top of page

Math:

​

Math 214 Differential Topology (Ian Agol): 

Information: Posted on BCourses

Assignment: BCourses, Due Thursday 5pm 

Exam: None

​

Book(s): Lee, Smooth Manifolds

​

​

Math 215A Algebraic Topology (David Nadler):

Information: Posted on Nadler's Website

Assignment: Gradescope, Due Monday 11:59pm

Exam: 1 take-home midterm, 1 final project 

Grading: homework (20%), the midterm (30%), and the final project (50%)

​

Book(s): Hatcher, Algebraic Topology

​

Assignments in Details:

  1. Due Monday 8/29: Ch. 0, Ex. 3, 6, 10, 14, 16, 18.

  2. Due Monday 9/5: Ch. 0, Ex. 19, 23; Ch. 1.1, Ex. 2, 3, 5, 6.

  3. Due Monday 9/12: Ch. 1.1, Ex. 8, 9, 10, 12, 13, 14.

  4. Due Monday 9/19: Ch. 1.1, Ex. 16, 18; Ch 1.2, Ex. 3, 4, 10, 14.

  5. Due Monday 9/26: Ch 1.2, Ex. 16, 21, 22; Ch 1.3, Ex. 4, 5, 7.

  6. Due Monday 10/3: Ch 1.3, Ex. 8, 10, 11, 14, 16, 18.

  7. Due Monday 10/10: Ch 1.3, Ex. 23, 32; Ch 1.B, Ex. 2; Ch 2.1, Ex. 2, 5, 9.

  8. Due Monday 10/17: Ch 2.1, Ex. 17, 20, 21, 22, 23, 29.

  9. Due Monday 10/24: Ch 2.2, Ex. 1, 2, 7, 8, 9, 11.

  10. Due Monday 10/31: Ch 2.2, Ex. 16, 17, 18, 21, 24, 29.

  11. Due Monday 11/7: Ch 2.3, Ex. 1; Ch 2.B, Ex. 1, 2, 3, 4, 8.

  12. Due Monday 11/14: Ch 2.B, Ex. 10; Ch 2.C, Ex. 4, 5.

  13. Due Monday 11/21: Ch 3.1, Ex. 3, 4, 5, 6, 11, 13.

  14. Due Friday 12/2: Ch 3.2, Ex. 4, 8, 12; Ch 3.3, Ex. 6, 7, 8, 24, 26.

​

Related Website

​

​

Math 224A Mathematical Methods for the Physical Sciences (Fraydoun Rezakhanlou):

Information: Posted on Rezakhanlou's Website

Assignment: Email, Due Monday

Exam: 1 take-home exam

​

Book(s): None, but class notes

​

​

Math 250A Groups, Rings, and Fields (Richard Borcherds)

Information: Posted on BCourses

Assignment: Gradescope, Due Sunday 11pm

​

Syllabus:

List of topics and homework

Lecture        Date                         Topic                                                  Reading                             Homework

1                    Aug 25                       Groups                                              I.1-2                                    I 1, 2, 9, 10,

2, 3                Aug 30, Sept 1          Subgroups                                       I.3-5                                    I 12, 13,  19, 20,  24,  26,

4, 5                Sep  6, 8                    Sylow theorems, abelian groups I.6-10                                 I 30, 31, 32, 34, 35, 38, 41, 42,

6, 7                Sep 13, 15                   Categories, Free groups               I.11-12                                 I 50, 51, 52, 53

8                   Sep 20                        Rings                                               II.1-3                                   II 1, 8, 11, 12 

9                   Sep 22                        Midterm 1                                        I (groups)

10, 11            Sep 27, 29                  Commutative algebra                   II.4-5,  III.1-6                     II 5, 9,13, 14  III 1, 3,

12, 13            Oct 4, 6                      Representations of finite groups XVIII 1-5                            XVIII 1, 2, 3

14, 15            Oct 11, 13                    More representations                    XVIII 6-10                         XVIII 6, 8, 12, 13

