Math:

Math 214 Differential Topology (Ian Agol): 

Information: Posted on BCourses

Assignment: BCourses, Due Thursday 5pm 

Exam: None

Book(s): Lee, Smooth Manifolds

Math 215A Algebraic Topology (David Nadler):

Information: Posted on Nadler's Website

Assignment: Gradescope, Due Monday 11:59pm

Exam: 1 take-home midterm, 1 final project 

Grading: homework (20%), the midterm (30%), and the final project (50%)

Book(s): Hatcher, Algebraic Topology

Assignments in Details:

  1. Due Monday 8/29: Ch. 0, Ex. 3, 6, 10, 14, 16, 18.

  2. Due Monday 9/5: Ch. 0, Ex. 19, 23; Ch. 1.1, Ex. 2, 3, 5, 6.

  3. Due Monday 9/12: Ch. 1.1, Ex. 8, 9, 10, 12, 13, 14.

  4. Due Monday 9/19: Ch. 1.1, Ex. 16, 18; Ch 1.2, Ex. 3, 4, 10, 14.

  5. Due Monday 9/26: Ch 1.2, Ex. 16, 21, 22; Ch 1.3, Ex. 4, 5, 7.

  6. Due Monday 10/3: Ch 1.3, Ex. 8, 10, 11, 14, 16, 18.

  7. Due Monday 10/10: Ch 1.3, Ex. 23, 32; Ch 1.B, Ex. 2; Ch 2.1, Ex. 2, 5, 9.

  8. Due Monday 10/17: Ch 2.1, Ex. 17, 20, 21, 22, 23, 29.

  9. Due Monday 10/24: Ch 2.2, Ex. 1, 2, 7, 8, 9, 11.

  10. Due Monday 10/31: Ch 2.2, Ex. 16, 17, 18, 21, 24, 29.

  11. Due Monday 11/7: Ch 2.3, Ex. 1; Ch 2.B, Ex. 1, 2, 3, 4, 8.

  12. Due Monday 11/14: Ch 2.B, Ex. 10; Ch 2.C, Ex. 4, 5.

  13. Due Monday 11/21: Ch 3.1, Ex. 3, 4, 5, 6, 11, 13.

  14. Due Friday 12/2: Ch 3.2, Ex. 4, 8, 12; Ch 3.3, Ex. 6, 7, 8, 24, 26.

Related Website

Math 224A Mathematical Methods for the Physical Sciences (Fraydoun Rezakhanlou):

Information: Posted on Rezakhanlou's Website

Assignment: Email, Due Monday

Exam: 1 take-home exam

Book(s): None, but class notes

Math 250A Groups, Rings, and Fields (Richard Borcherds)

Information: Posted on BCourses

Assignment: Gradescope, Due Sunday 11pm

Syllabus:

List of topics and homework

Lecture        Date                         Topic                                                  Reading                             Homework

1                    Aug 25                       Groups                                              I.1-2                                    I 1, 2, 9, 10,

2, 3                Aug 30, Sept 1          Subgroups                                       I.3-5                                    I 12, 13,  19, 20,  24,  26,

4, 5                Sep  6, 8                    Sylow theorems, abelian groups I.6-10                                 I 30, 31, 32, 34, 35, 38, 41, 42,

6, 7                Sep 13, 15                   Categories, Free groups               I.11-12                                 I 50, 51, 52, 53

8                   Sep 20                        Rings                                               II.1-3                                   II 1, 8, 11, 12 

9                   Sep 22                        Midterm 1                                        I (groups)

10, 11            Sep 27, 29                  Commutative algebra                   II.4-5,  III.1-6                     II 5, 9,13, 14  III 1, 3,

12, 13            Oct 4, 6                      Representations of finite groups XVIII 1-5                            XVIII 1, 2, 3

14, 15            Oct 11, 13                    More representations                    XVIII 6-10                         XVIII 6, 8, 12, 13

