=0,  3.,ps—m*Ag = 0. (8.385)
The system is second-class, with the Poisson bracket algebra being
{0apa — m*Ag. po} = —m*8* (x — y). (8.386)

Conservation in time of the secondary constraint determines the velocity vy =
—0rAx. Equations of motion for the propagating modes are

0A, = —pa + 0.A0, dopa = —0pFpg — m*Aq, (8.387)

while the modes Ay, p® are determined by the algebraic Eq. (8.385). In a converted
version these modes turn into the gauge degrees of freedom. In this case, a
transformation which creates the desirable & - symmetry consists of introducing
the Stuckelberg field ¢ (x*)

Ay =A,—0,0. (8.388)

According to our philosophy, we can think that, from the beginning, we have a
theory on configuration space A,, ¢, with the local symmetry being A" = A*,
¢’ = ¢ + «, and the action given by Eq. (8.383). The field ¢ does not enter into the
action. In terms of the variables A w» @, the transformed action reads

1~ - 1 ~ ~
S = / d*x [—4FWF’“’ + zmz(A" — ") (Au — am)} ;
Fu, =0,A, —0,A,. (8.389)
This is invariant under the local transformations
p>¢ =¢+a. A, —>A =4, + 0,0 (8.390)

that is, A u transforms as an electromagnetic field. Due to this &-symmetry, we expect
the appearance of two first-class constraints in the modified formulation. Indeed, the
primary constraint of the theory (8.389) is the same as before: p° = 0. Then the
Hamiltonian is
H:/d3x L padaho+ B2t P2 pedot
Zpa Pa0alo 4 ab 2m2p¢ PepAo

1, .
2m2(Aa + 0.0)* + U0ﬁ0i| : (8.391)
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and implies the secondary constraint d,p,+py = 0. The complete constraint system
po =0, 9aPa + pp = 0. (8.392)

is first-class. The last constraint in Eq. (8.392) states that ¢ is an auxiliary degree of
freedom. It can be removed by the gauge ¢ = 0. The first-class constraint 5° = 0
replaces two second-class constraints (8.385) of the initial formulation, and states
that Ay is a gauge degree of freedom in the modified formulation (8.389). Equations
of motion for the propagating modes in the modified theory are slightly different

d0As = —Pa + 0sAo,  dopa = —0pFpa — m*(Ay — 0u9h). (8.393)

Nevertheless, in the gauge ¢ = 0 they coincide with the Eq. (8.387) of the initial
formulation.



Chapter 9
Classical and Quantum Relativistic Mechanics
of a Spinning Particle

Abstract Search for the relativistic equations that describe evolution of rotational
degrees of freedom and their influence on the trajectory of a spinning body, repre-
sents a problem with a long and fascinating history. Closely related problem consists
in establishing of classical equations that could mimic quantum mechanics of an
elementary particle with spin in a semiclassical approximation. The relationship
among classical and quantum descriptions has an important bearing, providing
interpretation of results of quantum-field-theory computations in usual terms:
particles and their interactions. In this Chapter we develop the Lagrangian and
Hamiltonian formulations of a particle with rotational degrees of freedom. Taking
a variational problem as the starting point, we avoid the ambiguities and confusion,
otherwise arising in the passage from Lagrangian to Hamiltonian description
and vice-versa. Besides, it essentially fixes the possible form of interaction with
external fields. We show that so called vector model of spin represents a unified
conceptual framework, allowing to collect and tie together a lot of remarkable ideas,
observations and results accumulated over almost a century of studying this subject.
On the classical level, the vector model adequately describes spinning particle in
an arbitrary gravitational and electromagnetic fields. Moreover, taking into account
the leading relativistic corrections it explains the famous one-half factor in non-
relativistic Hamiltonian. Canonical quantization of the model yields one-particle
relativistic quantum mechanics with positive-energy states.

Search for the relativistic equations that describe evolution of rotational degrees
of freedom and their influence on the trajectory of a spinning body, represents
a problem with a long and fascinating history. Closely related problem consists
in establishing of classical equations that could mimic quantum mechanics of
an elementary particle with spin in a semiclassical approximation [51-60]. The
relationship among classical and quantum descriptions has an important bearing,
providing interpretation of results of quantum-field-theory computations in usual
terms: particles and their interactions.

In this chapter we develop the Lagrangian and Hamiltonian formulations of a
particle with rotational degrees of freedom. Taking a variational problem as the
starting point, we avoid the ambiguities and confusion, otherwise arising in the
passage from Lagrangian to Hamiltonian description and vice-versa. Besides, it
essentially fixes the possible form of interaction with external fields. We show
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that so called vector model of spin represents a unified conceptual framework,
allowing to collect and tie together a lot of remarkable ideas, observations and
results accumulated over almost a century of studying this subject. In the vector
model appear both first and second class constraints, therefore it also represents a
non trivial application of the formalism described in Chap. 8.

We have not tried to establish a variational problem of the most general possible
form. Instead, the emphasis has been placed on the variational problem leading
to the equations which are widely considered the most promising candidates for
description of spinning particles in external fields. For the case of electromagnetic
field, the vector model leads to generalization of the approximate equations of
Frenkel and Bargmann, Michel and Telegdi (BMT) to the case of an arbitrary field.
Here the strong restriction on possible form of equations is that the reasonable model
should be in correspondence with the Dirac equation. In this regard the vector model
is of interest because it yields a relativistic quantum mechanics with positive-energy
states, and is closely related to the Dirac equation. Concerning the equations of a
rotating body in general relativity, the widely assumed candidates are the Mathisson-
Papapetrou-Tulczyjew-Dixon (MPTD) equations. We show that they correspond to
the minimal interaction of vector model with gravity and turn out to be problematic
in ultra-relativistic limit. Then we construct a non minimal interaction through
gravimagnetic moment and show that a body with unit gravimagnetic moment is
free from the problems detected in MPTD-equations.

. . . . . . . L
Notation Our variables are taken in arbitrary parametrization t, then x* = ‘Z‘T .

The square brackets mean antisymmetrization, w* ") = w*7" — w"7*. For the
four-dimensional quantities we suppress the contracted indexes and use the notation
MMGx’ = xGx, N* ) x" = (NX)*, w? = guo'w’, u,v = 0,1,2,3. Notation for
the scalar functions constructed from second-rank tensors are 65 = 64'S,,,, S? =
S*S,». When we work in four-dimensional Minkowski space with coordinates
x = (" = ct, x'), we use the metric 1., = (—, +, +,+), then kv = o, =
—i%w" + ¥’ and so on. Suppressing the indexes of three-dimensional quantities,
we use bold letters, v'y;a’ = vya, v'G;,v* = vGu, i,j = 1,2, 3, and so on.

9.1 Vector Model of Spinning Particle: Non Relativistic Spin

The data of some experiments with elementary particles and atoms (Stern—Gerlach
experiment, fine structure of hydrogen atom, Zeeman effect) shows that the
Schrodinger equation for a one-component wave function is not adequate to describe
the behavior of these systems in the presence of an electromagnetic field. This
implies a radical modification of the formalism, see, for example, the book [41] for
a detailed discussion. Roughly speaking, besides the position and the momentum,
the state of an electron is specified by some discrete numbers, which are eigenvalues
of suitably defined operators, called the operators of spin. The mathematical theory
of these operators is similar to the formalism of angular momentum. So, intuitively,
an elementary particle carries an intrinsic angular momentum called spin.
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To describe a particle with spin s = ; (electron, proton, neutron), in quantum
mechanics we introduce the two-component wave function W, @ = 1, 2. The spin
operators S; act on W, as 2 x 2-matrices, and are defined by

S i 9.1)
i = A0i, .
2

where o; stands for the Pauli matrices, they form a basis of the vector space of
traceless and Hermitian 2 x 2-matrices,

01 0—i 10
0'1:(10), Uzz(io), 0'3:(0_1). (92)

Their basic algebraical properties are

0i0; = ie,;ik(fk + 15,']', 9.3)
0,0; + 0j0; = 2 x 18y, 9.4)
0i0; — 0j0; = [0, 0] = 2i€ox, 9.5)

(cri)2 =1, forany fixed I,
ZO’,’O',’ =3x 1, [O'k, ZO’,’O’,’] =0. (96)

Note that the commutators (9.5) of o-matrices are the same as for the angular-
momentum vector, see Eq. (2.87). The spin operators, being proportional to the Pauli
matrices, have similar properties, in particular

[Si, S)] = iheSi. 0.7
A 3n?
S =m%(s+1)x1= A 1. (9.8)
Consider Coulomb electric and a constant magnetic fields. The electromagnetic
potential can be taken in the form Ag = % and A = é[B x r]. Then evolution
of an electron immersed in this fields described by the equation

L ov 1 ., e e(g—1)
h = — A)?—cA
o (2m ® c ) —edo+ 2m2c?

SpxE - ¢ BS) U (9.9
2mc

The first and second terms in the Hamiltonian correspond to the minimal interaction

of a point particle with an electromagnetic potential, whereas the last two terms

represent interaction of spin with electric and magnetic fields. A numeric factor g is

called gyromagnetic ratio of the electron.! The vector ijcé is known as magnetic

moment of the particle.

'Quantum electrodynamics gives g = 2.002322. .. due to radiative corrections.
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The equation is written in the Schrodinger picture, that is we ascribe time-
dependence to the wave function, whereas in semiclassical models we deal with
dynamical variables. We recall that the time-dependence can be ascribed to oper-
ators using the Heisenberg picture. Passing to the Heisenberg picture, we could
write dynamical equations for basic operators of the theory. According to Ehrenfest
theorem, expectation values of the operators approximately obey the classical
Hamiltonian equations with the brackets discussed in Sect. 8.5.

The Eq. (9.9) gives the structure and properties of the energy levels of hydrogen
atom in a good agreement with experiment. The fine structure of hydrogen atom
fixes the factor g — 1 in the third term, while Zeeman effect requires the factor g in
the last term.

To formulate the problem that we wish to discuss, we recall that quantum
mechanics of a spinless particle can be obtained applying the canonical quantization
procedure to a classical-mechanics system with the Lagrangian L = émxz— U(x). To
achieve this, we construct a Hamiltonian formulation for the system, then associate
with the phase-space variables the operators with commutators resembling the
Poisson brackets, and write on this base the Schrédinger equation iAW = HY.

It is natural to ask whether this ideology can be realized for the spinning particle.
Since the quantum-mechanical description of a spin implies the use of three extra
operators 3’,-, the problem can be formulated as follows. We look for a classical-
mechanics system which, besides the position variables x;, contains additional
degrees of freedom, suitable for the description of a spin: in the Hamiltonian
formulation the spin should be described, in the end, by three variables with fixed
square (9.8) and with the classical brackets {S;, S;} = €;xSk. Then canonical quan-
tization of these variables will yield spin operators with the desired properties (9.7)
and (9.8). According to this, typical spinning-particle model consist of a point on a
world-line and some set of variables describing the spin degrees of freedom, which
form an inner space attached to that point.” In fact, different spinning particles
discussed in the literature differ by the choice of the inner space. An exceptional
case is the rigid particle [62] which consist of only position variables, but with
the action containing higher derivatives. The model yields the Dirac equation [63],
hence it also can be used for description of spin.

It should be noted that Eq. (9.9) is written in the laboratory system, so (contrary
to some other books), we do not state that our classical variable S; is a quantity
defined in the instantaneous rest frame of the particle.

We intend to construct the spinning particle starting from a suitable variational
problem. This is the first task we need to solve, as the formulation of a variational
problem in closed form is known only for the case of a phase space equipped with
canonical Poisson bracket, say {w;, 7;} = §;. The number of variables and their

>There is an elegant formalism developed by Berezin and Marinov [42] based on using of
anticommuting (Grassmann) variables for the description of spin. We present here another
formulation based on commuting variables, without appealing to a rather formal methods of the
Grassmann mechanics.
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algebra are different from the number of spin operators and their commutators, (9.7).
May be the most natural way to arrive at the operator algebra (9.7) is to consider
spin as a composite quantity,

S; = €pwjmy, or S= X, (9.10)

where @, are coordinates of a phase space equipped with canonical Poisson
bracket. This immediately induces SO(3)-algebra for S;, {Si(w, 7), Sj(w, 7)}pp =
€;ixSx. Unfortunately, this is not the whole story. First, we need some mechanism
which explains why S, not @ and & must be taken for the description of spin
degrees of freedom. Second, the basic space is six-dimensional, while the spin
manifold is two-dimensional (we remind that the square of spin operator has fixed
value, Eq. (9.8)). To improve this, we look for a variational problem which, besides
dynamical equations, implies the constraints

, 3n?
wr =0, - = 0, where o = . 9.11)
® 4
They form the first-class set, so in the model with these constraints the spin sector
contains 6 — 2 x 2 = 2 physical degrees of freedom. Geometrically, the constraints
determine four-dimensional SO(3)-invariant surface of the six-dimensional phase
space. The constraints imply

hz
§? = w’n? — (wn)? = 34 . (9.12)

The same square of spin follows from the constraints

wl=0o’, a*=p% wr=0, (9.13)
if we put g2 = z’;, any a. The combination 72 — B2 + gi (@2 — a?) represents the
first-class constraint of the set (9.13). Hence the model with these constraints also
has the desired number of degrees of freedom, 6—2—1x2 = 2. The equalities (9.13)
determine essentially unique SO(3)-invariant three-dimensional surface of the phase
space. The set (9.11) turns out to be more convenient for generalization to the case
of a relativistic spin.

While S in (9.10) looks like an angular momentum, the crucial difference is due
to the presence of first-class constraints, and hence of a local symmetry which we
refer as spin-plane symmetry. The latter acts on the basic variables w, &, while
leaves invariant the spin variable S. Using analogy with classical electrodynamics, @
and s are similar to four-potential A* while S plays the role of F*”. The coordinates
® of the “inner-space particle” are not physical (observable) quantities. The only
observable quantities are the gauge-invariant variables S;. So our construction
realizes, in a systematic form, the oldest idea about spin as the “hidden angular
momentum”.
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9.1.1 Description of Non Relativistic Spin on the Base of Two
Constraints

Spin-Sector Lagrangian and Hamiltonian As the Lagrangian which implies the
constraints (9.11), we take the expression

o
Ve JoNe, o=
Vo?
where Nj; is the projector (8.17) on the plane orthogonal to @. The equivalent forms
of the Lagrangian are

3h2

. (9.14)

Lspin =

Lspin -

Va0l (@) — (00)2  Ja/S?
=V

9.15
2 © (9.15)

where §; = ¢jrwjwr. The model is manifestly invariant under global rotations,

o = Ryw;, where R = R™!. There are also two (finite) local symmetries:

1
reparametrizations t — 1 = o(f) = t + €(f), and the scale transformations
0 —> (.
Let us construct the Hamiltonian formulation of the model. Equation for the
L Ve Ne

conjugated momentum reads ¥ = §- = o JoNe This expression immediately
® WN®

implies (9.11) as the primary constraints. We also note the equality z@ = L, that
is Hy = m® — L = 0. So the complete Hamiltonian is composed from the primary
constraints, H = v(wx) + v, (7172 — a‘)"z), and the Hamiltonian action reads

Su = /dtmb —v(@m) v (x? = 7). (9.16)

There are no of higher-stage constraints in the problem.
Let us write Hamiltonian counterparts of the Lagrangian local symmetries.

1. Reparametrizations in extended phase space are

! =o0o(1), ® =, ' =,
v = (6)", v) = (&) vy (9.17)
They induce the transformations of dynamical variables
®'(t) = 0 (5(1)), () = m(5(7)).
V(@) =)@ @), () = (6) G (). (9.18)

Their infinitesimal form read

dw = —€w, on=—€mx, §v=—(ev), bv; = —(evy). 9.19)
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2. Scale transformations of coordinates are
_ _ _ _ X o _
=1 @ =yw, = ®m vV=v4+ , v)=yxv. (920
X

Since 7 is not involved, the induced transformations of dynamical variables are
the same, for instance ’(r) = yw(t). Presenting y = 1 + y, infinitesimal
transformations of dynamical variables read

dw =yw, dx=-—-yr Sv=vy, v =2yv. (9.21)

Besides the constraints (9.11), the variational problem (9.16) implies the Hamilto-
nian equations

® = p’w +vw, T =—priw —UT. (9.22)
To make the system more symmetric, we have introduced the variable p = 2U
instead of v;.

According to general formalism of Chap. 9, neither the dynamical equations nor
the constraints determine the variables v and p. They enter as arbitrary functions
of time into general solution for the variables @ and m, making completely
undetermined their dynamics. Indeed, for any given functions v(f) and p(¢), the
equations represent a normal system for determining @ and rr. Its general solution is

w = v [bcos (\/a/ ,Od‘C) + csin (\/oz/ pdr)} ,
0 0
= e Jovir |:—b sin (\/a/ pdr) + ccos (\/oc/ pdr)} , (9.23)
0 0

where the integration constants b and ¢ are subject to the conditions
be = 0, b’ =¢? = Vo (9.24)

This implies @2 = e/ and n2 = Jae 2/, According to these
expressions, the pair of orthogonal vectors @ and m rotates in their own plane (or,
equivalently, in the plane determined by b and ¢) with the variable angular velocity
prescribed by the function p(#). The function v(t) determines the variation of their
magnitudes. Choosing the functions v and p suitably, we can make the point with
radius-vector @ move along any prescribed line!

We point out that the two-parametric ambiguity is in correspondence with the
invariance of the action (9.16) under the two local symmetries described above.
Summing up, all the basic variables of our model are unobservable quantities.
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The spin-vector’ S = @ x m has unambiguous evolution
S=0. (9.25)

Note also that it is invariant of the local symmetries. Hence the spin-vector is a
candidate for an observable quantity. In interacting theory S will precess under the
torque exercised by a magnetic field, see below. Due to Eq. (9.11), the coordinates
S; obey (9.12).

An Equivalent Lagrangian Let us consider a slightly different Lagrangian

1 o
Lyin = oNw + . 9.26
s ) 22 (9.26)
The conjugated momentum &# = N@ implies only one primary constraint @x = 0,
then the complete Hamiltonian reads

1 o
H= 5 (]1.'2 - wz) + v(wm). (9.27)

Computing jt(w n) = {wmr, H}, we obtain m> — o> = 0Oas the secondary constraint.

As compare with the previous case, the Hamiltonian equations

12

®w =7+, T =— ,@ — VT, (9.28)
®

have only one-parametric ambiguity due to v (). General solution to the equations is

" t t
w = elovdt [b cos (/ e_zf& vd’dl) + ¢sin (/ e—zf[ﬁ vd’d/\)i| ,
0 0
; t t
7w = e lovit [—b sin ( / o2l “‘”dz\) + ccos ( / 2o “d’d)k)} . (929
0 0

with the integration constants (9.24). In the present formulation the arbitrary
function v(¢) dictates both magnitude and velocity of rotation of the orthogonal
vectors @ and . As in the previous case, the only observable quantity is the spin-
vector. This obeys the Eq. (9.25). Summing up, the two formulations are equivalent
since they have the same physical sector.

Spin Surface and Associated Spin Fiber Bundle T The passage from initial
variables @ and & to the observables S is not a change of variables, and acquires a
natural interpretation in the geometric terms. It should be noted that basic notions
of the theory of constrained systems have their analogs in differential geometry.
Second-class constraints imply that all true trajectories lie on a submanifold of
the initial phase-space. The Dirac bracket, constructed on the base of second-class

3Note that this coincides with S appeared in (9.15).
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constraints, induces canonical symplectic structure on the submanifold. If the first-
class constraints (equivalently, the local symmetries) are presented in the model,
a part of variables have ambiguous evolution. This also can be translated into the
geometric language: due to the ambiguity, the submanifold should be endowed
with a natural structure of a fiber bundle. Physical variables are (functions of) the
coordinates which parameterize the base of the fiber bundle. Let us describe, how
all this look like in our model.

Consider six-dimensional phase space equipped with canonical Poisson bracket

RS = { w;, 7j; {or, mitps = 8 }, (9.30)
and three-dimensional spin space R = {S;} with the coordinates S;. Define the map
f: R® - R3, [, m) — S = erwjmy,

oSy _ 5 9.31)

or S=wxm, rank =
d(wj, i)

Poisson bracket on R® together with the map induce SO(3) Lie-Poisson bracket
on R?

{Si, Sj} = {Si(w, 7T), Sj(a), JT)}PB, then {Si, Sj} = Giijk- (932)

As we saw above, all the trajectories @ (¢), 7 (¢) lie on SO(3)-invariant surface of R®
determined by the constraints

T ={wr =0, nz—wz =0}, (9.33)

that is @ and & represent a pair of orthogonal vectors with their ends attached to the
hyperbole y = ¢.
When (@, ) € T*, we have S = w?n? — (wm)? = a. So, f maps the manifold
T* onto two-dimensional sphere (spin surface) of the radius /a, f(T?) = S%.
Denote F? € T* preimage of a point S € S%, F2 = f~!(S). Let (0, ) € F2. Then
the two-dimensional manifold IE% contains all pairs (y, ;n), ¥ € RT, as well as
the pairs obtained by rotation of these (yw, )I(n) in the plane of vectors (@, 7). So

elements of IF§ are related by two-parametric transformations

o' =y, n=-'x, (9.34)
® =wcosp + 7 ‘ﬁf sing, n'=-w I‘ZII sin¢ + 7 cos ¢. (9.35)

In the result, the manifold T* acquires a natural structure of fiber bundle

T* = (S%. F2. /), (9.36)
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with base S?, standard fiber F2, projection map f and structure group given by the
transformations (9.34) and (9.35). The adjusted with the structure of the fiber bundle
local coordinates are y, ¢, and two coordinates of the vector S. By construction, the
structure-group transformations leave inert points of the base, §S; = 0.