16, 17            Oct 18, 20                  Polynomials, Noetherian rings.   IV.1-6.                               IV 1, 3, 5, 7, 10,

18, 19            Oct 25, 27                  Symmetric functions, Resultants, power seriesIV.7-9       IV 13, 18, 25, 26, 27

20                 Nov 1                         Algebraic extensions                      V.1-4                                  V 1, 4, 6, 7, 9, 11, 19

21                  Nov 3                         Midterm IIII, III, IV (rings)

22                  Nov 8-10                  Galois extensions                            V.5-6 VI.1-2                      V 22, 23, 24  VI 1

23, 24            Nov 15, 17                  Cyclic extensions                            VI.3-6                               VI 7, 8, 13ab, 18, 19, 21

25                  Nov  22                     Norm and trace                                VI.7-12                             VI 23, 30, 31, 32, 33

Nov 24          Thanksgiving (no lecture)

26, 27            Nov 29, Dec 1           Solvable and infinite extensions   VI.13-15                           VI 43, 44, 46

 Dec  14 3:00-6:00   FinalV,  VI (fields)

​

Math 277 Topics in Differential Geometry: Calibrated Geometry and Gauge Theory (Jason Lotay):

Information: Posted on Lotay's Website

Assignment: None

Exam: None

​

Book(s): None

​

Topics:

  • Introduction to calibrations

  • Complex and special Lagrangian submanifolds; the angle theorem

  • Calibrated submanifolds and exceptional holonomy

  • Constructing calibrated submanifolds and moduli problems

  • Introduction to gauge theory in higher dimensions

  • Gauge theory and exceptional holonomy

  • Constructing solutions to gauge theoretic equations and moduli problems

  • Links between calibrated geometry and gauge theory

  • Open problems

​

​

​

Math 198BC Berkeley Connect (Yifei Chen)

Information: Posted on BCourses

Assignment: None

Exam: None, or a Survey

​

Book(s): None

​

​

Physics: 

​

Physics 5C  Introductory Thermodynamics and Quantum Mechanics (Feng Wang):

Information: Posted on BCourses

Assignment: Gradescope, Due Friday 11:59 pm

​

Syllabus:

Instructor: 

GSI:

Meetings:

  • Lectures Tu, Th  9:30-10:59 AM in Physics Building 2

  • Section 101: Tu  5:00 - 6:59 PM in Etcheverry 3119

  • Section 102: W   10:00 - 11:59 AM in Evans 3

Course Schedule and Materials

Other possible sources

Link to the course schedule: Course Schedule

Exam Dates (contact the professor immediately if you have conflicts)

  • Midterm   Thursday, Oct 13   (9:30-11:00 am) 

  • Final Exam: Tuesday, Dec. 13  (3 - 6 PM)

Homeworks

  • Problem sets will due most Fridays at 5 PM.

  • No late homework will be accepted.

  • Your lowest homework score will be dropped to account for unforeseen circumstances.

  • You are encouraged to learn and work in groups with classmates on the homework, but the solutions you turn in must be your own.

Grading

  • problem sets (30%)

  • midterm exam (25%)

  • final exam (45%)

​

Physics 137B Quantum Mechanics (Holger Mueller):​

Information: Posted on BCourses

Assignment: Gradescope, Due Monday 5pm

Exam: 

  • Midterm 1, Sept. 21, Wednesday, Class Time

  • Midterm 2, Oct. 19, Wednesday, Class Time

​

Book(s): 

  • D. H. McIntyre, Quantum Mechanics, Pearson, 2021.

  • Schwabl, Quantum Mechanics and Advanced Quantum Mechanics. 

​

Syllabus: 137B Fall22 Syllabus

​

​

Physics 151 Elective Physics: Special Topics: Introduction to Quantum Field Theory (Petr Horava):

Information: Posted on Horava's Website

Assignment: Gradescope, Due Friday 5pm

Exam: 1 take-home midterm, 1 final

​

Book(s): 

  • A. Zee, Quantum Field Theory in a Nutshell. 2nd edition (Princeton U.P., 2010).

