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Preface

Partial differential equations is a many-faceted subject. Created to describe the
mechanical behavior of objects such as vibrating strings and blowing winds, it
has developed into a body of material that interacts with many branches of math-
ematics, such as differential geometry, complex analysis, and harmonic analysis,
as well as a ubiquitous factor in the description and elucidation of problems in
mathematical physics.

This work is intended to provide a course of study of some of the major aspects
of PDE. It is addressed to readers with a background in the basic introductory
graduate mathematics courses in American universities: elementary real and com-
plex analysis, differential geometry, and measure theory.

Chapter 1 provides background material on the theory of ordinary differential
equations (ODE). This includes both very basic material–on topics such as the
existence and uniqueness of solutions to ODE and explicit solutions to equations
with constant coefficients and relations to linear algebra–and more sophisticated
results–on flows generated by vector fields, connections with differential geom-
etry, the calculus of differential forms, stationary action principles in mechanics,
and their relation to Hamiltonian systems. We discuss equations of relativistic
motion as well as equations of classical Newtonian mechanics. There are also
applications to topological results, such as degree theory, the Brouwer fixed-point
theorem, and the Jordan-Brouwer separation theorem. In this chapter we also treat
scalar first-order PDE, via Hamilton–Jacobi theory.

Chapters 2–6 constitute a survey of basic linear PDE. Chapter 2 begins with the
derivation of some equations of continuum mechanics in a fashion similar to the
derivation of ODE in mechanics in Chap. 1, via variational principles. We obtain
equations for vibrating strings and membranes; these equations are not necessarily
linear, and hence they will also provide sources of problems later, when nonlinear
PDE is taken up. Further material in Chap. 2 centers around the Laplace operator,
which on Euclidean space Rn is

(1) � D @2

@x2
1

C � � � C @2

@x2
n

;

and the linear wave equation,

(2)
@2u

@t2
��u D 0:
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We also consider the Laplace operator on a general Riemannian manifold and
the wave equation on a general Lorentz manifold. We discuss basic consequences
of Green’s formula, including energy conservation and finite propagation speed
for solutions to linear wave equations. We also discuss Maxwell’s equations for
electromagnetic fields and their relation with special relativity. Before we can
establish general results on the solvability of these equations, it is necessary to
develop some analytical techniques. This is done in the next couple of chapters.

Chapter 3 is devoted to Fourier analysis and the theory of distributions. These
topics are crucial for the study of linear PDE. We give a number of basic ap-
plications to the study of linear PDE with constant coefficients. Among these
applications are results on harmonic and holomorphic functions in the plane,
including a short treatment of elementary complex function theory. We derive ex-
plicit formulas for solutions to Laplace and wave equations on Euclidean space,
and also the heat equation,

(3)
@u

@t
��u D 0:

We also produce solutions on certain subsets, such as rectangular regions, using
the method of images. We include material on the discrete Fourier transform, ger-
mane to the discrete approximation of PDE, and on the fast evaluation of this
transform, the FFT. Chapter 3 is the first chapter to make extensive use of func-
tional analysis. Basic results on this topic are compiled in Appendix A, Outline of
Functional Analysis.

Sobolev spaces have proven to be a very effective tool in the existence the-
ory of PDE, and in the study of regularity of solutions. In Chap. 4 we introduce
Sobolev spaces and study some of their basic properties. We restrict attention
to L2-Sobolev spaces, such as H k.Rn/; which consists of L2 functions whose
derivatives of order � k (defined in a distributional sense, in Chap. 3) belong
to L2.Rn/; when k is a positive integer. We also replace k by a general real
number s: The Lp-Sobolev spaces, which are very useful for nonlinear PDE, are
treated later, in Chap. 13.

Chapter 5 is devoted to the study of the existence and regularity of solutions to
linear elliptic PDE, on bounded regions. We begin with the Dirichlet problem for
the Laplace operator,

(4) �u D f on �; u D g on @�;

and then treat the Neumann problem and various other boundary problems, in-
cluding some that apply to electromagnetic fields. We also study general boundary
problems for linear elliptic operators, giving a condition that guarantees regu-
larity and solvability (perhaps given a finite number of linear conditions on the
data). Also in Chap. 5 are some applications to other areas, such as a proof of
the Riemann mapping theorem, first for smooth simply connected domains in the
complex plane C; then, after a treatment of the Dirichlet problem for the Laplace
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operator on domains with rough boundary, for general simply connected domains
in C:We also develop Hodge theory and apply it to DeRham cohomology, extend-
ing the study of topological applications of differential forms begun in Chap. 1.

In Chap. 6 we study linear evolution equations, in which there is a “time”
variable t , and initial data are given at t D 0: We discuss the heat and wave
equations. We also treat Maxwell’s equations, for an electromagnetic field, and
more general hyperbolic systems. We prove the Cauchy–Kowalewsky theorem, in
the linear case, establishing local solvability of the Cauchy initial value problem
for general linear PDE with analytic coefficients, and analytic data, as long as the
initial surface is “noncharacteristic.” The nonlinear case is treated in Chap. 16.
Also in Chap. 6 we treat geometrical optics, providing approximations to solu-
tions of wave equations whose initial data either are highly oscillatory or possess
simple singularities, such as a jump across a smooth hypersurface.

Chapters 1–6, together with Appendix A and Appendix B, Manifolds, Vector
Bundles, and Lie Groups, make up the first volume of this work. The second
volume consists of Chaps. 7–12, covering a selection of more advanced topics in
linear PDE, together with Appendix C, Connections and Curvature.

Chapter 7 deals with pseudodifferential operators ( DOs). This class of opera-
tors includes both differential operators and parametrices of elliptic operators, that
is, inverses modulo smoothing operators. There is a “symbol calculus” allowing
one to analyze products of  DOs, useful for such a parametrix construction. The
L2-boundedness of operators of order zero and the Gårding inequality for elliptic
 DOs with positive symbol provide very useful tools in linear PDE, which will
be used in many subsequent chapters.

Chapter 8 is devoted to spectral theory, particularly for self-adjoint elliptic
operators. First we give a proof of the spectral theorem for general self-adjoint
operators on Hilbert space. Then we discuss conditions under which a differential
operator yields a self-adjoint operator. We then discuss the asymptotic distribu-
tion of eigenvalues of the Laplace operator on a bounded domain, making use of
a construction of a parametrix for the heat equation from Chap. 7. In the next four
sections of Chap. 8 we consider the spectral behavior of various specific differ-
ential operators: the Laplace operator on a sphere, and on hyperbolic space, the
“harmonic oscillator”

(5) ��C jxj2;

and the operator

(6) �� � K

jxj ;

which arises in the simplest quantum mechanical model of the hydrogen atom.
Finally, we consider the Laplace operator on cones.

In Chap. 9 we study the scattering of waves by a compact obstacle K in R3:

This scattering theory is to some degree an extension of the spectral theory of the
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Laplace operator on R3 nK; with the Dirichlet boundary condition. In addition to
studying how a given obstacle scatters waves, we consider the inverse problem:
how to determine an obstacle given data on how it scatters waves.

Chapter 10 is devoted to the Atiyah–Singer index theorem. This gives a for-
mula for the index of an elliptic operatorD on a compact manifoldM; defined by

(7) IndexD D dim kerD � dim kerD�:

We establish this formula, which is an integral over M of a certain differential
form defined by a pair of “curvatures,” when D is a first order differential oper-
ator of “Dirac type,” a class that contains many important operators arising from
differential geometry and complex analysis. Special cases of such a formula in-
clude the Chern–Gauss–Bonnet formula and the Riemann–Roch formula. We also
discuss the significance of the latter formula in the study of Riemann surfaces.

In Chap. 11 we study Brownian motion, described mathematically by Wiener
measure on the space of continuous paths in Rn: This provides a probabilistic
approach to diffusion and it both uses and provides new tools for the analysis of
the heat equation and variants, such as

(8)
@u

@t
D ��u C V u;

where V is a real-valued function. There is an integral formula for solutions to (8),
known as the Feynman–Kac formula; it is an integral over path space with respect
to Wiener measure, of a fairly explicit integrand. We also derive an analogous
integral formula for solutions to

(9)
@u

@t
D ��u CXu;

where X is a vector field. In this case, another tool is involved in constructing the
integrand, the stochastic integral. We also study stochastic differential equations
and applications to more general diffusion equations.

In Chap. 12 we tackle the @-Neumann problem, a boundary problem for an el-
liptic operator (essentially the Laplace operator) on a domain � � Cn, which is
very important in the theory of functions of several complex variables. From a
technical point of view, it is of particular interest that this boundary problem does
not satisfy the regularity criteria investigated in Chap. 5. If� is “strongly pseudo-
convex,” one has instead certain “subelliptic estimates,” which are established in
Chap. 12.

The third and final volume of this work contains Chaps. 13–18. It is here that
we study nonlinear PDE.

We prepare the way in Chap. 13 with a further development of function space
and operator theory, for use in nonlinear analysis. This includes the theory of
Lp-Sobolev spaces and Hölder spaces. We derive estimates in these spaces on
nonlinear functions F.u/, known as “Moser estimates,” which are very useful.
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We extend the theory of pseudodifferential operators to cases where the symbols
have limited smoothness, and also develop a variant of  DO theory, the theory
of “paradifferential operators,” which has had a significant impact on nonlinear
PDE since about 1980. We also estimate these operators, acting on the function
spaces mentioned above. Other topics treated in Chap. 13 include Hardy spaces,
compensated compactness, and “fuzzy functions.”

Chapter 14 is devoted to nonlinear elliptic PDE, with an emphasis on second
order equations. There are three successive degrees of nonlinearity: semilinear
equations, such as

(10) �u D F.x; u;ru/;

quasi-linear equations, such as

(11)
X

ajk.x; u;ru/@j @ku D F.x; u;ru/;

and completely nonlinear equations, of the form

(12) G.x;D2u/ D 0:

Differential geometry provides a rich source of such PDE, and Chap. 14 contains a
number of geometrical applications. For example, to deform conformally a metric
on a surface so its Gauss curvature changes from k.x/ toK.x/; one needs to solve
the semilinear equation

(13) �u D k.x/ �K.x/e2u:

As another example, the graph of a function y D u.x/ is a minimal submanifold
of Euclidean space provided u solves the quasilinear equation

(14)
�
1C jruj2��u C .ru/ �H.u/.ru/ D 0;

called the minimal surface equation. Here,H.u/ D .@j @ku/ is the Hessian matrix
of u: On the other hand, this graph has Gauss curvature K.x/ provided u solves
the completely nonlinear equation

(15) detH.u/ D K.x/
�
1C jruj2�.nC2/=2

;

a Monge-Ampère equation. Equations (13)–(15) are all scalar, and the maximum
principle plays a useful role in the analysis, together with a number of other tools.
Chapter 14 also treats nonlinear systems. Important physical examples arise in
studies of elastic bodies, as well as in other areas, such as the theory of liquid
crystals. Geometric examples of systems considered in Chap. 14 include equa-
tions for harmonic maps and equations for isometric imbeddings of a Riemannian
manifold in Euclidean space.
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In Chap. 15, we treat nonlinear parabolic equations. Partly echoing Chap. 14,
we progress from a treatment of semilinear equations,

(16)
@u

@t
D Lu C F.x; u;ru/;

where L is a linear operator, such as L D �; to a treatment of quasi-linear equa-
tions, such as

(17)
@u

@t
D
X

@ja
jk.t; x; u/@ku CX.u/:

(We do very little with completely nonlinear equations in this chapter.) We study
systems as well as scalar equations. The first application of (16) we consider is
to the parabolic equation method of constructing harmonic maps. We also con-
sider “reaction-diffusion” equations, ` � ` systems of the form (16), in which
F.x; u;ru/ D X.u/; where X is a vector field on R`, and L is a diagonal opera-
tor, with diagonal elements aj�; aj � 0: These equations arise in mathematical
models in biology and in chemistry. For example, u D .u1; : : : ; u`/ might repre-
sent the population densities of each of ` species of living creatures, distributed
over an area of land, interacting in a manner described by X and diffusing in a
manner described by aj�: If there is a nonlinear (density-dependent) diffusion,
one might have a system of the form (17).

Another problem considered in Chap. 15 models the melting of ice; one has
a linear heat equation in a region (filled with water) whose boundary (where the
water touches the ice) is moving (as the ice melts). The nonlinearity in the problem
involves the description of the boundary. We confine our analysis to a relatively
simple one-dimensional case.

Nonlinear hyperbolic equations are studied in Chap. 16. Here continuum
mechanics is the major source of examples, and most of them are systems, rather
than scalar equations. We establish local existence for solutions to first order hy-
perbolic systems, which are either “symmetric” or “symmetrizable.” An example
of the latter class is the following system describing compressible fluid flow:

(18)
@v

@t
C rvv C 1

�
gradp D 0;

@�

@t
C rv�C � div v D 0;

for a fluid with velocity v; density �; and pressure p; assumed to satisfy a relation
p D p.�/; called an “equation of state.” Solutions to such nonlinear systems tend
to break down, due to shock formation. We devote a bit of attention to the study
of weak solutions to nonlinear hyperbolic systems, with shocks.

We also study second-order hyperbolic systems, such as systems for a k-
dimensional membrane vibrating in Rn; derived in Chap. 2. Another topic covered
in Chap. 16 is the Cauchy–Kowalewsky theorem, in the nonlinear case. We use a
method introduced by P. Garabedian to transform the Cauchy problem for an an-
alytic equation into a symmetric hyperbolic system.
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In Chap. 17 we study incompressible fluid flow. This is governed by the
Euler equation

(19)
@v

@t
C rvv D � gradp; div v D 0;

in the absence of viscosity, and by the Navier–Stokes equation

(20)
@v

@t
C rvv D �Lv � gradp; div v D 0;

in the presence of viscosity. Here L is a second-order operator, the Laplace opera-
tor for a flow on flat space; the “viscosity” � is a positive quantity. The (19) shares
some features with quasilinear hyperbolic systems, though there are also signif-
icant differences. Similarly, (20) has a lot in common with semilinear parabolic
systems.

Chapter 18, the last chapter in this work, is devoted to Einstein’s gravitational
equations:

(21) Gjk D 8��Tjk :

Here Gjk is the Einstein tensor, given by Gjk D Ricjk � .1=2/Sgjk; where
Ricjk is the Ricci tensor and S the scalar curvature, of a Lorentz manifold (or
“spacetime”) with metric tensor gjk : On the right side of (21), Tjk is the stress-
energy tensor of the matter in the spacetime, and � is a positive constant, which
can be identified with the gravitational constant of the Newtonian theory of grav-
ity. In local coordinates, Gjk has a nonlinear expression in terms of gjk and its
second order derivatives. In the empty-space case, where Tjk D 0; (21) is a quasi-
linear second order system for gjk : The freedom to change coordinates provides
an obstruction to this equation being hyperbolic, but one can impose the use of
“harmonic” coordinates as a constraint and transform (21) into a hyperbolic sys-
tem. In the presence of matter one couples (21) to other systems, obtaining more
elaborate PDE. We treat this in two cases, in the presence of an electromagnetic
field, and in the presence of a relativistic fluid.

In addition to the 18 chapters just described, there are three appendices,
already mentioned above. Appendix A gives definitions and basic properties of
Banach and Hilbert spaces (of which Lp-spaces and Sobolev spaces are exam-
ples), Fréchet spaces (such as C1.Rn/), and other locally convex spaces (such as
spaces of distributions). It discusses some basic facts about bounded linear oper-
ators, including some special properties of compact operators, and also considers
certain classes of unbounded linear operators. This functional analytic material
plays a major role in the development of PDE from Chap. 3 onward.

Appendix B gives definitions and basic properties of manifolds and vector
bundles. It also discusses some elementary properties of Lie groups, including
a little representation theory, useful in Chap. 8, on spectral theory, as well as in
the Chern–Weil construction.
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Appendix C, Connections and Curvature, contains material of a differential
geometric nature, crucial for understanding many things done in Chaps. 10–18.
We consider connections on general vector bundles, and their curvature. We dis-
cuss in detail special properties of the primary case: the Levi–Civita connection
and Riemann curvature tensor on a Riemannian manifold. We discuss basic prop-
erties of the geometry of submanifolds, relating the second fundamental form to
curvature via the Gauss–Codazzi equations. We describe how vector bundles arise
from principal bundles, which themselves carry various connections and curvature
forms. We then discuss the Chern–Weil construction, yielding certain closed dif-
ferential forms associated to curvatures of connections on principal bundles. We
give several proofs of the classical Gauss–Bonnet theorem and some related re-
sults on two-dimensional surfaces, which are useful particularly in Chaps. 10 and
14. We also give a geometrical proof of the Chern–Gauss–Bonnet theorem, which
can be contrasted with the proof in Chap. 10, as a consequence of the Atiyah–
Singer index theorem.

We mention that, in addition to these “global” appendices, there are appendices
to some chapters. For example, Chap. 3 has an appendix on the gamma function.
Chapter 6 has two appendices; Appendix A has some results on Banach spaces
of harmonic functions useful for the proof of the linear Cauchy–Kowalewsky
theorem, and Appendix B deals with the stationary phase formula, useful for the
study of geometrical optics in Chap. 6 and also for results later, in Chap. 9. There
are other chapters with such “local” appendices. Furthermore, there are two sec-
tions, both in Chap. 14, with appendices. Section 6, on minimal surfaces, has a
companion, �6B, on the second variation of area and consequences, and �12, on
nonlinear elliptic systems, has a companion, �12B, with complementary material.

Having described the scope of this work, we find it necessary to mention a
number of topics in PDE that are not covered here, or are touched on only very
briefly.

For example, we devote little attention to the real analytic theory of PDE. We
note that harmonic functions on domains in Rn are real analytic, but we do not
discuss analyticity of solutions to more general elliptic equations. We do prove
the Cauchy–Kowalewsky theorem, on analytic PDE with analytic Cauchy data.
We derive some simple results on unique continuation from these few analyticity
results, but there is a large body of lore on unique continuation, for solutions to
nonanalytic PDE, neglected here.

There is little material on numerical methods. There are a few references to
applications of the FFT and of “splitting methods.” Difference schemes for PDE
are mentioned just once, in a set of exercises on scalar conservation laws. Finite
element methods are neglected, as are many other numerical techiques.

There is a large body of work on free boundary problems, but the only one
considered here is a simple one space dimensional problem, in Chap. 15.

While we have considered a variety of equations arising from classical
physics and from relativity, we have devoted relatively little attention to quan-
tum mechanics. We have considered one quantum mechanical operator, given
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in formula (6) above. Also, there are some exercises on potential scattering
mentioned in Chap. 9. However, the physical theories behind these equations are
not discussed here.

There are a number of nonlinear evolution equations, such as the Korteweg–
deVries equation, that have been perceived to provide infinite dimensional ana-
logues of completely integrable Hamiltonian systems, and to arise “universally”
in asymptotic analyses of solutions to various nonlinear wave equations. They are
not here. Nor is there a treatment of the Yang–Mills equations for gauge fields,
with their wonderful applications to the geometry and topology of four dimen-
sional manifolds.

Of course, this is not a complete list of omitted material. One can go on and on
listing important topics in this vast subject. The author can at best hope that the
reader will find it easier to understand many of these topics with this book, than
without it.
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Introduction to the Second Edition

In addition to making numerous small corrections to this work, collected over
the past dozen years, I have taken the opportunity to make some very significant
changes, some of which broaden the scope of the work, some of which clarify
previous presentations, and a few of which correct errors that have come to my
attention.

There are seven additional sections in this edition, two in Volume 1, two in
Volume 2, and three in Volume 3. Chapter 4 has a new section, “Sobolev spaces
on rough domains,” which serves to clarify the treatment of the Dirichlet prob-
lem on rough domains in Chap. 5. Chapter 6 has a new section, “Boundary layer
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phenomena for the heat equation,” which will prove useful in one of the new
sections in Chap. 17. Chapter 7 has a new section, “Operators of harmonic oscil-
lator type,” and Chap. 10 has a section that presents an index formula for elliptic
systems of operators of harmonic oscillator type. Chapter 13 has a new appendix,
“Variations on complex interpolation,” which has material that is useful in the
study of Zygmund spaces. Finally, Chap. 17 has two new sections, “Vanishing
viscosity limits” and “From velocity convergence to flow convergance.”

In addition, several other sections have been substantially rewritten, and nu-
merous others polished to reflect insights gained through the use of these books
over time.
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Basic Theory of ODE and Vector Fields

Introduction

This chapter examines basic topics in the field of ordinary differential equations
(ODE), as it has developed from the era of Newton into modern times. This is
closely tied to the development of a number of concepts in advanced calculus.
We begin with a brief discussion of the derivative of a vector-valued function of
several variables as a linear map. We then establish in �2 the fundamental local
existence and uniqueness of solutions to ODE, of the form

(0.1)
dy

dt
D F.t; y/; y.t0/ D y0;

where F.t; y/ is continuous in both arguments and Lipschitz in y, and y takes
values in Rk . The proof uses a nice tool known as the contraction mapping
principle; next we use this principle to establish the inverse and implicit func-
tion theorems in �3. After a discussion of constant-coefficient linear equations,
in which we recall the basic results of linear algebra, in �4, we treat variable-
coefficient linear ODE in �5, emphasizing a result known as Duhamel’s principle,
and then use this to examine smooth dependence on parameters for solutions to
nonlinear ODE in �6.

The first six sections have a fairly purely analytic character and present ODE
from a perspective similar to that seen in introductory courses. It is expected that
the reader has seen much of this material before. Beginning in �7, the material
begins to acquire a geometrical flavor as well. This section interprets solutions
to (0.1) in terms of a flow generated by a vector field. The next two sections
examine the Lie derivative of vector fields and some of its implications for ODE.
While we initially work on domains in Rn, here we begin a transition to global
constructions, involving working on manifolds and hence making use of concepts
that are invariant under changes of coordinates. By the end of �13, this transition
is complete. Appendix B, at the end of this volume, collects some of the basic
facts about manifolds which are useful for such an approach to analysis.

M.E. Taylor, Partial Differential Equations I: Basic Theory,
Applied Mathematical Sciences 115, DOI 10.1007/978-1-4419-7055-8 1,
c� Springer Science+Business Media, LLC 1996, 2011
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Physics is a major source of differential equations, and in �10 we discuss
some of the basic ODE arising from Newton’s force law, converting the result-
ing second-order ODE to first-order systems known as Hamiltonian systems.
The study of Hamiltonian vector fields is a major focus for the subsequent sections
in this chapter. In �11 we deal with an apparently disjoint topic, the equations of
geodesics on a Riemannian manifold. We introduce the covariant derivative as a
tool for expressing the geodesic equations, and later show that these equations
can also be cast in Hamiltonian form. In �12 we study a general class of varia-
tional problems, giving rise to both the equations of mechanics and the equations
of geodesics, all expressible in Hamiltonian form.

In �13 we develop the theory of differential forms, one of E. Cartan’s great con-
tributions to analysis. There is a differential operator, called the exterior derivative,
acting on differential forms. In beginning courses in multivariable calculus, one
learns of div, grad, and curl as the major first-order differential operators; from
a more advanced perspective, it is reasonable to think of the Lie derivative, the
covariant derivative, and the exterior derivative as filling this role. The relevance
of differential forms to ODE has many roots, but its most direct relevance for
Hamiltonian systems is through the symplectic form, discussed in �14.

Results on Hamiltonian systems are applied in �15 to the study of first-order
nonlinear PDE for a single unknown. The next section studies “completely inte-
grable” systems, reversing the perspective, to apply solutions to certain nonlinear
PDE to the study of Hamiltonian systems. These two sections comprise what is
known as Hamilton–Jacobi theory. In �17 we make a further study of integrable
systems arising from central force problems, particularly the one involving the
gravitational attraction of two bodies, the solution to which was Newton’s tri-
umph. Section 18 gives a brief relativistic treatment of the equations of motion
arising from the electromagnetic force, which ushered in Einstein’s theory of
relativity.

In �19 we apply material from �13 on differential forms to some topological
results, such as the Brouwer fixed-point theorem, the study of the degree of a
map between compact oriented manifolds, and the Jordan–Brouwer separation
theorem. We apply the degree theory in �20 to a study of the index of a vector
field, which reflects the behavior of its critical points. Other applications, and
extensions, of results on degree theory and index theory in ��19–20 can be found
in Appendix C and in Chaps. 5 and 10. Also the Brouwer fixed-point theorem will
be extended to the Leray–Schauder fixed-point theorem, and applied to problems
in nonlinear PDE, in Chap. 14.

The appendix at the end of this chapter discusses the existence and uniqueness
of solutions to (0.1) when F satisfies a condition weaker than Lipschitz in y.
Results established here are applicable to the study of ideal fluid flow, as will be
seen in Chap. 17.
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1. The derivative

Let O be an open subset of Rn, and let F W O ! Rm be a continuous function. We
say that F is differentiable at a point x 2 O, with derivativeL, if L W Rn ! Rm

is a linear transformation such that, for small y 2 Rn,

(1.1) F.x C y/ D F.x/C Ly CR.x; y/;

with

(1.2)
kR.x; y/k

kyk ! 0 as y ! 0:

We denote the derivative at x by DF.x/ D L. With respect to the standard bases
of Rn and Rm; DF.x/ is simply the matrix of partial derivatives,

(1.3) DF.x/ D
�
@Fj

@xk

�
;

so that, if v D .v1; : : : ; vn/ (regarded as a column vector), then

(1.4) DF.x/v D
 
X

k

@F1

@xk
vk; : : : ;

X

k

@Fm

@xk
vk

!
:

It will be shown that F is differentiable whenever all the partial derivatives exist
and are continuous on O. In such a case we say that F is a C 1-function on O.
In general, F is said to be C k if all its partial derivatives of order � k exist and
are continuous.

In (1.2) we can use the Euclidean norm on Rn and Rm. This norm is defined
by

(1.5) kxk D �
x21 C � � � C x2n

�1=2

for x D .x1; : : : ; xn/ 2 Rn. Any other norm would do equally well. Some basic
results on the Euclidean norm are derived in �4.

More generally, the definition of the derivative given by (1.1) and (1.2) ex-
tends to a function F W O ! Y , where O is an open subset of X , and X and
Y are Banach spaces. Basic material on Banach spaces appears in Appendix A,
Functional Analysis. In this case, we require L to be a bounded linear map from
X to Y . The notion of differentiable function in this context is useful in the study
of nonlinear PDE.
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We now derive the chain rule for the derivative. Let F W O ! Rm be
differentiable at x 2 O, as above; let U be a neighborhood of z D F.x/ in
Rm; and let G W U ! Rk be differentiable at z. Consider H D G ı F . We have

H.x C y/ D G.F.x C y//

D G
�
F.x/CDF.x/y CR.x; y/

�

D G.z/CDG.z/
�
DF.x/y CR.x; y/

�CR1.x; y/

D G.z/CDG.z/DF.x/y CR2.x; y/;

(1.6)

with kR2.x; y/k
kyk ! 0 as y ! 0:

Thus G ı F is differentiable at x, and

(1.7) D.G ı F /.x/ D DG.F.x// �DF.x/:

This result works equally well if Rn; Rm, and Rk are replaced by general Banach
spaces.

Another useful remark is that, by the fundamental theorem of calculus, applied
to '.t/ D F.x C ty/,

(1.8) F.x C y/ D F.x/C
Z 1

0

DF.x C ty/y dt;

provided F is C 1. For a typical application, see (6.6).
A closely related application of the fundamental theorem of calculus is that if

we assume that F W O ! Rm is differentiable in each variable separately, and
that each @F=@xj is continuous on O, then

F.x C y/ D F.x/C
nX

jD1

�
F.x C zj / � F.x C zj�1/

�

D F.x/C
nX

jD1
Aj .x; y/yj ;

Aj .x; y/ D
Z 1

0

@F

@xj

�
x C zj�1 C tyj ej

�
dt;

(1.9)

where z0 D 0; zj D .y1; : : : ; yj ; 0; : : : ; 0/, and fej g is the standard basis of
Rn. Now (1.9) implies that F is differentiable on O, as we stated beneath (1.4).
As is shown in many calculus texts, by using the mean value theorem instead of
the fundamental theorem of calculus, one can obtain a slightly sharper result. We
leave the reconstruction of this argument to the reader.
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We now describe two convenient notations to express higher-order derivatives
of a C k-function f W � ! R, where � � Rn is open. In the first, let J be a
k-tuple of integers between 1 and nI J D .j1; : : : ; jk/. We set

(1.10) f .J /.x/ D @jk
� � � @j1

f .x/; @j D @

@xj
:

Also, we set jJ j D k, the total order of differentiation. As will be seen in the
exercises, @i@jf D @j @if , provided f 2 C 2.�/. Hence, if f 2 C k.�/,
then @jk

� � � @j1
f D @`k

� � � @`1
f whenever f`1; : : : ; `kg is a permutation of

fj1; : : : ; jkg. Thus, another convenient notation to use is the following. Let ˛
be an n-tuple of nonnegative integers, ˛ D .˛1; : : : ; ˛n/. Then we set

(1.11) f .˛/.x/ D @
˛1

1 � � � @˛n
n f .x/; j˛j D ˛1 C � � � C ˛n:

Note that if jJ j D j˛j D k and f 2 C k.�/, then

(1.12) f .J /.x/ D f .˛/.x/; with ˛i D #f` W j` D ig:

Correspondingly, there are two expressions for monomials in x:

(1.13) xJ D xj1
� � �xjk

; x˛ D x
˛1

1 � � �x˛n
n ;

and xJ D x˛ , provided J and ˛ are related as in (1.12). Both of these notations
are called “multi-index” notations.

We now derive Taylor’s formula with remainder for a smooth function F W
� ! R, making use of these multi-index notations. We will apply the one-
variable formula,

(1.14) '.t/ D '.0/C ' 0.0/t C 1

2
' 00.0/t2 C � � � C 1

kŠ
'.k/.0/tk C rk.t/;

with

(1.15) rk.t/ D 1

kŠ

Z t

0

.t � s/k'.kC1/.s/ ds;

given ' 2 C kC1.I /; I D .�a; a/. Let us assume that 0 2 � and that the line
segment from 0 to x is contained in�. We set '.t/ D F.tx/ and apply (1.14) and
(1.15) with t D 1. Applying the chain rule, we have

(1.16) ' 0.t/ D
nX

jD1
@jF.tx/xj D

X

jJ jD1
F .J /.tx/xJ :
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Differentiating again, we have

(1.17) ' 00.t/ D
X

jJ jD1;jKjD1
F .JCK/.tx/xJCK D

X

jJ jD2
F .J /.tx/xJ ;

where, if jJ j D k and jKj D `, we take J C K D .j1; : : : ; jk ; k1; : : : ; k`/.
Inductively, we have

(1.18) '.k/.t/ D
X

jJ jDk
F .J /.tx/xJ :

Hence, from (1.14), with t D 1,

F.x/ D F.0/C
X

jJ jD1
F .J /.0/xJ C � � � C 1

kŠ

X

jJ jDk
F .J /.0/xJ CRk.x/;

or, more briefly,

(1.19) F.x/ D
X

jJ j�k

1

jJ jŠF
.J /.0/xJ CRk.x/;

where

(1.20) Rk.x/ D 1

kŠ

X

jJ jDkC1

�Z 1

0

.1 � s/kF .J /.sx/ ds

�
xJ :

This gives Taylor’s formula with remainder for F 2 C kC1.�/, in the J -multi-
index notation.

We also want to write the formula in the ˛-multi-index notation. We have

(1.21)
X

jJ jDk
F .J /.tx/xJ D

X

j˛jDk
�.˛/F .˛/.tx/x˛ ;

where

(1.22) �.˛/ D #fJ W ˛ D ˛.J /g;

and we define the relation ˛ D ˛.J / to hold provided (1.12) holds or, equiva-
lently, provided xJ D x˛ . Thus, �.˛/ is uniquely defined by

(1.23)
X

j˛jDk
�.˛/x˛ D

X

jJ jDk
xJ D .x1 C � � � C xn/

k :
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One sees that, if j˛j D k, then �.˛/ is equal to the product of the number of
combinations of k objects, taken ˛1 at a time, times the number of combinations
of k�˛1 objects, taken ˛2 at a time, and so on, times the number of combinations
of k � .˛1 C � � � C ˛n�1/ objects, taken ˛n at a time. Thus

(1.24) �.˛/ D
 
k

˛1

! 
k � ˛1

˛2

!
� � �
 
k � ˛1 � � � � � ˛n�1

˛n

!
D kŠ

˛1Š˛2Š � � �˛nŠ :

In other words, for j˛j D k,

(1.25) �.˛/ D kŠ

˛Š
; where ˛Š D ˛1Š � � �˛nŠ:

Thus, the Taylor formula (1.19) can be rewritten as

(1.26) F.x/ D
X

j˛j�k

1

˛Š
F .˛/.0/x˛ CRk.x/;

where

(1.27) Rk.x/ D
X

j˛jDkC1

k C 1

˛Š

�Z 1

0

.1 � s/kF .˛/.sx/ ds
	
x˛ :

Exercises

1. LetMn�n be the space of complex n�nmatrices, and let det W Mn�n ! C denote the
determinant. Show that if I is the identity matrix, then

D det.I /B D Tr B;

i.e.,
d

dt
det.I C tB/jtD0 D Tr B:

2. If A.t/ D �
ajk.t/

�
is a curve in Mn�n, use the expansion of .d=dt/ detA.t/ as a sum

of n determinants, in which the rows of A.t/ are successively differentiated, to show
that, for A 2 Mn�n,

D det.A/B D Tr
�
Cof.A/t � B�;

where Cof.A/ is the cofactor matrix of A.
3. Suppose A 2 Mn�n is invertible. Using

det.AC tB/ D .detA/ det.I C tA�1B/;

show that
D det.A/B D .detA/ Tr .A�1B/:

Comparing the result of Exercise 2, deduce Cramer’s formula:

(1.28) .detA/A�1 D Cof.A/t :
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4. Identify R2 and C via z D x C iy. Then multiplication by i on C corresponds to
applying

J D
 
0 �1
1 0

!
:

Let O � R2 be open, and let f W O ! R2 be C 1. Say f D .u; v/. Regard Df .x; y/
as a 2 � 2 real matrix. One says f is holomorphic, or complex analytic, provided the
Cauchy–Riemann equations hold:

(1.29)
@u

@x
D @v

@y
;

@u

@y
D � @v

@x
:

Show that this is equivalent to the condition

Df .x; y/J D JDf .x; y/:

Generalize to O open in Cm; f W O ! Cn.
5. If R.x/ is a C1-function near the origin in Rn, satisfying R.0/ D 0 and DR.0/ D 0,

show that there exist smooth functions rjk.x/ such that

R.x/ D
X

rjk.x/xjxk :

(Hint: Using (1.8), write R.x/ D ˆ.x/x; ˆ.x/ D R 1
0 DR.tx/dt , since R.0/ D 0.

Then ˆ.0/ D DR.0/ D 0, so (1.8) can be applied again, to give ˆ.x/ D ‰.x/x:)
6. If f is C 1 on a region in R2 containing Œa; b� � fyg, show that

d

dy

Z b

a
f .x; y/ dx D

Z b

a

@f

@y
.x; y/ dx:

(Hint: Show that the left side is equal to

lim
h!0

Z b

a

1

h

Z h

0

@f

@y
.x; y C s/ ds dx:/

7. Suppose F W O ! Rm is a C 2-function. Applying the fundamental theorem of
calculus, first to

Gj .x/ D F.x C hej / � F.x/

(as a function of h) and then to

Hjk.x/ D Gj .x C hek/ �Gj .x/;
where fej g is the standard basis of Rn, show that if x 2 O and h is small, then

F.x C hej C hek/ � F.x C hek/� F.x C hej /C F.x/

D
Z h

0

Z h

0

@

@xk

@F

@xj

�
x C sej C tek

�
ds dt:

Similarly, show that this quantity is equal to

Z h

0

Z h

0

@

@xj

@F

@xk

�
x C sej C tek

�
dt ds:
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Deduce that
@

@xk

@F

@xj
.x/ D @

@xj

@F

@xk
.x/:

(Hint: Use Exercise 6.)
Arguments that use the mean value theorem instead of the fundamental theorem of
calculus can be found in many calculus texts.

2. Fundamental local existence theorem for ODE

The goal of this section is to establish the existence of solutions to an ODE:

(2.1)
dy

dt
D F.t; y/; y.t0/ D y0:

We will prove the following fundamental result.

Theorem 2.1. Let y0 2 O, an open subset of Rn; I � R an interval contain-
ing t0. Suppose F is continuous on I � O and satisfies the following Lipschitz
estimate in y:

(2.2) kF.t; y1/ � F.t; y2/k � Lky1 � y2k;

for t 2 I; yj 2 O. Then the (2.1) has a unique solution on some t-interval
containing t0.

To begin the proof, we note that the (2.1) is equivalent to the integral equation

(2.3) y.t/ D y0 C
Z t

t0

F.s; y.s// ds:

Existence will be established via the Picard iteration method, which is the
following. Guess y0.t/, e.g., y0.t/ D y0. Then set

(2.4) yk.t/ D y0 C
Z t

t0

F
�
s; yk�1.s/

�
ds:

We aim to show that, as k ! 1; yk.t/ converges to a (unique) solution of (2.3),
at least for t close enough to t0. To do this, we will use the following tool, known
as the contraction mapping principle.

Theorem 2.2. Let X be a complete metric space, and let T W X ! X satisfy

(2.5) dist.T x; Ty/ � r dist.x; y/;

for some r < 1. (We say that T is a contraction.) Then T has a unique fixed
point x. For any y0 2 X; T ky0 ! x as k ! 1.
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Proof. Pick y0 2 X , and let yk D T ky0. Then

dist .ykC1; yk/ � rk dist .y1; y0/;

so

dist.ykCm; yk/ � dist.ykCm; ykCm�1/C � � � C dist.ykC1; yk/
� �

rk C � � � C rkCm�1� dist.y1; y0/

� rk
�
1 � r

��1
dist.y1; y0/:

(2.6)

It follows that .yk/ is a Cauchy sequence, so it converges; yk ! x. Since Tyk D
ykC1 and T is continuous, it follows that T x D x, that is, x is a fixed point.
The uniqueness of the fixed point is clear from the estimate dist.T x; T x0/� r
dist.x; x0/, which implies dist.x; x0/ D 0 if x and x0 are fixed points. This com-

pletes the proof.

Tackling the solvability of (2.3), we look for a fixed point of T , defined by

(2.7) .Ty/.t/ D y0 C
Z t

t0

F.s; y.s// ds:

Let

(2.8) X D ˚
u 2 C.J;Rn/ W u.t0/ D y0; sup

t2J
ku.t/� y0k � K



:

Here J D Œt0 � "; t0 C "�, where " will be chosen, sufficiently small, below. K is
picked so fy W ky � y0k � Kg is contained in O, and we also suppose J � I .
Then there exists an M such that

(2.9) sup
s2J;ky�y0k�K

kF.s; y/k � M:

Then, provided

(2.10) " � K

M
;

we have

(2.11) T W X ! X:

Now, using the Lipschitz hypothesis (2.2), we have, for t 2 J ,

(2.12) k.Ty/.t/� .T z/.t/k �
Z t

t0

Lky.s/� z.s/k ds � " L sup
s2J

ky.s/� z.s/k;
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assuming y and z belong to X . It follows that T is a contraction on X provided
one has

(2.13) " <
1

L
;

in addition to the hypotheses above. This proves Theorem 2.1.
In view of the lower bound on the length of the interval J on which the exis-

tence theorem works, it is easy to show that the only way a solution can fail to be
globally defined, that is, to exist for all t 2 I , is for y.t/ to “explode to infinity”
by leaving every compact set K � O, as t ! t1, for some t1 2 I .

We remark that the local existence proof given above works if Rn is replaced
by any Banach space.

Often one wants to deal with a higher-order ODE. There is a standard method
of reducing an nth-order ODE

(2.14) y.n/.t/ D f .t; y; y0; : : : ; y.n�1//

to a first-order system. One sets u D .u0; : : : ; un�1/, with

(2.15) u0 D y; uj D y.j /;

and then

(2.16)
du

dt
D �

u1; : : : ; un�1; f .t; u0; : : : ; un�1/
� D g.t; u/:

If y takes values in Rk , then u takes values in Rkn.
If the system (2.1) is nonautonomous, that is, if F explicitly depends on t , it

can be converted to an autonomous system (one with no explicit t-dependence) as
follows. Set z D .t; y/. We then have

(2.17) z0 D .1; y0/ D .1; F.z// D G.z/:

Sometimes this process destroys important features of the original system (2.1).
For example, if (2.1) is linear, (2.17) might be nonlinear. Nevertheless, the trick
of converting (2.1) to (2.17) has some uses.

Many systems of ODE are difficult to solve explicitly. One very basic class of
ODE can be solved explicitly, in terms of integrals, namely the single first-order
linear ODE:

(2.18)
dy

dt
D a.t/y C b.t/; y.0/ D y0;

where a.t/ and b.t/ are continuous real- or complex-valued functions. Set

(2.19) A.t/ D
Z t

0

a.s/ ds:
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Then (2.18) can be written as

(2.20) eA.t/
d

dt

�
e�A.t/y

� D b.t/;

which yields

(2.21) y.t/ D eA.t/y0 C eA.t/
Z t

0

e�A.s/b.s/ ds:

Compare this result with formulas (4.42) and (5.8), in subsequent sections of this
chapter.

Exercises

1. Solve the initial-value problem

y0 D y2; y.0/ D a;

given a 2 R. On what t-interval is the solution defined?
2. Under the hypotheses of Theorem 2.1, if y solves (2.1) for t 2 ŒT0; T1�, and y.t/ 2 K,

compact in O, for all such t , prove that y.t/ extends to a solution for t 2 ŒS0; S1�, with
S0 < T0; T1 > T0, as stated beneath (2.13).

3. Let M be a compact, smooth surface in Rn. Suppose F W Rn ! Rn is a smooth
map (vector field) such that, for each x 2 M; F.x/ is tangent to M , that is, the line
�x.t/ D x C tF .x/ is tangent to M at x, at t D 0. Show that if x 2 M , then the
initial-value problem

y0 D F.y/; y.0/ D x

has a solution for all t 2 R, and y.t/ 2 M for all t .
(Hint: Locally, straighten out M to be a linear subspace of Rn, to which F is tangent.
Use uniqueness. Material in �3 will help do this local straightening.)
Reconsider this problem after reading �7.

4. Show that the initial-value problem

dx

dt
D �x.x2 C y2/;

dy

dt
D �y.x2 C y2/; x.0/ D x0; y.0/ D y0

has a solution for all t � 0, but not for all t < 0, unless .x0; y0/ D .0; 0/.

3. Inverse function and implicit function theorems

We will use the contraction mapping principle to establish the inverse function
theorem, which together with its corollary, the implicit function theorem, is a
fundamental result in multivariable calculus. First we state the inverse function
theorem.
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Theorem 3.1. Let F be a C k-map from an open neighborhood� of p0 2 Rn to
Rn, with q0 D F.p0/. Suppose the derivativeDF.p0/ is invertible. Then there is
a neighborhood U of p0 and a neighborhood V of q0 such that F W U ! V is
one-to-one and onto, andF �1 W V ! U is aC k-map. (One says thatF W U ! V

is a diffeomorphism.)

Proof. Using the chain rule, it is easy to reduce to the case p0 D q0 D 0 and
DF.p0/ D I , the identity matrix, so we suppose this has been done. Thus,

(3.1) F.u/ D u CR.u/; R.0/ D 0; DR.0/ D 0:

For v small, we want to solve

(3.2) F.u/ D v:

This is equivalent to u CR.u/ D v, so let

(3.3) Tv.u/ D v � R.u/:

Thus, solving (3.2) is equivalent to solving

(3.4) Tv.u/ D u:

We look for a fixed point u D K.v/ D F�1.v/. Also, we want to prove that
DK.0/ D I , that is, thatK.v/ D vC r.v/, with r.v/ D o.kvk/. If we succeed in
doing this, it follows easily that, for general x close to 0,

DK.x/ D
�
DF

�
K.x/

�	�1
;

and a simple inductive argument shows that K is C k if F is C k . Now consider

(3.5) Tv W Xv �! Xv;

with

(3.6) Xv D fu 2 � W ku � vk � Avg;

where we set

(3.7) Av D sup
kwk�2kvk

kR.w/k:

We claim that (3.5) holds if kvk is sufficiently small. To prove this, note that
Tv.u/ � v D �R.u/, so we need to show that, provided kvk is small, u 2 Xv
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implies kR.u/k � Av . But indeed, if u 2 Xv, then kuk � kvk C Av, which is
� 2kvk if kvk is small, so then

kR.u/k � sup
kwk�2kvk

kR.w/k D AvI

this establishes (3.5).
Note that if kvk is small enough, the map (3.5) is a contraction map, so there

exists a unique fixed point u D K.v/ 2 Xv. Also note that since u 2 Xv,

(3.8) kK.v/ � vk � Av D o.kvk/:

Hence, the inverse function theorem is proved.

Thus, if DF is invertible on the domain of F , then F is a local diffeomor-
phism, although stronger hypotheses are needed to guarantee that F is a global
diffeomorphism onto its range. Here is one result along these lines.

Proposition 3.2. If � � Rn is open and convex, F W � ! Rn is C 1, and the
symmetric part ofDF.u/ is positive-definite for each u 2 �, then F is one-to-one
on �.

Proof. Suppose that F.u1/ D F.u2/, where u2 D u1 C w. Consider ' W
Œ0; 1�!R, given by

'.t/ D w � F.u1 C tw/:

Thus '.0/ D '.1/, so ' 0.t0/ must vanish for some t0 2 .0; 1/, by the mean value
theorem. But ' 0.t/ D w � DF.u1 C tw/w > 0, if w ¤ 0, by the hypothesis on
DF . This shows that F is one-to-one.

We can obtain the following implicit function theorem as a consequence of the
inverse function theorem.

Theorem 3.3. Suppose U is a neighborhood of x0 2 Rk ; V is a neighborhood
of z0 2 R`, and

(3.9) F W U � V �! R`

is a C k-map. Assume DzF.x0; z0/ is invertible; say F.x0; z0/ D u0. Then the
equation F.x; z/ D u0 defines z D f .x; u0/ for x near x0, with f a C k-map.

Proof. ConsiderH W U � V ! Rk � R` defined by

(3.10) H.x; z/ D �
x; F.x; z/

�
:

We have

(3.11) DH D
�
I DxF

0 DzF

�
:
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Thus DH.x0; z0/ is invertible, so J D H�1 exists and is C k , by the inverse
function theorem. It is clear that J.x; u0/ has the form

(3.12) J.x; u0/ D �
x; f .x; u0/

�
;

and f is the desired map.

As in �2, we remark that the inverse function theorem generalizes. One can re-
place Rn by any Banach space and the proof of Theorem 3.1 given above extends
with no change. Such generalizations are useful in nonlinear PDE, as we will see
in Chap. 14.

Exercises

1. Suppose that F W U ! Rn is a C 2-map, U is open in Rn; p 2 U , and DF.p/ is
invertible. With q D F.p/, define a map N on a neighborhood of p by

(3.13) N.x/ D x CDF.x/�1
�
q � F.x/

�
:

Show that there exists " > 0 and C < 1 such that, for 0 � r < ",

kx � pk � r H) kN.x/ � pk � C r2:

Conclude that if kx1 �pk � r , with r < min."; 1=2C /, then xjC1 D N.xj / defines a
sequence converging very rapidly to p. This is the basis of Newton’s method, for solving
F.p/ D q for p.
(Hint: Write x D p C y; F.x/ D F.p/C DF.x/y C R, with R given as in (1.27),
with k D 2. Then N.x/ D p C Qy; Qy D �DF.x/�1R:)

2. Applying Newton’s method to f .x/ D 1=x, show that you get a fast approximation to
division using only addition and multiplication.
(Hint: Carry out the calculation of N.x/ in this case and notice a “miracle.”)

3. Identify R2n with Cn via z D x C iy, as in Exercise 4 of �1. Let U � R2n be open,
and let F W U ! R2n be C 1. Assume that p 2 U and DF.p/ is invertible. If
F�1 W V ! U is given as in Theorem 3.1, show that F�1 is holomorphic provided
F is.

4. Let O � Rn be open. We say that a function f 2 C1.O/ is real analytic provided
that, for each x0 2 O, we have a convergent power-series expansion

(3.14) f .x/ D
X

˛�0

1

˛Š
f .˛/.x0/.x � x0/˛;

valid in a neighborhood of x0. Show that we can let x be complex in (3.14), and obtain
an extension f to a neighborhood of O in Cn. Show that the extended function is
holomorphic, that is, satisfies the Cauchy–Riemann equations.
Remark. It can be shown that, conversely, any holomorphic function has a power-series
expansion. See (2.30) of Chap. 3 for one such proof. For the next exercise, assume this
to be known.
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5. Let O � Rn be open, p 2 O, and f W O ! Rn be real analytic, withDf .p/ invertible.
Take f �1 W V ! U as in Theorem 3.1. Show f �1 is real analytic.
(Hint: Consider a holomorphic extension F W � ! Cn of f , and apply Exercise 3.)

4. Constant-coefficient linear systems; exponentiation
of matrices

Let A be an n � n matrix, real or complex. We consider the linear ODE

(4.1) y0 D Ay; y.0/ D y0:

In analogy to the scalar case, we can produce the solution in the form

(4.2) y.t/ D etAy0;

where we define the matrix exponential

(4.3) etA D
1X

kD0

tk

kŠ
Ak:

We will establish estimates implying the convergence of this infinite series for
all real t , indeed for all complex t . Then term-by-term differentiation is valid and
gives (4.1). To discuss convergence of (4.3), we need the notion of the norm of
a matrix. This is a special case of results discussed in Appendix A, Functional
Analysis.

If u D .u1; : : : ; un/ belongs to Rn or to Cn, set, as in (1.5),

(4.4) kuk D �ju1j2 C � � � C junj2�1=2:

Then, if A is an n � n matrix, set

(4.5) kAk D supfkAuk W kuk � 1g:

The norm (4.4) possesses the following properties:

kuk � 0; kuk D 0 if and only if u D 0;(4.6)

kcuk D jcj kuk; for real or complex c;(4.7)

ku C vk � kuk C kvk:(4.8)

The last property, known as the triangle inequality, follows from Cauchy’s
inequality:

(4.9) j.u; v/j � kuk � kvk;
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where the inner product is .u; v/ D u1v1C� � �Cunvn. To deduce (4.8) from (4.9),
just square both sides of (4.8). To prove (4.9), use .u � v; u � v/ � 0 to get

2 Re .u; v/ � kuk2 C kvk2:

Then replace u by ei�u to deduce

2j.u; v/j � kuk2 C kvk2:

Next, replace u by tu and v by t�1v, to get

2j.u; v/j � t2kuk2 C t�2kvk2;

for any t > 0. Picking t so that t2 D kvk=kuk, we have Cauchy’s inequality (4.9).
Given (4.6)–(4.8), we easily get

kAk � 0;

kcAk D jcj kAk;
kAC Bk � kAk C kBk:

(4.10)

Also, kAk D 0 if and only if A D 0. The fact that kAk is the smallest constant K
such that kAuk � Kkuk gives

(4.11) kABk � kAk � kBk:

In particular,

(4.12) kAkk � kAkk :

This makes it easy to check the convergence of the power-series (4.3).
Power-series manipulations can be used to establish the identity

(4.13) esAetA D e.sCt/A:

Another way to prove this is as follows. Regard t as fixed; denote the left side of
(4.13) as X.s/ and the right side as Y.s/. Then differentiation with respect to s
gives, respectively,

X 0.s/ D AX.s/; X.0/ D etA;

Y 0.s/ D AY.s/; Y.0/ D etA;
(4.14)

so the uniqueness of solutions to the ODE implies X.s/ D Y.s/ for all s. We note
that (4.13) is a special case of the following.
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Proposition 4.1. et.ACB/ D etAetB for all t , if and only if A and B commute.

Proof. Let

(4.15) Y.t/ D et.ACB/; Z.t/ D etAetB :

Note that Y.0/ D Z.0/ D I , so it suffices to show that Y.t/ and Z.t/ satisfy the
same ODE, to deduce that they coincide. Clearly,

(4.16) Y 0.t/ D .AC B/Y.t/:

Meanwhile,

(4.17) Z0.t/ D AetAetB C etABetB :

Thus we get the (4.16) for Z.t/ provided we know that

(4.18) etAB D BetA if AB D BA:

This follows from the power-series expansion for etA, together with the fact that

(4.19) AkB D BAk; 8 k � 0; if AB D BA:

For the converse, if Y.t/ D Z.t/ for all t , then etAB D BetA, by (4.17), and
hence, taking the t-derivative, etAAB D BAetA; setting t D 0 gives AB D BA.

If A is in diagonal form,

(4.20) A D

0

B@
a1
: : :

an

1

CA ;

then clearly

(4.21) etA D

0

B@
eta1

: : :

etan

1

CA :

The following result makes it useful to diagonalize A in order to compute etA.

Proposition 4.2. If K is an invertible matrix and B D KAK�1, then

(4.22) etB D K etA K�1:
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Proof. This follows from the power-series expansion (4.3), given the observation
that

(4.23) Bk D K Ak K�1:

In view of (4.20)–(4.22), it is convenient to record a few standard results about
eigenvalues and eigenvectors here. Let A be an n � n matrix over F; F D R or
C. An eigenvector of A is a nonzero u 2 F n such that

(4.24) Au D �u;

for some � 2 F . Such an eigenvector exists if and only if A � �I W F n ! F n is
not invertible, that is, if and only if

(4.25) det.A � �I/ D 0:

Now (4.25) is a polynomial equation, so it always has a complex root. This proves
the following.

Proposition 4.3. Given an n � n matrix A, there exists at least one (complex)
eigenvector u.

Of course, if A is real, and we know there is a real root of (4.25) (e.g., if n is
odd), then a real eigenvector exists. One important class of matrices guaranteed to
have real eigenvalues is the class of self-adjoint matrices. The adjoint of an n � n
complex matrix is specified by the identity .Au; v/ D .u; A�v/.

Proposition 4.4. If A D A�, then all eigenvalues of A are real.

Proof. Au D �u implies

(4.26) �kuk2 D .�u; u/ D .Au; u/ D .u; Au/ D .u; �u/ D �kuk2:

Hence � D �, if u ¤ 0.

We now establish the following important result.

Theorem 4.5. If A D A�, then there is an orthonormal basis of Cn consisting of
eigenvectors of A.

Proof. Let u1 be one unit eigenvector; Au1 D �u1. Existence is guaranteed by
Proposition 4.3. Let V D .u1/? be the orthogonal complement of the linear span
of u1. Then dim V is n � 1 and

(4.27) A W V ! V; if A D A�:

The result follows by induction on n.
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Corollary 4.6. If A D At is a real symmetric matrix, then there is an
orthonormal basis of Rn consisting of eigenvectors of A.

Proof. By Proposition 4.4 and the remarks following Proposition 4.3, there is one
unit eigenvector u1 2 Rn. The rest of the proof is as above.

The proofs of the last four results rest on the fact that every nonconstant
polynomial has a complex root. This is the fundamental theorem of algebra. A
proof is given in �19 (Exercise 5), and another after Corollary 4.7 of Chap. 3.
An alternative approach to Proposition 4.3 when A D A�, yielding Proposition
4.4–Corollary 4.6, is given in one of the exercises at the end of this section.

Given an ODE in upper triangular form,

(4.28)
dy

dt
D

0
B@
a11 � �

: : : �
ann

1
CA y;

you can solve the last ODE for yn, as it is just dyn=dt D annyn. Then you get a
single nonhomogeneous ODE for yn�1, which can be solved as demonstrated in
(2.18)–(2.21), and you can continue inductively to solve. Thus, it is often useful
to be able to put an n � n matrix A in upper triangular form, with respect to a
convenient choice of basis. We will establish two results along these lines. The
first is due to Schur.

Theorem 4.7. For any n � n matrix A, there is an orthonormal basis u1; : : : ; un
of Cn with respect to which A is in upper triangular form.

This result is equivalent to the following proposition.

Proposition 4.8. For anyA, there is a sequence of vector spaces Vj of dimension
j , contained in Cn, with

(4.29) Vn 	 Vn�1 	 � � � 	 V1

and

(4.30) A W Vj �! Vj :

To see the equivalence, if we are granted (4.29)–(4.30), pick un?Vn�1, a unit
vector, then pick un�1 2 Vn�1 such that un�1?Vn�2, and so forth. Meanwhile,
Proposition 4.8 is a simple inductive consequence of the following result.

Lemma 4.9. For any matrix A acting on Vn, there is a linear subspace Vn�1, of
codimension 1, such that A W Vn�1 ! Vn�1.
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Proof. Use Proposition 4.3, applied to A�. There is a vector v1 such thatA�v1 D
�v1. Let Vn�1 D .v1/

?. This completes the proof of the lemma, hence of
Theorem 4.7.

Let us look more closely at what you can say about solutions to an ODE that
has been put in the form (4.28). As mentioned, we can obtain yj inductively by
solving nonhomogeneous scalar ODE

(4.31)
dyj

dt
D ajjyj C bj .t/;

where bj .t/ is a linear combination of yjC1.t/; : : : ; yn.t/, and the formula (2.21)
applies, with A.t/ D ajj t . We have yn.t/ D Ceannt , so bn�1.t/ is a multiple
of eannt . If an�1;n�1 ¤ ann; yn�1.t/ will be a linear combination of eannt and
ean�1;n�1t , but if an�n;n�1 D ann; yn�1.t/ may be a linear combination of eannt

and teannt . Further integration will involve
R
p.t/e˛tdt , where p.t/ is a poly-

nomial. That no other sort of function will arise is guaranteed by the following
result.

Lemma 4.10. If p.t/ 2 Pn, the space of polynomials of degree � n, and ˛ ¤ 0,
then

(4.32)
Z
p.t/e˛t dt D q.t/e˛t C C;

for some q.t/ 2 Pn.

Proof. The map p D Tq defined by .d=dt/.q.t/e˛t / D p.t/e˛t is a map on Pn;
in fact, we have

(4.33) Tq.t/ D ˛q.t/C q0.t/:

It suffices to show that T W Pn ! Pn is invertible. But D D d=dt is nilpotent on
PnI DnC1 D 0. Hence

T �1 D ˛�1.I C ˛�1D/�1 D ˛�1�I � ˛�1D C � � � C ˛�n.�D/n�:

Note that this gives a neat formula for the integral (4.32). For example,

Z
tne�t dt D �.tn C ntn�1 C � � � C nŠ/e�t C C

D �nŠ
�
1C t C 1

2
t2 C � � � C 1

nŠ
tn
	
e�t C C:

(4.34)

This could also be established by integration by parts and induction. Of course,
when ˛ D 0 in (4.32), the result is different; q.t/ is a polynomial of degree nC1.
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Now the implication for the solution to (4.28) is that all the components of y.t/
are products of polynomials and exponentials. By Theorem 4.7, we can draw the
same conclusion about the solution to dy=dt D Ay for any n � n matrix A. We
can formally state the result as follows.

Proposition 4.11. For any n � n matrix A,

(4.35) etAv D
X

e�j tvj .t/;

where f�j g is the set of eigenvalues of A and vj .t/ are Cn-valued polynomials.
All the vj .t/ are constant when A is diagonalizable.

To see that the �j are the eigenvalues ofA, note that in the upper triangular case
only the exponentials eajj t arise, and in that case the eigenvalues are precisely the
diagonal elements.

If we let E� denote the space of Cn-valued functions of the form V.t/ D
e�tv.t/, where v.t/ is a Cn-valued polynomial, then E� is invariant under the
action of both d=dt and A, hence of d=dt � A. Hence, if a sum V1.t/ C � � � C
Vk.t/; Vj .t/ 2 E�j

(with �j s distinct), is annihilated by d=dt � A, so is each
term in this sum.

Therefore, if (4.35) is a sum over the distinct eigenvalues �j of A, it follows
that each term e�j tvj .t/ is annihilated by d=dt � A or, equivalently, is of the
form etAwj , where wj D vj .0/. This leads to the following conclusion. Set

(4.36) G� D fv 2 Cn W etAv D et�v.t/; v.t/ polynomialg:

Then Cn has a direct-sum decomposition

(4.37) Cn D G�1
C � � � CG�k

;

where �1; : : : ; �k are the distinct eigenvalues of A. Furthermore, each G�j
is

invariant under A, and

(4.38) Aj D AjG�j
has exactly one eigenvalue, �j :

This last statement holds because etAv involves only the exponential e�j t , when
v 2 G�j

. We say that G�j
is the generalized eigenspace of A, with eigenvalue

�j . Of course, G�j
contains ker .A � �j I /. Now Bj D Aj � �j I has only 0 as

an eigenvalue. It is subject to the following result.

Lemma 4.12. If B W Ck ! Ck has only 0 as an eigenvalue, then B is nilpotent;
in fact,

(4.39) Bm D 0 for some m � k:
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Proof. Let Wj D Bj .Ck/; then Ck 	 W1 	 W2 	 � � � is a sequence of finite-
dimensional vector spaces, each invariant under B . This sequence must stabilize,
so for some m; B W Wm ! Wm bijectively. If Wm ¤ 0; B has a nonzero eigen-
value.

We next discuss the famous Jordan normal form of a complex n � n matrix.
The result is the following.

Theorem 4.13. If A is an n � n matrix, then there is a basis of Cn with respect
to which A becomes a direct sum of blocks of the form

(4.40)

0

BBBB@

�j 1

�j
: : :

: : : 1

�j

1

CCCCA
:

In light of the decomposition (4.37) and Lemma 4.12, it suffices to establish the
Jordan normal form for a nilpotent matrixB . Given v0 2 Ck , letm be the smallest
integer such that Bmv0 D 0I m � k. If m D k, then fv0; Bv0; : : : ; Bm�1v0g
gives a basis of Ck , putting B in Jordan normal form. We then say v0 is a cyclic
vector for B , and Ck is generated by v0. We call fv0; : : : ; Bm�1v0g a string.

We will have a Jordan normal form precisely if we can write Ck as a direct
sum of cyclic subspaces. We establish that this can be done by induction on the
dimension.

Thus, inductively, we can suppose that W1 D B.Ck/ is a direct sum of cyclic
subspaces, soW1 has a basis that is a union of strings, let’s say a union of d strings
fvj ; Bvj ; : : : ; B`j vj g, 1 � j � d . In this case, ker B\W1 D N1 has dimension
d , and the vectors B`j vj ; 1 � j � d , span N1. Furthermore, each vj has the
form vj D Bwj for some wj 2 Ck .

Now dim ker B D k � r � d , where r D dim W1. Let fz1; : : : ; zk�r�d g
span a subspace of ker B complementary to N1. Then the strings fwj ; vj D
Bwj ; : : : ; B

`j vj g, 1 � j � d , and fz1g; : : : ; fzk�r�d g generate cyclic subspaces
whose direct sum is Ck , giving the Jordan normal form.

The argument above is part of an argument of Filippov. In fact, Filippov’s proof
contains a further clever twist, enabling one to prove Theorem 4.13 without using
the decomposition (4.37). However, since we got this decomposition almost for
free as a byproduct of the ODE analysis in Proposition 4.11, this author decided
to make use of it. See Strang [Str] for Filippov’s proof.

We have seen how constructing etA solves the (4.1). We can also use it to solve
a nonhomogeneous equation, of the form

(4.41) y0 D Ay C b.t/; y.0/ D y0:
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Direct calculation shows that the solution is given by

(4.42) y.t/ D etAy0 C
Z t

0

e.t�s/A b.s/ ds:

Note how this partially generalizes the formula (2.21). This formula is a special
case of Duhamel’s principle, which will be discussed further in �5.

We remark that the definition of etA by power series (4.3) extends to the
case where A is a bounded linear operator on a Banach space. In that case, etA

furnishes the simplest sort of example of a one-parameter group of operators.
Compare �9 in Appendix A, Functional Analysis, for a further discussion of semi-
groups of operators. A number of problems in PDE amount to exponentiating
various unbounded operators. The discussion of eigenvalues, eigenvectors, and
normal forms above relies heavily on finite dimensionality, although a good deal
of it carries over to compact operators on infinite-dimensional Banach and Hilbert
spaces; see �6 of Appendix A. Also, there is a somewhat more subtle extension
of Theorem 4.5 for general self-adjoint operators on a Hilbert space, which is
discussed in �1 of Chap. 8.

Exercises

1. In addition to the operator norm kAk of an n� nmatrix, defined by (4.5), we consider
the Hilbert–Schmidt norm kAkHS, defined by

kAk2HS D
X

j;k

jajk j2;

if A D �
ajk

�
. Show that

kAk � kAkHS:

(Hint: If r1; : : : ; rn are the rows of A, then for u 2 Cn; Au has entries rj � u; 1 � j �
n. Use Cauchy’s inequality (4.9) to estimate jrj � uj2:)

Show also that X

j

jajk j2 � kAk2 for each k;

and hence
kAk2HS � nkAk2:

(Hint: kAk � kAekk for each standard basis vector ek :)
2. Show that, in analogy with (4.11), we have

kABkHS � kAkHSkBkHS:

Indeed, show that
kABkHS � kAk � kBkHS;

where the first factor on the right is the operator norm kAk.
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3. Let X be an n � n matrix. Show that

det eX D eT r X :

(Hint: Use a normal form.)
Let Mn denote the space of complex n � n matrices. If A 2 Mn and detA D 1, we
say that A 2 SL.n;C/. If X 2 Mn and Tr X D 0, we say that X 2 sl.n;C/.

4. Let X 2 sl.2;C/. Suppose X has eigenvalues f�;��g; � ¤ 0. Such an X can be
diagonalized, so we know that there exist matrices Zj 2 M2 such that

etX D Z1 e
t� CZ2 e

�t�:

Evaluating both sides at t D 0, and the t-derivative at t D 0, show that Z1 C Z2 D
I; �Z1 � �Z2 D X , and solve for Z1; Z2. Deduce that

etX D .cosh t�/I C ��1.sinh t�/X:

5. Define holomorphic functions C.z/ and S.z/ by

C.z/ D cosh
p

z; S.z/ D sinh
p

zp
z

:

Deduce from Exercise 4 that, for X 2 sl.2;C/,

eX D C.� detX/I C S.� detX/X:

Show that this identity is also valid when 0 is an eigenvalue of X .
6. Rederive the formula above for eX ; X 2 sl.2;C/, by using the power series for eX

together with the identity

X2 D �.detX/I; X 2 sl.2;C/:

The next set of exercises examines the derivative of the map

Exp W Mn ! Mn; Exp.X/ D eX :

7. Set U.t; s/ D et.XCsY /, where X and Y are n � n matrices, and set Us D @U=@s.
Show that Us satisfies

@Us

@t
D .X C sY /Us C Y U; Us.0; s/ D 0:

8. Use Duhamel’s principle, formula (4.42), to show that

Us.t; s/ D
Z t

0
e.t��/.XCsY / Y e�.XCsY / d�:

Deduce that

(4.43)
d

ds
eXCsY ˇ̌ˇ

sD0 D eX
Z 1

0
e��XYe�X d�:
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9. Given X 2 Mn, define ad X 2 End.Mn/, that is,

ad X W Mn ! Mn;

by
ad X.Y / D XY � YX:

Show that
e�tXYetX D e�t adXY:

(Hint: If V.t/ denotes either side, show that dV=dt D �.ad X/V; V .0/ D Y:)
10. Deduce from Exercise 8 that

(4.44)
d

ds
eXCsY ˇ̌ˇ

sD0 D eX „.ad X/Y;

where „.z/ is the entire holomorphic function

(4.45) „.z/ D
Z 1

0
e��z d� D 1 � e�z

z
:

The operator „.ad X/ is defined in the following manner. For any L 2 End.Cm/ D
Mm, any function F.z/ holomorphic on jzj < a, with a > kLk, define F.L/ by power
series:

(4.46) F.L/ D
1X

nD0
fnL

n; where F.z/ D
1X

nD0
fnzn:

For further material on holomorphic functions of operators, see �6 in Appendix A.
11. With Exp W Mn ! Mn as defined above, describe the set of matrices X such that the

transformation D Exp.X/ is not invertible.
12. Let A W Rn ! Rn be symmetric, and let Q.x/ D .Ax; x/. Let v1 2 Sn�1 D fx 2

Rn W jxj D 1g be a point where Q
ˇ̌
Sn�1 assumes a maximum. Show that v1 is an

eigenvector of A.
(Hint: Show that rQ.v1/ is parallel to rE.v1/, where E.x/ D .x; x/:)
Use this result to give an alternative proof of Corollary 4.6. Extend this argument to
establish Theorem 4.5.