Let us discuss the relationship between the structure group and local symmetries
of the Hamiltonian action (9.16). The structure transformation (9.34) can be identi-
fied with the scale transformation (9.20). Concerning the transformation (9.35), let
us apply it to the action (9.16). Inserting @’ and =’ into the action and disregarding
the total derivative, we obtain the expression

Sulg'] = /dt e —on [V cos2¢ + B—viA] — <n2 -

)i =<l

where

4 |7l o in2¢
= - sin 2¢,
|| ®2n? + (om)|w||x|sin2¢

. . M 2
B=(|w|—|”|)sin2¢, Co ) ’
lo| || lo||m| 4+ o

The action does not change, Sy[q'] = Sy[gq], if we adopt the following transforma-
tion law for v and v,

v—-B+A(v; +C
Vv = i +6). v = v+ C. (9.37)
cos2¢
Hence we have found one more local symmetry of the action. Its infinitesimal form
reads

|o| ||

dw = ¢ dr = —¢

|| ™ lo]

2001 [, @ Pw?
Sv = e — , dv = . 9.38
it (77 g2) 8 j|x] + Vo 039
The three infinitesimal symmetries (9.19), (9.21) and (9.38) are not independent
on the subspace of solutions to equations of motion. To see this, we note that the
following infinitesimal transformation:

8¢ +8y(e) + 8pc)» where y(e) =ev, ¢(e) =2,

@l 939
T
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being applied to any variable, turns out to be proportional to equations of motion.*
For insta'lnce, [0c + 5),'(6) + SpolT = —€ 885;” - 26(3;“’ ‘;i’lf : Her'lce on Fhe subspa.ce
of solutions the infinitesimal reparametrization can be identified with a special

transformation of the structure group
8e = —By(e) — 84 ()- (9.40)

In the result, the number of infinitesimal symmetries coincides with the number
of primary first-class constraints. Summing up, in the passage from geometric to
dynamical realization, the transformations of structure group of the spin fiber bundle
acts independently at each instance of time and turn into the local symmetries of
Hamiltonian action.

9.1.2 An Example of Classical Mechanics Without Observable
Trajectories

It is instructive to discuss here the notion of pseudo-classical mechanics, the term
by which we refer to models with a number of configuration-space observables
less than dimension of space of physical degrees of freedom. Just as it happens
in quantum mechanics, such a kind classical mechanics does not admit the notion of
a trajectory within the position space. Classical models with such a strange property
can be constructed on the basis of a singular Lagrangian with a multi-parametric
group of local symmetries.

Consider a theory with N configuration-space variables ¢* and with & first-class
constraints. The original variables generally have ambiguous dynamics, but as we
saw in Sect. 8.4, the theory has the physical sector which consist of 2(N — k)
observables. The observables form N — k canonical pairs g(¢*, pg) and p(¢*, pp).
It is natural to ask, whether there exist N — k observables of the form g(g*). This
would mean that in the model there are trajectories within the position space. An
example of such a kind is the relativistic particle. As we saw on page 314, we
can take x’(x°) as three configuration-space observables. The model (9.14) gives
an opposite example, without the position observables at all! To confirm this, let us
look for an observable of the form o(®) in the theory (9.22). Using these equations,
we have 0 = pw?(0'm) + v(0'w), where 0’ = 33:) The r.h.s. will not depend on
p and v only if o’ is orthogonal to & and @. So 0’ ~ w x =, that is to satisfy the
desired condition, the observable o should depend on .

Summing up, spin in vector model turns out to be essentially phase-space
quantity.

4On-shell symmetries considered as trivial symmetries, see [43].
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9.1.3 Description of Non Relativistic Spin on the Base of Three
Constraints

Spin-Sector Lagrangian and Hamiltonian In this section we follow the work
[68]. As the Lagrangian which implies the constraints (9.13), we could take the
expression Ly, = zlgd)z + 18B? — JA(@*—a?). We remind that in this model 8> =

3k2
402

and A(7) gives the equations @> = g?>f% and w? = o2, the latter implies ®w = 0.
In the Hamiltonian formulation these equations turn into the desired constraints. We
can integrate out the variable g, presenting the Lagrangian in a more compact form

while « is any given number. Variation with respect to auxiliary variables g(¢)

Loin = BV 6? — ;/\(wz — o). (9.41)

This also gives the desired constraints. The last term represents kinematic (velocity-
independent) constraint. So, we might proceed as in Sect.1.6.3 and exclude A
as well. But this would lead to loss of the manifest rotational invariance of the
formalism.
Equation for the conjugated momentum x reads # = f8 j’ ,- This implies the
®

primary constraint 7> = 2. Momentum for A turns out to be one more primary
constraint, 7, = 0. The complete Hamiltonian reads

A
H= 2((02 —a?) + 1)21 (% = B%) + vom;. (9.42)

Applying the Dirac procedure, we obtain the following sequence of constraints and
equations for the velocities: 1), = 0, = W —a>=0= wn =0, = v, = Zik
Hence all the desired constraints (9.13) appeared. The determined velocity v; can
be substituted into (9.42). Besides the constraints, the Hamiltonian (9.42) implies
the dynamical equations

A=, =0, (9.43)
(]{2
» = /\ﬂzn, T =—-\w. (9.44)

Neither equations nor constraints determine the variable v, and hence A, the latter
enters as an arbitrary function into general solution for the variables @ and . Given
A(t), general solution with the integration constants b and ¢ subject to the restrictions



9.1 Vector Model of Spinning Particle: Non Relativistic Spin 365

be = 0 and b? = ¢? = 2 reads

w = ; [bcos (; /Orkdr) + ¢sin (Z /Otkdr)} ,
% = —bsin (Z /(:Adt) + ccos (; /:Adt) . (9.45)

The only observable which can be constructed from @ and m is the spin-
vector (9.10) with the free dynamics (9.25). Hence the models (9.41) and (9.14) are
equivalent.

Spin Surface and Associated Spin Fiber Bundle SO(3) Similarly to the previous
section, we consider the map f : R(w,m) — R3(S), which guarantees the desired
brackets for the spin-vector, see Egs. (9.30)—(9.32). Due to the constraints (9.13), all
the trajectories (9.45) lie on SO(3)-invariant surface of R%

T ={w’—a’=0, 22— p>=0, wx =0}. (9.46)

T3 can be identified with the group manifold SO(3). Indeed, given @ and &, consider
3 x 3 matrix with the lines | o, én and alﬂw X T

®
"4 . 9.47)
W X T

=™ =R =

1
of

Equation (9.46) imply RR” = 1 anddetR = 1. Themap T® — SO(3), (w.m) — R
given by Eq. (9.47) determines diffeomorphism of the manifolds.

When (w,7) € T3, we have S = @’x? — (0m)> = o?p>. So, f maps the
manifold T3 onto two-dimensional sphere of the radius a3, f(T?) = S°.

Denote Fg € T? preimage of a point S € S?, Fs = f£~!(S). This set is composed
by all pairs (@, ) which lie on the same plane and thus related by SO(2) rotations
of the plane.

The manifold T3 acquires natural structure of fiber bundle

T = (S, F.f), (9.48)

with base S?, standard fiber I, projection map f and structure group SO(2).
Transformations of he structure group read

®' = wcos¢ + msing, dbw; = ¢,

9.49
n' = —wsing + 7w cos P, S = —duw;. ©49)

By construction, they leave inert points of base, 65; = 0.
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Let (w,m) € T3, w3 # 0. As the local coordinates of T in vicinity of this point,
we can take S| (w, ), S2 (@, ), and ws. These coordinates are agreed upon with the
structure of fibration. That is Sy, S, parameterize the base S? while w; parameterizes
the fiber FF.

Exercise Confirm that the infinitesimal transformations (9.49), together with
a suitably chosen dA and dv;, represent a local symmetry of the extended
action Spy = [dt m@ + mA — H + v3(@, ).

9.2 Canonical Quantization and Pauli Equation

To test our formulation, we show that our spinning particle yields the Pauli equation
in a stationary magnetic field. Consider the action

S = /d;[’";k% it VO \/DwNDw] (9.50)
2 ¢ Vo?
D = @i — ¢ euoB 9.51)
w; = W; zmcéljka)j k- .

The configuration-space variables are x;(f) and w; (7). Here x; represents the spatial
coordinates of the particle with the mass m, charge e and gyromagnetic ratio g. In
our classical model g appeared as a coupling constant of @ with the magnetic field
B = V X A in the last term of Eq. (9.51). At the end, it produces the Pauli term in
the quantum-mechanical Hamiltonian.

Let us construct Hamiltonian formulation for the model. Equations for the
conjugated momenta p; and ; reads

1
p=mx+ A = k= (p—" A), (9.52)
C m C
ND
o= VO @ (9.53)
V2 v/DoNDw

Eq. (9.53) implies the primary constraints @ = 0 and 7> — a‘fz = 0. The complete
Hamiltonian, H = PQ —L+4+v,9,,0=(Xx®),P=(p,nx), reads

1
H=_ (p—° A2 —eto— 5 BS) + v(wr) + v, (7:2 _ ¢ ) (954
2m c 2mc w?
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There are no of higher-stage constraints in the formulation. Besides the constraints,
the Hamiltonian (9.54) implies the dynamical equations

1
Xi= (pi— eAi), pi = e)'CjaiAj + 8¢ S;0;B;, (9.55)
m c c ’ 2mc -
. ge
w; = vw; + 2v1m; + eijkijk,
2mc
. n’ ge
7w = —vm; — 20 L, Wi + €k 7By (9.56)
® 2mc

As a consequence of these equations, the spin-vector S; = €;;w;m; has unambiguous
evolution

§ = zgnfceijksin. 9.57)

This is the classical equation for precession of spin in an external magnetic field.
Due to Eq. (9.13), the coordinates S; obey (9.12). Equations (9.55) imply the second-
order equation for x;

8¢ 5,0.BL. (9.58)
2mce

mi; = ieiikj?in +
Note that in the absence of interaction, the spinning particle does not experience a
self-acceleration. The last term gives non vanishing contribution into the trajectory
in unhomogeneous field and can be used for semiclassical description of Stern-
Gerlach experiment. Since 8> ~ #2, the S-term disappears from Eq. (9.58) at the
classical limit # — 0. Then Eq. (9.58) reproduces the classical motion of a charged
particle subject to the Lorentz force.

Precession of Spin Let us denote — *° B = ), then Eq. (9.57) reads
S =w, xS. (9.59)

The vector S is orthogonal to the plane of w, and S at any instant. Besides,
contracting Eq. (9.59) with S we see that magnitude of spin does not change,
S? = const. In the result, the end point of S rotates around the axis @ p» see Fig. 9.1
on page 368. This motion is called precession of spin-vector. Let S(0) = Sy is
the initial position of spin. We present this vector as a sum of longitudinal and
transversal parts with respect to @,, Sy = So1 + Sgj|. Then for the constant vector
®,, the general solution to Eq. (9.59) is

S = Sgj| + |SoL|(er cos |@p|t + e sin |w)|1). (9.60)
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Fig. 9.1 According to the B~w A
precession equation, ’
S= ®, X 8, the vector S
rotates around the axis @),
with frequency |w,,|

Hence the magnitude of vector w, from Eq. (9.59) is just the frequency of preces-
sion. Equation of trajectory (9.58) in the constant magnetic field is v = ;[w p X V],

that is particle’s velocity precesses with the frequency gwp. For a particle with
classical gyromagnetic ratio g = 2, the two frequences coincide and the angle
between velocity and spin preserves during the evolution. For the anomalous
magnetic moment, g # 2, the frequences are different. The spin precession relative
to the velocity is used in a cyclotron experiments for measurement of anomalous
magnetic moment.

Canonical Quantization We quantize only the physical variables x;, p;, S;. Their
classical brackets are

{Xi,pj} = Sij, {Si,Sj} = Giijk- (961)

As the last two terms in (9.54) does not contributes into equations of motion for the
physical variables, we omit them. This gives the physical Hamiltonian

ge

BS. (9.62)
2mc

H= (- ‘A7-

2m c
The first equation from (9.61) implies the standard quantization of the variables x
and p, we take X; = x;, p; = —ih0;. According to the second equation from (9.61),
we look for the wave-function space which is a representation of the group SO(3).
Finite-dimensional irreducible representations of the group are numbered by spin
s, which is related with the values of Casimir operator as follows: SZ ~ s(s + 1).
Then Eq. (9.12) fixes the spin s = é, and S; must be quantized by S = gai. The
operators act on the space of two-component complex columns ¥ called spinors.
Quantum Hamiltonian is obtained from Eq. (9.62) replacing classical variables by
the operators. This immediately yields the Pauli equation, that is Eq.(9.9) with
E=0.
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9.3 The Strange Quantum Mechanics of Dirac Equation,
or Why We Need a Semiclassical Model of Relativistic
Spin?

Dirac Equation We expect that a semiclassical relativistic model of spin should
be closely related to the Dirac equation normally used to describe the relativistic
spin in quantum theory. The consistent description of relativistic spin is achieved in
quantum electrodynamics, where the Dirac equation is considered as a quantum
field theory equation. But it also admits a quantum-mechanical interpretation
and thus represents an example of relativistic quantum mechanics. This is of
interest on various reasons. In particular, namely being considered as a quantum-
mechanical equation, the Dirac equation gives the correct energy levels of hydrogen
atom. As we saw in Sect.9.1.1, dynamical equations for expectation values of
operators in quantum mechanics should resemble the Hamiltonian equations of the
corresponding classical system. Let us discuss these equations in the Dirac theory.
The Dirac equation is a relativistic-covariant first-order differential equation for the
four-component complex function U0, x') = (U1, ¥, U3, ¥y) called Dirac spinor.
Detailed discussion of the relevant formalism can be found in the classical textbooks
[36, 37] . Here we only present a few comments which are necessary for discussion
of a classical limit of the Dirac equation.

Under the infinitesimal Lorentz transformation dx* = w*,x", the column ¥
transforms as follows:

i
W = —40),“,)/’“’!1/, (9.63)
where
i
Y=ty = 2()/’*)/” 'y, 9.64)

and the 4 x 4 y-matrices can be composed from o-matrices of Pauli

0 10 i 0 o
= , = . . 9.65
v (0 —1) v (—0’ 0 ) (06)

We use the representation with hermitian y° and antihermitian y. The matrices
do not commute with each other, and the basic formula for their permutation is as
follows

"y l+ = yiy" +y"yt = =291 (9.66)
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The Dirac equation in an external four-potential A,
. e A .
[y“(pM - Ay + mc] ¥ =0, where p,=—ihd,, (9.67)
c

turns out to be covariant under the transformation (9.63). Applying the operator
Y (Pu — ¢Au) — me to (9.67), we see that the Dirac equation implies the Klein-
Gordon equation with non-minimal interaction

eh

|:(13M _ iAM)Z — ZCFW)/““ + m2c2i| v =0, (9.68)

where F,, = 0,4, — 0,A,.

For the latter use, let us analyze commutators of the matrices involved. The
commutators of y-matrices can not be presented through themselves, but produce
yH’-matrices as they are written in (9.64). The set y*, y#*¥ forms a closed algebra

¥ vt = =20y, v = 200"y ="y h),
[y = 2i ey — Pyt — ey g Pk, (9.69)
As it was tacitly implied in Eq.(9.63), y*’-matrices obey SO(1,3)-algebra of
Lorentz generators. The complete algebra (9.69) can be identified with the five-

dimensional Lorentz algebra SO(2,3) with generators JA2, A.B = (u,5) =
(0,1,2,3,5), and with the metric '8 = (—, +, +, +, —)

[JAB, JCD] — 2i(7’)ACJBD _ }’)ADJBC _ }’)BC]AD 4 nBDJAC), (970)

assuming y* = JO#, yHv = JH,

Observer-Independent Probability ¥ can be used to construct the adjoint spinor
¥ = ¥Ty0 with the transformation law §¥ = Yy wy,. Then YW is a scalar,
Uyt is a vector® and so on. The vector turns out to be a conserved current, that is

A (Fyrw) =0, 9.71)

on solutions to the Dirac equation. The time-component of the vector is ¥ .
Assuming that symbols x’ represent the position of a particle, the quantity

P(t) = V' diy, (9.72)

SWith the factor — j in (9.63) and with the standard transformation law for a vector, v, = w,"v,,
the function vull_/y“llf is a scalar function.
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is identified with relativistic-invariant probability to find a particle in the infinites-
imal volume d°x at the instant ¢ = ": ). To confirm this interpretation, we first note
that the probability density W' is a positive function. Second, due to the continuity
equation (9.71), integral of the density over all space does not depend on time:
Ly @Px¥T = [ dBxd(Py°W) = — [, Exdi(Fy) = — [, d2i(Py'W)=0
for the solutions ¥ that vanish on spatial infinity. Third, P coincides with the
manifestly Lorentz-invariant quantity

1 _
— 6emﬂ(quw/)dx”dx“dxﬁ, (9.73)

when it computed over equal-time surface x° = const of Minkowski space. This

implies an observer-independence of the probability P: all inertial observers, when
they compute P using their coordinates, will compute the same number (9.73).

Thus the relativistic Dirac equation admits a probabilistic interpretation. How-
ever, it is well known that adopting the quantum-mechanical interpretation, we
arrive at a rather strange and controversial picture. We outline here the results of
analysis on the applicability of quantum-mechanical treatment to the free Dirac
equation made by Schrodinger® in [64]. We multiply the Dirac equation on y°,
representing it in the Schrédinger-like form

A

ihd, W = HY,  H = ca'p; + mc*B, (9.74)

where o = %y’ and B = y° are known as Dirac matrices. Then H may be
interpreted as the Hamiltonian. Passing from the Schrodinger to Heisenberg picture,
the time derivative of an operator a is iha = [a, H], and for the expectation values
of basic operators of the Dirac theory we obtain the equations

X = ca, pi=0,

iha; = 2(cp; — Ha), ihB = —2ca;pip + mc?. (9.75)

Some properties of the equations are in order.

1. The wrong balance of the number of degrees of freedom. The first equation
in (9.75) implies that the operator ca’ represents the velocity of the particle. Then
physical meaning of the operator p’ becomes rather obscure in the classical limit.

2. Zitterbewegung. The Eq. (9.75) can be solved, with the result for x'(¢) being x' =
a' + dp't + c'exp(—2"t). The first and second terms are expected and describe
a motion along the straight line. The last term on the r.h.s. of this equation states

SFor an electron interacting with electromagnetic field this analysis has been repeated by Feynman
in [65].
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that the free electron experiences rapid oscillations with higher frequency 2;:1 ~

2mc?

3. Vehlocity of an electron. Since the velocity operator ca’ has eigenvalues +c, we
conclude that a measurement of a component of the velocity of a free electron is
certain to lead to the result £c.

4. Operator of relativistic spin. We expect that in the Dirac theory can be con-
structed the relativistic generalization of the spin operator (9.1). The question on
the definition of a conventional spin operator has been raised a long time ago
[66, 67] and is under discussion up to date.

Many people noticed that in the Dirac theory it is possible to construct another
operators that obey to a reasonable equations [58]. Presenting these equations,
Feynman accompanied them with the following comment (see p. 48 in [65]): “The
following relations may be verified as true but their meaning is not yet completely
understood, if at all: ...”.

In view of all this, it seem desirable to construct a semiclassical model of spin
that will be as close as possible to the Dirac equation. By this we mean the model
which, being quantized, yields the Dirac equation. In the following sections, we
will see how the vector model clarifies the issues discussed above. In a few words,
this can be resumed as follows. As we already saw above, the vector model is
necessarily invariant under the spin-plane local symmetry which determines its
physical sector formed by observables. We show that observables of the vector
model have an expected behavior on both classical and quantum level. Comparing
quantum mechanics of the vector model with that of Dirac equation in Sect.9.12.4,
we obtain the rules for computation of probabilities and mean values of the vector
model observables using the Dirac equation. The operators (9.382) and (9.385),
which represent observables of spinning particle in the Dirac theory, turn out to be
different from ingenuous operators written in (9.75).

The time evolution implied by the rules (9.387) turn out to be different from the
ingenuous prescription (9.75).