  • J. Donoghue and L. Sorbo, A Prelude to Quantum Field Theory (Princeton U.P., 2022),

  • M.E. Peskin and D.V. Schroeder, An Introduction to Quantum Field Theory (Perseus, 1995)

​

Topics:

  • Path integral re-formulation of Quantum Mechanics.

  • From quantum particles to quantum fields.

  • Quantization of free fields: Canonical and path-integral formulations. Bosonic and fermionic fields.

  • Interactions: Perturbation theory, the logistics of Feynman diagrams.

  • Importance of topological invariants in QFT.

  • Basics of the renormalization group ideas.

  • Renormalization process in perturbation theory.

  • Basics of quantization in theories with gauge invariance.

​

151 Lec1

151 Lec2

151 Lec3

151 Lec4

151 Lec5

151 Lec6

151 Lec7

151 Lec8

151 Lec9

151 Lec10

151 Lec11

151 Lec12

151 Lec13

151 Lec14

​

​

Physics 232A Quantum Field Theory (Yasunori Nomura):

Information: Posted on BCourses

Assignment: 6 HW Sets, Time Uncertain

Exam: None

​

Book(s):

  • M. E. Peskin and D. V. Schroeder, "An Introduction to Quantum Field Theory," (CRC Press); ISBN-13: 978-0367320560

  • S. Weinberg, "The Quantum Theory of Fields, Vol. 1," (Cambridge University Press); ISBN-13: 978-0521670531

​

​

​

​

​

​

Research:

THIS IS THE MOST IMPORTANT THING

Finite Temperature String Theory (Non-equilibrium String Theory) - Petr Horava

Information: 

Meeting Time:

  • Thursday, 12-2 pm at BCTP

  • Tuesday, 12-2 pm at BCTP

​

Directed Reading Program (DRP):

​

Math Directed Reading Program (Math DRP):

Topic: Mirror Symmetry

Mentor: Elliot Kienzle

Books:

​

​

Club Leadership:

​

Society of Physics Students (SPS), Seminar Co-Chair

Responsibility:

Organizing

  • Faculty-Student Lunch (FSL),

  • Undergraduate Seminar (UG Seminar), and

  • other seminars, panels, and lunch events

​

Meetings:

  • SPS Officer Meeting, Monday 6:30 - 7:30 pm

  • SPS General Meeting, Wednesday 6:30 - 7:30 pm

​​

​

Club Just for Fun:

​

Cal Ballroom, Beginner Level

​

Berkeley Chinese Students and Scholars Association (BCSSA), Academic Department

  1. Physics & Engineering Academic Group Running & Newsletter

  2. Mentorship Family

  3. BIG Conference

  4. Academics-Related Articles for BCSSA WeChat Official Account

  5. ...

​

​

Mentorship:

​

Summer Science Program Connect (SSP Connect), Mentor

Responsibility:

Mentoring a senior and a junior high school students from SSP '22 Astrophysics weekly on

college applications, research opportunities, college life, self-studying materials, physics/math questions, etc.

Two Mentees

It is my second time being SSP Connect Mentor after I had been SSP Mentee in '20-'21.

Apart from mentorship, I also helped with panels for mentees.

​

Society of Physics Students (SPS) Mentorship Program, Mentor 

Responsibility: 

​

Mentorship Survey Form 1 by Michelle

Seven Mentees (with co-mentor Ninni)

​

​

​

​

​

​

​

​

​

​

​

​

​

​

Berkeley Undergraduate Mathementoring Program (BUMP), Mentor 

Responsibility: 

Two Mentees

​

Berkeley Chinese Students and Scholars Association (BCSSA) Mentorship, Organizer & Mentor

Responsibility:

Four Mentees in the name, but I think it is a mentorship family

which everyone's mentoring and helping each other.

​

Beaver Academy Summer Program Application, Mentor

​

​

Language Learning:

​

French

​

Spanish

​

American Sign Language (ASL)

​

​

​

​

​

​

IMG_3620.jpg

Polchinski, "String Theory"

Di F

​

​

bottom of page