5. Variable-coefficient linear systems of ODE: Duhamel’s
principle

Let A.t/ be a continuous, n� n matrix-valued function of t 2 I . We consider the
general linear, homogeneous ODE

(5.1)
dy

dt
D A.t/y; y.0/ D y0:
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The general theory of �2 gives local solutions. We claim that the solutions here
exist for all t 2 I . This follows from the discussion after the proof of Theorem
2.1, together with the following estimate on the solution to (5.1).

Proposition 5.1. If kA.t/k � M for t 2 I , then the solution to (5.1) satisfies

(5.2) ky.t/k � eM jt jky0k:

It suffices to prove this for t � 0. Then z.t/ D e�Mty.t/ satisfies

(5.3) z0 D C.t/z; z.0/ D y0;

with C.t/ D A.t/ �M . Hence C.t/ satisfies

(5.4) Re .C.t/u; u/ � 0; for all u 2 Cn:

Thus (5.2) is a consequence of the following energy estimate, which is of inde-
pendent interest.

Proposition 5.2. If z solves (5.3) and if (5.4) holds for C.t/, then

kz.t/k � kz.0/k; for t � 0:

Proof. We have

d

dt
kz.t/k2 D .z0.t/; z.t//C .z.t/; z0.t//

D 2 Re .C.t/z.t/; z.t//

� 0:

(5.5)

Thus we have global existence for (5.1). There is a matrix-valued function
S.t; s/ such that the unique solution to (5.1) satisfies

(5.6) y.t/ D S.t; s/y.s/:

Using this solution operator, we can treat the nonhomogeneous equation

(5.7) y0 D A.t/y C b.t/; y.0/ D y0:

Indeed, direct calculation yields

(5.8) y.t/ D S.t; 0/y0 C
Z t

0

S.t; s/b.s/ ds:

This identity is known as Duhamel’s principle.
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Next we prove an identity that might be called the “noncommutative funda-
mental theorem of calculus.”

Proposition 5.3. If A.t/ is a continuous matrix function and S.t; 0/ is defined as
above, then

(5.9) S.t; 0/ D lim
n!1 e.t=n/A..n�1/t=n/ � � � e.t=n/A.0/;

where there are n factors on the right.

Proof. To prove this at t D T , divide the interval Œ0; T � into n equal parts. Set
y D S.t; 0/y0, and define zn.t/ by zn.0/ D y0 and

(5.10) z0
n D A.jT=n/zn; for t 2 �jT=n; .j C 1/T=n

�
;

requiring continuity across each endpoint of these intervals. We see that

(5.11) z0
n D A.t/zn CRn.t/;

with

(5.12) kRn.t/k � ınkzn.t/k; ın ! 0 as n ! 1:

Meanwhile we see that kzn.t/k � CT ky0k on Œ0; T �. We want to compare zn.t/
and y.t/. We have

(5.13)
d

dt
.zn � y/ D A.t/.zn � y/CRn.t/I zn.0/� y.0/ D 0:

Hence Duhamel’s principle gives

(5.14) zn.t/ � y.t/ D
Z t

0

S.t; s/Rn.s/ ds;

and since we have an a priori bound kS.t; s/k � K for jsj; jt j � T , we get

(5.15) kzn.t/ � y.t/k � KTCT ınky0k ! 0 as n ! 1; jt j � T:

In particular, zn.T / ! y.T / as n ! 1. Since zn.T / is given by the right side of
(5.9) with t D T , this proves (5.9).

Exercises

1. Let A.t/ and X.t/ be n � n matrices satisfying

dX

dt
D A.t/X:
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We form the Wronskian W.t/ D detX.t/. Show that W satisfies the ODE

dW

dt
D a.t/W; a.t/ D Tr A.t/:

(Hint: Use Exercise 2 of �1 to write dW=dt D Tr.Cof.X/tdX=dt/, and use Cramer’s
formula, .detX/X�1 D Cof.X/t . Alternative: WriteX.tCh/ D ehA.t/X.t/CO.h2/
and use Exercise 3 of �4 to write det ehA.t/ D eha.t/, henceW.tCh/ D eha.t/W.t/C
O.h2/:)

2. Let u.t/ D ky.t/k2, for a solution y to (5.1). Show that

(5.16) u0 � M.t/u.t/;

provided kA.t/k � M.t/=2. Such a differential inequality implies the integral
inequality

(5.17) u.t/ � AC
Z t

0
M.s/u.s/ ds; t � 0;

with A D u.0/. The following is a Gronwall inequality; namely, if (5.17) holds for a
real-valued function u, then provided M.s/ � 0, we have, for t � 0,

(5.18) u.t/ � AeN.t/; N.t/ D
Z t

0
M.s/ ds:

Prove this. Note that the quantity dominating u.t/ in (5.18) is equal to U , solving
U.0/ D A; dU=dt D M.t/U.t/.

3. Generalize the Gronwall inequality of Exercise 2 as follows. Assume F.t;u/ and
@uF.t; u/ are continuous, let U be a real-valued solution to

(5.19) U 0 D F.t; U /; U.0/ D A;

and let u satisfy the integral inequality

(5.20) u.t/ � AC
Z t

0
F.s;u.s// ds:

Then prove that

(5.21) u.t/ � U.t/; for t � 0;

provided @F=@u � 0. Show that this continues to hold if we replace (5.19) by

(5.19a) U.t/ � AC
Z t

0
F.s;U.s// ds:

(Hint: Set v D u � U . Then (5.19a) and (5.20) imply

v.t/ �
Z t

0

�
F.s;u.s// � F.s; U.s//� ds D

Z t

0
M.s/v.s/ ds;
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where

M.s/ D
Z 1

0
Fu
�
s; �u.s/C .1 � �/U.s/

�
d�:

Thus (5.17) applies, with A D 0:)
4. Let x.t/ be a smooth curve in R3; assume it is parameterized by arc length, so T .t/ D
x0.t/ has unit length; T .t/ � T .t/ D 1. Differentiating, we have T 0.t/?T .t/. The
curvature is defined to be 	.t/ D kT 0.t/k. If 	.t/ ¤ 0, we set N.t/ D T 0=kT 0k, so

T 0 D 	N;

and N is a unit vector orthogonal to T . We define B.t/ by

(5.22) B D T �N:
Note that .T; N; B/ form an orthonormal basis of R3 for each t , and

(5.23) T D N � B; N D B � T:
By (5.22) we have B 0 D T �N 0. Deduce that B 0 is orthogonal to both T and B , hence
parallel to N . We set

B 0 D ��N;
for smooth �.t/, called the torsion.

5. From N 0 D B 0 � T C B � T 0 and the formulas for T 0 and B 0 given in Exercise 4,
deduce the following system, called the Frenet–Serret formula:

T 0 D 	N

N 0 D �	T C �B

B 0 D � �N
(5.24)

Form the 3 � 3 matrix

(5.25) A.t/ D

0

B@
0 �	 0

	 0 ��
0 � 0

1

CA ;

and deduce that the 3 � 3 matrix F.t/ whose columns are T;N; B ,

F D .T; N; B/;

satisfies the ODE
F 0 D F A.t/:

6. Derive the following converse to the Frenet–Serret formula. Let T .0/;N.0/, and B.0/
be an orthonormal set in R3, such that B.0/ D T .0/�N.0/; let 	.t/ and �.t/ be given
smooth functions; and solve the system (5.24). Show that there is a unique curve x.t/
such that x.0/ D 0 and T .t/;N.t/, and B.t/ are associated to x.t/ by the construction
in Exercise 4, so in particular the curve has curvature 	.t/ and torsion �.t/.
(Hint: To prove that (5.22) and (5.23) hold for all t , consider the next exercise.)
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7. Let A.t/ be a smooth, n� n real matrix function that is skew-adjoint for all t (of which
(5.25) is an example). Suppose F.t/ is a real n � n matrix function satisfying

F 0 D F A.t/:

If F.0/ is an orthogonal matrix, show that F.t/ is orthogonal for all t .
(Hint: Set J.t/ D F.t/�F.t/. Show that J.t/ and J0.t/ D I both solve the initial-value
problem

J 0 D ŒJ; A.t/�; J.0/ D I:/

8. Let U1 D T; U2 D N and U3 D B , and set !.t/ D �T C 	B . Show that (5.24) is
equivalent to U 0

j
D ! � Uj ; 1 � j � 3.

9. Suppose � and 	 are constant. Show that ! is constant, so T .t/ satisfies the constant-
coefficient ODE

T 0.t/ D ! � T .t/:
Note that ! � T .0/ D � . Show that after a translation and rotation, x.t/ takes the form

�.t/ D �
��2	 cos�t; ��2	 sin�t; ��1� t

�
; �2 D 	2 C �2:

6. Dependence of solutions on initial data and on other
parameters

We consider how a solution to an ODE depends on the initial conditions. Consider
a nonlinear system

(6.1) y0 D F.y/; y.0/ D x:

As noted in �2, we can consider an autonomous system, such as (6.1), without
loss of generality. Suppose F W U ! Rn is smooth, U � Rn open; for simplicity
we assume U is convex. Say y D y.t; x/. We want to examine smoothness in x.

Note that formally differentiating (6.1) with respect to x suggests that W D
Dxy.t; x/ satisfies an ODE called the linearization of (6.1):

(6.2) W 0 D DF.y/W; W.0/ D I:

In other words, w.t; x/ D Dxy.t; x/w0 satisfies

(6.3) w0 D DF.y/w; w.0/ D w0:

To justify this, we want to compare w.t/ and

(6.4) z.t/ D y1.t/ � y.t/ D y.t; x C w0/� y.t; x/:

It would be convenient to show that z satisfies an ODE similar to (6.3). Indeed,
z.t/ satisfies
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(6.5) z0 D F.y1/� F.y/ D ˆ.y1; y/z; z.0/ D w0;

where

(6.6) ˆ.y1; y/ D
Z 1

0

DF
�
�y1 C .1� �/y

�
d�:

If we assume that

(6.7) kDF.u/k � M; for u 2 U;

then the solution operator S.t; 0/ of the linear ODE d=dt � B.t/, with B.y/ D
ˆ.y1.t/; y.t//, satisfies a bound kS.t; 0/k � ejt jM as long as y.t/ and y1.t/
belong to U . Hence

(6.8) ky1.t/ � y.t/k � ejt jMkw0k:

This establishes that y.t; x/ is Lipschitz in x.
To continue, since ˆ.y; y/ D DF.y/, we rewrite (6.5) as

(6.9) z0 D ˆ.y C z; y/z D DF.y/z CR.y; z/; w.0/ D w0;

where

(6.10) F 2 C 1.U / H) kR.y; z/k D o.kzk/ D o.kw0k/:

Now comparing (6.9) with (6.3), we have

(6.11)
d

dt
.z � w/ D DF.y/.z �w/CR.y; z/; .z � w/.0/ D 0:

Then Duhamel’s principle yields

(6.12) z.t/ �w.t/ D
Z t

0

S.t; s/R
�
y.s/; z.s/

�
ds;

so by the bound kS.t; s/k � ejt�sjM and (6.10), we have

(6.13) z.t/ � w.t/ D o.kw0k/:

This is precisely what is required to show that y.t; x/ is differentiable with respect
to x, with derivativeW D Dxy.t; x/ satisfying (6.2). We state our first result.

Proposition 6.1. If F 2 C 1.U /, and if solutions to (6.1) exist for t 2 .�T0; T1/,
then for each such t; y.t; x/ is C 1 in x, with derivative Dxy.t; x/ D W.t; x/

satisfying (6.2).
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So far we have shown that y.t; x/ is both Lipschitz and differentiable in x, but
the continuity of W.t; x/ in x follows easily by comparing the ODEs of the form
(6.2) forW.t; x/ and W.t; x C w0/, in the spirit of the analysis of (6.11).

If F possesses further smoothness, we can obtain higher differentiability of
y.t; x/ in x by the following trick. Couple (6.1) and (6.2), to get an ODE for
.y;W /:

y0 D F.y/;

W 0 D DF.y/W;
(6.14)

with initial conditions

(6.15) y.0/ D x; W.0/ D I:

We can reiterate the preceeding argument, getting results on Dx.y;W /, that is,
on D2

xy.t; x/, and continue, proving:

Proposition 6.2. If F 2 C k.U /, then y.t; x/ is C k in x.

Similarly, we can consider dependence of the solution to a system of the form

(6.16)
dy

dt
D F.�; y/; y.0/ D x

on a parameter � , assuming F is smooth jointly in �; y. This result can be deduced
from the previous one by the following trick: Consider the ODE

(6.17) y0 D F.z; y/; z0 D 0I y.0/ D x; z.0/ D �:

Thus we get smoothness of y.t; �; x/ in .�; x/. As one special case, let F.�; y/ D
�F.y/. In this case y.t0; �; x/ D y.� t0; 1; x/, so we can improve the conclusion
of Proposition 6.2 to the following:

(6.18) F 2 C k.U / H) y 2 C k jointly in .t; x/:

It is also true that if F is analytic, then one has the analytic dependence of
solutions on parameters, especially on t , so that power-series techniques work in
that case. One approach to the proof of this is given in the exercises below, and
another at the end of �9.

Exercises

1. Let � be open in R2n, identified with Cn, via z D x C iy. Let X W � ! R2n have
components X D .a1; : : : ; an; b1; : : : ; bn/, where aj .x; y/ and bj .x; y/ are real-
valued. Denote the solution to du=dt D X.u/; u.0/ D z by u.t; z/. Assume fj .z/ D
aj .z/C ibj .z/ is holomorphic in z, that is, its derivative commutes with J , acting on
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R2k D Ck as multiplication by i . Show that, for each t; u.t; z/ is holomorphic in z,
that is, Dzu.t; z/ commutes with J .
(Hint: Use the linearized equation (6.2) to show that K.t/ D ŒW.t/; J � satisfies the
ODE

K0 D DX.z/K; K.0/ D 0:/

2. If O � Rn is open and F W O ! Rn is real analytic, show that the solution y.t; x/ to
(6.1) is real analytic in x.
(Hint: With F D .a1; : : : ; an/, take holomorphic extensions fj .z/ of aj .x/ and use
Exercise 1.)
Using the trick leading to (6.18), show that y.t; x/ is real analytic jointly in .t; x/.

In the next set of problems, consider a linear ODE of the form

(6.19) A.x/
du

dx
D B.x/u; 0 < x < 1;

where we assume that the n�nmatrix functionsA andB have holomorphic extensions
to 
 D fz 2 C W jzj < 1g, such that det A.z/ D 0 at z D 0, but at no other point of

. We say z D 0 is a singular point. Let u1.x/; : : : ; un.x/ be n linearly independent
solutions to (6.19), obtained, for example, by specifying u at x D 1=2.

3. Show that each uj has a unique holomorphic extension to the universal covering sur-
face M of 
 n 0, and show that there are cjk 2 C such that

uj .e
2�ix/ D

X

k

cjk uk.x/; 0 < x < 1:

4. Suppose the matrix C D .cjk / is diagonalizable, with eigenvalues �` 2 C; 1 � ` �
n. Show that there is a basis of solutions v` to (6.19) such that

v`.e
2�ix/ D �` v`.x/;

and hence, picking ˛` 2 C such that e2�i˛` D �`,

v`.x/ D x˛`w`.x/I w` holomorphic on 
 n 0:
5. Suppose kA.z/�1B.z/k � Kjzj�1 . Show that kv`.z/k � C jzj�K . Deduce that each
w`.z/ has at most a pole at z D 0; hence, shifting ˛` by an integer, we can assume
that w` is holomorphic on 
. (Hint: Recall the statement of Gronwall’s inequality, in
Exercises 2 and 3 of �5.)

6. Suppose that instead of C being diagonalizable, it has the Jordan normal form
 
� 1

0 �

!

(in case n D 2). What can you say? Generalize.
7. If a.z/ and b.z/ are holomorphic on 
, convert

x2u00.x/C xa.x/u0.x/C b.x/u.x/ D 0

to a first-order system to which Exercises 3–6 apply. (Hint. Take v D xu0 rather than
v D u0:)
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The next set of exercises deals with certain small perturbations of the system Px D
�y; Py D x, whose solution curves are circles centered at the origin.

8. Let x D x".t/; y D y".t/ solve

Px D �y C ".x2 C y2/; Py D x;

with initial data x.0/ D 1; y.0/ D 0. Knowing smooth dependence on ", find ODEs
for the coefficients xj .t/; yj .t/ in power-series expansions

x.t/ D x0.t/C "x1.t/C "2x2.t/C � � � ; y.t/ D y0.t/C "y1.t/C "2y2.t/C � � � :
9. Making use of the substitution �.t/ D �x.�t/; �.t/ D y.�t/, show that, for fixed

initial data and " sufficiently small, the orbits of the ODE in Exercise 8 are periodic.
10. Show that, for " small, the period of the orbit in Exercise 8 is a smooth function of ".

Compute the first three terms in its power-series expansion.

7. Flows and vector fields

Let U � Rn be open. A vector field on U is a smooth map

(7.1) X W U �! Rn:

Consider the corresponding ODE:

(7.2) y0 D X.y/; y.0/ D x;

with x 2 U . A curve y.t/ solving (7.2) is called an integral curve of the vector
field X . It is also called an orbit. For fixed t , write

(7.3) y D y.t; x/ D F tX .x/:

The locally defined F tX , mapping (a subdomain of) U to U , is called the flow
generated by the vector field X .

The vector field X defines a differential operator on scalar functions, as
follows:

(7.4) LXf .x/ D lim
h!0

h�1�f .FhXx/ � f .x/
� D d

dt
f .F tXx/

ˇ̌
tD0:

We also use the common notation

(7.5) LXf .x/ D Xf;

that is, we apply X to f as a first-order differential operator.



36 1. Basic Theory of ODE and Vector Fields

Note that if we apply the chain rule to (7.4) and use (7.2), we have

(7.6) LXf .x/ D X.x/ � rf .x/ D
X

aj .x/
@f

@xj
;

if X D P
aj .x/ej , with fej g the standard basis of Rn. In particular, using the

notation (7.5), we have

(7.7) aj .x/ D Xxj :

In the notation (7.5),

(7.8) X D
X

aj .x/
@

@xj
:

We note that X is a derivation, that is, a map on C1.U /, linear over R, satis-
fying

(7.9) X.fg/ D .Xf /g C f .Xg/:

Conversely, any derivation on C1.U / defines a vector field, namely, has the form
(7.8), as we now show.

Proposition 7.1. If X is a derivation on C1.U /, then X has the form (7.8).

Proof. Set aj .x/ D Xxj ; X
# D P

aj .x/@=@xj , and Y D X �X#. Then Y is a
derivation satisfying Yxj D 0 for each j ; we aim to show that Yf D 0 for all f .
Note that whenever Y is a derivation,

1 � 1 D 1 ) Y � 1 D 2Y � 1 ) Y � 1 D 0;

that is, Y annihilates constants. Thus, in this case Y annihilates all polynomials
of degree � 1.

Now we show that Yf .p/ D 0 for all p 2 U . Without loss of generality, we can
suppose p D 0, the origin. Then, by (1.8), we can take bj .x/ D R 1

0 .@jf /.tx/ dt ,
and write

f .x/ D f .0/C
X

bj .x/xj :

It immediately follows that Yf vanishes at 0, so the proposition is proved.

If U is a manifold, it is natural to regard a vector field X as a section of the
tangent bundle of U , as explained in Appendix B. Of course, the characterization
given in Proposition 7.1 makes good invariant sense on a manifold.

A fundamental fact about vector fields is that they can be “straightened out”
near points where they do not vanish. To see this, suppose a smooth vector field
X is given on U such that, for a certain p 2 U; X.p/ ¤ 0. Then near p there is a
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hypersurfaceM that is nowhere tangent to X . We can choose coordinates near p
so that p is the origin and M is given by fxn D 0g. Thus, we can identify a point
x0 2 Rn�1 near the origin with x0 2 M . We can define a map

(7.10) F W M � .�t0; t0/ �! U

by

(7.11) F.x0; t/ D F tX .x0/:

This is C1 and has surjective derivative and so by the inverse function theorem
is a local diffeomorphism. This defines a new coordinate system near p, in which
the flow generated by X has the form

(7.12) F sX .x0; t/ D .x0; t C s/:

If we denote the new coordinates by .u1; : : : ; un/, we see that the following result
is established.

Theorem 7.2. If X is a smooth vector field on U with X.p/ ¤ 0, then there
exists a coordinate system .u1; : : : ; un/ centered at p (so uj .p/ D 0) with respect
to which

(7.13) X D @

@un
:

We now make some elementary comments on vector fields in the plane. Here
the object is to find the integral curves of

(7.14) f .x; y/
@

@x
C g.x; y/

@

@y
;

that is, to solve

(7.15) x0 D f .x; y/; y0 D g.x; y/:

This implies

(7.16)
dy

dx
D g.x; y/

f .x; y/
;

or, written in differential-form notation (which will be discussed more thoroughly
in �13),

(7.17) g.x; y/ dx � f .x; y/ dy D 0:
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Suppose we manage to find an explicit solution to (7.16):

(7.18) y D '.x/; x D  .y/:

Often it is not feasible to do so, but ODE texts frequently give methods for doing
so in some cases. Then the original system becomes

(7.19) x0 D f .x; '.x//; y0 D g. .y/; y/:

In other words, we have reduced ourselves to integrating vector fields on the line.
We have

Z �
f .x; '.x//

��1
dx D t C C1;

Z �
g. .y/; y/

��1
dy D t C C2:

(7.20)

If (7.18) can be explicitly achieved, it may be that one integral or the other in
(7.20) is easier to evaluate. With either x or y solved as a function of t , the other
is determined by (7.18).

One case when the planar vector field can be integrated explicitly (locally) is
when there is a smooth u, with nonvanishing gradient, explicitly given, such that

(7.21) Xu D 0;

where X is the vector field (7.14). One says u is a conserved quantity. In such
a case, let w be any smooth function such that .u; w/ form a local coordinate
system. In this coordinate system,

(7.22) X D b.u; w/
@

@w

by (7.7), so

(7.23) Xv D 1;

with

(7.24) v.u; w/ D
Z w

w0

b.u; s/�1 ds;

and the local coordinate system .u; v/ linearizes X .
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Exercises

1. Suppose h.x; y/ is homogeneous of degree 0, that is, h.rx; ry/ D h.x; y/, so
h.x; y/ D k.x=y/. Show that the ODE

dy

dx
D h.x; y/

is changed to a separable ODE for u D u.x/, if u D y=x.
2. Using Exercise 1, discuss constructing the integral curves of a vector field

X D f .x; y/
@

@x
C g.x; y/

@

@y

when f .x; y/ and g.x; y/ are homogeneous of degree a, that is,

f .rx; ry/ D ra f .x; y/ for r > 0;

and similarly for g.
3. Describe the integral curves of

.x2 C y2/
@

@x
C xy

@

@y
:

4. Describe the integral curves of

A.x; y/
@

@x
C B.x; y/

@

@y

when A.x; y/ D a1x C a2y C a3; B.x; y/ D b1x C b2y C b3.
5. LetX D f .x; y/.@=@x/Cg.x; y/.@=@y/ be a vector field on a disc� � R2. Suppose

that div X D 0, that is, @f=@x C @g=@y D 0. Show that a function u.x; y/ such that

@u

@x
D g;

@u

@y
D �f

is given by a line integral. Show that Xu D 0, and hence integrate X .
Reconsider this problem after reading �13.

6. Find the integral curves of the vector field

X D .2xy C y2 C 1/
@

@x
C .x2 C 1 � y2/ @

@y
:

7. Show that
div.evX/ D ev.div X CXv/:

Hence, if X is a vector field on � � R2, as in Exercise 5, show that you can integrate
X if you can construct a function v.x; y/ such that Xv D �div X . Construct such v
if either

div X

f .x; y/
D '.x/ or

div X

g.x; y/
D  .y/:

For now, we define div X D @X1=@x1 C � � � C @Xn=@xn. See Chap. 2, �2, for another
definition.
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8. Find the integral curves of the vector field

X D 2xy
@

@x
C .x2 C y2 � 1/ @

@y
:

Let X be a vector field on Rn, with a critical point at 0, that is, X.0/ D 0. Suppose
that for x 2 Rn near 0,

(7.25) X.x/ D Ax CR.x/; kR.x/k D O.kxk2/;
where A is an n � n matrix. We call Ax the linearization of X at 0.

9. Suppose all the eigenvalues of A have negative real part. Construct a quadratic poly-
nomial Q W Rn ! Œ0;1/, such that Q.0/ D 0;

�
@2Q=@xj @xk

�
is positive-definite,

and for any integral curve x.t/ of X as in (7.25),

d

dt
Q.x.t// < 0 if t � 0;

provided x.0/ D x0.¤ 0/ is close enough to 0. Deduce that for small enough C , if
kx0k � C , then x.t/ exists for all t � 0 and x.y/ ! 0 as t ! 1.
(Hint: Take Q.x/ D hx; xi, using Exercise 10 below.)

10. Let A be an n � n matrix, all of whose eigenvalues �j have negative real part. Show
that there exists a Hermitian inner product h ; i on Cn such that Re hAu; ui < 0 for
nonzero u 2 Cn. (Hint: Put A in Jordan normal form, but with "s instead of 1s above
the diagonal, where " is small compared with jRe �j j:)

8. Lie brackets

If F W V ! W is a diffeomorphism between two open domains in Rn, or between
two smooth manifolds, and Y is a vector field onW , we define a vector field F#Y

on V so that

(8.1) F tF#Y
D F�1 ı F tY ı F;

or equivalently, by the chain rule,

(8.2) F#Y.x/ D �
DF �1��F.x/

�
Y
�
F.x/

�
:

In particular, if U � Rn is open and X is a vector field on U defining a flow F t ,
then for a vector field Y; F t#Y is defined on most of U , for jt j small, and we can
define the Lie derivative,

(8.3) LXY D lim
h!0

h�1�Fh# Y � Y � D d

dt
F t#Y

ˇ̌
tD0;

as a vector field on U .
Another natural construction is the operator-theoretic bracket:

(8.4) ŒX; Y � D XY � YX;
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where the vector fields X and Y are regarded as first-order differential operators
on C1.U /. One verifies that (8.4) defines a derivation on C1.U /, hence a vector
field on U . The basic elementary fact about the Lie bracket is the following.

Theorem 8.1. If X and Y are smooth vector fields, then

(8.5) LXY D ŒX; Y �:

Proof. Let us first verify the identity in the special case

X D @

@x1
; Y D

X
bj .x/

@

@xj
:

Then F t#Y D P
bj .x C te1/ @=@xj , so LXY D P

.@bj =@x1/ @=@xj , and a
straightforward calculation shows that this is also the formula for ŒX; Y �, in this
case.

Now we verify (8.5) in general, at any point x0 2 U . First, ifX is nonvanishing
at x0, we can choose a local coordinate system so the example above gives the
identity. By continuity, we get the identity (8.5) on the closure of the set of points
x0, where X.x0/ ¤ 0. Finally, if x0 has a neighborhood where X D 0, clearly
LXY D 0 and ŒX; Y � D 0 at x0. This completes the proof.

Corollary 8.2. If X and Y are smooth vector fields on U , then

(8.6)
d

dt
F tX#Y D F tX#ŒX; Y �;

for all t .

Proof. Since locally F tCsX D F sXF tX , we have the same identity for F tCsX# , which
yields (8.6) upon taking the s-derivative.

We make some further comments about cases when one can explicitly integrate
a vector field X in the plane, exploiting “symmetries” that may be apparent. In
fact, suppose one has in hand a vector field Y such that

(8.7) ŒX; Y � D 0:

By (8.6), this implies F tY #X D X for all t ; this connection will be pursued further
in the next section. Suppose that one has an explicit hold on the flow generated by
Y , so one can produce explicit local coordinates .u; v/ with respect to which

(8.8) Y D @

@u
:

In this coordinate system, write X D a.u; v/@=@u C b.u; v/@=@v. The condition
(8.7) implies @a=@u D 0 D @b=@u, so in fact we have
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(8.9) X D a.v/
@

@u
C b.v/

@

@v
:

Integral curves of (8.9) satisfy

(8.10) u0 D a.v/; v0 D b.v/

and can be found explicitly in terms of integrals; one has

(8.11)
Z
b.v/�1 dv D t C C1

and then

(8.12) u D
Z
a.v.t// dt C C2:

More generally than (8.7), we can suppose that, for some constant c,

(8.13) ŒX; Y � D cX;

which by (8.6) is the same as

(8.14) F tY #X D e�ctX:

An example would be

(8.15) X D f .x; y/
@

@x
C g.x; y/

@

@y
;

where f and g satisfy “homogeneity” conditions of the form

(8.16) f .rax; rby/ D ra�cf .x; y/; g.rax; rby/ D rb�cg.x; y/;

for r > 0; in such a case one can take explicitly

(8.17) F tY .x; y/ D .eatx; ebty/:

Now, if one again has (8.8) in a local coordinate system .u; v/, then X must have
the form

(8.18) X D ecu
h
a.v/

@

@u
C b.v/

@

@v

i
;
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which can be explicitly integrated, since

(8.19) u0 D ecua.v/; v0 D ecub.v/ H) du

dv
D a.v/

b.v/
:

The hypothesis (8.13) implies that the linear span (over R) of X and Y is a
two-dimensional, solvable Lie algebra. Sophus Lie devoted a good deal of effort
to examining when one could use constructions of solvable Lie algebras of vector
fields to integrate vector fields explicitly; his investigations led to his foundation
of what is now called the theory of Lie groups.

Exercises

1. Verify that the bracket (8.4) satisfies the “Jacobi identity”

ŒX; ŒY; Z�� � ŒY; ŒX;Z�� D ŒŒX; Y �; Z�;

i.e.,
ŒLX ;LY �Z D LŒX;Y �Z:

2. Find the integral curves of

X D .x C y2/
@

@x
C y

@

@y

using (8.16).
3. Find the integral curves of

X D .x2y C y5/
@

@x
C .x2 C xy2 C y4/

@

@y
:

9. Commuting flows; Frobenius’s theorem

Let G W U ! V be a diffeomorphism. Recall from �8 the action on vector fields:

(9.1) G#Y.x/ D DG.y/�1Y.y/; y D G.x/:

As noted there, an alternative characterization ofG#Y is given in terms of the flow
it generates. One has

(9.2) F tY ıG D G ı F tG#Y
:

The proof of this is a direct consequence of the chain rule. As a special case, we
have the following

Proposition 9.1. If G#Y D Y , then F tY ıG D G ı F tY .
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From this, we derive the following condition for a pair of flows to commute.
Let X and Y be vector fields on U .

Proposition 9.2. If X and Y commute as differential operators, that is,

(9.3) ŒX; Y � D 0;

then locally F sX and F tY commute; in other words, for any p0 2 U , there exists a
ı > 0 such that for jsj; jt j < ı,

(9.4) F sXF tYp0 D F tYF sXp0:

Proof. By Proposition 9.1, it suffices to show that F sX#Y D Y . This clearly holds
at s D 0. But by (8.6), we have

d

ds
F sX#Y D F sX#ŒX; Y �;

which vanishes if (9.3) holds. This finishes the proof.

We have stated that given (9.3), the identity (9.4) holds locally. If the flows
generated by X and Y are not complete, this can break down globally. For exam-
ple, consider X D @=@x1; Y D @=@x2 on R2, which satisfy (9.3) and generate
commuting flows. These vector fields lift to vector fields on the universal covering
surface QM of R2 n .0; 0/, which continue to satisfy (9.3). The flows on QM do not
commute globally. This phenomenon does not arise, for example, for vector fields
on a compact manifold.

We now consider when a family of vector fields has a multidimensional integral
manifold. Suppose X1; : : : ; Xk are smooth vector fields on U which are linearly
independent at each point of a k-dimensional surface † � U . If each Xj is
tangent to † at each point,† is said to be an integral manifold of .X1; : : : ; Xk/.

Proposition 9.3. Suppose X1; : : : ; Xk are linearly independent at each point of
U and ŒXj ; X`� D 0 for all j; `. Then, for each x0 2 U , there is a k-dimensional
integral manifold of .X1; : : : ; Xk/ containing x0.

Proof. We define a map F W V ! U; V a neighborhood of 0 in Rk , by

(9.5) F.t1; : : : ; tk/ D F t1X1
� � �F tkXk

x0:

Clearly, .@=@t1/F D X1.F /. Similarly, since F tj
Xj

all commute, we can put any

F tj
Xj

first and get .@=@tj /F D Xj .F /. This shows that the image of V under F
is an integral manifold containing x0.

We now derive a more general condition guaranteeing the existence of integral
submanifolds. This important result is due to Frobenius. We say .X1; : : : ; Xk/ is
involutive provided that, for each j; `, there are smooth bj`m .x/ such that
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(9.6) ŒXj ; X`� D
kX

mD1
bj`m .x/Xm:

The following is Frobenius’s theorem.

Theorem 9.4. If .X1; : : : ; Xk/ are C1 vector fields on U , linearly independent
at each point, and the involutivity condition (9.6) holds, then through each x0
there is, locally, a unique integral manifold†, of dimension k.

We will give two proofs of this result. First, let us restate the conclusion as
follows. There exist local coordinates .y1; : : : ; yn/ centered at x0 such that

(9.7) span .X1; : : : ; Xk/ D span
� @

@y1
; : : : ;

@

@yk

	
:

First proof. The result is clear for k D 1. We will use induction on k. So let
the set of vector fields X1; : : : ; XkC1 be linearly independent at each point and
involutive. Choose a local coordinate system so that XkC1 D @=@u1. Now let

(9.8) Yj D Xj � .Xj u1/
@

@u1
for 1 � j � k; YkC1 D @

@u1
:

Since in .u1; : : : ; un/ coordinates, no Y1; : : : ; Yk involves @=@u1, neither does any
Lie bracket, so

ŒYj ; Y`� 2 span .Y1; : : : ; Yk/; j; ` � k:

Thus .Y1; : : : ; Yk/ is involutive. The induction hypothesis implies that there exist
local coordinates .y1; : : : ; yn/ such that

span .Y1; : : : ; Yk/ D span
� @

@y1
; : : : ;

@

@yk

	
:

Now let

(9.9) Z D YkC1 �
kX

`D1

�
YkC1y`

� @

@y`
D
X

`>k

.YkC1y`/
@

@y`
:

Since, in the .u1; : : : ; un/ coordinates, Y1; : : : ; Yk do not involve @=@u1, we have

ŒYkC1; Yj � 2 span .Y1; : : : ; Yk/:

Thus ŒZ; Yj � 2 span .Y1; : : : ; Yk/ for j � k, while (9.9) implies that ŒZ; @=@yj �
belongs to the span of .@=@ykC1; : : : ; @=@yn/, for j � k. Thus we have

h
Z;

@

@yj

i
D 0; j � k:
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Proposition 9.3 implies span .@=@y1; : : : ; @=@yk ; Z/ has an integral manifold
through each point, and since this span is equal to the span of X1; : : : ; XkC1,
the first proof is complete.

Second proof. LetX1; : : : ; Xk be C1 vector fields, linearly independent at each
point and satisfying the condition (9.6). Choose an .n � k/-dimensional surface
O � U , transverse to X1; : : : ; Xk . For V a neighborhood of the origin in Rk ,
define ˆ W V � O ! U by

(9.10) ˆ.t1; : : : ; tk ; x/ D F t1X1
� � �F tkXk

x:

We claim that, for x fixed, the image of V in U is a k-dimensional surface †
tangent to each Xj , at each point of †. Note that since ˆ.0; : : : ; tj ; : : : ; 0; x/ D
F tjXj

x, we have

(9.11)
@

@tj
ˆ.0; : : : ; 0; x/ D Xj .x/; x 2 O:

To establish the claim, it suffices to show that F tXj #X` is a linear combina-
tion with coefficients in C1.U / of X1; : : : ; Xk . This is accomplished by the
following:

Lemma 9.5. Suppose ŒY;Xj � D P
` �j`.x/X`, with smooth coefficients �j`.x/.

Then F tY #Xj is a linear combination of X1; : : : ; Xk , with coefficients in C1.U /.

Proof. Denote by ƒ the matrix .�j`/, and let ƒ.t/ D ƒ.t; x/ D .�j`.F tY x//.
Now let A.t/ D A.t; x/ be the unique solution to the ODE

(9.12) A0.t/ D ƒ.t/A.t/; A.0/ D I:

Write A D .˛j`/. We claim that

(9.13) F tY #Xj D
X

`

˛j`.t; x/X`:

This formula will prove the lemma. Indeed, we have

d

dt
.F tY /#Xj D .F tY /#ŒY;Xj �

D .F tY /#
X

`

�j`X`

D
X

`

.�j` ı F tY /.F tY #X`/:

Uniqueness of the solution to (9.12) gives (9.13), and we are done.
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This completes the second proof of Frobenius’s theorem.

Exercises

1. Let � be open in R2n, identified with Cn via z D x C iy. Let

X D
X�

aj .x; y/
@

@xj
C bj .x; y/

@

@yj

�

be a vector field on �, where aj .x; y/ and bj .x; y/ are real-valued. Form fj .z/ D
aj .z/C ibj .z/. Consider the vector field

Y D JX D
X

j

�
�bj .x; y/ @

@xj
C aj .x; y/

@

@yj

�
:

Show that X and Y commute, that is, ŒX; Y � D 0, provided f .z/ is holomorphic,
namely if the Cauchy–Riemann equations hold:

@aj

@xk
D @bj

@yk
;

@aj

@yk
D � @bj

@xk
:

2. Assuming fj .z/ D aj .z/C ibj .z/ are holomorphic, show that, for z 2 �,

z.t; s/ D F tXFsY z

satisfies @z=@s D J @z=@t , and hence that z.t; s/ is holomorphic in t C is.
3. Suppose aj .x/ are real analytic (and real-valued) on O � Rn. Let X DP

aj .x/@=@xj . Show that, for x 2 O; x.t/ D F t
X
x is real analytic in t (for t

near 0), by applying Exercises 1 and 2.
Compare the proof of this indicated in Exercise 2 of �6.

4. Discuss the uniqueness of integral manifolds arising in Theorem 9.4.
5. Let Aj be smooth m � m matrix-valued functions on O � Rn. Suppose the operators
Lj D @=@xj CAj .x/, acting on functions with values in Rm, all commute, 1 � j � n.
If p 2 O, show that there is a solution in a neighborhood of p to

Lj u D 0; 1 � j � n;

with u.p/ 2 Rm prescribed.

10. Hamiltonian systems

Hamiltonian systems arise from classical mechanics. As a most basic example,
consider the equations of motion that arise from Newton’s law F D ma, where
the force F is given by

(10.1) F D � grad V.x/;
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with V the potential energy. We get the ODE

(10.2) m
d 2x

dt2
D �@V

@x
:

We can convert this into a first-order system for .x; �/, where

(10.3) � D m
dx

dt

is the momentum. We have

(10.4)
dx

dt
D �

m
;

d�

dt
D �@V

@x
:

Now consider the total energy

(10.5) f .x; �/ D 1

2m
j�j2 C V.x/:

Note that @f=@� D �=m and @f=@x D @V=@x. Thus (10.4) is of the form

(10.6)
dxj

dt
D @f

@�j
;

d�j

dt
D � @f

@xj
:

Hence we’re looking for the integral curves of the vector field

(10.7) Hf D
nX

jD1

h @f
@�j

@

@xj
� @f

@xj

@

@�j

i
:

For smooth f .x; �/, we call Hf , defined by (10.7), a Hamiltonian vector field.
Note that, directly from (10.7),

(10.8) Hf f D 0:

A useful notation is the Poisson bracket, defined by

(10.9) ff; gg D Hf g:

One verifies directly from (10.7) that

(10.10) ff; gg D �fg; f g;

generalizing (10.8). Also, a routine calculation verifies that

(10.11) ŒHf ;Hg � D Hff;gg:
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As noted at the end of �7, if X is a vector field in the plane and we explicitly
have a function u with nonvanishing gradient such that Xu D 0, then X can be
explicitly integrated. These comments apply to X D Hf ; u D f , when Hf is
a planar Hamiltonian vector field. We can rephrase this description as follows. If
x 2 R; � 2 R, then integral curves of

(10.12) x0 D @f

@�
; � 0 D �@f

@x

lie on a level set

(10.13) f .x; �/ D E:

Suppose that locally this set is described by

(10.14) x D '.�/ or � D  .x/:

Then we have one of the following ODEs:

(10.15) x0 D f�.x;  .x// or � 0 D �fx.'.�/; �/;

and hence we have

(10.16)
Z
f�
�
x; .x/

��1
dx D t C C

or

(10.17) �
Z
fx
�
'.�/; �

��1
d� D t C C 0:

Thus, solving (10.12) is reduced to a quadrature, that is, a calculation of an explicit
integral, (10.16) or (10.17).

If the planar Hamiltonian vector field Hf arises from describing motion in a
force field on a line, via Newton’s laws given in (10.2), so that

(10.18) f .x; �/ D 1

2m
�2 C V.x/;

then the second curve in (10.14) is

(10.19) � D ˙�.2m/�E � V.x/
��1=2

;
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and the formula (10.16) becomes

(10.20) ˙
�m
2

	1=2 Z �
E � V.x/

��1=2
dx D t C C;

defining x implicitly as a function of t .
In some cases, the integral in (10.20) can be evaluated by elementary means.

This includes the trivial case of a constant force, where V.x/ D cx, and also the
case of the “harmonic oscillator” or linearized spring, where V.x/ D cx2. It
also includes the case of the motion of a rocket in space, along a line through the
center of a planet, where V.x/ D �K=jxj. This gravitational attraction problem
for motion in several-dimensional space will be studied further in ��16 and 17.
The case V.x/ D �K cos x arises in the analysis of the pendulum (see (12.38)).
In that case, (10.20) is an elliptic integral, rather than one that arises in first-year
calculus.

For Hamiltonian vector fields in higher dimensions, more effort is required to
understand the resulting flows. The notion of complete integrability provides a
method of constructing explicit solutions in some cases, as will be discussed in
��16 and 17.

Hamiltonian vector fields arise in the treatment of many problems in addition
to those derived from Newton’s laws in Cartesian coordinates. In �11 we study the
equations of geodesics and then show how they can be transformed to Hamilto-
nian systems. In �12 this is seen to be a special case of a broad class of variational
problems, which lead to Hamiltonian systems, and which also encompass classi-
cal mechanics. This variational approach has many convenient features, such as
allowing an easy formulation of the equations of motion in arbitrary coordinate
systems, a theme that will be developed in a number of subsequent sections.

Exercises

1. Verify that ŒHf ;Hg � D Hff;gg.
2. Demonstrate that the Poisson bracket satisfies the Jacobi identity

(10.21) ff; fg; hgg � fg; ff; hgg D fff; gg; hg:
(Hint: Use Exercise 1 above and Exercise 1 of �8.)

3. Identifying y and � , show that a planar vector field X D f .x; y/.@=@x/ C
g.x; y/.@=@y/ is Hamiltonian if and only if div X D 0.
Reconsider Exercise 5 in �7.

4. Show that
d

dt
g.x; �/ D ff; gg

on an orbit of Hf .
5. If X D P

Xj .x/@=@xj is a vector field on U � Rn, associate to X a function on
U � Rn 
 T �U :
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(10.22) sX .x; �/ D hX; �i D
X

�jXj .x/:

Show that

(10.23) sŒX;Y � D fsX ; sY g:

11. Geodesics

Here we define the concept of a geodesic on a region with a Riemannian metric
(more generally, a Riemannian manifold). A Riemannian metric on � � Rn is
specified by gjk.x/, where .gjk/ is a positive-definite, smooth, n � n matrix-
valued function on �. If U D P

uj .x/@=@xj and V D P
vj .x/@=@xj are two

vector fields on�, their inner product is the smooth scalar function

(11.1) hU; V i D gjk.x/ uj .x/vk.x/;

using the summation convention (i.e., summing over repeated indices). If � is a
manifold, a Riemannian metric is an inner product on each tangent space Tx�,
given in local coordinates by (11.1). Thus, .gjk/ gives rise to a tensor field of type
.0; 2/, that is, a section of the bundle ˝2T ��.

If �.t/; a � t � b, is a smooth curve on �, its length is

(11.2) L D
Z b

a

k� 0.t/k dt D
Z b

a

h
gjk.�.t//�

0
j .t/�

0
k.t/

i1=2
dt:

A curve � is said to be a geodesic if, for jt1� t2j sufficiently small, tj 2 Œa; b�, the
curve �.t/; t1 � t � t2, has the shortest length of all smooth curves in � from
�.t1/ to �.t2/.

We derive the ODE for a geodesic. We start with the case where � has the
metric induced from a diffeomorphism � ! S; S a hypersurface in RnC1; we
will identify � and S here. This short computation will serve as a guide for the
general case.

So let �0.t/ be a smooth curve in S (a � t � b), joining p and q. Suppose
�s.t/ is a smooth family of such curves. We look for a condition guaranteeing
that �0.t/ has minimum length. Since the length of a curve is independent of its
parameterization, we may additionally suppose that

(11.3) k� 0
0.t/k D c0; constant, for a � t � b:

Let N denote a field of normal vectors to S . Note that

(11.4) V D @

@s
�s.t/ ? N:
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Also, any vector field V ? N over the image of �0 can be obtained by some
variation �s of �0, provided V D 0 at p and q. Recall that we are assuming
�s.a/ D p; �s.b/ D q. If L.s/ denotes the length of �s , we have

(11.5) L.s/ D
Z b

a

k� 0
s.t/k dt;

and hence

L0.s/ D 1

2

Z b

a

k� 0
s.t/k�1 @

@s

�
� 0
s.t/; �

0
s.t/

�
dt

D 1

c0

Z b

a

� @
@s
� 0
s.t/; �

0
s.t/

	
dt; at s D 0:

(11.6)

Using the identity

(11.7)
d

dt

� @
@s
�s.t/; �

0
s.t/

	
D
� @
@s
� 0
s.t/; �

0
s.t/

	
C
� @
@s
�s.t/; �

00
s .t/

	
;

together with the fundamental theorem of calculus, in view of the fact that

(11.8)
@

@s
�s.t/ D 0; at t D a and b;

we have

(11.9) L0.s/ D � 1

c0

Z b

a

�
V.t/; � 00

s .t/
�
dt; at s D 0:

Now, if �0 were a geodesic, we would have

(11.10) L0.0/ D 0;

for all such variations. In other words, we must have � 00
0 .t/ ? V for all vector

fields V tangent to S (and vanishing at p and q), and hence

(11.11) � 00
0 .t/kN:

This vanishing of the tangential curvature of �0 is the usual geodesic equation for
a hypersurface in RnC1.

We proceed to derive from (11.11) an ODE in standard form. Suppose S is
defined locally by u.x/ D C; ru ¤ 0. Then (11.11) is equivalent to

(11.12) � 00
0 .t/ D Kru.�0.t//;
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for a scalarK that remains to be determined. But the condition that u.�0.t// D C

implies
� 0
0.t/ � ru.�0.t// D 0;

and differentiating this gives

(11.13) � 00
0 .t/ � ru.�0.t// D �� 0

0.t/ �D2u.�0.t// � � 0
0.t/;

where D2u is the matrix of second-order partial derivatives of u. Comparing
(11.12) and (11.13) givesK , and we obtain the ODE

(11.14) � 00
0 .t/ D �

ˇ̌
ˇru

�
�0.t/

�ˇ̌
ˇ
�2h

� 0
0.t/ �D2u

�
�0.t/

� � � 0
0.t/

i
ru
�
�0.t/

�

for a geodesic �0 lying in S .
We now want to parallel (11.6)–(11.11), to provide the ODE for a geodesic

on � with a general Riemannian metric. As before, let �s.t/ be a one-parameter
family of curves satisfying �s.a/ D p; �s.b/ D q, and (11.3). Then

(11.15) V D @

@s
�s.t/

ˇ̌
sD0

is a vector field defined on the curve �0.t/, vanishing at p and q, and a general
vector field of this sort could be obtained by a variation �s.t/. Let

(11.16) T D � 0
s.t/:

With the notation of (11.1), we have, parallel to (11.6),

(11.17)
L0.s/ D

Z b

a

V hT; T i1=2 dt

D 1

2c0

Z b

a

V hT; T i dt; at s D 0:

Now we need a generalization of .@=@s/� 0
s.t/ and of the formula (11.7). One nat-

ural approach involves the notion of a covariant derivative.
If X and Y are vector fields on �, the covariant derivative rXY is a vector

field on�. The following properties are to hold: We assume that rXY is additive
in both X and Y , that

(11.18) rfXY D f rXY;

for f 2 C1.�/, and that

(11.19) rX .f Y / D f rXY C .Xf /Y
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(i.e., rX acts as a derivation). The operator rX is required to have the following
relation to the Riemannian metric:

(11.20) XhY;Zi D hrXY;Zi C hY;rXZi:

One further property, called the “zero torsion condition,” will uniquely specify r:

(11.21) rXY � rYX D ŒX; Y �:

If these properties hold, one says that r is a “Levi–Civita connection.” We have
the following existence result.

Proposition 11.1. Associated with a Riemannian metric is a unique Levi–Civita
connection, given by

2hrXY;Zi DXhY;Zi C Y hX;Zi �ZhX; Y i
C hŒX; Y �; Zi � hŒX;Z�; Y i � hŒY;Z�; Xi:(11.22)

Proof. To obtain the formula (11.22), cyclically permuteX; Y , and Z in (11.20)
and take the appropriate alternating sum, using (11.21) to cancel out all terms
involving r but two copies of hrXY;Zi. This derives the formula and establishes
uniqueness. On the other hand, if (11.22) is taken as the definition of rXY , then
verification of the properties (11.18)–(11.21) is a routine exercise.

We can resume our analysis of (11.17), which becomes

(11.23) L0.s/ D 1

c0

Z b

a

hrV T; T i dt; at s D 0:

Since @=@s and @=@t commute, we have ŒV; T � D 0 on �0, and (11.21) implies

(11.24) L0.s/ D 1

c0

Z b

a

hrT V; T i dt; at s D 0:

The replacement for (11.7) is

(11.25) T hV; T i D hrTV; T i C hV;rTT i;

so, by the fundamental theorem of calculus,

(11.26) L0.0/ D � 1

c0

Z b

a

hV;rT T i dt:
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If this is to vanish for all smooth vector fields over �0, vanishing at p and q, we
must have

(11.27) rT T D 0:

This is the geodesic equation for a general Riemannian metric.
If � � Rn carries a Riemannian metric gjk.x/ and a corresponding Levi–

Civita connection, the Christoffel symbols kij are defined by

(11.28) rDi
Dj D

X

k

kjiDk ;

whereDk D @=@xk . The formula (11.22) implies

(11.29) gk`
`
ij D 1

2

�
@gjk

@xi
C @gik

@xj
� @gij

@xk

�
:

We can rewrite the geodesic equation (11.27) for �0.t/ D x.t/ as follows. With
x D .x1; : : : ; xn/ and T D . Px1; : : : ; Pxn/, we have

(11.30) 0 D
X

`

rT
� Px`D`

� D
X

`

� Rx`D` C Px`rTD`
�
:

In view of (11.28), this becomes

(11.31) Rx` C Pxj Pxk `jk D 0

(with the summation convention). The standard existence and uniqueness theory
applies to this system of second-order ODE. We will call any smooth curve sat-
isfying the (11.27), or equivalently (11.31), a geodesic. Shortly we will verify
that such a curve is indeed locally length-minimizing. Note that if T D � 0.t/,
then T hT; T i D 2hrT T; T i; so if (11.27) holds, �.t/ automatically has constant
speed.

For a given p 2 �, the exponential map

(11.32) Expp W U �! �

is defined on a neighborhoodU of 0 2 Rn D Tp� by

(11.33) Expp.v/ D �v.1/;

where �v.t/ is the unique constant-speed geodesic satisfying

(11.34) �v.0/ D p; � 0
v.0/ D v:
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Note that Expp.tv/ D �v.t/. It is clear that Expp is well defined and C1 on a
sufficiently small neighborhoodU of 0 2 Rn, and its derivative at 0 is the identity.
Thus, perhaps shrinking U , we have that Expp is a diffeomorphism of U onto a
neighborhoodO of p in�. This provides what is called an exponential coordinate
system, or a normal coordinate system. Clearly, the geodesics through p are the
lines through the origin in this coordinate system. We claim that in this coordinate
system

(11.35) `jk.p/ D 0:

Indeed, since the line through the origin in any direction aDj CbDk is a geodesic,
we have

(11.36) r.aDj CbDk/.aDj C bDk/ D 0; at p;

for all a; b 2 R and all j; k. This implies

(11.37) rDj
Dk D 0; at p for all j; k;

which implies (11.35). We note that (11.35) implies @gjk=@x` D 0 at p, in this
exponential coordinate system. In fact, a simple manipulation of (11.29) gives

(11.38)
@gjk

@x`
D gmk

m
j` C gmj

m
k`:

As a consequence, a number of calculations in differential geometry can be sim-
plified by working in exponential coordinate systems.

We now establish a result, known as the Gauss lemma, which implies that a
geodesic is locally length-minimizing. For a small, let †a D fv 2 Rn W kvk D
ag, and let Sa D Expp.†a/.

Proposition 11.2. Any unit-speed geodesic through p hitting Sa at t D a is or-
thogonal to Sa.

Proof. If �0.t/ is a unit-speed geodesic, �0.0/ D p; �0.a/ D q 2 Sa, and
V 2 Tq� is tangent to Sa, there is a smooth family of unit-speed geodesics,
�s.t/, such that �s.0/ D p and .@=@s/�s.a/

ˇ̌
sD0 D V . Using (11.24) and (11.25)

for this family, with 0 � t � a, since L.s/ is constant, we have

0 D
Z a

0

T hV; T i dt D hV; � 0
0.a/i;

which proves the proposition.

Though a geodesic is locally length-minimizing, it need not be globally length-
minimizing. There are many simple examples of this, some of which are discussed
in the exercises.
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We next consider a “naive” alternative to the calculations (11.17)–(11.31), not
bringing in the notion of covariant derivative, in order to compute L0.0/ when
L.s/ is given by

(11.39) L.s/ D
Z b

a

h
gjk

�
xs.t/

� Pxjs .t/ Pxks .t/
i1=2

dt:

We use the notation T j D Pxj0 .t/; V j D .@=@s/x
j
s .t/jsD0. Calculating in a spirit

similar to that of (11.6), we have (with x D x0)

(11.40) L0.0/ D 1

c0

Z b

a

h
gjk

@

@s
Pxjs .t/

ˇ̌
sD0T

k C 1

2
V j

@gk`

@xj
T kT `

i
dt:

Now, in analogy with (11.7), and in place of (11.25), we can write

(11.41)
d

dt

�
gjk

�
x.t/

�
V jT k

	
D gjk

@

@s
Pxjs .t/

ˇ̌
sD0T

k C gjkV
j Rxk.t/C T `

@gjk

@x`
V jT k :

Thus, by the fundamental theorem of calculus,

(11.42) L0.0/ D � 1

c0

Z b

a

h
gjkV

j Rxk C T `
@gjk

@x`
V jT k � 1

2
V j

@gk`

@xj
T kT `

i
dt;

and the stationary condition L0.0/ D 0 for all variations of the form described
before implies

(11.43) gjk Rxk.t/ D �
�@gjk
@x`

� 1

2

@gk`

@xj

	
T kT `:

Symmetrizing the quantity in parentheses with respect to k and ` yields the ODE
(11.31), with `jk given by (11.29).

Of the two derivations for the equations of (constant-speed) geodesics given
in this section, the latter is a bit shorter and more direct. On the other hand, the
slight additional complication of the first derivation paid for the introduction of
the notion of covariant derivative, a fundamental object in differential geometry.
As we will see in the next section, the methods of the second derivation are very
flexible; there we consider a class of extremal problems, containing the problem
of geodesics, and also containing problems giving rise to the equations of classical
physics, via the stationary action principle.

We now show that the geodesic flow equations can be transformed to a Hamil-
tonian system. Let .gjk/ denote the matrix inverse of .gjk/, and relate v 2 Rn to
� 2 Rn by

(11.44) �j D gjk.x/vk ; i.e., vj D gjk.x/�k :
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Define f .x; �/ on � � Rn by

(11.45) f .x; �/ D 1

2
gjk.x/�j �k ;

as before using the summation convention. For a manifold M , (11.44) is a local
coordinate expression of the Riemannian metric tensor, providing an isomorphism
of TxM with T �

xM , and (11.45) defines half the square norm on T �M . Then the
integral curves .x.t/; �.t// of Hf satisfy

(11.46) Px` D g`k.x/�k ; P�` D �1
2

@gjk

@x`
�j �k :

If we differentiate the first equation and plug in the second one for P�k , we get

(11.47) Rx` D
Xh

�1
2
g j̀

@gik

@xj
C gkj

@gi`

@xj

i
�i�k ;

and using �j D P
gjk.x/ Pxk , straightforward manipulations yield the geodesic

equation (11.31), with `jk given by (11.29).
We now describe a relatively noncomputational approach to the result just ob-

tained. Identifying .x; v/-space and .x; �/-space via (11.44), let Y be the resulting
vector field on .x; �/-space defined by the geodesic flow. The result we want to
reestablish is that Y and Hf coincide at an arbitrary point .x0; �0/ 2 � � Rn.
We will make use of an exponential coordinate system centered at x0; recall that
in this coordinate system the geodesics through x0 become precisely the lines
through the origin. (Of course, geodesics through nearby points are not gener-
ally straight lines in this coordinate system.) In such a coordinate system, we
can arrange gjk.x0/ D ıjk and, by (11.35), .@gjk=@x`/.x0/ D 0. Thus, if
�0 D .a1; : : : ; an/, using (11.46) we have

(11.48) Hf .x0; �0/ D
X

ak
@

@xk
D Y.x0; �0/

in this coordinate system. The identity of Hf and Y at .x0; �0/ is independent
of the coordinate system used, so our result is again established. Actually, there
is a little cheat here. We have not shown that Hf is defined independently of the
choice of coordinates on �. This will be established in �14; see (14.15)–(14.19).

In the next section there will be a systematic approach to converting variational
problems to Hamiltonian systems.

Exercises

1. Suppose Expp W Ba ! M is a diffeomorphism of Ba D fv 2 TpM W kvk � ag onto
its image, B. Use the Gauss lemma to show that, for each q 2 B; q D Exp.w/, the
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curve �.t/ D Exp.tw/; 0 � t � 1, is the unique shortest path from p to q. If Expp is
defined on Ba but is not a diffeomorphism, show that this conclusion does not hold.

2. Let M be a connected Riemannian manifold. Define d.p; q/ to be the infimum of
lengths of smooth curves from p to q. Show that this makes M a metric space.

3. Let p; q 2 M , and suppose there exists a Lipschitz curve � W Œa; b� ! M; �.a/ D
p; �.b/ D q, parameterized by arc length, of length equal to d.p; q/. Show that � is a
C1-curve. (Hint: Make use of Exercise 1.)

4. Let M be a connected Riemannian manifold that, with the metric of Exercise 2, is
compact. Show that any p; q 2 M can be joined by a geodesic of length d.p; q/.
(Hint: Let �k W Œ0; 1� ! M; �k.0/ D p; �k.1/ D q be constant-speed curves of
lengths `k ! d.p; q/. Use Ascoli’s theorem to produce a Lipschitz curve of length
d.p; q/ as a uniform limit of a subsequence of these.)

5. Try to extend the result of Exercise 4 to the case where M is assumed to be complete,
rather than compact.

6. Verify that the definition of rX given by (11.22) does indeed provide a Levi–Civita
connection, having properties (11.18)–(11.21).
(Hint: For example, if you interchange the roles of Y and Z in (11.22), and add it to the
resulting formula for 2hY;rXZi, you can cancel all the terms on the right side except
XhY;Zi C XhZ; Y i; this gives (11.20).)

12. Variational problems and the stationary action principle

The calculus of variations consists of the study of stationary points (e.g., maxima
and minima) of a real-valued function that is defined on some space of functions.
Here, we let M be a region in Rn, or more generally an n-dimensional manifold,
fix two points p; q 2 M and an interval Œa; b� � R, and consider a space of
functions P consisting of smooth curves u W Œa; b� ! M satisfying u.a/ D
p; u.b/ D q. We consider functions I W P ! R of the form

(12.1) I.u/ D
Z b

a

F
�
u.t/; Pu.t/� dt:

Here F.x; v/ is a smooth function on the tangent bundle TM , or perhaps on some
open subset of TM . By definition, the condition for I to be stationary at u is that

(12.2)
d

ds
I.us/

ˇ̌
sD0 D 0

for any smooth family us of elements of P with u0 D u. Note that

(12.3)
d

ds
us.t/

ˇ̌
sD0 D w.t/

defines a tangent vector to M at u.t/, and precisely those tangent vectors w.t/
vanishing at t D a and at t D b arise from making some variation of u within P .
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As in the last section, we can compute the left side of (12.2) by differenti-
ating under the integral, and obtaining a formula for this involves considering
t-derivatives of w. Recall the two approaches to this taken in �11. Here we will
emphasize the second approach, since the data at hand do not generally pick out
some distinguished covariant derivative onM . Thus we work in local coordinates
on M . Since any smooth curve on M can be enclosed by a single coordinate
patch, this involves no loss of generality. Then, given (12.3), we have

(12.4)
d

ds
I.us/

ˇ̌
sD0 D

Z b

a

�
Fx.u; Pu/w C Fv.u; Pu/ Pw� dt:

Integrating the last term by parts and recalling that w.a/ and w.b/ vanish, we see
that this is equal to

(12.5)
Z b

a

h
Fx.u; Pu/ � d

dt
Fv.u; Pu/

i
w dt:

It follows that the condition for u to be stationary is precisely that u satisfy the
equation

(12.6)
d

dt
Fv.u; Pu/ � Fx.u; Pu/ D 0;

a second-order ODE, called Lagrange’s equation. Written more fully, it is

(12.7) Fvv.u; Pu/Ru C Fvx.u; Pu/Pu � Fx.u; Pu/ D 0;

where Fvv is the n � n matrix of second-order v-derivatives of F.x; v/, acting
on the vector Ru, etc. This is a nonsingular system as long as F.x; v/ satisfies the
condition

(12.8) Fvv.x; v/ is invertible;

as an n � n matrix, for each .x; v/ D .u.t/; Pu.t//; t 2 Œa; b�.
The ODE (12.6) suggests a particularly important role for

(12.9) � D Fv.x; v/:

Then, for .x; v/ D .u; Pu/, we have

(12.10) P� D Fx.x; v/; Px D v:

We claim that this system, in .x; �/-coordinates, is in Hamiltonian form. Note that
.x; �/ gives a local coordinate system under the hypothesis (12.8), by the inverse
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function theorem. In other words, we will produce a function E.x; �/ such that
(12.10) is the same as

(12.11) Px D E� ; P� D �Ex;

so the goal is to construct E.x; �/ such that

(12.12) Ex.x; �/ D �Fx.x; v/; E�.x; �/ D v;

when v D v.x; �/ is defined by inverting the transformation

(12.13) .x; �/ D .x; Fv.x; v// D �.x; v/:

If we set

(12.14) Eb.x; v/ D E.�.x; v//;

then (12.12) is equivalent to

(12.15) Ebx .x; v/ D �Fx C vFvx ; Ebv .x; v/ D v Fvv ;

as follows from the chain rule. This calculation is most easily performed using
differential forms, details on which can be found in the next section; in the differ-
ential form notation, our task is to find Eb.x; v/ such that

(12.16) dEb D .�Fx C vFvx/ dx C vFvv dv:

It can be seen by inspection that this identity is satisfied by

(12.17) Eb.x; v/ D Fv.x; v/v � F.x; v/:

Thus the ODE (12.7) describing a stationary point for (12.1) has been converted to
a first-order Hamiltonian system, in the .x; �/-coordinates, given the hypothesis
(12.8) on Fvv . In view of (12.13), one often writes (12.17) informally as

E.x; �/ D � � v � F.x; v/:

We make some observations about the transformation � of (12.13). If v 2
TxM , then Fv.x; v/ acts naturally as a linear functional on TxM . In other words,
� D Fv.x; v/ is naturally regarded as an element of T �

xM , in the cotangent bundle
of M ; it makes invariant sense to regard

(12.18) � W TM �! T �M
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(if F is defined on all of TM ). This map is called the Legendre transformation.
As we have already noted, the hypothesis (12.8) is equivalent to the statement that
� is a local diffeomorphism.

As an example, supposeM has a Riemannian metric g and

F.x; v/ D 1

2
g.v; v/:

Then the map (12.18) is the identification of TM and T �M associated with “low-
ering indices,” using the metric tensor gjk . A straightforward calculation gives, in
this case, E.x; �/ equal to half the natural square norm on cotangent vectors. On
the other hand, the function F.x; v/ D p

g.v; v/ fails to satisfy the hypothesis
(12.8). Since this is the integrand for arc length, it is important to incorporate this
case into our analysis. Recall from the previous section that obtaining equations
for a geodesic involves parameterizing a curve by arc length. We now look at the
following more general situation.