9.4 Spin-Tensor of Frenkel and Lorentz Covariant Form
of Spin Fiber Bundle T*

To construct the relativistic spinning particle, we need a Lorentz-covariant descrip-
tion of the spin fiber bundle (9.166). We remind that our construction involves
basic and target spaces as well as the map f : R®w,m) — R3S), see
Egs. (9.30)—(9.32). We embed this SO(3)-covariant construction into its suitably
chosen SO(1,3)-covariant extension. Let us start from the three-vector w. We
assume that relativistic spin can be described by a vector w* of Minkowski space
such that w* = (0, @) for the particle at rest in the laboratory frame. This condition
expresses the Correspondence Principle: relativistic physics should approximate to
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the Newton physics in the limit of small velocities. To represent this condition in
a covariant form in an arbitrary frame, we assume that in our model there exists
a four-vector p,, which for the particle at rest has the components (po,0). For
the case of a free particle, the natural candidate is a vector proportional to the
particle’s four-velocity. For the particle in external field, the form of this vector
is dictated by the structure of interaction, see below. With this p*, the Lorentz-
invariant statement pw = 0 is equivalent to the condition that w* = (0, @) for the
particle at rest. Following the same lines, we also assume the condition pr = 0 for
the conjugated momentum # for w*. Hence we replace the basic space R®(w, )
by direct product of two Minkowski spaces with the following natural action of the
Lorentz group on it:

50(1’3):(:)_’(2;)=(32)(:)‘ (9.76)

The relativistic generalization of the surface (9.32) is given by the following
SO(1, 3)-invariant surface of the phase space Ml x M

T‘*:{wn:o, ”2—5220» po =0, pn:()}. 9.77)
Below we denote these constraints 75, Ts, T3 and T4. The constraints pw = 0 and
pr = 0 are of second class, so we expect § —2 x 2 — 2 = 2 physical degrees of
freedom in the spin-sector.

It should be noted that w* and ¥ turn out to be space-like vectors. Indeed, in the
frame where p* = (p°, 0) the constraints pw = pr = 0 imply @° = 7° = 0. This
implies w? > 0 and 72 > 0. Then from the constraint 72 — (;’2 = 0 we conclude
w?> > 0and 2 > 0.

Let us consider the target space. To generalize the map S' = €’ w/n* to the case
of four-dimensional quantities, we rewrite it in an equivalent form, using the known
isomorphism among three-vectors and antisymmetric 3 x 3-matrices

S = ieifksf", then S¥ = 2€¥*s. (9.78)

Then
St = e*@/nk, isequivalentto S§Y = 2(w'n/ — /7). (9.79)
The last equality has an evident generalization to the four-dimensional case: S** =

2(whm” — w'm"). Hence the target space R3(S) should be extended to the six-
dimensional space R®(D, S) of antisymmetric 4 x 4 matrices. We present them as
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follows:

0 —Dy —D, —Ds
Dy 0 28§ =25,

SY(D,S) = , (9.80)
D, =253 0 2§,
D; 25, =28, O
or, equivalently
S = (§° = DI, ST = 26Uk gy, (9.81)
Lorentz group naturally acts on this space
§0(1,3): s**(D,S) — S*(D',S)= A"aA",gS“ﬂ(D,S). (9.82)

This equation determines transformation rules of the columns D and S.

Exercise Confirm thatD and S transform as three-vectors under the subgroup
of rotations of the Lorentz group.

The embedding (9.81) of three-dimensional spin-vector S into the four-dimensional
spin-tensor has been suggested by Frenkel [51]. So we call S*V the Frenkel spin-
tensor. The vector D is called dipole electric moment of the particle [59].

Now we are ready to define the covariant version of the map (9.31)

£ M(o") x M(z") = RS(S*Y); (0, 1") = S = 2(whn” —w"7H).
(9.83)

It has rank equals 5, and maps a point of Ml x M to a pair of orthogonal
three-dimensional vectors, DS = 0. By construction, f is compatible with the
transformations (9.76) and (9.82) of SO(1, 3): if S**(D,S) = 2(0'* 7"’ — @’ 7'*),
then S*’(D, S) = 2(w*n” — w'7tH).

If M x M is considered as a symplectic space with canonical Poisson bracket,
{wH", "} = ™, the map f induces SO(1, 3)-Lie-Poisson bracket on R®

(S (w, ), 8% (w, )} = 2" SYE — b gve — pragib 4 pvb grey, (9.84)
Consider the image S*(w, ) of a point of the surface (9.77). Using the identity
SHS,, = 8(w?n? — (wm)?) together with the Eq.(9.77), we obtain five covariant

equations which determine the spin-surface S? in an arbitrary Lorentz frame

SH'S,, = 8a = 6h?, (9.85)
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RS (w”', ﬂ_u) ]R6 (Jl“’)

> JH = 2(whn” — w”rh)

T4 = {Tu = 0} = (827 va)

N J

Fig. 9.2 Fiber bundle T* associated with relativistic spin

S*p, = 0. (9.86)

As ($*'p,)p, = 0, we have only four independent equations imposed on six
variables, therefore the spin-surface has dimension 2, as it should be. Denote
Fs € T* preimage of a point S’ of the base, Fs = f~!(S*"), that is the
standard fiber, see Fig. 9.2 on page 375. Its points are related by the structure-group
transformations (9.34) and (9.35).

Consider the rest frame of the vector p*, that is p* = (p°, 0) in this frame. The
surface (9.77) acquires the form

or =0, - % =0 2°=0., =0, (9.87)

and can be identified with the non relativistic spin-surface (9.33). Being restricted
to this surface, the map (9.83) reads

00 0 0
0 0 25 —25
S|y = . s= . 9.88
I =10_2s, 0 25 @ xn (0.88)
0 25, —28, 0

Hence in the rest frame the dipole electric moment vanishes, while the spatial part
of spin-tensor coincides with the non-relativistic spin. We conclude that SO(3)-
construction (9.30)—(9.166) is embedded into SO(1, 3)-covariant scheme.

Concerning the relativistic extension of SO(3) spin fiber bundle of Sect.9.1.3,
see [68].
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9.5 Four-Dimensional Spin-Vector, Pauli-Lubanski Vector
and Bargmann-Michel-Telegdi Vector

On the pure algebraic grounds, spin-tensor of Frenkel turns out to be equivalent to
a four-dimensional vector. So the latter could also be used for the description of
relativistic spin. Here we discuss the relevant formalism.

Levi-Civita symbol with €12 = 1 obeys the identities

6‘”’"‘16‘,17“1, = —2(8"M8d‘, — SCV(SdM), (9.89)
eﬂabcemjk — _[Sai(gbjack _ Shkgcj) _ Saj((ghigck _ Sbkgci) +
8k(8:8 — 8",8)]. (9.90)
Given an antisymmetric matrix J*¥ = —J"* and a vector p*, we define the vectors
st = ! e’““ﬂp\,Jalg, then s*p, =0; (9.91)
4y/—p?
ot = J*p,, then P¥p, =0. (9.92)

When p and J represent generators of the Poincaré group, the vector (9.91) is called
Pauli-Lubanski vector. It turns out to be useful for the classification of irreducible
representations of the Poincaré group [49, 69, 70].

The tensor J*¥ and its dual, *J*’ = ;M”“”J‘,I,, can be decomposed on these
vectors as follows:

Jm — (pﬂpv _ d)vpﬂ _ 2 elwab

aSh, (993)
p V-r

gV _ pVgh D
by, =470 TP = P (9.94)

N

To prove (9.93), we contract (9.90) with p,p'J*. Eq.(9.94) follows from (9.93)
contracted with €4,,,. The definitions imply the identity relating the square of s
with a “square” of J*”

1 1
shs, = 8J"”J,w =4 J*p,)%. (9.95)

Frenkel spin-tensor obeys S*'p, = 0, that is @# = 0, and can be used to construct
four-vector of spin (below we also call it Pauli-Lubanski vector)

st (r) = e“"“ﬁvaaﬂ. (9.96)

1
4y/—p?
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In the free theory p** is independent on S*", so this equation is linear on S*” and can
be inverted. According to Eq. (9.93) we have

2
S = — e pysg, (9.97)
2
V-
that is the two quantities are mathematically equivalent, and we could work with
s* instead of S*¥. The Eq. (9.95) implies proportionality of their magnitudes. In the
interacting theory p* contains S*¥, so (9.96) becomes a non linear equation.
Let us compare spatial components of s#* with the non-relativistic spin-vector S.
In the rest system of p#, p* = (p°,0), \/—p? = |p°], we have s° = 0 and
i PO ijk PO

Sy =
1P°

= € St (9.98)
4po

s
that is the two vectors coincide. This explains our normalization for s, Eq. (9.91).
Under the Lorentz boost, S transforms as the spatial part of a tensor whereas s*
transforms as a four-vector. So the two spins are different in all Lorentz frames

except the rest frame. The relation between them in an arbitrary frame follows from
Eq.(9.97)

i P (”_ pipj) :
S Jp? 3jj ()2 s (9.99)

A four-dimensional vector s}, - with the property us), = 0, where u,, represents
a four-velocity of the particle, has been successively used by Bargmann Michel
and Telegdi to analyze the spin precession in uniform magnetic field, see [73] for
details. In our vector model, even in the case of interaction, the condition ps = 0
implies us = 0. So we expect that our equations of motion for s* should represent a
generalization of the Bargmann-Michel-Telegdi equations to the case of an arbitrary
electromagnetic field.

In summary, the relativistic spin can be described by the Frenkel spin-
tensor (9.80) composed by the dipole electric moment D and the spin S. In our
vector model the Frenkel tensor is a composite quantity, see (9.83). In the rest frame
of the vector p* we have D = 0, while S coincides with the vector of non-relativistic
spin. Intuitively, the Frenkel tensor shows how the non relativistic spin looks like in
an arbitrary Lorentz frame.

9.6 Search for the Lagrangian of Relativistic Spinning
Particle

9.6.1 Variational Problem for Prescribed Dirac’s Constraints

In the previous section we have discussed only the spin-sector of a spinning
particle. To construct a complete theory, we add the position x*(t) and its
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conjugated momentum p*(t) taken in an arbitrary parametrization t. This implies
that we deal with the reparametrization-invariant theory. So besides the spin-sector
constraints (9.77) we expect also the mass-shell condition T; = p? + (mc)?> = 0.
Let us look for the Hamiltonian action which could produce these constraints.
According to general theory, it has the form [ dt px+md—(Ho+ A;T;) where T; are
the primary constraints of the theory. We expect Hy = 0 due to the reparametrization
invariance. As the suitable primary constraints, let us take p*> + (mc)? + n2 —

29
T, T5 and T4. Thus we consider the Hamiltonian variational problem ¢
. . A, 2 2 4
Sy = drpx+7ra)—[2 (p"+ (me)" +n _w2)+
AM(wm) + Az(pw) + Ay(pr)). (9.100)

Due to the Poisson bracket {75, Ts} = 2T, in this formulation 75 = 0 appears as
the secondary constraint. To arrive at the Lagrangian action, we could follow the
lines of Sect.2.1.4. Excluding the conjugate momenta from Sy according to their
equations of motion, we obtain an action with the auxiliary variables A;. Excluding
them, one after another, we obtain various equivalent forms of the Lagrangian
action. To simplify these computations, we proceed as follows. First, we note that
the constraints wr = 0 and pw = 0 always appear from the Lagrangian which
involves the projector N, that is we use Nx and No instead of x and w. So we set
Ay = A3 = 0 in Eq.(9.100). Second, we present the remaining terms in (9.100) in
the matrix form

X A A
s=[ar o (3) =5 wm (LAY (2) =75 o= 5],

(9.101)

where A = i‘l‘ . The matrix appeared in (9.101) is invertible, the inverse matrix is

1 n —An
. 102
1—12(—?“7 n ) 6102

Equation (9.101) is the Hamiltonian variational problem of the form pg — 12‘ (pAp+
M?), the latter follows from the Lagrangian —M \/ —gA~1g, see Sect.8.7.2. This

allows us to exclude the variable A;. As it was combined above, we then replace x,
o by Nx, Nw and obtain

n —An :
S = —/dr\/(mc)Z— “2 —(Ni,No) | = 150 (N’f) = (9.103)
@ 1532 12 ) \No

- / dt \/ (me)? — a‘j‘z V(1= 2271 [—iNi — &N + 20iNG).  (9.104)
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To exclude the remaining auxiliary variable A, we compute variation of (9.104) with
respect to A, this gives the equation

(AN@)A? — (iNx + ON®)A + (iNo) = 0, (9.105)
which determines A

_ (&Ni + &N@) £+ /(iNi + &NG)* — 4(iN)?

A 9.106
* 2(iNa) ©.100
We substitute A4 into (9.104) and use A A_ = 1. Then (9.104) turns into the
following action
1 o
S = —\/Z/dr\/mzcz— W2 X

\/ —iNi — ®N& + /[iNx + ONo|2 — 4GND)2. (9.107)

The matrix Ny, is the projector on the plane orthogonal to w”

Wy Wy oy v v
Ny =nupw— ", . then NyN* =N,", Ny =0. (9.108)

1)

In the spinless limit, « = 0 and w* = 0, the functional (9.107) reduces to

the expected Lagrangian of spinless particle, —mc\/ —x*x,. As we know from
Sect. 8.7.2, the latter can be written in equivalent form using the auxiliary variable
A(t) as follows: 2&53 - ;mzcz. Similarly to this, (9.107) can be presented in the
equivalent form

1
S = / dr o [xNx + ®N& — /[fNx + &No]> — 4(5cNa'))2] -
1

Mot — ©1. (9.109)
2 ?

In summary, besides the “minimal” Lagrangian (9.107) we have obtained two its
equivalent formulations given by Egs. (9.104) and (9.109). The Lagrangians provide
the appearance of equation pr = 0 as the primary constraint. In turn, this seems
crucial to introduce an interaction consistent with the constraints.

9.6.2 Interaction and the Problem of Covariant Formalism

In the formulation (9.107) without auxiliary variables, our model admits the
minimal interaction with electromagnetic field and with gravity. This does not
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spoil the number and algebraic structure of constraints presented in the free theory.
Interaction with an electromagnetic potential is achieved by adding the term

4 .
Sint = / dTA i (9.110)
C

The minimal interaction with gravity is achieved [80, 81] by covariantization
of (9.107). We replace 1,, — g.v, and usual derivative by the covariant one,

o' — Vo' = ok + Fa’gx“wﬂ. (9.111)

Velocities x*, Vw* and projector N, transform like contravariant vectors and
covariant tensor, so the action is manifestly invariant under the general-coordinate
transformations.

To introduce an interaction of spin with electromagnetic field, we use [82] the
formulation (9.109) with the auxiliary variable A;. We add to the action (9.109) the
term (9.110) and replace

o = Do’ =t - T, 9.112)
C

We have denoted j1 = §, where g is gyromagnetic ratio, this agreement simplifies
many of equations below. So we restore g only in the final answers. A; in
this expression provides the homogeneous transformation law of Dw under the
reparametrizations, D@’ = 5’:, D.w.

The interaction of spin with gravity through the gravimagnetic moment will be
achieved in the formulation (9.104), see below.

Concerning the interaction of spin with electromagnetic field, let us briefly
discuss an issue with nearly a century of history, that is not completely clarified
so far. While the complete relativistic Hamiltonian of the covariant formulation
will be obtained below, its linear on spin part can be predicted from a symmetry
considerations. Indeed, the only Lorentz and U(1)-invariant term which involves F
and S is F,,,S*". Using the covariant condition (9.86) we obtain

1
C Fast = ¢ [ S[pr]—BS]. (9.113)
C mc

Hrelv in ™ T
r 4m mc

This can be compared with spin part of the Hamiltonian (9.9) with g = 2

e

1
mc | 2mc
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They differ by the famous and troublesome factor’ of ; The same conclusion
follows from comparison of equations of motion of the two formulations [60]. As
we saw in Sect. 9.1.1, the expression (9.114) has very strong experimental support.
The question, why a covariant formalism does not lead directly to the correct result,
has been raised in 1926 [51], and remain under discussion to date [60].

We show in Sect. 9.8 that the vector model provides an answer to this question
on a pure classical ground, without appeal to the Dirac equation. In a few words it
can be described as follows. The relativistic vector model involves a second-class
constraints (75 and T4 of Eq. (9.77)), which we take into account by passing from the
Poisson to Dirac bracket. So in the covariant formulation we arrive at the relativistic
Hamiltonian (9.113) accompanied by non canonical classical brackets. To construct
the quantum mechanics, we could work with the relativistic Hamiltonian, but
in this case we need to find quantum realization of the non canonical brackets.
Equivalently, we can find the variables with canonical brackets and quantize them
in the standard way. The relativistic Hamiltonian (9.113), when written in the
canonical variables, just gives (9.114).

9.6.3 Particle with the Fundamental Length Scale

Our basic model yields the fixed value of spin, as it should be for an elementary
particle. Let us present the modification which leads to the theory with unfixed
spin, and, similarly to Hanson-Regge approach [71], with a mass-spin trajectory
constraint. Consider the following Lagrangian

me | .. _oON@ . _&Nel (iNo)?
L:—\/z —iNi — P " —i—\/[xNx—}-lz 2 } —4p e o G119

where [ is a parameter with the dimension of length. The Dirac procedure yields the
Hamiltonian

Ao, 2., W
H= , \P + mc” + P + A(wm) + A3(pw) + Aa(prr), (9.116)

which turns out to be combination of the first-class constraints p?+m?c?+ ”j;” P = 0,
wm = 0 and the second-class constraints pw = 0, pr = 0. The Dirac procedure
stops on the first stage, that is there are no of secondary constraints. As compared
with (9.107), the first-class constraint 7% — o = 0 does not appear in the present

7In discussing this factor often refer to Thomas precession [52]. We will not touch this delicate and
controversial issue [72, 73] because of the covariant formalism automatically accounts the Thomas
precession [15].
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model. Due to this, square of spin is not fixed, $> = 8(w’n? — (w7)?) ~ 8w’m>.
Using this equality, the mass-shell constraint acquires the form similar to the string
theory

1 2
oS =0 (9.117)

P+ m2c +
It has a clear meaning: the energy of the particle grows with its spin. The model
has four physical degrees of freedom in the spin-sector. As the independent gauge-
invariant degrees of freedom, we can take three components S of the spin-tensor

together with any one product of conjugate coordinates, for instance, w7°.

9.6.4 Classification of Vector Models

While we concentrate on the model specified by Eq. (9.77), it is instructive to discuss
other sets of constraints that could be used for construction of a spinning particle.
The Eq. (9.95) relating the Poincaré and Lorentz spins

1 1
SMS/L = SSMVS;W - 4[72 (SWPu)Z =
1
w*n? — (on)* - 2 [0*(p7)* + 7 (pw)® = 2(po)(pr)(@n)], (9.118)

turns out to be useful in what follows.

1. Our basic model (9.77) with two degrees of freedom implies S*'p, = 0. Then
Eq.(9.118) implies proportionality of the two spins, 8s*> = S§2, whereas their
magnitudes are fixed due to the constraints 7, and 7s. The variables x*, p* and
S*¥ have vanishing brackets with first-class constraints, so they are candidates
for observables.

2. The model with the constraints @* = «” and 7> = B2 instead of 7> = % is
essentially equivalent to the basic model.

3. Let us replace T3 = pw = 0 by T} = pw — V@? = 0 in the set (9.77). These
constraints appear in the model of rigid particle [63], when it is considered using
the formalism described in Sect.2.10.1. T4 and T5 can be taken as the second-
class constraints, while 7, and Tg form the first-class subset. As a consequence,
the model has two degrees of freedom. The Poincaré and Lorentz spins are
proportional and have fixed magnitudes. The variables x* and S*' have non
vanishing brackets with first-class constraints. After canonical quantization, the
constraint 75 = 0 turns into the Dirac equation. Hence this semiclassical model
can be used to study the relation among classical observables and operators of
the Dirac theory.
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4. Hanson and Regge developed their model of a relativistic top [71] on the base of
antisymmetric tensor S*¥ without making of any special assumptions on its inner
structure. The tensor is subject to first-class constraints S*'p, = 0. This implies
phase space with 2x6—2x3 = 6 degrees of freedom as well as proportional spins
with unfixed magnitude. A similar vector model could be constructed starting
from the Hamiltonian action

A
Sy = / dt px + o — 21 P> + m* + f(S)] — 15" py,  (9.119)

where SV = 2(w*n” — w”n*). The variables x** and S*¥ are not observables in
this model.

5. To avoid the unobservable character of original variables in the model (9.119), we
could replace $*”p, = 0 by the pair of second-class constraints pow = pr = 0.
They provide $*”p, = 0 and 8 — 2 = 6 degrees of freedom.

6. Adding the first-class constraint wmr = 0 to the model of Item 5 we arrive at the
Lagrangian (9.115) with four degrees of freedom.

7. There are models based on the light-like vector w* [74]. Consider the first-class
constraints

w? = 0, or =0, 712(pa))2 = const, then s> = const, §? = 0. (9.120)

This implies two degrees of freedom. The Poincaré and Lorentz spins, while are
fixed, do not correlate one with another. The variables x*, $*¥ and s* are not
observable quantities. We note also that S*'p, # 0, this complicates the analysis
of non relativistic limit.

8. Let us replace 72(pw)? = const by v/72(pw) = const in the set (9.120).
Similarly to Item 3, this constraint may be classical analog of the Dirac equation.
This model still has not been studied.

A common for the models 5-8 is the problem whether they admit an interaction
with external fields. Concerning the Hanson-Regge model, in their work [71] they
analyzed whether the spin-tensor interacts directly with an electromagnetic field,
and concluded on impossibility to construct the interaction in a closed form. In our
vector model an electromagnetic field interacts with the part w* of the spin-tensor.

9.7 Interaction with Electromagnetic Field

In this rather technical section we demonstrate that our variational problem yields
a model of spinning particle with expected properties. In particular, our equations
of motion generalize an approximate equations of Frenkel and Bargmann-Michel-
Telegdi to the case of an arbitrary electromagnetic field.
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9.7.1 Manifestly Covariant Hamiltonian Formulation

As we saw in previous section, interaction with an arbitrary electromagnetic field
can be described within the action

1
S = / dr [xzvx + DwNDw — \/ [xNi + DwoNDw]* — 4(5cNDa))2} -
A ,, « e .
(m°cc— )+ Ax, 9.121)
2 w? c
where the term

Dot = ot — A HFrvg,, 9.122)
Cc

accounts the spin-field interaction.