16, 17            Oct 18, 20                  Polynomials, Noetherian rings.   IV.1-6.                               IV 1, 3, 5, 7, 10,

18, 19            Oct 25, 27                  Symmetric functions, Resultants, power seriesIV.7-9       IV 13, 18, 25, 26, 27

20                 Nov 1                         Algebraic extensions                      V.1-4                                  V 1, 4, 6, 7, 9, 11, 19

21                  Nov 3                         Midterm IIII, III, IV (rings)

22                  Nov 8-10                  Galois extensions                            V.5-6 VI.1-2                      V 22, 23, 24  VI 1

23, 24            Nov 15, 17                  Cyclic extensions                            VI.3-6                               VI 7, 8, 13ab, 18, 19, 21

25                  Nov  22                     Norm and trace                                VI.7-12                             VI 23, 30, 31, 32, 33

Nov 24          Thanksgiving (no lecture)

26, 27            Nov 29, Dec 1           Solvable and infinite extensions   VI.13-15                           VI 43, 44, 46

 Dec  14 3:00-6:00   FinalV,  VI (fields)

Math 277 Topics in Differential Geometry: Calibrated Geometry and Gauge Theory (Jason Lotay):

Information: Posted on Lotay's Website

Assignment: None

Exam: None

Book(s): None

Topics:

  • Introduction to calibrations

  • Complex and special Lagrangian submanifolds; the angle theorem

  • Calibrated submanifolds and exceptional holonomy

  • Constructing calibrated submanifolds and moduli problems

  • Introduction to gauge theory in higher dimensions

  • Gauge theory and exceptional holonomy

  • Constructing solutions to gauge theoretic equations and moduli problems

  • Links between calibrated geometry and gauge theory

  • Open problems

Math 198BC Berkeley Connect (Yifei Chen)

Information: Posted on BCourses

Assignment: None

Exam: None, or a Survey

Book(s): None

Physics: 

Physics 5C  Introductory Thermodynamics and Quantum Mechanics (Feng Wang):

Information: Posted on BCourses

Assignment: Gradescope, Due Friday 11:59 pm

Syllabus:

Instructor: 

GSI:

Meetings:

  • Lectures Tu, Th  9:30-10:59 AM in Physics Building 2

  • Section 101: Tu  5:00 - 6:59 PM in Etcheverry 3119

  • Section 102: W   10:00 - 11:59 AM in Evans 3

Course Schedule and Materials

Other possible sources

Link to the course schedule: Course Schedule

Exam Dates (contact the professor immediately if you have conflicts)

  • Midterm   Thursday, Oct 13   (9:30-11:00 am) 

  • Final Exam: Tuesday, Dec. 13  (3 - 6 PM)

Homeworks

  • Problem sets will due most Fridays at 5 PM.

  • No late homework will be accepted.

  • Your lowest homework score will be dropped to account for unforeseen circumstances.

  • You are encouraged to learn and work in groups with classmates on the homework, but the solutions you turn in must be your own.

Grading

  • problem sets (30%)

  • midterm exam (25%)

  • final exam (45%)

Physics 137B Quantum Mechanics (Holger Mueller):

Information: Posted on BCourses

Assignment: Gradescope, Due Monday 5pm

Exam: 

  • Midterm 1, Sept. 21, Wednesday, Class Time

  • Midterm 2, Oct. 19, Wednesday, Class Time

Book(s): 

  • D. H. McIntyre, Quantum Mechanics, Pearson, 2021.

  • Schwabl, Quantum Mechanics and Advanced Quantum Mechanics. 

Syllabus: 137B Fall22 Syllabus

Physics 151 Elective Physics: Special Topics: Introduction to Quantum Field Theory (Petr Horava):

Information: Posted on Horava's Website

Assignment: Gradescope, Due Friday 5pm

Exam: 1 take-home midterm, 1 final

Book(s): 

  • A. Zee, Quantum Field Theory in a Nutshell. 2nd edition (Princeton U.P., 2010).