We say F.x; v/ is homogeneous of degree r in v if F.x; cv/ D crF.x; v/

for c > 0. Thus
p
g.v; v/ above is homogeneous of degree 1. When F is ho-

mogeneous of degree 1, hypothesis (12.8) is never satisfied. Furthermore, I.u/ is
independent of the parameterization of a curve in this case; if � W Œa; b� ! Œa; b�

is a diffeomorphism (fixing a and b), then I.u/ D I.Qu/ for Qu.t/ D u.�.t//. Let us
look at a function f .x; v/ related to F.x; v/ by

(12.19) f .x; v/ D  .F.x; v//; F.x; v/ D '.f .x; v//:

Given a family us of curves as before, we can write

(12.20)

d

ds
I.us/jsD0 D

Z b

a

h
' 0�f .u; Pu/�fx.u; Pu/

� d

dt

˚
' 0�f .u; Pu/�fv.u; Pu/


i
w dt:

If u satisfies the condition

(12.21) f .u; Pu/ D c;

with c constant, this is equal to

(12.22) c0
Z b

a

�
fx.u; Pu/ � .d=dt/fv.u; Pu/

�
w dt;

with c0 D ' 0.c/. Of course, setting

(12.23) J.u/ D
Z b

a

f .u; Pu/ dt;
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we have

(12.24)
d

ds
J.us/

ˇ̌
sD0 D

Z b

a

h
fx.u; Pu/� d

dt
fv.u; Pu/

i
w dt:

Consequently, if u satisfies (12.21), then u is stationary for I if and only if u is
stationary for J (provided ' 0.c/ ¤ 0).

It is possible that f .x; v/ satisfies (12.8) even though F.x; v/ does not, as the
case F.x; v/ D p

g.v; v/ illustrates. Note that

fvj vk
D  0.F /Fvj vk

C  00.F /Fvj
Fvk

:

Let us specialize to the case  .F / D F 2, so f .x; v/ D F.x; v/2 is homogeneous
of degree 2. If F is convex in v and .Fvj vk

/, a positive-semidefinite matrix, an-
nihilates only radial vectors, and if F > 0, then f .x; v/ is strictly convex (i.e.,
fvv is positive-definite), and hence (12.8) holds for f .x; v/. This is the case when
F.x; v/ D p

g.v; v/ is the arc length integrand.
If f .x; v/ D F.x; v/2 satisfies (12.8), then the stationary condition for (12.23)

is that u satisfy the ODE

fvv.u; Pu/Ru C fvx.u; Pu/Pu � fx.u; Pu/ D 0;

a nonsingular ODE for which we know there is a unique local solution, with
u.a/ D p; Pu.a/ given. We will be able to say that such a solution is also sta-
tionary for (12.1) once we know that (12.21) holds, that is, f .u; Pu/ is constant.
Indeed, if f .x; v/ is homogeneous of degree 2, then fv.x; v/v D 2f .x; v/, and
hence

(12.25) eb.x; v/ D fv.x; v/v � f .x; v/ D f .x; v/:

But since the equations for u take Hamiltonian form in the coordinates .x; �/ D
.x; fv.x; v//, it follows that eb.u.t/; Pu.t// is constant for u stationary, so (12.21)
does hold in this case.

There is a general principle, known as the stationary action principle, or
Hamilton’s principle, for producing equations of mathematical physics. In this
set-up, the state of a physical system at a given time is described by a pair .x; v/,
position and velocity. One has a kinetic energy function T .x; v/ and a poten-
tial energy function V.x; v/, determining the dynamics, as follows. Form the
difference

(12.26) L.x; v/ D T .x; v/ � V.x; v/;

known as the Lagrangian. Hamilton’s principle states that a path u.t/ describing
the evolution of the state in this system is a stationary path for the action integral
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(12.27) I.u/ D
Z b

a

L.u; Pu/ dt:

In many important cases, the potential V D V.x/ is velocity independent and
T .x; v/ is a quadratic form in v; say T .x; v/ D .1=2/v � G.x/v for a symmetric
matrix G.x/. In that case, we consider

(12.28) L.x; v/ D 1

2
v �G.x/v � V.x/:

Thus we have

(12.29) � D Lv.x; v/ D G.x/v;

and the conserved quantity (12.17) becomes

(12.30)
Eb.x; v/ D v �G.x/v �

h1
2
v �G.x/v � V.x/

i

D 1

2
v �G.x/v C V.x/;

which is the total energy T .x; v/CV.x/. Note that the nondegeneracy condition is
that G.x/ be invertible (in physical problems, G.x/ is typically positive-definite,
but see (18.20)); assuming this, we have

(12.31) E.x; �/ D 1

2
� �G.x/�1� C V.x/;

whose Hamiltonian vector field defines the dynamics. Note that, in this case,
Lagrange’s equation (12.6) takes the form

(12.32)
d

dt

�
G.u/Pu� D 1

2
Pu �Gx.u/Pu � Vx.u/;

which can be rewritten as

(12.33) Ru C  PuPu CG.u/�1Vx.u/ D 0;

where  PuPu is a vector whose `th component is `jk Puj Puk , with `jk the connec-
tion coefficients defined by (11.29) with .gjk/ D G.x/. In other words, (12.33)
generalizes the geodesic equation for the Riemannian metric .gjk/ D G.x/,
which is what would arise in the case V D 0.

We refer to [Ar] and [Go] for a discussion of the relation of Hamilton’s princi-
ple to other formulations of the laws of Newtonian mechanics, but we will briefly
illustrate it here with a couple of examples.
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Consider the basic case of motion of a particle in Euclidean space Rn, in the
presence of a force field of potential type F.x/ D � grad V.x/, as in the begin-
ning of �10. Then

(12.34) T .x; v/ D 1

2
mjvj2; V .x; v/ D V.x/:

This is of course the special case of (12.28) with G.x/ D mI , and the ODE
satisfied by stationary paths for (12.27) hence has the form

(12.35) mRu C Vx.u/ D 0;

precisely the (10.2) expressing Newton’s law F D ma.
Next we consider one example where Cartesian coordinates are not used,

namely the motion of a pendulum (Fig. 12.1). We suppose a mass m is at the
end of a (massless) rod of length `, swinging under the influence of gravity. In
this case, we can express the potential energy as

(12.36) V.�/ D �mg` cos �;

where � is the angle the rod makes with the downward vertical ray, and g denotes
the strength of gravity. The speed of the mass at the end of the pendulum is `j P� j,
so the kinetic energy is

(12.37) T .�; P�/ D 1

2
m`2j P� j2:

In this case we see that Hamilton’s principle leads to the ODE

(12.38) ` R� C g sin � D 0;

describing the motion of a pendulum.
Next we consider a very important physical problem that involves a velocity-

dependent force, leading to a Lagrangian of a form different from (12.28), namely
the (nonrelativistic) motion of a charged particle (with charge e) in an electromag-
netic field .E;B/. One has Newton’s law

FIGURE 12.1 The Pendulum
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(12.39) m
dv

dt
D F;

where v D dx=dt and F is the Lorentz force, given by

(12.40) F D e.E C v �B/:

Certainly F here is not of the form �rV.x/. To construct a replacement for the
potential V , one makes use of two of Maxwell’s equations for E and B:

(12.41) curl E D �@B
@t
; div B D 0;

in units where the speed of light is 1. We will return to Maxwell’s equations later
on. As we will show in �18, these equations imply the existence of a real-valued
'.t; x/ and a vector-valued A.t; x/ such that

(12.42) B D curl A; E D � grad ' � @A

@t
:

Given these quantities, we set

(12.43) V.x; v/ D e.' �A � v/;

and use the Lagrangian L D T � V , with T D .1=2/mjvj2. We have

Lv D mv C eA; Lx D �e'x C e grad .A � v/:

Consequently, .d=dt/Lv D m dv=dt C e@A=@t C eAxv. Using (12.42), we can
obtain

(12.44)
d

dt
Lv � Lx D m

dv

dt
� e.E C v � curl A/;

showing that Lagrange’s equation

(12.45)
d

dt
Lv � Lx D 0

is indeed equivalent to (12.39)–(12.40).
If the electromagnetic field varies with t , then the Lagrangian L produced by

(12.43) has explicit t-dependence:

(12.46) L D L.t; x; v/:
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The equation (12.45) is still the stationary condition for the integral

(12.47) I.u/ D
Z b

a

L
�
t; u.t/; Pu.t/� dt;

as in (12.6). Of course, instead of (12.7), we have

(12.48) Lvv.t; u; Pu/Ru CLvx.t; u; Pu/Pu � Lx.t; u; Pu/C Ltv.t; u; Pu/ D 0:

Finally, we note that for this Lorentz force the Legendre transformation (12.13)
is given by

(12.49) .x; �/ D .x;mv C eA/;

and hence the Hamiltonian function E.x; �/ as in (12.11) is given by

(12.50) E.x; �/ D 1

2m
j� � eAj2 C e':

A treatment of the relativistic motion of a charged particle in an electro-
magnetic field (which in an important sense is cleaner than the nonrelativistic
treatment) is given in �18.

Hamilton’s principle can readily be extended to produce partial differential
equations, describing the motion of continua, such as vibrating strings, moving
fluids, and numerous other important phenomena. Some of these results will be
discussed in the beginning of Chap. 2, and others in various subsequent chapters.

We end this section by noting that Lagrange’s equation (12.6) depends on the
choice of a coordinate system. We can write down an analogue of (12.6), which
depends on a choice of Riemannian metric onM , but not on a coordinate system.

Thus, let M be a Riemannian manifold, and denote by r the Levi–Civita con-
nection constructed in �11. If we have a family of curves in TM , that is, a map

(12.51) u W I � I �! M; u D u.t; s/;

with velocity ut W I � I ! TM , we can write

(12.52) I.s/ D
Z b

a

F
�
ut .t; s/

�
dt;

for a given F W TM ! R. We have

(12.53) I 0.s/ D
Z b

a

DF
�
ut .t; s/

�
@sut dt:
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Note that DF.ut / acts on @sut 2 Tut
.TM/. Now, given v 2 TM , we can write

(12.54) Tv.TM/ D Vv.TM/˚Hv.TM/:

Here the “vertical” space Vv.TM/ is simply Tv.T�.v/M/, where � W TM !
M is the usual projection. The “horizontal” space Hv.TM/ is a complementary
space, isomorphic to T�.v/M , defined as follows.

For any smooth curve � onM , such that �.0/ D x D �.v/, let V.t/ 2 T�.t/M
be given by parallel translation of v along � , that is, if T D � 0.t/, V solves
rT V D 0; V .0/ D v. Thus V.t/ is a curve in TM , and V.0/ D v. The map
� 0.0/ 7! V 0.0/ is an injective linear map of T�.v/M into Tv.TM/, whose range
we call Hv.TM/. One might compare the construction in �6 of Appendix C,
Connections and Curvature. Thus we have both the decomposition (12.54) and
the isomorphisms

(12.55) Vv.TM/ 
 T�.v/M; Hv.TM/ 
 T�.v/M:

The first isomorphism is canonical. The second isomorphism is simply the restric-
tion of D� W Tv.TM/ ! T�.v/M to the subspaceHv.TM/.

The splitting (12.54) gives

(12.56) DF.v/.@sut / D hFv.v/; .@sut /verti C hFx.v/; .@sut /horizi;

where we use this to define

(12.57) Fv.v/ 2 T�.v/M 
 Vv.TM/; Fx.v/ 2 T�.v/M 
 Hv.TM/:

If we set v D ut ; w D us , we have

(12.58) I 0.s/ D
Z b

a

h˝
Fv.ut /;rvw

˛C ˝
Fx.v/; w

˛i
dt:

Parallel to (11.24)–(11.26), we have

(12.59)
Z b

a

˝
Fv.ut /;rvw

˛
dt D �

Z b

a

˝rvFv.ut /; w
˛

dt;

where to apply rv we regard Fv.ut / as a vector field defined over the curve t 7!
u.t; s/ in M . Hence the stationary condition that I 0.0/ D 0 for all variations of
u.t/ D u.t; 0/ takes the form

(12.60) rPuFv.Pu/� Fx.Pu/ D 0:

Note that if v.s/ is a smooth curve in TM , with �.v.s// D u.s/ and u0.s/ D
w.s/, then, under the identification in (12.55),
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(12.61) v0.s/vert D rwv; v0.s/horiz D w:

Then, for smooth F W TM ! R,

(12.62)
d

ds
F
�
v.s/

� D ˝
Fv.v/;rwv

˛C ˝
Fx.v/; w

˛
:

In particular,

(12.63) F.v/ D hv; vi H) Fv.v/ D 2v and Fx.v/ D 0:

Thus, for this function F.v/, the Lagrange equation (12.60) becomes the
geodesic equation rvv D 0, as expected. If, parallel to (12.28), we take
L.v/ D .1=2/hv; vi � V.x/; x D �.v/, then

(12.64) Lv.v/ D v; Lx.v/ D � grad V.x/;

where grad V.x/ is the vector field onM defined by hgrad V.x/;W i D LW V.x/.
The Lagrange equation becomes

(12.65) rPu Pu C grad V.u/ D 0;

in agreement with (12.33).

Exercises

1. Suppose that, more generally than (12.28), we have a Lagrangian of the form

L.x; v/ D 1

2
v �G.x/v C A.x/ � v � V.x/:

Show that (12.30) continues to hold, that is,

Eb.x; v/ D 1

2
v �G.x/v C V.x/;

and that the Hamiltonian function becomes, in place of (12.31),

E.x; �/ D 1

2
.� � A.x// �G.x/�1.� �A.x//C V.x/:

Work out the modification to (12.33) when the extra term A.x/ � v is included. Relate
this to the discussion of the motion in an electromagnetic field in (12.39)–(12.50).

2. Work out the differential equations for a planar double pendulum, in the spirit of
(12.36)–(12.38). See Fig. 12.2. (Hint: To compute kinetic and potential energy, think
of the plane as the complex plane, with the real axis pointing down. The position of
particle 1 is `1ei�1 and that of particle 2 is `1ei�1 C `2e

i�2 :)
3. After reading �18, show that the identity F D dA in (18.19) implies the identity

(12.42), with A D ' dx0 CP
j�1 Aj dxj .
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FIGURE 12.2 The Double Pendulum

4. If A.x/ is a vector field on R3 and v is a constant vector, show that

grad .v � A/ D rvAC v � curl A:

Use this to verify (12.44). How is the formula above modified if v D v.x/ is a function
of x? Reconsider this last question after looking at the exercises following �8 of Chap. 5.

5. The statement before (12.4)–that any smooth curve u.s/ on M can be enclosed by a
single coordinate patch–is not strictly accurate, as the curve may have self-intersections.
Give a more precise statement.

13. Differential forms

It is very desirable to be able to make constructions that depend as little as possible
on a particular choice of coordinate system. The calculus of differential forms,
whose study we now take up, is one convenient set of tools for this purpose.

We start with the notion of a 1-form. It is an object that is integrated over a
curve; formally, a 1-form on � � Rn is written

(13.1) ˛ D
X

j

aj .x/ dxj :

If � W Œa; b� ! � is a smooth curve, we set

(13.2)
Z

�

˛ D
Z b

a

X
aj
�
�.t/

�
� 0
j .t/ dt:

In other words,

(13.3)
Z

�

˛ D
Z

I

��˛;



13. Differential forms 71

where I D Œa; b� and ��˛ D P
j aj .�.t//�

0
j .t/ is the pull-back of ˛ under the

map � . More generally, if F W O ! � is a smooth map (O � Rm open), the
pull-back F �˛ is a 1-form on O defined by

(13.4) F �˛ D
X

j;k

aj .F.y//
@Fj

@yk
dyk:

The usual change of variable for integrals gives

(13.5)
Z

�

˛ D
Z

	

F �˛

if � is the curve F ı � .
If F W O ! � is a diffeomorphism, and

(13.6) X D
X

bj .x/
@

@xj

is a vector field on �, recall that we have the vector field on O:

(13.7) F#X.y/ D �
DF �1.p/

�
X.p/; p D F.y/:

If we define a pairing between 1-forms and vector fields on � by

(13.8) hX; ˛i D
X

j

bj .x/aj .x/ D b � a;

a simple calculation gives

(13.9) hF#X;F
�˛i D hX; ˛i ı F:

Thus, a 1-form on � is characterized at each point p 2 � as a linear transforma-
tion of vectors at p to R.

More generally, we can regard a k-form ˛ on � as a k-multilinear map on
vector fields:

(13.10) ˛.X1; : : : ; Xk/ 2 C1.�/I

we impose the further condition of antisymmetry:

(13.11) ˛.X1; : : : ; Xj ; : : : ; X`; : : : ; Xk/ D �˛.X1; : : : ; X`; : : : ; Xj ; : : : ; Xk/:

We use a special notation for k-forms: If 1 � j1 < � � � < jk � n; j D
.j1; : : : ; jk/, we set
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(13.12) ˛ D
X

j

aj .x/ dxj1
^ � � � ^ dxjk

;

where

(13.13) aj .x/ D ˛.Dj1
; : : : ;Djk

/; Dj D @

@xj
:

More generally, we assign meaning to (13.12) summed over all k-indices .j1; : : : ;
jk/, where we identify

(13.14) dxj1
^ � � � ^ dxjk

D .sgn �/ dxj�.1/
^ � � � ^ dxj�.k/

;

� being a permutation of f1; : : : ; kg. If any jm D j` .m ¤ `/, then (13.14)
vanishes. A common notation for the statement that ˛ is a k-form on� is

(13.15) ˛ 2 ƒk.�/:

In particular, we can write a 2-form ˇ as

(13.16) ˇ D
X

bjk.x/ dxj ^ dxk

and pick coefficients satisfying bjk.x/ D �bkj .x/. According to (13.12) and
(13.13), if we set U D P

uj .x/ @=@xj and V D P
vj .x/ @=@xj , then

(13.17) ˇ.U; V / D 2
X

bjk.x/u
j .x/vk.x/:

If bjk is not required to be antisymmetric, one gets ˇ.U; V / D P
.bjk�bkj /ujvk .

If F W O ! � is a smooth map as above, we define the pull-back F �˛ of a
k-form ˛, given by (13.12), to be

(13.18) F �˛ D
X

j

aj
�
F.y/

�
.F �dxj1

/ ^ � � � ^ .F �dxjk
/;

where

(13.19) F �dxj D
X

`

@Fj

@y`
dy`;

the algebraic computation in (13.18) being performed using the rule (13.14). Ex-
tending (13.9), if F is a diffeomorphism, we have

(13.20) .F �˛/.F#X1; : : : ; F#Xk/ D ˛.X1; : : : ; Xk/ ı F:
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If B D .bjk/ is an n � n matrix, then, by (13.14),

(13.21)

�X

k

b1k dxk

	
^
�X

k

b2k dxk

	
^ � � � ^

�X

k

bnk dxk

	

D
�X

	

.sgn �/b1	.1/b2	.2/ � � �bn	.n/
	
dx1 ^ � � � ^ dxn

D �
detB

�
dx1 ^ � � � ^ dxn;

Hence, if F W O ! � is a C 1-map between two domains of dimension n, and
˛ D A.x/ dx1 ^ � � � ^ dxn is an n-form on �, then

(13.22) F �˛ D detDF.y/ A.F.y// dy1 ^ � � � ^ dyn:

Comparison with the change-of-variable formula for multiple integrals sug-
gests that one has an intrinsic definition of

R


˛ when ˛ is an n-form on�; n D

dim�. To implement this, we need to take into account that detDF.y/ rather than
j detDF.y/j appears in (13.21). We say that a smooth map F W O ! � between
two open subsets of Rn preserves orientation if detDF.y/ is everywhere posi-
tive. The object called an “orientation” on � can be identified as an equivalence
class of nowhere-vanishing n-forms on�, where two such forms are equivalent if
one is a multiple of another by a positive function in C1.�/; the standard orien-
tation on Rn is determined by dx1 ^ � � � ^ dxn. If S is an n-dimensional surface
in RnCk , an orientation on S can also be specified by a nowhere-vanishing form
! 2 ƒn.S/. If such a form exists, S is said to be orientable. The equivalence
class of positive multiples a.x/! is said to consist of “positive” forms. A smooth
map  W S ! M between oriented n-dimensional surfaces preserves orientation
provided  �� is positive on S whenever � 2 ƒn.M/ is positive. If S is oriented,
one can choose coordinate charts that are all orientation-preserving. Surfaces that
cannot be oriented also exist.

If O; � are open in Rn and F W O ! � is an orientation-preserving diffeo-
morphism, we have

(13.23)
Z

O

F �˛ D
Z




˛:

More generally, if S is an n-dimensional manifold with an orientation, say the
image of an open set O � Rn by ' W O ! S , carrying the natural orientation of
O, we can set

(13.24)
Z

S

˛ D
Z

O

'�˛

for an n-form ˛ on S . If it takes several coordinate patches to cover S , define
R
S
˛

by writing ˛ as a sum of forms, each supported on one patch.
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We need to show that this definition of
R
S
˛ is independent of the choice of

coordinate system on S (as long as the orientation of S is respected). Thus, sup-
pose ' W O ! U � S and  W � ! U � S are both coordinate patches, so that
F D  �1 ı ' W O ! � is an orientation-preserving diffeomorphism. We need to
check that if ˛ is an n-form on S , supported on U , then

(13.25)
Z

O

'�˛ D
Z




 �˛:

To see this, first note that, for any form ˛ of any degree,

(13.26)  ı F D ' H) '�˛ D F � �˛:

It suffices to check this for ˛ D dxj . Then  � dxj D P
.@ j =@x`/ dx`, by

(13.14), so

(13.27) F � � dxj D
X

`;m

@F`

@xm

@ j

@x`
dxm; '� dxj D

X

m

@'j

@xm
dxmI

but the identity of these forms follows from the chain rule:

(13.28) D' D .D /.DF / H) @'j

@xm
D
X

`

@ j

@x`

@F`

@xm
:

Now that we have (13.26), we see that the left side of (13.25) is equal to

(13.29)
Z

O

F �. �˛/;

which is equal to the right side of (13.25), by (13.23). Thus the integral of an
n-form over an oriented n-dimensional surface is well defined.

Having discussed the notion of a differential form as something to be inte-
grated, we now consider some operations on forms. There is a wedge product,
or exterior product, characterized as follows. If ˛ 2 ƒk.�/ has the form (13.12),
and if

(13.30) ˇ D
X

i

bi .x/ dxi1 ^ � � � ^ dxi` 2 ƒ`.�/;

define

(13.31) ˛ ^ ˇ D
X

j;i

aj .x/bi .x/ dxj1
^ � � � ^ dxjk

^ dxi1 ^ � � � ^ dxi`
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in ƒkC`.�/. A special case of this arose in (13.18)–(13.21). We retain the equiv-
alence (13.14). It follows easily that

(13.32) ˛ ^ ˇ D .�1/k`ˇ ^ ˛:

In addition, there is an interior product if ˛ 2 ƒk.�/ with a vector field X on
�, producing �X˛ D ˛cX 2 ƒk�1.�/, defined by

(13.33) .˛cX/.X1; : : : ; Xk�1/ D ˛.X;X1; : : : ; Xk�1/:

Consequently, if ˛ D dxj1
^ � � � ^ dxjk

; Di D @=@xi , then

(13.34) ˛cDj`
D .�1/`�1 dxj1

^ � � � ^ cdxj`
^ � � � ^ dxjk

;

where cdxj`
denotes removing the factor dxj`

. Furthermore,

i … fj1; : : : ; jkg H) ˛cDi D 0:

If F W O ! � is a diffeomorphism and ˛; ˇ are forms and X a vector field on
�, it is readily verified that

(13.35) F �.˛ ^ ˇ/ D .F �˛/ ^ .F �ˇ/; F �.˛cX/ D .F �˛/c.F#X/:

We make use of the operators ^k and �k on forms:

(13.36) ^k˛ D dxk ^ ˛; �k˛ D ˛cDk :

There is the following useful anticommutation relation:

(13.37) ^k �` C �`^k D ık`;

where ık` is 1 if k D `; 0 otherwise. This is a fairly straightforward consequence
of (13.34). We also have

(13.38) ^j ^k C ^k ^j D 0; �j �k C �k�j D 0:

From (13.37) and (13.38) one says that the operators f�j ;^j W 1 � j � ng
generate a “Clifford algebra.” For more on this, see Chap. 10.

Another important operator on forms is the exterior derivative:

(13.39) d W ƒk.�/ �! ƒkC1.�/;

defined as follows. If ˛ 2 ƒk.�/ is given by (13.12), then

(13.40) d˛ D
X

j;`

@aj

@x`
dx` ^ dxj1

^ � � � ^ dxjk
:
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Equivalently,

(13.41) d˛ D
nX

`D1
@` ^` ˛;

where @` D @=@x` and ^` is given by (13.36). The antisymmetry dxm ^ dx` D
�dx` ^ dxm, together with the identity @2aj =@x`@xm D @2aj =@xm@x`, implies

(13.42) d.d˛/ D 0;

for any differential form ˛. We also have a product rule:

(13.43) d.˛ ^ ˇ/ D .d˛/ ^ ˇ C .�1/k˛ ^ .dˇ/; ˛ 2 ƒk.�/; ˇ 2 ƒj .�/:

The exterior derivative has the following important property under pull-backs:

(13.44) F �.d˛/ D dF �˛;

if ˛ 2 ƒk.�/ and F W O ! � is a smooth map. To see this, extending (13.43) to
a formula for d.˛ ^ ˇ1 ^ � � � ^ ˇ`/ and using this to apply d to F �˛, we have

dF �˛ D
X

j;`

@

@x`

�
aj ı F.x/� dx` ^ �F �dxj1

� ^ � � � ^ �F �dxjk

�

C
X

j;�

.˙/aj
�
F.x/

��
F �dxj1

� ^ � � � ^ d �F �dxj�

� ^ � � � ^ �F �dxjk

�
:

(13.45)

Now

d
�
F �dxi

� D
X

j;`

@2Fi

@xj @x`
dxj ^ dx` D 0;

so only the first sum in (13.45) contributes to dF �˛. Meanwhile,

(13.46) F �d˛ D
X

j;m

@aj

@xm

�
F.x/

�
.F �dxm/ ^ �F �dxj1

� ^ � � � ^ �F �dxjk

�
;

so (13.44) follows from the identity

(13.47)
X

`

@

@x`

�
aj ı F.x/� dx` D

X

m

@aj

@xm

�
F.x/

�
F �dxm;

which in turn follows from the chain rule.
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If d˛ D 0, we say ˛ is closed; if ˛ D dˇ for some ˇ 2 ƒk�1.�/, we say ˛
is exact. Formula (13.42) implies that every exact form is closed. The converse
is not always true globally. Consider the multivalued angular coordinate � on
R2 n .0; 0/I d� is a single-valued, closed form on R2 n .0; 0/ that is not globally
exact. As we will see shortly, every closed form is locally exact.

First we introduce another important construction. If ˛ 2 ƒk.�/ and X is a
vector field on �, generating a flow F tX , the Lie derivative LX˛ is defined to be

(13.48) LX˛ D d

dt

�F tX
��
˛jtD0:

Note the formal similarity to the definition (8.2) of LXY for a vector field Y .
Recall the formula (8.4) for LXY . The following is not only a computationally
convenient formula for LX˛, but also an identity of fundamental importance.

Proposition 13.1. We have

(13.49) LX˛ D d.˛cX/C .d˛/cX:

Proof. First we compare both sides in the special case X D @=@x` D D`. Note
that �F tD`

��
˛ D

X

j

aj .x C te`/ dxj1
^ � � � ^ dxjk

;

so

(13.50) LD`
˛ D

X

j

@aj

@x`
dxj1

^ � � � ^ dxjk
D @`˛:

To evaluate the right side of (13.49) with X D D`, use (13.41) to write this
quantity as

(13.51) d.�`˛/C �`d˛ D
nX

jD1

�
@j ^j �` C �`@j^j

�
˛:

Using the commutativity of @j with ^j and with �`, and the anticommutation
relations (13.37), we see that the right side of (13.51) is @`˛, which coincides
with (13.50). Thus the proposition holds for X D @=@x`.

Now we can prove the proposition in general, for a smooth vector fieldX on�.
It is to be verified at each point x0 2 �. IfX.x0/ ¤ 0, choose a coordinate system
about x0 so that X D @=@x1, and use the calculation above. This shows that the
desired identity holds on the set of points fx0 2 � W X.x0/ ¤ 0g, and by conti-
nuity it holds on the closure of this set. However, if x0 2 � has a neighborhood
on which X vanishes, it is clear that LX˛ D 0 near x0 and also ˛cX and d˛cX
vanish near x0. This completes the proof.
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The identity (13.49) can furnish a formula for the exterior derivative in terms
of Lie brackets, as follows. By (8.4) and (13.49), we have, for a k-form !,

(13.52)�LX!
�
.X1; : : : ; Xk/ D X � !.X1; : : : ; Xk/ �

X

j

!.X1; : : : ; ŒX;Xj �; : : : ; Xk/:

Now (13.49) can be rewritten as

(13.53) �Xd! D LX! � d�X!:

This implies

(13.54)
.d!/.X0; X1; : : : ; Xk/ D �LX0

!
�
.X1; : : : ; Xk/� �

d�X0
!
�
.X1; : : : ; Xk/:

We can substitute (13.52) into the first term on the right in (13.54). In case ! is a
1-form, the last term is easily evaluated; we get

(13.55) .d!/.X0; X1/ D X0 � !.X1/� X1 � !.X0/ � !.ŒX0; X1�/:

More generally, we can tackle the last term on the right side of (13.54) by the
same method, using (13.53) with ! replaced by the .k � 1/-form �X0

!. In this
way we inductively obtain the formula

(13.56)

.d!/.X0; : : : ;Xk/ D
kX

`D0
.�1/`X` � !.X0; : : : ;bX`; : : : ; Xk/

C
X

0�`<j�k
.�1/jC`!.ŒX`; Xj �; X0; : : : ; bX`; : : : ;bXj ; : : : ; Xk/:

Note that from (13.48) and the property F sCtX D F sXF tX it easily follows that

(13.57)
d

dt

�F tX
��
˛ D LX

�F tX
��
˛ D �F tX

��LX˛:

It is useful to generalize this. Let Ft be any smooth family of diffeomorphisms
fromM to Ft .M/ � M . Define vector fields Xt on Ft .M/ by

(13.58)
d

dt
Ft .x/ D Xt .Ft .x//:

Then it easily follows that, for ˛ 2 ƒkM ,

d

dt
F �
t ˛ D F �

t LXt
˛

D F �
t

�
d.˛cXt /C .d˛/cXt

�
:

(13.59)
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In particular, if ˛ is closed, then if Ft are diffeomorphisms for 0 � t � 1,

(13.60) F �
1 ˛ � F �

0 ˛ D dˇ; ˇ D
Z 1

0

F �
t .˛cXt / dt:

Using this, we can prove the celebrated Poincaré lemma.

Theorem 13.2. If B is the unit ball in Rn, centered at 0; ˛ 2 ƒk.B/; k > 0,
and d˛ D 0, then ˛ D dˇ for some ˇ 2 ƒk�1.B/.

Proof. Consider the family of maps Ft W B ! B given by Ft .x/ D tx. For
0 < t � 1, these are diffeomorphisms, and the formula (13.59) applies. Note that

F �
1 ˛ D ˛; F �

0 ˛ D 0:

Now a simple limiting argument shows that (13.60) remains valid, so ˛ D dˇ

with

(13.61) ˇ D
Z 1

0

F �
t .˛cV /t�1 dt;

where V D r@=@r D P
xj @=@xj . Since F �

0 D 0, the apparent singularity in the
integrand is removable.

Since in the proof of the theorem we dealt with Ft such that F0 was not a
diffeomorphism, we are motivated to generalize (13.60) to the case where Ft W
M ! N is a smooth family of maps, not necessarily diffeomorphisms. Then
(13.58) does not work to define Xt as a vector field, but we do have

(13.62)
d

dt
Ft .x/ D Z.t; x/I Z.t; x/ 2 TFt .x/N:

Now in (13.60) we see that

F �.˛cXt /.Y1; : : : ; Yk�1/ D ˛
�
Ft .x/

��
Xt ;DFt .x/Y1; : : : ;DFt .x/Yk�1

�
;

and we can replaceXt byZ.t; x/. Hence, in this more general case, if ˛ is closed,
we can write

(13.63) F �
1 ˛ � F �

0 ˛ D dˇ; ˇ D
Z 1

0

�t dt;

where, at x 2 M ,

(13.64) �t .Y1; : : : ; Yk�1/ D ˛
�
Ft .x/

��
Z.t; x/;DFt .x/Y1; : : : ;DFt .x/Yk�1

�
:

For an alternative approach to this homotopy invariance, see Exercise 7.
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A basic result in the theory of differential forms is the generalized Stokes
formula:

Proposition 13.3. Given a compactly supported .k � 1/-form ˇ of class C 1 on
an oriented k-dimensional manifoldM (of class C 2) with boundary @M , with its
natural orientation,

(13.65)
Z

M

dˇ D
Z

@M

ˇ:

The orientation induced on @M is uniquely determined by the following re-
quirement. If

(13.66) M D Rk� D fx 2 Rk W x1 � 0g;

then @M D f.x2; : : : ; xk/g has the orientation determined by dx2 ^ � � � ^ dxk .

Proof. Using a partition of unity and invariance of the integral and the exterior
derivative under coordinate transformations, it suffices to prove this when M has
the form (13.66). In that case, we will be able to deduce (13.65) from the funda-
mental theorem of calculus. Indeed, if

(13.67) ˇ D bj .x/ dx1 ^ � � � ^ cdxj ^ � � � ^ dxk ;

with bj .x/ of bounded support, we have

(13.68) dˇ D .�1/j�1 @bj
@xj

dx1 ^ � � � ^ dxk :

If j > 1, we have

(13.69)
Z

M

dˇ D
Z nZ 1

�1
@bj

@xj
dxj

o
dx0 D 0;

and also 	�ˇ D 0, where 	 W @M ! M is the inclusion. On the other hand, for
j D 1, we have

(13.70)

Z

M

dˇ D
Z nZ 0

�1
@b1

@x1
dx1

o
dx2 � � �dxk

D
Z
b1.0; x

0/ dx0

D
Z

@M

ˇ:

This proves Stokes’ formula (13.65).
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It is useful to allow singularities in @M . We say a point p 2 M is a corner of
dimension � if there is a neighborhoodU of p inM and a C 2-diffeomorphism of
U onto a neighborhood of 0 in

(13.71) K D fx 2 Rk W xj � 0; for 1 � j � k � �g;

where k is the dimension of M . If M is a C 2-manifold and every point p 2 @M
is a corner (of some dimension), we sayM is a C 2-manifold with corners. In such
a case, @M is a locally finite union of C 2-manifolds with corners. The following
result extends Proposition 13.3.

Proposition 13.4. If M is a C 2-manifold of dimension k, with corners, and ˇ is
a compactly supported .k � 1/-form of class C 1 on M , then (13.65) holds.

Proof. It suffices to establish this when ˇ is supported on a small neighborhood
of a corner p 2 @M , of the formU described above. Hence it suffices to show that
(13.65) holds whenever ˇ is a .k � 1/-form of class C 1, with compact support on
K in (13.71); and we can take ˇ to have the form (13.67). Then, for j > k � �,
(13.69) still holds, while for j � k � �, we have, as in (13.70),

(13.72)Z

K

dˇ D .�1/j�1
Z nZ 0

�1
@bj

@xj
dxj

o
dx1 � � �cdxj � � �dxk

D .�1/j�1
Z
bj .x1; : : : ; xj�1; 0; xjC1; : : : ; xk/ dx1 � � �cdxj � � �dxk

D
Z

@K

ˇ:

The reason we required M to be a manifold of class C 2 (with corners) in
Propositions 13.3 and 13.4 is the following. Due to the formulas (13.18)–(13.19)
for a pull-back, if ˇ is of class C j and F is of class C `, then F �ˇ is generally
of class C�, with � D min.j; ` � 1/. Thus, if j D ` D 1; F �ˇ might be only
of class C 0, so there is not a well-defined notion of a differential form of class
C 1 on a C 1-manifold, though such a notion is well defined on a C 2-manifold.
This problem can be overcome, and one can extend Propositions 13.3 and 13.4 to
the case where M is a C 1-manifold (with corners) and ˇ is a .k � 1/-form with
the property that both ˇ and dˇ are continuous. We will not go into the details.
Substantially more sophisticated generalizations are given in [Fed].

Exercises

1. If F W U0 ! U1 and G W U1 ! U2 are smooth maps and ˛ 2 ƒk.U2/, (13.26)
implies

.G ı F /�˛ D F �.G�˛/ inƒk.U0/:
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In the special case that Uj D Rn, F and G are linear maps, and k D n, show that this
identity implies

det.GF / D .detF /.detG/:

2. If ˛ is a closed form and ˇ is exact, show that ˛ ^ ˇ is exact. (Hint: Use (13.43).)

Let ƒk.Rn/ denote the space of k-forms (13.12) with constant coefficients. If
T W Rm ! Rn is linear, then T � preserves this class of spaces; we denote the
map

ƒkT � W ƒkRn �! ƒkRm:

Similarly, replacing T by T � yields

ƒkT W ƒkRm �! ƒkRn:

3. Show that ƒkT is uniquely characterized as a linear map from ƒkRm to ƒkRn that
satisfies

.ƒkT /.v1 ^ � � � ^ vk/ D .T v1/ ^ � � � ^ .T vk/; vj 2 Rm:

4. If fe1; : : : ; eng is the standard orthonormal basis of Rn, define an inner product on
ƒkRn by declaring an orthonormal basis to be

fej1
^ � � � ^ ejk

W 1 � j1 < � � � < jk � ng:
Show that if fu1; : : : ; ung is any other orthonormal basis of Rn, then the set

fuj1
^ � � � ^ ujk

W 1 � j1 < � � � < jk � ng

is an orthonormal basis of ƒkRn.
5. Let F be a vector field on U , open in R3; F D P3

1 fj .x/ @=@xj . Consider the 1-form

' D P3
1 fj .x/ dxj . Show that d' and curl F are related in the following way:

curl F D
3X

1

gj .x/
@

@xj
;

d' D g1.x/ dx2 ^ dx3 C g2.x/ dx3 ^ dx1 C g3.x/ dx1 ^ dx2:
6. If F and ' are related as in Exercise 5, show that curl F is uniquely specified by the

relation
d' ^ ˛ D hcurl F; ˛i!

for all 1-forms ˛ on U � R3, where ! D dx1 ^ dx2 ^ dx3 is the volume form.
7. Suppose f0; f1 W X ! Y are smoothly homotopic maps, via ˆ W X � R !
Y; ˆ.x; j / D fj .x/. Let ˛ 2 ƒkY be closed. Apply (13.60) to Q̨ D ˆ�˛ 2
ƒk.X � R/, with Ft .x; s/ D .x; s C t/, to obtain Q̌ 2 ƒk�1.X � R/ such that
F �
1 Q̨ � Q̨ D d Q̌, and from there produce ˇ 2 ƒk�1.X/ such that f �

1 ˛ � f �
0 ˛ D dˇ.

(Hint: Use ˇ D �� Q̌, where �.x/ D .x; 0/:)

For the next set of exercises, let � be a planar domain, X D f .x; y/ @=@x C
g.x; y/ @=@y a nonvanishing vector field on �. Consider the 1-form ˛ D
g.x; y/ dx � f .x; y/ dy.
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8. Let � W I ! � be a smooth curve, I D .a; b/. Show that the image C D �.I / is
the image of an integral curve of X if and only if ��˛ D 0. Consequently, with slight
abuse of notation, one describes the integral curves by g dx � f dy D 0. If ˛ is exact
(i.e., ˛ D du;) conclude that the level curves of u are the integral curves of X .

9. A function ' is called an integrating factor if Q̨ D '˛ is exact (i.e., if d.'˛/ D 0,
provided � is simply connected). Show that an integrating factor always exists, at
least locally. Show that ' D ev is an integrating factor if and only if Xv D � div X .
Reconsider Exercise 7 in �7. Find an integrating factor for ˛ D .x2 C y2 � 1/ dx �
2xy dy.

10. Let Y be a vector field that you know how to linearize (i.e., conjugate to @=@x) and
suppose LY ˛ D 0. Show how to construct an integrating factor for ˛. Treat the more
general case LX˛ D c˛ for some constant c. Compare the discussion in �8 of the
situation where ŒX; Y � D cX .

14. The symplectic form and canonical transformations

Recall from �10 that a Hamiltonian vector field on a region � � R2n, with
coordinates � D .x; �/, is a vector field of the form

(14.1) Hf D
nX

jD1

h @f
@�j

@

@xj
� @f

@xj

@

@�j

i
:

We want to gain an understanding of Hamiltonian vector fields, free from co-
ordinates. In particular, we ask the following question. Let F W O ! � be a
diffeomorphism, and let Hf be a Hamiltonian vector field on �. Under what
condition on F is F#Hf a Hamiltonian vector field on O?

A central object in this study is the symplectic form, a 2-form on R2n

defined by

(14.2) � D
nX

jD1
d�j ^ dxj :

Note that if

U D
Xh

uj .�/
@

@xj
C aj .�/

@

@�j

i
; V D

Xh
vj .�/

@

@xj
C bj .�/

@

@�j

i
;

then

(14.3) �.U; V / D
nX

jD1

��uj .�/bj .�/C aj .�/vj .�/
�
:
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In particular, � satisfies the following nondegeneracy condition: IfU has the prop-
erty that, for some .x0; �0/ 2 R2n; �.U; V / D 0 at .x0; �0/ for all vector fields
V , then U must vanish at .x0; �0/. The relation between the symplectic form and
Hamiltonian vector fields is as follows:

Proposition 14.1. The vector field Hf is uniquely determined by the identity

(14.4) �cHf D �df:

Proof. The content of the identity is

(14.5) �.Hf ; V / D �Vf;

for any smooth vector field V . If V has the form used in (14.3), then that identity
gives

�.Hf ; V / D �
nX

jD1

h @f
@�j

bj .�/C @f

@xj
vj .�/

i
;

which coincides with the right side of (14.5). In view of the nondegeneracy of � ,
the proposition is proved. Note the special case

(14.6) �.Hf ;Hg/ D ff; gg:

The following is an immediate corollary.

Proposition 14.2. If O; � are open in R2n, and F W O ! � is a diffeomorphism
preserving � , that is, satisfying

(14.7) F �� D �;

then for any f 2 C1.�/; F#Hf is Hamiltonian on� and

(14.8) F#Hf D HF �f ;

where F �f .y/ D f .F.y//.

A diffeomorphism satisfying (14.7) is called a canonical transformation, or a
symplectic transformation. Let us now look at the condition on a vector field X
on � that the flow F tX generated by X preserve � for each t . There is a simple
general condition in terms of the Lie derivative for a given form to be preserved.

Lemma 14.3. Let ˛ 2 ƒk.�/. Then
�F tX

��
˛ D ˛ for all t if and only if

LX˛ D 0:

Proof. This is an immediate consequence of (13.57).
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Recall the formula (13.49):

(14.9) LX˛ D d.˛cX/C .d˛/cX:

We apply it in the case where ˛ D � is the symplectic form. Clearly, (14.2)
implies

(14.10) d� D 0;

so

(14.11) LX� D d.�cX/:

Consequently, F tX preserves the symplectic form � if and only if d.�cX/ D 0

on �. In view of Poincaré’s lemma, at least locally, one has a smooth function
f .x; �/ such that

(14.12) �cX D df;

provided d.�cX/ D 0. Any two f ’s satisfying (14.12) must differ by a constant,
and it follows that such f exists globally provided� is simply connected. In view
of Proposition 14.1, (14.12) is equivalent to the identity

(14.13) X D �Hf :

In particular, we have established the following result.

Proposition 14.4. The flow generated by a Hamiltonian vector field Hf pre-
serves the symplectic form � .

It follows a fortiori that the flow F t generated by a Hamiltonian vector field
Hf leaves invariant the 2n-form

v D � ^ � � � ^ � .n factors/;

which provides a volume form on�. That this volume form is preserved is known
as a theorem of Liouville. This result has the following refinement. Let S be a
level surface of the function f ; suppose f is nondegenerate on S . Then we can
define a .2n � 1/-form w on S (giving rise to a volume element on S ) which is
also invariant under the flow F t , as follows. Let X be any vector field on � such
that Xf D 1 on S , and define

(14.14) w D j �.vcX/;

where j W S ,! � is the natural inclusion. We claim this is well defined.
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Lemma 14.5. The form (14.14) is independent of the choice of X , as long as
Xf D 1 on S .

Proof. The difference of two such forms is j �.vcY1/, where Y1f D 0 on S , that
is, Y1 is tangent to S . Now this form, acting on vectors Y2; : : : ; Y2n, all tangent to
S , is merely .j �v/.Y1; : : : ; Y2n/; but obviously j �v D 0 since dim S < 2n.

We can now establish the invariance of the form w on S .

Proposition 14.6. The form (14.14) is invariant under the flow F t on S .

Proof. Since v is invariant under F t , we have

F t�w D j �.F t�vcF t#X/
D j �.vcF t#X/
D w C j ��vc.F t#X � X/

�
:

Since F t�f D f , we see that .F t#X/f D 1 D Xf , so the last term vanishes, by
Lemma 14.5, and the proof is complete.

Let O � Rn be open; we claim that the symplectic form � is well defined on
T �O D O�Rn, in the following sense. Suppose g W O ! � is a diffeomorphism
(i.e., a coordinate change). The map this induces from T �O to T �� is

(14.15) G.x; �/ D �
g.x/;

�
.Dg/t

��1
.x/�

� D .y; �/:

Our invariance result is

(14.16) G�� D �:

In fact, a stronger result is true. We can write

(14.17) � D d	; 	 D
X

j

�j dxj ;

where the 1-form 	 is called the contact form. We claim that

(14.18) G�	 D 	;

which implies (14.16), since G�d	 D dG�	. To see (14.18), note that

dyj D
X

k

@gj

@xk
dxk ; �j D

X

`

Hj`�`;

where .Hj`/ is the matrix of
�
.Dg/t

��1
, that is, the inverse matrix of .@g`=@xj /.

Hence
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X

j

�j dyj D
X

j;k;`

@gj

@xk
Hj`�` dxk

D
X

k;`

ık`�` dxk

D
X

k

�k dxk;

(14.19)

which establishes (14.18).
As a particular case, a vector field Y on O, generating a flow F tY on O, induces

a flow GtY on T �O. Not only does this flow preserve the symplectic form; in fact,
GtY is generated by the Hamiltonian vector field Hˆ, where

(14.20) ˆ.x; �/ D hY.x/; �i D
X

j

�j v
j .x/

if Y D P
vj .x/ @=@xj .

The symplectic form given by (14.2) can be regarded as a special case of a
general symplectic form, which is a closed, nondegenerate2-form on a domain (or
manifold) �. Often such a form ! arises naturally, in a form not a priori looking
like (14.2). It is a theorem of Darboux that locally one can pick coordinates in such
a fashion that ! does take the standard form (14.2). We present a short proof, due
to J. Moser, of that theorem.

To start, pick p 2 �, and considerB D !.p/, a nondegenerate, antisymmetric,
bilinear form on the vector space V D Tp�. It is a simple exercise in linear
algebra that if one has such a form, then dim V must be even, say 2n, and V has
a basis fej ; fj W 1 � j � ng such that

(14.21) B.ej ; e`/ D B.fj ; f`/ D 0; B.ej ; f`/ D ıj`;

for 1 � j; ` � n. Using such a basis to impose linear coordinates .x; �/ on a
neighborhood of p, taken to the origin, we have ! D !0 D P

d�j ^ dxj at p.
Thus Darboux’ theorem follows from:

Proposition 14.7. If ! and !0 are closed, nondegenerate 2-forms on�, and ! D
!0 at p 2 �, then there is a diffeomorphismG1 defined on a neighborhood of p,
such that

(14.22) G1.p/ D p and G�
1! D !0:

Proof. For t 2 Œ0; 1�, let

(14.23) !t D .1� t/!0 C t! D !0 C t˛; ˛ D ! � !0:
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Thus ˛ D 0 at p, and ˛ is a closed 2-form. We can therefore write

(14.24) ˛ D dˇ

on a neighborhood of p, and if ˇ is given by the formula (13.61) in the proof of
the Poincaré lemma, we have ˇ D 0 at p. Since for each t; !t D ! at p, we see
that each !t is nondegenerate on some common neighborhood of p, for t 2 Œ0; 1�.

Our strategy will be to produce a smooth family of local diffeomorphisms
Gt ; 0 � t � 1, such that Gt .p/ D p; G0 D id:, and such that G�

t !t is in-
dependent of t , hence G�

t !t D !0. Gt will be specified by a time-varying family
of vector fields, via the ODE

(14.25)
d

dt
Gt .x/ D Xt .Gt .x//; G0.x/ D x:

We will have Gt .p/ D p provided Xt .p/ D 0. To arrange for G�
t !t to be inde-

pendent of t , note that, by the product rule,

(14.26)
d

dt
G�
t !t D G�

t LXt
!t CG�

t

d!t

dt
:

By (14.23), d!t=dt D ˛ D dˇ, and by Proposition 13.1,

(14.27) LXt
!t D d.!tcXt /

since !t is closed. Thus we can write (14.26) as

(14.28)
d

dt
G�
t !t D G�

t d.!tcXt C ˇ/:

This vanishes provided Xt is defined to satisfy

(14.29) !tcXt D �ˇ:

Since !t is nondegenerate near p, this does indeed uniquely specify a vector field
Xt near p, for each t 2 Œ0; 1�, which vanishes at p, since ˇ D 0 at p. The proof
of Darboux’ theorem is complete.

Exercises

1. Do the linear algebra exercise stated before Proposition 14.7, as a preparation for the
proof of Darboux’ theorem.

2. On R2, identify .x; �/ with .x; y/, so the symplectic form is � D dy ^ dx. Show that

X D f
@

@x
C g

@

@y
and ˛ D g dx � f dy
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are related by
˛ D �cX:

Reconsider Exercises 8–10 of �13 in light of this.
3. Show that the volume form w on the level surface S of f , given by (14.14), can be

characterized as follows. Let Sh be the level set ff .x; �/ D c C hg; S D S0. Given
any vector field X transversal to S , any open set O � S with smooth boundary, let eOh
be the thin set sandwiched between S and Sh, lying on orbits of X through O. Then,
with v D � ^ � � � ^ � the volume form on �,

Z

O
w D lim

h!0

1

h

Z

eOh

v:

4. A manifold M � R2n is said to be coisotropic if, for each p 2 M , the tangent space
TpM contains its symplectic annihilator

T 	p D fw 2 R2n W �.v;w/ D 0 for all v 2 TpM g:
It is said to be Lagrangian if TpM D T 	p for all p 2 M . IfM is coisotropic, show that
it is naturally foliated by manifolds fNqg such that, for p 2 Nq ; TpNq D T 	p . (Hint:
Apply Frobenius’s theorem.)

15. First-order, scalar, nonlinear PDE

This section is devoted to a study of PDE of the form

(15.1) F.x; u;ru/ D 0;

for a real-valued u 2 C1.�/, dim� D n, givenF.x; u; �/ smooth on��R�Rn,
or some subdomain thereof. We study local solutions of (15.1) satisfying

(15.2) ujS D v;

where S is a smooth hypersurface of �; v 2 C1.S/. The study being local,
we suppose S is given by xn D 0. Pick a point x0 2 S � Rn, and set �0 D
.@v=@x1; : : : ; @v=@xn�1/ at x0. Assume

F.x0; v.x0/; .�0; �0// D 0;

@F

@�n
¤ 0 at this point:

(15.3)

We call this the noncharacteristic hypothesis on S . We look for a solution to
(15.1) near x0.

In the paragraph above, ru denotes the n-tuple .@u=@x1; : : : ; @u=@xn/. In view
of the material in ��13 and 14, one should be used to the idea that the 1-form du D
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P
.@u=@xj / dxj has an invariant meaning. As we will see later, a Riemannian

metric on � then associates to du a vector field, denoted grad u.
Thus, we will rephrase (15.1) as

(15.4) F.x; u; du/ D 0:

We think of F as being defined on T �� � R, or some open subset of this space.
The first case we will treat is the case

(15.5) F.x; du/ D 0:

This sort of equation is known as an eikonal equation. From the treatment of
(15.5), we will be able to deduce a treatment of the general case (15.4), using a
device known as Jacobi’s trick.

The equation (15.5) is intimately connected with the theory of Hamiltonian
systems. We will use this theory to construct a surfaceƒ in R2n, of dimension n,
the graph of a function � D „.x/, which ought to be the graph of du for some
smooth u. Thus our first goal is to produce a geometrical description of when

(15.6) ƒ D graph of � D „.x/

is the graph of du for some smooth u.

Proposition 15.1. The surface (15.6) is locally the graph of du for some smooth
u if and only if

(15.7)
@„j

@xk
D @„k

@xj
; 8 j; k:

Proof. This follows from the Poincaré lemma, since (15.7) is the same as the
condition that

P
„j .x/ dxj be closed.

The next step is to produce the following geometrical restatement.

Proposition 15.2. The surfaceƒ of (15.6) is the graph of du (locally) if and only
if �.X; Y / D 0 for all vectors X; Y tangent to ƒ, where � is the symplectic form.

Ifƒ satisfies this condition, and dimƒ D n, we sayƒ is a Lagrangian surface.

Proof. We may as well check �.Xj ; Xk/ for some specific set X1; : : : ; Xn of
linearly independent vector fields, tangent to ƒ. Thus, take

(15.8) Xj D @

@xj
C
X

`

@„`

@xj

@

@�`
:
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In view of the formula (14.3), we have

(15.9) �.Xj ; Xk/ D @„k

@xj
� @„j

@xk
;

so the result follows from Proposition 15.1.

To continue our pursuit of the solution to (15.5), we next specify a surface †,
of dimension n� 1, lying over S D fxn D 0g, namely, with @j v D @v=@xj ,

(15.10) † D f.x; �/ W xn D 0; �j D @j v; for 1 � j � n � 1; F.x; �/ D 0g:

The noncharacteristic hypothesis implies, by the implicit function theorem, that
(with x0 D .x1; : : : ; xn�1/), the equation

F.x0; 0I @1v; : : : ; @n�1v; �/ D 0

implicitly defines � D �.x0/, so (15.10) defines a smooth surface of dimension
n � 1 through the point .x0; .�0; �0//.

We now define ƒ to be the union of the integral curves of the Hamiltonian
vector fieldHF through†. Note that the noncharacteristic hypothesis implies that
HF has a nonvanishing @=@xn component over S , so ƒ is a surface of dimension
n, and is the graph of a function � D „.x/, at least for x close to x0 (Fig. 15.1).
Since F is constant on integral curves of HF , it follows that F D 0 on ƒ.

FIGURE 15.1 Lagrangian Surface
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Theorem 15.3. The surface ƒ constructed above is locally the graph of du, for
a solution u to

(15.11) F.x; du/ D 0; ujS D v:

Proof. We will show thatƒ is Lagrangian. So let X; Y be vector fields tangent to
ƒ at .x; �/ in ƒ � R2n. We need to examine �.X; Y /. First suppose x 2 S (i.e.,
.x; �/ 2 †). Then we may decomposeX and Y intoX D X1CX2; Y D Y1CY2,
with X1; Y1 tangent to† andX2; Y2 multiples ofHF at .x; �/. It suffices to show
that �.X1; Y1/ D 0 and �.X1; Y2/ D 0. Since †, regarded simply as projecting
over fxn D 0g, is the graph of a gradient, Proposition 15.2 implies �.X1; Y1/ D 0.
On the other hand, �.X1; Y2/ is a multiple of �.X1;HF / D hX1; dF i D X1F .
Since X1 is tangent to † and F D 0 on †; X1F D 0.

Thus we know that �.X; Y / D 0 if X and Y are tangent to ƒ at a point in †.
Suppose now thatX and Y are tangent toƒ at a point F t .x; �/, where .x; �/ 2 †
and F t is the flow generated by HF . We have

�.X; Y / D �F t���.F t#X;F t#Y /:

Now F t#X and F t#Y are tangent toƒ at .x; �/ 2 †. We use the important fact that
the flow generated by HF leaves the symplectic form invariant to conclude that

�.X; Y / D �.F t#X;F t#Y / D 0:

This shows that ƒ is Lagrangian.
Thus ƒ is the graph of du for some smooth u, uniquely determined up to

an additive constant. Pick x0 2 S and set u.x0/ D v.x0/. We see that, on
S; @u=@xj D @v=@xj for 1 � j � n � 1, so this forces ujS D v. We have
seen that F D 0 onƒ, so we have solved (15.11).

An important example of an eikonal equation is

(15.12) jd'j2 D 1

on a Riemannian manifold, with metric tensor gjk . In local coordinates, (15.12) is

(15.13)
X

j;k

gjk.x/
@'

@xj

@'

@xk
D 1;

where, as before, .gjk/ is the matrix inverse to .gjk/. We want to give a geomet-
rical description of solutions to this equation. Let ' be specified on a hypersurface
S � M I'jS D  . Assume that jd j < 1 on S . Then there are two possible sec-
tions of T �M over S , giving the graphs of d' over S . Pick one of then; call it †.
As we have seen, the graph of d' is the flow-outƒ of†, via the flow generated by
Hf , with f .x; �/ D .1=2/j�j2 D .1=2/

P
gjk.x/�j �k , that is, via the “geodesic
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flow” on T �M . The projections onto M of the integral curves of Hf in T �M
are geodesics on M . The geometrical description of ' arises from the following
result.

Proposition 15.4. The level surfaces of ' are orthogonal to the geodesics that
are the projections on M of the integral curves ofHf through †.

Proof. If we consider a point x 2 M over which ƒ is the graph of d', we have
.x; �/ 2 ƒ; � D d'.x/. The assertion of the proposition is that the metric tensor,
inducing an isomorphism T �

xM 
 TxM , identifies � with � 0.t/, where � 0.t/, the
tangent vector to such a geodesic, is the projection onto TxM of Hf at .x; �/.
Since

(15.14) Hf D
Xh @f

@�j

@

@xj
� @f

@xj

@

@�j

i
;

this projection is equal to

(15.15)
X @f

@�j

@

@xj
D
X

gjk.x/�k
@

@xj
;

which is in fact the image of � 2 T �
x under the natural metric isomorphism

T �
xM 
 TxM . This proves the proposition.

We can restate it this way. The metric isomorphism T �M 
 TM produces
from the 1-form d', the gradient vector field grad '. In local coordinates, with
d' D P

.@'=@xj / dxj , we have

(15.16) grad ' D
X

gjk.x/
@'

@xj

@

@xk
:

Thus, the content of the last proposition is the following:

Corollary 15.5. If �.t/ is the geodesic of unit speed that is the projection on M
of an integral curve of Hf through †, then

(15.17) grad '.x/ D � 0.t/; at x D �.t/:

Suppose, for example, that for an initial condition on ' we take ' D c (con-
stant) on the surface S . Then, near S , the other level sets of ' are described as
follows. For p 2 S , let �p.t/ be the unit-speed geodesic throughp, so �p.0/ D p,
orthogonal to S , going in one of two possible directions, corresponding to a choice
of one of two possible †s, as mentioned above. Then

(15.18) '.x/ D c C t; at x D �p.t/:

This gives a very geometrical picture of solutions to (15.12).
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On flat Euclidean space, where geodesics are just straight lines, these formulas
become quite explicit. Suppose, for example, that we want to solve jd'j2 D 1 on
Rn (i.e.,

P
.@'=@xj /

2 D 1), and we prescribe

(15.19) ' D 0 on a surface S defined by  .x/ D 0;

where  .x/ is given. Then it is clear that, for jt j not too large, ' is defined by

(15.20) '
�
x C t jr .x/j�1r .x/� D t; for x 2 S:

For small a; I D .�a; a/, the map

(15.21) ‰ W S � I �! Rn

given by

(15.22) ‰.x; t/ D x C t jr .x/j�1r .x/

is a diffeomorphism, but simple examples show that this can break down for
large jt j.

Having solved the special sort of first-order PDE known as the eikonal equa-
tion, we now tackle the general case (15.1)–(15.2), subject to the condition (15.3).
We use a method, called Jacobi’s trick, of defining u implicitly by

(15.23) V.x; u.x// D 0

and producing a PDE for V of the eikonal type. Indeed (15.23) gives, with V D
V.x; z/,

(15.24) rxV C Vzru D 0; or ru D �V �1
z rxV;

so set

(15.25) g.x; z; �; �/ D F.x; z;���1�/:

Our equation for V is hence F.x; z;�V �1
z rxV / D 0, or

(15.26) g.x; z;rx;zV / D 0:

This is of eikonal type. Our initial condition is

(15.27) V D z � v on xn D 0:

This gives Vz ¤ 0 locally, so by the implicit function theorem, (15.23) defines a
function u.x/, which solves the system (15.1)–(15.2).
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Exercises

1. Let X be a vector field on a region �, generating a flow F t , which we will assume is
defined everywhere. Consider the linear PDE

(15.28)
@u

@t
D Xu; u.0; x/ D f .x/:

Show that a solution is given by

u.t; x/ D f .F tx/:

Show that the equation

(15.29)
@u

@t
D Xu C g.t; x/; u.0; x/ D f .x/

is solved by

u.t; x/ D f .F tx/C
Z t

0
g
�
s;F t�sx� ds;

and that

(15.30)
@u

@t
D Xu C a.t; x/u; u.0; x/ D f .x/

is solved by

u.t; x/ D e

�R t
0 a.s;F t�sx/ds

	

f .F tx/:
(Hint: The solution to (15.28) is constant on integral curves of @=@t�X in R��. Apply
Duhamel’s principle to (15.29). Then find A.t; x/ such that (15.30) is equivalent to

e�A
�
@

@t
�X

� �
eAu

� D 0:/

2. A PDE of the form
@u

@t
C

nX

jD1
aj .x; u/

@u

@xj
D 0;

for a real-valued u D u.t; x/, is a special case of a quasilinear equation. Show that
if we set u.0; x/ D v.x/ 2 C1.Rn/, then there is a unique smooth solution in a
neighborhood of f0g � Rn in RnC1, and u.t; x/ has the following property. For each
x0 2 Rn, consider the vector field

Vx0
D @

@t
C

nX

jD1
aj .x; v.x0//

@

@xj
:

Then u.t; x/ is equal to v.x0/ on the integral curve of Vx0
through .0; x0/. Considering

the example

ut C uux D 0; u.0; x/ D e�x2

;

show that this smooth solution can cease to exist globally, due to two such lines
crossing.
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3. Work out explicitly the solution to

�
@'

@x

�2
C
�
@'

@y

�2
D 1;

satisfying '.x; y/ D 0 on the parabola y D x2, and @'=@y > 0 there, using (15.19)
and (15.20). Write a computer program to graph the level curves of '. How does the
solution break down?

4. The group of dilations of T �M , defined (in local coordinates) byD.r/.x; �/ D .x; r�/,
is generated by a vector field # on T �M , which we call the natural radial vector field.
Show that # is uniquely specified by the identity

�.#; X/ D hX; 	i;
when X is a vector field on T �M , and 	 D P

�j dxj is the contact form (14.17).
5. Suppose ƒ is a submanifold of T �M of dimension n D dim M , with � W ƒ ,! T �M .

Show that ƒ is Lagrangian if and only if ��	 is a closed 1-form on ƒ (hence locally
exact). If ƒ is Lagrangian, relate ��	 D df on ƒ to du, in the context of Proposition
15.1.

6. Suppose ƒ is a Lagrangian submanifold of T �M , transverse to # . Define a subbundle
V of Tƒ by

V.x;�/ D .#/	 \ T.x;�/ƒ;

where .#/	 is the set of vectors v 2 T.x;�/T
�M such that �.#; v/ D 0. Show that V

is an integrable subbundle of Tƒ, that is, that Frobenius’s theorem applies to V , giving
a foliation of ƒ. If ƒ is the graph of du; u 2 C1.M/, show that the inverse image,
under � W ƒ ! M , of the level sets of u gives the leaves of this foliation of ƒ.

16. Completely integrable hamiltonian systems

Here we will examine the consequences of having n “conservation laws” for a
Hamiltonian system with n degrees of freedom. More precisely, suppose O is a
region in R2n, with coordinates .x; �/ and symplectic form � D Pn

jD1 d�j^dxj ,
or more generally O could be a symplectic manifold of dimension 2n. Suppose
we have n functions u1; : : : ; un, in involution, that is,

(16.1) fuj ; ukg D 0; 1 � j; k � n:

The function u1 D F could be the energy function whose Hamiltonian vector
field we want to analyze, and u2; : : : ; un auxiliary functions, constructed to re-
flect conservation laws. We give some examples shortly. In case one has n such
functions, with linearly independent gradients, one is said to have a completely
integrable system.

Our goal here will be to show that in such a case the flows generated by theHuj

can be constructed by quadrature. We define the last concept as follows. Given
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a collection of functions fuj g, a map is said to be constructed by quadrature if it
is produced by a composition of the following operations:

(a) Elementary algebraic manipulation
(b) Differentiation
(c) Integration
(d) Constructing inverses of maps

To begin the study of a completely integrable system, given (16.1), consider,
for a given p 2 Rn, the level set

(16.2) Mp D f.x; �/ 2 O W uj .x; �/ D pj g:

Assuming the uj have linearly independent gradients, each nonempty Mp is a
manifold of dimension n. Note that each vector field Huj

is tangent to Mp, by
(16.1), and therefore fHuj

W 1 � j � ng spans the tangent space to Mp at each
point. Since �.Huj

;Huk
/ D fuj ; ukg, we conclude from (16.1) that

(16.3) each Mp is Lagrangian:

If we make the “generic” hypothesis

(16.4) � W Mp ! Rn is a local diffeomorphism;

where �.x; �/ D x, then Mp is the graph of a closed 1-form „p (depending
smoothly on p); note that „p.x/ is constructed by inverting a map, one of the
operations involved in construction by quadrature. Furthermore,„p being closed,
we can construct a smooth function '.x; p/ such that

(16.5) Mp is the graph of x 7! dx'.x; p/:

The function '.x; p/ is constructed from„p by an integration, another ingredient
in construction by quadrature. Note that a statement equivalent to (16.5) is that '
simultaneously satisfies the eikonal equations

(16.6) uj
�
x; dx'.x; p/

� D pj ; 1 � j � n:

Consider now the following maps:

(16.7)

.x; p/
F1�����! �

dp'.x; p/; p
�

C
??y

.x; p/
F2�����! �

x; dx'.x; p/
�
:
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Since F2.x; p/ D .x;„p.x//, it is clear that F2 is a local diffeomorphism under
our hypotheses. This implies that the matrix

(16.8)
@2'

@pj @xk

is invertible, which hence implies thatF1 is a local diffeomorphism (by the inverse
function theorem). Hence C is locally defined, as a diffeomorphism:

(16.9) C�dp'.x; p/; p
� D �

x; dx'.x; p/
�
:

Write C.q; p/ D .x; �/. Note that

(16.10)
F �
2

X
d�j ^ dxj D

X

j;k

@2'

@pk@xj
dpk ^ dxj

D F �
1

X
dpj ^ dqj ;

so

(16.11) C�
�X

d�j ^ dxj
	

D
X

dpj ^ dqj ;

that is, C preserves the symplectic form. One says C is a canonical transformation
with generating function '.x; p/. Now conjugation by C takes the Hamiltonian
vector fields Huj

on .x; �/-space to the Hamiltonian vector fields HQuj
on .q; p/-

space, with
Quj .q; p/ D uj ı C.q; p/ D pj ;

in view of (16.6). Thus

(16.12) HQuj
D @

@qj
;

so C conjugates the flows generated by Huj
to simple straight-line flows. This

provides the construction of the Huj
-flows by quadrature.