Let us construct Hamiltonian formulation of the model. Conjugate momenta for
x*, w* and A are denoted as p*, 7" and p,. We use also the canonical momentum
Bo= pht — €A 0 i i - i
P =p cAl. Contrary to p*, the canonical momentum is U(1) gauge-invariant

quantity.

Since py = %=
P 2

Expressions for the remaining momenta, p* = aiL and n# =
mn

0, the momentum p;, represents the primary constraint, py, = 0.

JL

an > Can be written in
i

the form
PH = ! (Nx* — K*)
21 ’

K" = T2 [(iNx + DwNDw) (Ni)" — 2GNDw)(NDw)*],  (9.123)

1
"= (NDo" —R"
T " (NDw ),
RM=T2 [&NXx + DoNDw) (NDw)"* — 2(xNDw) (Nx)"], (9.124)

where T = [iNx + DoNDw]*> — 4(iNDw)?2. The functions K* and R* obey the
following remarkable identities

K?> = iNx, R?>=DwNDw, KR = —iNDw,
iR+ DwK =0, iK+DwR=T:. (9.125)
Due to Eq. (9.108), contractions of the momenta with w* vanish, that is we have the

primary constraints wr = 0 and Pw = 0. One more primary constraint, P = 0,
is implied by (9.125).
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Hence we deal with a theory with four primary constraints. Hamiltonian is
obtained excluding velocities from the expression

H=pi+nrmow—L+ AT, (9.126)
where A; are the Lagrangian multipliers for the primary constraints 7;. To obtain its
manifest form, we note the equalities P> = 212 [kNx — xK], n% = 212 [DoNDw —

DwR], and Px + nDw = 2L;, where L; is the first line in Eq.(9.121). Then,
using (9.125) we obtain

2
(P> +n?) = L L (9.127)
Further, using Eq. (9.125) we have
. . . e . e
px+rnw=Pi+ Ax+nDw+ 1A (nFw)=

& C

2L, + Sai = 2 H(Fs), (9.128)
c 4c

where appeared the Frenkel spin-tensor S*V. Using (9.128) and (9.127) in (9.126),
the Hamiltonian reads

A e 22 2 @
H = 5 (73 — 2C(FS)—i—mc + _w2)+
A(wm) + A3(Pw) + A4(Pr) + Aop;. (9.129)

The fundamental Poisson brackets {x*,p"} = n*" and {w", 7"} = n"” imply

PV = g, (PP = PR (9.130)

C
(s™, 898y = 2(pfesvP — prBsve — pragrb 4 B gHey, (9.131)
{59 wh} = 2 Pl {§%P iy = 2o gl (9.132)

According to Eq.(9.131), the spin-tensor is generator of Lorentz algebra SO(1, 3).
As w1, w? and 72 are Lorentz-invariants, they have vanishing Poisson brackets with
SV To reveal the higher-stage constraints we write the equations 7; = {7}, H} = 0.
The Dirac procedure stops on third stage with the following equations

m=0 = lepz—eM(FS)—i—mzcz—i—nz—a =0
2c w?
= AC+ D=0, (9.133)
Th=(on)=0 = Ts=n’-— " =0, (9.134)
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2Ac

Ty=Pw)=0 = Ag=—""CaC, (9.135)
e
21
Ty=Pr)=0 = Jy= " aD. (9.136)
e
We have denoted
c= D Py + P i Fs).
c 4c
—1
p=_“=Dpp)y Z“ (2 0)(FS), (9.137)
C C

and the function a is written in (9.139). The last equation from (9.133) turns out to
be a consequence of (9.135) and (9.136) and can be omitted. Due to the secondary
constraint 75 appeared in (9.134) we can replace the constraint 7 on the equivalent
one

T =P - 62“ (FS) + m’c® = 0, (9.138)
C

This can be compared with Eq. (9.68). The Dirac procedure revealed two secondary
constraints written in Eqs. (9.138) and (9.134), and fixed the Lagrangian multipliers
A3 and A4, the latter can be substituted into the Hamiltonian. The multipliers Ag, A,
and the auxiliary variable A have not been determined. H vanishes on the complete
constraint surface, as it should be in a reparametrization-invariant theory.

We summarized the algebra of Poisson brackets between constraints in the
Table 9.1. The constraints p;, 71, T» and T5 form the first-class subset, while
Ts and T4 represent a pair of second class. The presence of two primary first-

Table 9.1 Algebra of constraints

T, Ts T, T3 Ty
T, = P>— 0 0 0 -2C —2D
LO(FS) + m*c?
Ts=n%— 2 0 0 —2Ts~0  —2Ty~0 K, T3~0
T, = on 0 275 ~ 0 0 —T5 =~ 0 T, ~ 0
T3 = Pw 2C 2Ty = 0 T =0 0 T, + Zi'a

2ca

Ty = Prm 2D —SpTs~0  —Ty=0 —T1— ¢ 0

2ca

Q
I

2ca
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class constraints p,; and 7 is in correspondence with the fact that two lagrangian
multipliers remain undetermined within the Dirac procedure.

Below we will use the following notation. In the equation which relates velocity
and canonical momentum will appear the matrix 7

—2e

T = " — (s — 1)a(SF)*", - .
7 = (1 = Da(SF) CT 4m2ed — e(2u + 1)(SF)

(9.139)

Using the identity S** FogSP” = —1 (S Fop)S™" we find the inverse matrix

—2e

T = — Db(SF)*™, b= :
7+ (n = DE(SE) 4m2c3 — 3epu(SF)

(9.140)

The two functions are related as follows: b = 2a[2 + (i — 1)a(SF)]~". The vector
Z" is defined by

b b
ZF = " SM(0,F.p)S = | §"70,(FS). (9.141)
4c 4c

This vanishes for homogeneous field, dF = 0. The evolution of the basic variables
obtained according the standard rule z = {z, H}. The equations read

nea

#o=arn Dtz = ¢ Fi" + /\liea“(FS), (9.142)
C C

2caC
ot = AH Faoy — 27T P kAot
C e

2caD o

it = AP (Fry 2" pr W — A5, (9.143)
c e (w?)2

Neither constraints nor equations of motion do not determine the variables A and
Ay, that is the interacting theory preserves both reparametrization and spin-plane
symmetries of the free theory. As a consequence, all the basic variables have
ambiguous evolution. x* and P* have one-parametric ambiguity due to A while
o and 7w have two-parametric ambiguity due to A and A,. The variables with
ambiguous dynamics do not represent observable quantities, so we need to search
for the variables that can be candidates for observables. We note that (9.143) imply
an equation for $*¥ which does not contain A,

v — M (FS)W) 4 2pleg) (9.144)
c

This proves that the spin-tensor is invariant under local spin-plane symmetry. The
remaining ambiguity due to A contained in Eqgs. (9.142) and (9.144) is related with
reparametrization invariance and disappears when we work with physical dynamical
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variables x'(¢). So we will work with x#, P* and S*¥. We remind that our constraints
imply the algebraic restrictions on spin-tensor

SWP. =0,  SMS,, = 8. (9.145)

Equations (9.142) and (9.144), together with (9.145), form a closed system which
determines evolution of a spinning particle.

The quantities x*, P* and S*", being invariant under spin-plane symmetry,
have vanishing brackets with the corresponding first-class constraints 7, and 7.
So, obtaining equations for these quantities, we can omit the corresponding terms
in the Hamiltonian (9.129). Further, we can construct the Dirac bracket for the
second-class pair 73 and T,. Since the Dirac bracket of a second-class constraint
with any quantity vanishes, we can now omit 73 and 7, from (9.129). Then the
relativistic Hamiltonian acquires an expected form (compare it with the square of
Dirac equation (9.68))

_l IR 22
H= (73 - 2C(FS)+mc). (9.146)

The Eqgs. (9.142) and (9.144) follow from this H with use of Dirac bracket, 7 =
{z, H}pp. The Dirac brackets in physical-time parametrization will be computed in
Sect.9.7.3. The brackets in arbitrary parametrization can be found in [75].

We could also use the constraint S*'P, = 0 to represent S” through S¥, then

H="(p+
2

21

1
. [POS[p x E] — BS} + mzcz) . (9.147)

9.7.2 Lagrangian Equations of Motion and Comparison
with Approximate Equations of Frenkel and
Bargmann-Michel-Telegdi

Lagrangian Equations We can exclude the momenta P and the auxiliary variable
A from the equations of motion. This yields second-order equation for the particle’s
position. To achieve this, we solve the first equation from (9.142) with respect to
P and use the identities (SFZ)* = —é(SF)Z", T, 7" = ZZ", this gives P* =
iT“U)'c” — jcZ*. Then the condition S*VP, = 0 reads i(ST)'c)“ = pc(SZ)*. Using
this equality, P* can be presented as P> = |, (¥Gx) + uc?Z?, where appeared the
symmetric matrix

Guv = (T"T) o = [ + b(n — 1)(SF + FS) + b*(u — 1)*FSSF] . (9.148)

The matrix G is composed from the Minkowski metric 7,, plus spin and field-
dependent contribution, G, = 7. + £, (S). So we call G the effective metric
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induced along the world-line by interaction of spin with electromagnetic field. We
substitute P? into the constraint (9.138), this gives A

.
_VHGE 563(FS)—MZZZ. (9.149)
C

r

A

m,c

This shows that the presence of A in Eq. (9.122) implies highly non-linear interaction
of spinning particle with electromagnetic field. The final expression of canonical
momentum through velocity is

myc

SH — D)b(SF)*,]5" — ueZ™. 9.150
\/—xG}c[ + (= Db(SF)*,] 5" — pc ( )

Using (9.149) and (9.150), we exclude P* and A from the Hamiltonian equa-
tions (9.142), (9.144) and (9.145). This gives closed system of Lagrangian equations
for the set x, S. It is convenient to work with reparametrization-invariant derivative

P =

1 d
D = . (9.151)
V—iGx dt
Then we have the dynamical equations
~ e ne
D[m (ITDx)"| = _ (FDx)" + 0" (SF) + uDZzZ", (9.152)
c? 4m,c3
ps* = M (FIs, — 2bm,c(u — DDA (SFD) + 2peDx 27,
myc
(9.153)
the Lagrangian counterpart of the condition S*’P, = 0,
_iGi
s |:x + (1 — Db(SF¥), — v/ xzv] —o, (9.154)
m,
as well as the value-of-spin condition, S*"S,,, = 8a.
In the absence of interaction we obtain an expected dynamics
d x* .
Y o_0, dv=0, $7, =0 (9.155)
dt /52

The trajectory is a straight line, while S*¥ is a constant tensor.

Discussion Equations (9.152) and (9.154) show how spin modifies the Lorentz-
force equation (1.3). Let us discuss qualitatively the corresponding contributions.
Canonical momentum P#* = p# — °A* of a spinless particle is proportional to its
velocity, P#* = «/’"_")_62 x*. Interaction of spin with electromagnetic field modifies

the relation between the two quantities, see Eq. (9.150). Contribution of anomalous
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magnetic moment i # 1 to the difference between x* and P# is proportional to
%~ % while the term with a gradient of field is proportional to ﬁ ~ ZZ . The
interaction also modifies the constraints. In particular, the condition $*'x, = 0
of a free theory turns into S**P, = 0 with P, # x,. This has an important
consequence. If we adopt the standard special relativity notions of time and distance,
the components S” vanish in the frame P* = (P°, 6) instead of the rest frame.
Hence our model predicts small dipole electric moment of the particle immersed in
an external field.

Other important point is the emergence of an effective metric (9.148) for the
particle in flat space. As we saw above, the incorporation of the constraints (9.145)
into a variational problem, as well as the search for an interaction consistent with
them turn out to be rather non trivial tasks, and the action (9.121) is probably the
only solution of the problem. So, the appearance of effective metric (9.148) in
equations of motion seems to be unavoidable in a systematically constructed model
of spinning particle. An important consequences will be discussed in Sect. 9.8.

Summing up, in general case the Lorentz force is modified due to the presence of
(time-dependent) radiation mass m, (9.149), the tetrad field T, the effective metric
G and due to two extra-terms on right hand side of (9.152).

Consider the “classical” value of magnetic moment &t = 1. Then T = nand G =
n. The Lorentz force is modified due to the presence of time-dependent radiation
mass m,, and two extra-terms on right hand side of (9.152).

Homogeneous Field The structure of our equations simplifies significantly for the
homogeneous field d,F*" = 0, then Z* = 0. Contraction of (9.154) with F,,
yields (SF) = 0, that is S¥VF,,,, turns out to be the conserved quantity. This implies
m, = @ = b = 0. Hence the Lorentz force is modified due to the presence of time-
independent radiation mass m,, the tetrad field T and the effective metric G. The
Eqgs. (9.152) and (9.154) read

d i ¢ (TF)" — (TTi)" (9.156)
= X — X)), .
dt /—xGx  m,c?
. _iG Qe —1) .,
o = Y s ”z/c(f‘ o ) 3l (s, 9.157)
m,c —xGx

They simplify more in the parametrization which implies
Guil's® = —c*. (9.158)

Since Gkt = x> +0(S?), in the linear approximation on S this is just the proper-time
parametrization.

The equations become even more simple when 4 = § = 1. Let us specify the
equation of precession of spin to this case, taking physical time as the parameter,
t = t. Then (9.154) reduces to the Frenkel condition, S*'x, = 0, while (9.153)

reads "’ = "’“m/zfz (FS)"], We decompose spin-tensor on electric dipole moment
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D and Frenkel spin-vector S according to (9.81), then D = —iS x v, while
precession of S is given by
dS _ evc?—v?
= VTV L[E X [vx S]] + ¢S x B]. (9.159)
dt m,c3

Comparison with Frenkel Equations Frenkel found equations of motion consis-
tent with the condition S*'x, = 0 up to order O3(S, F, OF). Besides, he considered
the case © = 1. Taking these approximations in our equations in the proper-time
parametrization V—i% = ¢, we arrive at those of Frenkel (our S is 2’:" of Frenkel S)

d e .
[(m  4mcd (SNF +

e e e
SHY9.(SF) | =  (Fx)* M (SF),
dt m2¢3 ( )] c( D+ 4mc (SF)

(9.160)

8

. 1
swo= ¢ [F[“aS"”]— ) 2x[ﬂsvlaaa(SF)} . S™E =0, (9.161)
Mmc

mc

Comparison with Bargmann-Michel-Telegdi Equations BMT-equations are

W= ¢ (Fo", (9.162)
mc

= Py C (u-DEFO, s, =0, (9.163)
mc mc

Obtaining their equations in homogeneous field, Bargmann, Michel and Telegdi
supposed that the motion of a particle is independent from the motion of spin.
Besides they looked for the equation linear on s* and F*”. It is convenient to
introduce BMT-tensor dual to s*

v 2 .
Shvr = € sy (9.164)
c
Due to (9.163) this obeys the equation

u—1
c2

b TAY) e oy . )
Sour =, Flr,sel 4 A (Spur i) (9.165)
Taking the proper-time parametrization and neglecting non linear on F and S terms
in our Egs. (9.156) and (9.157), we obtain (9.162) and (9.165).

Exact Solution to Equations of Motion in a Constant Magnetic Field Compar-
ing Eqgs. (9.156) and (9.162) we conclude that spin-field interaction modifies the
Lorentz-force equation even for the homogeneous magnetic field. To estimate the
influence, it is convenient to work with four-dimensional spin-vector (9.96) instead
of spin-tensor. The constraint $*"P, = 0 implies s*x, = 0, so s* can be identified
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B

Fig. 9.3 Momentum P, velocity v, and spin s of a spinning particle in the uniform magnetic field
B

with BMT-vector of spin. As a consequence of Eqs. (9.142) and (9.144), it obeys the
equation

= Aef I:(Fs)" + 7;2 (sFP)P":| - 7)12 (Ps)PH. (9.166)

For the homogeneous magnetic field the Egs. (9.142) and (9.166) has been solved
exactly [75], a qualitative picture of motion for u # 1 is presented on Fig.9.3
on page 392. Besides oscillations of spin first calculated by Bargmann, Michel
and Telegdi, the particle with anomalous magnetic moment experiences an effect
of magnetic Zitterbewegung of the trajectory. Usual circular motion in the plane
orthogonal to B is perturbed by slow oscillations along B with the amplitude of

order of Compton wavelength, 77;0 Ac. The Larmor frequency and the frequency of

spin oscillations are also shifted by small corrections.

9.7.3 Parametrization of Physical Time and Physical
Hamiltonian

Equations for physical variables x(¢), P(f) and S*’(f) follow from the formula
of derivative of parametric function ‘[‘Z =c ).fo after the substitution of (9.142)
and (9.144) on the right hand side. Our task here is to find a conventional
Hamiltonian for these equations. Consider the Hamiltonian action associated with
the Hamiltonian (9.129), f dt px+m&—A;T;. The variational problem provides both
equations of motion and constraints of the vector model in arbitrary parametrization.
Using the reparametrization invariance of the functional, we take physical time as
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. 0 .
the evolution parameter, T = XC = t, then the functional reads

Sy = /dt c750 —eA” +pi)'ci + Tt —

A
2

(_753 P eu (FS) + m’c® + n° — 0(2) — AT, (9.167)
2c @

where it is convenient to denote 750 = po — iAo. We can treat the term associated
with A as a kinematic constraint of the problem. According to Sect. 1.6.2 we solve
the constraint,

Py = —P° = _\/733 - ;’i (FS) + m2c + 2 — (9.168)

w?’

and substitute the result back into Eq. (9.167), this gives an equivalent form of the
functional

Sy = /dtpp'ci + Tt — I:c\/Piz - 62,u (FS) + m2c® + n% — 052 + eA'+
c ®
A, + APyt + /\473Mn“] , (9.169)

where the substitution (9.168) is implied in the last two terms as well. The sign
in front of the square root in (9.168) was chosen according to the right spinless
limit (8.183) and (8.185). The expression in square brackets is the Hamiltonian.

The variational problem implies the first-class constraints 7, = wnwr = 0, T5 =

7t — a‘fz = 0 and the second-class constraints

T3 = —P°%° + Plw' =0, T, = —P°n° + Pixi =0, (9.170)

where
PO= [P ) e ©.171)
C

In all expressions below the symbol P° represents the function (9.171).
To represent the Hamiltonian from (9.169) in a more familiar form, we take into
account the second-class constraints by passing from Poisson to Dirac bracket
{A.B}p = {A,B} — {A. Ts{T4. Ts} " {T4. B} —
{A, T3}{T5, T4}~ {T3. B}. 9.172)
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Table 9.2 Auxiliary Poisson brackets

{P°, %} {T5, *} {Ty, *}

X _77; —wl + wU’P‘ i+ 71”77’

P! — o [(FPY + H0(SF)] ) [(FPY + 4 9(SF)]— o [(FPY + 0 (SF)]—
C(Fo) C(Fm)

PO 0 sl — )(PF&)+ so.lw — D)(PF)+
“a)iai(SF) - ;,LFOiP[Owi]] Zﬂiai(SF) - ;,LFOiP[Oni]]

ot = (Fa) Sl (Fwo)h —P + T (Fa)t

mh — o (Fm)k Pl 4 e (Fryt e (F )

JHv _;jgc (FS)[MV] “7’35%6‘ (FS)[MV] — 2Pl J;Dgl; (FS)[W — 2Pl

To compute the Dirac brackets of our variables, we use an auxiliary Poisson brackets
shown in Table 9.2. We will use the notation (9.139) and

W =T, P + “Zazo,
2ca 0 0 0 0 0
AR =" pOg) - pOg) = pogiy 4 prgO 4 g,
eu
2
KW = — MC((I)SOMaV(SF), LW — _ ,uoa (FS)[;LU]SO()[’
u u
2 0
¢ = g = 2P pupy, (9.173)
@I/l

Using the table, we obtain {73, T4} = s 730
physical variables x(¢), P!(f) and S*” (f) are

Then Dirac brackets among the

Wl = A% W Plp =87 - 2e [A*FY — kY], (9.174)
C
2
(PP = CFi— © [Pk Ak — plkgh] (9.175)
c 2c2

{SH, Saﬂ}D — Z(gIWSVﬂ _ guﬂsm _ gvasltﬂ + g”ﬂS’w) + LMV[W'Pﬂ]’ (9.176)

) | ;
(S ¥}y = Pl vl + 2LIWJ’ 9.177)

. . . 1 .
(s piy, = ¢ [—P“(A“kF"J — K"y —(n<ov)+ ZL’“"F"/} . (9.178)
C
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To continue, let us restrict to the case of a stationary electromagnetic field. Then
constraints do not depend explicitly on time, therefore the second-class constraints
can be omitted from the Hamiltonian, see Sect. 8.5. So we omit the last two terms
in (9.169). The first-class constraints 7, and 75 can be omitted as well, as they do
not contribute into equations of motion for physical variables. In the result we obtain
the physical Hamiltonian

Hp, = c\/732 — ;MFWSI“’ + m2c2 + eA°. (9.179)
c

The equations of motion that we discussed at the beginning of this section follow
from this Hamiltonian according the rule ‘:lf = {2, Hpn}p.