  • J. Donoghue and L. Sorbo, A Prelude to Quantum Field Theory (Princeton U.P., 2022),

  • M.E. Peskin and D.V. Schroeder, An Introduction to Quantum Field Theory (Perseus, 1995)

Topics:

  • Path integral re-formulation of Quantum Mechanics.

  • From quantum particles to quantum fields.

  • Quantization of free fields: Canonical and path-integral formulations. Bosonic and fermionic fields.

  • Interactions: Perturbation theory, the logistics of Feynman diagrams.

  • Importance of topological invariants in QFT.

  • Basics of the renormalization group ideas.

  • Renormalization process in perturbation theory.

  • Basics of quantization in theories with gauge invariance.

151 Lec1

151 Lec2

151 Lec3

151 Lec4

151 Lec5

151 Lec6

151 Lec7

151 Lec8

151 Lec9

151 Lec10

151 Lec11

151 Lec12

151 Lec13

151 Lec14

Physics 232A Quantum Field Theory (Yasunori Nomura):

Information: Posted on BCourses

Assignment: 6 HW Sets, Time Uncertain

Exam: None

Book(s):

  • M. E. Peskin and D. V. Schroeder, "An Introduction to Quantum Field Theory," (CRC Press); ISBN-13: 978-0367320560

  • S. Weinberg, "The Quantum Theory of Fields, Vol. 1," (Cambridge University Press); ISBN-13: 978-0521670531

Research:

THIS IS THE MOST IMPORTANT THING

Finite Temperature String Theory (Non-equilibrium String Theory) - Petr Horava

Information: 

Meeting Time:

  • Thursday, 12-2 pm at BCTP

  • Tuesday, 12-2 pm at BCTP

Directed Reading Program (DRP):

Math Directed Reading Program (Math DRP):

Topic: Mirror Symmetry

Mentor: Elliot Kienzle

Books:

Club Leadership:

Society of Physics Students (SPS), Seminar Co-Chair

Responsibility:

Organizing

  • Faculty-Student Lunch (FSL),

  • Undergraduate Seminar (UG Seminar), and

  • other seminars, panels, and lunch events

Meetings:

  • SPS Officer Meeting, Monday 6:30 - 7:30 pm

  • SPS General Meeting, Wednesday 6:30 - 7:30 pm

Club Just for Fun:

Cal Ballroom, Beginner Level

Berkeley Chinese Students and Scholars Association (BCSSA), Academic Department

  1. Physics & Engineering Academic Group Running & Newsletter

  2. Mentorship Family

  3. BIG Conference

  4. Academics-Related Articles for BCSSA WeChat Official Account

  5. ...

Mentorship:

Summer Science Program Connect (SSP Connect), Mentor

Responsibility:

Mentoring a senior and a junior high school students from SSP '22 Astrophysics weekly on

college applications, research opportunities, college life, self-studying materials, physics/math questions, etc.

Two Mentees

It is my second time being SSP Connect Mentor after I had been SSP Mentee in '20-'21.

Apart from mentorship, I also helped with panels for mentees.

Society of Physics Students (SPS) Mentorship Program, Mentor 

Responsibility: 

Mentorship Survey Form 1 by Michelle

Seven Mentees (with co-mentor Ninni)

Berkeley Undergraduate Mathementoring Program (BUMP), Mentor 

Responsibility: 

Two Mentees

Berkeley Chinese Students and Scholars Association (BCSSA) Mentorship, Organizer & Mentor

Responsibility:

Four Mentees in the name, but I think it is a mentorship family

which everyone's mentoring and helping each other.

Beaver Academy Summer Program Application, Mentor

Language Learning:

French

Spanish

American Sign Language (ASL)

IMG_3620.jpg

Polchinski, "String Theory"

Di F