Note that if O has dimension 2, one needs only one function u1. Thus the
construction above generalizes the treatment of Hamiltonian systems on R2 given
in �10. In fact, the approach given above, specialized to n D 1, is closer to the
analysis in �10 than it might at first appear. Using notation as in �10, let u1 D
f; p1 D E, so

ME D f.x; �/ W f .x; �/ D Eg
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is the graph of � D  .x;E/ D dx'.x;E/, with

'.x;E/ D
Z
 .x;E/ dx:

Note that f .x;  .x;E// D E ) f� E D 1, so

(16.13) dE'.x;E/ D
Z
f�
�
x; .x;E/

��1
dx;

and C maps .
R
f �1
�
dx;E/ to .x;  .x; �//. To say C conjugates Hf to HE D

@=@q (in .q;E/ coordinates) is to say that under the time-t Hamiltonian flow,R
f �1
�
dx is augmented by t ; but this is precisely the content of (10.16), namely,

(16.14)
Z
f�
�
x; .x;E/

��1
dx D t C C.E/:

We also note that, for the purpose of linearizingHu1
, it suffices to have '.x; p/,

satisfying only the eikonal equation

(16.15) u1
�
x; dx'.x; p/

� D p1;

such that the matrix (16.8) is invertible. The existence of u2; : : : ; un, which to-
gether with u1 are in involution, provides a way to construct '.x; p/, but any other
successful attack on (16.15) is just as satisfactory. Integrating Hu1

by perceiving
solutions to (16.15) is the essence of the Hamilton–Jacobi method.

We now look at some examples of completely integrable Hamiltonian sys-
tems. First we consider geodesic flow on a two-dimensional surface of revolution
M 2 � R3. Note that T �M 2 is four-dimensional, so we want u1 and u2, in involu-
tion. The function u1 is, of course, the energy funtion u1 D .1=2/

P
gjk.x/�j �k ;

as we have seen, Hu1
generates the geodesic flow. Our function u2 will arise

from the group of rotations R� of M 2 about its axis of symmetry, � 2 R=2�Z.
This produces a group R� of canonical transformations of T �M 2, generated by
a Hamiltonian vector field X D Hu2

, with u2.x; �/ D h@=@�; �i. Since R� is a
group of isometries of M 2; R� preserves u1 (i.e., Xu1 D 0), or equivalently,
fu2; u1g D 0. We have our pair of functions in involution. Thus geodesics on such
a surface of revolution can be constructed by quadrature.

Another important class of completely integrable Hamiltonian systems is pro-
vided by motion in a central force field in the plane R2. In other words, let x.t/,
a path in R2, satisfy

(16.16) Rx D �rV.x/; V .x/ D v.jxj/:
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The Hamiltonian system is

(16.17) Px D r�F; P� D �rxF;

with

(16.18) F.x; �/ D 1

2
j�j2 C v.jxj/:

We take u1 D F and look for u2, in involution. Again u2 arises from a group of
rotations, this time rotations of R2 about the origin. The method we have given
by which a vector field on � produces a Hamiltonian vector field on T �� yields
the formula

(16.19)

u2.x; �/ D
D @
@�
; �
E

D
D
�x2 @

@x1
C x1

@

@x2
; �
E

D x1�2 � x2�1:

This is the “angular momentum.” The symmetry of V.x/ implies that the group
of rotations on T �R2 generated by Hu2

preserves F D u1, that is,

(16.20) fu1; u2g D 0;

a fact that is also easily verified from (16.18) and (16.19) by a computation. This
expresses the well-known law of conservation of angular momentum. It also es-
tablishes the complete integrability of the general central force problem on R2.
We remark that, for the general central force problem in Rn, conservation of an-
gular momentum forces any path to lie in a plane, so there is no loss of generality
in studying planar motion.

The case

(16.21) V.x/ D � K

jxj .K > 0/

of the central force problem is called the Kepler problem. It gives Newton’s de-
scription of a planet traveling about a massive star, or of two celestial bodies
revolving about their center of mass. We will give a direct study of central force
problems, with particular attention to the Kepler problem, in the next section.

These examples of completely integrable systems have been based on only
the simplest of symmetry considerations. For many other examples of completely
integrable systems, see [Wh].

We have dealt here only with the local behavior of completely integrable sys-
tems. There is also an interesting “global” theory, which among other things
studies the distinction between the regular behavior of completely integrable
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systems on the one hand and varieties of “chaotic behavior” exhibited by (glob-
ally) nonintegrable systems on the other. The reader can find out more about
this important topic (begun in [Poi]) in [Mos], [TS], [Wig], and references given
therein.

Exercises

1. Let u1.x; �/ D .1=2/j�j2 � jxj�1 be the energy function for the Kepler problem (with
K D 1), and let u2.x; �/ be given by (16.19). Set

vj .x; �/ D xj jxj�1 � xj j�j2 C .x � �/�j ; j D 1; 2:

.v1; v2/ is called the Lenz vector. Show that the following Poisson bracket relations
hold:

fu1; vj g D 0; j D 1; 2;

fu2; vj g D ˙vj ;
fv1; v2g D 2u1u2:

Also show that
v21 C v22 � 2u1u22 D 1:

2. Deduce that the Kepler problem is integrable in several different ways. Can you relate
this to the fact that all bounded orbits are periodic?

In Exercises 3–5, suppose a given Mp , as in (16.2), is compact, and duj ; 1 � j � n

are linearly independent at each point of Mp .
3. Show that there is an Rn-action on Mp , defined by ˆ.t/.�/ D F t11 � � �F tnn �, for t D
.t1; : : : ; tn/; � 2 Mp , where Fs

j
is the flow generated by Huj

. Show that ˆ.t C s/� D
ˆ.t/ˆ.s/�.

4. Show that Rn acts transitively onMp , that is, given � 2 Mp; O.�/ D fˆ.t/� W t 2 Rng
is all of Mp . (Hint: Use the linear independence to show O.�/ is open. Then, if �1 is
on the boundary of O.�/ in Mp , show that O.�1/\ O.�/ ¤ ;:)

5. Fix �0 2 Mp and let  D ft 2 Rn W ˆ.t/�0 D �0g. Show that Mp is diffeomorphic to
Rn= and that this is a torus.

6. If u1 D F can be extended to a completely integrable system in two different ways, with
the setting of Exercises 3–5 applicable in each case, then phase space may be foliated
by tori in two different ways. Hence intersections of various tori will be invariant under
HF . How does this relate to Exercise 2?

17. Examples of integrable systems; central force problems

In the last section it was noted that central force problems give rise to a class of
completely integrable Hamiltonian systems with two degrees of freedom. Here
we will look at this again, from a more elementary point of view. We look at a
class of Hamiltonians on a region in R4, of the form

(17.1) F.y; �/ D F.y1; �1; �2/;
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that is, with no y2-dependence. Thus Hamilton’s equations take the form

(17.2) Pyj D @F

@�j
; P�1 D � @F

@y1
; P�2 D 0:

In particular, �2 is constant on any orbit, say

(17.3) �2 D L:

This, in addition to F , provides the second conservation law implying integrabil-
ity; note that fF; �2g D 0. If F.y1; �1; L/ D E on an integral curve, we write this
relation as

(17.4) �1 D  .y1; L;E/:

We can now pursue an analysis that is a variant of that described by (10.14)–
(10.20). The first equation in (17.2) becomes

(17.5) Py1 D F1

�
y1;  .y1; L;E/; L

�
;

with solution given implicitly by

(17.6)
Z
F1

�
y1;  .y1; L;E/; L

��1
dy1 D t C C:

Once one has y1.t/, then one has

(17.7) �1.t/ D  .y1.t/; L;E/;

and then the remaining equation in (17.2) becomes

(17.8) Py2 D F2

�
y1.t/; �1.t/; L

�
;

which is solved by an integration.
We apply this method to the central force problem, with

(17.9) F.x; �/ D 1

2
j�j2 C v.jxj/; x 2 R2:

Use of polar coordinates is clearly suggested, so we set

(17.10) y1 D r; y2 D � I x1 D r cos �; x2 D r sin �:

In these coordinates, the Euclidean metric dx21 C dx22 becomes dr2 C r2d�2, so,
as in (12.31), the function F becomes
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(17.11) F.y; �/ D 1

2

�
�21 C y�2

1 �22
�C v.y1/:

We see that the first pair of ODEs in (17.2) takes the form

(17.12) Pr D �1; P� D Lr�2;

where L is the constant value of �2 along an integral curve, as in (17.3). The last
equation, rewritten as

(17.13) r2 P� D L;

expresses conservation of angular momentum. The remaining ODE in (17.2)
becomes

(17.14) P�1 D L2r�3 � v0.r/:

Note that differentiating the first equation of (17.12) and using (17.14) gives

(17.15) Rr D L2r�3 � v0.r/;

an equation that can be integrated by the methods described in (10.12)–(10.20).
We will not solve (17.15) by this means here, though (17.15) will be used below,
to produce (17.23). For now, we instead use (17.4)–(17.6). In the present case,
(17.4) takes the form

(17.16) �1 D ˙�2E � 2v.r/ � L2r�2�1=2;

and since F1
D �1, (17.6) takes the form

(17.17) ˙
Z �
2Er2 � 2r2v.r/ � L2

��1=2
r dr D t C C:

In the case of the Kepler problem (16.21), where v.r/ D �K=r , the resulting
integral

(17.18) ˙
Z �
2Er2 C 2Kr � L2

��1=2
r dr D t C C

can be evaluated using techniques of first-year calculus, by completing the square
in 2Er2 C 2Kr � L2. Once r D r.t/ is given, the (17.13) provides an integral
formula for � D �.t/.

One of the most remarkable aspects of the analysis of the Kepler problem is
the demonstration that orbits all lie on some conic section, given in polar coordi-
nates by
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(17.19) r
�
1C e cos.� � �0/

� D ed;

where e is the “eccentricity.” We now describe the famous, elementary but inge-
nious trick used to demonstrate this. The method involves producing a differential
equation for r in terms of � , from (17.13) and (17.15). More precisely, we produce
a differential equation for u, defined by

(17.20) u D r�1:

By the chain rule,

(17.21)
dr

dt
D �r2 du

dt
D �r2 du

d�

d�

dt
D �L du

d�
;

in light of (17.13). Differentiating this with respect to t gives

(17.22)
d 2r

dt2
D �L d

dt

du

d�
D �L d

2u

d�2
d�

dt
D �L2u2

d 2u

d�2
;

again using (17.13). Comparing this with (17.15), we get �L2u2.d 2u=d�2/ D
L2u3 � v0.1=u/ or, equivalently,

(17.23)
d 2u

d�2
C u D .Lu/�2v0�1

u

	
:

In the case of the Kepler problem, v.r/ D �K=r , the right side becomes the
constantK=L2, so in this case (17.23) becomes the linear equation

(17.24)
d 2u

d�2
C u D K

L2
;

with general solution

(17.25) u.�/ D A cos.� � �0/C K

L2
;

which is equivalent to the formula (17.19) for a conic section.
For more general central force problems, the (17.23) is typically not linear, but

it is of the form treatable by the method of (10.12)–(10.20).

Exercises

1. Solve explicitly w00.t/ D �w.t/, for w taking values in R2 D C. Show that jw.t/j2 C
jw0.t/j2 D 2E is constant for each orbit.

2. For w.t/ taking values in C, define a new curve by

Z.�/ D w.t/2;
d�

dt
D jw.t/j2:
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Show that if w00.t/ D �w.t/, then

Z00.�/ D �4E Z.�/

jZ.�/j3 ;

that is, Z.�/ solves the Kepler problem.
3. Analyze the flow of HF , for F of the form (17.1), in a manner more directly parallel

to the approach in �16, in a spirit similar to (16.13) and (16.14). Note that, with u1 D
F; u2 D �2; p1 D E; p2 D L, the canonical transformation C of (16.9) is defined by

C
�Z

F�1
1

dy1; y2 �
Z
F�1
1
F2

dy1IE;L
	

D �
y1; y2I .y1; L; E/;L

�
;

where the first integrand is F1

�
y1;  .y1; L; E/; L

��1, and so on.
4. Analyze the (17.23) for u.�/ in the following cases.

(a) v.r/ D �K=r2
(b) v.r/ D Kr2

(c) v.r/ D �K=r C "r2

Show that, in case (c), u.�/ is typically not periodic in � .
5. Consider motion on a surface of revolution, under a force arising from a rotationally

invariant potential. Show that you can choose coordinates .r; �/ so that the metric tensor
is ds2 D dr2Cˇ.r/�1 d�2, and then you get a Hamiltonian system of the form (17.2)
with

F.y1; �1; �2/ D 1

2
�21 C 1

2
ˇ.y1/�

2
2 C v.y1/;

where y1 D r; y2 D � . Show that, parallel to (17.16) and (17.17), you get

Pr D ˙�2E � 2v.r/ � L2ˇ.r/
�1=2

:

Show that u D 1=r satisfies

du

d�
D � u2

Lˇ.1=u/

h
2E � 2v

�1
u

	
� L2ˇ

�1
u

	i1=2
:

18. Relativistic motion

Mechanical systems considered in previous sections were formulated in the
Newtonian framework. The description of a particle moving subject to a force
was given in terms of a curve in space (with a positive-definite metric), parame-
terized by time. In the relativistic set-up, one has not space and time as separate
entities, but rather spacetime, provided with a metric of Lorentz signature. In
particular, Minkowski spacetime is R4 with inner product

(18.1) hx; yi D �x0y0 C
3X

jD1
xjyj ;
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given x D .x0; : : : ; x3/; y D .y0; : : : ; y3/. The behavior of a particle moving
in a force field is described by a curve in spacetime, which is timelike, that is, its
tangent vector T satisfies hT; T i < 0. We parameterize the curve not by time, but
by arc length, so we consider a curve x.�/ satisfying

(18.2) hu.�/; u.�/i D �1; u.�/ D x0.�/:

The parameter � is often called “proper time,” and u.�/ the “4-velocity.” Such a
curve x.�/ is sometimes called a “world line.”

Relativistic laws of physics are to be formulated in a manner depending only
on the Lorentz metric (18.1), but contact is made with the Newtonian picture by
using the product decomposition R4 D R � R3, writing x D .t; xs/; t D x0, and
xs D .x1; x2; x3/. The “3-velocity” is v D dxs=dt . Then

(18.3) u D �.1; v/;

where, by (18.2),

(18.4) � D dt

d�
D �

1 � jvj2��1=2;

with jvj2 D v21 C v22 C v23 . In the limit of small velocities, � is close to 1.
The particle whose motion is to be described is assumed to have a constant

“rest mass” m0, and then the “4-momentum” is defined to be

(18.5) p D m0u:

In terms of the decomposition (18.3),

(18.6) p D .m0�;m0�v/;

wherem0v is the momentum in Newtonian theory. The replacement for Newton’s
equationm0dv=dt D f is

(18.7)
dp

d�
D F;

the right side being the “Minkowski 4-force.”
Newtonian theory and Einstein’s relativity are related as follows. Definem by

m D m0� and, using (18.6) and (18.7), write

(18.8) F D
�dm
d�

;
d.mv/

d�

	
D
�dm
d�

; �
d.mv/

dt

	
:

Then we identify fC D d.mv/=dt as the “classical force” and write the last
expression as .f 0; �fC /. If (18.2) is to hold, we require f 0 D �fC � v (the dot
product in Euclidean R3), so
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(18.9) F D �.fC � v; fC /:

With this correspondence, the (18.7) yields Newton’s equation in the small veloc-
ity limit.

Since the 4-velocity has constant length, by (18.2), the Minkowski 4-force F
must satisfy

(18.10) hF; ui D 0:

It follows that in relativity one cannot have velocity-independent forces. The sim-
plest situation compatible with (18.10) is for F to be linear in u, say

(18.11) F.x; u/ D eF.x/u;

where for each x 2 R4; eF.x/ is a linear transformation on R4; in other words,
eF is a tensor field of type .1; 1/. The condition (18.10) holds provided eF is skew-
adjoint with respect to the Lorentz inner product:

(18.12) heFu; wi D �hu;eFwi:

Equivalently, if we consider the related tensor F of type .0; 2/,

(18.13) F.u; w/ D hu;eFwi;

then F is antisymmetric, that is, F is a 2-form. In index notation, Fjk D hj`F`k ,
where hjk defines the Lorentz metric.

The electromagnetic field is of this sort. The classical force exerted by an
electric field E and a magnetic field B on a particle with charge e is the Lorentz
force

(18.14) fL D e.E C v � B/;

as in (12.40). Using this in (18.9) gives, for u D .u0; v/,

(18.15) eFu D e.E � v;Eu0 C v � B/:

Consequently the 2-form F is F.u; w/ D e
PF��u�w� with

(18.16)
�F��

� D

0

BB@

0 �E1 �E2 �E3
E1 0 B3 �B2
E2 �B3 0 B1
E3 B2 �B1 0

1

CCA :

In relativity it is this 2-form which is called the electromagnetic field.
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To change notation slightly, let us denote byF the 2-form described by (18.16),
namely, with t D x0,

(18.17) F D
3X

jD1
Ej dxj ^dtCB1 dx2^dx3CB2 dx3^dx1CB3 dx1^dx2:

Thus the force in (18.11) is now denoted by eeFu.
We can construct a Lagrangian giving the equation of motion (18.7), (18.11),

in a fashion similar to (12.44). The part of Maxwell’s equations for the electro-
magnetic field recorded as (12.41) is equivalent to the statement that

(18.18) dF D 0:

Thus we can find a 1-form A on Minkowski spacetime such that

(18.19) F D dA:

Then we can set

(18.20) L.x; u/ D 1

2
m0hu; ui C ehA; ui;

and the force law dp=d� D eeF.x/u is seen to be equivalent to

(18.21)
d

d�
Lu � Lx D 0:

See Exercise 3 below. In this case, the Legendre transform (12.13) becomes, with
ub D .�u0; u1; u2; u3/,

(18.22) .x; �/ D .x;m0ub C eA/;

and we get the Hamiltonian system

(18.23)
dx

d�
D E� ;

d�

d�
D �Ex;

with

(18.24) E.x; �/ D 1

2m0

˝
� � eA; � � eA˛:
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Exercises

1. Consider a constant electromagnetic field of the form

E D .1; 0; 0/; B D 0:

Work out the solution to Newton’s equation

m
dv

dt
D e.E C v � B/; v D dx

dt
;

for the path x D x.t/ in R3 of a particle of charge e, mass m, moved by the Lorentz
force arising from this field. Then work out the solution to the relativistic equation

m0
du

d�
D e.E � v; Eu0 C v � B/;

with u D .u0; v/ (having square norm �1), u D dx=d� , for the path in R4 of a particle
of charge e, rest massm0, moved by such an electromagnetic field. Compare the results.
Do the same for

E D 0; B D .1; 0; 0/:

2. Take another look at Exercise 3 in �12.
3. Show that taking (18.20) for the Lagrangian implies that Lagrange’s equation (18.21)

is equivalent to the force law dp=d� D eeFu, on Minkowski spacetime.
(Hint: To compute Lx , use

d hA; ui D �.dA/cu C LuA;

regard u as independent of x, and note that dA=d� D ruA D LuA, in that case.)
Compare Exercise 4 in �12.

4. Verify formula (18.16) for F�� . Show that the matrix for eF has the same form, except
all Ej carry plus signs.

5. An alternative sign convention for the Lorentz metric on Minkowski spacetime is to
replace (18.1) by hx; yi D x0y0 �P

j�1 xj yj . Show that this leads to a sign change
in (18.16). What other sign changes arise?

6. Suppose a 1-form A is given, satisfying (18.19), on a general four-dimensional Lorentz
manifold M . Let L W TM ! R be given by (18.20). Use the set-up described in
(12.51)–(12.65) to derive equations of motion, extending the Lorentz force law from
Minkowski spacetime to any Lorentz 4-manifold.
(Hint: In analogy with (12.64), show that Lv is given by

Lv D m0u C eA#;

where A# is the vector field corresponding to A via the metric (by raising indices).
Taking a cue from Exercise 3, show that Lx satisfies

Lx D eeFu C eruA#:

Deduce that the equation
m0ruu D eeFu

is the stationary condition for this Lagrangian.)
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19. Topological applications of differential forms

Differential forms are a fundamental tool in calculus. In addition, they have im-
portant applications to topology. We give a few here, starting with simple proofs
of some important topological results of Brouwer.

Proposition 19.1. There is no continuous retraction ' W B ! Sn�1 of the closed
unit ball B in Rn onto its boundary Sn�1.

In fact, it is just as easy to prove the following more general result. The approach
we use is adapted from [Kan].

Proposition 19.2. IfM is a compact, oriented manifold with nonempty boundary
@M , there is no continuous retraction ' W M ! @M .

Proof. A retraction ' satisfies ' ı j.x/ D x, where j W @M ,! M is the natural
inclusion. By a simple approximation, if there were a continuous retraction there
would be a smooth one, so we can suppose ' is smooth.

Pick ! 2 ƒn�1.@M/ to be the volume form on @M , endowed with some
Riemannian metric (n D dim M ), so

R
@M ! > 0. Now apply Stokes’ theorem to

˛ D '�!. If ' is a retraction, j �'�! D !, so we have

(19.1)
Z

@M

! D
Z

M

d'�!:

But d'�! D '�d! D 0, so the integral (19.1) is zero. This is a contradiction, so
there can be no retraction.

A simple consequence of this is the famous Brouwer fixed-point theorem.

Theorem 19.3. If F W B ! B is a continuous map on the closed unit ball in Rn,
then F has a fixed point.

Proof. We are claiming that F.x/ D x for some x 2 B . If not, define '.x/ to be
the endpoint of the ray from F.x/ to x, continued until it hits @B D Sn�1. It is
clear that ' would be a retraction, contradicting Proposition 19.1.

We next show that an even-dimensional sphere cannot have a smooth nonvan-
ishing vector field.

Proposition 19.4. There is no smooth nonvanishing vector field on Sn if n D 2k

is even.

Proof. If X were such a vector field, we could arrange it to have unit length, so
we would have X W Sn ! Sn, with X.v/ ? v for v 2 Sn � RnC1. Thus there is
a unique unit-speed geodesic �v from v to X.v/, of length �=2. Define a smooth
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family of maps Ft W Sn ! Sn by Ft .v/ D �v.t/. Thus F0.v/ D v; F�=2.v/ D
X.v/, and F� D A would be the antipodal map, A.v/ D �v. By (13.63), we
deduce that A�! � ! D dˇ is exact, where ! is the volume form on Sn. Hence,
by Stokes’ theorem,

(19.2)
Z

Sn

A�! D
Z

Sn

!:

On the other hand, it is straightforward that A�! D .�1/nC1!, so (19.2) is pos-
sible only when n is odd.

Note that an important ingredient in the proof of both Proposition 19.2
and Proposition 19.4 is the existence of n-forms on a compact, oriented, n-
dimensional manifold M which are not exact (though of course they are closed).
We next establish the following important counterpoint to the Poincaré lemma.

Proposition 19.5. If M is a compact, connected, oriented manifold of dimension
n and ˛ 2 ƒnM , then ˛ D dˇ for some ˇ 2 ƒn�1.M/ if and only if

(19.3)
Z

M

˛ D 0:

We have already discussed the necessity of (19.3). To prove the sufficiency, we
first look at the case M D Sn.

In that case, any n-form ˛ is of the form a.x/!; a 2 C1.Sn/; ! the
volume form on Sn, with its standard metric. The group G D SO.n C 1/ of
rotations of RnC1 acts as a transitive group of isometries on Sn. In Appendix B,
Manifolds, Vector Bundles, and Lie Groups, we construct the integral of functions
over SO.nC 1/, with respect to Haar measure.

As noted in Appendix B, we have the map Exp W Skew.nC 1/ ! SO.nC 1/,
giving a diffeomorphism from a ball O about 0 in Skew.n C 1/ onto an open
set U � SO.n C 1/ D G, a neighborhood of the identity. Since G is compact,
we can pick a finite number of elements �j 2 G such that the open sets Uj D
f�jg W g 2 U g cover G. Pick �j 2 Skew.n C 1/ such that Exp �j D �j . Define
ˆjt W Uj ! G for 0 � t � 1 by

(19.4) ˆjt
�
�j Exp.A/

� D .Exp t�j /.Exp tA/; A 2 O:

Now partition G into subsets �j , each of whose boundaries has content zero,
such that �j � Uj . If g 2 �j , set g.t/ D ˆjt .g/. This family of elements of
SO.nC 1/ defines a family of maps Fgt W Sn ! Sn. Now, as in (13.60), we have

(19.5) ˛ D g�˛ � d	g.˛/; 	g.˛/ D
Z 1

0

F �
gt .˛cXgt / dt;
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for each g 2 SO.nC 1/, whereXgt is the family of vector fields on Sn generated
by Fgt , as in (13.58). Therefore,

(19.6) ˛ D
Z

G

g�˛ dg � d

Z

G

	g.˛/ dg:

Now the first term on the right is equal to ˛!, where ˛ D R
a.g � x/dg is a

constant; in fact, the constant is

(19.7) ˛ D 1

Vol Sn

Z

Sn

˛:

Thus, in this case, (19.3) is precisely what serves to make (19.6) a representation
of ˛ as an exact form. This finishes the case M D Sn.

For a general compact, oriented, connected M , proceed as follows. Cover M
with open sets O1; : : : ;OK such that each Oj is diffeomorphic to the closed unit
ball in Rn. Set U1 D O1, and inductively enlarge each Oj to Uj , so that U j is
also diffeomorphic to the closed ball, and such that UjC1\Uj ¤ ;; 1 � j < K .
You can do this by drawing a simple curve from OjC1 to a point in Uj and
thickening it. Pick a smooth partition of unity 'j , subordinate to this cover.

Given ˛ 2 ƒnM , satisfying (19.3), take Q̨j D'j˛. Most likely
R Q̨1Dc1 ¤ 0,

so take �1 2 ƒnM , with compact support in U1 \ U2, such that
R
�1 D c1.

Set ˛1 D Q̨1 � �1, and redefine Q̨2 to be the old Q̨2 plus �1. Make a similar
construction using

R Q̨2 D c2, and continue. When you are done, you have

(19.8) ˛ D ˛1 C � � � C ˛K ;

with ˛j compactly supported in Uj . By construction,

(19.9)
Z
˛j D 0;

for 1 � j < K . But then (19.3) implies
R
˛K D 0 too.

Now pick p 2 Sn and define smooth maps

(19.10)  j W M �! Sn;

which map Uj diffeomorphically onto Sn n p and map M n Uj to p. There is
a unique vj 2 ƒnSn, with compact support in Sn n p, such that  �vj D ˛j .
Clearly Z

Sn

vj D 0;
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so by the case M D Sn of Proposition 19.5 already established, we know that
vj D dwj for some wj 2 ƒn�1Sn, and then

(19.11) ˛j D dˇj ; ˇj D  �
j wj :

This concludes the proof.
We can sharpen and extend some of the topological results given above, using

the notion of the degree of a map between compact, oriented surfaces. Let X
and Y be compact, oriented, n-dimensional surfaces. We want to define the degree
of a smooth map F W X ! Y . To do this, assume Y is connected. We pick
! 2 ƒnY such that

(19.12)
Z

Y

! D 1:

We want to define

(19.13) Deg.F / D
Z

X

F �!:

The following result shows that Deg.F / is indeed well defined by this formula.
The key argument is an application of Proposition 19.5.

Lemma 19.6. The quantity (19.13) is independent of the choice of !, as long as
(19.12) holds.

Proof. Pick !1 2 ƒnY satisfying
R
Y
!1 D 1, so

R
Y
!�!1 D 0. By Proposition

19.5, this implies

(19.14) ! � !1 D d˛; for some ˛ 2 ƒn�1Y:

Thus

(19.15)
Z

X

F �! �
Z

X

F �!1 D
Z

X

dF �˛ D 0;

and the lemma is proved.

The following is a most basic property.

Proposition 19.7. If F0 and F1 are homotopic, then Deg.F0/ D Deg.F1/.

Proof. As noted in Exercise 7 of �13, if F0 and F1 are homotopic, then F �
0 ! �

F �
1 ! is exact, say dˇ, and of course

R
X
dˇ D 0.
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We next give an alternative formula for the degree of a map, which is very
useful in many applications. A point y0 2 Y is called a regular value of F pro-
vided that, for each x 2 X satisfying F.x/ D y0; DF.x/ W TxX ! Ty0

Y is
an isomorphism. The easy case of Sard’s theorem, discussed in Appendix B, im-
plies that most points in Y are regular. Endow X with a volume element !X ,
and similarly endow Y with !Y . If DF.x/ is invertible, define JF.x/ 2 R n 0
by F �.!Y / D JF.x/!X . Clearly the sign of JF.x/ (i.e., sgn JF.x/ D ˙1), is
independent of the choices of !X and !Y , as long as they determine the given
orientations of X and Y .

Proposition 19.8. If y0 is a regular value of F , then

(19.16) Deg.F / D
X

fsgn JF.xj / W F.xj / D y0g:

Proof. Pick ! 2 ƒnY , satisfying (19.12), with support in a small neighborhood
of y0. Then F �! will be a sum

P
!j , with !j supported in a small neighborhood

of xj , and
R
!j D ˙1 as sgn JF.xj / D ˙1.

The following result is a powerful tool in degree theory.

Proposition 19.9. Let M be a compact, oriented manifold with boundary. As-
sume that dim M D nC 1. Given a smooth map F W M ! Y , let f D F

ˇ̌
@M

W
@M ! Y . Then

Deg.f / D 0:

Proof. Applying Stokes’ theorem to ˛ D F �!, we have

Z

@M

f �! D
Z

M

dF �!:

But dF �! D F �d!, and d! D 0 if dim Y D n, so we are done.

An easy corollary of this is another proof of Brouwer’s no-retraction theorem.
Compare the proof of Proposition 19.2.

Corollary 19.10. If M is a compact, oriented manifold with nonempty boundary
@M , then there is no smooth retraction ' W M ! @M .

Proof. Without loss of generality, we can assume that M is connected. If there
were a retraction, then @M D '.M/ must also be connected, so Proposition 19.9
applies. But then we would have, for the map id: D '

ˇ̌
@M

, the contradiction that
its degree is both 0 and 1.

For another application of degree theory, let X be a compact, smooth, oriented
hypersurface in RnC1, and set � D RnC1 n X . (Assume n � 1:) Given p 2 �,
define

(19.17) Fp W X �! Sn; Fp.x/ D x � p

jx � pj :
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It is clear that Deg.Fp/ is constant on each connected component of �. It is
also easy to see that, when p crosses X , Deg.Fp/ jumps by ˙1. Thus � has at
least two connected components. This is most of the smooth case of the Jordan–
Brouwer separation theorem:

Theorem 19.11. If X is a smooth, compact, oriented hypersurface of RnC1,
which is connected, then � D RnC1 nX has exactly two connected components.

Proof. Since X is oriented, it has a smooth, global, normal vector field. Use this
to separate a small collar neighborhood C of X into two pieces; C nX D C0 [ C1.
The collar C is diffeomorphic to Œ�1; 1� � X , and each Cj is clearly connected.
It suffices to show that any connected component O of � intersects either C0 or
C1. Take p 2 @O. If p … X , then p 2 �, which is open, so p cannot be a
boundary point of any component of�. Thus @O � X , so O must intersect a Cj .
This completes the proof.

Let us note that, of the two components of �, exactly one is unbounded, say
�0, and the other is bounded; call it �1. Then we claim that if X is given the
orientation it gets as @�1,

(19.18) p 2 �j H) Deg.Fp/ D j:

Indeed, for p very far from X; Fp W X ! Sn is not onto, so its degree is 0. And
when p crosses X , from �0 to �1, the degree jumps by C1.

For a simple closed curve in R2, this result is the smooth case of the Jordan
curve theorem. That special case of the argument given above can be found
in [Sto].

We remark that, with a bit more work, one can show that any compact, smooth
hypersurface in RnC1 is orientable. For one proof, see Appendix B to Chap. 5.

The next application of degree theory is useful in the study of closed orbits of
planar vector fields. LetC be a simple, smooth, closed curve in R2, parameterized
by arc length, of total length L. Say C is given by x D �.t/; �.t C L/ D �.t/.
Then we have a unit tangent field to C; T .�.t// D � 0.t/, defining

(19.19) T W C �! S1:

Proposition 19.12. For T given by (19.19), we have

(19.20) Deg.T / D 1:

Proof. Pick a tangent line ` to C such that C lies on one side of `, as in Fig. 19.1.
Without changing Deg.T /, you can flatten out C a little, so it intersects ` along
a line segment, from �.L0/ to �.L/ D �.0/, where we take L0 D L � 2";

L1 D L � ".
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FIGURE 19.1 Deformation of T

Now T is close to the map Ts W C ! S1, given by

(19.21) Ts
�
�.t/

� D �.t C s/ � �.t/
j�.t C s/ � �.t/j ;

for any s > 0 small enough; hence T and Ts are homotopic, for small positive s.
It follows that T and Ts are homotopic for all s 2 .0; L/. Furthermore, we can
even let s D s.t/ be any continuous function s W Œ0; L� ! .0; L/ such that
s.0/ D s.L/. In particular, T is homotopic to the map V W C ! S1, obtained
from (19.21) by taking

s.t/ D L1 � t; for t 2 Œ0; L0�;

and s.t/ going monotonically from L1 � L0 to L1, for t 2 ŒL0; L�. Note that

V
�
�.t/

� D �.L1/� �.t/

j�.L1/� �.t/j ; 0 � t � L0:

The parts of V over the ranges 0 � t � L0 and L0 � t � L, respectively,
are illustrated in Figs. 19.1 and 19.2. We see that V maps the segment of C from
�.0/ to �.L0/ into the lower half of the circle S1, and it maps the segment of C
from �.L0/ to �.L/ into the upper half of the circle S1. Therefore, V (hence T ) is
homotopic to a one-to-one map of C onto S1, preserving orientation, and (19.20)
is proved.

The material of this section can be cast in the language of deRham cohomol-
ogy, which we now define. Let M be a smooth manifold. A smooth k-form u is
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FIGURE 19.2 Further Deformation

said to be exact if u D dv for some smooth .k�1/-form v, and closed if du D 0.
Since d 2 D 0, every exact form is closed:

(19.22) Ek.M/ � Ck.M/;

where Ek.M/ and Ck.M/ denote respectively the spaces of exact and closed
k-forms. The deRham cohomology groups are defined as quotient spaces:

(19.23) Hk.M/ D Ck.M/=Ek.M/:

There are no nonzero .�1/-forms, so E0.M/ D 0. A 0-form is a real-valued
function, and it is closed if and only if it is constant on each connected component
of M , so

(19.24) H0.M/ 
 R� ; � D # connected components of M:

An immediate consequence of Proposition 19.5 is the following:

Proposition 19.13. If M is a compact, connected, oriented manifold of dimen-
sion n, then

(19.25) Hn.M/ 
 R:

Via the pull-back of forms, a smooth map F W X ! Y between two manifolds
induces maps on cohomology:

(19.26) F � W Hj .Y / �! Hj .X/:
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If X and Y are both compact, connected, oriented, and of dimension n, then we
have F � W Hn.Y / ! Hn.X/, and, via the isomorphism Hn.X/ 
 R 
 Hn.Y /

arising from integration of n-forms, this map is simply multiplication by Deg F .
The subject of deRham cohomology plays an important role in material we

develop later, such as Hodge theory, in Chap. 5, and index theory, in Chap. 10.

Exercises

1. Show that the identity map I W X ! X has degree 1.
2. Show that if F W X ! Y is not onto, then Deg.F / D 0.
3. If A W Sn ! Sn is the antipodal map, show that Deg.A/ D .�1/n�1.
4. Show that the homotopy invariance property given in Proposition 19.7 can be deduced

as a corollary of Proposition 19.9. (Hint: Take M D X � Œ0; 1�:)
5. Let p.z/ D zn C an�1zn�1 C � � � C a1z C a0 be a polynomial of degree n � 1. Show

that if we identify S2 
 C [ f1g, then p W C ! C has a unique continuous extension
ep W S2 ! S2, withep.1/ D 1. Show that

Degep D n:

Deduce thatep W S2 ! S2 is onto, and hence that p W C ! C is onto. In particular,
each nonconstant polynomial in z has a complex root.
This result is the fundamental theorem of algebra.

20. Critical points and index of a vector field

A critical point of a vector field V is a point at which V vanishes. Let V be a
vector field defined on a neighborhood O of p 2 Rn, with a single critical point,
at p. Then, for any small ball Br about p; Br � O, we have a map

(20.1) Vr W @Br ! Sn�1; Vr.x/ D V.x/

jV.x/j :

The degree of this map is called the index of V at p, denoted indp.V /; it is clearly
independent of r . If V has a finite number of critical points, then the index of V
is defined to be

(20.2) Index.V / D
X

indpj
.V /:

If W O ! O0 is an orientation-preserving diffeomorphism, taking p to p and
V to W , then we claim that

(20.3) indp.V / D indp.W /:

In fact, D .p/ is an element of GL.n;R/ with positive determinant, so it is
homotopic to the identity, and from this it readily follows that Vr and Wr are
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homotopic maps of @Br ! Sn�1. Thus one has a well-defined notion of the
index of a vector field with a finite number of critical points on any oriented
manifoldM .

A vector field V on O � Rn is said to have a nondegenerate critical point
at p provided DV.p/ is a nonsingular n � n matrix. The following formula is
convenient.

Proposition 20.1. If V has a nondegenerate critical point at p, then

(20.4) indp.V / D sgn det DV.p/:

Proof. If p is a nondegenerate critical point, and we set  .x/ D DV.p/x,
 r .x/ D  .x/=j .x/j, for x 2 @Br , it is readily verified that  r and Vr are
homotopic, for r small. The fact that Deg. r/ is given by the right side of (20.4)
is an easy consequence of Proposition 19.8.

The following is an important global relation between index and degree.

Proposition 20.2. Let � be a smooth bounded region in RnC1. Let V be a vector
field on �, with a finite number of critical points pj , all in the interior �. Define
F W @� ! Sn by F.x/ D V.x/=jV.x/j. Then

(20.5) Index.V / D Deg.F /:

Proof. If we apply Proposition 19.9 toM D �nSj B".pj /, we see that Deg.F /
is equal to the sum of degrees of the maps of @B".pj / to Sn, which gives (20.5).

Next we look at a process of producing vector fields in higher-dimensional
spaces from vector fields in lower-dimensional spaces.

Proposition 20.3. Let W be a vector field on Rn, vanishing only at 0. Define a
vector field V on RnCk by V.x; y/ D �

W.x/; y
�
. Then V vanishes only at .0; 0/.

Then we have

(20.6) ind0W D ind.0;0/V:

Proof. If we use Proposition 19.8 to compute degrees of maps, and choose y0 2
Sn�1 � SnCk�1, a regular value of Wr , and hence also for Vr , this identity
follows.

We turn to a more sophisticated variation. Let X be a compact, oriented,
n-dimensional submanifold of RnCk ; W a (tangent) vector field on X with a
finite number of critical points pj . Let � be a small tubular neighborhood of
X; � W � ! X mapping z 2 � to the nearest point inX . Let '.z/ D dist.z; X/2.
Now define a vector field V on � by
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(20.7) V.z/ D W.�.z//C r'.z/:

Proposition 20.4. If F W @� ! SnCk�1 is given by F.z/ D V.z/=jV.z/j, then

(20.8) Deg.F / D Index.W /:

Proof. We see that all the critical points of V are points in X that are critical
for W , and, as in Proposition 20.3, Index.W / D Index.V /. But Proposition 20.2
implies that Index.V / D Deg.F /.

Since '.z/ is increasing as one moves away from X , it is clear that, for z 2
@�; V.z/ points out of�, provided it is a sufficiently small tubular neighborhood
of X . Thus F W @� ! SnCk�1 is homotopic to the Gauss map

(20.9) N W @� �! SnCk�1;

given by the outward-pointing normal. This immediately gives the next result.

Corollary 20.5. LetX be a compact oriented manifold in RnCk ; N� a small tubu-
lar neighborhood of X , and N W @� ! SnCk�1 the Gauss map. If W is a vector
field on X with a finite number of critical points, then

(20.10) Index.W / D Deg.N /:

Clearly, the right side of (20.10) is independent of the choice of W . Thus any
two vector fields on X with a finite number of critical points have the same index,
that is, Index.W / is an invariant of X . This invariant is denoted by

(20.11) Index.W / D �.X/;

and is called the Euler characteristic of X . See the exercises for more results on
�.X/. A different definition of �.X/ is given in Chap. 5. These two definitions
are related in �8 of Appendix C, Connections and Curvature.

Exercises

In Exercises 1–3, V is a vector field on a region � � R2. A nondegenerate critical
point p of a vector field V is said to be a source if the real parts of the eigenvalues of
DV.p/ are all positive, a sink if they are all negative, and a saddle if they are all either
positive or negative, and there exist some of each sign. Such a critical point is called a
center if all orbits of V close to p are closed orbits, which stay near p; this requires all
the eigenvalues of DV.p/ to be purely imaginary.

1. Let V have a nondegenerate critical point at p. Show that

p saddle H) indp.V / D �1;
p source H) indp.V / D 1;
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p sink H) indp.V / D 1;

p center H) indp.V / D 1:

2. If V has a closed orbit � , show that the map T W � ! S1; T .x/ D V.x/=jV.x/j, has
degree C1. (Hint: Use Proposition 19.8.)

3. If V has a closed orbit � whose inside O is contained in �, show that V must have at
least one critical point in O, and that the sum of the indices of such critical points must
be C1. (Hint: Use Proposition 20.2.)
If V has exactly one critical point in O, show that it cannot be a saddle.

4. LetM be a compact, oriented surface. Given a triangulation ofM , within each triangle
construct a vector field, vanishing at seven points as illustrated in Fig. 20.1, with the
vertices as attractors, the center as a repeller, and the midpoints of each side as saddle
points. Fit these together to produce a smooth vector field X on M . Show directly that

Index.X/ D V �E C F;

where
V D # vertices; E D # edges; F D # faces;

in the triangulation.
5. More generally, construct a vector field on an n-simplex so that when a compact, ori-

ented, n-dimensional manifold M is triangulated into simplices, one produces a vector
field X on M such that

(20.12) Index.X/ D
nX

jD0
.�1/j �j ;

where �j is the number of j -simplices in the triangulation, namely, �0 D # vertices,
�1 D # edges, : : : ; �n D # of n-simplices. (See Fig. 20.2 for a picture of a 3-simplex,
with its faces (i.e., 2-simplices), edges, and vertices labeled.)

The right side of (20.12) is one definition of �.M/. As we have seen, the left side
of (20.12) is independent of the choice of X , so it follows that the right side is indepen-
dent of the choice of triangulation.

6. LetM be the sphere Sn, which is homeomorphic to the boundary of an .nC1/-simplex.
Computing the right side of (20.12), show that

(20.13) �.Sn/ D 2 if n even; 0 if n odd:

FIGURE 20.1 Vector Field on a Triangulation
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FIGURE 20.2 A 3-Simplex

Conclude that if n is even, there is no smooth nowhere-vanishing vector field on Sn,
thus obtaining another proof of Proposition 19.4.

7. With X D Sn � RnC1, note that the manifold @� in (20.9) consists of two copies of
Sn, with opposite orientations. Compute the degree of the mapN in (20.9) and (20.10),
and use this to give another derivation of (20.13), granted (20.11).

8. Consider the vector field R on S2 generating rotation about an axis. Show that R has
two critical points, at the “poles.” Classify the critical points, compute Index.R/, and
compare the n D 2 case of (20.13).

9. Show that the computation of the index of a vector field X on a manifold M is inde-
pendent of orientation and that Index.X/ can be defined when M is not orientable.

A. Nonsmooth vector fields

Here we establish properties of solutions to the ODE

(A.1)
dy

dt
D F.t; y/; y.t0/ D x0

of a sort done in ��2–6, under weaker hypotheses than those used there; in par-
ticular, we do not require F to be Lipschitz in y. For existence, we can assume
considerably less:

Proposition A.1. Let x0 2 O, an open subset of Rn; I � R an interval contain-
ing t0. Assume F is continuous on I � O. Then the (A.1) has a solution on some
t-interval containing t0.

Proof. Without loss of generality, we can assume F is bounded and continuous
on R � Rn. Take Fj 2 C1.R � Rn/ such that jFj j � K and Fj ! F locally
uniformly, and let yj 2 C1.R/ be the unique solution to

(A.2)
dyj

dt
D Fj .t; y/; yj .t0/ D x0;
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whose existence is guaranteed by the material of �2. Thus

(A.3) yj .t/ D x0 C
Z t

t0

Fj
�
s; yj .s/

�
ds:

Now

(A.4) jFj j � K H) jyj .t 0/� yj .t/j � Kjt 0 � t j:

Hence, by Ascoli’s theorem (see Proposition 6.2 in Appendix A, Functional
Analysis) the sequence .yj / has a subsequence .yj�

/ which converges locally
uniformly: yj�

! y. It follows immediately that

(A.5) y.t/ D x0 C
Z t

t0

F
�
s; y.s/

�
ds;

so y solves (A.1).

Under the hypotheses of Proposition A.1, a solution to (A.1) may not be
unique. The following family of examples illustrates the phenomenon. Take
a 2 .0; 1/ and consider

(A.6)
dy

dt
D jyja; y.0/ D 0:

Then one solution on Œ0;1/ is given by

(A.7) y0.t/ D .1 � a/1=.1�a/ t1=.1�a/;

and another is given by
y�.t/ D 0:

Note that, for any " > 0, the problem dy=dt D jyja; y.0/ D " has a unique
solution on t 2 Œ0;1/, and lim"!0 y".t/ D y0.t/. Understanding this provides
the key to the following uniqueness result, due to W. Osgood.

Let! W RC ! RC be a modulus of continuity, i.e.,!.0/ D 0; ! is continuous,
and increasing. We may as well assume ! is bounded and C1 on .0;1/.

Proposition A.2. In the setting of Proposition A.1, assume F is continuous on
I � O and that

(A.8) jF.t; y1/ � F.t; y2/j � !
�jy1 � y2j

�
;

for all t 2 I; yj 2 O. Then solutions to (A.1) (with range in O) are unique,
provided
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(A.9)
Z 1

0

ds

!.s/
D 1:

Proof. If y1.t/ and y2.t/ are two solutions to (A.1), then

(A.10) y1.t/ � y2.t/ D
Z t

t0

˚
F
�
s; y1.s/

� � F
�
s; y2.s/

�

ds:

Let us set �.t/ D jy1.t/� y2.t/j. Hence, by (A.8), for t � t0,

(A.11) �.t/ �
Z t

t0

!
�
�.s/

�
ds:

In particular, for each " > 0; �.t/ � R t
t0
!
�
�.s/C "

�
ds. Since we are assuming

! is smooth on .0;1/, we can apply the Gronwall inequality, derived in (5.19)–
(5.21), to deduce that

(A.12) �.t/ � '".t/; 8 t � t0; " > 0;

where '" is uniquely defined on Œt0;1/ by

(A.13) ' 0
".t/ D !

�
'".t/C "

�
; '".t0/ D 0:

Thus

(A.14)
Z '".t/

0

d�

!.� C "/
D t � t0:

Now the hypothesis (A.9) implies

(A.15) lim
"&0

'".t/ D 0; 8 t � t0;

so we have �.t/ D 0, for all t � t0. Similarly, one shows �.t/ D 0, for t � t0,
and uniqueness is proved.

An important example to which Proposition A.2 applies is

(A.16) !.s/ D s log
1

s
; s � 1

2
:

This arises in the study of ideal fluid flow, as will be seen in Chap. 17.
A similar argument establishes continuous dependence on initial data. If

(A.17)
dyj

dt
D F.t; yj /; yj .t0/ D xj ;
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then

(A.18) y1.t/ � y2.t/ D x1 � x2 C
Z t

t0

˚
F
�
s; y1.s/

� � F �s; y2.s/
�

ds;

so �12.t/ D jy1.t/ � y2.t/j satisfies

(A.19) �12.t/ � jx1 � x2j C
Z t

t0

!
�
�12.s/

�
ds:

An argument similar to that used above gives (for t � t0)

(A.20) �12.t/ � #.jx1 � x2j; t/;

where, for a > 0; t � t0; #.a; t/ is the unique solution to

(A.21) @t# D !.#/; #.a; t0/ D a;

that is,

(A.22)
Z #.a;t/

a

d�

!.�/
D t � t0:

Again, the hypothesis (A.9) implies

(A.23) lim
a&0

#.a; t/ D 0; 8 t � t0:

By (A.20), we have

(A.24) jy1.t/ � y2.t/j � #
�jx1 � x2j; t

�
;

for all t � t0, and a similar argument works for t � t0.
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2

The Laplace Equation and Wave
Equation

Introduction

In this chapter we introduce the central linear partial differential equations of the
second order, the Laplace equation

(0.1) �u D f

and the wave equation

(0.2)

�
@2

@t2
��

�
u D f:

For flat Euclidean space Rn, the Laplace operator is defined by

(0.3) �u D @2u

@x21
C � � � C @2u

@x2n
:

The wave equation arose early in the history of continuum mechanics, in a
mathematical description of the motion of vibrating strings and membranes. We
discuss this in �1. The analysis, based on an appropriate version of Hamilton’s
stationary action principle, generally produces nonlinear partial differential equa-
tions, of a sort that will be studied more in Chaps. 14–16. The wave equation
described by (0.2), which is linear, arises as a “linearized” PDE, describing such
vibratory motion, as will be seen in �1.

In this chapter we consider the Laplace operator on a general Riemannian man-
ifold and emphasize concepts defined in a coordinate-independent fashion. Also,
more generally than the wave equation (0.2) on the Cartesian product of a spa-
tial region with the time axis, we consider natural generalizations defined on a
manifold endowed with a Lorentz metric.

Before defining the Laplace operator on Riemannian manifolds, we devote two
sections to some first-order operators. In �2 we discuss the divergence operator ap-
plied to vector fields, and in �3 we generalize the operations of covariant derivative

M.E. Taylor, Partial Differential Equations I: Basic Theory,
Applied Mathematical Sciences 115, DOI 10.1007/978-1-4419-7055-8 2,
c� Springer Science+Business Media, LLC 1996, 2011
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and divergence from vector fields to tensor fields. These concepts play important
roles in the study of the Laplace and wave equations.

In �4 we define the Laplace operator acting on real- (or complex-) valued func-
tions on a Riemannian manifold M, and in �5 we write down the wave equation
for functions on R �M and discuss energy conservation. In �6 we extend energy
identities in a way that leads to proofs of results on finite propagation speed for
solutions to such a wave equation.

In �7 we extend the notion of the wave equation from R � M to a general
Lorentz manifold. We extend the notion of energy conservation. To a solution
of the wave equation is associated a second-order tensor field, the “stress-energy
tensor,” and the law of conservation of energy can be expressed as the vanishing
of the divergence of this field, as is shown in �7. One can pass from such a “local”
conservation law to an integral conservation law via the divergence theorem, for
a certain class of Lorentz manifolds, namely those with a timelike Killing field.
We derive the phenomenon of “finite propagaton speed” for solutions to the wave
equation as a consequence of such a conservation law.

In �8 we consider a more general class of hyperbolic equations. To solutions
we can still associate a tensor with some of the properties of a stress-energy tensor,
but the energy conservation law may not hold, and instead we look for “energy
estimates.”

The Stokes formula used in �2 to derive the divergence theorem is a special
case of a more general Stokes-type formula, which we discuss in �9. This more
general formula is used in �10 to produce a variant of Green’s formula for the
Laplace operator acting on differential forms. In these sections we also make use
of the notion of the “principal symbol” of a differential operator, as an invariantly
defined function on the cotangent bundle.

In �11 we look at Maxwell’s equations for the electromagnetic field. We show
how they can be manipulated to yield the wave equation. This mathematical fact
will be further exploited in Chap. 6. We deal with Maxwell’s equations in the
framework of relativity and work with the electromagnetic field on a general
Lorentz 4-manifold.

Though we discuss some qualitative properties of solutions to the Laplace
equation and the wave equation, such as Green’s identities and finite propagation
speed (in the case of the wave equation), we do not tackle the question of existence
of solutions in this chapter, except for the very simplest case, namely the nD 1

case of (0.2), treated in �1. In the case of such equations on flat Euclidean space,
Fourier analysis provides an adequate tool to construct and analyze solutions, and
this will be developed in the next chapter. Then functional analytical methods,
centered on the theory of Sobolev spaces, will be developed in Chap. 4 and ap-
plied in subsequent chapters. As we will see in Chap. 6, energy estimates, such as
those derived in �8 of this chapter, in concert with Sobolev space theory, form the
principal tools for existence theorems for linear hyperbolic equations. Existence
of solutions to nonlinear hyperbolic equations, which requires somewhat more
subtle analysis, will be studied in Chap. 16.
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1. Vibrating strings and membranes

The problem of describing the motion of a vibrating string was one of the earliest
problems of continuum mechanics, producing a partial differential equation. Such
a PDE can be derived by a procedure similar to that described in �12 of Chap. 1,
using a stationary action principle. To carry this out, we need formulas for the
kinetic energy and the potential energy of a vibrating string.

Suppose our string is vibrating in Rk ; say its ends are tied down at two points,
the origin 0 and a vectorLe1 2 Rk , of lengthL. We suppose the string is uniform,
of mass density m (i.e., total mass mL). The motion of the string is described by
a function u D u.t; x/; t 2 R; x 2 Œ0; L�, taking values in Rk and satisfying
u.t; 0/ D 0; u.t; L/ D Le1 for all t . Then the kinetic energy at time t is given by

(1.1) T .t/ D m

2

Z L

0

jut .t; x/j2 dx;

and the integral
R t1
t0
T .t/ dt is given by

(1.2) J0.u/ D m

2

“

I��
jut .t; x/j2 dx dt;

where I D .t0; t1/; � D .0; L/.
As for the potential energy at a given time t , we will use the law that the

potential energy in a small piece of string is a function of the degree that the
string has been stretched, namely,

(1.3) V.t/ D
Z L

0

f
�
ux.t; x/

�
dx

for a function

(1.4) f W Rk �! R:

This is known as Hooke’s law. The case of an “ideal” string (where the force
exerted by a small piece of string is proportional to the amount by which it has
been stretched) is

(1.5) f .y/ D �.jyj � a/2;

where the unstretched string has length aL < L and � > 0 is a given constant.
The term accompanying (1.2) in the expression for the action is

(1.6) J1.u/ D
“

I��
f
�
ux.t; x/

�
dx dt:
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The stationary condition according to Hamilton’s principle is

(1.7)
d

ds
.J0 � J1/.u C sv/

ˇ̌
sD0 D 0;

for all v 2 C1
0 .I ��;Rk/. A simple computation gives

d

ds
J0.u C sv/

ˇ̌
sD0 D

“

I��
mutvt dx dt

D �
“

mvut t dx dt;

(1.8)

where the last identity is obtained by integration by parts. Furthermore, also inte-
grating by parts, we have

d

ds
J1.u C sv/

ˇ̌
sD0 D

“
f 0�ux.t; x/

� � vx.t; x/ dx dt

D �
“ n @

@x
f 0�ux.t; x/

�o � v.t; x/ dx dt:
(1.9)

Note that

(1.10)
@

@x
f 0.ux.t; x// D f 00.ux/uxx;

where f 00.y/ is the k�k matrix valued function of second-order partial derivatives
of f W Rk ! R, and uxx takes values in Rk . In other words,

(1.11)
d

ds
J1.u C sv/

ˇ̌
sD0 D �

“

I��
f 00.ux/uxx � v dx dt:

Combining (1.8) and (1.11), we see that the stationary condition (1.7) is equivalent
to the partial differential equation

(1.12) mut t � f 00.ux/uxx D 0:

If f .y/ is a second-order polynomial in y, that is, of the form

(1.13) f .y/ D aC b � y C Ay � y;

where a 2 R; b 2 Rk , andA is a real, symmetric, k�k matrix, then f 00.y/ D 2A,
and the PDE (1.12) becomes

(1.14) mut t � 2Auxx D 0:
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The example (1.5) does not satisfy this condition, and the resulting PDE is not
linear. Let us rewrite this PDE, setting

(1.15) u.t; x/ D xe1 C w.t; x/;

so that w.t; 0/ D 0 and w.t; L/ D 0 in Rk . Then

(1.16) J1.u/ D K1.w/ D
“

'.wx/ dx dt;

where ' W Rk ! R is given by

(1.17) '.y/ D f .e1 C y/;

and the corresponding PDE for w is

(1.18) mwt t � ' 00.wx/wxx D 0:

The linearization of this equation is, by definition, obtained by replacing '.y/
by its quadratic part, that is, by the terms of order � 2 in its power series about
y D 0:

(1.19) '0.y/ D a0 C b0 � y C 1

2
A0y � y;

where a0 D '.0/ D f .e1/; b0 D ' 0.0/ D f 0.e1/, and A0 D ' 00.0/ D f 00.e1/.
For one reason why the term “linearization” is appropriate, see Exercise 4 at the
end of this section. If ' is replaced by '0 in (1.16), the stationary condition yields
the linear PDE

(1.20) mwt t � A0wxx D 0
�
A0 D ' 00.0/

�
:

In the case of an ideal string (1.5), this linearized PDE is readily computed to be

(1.21) mwt t � 2�.I � aP /wxx D 0;

where P is the orthogonal projection of Rk onto the orthogonal complement of
e1. (Compare the calculations (1.43)–(1.47) and (1.51)–(1.55) below.) Recall that
we are assuming 0 < a < 1.

For this linear equation, we can write w D wb C w#, where wb is parallel to
e1 and w# is orthogonal to e1. The equation (1.21) decouples, and we have

(1.22) mwbt t � 2�wbxx D 0
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as the equation for the longitudinal wave wb and

(1.23) mw#
t t � 2�.1 � a/w#

xx D 0;

as the equation for the transverse wave w#. Both of these equations are cases
(with different values of c) of the wave equation

(1.24) vt t � c2vxx D 0:

Here c is identified with the propagation speed for solutions to (1.24), for the
following reason. Namely, for any C 2-functions fj of one variable,

(1.25) v.t; x/ D f1.x C ct/C f2.x � ct/

is a solution to (1.24). Conversely, the general solution to (1.24) on .t; x/ 2 R�R,
satisfying the initial conditions

(1.26) v.0; x/ D g.x/; vt .0; x/ D h.x/;

can be expressed in the form (1.25). Indeed, a solution to (1.24) in the form (1.25)
satisfies these initial conditions if and only if

(1.27) f1.x/C f2.x/ D g.x/ and cf 0
1.x/ � cf 0

2.x/ D h.x/:

This implies f 0
1.x/ C f 0

2.x/ D g0.x/, so we can solve algebraically for f 0
1 and

f 0
2 ; thus we can set

f1.x/ D 1

2
g.x/C 1

2c

Z x

0

h.s/ ds;

f2.x/ D 1

2
g.x/ � 1

2c

Z x

0

h.s/ ds:

(1.28)

That the solution (1.25) so produced is the only solution to (1.24) satisfying the
initial conditions (1.26) is a special case of a uniqueness result proved in �5.

One can arrange that the boundary condition

(1.29) v.t; 0/ D v.t; L/ D 0

be satisfied by taking g and h that satisfy

(1.30) g.s/ D g.s C 2L/ D �g.�s/; h.s/ D h.s C 2L/ D �h.�s/:

This is a special case of the method of images, discussed further in Chap. 3, �7.
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Whenever one has the linear equation (1.14), if A is a positive-definite matrix,
one can diagonalize A and construct solutions as above. Constructing solutions
for the equation (1.12), or (1.18) in the nonlinear case, is much more difficult;
Chap. 16 gives some results for this problem.

Now we look at the higher-dimensional case, of a vibrating membrane. Let
� be some open region in Rn. We consider vibrations of � in Rk , with k � n.
Define the inclusion j W Rn ,! Rk by

j.x1; : : : ; xn/ D .x1; : : : ; xn; 0; : : : ; 0/:

This time suppose the boundary of � is tied down. The motion of the membrane
is described by a function u D u.t; x/; t 2 R; x 2 �, taking values in Rk and
satisfying u.t; x/ D j.x/ for x 2 @�. We suppose the membrane is of a uniform
substance, with mass density m. The kinetic energy at a given time t is then

(1.31) T .t/ D m

2

Z

�

jut .t; x/j2 dx;

parallel to (1.1), and the integral
R t1
t0
T .t/ dt D J0.u/ is again given by (1.2), with

� now an n-dimensional domain. As for the potential energy, we will again work
under the hypothesis that it is a function of the “stretching” of the membrane, of
the form

(1.32) V.t/ D
Z

�

f
�
ux.t; x/

�
dx;

where, for each .t; x/ 2 R ��,

(1.33) ux.t; x/ 2 L.Tx�;Rk/ � L.Rn;Rk/

is the x-derivative, and

(1.34) f W L.Rn;Rk/ �! R

is a given smooth function. Again
R t1
t0
V.t/ dt D J1.u/ is given by (1.6), the

stationary action principle takes the form (1.7), and the variation of J0.u/ is given
by (1.8). The variation of J1.u/ is also given by a formula of the form (1.11).
More precisely, if we set

(1.35) f D f .y/; y D �
y�j

� 2 L.Rn;Rk/;

then (1.11) holds, with the interpretation

(1.36) f 00.ux/uxx � v D
kX

�;�D1

nX

i;jD1

@2f .ux/

@y�i@y�j
u�xixj

v� ;
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where u D .u1; : : : ; uk/; v D .v1; : : : ; vk/ 2 Rk . With this notation, the PDE
obtained for u is again of the form (1.12).

As in (1.15)–(1.17), we can concentrate on the deviation of u from the map
j W � ! Rk . Set

(1.37) u.t; x/ D j.x/C w.t; x/;

so the boundary condition becomes w.t; x/ D 0 for x 2 @�; then the PDE for w
is of the form (1.18), again interpreted as in (1.36), with

(1.38) '.y/ D f .j C y/;

for y 2 L.Rn;Rk/. As before, we have the linearized PDE

(1.39) mwt t �Awxx D 0; A D ' 00.0/;

where, for w D .w1; : : : ; wk/,

(1.40)
�
Awxx

�� D
kX

�D1

nX

i;jD1

@2'.0/

@y�i@y�j
w�xixj

:

We can regard A as defining a symmetric bilinear map

(1.41) A W L.Rn;Rk/ � L.Rn;Rk/ �! R:

There are a number of different forms the potential energy function f .y/ can
take, depending on the physical properties of the membrane. In a number of mod-
els, one has f .y/ D  .y�y/, a function invariant under conjugating y�y by an
orthogonal n � n matrix. These models have the form

(1.42) f .y/ D ‰
�
Tr g1.y�y/; : : : ;Tr gK.y�y/

�
;

where g` W R ! R is smooth and, for a self adjoint matrix z D y�y; g`.z/
is defined by the spectral representation; g`.z/vj D g`.�j /vj for vj in the
�j -eigenspace of z. There is no loss in generality in assuming g`.1/ D 0.

To compute the linearized PDE when f .y/ is given by (1.42), start with

g`
�
.j � C y�/.j C y/

� D g`.I C j �y C y�j C y�y/

D g`.1/I C g0
`.1/.j

�y C y�j C y�y/

C 1

2
g00
` .1/.j

�y C y�j /2 CO.kyk3/:
(1.43)
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If .1=2/� D Tr j �y D Tr y�j; � D Tr y�y, and 	 D Tr.j �y C y�j /2, we
obtain

'.y/ D f .j C y/ D ‰.0/C
X

@`‰.0/
�
g0
`.1/.� C �/C 1

2
g00
` .1/	

�

C
X 1

2
@`@m‰.0/g

0
`.1/g

0
m.1/�

2 CO.kyk3/:
(1.44)

Thus the purely quadratic part, which yields the linearized PDE, is

'0.y/ D
X

`

@`‰.0/
�
g0
`.1/Tr y�y C 1

2
g00
` .1/Tr.j �y C y�j /2

�

C
X

`;m

1

2
@`@m‰.0/g

0
`.1/g

0
m.1/

�
Tr.j �y C y�j /

�2

D A Tr y�y C B Tr.j �y C y�j /2 C C
�
Tr.j �y C y�j /

�2
:

(1.45)

As in the case of the linearized equations of the vibrating string, the resulting
linear PDE decouples into an equation for the components of w orthogonal to the
space Rn � Rk in which� sits and an equation for the components of w parallel
to this space. For the orthogonal component w#, since j �w# D 0 in this case, we
can replace '0.y/ by

(1.46) '#.y/ D A Tr y�y; y 2 L.Rn;Rk�n/:

In this case, we have

(1.47)
@2'#

@y�i@y�j
D 2Aıij ı��:

Hence the linearized equation for the orthogonal (or transverse) wave is

(1.48) mw#
t t � 2A�w# D 0;

where� is the Laplace operator on Rn:

(1.49) �v.x/ D @2v

@x21
C � � � C @2v

@x2n
:

If A > 0, we can rewrite (1.48) in the form

(1.50) vt t � c2�v D 0:

The equation (1.50) is typically called “the wave equation.” As in (1.24), c is the
propagation speed for waves satisfying (1.50); we will discuss this further in �6.



136 2. The Laplace Equation and Wave Equation

The construction of solutions to (1.50), satisfying initial conditions of the form
(1.26), is not as elementary for n > 1 as the construction for n D 1 given by
(1.25)–(1.28). In Chap. 3, we will give a construction, valid for � D Rn, using
Fourier analysis. A symmetry trick similar to (1.30) will work if � is a rectan-
gular solid in Rn, though not for general bounded regions �. The existence and
uniqueness of solutions to the wave equation (1.50) for such more general � are
proven in Chap. 6.

The equation for the components of w parallel to the plane Rn of � � Rk , in
this case, has a somewhat different form, as we now compute. Note that this case
is the same as considering the entire linearized PDE for the case k D n. Then
j is the identity map, so the linearization is of the form (1.39)–(1.40), with '.y/
replaced by

'b.y/ D A Tr y�y CB Tr.y C y�/2 C C
�
Tr.y C y�/

�2

D .AC 2B/Tr y�y C 2B Tr y2 C 4C
�
Tr y

�2
;

(1.51)

since Tr y�y D Tr yy� and Tr y2 D Tr .y�/2, for a real n � n matrix y. If we
denote the sum of the three terms on the last line in (1.51) by

 0.y/C  1.y/C  2.y/;

then, as in (1.47),

(1.52)
@2 0

@y�i@y�j
D .2AC 4B/ıij ı��:

Also, a brief computation gives

(1.53)
@2 1

@y�i@y�j
D 4Bı�j ı�i

and

(1.54)
@2 2

@y�i@y�j
D 8Cı�iı�j :

Now, when ' is replaced by  0, the differential operator of the form (1.40) is
.2A C 4B/�, similar to the computation giving (1.48). When ' is replaced by
 1 C  2, the differential operator becomes

�Lw�� D 4B

nX

�;i;jD1
ı�j ı�iw

�
xixj

C 8C

nX

�;i;jD1
ı�iı�jw

�
xixj

D .4B C 8C /
X

j

wjx�xj
:

(1.55)
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We can write this as

(1.56) Lw D .4B C 8C / grad div w;

where the divergence of the vector field w D .w1; : : : ; wn/ is

(1.57) div w D
X

j

@wj

@xj
;

and, as before, the gradient of a real-valued function on Rn is

(1.58) grad u D
� @u

@x1
; : : : ;

@u

@xn

	
:

Thus the linearized PDE for vibration in the plane of � is

(1.59) mwt t � .2AC 4B/�w � .4B C 8C / grad div w D 0:

The situation where k D n represents a vibrating elastic solid, and the equation
(1.59) is known as the equation of linear elasticity.