Note that the Dirac brackets encode the most part of spin-field interaction, on this
reason we have arrived at a rather simple form of physical Hamiltonian.

9.8 First Relativistic Corrections and Fine Structure
of Hydrogen Spectrum

Here we discuss how the vector model resolves the problem of a covariant formalism
discussed in Sect. 9.6.2.

To quantize our relativistic theory we need to find quantum realization of highly
non linear classical brackets (9.174)—(9.178). They remain non canonical even in
absence of interaction. For instance, Eq.(9.174) in a free theory reads {x/, ¥} =
2mlcp0 S¥. We emphasize that non relativistic model has canonical brackets (9.61),
so the deformation arises as a relativistic correction induced by spin of a particle.
Technically, the deformation is due to the fact that the constraints (9.306) of
relativistic theory, used to construct the Dirac bracket, mixes up space-time and
inner-space coordinates.

Quantum realization of the brackets in a free theory will be obtained in Sect. 9.11,
while in an interacting theory its explicit form is unknown. Therefore we quantize
the interacting theory perturbatively [77], considering ¢~ as a small parameter
and expanding all quantities in a power series. Let us consider the approximation
O(c™?), that is we neglect ¢~ and higher order terms. For the Hamiltonian (9.179)

2 4 . .
we have H,, ~ mc* + Zn — 8m7)3c2 — . (FS). Since thg: last term is of order
¢!, resolving the constraint S**P, = 0 with respect to S we can approximate
P = mc, then §© = riCSiij. Using this expression together with Egs. (9.78)

and (1.284) we obtain, up to order 2

2 4

1
Hy ~mc 4 T — vea®+ M| TSP xE —BS|. (9.180)
2m  8m3c? mc | mc
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Due to the second and fourth terms, we need to know the operators P and ¥ up
to order ¢~2, while 7 should be found up to order c~'. With this approximation,
the commutators [%, k], [%, P], and [P, P] can be computed up to order ¢~2, while
the remaining commutators can be written only up to ¢~!. Therefore, we expand the
right hand sides of Dirac brackets (9.174)—(9.178) in this approximation

o 1 1
UoJy — Ul
XX} = 2m2c25 +0(C3),
. ) . 1
{x’,P’}=8”+0( 3),
-
o 1
{xf, 5% =0+0( 2), (9.181)
C
. ) . 1
{P‘,P’}=6F”+O( )
C

ct
. 1
{Pl,Sjk} = 0( 3) s
C

{(sU, Ky = 2(5*g! — §ilg* — §kST 4 §5*) + 0 ( 2) .
C

An operator realization of these brackets reads

. ]
pi=—in ° — AW, (9.182)
oxi ¢
bmxe T bk 9.183
Xi = X 4m2C261]k o, ( . )
8V = hegoy. (9.184)
then
v 1 B
St = 4e,~jks'k = 0" (9.185)
Qi0 h D~k
SV = éijkPO'. (9186)
mc

By construction of a Dirac bracket, the operator Sio automatically obeys the desired
commutators up to order ¢~'. So we do not worried on this operator in the
computations above.
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We substitute these operators into the classical Hamiltonian (9.180). Expanding
A®(X) in a power series, we obtain an additional contribution of order ¢~ to the
potential due to non commutativity of the position operator

e

2m262§[f> x K. (9.187)

eA° (x,- — (2mc)_2e,;,~k13/ 5”‘) ~ eA’(x) —
The contribution has the same structure as fifth term in the Hamiltonian (9.180). In
the result, the quantum Hamiltonian up to order ¢ 2 reads (we remind that . = ‘g)

p2 p* e(g—1) A~ eg
— A° S[P x E] —
2m  8m3c? oAl 2m2c? [ ]

BS. (9.188)
2mc

ﬁ ph = mc? +
The first three terms corresponds to an increase of relativistic mass. The last two
terms coincides with those in Eq.(9.9). In the result, we have shown that non
commutativity of electron’s position in the vector model of spin is responsible for
the fine structure of hydrogen atom.

We could carry out the same reasoning in classical theory, by asking on the new
variables 7’ that obey the canonical brackets (9.61) as a consequence of Eq. (9.181).
In the desired approximation they are P’ = P’ x' = x/' — 4m12C2 S"iPY and §7 = SV,
that is the first relativistic corrections modify only the position variable.

9.9 Fast Spinning Particle and Rainbow Geometry

Basic notions of Special and General Relativity have been formulated before the
discovery of spin, so they describe the properties of space and time as they are seen
by spinless test-particle. Here we discuss the question whether these notions remain
the same if the spinless particle is replaced by more realistic spinning test-particle.

Let us compare the Lagrangian equations of spinning (9.152) and spinless (1.309)
particle. For the spinning particle with & # 1, the relativistic-contraction factor
(see (9.151)) contains the effective metric (9.148) instead of the Minkowski metric
N - In the result, equations for trajectory (9.152) and for precession of spin (9.153)
became singular at the critical velocity which obeys the equation

xGx = 0. (9.189)

As we discussed in Sect. 1.7.7, the singularity determines behavior of the particle
in ultra-relativistic limit. The effective metric is composed from the Minkowski
one plus (spin and field-dependent) contribution, G = 1 + A(S). So we need to
decide, which of them should be used to construct the three-dimensional geometry

discussed in Sect.6.9. We first test the usual special-relativity notions, v' = ‘3‘;,
a' = %" and va = v'd/, that is we suppose that the particle sees 7 as the space-time

metric. We show that in this case acceleration vanishes at the critical speed which is
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different from the speed of light. Then we estimate the ultra-relativistic limit using
G to define the three-dimensional geometry (6.140)—(6.143). Then v, = c, but
since G depends on spin, particles with different spins will probe slightly different
three-dimensional geometries.

Ultra Relativistic Limit Within the Usual Special-Relativity Notions It will
be sufficient to estimate the acceleration in the uniform and stationary field. We
take T = ¢ in Eqgs. (9.152)—(9.154) and compute the time derivative on 1. h. s. of
Eq.(9.152) with u = 1,2, 3. Then the equations read

‘ vl en/— va ~
’ Gv) =T, Fv)’ "% |, (9.190
“ ~ 2(—vGv) dt( vGY) = |: (Fv)' — v :| ( )
2bmye(p — 1
d v _ N/ —vGY (Fsyi = 2P = e 9101
dt m,c2 V—=vGv
(Sv)* + b(n — D(SSFv)* =0, (9.192)

where v* = (c, v). Equations (9.192) and (9.148) imply
—vGv = —vTv = & —v* — (u — 1)b(vSFv). (9.193)

We compute the time-derivatives in Eq. (9.190)

jt(—va) = —2(va) — (u — Db {[v(FS + SF)]ia'+

K *n: CUGU [(vFFSv) + (vFSFv)]—

2bm.c(L — 1)

2 J—
J—vGo [v°(VFSFv) — (vSFv)(vFv)]; (9.194)

d. G
T T = _ev—vGy {1(u — V)b(FSFv) —
dt m,c2
p(p — Da(SFFv)' — pu(p — 1)*ab(SFFSFv)'} +
2bmyc(pu — 1)

oG T',[v" (VFSFv) — (SFv)" (vFv)]. (9.195)
—vGv

We note that all the potentially divergent terms (two last terms in (9.194) and
in (9.195)), arising due to the contribution from S ~ J—lqu , disappear on the
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symmetry grounds. We substitute non vanishing terms into (9.190) obtaining the
expression

Mial = N_UZG " {(Fv) — (i — Db(FSFv)i+
m,c
(i — 1)*a(SFF[n + ubSFv) — v"*; ((’i ;Glg)b wFESHL . (9.196)

where the matrix

. . v, _
M =85+, (_UG’:), with 2, = 28,; + (u — )b(FS + SF),j.  (9.197)
has the inverse
. . Vivh 2,
R L W , 9.198
P 2¢2 — (= 1)bv(FS + SF) ,00° ¢ )
with the property
L : 2(—vG
Ml = v (—=vGv) . (9.199)
: 2¢2 — (. — 1)bv(FS + SF) ,o0°
Applying the inverse matrix we obtain the acceleration
i -GV |~ . :
a = e {M‘j[(Fv)f — u(u — 1)b(FSFvY+
m,c?
(1 — 1)*a(SFF[n + ubSF|vY]—
(= DbFFSv) 9200

2¢2 — (u — 1)bv(FS + SF) ,ov°

For the particle with non anomalous magnetic moment (1 = 1), the right hand side
reduces to the Lorentz force, so the expression in braces is certainly non vanishing
in the ultra-relativistic limit. Thus the acceleration vanishes only when v — v,
where the critical velocity is determined by the equation vGv = 0.

Let us estimate the critical velocity. Using the consequence (xSFx) = —b(u —
1)(xFSSFx) of the supplementary spin condition, and the expression S#,S*’ =
—4 [nzw“w” + a)zrr“n”], we write

— (¥Gx) = & — V2 + 4b*(u — 1)* [7*(0F3)* + 0*(wF%)?].  (9.201)

As  and w are space-like vectors, the last term is non-negative, so v, > c. We
show that generally this term is nonvanishing function of velocity, then v, > c.
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Assume the contrary, that this term vanishes at some velocity, then

oFx = —0’(Ev) + (w,cE+vxB) =0,
nFx = —7°(Ev) + (n,cE +vxB) =0. (9.202)

This implies ¢(DE) + (D,v x B) = 0. Consider the case B = 0, then it should
be (DE) = 0. On other hand, for the homogeneous field the quantity S*"F,, =
2[(DE) + 2(SB)] = 2(DE) is a constant of motion. Hence we can take the initial
conditions for spin such, that (DE) # 0 at any instant, this implies v., > c.

Ultra-Relativistic Limit Within the Geometry Determined by Effective Metric
As we saw above, if we insist to preserve the usual special-relativity definitions
of time and distance, the speed of light does not represent special point of the
equation for trajectory. Acceleration of the particle with anomalous magnetic
moment generally vanishes at the speed slightly higher than the speed of light.
Hence we arrive at a rather surprising result that speed of light does not represent
maximum velocity of the manifestly relativistic equation (9.196). This state of
affairs is unsatisfactory because the Lorentz transformations have no sense above
¢, so two observers with relative velocity ¢ < v < v,, will not be able to compare
results of their measurements.

To keep the condition v.,, = ¢, we use formal similarity of the matrix G
appeared in (9.148) with space-time metric. Then we can follow the general-
relativity prescription of Sect.6.9 to define time and distance in the presence
of electromagnetic field. That is we use G of Eq.(9.148) to define the three-
dimensional geometry (6.140)—(6.143). The effective metric depends on x' via the
field strength F(x°, x’), and on x° via the field strength as well as via the spin-tensor
S(x%). So the effective metric is time-dependent even in stationary electromagnetic
field. With these definitions we have, by construction, —xGx = (d‘fc'o)z(c2 — (Vyv)),
so the critical speed coincides with the speed of light. The intervals of time and
distance are given now by Eq. (6.140) and (6.141), they slightly differ from those in
empty space.

In the present case, the expression for three-acceleration can be obtained in
closed form in an arbitrary electromagnetic field. We present Eq.(9.152) in the
form (6.177)

Dm,(S -
pox = 7o = —pu ™) i piv(s)pa +
) ¢ oy + M e+ P ozl (9.203)
m,c? 4m?c? m,

Then the acceleration is given by (6.179). The first two terms on right hand side

of (9.203) give potentially divergent contributions arising from the piece § ~

J 21 of Eq.(9.153). In the previous section we have seen that the dangerous
cc—=vyv

contribution contained in the second term disappears. To analyze the first term, we
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substitute 7' from (9.203) into (6.179). With use the property M*jv/ = v’ "Z_CZVVV , we
obtain the acceleration

i, MUT TV o v®
2 2

a = (c* —vyv) |:—vi

e 2 —vyv

~ . . e e .

iy, Fo)' + M ' sP) + A
m, /2 —vyv 4mzc: M2 — vyv

. 1/dt\"! v
M’J-kaz(y)vkvwz( do) [(vaow - z(vaoyv)] (9.204)
X C

so the divergency due to r, ~ is cancelled by the factor in front of

1
\/ 2—vyv
this term. In the result, the acceleration is finite as v — c. Besides, taking into

account the property (vy);M'; = (vy); CZZZV " we conclude that the longitudinal

acceleration (6.180)

2 2
vya = (c Zyv) (vyF) +
C
ct—vyv - cy o Lfd\!
(vy)il u(y)v™v' + (vooyv) |, (9.205)
c? 2 \dx0

vanishes in this limit.

In summary, to preserve the equality v., = ¢, we are forced to assume that
particle in electromagnetic field probes the three-dimensional geometry determined
with respect to the effective metric instead of the Minkowski metric. This implies
rather unusual picture of the Universe with rainbow geometry.® Since G depends
on spin, in this picture there is no unique space-time manifold for the Universe of
spinning particles: each particle will probe his own three-dimensional geometry. In
principle this could be an observable effect. With the effective metric (9.148), the
Eq. (6.140) implies that the time of life of muon in electromagnetic field and in
empty space should be different.

9.10 Interaction with Gravitational Field

Point particle in a gravitational field propagates along a geodesic line with the speed
less then speed of light, see Sect.6.9. Here we study the influence of rotational
degrees of freedom on trajectory of the particle.

8Some models of doubly special relativity predict rainbow geometry at Planck scale [83].
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In this section V is the covariant derivative, VP* = ‘ZJT "+ a’;k"‘Pﬂ . The tensor

of Riemann curvature is R° 3, = 0,17, — 0,1 %3, + F"ﬂufﬁ)w — F"ﬂvfﬂm.

9.10.1 Lagrangian of Spinning Particle with Gravimagnetic
Moment

As we saw in Sect.9.6.2, minimal interaction with gravitational field can be
achieved by direct covariantization of the action (9.107). Unfortunately, the result-
ing equations becomes problematic in ultra-relativistic regime. We show this in
sect. 9.10.3. So we are forced to look for a non minimal interaction that could
suitably modify the equations in this regime. To understand how they might look, we
use the remarkable analogy existing between the gravitational and electromagnetic
fields. Hamiltonian formulations of the two minimally interacting theories become
very similar if we identify electromagnetic field strength with the Riemann tensor
contracted with spin, F,, ~ R,.esS*. In particular, Hamiltonian action for both
theories is

. . A 2 2 @
SH:/drpr“_}_nMw“_l:z (P + (me)” +m —wz)—}—laTa , (9.206)

where P, = p, — ¢A, for electromagnetic field and P, = p, — I; a’iwo‘nﬂ for
gravitational field. According to Eq. (9.129), interaction through gyromagnetic ratio
2 implies the contribution —‘;‘Z F,,$*" into the third term. So we expect that
non minimal interaction with gravity could be achieved replacing this term by
gé KRaﬂwS”‘ﬂ S*v. By analogy with the magnetic moment, the coupling constant « is
called gravimagnetic moment [60]. Thus we consider the variational problem

A
S = /dt puit ot — |: 21 (P2+KRaﬂwa)"Jrﬁa)“Jr”+(mc)2+712—32) +
M(wm)+A3(Pw)+Aq(Pr)], (9.207)

on the space of independent variables x*, p,, o*, 7, and A,.

Let us look for the Lagrangian which in the phase space implies the variational
problem (9.207). First, we note that the constraints rw = Pw = 0 always appear
from the Lagrangian which depends on Nx and Nw instead of x and . So we set
Ay = A3 = 0in (9.207). Second, we present the remaining terms in (9.207) in the
form

. . At g Ag P Al 2 o
— Yo 2
S,(—/drpﬂx + r o — 5 (P, ) (A )( )— ) [(mc) —wz],

(9.208)
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where we have introduced the symmetric matrix
ot =gl + /cRa"ﬁ”a)“wﬂ, then o', = 0". (9.209)
The matrix appeared in (9.208) is invertible, the inverse matrix is

(_Iio;{ _2K) , where K = (0 —A%)"". (9.210)
When k = 0 we have K* = (1 — A2)"!g*”, and (9.210) coincides with the matrix
appeared in the free Lagrangian (9.103). Third, we remind that the Hamiltonian
variational problem of the form pg — 121 pAp follows from the reparametrization-
invariant Lagrangian \/ gA~1q. So, we tentatively replace the matrix appeared
in (9.103) by (9.210) and switch on the minimal interaction of spin with gravity,
o — Vo. This gives the following Lagrangian formulation of spinning particle
with gravimagnetic moment:

L= —\/(mc)z _ 6‘3‘2 \/—(Nx, NVo) (_IZS( _I)g() (Nl\gw) — (9211

—\/ (me)> = \/=iNKoNi — VoNKNVo + 2AiNKNVo.  (9.212)
w

Let us show that it does give the desired Hamiltonian formulation (9.207). The
matrixes o, K and N are symmetric and mutually commuting. Canonical momentum

for A vanishes and hence represents the primary constraint, p, = 0. Conjugate
momenta for x* and w” are p, = /L and m, = ., respectively. Due to the
X @

presence of Christoffel symbols in Vw*, the conjugated momentum p,, does not
transform as a vector, so it is convenient to introduce the canonical momentum

P, =p, — I} o7, (9.213)

the latter transforms as a vector under general transformations of coordinates.
Manifest form of the momenta is as follows:

1 22 @ S

Pi= [~ w2] [GNKoN), — A(VoNKN),].  (9.214)
1 2.2 "R .

W= o [m 2 — aﬂ] [(VoNKN), — AGNKN),],  (9.215)
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where L is the second square root in (9.212). They immediately imply the primary
constraints wwr = 0 and Pw = 0. From the expressions

1
P= [m)? = | [(NKoKoND) + A*(VoNKKNV@)—
2 10)
2AGNKGKNV )] ,
1
Tomw = (mc)? — * A2(iNKo KNx) + (VoNKo KNV w)—
2 [ 2
L w

2A(iNKoKNVow)]

1
2P =, [(mc)2 - “2] [—2)2(:NKoKNi) — 22(VoNKKNV o)+
0 w
IAGNKGKNV ) + 23 (GNKKN V)] | (9.216)

we verify that their sum does not depend on velocities and hence gives one more
constraint

P? + o7 4+ 2AP1 = — [(mc)2 — “2] . 9.217)
w

Then Hamiltonian is H = px + nw — L + A;T; = Px + nVw — L + A;T;, where
the first and second terms have been identically rewritten in the general-covariant
form. From (9.214) and (9.215) we obtain Px + tVw = L, so the Hamiltonian is
composed from primary constraints

A
H="! [P2 + kRyupr @' 0P 1" 4 (me)* + w? — * 4 ZA(Pn)] +
2 w?
A(wm) + A3 (Pw). (9.218)
After the change of variables A — A4 = é)&lk, we arrive at the Hamiltonian

appeared in the variational problem (9.207).

Equations of Motion Variation of the Hamiltonian action (9.207) with respect to
A, gives the algebraic equations

o
P’ 4+ kRoppy0* P ol n’ + (me)* + n> — =0, (9.219)
w

wr =0, Pw =0, Pr =0, (9.220)

while variations with respect to the remaining variables yield dynamical equations
which can be written in the covariant form as follows
38k

=0 <& i*=MP"+ A" + Ay, (9.221)
51’#



9.10 Interaction with Gravitational Field 405

8, 1

g =0 & VPu= —Rwﬂwianﬂ—ZAIKVMRmﬂw”n“w“nﬂ ., (9.222)
8SK a, B_v
5 =0 & Vo' =1Ma"-dikR'p0" 0" 7" +Ar0" +A4PF, (9.223)
T

8S /\10(

8@; =0 & Vm,=— Wp—AkRuap " 0P —Dom,—AsP,.  (9.224)

Equation (9.221) has been repeatedly used to obtain the final form (9.222)—(9.224)

of the equations gf; =0, g}fk = 0 and fiﬁ = 0. Computing time-derivative of the

algebraic equations (9.220) ;nd using (9.221)—(9.224) we obtain the consequences
e — =0, (9.225)

A3 = dal [2(1 — K)Raﬂwa)“nﬁn“P" + Kn”(Vngaﬂ)a)“rr”a)“nﬁ] ,

Ay = —da)y [2(1 - K)Raﬁwa)“rrﬂa)“P" + Kw”(VURwaﬂ)w“n"w“nﬂ] .
(9.226)

Here and below we use the following notation. The gravitational analogy of
electromagnetic field strength is denoted

0,0 = RyvepS*. (9.227)
In the equation which relates velocity and momentum will appear the matrix

2

T, =68%, — (k — 1)aS* 05, , a= oo k4 1)) (9.228)
Using the identity
(SHS)H" = —;(SG)S’“’, where S0 = 5%P0,4, (9.229)
we find inverse of the matrix T
T, = 8% + (k — 1)bS% 6, , b ! (9.230)

= 8m2c? + k(S)
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The vector Z* is defined by
b o af opd b o
ZF = g S (VRapps) ST S = g SHIV,(S6). (9.231)
c c

This vanishes in a space with homogeneous curvature, VR = 0.

The time-derivatives of (9.219), (9.225) and (9.226) do not yield new alge-
braic equations. Due to (9.225) we can replace the constraint (9.219) on P? +
/cRaﬁWw"‘rrﬁa)“n" + (mc)?> = 0. The obtained expressions for A3 and A4 can be
used to exclude these variables from the Eqs. (9.221)—(9.224). The constraints 77,
T, and T5 form the first-class subset, while 75 and T4 represent a pair of second
class.