In linear elasticity it is common to linearize about an unstrained state. One
writes (1.59) as

mwt t � 
�w � .�C 
/ grad div w D 0I


 D 2A C 4B and � D 8C are called Lamé constants. For more on this, see
[MH].

We will concentrate primarily on linear equations in this chapter, indeed,
on scalar equations like (1.50). Methods of Chap. 16 will yield results on non-
linear equations of the form (1.12), in any number of x-variables, under a
“hyperbolicity” assumption, which is that, for some C > 0,

(1.60)
kX

�;�D1

nX

i;jD1

@2f .y/

@y�i@y�j
�i�j ���� � C j�j2j� j2;

for � 2 Rn; � 2 Rk . A sufficient, though not necessary, condition for this to hold
is that f be a strongly convex function of y. For example (in the case k D n),
(1.60) holds for

(1.61) f .y/ D a Tr y�y C b Tr y2

whenever a > max.0;�b/, but such f is strongly convex only if a > jbj.
The notions of divergence, gradient, and Laplacian given above are for the

case of Euclidean space Rn. All these notions extend to more general Riemannian
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manifolds. The Laplacian will be defined in such a way as to generalize the
identity

(1.62)
Z

Rn

.�u/v dx D �
Z

Rn

grad u � grad v dx;

for u; v 2 C1
0 .R

n/, which follows from the definition (1.49) by integration by
parts. A further identity that generalizes to the case of Riemannian manifolds is

(1.63) �u D div grad u;

which for a real-valued function on Rn follows immediately from the definitions
of div, grad, and � given above.

We will discuss extensions of these concepts to Riemannian manifolds in the
next few sections, starting with the notion of divergence in �2. Then we will derive
a number of properties of solutions to wave equations, in ��5–8, and also discuss
an extension of the wave equation (1.50) from the case R � Rn to Lorentz mani-
folds. The problem of proving existence of solutions will be tackled only in later
chapters.

We will state here more precisely what the basic existence problem is. In the
case of one of the wave equations produced above, say

(1.64)
@2u

@t2
��u D 0;

we desire to find u satisfying this PDE, given initial conditions

(1.65) u.0; x/ D f .x/; ut .0; x/ D g.x/:

If @� ¤ 0, we also need to impose a boundary condition. There is in particular
the Dirichlet condition

(1.66) u.t; x/ D 0; for x 2 @�;

in the case of a membrane tied down along @�, as discussed above. There are
other boundary conditions that arise in other situations, such as the Neumann
boundary condition described in �5, and others mentioned in subsequent chap-
ters. We also can replace (1.64) and (1.66) by nonhomogeneous equations, that is,
replace the zeros on the right by given functions.

In this section we have concentrated on evolution equations, involving motion
with the passage of time. It is also of interest to study stationary problems, where
there is no time dependence. In other words, one looks for stationary points for

(1.67) J.u/ D
Z

�

f .ux.x// dx:
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Thus one obtains a PDE of the form

(1.68) f 00.ux/uxx D 0;

interpreted via (1.36), as the stationary condition for J.u/. In the case f .ux/ D
juxj2, this becomes the Laplace equation

(1.69) �u D 0:

A typical boundary condition is the nonhomogeneous Dirichlet condition

(1.70) u D  on @�:

The existence of a solution to this will follow from results of Chap. 5.

Exercises

1. Compare the formulas (1.22) and (1.23) for longitudinal and transverse waves. For a
piano wire, a is very close to 1. What does this imply about the relative propagation
speeds of longitudinal and transverse waves along a piano wire? Which type of waves
produce audible sounds?

2. For a function f appearing in (1.60), to be strongly convex means

(1.71)
X

�;�

X

i;j

@2f .y/

@y�i@y�j
��i��j � C0j�j2;

where j�j2 D P
�;i j��i j2. Show that this estimate implies (1.60). Prove the state-

ments made about f .y/ D a Tr y�y C b Tr y2 after (1.61).
3. Suppose more generally that f .y/ D a Tr y�y C b Tr y2 C c.Tr y/2. For what values

of a; b, and c is f strongly convex? For what values of a; b, and c does one have the
strong ellipticity condition (1.60)?

4. The following exercise relates to the choice of the word “linearization” in describing the
relation between the (1.12) and (1.20). For � � Rn, bounded with smooth boundary,
definev

F W C 2.�;Ck/ ! C.�;Ck/

by
F.u/ D f 00.ux/uxx ;

the right side defined by (1.36). Assume f is C1. Show that F is differentiable, as a
map between Banach spaces, and that

DF.j /w D Lw;

where Lw D Awxx ; A D f 00.j /, as defined by (1.40).
5. If u D u.t; x/ is a real-valued function on R � �, show that the PDE for u giving the

stationary condition for the function (1.67) can be written in the form
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(1.72) div fp.ux/ D 0;

where, if f D f .p/ D f .p1; : : : ; pn/, then fp.ux/ is the vector field with components
.@f =@pj /.ux/. Compare (5.39).

2. The divergence of a vector field

Let M be an n-dimensional manifold, provided with a volume form ! 2 ƒnM .
Let X be a vector field on M . Then the divergence of X , denoted div X , is a
function onM that measures the rate of change of the volume form under the flow
generated by X . Thus it is defined by

(2.1) LX! D .div X/!:

Here, LX denotes the Lie derivative. In view of the general formula LX˛ D
d˛cX C d.˛cX/, derived in Chap. 1, since d! D 0 for any n-form ! on M , we
have

(2.2) .div X/! D d.!cX/:

If M D Rn, with the standard volume element

(2.3) ! D dx1 ^ � � � ^ dxn;

and if

(2.4) X D
X

Xj .x/
@

@xj
;

then

(2.5) !cX D
nX

jD1
.�1/j�1Xj .x/ dx1 ^ � � � ^ bdxj ^ � � � ^ dxn:

Hence, in this case, (2.2) yields the formula used in (1.57) :

(2.6) div X D
nX

jD1
@jX

j;

where we use the notation

(2.7) @jf D @f

@xj
:
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Suppose now that M is an oriented manifold endowed with a Riemannian
metric gjk.x/. Then M carries a natural volume element !, determined by the
condition that, if one has a coordinate system in which gjk.p0/ D ıjk , then
!.p0/ D dx1 ^ � � � ^ dxn. This condition produces the following formula, in any
oriented coordinate system:

(2.8) ! D p
g dx1 ^ � � � ^ dxn;

where

(2.9) g D det.gjk/:

In order to derive (2.8) , note that if coordinates y are related to x linearly, that is,
yj D P

Ajkxk , then

X
dy2j D

X

j;k;`

AjkAj` dxk dx` D
X

gk` dxk dx`;

with
gk` D

X

j

A j̀Ajk ;

provided A D .Ajk/ is symmetric. Now construct A as the positive-definite
square root of the positive-definite matrix G D �

gjk.x0/
�
. In other words, if

fvj g is an orthonormal basis of Rn with Gvj D cj vj , set Avj D c
1=2
j vj . The

transformation law forƒnA on ƒnR gives

dy1 ^ � � � ^ dyn D .detA/ dx1 ^ � � � ^ dxn
D
p
g.x0/ dx1 ^ � � � ^ dxn;

from which the formula (2.8) follows.
We now compute div X when the volume element onM is given by (2.8) . We

have

(2.10) !cX D
X

j

.�1/j�1Xjp
g dx1 ^ � � � ^ bdxj ^ � � � ^ dxn

and hence

(2.11) d.!cX/ D @j .
p
gXj / dx1 ^ � � � ^ dxn:

Here, as below, we use the summation convention. Hence the formula (2.2) gives

(2.12) div X D g�1=2@j .g1=2Xj /:
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We next derive a result known as the divergence theorem, as a consequence
of Stokes’ formula, proved in Chap. 1. Recall that Stokes’ formula for differential
forms is

(2.13)
Z

M

d˛ D
Z

@M

˛;

for an .n � 1/-form on M , assumed to be a smooth, compact, oriented manifold
with boundary. If ˛ D !cX , the formula(2.2) gives

(2.14)
Z

M

.div X/! D
Z

@M

!cX:

This is one form of the divergence theorem. We will produce an alternative ex-
pression for the integrand on the right before stating the result formally.

Given that ! is the volume form for M determined by a Riemannian metric,
we can write the interior product !cX in terms of the volume element !@ on
@M , with its induced Riemannian metric, as follows. Pick normal coordinates
on M , centered at p0 2 @M , such that @M is tangent to the hyperplane fxn D 0g
at p0 D 0. Then it is clear that, at p0,

(2.15) j �.!cX/ D hX; �i!@;
where � is the unit vector normal to @M; pointing out of M and j W @M ,!
M is the natural inclusion. The two sides of (2.15), which are both defined in a
coordinate-independent fashion, are hence equal on @M; and the identity (2.14)
becomes

(2.16)
Z

M

.div X/! D
Z

@M

hX; �i!@:

Finally, we adopt the following common notation: we denote the volume element
on M by dV and that on @M by dS , obtaining the divergence theorem:

Theorem 2.1. If M is a compact manifold with boundary, X a smooth vector
field onM; then

(2.17)
Z

M

.div X/ dV D
Z

@M

hX; �i dS;

where � is the unit outward-pointing normal to @M .

The only point left to mention here is that M need not be orientable. Indeed, we
can treat dV and dS as measures and note that all objects in (2.17) are independent
of a choice of orientation. To prove the general case, just use a partition of unity
supported on orientable pieces.
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The definition of the divergence of a vector field given by (2.1), in terms of
how the flow generated by the vector field magnifies or diminishes volumes, is a
good geometrical characterization, explaining the use of the term “divergence.”
There are other characterizations of the divergence operation, of a more analytical
flavor, which are also quite useful. Here is one.

Proposition 2.2. The divergence operation is the negative of the adjoint of the
gradient operation on vector fields; if X is a vector field and u a function on M ,
one compactly supported on the interior of M; then

(2.18) .X; grad u/L2.M/ D �.div X; u/L2.M/:

The asserted integral identity here is
Z

M

hX; grad ui dV.x/ D �
Z

M

.div X/u dV.x/;

provided either u or X has compact support in the interior of M . Note that

hX; grad ui D hX; dui D Xu:

In fact, we will use the divergence theorem to obtain a more general result, in
which neither u or X is required to vanish on @M . We apply (2.17) with X
replaced by uX . We have the following “derivation” identity:

(2.19) div uX D u div X C hdu; Xi D u div X CXu;

which follows easily from the formula (2.12). The divergence theorem immedi-
ately gives the following result.

Proposition 2.3. If M is a smooth, compact manifold with boundary, u a smooth
function, X a smooth vector field on M; then

(2.20)
Z

M

.div X/u dV C
Z

M

Xu dV D
Z

@M

hX; �iu dS:

We can also express the adjoint of the differential operatorX , defined by

(2.21)
Z

M

.X�u/v dV D
Z

M

u.Xv/ dV;

for v 2 C1
0 .

ı
M/, using the divergence, as follows:

Proposition 2.4. If X is a smooth vector field on M; then

(2.22) X�u D �Xu � .div X/u:
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This is equivalent to the statement that

(2.23)
Z

M

�
.Xu/v C u.Xv/

�
dV D �

Z

M

.div X/uv dV;

for u; v 2 C1
0 .

ı
M/. In fact, from (2.20) we can obtain the following more general

result.

Proposition 2.5. If u and v are smooth functions and X a smooth vector field on
a compact manifoldM with boundary, then

(2.24)
Z

M

�
.Xu/v C u.Xv/

�
dV D �

Z

M

.div X/uv dV C
Z

@M

hX; �iuv dS:

Proof. Replace u by uv in (2.20) and use the derivation identity X.uv/ D
.Xu/v C u.Xv/.

Exercises

1. Given a Hamiltonian vector field

Hf D
nX

jD1

h @f
@�j

@

@xj
� @f

@xj

@

@�j

i
;

calculate div Hf directly from (2.6).
2. IfM is a smooth domain in R2, apply the divergence theorem (2.17) to the vector field
X D g@=@x � f @=@y to deduce Green’s formula:

Z

@M

f dx C g dy D
“

M

�@g
@x

� @f

@y

	
dx dy:

3. Show that the identity (2.19) for div .uX/ follows from (2.2) and

du ^ .!cX/ D .Xu/!:

Prove this identity, for any n-form ! onMn. What happens if ! is replaced by a k-form,
k < n?

4. Relate Exercise 3 to the calculations

(2.25) LuX˛ D uLX˛ C du ^ .X˛/
and

(2.26) du ^ .X˛/ D �X .du ^ ˛/C .Xu/˛;

valid for any k-form ˛. The last identity follows from (13.37) of Chap. 1; compare with
formula (10.27) of this chapter.
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5. Show that
div ŒX; Y � D X.div Y / � Y.div X/:

3. The covariant derivative and divergence of tensor fields

The covariant derivative of a vector field on a Riemannian manifold was intro-
duced in Chap. 1, �11, in connection with the study of geodesics. We will briefly
recall this concept here and relate the divergence of a vector field to the covariant
derivative, before generalizing these notions to apply to more general tensor fields.
A still more general setting for covariant derivatives is discussed in Appendix C.

If X and Y are vector fields on a Riemannian manifold M; then rXY is a
vector field on M; the covariant derivative of Y with respect to X . We have the
properties

(3.1) r.fX/Y D f rXY

and

(3.2) rX .f Y / D f rXY C .Xf /Y;

the latter being the derivation property. Also, r is related to the metric on M by

(3.3) ZhX; Y i D hrZX; Y i C hX;rZY i;

where hX; Y i D gjkX
jY k is the inner product on tangent vectors. The Levi–

Civita connection on M is uniquely specified by (3.1) –(3.3) and the torsion free
property:

(3.4) rXY � rYX D ŒX; Y �:

There is the explicit defining formula (derived already in (11.22) of Chap. 1)

2hrXY;Zi D XhY;Zi C Y hX;Zi �ZhX; Y i
C hŒX; Y �; Zi � hŒX;Z�; Y i � hŒY;Z�; Xi;

(3.5)

which follows from cyclically permutingX; Y , and Z in (3.3) and combining the
results, exploiting (3.4) to cancel out all covariant derivatives but one. Another
way of writing this is the following. If

(3.6) X D XkDk ; Dk D @

@xk
.summation convention/;
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then

(3.7) rDj
X D Xk Ij Dk ;

with

(3.8) Xk Ij D @jX
k C

X

`

�k j̀X
`;

where the “connection coefficients” are given by the formula

(3.9) �`jk D 1

2
g`�

h@gj�
@xk

C @gk�

@xj
� @gjk

@x�

i
;

equivalent to (3.5). We also recall that @gk�=@xj can be recovered from �`jk :

(3.10)
@gk�

@xj
D g`��

`
jk C g`k�

`
j�:

The divergence of a vector field has an important expression in terms of the
covariant derivative.

Proposition 3.1. Given a vector field X with componentsXk as in (3.6),

(3.11) div X D Xj Ij :

Proof. This can be deduced from our previous formula for div X ,

div X D g�1=2@j .g1=2Xj /
D @jX

j C .@j logg1=2/Xj :
(3.12)

One way to see this is the following. We can think of rX as defining a tensor
field of type .1; 1/:

(3.13) .rX/.Y / D rYX:

Then the right side of (3.11) is the trace of such a tensor field:

(3.14) Xj Ij D Tr rX:

This is clearly defined independently of any choice of coordinate system. If
we choose an exponential coordinate system centered at a point p 2 M , then
gjk.p/ D ıjk and @gjk=@x` D 0 at p, so (3.12) gives div X D @jX

j at p, in
this coordinate system, while the right side of (3.11) is equal to @jXjC�j j̀X` D
@jX

j at p. This proves the identity (3.11).
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The covariant derivative can be applied to forms, and other tensors, by requir-
ing r to be a derivation. On scalar functions, set

(3.15) rXu D Xu:

For a 1-form ˛; rX˛ is characterized by the identity

(3.16) hY;rX˛i D XhY; ˛i � hrXY; ˛i:

Denote by X.M/ the space of smooth vector fields on M , and by ƒ1.M/ the
space of smooth 1-forms; each of these is a module over C1.M/. Generally,
a tensor field of type .k; j / defines a map (with j factors of X.M/ and k of
ƒ1.M/)

(3.17) F W X.M/� � � � � X.M/ �ƒ1.M/� � � � �ƒ1.M/ �! C1.M/;

which is linear in each factor, over the ring C1.M/. A vector field is of type
.1; 0/ and a 1-form is of type .0; 1/. The covariant derivative rXF is a tensor of
the same type, defined by

.rXF /.Y1; : : : ; Yj ; ˛1; : : : ; ˛k/ D X � �F.Y1; : : : ; Yj ; ˛1; : : : ; ˛k/
�

�
jX

`D1
F.Y1; : : : ;rXY`; : : : ; Yj ; ˛1; : : : ; ˛k/

�
kX

`D1
F.Y1; : : : ; Yj ; ˛1; : : : ;rX˛`; : : : ; ˛k/;

(3.18)

where rX˛` is uniquely defined by (3.16). We can naturally consider rF as a
tensor field of type .k; j C 1/:

(3.19) .rF /.X; Y1; : : : ; Yj ; ˛1; : : : ; ˛k/ D .rXF /.Y1; : : : ; Yj ; ˛1; : : : ; ˛k/:

For example, ifZ is a vector field, rZ is a vector field of type .1; 1/, as already
anticipated in (3.13). Hence it makes sense to consider the tensor field r.rZ/, of
type .1; 2/. For vector fields X and Y; we define the Hessian r2

.X;Y /
Z to be the

vector field characterized by

(3.20) hr2
.X;Y /Z; ˛i D .rrZ/.X; Y; ˛/:

Since, by (3.19), if F D rZ, we have

(3.21) F.Y; ˛/ D hrYZ; ˛i;
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and, by (3.18),

(3.22) .rXF /.Y; ˛/ D X � �F.Y; ˛/� � F.rXY; ˛/ � F.Y;rX˛/;

it follows by substituting (3.21) into (3.22) and using (3.16) that

(3.23) r2
.X;Y /Z D rXrYZ � r.rXY /ZI

this is a useful formula for the Hessian of a vector field.
More generally, for any tensor field F; of type .j; k/, the Hessian r2

.X;Y /
F;

also of type .j; k/, is defined in terms of the tensor field r2F D r.rF /, of type
.j; k C 2/, by the same type of formula as (3.20), and we have

(3.24) r2
.X;Y /F D rX .rY F /� r.rXY /F;

by an argument similar to that for (3.23).
The metric tensor g is of type .0; 2/, and the identity (3.3) is equivalent to

(3.25) rXg D 0

for all vector fields X (i.e., to rg D 0). In index notation, this means

(3.26) gjkI` D 0 or, equivalently, gjk I` D 0:

We also note that the zero torsion condition (3.4) implies

(3.27) uIj Ik D uIkIj

when u is a smooth scalar function, with second covariant derivative rru, a tensor
field of type .0; 2/. It turns out that analogous second-order derivatives of a vector
field differ by a term arising from the curvature tensor; this point is discussed in
Appendix C, Connections and Curvature.

We have seen an expression for the divergence of a vector field in terms of the
covariant derivative. We can use this latter characterization to provide a general
notion of divergence of a tensor field. If T is a tensor field of type .k; j /, with
components

(3.28) T˛
ˇ D T˛1���˛j

ˇ1 ���ˇk

in a given coordinate system, then div T is a tensor field of type .k � 1; j /, with
components

(3.29) T˛1���˛j

ˇ1���ˇk�1`I`:
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In view of the special role played by the last index, the divergence of a tensor field
T is mainly interesting when T has some symmetry property. In �7 we will intro-
duce the stress-energy tensor, a symmetric second-order covariant tensor; raising
indices produces a symmetric second-order tensor field of type .2; 0/, whose di-
vergence is an important object.

In view of (3.11), we know that a vector fieldX generates a volume-preserving
flow if and only if Xj Ij D 0. Complementing this, we investigate the condition
that the flow generated by X consists of isometries, that is, the flow leaves the
metric g invariant, or equivalently

(3.30) LXg D 0:

For vector fields U and V; we have

.LXg/.U; V / D �hLXU; V i � hU;LXV i CXhU; V i
D hrXU � LXU; V i C hU;rXV � LXV i
D hrUX; V i C hU;rVXi;

(3.31)

where the first identity follows from the derivation property of LX , the second
from the metric property (3.3) expressing XhU; V i in terms of covariant deriva-
tives, and the third from the zero torsion condition (3.4). IfU and V are coordinate
vector fields Dj D @=@xj , we can write this identity as

(3.32) .LXg/.Dj ;Dk/ D gk`X
`Ij C gj`X

`Ik :

Thus X generates a group of isometries (one says X is a Killing field) if and
only if

(3.33) gk`X
`Ij C gj`X

`Ik D 0:

This takes a slightly shorter form for the covariant field

(3.34) Xj D gjkX
k:

We state formally the consequence, which follows immediately from (3.33) and
the vanishing of the covariant derivatives of the metric tensor.

Proposition 3.2. X is a Killing vector field if and only if

(3.35) XkIj CXj Ik D 0:

Generally, half the quantity on the left side of (3.35) is called the deformation
tensor ofX: If we denote by � the 1-form � D P

Xj dxj , the deformation tensor
is the symmetric part of r�, a tensor field of type .0; 2/. It is also useful to identify
the antisymmetric part, which is naturally regarded as a 2-form.
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Proposition 3.3. We have

(3.36) d� D 1

2

X

j;k

.Xj Ik �XkIj / dxk ^ dxj :

Proof. By definition,

(3.37) d� D 1

2

X

j;k

.@kXj � @jXk/ dxk ^ dxj ;

and the identity with the right side of (3.36) follows from the symmetry �`jk D
�`kj .

There is a useful generalization of the concept of a Killing field, namely a con-
formal Killing field, which is a vector field X whose flow consists of conformal
diffeomorphisms of M , that is, preserves the metric tensor up to a scalar factor:

(3.38) F t�X g D ˛.t; x/g ” LXg D �.x/g:

Note that the trace of LXg is 2 div X , by (3.32), so the last identity in (3.38) is
equivalent to LXg D .2=n/.div X/g or, with .1=2/LXg D Def X ,

(3.39) Def X � 1

n
.div X/g D 0

is the equation of a conformal Killing field.
To end this section, and prepare for subsequent material, we note that concepts

developed so far for Riemannian manifolds, that is, manifolds with positive-
definite metric tensors, have extensions to indefinite metric tensors, including
Lorentz metrics.

A Riemannian metric tensor produces a symmetric isomorphism

(3.40) G W TxM �! T �
xM;

which is positive. More generally, a symmetric isomorphism (3.40) corresponds
to a nondegenerate metric tensor. Such a tensor has a well defined signature
.j; k/; j C k D n D dim M ; at each x 2 M; TxM has a basis fe1; : : : ; eng
of mutually orthogonal vectors such that he1; e1i D � � � D hej ; ej i D 1, while
hejC1; ejC1i D � � � D hen; eni D �1. If j D 1 (or k D 1), we say M has a
Lorentz metric.

The concepts discussed in this section in the Riemannian case, such as the
covariant derivative, all extend with little change to the general nondegenerate
case. We will see this in use, in the Lorentz case, in �7.
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Exercises

1. Let ' be a tensor field of type .0; k/ on a Riemannian manifold, endowed with its
Levi–Civita connection. Show that

.LX' � rX'/.U1; : : : ; Uk/ D
X

j

'.U1; : : : ;rUj
X; : : : ; Uk/:

How does this generalize (3.31)?
2. Recall the formula (13.56) of Chap. 1, when ! is a k-form:

.d!/.X0; : : : ; Xk/ D
kX

jD0
.�1/jXj � !.X0; : : : ;bXj ; : : : ; Xk/C

X

0�`<j�k
.�1/jC`

� !.ŒX`; Xj �; X0; : : : ;bX`; : : : ;bXj ; : : : ; Xk/:
Show that the last double sum can be replaced by

�
X

`<j

.�1/j!.X0; : : : ;rXj
X`; : : : ;bXj ; : : : ; Xk/

�
X

`>j

.�1/j!.X0; : : : ;bXj ; : : : ;rXj
X`; : : : ; Xk/:

3. Using Exercise 2 and the expansion of .rXj
!/.X0; : : : ;bXj ; : : : ; Xk/ via the deriva-

tion property, show that

(3.41) .d!/.X0; : : : ; Xk/ D
kX

jD0
.�1/j .rXj

!/.X0; : : : ;bXj ; : : : ; Xk/:

Note that this generalizes Proposition 3.3.
4. Prove the identity

@ log
p
g

@xj
D
X

`

�` j̀ :

Use either the identity (3.11), involving the divergence, or the formula (3.9) for �`jk .
Which is easier?

5. Show that the characterization (3.17) of a tensor field of type .k; j / is equivalent to the
condition that F be a section of the vector bundle

�˝jT ��˝ �˝kT � or, equivalently,

of the bundle Hom .˝j T;˝kT /. Think of other variants.
6. The operation Xj D gjkX

k is called lowering indices. It produces a 1-form (section
of T �M ) from a vector field (section of TM ), implementing the isomorphism (3.38).
Similarly, one can raise indices:

Y j D gjkYk ;

producing a vector field from a 1-form, that is, implementing the inverse isomorphism.
Define more general operations raising and lowering indices, passing from tensor fields
of type .j; k/ to other tensor fields, of type .`;m/, with `Cm D j C k. One says that
these tensor fields are associated to each other via the metric tensor.
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7. Using (3.16), show that if ˛ D ak.x/ dxk (summation convention), then rDj
˛ D

akIj dxk , with

akIj D @j ak �
X

`

�`kj a`:

Compare with (3.8). Use this to verify that (3.36)and (3.37) are equal. Work out a
corresponding formula for rD`

T when T is a tensor field of type .j; k/, as in (3.28)
8. Using the formula (3.23) for the Hessian, show that, for vector fields X; Y;Z on M ,

�r2.X;Y / � r2.Y;X/
�
Z D �

ŒrX ;rY �� rŒX;Y �
�
Z:

Denoting this by R.X; Y;Z/, show that it is linear in each of its three arguments over
the ring C1.M/, for example, R.X; Y; f Z/ D f R.X; Y;Z/ for f 2 C1.M/.
Discussion ofR.X; Y;Z/ as the curvature tensor is given in Appendix C, Connections
and Curvature.

9. Verify (3.24). For a function u, to show that r2
.X;Y /

u D r2
.Y;X/

u, use the special case

r2.X;Y /u D XY u � .rXY / � u

of (3.24). Note that this is an invariant formulation of (3.27). Show that

r2
.X;Y /

u D 1

2
.LV g/.X; Y /; V D grad u:

10. Let ! be the volume form of an oriented Riemannian manifold M . Show that rX! D
0 for all vector fields X .

11. Let X be a vector field on a Riemannian manifold M . Show that the formal adjoint of
rX , acting on vector fields, is

(3.42) r�
XY D �rXY � .div X/Y:

12. Show that the formal adjoint of LX , acting on vector fields, is

(3.43) L�
XY D �LXY � .div X/Y � 2 Def.X/Y;

where Def.X/ is a tensor field of type .1; 1/, given by

(3.44)
1

2
.LXg/.Z; Y / D g.Z;Def.X/Y /;

g being the metric tensor.
13. With div defined by (3.29) for tensor fields, show that

(3.45) div .X ˝ Y / D .div Y /X C rYX:
14. If X; Y , and Z have compact support, show that

.Z; div .X ˝ Y //L2 D �.rYZ;X/L2 :

15. If 	.s/ is a unit-speed geodesic on a Riemannian manifold M; 	 0.s/ D T .s/, and X
is a vector field on M , show that

(3.46)
d

ds

˝
T .s/;X.	.s//

˛ D 1

2

�LXg
�
.T; T /:
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Deduce that if X is a Killing field, then hT; Xi is constant on 	 . Relate this to the
conservation law for geodesic flow on a surface of revolution, discussed in Chap. 1,
�16. (Hint: Show that the left side of (3.46) is equal to hT;rTXi:)

16. If we define DefW C1.M; T / ! C1.M; S2T �/ by Def.X/ D .1=2/LXg, show that

Def�u D � div u;

where .div u/j D ujk Ik , as in (3.29).

4. The Laplace operator on a Riemannian manifold

We define the Laplace operator on a Riemannian manifold M , with metric gjk ,
in a way that naturally generalizes the characterizations of the Laplace operator
on Euclidean space, given by (1.49), (1.62), and (1.63). Taking (1.62) as funda-
mental, we define the Laplace operator� onM to be the second-order differential
operator satisfying

(4.1) �.�u; v/ D .du; dv/ D .grad u; grad v/;

for u; v 2 C1
0 .M/. Here the left side is

(4.2) �
Z

M

.�u/v dV;

where dV is the natural volume element, given in local coordinates by
p
gdx1 � � �

dxn. The right side of (4.1), for u and v supported in a coordinate patch, is

Z
hdu; dvi dV D

Z
gjk.@j u/.@kv/

p
g dx

D �
Z
v@k

�
g1=2gjk @j u

�
g�1=2g1=2 dx;

(4.3)

integrating by parts, so we see that � is given in local coordinates by

(4.4) �u D g�1=2 @j
�
gjkg1=2 @ku

�
:

Soon we will see how to modify (4.1) when u and v do not vanish on @M , in case
M is a compact Riemannian manifold with boundary.

We now show that (1.63)generalizes, that is, we have

(4.5) �u D div grad u:

In fact, in view of the formula

div X D g�1=2 @j .g1=2Xj /
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derived in (2.12), together with

Xj D gjk@ku; for X D grad u;

we see that (4.5) follows directly from the local coordinate formula (4.4). Note
that the identity

(4.6) .X; grad v/L2 D �.div X; v/L2 ;

proved in (2.18), when applied to X D grad u, also gives (4.5) directly.
Applying the refinement (2.20) of (4.6) gives us important identities due to

Green. Let us use the notation

(4.7)
@u

@�
D hgrad u; �i

for the normal component of grad uI @u=@� is called the normal derivative of u.
If we exploit (2.20) with X D gradv, we get the identity (4.8) below; if we inter-
change u and v and subtract the resulting expression from (4.8), we obtain (4.9).
This provides a proof of Green’s identities:

Proposition 4.1. If M is a compact Riemannian manifold with boundary, then
for u; v 2 C1.M/, we have

(4.8) �.u; �v/L2 D .du; dv/�
Z

@M

u
�@v
@�

	
dS

and

(4.9) .�u; v/ � .u; �v/ D
Z

@M

h� @u

@�

	
v � u

�@v
@�

	i
dS:

Next we express the Laplace operator in terms of covariant derivatives. As we
have seen,

div X D Xj Ij :

If we set X D grad u, we obtain

(4.10) �u D gjkuIj Ik;

using the fact that gjk I` D 0. Here,
P

uIj Ikdxk ˝ dxj is a tensor field of type
.0; 2/, which is the same as r2u. Recall that r2F is a tensor field of type .j; kC2/
whenever F is a tensor field of type .j; k/. The formula (4.10) can be rewritten as

(4.11) �u D Trgr2u;
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where Trg denotes the trace of r2u.x/, as a quadratic form on TxM , in terms of
the quadratic form given by the metric tensor g. In other words, we can define a
tensor field H.u/, of type .1; 1/, by

(4.12) hH.u/X; Y i D .r2u/.X; Y /;

and Trgr2u D Tr H.u/.
Since the Laplace operator is defined in a coordinate-independent manner on

a Riemannian manifold, it is clear that if F W M ! M is a diffeomorphism and
F � W C1.M/ ! C1.M/ is defined by F �u.x/ D u.F.x//, then F � commutes
with the Laplace operator provided F is an isometry. Thus, if X is a vector field
on M; X commutes with � provided the flow F tX generated by X consists of
isometries. This result has a converse.

Proposition 4.2. A vector field X commutes with � if and only if X generates a
group of isometries.

The proof rests on a computation of independent interest. In fact, a manipula-
tion of (4.10), which we leave to the reader, yields the general identity

Œ�;X�u D .Xj Ik CXkIj /uIj Ik C .Xj Ik CXkIj /Ij uIk

D g�1=2 @j
�
g1=2.Xj Ik CXkIj / @ku

�
:

(4.13)

Thus Œ�;X� D 0 if and only if Xj Ik C XkIj D 0, which is equivalent to the
condition (3.35) for a Killing field.

Exercises

1. If u 2 C1.M/; X D grad u, the condition that X generates a volume-preserving flow
is that �u D 0. What PDE on u is equivalent to the statement that X is a Killing field?

2. Verify formula (4.13) for Œ�; X�. Show that it has the invariant formulation

(4.14)
1

2
Œ�;X�u D hDef.X/;r2ui C hdiv Def.X/; dui D div

�
Def.X/ � du

�
;

in terms of the deformation tensor Def.X/, with components .1=2/.Xj Ik C XkIj /,
that is, the type .2; 0/ analogue of the tensor field of type .1; 1/ given by (3.42), or the
tensor field of type .0; 2/ equal to half of (3.35).

3. Show that the Laplace operator � D @2=@x21 C � � � C @2=@x2n on Rn has the following
expressions in various coordinate systems:
(a) Polar coordinates on R2: x1 D r cos �; x2 D r sin � .

(4.15) � D @2

@r2
C 1

r

@

@r
C 1

r2
@2

@�2
:
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(b) Spherical polar coordinates on R3: x1 D � sin' sin �; x2 D � sin ' cos � ,
x3 D � cos '.

(4.16) � D @2

@�2
C 2

�

@

@�
C 1

�2 sin '

� @2

@�2
C sin '

@2

@'2
C cos '

@

@'

	
:

(c) Spherical polar coordinates on Rn: x D r!; ! 2 Sn�1.

(4.17) � D @2

@r2
C n � 1

r

@

@r
C 1

r2
�S ;

where �S is the Laplace operator on the unit sphere Sn�1. (Compare (4.19) below.)
(Hint: Express the Euclidean metric tensor ds2 D dx21C� � �Cdx2n in these coordinates.)

4. Let N be a Riemannian manifold, of dimension n � 1. Denote by C.N/ the cone with
base N; that is, the space RC � N; with Riemannian metric

(4.18) g D dr2 C r2gN :

Show that the Laplace operator on C.N/ is of the form

(4.19) � D @2

@r2
C n � 1

r

@

@r
C 1

r2
�N ;

where �N is the Laplace operator on the base N . Apply this to the expression of the
Laplace operator � on Rn, in polar coordinates, with N D Sn�1.

5. Show that, in local coordinates,

�u D gjk @j @ku � gjk�`jk @`u:

5. The wave equation on a product manifold
and energy conservation

The analysis of vibrating membranes in Euclidean space has important extensions
to studies of vibrating manifolds. We will start with a fairly general situation,
specializing quickly to models that give rise to “the wave equation”

(5.1)
@2u

@t2
��u D 0;

for u D u.t; x/, a scalar function on R �M , where � is the Laplace operator on
M defined in �4.

We consider vibrations of one manifold M within another, N . Suppose these
manifolds are endowed with Riemannian metric tensors g and h, respectively. The
vibration is described by a map

(5.2) u W R �M �! N:



5. The wave equation on a product manifold and energy conservation 157

In �1 we dealt with the special case where M is a bounded region in Rn and
N D Rk . Now we allow M to be a compact manifold with boundary. We again
use a stationary action principle to produce equations governing the vibration. The
appropriate expression for “kinetic energy” is

(5.3) T .t/ D 1

2

Z

M

m.x/jut .t; x/j2 dV;

where dV is the natural volume element on M and m.x/ > 0 is a given “mass
density.” The velocity ut .t; x/ takes values in TyN , with y D u.t; x/, and the
square-norm in the integrand in (5.3) is given by the metric tensor h;

(5.4) jut j2 D h.u; ut ; ut /

if h.y; v; w/ denotes the inner product of v and w in TyN .
The form that we will consider for the potential energy is the following gen-

eralization of (1.3):

(5.5) V.t/ D
Z

M

f .x; u.t; x/; ux.t; x// dV;

where

(5.6) ux.t; x/ 2 L.TxM;Tu.t;x/N/;

and f is a smooth, real-valued function defined on the bundle L overM �N with
fiber over .x; y/ given by L.TxM;TyN/:

(5.7) f D f .x; y; A/; A 2 L.TxM;TyN/:

In particular, one has examples analogous to (1.42), that is,

(5.8) f .x; y; A/ D ‰
�
Tr g1.A

�A/; : : : ;Tr gK.A
�A/

�
;

where A� 2 L.TyN; TxM/ is the adjoint of A, defined using the inner products
on TxM and TyN defined by their Riemannian metrics. The g`.A�A/ are de-
fined as described below (1.42). Many interesting cases of this sort arise naturally,
including

(5.9) f .x; y; A/ D Tr A�A:

Applying the stationary action principle will yield for u a second-order sys-
tem of PDE of a form that generalizes (1.12). We look here at the details for a
special case.
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Namely, take N D R, and suppose f .x; y; A/ is independent of y 2 R. In
other words, we consider a potential energy of the form

(5.10) V.t/ D
Z

M

f .x; ux.t; x// dV;

where ux.t; x/ 2 T �
xM and f D f .x; �/ is a smooth, real-valued function

defined on T �M , or perhaps on some open subset. In that case, the stationary
condition for .J0 � J1/.u/ D R t1

t0

�
T .t/ � V.t/

�
dt is derived from the following

calculations. First, as in (1.8),

(5.11)
d

ds
J0.u C sv/

ˇ̌
sD0 D �

“
mut tv dV dt;

provided v 2 C1
0 .I � ı

M/; I D .t0; t1/. Here
ı
M denotes the interior of M .

Furthermore, for such v,

(5.12)
d

ds
J1.u C sv/

ˇ̌
sD0 D

“
f�.x; ux/ � vx dV dt;

where, in local coordinates,

(5.13) f�.x; ux/ � vx D
X

j

@f

@�j

@v

@xj
:

If v is supported in a coordinate patch, in which dV D p
gdx, we can integrate

by parts and write

(5.14)
d

ds
J1.u C sv/

ˇ̌
sD0 D �

“ X

j

g�1=2 @xj

�
g1=2f�j

.x; ux/
�
v
p
g dx dt:

Thus we get the following PDE for u, in a local coordinate system:

(5.15) mut t � g�1=2@xj

�
g1=2f�j

.x; ux/
� D 0;

using the summation convention. Written out more fully, this is

(5.16)

mut t �
h
f�j �k

.x; ux/uxjxk
C f�j xj

.x; ux/C 1

2
g�1.@xj

g/f�j
.x; ux/

i
D 0:

An invariant formulation of this PDE is given in the exercises.
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The choice of f .x; �/ that produces a wave equation of the form (5.1) is that
of a constant times the Riemannian metric on covariant vectors:

(5.17) f .x; �/ D � g.x; �; �/ D � gjk �j �k ;

with � a positive constant. In that case, (5.15) becomes

(5.18) mut t � 2��u D 0

in view of the local coordinate formula

(5.19) �u D g�1=2 @j .g1=2gjk@ku/

derived in �4. Ifm is a constant, this is of the form (5.1) provided 2� D m, which
could be arranged by a rescaling of the t-variable.

Other choices of f .x; �/ arise naturally in the study of vibrating membranes,
choices that lead to nonlinear PDE. We will return to this in Chap. 16, but for now
we concentrate on the linear case (5.18), until the very end of this section where
we make a few brief comments on nonlinear problems.

Let us redo the calculation of the variation of J1.u/ in an invariant fashion,
when f .x; �/ is given by (5.17), so

(5.20) J1.u/ D �

“

I�M
jdxuj2 dV dt:

We have, for v 2 C1
0 .I � ı

M/,

(5.21)
d

ds
J1.u C sv/

ˇ̌
sD0 D 2�

“
hdxu; dxvi dV dt;

and Green’s formula (4.8) shows that this is equal to

(5.22) �2�
“

.�u/v dV dt;

since the boundary integral vanishes in this case. Again the stationary condition
for .J0 � J1/.u/ is seen to be the wave equation (5.18).

As in(1.26), it is typical to specify initial conditions, of the form

(5.23) u.0; x/ D f .x/; ut .0; x/ D g.x/:

If @M ¤ ;, we also need to specify a boundary condition for u. One typical
condition is

(5.24) u.t; x/ D 0; for x 2 @M:
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This is known as the Dirichlet boundary condition for u. It models a vibrating
drum head that is firmly attached to its boundary. Tying down the boundary pro-
vides a justification for considering only variations v that vanish on I �@M in the
specification of the stationary condition above. Another natural physical problem
is to describe vibrations ofM when the boundary is allowed to move freely. Then
we should allow any v 2 C1.I � M/ that vanishes at t D t0 and t D t1, as a
variation. The formula (5.11) for the variation of J0.u/ continues to hold, and so
does (5.21), but an application of Green’s formula to (5.21) now yields

(5.25)
d

ds
J1.u C sv/

ˇ̌
sD0 D �2�

“

I�M
.�u/v dV dt C 2�

“

I�@M
v
@u

@�
dS dt:

If we do apply this to the subclass of v 2 C1
0 .I � ı

M/, we see that the wave
equation (5.18) must still be satisfied for u to be a stationary point. Now, granted
that u satisfies (5.18), we hence have

(5.26)
d

ds
.J0 � J1/.u C sv/

ˇ̌
sD0 D �2�

“

I�@M
v
@u

@�
dS dt;

for all v 2 C1.I � M/ that vanish at t D t0 and at t D t1. This yields the
following boundary condition for freely vibratingM :

(5.27)
@u

@�
D 0; for x 2 @M:

This is known as the Neumann boundary condition for u. Another situation it
models is the propagation of small-amplitude sound waves in a region bounded
by a hard wall.

Since we have introduced the kinetic energy and the potential energy, we
should look at the total energy. In the case when (5.17) gives the potential energy,
if we take m D 1 and � D 1=2, the total energy is

(5.28) E.t/ D 1

2

Z

M

�jut .t; x/j2 C hdxu; dxui� dV.x/:

We aim to establish the energy conservation law

(5.29) E.t/ D const.

whenever u is a sufficiently smooth solution to the wave equation (5.1), assuming
that u satisfies either the Dirichlet condition (5.24) or the Neumann condition
(5.27) on @M . In fact, we have

(5.30)
dE

dt
D
Z

M

�
utut t C hdxut ; dxui� dV:
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We want to factor ut out of the integrand, so we integrate by parts the last term in
(5.30), using Green’s identity to get

(5.31)
dE

dt
D
Z

M

ut .ut t ��u/ dV C
Z

@M

ut
@u

@�
dS:

The right side of (5.31) vanishes provided u satisfies the wave equation and either
the Dirichlet or Neumann boundary condition. This proves the energy conserva-
tion law (5.29), equivalent to

(5.32)
Z

M

�jut .t; x/j2 C hdxu; dxui�dV D
Z

M

�jg.x/j2 C hdxf; dxf i�dV;

given the initial conditions (5.23).
We continue briefly the discussion of stationary problems from the end of �1.

These problems do not involve t-dependence, that is, they arise via describing
critical points for a function

(5.33) J.u/ D
Z

M

f
�
x; u.x/; ux.x/

�
dV;

with

(5.34) f D f .x; y; A/; A 2 L.TxM;TyN/:

If N D R and f .x; y; �/ D f .x; �/ is given by (5.17), then the PDE obtained as
the stationary condition for J.u/ is

(5.35) �u D 0;

involving the Laplace operator (5.19). A typical boundary condition is the nonho-
mogeneous Dirichlet condition

(5.36) u D  on @M:

Another is the nonhomogeneous Neumann condition

(5.37)
@u

@�
D ' on @M:

These will be studied in Chap. 5.
There are also very important nonlinear problems arising from the problem of

finding stationary points, particularly extrema, of (5.33). We mention in particu-
lar the choice (5.9) for f .x; y; A/, namely, Tr A�A. Maps u W M ! N critical
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for such J.u/ are called harmonic maps. In case N D Rk , these are just func-
tions whose components are harmonic in the sense of (5.35), but for a nonflat
Riemannian manifold N , one gets a nonlinear problem. For example, as seen in
Chap. 1, for M D I � R, one gets the geodesic equation. Harmonic maps will
be studied in Chap. 14, by variational methods, and in Chap. 15, via techniques
involving nonlinear parabolic PDE.

Exercises

1. For J1.u/ D R
M f .x; ux/dV as in (5.10), f W T �M ! R, demonstrate the invariant

formula
d

ds
J1.u C sv/

ˇ̌
sD0 D

Z

M

hAf .x; ux/; vxi dV;

where Af W T �M ! TM is given by

(5.38) Af .x; �/ D D�.x; �/Hf ;

Hf being the Hamiltonian vector field of f , and � W T �M ! M the natural projec-
tion. For fixed t; ux D dxu is a 1-form on M . Consequently, Af .x;ux/ is a vector
field on M .

2. In the context of Exercise 1, show that the resulting PDE (5.15)has the invariant de-
scription

(5.39) mut t � div Af .x; ux/ D 0:

Compare (1.72).
3. Show that (under an appropriate nondegeneracy hypothesis) maps of the formAf invert

Legendre transformations � W TM ! T �M , discussed in �12 of Chap. 1.
(Hint: Using (12.9)–(12.18), consider the Legendre transform associated to the function
F.x; v/ on TM defined implicitly by

F
�
x; f�.x; �/

� D f .x; �/� � � f�.x; �/
or, in the notation used above,

F
�
Af .x; �/

� D f .x; �/� hAf .x; �/; �i:/

6. Uniqueness and finite propagation speed

We study some properties of solutions to the wave equation on R �M :

(6.1) ut t ��u D 0;

with initial conditions

(6.2) u.0; x/ D f .x/; ut .0; x/ D g.x/;
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and boundary condition either the Dirichlet condition or the Neumann condition,
if @M ¤ ;. We leave aside for the present the issue of the existence of solutions,
for arbitrarily given f and g. We examine the uniqueness; u is assumed suffi-
ciently smooth. If u1 and u2 solve (6.1) with initial data fj ; gj , then u1 � u2
solves (6.1) with initial data f D f1�f2; g D g1�g2. To establish uniqueness,
it suffices to show that if f D g D 0, then the solution u D 0 for all t . But by
energy conservation, we have, for all t ,

(6.3)
Z

M

�
u2t C hdxu; dxui�dV D

Z

M

�jgj2 C hdxf; dxf i�dV D 0:

Thus u is constant. Since u.0; x/ D 0, we conclude that u D 0 everywhere. This
establishes uniqueness.

A closer look at how Green’s formula enters into this argument will produce
both a generalization of the notion of energy conservation and a localization of this
uniqueness theorem to a result implying finite propagation speed for solutions to
the wave equation. Note that the identity (5.31) can be written as

(6.4) E.t2/ �E.t1/ D
Z t2

t1

Z

M

ut .ut t ��u/ dV dt C
Z t2

t1

Z

@M

ut
@u

@�
dS dt:

In particular, for u satisfying either the Dirichlet or Neumann condition on @M ,
with � D Œt1; t2� �M , we have

Z

�

ut .ut t ��u/ dV dt D

1

2

Z

ftDt2g

�jut j2 C jdxuj2�dV � 1

2

Z

ftDt1g

�jut j2 C jdxuj2�dV:
(6.5)

Next we want to look at the left side of (6.5) when � is a more general sort of
region in R �M than a product region Œt1; t2� �M .

First, we assume for simplicity that � does not intersect R � @M . We suppose
@� consists of two smooth surfaces, †1 and †2, as indicated in Fig. 6.1. We
denote by �t the intersection of � with ftg �M � R �M . Now, making use of
formula (2.19), we have

Z

�

ut .ut t ��u/ dV dt D
Z

�

@

@t

�1
2

u2t
�
dV dt C

Z

�

hdxut ; dxui dV dt

�
Z

�

divx.ut gradxu/ dV dt:
(6.6)
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FIGURE 6.1 Spacelike Bounded Region

Note that

(6.7) hdxut ; dxui D 1

2

@

@t
hdxu; dxui:

Applying the fundamental theorem of calculus to the first two integrals on the
right side of (6.6), and the divergence theorem to the last integral, we get

(6.8)
Z

�

ut .ut t��u/ dV dt D 1

2

Z

@�

�
u2t Chdxu; dxui�!�

Z Z

@�t

ut
@u

@�x
dSt dt:

Both integrals on the right side of (6.8) are integrals over @�. Here! is the volume
form onM , thought of as an n-form on R �M , pulled back to @�, and dSt is the
natural surface measure on @�t , thought of as a surface inM . We want to express
both ! and dSt dt in terms of the natural surface measure on @�, induced from
the inclusion @� � R�M , endowed with the natural product Riemannian metric.
Indeed, we easily obtain

(6.9) ! D Nt dS; dSt dt D jNxj dS;

where N D .Nt ; Nx/ is the outward unit normal to @� � R � M . Hence (6.8)
becomes

(6.10)
Z

�

ut .ut t ��u/ dV dt D 1

2

Z

@�

n�
u2t C jdxuj2�Nt � 2ut

@u

@�x
jNxj

o
dS:

Thus, if u satisfies the wave equation in �, we see that

Z

†2

n�
u2t C jdxuj2�jNt j � 2ut

@u

@�x
jNxj

o
dS

D
Z

†1

n�
u2t C jdxuj2�jNt j C 2ut

@u

@�x
jNxj

o
dS:

(6.11)
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FIGURE 6.2 Spacelike Sweep

This is a useful “energy identity” provided the integrands are positive-definite
quadratic forms in du D .ut ; dxu/. Note that Cauchy’s inequality implies

(6.12) 2
ˇ̌
ˇut

@u

@�x

ˇ̌
ˇ � u2t C jdxuj2:

Thus the integrands have the desired property, provided

(6.13) jNxj < jNt j:

Definition. A surface † � R �M is called spacelike provided its normal N D
.Nt ; Nx/ satisfies (6.13). A vector satisfying (6.13) is called timelike.

Clearly any surface t D const. is spacelike, as is a small perturbation of such a
surface. Suppose � � R � M is bounded by spacelike surfaces †1 and †2 and
furthermore is swept out by spacelike surfaces †2.s/, as in Fig. 6.2. We call � a
domain of influence for its lower boundary†1.

Theorem 6.1. Suppose� � R�M is a domain of influence for its lower bound-
ary †1. If u solves the wave equation ut t � �u D 0 on R � M , and if u and
du D .ut ; dxu/ vanish on †1, then u vanishes throughout�.

Proof. The energy identity implies that du vanishes on each †2.s/; hence du
vanishes on�, so u is constant on �. Since u D 0 on †1, this constant is 0.

One interpretation of this theorem is that it shows that signals propagate at
speed at most 1. In other words, in the special case †1 D ft D 0g, if u.0; x/ D
f .x/ and ut .0; x/ D g.x/ vanish on some open set O � M , then the solution to
the wave equation vanishes on f.t; x/ W x 2 O; dist.x; @O/ > jt jg.

A slight variation of the argument above treats the case when @� consists of
three parts, †1 and †2, both spacelike as above, and a part in R � @M , provided
the solution u to ut t � �u D 0 satisfies the Dirichlet or Neumann boundary
condition.
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Exercises

1. Use(1.24)–(1.28) to write out the explicit solution to the initial value problem (6.1)–
(6.2) in case � D @2=@x2 on R, and explicitly observe finite propagation speed in this
case.

2. Extend the finite propagation speed argument of Theorem 6.1 to the case where M has
a boundary, on which either the Dirichlet or Neumann boundary condition is imposed.

3. Consider the equations of linear elasticity, derived in (1.59), Lu D 0, where

Lu D mut t � 
�u � .�C 
/ grad div u:

Suppose 
 > 0; �C 2
 > 0;m > 0. For each .t; x/ 2 R � M; u.t; x/ 2 TxM . Take
M D Rn. Let � be a region in R � M of the form depicted in Fig. 6.1. Perform an
integration by parts of Z

�

ut � Lu dV dt;

along the lines of (6.6)–(6.10), to derive an identity similar to (6.11). What geometrical
conditions should be placed on †1 and †2, replacing the “spacelike” condition (6.13),
in order to ensure that the resulting integrands are positive-definite quadratic forms in
ru D .ut ;rxu/? Derive a finite propagation speed result.

7. Lorentz manifolds and stress-energy tensors

The analysis of the wave equation in the last section made strong use of the fact
that we were working with @2=@t2�� on a product R�M . We will take a deeper
look at the notion of energy, which will produce concepts that are important in the
study of the wave equation on more general Lorentz manifolds.

For starters, we will stick with the product case R � M; M a Riemannian
manifold. This has a natural structure of a Lorentz manifold, with metric

(7.1) h D �dt2 C g:

Contrast this with the Riemannian metric dt2Cg on R�M we considered in the
last section. In coordinates, hjk has the form

(7.2)
�
hjk

� D
��1 0

0 g��

�
:

The stress-energy tensor T associated with u is supposed to be a symmetric,
second order tensor such that, if Z is a unit timelike vector (representing the
“world line” of an observer), then T .Z;Z/ gives the observed energy density.
The energy density .1=2/u2t C .1=2/hdxu; dxui encountered before specifies

(7.3) T00 D 1

2
u2t C 1

2
hdxu; dxui D u2t C 1

2
hdu; dui;
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where

(7.4) hdu; dui D hjk @j u @ku

is the Lorentz square-length of du. If we expect that T is constructed in a “natural”
manner from du and the metric tensor h, we are led to require

T .Z;Z/ D hZ; dui2 C 1

2
hdu; dui whenever hZ;Zi D �1:

If hZ;Zi D �z2, this leads to T .Z;Z/ D hZ; dui2 � .1=2/hdu; duihZ;Zi, and
polarizing this identity gives

(7.5) T .Z;W / D hZ; duihW;dui � 1

2
hdu; duihZ;W i:

This should hold for all vectors Z;W . Equivalently, we write

(7.6) T D du ˝ du � 1

2
hdu; duih:

We call(7.6)the stress-energy tensor associated to a wave u D u.t; x/. See the
exercises for more on the construction of T .

More generally, let� be any Lorentz manifold, with metric tensor, of signature
.n; 1/, denoted h. The “Laplacian” in this metric is defined by

(7.7) �u D jhj�1=2 @j .hjk jhj1=2 @ku/ D hjkuIj Ik;

in analogy with the formula for the Laplace operator on a Riemannian manifold.
Here, jhj D jdet .hjk/j. The wave equation on a general Lorentz manifold is

(7.8) �u D 0:

In this more general context, it is still meaningful to assign to u the tensor T ,
defined by (7.5) and (7.6). We continue to call T the stress-energy tensor. We
have the following important result.

Proposition 7.1. For a solution to (7.8) on a general Lorentz manifold �, the
stress-energy tensor has vanishing divergence, that is,

(7.9) T jk Ik D 0:

More generally, for any u,

(7.10) T jk Ik D uIj�u:
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Proof. This is a straightforward calculation. We have

(7.11) T jk D uIj uIk � 1

2
hjkh��uI�uI� ;

where uIj D hjkuIk denotes the gradient. Hence, using hjk I` D 0, we obtain

T jk Ik D uIj IkuIk C uIjuIk Ik � 1

2
hjkh��uI�IkuI� � 1

2
hjkh��uI�uI�Ik

D uIj�u C uIj IkuIk � hjkh��uI�IkuI�
D uIj�u C uIj IkuIk � uI�Ij uI�:

Since, as we have seen, uIj Ik D uIkIj , we obtain (7.10), and the proposition
follows.

We have seen that the divergence theorem applies to reduce the integralR
�.div X/ dV to a boundary integral, when X is a vector field; in particular,

when X is a divergence-free vector field, it yields that a certain boundary integral
is zero or, equivalently, that integrals over two parts of @� are equal in magnitude.
However, T is not a divergence-free vector field; it is a second-order tensor field.
In general vanishing of div T will not lead to integral conservation laws. It will,
however, in the following case.

Suppose a Lorentz manifold� has a timelike Killing fieldZ, that is, a timelike
vector field whose flow preserves the metric tensor h. As derived in the Rieman-
nian case, the condition for the metric to be preserved is

(7.12) Zj Ik CZkIj D 0; Zj D hjkZ
k:

Here, “timelike” means that h.Z;Z/ < 0. This meansZ lies inside the light cone
determined by the Lorentz metric.

Lemma 7.2. If T jk is divergence free and Zk is a Killing field, then

(7.13) Xj D T jkZk is divergence free.

Proof. We have
Xj Ij D T jk IjZk C T jkZkIj :

Now the symmetry of T jk implies T jk Ij D 0 and

T jkZkIj D 1

2
T jk.ZkIj CZj Ik/ D 0;

assuming (7.12) holds. This proves the lemma.
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FIGURE 7.1 Timelike Curves

We denote the vector(7.13) by

(7.14) X D eTZ:

Suppose O is a region in the Lorentz manifold �, bounded by two surfaces †1
and †2, as in Fig. 7.1.

By (2.14)), we have

0 D
Z

O
.div eTZ/ dV D

Z

†1[†2

!c.eTZ/

D
Z

†1

heTZ; �1i dS �
Z

†2

heTZ; �2i dS;
(7.15)

where �j is the unit vector, normal to †j , with respect to the Lorentz metric h,
pointing in the same “forward” direction as Z. The last identity in (7.15) holds
in analogy with (2.15). We make the hypothesis as before, that †1 and †2 are
spacelike (i.e., �j are timelike), so it makes sense to specify that they lie inside
the forward light cone. Equation (7.15) is equivalent to

(7.16)
Z

†2

T .Z; �2/ dS D
Z

†1

T .Z; �1/ dS:

The volume element dS on †j is determined here by the Riemannian metric on
†j , induced by restricting the Lorentz metric h to tangent vectors to †j .

Again we seek to guarantee that the integrand in (7.16), which is a quadratic
form in du for T given by (7.5), is positive-definite. In order to check this at a
point p0 2 @O, choose a coordinate system such that

(7.17)
�
hjk.p0/

� D
��1 0

0 I

�
; �.p0/ D .1; 0; : : : ; 0/t .� D �1 or �2/;

which is always possible. Suppose Z.p0/ D .Z0; Z1; : : : ; Zn/. The condition
that Z.p0/ belong to the forward light cone is
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(7.18) Z0 > 0; .Z0/2 > .Z1/2 C � � � C .Zn/2:

Now, if we set M D eT �, then, at p0,

(7.19) M 0 D �1
2

�
.@0u/2 C .@1u/2 C � � � C .@nu/2

�
; M j D .@0u/.@j u/;

if T is given by (7.5). Consequently, at p0,

T .Z; �/ D hZ;M i D �Z0M 0 C
nX

jD1
ZjM j

D 1

2
Z0
�
.@0u/2 C � � � C .@nu/2

�C
nX

jD1
Zj .@0u/.@ju/:

(7.20)

The positive definiteness of this quadratic form in .@0u; : : : ; @nu/ follows immedi-
ately from Cauchy’s inequality, granted (7.18). This definiteness calculation does
not use the hypothesis thatZ is a Killing field, of course. For positive definiteness
of T .Z; �/ in du, it suffices that Z and � both be nonzero timelike vectors inside
the forward light cone.

In order to emphasize that the dependence of T .Z; �/ on du has fundamental
significance, we adopt the following notation. Set

EZ;�.du/ D T .Z; �/

D �
du ˝ du � 1

2
hdu; duih�.Z; �/

D hdu; Zihdu; �i � 1
2
hZ; �ihdu; dui:

(7.21)

The calculation above establishes the following result.

Lemma 7.3. If Z and � are nonzero timelike vectors pointing inside the forward
light cone, then

EZ;�.du/ is positive-definite in du:

Note that the identity (7.16) is

(7.22)
Z

†2

EZ;�2
.du/ dS D

Z

†1

EZ;�1
.du/ dS:

It follows that if O, as in Fig. 7.1, is swept out by spacelike surfaces, as in Fig. 7.2,
then the same argument as given in �6 leads to the uniqueness result: �u D 0 in
O; u and du D 0 on †1 imply u D 0 in O, provided � has a timelike Killing
field Z. This gives finite propagation speed for solutions to the wave equation on
such a Lorentz manifold.
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FIGURE 7.2 Spacelike Surfaces

If a Lorentz manifold � has no timelike Killing field, which is typical, then
natural energy identities such as (7.22) do not arise. However, there are inequali-
ties involving the stress-energy tensor, that are powerful enough to imply the local
uniqueness (finite propagation speed) of solutions to the wave equation �u D 0

on a general Lorentz manifold. In the next section we will establish this as a spe-
cial case of a more general result on hyperbolic equations.

Exercises

1. If M is a Lorentz manifold, S � M a hypersurface (codimension 1), show that S
is spacelike if and only if the metric tensor restricted to S is positive-definite. In the
product case (7.1), show that the definitions of “spacelike” given in this section and the
previous one are equivalent.

2. On RnC1, with coordinates .x0; : : : ; xn/, place the Lorentz inner product

hu; vi D �u0v0 C u1v1 C � � � C unvn:

Show that A W RnC1 ! RnC1, defined by

A.u0; u1; u2; : : : ; un/ D .u1; u0; u2; : : : ; un/

is skew-adjoint for the Lorentz metric (i.e., hAu; vi D �hu; Avi), and hence the group
F.t/ D etA preserves the Lorentz metric.

3. Consider the hyperboloids

M D Ms D fx 2 RnC1 W hx; xi D sg:
Show that Ms is spacelike if and only if s < 0.

4. If s > 0 and Ms is as in Exercise 3, show that Ms gets a Lorentz metric, induced from
RnC1. Show that the group F.t/ of Exercise 2 leaves Ms invariant and its generator is
a timelike Killing field on Ms .

5. We consider a general approach to constructing a second-order tensor of the form

T jk D Ajk`muI`uIm;

where Ajk`m is a tensor field of type .4; 0/, such that the conclusion (7.10) of Propo-
sition 7.1 holds. Let us assume that rA D 0. Show that

T jk Ik D Bjk`muIkI`uIm;
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where

B D P 23P 34A:

Here, P�� denotes the operation on tensors of type .4; 0/ of symmetrizing with respect
to the 
th and �th indices, for example, .P 23C/jk`m D .1=2/ŒC jk`m C C j`km�.
Consequently, (8.10) holds provided

P 23P 34A D H; H jk`m D hjmhk`:

6. Show that P�� are all projections of the same rank and H belongs to the range of P 23.
Show that Ker P 23 \R.P 34/ D 0 and hence

P 23 W R.P 34/ �! R.P 23/ is an isomorphism.

(Hint: If B 2 Ker P 23 \ R.P 34/, show that Bjk`m D �Bjmk`: .k ` m/ 7! .m k `/

is a cyclic permutation of order 3, so apply this transformation three times.)
7. Deduce that the equation P 23P 34A D H has a solution A, given uniquely, mod Ker
P 34, and hence that the tensor T jk D Ajk`muI`uIm is uniquely determined by the
conditions set in Exercise 5.

8. Show that, for general smooth scalar u, with T defined by (7.6), then

(7.23) diveTZ D .Zu/�u C hT;Def.Z/i;
where Def.Z/ is the deformation tensor of Z, with components .1=2/.Zj Ik C ZkIj /
and hT; V i D T jkVjk . This implies Lemma 7.2. Show that (7.23) follows from the
general identity

(7.24) div.eTZ/ D hZ; div T i C hT;Def Zi:

8. More general hyperbolic equations; energy estimates

In this section we derive estimates for a solution to a nonhomogeneous hyperbolic
equation of the form

(8.1) Lu D f in �;

where L is given in local coordinates by

(8.2) Lu D hjk @j @ku C bj .x/ @j u C c.x/u:

By definition, to say L is hyperbolic is to say that .hjk/ is a symmetric matrix of
signature .n; 1/, if dim � D n C 1. One can then use the inverse matrix .hjk/
to define a Lorentz metric on �, and in view of the formula (7.7), we can write
(8.2) as

(8.3) Lu D �u CXu;

for some first-order differential operatorX on �.
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FIGURE 8.1 Spacelike Bounded Regions

Suppose O � � is bounded by two surfaces†1 and†2, both spacelike. As at
the end of �7, we suppose that O is swept out by spacelike surfaces. Specifically,
we suppose that there is a smooth function on a neighborhood of O, which in fact
we denote by t , such that dt is timelike, and set

O.s/ D O \ ft � sg; †2.s/ D O \ ft D sg:

We suppose O is swept out by †2.s/; s0 � s � s1, as illustrated in Fig. 8.1, with
†2 D †2.s1/. Also set

†b1.s/ D †1 \ ft � sg:
As in (7.15), the divergence theorem implies

(8.4)
Z

†2.s/

EZ;�2
.du/ dS D

Z

†b
1
.s/

EZ;�1
.du/ dS �

Z

O.s/

.div eTZ/ dV;

where EZ;�.du/ is defined by (7.21) and T by (7.5), though at this point it is not
physically meaningful in general to think of T as the stress-energy tensor. Here �1
is the forward-pointing unit normal to †1, with respect to the Lorentz metric, and
�2 is the normalization of grad t , the vector field obtained from dt via the Lorentz
metric. Z is any timelike vector field; we will set Z D �2. Note that Lemma 7.3
applies to the integrandsEZ;�j

.du/.
We no longer have div eTZ D 0, but we can estimate this quantity, as follows.

First,

(8.5) div eTZ D T jk Ikhj`Z` C T jkhj`Z
`Ik D hdiv T;Zi C hT;rZi:

The term hT;rZi is a quadratic form in du, and hence, by Lemma (7.7), we have
an estimate

(8.6) jhT;rZij � K EZ;Z.du/:
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As for the first term on the right side of (8.5), (7.10) implies

(8.7) div T D .grad u/�u:

If u satisfies Lu D f , this implies

(8.8) div T D .grad u/.f � Xu/:

Cauchy’s inequality together with Lemma 7.3 gives an estimate

(8.9) jhdiv T;Zij � K EZ;Z.du/CKjuj2 CKjf j2:

Consequently, (8.4) yields the estimate

(8.10)

Z

†2.s/

EZ;Z.du/ dS �
Z

†b
1
.s/

EZ;�1
.du/ dS CK

Z

O.s/

�
2EZ;Z.du/C juj2 C jf j2� dV:

Suppose that u satisfies the following initial conditions on †1:

(8.11) u D g; du D ! on †1:

We want to estimate the left side of (8.10) in terms of f; g, and !. Our first goal
will be to deive a variant of (8.10) without the juj2 term. We can work on the termR
O.s/ juj2 dV on the right side of (8.10) as follows. An easy consequence of the

fundamental theorem of calculus, Cauchy’s inequality, and Lemma 7.3 gives

(8.12)
Z

O.s/

juj2 dV � C

Z

†b
1
.s/

jgj2 dS C C

Z

O.s/

EZ;Z.du/ dV;

which can be applied to (8.10).
At this point, it is convenient to set

(8.13) E.s/ D
Z

O.s/

EZ;Z.du/ dV:

We will want to estimate the rate of change of E.s/. Clearly,

(8.14)
dE

ds
� C

Z

†2.s/

EZ;Z.du/ dS;



8. More general hyperbolic equations; energy estimates 175

and hence, by (8.10)–(8.12), we have an estimate of the form

(8.15)
dE

ds
� CE.s/C F.s/;

where

(8.16) F.s/ D C

Z

†1

�
EZ;Z.!/C jgj2� dS C C

Z

O.s/

jf j2 dV:

Note that (8.15) is equivalent to

(8.17)
d

ds

�
e�CsE.s/

� � e�CsF.s/;

and since E.s0/ D 0, we have

(8.18) e�CsE.s/ �
Z s

s0

e�CrF.r/ dr:

In view of (8.16), this establishes the following “energy estimate.”

Proposition 8.1. If u solves the hyperbolic equation Lu D f of the form (8.3),
with initial data (8.11) on †1, and if O.s/ satisfies the geometrical hypotheses
made above and illustrated in Fig. 8.1, then

(8.19)
Z

O.s/

EZ;Z.du/ dV � C.s � s0/

Z

†1

�jgj2 C j!j2� dS C C

Z

O.s/

jf j2 dV;

for s 2 Œs0; s1�.
In particular, if g and ! vanish on†1 and f vanishes on O, then (8.19) implies

du D 0 on O, so u is constant on O, that constant being g D 0. This gives the
local uniqueness (finite propagation speed) for solutions to the homogeneous
hyperbolic equation Lu D 0, extending the result of �7.

We note that, using (8.10) and (8.12), we deduce from (8.19) that

(8.20)
Z

†2.s/

EZ;Z.du/ dS � C

Z

†1

�jgj2 C j!j2� dS C C

Z

O.s/

jf j2 dV:
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Exercises

1. Prove the estimate

.1 � "/

Z 1

0
ju.s/j2 ds � ju.0/j2 C C"

Z 1

0
ju0.s/j2 ds:

What is the best value of C" that will work?
2. Give a detailed proof of the estimate (8.12).
3. Sharpen the estimate (8.19) to

(8.21)
Z

O.s/
EZ;Z.du/ dV � C.s � s0/

Z

†1

�jgj2 C j!j2� dS C C.s � s0/
Z

O.s/
jf j2 dV;

under the hypotheses of Proposition 8.1. (Hint: Use (8.18) more carefully.)
4. Work out generalizations of the energy estimates (8.10)–(8.19) when u satisfies the

semilinear PDE

(8.22) �u D f .x; u; du/:

Formulate and prove a finite propagation speed result in this case.
(Hint: Given solutions u1 and u2 to (8.22), derive a linear PDE for w D u1 � u2, to get
the finite propagation speed result.)

9. The symbol of a differential operator and a general
Green–Stokes formula

Let P be a differential operator of orderm on a manifoldM I P could operate on
sections of a vector bundle. In local coordinates, P has the form

(9.1) P u.x/ D
X

j˛j�m
p˛.x/D

˛u.x/;

where D˛ D D
˛1

1 � � �D˛n
n ; Dj D .1=i/ @=@xj . The coefficients p˛.x/ could be

matrix valued. The homogeneous polynomial in � 2 Rn .n D dim M/,

(9.2) pm.x; �/ D
X

j˛jDm
p˛.x/�

˛ ;

is called the principal symbol (or just the symbol) of P . We want to give an
intrinsic characterization, which will show that pm.x; �/ is well defined on the
cotangent bundle ofM . For a smooth function  , a simple calculation, using the
product rule and chain rule of differentiation, gives

(9.3) P
�
u.x/ei� 

� D �
pm.x; d /u.x/�

m C r.x; �/
�
ei� ;
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where r.x; �/ is a polynomial of degree � m � 1 in �. In (9.3), pm.x; d / is
evaluated by substituting � D .@ =@x1; : : : ; @ =@xn/ into (9.2). Thus the formula

(9.4) pm.x; d /u.x/ D lim
�!1

��me�i� P
�
u.x/ei� 

�

provides an intrinsic characteristization of the symbol ofP as a function on T �M .
We also use the notation

(9.5) �P .x; �/ D pm.x; �/:

If

(9.6) P W C1.M;E0/ �! C1.M;E1/;

where E0 and E1 are smooth vector bundles over M , then, for each .x; �/ 2
T �M ,

(9.7) pm.x; �/ W E0x �! E1x

is a linear map between fibers. It is easy to verify that if P2 is another differential
operator, mapping C1.M;E1/ to C1.M;E2/, then

(9.8) �P2P .x; �/ D �P2
.x; �/�P .x; �/:

If M has a Riemannian metric, and the vector bundles Ej have metrics, then
the formal adjoint P t of a differential operator of orderm like (9.6) is a differen-
tial operator of orderm:

P t W C1.M;E1/ �! C1.M;E0/;

defined by the condition that

(9.9) .P u; v/ D .u; P tv/

if u and v are smooth, compactly supported sections of the bundlesE0 andE1. If u
and v are supported on a coordinate patch O onM , over whichEj are trivialized,
so u and v have components u� ; v� , and if the metrics on E0 and E1 are denoted
h�ı ; Qh�ı , respectively, while the Riemannian metric is gjk , then we have

(9.10) .P u; v/ D
Z

O

Qh�ı.x/
�
P u
��
vı
p
g.x/ dx:

Substituting (9.1) and integrating by parts produce an expression for P t , of the
form

(9.11) P tv.x/ D
X

j˛j�m
pt˛.x/D

˛v.x/:
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In particular, one sees that the principal symbol of P t is given by

(9.12) �P t .x; �/ D �P .x; �/
t :

Compare this with the specific formula (2.22) for the formal adjoint of a real
vector field, which has a purely imaginary symbol.

Now suppose M is a compact, smooth manifold with smooth boundary. We
want to obtain a generalization of formula (2.24), that is,

(9.13) .Xu; v/ � .u; X tv/ D
Z

@M

h�;Xiuv dS;

to the case whereP is a general first-order differential operator, acting on sections
of a vector bundle as in (9.6). Using a partition of unity, we can suppose that u
and v are supported in a coordinate patch O in M . If the patch is disjoint from
@M , then of course (9.9) holds. Otherwise, suppose O is a patch in RnC. If the
first-order operator P has the form

(9.14) P u D
nX

jD1
aj .x/

@u

@xj
C b.x/u;

then

(9.15)
Z

O
hP u; vi p

g dx D
Z

O

h nX

jD1
haj .x/ @u

@xj
; vi C hb.x/u; vi

ip
g dx:

If we apply the fundamental theorem of calculus, the only boundary integral
comes from the term involving @u=@xn. Thus we have

(9.16)Z

O

hP u; vipg dx D
Z

O

hu; P tvipg dx �
Z

Rn�1

han.x0; 0/u; vi
p
g.x0; 0/ dx0;

where dx0 D dx1 � � �dxn�1. If we pick the coordinate patch so that @=@xn is the
unit inward normal at @M , then

p
g.x0; 0/ dx0 is the volume element on @M , and

we are ready to establish the following Green–Stokes formula:

Proposition 9.1. If M is a smooth, compact manifold with boundary and P is a
first-order differential operator (acting on sections of a vector bundle), then

(9.17) .P u; v/ � .u; P tv/ D 1

i

Z

@M

h�P .x; �/u; vi dS:
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Proof. The formula (9.17), which arose via a choice of local coordinate chart, is
invariant and hence valid independent of choices.

As in (9.13), � denotes the outward-pointing unit normal to @M ; we use the
Riemannian metric on M to identify tangent vectors and cotangent vectors.

We will see an important application of (9.17) in the next section, where we
consider the Laplace operator on k-forms.

Exercises

1. Consider the divergence operator acting on (complex-valued) vector fields:

div W C1.�;Cn/ �! C1.�/; � � Rn:

Show that its symbol is given by

�div.x; �/v D ihv; �i:
2. Consider the gradient operator acting on (complex valued) functions:

grad W C1.�/ �! C1.�;Cn/; � � Rn:

Show that its symbol is
�grad.x; �/ D i�:

3. Consider the operator

L D grad div W C1.�;Cn/ �! C1.�;Cn/:

Show that its symbol is
�L.x; �/ D �j�j2P� ;

where P� 2 End.Cn/ is the orthogonal projection onto the (complex) linear span of � .
4. What is the symbol of the operator

P D 
�C .�C 
/ grad div;

which appears in the equation (1.59) of linear elasticity? What are the eigenvalues of
the symbol, for given � 2 Rn?

5. Generalize Exercises 1–3 to the case of a Riemannian manifold.
6. LetL be a constant-coefficient, second-order, homogeneous, linear differential operator

acting on functions on Rn with values in Ck , of the form

Lu D
X

j˛jD2
A˛ D

˛u; A˛ 2 End.Ck/:

Let � 2 Rn n 0. A “plane wave” solution to ut t � Lu D 0 is a Ck-valued function
u.t; x/ of the form

u.t; x/ D v.t; x � �/;
with v.t; y/ a Ck-valued function on R � R. Show that the PDE for v becomes

vt t �Mvyy D 0;
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with
M D ��L.x; �/:

In case �L.x; �/ is negative-definite with eigenvalues �c2j D �cj .�/2, show that
the initial-value problem for v can be solved in terms of the formula for the one-
dimensional wave equation derived in �1.

7. Consider the equation of linear elasticity from (1.59):

mwt t � 
�w � .�C 
/ grad div w D 0:

Suppose 
 > 0; 2
 C � > 0. Fix � 2 Rn n 0. Using the results of Exercises 4 and
6, analyze plane wave solutions w.t; x/ D v.t; x � �/. Show that if n � 2, there are
two propagation speeds. The faster and slower waves are called “p-waves” (pressure
waves) and “s-waves” (shear waves), respectively. If n D 1, only p-waves arise.

10. The Hodge Laplacian on k-forms

If M is an n-dimensional Riemannian manifold, recall the exterior derivative

(10.1) d W ƒk.M/ �! ƒkC1.M/;

satisfying

(10.2) d 2 D 0:

The Riemannian metric on M gives rise to an inner product on T �
x for each

x 2 M , and then to an inner product on ƒkT �
x , via

(10.3) hv1 ^ � � � ^ vk; w1 ^ � � � ^ wki D
X

	

.sgn �/hv1; w	.1/i � � � hvk; w	.k/i;

where � ranges over the set of permutations of f1; : : : ; kg. Equivalently, if
fe1; : : : ; eng is an orthonormal basis of T �

xM , then fej1
^ � � � ^ ejk

W j1 < j2 <

� � � < jkg is an orthonormal basis of ƒkT �
xM . Consequently, there is an inner

product on k-forms (that is, sections ofƒk) given by

(10.4) .u; v/ D
Z

M

hu; vi dV.x/:

Thus there is a first-order differential operator

(10.5) ı W ƒkC1.M/ �! ƒk.M/;

which is the formal adjoint of d , that is, ı is characterized by

(10.6)
.du; v/ D .u; ıv/; u 2 ƒk.M/; v 2 ƒkC1.M/; compactly supported:
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We set ı D 0 on 0-forms. Of course, (10.2) implies

(10.7) ı2 D 0:

There is a useful formula for ı, involving d and the “Hodge star operator,” which
will be derived in Chap. 5, �8.

The Hodge Laplacian on k-forms,

(10.8) � W ƒk.M/ �! ƒk.M/;

is defined by

(10.9) �� D .d C ı/2 D dı C ıd:

Consequently,

(10.10) .��u; v/ D .du; dv/C .ıu; ıv/; for u; v 2 C1
0 .M;ƒ

k/:

Since ı D 0 on ƒ0.M/, we have �� D ıd onƒ0.M/.
We will obtain an analogue of (10.10) for the case where M is a compact

manifold with boundary, so a boundary integral appears. To obtain such a formula,
we specialize the general Green–Stokes formula (9.17) to the cases P D d and
P D ı. First, we compute the symbols of d and ı. Since, for a k-form u,

(10.11) d.u ei� / D i�ei� .d / ^ u C ei� du;

we see that

(10.12)
1

i
�d .x; �/u D � ^ u:

As a special case of (9.12), we have

(10.13) �ı.x; �/ D �d .x; �/
t :

The adjoint of the map (10.12) from ƒkT �
x to ƒkC1T �

x is given by the interior
product

(10.14) �u D ucX;

where X 2 Tx is the vector corresponding to � 2 T �
x under the isomorphism

Tx � T �
x given by the Riemannian metric. Consequently,

(10.15)
1

i
�ı.x; �/u D ��u:
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Now, the Green–Stokes formula (9.17) implies, for M a compact Riemannian
manifold with boundary,

.du; v/ D .u; ıv/C 1

i

Z

@M

h�d .x; �/u; vi dS

D .u; ıv/C
Z

@M

h� ^ u; vi dS;
(10.16)

and

.ıu; v/ D .u; dv/C 1

i

Z

@M

h�ı.x; �/u; vi dS

D .u; dv/�
Z

@M

h�u; vi dS:
(10.17)

Recall that � is the outward-pointing unit normal to @M .
Consequently, our generalization of (10.10), and also of (4.8), is

�.�u; v/ D .du; dv/C .ıu; ıv/

C 1

i

Z

@M

�h�d .x; �/ ıu; vi C �ı.x; �/ du; vi�dS(10.18)

or, equivalently,

�.�u; v/ D .du; dv/C .ıu; ıv/

C
Z

@M

�h� ^ .ıu/; vi � h�.du/; vi�dS:(10.19)

Taking adjoints of the symbol maps, we can also write

�.�u; v/ D .du; dv/C .ıu; ıv/

C
Z

@M

�hıu; �vi � hdu; � ^ vi�dS:(10.20)

Let us note what the symbol of � is. By (10.12) and (10.15),

(10.21) ��
.x; �/u D �� ^ u C � ^ �u:

If we perform the calculation by picking an orthonormal basis for T �
x of the form

fe1; : : : ; eng with � D j�je1, we see that

(10.22) �
.x; �/u D �j�j2u:
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In other words, in a local coordinate system, we have, for a k-form u,

(10.23) �u D gj`.x/ @j @`u C Yku;

where Yk is a first-order differential operator.
A differential operator P W C1.M;E0/ ! C1.M;E1/ is said to be elliptic

provided �P .x; �/ W E0x ! E1x is invertible for each x 2 M and each � ¤ 0.
By (10.22), the Laplace operator on k-forms is elliptic.

Of course, the definition ��D ıd for the Laplace operator on 0-forms
coincides with the definition given in �4. In this regard, it is useful to note
explicitly the following result about ı on 1-forms. Let X be a vector field and �
the 1-form corresponding to X under a given metric:

(10.24) g.Y;X/ D hY; �i:

Then

(10.25) ı� D � div X:

This identity is equivalent to (2.18) and the definition of ı as the formal adjoint
of d .

We end this section with some algebraic implications of the symbol formula
(10.21)–(10.22) for the Laplace operator. If we define ^� W ƒ�T �

x ! ƒ�T �
x

by ^�.!/ D � ^ !, and define � as above, by (10.14), then the content of this
calculation is

(10.26) ^� � C �^� D j�j2:

As we have mentioned, this can be established by picking �=j�j to be the first
member of an orthonormal basis of T �

x . Extending the identity (10.26), we have

(10.27) ^� � C �^� D h�; �i;

a result that follows from the formula (13.37) of Chap. 1. Note also the connection
with (2.26).

Exercises

1. Show that the adjoint of the exterior product operator �^ is � , as asserted in (10.14).

2. If ˛ D P
ajk.x/ dxj ^ dxk and aj k D gk`aj`, relate ı˛ to the divergence aj k Ik ,

as defined in (3.29).
3. Using (10.20), write down an expression for

.�u; v/� .u;�v/

as a boundary integral, when u and v are k-forms.



184 2. The Laplace Equation and Wave Equation

4. Relate the characterization (10.3) of the inner product on ƒ�T �
x arising from an inner

product on T �
x , to that given in the following section, before (11.24).

5. Let ! 2 ƒn.M/; n D dimM , be the volume form of an oriented Riemannian manifold
M . Show that ı! D 0. (Hint: Compare (10.6)with the special case of Stokes’ formulaR
M du D 0 for u 2 ƒn�1.M/, compactly supported.)

6. Given the result of Exercise 5, show that Stokes’ formula
R
M du D R

@M u, for u 2
ƒn�1.M/, follows from (10.16).

7. If f 2 C1.M/ and u 2 ƒk.M/, show that

ı.f u/ D f ıu � .df /u:

8. For a vector field u on the Riemannian manifold M , let Qu denote the associated 1-form.
Show that

ı.Qu ^ Qv/ D .div v/Qu � .div u/ Qv � eŒu; v�;

foreu;ev 2 ƒ1.M/. Reconsider this problem after reading Chap. 5, �8.

11. Maxwell’s equations

The equations governing the electromagnetic field are one of the major triumphs
of theoretical physics. We list them here, for the electric field E and the magnetic
field B , in a vacuum:

div B D 0;(11.1)

@B

@t
C curl E D 0;(11.2)

div E D 4��;(11.3)

@E

@t
� curl B D �4�J:(11.4)

Here, � is the charge density and J the electric current. Units are chosen so that
the speed of light is 1. Here we are glossing over the distinction between two
types of electric field, typically denoted E and D, and two types of magnetic
field, typically denoted B and H , and their relation via “dielectric constants.”
Material on this may be found in texts on electromagnetism, such as [Ja].

Of the four equations above, (11.1) and (11.3) have a relatively elementary
character. Equation, known as Gauss’ law, follows in the case of stationary
charges from the statement that a charge e at a point p 2 R3 produces an electric
field

E.x/ D e
x � p

jx � pj3 ;

which is Coulomb’s law. Equation (11.1) is the statement that there are no mag-
netic charges. Both of these laws are well supported by experiments. We note
parenthetically that there is reason to believe that at high energies magnetic
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charges might exist. A theoretical framework for this is provided by a modifi-
cation of the theory of the electromagnetic field, called the “electroweak theory.”
But that is a story that we will not try to relate in this book. As one reference, we
mention [IZ].

The equations (11.2) and (11.4) are more subtle. Equation (11.2), which im-
plies that a changing magnetic field produces an electric field, is called Faraday’s
law. One implication of (11.4) is that an electric current produces a magnetic field;
this is exploited in electric motors. The first quantitative expression of this effect
written down was

curl B D 4�J;

which is valid when all quantities involved are independent of time. It breaks down
when variation with time is allowed. Indeed, the left side must have vanishing
divergence, but in the time-varying case one has, not div J D 0, but rather the
following law of conservation of charge:

(11.5)
@�

@t
C div J D 0:

Maxwell produced the modification (11.4), which completed the set of equations
for the electromagnetic field.

Careful thought about the implications of Maxwell’s equations, together with
the experimental fact that two observers moving with respect to each other would
measure the speed of light to be the same, led to the development of Einstein’s
theory of relativity. We will not discuss how this was done. Rather, following
J. Wheeler, we will reverse the historical order. We will rewrite (11.1)–(11.4)
in an invariant fashion, depending only on the Lorentz metric �dx20 C dx21 C
dx22 C dx23 on Minkowski spacetime R4 rather than a particular Cartesian prod-
uct decomposition of R4 into time R and space R3. We can then show that, within
the relativistic framework, the subtle (11.2) and (11.4) actually follow from the
“simple” (11.1) and (11.3).

We bring in the 2-form (with t D x0)

(11.6) F D
3X

1

Ej dxj ^dtCB1 dx2^dx3CB2 dx3^dx1CB3 dx1^dx2:

In �18 of Chap. 1 it was shown how this form arises naturally in the relativistic
expression of how the electromagnetic field acts on a charged particle to make it
move. A calculation of the exterior derivative gives

(11.7) dF D
3X

1

�@B
@t

C curl E
	

j
.	dxj / ^ dt C .div B/ dx1 ^ dx2 ^ dx3;
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where, for 1 � j � 3, we set

	dxj D dxk ^ dx`; .j; k; `/ a cyclic permutation of .1; 2; 3/:

Consequently, (11.1) and (11.2) together are equivalent to the equation

(11.8) dF D 0:

On the other hand, (11.1) alone is equivalent to the following. For fixed T , define
�T W R3 ! R4 by �T .x0/ D .T; x0/. Then (11.1) holds at t D T if and only if

(11.9) ��
T dF D 0:

Now, in the relativistic set-up, any physical law that is valid on all surfaces t D
const. in R4 should be valid on all spacelike hyperplanes in R4. But the following
result is easy to establish.

Lemma 11.1. Let 0 � k � 3, and suppose ˛ 2 ƒk.R4/ has the property that

(11.10) ��˛ D 0;

for every inclusion � W S ! R4 of spacelike hyperplanes in R4. Then ˛ D 0.

Applying this to ˛ D dF , we see how (11.1) yields (11.2).
We will be able to rewrite(11.3)–(11.4) using the “adjoint” to d :

(11.11) dF W ƒk.R4/ �! ƒk�1.R4/;

defined like ı D d� in �10, but using an inner product coming from the Lorentz
metric. Thus, for compactly supported u,

(11.12) L.du; v/ D L.u; dFv/;

for a .k � 1/-form u and a k-form v, where the inner product of two k-forms vj
is

(11.13) L.v1; v2/ D
Z

hv1; v2i dx0 � � � dx3;

the integral of the pointwise inner product, characterized as follows.
A form dxj1

^ � � � ^ dxjk
with distinct j�’s has square norm "j1

� � � "jk
, where

"0 D �1; "1 D "2 D "3 D 1. Two such forms are orthogonal unless their sets of
indices fj1; : : : ; jkg coincide. A straightforward calculation yields

(11.14) dFgk`.x/ dxk ^ dx` D �
X

i;j

"j ".i; j I k; `/ @gk`
@xi

dxj ;
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where

(11.15) ".i; j I k; `/ D hdxi ^ dxj ; dxk ^ dx`i

is characterized above. This is 0 unless fi; j g D fk; `g, and we can rewrite
(11.14) as

(11.16) dFgk`.x/ dxk ^ dx` D ".k; `I k; `/
h
"k
@gk`

@x`
dxk � "`

@gk`

@xk
dx`

i
:

This implies

(11.17) dF
3X

1

Ej dxj ^ dx0 D �.div E/ dx0 �
3X

1

@Ej

@t
dxj ;

and

(11.18) dF�B1 dx2^dx3CB2 dx3^dx1CB3 dx1^dx2
� D

3X

1

.curl B/j dxj :

Thus (11.3) and (11.4) together are equivalent to the equation

(11.19) dFF D 4�J b;

where

(11.20) J b D �� dt C
3X

1

Jk dxk :

Thus J b is the 1-form associated via the Lorentz metric to the vector

(11.21) J D .�; J /;

called the charge-current 4-vector.
In this case, (11.3) alone is equivalent to the identity

(11.22)
�
dFF � 4�J b

�c @
@t

D 0:

Again, in the relativistic set-up, such a physical law ought to be independent of
the choice of timelike vector field with which to take the interior product. Thus, if
we assume that F has an invariant significance as a 2-form and also that J b has
an invariant significance as a 1-form, we are in a position to apply the following.
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Lemma 11.2. If 1 � k � 4 and ˛ 2 ƒk.R4/ has the property that

(11.23) ˛cV D 0

for all timelike vectors V , then ˛ D 0.

Applying this to ˛ D dFF � 4�J b , we see how (11.3) yields (11.4).
The pair of Maxwell equations (11.8), (11.19) make sense on any Lorentz man-

ifold of dimension 4 and provide the appropriate equations for an electromagnetic
field in curved spacetime. To define dF, one uses the formula (11.12), replacing
dx0 � � �dx3 by the natural volume element on a general Lorentz manifold M in
(11.13).

This construction defines dF for Lorentz manifolds of any dimension. The
inner product in the integrand in (11.13) can be characterized as follows. To the
Lorentz inner product on V D TxM corresponds an isomorphism Q W V ! V 0
satisfying Q0 D Q (with V 00 D V ). This induces isomorphisms

Qk W ƒkV ! ƒkV 0 � �
ƒkV

�0
;

with the same symmetry property, yielding inner products on ƒkV; 0 � k �
m D dim M . Equivalently, if you pick an “orthonormal” basis fv0; : : : ; vm�1g
of V; satisfying hv0; v0i D �1; hvj ; vj i D 1 for 1 � j � m � 1, then the
characterization given after (11.13) is easily extended.

In analogy with (10.9), it is of interest to form the second-order operator

(11.24) �� D .d C dF/2 D ddF C dFd:

A calculation similar to (10.23) gives

(11.25) �u D hj`.x/ @j @`u C Yku;

for a k-form u, where .hj`/ is formed from the Lorentz metric tensor, as in (7.7),
and Yk is a first-order differential operator. On 0-forms, this operator is exactly
(7.7). For Minkowski spacetime R4; � is just �@2=@x20 CP3

1 @
2=@x2j , acting on

each component of a k-form.
The equations dF D 0; dFF D 4�J b imply that F satisfies the “wave

equation”

(11.26) �F D �4� dJ b :

The results developed in �8 for scalar hyperbolic operators of the type (8.2) are
easily extended to cover the operator � constructed here, which by (11.25) has
scalar principal part.
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In particular, finite propagation speed arguments apply to solutions to
Maxwell’s equations. Existence of solutions, including propagation of electro-
magnetic waves in regions bounded by perfect conductors, is studied in Chap. 6.

The energy in an electromagnetic field in R4 D R � R3 is

(11.27) V.t/ D 1

8�

Z

R3

�jE.t; x/j2 C jB.t; x/j2�dx:

If (11.1)– (11.4) hold, then

(11.28)
4�

dV

dt
D
�@E
@t
; E
	

C
�@B
@t
; B
	

D .curl B;E/ � .curl E;B/� 4�.J;E/:

If E.t; x/ and B.t; x/ decrease sufficiently rapidly as jxj ! 1, we have

(11.29) .curl B;E/ D .B; curl E/;

as can be established by integration by parts. Hence

(11.30)
dV

dt
D �

Z

R3

J.t; x/ �E.t; x/ dx:

In particular, for J D 0 we have conservation of V.t/.
One can construct a stress-energy tensor T due to the electromagnetic field,

by an argument similar to that of �7. First note that, with F given by (11.6), we
have

(11.31) hF ;Fi D jBj2 � jEj2:

Equivalently,

(11.32) Tr eF2 D 2.jEj2 � jBj2/;

where eF is the tensor field of type .1; 1/ associated to F . Note also that
�eF2�00 D

jEj2. Thus a natural construction of T giving rise to T00 D .1=8�/.jEj2CjBj2/ is

(11.33) eT D � 1

4�

�
eF2 � 1

4
.Tr eF2/I

	
D � 1

4�

�
eF2 C 1

2
hF ;FiI

	
;

where eT is the tensor field of type .1; 1/ associated with T . In index notation,

(11.34) Tij D 1

4�

�FimFj m � 1

4
hijFmnFmn

�
;
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where .hij / is the Lorentz metric tensor. In this case, in analogy with (7.10), one
obtains

(11.35) T jk Ik D �Fj kJ k ;

provided the Maxwell equations (11.8) and (11.19) hold. Equivalently, with bT
denoting the tensor field of type .2; 0/ associated with T ,

(11.36) div bT D �eFJ :

If the electromagnetic field F is defined on a Lorentz 4-manifold which is
simply connected, the equation dF D 0 implies the existence of a 1-form A such
that F D dA. We can define the Lagrangian

(11.37) L D � 1

8�
hF ;Fi D � 1

8�
hdA; dAi;

with inner product as in (11.31). The action integral I.A/ D R
L dV satisfies, for

a compactly supported 1-form ˇ,

(11.38)
d

d�
I.A C �ˇ/

ˇ̌
�D0 D � 1

4�

Z
hdˇ; dAi dV D � 1

4�

Z
hˇ; dFdAi dV;

so the stationary condition ı
R
L dV D 0 is equivalent to dFdA D 0, that

is, to the rest of Maxwell’s equations (11.19), in case J D 0. Thus (11.37)
is the appropriate Lagrangian for the electromagnetic field, in order to produce
Maxwell’s equations in empty space. If the current J is given (subject to the con-
dition dFJ D 0), and F D dA, then the (11.19) is the stationary condition
ı
R
L dV D 0 for the Lagrangian

(11.39) L D � 1

8�
hF ;Fi C hA;J i:

In typical problems the current is not given in advance, but is itself influenced
by the electromagnetic force. The nature of the influence involves the masses of
the substances that carry charges, whose motion produces the current. Then the
Maxwell equations are coupled to other equations, which are often nonlinear. We
describe a model for one example.

Suppose we have a diffuse cloud of electrons, in otherwise empty space. We
model this as a continuous charged substance, whose motion is described by a
4-velocity vector field u, satisfying hu; ui D �1, yielding a current J D �u,
where � dV is the charge density, measured by an observer whose velocity is u.
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Taking a cue from the Lagrangian (18.20) of Chap. 1, derived to reflect the rela-
tivistic Lorenz force law, we use the Lagrangian

(11.40) L D � 1

8�
hF ;Fi C hA;J i C 1

2

hu; ui D L1 C L2 CL3;

where 
dV is the mass density, measured by an observer whose velocity is u. We
are assuming that only one type of matter is present, so � is a constant multiple
of 
. In more general cases there would be additional terms in the Lagrangian.

We look at I.A; u/ D I1 C I2 C I3. The term I3 is independent of A, and as
above we have

(11.41)
@

@�
I.A C �ˇ; u/

ˇ̌
�D0 D

Z h
� 1

4�
hˇ; dFdAi C hˇ;J i

i
dV:

The stationary condition this yields is again the Maxwell equation (11.19). Next
we compute .@=@�/I

�A; u.�/�ˇ̌
�D0, where u.�/ is a one-parameter family of

velocity fields on M , obtained by varying the electron trajectories. There is no
variation in I1, so we need to consider I2 and I3.

We first treat the variation of I3, in a manner parallel to the calculations
(11.17)– (11.26) in Chap. 1, leading to the geodesic equations. To do this, we pa-
rameterize the electron trajectories by X W � � I ! M; X.y; s/ D x; u D
@sX . We suppose the mass density is constant in .y; s/-coordinates, say m,
so m dy ds D 
 dV . Since u D @=@s in .y; s/-coordinates, this implies
Lu.
 dV / D 0, or

(11.42) div .
u/ D 0;

where div is computed using the Lorentz metric on M . Our hypothesis amounts
to the law of conservation of matter. If we vary this map, using X.y; s; �/, then

(11.43)
d

d�

Z
1

2

hu; ui dV D

Z
1

2
mLwhu; ui dy ds D

Z
mhrwu; ui dy ds;

where @�X D w. Using Œ@s ; @� � D 0, convert this last integral to

(11.44) �
Z
mhw;ruui dy ds Cm

Z
Luhw; ui dy ds:

The last integral here vanishes for a compactly supported perturbation, by the
fundamental theorem of calculus, so

(11.45)
d

d�
I3
�A; u.�/�ˇ̌

�D0 D �
Z

hw;ruuim dy ds D �
Z

hw;
ruui dV:

We now treat the variation of I2, also using .y; s/-coordinates. Since � is a
constant multiple of 
, we have � dV D e dy ds for some constant e, and,
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parallel to (11.42), we have conservation of electric charge, div.�u/ D 0 (i.e., div
J D 0), which is equivalent to (11.5) whenM is Minkowski space. We have

(11.46)
d

d�

Z
hA;J i dV D

Z
eLwhA; ui dy ds:

We use the identity LuA D dAcu C d.Acu/ to write

LwhA; ui D �.dA/.u; w/C hLuA; wi
D �.dA/.u; w/C LuhA; wi � hA;Luwi:(11.47)

Since dA D F ; Œ@s ; @� � D 0, and LuhA; wi integrates to zero, we have

(11.48)
d

d�

Z
hA;J i dV D

Z
eheFu; wi dy ds D

Z
heFJ ; wi dV:

Together with (11.45), this gives

(11.49)
@

@�
I
�A; u.�/�ˇ̌

�D0 D �
Z

h
ruu � eFJ ; wi dV:

Thus the stationary condition for variation of u is

(11.50) 
ruu � eFJ D 0 or, equivalently, ruu � e

m
eFu D 0;

which is the Lorentz force law in this context.
It is useful to consider what the stress-energy tensor should be when we have

the Lagrangian (11.40). It is reasonable to take it to be the sum of the stress-
energy tensor Te for the electromagnetic field, given by (11.34), and a stress-
energy tensor Tm associated with the “matter field.” If we want Tm.Z;Z/dV to
be the mass-energy density of the electrons observed by one moving with velocity
Z, then it is natural to set

(11.51) bT m D 
u ˝ u;

(i.e., T jkm D 
uj uk). Then the total stress-energy tensor is given by

(11.52) T jk D 1

4�

�
Fj `Fk` � 1

4
hjkF i`Fi`

	
C 
uj uk:

The divergence of bT e is given by (11.36), provided the Maxwell equation (11.19)
holds. Furthermore, .
uj uk/Ik D .
uk/Ikuj C 
ukuj Ik , so

(11.53) div bT m D div.
u/u C 
ruu:
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Thus, for bT D bT e C bT m, we have (granted (11.19))

(11.54) div bT D div.
u/C 
ruu � eFJ :

We have the conservation law div bT D 0 for a solution to the coupled Maxwell–
Lorentz equations. Indeed, the vanishing of the first term on the right side of
(11.54) is equivalent to the matter conservation law (11.42), and the vanishing of
the sum of the other terms on the right side of (11.54) is equivalent to the Lorentz
force law (11.50).

Exercises

1. Demonstrate Lemmas 11.1 and 11.2.
2. Verify the calculations (11.14)–(11.18).
3. Show that the inner product of forms defined after (11.13) depends only on the Lorentz

metric on R4, not on the coordinate representation.
4. Show that div curl D 0 is a special case of dd D 0.
5. Show that (11.3)–(11.4) imply the “conservation law” (11.5).

(Hint: Apply @=@t to (11.3) and div to (11.4); use div curl D 0:)
Show that (11.5) is equivalent to dFJ b D 0.

6. Verify the identity (11.29), for any compactly supported vector fields E.x/ and B.x/
on R3.

7. Prove the conservation law (11.36), as a consequence of Maxwell’s equations.
8. Show that the identity dF D 0 is equivalent to

FjkI` C Fk`Ij C F j̀ Ik D 0:

9. Show that the identity dFF D 4�J b is equivalent to

Fjk Ik D 4�J j :

10. The equation dF D 0 on R4 implies F D A for some 1-form A on R4. A is
not unique, as any 1-form du can be added. Show that A can be picked to satisfy
dFA D 0 and that, for such A,

�A D �4�J b :
(Hint: Set up a PDE for u. Look for the relevant existence theorem in Chap. 3.)

11. The calculation (11.31) of hF ;Fi shows that jBj2 � jEj2 is Lorentz invariant. Calcu-
late F ^ F and show that E � B is also Lorentz invariant.

12. Think about the fact that the tensor eT given by (11.33) is trace-free, i.e., TreT D 0.
What is the trace of the stress-energy tensor defined by (7.5) or, equivalently (7.11)?

13. As mentioned in Exercise 5 in �18, Chap. 1, a sign change in the Lorentz metric, from
one of signature .�;C;C;C/ to one of signature .C;�;�;�/ (which some people
prefer), leads to a sign change in the formula for the 2-form F (though no change in
the tensor field eF of type .1; 1/). Show that it leads to a sign change in the formula
(11.34) for the stress-energy tensor of the electromagnetic field.
What sign changes arise in the formula (11.40) for the Lagrangian of an electromag-
netic field coupled to charged matter?
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LNM no.194, Springer, New York, 1971.

[BJS] L. Bers, F. John, and M. Schechter, Partial Differential Equations, Wiley,
New York, 1964.

[Car] C. Caratheodory, Calculus of Variations and Partial Differential Equations of the
First Order, Holden-Day, San Francisco, 1965.

[ChM] A. Chorin and J. Marsden, A Mathematical Introduction to Fluid Mechanics,
Springer, New York, 1979.

[CK] D. Christodoulu and S. Klainerman, The Global Nonlinear Stability of the
Minkowski Space, Princeton University Press, Princeton, N. J., 1993.

[CH] R. Courant and D. Hilbert, Methods of Mathematical Physics II, Wiley, New York,
1966.

[ES] J. Eells and J. Sampson, Harmonic mappings of Riemannian manifolds, Am.
J. Math. 86(1964), 109–160.

[FM] A. Fischer and J. Marsden, General relativity, partial differential equations, and
dynamical systems, AMS Proc. Symp. Pure Math. 23(1973), 309–327.

[Fo1] G. Folland, Introduction to Partial Differential Equations, Princeton University
Press, Princeton, N. J., 1976.

[Frl] F. G. Friedlander, Sound Pulses, Cambridge University Press, Cambridge, 1958.
[Frd] A. Friedman, Generalized Functions and Partial Differential Equations, Prentice-

Hall, Englewood Cliffs, N. J., 1963.
[Ga] P. Garabedian, Partial Differential Equations, Wiley, New York, 1964.
[Go] H. Goldstein, Classical Mechanics, Addison-Wesley, New York, 1950.

[Had] J. Hadamard, Le Probleme de Cauchy et les Equations aux Derivées Partielles
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3

Fourier Analysis, Distributions,
and Constant-Coefficient Linear PDE

Introduction

Fourier analysis is perhaps the most important single tool in the study of linear
partial differential equations. It serves in several ways, the most basic–and histor-
ically the first–being to give specific formulas for solutions to various linear PDE
with constant coefficients, particularly the three classics, the Laplace, wave, and
heat equations:

(0.1) �u D f;
@2u

@t2
��u D f;

@u

@t
��u D f;

with � D @2=@x21 C � � � C @2=@x2n. The Fourier transform accomplishes this by
transforming the operation of @=@xj to the algebraic operation of multiplication
by i�j . Thus the (0.1) are transformed to algebraic equations and to ODE with
parameters.

Before introducing the Fourier transform of functions on Euclidean space Rn,
we discuss the Fourier series associated to functions on the torus Tn in �1. Meth-
ods developed to establish the Fourier inversion formula for Fourier series, in the
special case of the circle S1 D T1, provide for free a development of the basic
results on harmonic functions in the plane, and we give such results in �2, noting
that these results specialize further to yield standard basic results in the theory of
holomorphic functions of one complex variable, such as power-series expansions
and Cauchy’s integral formula.

In �3 we define the Fourier transform of functions on Rn and prove the Fourier
inversion formula. The proof shares with the argument for Fourier series in �1 the
property of simultaneously yielding explicit solutions to a PDE, this time the heat
equation.

It turns out that representations of solutions to such PDE as listed in (0.1)
are most naturally done in terms of objects more general than functions, called
distributions. We develop the theory of distributions in �4. Fourier analysis works
very naturally with the class of distributions known as tempered distributions.

M.E. Taylor, Partial Differential Equations I: Basic Theory,
Applied Mathematical Sciences 115, DOI 10.1007/978-1-4419-7055-8 3,
c� Springer Science+Business Media, LLC 1996, 2011
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Section 5, in some sense the heart of this chapter, derives explicit solutions to
the classical linear PDE (0.1) via Fourier analysis. The use of Fourier analysis
and distribution theory to represent solutions to these PDE gives rise to numerous
interesting identities, involving both elementary functions and “special functions,”
such as the gamma function and Bessel functions, and we present some of these
identities here, only a smattering from a rich area of classical analysis. Further
development of harmonic analysis in Chap. 8 will bring in additional studies of
special functions.

Fourier analysis and distribution theory are also useful tools for general inves-
tigations of linear PDE, in cases where explicit formulas might not be obtainable.
We illustrate a couple of cases of this in the present chapter, discussing the exis-
tence and behavior of “parametrices” for elliptic PDE with constant coefficients,
and applications to smoothness of solutions to such PDE, in �9 and proving local
solvability of general linear PDE with constant coefficients in �10. Fourier analy-
sis and distribution theory will acquire further power in the next chapter as tools
for investigations of existence and qualitative properties of solutions to various
classes of PDE, with the development of Sobolev spaces.

Sections 11 and 12 deal with the discrete Fourier transform, particularly with
Fourier analysis on finite cyclic groups. We study this both as an approximation to
Fourier analysis on the torus and Euclidean space, sometimes useful for numerical
work, and as a subject with its intrinsic interest, and with implications for num-
ber theory. In �12 we give a brief description of “fast” algorithms for computing
discrete Fourier transforms.

1. Fourier series

Let f be an integrable function on the torus Tn, naturally isomorphic to Rn=Zn

and to the Cartesian product of n copies S1 � � � � � S1 of the circle. Its Fourier
series is by definition a function on Zn given by

(1.1) Of .k/ D 1

.2�/n

Z

Tn

f .�/e�ik�� d�;

where k D .k1; : : : ; kn/; k � � D k1�1 C � � � C kn�n. We use the notation

(1.2) Ff .k/ D Of .k/:

Clearly, we have a continuous linear map

(1.3) F W L1.Tn/ �! `1.Zn/;
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where `1.Zn/ denotes the space of bounded functions on Zn, with the sup norm.
If f 2 C1.Tn/, then we can integrate by parts to get

(1.4) k˛ Of .k/ D 1

.2�/n

Z

Tn

.D˛f /.�/ e�ik�� d�;

where k˛ D k
˛1

1 � � �k˛n
n , and

(1.5) D˛ D D
˛1

1 � � �D˛n
n ; Dj D 1

i

@

@�j
:

It follows easily that

(1.6) F W C1.Tn/ �! s.Zn/;

where s.Zn/ consists of functions u on Zn which are rapidly decreasing, in the
sense that, for each N ,

(1.7) pN .u/ D sup
k2Zn

hkiN ju.k/j < 1:

Here, we use the notation

hki D �
1C jkj2�1=2;

where jkj2 D k21 C � � � C k2n. If we use the inner product

(1.8) .f; g/ D .f; g/L2 D 1

.2�/n

Z

Tn

f .�/g.�/ d�;

for f; g 2 C1.Tn/, or more generally for f; g 2 L2.Tn/, and if on s.Zn/, or
more generally on `2.Zn/, the space of square summable functions on Zn, we use
the inner product

(1.9) .u; v/ D .u; v/`2 D
X

k2Zn

u.k/v.k/;

we have the formula

(1.10) .Ff; u/`2 D .f;F�u/L2 ;

valid for f 2 C1.Tn/; u 2 s.Zn/, where

(1.11) F� W s.Zn/ �! C1.Tn/
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is given by

(1.12)
�F�u

�
.�/ D

X

k2Zn

u.k/ eik�� :

Another identity that we will find useful is

(1.13)
1

.2�/n

Z

Tn

eik�� e�i`�� d� D ık`;

where ık` D 1 if k D ` and ık` D 0 otherwise.
Our main goal here is to establish the Fourier inversion formula

(1.14) f .�/ D
X

k2Zn

Of .k/ eik�� ;

the sum on the right in (1.14) converging in the appropriate function space, de-
pending on the nature of f . Let us single out another space of functions on Tn,
the trigonometric polynomials:

(1.15) T P D
(
X

k2Zn

a.k/eik�� W a.k/ D 0 except for finitely many k

)
:

Clearly,

(1.16) F W T P �! c00.Z
n/;

where c00.Zn/ consists of functions on Zn which vanish except at a finite number
of points; this follows from (1.13). The formula (1.12) gives

(1.17) F� W c00.Zn/ �! T P ;

and the formula (1.13) easily yields

(1.18) FF� D I on c00.Zn/;

and even

(1.19) FF� D I on s.Zn/:

By comparison, the inversion formula (1.14) states

(1.20) F�F D I;
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on C1.Tn/, or some other space of functions on Tn, as specified below. Before
getting to this, let us note one other implication of (1.13), namely, if

(1.21) fj .�/ D
X

k

'j .k/e
ik��

are elements of T P , or more generally, if 'j 2 s.Zn/, then we have the Parseval
identity

(1.22) .f1; f2/L2 D
X

k2Zn

'1.k/'2.k/I

in particular, the Plancherel identity

(1.23) kfj k2
L2 D

X

k2Zn

j'j .k/j2;

for fj 2 T P , or more generally for any fj of the form (1.21) with 'j 2 s.Zn/.
In particular, the map F� given by (1.12), and satisfying (1.11) and (1.17), has a
unique continuous extension to `2.Zn/, and

(1.24) F� W `2.Zn/ �! L2.Tn/

is an isometry of `2.Zn/ onto its range. Part of the inversion formula will be that
the map (1.24) is also surjective.

Let us note that if fj 2 T P , satisfying (1.21), then (1.13) implies Ofj .k/ D
'j .k/, so we have directly in this case:

(1.25) F�F D I on T P :

One approach to more general inversion formulas would be to establish that T P
is dense in various function spaces, on which F�F can be shown to act contin-
uously. For more details on this approach, see the exercises at the end of �1and
�2 in the Functional Analysis appendix. Here, we will take a superficially differ-
ent approach. We will make use of such basic results from real analysis as the
denseness of C.Tn/ in Lp.Tn/, for 1 � p < 1.

Our approach to (1.14) will be to establish the following Abel summability
result. Consider

(1.26) Jrf .�/ D
X

k2Zn

Of .k/ r jkj eik�� ;

where jkj D jk1j C � � � C jknj; r 2 Œ0; 1/. We will show that

(1.27) Jrf ! f; as r % 1;
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in the appropriate spaces. The operator Jr in (1.26) is defined for any f 2
L1.Tn/, if r < 1, and we have the formula

(1.28) Jrf .�/ D .2�/�n
Z

Tn

f .� 0/
X

k2Zn

r jkj eik�.��� 0/ d� 0:

The sum over Zn inside the integral can be written as

(1.29)

X

k2Zn

r jkj eik�.��� 0/ D Pn.r; � � � 0/

D p.r; �1 � � 0
1/ � � �p.r; �n � � 0

n/;

where

(1.30)

p.r; �/ D
1X

kD�1
r jkj eik�

D 1C
1X

kD1

�
rkeik� C rke�ik��

D 1 � r2

1 � 2r cos � C r2
:

Then we have the explicit integral formula

(1.31)

Jrf .�/ D .2�/�n
Z

Tn

f .� 0/Pn.r; � � � 0/ d� 0

D .2�/�n
Z

Tn

f .� � � 0/Pn.r; � 0/ d� 0:

Let us examine p.r; �/. It is clear that the numerator and denominator on the
right side of (1.30) are positive, so p.r; �/ > 0 for each r 2 Œ0; 1/; � 2 S1. Of
course, as r % 1, the numerator tends to 0; as r % 1, the denominator tends to a
nonzero limit, except at � D 0. Since it is clear that

(1.32) .2�/�1
Z

S1

p.r; �/ d� D .2�/�1
Z �

��

X
r jkjeik� d� D 1;

we see that, for r close to 1; p.r; �/ as a function of � is highly peaked near � D 0

and small elsewhere, as in Fig. 1.1.
We are now prepared to prove the following result giving Abel summability

(1.27).
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FIGURE 1.1 Poisson Kernel

Proposition 1.1. If f 2 C.Tn/, then

(1.33) Jrf ! f uniformly on Tn as r % 1:

Furthermore, for any p 2 Œ1;1/, if f 2 Lp.Tn/, then

(1.34) Jrf ! f in Lp.Tn/ as r % 1:

The proof of (1.33) is an immediate consequence of (1.31) and the peaked nature
of p.r; �/ near � D 0 discussed above, together with the observation that, if f
is continuous at � , then it does not vary very much near � . The convergence in
(1.34) is in the Lp-norm, defined by

(1.35) kgkLp D
2

4.2�/�n
Z

Tn

jg.�/jp d�
3

5
1=p

:

We have the well-known triangle inequality in such a norm:

(1.36) kg1 C g2kLp � kg1kLp C kg2kLp ;

and this implies, via (1.31) and (1.32),

(1.37)

kJrf kLp D .2�/�n
���
Z

Tn

Pn.r; �
0/�� 0f d� 0

���
Lp

� .2�/�n
Z
Pn.r; �

0/k�� 0f kLp d� 0

D kf kLp ;
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where

(1.38) �� 0f .�/ D f .� � � 0/;

which implies k�� 0f kLp D kf kLp . In other words,

(1.39) kJrkL.Lp/ � 1; 1 � p < 1;

where we are using the operator norm on Lp :

(1.40) kT kL.Lp/ D sup fkTf kLp W kf kLp � 1g:

Using this, we can deduce (1.34) from (1.33), and the denseness of C.Tn/ in each
space Lp.Tn/, for 1 � p < 1. Indeed, given f 2 Lp.Tn/, and given " > 0,
find g 2 C.Tn/ such that kf �gkLp < ". Note that, generally, kgkLp � kgksup.
Now we have

(1.41)
kJrf � f kLp � kJr .f � g/kLp C kJrg � gkLp C kg � f kLp

< "C kJrg � gkL1 C ";

making use of (1.39). By (1.33), the middle term is < " if r is close enough to 1,
so this proves (1.34).

Corollary 1.2. If f 2 C1.Tn/, then the Fourier inversion formula (1.14) holds.

Proof. In such a case, as noted, we have Of 2 s.Zn/, so certainly the right side
of (1.14) is absolutely convergent to some f # 2 C.Tn/. In such a case, one a
fortiori has

(1.42) lim
r%1

X

k2Zn

Of .k/r jkjeik�� D f #.�/:

But now Proposition 1.1 implies(1.42) is equal to f .�/ (i.e., f # D f ), so the
inversion formula is proved for f 2 C1.Tn/.

As a result, we see that

(1.43) F� W s.Zn/ �! C1.Tn/

is surjective, as well as injective, with two-sided inverse F W C1.Tn/ ! s.Zn/.
This of course implies that the map (1.24) has dense range in L2.Tn/; hence

(1.44) F� W `2.Zn/ �! L2.Tn/ is unitary:

Another way of stating this is

(1.45) feik�� W k 2 Zng is an orthonormal basis of L2.Tn/;
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with inner product given by (1.8). Also, the inversion formula

(1.46) F�F D I on C1.Tn/

implies

(1.47) kFf k`2 D kf kL2 ;

so therefore F extends by continuity from C1.Tn/ to a map

(1.48) F W L2.Tn/ �! `2.Zn/; unitary;

inverting (1.44). The denseness C1.Tn/ � L2.Tn/ � L1.Tn/ implies that this
F coincides with the restriction to L2.Tn/ of the map (1.3). Note that the fact
that (1.44) and (1.48) are inverses of each other extends the inversion result of
Corollary 1.2.

We devote a little space to conditions implying that the Fourier series (1.14)
is absolutely convergent, weaker than the hypothesis that f 2 C1.Tn/. Note
that since jeik�� j D 1, the absolute convergence of (1.14) implies uniform conver-
gence. By (1.4), we see that

(1.49) f 2 C `.Tn/ H) j Of .k/j � C hki�`;

which in turn clearly gives absolute convergence provided

(1.50) ` � nC 1:

Using Plancherel’s identity and Cauchy’s inequality, we can do somewhat better:

Proposition 1.3. If f 2 C `.Tn/, then the Fourier series for f is absolutely con-
vergent provided

(1.51) ` >
n

2
:

Proof. We have

X

k

j Of .k/j D
X

k

hki�`hki`j Of .k/j

�
hX

k

hki�2`
i1=2 �

hX

k

hki2`j Of .k/j2
i1=2

� C
hX

k

hki2`j Of .k/j2
i1=2

;

(1.52)
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as long as (1.51) holds. The square of the right side is dominated by

C 0X

k

X

j� j�`

ˇ̌
k� Of .k/ˇ̌2 D C 0 X

j� j�`
kD�f k2

L2

� C 00kf k2
C` ;

(1.53)

so the proposition is proved.

Sharper results on absolute convergence of Fourier series will be given in
Chap. 4. See also some of the exercises below for more on convergence when
n D 1.

Exercises

1. Given f; g 2 L1.Tn/, show that

Of .k/ Og.k/ D Ou.k/;
with

u.�/ D .2�/�n
Z

Tn

f .'/g.� � '/ d':

2. Given f; g 2 C.Tn/, show that

b.fg/.k/ D
X

m

Of .k �m/ Og.m/:

3. Using the proof of Proposition 1.3, show that every f 2 Lip.S1/ has an absolutely
convergent Fourier series.

4. Show that for any f 2 L1.Tn/; Of .k/ ! 0 as jkj ! 1.
(Hint: Given " > 0, pick f" 2 C1.Tn/; kf � f"kL1 < ". Compare Of".k/ and
Of .k/:)

This result is known as the Riemann–Lebesgue lemma.
5. For f 2 L1.S1/, set

(1.54) SNf .�/ D
NX

kD�N
Of .k/eik� :

Show that SN f .�/ D .1=2�/
R �

�� f .� � '/DN .'/ d', where

(1.55) DN .�/ D
NX

kD�N
eik� D sin.N C 1

2 /�

sin 12�
:

(Hint: To evaluate the sum, recall how to sum a finite geometrical series.)
DN .�/ is called the Dirichlet kernel. See Fig. 1.2.
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FIGURE 1.2 Dirichlet Kernel

6. Let f 2 L1.S1/ have the following property of “vanishing” at � D 0:

f .�/

sin 12�
D g.�/ 2 L1.��; �/:

Show that SN f .0/ ! 0 as N ! 1.
(Hint. Adapt the Riemann–Lebesgue lemma to show that

g 2 L1.��; �/ )
Z �

��
g.�/ sin.N C 1

2 /� d� ! 0 as N ! 1:/

7. Deduce that if f 2 L1.S1/ is Lipschitz continuous at �0, then SN f .�0/ ! f .�0/ as
N ! 1. Furthermore, if f is Lipschitz on an open interval J � S1, then SNf ! f

uniformly on compact subsets of J .
8. Let f 2 L1.S1/ be piecewise Lipschitz, with a finite number of simple jumps. Show

that SNf .�/ ! f .�/ at points of continuity. If f has a jump at �j , with limiting
values f˙.�j /, show that

(1.56) SN f .�j / ! 1

2

�
fC.�j /C f�.�j /

�
;

as N ! 1.
(Hint: By Exercise 7, it remains only to establish (1.56). Show that this can be reduced
to the case �j D �; f .�/ D � , for �� � � < � . Verify that this function has Fourier
series

2

1X

kD1

.�1/k
k

sink�:/

Alternative: Reduce to the case �j D 0 and note that SN f .0/ depends only on the
even part of f; .1=2/Œf .�/C f .��/�.
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9. Work out the Fourier series of the function f 2 Lip.S1/ given by

f .�/ D j� j; �� � � � �:

Examining this at � D 0, establish that

(1.57)
1X

kD1

1

k2
D �2

6
:

10. One can obtain Fourier coefficients of functions �k and j� jk on Œ��; �� in terms of
the Fourier coefficients of

qk.�/ D �k on Œ0; ��;

0 on Œ��; 0�:
Show that, for n ¤ 0,

1X

kD0

1

kŠ
Oqk.n/ .is/k D � 1

2�in

h
.�1/n � e�is � 1

i�
1 � s

n

��1
;

and use this to work out the Fourier series for these functions. Apply this to Exercise 9,
and to the calculation at the end of Exercise 8.

11. Assume that g 2 L1.S1/ has uniformly convergent Fourier series (SN g ! g) on
compact subsets of an open interval J � S1. Show that whenever f 2 L1.S1/ and
f D g on J , then f also has uniformly convergent Fourier series on compact subsets
of J .
(Hint: Apply Exercise 7 to f � g:)
This result is called the localization principle for Fourier series.

12. Suppose f is Hölder continuous on S1, that is, f 2 C r .S1/, for some r 2 .0; 1/,
which means

jf .' C �/ � f .'/j � C j� jr :
Show that f has uniformly convergent Fourier series on S1.
(Hint: We have ˇ̌

ˇ̌
ˇ
f .� C '/ � f .'/

sin 12�

ˇ̌
ˇ̌
ˇ � C

ˇ̌
sin 12�

ˇ̌�.1�r/
:

Apply Exercise 6.)
13. If ! W Œ0;1/ ! Œ0;1/ is continuous and increasing and !.0/ D 0, we say a function

f on S1 is continuous with modulus of continuity ! provided

jf .' C �/ � f .'/j � C!.j� j/:
Formulate the most general condition you can to establish uniform convergence of the
Fourier series of a function with such a modulus of continuity. Note that Exercise 12
deals with the case !.s/ D sr ; r 2 .0; 1/.

14. Consider the Cesaro sum of the Fourier series of f :

CN f .�/ D
NX

kD�N

�
1 � jkj

N

� Of .k/eik� D 1

N

N�1X

`D0
S`f .�/:

Show that CN f .�/ D .1=2�/
R �

�� f .� � '/FN .'/d', where
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FIGURE 1.3 Fejer Kernel

(1.58) FN .�/ D 1

N

N�1X

`D0
D`.�/ D 1

N sin 12�

N�1X

`D0
sin
�
`C 1

2

�
� D 1

N

 
sin N2 �

sin 12�

!2
:

The function FN .�/ is called the Fejer kernel (see Fig. 1.3). Modify the proof of
Proposition 1.1 to show that

CN f ! f in B; for f 2 B;

where B is one of the Banach spaces C.S1/ or Lp.S1/; 1 � p < 1.
(Hint: To evaluate the second sum in (1.58), use sin.` C 1

2 /� D Im ei�=2ei`� and
sum a finite geometrical series. Also use the identity 2 sin2 z D 1 � cos 2z:)

2. Harmonic functions and holomorphic functions
in the plane

The method of proof of the Abel summability (1.26)–(1.27) of Fourier series,
specialized to T1 D S1, has important implications for the theory of harmonic
functions on a domain	 � R2, which we will discuss here. In the case of S1, let
us rewrite (1.26),

(2.1) Jrf .�/ D
1X

kD�1
Of .k/ r jkj eik� ;
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as

(2.2) .PI f /.r; �/ D
1X

kD�1
Of .k/ r jkj eik� :

The function u.r; �/ D PI f .r; �/ is called the Poisson integral of f . If we use
polar coordinates in the complex plane C D R2,

(2.3) z D r ei� ;

then (2.2) becomes

(2.4)
.PI f /.z/ D

1X

kD0
Of .k/zk C

1X

kD1
Of .�k/zk

D .PICf /.z/C .PI�f /.z/;

defined on the unit disk jzj < 1. Note also, from (1.30), that

(2.5) PI f .z/ D 1 � jzj2
2�

Z

S1

f .w/

jw � zj2 ds.w/;

the integral being with respect to arclength on S1. Recall that if f 2 L1.S1/,
the function Of .k/ is bounded, so both power series in (2.4) have radius of con-
vergence at least 1. Clearly, on the unit disk, v.z/ D .PICf /.z/ is holomorphic
and w.z/ D .PI�f /.z/ is antiholomorphic. In other words, v and w belong to
C1.D/, where D D fz 2 C W jzj < 1g, and

(2.6)
@v

@z
D 0;

@w

@z
D 0 on D;

where

(2.7)
@

@z
D 1

2

� @
@x

C i
@

@y

�
;

@

@z
D 1

2

� @
@x

� i @
@y

�
:

Note that
@

@z

@

@z
D @

@z

@

@z
D 1

4
�;

where � is the Laplace operator on R2, a special case of the Laplace operator
introduced in Chap. 2. Since v;w 2 C1.D/, we have �v D 0 and �w D 0, and
hence

(2.8) �.PI f / D 0:
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In light of the results of �1, we have the following.

Proposition 2.1. If f 2 C.S1/, then

(2.9) u D PI f .z/ 2 C1.D/ \ C.D/

is harmonic, with boundary value f , that is, u solves the Dirichlet problem

(2.10) �u D 0 in D; uj@D D f:

One should expect that if f has extra smoothness on S1, so does PI f on D. The
following result is crude compared to results established in Chaps. 4 and 5, but it
will be of some interest.

Proposition 2.2. For ` D 1; 2; 3; : : : , we have

(2.11) PI W C `C1.S1/ �! C `.D/:

Proof. We begin with the case ` D 1. Since we know from (2.4) that PI f 2
C1.D/, we need merely check smoothness near @D D S1. Clearly,

(2.12)
@

@�
PI f D PI

@f

@�
;

so if f 2 C 1.S1/, then @f=@� 2 C.S1/ and we have .@=@�/PI f continuous on
D. Also, by (2.2),

(2.13) r
@

@r
PI f D PI .Nf /;

where Nf is characterized by the Fourier series representation

(2.14) Nf .�/ D
1X

kD�1
Of .k/jkjeik� :

Thus

(2.15) Nf D �i @
@�

Hf D �iH
@f

@�
;

whereH has the Fourier series representation

(2.16) Hg.�/ D
1X

kD�1
.sgn k/ Og.k/eik� :
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We claim that, for ` � 0,

(2.17) H W C `C1.S1/ �! C `.S1/;

and hence N W C `C2.S1/ ! C `.S1/. Given this, for f 2 C 2.S1/, the quantity
(2.13) is seen to belong to C.D/, and this finishes the ` D 1 case of (2.11).

In turn, sinceH commutes with @=@� , it suffices to establish the ` D 0 case of
(2.17). Now, by Proposition 1.3, the Fourier series for g 2 C 1.S1/ is absolutely
convergent, giving (2.17).

To prove the general case of (2.11), a short calculation yields

(2.18)

	
r
@

@r


j 	
@

@�


k
PI f D PI

 	
@

@�


k
N jf

!
:

Note that N j D .�i/j .@=@�/jH o.j /, where o.j / is zero if j is even and one if
j is odd, so, for ` � 0,

N j W C `CjC1.S1/ �! C `.S1/;

the left side being improved to C `Cj if j is even. Therefore, if f 2 C `C1.S1/
and j C k D `, the right side of (2.18) is PI fjk with fjk 2 C.S1/, which
proves (2.11) in general.

The implication f 2 C `.S1/ ) PI f 2 C `.D/ does not quite work, as
we will see later, essentially because H does not map C `.S1/ to itself. It is true
that f 2 C `;˛.S1/ ) PI f 2 C `;˛.D/, for ˛ 2 .0; 1/. This is a special case of
Hölder estimates that will be established in �7 of Chap. 13. Similarly there are
“sharp” results on regularity of PI f in Sobolev spaces, discussed in Chap. 4, and
in much greater generality, in Chap. 5.

It is important to know that PI f provides the unique solution to the Dirichlet
problem (2.10). We will establish several general uniqueness results, starting with
the following.

Proposition 2.3. Let 	 � Rn be a bounded region with smooth boundary, say,
	 D D. Suppose u; v 2 C 2.	/, with u D v D f on @	, and �u D �v D 0 in
	. Then u D v on all of 	.

Proof. Set w D u � v 2 C 2.	/Iw D 0 on @	. We can apply the Green identity
(3.15) of Chap. 2, to write

(2.19) .dw; dw/ D �.�w;w/C
Z

@�

w
@w

@

dS:

By hypothesis the right side of (2.19) is 0. Thus w is constant on each component
of 	, and the boundary condition forces w D 0.
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In view of Proposition 2.2, we could apply this to u D PI f if f 2 C 3.S1/, but
this is not a satisfactory result, and we will do much better below.

A result related to our uniqueness question is the mean-value property, a spe-
cial case of which is the following.

Proposition 2.4. If f 2 C.S1/; u D PI f , then

(2.20) u.0/ D 1

2�

Z �

��
f .�/ d�:

Proof. It follows from the series (2.2) that u.0/ D Of .0/, which gives (2.20).

A more general result is the following.

Proposition 2.5. If BR � Rn is the open ball of radius R, centered at the origin,
with @BR D SR, of areaA.R/, then for u 2 C 2.BR/\C.BR/; �u D 0, we have

(2.21) u.0/ D 1

A.R/

Z

SR

u.x/ dS:

Proof. We apply Green’s identity

(2.22)
Z

�

Œu�v � v�u� dx D
Z

@�

�
u
@v

@

� v

@u

@


�
dS;

to 	 D Br ; 0 < r < R; v.x/ D jxj2, with �v D 2n, to get, when �u D 0,

(2.23) n

Z

Br

u.x/ dx D r

Z

Sr

u.x/ dS;

noting that substituting v D 1 in (2.22) gives
R
@�

.@u=@
/ dS D 0. If we let
'.r/ D R

Br
u.x/ dx, this implies ' 0.r/ D .n=r/'.r/, and hence '.r/ D Krn,

i.e., V.r/�1
R
Br

u.x/ dx is constant. Passing to the limit r ! 0 gives (2.21).

Second Proof. Define v 2 C 2.BR/\ C.BR/ by

v.x/ D
Z

SO.n/

u.gx/ dg;
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where dg is Haar measure on the rotation group SO.n/, defined in �6 of Appendix
B. The Laplace operator is invariant under rotations, so �v D 0 on BR. The
function v is radial; v.x/ D Qv.jxj/. The formula

� D @2

@r2
C n � 1

r

@

@r
C 1

r2
�S ;

(cf. (4.17) of Chap. 2), for � in polar coordinates, where �S is the Laplace oper-
ator on the unit sphere Sn�1, gives

	
d 2

dr2
C n � 1

r

d

dr



Qv.r/ D 0:

This is an Euler equation, whose solutions are

AC Br2�n; n � 3;

AC B log r; n D 2:

Since v does not blow up at 0, we have B D 0, so v is constant. Clearly v.x/
equals the right side of (2.21) for jxj D R, and v.0/ D u.0/, so we again have
(2.21).

Corollary 2.6. For any 	 � Rn open, any u 2 C 2.	/ harmonic, any ball Bp ,
centered at p and contained in 	, we have

(2.24) u.p/ D Avg@Bp
u.z/:

We can now prove the following important maximum principle for harmonic func-
tions. Much more general versions of this will be given in Chap. 5.

Proposition 2.7. Let 	 � Rn be connected and open, and let u 2 C 2.	/ be
harmonic and real-valued. Then u has no interior maximum, or minimum, unless
u is constant. In particular, if 	 is bounded and u 2 C.	/, then

(2.25) sup
p2�

u.p/ D sup
q2@�

u.q/:

Also, even for u complex-valued,

(2.26) sup
p2�

ju.p/j D sup
q2@�

ju.q/j:

Proof. That a non-constant, real harmonic function has no interior extremum is
an obvious consequence of (2.24), and the other consequences, (2.25) and (2.26),
follow immediately.
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Corollary 2.8. The uniqueness result of Proposition 2.3 holds for any bounded
open	 � Rn, with no smoothness on @	, and for any harmonic

(2.27) u; v 2 C 2.	/ \ C.	/:

Proof. Apply the maximum principle to u � v.

Here, we have used the mean-value property to prove the maximum principle. The
more general maximum principle established in Chap. 5 will not use the mean-
value property; indeed, together with a symmetry argument, it can be made a
basis for a proof of the mean-value property. We will leave these considerations
until Chap. 5.

With our uniqueness result in hand, we can easily establish the following inte-
rior regularity result for harmonic functions.

Proposition 2.9. Let 	 � R2 be open, and let u 2 C 2.	/ be harmonic. Then in
fact, u 2 C1.	/I u is even real analytic on 	.

Proof. By translations and dilations, we can reduce to the case 	 D D; u 2
C 2.D/. The uniqueness result of Corollary 2.8 implies

(2.28) u D PI f; where f D ujS1 :

Then the conclusion that u is real analytic on D follows directly from the power-
series expansion (2.4).

Parenthetically, we remark that, by Corollary 2.8, the identity (2.28) holds for any
u 2 C 2.D/\ C.D/ harmonic in D.