Neither constraints nor equations of motion do not determine the functions A,
and A,, that is the non-minimal interaction preserves both reparametrization and
spin-plane symmetries of the theory. The presence of A; and A, in the Eqs. (9.223)
and (9.224) implies that evolution of the basic variables is ambiguous, so they
are not observable. To find the candidates for observables, we note once again
that (9.223) and (9.224) imply an equation for S* which does not contain A,. So
we rewrite (9.221) and (9.222) in terms of spin-tensor and add to them the equation
for S*V, this gives the system

#o=a [P e 2] (9.232)
b
1 . AlK
VP = = i = ,(86). (9.233)
v KA ] [ 0]
VS = — A (08)" + 2P (9.234)

Besides, the constraints (9.219), (9.220) and (9.225) imply

P+ 1'(695 + (me)? =0, (9.235)

S¥P, =0, S*S, = 8a. (9.236)

The Eq. (9.236) imply that only two components of spin-tensor are independent, as
it should be for spin one-half particle. Equation (9.234), contrary to the equations
for w and 7, does not depend on A,. This proves that the spin-tensor is invariant
under local spin-plane symmetry. The remaining ambiguity due to A; is related with
reparametrization invariance and disappears when we work with physical dynamical
variables x'(f). Equations (9.232)—(9.234), together with (9.235) and (9.236), form
a closed system which determines evolution of the spinning particle.
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The Hamiltonian equations can be equally obtained computing z = {z, H}, where
z = (x,p, w, ), with the Hamiltonian given in square brackets of Eq. (9.207). Our
original variables fulfill the usual Poisson brackets {x*,p,} = 8, and {w*, 7,} =
8!, then {Pu, P} = R"Mwm,a)x, {Pp. 0"} = Lo, {Py,m} = =1}, 7. For
the quantities x*, P* and S*" these brackets imply

1 (03 [0 o a, [ofo)
(X", P} =68, (P, P,)= —4R,Mﬂs P PSPy =T 8P —f 5.
(9.237)

{SH, §9PY = 2(ghes"P — g v — guagiB | gvBgHey (9.238)

We can simplify the Hamiltonian introducing the Dirac bracket constructed with
help of second-class constraints

{A,Bjp ={A,B} —  [{A. T3{Ty, B} —{A, T4}{T3,B}]. (9-239)

1
8a
Since the Dirac bracket of a second-class constraint with any quantity vanishes, we
can now omit 73 and T4 from the Hamiltonian. The quantities x*, P* and S*¥, being
invariant under spin-plane symmetry, have vanishing brackets with the first-class
constraints 75 and 7. So, obtaining equations for these quantities, we can omit the
last two terms in the Hamiltonian, arriving at the expected relativistic Hamiltonian

_Al 2, K 22
H =" (P i 16(95)+mc). (9.240)

The Eqgs. (9.232)—(9.234) can be obtained according the rule z = {z, H, }p.

Lagrangian Equations Let us exclude P* and A, from the Egs.(9.233)
and (9.234). Using (9.230) we solve (9.232) with respect to P*. Using the resulting
expression in the constraint (9.235) we obtain A

G
A= Vi Towith mE=mt 4 S (80) — P22, (9.241)
m,c 16¢2
where the effective metric now is given by
Guv = T 18 TP . (9.242)

Then the expression for momentum in terms of velocity implied by (9.232) is

m,c

= 'G'TMU)‘CV — kcZM. (9.243)
—XUX

PIL
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We substitute this P* into (9.233), (9.234)

o L o
vl ™o l=— e Y TVA(SO) + kVZH,  (9.244)
V—iGx 4c 32m,.c?

—%Gi —1)b
KV (05 — G,) i ($00)") + 2kccklt 2. (9.245)

2m,c(k
m,c —xGx

VS =

Together with (9.236), this gives us the Lagrangian equations for the spinning
particle with gravimagnetic moment.

Comparing our equations to those of spinning particle on electromagnetic
background (9.152)—(9.154), we see that the two systems have the same structure
after the identification k ~ p and 8, = R,Lm/gS“ﬂ ~ F,, where u is the magnetic
moment. That is a curvature influences trajectory of spinning particle in the same
way as an electromagnetic field with the strength 6,,,.

9.10.2 Mathisson-Papapetrou-Tulczyjew-Dixon (MPTD)
Equations of a Rotating Body and Spinning Particle
without Gravimagnetic Moment

Equations of motion of a rotating body in curved background formulated usually
in the multipole approach to description of the body, see [76] for the review. In
this approach, energy-momentum of the body is modelled by a set of quantities
called multipoles. The equations are then derived from conservation law for the
energy-momentum tensor, V, 7#*" = 0. The first results were reported by Mathisson
[53] and Papapetrou [54]. They have taken the approximation which involves only
first two terms (the pole-dipole approximation). A manifestly covariant equations
were formulated by Tulczyjew [55] and Dixon [56]. In the current literature they
usually appear in the form given by Dixon (the equations (6.31)-(6.33) in [56]),
we will refer them as Mathisson-Papapetrou-Tulczyjew-Dixon (MPTD) equations.
They are widely used now to account spin effects in compact binaries and rotating
black holes, see [60].
We discuss MPTD-equations in the form studied by Dixon’

1 1
VPt = _4Rﬂmﬁsaﬂ'v = -, 09", (9.246)
VS = 2(PHi" — P'iM), (9.247)
S*p, =0, (9.248)

90ur § is twice of that of Dixon.
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and show that they essentially coincide with equations of spinning particle with
k = 0. In particular, we show that the effective metric G, also emerges in this
formalism. In the multipole approach, x*(7) is called representative point of the
body, we take it in arbitrary parametrization t (contrary to Dixon, we do not assume
the proper-time parametrization, that is we do not add the equation g, %" = —c?
to the system above). S*¥(7) is associated with inner angular momentum, and P*(7)
is called momentum. The first-order equations (9.246) and (9.247) appear in the
pole-dipole approximation, while the algebraic equation (9.248) has been added by
hand. After that, the number of equations coincides with the number of variables.

To compare MPTD-equations with those of spinning particle, we first observe
some useful consequences of the system (9.246)—(9.248).

Take derivative of the constraint, V(S*'P,) = 0, and use (9.246) and (9.247),
this gives the expression

1
(PX)P* = P** + S(Sex)/*, (9.249)

which can be written in the form

pro B (8" +o) (59)“)'”= P e (9.250)
Ty T T ey '

Contract (9.249) with %,. Taking into account that (Px) < 0, this gives (PX) =

—/—P2 \/ —iT . Using this in Eq. (9.250) we obtain the relation between velocity
and momentum

—_p2 -
i N
V—iT# 8P

For latter use we observe that in our model with composite S** we used the
identity (9.229) to invert T, then the Hamiltonian equation (9.232) has been written
in the form (9.243), the latter can be compared with (9.251).

Contracting (9.247) with S, and using (9.248) we obtain ddr ($"S,) = 0, that
is, square of spin is a constant of motion. Contraction of (9.249) with P, gives
(PS8x) = 0. Contraction of (9.249) with (x6), gives (P0x) = 0. Contraction
of (9.246) with P, gives ¢ (P?) = —)(Pfx) = 0, that is P* is one more constant
of motion, say k, V—P2 = k = const (in our model this is fixed as k = mc).
Substituting (9.251) into the Eqgs. (9.246)—(9.248) we now can exclude P* from
these equations, modulo to the constant of motion k = V—p2,

Thus, square of momentum can not be excluded from the system (9.246)—(9.249),
that is MPTD-equations in this form do not represent a Hamiltonian system for the
pair x*, P*. To improve this point, we note that Eq. (9.251) acquires a conventional
form (as the expression for conjugate momenta of x* in the Hamiltonian formalism),
if we add to the system (9.246)—(9.248) one more equation, which fixes the
remaining quantity P?>. To see, how the equation could look, we note that for

Pt (SO, . (9.251)
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non-rotating body (pole approximation) we expect equations of motion of spinless

particle, Vp* = 0, p* = \/’”", ¥, p?> + (mc)? = 0. Independent equations of the
—Xgx

system (9.246)—(9.249) in this limit read VP* = 0, P* = ‘/_{D 2, x*. Comparing

the two systems, we see that the missing equation is the masg-shell condition
P?+(mc)* = 0. Returning to the pole-dipole approximation, an admissible equation
should be P? + (mc)? + f(S....) = 0, where f must be a constant of motion. Since
the only constant of motion in arbitrary background is S, we have finally

P?* = —(mc)® —f(S5?). (9.252)

With this value of P2, we can exclude P* from MPTD-equations, obtaining closed
system with second-order equation for x* (so we refer the resulting equations as
Lagrangian form of MPTD-equations). We substitute (9.251) into (9.246)—(9.248),
this gives

(Tx)H 1

=— Ox)", 9.253

\/—)‘cﬂ]jc 4\/—P2( X) ( )
1

VS = i (S65)"! 254

S 4¢—P2\/—x~xx (S6x)", (9.254)

(SS6x)* = —8P*(Sx)H, (9.255)

where (9.252) is implied. They determine evolution of x** and S*¥ for each given
function f(S5?).
It is convenient to introduce the effective metric G composed from the “tetrad

field” T
Guv = gup T TP, (9.256)
Eq. (9.255) implies the identity
T x = xGx, (9.257)

so we can replace \/—x7~‘x in (9.253)—(9.255) by +/—iGx.
In resume, we have presented MPTD-equations in the form

Pt = j__jcpgzx(ﬁ)ﬂ, VPt = —i(ex)ﬂ,
Vse =2plgl sevp, =0, (9.258)
P? + (mc)® +£($%) =0, (9.259)
$?  is a constant of motion, (9.260)

with 7 given in (9.251).
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We compare them with equations of our spinning particle with vanishing
gravimagnetic moment. Imposing k = 0 in Eqgs. (9.232)—(9.236), we write them
in the form

mc ~ 1
PH = Tx)", VPt = — (03",
voici 4
VSH = 2P[P«)’CV]7 SHp, =0, (9.261)
P? + (mc)* = 0, (9.262)

$? = 8a, (9.263)

with T from Eq.(9.230) with k = 0 . Comparing the systems, we see that our
spinning particle has fixed values of spin and canonical momentum, while for
MPTD-particle the spin is a constant of motion and momentum is a function of
spin. We conclude that all the trajectories of a body with given m and S? = B are
described by our spinning particle with spin ¢ = g and with the mass equal to

\/ m2+ 7 zc(f ) In this sense our spinning particle is equivalent to MPTD-particle.
We point out that our final conclusion remains true even we do not add (9.252)
to MPTD-equations: to study the class of trajectories of a body with V—P? = kand
§? = B we take our spinning particle with m = ’Z and o = g
MPTD-equations in the Lagrangian form (9.253)—(9.255) can be compared
with (9.244)—(9.245).

9.10.3 Ultra-Relativistic Limit: The Problems
with MPTD-Equations

Setting « = 01in (9.236), (9.244) and (9.245) we obtain

1
SHLY — 8(me)? (SSOx)" = 0. (9.264)
", %" 1
Y [x/—xxc)'c} B _4mcRM”“ﬁSaﬁxu’ (9.265)
1
VSH = slsvlog 5. (9.266)

dme~/—xGx

The equations for trajectory and for precession of spin become singular at critical
velocity which obeys the equation

Gi = 0. (9.267)
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The singularity determines behavior of the particle in ultra-relativistic limit. The
effective metric is composed from the original one plus (spin and field-dependent)
contribution, G = g+ Ah(S). So we need to decide, which of them the particle probes
as the space-time metric. Let us consider separately the two possibilities.

Let us use g to define the three-dimensional geometry (6.140)—(6.143). This
leads to two problems. The first problem is that the critical speed turns out to be
slightly more than the speed of light. To see this, we use the supplementary spin
condition (9.264) to write (9.267) in the form

ar\?. . 5
- (dxo) XGx = (¢ —vyv) + (am2ey? (vBSSHv) = 0, (9.268)
with v* defined in (6.145). Using S*¥ = 2wltY), we rewrite the last term as
follows:
1
(c2 - Vyv) + (m22)2 (7t2(v6?a))2 + wz(v9n)2) =0. (9.269)

As 7 and w are space-like vectors, the last term is non-negative, this implies |v,,| >
c. Let us confirm that generally this term is nonvanishing function of velocity, then
|[ver] > c. Assume the contrary, that this term vanishes at some velocity, then

vhw = B’ + Ov'w’ = 0, (9.270)
v = Oy’ + Giv'n® = 0. (9.271)

We analyze these equations in the following special case. Consider a space with
covariantly-constant curvature V,R,,4s = 0. Then ddI(GM\,S’”) = 26, VS*', and
using (9.266) we conclude that 6,,,5*" is an integral of motion. We further assume
that the only non vanishing is the electric part of the curvature, Ry;o; = Kj;. Then the
integral of motion acquires the form

0,,S* = 2K;S"SY. (9.272)

Let us take the initial conditions for spin such that KijSOiSoj # 0, then this holds at
any future instant. Contrary to this, the system (9.270) implies K;S"S% = 0. Thus,
the critical speed does not always coincide with the speed of light and, in general
case, we expect that v, is both field and spin-dependent quantity.

The second problem is that acceleration of MPTD-particle grows up in the ultra-
relativistic limit. In the spinless limit the Eq. (9.265) turn into the geodesic equation.
Spin causes deviations from the geodesic equation due to right hand side of this
equation, as well as due to the presence of the tetrad field 7 and of the effective
metric G in the left hand side. Due to the dependence of the tetrad field on the
spin-tensor S, the singularity presented in (9.266) causes the appearance of the term

proportional to \/.IG. in the expression for longitudinal acceleration. In the result, the
xXGx
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acceleration grows up to infinity as the particle’s speed approximates to the critical
speed. To see this, we separate derivative of T in Eq. (9.265)

v[ ¥ } ™" (VT“) ¥ U ony (9.273)
=— — x)". .
V—iGx * b —iGx Amc
Using (9.266) we obtain
I SHY | RyypoiP (S0)° .
VTH, 13 = — + PP (VR0 ) | . (9.274)
[ ] 8m?c? |: 2me/—xGx ( po)
Using this expression together with the identity (TS)*' = 8m?c*aS*’, the
Eq. (9.273) reads
d i 1
|: x‘ } = f, B (9.275)
dt | /—xGx \/ —xGx
where we denoted
./3 NO
fﬂ = aS’w‘ Ravﬁax (SHX) + SﬁG(VRavﬂa) )‘Cv -
2me~/—xGx
G
(Fxi)" — VG (TOR)" . (9.276)
4mc
It will be sufficient to consider static metric g,,(x) with go; = 0. Then three-
dimensional metric and velocity are
i ¢ (9.277)
i = Ziis v o= . .
Vi =8 /—8o0 dx°

Taking © = x°, the spatial part of Eq. (9.275) with this metric reads

dt\"" d V! fi(v)
= - , (9.278)
(dxo) dx? |:\/—UGUi| V—vGu
with v# defined in (6.145), for the case

Cc

- (\/—8007

ol v), (9.279)

and

(vSOv)

—vGv = —vTv = ? —vgv + .
& 8m2c?

(9.280)
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In the result, we have presented the equation for trajectory in the form convenient
for analysis of acceleration, see (6.162). Using the definition of three-dimensional
covariant derivative (6.159), we present the derivative on the Lh.s. of (9.278) as
follows

d v 1 . < o dt Kv'

= M Voo — T (y)iv/ivk :

dx® [\/—vai| V-vGv |: Koy v’ o " 2(—va)}
(9.281)

We have denoted

K = (V()GMV)UMUU — UHGM()UkBk In (—g()()),

vV'or G

=8 — 9.282
My k vGu ( )
The matrix M has the inverse
~. ) VUG ~ . vGu
=24 K, th Lok = . 9.283
My ket V9 Gyov? en M v V2 Gyov? ( )

Combining these equations, we obtain the three-acceleration of our spinning particle

i AN i Tk R Kv'
a = (dxo) V()U = M k [f + (FUU) ]—‘r ZU‘TGUO' (9284)
Finally, using manifest form of f* from (9.276) we have
: M8k - 7YY; —vGv -,
d= Yk —cz./\/l‘ky 7800 _ Vo v./\/l’k(Tev)k+
2men/—vGo 2800 4mce
Kv! -
269Gog + aM ¥ Ry g2 8P 0V 07 (9.285)

The longitudinal acceleration is obtained by projecting a’ on the direction of
velocity, that is

a(vy/\;l)kﬁk 2 ~ J/kjajgoo V=vGv - L
Y= —c(vyM - vy M) (TOv)" +
(vya) 2me/—vGo vy M 2 Ame (vy M) (THv)
K .
207G (Vyv) + a(vy M)iS* Rapo:n SP7 v v, (9.286)

where SF = S""Rﬂmﬁv”v”‘ (SOv)P. As the speed of the particle closes to the critical
velocity, the longitudinal acceleration diverges due to the first term in (9.286). In
resume, assuming that MPTD-particle sees the original geometry g,,,, we have a
theory with unsatisfactory behavior in the ultra-relativistic limit.
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Let us consider the second possibility, that is we take G, to construct the
three-dimensional geometry (6.140)—(6.143). With these definitions we have, by
construction, —xGx = (d“;’o )2(c? — (vyv)), so the critical speed coincides with
the speed of light. In the present case, the expression for three-acceleration can
be obtained in closed form for an arbitrary curved background. Taking T = x° the
spatial part of (9.275) implies

dt\"" d v fi(v)
= , 9.287
(dxo) dx® |:\/c2—vyv:| Ve —vyv ( )

where, from (9.276), f* is given by

, R B (SOv)°
£ = asie | Retet SO gpn R0y [0 -
2me/c? — vyv
. 2 .
I (Gyv o'y — Ve =y (TOv)' . (9.288)
dmc
Equation (9.287) is of the form (6.162), so the acceleration is given by (6.171)
and (6.172) where, for the present case, y; = G;j — Gg;(’j

o 1 di\"" S (vd ,
d = it + Faeytol + 1 (4) [ ooy = T 0.289)
2 \ dx? c?

1
vya = (1 - VC);V) |:(V)’)i[fi(v) + TMigy)v*'] + ; (j):o) (vaoyv):| :

(9.290)

With f given in (9.288), the longitudinal acceleration vanishes as v — c.

Let us resume the results of this section. Assuming that spinning particle probes
the three-dimensional space-time geometry determined by the original metric g, we
have a theory with unsatisfactory ultra-relativistic limit. First, the critical speed,
which the particle can not overcome during its evolution in gravitational field,
can be more then the speed of light. Second, the longitudinal acceleration grows
up to infinity in the ultra-relativistic limit. Assuming that the particle sees the
effective metric G(S) as the space-time metric, we avoided the two problems. But
the resulting theory still possess the problem. The acceleration (9.289) contains

the singularity due to fi ~ NE 1( . that is at v = c¢ the acceleration becomes
c?—(vyv

orthogonal to the velocity, but remains divergent. We conclude that MPTD-
equations do not seem promising candidate for description of a relativistic rotating
body.
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9.10.4 Rotating Body with Gravimagnetic Moment k =1

The unexpected behavior of MPTD-particle originates from the fact that variation
rate of spin (9.266) diverges in the ultra-relativistic limit, VS ~ «/'lG" and

contributes into the expression for acceleration (9.286) through the tetrad field 7(S).
Remarkably, for the non minimal interaction with k = 1, the undesirable term in
Eq. (9.245) vanishes. Besides this implies T“V = 6*,, Gy = guv, and crucially
simplifies the equations of motion.'” The Hamiltonian equations (9.232)—(9.234)
read

m,c

€ = piy ezt (9.291)
v —xgx
1, ., gk
VP, =— 0,i — V,.(S6), 9.292
" G 32m,c w(56) ( )
VS — — \/_ng (QS)[P-V] + ZP[M).CV], (9.293)

r

while the Lagrangian equations are composed now by the equation for trajectory

i 1 L
N A T e (9.294)
V—xgx 4c 32m,c?
and by the equation for precession of spin-tensor
VR i) | il
VSHY = — (08) M 4 2cxHZM. (9.295)
4m,c

These equations can be compared with (9.265) and (9.266). In the modified
theory:

1. Time interval and distance should be unambiguously defined within the original
space-time metric g,. So the critical speed is equal to the speed of light.

2. Covariant precession of spin (9.295) has a smooth behavior, in particular, for
homogeneous field, VR = 0, we have V§ ~ N —kgx contrary to V.S ~ \/ligk in

the Eq. (9.260).

3. Spin ceases to affect the trajectory in ultra-relativistic limit: the trajectory of
spinning particle becomes more and more close to that of spinless particle as
v — c. Besides, the spin precesses with finite angular velocity in this limit.

10Besides S*'P, = 0, there are known others supplementary spin conditions. In this respect we
point out that the MPTD theory implies this condition with certain P, written in Eq. (9.258).
Introducing k, we effectively changed P, and hence changed the supplementary spin condition. For
instance, when x = 1 and in the space with VR = 0, we have P* = \/f". X instead of (9.258).

gk
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4. Even in homogeneous field we have modified dynamics for both x and S. The
Eq.(9.294) in the space with homogeneous curvature has the structure similar
to (1.309), hence we expect that longitudinal acceleration vanishes as v — c. Let
us confirm this by direct computations.