Using the results we have developed, via Fourier series, about harmonic func-
tions, we can quickly draw some basic conclusions about holomorphic functions.
If 	 � C is open, f W	 ! C is by definition holomorphic if and only if
f 2 C 1.	/ and @f=@z D 0, where @=@z is given by (2.7). Clearly, if f 2 C 2.	/
is holomorphic, then it is also harmonic, and so are its real and imaginary parts.
Suppose u 2 C 2.D/\ C.D/ is holomorphic in D. Then the series representation
(2.4) is valid, since (2.28) holds. This series is a sum of two terms:

(2.29)
u.z/ D

1X

kD0
Of .k/zk C

1X

kD1
Of .�k/zk

D u1.z/C u2.z/;

where @u1=@z D 0 and @u2=@z D 0. But if we are given that @u=@z D 0, then also
@u2=@z D 0, so @u2=@x D @u2=@y D 0. Thus u2 is constant, and since u2.0/ D 0,
this forces u2 D 0. In other words, the holomorphic function u.z/ has the power
series

(2.30) u.z/ D
1X

kD0
akzk ; z 2 D;
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where ak D Of .k/; k � 0. Note that differentiation of (2.30) gives

(2.31) ak D 1

kŠ

	
@

@z


k
u.0/:

By the usual method of translating and dilating coordinates, we deduce the
following.

Proposition 2.10. If 	 � C is open, u 2 C 2.	/ holomorphic, p 2 	, and
Dp a disk centered at p; Dp � 	, then on Dp; u.z/ is given by a convergent
power-series expansion

(2.32) u.z/ D
1X

kD0
bk.z � p/k :

We can relax the C 2-hypothesis to u 2 C 1.	/. As much stronger and more
general results are given in Chap. 5, we omit the details here.

For further use, we record the following result, whose proof is trivial.

Lemma 2.11. If u 2 C1.	/ is holomorphic, and

P D
X

ajkD
j
xD

k
y

is any constant-coefficient differential operator, then P u is holomorphic in 	.

Proof. .@=@z/P u D P.@u=@z/.

We can use the power-series representation (2.30)–(2.32) to prove the fundamen-
tal result on uniqueness of analytic continuation, which we give below. Here is
the first result, of a very general nature.

Proposition 2.12. Let 	 � Rn be open and connected, and let u be a real-
analytic function on 	. If p 2 	 and all derivatives D˛u.p/ D 0, then u D 0 on
all of 	.

Proof. Let K D fx 2 	 W D˛u.x/ D 0 for all ˛ � 0g. Since u 2 C1.	/; K is
closed in 	. However, for each p 2 K, since u is given in a neighborhood of p
by a power series

u.q/ D
X

˛�0

u.˛/.p/

˛Š
.q � p/˛;

we also see that K is open in 	. This proves the proposition.
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Our basic corollary for holomorphic functions is the following.

Corollary 2.13. Let 	 � C be open and connected, u holomorphic on 	. Let �
be a line segment contained in 	. If uj� D 0, then u D 0 on 	.

Proof. Translating and rotating, we can assume � is a segment in the real axis,
with 0 2 � . Near 0; u.z/ has a power-series expansion of the form (2.30), with ak
given by (2.31). Using Lemma 2.11, we see that

(2.33)

	
@

@z


k
u.0/ D

	
@

@x


k
u.0/;

which vanishes for all k. Thus u D 0 on a nonempty open set in 	, and the rest
follows by Proposition 2.12.

Actually, a much stronger result is true. If 	 � C is connected, pj 2 	 are
distinct, pj ! p 2 	; u is holomorphic in 	, and u.pj / D 0 for each j , then
u must vanish identically. In other words, u can have only isolated zeros if it does
not vanish identically. Indeed, say u.p/ D 0. If u is not identically zero, some
coefficient in the series (2.32) is nonzero; let bm be the first such coefficient:

(2.34)
u.z/ D .z � p/m

1X

kD0
bmCk.z � p/k

D .z � p/mv.z/;

where v.z/ is holomorphic on Dp and v.0/ D bm ¤ 0. Thus, by continuity,
v.�/ ¤ 0 for j� � pj < " if " is sufficiently small, which implies u.�/ ¤ 0 if
� ¤ p but j� � pj < ".

A typical use of Corollary 2.13 is in computations of integrals. We will see an
example of this in the next section.

We end this section by recalling the classical Cauchy integral theorem and
integral formula. Throughout,	will be a bounded open domain in C with smooth
boundary. Stokes’ formula, proved in Chap. 1, �13, states

(2.35)
“

�

d˛ D
Z

@�

˛;

for a 1-form ˛ with coefficients in C 1.	/. If ˛ D p dx C q dy, this gives the
classical Green’s formula

(2.36)
Z

@�

p dx C q dy D
“

�

	
@q

@x
� @p

@y



dx dy:
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If u.x; y/ 2 C 1.	/ is a complex-valued function, we consequently have

(2.37)

Z

@�

u d z D
Z

@�

.u dx C iu dy/

D
“

�

�
i
@u

@x
� @u

@y

�
dx dy

D 2i

“

�

@u

@z
dx dy:

In the special case when u is holomorphic in 	, we have the Cauchy integral
theorem:

Theorem 2.14. If 	 � C is bounded with smooth boundary and u 2 C 1.	/ is
holomorphic, then

(2.38)
Z

@�

u.z/ d z D 0:

Using various limiting arguments, one can relax the hypotheses on smoothness of
@	 and of u near @	; we won’t go into this here. Next we prove Cauchy’s integral
formula.

Proposition 2.15. With 	 as above, u 2 C 2.	/ holomorphic in 	, we have

(2.39) u.�/ D 1

2�i

Z

@�

u.z/

z � �
d z; for � 2 	:

Proof. Write

(2.40)
u.z/.� � z/�1 D .� � z/�1

�
u.z/� u.�/

�C u.�/.� � z/�1

D v.z/C u.�/.� � z/�1:

By the series expansion for u.z/ about �, we see that v.z/ is holomorphic near
�; clearly, it is holomorphic on the rest of 	, and it belongs to C 1.	/, soR
@�

v.z/ d z D 0. Thus, to prove (2.39), it suffices to show that

(2.41)
Z

@�

.z � �/�1 d z D 2�i; for � 2 	:

Indeed, if " is small enough that B.�; "/ D fz 2 C W jz � �j � "g is contained in
	, then Cauchy’s theorem implies that the left side of (2.41) is equal to
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(2.42)
Z

@B.�;"/

.z � �/�1 d z

since .� � z/�1 is holomorphic in z for z ¤ �. Making a change of variable, we
see that (2.42) is equal to

Z 2�

0

�
" ei�

��1
i" ei� d� D 2�i;

so the proof is complete.

As stated before, the C 2-hypothesis can be relaxed to C 1.
A function u.z/ of the form u.z/ D v.z/=.z � a/k; k 2 ZC, where v is holo-

morphic on a neighborhood O of a, is said to have a pole of order k at z D a if
v.a/ ¤ 0. In such a case, a variant of the preceding calculations yields

1

2�i

Z

�

u.z/ d z D 1

.k � 1/Š
v.k�1/.a/;

the coefficient of .z � a/k�1 in the power series of v.z/ about z D a, if � is a
smooth, simple, closed curve about a such that v is holomorphic on a neighbor-
hood of the closed region bounded by � . This quantity is called the residue of u.z/
at z D a.

One can often evaluate integrals by evaluating residues. We give a simple il-
lustration here; others are given in (2.48), (3.32), (A.14), and (A.15). Here we
evaluate

(2.43)
Z 1

�1
dx

1C x2
D lim
R!1

Z

�R

d z

1C z2
;

where �R is the closed curve, going from �R toR along the real axis, then fromR

to �R counterclockwise on the circle of radiusR centered at 0, that is, �R D @OR,
where OR D fz W Re z > 0; jzj < Rg. There is just one pole of .1C z2/�1 in OR,
located at z D i . Since .1C z2/�1 D .z C i/�1.z � i/�1, we see that the residue
of .1C z2/�1 at z D i is 1=2i , so

Z 1

�1
dx

1C x2
D �:

Exercises

1. Suppose u satisfies the following Neumann boundary problem in the disk D:

(2.44) �u D 0 in D; @u

@r
D g on S1:
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If u D PI.f /, show that f and g must be related by Og.k/ D jkj Of .k/, for all k 2 Z,
that is,

(2.45) g D Nf;

with N defined by (2.13).
2. Define the function kN by

kN .�/ D
X

k¤0
jkj�1eik� :

Show that kN 2 L2.S1/ � L1.S1/. Also show that, provided g 2 L2.S1/ and

(2.46)
Z

S1

g.�/ d� D 0;

a solution to (2.45) is given by

(2.47) f .�/ D .2�/�1
Z

S1

kN .� � '/g.'/ d' D Tg.�/:

3. If T is defined by (2.47), show that T W Lp.S1/ ! Lp.S1/ for p 2 Œ1;1/ and
T W C `.S1/ ! C `.S1/ for ` D 0; 1; 2; : : : .

4. Given g 2 C 1.S1/, show that (2.44) has a solution u 2 C 1.D/ if and only if (2.46)
holds. If g 2 C `.S1/, show that (2.44) has a solution u 2 C `.D/.
Note: Regularity results of a more precise nature are given in Chap. 4, �4, in Exercise
1. See also Chap. 5, �7, for more general results.

5. Let 	 � R2 be a smooth, bounded, connected region. Show that if w 2 C 2.	/;
�w D 0 on 	, and @w=@
 D 0 on @	, then w is constant. (Hint: Use (2.19).)
Note: One can weaken the C 2-hypothesis to w 2 C 1.	/; compare Proposition 2.2 of
Chap. 5. For another type of relaxation, see Chap. 4, �4, Exercise 3.

6. Show that a C 1-function f W 	 ! C is holomorphic if and only if, at each z 2
	; Df .z/, a priori a real linear map on R2, is in fact complex linear on C.
Note: This exercise has already been given in Chap. 1, �1.

7. Let f be a holomorphic function on 	 � C, with f W 	 ! O, and let u be harmonic
on O. Show that v D u ı f is harmonic on 	. (Hint: For a short proof, write u locally
as a sum of a holomorphic and an anti-holomorphic function.)

8. Let g.z/ D P1
1 akzk , and form the harmonic function u D 2 Re g D g C g. Show

that, under appropriate hypotheses on .ak/; gjS1 D PC.ujS1 /, where PC is given by

PCf .�/ D
1X

kD0
Of .k/eik� :

9. Find a holomorphic function on D that is unbounded but whose real part has a contin-
uous extension to D.
Reconsider this problem after reading �6 of Chap. 5.

10. Hence show that PC does not map C.S1/ to itself, nor does it map any C `.S1/ to
itself, for any integer ` � 0.

11. Hence find f 2 C 1.S1/ such that PI f … C 1.D/.
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12. Use the method of residues to calculate

(2.48)
Z 1

�1
ei�x

1C x2
dx; � � 0:

(Hint: Write this as limR!1
R
�R
ei�z=.1Cz2/ d z, with �R as in (2.43), given � � 0.

Then find the residue of ei�z=.1C z2/ at z D i:)
13. Use the Poisson integral formula (2.5) to prove the following. Let u 2 C 2.D/\C.D/

be harmonic in the disk D D fz 2 C W jzj < 1g. Assume u � 0 on D and u.0/ D 1.
Then

(2.49) jzj D a 2 Œ0; 1/ H) u.z/ � 1 � a
1C a

:

This result is known as a Harnack inequality. Hint. Use the inequality

jwj D 1; jzj D a 2 Œ0; 1/ H) 1� jzj2
jw � zj2 � 1 � a

1C a
:

Note. By translating and scaling, if u is harmonic and � 0 on DR.p/ D fz 2 C W
jz � pj < Rg, then

jz � pj D a 2 Œ0; R/ H) u.z/ � R � a
RC a

u.p/:

14. Using Exercise 13, show that if u is harmonic in the entire plane C and u � 0 on C,
then u is constant. More generally, if there exists a constant K such that u � K on
C, then u is constant. This is a version of Liouville’s theorem. See Proposition 4.6 for
another version.

15. Using Exercise 13, show that there exists A 2 .0;1/ with the following property. Let
u be harmonic on DR.0/. Assume

u.0/ D 0; u.z/ � M on DR.0/:

Then
u.z/ � �AM on DR=2.0/:

(Hint. Set v.z/ D M � u.z/, so v.z/ � 0 on DR.0/; v.0/ D M . Say p 2 DR=2.0/;
u.p/ D infDR=2.0/

u. Deduce that

v.z/ � 1

3
.M � u.p// on DR=4.p/;

and from there that

AvgDR.0/
v � 1

16
� 1
3
.M � u.p//;

while this average is equal to v.0/ D M .)
16. Assume u is harmonic on C and

u.z/ � C0 C C1jzjk ; 8 z 2 C;

with C0; C1 2 .0;1/. Take A from Exercise 15. Show that there exists C2 such that

u.z/ � �C2 � AC1jzjk ; 8 z 2 C:
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Note. In conjunction with Proposition 4.6, one gets that u.z/ must be a polynomial of
degree � k in x and y.

17. Let 	 be the strip 	 D fz 2 C W 0 < Re z < 1g, with closure 	. Let f be continuous
on 	 and holomorphic on 	. Show that if f is bounded,

jf .z/j � A on @	 H) jf .z/j � A on 	:

(Hint. First prove the implication under the additional hypothesis that jf .z/j ! 0 as

jzj ! 1. Then consider f".z/ D e"z
2
f .z/.)

18. In the setting of Exercise 17, show that if � 2 .0; 1/,

jf .iy/j � A; jf .1C iy/j � B; 8y 2 R H) jf .� C iy/j � A1��B� ; 8 y 2 R:

This result is known as the Hadamard three-lines lemma. (Hint. Consider g.z/ D
Az�1B�zf .z/.)

3. The Fourier transform

The Fourier transform is defined by

(3.1) Ff .�/ D Of .�/ D .2�/�n=2
Z
f .x/e�ix�� dx

when f 2 L1.Rn/. It is clear that

(3.2) F W L1.Rn/ �! L1.Rn/:

This is analogous to (1.3). The analogue for C1.Tn/, and simultaneously for
s.Zn/, of �1, in this case is the Schwartz space of rapidly decreasing functions:

(3.3) S.Rn/ D
n
u 2 C1.Rn/ W xˇD˛u 2 L1.Rn/ for all ˛; ˇ � 0

o
;

where xˇ D x
ˇ1

1 � � �xˇn
n ; D

˛ D D
˛1

1 � � �D˛n
n , with Dj D �i@=@xj . It is easy to

verify that

(3.4) F W S.Rn/ �! S.Rn/

and

(3.5) �˛D
ˇ

�
Ff .�/ D .�1/jˇ jF.D˛xˇf /.�/:

We define F� by

(3.6) F�f .�/ D Qf .�/ D .2�/�n=2
Z
f .x/eix�� dx;
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which differs from (3.1) only in the sign of the exponent. It is clear that F�
satisfies the mapping properties (3.2), (3.4), and

(3.7) .Fu; v/ D .u;F�v/;

for u; v 2 S.Rn/, where .u; v/ denotes the usual L2-inner product, .u; v/ DR
u.x/ v.x/ dx.
As in the theory of Fourier series, the first major result is the Fourier inversion

formula. The following is our first version.

Proposition 3.1. We have the inversion formula

(3.8) F�F D FF� D I on S.Rn/:

As in the proof of the inversion formula for Fourier series, via Proposition 1.1,
in the present proof we will sneak up on the inversion formula by throwing in
a convergence factor that will allow interchange of orders of integration (in the
proof of Proposition 1.1, the orders of an integral and an infinite series were
interchanged). Also, as we will see in �5, this method will have serendipitous
applications to PDE. So, let us write, for f 2 S.Rn/,

(3.9)

F�Ff .x/ D .2�/�n
Z �Z

f .y/e�iy��dy
�
eix�� d�

D .2�/�n lim
"&0

“
f .y/ e�"j�j2 ei.x�y/�� dy d�:

We can interchange the order of integration on the right for any " > 0, to obtain

(3.10) F�Ff .x/ D lim
"&0

Z
f .y/p."; x � y/ dy;

where

(3.11) p."; x/ D .2�/�n
Z
e�"j�j2Cix�� d�:

Note that

(3.12) p."; x/ D "�n=2 q."�1=2x/;

where q.x/ D p.1; x/. In a moment we will show that

(3.13) p."; x/ D .4�"/�n=2 e�jxj2=4":
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The derivation of this identity will also show that

(3.14)
Z

Rn

q.x/ dx D 1:

From this, it follows as in the proof of Proposition 1.1 that

(3.15) lim
"&0

Z
f .y/p."; x � y/ dy D f .x/;

for any f 2 S.Rn/, even for f bounded and continuous, so we have proved
F�F D I on S.Rn/; the proof that FF� D I on S.Rn/ is identical.

It remains to verify (3.13). We observe that p."; x/, defined by (3.11), is an
entire holomorphic function of x 2 Cn, for any " > 0. It is convenient to verify
that

(3.16) p."; ix/ D .4�"/�n=2 ejxj2=4"; x 2 Rn;

from which (3.13) follows by analytic continuation. Now

(3.17)

p."; ix/ D .2�/�n
Z
e�x���"j�j2 d�

D .2�/�nejxj2=4"
Z
e�jx=2p

"Cp
"�j2 d�

D .2�/�n"�n=2ejxj2=4"
Z

Rn

e�j�j2 d�:

To prove (3.16), it remains to show that

(3.18)
Z

Rn

e�j�j2 d� D �n=2:

Indeed, if

(3.19) A D
Z 1

�1
e��2

d�;

then the left side of (3.18) is equal to An. But for n D 2 we can use polar
coordinates:

(3.20) A2 D
Z

R2

e�j�j2 d� D
Z 2�

0

Z 1

0

e�r2

r dr d� D �:

This completes the proof of the identity (3.16) and hence of (3.13).
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In light of (3.7) and the Fourier inversion formula (3.8), we see that, for u; v 2
S.Rn/,

(3.21) .Fu;Fv/ D .u; v/ D .F�u;F�v/:

Thus F and F� extend uniquely from S.Rn/ to isometries on L2.Rn/ and are
inverses to each other. Thus we have the Plancherel theorem:

Proposition 3.2. The Fourier transform

(3.22) F W L2.Rn/ �! L2.Rn/

is unitary, with inverse F�.

The inversion formulas of Propositions 3.1 and 3.2 do not provide for the inversion
of F in (3.2). We will obtain this as a byproduct of the Fourier inversion formula
for tempered distributions, in the next section.

We make a remark about the computation of the Fourier integral (3.11), done
above via analytic continuation. The following derivation does not make any di-
rect use of complex analysis. It suffices to handle the case " D 1=2, that is, to
show

(3.23) OG.�/ D e�j�j2=2 if G.x/ D e�jxj2=2; on Rn:

We have interchanged the roles of x and � compared to those in (3.11) and (3.13).
It suffices to get (3.23) in the case n D 1, by the obvious multiplicativity. Now
the Gaussian function G.x/ D e�x2=2 satisfies the differential equation

(3.24)
� d

dx
C x

�
G.x/ D 0:

By the intertwining property (3.5), it follows that .d=d� C �/ OG.�/ D 0, and
uniqueness of solutions to this ODE yields OG.�/ D Ce��2=2. The constant C is
evaluated via the identity (3.20); C D 1; and we are done.

As for the necessity of computing the Fourier integral (3.11) to prove the
Fourier inversion formula, let us note the following. For any g 2 S.Rn/ with
g.0/ D 1, (g.�/ D e�j�j2 being an example), we have (replacing " by ı2), just as
in (3.9),

(3.25)

F�Ff .x/ D .2�/�n lim
ı&0

“
f .y/g.ı�/ei.x�y/�� dy d�

D lim
ı&0

Z
f .y/hı .x � y/ dy;
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where

(3.26)
hı.x/ D .2�/�n

Z
g.ı�/eix�� d�

D .2�/�n=2ı�n Qg.ı�1x/:

By the peaked nature of hı as ı ! 0, we see that the limit in (3.25) is equal to

(3.27) C f .x/;

where

(3.28) C D
Z
h1.x/ dx D .2�/�n=2

Z
Qg.x/ dx:

The argument (3.25)–(3.27) shows that C is independent of the choice of g 2
S.Rn/, and we need only find a single example g such that Qg.x/ can be evaluated
explicitly and then the integral on the right in (3.28) can be evaluated explicitly.
In most natural examples one picks g to be even, so Qg D Og.

We remark that one does not need to have g 2 S.Rn/ in the argument above; it
suffices to have g 2 L1.Rn/, bounded and continuous, and such that Og 2 L1.Rn/.
An example, in the case n D 1, is

(3.29) g.�/ D e�j�j:

In this case, elementary calculations give

(3.30) Og.x/ D
� 2
�

�1=2 1

x2 C 1
I

compare (5.21). In this case, (3.28) can be evaluated in terms of the arctangent.
Another example, in the case n D 1, is

(3.31)
g.�/ D 1 � j�j if j�j � 1;

0 if j�j � 1:

In this case,

(3.32) Og.x/ D .2�/�1=2
 

sin 1
2
x

1
2
x

!2
;

and (3.28) can be evaluated by the method of residues. The calculation of (3.32)
can be achieved by evaluating

Z 1

0

.1 � �/ cos x� d�

via an integration by parts, though there is a more painless way, mentioned below.
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We now make some comments on the relation between the Fourier transform
and convolutions. The convolution u � v of two functions on Rn is defined by

(3.33)
u � v.x/ D

Z
u.y/v.x � y/ dy

D
Z

u.x � y/v.y/ dy:

Note that u � v D v � u. If u; v 2 S.Rn/, so is u � v. Also

ku � vkLp.Rn/ � kukL1 kvkLp ;

so the convolution has a unique, continuous extension to a bilinear map

(3.34) L1.Rn/ � Lp.Rn/ �! Lp.Rn/;

for 1 � p < 1; one can directly perceive that this also works for p D 1.
Note that the right side of (3.10), for any " > 0, is an example of a convolution.
Computing the Fourier transform of (3.33) leads immediately to the formula

(3.35) F.u � v/.�/ D .2�/n=2 Ou.�/ Ov.�/:

We also note that if

(3.36) P D
X

j˛j�k
a˛D

˛

is a constant-coefficient differential operator, we have

(3.37) P.u � v/ D .P u/ � v D u � .Pv/

if u; v 2 S.Rn/. This also generalizes; if u 2 S.Rn/; v 2 Lp.Rn/, the first
identity continues to hold; as we will see in the next section, so does the second
identity, once we are able to interpret what it means.

We mention the following simple application of (3.35), to a short calculation
of (3.32). With g given by (3.31), we have g D g1 � g1, where

(3.38) g1.�/ D 1 for � 2
h
�1
2
;
1

2

i
; 0 otherwise:

Thus

(3.39) Og1.x/ D .2�/�1=2
Z 1=2

�1=2
e�ix� d� D .2�/�1=2

sin 1
2
x

1
2
x
;

and then (3.32) follows immediately from (3.35).



228 3. Fourier Analysis, Distributions, and Constant-Coefficient Linear PDE

Exercises

1. Show that F W L1.Rn/ ! C0.Rn/, where C0.Rn/ denotes the space of functions v,
continuous on Rn, such that v.�/ ! 0 as j�j ! 1.
(Hint: Use the denseness of S.Rn/ in L1.Rn/:)
This result is the Riemann–Lebesgue lemma for the Fourier transform.

2. Show that the Fourier transforms (3.1) and (3.22) coincide on L1.Rn/\ L2.Rn/.
3. For f 2 L1.R/, set SRf .x/ D .2�/�1=2

R R
�R Of .�/eix�d� . Show that

SRf .x/ D DR � f .x/ D
Z 1

�1
DR.x � y/f .y/ dy;

where

DR.x/ D .2�/�1
Z R

�R
eix� d� D sinRx

�x
:

Compare Exercise 5 of �1.
4. Show that f 2 L2.R/ ) SRf ! f in L2-norm as R ! 1.
5. Show that there exist f 2 L1.R/ such that SRf … L1.R/ for any R 2 .0;1/.

(Hint: Note that DR … L1.R/:)
6. For f 2 L1.R/, set

CRf .x/ D .2�/�1=2
Z R

�R

	
1 � j�j

R



Of .�/eix� d�:

Show that CRf .x/ D ER � f .x/, where

ER.x/ D .2�/�1
Z R

�R

	
1 � j�j

R



eix� d� D 2

�R

"
sin 12Rx

x

#2
:

Note that ER 2 L1.R/. Show that, for 1 � p < 1,

f 2 Lp.R/ H) CRf ! f in Lp-norm, as R ! 1:

We say the Fourier transform of f is Cesaro–summable if CRf ! f as R ! 1.

In Exercises 7–13, suppose f 2 S.R/ has the following properties: f � 0,R1
�1 f .x/ dx D 1, and

R1
�1 xf .x/ dx D 0. Set F.�/ D .2�/1=2 Of .�/. The point of

the exercises is to obtain a version of the central limit theorem.
7. Show that F.0/ D 1; F 0.0/ D 0; F 00.0/ D �2a < 0. Also, � ¤ 0 ) jF.�/j < 1.
8. Set Fn.�/ D F.�=

p
n/n. Relate .2�/�1=2 QFn.x/ to the convolution of n copies of f .

9. Show that there exist A > 0 and G 2 C1.Œ�A;A�/ such that f .�/ D e�a�2
G.�/ for

j�j � A, and G.0/ D 1; G0.0/ D G00.0/ D 0. Hence

Fn.�/ D e�a�2

G.n�1=2�/n; for j�j � A
p
n:

10. Show that
ˇ̌
G.�=

p
n/n � 1

ˇ̌ � Cn�˛ if j�j � n.1=2�˛/=3, for n large.
Fix ˛ 2 .0; 12 /, and set � D .1=2 � ˛/=3 2 .0; 16 /.
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11. Show that, for j�j � n� ;
ˇ̌
F.�=

p
n/
ˇ̌ � 1 � 1

2an
�.1�2�/, for n large, so jFn.�/j �

e�an2� =4 D ın. Deduce that

Z

j�j�n�

jFn.�/j d� � C ı
.n�1/=n
n

p
n ! 0; as n ! 1:

12. From Exercises 9–11, deduce that Fn ! e�a�2
in L1.R/ as n ! 1.

13. Deduce now that .2�/�1=2 QFn ! .4�a/�1=2e�x2=4a in both C0.R/ and L1.R/, as
n ! 1. Relate this to the central limit theorem of probability theory. Weaken the
hypotheses on f as much as you can.
(Hint: In passing from the C0-result to the L1-result, positivity of QFn will be useful.)

14. With p".x/ D .4�"/�1=2e�x2=4", as in (3.13) for n D 1, show that, for any u.x/,
continuous and compactly supported on R; p" � u ! u uniformly as " ! 0. Show
that for each " > 0; p" � u.x/ is the restriction to R of an entire holomorphic function
of x 2 C.

15. Using Exercise 14, prove the Weierstrass approximation theorem:
Any f 2 C.Œa; b�/ is a uniform limit of polynomials.

(Hint: Extend f to u as above, approximate u by p" � u, and expand this in a power
series.)

16. Suppose f 2 S.Rn/ is supported in BR D fx 2 Rn W jxj � Rg. Show that Of .�/ is
holomorphic in � 2 Cn and satisfies

(3.40) j Of .� C i/j � CN h�i�N eRj�j; �;  2 Rn:

17. Conversely, suppose g.�/ D Of .�/ 2 S.Rn/ has a holomorphic extension to Cn

satisfying (3.40). Show that f is supported in jxj � R.
(Hint: With ! D x=jxj; r � 0, write

(3.41) f .x/ D .2�/�n=2
Z

Rn

Of .� C ir!/eix���rx�! d�;

with

j Of .� C ir!/ eix���rx�! j � CN h�i�N er.R�jxj/;

and let r ! C1:)
This is a basic case of the Paley–Wiener theorem.

18. Given f 2 L1.Rn/, show that f is supported inBR if and only if Of .�/ is holomorphic
in Cn, satisfying

j Of .� C i/j � C eRj�j; �;  2 Rn:

Reconsider this problem after reading �4.
19. Show that

f .x/ D 1

cosh x
H) Of .�/ D

p
�=2

cosh �
2 �
:

(Hint: See (A.13)–(A.15).)
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4. Distributions and tempered distributions

L. Schwartz’s theory of distributions has proved to be not only a wonderful tool in
partial differential equations, but also a device that lends clarity to many aspects of
Fourier analysis. We sketch the basic concepts of distribution theory here, making
use of such basic concepts as Fréchet spaces and weak topologies, which are
treated in Appendix A, Functional Analysis.

We begin with the concept of a tempered distribution. This is a continuous
linear functional

(4.1) w W S.Rn/ �! C;

where S.Rn/ is the Schwartz space defined in �3. The space S.Rn/ has a topol-
ogy, determined by the seminorms

(4.2) pk.u/ D
X

j˛j�k
sup
x2Rn

hxikjD˛u.x/j:

The distance function

(4.3) d.u; v/ D
1X

kD0
2�k pk.u � v/

1C pk.u � v/

makes S.Rn/ a complete metric space; with such a topology it is a Fréchet space.
For a linear map w as in (4.1) to be continuous, it is necessary and sufficient that,
for some k; C ,

(4.4) jw.u/j � C pk.u/; for all u 2 S.Rn/:

The action of w is often written as follows:

(4.5) w.u/ D hu; wi:

The set of all continuous linear functionals on S.Rn/ is denoted

(4.6) S 0.Rn/

and is called the space of tempered distributions.
The space S 0.Rn/ has a topology, called the weak� topology, or sometimes

simply the weak topology, in terms of which a directed family w� converges to w
weakly in S 0.Rn/ if and only if, for each u 2 S.Rn/; hu; w�i ! hu; wi. One can
also consider the strong topology on S 0.Rn/, the topology of uniform convergence
on bounded subsets of S.Rn/, but we will not consider this explicitly. For more on
the topology of S and S 0, see [H,Sch,Yo]. We now consider examples of tempered
distributions.
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There is a natural injection

(4.7) Lp.Rn/ ,! S 0.Rn/;

for any p 2 Œ1;1�, given by

(4.8) hu; f i D
Z

u.x/f .x/ dx; u 2 S.Rn/; f 2 Lp.Rn/:

Similarly any finite measure on Rn gives an element of S 0.Rn/. The basic exam-
ple is the Dirac “delta function” ı, defined by

(4.9) hu; ıi D u.0/:

Also, each differential operatorDj D �i@=@xj acts on S 0.Rn/, by the definition

(4.10) hu;Djwi D �hDj u; wi; u 2 S; w 2 S 0:

Iterating, we see that each D˛ D D
˛1

1 � � �D˛n
n acts on S 0:

(4.11) D˛ W S 0.Rn/ �! S 0.Rn/;

and we have

(4.12) hu;D˛wi D .�1/j˛jhD˛u; wi

for u 2 S; w 2 S 0. Similarly,

hu; f wi D hf u; wi
defines fw forw 2 S 0, provided that f and each of its derivatives is polynomially
bounded.

To illustrate, consider on R the Heaviside function

(4.13)
H.x/ D 1 if x � 0;

0 if x < 0:

ThenH 2 L1.R/ � S 0.R/, and the definition (4.10) gives

(4.14)
d

dx
H D ı

as a consequence of the fundamental theorem of calculus. The derivative of ı is
characterized by

(4.15) hu; ı0i D �u0.0/

in this case.
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The Fourier transform F W S.Rn/ ! S.Rn/, studied in �3, extends to S 0 by
the formula

(4.16) hu;Fwi D hFu; wiI

we can also set

(4.17) hu;F�wi D hF�u; wi

to get

(4.18) F ; F� W S 0.Rn/ �! S 0.Rn/:

The maps (4.18) are continuous when S 0.Rn/ is given the weak� topology, as
follows easily from the definitions.

The Fourier inversion formula of Proposition 3.1 yields:

Proposition 4.1. We have

(4.19) F�F D FF� D I on S 0.Rn/:

Proof. Using (4.16) and (4.17), if u 2 S; w 2 S 0,

hu;F�Fwi D hF�u;Fwi D hFF�u; wi D hu; wi;

and a similar analysis works for FF�w.

As an example of a Fourier transform of a tempered distribution, the definition
gives directly

(4.20) Fı D .2�/�n=2I

the Fourier transform of the delta function is a constant function. One has the
same result for F�ı. By the Fourier inversion formula,

(4.21) F1 D .2�/n=2ı:

Next, let us consider on the line R, for any " > 0,

(4.22)
H".x/ D e�"x for x � 0;

0 for x < 0:

We have, by elementary calculation,

(4.23) OH".�/ D .2�/�1=2
Z 1

0

e�"x�i�x dx D .2�/�1=2."C i�/�1;
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for each " > 0. Now it is clear that

(4.24) H" ! H as " & 0; in S 0.R/;

in the weak� topology. It follows that

(4.25) OH.�/ D .2�/�1=2 lim
"&0

."C i�/�1 in S 0.R/:

In particular, the limit on the right exists in S 0.R/. Changing the sign of x in
(4.22)–(4.24) and noting thatH.�x/ D 1 �H.x/, we also have

(4.26) .2�/1=2ı � OH D .2�/�1=2 lim
"&0

." � i�/�1 in S 0.R/:

Let us set

(4.27) .� ˙ i0/�1 D lim
"&0

.� ˙ i"/�1:

Then (4.25) and (4.26) give

(4.28) OH D �i.2�/�1=2.� � i0/�1

and

(4.29) .� C i0/�1 � .� � i0/�1 D �2�iı:

The last identity is often called the Plemelj jump relation. Also, subtracting (4.25)
from (4.26) gives

(4.30) .� C i0/�1 C .� � i0/�1 D .2�/1=2i csgn.�/;

where

(4.31)
sgn.x/ D 1 if x � 0;

�1 if x < 0:

It is also an easy exercise to show that

(4.32) .� C i0/�1 C .� � i0/�1 D 2 PV

	
1

�



;

where the “principal value” distribution

(4.33) PV
� 1
x

�
2 S 0.R/
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is defined by

(4.34)


u; PV

	
1

x


�
D lim
h&0

Z

Rn.�h;h/

u.x/

x
dx

D lim
h&0

Z 1

h

�
u.x/

x
� u.�x/

x

�
dx

D
Z 1

0

u.x/ � u.�x/
x

dx:

Note that if we replace the left side of (4.29) by

1

� C i"
� 1

� � i"
D � 2i"

�2 C "2
D �2i 1

"
� 1

.�="/2 C 1
;

the conclusion (4.29) is a special case of the following obvious result.

Proposition 4.2. If f 2 L1.Rn/; R f .x/dx D C0, then, as " ! 0,

(4.35) "�nf ."�1x/ ! C0ı in S 0.Rn/:

That ı is the limit of a sequence of elements of S.Rn/ is a special case of the fact
that S.Rn/ is dense in S 0.Rn/, which will be established shortly.

Given w 2 S 0.Rn/, if 	 � Rn is open, one says w vanishes on 	 provided
hu; wi D 0 for all u 2 C1

0 .	/. By a partition of unity argument, it follows that if
w vanishes on 	j , then it vanishes on their union; w is said to be supported on a
closed set K � Rn if w vanishes on Rn nK . The smallest closed set K on which
w is supported exists; it is denoted supp w. Note that if w vanishes on all of Rn,
then w D 0, since C1

0 .R
n/ is dense in S.Rn/. (See the first part of the proof of

Proposition 4.4 below.) If w 2 S 0.Rn/ is supported on a compact set K � Rn,
we say w has compact support. The space of compactly supported distributions
on Rn is denoted by

(4.36) E 0.Rn/:

If w 2 S 0.Rn/ is supported on a compact set K � Rn, then w can be extended to
a continuous linear functional

(4.37) w W C1.Rn/ �! C

by setting

(4.38) hu; wi D h�u; wi; u 2 C1.Rn/;
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for any � 2 C1
0 .R

n/ such that � D 1 on a neighborhood of K . The space
C1.Rn/ is also a Fréchet space, with topology defined by the seminorms

(4.39) pR;k.u/ D sup
jxj�R

X

j˛j�k
jD˛u.x/j:

To say a linear map (4.37) is continuous is to say there exist R; k, and C such that

(4.40) jw.u/j � C pR;k.u/; for all u 2 C1.Rn/:

Such a linear functional restricts to S.Rn/ � C1.Rn/, so it defines an element
of S 0.Rn/, and from (4.40) it follows that such an element must be supported in
the compact set fx 2 Rn W jxj � Rg. Thus the space (4.36) is precisely the dual
space of C1.Rn/.

Fourier transforms of compactly supported distributions have some special
properties.

Proposition 4.3. If w 2 E 0.Rn/, then Ow 2 C1.Rn/ and, with e�.x/ D e�ix�� ,

(4.41) Ow.�/ D .2�/�n=2he� ; wi;

for all � 2 Rn. Furthermore, Ow extends to an entire holomorphic function of
� 2 Cn.

Proof. For any u 2 S.Rn/; hu; Owi D hOu; wi. Now we can write

(4.42) Ou.x/ D .2�/�n=2
Z

u.�/ e�.x/ d�;

the integral converging in the Fréchet space topology of C1.Rn/, and the conti-
nuity of w acting on C1.Rn/ implies

hOu; wi D .2�/�n=2
Z

u.�/he� ; wi d�;

which gives (4.41). The right side of (4.41) is clearly holomorphic in � 2 Cn.

We next obtain the promised denseness of S.Rn/ in S 0.Rn/.

Proposition 4.4. C1
0 .R

n/ is dense in S 0.Rn/, with its weak� topology.

Proof. Pick ' 2 C1
0 .R

n/; '.0/ D 1. It is easy to see that, given w 2 S 0.Rn/,
'w is well defined, by hu; 'wi D h'u; wi. Also, if 'j .x/ D '.x=j /, then for
u 2 S.Rn/,

(4.43) 'ju ! u in S.Rn/;
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which gives sequential denseness of C1
0 .R

n/ in S.Rn/. Hence 'jw ! w

in S 0.Rn/ as j ! 1. Since F and F� are continuous on S 0.Rn/, we have
F�.'j Ow/ ! w as j ! 1. Now for each j; wjk D 'k.F�'j Ow/ ! F�.'j Ow/
as k ! 1. But by Proposition 4.3, F�.'j Ow/ is smooth, so wjk 2 C1

0 .R
n/, and

the result follows.

One useful result is the following classification of distributions supported at a
single point.

Proposition 4.5. If w 2 S 0.Rn/ is supported by f0g, then there exist k and com-
plex numbers a˛ such that

(4.44) w D
X

j˛j�k
a˛D

˛ı:

Proof. We can suppose w satisfies the estimate (4.4). Thus w extends to Bk , the
closure of S.Rn/ in the space of C k-functions on Rn for which the norm pk is
finite. By hypothesis, w annihilates the linear space E0 of elements of C1

0 .R
n/

vanishing on a neighborhood of 0; thus w annihilates the closure of E0 in Bk; call
this closure Ek . It is not hard to prove that

(4.45) Ek D fu 2 Bk W D˛u.0/ D 0 for j˛j � kg:

See Exercise 7 below for some hints. Now, for general u 2 Bk , write

(4.46) u.x/ D �

2

4
X

j˛j�k

u.˛/.0/

˛Š
x˛

3

5C ub.x/;

where � 2 C1
0 .R

n/; �.x/ D 1 for jxj < 1, and ub 2 Ek . Applying w to both
sides, we have an expression of the form (4.44), with a˛ D .�1/j˛jh�x˛ ; wi=˛Š.

As an application of Proposition 4.5, we establish the following result, which
is an extension of the classical Liouville theorem for harmonic functions.

Proposition 4.6. Suppose u 2 S 0.Rn/ satisfies

(4.47) �u D 0 in Rn:

Then u is a polynomial in .x1; : : : ; xn/.

Proof. As in �3, the identity

(4.48) �u D f 2 S 0.Rn/



4. Distributions and tempered distributions 237

is equivalent to

(4.49) �j�j2 Ou D Of in S 0.Rn/:

In particular, (4.47) for u 2 S 0.Rn/ implies

(4.50) j�j2 Ou D 0 in S 0.Rn/:

This of course implies

(4.51) supp Ou � f0g:

By Proposition 4.5, Ou must have the form (4.44), and the result follows.

It is clear that any nonconstant polynomial blows up, so we have:

Corollary 4.7. If u is harmonic on Rn and bounded, then u is constant.

This is the classical version of the Liouville theorem. We remind the reader
of one of its uses. If p.z/ is a polynomial on C, and if it has no zeros, then
q.z/ D 1=p.z/ is holomorphic (hence harmonic) on all of C; clearly, jq.z/j ! 0

as jzj ! 1 if deg p � 1. Corollary 4.7 yields the obvious contradiction that q.z/
would have to be constant. This proves the fundamental theorem of algebra: Any
nonconstant polynomial p.z/ must have a complex root.

Consider the function

(4.52) ‰.z/ D 1

z
:

This is holomorphic on C n f0g. It is integrable near 0 and bounded outside a
neighborhood of 0, and hence it defines an element of S 0.R2/: .@=@z/‰ 2 S 0.R2/
is supported at f0g. In fact, we claim:

Proposition 4.8. We have

(4.53)
@

@z

1

z
D �ı:

Proof. Let u 2 C1
0 .R

2/. We have

(4.54)

D
u;
@

@z

1

z

E
D �

“

R2

@u

@z

1

z
dx dy

D � lim
"!0

“

R2nB"

@.z�1u/

@z
dx dy;
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where B" D f.x; y/ 2 R2 W x2 C y2 < "2g. By Green’s formula, in the form
(2.37), the right side is equal to

(4.55)
1

2i

Z

@B"

u

z
dz;

which is clearly equal in the limit " ! 0 to �u.0/. This proves the proposition.

We say .�z/�1 is a fundamental solution of .@=@z/. We will say more about the use
of fundamental solutions later. Let us look at the task of producing a fundamental
solution for the Laplace operator� on Rn. In view of the rotational invariance of
�, we are led to look for a function of r D jxj, for x ¤ 0. The form

(4.56) � D @2

@r2
C n � 1

r

@

@r
C 1

r2
�S ;

for � in polar coordinates, where �S is the Laplace operator on the unit sphere
Sn�1, shows that, for n � 3,

(4.57) jxj2�n

is harmonic for x ¤ 0. As it is locally integrable near 0, it defines an element of
S 0.Rn/. We have the following result.

Proposition 4.9. If n � 3,

(4.58) �
�jxj2�n� D Cnı on Rn;

with Cn D �.n � 2/�Area.Sn�1/. Also,

(4.59) �.log jxj/ D C2ı on R2;

with C2 D 2� .

Proof. This will use Green’s formula, in the form

(4.60)
Z

�

�
�u � v � u ��v� dx D

Z

@�

�
v
@u

@

� u

@v

@


�
dS:

Let u 2 C1
0 .R

n/ be arbitrary. Let v D jxj2�n, and let	 D 	" D Rn nB", where
B" D fx 2 Rn W jxj < "g. We have
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(4.61)

h�u; jxj2�ni D lim
"!0

Z

�"

�u � jxj2�n dx

D lim
"!0

Z

�"

�
�u � jxj2�n � u ��jxj2�n� dx

since �jxj2�n D 0 for x ¤ 0. Applying (4.60), we have this equal to

(4.62) � lim
"!0

Z

@B"

h
"2�n @u

@r
� .2 � n/"1�nu

i
dS:

Since the area of @B" is "n�1�Area Sn�1, this limit is seen to be

(4.63) �.n � 2/u.0/ � Area Sn�1;

which proves (4.58). The proof of (4.59) is similar.

Calculations yielding expressions for the area of Sn�1 will be given in the
appendix to this chapter.

Note that the equation

(4.64) �ˆ D ı on Rn;

with ˆ 2 S 0.Rn/, is equivalent to

(4.65) �j�j2 Ô D .2�/�n=2:

If n � 3; j�j�2 2 L1loc.R
n/ and one solution to (4.65) is

(4.66) Ô .�/ D �.2�/�n=2j�j�2 2 S 0.Rn/;

in such a case. We can relate this directly to (4.58) as follows. The orthogonal
group O.n/ acts on S.Rn/, by

(4.67) �.g/u.x/ D u.g�1x/; x 2 Rn; g 2 O.n/;

and this extends to an action on S 0.Rn/, via hu; �.g/vi D h�.g�1/u; vi. This
action commutes with F . Thus the Fourier transform of an element like jxj2�n
which is invariant under the O.n/-action will also be O.n/-invariant. There is also
the dilation action on S.Rn/,

(4.68) D.s/u.x/ D u.sx/; s > 0; x 2 Rn;
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which extends to S 0.Rn/, via hu;D.t/vi D t�nhD.1=t/u; vi. We have

(4.69) D.s/F D s�nFD.s�1/:

The element jxj2�n 2 S 0.Rn/ is homogeneous of degree 2 � n, that is,

(4.70) D.s/.jxj2�n/ D s2�njxj2�n;

so F.jxj2�n/ will be homogeneous of degree �2. This establishes that ˆ.x/ D
Cnjxj2�n satisfies (4.66), up to a constant factor. Note that ı 2 S 0.Rn/ is ho-
mogeneous of degree �n. Since the Laplace operator � decreases the order of
homogeneity of a distribution by two units, these considerations of orthogonal in-
variance and homogeneity directly suggest a constant times jxj2�n as a suitable
candidate for a fundamental solution for the Laplace operator on Rn.

We mention some extensions of the convolution

(4.71) u � v.x/ D
Z

u.y/v.x � y/ dy;

which gives a bilinear map

(4.72) S.Rn/ � S.Rn/ ! S.Rn/:

Note that if u; v; w 2 S.Rn/,

(4.73) hu � v;wi D hu; v# � wi;

where v#.x/ D v.�x/, so the convolution extends in a straightforward way to

(4.74) S.Rn/ � S 0.Rn/ ! S 0.Rn/;

with S.Rn/ � E 0.Rn/ ! S.Rn/, and hence

(4.75) E 0.Rn/ � S 0.Rn/ ! S 0.Rn/:

In either case, the identity

(4.76) F.u � v/ D .2�/n=2 Ou.�/ Ov.�/

continues to hold. For more on this, see Exercises 11–13 below. If P is any
constant-coefficient differential operator, then

(4.77) P.u � v/ D .P u/ � v D u � Pv
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in cases (4.74) and (4.75). For example, if ˆ 2 S 0.Rn/ and

(4.78) Pˆ D ı

(we say ˆ is a fundamental solution of P ), then a solution to

(4.79) P u D f;

for any given f 2 E 0.Rn/, is provided by

(4.80) u D f �ˆ:

An object more general than a tempered distribution is a distribution. In gen-
eral, a distribution on Rn is a continuous linear map

(4.81) w W C1
0 .R

n/ �! C:

Here, continuity can be characterized as follows. For each ' 2 C1
0 .R

n/, the
identity hu; 'wi D h'u; wi makes 'w a linear functional onC1.Rn/. We require
that each such linear functional be continuous, in the sense specified in (4.40). For
further discussion, including a direct discussion of the natural “inductive limit”
topology on C1

0 .R
n/, see [RS] and [Sch]. The space of all distributions on Rn is

denoted by

(4.82) D0.Rn/:

More generally, if M is any smooth, paracompact manifold, the space of con-
tinuous linear functionals on C1.M/ is denoted by E 0.M/ and the space of
continuous linear functionals on C1

0 .M/ is denoted by D0.M/. Of course, if
M is compact, E 0.M/ D D0.M/.

The case M D Tn is of interest, with respect to Fourier series. Given w 2
D0.Tn/, we can define

(4.83) Fw.k/ D Ow.k/ D .2�/�nhek; wi;

where

(4.84) ek.�/ D e�ik�� 2 C1.Tn/:

Since w must satisfy an estimate of the form

(4.85) jhu; wij � CkukC`.Tn/;

it is clear that

(4.86) F W D0.Tn/ �! s0.Zn/;



242 3. Fourier Analysis, Distributions, and Constant-Coefficient Linear PDE

where

(4.87) s0.Zn/ D fa W Zn ! C W ja.k/j � C hkiN for some C;N g

consists of polynomially bounded functions on Zn. Note that s0.Zn/ is the dual
space to s.Zn/, defined in �1, and the map F in (4.86) is the adjoint of the map
F� W s.Zn/ �! C1.Tn/ given by (1.11) and (1.12). Here we use the Hermitian
inner product .u; w/ D hu; wi D hu; wi. The map F W C1.Tn/ ! s.Zn/ given
by (1.1) and(1.6) also has an adjoint

(4.88) F� W s0.Zn/ ! D0.Tn/;

extending the map (1.11)–(1.12), which, we recall, is

(4.89) .F�a/.�/ D
X

k2Zn

a.k/eik�� :

The Fourier inversion formulas

(4.90) F�F D I on C1.Tn/; FF� D I on s.Zn/;

extend by duality (or by continuity, and denseness of C1.Tn/ in D0.Tn/ and of
s.Zn/ in s0.Zn/) to

(4.91) F�F D I on D0.Tn/; FF� D I on s0.Zn/I

consequently, the map (4.86) is an isomorphism.

Exercises

1. Define Mf u by hv;Mf ui D hf v; ui, for v 2 S.Rn/; u 2 S 0.Rn/: Mf u is
also denoted by f u. Show that Mf W S 0.Rn/ ! S 0.Rn/ continuously, provided
f 2 C1.Rn/ and each derivative is polynomially bounded, that is, jD˛f .x/j �
C˛hxiN.˛/.

2. Show that the identity �˛Dˇ
�
Ff .�/ D .�1/jˇ jF.D˛xˇf /.�/ from �3 continues to

hold for f 2 S 0.Rn/.
3. Calculate F of x˛ and of D˛ı.
4. Verify the identity (4.32) involving PV.1=�/.
5. Give a proof of Proposition 4.4, that S.Rn/ is dense in S 0.Rn/, using convolutions in

place of the Fourier transform.
6. Show the denseness of S.Rn/ in S 0.Rn/ follows from the Hahn–Banach theorem. See

Appendix A for a discussion of the Hahn–Banach theorem. On the other hand, sharpen
the proof of Proposition 4.4, to obtain sequential denseness.

7. Prove the identity (4.45), used in the proof of Proposition 4.5.
(Hint: Fix  2 C1.Rn/ so that .x/ D 0 for jxj � 1=2; 1 for jxj � 1. Show that
.Rx/u ! u in Bk , as R ! 1, for any u 2 Ek . This, plus a couple of further
approximations, yields (4.45).
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8. Let f .x; y/ D 1=z 2 S 0.R2/. Using (4.53), compute Ff 2 S 0.R2/. Using
Proposition 4.9, compute the Fourier transform of log jxj on R2, and of jxj2�n on
Rn; n � 3. Reconsider this problem after reading �8.

9. Let u 2 E 0.Rn/, and suppose hp; ui D 0 for every polynomial p on Rn. Show that
u D 0. (Hint: Show that D˛ Ou.0/ D 0 for all ˛; but Ou is analytic.)
Show that this result implies the Weierstrass approximation theorem, discussed in
Exercise 15 of �3.

10. Let f 2 C1.Rn/ be real-valued, ˙ D fx W f .x/ D 0g. Define ı.f .x// 2 D0.Rn/ to
be

(4.92) ı.f .x// D lim
"&0

ı".f .x//;

where ı".x/ D 1=" for jt j < "=2; 0 otherwise, provided this limit exists, with respect
to the weak� topology on D0.Rn/. Show that if rf ¤ 0 on ˙ , the limit does exist
and that, for u 2 C1

0 .Rn/,

˝
u; ı.f .x//

˛ D
Z

˙

u.y/jrf .y/j�1 dS.y/;

where dS is the .n� 1/-dimensional measure on˙ . Consider cases where the limit in
(4.92) exists though rf vanishes on a variety in ˙ .

11. Using an argument like that in the proof of Proposition 4.5, show that if u 2 S 0.Rn/
has support in a closed ball B , then, for some C; k,

jhf; uij � C sup
x2B;j˛j�k

jD˛f .x/j:

(Hint: Establish the following analogue of (4.45). If EB is the linear space of elements
of C1

0 .Rn/ vanishing on a neighborhood of B , and Ek is the closure of EB in Bk ,
then

Ek D fu 2 Bk W u D 0 on Bg:
Then show that if u W Bk ! C is continuous and supp u � B ,

hf; ui D hE�.f /; ui;
where �.f / D f

ˇ̌
B

and E W C k.B/ ! Bk is an extension operator. For help in
constructing E, look ahead to �4 of Chap. 4.)

12. If u 2 E 0.Rn/, show that Ou 2 C1.Rn/ satisfies an estimate

(4.93) jOu.�/j � C h�im; � 2 Rn;

for some m 2 R. More generally, show that if a distribution u has support in BR D
fx 2 Rn W jxj � Rg, then

(4.94) jOu.� C i/j � C h� C iim eRj�j; �;  2 Rn:

(Hint. Use (4.39)–(4.41). For (4.94), use the result of Exercise 11.)
13. Given the formula (4.76) for F.u � v/ when u 2 S.Rn/; v 2 S 0.Rn/, show that if

u 2 S.Rn/ and v 2 E 0.Rn/, then F.u�v/ 2 S.Rn/, hence u�v 2 S.Rn/, as asserted
above (4.75). (Hint: Use (4.93).)
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14. Show that the convolution product extends to

E 0.Rn/ � D0.Rn/ �! D0.Rn/; E 0.Rn/ � E 0.Rn/ ! E 0.Rn/:

15. Given u 2 E 0.Rn/, show that there exist k 2 ZC; f 2 L2.Rn/ such that u D
.1 ��/kf .
(Hint: Obtain h�i�2kCm 2 L2.Rn/:)
Show that there exist compactly supported f˛ 2 L2.Rn/ such that u D P

j˛j�k D˛f˛ .
16. Assume that u 2 S 0.Rn/ and Ou is holomorphic in Cn and satisfies (4.94). Show that

u is supported in the ball BR. This is the distributional version of the Paley–Wiener
theorem.
(Hint: Pick ' 2 C1

0 .Rn/, supported in B1;
R
' dx D 1, let '".x/ D "�n'.x="/,

and consider u" D '" � u 2 S.Rn/. Apply Exercises 17 and 18 of �3.)

5. The classical evolution equations

In this section we analyze solutions to the classical heat equation on RC � Rn, to
the Laplace equation on RnC1

C , and to the wave equation on R � Rn. We begin
with the heat equation for u D u.t; x/,

(5.1)
@u

@t
��u D 0;

where� is the Laplace operator on Rn,

(5.2) �u D @2u

@x21
C � � � C @2u

@x2n
:

We pose an initial condition

(5.3) u.0; x/ D f .x/:

We suppose that f 2 S 0.Rn/, and we look for a solution u 2 C1.RC
;S 0.Rn//,

via Fourier analysis. Taking the Fourier transform of u with respect to x, we obtain
the ODE with parameters

(5.4)
@Ou
@t

D �j�j2 Ou.t; �/;

with initial condition

(5.5) Ou.0; �/ D Of .�/:
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The unique solution to (5.4)–(5.5) is

(5.6) Ou.t; �/ D e�t j�j2 Of .�/:

Set

(5.7) G.t; �/ D e�t j�j2 :

Note that, for each t > 0; G.t; �/ 2 S.Rn/. By (4.76), we have

(5.8) u.t; x/ D .2�/�n=2 OG.t; �/ � f .x/:

The computation of the Fourier transform of such a Gaussian function was made
in �3. From (3.18), we deduce that

(5.9) u.t; x/ D p.t; �/ � f .x/;

where

(5.10) p.t; x/ D .4�t/�n=2e�jxj2=4t ;

for t > 0. The function p.t; x/ is called the fundamental solution to the heat
equation. It satisfies

(5.11)
.@=@t ��/p D 0; for t > 0;

lim
t&0

p.t; x/ D ı.x/ in S 0.Rn/:

We record what Fourier analysis has yielded for the heat equation.

Proposition 5.1. The heat equation (5.1)–(5.3), with f 2 S 0.Rn/, has a unique

solution u 2 C1.RC
;S 0.Rn//, given by (5.9)–(5.10). The solution is C1 on

.0;1/ � Rn. If f 2 S.Rn/, then u 2 C1.RC
;S.Rn//.

Note carefully that uniqueness of the solution is asserted only within the class

C1.RC
;S 0.Rn//; this entails bounds on the solution considered, near infinity.

If one removes such growth restrictions, uniqueness fails. There exist nontrivial
solutions to

(5.12)

	
@

@t
��



v D 0; for t > 0; v.0; x/ D 0;

outlined in Exercise 2 at the end of this section. For fixed t > 0, such solutions
blow up too fast to belong to S 0.Rn/.
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In view of the boundedness and continuity properties of (5.7), we have the
following:

Corollary 5.2. Suppose f 2 L2.Rn/. Then the solution u to (5.1)–(5.3) of

Proposition 5.1 belongs to C.R
C
; L2.Rn//.

We cannot say that u 2 C1.RC
; L2.Rn//, or even that @u=@t belongs to

C.R
C
; L2.Rn//, in such a case, without further restrictions on f . The ap-

propriate behavior of @j u=@tj in such a case is best described in terms of Sobolev
spaces, which will be discussed in Chap. 4.

Next we look at the following boundary problem for functions harmonic in an
upper half space:

	
@2

@y2
C�



u.y; x/ D 0; for y > 0; x 2 Rn;(5.13)

u.0; x/ D f .x/:(5.14)

Here, � is given by (5.2). In view of such simple examples as

(5.15) u.y; x/ D y;

which satisfy (5.13) and (5.14) with f D 0, we will need to make appropriate
restrictions on u in order to obtain uniqueness. As before, we suppose that f 2
S 0.Rn/ and look for u 2 C1.RC

;S 0.Rn//. Fourier transforming with respect to
x gives the second-order ODE, with parameters,

	
d 2

dy2
� j�j2



Ou.y; �/ D 0;(5.16)

Ou.0; �/ D Of .�/:(5.17)

The general solution to (5.16)–(5.17), for any fixed � ¤ 0, is

(5.18) Ou.y; �/ D c0.�/e
yj�j C c1.�/e

�yj�j;

with c0.�/ C c1.�/ D Of .�/. Let us restrict attention to f such that Of .�/ is con-
tinuous, and look for Ou.y; �/ continuous in .y; �/; as (5.15) illustrates, things can
be more complicated if Ou.y; �/ is a singular distribution near � D 0. In view of the
blow-up of eyj�j as y % 1, it is natural to require that c0.�/ D 0, so

(5.19) Ou.y; �/ D e�yj�j Of .�/:

In partial analogy with Proposition 5.1, we have obtained the following result.

Proposition 5.3. Let f 2 S 0.Rn/, and suppose Of is continuous. Then there
is a unique solution u.y; x/ of (5.13) and (5.14), belonging to the space
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C1.RC
;S 0.Rn// and satisfying the condition that Ou.y; �/ is continuous on

R
C � Rn, and furthermore that u.y; �/ is a bounded function of y taking values

in S 0.Rn/. It is given by (5.19).

Note that Of .�/ is continuous provided f is a finite measure. It is also continuous
if f 2 E 0.Rn/.

We want to find the “fundamental solution” P.y; x/ for (5.13)–(5.14), corre-
sponding to f D ı. In other words,

(5.20) OP .y; �/ D .2�/�n=2e�yj�j:

This computation is elementary in the case n D 1. We have

(5.21)

P.y; x/ D .2�/�1
Z 1

�1
e�yj�jCix� d�

D .2�/�1
�Z 1

0

e�y�Cix� d� C
Z 1

0

e�y��ix� d�

�

D .2�/�1
�
.y � ix/�1 C .y C ix/�1

�

D 1

�

y

y2 C x2
:

For n > 1, a direct calculation of such a Fourier transform is not so elementary.
One way to perform the computation is to use the following subordination iden-
tity:

(5.22) e�yA D y

2�1=2

Z 1

0

e�y2=4t e�tA2

t�3=2 dt; A > 0; y > 0:

We will give a proof of (5.22) shortly. First we will show how it leads to a com-
putation of the Fourier transform of (5.20). We let A D j�j, and we use our prior
computation of the Fourier transform of e�j�j2 . Thus, for any n � 1,

(5.23)

P.y; x/ D .2�/�n
Z
e�yj�jCix�� d�

D .2�/�n
y

2�1=2

Z 1

0

e�y2=4t

�Z
e�t j�j2Cix��d�

�
t�3=2 dt;

and substituting in the calculation (5.7)–(5.10), we have

(5.24)
P.y; x/ D .4�/�.nC1/=2y

Z 1

0

e�y2=4te�jxj2=4t t�.nC3/=2 dt

D cn
y

.y2 C jxj2/.nC1/=2 ;
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where the last integral is evaluated using the substitution s D 1=t . The constant
cn is given by

(5.25) cn D ��.nC1/=2�
	
nC 1

2



;

where �.z/ D R1
0
e�ssz�1ds is Euler’s gamma function, which is discussed in

the appendix to this chapter. Note that c1 D 1=� , so the calculation (5.24) agrees
with (5.21), in the case n D 1.

The observation that the calculations (5.21) and (5.24) coincide for n D 1 can
be used to provide a simple proof of the subordination identity (5.22). Indeed,
with j�j substituted for A in (5.22), we know that the operation of Fourier multi-
plication by the left side coincides with the operation of Fourier multiplication by
the right side, so the two functions of j�j .� 2 R/ must coincide.

There are other proofs of (5.22). In Appendix A we note the equivalence of
such an identity and a classical identity involving Euler’s gamma function. While
the proof of (5.22) given above is complete, it leaves one with an unsatisfied feel-
ing, since the right side of the formula (5.22) seems to have been pulled out of a
hat. We want to introduce a setting where such a formula arises naturally, a set-
ting involving the use of operator notations, as follows. For a decent function f
defined on Œ0;1/, define f .

p��/ on S.Rn/, or on L2.Rn/, or even on S 0.Rn/,
when it makes sense, by

(5.26)
�
f .

p��/u�b .�/ D f .j�j/Ou.�/:

Thus, the content of (5.10) is

(5.27) et	ı.x/ D .4�t/�n=2e�jxj2=4t ;

for t > 0. The formula (5.24) is a formula for e�yp�	ı.x/; x 2 Rn, and the
formula (5.21) is the special case of this for n D 1.

We will approach the subordination identity via the formula

(5.28) .�2 ��/�1 D
Z 1

0

e�.
2�	/t dt;

for the resolvent .�2 ��/�1 of the Laplace operator�. This identity follows via
the Fourier transform, as in (5.26), from

(5.29) .�2 C j�j2/�1 D
Z 1

0

e�.
2Cj�j2/t dt:

In order to derive the subordination identity, we will apply both sides of (5.28)
to ı; we will do this in the special case of� D d2=dx2 acting on S 0.R1/. For the
special case � 2 R1, we have the Fourier integral formula
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(5.30)
Z 1

�1
.�2 C �2/�1eix� d� D �

�
e�
jxj .� > 0/;

a fact that can be established either by residue calculus or by applying the Fourier
inversion formula to the computation (5.21). Thus applying both sides of (5.28)
to ı 2 S 0.R/ and using et	ı D .4�t/�1=2e�x2=4t in this case, we have

(5.31) ��1e�
jxj D 1p
�

Z 1

0

e�x2=4te�
2t t�1=2 dt:

Making the change of variables y D jxj; A D �, and taking the y-derivative of
the resulting identity give (5.22). Also note that taking the A-derivative of (5.22)
gives (5.31). The identity (5.31) is also called the subordination identity. One can
see that it arises very naturally in this context, from (5.28). We will return to the
calculation of .�2 ��/�1ı.x/ in case n > 1, later in this section.

We next consider the wave equation on R � Rn:

(5.32)
@2u

@t2
��u D 0;

with initial data

(5.33) u.0; x/ D f .x/; ut .0; x/ D g.x/:

As before, we suppose that f and g belong to S 0.Rn/ and look for a solution u in
C1.R;S 0.Rn//. Taking the Fourier transform with respect to x again yields an
ODE with parameters:

(5.34)
d 2 Ou
dt2

C j�j2 Ou D 0;

(5.35) Ou.0; �/ D Of .�/; Out .0; �/ D Og.�/:

The general solution to (5.34) (for � ¤ 0) is of the form

Ou.t; �/ D c2.�/ sin t j�j C c1.�/ cos t j�j;

which it is convenient to write as

Ou.t; �/ D c0.�/j�j�1 sin t j�j C c1.�/ cos t j�j;

since the right side is well defined for any c0; c1 2 S 0.Rn/. The initial conditions
(5.35) imply c1 D Of ; c0 D Og, so the solution to (5.34)–(5.35) is

(5.36) Ou.t; �/ D Og.�/j�j�1 sin t j�j C Of .�/ cos t j�j:
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This is clearly the unique solution in C1.R;S.Rn//, if f; g 2 S.Rn/. The
uniqueness in C1.R;S 0.Rn// for general f; g 2 S 0.Rn/ will be proved shortly.

If f D 0; g D ı, the solution given by (5.36) is called the fundamental so-
lution, or the “Riemann function.” Of course, it is actually a distribution. It is
characterized by

(5.37) OR.t; �/ D .2�/�n=2j�j�1 sin t j�j:

We want a direct formula forR.t; x/. We will be able to deduce this formula from
the formula (5.24) for the Fourier transform of e�yj�j , via analytic continuation.
To bring in the factor j�j�1, integrate (5.24) with respect to y. Thus, if

(5.38) OF .y; �/ D .2�/�n=2j�j�1e�yj�j;

which belongs to S 0.Rn/ for each y � 0 if n � 2, we have

(5.39) F.y; x/ D c0
n.y

2 C jxj2/�.n�1/=2

with

(5.40) c0
n D cn

n � 1 D 1

2
��.nC1/=2�

	
n � 1

2



:

This has been verified for real y > 0. But (5.38) is holomorphic in y, with values
in S 0.Rn/, for all y such that Re y > 0. Also, it is continuous in the right half-
plane fy 2 C W Re y � 0g. In view of the continuity of the Fourier transform on
S 0.Rn/, we deduce that if

(5.41) Ô .t; �/ D .2�/�n=2j�j�1eitj�j;

t 2 R, then

(5.42) ˆ.t; x/ D lim
"&0

c0
n

�jxj2 � .t � i"/2
��.n�1/=2

;

the limit existing in S 0.Rn/ for each t 2 R, since Ô .t; �/ D lim"&0
Ô .t � i"; �/ in

S 0.Rn/. Consequently, for the Riemann function, we have

(5.43) R.t; x/ D lim
"&0

c0
n Im

�jxj2 � .t � i"/2
��.n�1/=2

:

Note that if jxj > jt j; lim"&0

�jxj2 � .t � i"/2
��.n�1/=2 D .jxj2 � t2/�.n�1/=2 is

real, so

(5.44) R.t; x/ D 0; for jxj > jt j:
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This is a reflection of the finite propagation speed, which was discussed in
Chap. 2. Note also that if n is odd, then .n � 1/=2 is an integer, so (5.43) van-
ishes also for jxj < jt j. In other words,

(5.45) n � 3 odd ) supp R.t; �/ � fx 2 Rn W jxj D jt jg:

This is the strict Huygens principle. Of course, it does not hold when n is even.
When n D 2, the computation of the limit in (5.43) is elementary. We have

(5.46)
R.t; x/ D c0

2.t
2 � jxj2/�1=2 � sgn.t/; for jxj < jt j;

0; for jxj > jt j;

for n D 2. For n D 3, the Plemelj jump relation (4.29) yields

(5.47) R.t; x/ D .4�t/�1ı.jxj � jt j/:

The discussion above has to be modified for n D 1, since (5.41) is not locally
integrable near � D 0 in that case. This simple case .n D 1/ was treated in �1 of
Chap. 2; see (1.24)–(1.28) in that chapter.