To find the acceleration, we separate derivative of the radiation mass m, and write
Eq. (9.294) in the form

d » - (9.296)
dr | /—xgx|  /—igk’ ’
where the force is
ho— _ I"a'ﬂ_‘/_kgx TR gk W
ff= Faﬁx X 4, ghLx" + 32m§c2v (S6) +
VEEG (9.297)
my m,

While this expression contains derivatives of spin due to m,-term, the resulting
expression is non singular function of velocity because VS is a smooth function.
Hence, contrary to Eq.(9.276), the force now is non singular function of velocity.
We take T = x° in the spatial part of the system (9.296), this gives

( di )—‘ d v _ o (9.298)
dx® dx® | \/c2 — (vyv) Ve = (vyv) .

where f7(v) is obtained from (9.297) replacing ¥* by v* of Eq. (6.145). This system
is of the form (6.162), so the acceleration is given by (6.171) and (6.172)

L 1 -1 . .
d = iif + Pt + () [war = VL 0.200)
2 \ dx? c?

dt
dx?

1
vya = (1 N VVZV) VYlf () + Ciuy)v*o’] + : (Vdoyv) |-
c 2

(9.300)

With the smooth f? given in Eq.(9.297), and as v — ¢, the acceleration (9.299)
remains finite while the longitudinal acceleration (9.300) vanishes. Due to the
identity (6.169), we have (vy);f — —(vy)["4px*3P, that is the trajectory tends
to that of spinless particle in the limit.

In resume, contrary to MPTD-equations, the modified theory is consistent with
respect to the original metric g,,. Hence the modified equations could be more
promising for description of the rotating objects in astrophysics.
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9.11 One-Particle Quantum Mechanics of a Spinning
Particle, Canonical Formalism

As we have seen above, on the classical level our vector model adequately
describes spinning particle in an arbitrary gravitational and electromagnetic fields.
Moreover, taking into account the leading relativistic corrections in quantized theory
with interaction, we have explained the famous one-half factor in non-relativistic
Hamiltonian (9.114), see Sect.9.7.3. Now we turn to a systematic discussion of our
model on the quantum level. In this section we construct quantum mechanics of the
free theory (9.109) in the physical-time parametrization. This yields Schrodinger
equation (9.328), with the Hamiltonian c\/p2 + (mc)? acting on a space of two-
component wave functions. Note that all the solutions have positive energy. The
novel point is that the naive expressions, ' and o, do not represent operators
of position and spin of our theory. This is due to the second-class constraints
pw = pm = 0 of the relativistic theory, which guarantee the supplementary
spin condition S#’p, = 0. The constraints should be taken into account with
help of Dirac bracket, this implies a deformation of classical brackets which are
subject to quantization. In the result, the position and spin of a spinning particle are
represented by the operators (9.324) and (9.99). The remaining sections are devoted
to establishing of Lorentz covariance of the obtained quantum mechanics.
In the free Lagrangian (9.109) it is convenient to rescale @ — ~/Aw, then

1
S = / dr [xzvx + AoNo — \/ [iNx 4+ AoN®]* — 4)&()'cNa'))2} -

A5, o

2m c+ . (9.301)

Repeating the computations made in Sect. 9.7.1, we arrive at the Hamiltonian action
[ dt px + w& — H with the Hamiltonian

H:A(p2+m2c2)+;(7r2— 0{)+

2 w?
Aa(wm) + A3(pw) + As(pw) + Aopa- (9.302)
This can be compared with (9.129). Recall that the constraint 72 — a‘fz =0

arises as a secondary constraint, from the condition of preservation in time of the
primary constraint wr = 0. The Hamiltonian action provides both equations of
motion and constraints of the vector model in an arbitrary parametrization. Using
the reparametrization invariance, we take physical time as the evolution parameter,
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x()

T=" =1, then the Hamiltonian action reads

. A
Sy = /dt cpo + pix' + w0t — 5 (—pg +pi2 + mzcz) —

1 o

(7= %) = (9.303)
w

We can treat the term associated with A as a kinematic constraint of the variational

problem. According to Sect. 1.6.2 we solve the constraint,

—po=p" = \/p% + m2c?, (9.304)

and substitute the result back into Eq. (9.167), this gives an equivalent form of the
functional

. 1 o
SH=/dtpijc‘+nMd)"—[c\/p%+m2c2+2(712— 2)+
1)

Aoyt + Aspuor + /\4])“7{“] , (9.305)

where the substitution (9.304) is implied in the last two terms as well. The sign
in front of the square root in (9.304) was chosen according to the right spinless
limit (8.183) and (8.185). The expression in square brackets is the Hamiltonian.
The variational problem implies the first-class constraints 7, = wn = 0, Ts =

7% — a‘j‘z = 0 and the second-class constraints

7’3 — _poa)o +pia)i = O’ T4 = —pono +pi7[i = 0. (9306)

In all expressions below the symbol p° represents the function (9.304).
The action (9.305) implies the Hamiltonian equations

d i i d i
v cpo, - (9.307)
dt p dt
a)M
o* = 7" 4+ Lot + Agpt, at =— y Aot — Aspt. (9.308)
1)

Equations (9.307) describe free-moving particle with the speed less then speed of
light
i P

=c \/( . p2’ p' = const. (9.309)
mc

X =xy+0t v
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The spin-sector variables have ambiguous evolution, because a general solution
to (9.308) depends on an arbitrary function A,. So they do not represent the
observable quantities. As candidates for the physical variables of spin-sector, we
can take either the Frenkel spin-tensor,

dsm’
= 0, S*p,=0, §*=6h% (9.310)

or, equivalently, the Pauli-Lubanski vector (9.96)

dst 3h2

=0, s'p, =0 s*=" . 9.311
dt ST Py N 4 ( )
To take into account the second-class constraints 75 and T4, we construct the Dirac
bracket (9.172). The non vanishing Dirac brackets are

o ijk Si o 3
R O 9312)
mcp 2mcp
{S“V,Saﬁ}D =2 <g06[MSV]/3 _ gﬁ[MSV]Dt) , (9.313)
1 I
WSy = (s ped PO pely 9.314)
(mc) p
0
(s sy = b ek (sk - (Spgpk) , (9.315)
mc Do
. . (spp"\ P’
W, ep = (s‘ - , (9.316)
py ) (me)?
where
4V
g =nr =Pl 9.317)
P

After transition to the Dirac brackets, the second-class constraints can be used as
strong equalities. In particular, we can present s° in terms of independent variables

0 (sp)

= , 9.318
VP2 + (me)? o
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and in the expression for Hamiltonian (9.305) we can omit the last two terms.
Besides, we omit the second and third terms, as they do not contribute into equations
for observables. In the result, we obtain the physical Hamiltonian

Hpy, = cp® = c/p? + (mc)?. (9.319)

As it should be, the Eqgs. (9.307), (9.310) and (9.311) follow from physical Hamil-
tonian with the use of Dirac bracket, z = {z, H,,}p, where z = (p, x, S*¥, s).

Both operators (except p;) and abstract state-vectors of the physical-time formal-
ism we denote by capital letters, Z, Y (t,x). In order to quantize the model, classical
Dirac-bracket algebra should be realized by operators, [Z:, 2;] = ih {z, Zj}[)izi_)ZAi.
To find the quantum realization, we first look for classical variables which have
canonical Dirac brackets, thus simplifying the quantization procedure. We introduce
the variables ¥/, p/ = p/ and 5; as follows [78]

iy . 1 . ~ PjPk
¥ =X - MM pm, 5= (5' — / )sk, 9.320
me(p+m) S T TR o0y ey )T G320
then the inverse transformation is
S 1 I PPk ~
J — 3/ + ejkm s =16 —+ / k. 9.321
v me(p® + mc) kP g ( KT me(p® + me) s )

Note that in the expression for x and X we can replace 5 <> s. We point out
that the original and new variables obey the same equations of motion (9.307)
and (9.311), so they are indistinguishable in the free theory. In an interacting theory
their dynamics will be different.

The new variables have a canonical algebra with respect to Dirac brackets

#F3p=0, Fphp=8, #F5p=0 . Fp=e" % (9322

Besides, the constraints (9.311) on s* imply §% = ih2. So the corresponding

operators S/ should realize an irreducible representation of SO(3) with spins = 1/2.
Quantization in terms of these variables becomes straightforward. The Hilbert space
consists from two-component functions ¥, (t, x), a = 1, 2. A realization of the Dirac
brackets by operators has the standard form

. 2. . . s, h .
pj — pj = —ihd;, ¥->X=x, §—98= 20’. (9.323)

The conversion formulas (9.321) between canonical and original Varlables have
no ordering ambiguities, so we immediately obtain the operators X/ and SQ,L
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corresponding to position and Pauli-Lubanski vector of classical theory
i Si h

e (9.324)

h (o),  (9.325)

> 8y =
 ORL 2mc

. 1 . ~
Jj A /\j SO —
2 (U + mc(p°® + mc) (bo)p ) TP

where the expression for S’?,L follows from (9.318) and (9.321). Using Egs. (9.97)
and (9.78) relating the Pauli-Lubanski vector with Frenkel spin-tensor and three-
vector of spin, we obtain their quantum realization as follows:

. ho S T 1
(L k5 0 S — ik [ 504, — po)pi |, 9.326
o€ Piok e \P % (50 4 e (Po)pr ( )

§="targ, = " (5o L poyp (9.327)
T4 T e \P ([?O—i—mc)p P '

The energy operator (9.319) determines the evolution of a state-vector according to
the Schrodinger equation

dw
i = VP2 + (me)?Y, (9.328)

as well the evolution of operators by Heisenberg equations. The scalar product we
define as follows

(@, ®) = / Ex P, (9.329)

then
P=v'y, (9.330)

is a probability density for X'. We emphasize that an abstract vector ¥ (¢, x) of Hilbert
space represents an amplitude of probability density of canonical coordinate ¥'.
The wave function for the original coordinate x' should be constructed according
to known rules of quantum mechanics.

Let us introduce the operator p° = —i# dfo. Then the Schrodinger equation reads
(?°+ /P2 + (mc)?)¥ = 0, and applying the operator p° — /P2 + (mc)? we obtain
Klein-Gordon equation

@ +mPAHW =0, PP =p"p,. (9.331)
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Table 9.3 Position/spin operators for the relativistic electron [66]

10 , 0 o : ho
B = ol = .G X = o )
0—1 ol 0 0 o

Dirac representation, i2d,%p = c(a'p; + mcB)¥p

%) ¥ g (ol =)
A,‘J(d) anllcl (mzczZ‘j — imcﬁeﬂdakﬁl)
Af;(e) = ¥y ¥+ zf;o ([ﬂa/ + ,;o+lmc€jkml3k2m - ;,o(;,olJr,,,C) iBo*pp )
A,‘,(E) = SﬂFW 2;:0 (ch‘j — imBeMayp; + ;i’k’f’c)
)2’1‘3(6) ¥+ 2(;'0)2 (e Py X, + imcBat)
Sﬂl"(c) z(ﬁtb)z (m*? &7 — imeBeMap + Z*pip)
Table 9.4 Position/spin operators for the relativistic electron [66]
i
(i) o (00)

F-W representation, 70, = cBp°¥ Vector model
X0 ¥ = ity € P Position ¥ — X/, (9.324)
Shar BT = ok P 5 Frenkel spin ¥ — §/, (9.327)
)A({D(e) = }/.FW ¥ ¥ — )Q(j
Sy = Siow h i V9
Xi’(c) ¥+ zﬁo@oh+mc)€jkml;k2m
$hio b (mcff + @oimc)ﬁ"fkﬁf) s — §),;,(9.325)

Hence all solutions to the Schrodinger equation form the subspace of positive-
energy solutions to the manifestly-covariant Klein-Gordon equation for a two-
component wave functions.

Let us compare our operators with known in the literature. Pryce [66] studied
possible candidates for observables of the Dirac equation, they are marked as
P(d), P(e) and P(c) in the Tables 9.3 and 9.4. He wrote his operators acting on
space of Dirac spinor ¥p, see Table 9.3. Foldy and Wouthuysen [67] found unitary
transformation which maps the Dirac equation i#0,%p = c(a'p; + mcB)Wp into the
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pair of square-root equations i#9,¥ = cBp’¥. Applying the FW transformation,
the Pryce operators acquire block-diagonal form on space ¥, see Table 9.4. Our
operators act on space of solutions of square-root equation (9.328), so we compared
them with positive-energy parts (upper-left blocks) of Pryce operators in the
Table 9.4. . .

Our operators of canonical variables X = x and § correspond to the Pryce (e)
(~ Foldy-Wouthuysen ~ Newton-Wigner) position and spin operators.

However, operators of position ¥’ and spin § of our model are X/ and §. They
correspond to the Pryce (d)-operators.

Operator of Pauli-Lubanski vector S‘jPL is the Pryce (c) spin (we remind the
normalization of our &/, see (9.96)).

9.12 Relativistic Covariance of Canonical Formalism

While we have started from the relativistic theory (9.301), working in the physical-
time parametrization we have lost, from the beginning, the manifest relativistic
covariance. Whether the quantum mechanics thus obtained is a relativistic theory?
In particular, are the scalar product (9.329) and probability (9.330) the Lorentz-
invariant quantities? Are the mean values (¥, X'®) and (¥, S'®) the Lorentz-
covariant quantities? To answer these questions, we follow the standard ideology
of quantum theory. First we associate with our theory the manifestly covariant
Hilbert space of representation of Poincare group. Second, using the covariant
formulation (9.302) of the classical theory, we find quantum realization of basic
variables by means of covariant operators acting in this space. The resulting
construction is called a covariant formalism. Third, we establish a correspondence
between the canonical and covariant pictures and show that the scalar products,
mean values and transition amplitudes of canonical formalism can be computed
using the covariant formalism. This proves the relativistic covariance of quantum
mechanics constructed in Sect.9.11.

As we saw above, state-vectors of spinning particle belong to space of solutions
to the covariant two-component Klein-Gordon equation. So it is natural to construct
the covariant formalism on this base. We do this in the next subsection. The
covariant formalism based on the space of solutions to the Dirac equation will be
discussed in Sect. 9.12.4.

We emphasize that quantum mechanics of Sect. 9.11 already has a clear physical
interpretation: the state vector ¥ describes a spinning particle with positive energy
in X-representation, the operator X represents a position, S represents a spin and so
on. Therefore there is no need to search physical interpretation of the covariant
formalism, and we will not do it. We consider the covariant formalism as an
auxiliary construction that has the only aim to prove the relativistic covariance of
the quantum mechanics formulated in Sect. 9.11.
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9.12.1 Relativistic Quantum Mechanics of Two-Component
Klein-Gordon Equation

We denote states and operators of covariant formalism by small letters, to distin-
guish them from the quantities of canonical formalism.

According to Wigner [49, 69, 70], with an elementary particle in quantum-field
theory we associate the Hilbert space of representation of Poincare group. The space
can be described in a manifestly covariant form as a space of solutions to Klein-
Gordon equation for properly chosen multicomponent field ,(x*). The space of
one-component fields corresponds to spin-zero particle. It is well-known, that this
space has no quantum-mechanical interpretation. In contrast, two-component Klein-
Gordon equation does admit the probabilistic interpretation. As we show below, the
four-vector (9.340) represents positively defined conserved current of this equation.
Using the current, we can define an invariant scalar product and hence the covariant
rules for computing mean values of covariant operators defined on this space.

The two-component Klein-Gordon equation has been considered by Feynman
and Gell-Mann [79] to describe weak interaction of spin one-half particle.

Using the Pauli matrices (9.2) we form the two sets

ot = (1,0, = (—-1,0"). (9.332)

All the matrices are hermitian and obey the following rules of permutation of
indexes:

oto" = —o"o" + 29", oto" = —o"ck + 29", (9.333)
Further we define two more sets of 2 x 2-matrices
otV = —;(0“6" —0'6") = (0, —io’, io’, o),
" = —;(6"0" —&V0k) = (0,i0", —ic’, €™ a*). (9.334)

We have shown the explicit form of their components 00, 0i, {0 and ij. They are
related by hermitian conjugation, 0**" = 5", and obey the identities

GYM = aheY —2inlhEY),  o%6M = oMo — 2in*teV. (9.335)
Using them, we verify that both #” and 6*” obey SO(1, 3)-algebra, for instance
[0, 0% = 2i(p**o"F — pPo — peohh 4 pPohe), (9.336)

and thus can be taken as generators of linear representation of the Lorentz group
on space of two-component complex columns ¥ = (Y, V) called the Weyl



426 9 Classical and Quantum Relativistic Mechanics of a Spinning Particle

spinors. Under an infinitesimal Lorentz transformation with the parameters w”,,
Sxt = wh,x", the column ¢ transforms as follows:

Sy = ;a),wU’wI//, then y' = —il/ﬁc_r’”w,w. (9.337)

Note that the contraction 1/f1T v+ 1//; Y, is not an invariant of the transformation.
Using (9.335), we verify that the quantity ¢ "5* v is a four-vector.'! If v, is a vector,
the combination y = v,6%y transforms with help of 6#*, §y = iwwc'r’“’ X, then
Syt = —iﬂo’“’ww. So the quantity (vﬂéﬂqb)To“(va&“lp) turns out to be a vector.

Introducing the space of two-component complex functions ¥ (x*) = (Y1, ¥»),
the generators of Poincaré transformations in this space read

1 [ ad
U=y o = (9.338)
i

On the Poincaré-invariant subspace selected by two-component KG equation
P>+ m*)y =0, (9.339)

we define an invariant and positive-defined scalar product as follows. The four-
vector

1
I'y.gl =, ,@pv)'o"app —v's"e, (9.340)

represents a conserved current of Eq. (9.339), that is d,/* = 0, when ¥ and ¢
satisfy to Eq. (9.339). We define the scalar product by means of invariant integral

1
- éuvaﬁdxvdxadxﬁs (9.341)

V. 9) = / agur. a2, =-

2

computed over a space-like three-surface §2. Using the Gauss theorem for the four-
volume contained between the surfaces §2; and £2,, we conclude that the scalar
product does not depend on the choice of the surface, f 2 = f 2, In particular, it
does not depend on time. So we can restrict ourselves to the hyperplane defined by
the equation x = const, then

W.¢) = / dxI’. (9.342)

""Under the finite transformations x* = A", (w)x", ¥’ = D(w)¥ and ¥'" = ¥D'(w), where
D = e+®w" the G* is an invariant tensor, that is (DTEHD)A"I, = ¢,. For the proof, see [59, 61].
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Besides, the scalar product is positive-defined, since

1
Pyl =, @) 'ehy +y'y >0. (9.343)

So, this can be considered as a probability density of operator X = x. We point out
that transformation properties of the column ¥ are in agreement with this scalar
product: only if v transforms as a (right) Weyl spinor, the quantity /* represents a
four-vector.

Now we can confirm relativistic invariance of scalar product (9.329) of canonical
formalism. We write

1 At a
W §) = / oGPV aPg+ T =
T
/d%[( ! 6;3—1—1’) w} ( ! 6ﬁ+i)¢ = (Wy, Wo), (9.344)
mc mc

_ lza : -1 _ 1 (:on
where the operator W = 6p + i has an inverse, W™ = 250 (iop + mc). The
operator 1310 is well-defined in momentum representation, see the next section.

Note also that W and W~! commutes with the Schrodinger operator (9.328).
Equation (9.344) suggests the map of canonical space {¥} onto subspace of
positive-energy solutions of covariant space {¥/}, W™ : {¥} — {y}, v = Wy,
The map respects the scalar products (9.329) and (9.342), and thus proves
relativistic invariance of the scalar product (¥, @), (¥, @) = (W, Wo) = (¢, ¢).
We note that map W is determined up to an isometry, we can multiply W from the
left by an arbitrary unitary operator U, W — W’ = UW, U'U = 1. Here t denotes
Hermitian conjugation with respect to scalar product ( , ). It is convenient to remove
the ambiguity [84] by requiring the Hermiticity of the operator. Positively defined
operator WIW > 0 has a unique square root, V = (W'W)!/2. We write identically
W = PV, where P = WVl is unitary, so we can omit P and use V instead of W.

+ 250 _ A
We compute WIW = (m‘i a2 then
v=t L G md v 1 [ Pl (9.345)
= . op) + mc|, = R mc — op|, .
me \ p° + me 2P0 + me)
and final form of the map between canonical and covariant spaces is
VIl = ), v =V then (W, @) = (VYL V) = (¥, ¢).  (9.346)
The transformation between state-vectors induces the map of operators

v=lov =3, (9.347)
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acting in spaces ¥ and ¥ . In the next section we use the covariant formulation of the
vector model to construct manifestly covariant operators which represent our basic
variables in the space . Then we show that the map (9.347) relates operators of
canonical and covariant formalism, thus establishing covariant rules for computation
of mean values

(W, 00) = (¥, 49). (9.348)

9.12.2 Covariant Operators of Vector Model

Let us return to the covariant formulation (9.301) and (9.302) of the classical
theory. To take into account the second-class constraints 73 = p,0* = 0 and
Ty = pyn* = 0, we construct the Dirac brackets (9.172) of the variables x*, p#,
S*Y and s*. The non vanishing Dirac brackets are as follows.

Spatial sector:

1
Wty == LS W= =0 (9.349)
Frenkel sector:
{SHV, 8Py = 2(ghasvP — ghPgve _ gvagub 4 gvBgnay (9.350)
noqopy _ 1 qule gl
(o, $) =, SHEpPL (9.351)
p
Pauli-Lubanski-sector:
1 1
{st,s"} = — e“"“ﬁpasﬁ = _S*, (9.352)
V-r 2

s'pt
P

stp” 1
r 4y/-p?

In the Eq.(9.350) it has been denoted g, = §*, — ";f” .

{xh s") = P S, — (9.353)

In the covariant scheme, we need to construct operators x*, p/, j*¥, s#* whose
commutators

[1.G2] = if {q1. 42}plyp, » (9.354)
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are defined by the Dirac brackets (9.349)—(9.353). Inspection of the classical

. 2 . .
equations §? = 32 and p? + (mc)? = 0 suggests that we can look for a realization
of operators in the Hilbert space constructed in Sect.9.12.1.

With the spin-sector variables we associate the operators

h

st S = " Pp 0up. (9.355)
PL 4\/—132 B
R 2 A pt(op)’ —p'(op)*
SW s = B p 3y = hott +p P TPIOPT g 356,

e 7
They obey the desired commutators (9.354), (9.352), (9.350). To find the position
operator, we separate the inner angular momentum $* in the expression (9.338) of

Poincaré generator

Y P P P

- ! Py T (9357
2 2p> 2 2p? 4

This suggests the operator of “relativistic position”

. . ho .
= 3 =3+ 22 (op)*, (9.358)

where ¥*y = x*1. The operators p,, = —ihd,, (9.355), (9.356) and (9.358) obey
the algebra (9.354), (9.349)—(9.353).

9.12.3 Proof of Relativistic Covariance

Relativistic invariance of the scalar product (9.329) has been already shown in
Sect.9.12.1. Here we show how the covariant formalism can be used to compute
mean values of operators of canonical formulation, thus proving their relativistic
covariance. Namely, we confirm the following

Proposition Let

can

LAY R
HY ={¥(X); ih = VP2 + (me)2w, (W, @) = /di”qub 1, (9.359)



430 9 Classical and Quantum Relativistic Mechanics of a Spinning Particle

be Hilbert space of canonical formulation and

Hep = {0 (57 4+ 1m0y = 0, (4. 8) = / 2,1,
2
1

IL =
(mc)?

@pv)Totapp —yiate }, (9.360)

be Hilbert space of two-component KG equation. With a state-vector ¥ we associate
v as follows:

1

= —op]. 9.361
2 50 + ey ) (9.361)

Then (¥, @) = (Y, ¢). Besides, mean values of the physical position and spin
operators (9.324)—(9.327) can be computed as follows

(0, X'0) = Re(y.3,¢), (W, 57®) = (v,39),

(W, S'p) = ie'ﬁfk(w, %), (9.362)

where )?ip and 59 are spatial components of the manifestly-covariant opera-
tors (9.358) and (9.356).

It will be convenient to work in the momentum representation, ¥ (x*) =

/ d*pyr(pt)es?. Transition to the momentum representation implies the substi-
tution

ad
, (9.363)

D — Pu, X, — ih
Pu = Pu w ot

in the expressions of covariant operators (9.355), (9.356), (9.358) and so on.
An arbitrary solution to the KG equation reads

W(l, X) = / d3p ('W(p)e;‘wpxo + I)0_(p)e—t’;a}l,xo) e_f‘;(px),
P’ = —po = w, = VP + (mc)?, (9.364)

where 1 (p) and _(p) are arbitrary functions of three-momentum, they correspond
to positive and negative energy solutions. The scalar product can be written then as
follows

d3
W) =2 “LP [y Gpep - viop)g-]. (9.365)
m=c
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We see that this scalar product separates positive and negative energy parts of
state vectors. Since our classical theory contains only positive energies, we restrict
our further considerations by the positive-energy solutions. In the momentum
representation the scalar product (9.342) reads through non-trivial metric p and the
through V as follows:

(W.$) = (W W) = (. W Wg) = / PoyTop = (V. V) = (0. ),

2% Gp), (9.366)

P= 22
Now our basic space is composed by arbitrary functions v (p). The operators %/,
s# and §*¥ act on this space as before, with the only modiﬁcation that p%v (p) =
w, V¥ (p). The operator 0 and, as a consequence, the operator x° »p» do not act in this
space. Fortunately, they are not necessary to prove the proposition formulated above.

Given operator A we denoted its hermitian conjugated in space H as Al
Hermitian operators in space H.\, have both real eigenvalues and expectation values.
Consider an operator a in space H.,, with real expectation values (¥,ay) =
(¥, ay)*. Tt should obey a'p = pa. That is, such an operator in H,,, should be
pseudo-Hermitian. We denote pseudo-Hermitian conjugation in H,,, as follows:
a. = p~'ap. Then pseudo-Hermitian part of an arbitrary operator & is given by
1@+ ac).

Let us check the pseudo-Hermiticity properties of basic operators. From the
following identities:

(O-ILV)Tp =p (O.ILV + 13; (O’p)(pﬂﬁ'v _pl)é_ﬂ)) ,
@"p) o = p (6"p, + 2i[p" — (op)5"])

, , ih m’c? ,
M) p=p(3, + I—plGp)|) . 9.367
@'o=p (8 o, | 7 =r6D)) 0367
we see that operators o#¥ and x/ are non-pseudo-Hermitian, while operators p#,

8y, §"V and orbital part of 7 are pseudo -Hermitian.
The transformation between state-vectors induces the map of operators

V'OV =§, then (¥, 0®) = (V.§¢). (9.368)

Due to Hermiticity of V, Vi =V, pseudo-Hermitian operators, g'v: = v,
transform into Hermitian operators QJr Q For an operator ¢ which commutes
with momentum operator, transformation (9.347) acquires the following form

A 1 1
_losah— 5oV GD
0= 2(q +4q") 2@, + me) G—q"Gp). (9.369)
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Using this formula, we have checked by direct computations that covariant operators
p, 5V and 5%, transform into canonical operators p, $** and Sl, (recall that the
spatial part of §#’, §' = le*Sy represents the classical spin §'). This result
together with Eq. (9.348) implies that mean values of these operators of canonical
formulation are relativistic-covariant quantities.

Concerning the po§ition operator, we first apply the inverse to Eq. (9.347) to our

canonical coordinate X' = i% aii in the momentum representation

o 2. 2. 2. 0 ihn (oD
oovikv=k+v o xw=in’ — AP0OP)
' 2mew,(w, + mc)

L ’ it (9.370)
o €"aipy. .
2w,  2mc 2me(wy 4 mce) iPk

Our position operator (9.321) then can be mapped as follows:

' ~ 9 1 - 9 ihp'(Gp)
¥, =vlin, Sppe |V =ik .
W ( o' T me(w, +me)© ”L”’k) "op T 2,
ihp'  ih R
2w, 2p2wPU + 2pz€] PjOk- (9.371)

We note that pseudo-Hermitian part of operator 5c£p coincides with the image 3/,

i, = ; (fcip +[5,].)- (9.372)

Since %, has explicitly covariant form, this also proves covariant character of
position operator X'. Indeed, (9.347) means that matrix elements of X' are expressed
through the real part of manifestly covariant matrix elements

(0.X'P) = (¥, &9) = Re(¥,%,,4). (9.373)

In summary, we have proved the proposition formulated above. It could be
formulated also as follows. The operators §¥ and i7,, which act on the space of
two-component KG equation, represent manifestly-covariant form of the Pryce (d)-
operators.

Table 9.5 summarizes manifest form of operators of canonical formalism and
their images in covariant formalism.
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Table 9.5 Operators of canonical and manifestly covariant formulations in momentum represen-
tation

Canonical formalism ¥ (p) Covariant formalism v (p)
pi—Dbj pj pj
St § zf"w (C!)pO'i — (w,,-:-mc) ([_58-)171) 2?:2’;2 (a)p (])O')p — i€imp™o )
X=X, ik 3' - 2mc(wil+mc)€1jkpjo-k ih aif 1212(5{7) + lhp - zwp" "+ zeijkl’j”k
i — 59 ,,’,‘Cé"k (wpak (optmo) (135)pk) 7% it (), 04 — (pv)pk i€mnp™ ™)
S0 — 301 —,,’,‘C pjor — b € (0,01 — i€gup™ ") p;
S = S, 2me r (p0) z,,,c h (p0)
Sop > S B (07 e BOW) S (wp0" + i€ por)

9.12.4 Relation with Dirac Equation

Here we demonstrate the equivalence of quantum mechanics of two-component
Klein-Gordon and Dirac equations. As a consequence, probabilities and mean val-
ues of canonical operators (9.324)—(9.99) can be computed, using an appropriately
constructed covariant operators on the space of Dirac spinors.

Let us replace two equations of second order, (9.339), by an equivalent system
of four equations of the first order. To achieve this, with the aid of the identity
b = o"p,6Vp,, we represent (9.339) in the form

o' puG pur + m*y = 0. (9.374)

Consider an auxiliary two-component function § (Weyl spinor of opposite chirality),
and define evolution of v and £ according the equations'?

0" pu(@ o)V + m* Y =0, (9.375)
(6" py)¥ — mcE = 0. (9.376)

That is dynamics of ¥ is determined by (9.374), while _é accompanies V: ,g
is determined from the known v taking its derivative, § = ’;C (op)y. Evi-
dently, the systems (9.339) and (9.375), (9.376) are equivalent. Rewriting the
system (9.375), (9.376) in a more symmetric form, we recognize the Dirac equation

(—6()“13uau()ﬁﬂ)(1/§/)+mc(l/g): L or (b + mo)Wow = 0,

(9.377)

2Note that 5 can be considered as conjugated momentum for v, then the passage from (9.374)
to (9.377) is just the passage from a Lagrangian to Hamiltonian formulation. A similar interpreta-
tion was developed for the Schrodinger equation in Sect. 2.9.1.
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for the Dirac spinor Ypy = (w, £ ) in the Weyl representation of y-matrices

o (01 i _( 0 0o
yW_(lO , w=\_gsio) (9.378)

This gives one-to-one correspondence among two spaces. With each solution v to
KG equation we associate the solution

o = (1 gy )

to the Dirac equation. Below we also use the Dirac representation of y-matrices

0 10 i 0 O'i
y (O o r={_,% (9.379)

In this representation, the Dirac spinor corresponding to ¥ reads

L) = (e
1= 5 (1) (o) = vane ([ oy ) 0350

The conserved current (9.340) of Klein-Gordon equation (9.339), being rewritten in
terms of Dirac spinor, coincides with the Dirac current (9.71). Thgrefore, the scalar
product (9.341) coincides with that of Dirac, (¥p, @p)p = f d3xlI/D)/0lI/D

1"V, Yo = Yp[ynly  plyal.  then (¥, ¢) = (¥plv], ¥nlp])p. (9.381)

This allows us to find manifestly-covariant operators in the Dirac theory which have
the same expectation values as $*” and &/, . Consider the following analog of $*” on
the space of four-component Dirac spinors

Y'Pa — D"V Pa

ALY v ﬁﬂ
5p =hy*™ +h Y

lh ~ v AV ~
=hy" + o @"y" =p"v") (vp),
(9.382)

where y*V = é()/")/" — py"y*). This definition is independent from a particular
representation of y-matrices. In the representation (9.379) this reads

y o™ 0
48 —( 0 (gwy)’ (9.383)



9.12 Relativistic Covariance of Canonical Formalism 435

and can be used to prove the equality of matrix elements

W[y 15y PplgDp = (V.5 ¢), (9-384)

for arbitrary solutions ¥, ¢ of two-component Klein-Gordon equation. The covari-
ant position operator can be defined as follows:

hy"py ih(y> — 1)p* ihy" ihy p"

A o I -

Xp=xt4 7 . =xt+ + . 9.385
D 2p2 2p2 2p2 (Vp) 2p2 ( )
where ys = —iy®y'y?y3. Again, one can check that matrix elements in two theories
coincide

(Wp[y13pPpldDp = (V. 3,9). (9-386)

As a result, the manifestly-covariant operators fvg” and fcg of the Dirac equation
represent position x and spin S of the spinning particle . Their mean values can be
computed as follows

- 1 . .
(w.X'0) = Re(Wo[y].[%, +35120@)o.
. §0) = , WLy, h@nl Do 9.387)

We emphasize that the observables of vector model have an expected behavior
both on classical and quantum level. In particular, the position operator X' does
not experiences Zitterbewegung. Note also that the covariant operator (9.385), that
represents the position of spinning particle in the Dirac theory, is different from the
naive expression used in Eq. (9.75).

For convenience, we collected our notation for different operators in the
Table 9.6.

The Map V and Foldy-Wouthuysen Transformation Our map V, that relates
canonical and two-component Klein-Gordon spaces, turns out to be in close relation
with the Foldy-Wouthuysen transformation. The latter is given by unitary operator

wp + mc + (Yp)
Urw =

= , 9.388
\/2((01, + mc)w, ( )
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Table 9.6 Classical quantities and their operators in canonical and covariant formalisms
i ~i 1 ~i N
(0. Xi) = Re(y.3},6) = Re(¥n[y]. [¥) + 3519p[¢)o.
(. 570) = (v.579),

W.§0) = |y 39) = | Pl eolgl)o

Canonical Covariant Covariant

Classical theory formalism, ¥ Klein-Gordon, ¥  Dirac, ¥p
Frenkel spin-tensor SHY,(9.83) 80 S (9.326)  §,(9.356) 5. (9.382)
Four-dimensional s*, (9.96) 8, 89,,(9.325) b, (9.355)
(Pauli-Lubanski)
spin-vector
Three-dimensional spin S, (9.78) .§i, (9.327) §i, (9.362)
Momentum Pu Di» (9.323) Pu Du
Position x* X, (9.324) X, (9.358) xp, (9.385)
Position with %, (9.320) )2(", (9.323)
canonical brackets
Spin with 5, (9.320) §i, (9.323)

canonical brackets

and relates the Dirac and four-component Klein-Gordon equations. Applying it to
the Dirac spinor ¥Yp[y], we obtain

Urwoly] = (V(;” ) - (“0’) (9.389)

That is the operator V is a restriction of Ury to the space of positive-energy right
Weyl spinors .

We completed construction of relativistic quantum mechanics for the vector
model of spinning particle. We emphasize once again, that we have not tried to
find an interpretation of negative-energy states presented in the covariant Klein-
Gordon and Dirac formalisms. The formalisms were considered as an auxiliary
constructions that allow us to prove relativistic covariance of the quantum mechan-
ics formulated in Sect. 9.11.
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Action
of first order, 129
Hamiltonian, 121
Lagrangian, 235, 240

B
Boost
of Galileo, 14
of Lorentz, 25
Bracket
of Dirac, 296
fundamental, 102
Poisson, 102
Poisson non canonical, 118

C
Canonical quantization, 297
Cauchy problem, 2
Center of mass, 259
Change of variables, 92
Charge, 110

functionally independent, 111
Christoffel symbols, 198
Closed two-form, 121
Configuration space, 37
Conjugate momenta, 98
Connection

affine, 206

Riemann, 198, 208
Conservation law, 110

of angular momentum, 5

of energy, 4

of momentum, 7

Conservative force, 3
Conserved quantity, 103, 110
Constraints

equivalent, 289

of first class, 289

holonomic, 54

kinematic, 54

primary, 273, 278

secondary, 274

of second class, 289

of second stage, 274, 280
Continuity equation, 128
Contraction of a moving body, 27

Conversion of second-class constraints,

343

Coordinate basis of tangent space, 217

Coordinates
of center of mass, 44
generalized, 37
special, 292
transformations, 240
Coulomb law, 67
Covariance, 13
Covariant derivative, 206
along the curve, 208
along the field, 208
Covariant equation, 210, 211
Curve, 204

D

Decrease of order of a system, 91-92

Dipole electric moment, 374, 390
Dirac constraints, 165

Distance, 220

Dynamical invariant, 110
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E
Energy
as a conjugated momentum, 307
kinetic, 3
potential, 3
total, 4
Equations
of continuity, 69
of Euler-Lagrange, 33
Hamiltonian, 98
invariant, 19
of Klein-Gordon, 422
Lagrangian, 33, 95
of Maxwell, 66
of normal form, 36
of Pauli, 368
of second stage, 280
of third-stage, 280
Euler-Lagrange equations, 95
Event, 19
space-like, 21

F
Field, 46
central, 5
potential, 3
First integral, 110
First order form of a system, 92
Fixation of gauge, 294

G
Galileo boosts, 244
Gauge
condition, 77, 295
of Lorentz, 77
symmetry, 321
unitary, 77
Generalized velocities, 95
General solution, 108
Generating function, 158, 159, 168
of canonical transformation, 140
Generator

of infinitesimal canonical transformation,

154
of local symmetry, 321
of Lorentz boost, 24
of rotation, 16
Geodesic equation
in canonical parametrization, 197

covariant under reparametrizations, 214

in dynamical parametrization, 224

Geodesic line, 197, 214
in canonical parametrization, 216
in natural parametrization, 216

reparametrization covariant equation,

214
Geometry
rainbow, 401
Group
of Galileo, 246
of Lie, 239
Gyromagnetic ratio, 355

H

Hamiltonian, 98, 278
complete, 273, 278
equations generalized, 118
extended, 332

Hamiltonization procedure, 99

Hamilton-Jacobi equation, 170

Hessian matrix, 35

Homogeneity
in space, 259
in time, 244
1

Inertial frame, 12
Integral invariant
of first order, 178
of the Poincaré, 179, 184
of the Poincaré-Cartan, 179
universal, 178
Integral of motion, 110
Interaction
minimal, 82
non minimal, 84
Interval
of Minkowski, 20
time-like, 21
Invariance
of action, 236
of the Poisson bracket, 139

J

Jacobi matrix, 93

K
Kaluza-Klein theory, 65
Kepler’s problem, 5, 245
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Lagrange bracket, 150
Lagrangian
action functional, 31
extended, 330
function, 29
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nonsingular, 95
singular, 221
Law
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Legendre transformation, 98
Leibnitz rule, 207
Lie group, 239
Line, 204
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integral, 177
length, 219
Local coordinate system, 200
Lorentz gauge, 77

M
Magnetic moment, 355
Manifold

of Lorentz, 225
Matrices

of Dirac, 371
Maupertuis principle, 189
Metric, 197, 205

of configuration space, 39

effective, 388

Euclidean, 37

induced, 217

of Minkowski, 19
Michelson-Morley experiment, 18
Moment

gravimagnetic, 402

N
Newton’s law
first, 1, 12
third, 7
Noether charge, 251
Noether identities, 252
Normal form of a system, 92

(0}
Observable, 277, 292
Off-shell, 110

On-shell, 110
Operator of spin

non relativistic, 355
Operators

of Pryce, 423, 432

P
Parallel transport, 209
Particle

relativistic, 80, 222, 237
Pauli equation, 368
Pauli matrices, 355
Pendulum

of Thomson-Tait, 56
Phase space, 98

extended, 129, 278
Precession

frequency, 368

of Thomas, 381
Principle

of Galilean relativity, 13

of Hamilton, 30

of least action, 30, 189

of Maupertuis, 192, 194, 196

of Newton’s determinism, 3

of special relativity, 18
Probability

relativistic invariant, 371
Projector, 222
Proper time, 29

R

Reference frame, 12
Reparametrization independence, 210
Reparametrization invariance, 41, 220
Riemann connection, 208

Riemann space, 197, 205

Rigid particle, 382

Routhian, 130

S
Scalar function, 21, 202
Scalar product, 205
Schrodinger equation, 122
Second Newton law, 212
Second quadratic form of a surface, 218
Separation of variables, 191
Singular theory
degenerate, 277
non-degenerate, 277
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Solution
complete, 170
general, 2
Space
configuration, 95
configuration-velocity, 95, 282
of Minkowski, 19
Spin
of Bargmann-Michel-Telegdi, 377
tensor of Frenkel, 374
Spinor
adjoint, 370
of Dirac, 369
of Weyl, 426
Standing wave, 52
String tension, 46
Stuckelberg field, 350
Symbol
of Levi-Civita, 21, 376
Symmetry
of action, 39, 242
global, 39, 78, 238
infinitesimal, 254, 265
infinitesimal trivial, 255
local, 41, 78, 238, 262
local or gauge, 78
manifest, 62
of spin-plane, 357
variational, 242
Symmetry transformation of action,
236
Symplectic matrix, 103
System of equations
equivalent, 91
Hamiltonian, 94
normal, 2

T
Tangent space, 202
Tangent vector, 205
Tensor, 201
of Riemann curvature, 402
Theory
degenerate, 277
non singular, 35
singular, 35
of special relativity, 18
Total
angular momentum, 260
energy, 259
momentum, 259
Trajectory, 190

Transformation

of the action, 243
canonical, 96, 116
canonical free, 139, 156
canonical infinitesimal, 153
canonoid, 116

contact, 137

of coordinates, 201

of form of function, 254

of Galileo, 12

infinitesimal, 251, 253

of Lorentz, 20

phase-space, 150

of phase-space, time-dependent, 113
of Poincaré, 20
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Transition function, 178
Tube, 175

U

Unitary gauge, 77

\%

Variables

auxilliary, 63
non physical, 277
physical, 277
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weak, 299

Variational problem, 31

dynamical, 306
non dynamical, 306

Variation in form, 155
Variation of functional, 32
Vector

of center of mass, 43
contravariant, 21

covariant, 21

Hamiltonian, 7

of Pauli-Lubanski, 376

of Runge-Lenz, 7
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contravariant, 201
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