The solution to (5.32)–(5.33) given by (5.36) can be expressed as

(5.48) u.t; �/ D R.t; �/ � g C @

@t
R.t; �/ � f:

We record our result on solutions to the wave equation.

Proposition 5.4. Given f; g 2 S 0.Rn/, there is a unique solution u 2 C1
.R;S 0.Rn// to the initial-value problem (5.32)–(5.33). It is given by (5.48).

Proof. The only point remaining to be established is the uniqueness. Suppose
u 2 C1.R;S 0.Rn// solves (5.32)–(5.33) with f D g D 0. Then

v.t; �/ D u.t; �/ � '

solves the same equation, for any ' 2 C1
0 .R

n/I ' D '.x/. We have v 2
C1.R � Rn/. Thus the energy estimates of Chap. 2 are applicable to v, and we
have v D 0 everywhere. Taking a sequence 'j 2 C1

0 .R
n/ approaching ı, we

have vj ! u; since each vj D 0, it follows that u D 0, and the proof is complete.

We note that the argument above yields uniqueness for u in the class
C1.R;D0.Rn//. We also remark that any u 2 D0.R � Rn/ solving (5.32)
actually belongs to C1.R;D0.Rn//, and that (5.48) gives the unique solution to
(5.32)–(5.33) for any f; g 2 D0.Rn/. Justification of these statements is left as an
exercise.

Returning to the operator notation (5.26), we have

(5.49) R.t; x/ D .��/�1=2 sin t
p�� ı.x/
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and

(5.50)
@

@t
R.t; x/ D cos t

p�� ı.x/:

We also denote (5.49) by R.t/ and (5.50) by R0.t/.
Having introduced in (5.28) the notion of synthesizing some operators from

other operators, we want to mention the particular desirability of synthesizing
functions of the Laplace operator from the fundamental solution of the wave equa-
tion. If '.s/ is an even function, the Fourier inversion formula implies

(5.51) '
�p��

�
D .2�/�1=2

Z 1

�1
O'.t/ cos t

p�� dt:

Note that

(5.52) cos t
p�� u D R0.t/ � u;

where R.t/ is the Riemann function constructed above. We have the following
rather general calculation of '.

p��/ı, using the formula (5.37) for the Riemann
function on Rn.

Proposition 5.5. Let ' 2 S.R/ be even. Then, on Rn, we have

(5.53) '
�p��

�
ı.x/ D 1p

2�

�
� 1

2�r

@

@r

�k
O'.r/

if n D 2k C 1 is odd, and

(5.54) '
�p��

�
ı.x/ D

r
2

�

Z 1

r

( �
� 1

2�s

@

@s

�k
O'.s/

)
sp

s2 � r2 ds

if n D 2k is even. Here, r D jxj.

Proof. When n D 3, we have

(5.55)

'
�p��

�
ı D � 2p

2�

Z 1

0

O' 0.t/.4�t/�1ı.r � t/ dt

D 1p
2�

�
� 1

2�r

@

@r

�
O'.r/;

giving (5.53) in this case. When n D 2, we have, from (5.46),

(5.56) '
�p��

�
ı D � 2c0

2p
2�

Z 1

r

O' 0.t/.t2 � r2/�1=2 dt;
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giving (5.54) in this case, once one checks that c0
2 D .1=2/��3=2�.1=2/ D 1=2� .

To pass to the general case, we note that if Rn.t; r/ denotes the formula (5.43) for
the Riemann function, in view of the evaluation of c0

n in (5.40), we have the formal
relation

(5.57) RnC2.t; r/ D
�
� 1

2�r

@

@r

�
Rn.t; r/;

so (5.53) and (5.54) follow by induction.

It is clear that Proposition 5.5 holds for a more general class of even functions
' than those in S.R/, by simple limiting arguments. For example, the function
'.s/ D .�2 C s2/�1; � > 0, giving the resolvent of �, can be treated. We
leave the formulation of general results on classes of ' which can be treated as an
exercise.

In the case of using Proposition 5.5 to treat the resolvent of �, we have the
following formula. With '.s/ D .�2 C s2/�1, from (5.30) we have

(5.58) O'.t/ D
��
2

�1=2
��1e�
jt j;

to plug into (5.53)–(5.54). For example, for n D 3, we have

(5.59)
�
�2 ��

��1
ı D .4�jxj/�1e�
jxj on R3:

Note that computing .�2 � �/�1ı by evaluating the right side of (5.28) gives in
this case

(5.60)
�
�2 ����1 ı D

Z 1

0

e�jxj2=4te�
2t .4�t/�3=2 dtI

comparing (5.59) and (5.60) again reveals the subordination identity, in the origi-
nal form (5.22).

The fact that the answer comes out “in closed form” for n odd is a consequence
of the strict Huygens principle. For n even, one tends not to get elementary func-
tions. Note that, for n D 2, the formula (5.54) gives

(5.61)
�
�2 ��

��1
ı D c

Z 1

jxj
e�
s.s2 � r2/�1=2 ds on R2I

the formula (5.28) gives

(5.62)
�
�2 ����1 ı D 1

4�

Z 1

0

e�jxj2=4t�t t�1 dt on R2:

Both of these integrals can be expressed in terms of the modified Bessel function
K0; we say a little more about this in the next section; see (6.46)–(6.54).
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In general, the use of results on the wave equation together with (5.51) provides
a tool of tremendous power and flexibility in the analysis of numerous functions
of the Laplace operator. We will see more of this in Chap. 8.

To end this section, we re-derive formulas for the solution to the wave equa-
tion (5.32)–(5.33), and then re-derive the formulas (5.53)–(5.54). Recall that the
solution to the wave equation on R � Rn is given by

(5.63) u.t; x/ D cos t
p��f.x/C sin t

p��p�� g.x/:

We first derive formulas for these solution operators, in case

(5.64) n D 2k C 1;

by comparing two formulas for et	f .x/. This approach follows material in [PT].
The first formula for et	 is

(5.65)

et	f .x/ D .4�t/�n=2
Z

Rn

e�jyj2=4tf .x � y/ dy

D .4�t/�n=2An�1
Z 1

0

f x.r/r
n�1e�r2=4t dr;

where An�1 is the area of the unit sphere Sn�1 in Rn, and

(5.66) f x.r/ D 1

An�1

Z

Sn�1

f .x C r!/ dS.!/:

Note that f x.r/ is well defined for all r 2 R, and f x.�r/ D f x.r/. The first
identity in (5.65) follows, via Fourier analysis, from the evaluation of the Gaussian
integral

(5.67)
Z

Rn

e�t j�j2Cix�� d� D
��
t

�n=2
e�jxj2=4t :

The second identity in (5.65) follows by switching to spherical polar coordinates,
y D r!, and using dy D rn�1 dr dS.!/.

The second formula for et	 is

(5.68) et	f .x/ D 1p
2�

Z 1

�1
Oht .s/ cos s

p��f.x/ ds;

with ht .�/ D e�t�2
; hence, by (5.67), Oht .s/ D .2t/�1=2e�s2=4t : This is a special

case of (5.51).
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Setting 4t D 1=� and comparing the formulas (5.65) and (5.68), we have (with
v.s; x/ D cos s

p��f.x/)

(5.69)
Z 1

0

v.s; x/e�
s2

ds D An�1
2

� �
�

�.n�1/=2 Z 1

0

f x.r/r
n�1e�
r2

dr;

for all � > 0: The key to getting a formula for v.s; x/ from this is to make the
factor �.n�1/=2 on the right side of (5.69) disappear.

Bringing in the hypothesis (5.64), we use the identity

(5.70) � 1

2r

d

dr
e�
r2 D �e�
r2

to write the right side of (5.69) as

(5.71) Cn

Z 1

0

r2kf x.r/

	
� 1

2r

d

dr


k
e�
r2

dr:

Repeated integration by parts shows that this is equal to

(5.72) Cn

Z 1

0

r

	
1

2r

d

dr

�k�
r2k�1f x.r/

�
e�
r2

dr:

Now it follows from uniqueness of Laplace transforms (see the exercises) that

(5.73) cos t
p��f.x/ D Cnt

	
1

2t

d

dt


k h
t2k�1f x.t/

i
;

for well behaved functions f on Rn; when n D 2k C 1: By (5.69), we have

(5.74) Cn D 1

2
��.n�1/=2An�1:

We can also compute Cn directly in (5.73), by considering f D 1: Then f x D 1

and u D 1; so

(5.75) 1 D Cnt

	
1

2t

d

dt


k
t2k�1 D Cn

	
k � 1

2


	
k � 3

2



� � � 1
2
;

i.e.,

(5.76) Cn D 1�
k � 1

2

� �
k � 3

2

� � � � 1
2

; n D 2k C 1:
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This simply means

(5.77) A2k D 2�k�
k � 1

2

� �
k � 3

2

� � � � 1
2

;

a formula that is frequently derived by looking at Gaussian integrals. See formulas
(A.4)–(A.9)) at the end of this chapter.

To compute .sin t
p��/=p��, we use

(5.78)
sin t

p��p�� g.x/ D
Z t

0

cos s
p��g.x/ ds:

From (5.73), if k � 1,

(5.79) cos t
p��g.x/ D Cn

2

d

dt

	
1

2t

d

dt


k�1 h
t2k�1gx.t/

i
;

so (5.78) becomes

(5.80)
sin t

p��p�� g.x/ D Cn

2

	
1

2t

d

dt


k�1 h
t2k�1gx.t/

i
:

The formulas (5.73) and (5.80) are for t > 0. For arbitrary t 2 R, use

(5.81) cos t
p�� D cos.�t/p��; sin t

p�� D � sin.�t/p��:

The case k D 0 is exceptional. Then (5.79) does not work. Instead, we have

(5.82) cos t
p��g.x/ D 1

2
Œg.x C t/C g.x � t/�;

and (5.78) gives

(5.83)

sin t
p��p�� g.x/ D 1

2

Z t

0

Œg.x C s/C g.x � s/� ds

D 1

2

Z t

�t
g.x C s/ ds;

for n D 1.
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Let us take another look at the case k D 1, when n D 3. From (5.76), C2 D 2,
and then (5.80) gives

(5.84)

sin t
p��p�� g.x/ D tgx.t/

D t

4�

Z

S2

g.x C t!/ dS.!/

D 1

4�t

Z

jyjDjt j
g.x C y/ dS.y/;

which is equivalent to (5.47).
To solve the wave equation (5.32)–(5.33) for u D u.t; x/; t 2 R; x 2 Rn;

n D 2k, we can use the following device, known as the method of descent. Set

(5.85) F.x; xnC1/ D f .x/; G.x; xnC1/ D g.x/;

and solve for U D U.t; x; xnC1/ the wave equation

(5.86) @2t U ��nC1U D 0; U.0/ D F; @tU.0/ D G:

Then U is independent of xnC1 and

(5.87) u.t; x/ D U.t; x; 0/:

In particular,

(5.88) cos t
p��f.x/ D cos t

p��nC1F.x; 0/;

and

(5.89)
sin t

p��p�� g.x/ D sin t
p��nC1p��nC1

G.x; 0/:

Using the formula (5.73) for waves on RnC1 D R2kC1, we have, for v.t; x/ D
cos t

p��f.x/,

(5.90) v.t; x/ D CnC1t
� 1
2t

d

dt

�k h
t2k�1f #

x .t/
i
;
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where

(5.91)

f #
x .r/ D F .x;0/.r/

D 1

An

Z

Sn

F..x; 0/C r!/ dS.!/

D 2

An

Z

Sn
C

f .x C r!b/ dS.!/;

with

(5.92) SnC D f! D .!b; !nC1/ 2 Sn W !nC1 � 0g:

Here An is the n-dimensional area of Sn and, we recall,

(5.93) CnC1 D 1

2
��n=2An:

Note that f #
x .r/ D f #

x .�r/. To proceed, map B D fy 2 Rn W jyj � 1g to SnC by

(5.94) y 7! .y;  .y//;  .y/ D
p
1 � jyj2:

Then

(5.95) dS.!/ D
p
1C jr .y/j2 dy D dy

p
1 � jyj2 ;

and we get

(5.96) f #
x .r/ D 2

An

Z

jyj�1
f .x C ry/

dyp
1 � jyj2 :

Using the identity

(5.97)
Z

jyj�1
h.y/ dy D

Z 1

0

Z

Sn�1

H.�!/�n�1 dS.!/ d�;
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we get (for r > 0)

(5.98)

f #
x .r/ D 2

An

Z 1

0

Z

Sn�1

f .x C r�!/
�n�1

p
1 � �2 dS.!/ d�

D 2
An�1
An

Z 1

0

f x.�r/
�n�1

p
1 � �2 d�

D 2
An�1
An

1

rn�1

Z r

0

f x.s/
sn�1

p
r2 � s2

ds:

Plugging this in (5.90), we get, for a function f on Rn D R2k ; t > 0,

(5.99) cos t
p��f.x/ D 2

An�1
An

CnC1t
	
1

2t

d

dt


k Z t

0

f x.s/
sn�1

p
t2 � s2 ds:

Note that

(5.100) 2
An�1
An

CnC1 D ��n=2An�1 D 2

�.n=2/
D 2

�.k/
:

Similarly, we have

(5.101)
sin t

p��p�� g.x/ D CnC1
2

	
1

2t

d

dt


k�1 h
t2k�1g#

x.t/
i
;

where g#
x.jt j/ is as in (5.86), with G in place of F , hence as in (5.98), with gx.s/

in place of f x.s/. Consequently, for t > 0,

(5.102)
sin t

p��p�� g.x/ D An�1
An

CnC1
	
1

2t

d

dt


k�1 Z t

0

gx.s/
sn�1

p
t2 � s2

ds;

and .An�1=An/CnC1 D 1=�.k/.
If we specialize to n D 2 .k D 1/, we get

(5.103)

sin t
p��p�� g.x/ D

Z t

0

gx.s/
sp

t2 � s2
ds

D 1

2�

Z t

0

Z

S1

g.x � s!/
sp

t2 � s2 dS.!/ ds

D 1

2�

Z

jyj�t

g.x � y/p
t2 � jyj2 dy;

which is equivalent to (5.46).
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We turn to a re-derivation of the formulas in Proposition 5.5. As before, we
use (5.51), plus formulas for cos t

p��. This time, we combine (5.51) with the
formula (5.79), for a function f on Rn D R2kC1, where Cn is given by (5.74).
We get

(5.104)

'.
p��/f .x/ D Cnp

2�

Z 1

�1
O'.t/

	
d

dt

1

2t


k h
tn�1f x.t/

i
dt

D Cnp
2�

Z 1

�1

	
� 1

2t

d

dt


k
O'.t/ � tn�1f x.t/ dt:

Now

(5.105)

Z 1

0

ˆ.r/rn�1f x.r/ dr

D 1

An�1

Z 1

0

Z

Sn�1

f .x � r!/ˆ.r/rn�1 dS.!/ dr

D 1

An�1

Z

Rn

f .x � y/ˆ.jyj/ dy:

Hence, using (5.74), we obtain from (5.104) that

(5.106) '.
p��/f .x/ D 1p

2�

Z

Rn

ˆn.jyj/f .x � y/ dy;

for n D 2k C 1, where

(5.107) ˆ2kC1.r/ D
	

� 1

2�r

d

dr


k
O'.r/:

Another way to write (5.106) is

(5.108) '.
p��/ı.x/ D 1p

2�
ˆn.jxj/; x 2 Rn;

which is equivalent to (5.53).

Remark: The case k D 0 of (5.107) can be seen directly by the Fourier inversion
theorem, without use of the calculations (5.104)–(5.105).
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We seek an analogous formula for '.
p��/f .x/ when f is a function on Rn

with n D 2k. We get this by the following extension of the method of descent,
which gives

(5.109) cos t
p��f.x/ D cos t

p��nC1F.x; 0/;

with

(5.110) F.x; xnC1/ D f .x/:

From this and (5.51), we get

(5.111)
'.

p��/f .x/ D '.
p��nC1/F.x; 0/

D 1p
2�

Z

R2kC1

ˆ2kC1
�j.y; ynC1/j

�
F.x � y; ynC1/ dydynC1

D 1p
2�

Z

R2kC1

ˆ2kC1
�
.jyj2 C s2/1=2

�
f .x � y/ dy ds;

or

(5.112) '.
p��/f .x/ D 1p

2�

Z

Rn

ˆ2k.jyj/f .x � y/ dy;

where

(5.113) ˆ2k.r/ D
Z 1

�1
ˆ2kC1

�p
r2 C s2

�
ds;

and ˆ2kC1 is given by (5.107). The change of variable t D p
r2 C s2 gives

(5.114) ˆ2k.r/ D 2

Z 1

r

ˆ2kC1.t/
tp

t2 � r2 dt:

Another way to write (5.112) is

(5.115) '.
p��/ı.x/ D

r
2

�
ˆ2k.jxj/;

which is equivalent to (5.54).
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Exercises

1. A function g 2 C1.Rn/ is said to be in the Gevrey class G� .Rn/ provided, for each
compact K � Rn, there exist C and R, such that

(5.116) jD˛g.x/j � CRkk�k ; j˛j D k; x 2 K:
The classG1.Rn/ is equal to the space of real-analytic functions on Rn. If � > 1, show
that there exist compactly supported elements of G� .Rn/, not identically zero.
Remark: This is part of the Denjoy–Carleman theorem; see [Ru].

2. Consider the following “sideways heat equation” for u D u.t; x/ on R � R:

ut D uxx ; u.t; 0/ D g.t/; ux.t; 0/ D 0:

Show that if g 2 G� .R/ for some � 2 .1; 2/, then a solution on all of R � R is given
by the convergent series

(5.117) u.t; x/ D
1X

kD0

x2k

.2k/Š
g.k/.t/;

which is the power series for the “formal” object
�
cos x

p�@=@t �g. Using Exercise 1,
find nontrivial solutions to ut D uxx which are supported in a strip a � t � b. This
construction is due to J. Rauch.
(Hint: To prove convergence, use Stirling’s formula:

(5.118) nŠ 	 .2�n/1=2 � e�n � nn as n ! 1:/

3. Given the formula (5.37) for OR.t; �/, that is,

OR.t; �/ D .2�/�n=2 j�j�1 sin t j�j; � 2 Rn;

show that the fact that R.t; �/ 2 S 0.Rn/ is supported in Bjt j D fx 2 Rn W jxj � jt jg
follows from the Paley–Wiener theorem for distributions, given in Exercise 16 of �4.
Exercises 4–7 provide justification for passing from (5.69)–(5.71) to (5.73).

4. Take v 2 L1.RC/ and assume
Z 1

0
v.s/e�
s2

ds D 0; 8� > 0:

Deduce that v 
 0. (Hint. Use the Stone–Weierstrass theorem to show that if e
.s/ D
e�
s2

, then the linear span of fe
 W � > 0g is dense in C�.RC
/, the space of con-

tinuous functions on R
C D Œ0;1/ that vanish at 1. Hence the hypothesis impliesR1

0 v.s/f .s/ D 0 for all f 2 C�.RC
/.)

5. Show that if instead we assume v 2 L1.RC/, the result of Exercise 4 still holds. (Hint.

Consider v".s/ D e�"s2
v.s/.)

6. Show that if f; g 2 S.Rn/, then the solution u to (5.32)–(5.33) is bounded and contin-
uous on R � Rn. Hence deduce the validity of (5.73) for f 2 S.Rn/.

7. Extend the range of validity of (5.73) from f 2 S.Rn/ to other function spaces, in-
cluding f 2 C1.Rn/.
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6. Radial distributions, polar coordinates, and Bessel
functions

The rotational invariance of the Laplace operator on Rn directly suggests the use
of polar coordinates; one has

(6.1) � D @2

@r2
C n � 1

r

@

@r
C 1

r2
�S ;

where�S is the Laplace operator on the unit sphere Sn�1. This formula has been
used in (4.56) and follows from the formula given in Chap. 2 for the Laplace
operator in a general coordinate system; see (4.4) in that chapter.

Related is the fact that in treating the equations of �5 via Fourier analysis, one
computes the Fourier transforms of various radial functions, such Fourier trans-
forms also being radial functions (or rotationally invariant tempered distributions).
Bessel functions arise naturally in either approach, and we will develop a little of
the theory of Bessel functions here. More results on Bessel functions will appear
in Chap. 8, which discusses spectral theory, and in Chap. 9, which treats scatter-
ing theory. One can find a great deal more material on this subject in the treatise
[Wat].

We begin by considering the Fourier transform of a radial function, F.x/ D
f .r/; r D jxj. We have

(6.2) OF .�/ D .2�/�n=2
Z 1

0

f .r/ n.r j�j/rn�1 dr;

where

(6.3)  n.j�j/ D ‰n.�/

with

(6.4) ‰n.�/ D
Z

Sn�1

ei��! dS.!/:

In other words, with An�2 the volume of Sn�2,

(6.5)  n.r/ D An�2
Z 1

�1
eirs.1 � s2/.n�3/=2 ds:

From (A.4) we have An�2 D 2�.n�1/=2
.
�
�
.n � 1/=2

�
. It is common to write

(6.6)  n.r/ D .2�/n=2r1�n=2Jn=2�1.r/;
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where, for general 
 satisfying Re 
 > �1=2, the Bessel function J�.z/ is defined
to be

(6.7) J�.z/ D
�
�

	
1

2



�

	

 C 1

2


��1 � z

2

�� Z 1

�1
�
1 � t2

���1=2
eizt dt:

For example,  2.r/ D 2�J0.r/. Since .1� t2/��1=2 is even in t , one can replace
eizt by cos zt in this formula. Now, (6.2) becomes

(6.8) OF .�/ D j�j1�n=2
Z 1

0

f .r/Jn=2�1.r j�j/rn=2 dr:

We want to consider the ODE, known as Bessel’s equation, solved by J�.r/.
First we consider the case 
 D n=2 � 1. Since ‰n is the Fourier transform of a
measure supported on the unit sphere, we have that

(6.9) .�C 1/‰n D 0:

Using the polar coordinate expression (6.1) for �, we have

(6.10)

	
d 2

dr2
C n � 1

r

d

dr
C 1



 n.r/ D 0:

Substituting (6.6) yields Bessel’s equation

(6.11)

�
d 2

dr2
C 1

r

d

dr
C
	
1 � 
2

r2


�
J�.r/ D 0

in case 
 D n=2 � 1. We want to verify this for all 
, from the integral formula
(6.7). This is an exercise, but we will present the details to one approach, which
yields further interesting identities for Bessel functions. For notational simplicity,
let us set

c.
/ D
�
�

	
1

2



�

	

 C 1

2


��1
� 2��:

Differentiating (6.7) with respect to z yields

(6.12)

d

dz
J�.z/ D

	

c.
/

z



z�
Z 1

�1
eizt.1 � t2/��1=2 dt

C ic.
/z�
Z 1

�1
eiztt.1 � t2/��1=2 dt:
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The first term on the right is equal to .
=z/J�.z/. The second is equal to

c.
/

z
z�
Z 1

�1

	
d

dt
eizt



t.1 � t2/��1=2 dt

D �c.
/
z

z�
Z 1

�1
eizt

h
.1 � t2/��1=2 � .2
 � 1/t2.1 � t2/��1�1=2i dt

D �c.
/
z

z�
Z 1

�1
eizt

h
2
.1� t2/��1=2 � .2
 � 1/.1� t2/��1�1=2

i
dt

D �2

z
J�.z/C .2
 � 1/c.
/

c.
 � 1/
J��1.z/:

Since c.
/=c.
 � 1/ D 1=.2
 � 1/, we have the formula

(6.13)
d

d z
J�.z/ D �


z
J�.z/C J��1.z/;

or

(6.14)

	
d

d z
C 


z



J�.z/ D J��1.z/:

As we have stated, the formula (6.7) for J�.z/ is convergent for Re 
 > �1=2.
The formula (6.14) provides an analytic continuation for all complex 
. In fact,
one can see directly that the integral in (6.7) is meromorphic in 
, with simple
poles at 
 C 1=2 D �1;�2; : : : . The factor �.
 C 1=2/�1 cancels these poles.
This serves to explain the desirability of throwing in this factor in the definition
(6.7) of J�.z/. Of course, the factor �.1=2/�1 is more arbitrary.

Next, we note that

J�C1.z/ D c.
 C 1/z�C1
Z 1

�1
eizt
�
1 � t2

��C1�1=2
dt

D �ic.
 C 1/z�
Z 1

�1

	
d

dt
eizt


�
1 � t2��C1�1=2

dt

D �ic.
 C 1/.2
 C 1/z�
Z 1

�1
eiztt

�
1 � t2���1=2

dt;

and since c.
 C 1/ D c.
/=.2
 C 1/, this is equal to the negative of the second
term on the right in (6.12). Hence we have

(6.15)
� d

dz
� 


z

�
J�.z/ D �J�C1.z/;
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complementing (6.14). Putting together (6.14) and (6.15), we have

(6.16)

	
d

dz
� 
 � 1

z


	
d

dz
C 


z



J�.z/ D �J�.z/;

which is equivalent to Bessel’s equation, (6.11). Note that adding and subtracting
(6.14) and (6.15) produce the identities

(6.17)

2J 0
�.z/ D J��1.z/ � J�C1.z/;

2


z
J�.z/ D J��1.z/C J�C1.z/:

Note that, by analytic continuation, J��.z/ is also a solution to Bessel’s equa-
tion. This equation, for each 
, has a two-dimensional solution space. We will
examine when J�.z/ and J��.z/ are linearly independent. First, we will obtain a
power-series expansion for J�.z/. This is done by replacing eitz by its power-series
expansion in (6.7). To simplify the expression for the coefficients, one uses iden-
tities for the beta function and the gamma function established in Appendix A.
From (6.7), we have

(6.18)

J�.z/ D
�
�

	
1

2



�

	

 C 1

2


��1 � z

2

�� 1X

kD0

1

.2k/Š

Z 1

�1
.izt/2k

�
1 � t2���1=2

dt:

The identity (A.24) implies

Z 1

�1
t2k

�
1 � t2���1=2

dt D �
�
k C 1

2

�
�
�

 C 1

2

�

� .k C 
 C 1/
;

so

J�.z/ D .z=2/�

�
�
1
2

�
�
�

 C 1

2

�
X 1

.2k/Š
.iz/2k

�
�
k C 1

2

�
�
�

 C 1

2

�

�.k C 
 C 1/
:

Setting .2k/Š D �.2k C 1/, and using the duplication formula (A.22), which
implies

�.k C 1
2
/

�.1
2
/�.2k C 1/

D 2�2k

�.k C 1/
;

we obtain the formula

(6.19) J�.z/ D
� z

2

�� 1X

kD0

.�1/k
kŠ�.k C 
 C 1/

� z

2

�2k
:

This follows from (6.18) if Re 
 > �1=2, and then for general 
 by analytic
continuation. In particular, we note the leading behavior as z ! 0,
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(6.20) J�.z/ D z�

2��.
 C 1/
CO.z�C1/

and

(6.21) J 0
�.z/ D z��1

2��.
/
CO.z�/:

The leading coefficients are nonzero as long as 
 is not a negative integer (or 0,
for (6.21)).

From the expression (6.19) it is clear that J�.z/ and J��.z/ are linearly inde-
pendent provided 
 is not an integer. On the other hand, comparison of power
series shows

(6.22) J�n.z/ D .�1/nJn.z/; n D 0; 1; 2; : : : :

We want to construct a basis of solutions to Bessel’s equation, uniformly good for
all 
. This construction can be motivated by a calculation of the Wronskian.

Generally, for a pair of solutions u1 and u2 to a second-order ODE

a.z/u00 C b.z/u0 C c.z/u D 0;

u1 and u2 are linearly independent if and only if their Wronskian

(6.23) W.z/ D W.u1; u2/.z/ D u1u0
2 � u2u

0
1

is nonvanishing. Note that the Wronskian satisfies the first-order ODE

(6.24) W 0.z/ D �b
a
W.z/:

In the case of Bessel’s equation, (6.11), this becomes

(6.25) W 0.z/ D �W.z/
z
;

so

(6.26) W.z/ D K

z
;

for some K (independent of z, but perhaps depending on 
). If u1 D J� ; u2 D
J�� , we can compute K by considering the limiting behavior of W.z/ as z ! 0.
From (6.20) and (6.21), we get
(6.27)

W.J� ; J��/.z/ D �
�

1

�.
/�.1� 
/
� 1

�.
 C 1/�.�
/
�
1

z
D �2 sin�


�z
;
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making use of the identity (A.10). This recaptures the observation that J� and
J�� are linearly independent, and consequently a basis of solutions to (6.11), if
and only if 
 is not an integer.

To construct a basis of solutions uniformly good for all 
, it is natural to set

(6.28) Y�.z/ D J�.z/ cos�
 � J��.z/
sin�


when 
 is not an integer, and define

(6.29) Yn.z/ D lim
�!n

Y�.z/ D 1

�

�
@J�.z/

@

� .�1/n @J��.z/

@


�ˇ̌
ˇ
�Dn:

We have

(6.30) W.J� ; Y�/.z/ D 2

�z
;

for all 
. Another important pair of solutions to Bessel’s equation is the pair of
Hankel functions

(6.31) H .1/
� .z/ D J�.z/C iY�.z/; H .2/

� .z/ D J�.z/ � iY�.z/:

For H .1/
� , there is the integral formula

(6.32) H .1/
� .z/ D 2e�� i�

i
p
��

�

 C 1

2

�
� z

2

�� Z 1

1

eizt.t2 � 1/��1=2 dt;

for Re 
 > �1=2, Im z > 0. Another formula, valid for Re 
 > 1
2

and Re z > 0, is

(6.33)

H .1/
� .z/ D

	
2

�z


1=2
ei.z���=2��=4/

�
�

 C 1

2

�
Z 1

0

e�ss��1=2
	
1 � s

2iz


��1=2
ds:

To prove these identities, one can show as above that each of the right sides of
(6.32) and (6.33) satisfies the same recursion formulas as J�.z/ and hence solves
the Bessel equation; thus it is a linear combination of J�.z/ and Y�.z/. The coeffi-
cients can be found by examining the limiting behavior as z ! 0, to establish the
asserted identity. Hankel functions are important in scattering theory; see Chap. 9.

It is worth pointing out that the Bessel functions JkC1=2.z/, etc., for k an
integer, are elementary functions, particularly since they arise in analysis on odd-
dimensional Euclidean space. For 
 D k C 1=2, the integrand in (6.7) involves
.1 � t2/k , so the integral can be evaluated explicitly. We have, in particular,

(6.34) J1=2.z/ D
	
2

�z


1=2
sin z:
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Then (6.14) gives

(6.35) J�1=2.z/ D
	
2

�z


1=2
cos z;

which by (6.28) is equal to �Y1=2.z/. Applying (6.16) and (6.14) repeatedly gives

(6.36) JkC1=2.z/ D .�1/k
8
<

:

kY

jD1

 
d

d z
� j � 1

2

z

!9=

;
sin zp
2�z

and the same sort of formula for J�k�1=2.z/, with the .�1/k removed, and sin z
replaced by cos z. Similarly,

(6.37) H
.1/

1=2
.z/ D �i

	
2

�z


1=2
eiz;

with a formula forH .1/

kC1=2.z/ similar to (6.36).
We now make contact between the formulas (6.2)–(6.6) and some of the for-

mulas of �5, particularly from Proposition 5.5. Note that if F.x/ D f .jxj/, then

(6.38) OF .x/ D .2�/n=2f .
p��/ı:

Thus, as in (5.51), we have

(6.39) OF .x/ D .2�/n=2�1
“

f .r/eitrR0
n.t; x/ dt dr;

whereR0
n.t; x/ D .@=@t/Rn.t; x/, andRn.t; x/ is the Riemann function given by

(5.43). Comparison with (6.2) gives

 n.r jxj/ D .2�/n�1r1�n
Z 1

�1
eitrR0

n.t; x/ dt

or, equivalently,

(6.40) Jn=2�1.r jxj/ D 2.2�/n=2�1
	 jxj
r


n=2�1 Z 1

�1
.sin tr/Rn.t; x/ dt:

Note that usingR3.t; x/ D .4�t/�1ı.jt j � jxj/ gives again the formula (6.34) for
J1=2.r/. Note also that the recursive formula

RnC2.t; s/ D � 1

2�s

@

@s
Rn.t; s/
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used in the proof of Proposition 5.5, when substituted into (6.40), gives rise to the
formula (6.15), in the case 
 D n=2� 1.

Instead of synthesizing functions of � via the formula (5.51), we could use

(6.41) g.��/ D .2�/�1=2
Z

Og.t/e�it	 dt;

where the operator e�it	 is obtained from the solution operator et	 to the heat
equation by analytic continuation:

(6.42) e�i t	ı.x/ D .�4�it/�n=2ejxj2=4it; t ¤ 0:

If f .r/ D g.r2/, with g real-valued and even, we get

(6.43) Og.t/ D 4p
2�

Z 1

0

f .r/
�
cos r2t

�
r dr

and hence

(6.44) g.��/ı D 2

�

Z 1

�1

Z 1

0

.�4�it/�n=2
�
cos r2t

�
ejxj2=4itf .r/r dr dt:

Comparison of this with (6.2) gives

(6.45)  n.r jxj/ D cnr
2�n

Z 1

�1
�
cos r2t

�
ejxj2=4it t�n=2 dt;

where, for n odd, we take t�n=2 D lim"&0.t � i"/�n=2. Note that (6.45) is an
improper integral near t D 0.

We will not look in detail at implications of (6.41)–(6.44), which are generally
not as incisive as those of Proposition 5.5, but we will briefly make a connec-
tion with the idea, used in �5, of synthesizing operators from the heat semigroup.
Recall particularly the formula for the resolvent:

(6.46) .�2 ��/�1 D
Z 1

0

e�.
2�	/t dt:

Generalizing (5.28)–(5.31), we have, for � > 0,

(6.47) .�2 ��/�1ı D
Z 1

0

e�jxj2=4t�
2t .4�t/�n=2 dt:
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A superficial resemblance with (6.45) suggests that this function is related to
Bessel functions. This is consistent with the fact that the resolvent kernelR
.x/ D
.�2 ��/�1ı D Rb

n;

.jxj/ satisfies the ODE

(6.48)

�
d 2

dr2
C n � 1

r
� �2

�
Rbn;
.r/ D 0; r > 0;

as a consequence of the formula (6.1) for the Laplace operator in polar coor-
dinates; this is similar to (6.10), with 1 replaced by ��2. In fact, there is the
following result. From (6.47),

(6.49) .�2 ��/�1ı D .2�/�n=2
	 jxj
�


1�n=2
Kn=2�1.�jxj/; x 2 Rn n 0;

whereK�.r/ is defined by

(6.50) K�.r/ D 1

2

�r
2

�� Z 1

0

e�r2=4t�t t�1�� dt:

Simple manipulations of (6.50) produce the following analogues of (6.14)–(6.16):

(6.51)

	
d

dr
� 


r



K�.r/ D �K�C1.r/;

K�C1.r/ �K��1.r/ D 2


r
K�.r/;

so we have the ODE

(6.52)

�
d 2

dr2
C 1

r

d

dr
�
	
1C 
2

r2


�
K�.r/ D 0; r > 0;

which differs from Bessel’s equation (6.11), only in one sign. The ODE (6.52) is
solved by J�.ir/ and by Y�.ir/, so K�.r/ must be a linear combination of these
functions. In fact,

(6.53) K�.r/ D 1

2
�ie� i�=2 H .1/

� .ir/; r > 0:

A proof of (6.53) can be found in [Leb], Chap. 5; see also Exercise 4 below. When

 D 1=2, (6.53) follows from (6.33) and (6.34) together with the identity

(6.54) K1=2.r/ D
� �
2r

�1=2
e�r ;
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which in turn, given (6.50), follows from the subordination identity. Then the
recursion relation (6.51) and analogues for the Bessel functions imply (6.53) for

 of the form 
 D k C 1=2, when k is a positive integer.

We mention that it is customary to take a second, linearly independent, solution
to (6.52) to be

(6.55) I�.r/ D e��i�=2J�.ir/; r > 0:

The functions K�.r/ and I�.r/ are called modified Bessel functions; also K�.r/
is sometimes called MacDonald’s function.

Exercises

1. Using the integral formula (6.7), show that, for fixed 
 > �1=2, as z ! C1,

(6.56) J�.z/ D
� 2
�z

�1=2
cos
�

z � 
�

2
� �

4

�
CO.z�3=2/:

(Hint: The endpoint contributions from the integral give exponentials times Fourier
transforms of functions with simple singularities at the origin.)
Reconsider this problem after reading ��7 and 8.

Similarly, using (6.33), show that, for fixed 
 > �1=2, as z ! C1,

(6.57) H
.1/
� .z/ D

	
2

�z


1=2
ei.z���=2��=4/ CO.z�3=2/:

2. Using the integral formula (6.50), show that, for fixed 
, as r ! C1,

K�.r/ D
� �
2r

�1=2
e�r h1CO.r�1/

i
:

(Hint: Use the Laplace asymptotic method, such as applied to the gamma func-
tion in the appendix to this chapter; compare (A.34)–(A.39). To implement this,
rewrite (6.50) as

K�.r/ D 2�1��r�1
Z 1

0
e�r.sC1=4s/s�1�� ds:

Note that '.s/ D s C 1=4s has its minimum at s D 1=2:)
3. Using the definition (6.55) for I�.r/, and plugging z D ir into the integral formula

(6.7) for J�.z/, show that, for fixed 
 > �1=2, as r ! C1,

I�.r/ D
	

1

2�r


1=2
er
h
1CO.r�1/

i
:

4. Show that, for r > 0,

K�.r/ D 1

�.12 /�.
 C 1
2 /

� r
2

�� Z 1

1
e�rt .t2 � 1/��1=2 dt;
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by showing that the function on the right solves the modified Bessel equation (6.52) and
has the same asymptotic behavior as r ! C1 as K�.r/ does, according to Exercise 2.
Hence establish the identity (6.53).

5. For y; a > 0; � 2 Rn, consider

F.�/ D e�y.j�j2Ca2/1=2

:

Applying the subordination identity (5.22) to A2 D j�j2 C a2, and taking Fourier
transforms of both sides of the resulting identity, show that

OF .x/ D cny

Z 1

0
e�.y2Cjxj2/=4t e�ta2

t�.nC3/=2 dt

D c0
n y a

� r�� K�.ar/;

with 
 D .nC 1/=2; r2 D jxj2 C y2.
6. Using analytic continuation involving both y and a, find an expression for the funda-

mental solution to

ut t C 2aut ��u D 0;

for u D u.t; x/; t 2 R; x 2 Rn, where a is a real number. Be explicit in the case
n D 2, using the elementary character of K3=2.z/.

7. Show that, under the change of variable u.r/ D r˛f .cr/, Bessel’s equation (6.11),
u00.r/C .1=r/u0.r/C .1 � 
2=r2/u.r/ D 0, is transformed to

(6.58) f 00.r/C A

r
f 0.r/C

�
�2 � �2

r2

�
f .r/ D 0;

with

A D 2˛ C 1; � D c�1; �2 D 
2 � ˛2:

8. Suppose in particular that v.x/ D f .r/w.�/; � 2 O � Sn�1, and �Sw D ��2w.
Show that the equation �v D ��2v is equivalent to (6.58), with A D n � 1, so

˛ D n=2� 1. Thus f is a linear combination of r1�n=2J�.�r/ and r1�n=2H .1/
� .�r/,

with 
 D �
�2 C .n � 2/2=4�1=2.

9. Show that, complementary to (6.20), we have, for 
 > 0,

H
.1/
� .z/ 	 �i �.
/

�

	
2

z


�
; z & 0:

7. The method of images and Poisson’s summation formula

We discuss here techniques for solving such problems as the Dirichlet problem
for the heat equation on a rectangular solid in Rn, defined by

(7.1) 	 D fx 2 Rn W 0 � xj � aj ; 1 � j � ng:
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That is, we want to solve

(7.2)
@u

@t
��u D 0;

for u D u.t; x/; t � 0; x 2 	, subject to the boundary condition

(7.3) u
ˇ̌
RC�@� D 0

and the initial condition

(7.4) u.0; x/ D f .x/; x 2 	:

There are two ways of doing this. One involves using Fourier series on the torus
Rn=2� , where � is the lattice in Rn generated by aj ej (ej being the standard
basis of Rn). The other is to use the solution on RC � Rn constructed in �5
together with the method of images, described below. Comparing these methods
provides interesting analytical identities.

The method of images works as follows. Let u# solve the heat equation

(7.5)
@u#

@t
��u# D 0 on RC � Rn;

with initial data

(7.6) u#.0; x/ D f #.x/;

where f # D f on 	 and f # is odd with respect to reflections across the walls
of all the translates of 	 by elements of � . The set of such translates is a set of
rectangles tiling Rn, and f # is uniquely determined by this prescription. Since
reflections are isometries, it follows that, for each t > 0; u#.t; �/ is odd with
respect to such reflections; since u# is smooth for t > 0, it must therefore vanish
on all these walls. The restriction of u#.t; x/ to RC � 	 is hence the desired
solution to (7.2)–(7.4).

The same sort of technique works for the wave equation on R �	,

(7.7)
@2u

@t2
��u D 0 on R �	;

with Dirichlet boundary condition

(7.8) u.t; x/ D 0; for x 2 @	;

and initial condition

(7.9) u.0; x/ D f .x/; ut .0; x/ D g.x/ on	:

One takes odd extensions f #; g#, as above.
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One can apply the method of images to regions other than rectangular solids.
It applies when 	 is a half-space, for example; in that case, only one reflection,
across the hyperplane @	, is involved. Similarly, one can treat slabs, bounded by
parallel hyperplanes, quadrants, and so on. One can also treat different boundary
conditions. If one extends f above to be even with respect to these reflections,
one obtains solutions with Neumann boundary condition satisfied on @	.

Another type of boundary condition to impose is a periodic boundary
condition:

(7.10) u.t; x/ D u.t; x C �/ if x; x C � 2 @	; � 2 �:

The solution to (7.1), (7.4), (7.10) is obtained as follows. Let f 0.x/ D f .x/ for
x 2 	, let f 0.x/ D 0 for x … 	, set

(7.11) f b.x/ D
X

�2
f 0.x C �/;

and let ub.t; x/ be the solution to

(7.12)
@ub

@t
��ub D 0 on RC � Rn; ub.0; x/ D f b.x/:

Note that if u0.t; x/ is defined by

(7.13)
@u0

@t
��u0 D 0 on RC � Rn; u0.0; x/ D f 0.x/;

then

(7.14) ub.t; x/ D
X

�2
u0.t; x C �/:

In this case, u.t; x/ is the restriction of ub.t; x/ to RC �	.
Let us specialize to the case � D .2�Z/n; f D ı. We have the fundamental

solution, satisfying periodic boundary conditions, given by

(7.15) H.t; x/ D .4�t/�n=2
X

k2Zn

e�jxC2�kj2=4t :

On the other hand, identifying Rn=.2�Z/n with Tn, we obtain via Fourier series

(7.16) H.t; x/ D .2�/�n
X

`2Zn

e�t j`j2Ci`�x :
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Comparing these formulas gives the following important case of Poisson’s
summation formula:

(7.17)
X

k2Zn

e�jxC2�kj2=4t D
	
t

�


n=2 X

`2Zn

ei`�x�j`j2t :

We now show how the special case of this for n D 1 implies the famous
functional equation for the Riemann zeta function. With n D 1; x D 0, and
t D �=� , (7.17) yields the identity

(7.18)
1X

nD�1
e�n2�� D

�1
�

�1=2 1X

nD�1
e��n2=� :

In other words, with g1.�/ denoting the left side of (7.18), we have g1.�/ D
��1=2g1.1=�/. This is a transformation formula of Jacobi. It follows that if

(7.19) g.t/ D
1X

nD1
e�n2�t ;

then

(7.20) g.t/ D �1
2

C 1

2
t�1=2 C t�1=2g.t�1/:

Now (7.19) is related to the Riemann zeta function

(7.21) �.s/ D
1X

nD1
n�s .Re s > 1/

via the Mellin transform, discussed briefly in Appendix A, at the end of this
chapter. Indeed, we have

(7.22)

Z 1

0

g.t/ts�1 dt D
Z 1

0

1X

nD1
e�n2�t ts�1 dt

D
1X

nD1
n�2s��s

Z 1

0

e�t ts�1 dt

D �.2s/ ��s �.s/:

Consequently, for Re s > 1,

(7.23)

�
� s
2

�
��s=2�.s/ D

Z 1

0

g.t/ts=2�1 dt

D
Z 1

0

g.t/ts=2�1 dt C
Z 1

1

g.t/ts=2�1 dt:



Exercises 277

Now, into the integral over Œ0; 1�, substitute the right side of (7.20) for g.t/, to
obtain

(7.24)
�
� s
2

�
��s=2�.s/ D

Z 1

0

	
�1
2

C 1

2
t�1=2



ts=2�1 dt

C
Z 1

0

g.t�1/ts=2�3=2 dt C
Z 1

1

g.t/ts=2�1 dt:

We evaluate the first integral on the right, and replace t by 1=t in the second
integral, to obtain, for Re s > 1,

(7.25) �
� s
2

�
��s=2�.s/ D 1

s � 1 � 1

s
C
Z 1

1

h
ts=2 C t .1�s/=2

i
g.t/t�1 dt:

Note that g.t/ � Ce��t for t 2 Œ1;1/, so the integral on the right is
an entire analytic function of s. Since 1=�.s=2/ is entire, with simple zeros at
s D 0;�2;�4; : : : , as shown in Appendix A at the end of this chapter, this im-
plies that �.s/ is continued as a meromorphic function on C, with one simple
pole, at s D 1. The punch line is this: The right side of (7.25) is invariant under
replacing s by 1 � s. Thus we have Riemann’s functional equation

(7.26) �
� s
2

�
��s=2�.s/ D �

	
1 � s

2



��.1�s/=2�.1 � s/:

The functional equation is often written in an alternative form, obtained by
multiplying both sides by �

�
.1C s/=2

�
, and using the identities

(7.27)

�

	
1 � s
2



�

	
1C s

2



D �

sin 1
2
�.1 � s/

;

�
� s
2

�
�

	
1C s

2



D 2�sC1�1=2�.s/;

which follow from (A.10) and (A.22). We obtain

(7.28) �.1� s/ D 21�s��s �cos
�s

2

�
�.s/�.s/:

Exercises

1. Apply the method of images to find the solution to the heat equation on a half-line:

@u

@t
D uxx ; t � 0; x � 0;

u.0; x/ D f .x/; u.t; 0/ D 0:
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2. Similarly, treat the wave equation on a half-space:

ut t ��u D 0; t 2 R; x1 > 0;

u.0; x/ D f .x/; ut .0; x/ D g.x/; u.t; 0; x0/ D 0;

where x D .x1; x
0/ 2 Rn.

3. Given u 2 S.Rn/, define f 2 C1.Tn/ by f .x/ D P
�2Zn u.x C 2�
/. Show that,

for ` 2 Zn, we have Of .`/ D .2�/�n=2 Ou.`/ and hence

(7.29)
X

k

u.x C 2�k/ D .2�/�n=2
X

`

Ou.`/ei`�x:

Show that this generalizes the identity (7.17).
4. Let .a`/ be polynomially bounded, and consider v D P

`2Zn a`e
i`�x , pictured as

a 2�Zn-periodic (tempered) distribution on Rn rather than as a distribution on TnI
v 2 S 0.Rn/. Show that

(7.30) Ov D .2�/n=2
X

`2Zn

a` ı` 2 S 0.Rn/:

Relate this to the result in Exercise 3.
5. Show that �.s/ satisfies the identity

�.s/ D
Y

p

�
1 � p�s��1; Re s > 1;

the product taken over all the primes. This is known as the Euler product formula.

8. Homogeneous distributions and principal value
distributions

Recall from �4 that the fundamental solution of the Laplace operator � on Rn is
cnjxj2�n (if n � 3), which is homogeneous. It is useful to consider homogeneous
distributions in general. The notion of homogeneity is determined by the action
of the group of dilations,

(8.1) D.t/f .x/ D f .tx/; t > 0:

Note that D.t/ W S.Rn/ ! S.Rn/. Also, if f; g 2 S.Rn/, a change of variable
gives

(8.2)
Z
g.x/ D.t/f .x/ dx D t�n

Z
f .x/ D.t�1/g.x/ dx:

Thus we can define

(8.3) D.t/ W S 0.Rn/ �! S 0.Rn/
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by

(8.4) hf;D.t/ui D t�nhD.t�1/f; ui;

for f 2 S.Rn/; u 2 S 0.Rn/. We say that u 2 S 0.Rn/ is homogeneous of degree
m if

(8.5) D.t/u D tm u; for all t > 0:

Here, m can be any complex number. Let us denote the space of elements of
S 0.Rn/ which are homogeneous of degree m by Hm.Rn/. It is easy to see that if
F is the Fourier transform, then

(8.6) FD.t/ D t�nD.t�1/F ;

so

(8.7) F W Hm.R
n/ �! H�m�n.Rn/:

Before we delve any further into Hm.Rn/, we should aver that one’s real
interest is in elements of Hm.Rn/ which are smooth outside the origin, so we
consider

(8.8) H#
m.R

n/ D fu 2 Hm.R
n/ W u 2 C1.Rn n 0/g:

It is easy to see that

(8.9) u 2 H#
m.R

n/ ) D˛u 2 H#
m�j˛j.R

n/ and x˛u 2 H#
mCj˛j.R

n/:

We claim (8.7) can be strengthened as follows.

Proposition 8.1. We have

(8.10) F W H#
m �! H#�m�n.Rn/:

The only point left to prove is that if u 2 H#
m.R

n/, then Ou is smooth on Rn n 0.
Taking ' 2 C1

0 .R
n/; '.x/ D 1 for jxj � 1, we can write u D 'u C .1 � '/

u D u1 C u2 with u1 2 E 0.Rn/ and u2 2 C1.Rn/, homogeneous for jxj large.
We know that Ou1 2 C1.Rn/, so it suffices to show that Ou2 2 C1.Rn n 0/. This
is a special case of the following important result.

Form 2 R, we define the class Sm1 .R
n/ of C1-functions by

(8.11) p 2 Sm1 .Rn/ ” jD˛
xp.x/j � C˛hxim�j˛j; for all ˛ � 0:
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Clearly, Sm1 .R
n/ � S 0.Rn/. It is also clear that u2 2 SRem

1 .Rn/, so the proof of
Proposition 8.1 is finished once we establish the following.

Proposition 8.2. If p 2 Sm1 .R
n/, then Op 2 C1.Rn n 0/. Also, if ' 2 C1

0 .R
n/,

and '.x/ D 1 for jxj < a .a > 0/, then .1 � '/ Op 2 S.Rn/.
Proof. We will show that if ˇ is large, then xˇ Op is bounded and continuous, and
so are lots of derivatives, which will suffice. Clearly,

F W S�1 .Rn/ �! L1.Rn/ \ C.Rn/; for � < �n:

Now, given p 2 Sm1 .Rn/, then Dˇp 2 Sm�jˇ j
1 .Rn/, so

xˇ Op D F.Dˇp/ 2 L1 \ C; for jˇj > mC n;

and more generally x˛Dˇp 2 Sm�jˇ jCj˛j
1 .Rn/, so

(8.12) D˛.xˇ Op/ D F.x˛Dˇp/ 2 L1 \ C; for jˇj > mC nC j˛j:

This proves Proposition 8.2.

Generally, there is going to be a singularity at the origin for an element of
H#
m.R

n/. In fact, there is the following result, whose proof we leave as an
exercise.

Proposition 8.3. If there is a nonzero u 2 H#
m.R

n/ \ C1.Rn/, then m is a
nonnegative integer and u is a homogeneous polynomial.

Let us consider other examples of homogeneous distributions. It is easy to see
from the definition (8.4) of the action of D.t/ that

(8.13) ı 2 H#�n.Rn/:

Of course, ı is zero on Rn n 0! Since Fı D .2�/�n=2 2 H#
0.R

n/, this result is
consistent with Proposition 8.1. For more examples, choose any

(8.14) w 2 C1.Sn�1/;

and consider, for anym 2 C,

(8.15) um.x/ D jxjm w.jxj�1x/; x 2 Rn n 0:

If Re m > �n, then um 2 L1loc.R
n/, so it defines in a natural manner an element

of S 0.Rn/, which belongs to H#
m.R

n/. Thus

(8.16) D˛um 2 H#
m�j˛j.R

n/ .Re m > �n/:
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If Re m � �n, then um … L1loc.R
n/. In the borderline case m D �n, it is

significant that there is a natural identification of um with an element of S 0.Rn/,
under the further condition that

(8.17)
Z

Sn�1

w.x/ dS D 0:

The element of S 0.Rn/ is called a principal value distribution and is denoted
PV um. We establish this as follows. Pick any radial ' 2 S.Rn/ such that '.0/ D
1, such as '.x/ D e�jxj2 . Then, for any v 2 S.Rn/, with u�n as in (8.15),
u�n.x/

�
v.x/ � v.0/'.x/

�
belongs to L1.Rn/, so we can define

(8.18) hv; PV u�ni D
Z

Rn

u�n.x/
�
v.x/ � v.0/'.x/

�
dx:

Note that (8.17) is precisely what is required to guarantee that the right side of
(8.18) is independent of the choice of ' (satisfying the conditions given above).
Thus we can write, for any t > 0,

(8.19)

hD.t/v; PV u�ni D
Z

Rn

u�n.x/
�
v.tx/ � v.0/'.tx/

�
dx

D t�n
Z

Rn

u�n.x=t/
�
v.x/ � v.0/'.x/

�
dx

D hv; PV u�ni:

In light of (8.4), this implies

(8.20) PV u�n 2 H#�n.Rn/;

provided (8.17) holds. By Proposition 8.1, we have

(8.21) F.PV u�n/ 2 H#
0.R

n/:

In particular, this Fourier transform is bounded. Consequently, the convolution
operator

(8.22) T v D .PV u�n/ � v;

a priori taking S.Rn/ to S 0.Rn/, has the property that

(8.23) T W L2.Rn/ �! L2.Rn/:
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Continuity properties of such a convolution operator on Lp.Rn/, for 1 < p < 1,
will be demonstrated in Chap. 13.

The special one-dimensional case of a principal value distribution has been
discussed in �4. In analogy with (4.34), we have the following.

Proposition 8.4. Under the hypothesis (8.17), we have, for v 2 S.Rn/,

(8.24) hv; PV u�ni D lim
"!0

Z

RnnB"

v.x/ u�n.x/ dx;

where B" D fx 2 Rn W jxj < "g.

Proof. Since u�n.x/
�
v.x/ � v.0/'.x/

� 2 L1.Rn/, via (8.18), we have

hv; PV u�ni D lim
"!0

Z

RnnB"

u�n.x/
�
v.x/ � v.0/'.x/

�
dx;

so (8.24) follows from the observation that if (8.17) holds, then

Z

RnnB"

u�n.x/'.x/ dx D 0; for all " > 0;

for any radial ' 2 S.Rn/.
In general, if u.x/ has the form (8.15) with m D �n, then u is a sum of a

term to which (8.17) applies and a constant times r�n. Now one can still define a
distribution in S 0.Rn/, equal to r�n on Rn n 0, by the prescription

(8.25) hv;E'r�ni D
Z

Rn

r�n�v.x/ � v.0/'.x/� dx;

for any given radial ' 2 S.Rn/ satisfying '.0/ D 1. This time, E'r�n 2 S 0.Rn/
depends on the choice of '. One has

(8.26) E'r
�n �E r�n D

	Z
Œ .x/ � '.x/� r�ndx



ı:

Also, E'r�n is not homogeneous. Instead, one has

(8.27) D.t/.E'r
�n/ D t�nED.t/'r�n;

and by (8.26) this yields, after a brief calculation,

(8.28) D.t/
�
E'r

�n� D t�nE'r�n C An�1t�n.log t/ı;
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where An�1 D vol.Sn�1/. This implies for the Fourier transform of E'r�n that

(8.29) D.t/F.E'r�n/ D F.E'r�n/C .2�/�n=2An�1 log t;

which, in view of rotational invariance, implies that

(8.30) F.E'r�n/.�/ D .2�/�n=2An�1 log j�j C B;

where B is a constant, depending in an affine manner on '. A “canonical” choice
of E'r�n would be one for which B D 0; such a distributionE'r�n 2 S 0.Rn/ is
denoted PF r�n (for “finite part”); we have

(8.31) F.PF r�n/.�/ D .2�/�n=2An�1 log j�j:

Note that this is consistent with (4.59) when n D 2.
It turns out that r�m, which is holomorphic in fm 2 C W Re m > �ng, with val-

ues in S 0.Rn/, has a meromorphic continuation. This can be perceived as follows.
First note that if �n < Re m < 0, then both rm and r�n�m belong to L1loc.R

n/,
so from Proposition 8.1 and rotational invariance we deduce that

(8.32) F.rm/ D c.m/ r�m�n;

for a certain factor c.m/, which we want to work out. We claim that

(8.33) F .rm/ D 2mCn=2�
�
1
2
.mC n/

�

�.�1
2
m/

r�m�n;

for �n < Re m < 0. This can be deduced from (8.32) and Parseval’s identity,
which gives

(8.34) hu; rmi D c.m/hOu; r�m�ni:

If we plug in u.x/ D e�jxj2=2 D Ou.x/, both sides of (8.34) can be evaluated by
integrating in polar coordinates. The left side is

(8.35)

An�1
Z 1

0

rmCn�1e�r2=2 dr D 2.mCn�1/=2An�1
Z 1

0

s.mCn/=2�1 e�s ds

D 2.mCn�1/=2�
�
1
2
.mC n/

�
An�1;

and the right side of (8.34) is similarly evaluated, giving (8.33).
Now the left side of (8.33) extends to be holomorphic in Re m > �n, with

values in S 0.Rn/, while the right side extends to be meromorphic in Re m < 0,
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with poles atm D �n;�n�2;�n�4; : : : , due to the factor �..mCn/=2/. Thus
we have the desired meromorphic continuation. With rm so defined,

(8.36) rm 2 H#
m.R

n/; m ¤ �n;�n � 2;�n � 4; : : : I

indeed, D.t/rm � tm rm is a meromorphic function of m which vanishes on a
nonempty open set. As we have seen, PF r�n can be defined by a “renormaliza-
tion,” though it does not belong to H#�n.Rn/.

Let us now consider the possibility of extending um, of the form (8.15), to an
element of S 0.Rn/, in case

(8.37) m D �n � j; j D 1; 2; 3; : : : :

In analogy with (8.18) and (8.25), we can define Ej;'um in this case by

(8.38)
˝
v;Ej;'um

˛ D
Z

um.x/

2

4v.x/ �
X

j˛j�j

v.˛/.0/

˛Š
x˛'.x/

3

5 dx;

provided ' 2 S.Rn/ is a radial function such that '.0/ D 1 and 1 � ' vanishes
to order at least j at 0; for example, we could require '.x/ D 1 for jxj � c. The
dependence on ' is given by

(8.39) Ej;'um �Ej; um D
X

j˛j�j
ˇ˛.' �  / ı.˛/;

where

(8.40) ˇ˛.' �  / D � 1

˛Š

Z
x˛
�
'.x/ �  .x/�um.x/ dx:

In analogy with (8.27), we have

(8.41) D.t/Ej;'um D tmEj;D.t/'um;

and hence, given (8.37), by a calculation similar to that establishing (8.28),

(8.42)

D.t/.Ej;'um/ D tmEj;'um C tm
X

j˛j<j
�˛
�
t j˛j�j � 1

�
ı.˛/

C tm log t
X

j˛jDj
�˛ ı

.˛/;

for certain constants �˛, which depend in an affine fashion on '. Consequently, if
we set
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(8.43) eEum D Ej;'um �
X

j˛j<j
�˛ı

.˛/;

we have another element of S 0.Rn/ which agrees with um on Rn n 0, and

(8.44) D.t/.eEum/ D tmeEum C tm.log t/
X

j˛jDj
�˛ ı

.˛/:

It follows for the Fourier transform F.eEum/ that

D.t/F.eEum/ D tjF.eEum/C tj .log t/
X

j˛jDj
� 0̨ �˛ :

Consequently, if F.eEum/ D !.�/ for j�j D 1, we have

F.eEum/.t�/ D tj!.�/C .log t/
X

j˛jDj
� 0̨ .t�/˛ ; for j�j D 1;

and hence

(8.45) F.eEum/.�/ D wj .�/C pj .�/ log j�j;

where

(8.46) wj 2 H#
j .R

n/ and pj is a homogeneous polynomial, of degree j:

We leave it as an exercise to the reader to construct a similar extension of um
to an element of S 0.Rn/, when Rem � �n andm is not an integer. In such a case
one can produce an element of H#

m.R
n/; log terms do not arise.

Exercises

1. More generally than Sm1 .R
n/, for 0 < � � 1, define Sm� .R

n/ by

p 2 Sm� .Rn/ ” jD˛xp.x/j � C˛hxim��j˛j; for all ˛ � 0:

Show that Op 2 C1.Rn n 0/ in this case, as in Proposition 8.2
2. Define p 2 C1.Rn n 0/ by p.�/ D .i�1 C j� 0j2/�1; � D .�1; �2; : : : ; �n/ D .�1; �

0/.
Show that p.�/ agrees outside any neighborhood of the origin with a member of
S�1
1=2
.Rn/.

3. Prove Proposition 8.3
4. If �n < Re m < 0 and um is of the form (8.15), then um and Oum belong to L1loc.R

n/,
with um 2 H#

m; Oum 2 H#�n�m. Hence

Ou.x/ D jxj�n�mWm.jxj�1x/; Wm 2 C1.Sn�1/:
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Study the transformation w 7! Wm. Use this to produce a meromorphic continuation
of um.

5. Study the residue of the meromorphic distribution-valued function rz at z D �n, and
relate this to the failure of PF r�n to be homogeneous.

6. In case n D 1 and m D �s, the formula (8.33) says

F.r�s/ D 21=2�s �
�
1�s
2

�

�
�
s
2

� rs�1; for 0 < Re s < 1;

while Riemann’s functional equation (7.26) can be written

�.s/

�.1 � s/ D �s�1=2
�
�
1�s
2

�

�
�
s
2

� :

Is this a coincidence? (See [Pat], Chap. 2.) Note that these formulas yield

.2�/s=2

�.s/
F.r�s/ D .2�/.1�s/=2

�.1 � s/
rs�1; 0 < Re s < 1:

9. Elliptic operators

A partial differential operator P.D/ of orderm,

(9.1) P.D/ D
X

j˛j�m
a˛D

˛;

is said to be elliptic provided

(9.2) jP.�/j � C j�jm; for j�j large:

Here P.�/ D P
a˛�

˛ . The paradigm example is the Laplace operator
� D P.D/, with P.�/ D �j�j2, which is elliptic of order 2. In this section
we consider some important properties of solutions to

(9.3) P.D/u D f

when P.D/ is elliptic.
The hypothesis (9.2) implies the following. If (9.2) holds for j�j � C1, and if

' 2 C1
0 .R

n/ is equal to 1 for j�j � C1, then

(9.4) q.�/ D �
1 � '.�/

�
P.�/�1 2 S�m

1 .Rn/;

where Sm1 .R
n/ is the space defined by (8.11); we call it a space of “symbols.”

Now consider

(9.5) E D .2�/�n=2 Qq 2 S 0.Rn/:
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By Proposition 8.2, we know that E is smooth on Rn n 0 and rapidly decreasing
as jxj ! 1. If we set

(9.6) v D P.D/E;

then

(9.7) Ov.�/ D .2�/�n=2
�
1 � '.�/

�
:

In other words,

(9.8) P.D/E D ı C w;

with

(9.9) w D �.2�/�n=2 Q' 2 S.Rn/:

We say E is a parametrix for P.D/. It is almost as useful as a fundamental
solution, for some qualitative purposes. For example, it enables us to say a great
deal about the singular support of a solution u to (9.3), given f 2 D0.Rn/. The
singular support of a general distribution u 2 D0.Rn/ is defined as follows. Let
	 � Rn be open. We say u is smooth on 	 if there exists v 2 C1.	/ such that
u D v on 	. The smallest set K for which u is smooth on Rn nK is the singular
support of u, denoted

sing supp u:

For example, sing supp ı D f0g; also sing supp jxj2�n D f0g, if n ¤ 2. Now,
suppose that u 2 E 0.Rn/ and (9.3) holds. Then

(9.10) E � f D E � P.D/u D .P.D/E/ � u D u C w � u

and, of course,
w � u 2 C1.Rn/:

On the other hand, it is easy to see that, for any f 2 E 0.Rn/,

(9.11) sing supp E � f � sing supp f;

provided sing supp E � f0g. More generally, for any f1; f2 2 E 0.Rn/, if sing
supp fj � Kj , then

(9.12) sing supp f1 � f2 � K1 CK2;

a result we leave as an exercise.
Noting that we can multiply distributions by cut-offs � 2 C1

0 .R
n/, equal to

1 on an arbitrarily large set, we deduce the following result, known as elliptic
regularity.



288 3. Fourier Analysis, Distributions, and Constant-Coefficient Linear PDE

Proposition 9.1. For any u 2 D0.Rn/, if (9.3) holds with P.D/ elliptic, then

(9.13) sing supp u D sing supp f:

Finally, we want to make a detailed analysis of the behavior of the singularity
at the origin of the parametrix E for an elliptic operator P.D/. Since E is given
by (9.4) and (9.5), with P.�/ D P

j˛j�m a˛�˛ a polynomial, it follows that, for
j�j large,

(9.14) q.�/ 	
X

j�0
qj .�/;

where each qj 2 C1.Rn/, and, for j�j � C; qj .�/ is homogeneous in � of
degree �m � j . The meaning of (9.14) is that, for any N ,

(9.15) q.�/ �
N�1X

jD0
qj .�/ D rN .�/ 2 S�m�N

1 .Rn/:

Consequently,

(9.16) E 	 .2�/�n=2
X

j�0
Qqj

in the sense that, for anyK , one can take N large enough that

(9.17) E � .2�/�n=2
N�1X

jD0
Qqj D .2�/�n=2 QrN 2 CK.Rn/:

Now, we can replace each qj by qbj 2 C1.Rn n 0/, equal to qj for j�j large, and

homogeneous of degree �m� j on Rn n 0, and replace each qbj by q#
j 2 S 0.Rn/,

equal to qbj on Rn n 0, such that q#
j 2 H#�m�j if mC j < n, or in any event satis-

fying the counterpart of (8.44)–(8.46). Note that, for each j; qj �q#
j 2 E 0.Rn/, so

the Fourier transform of the difference belongs to C1.Rn/. We have established
the following.

Proposition 9.2. A parametrix E for an elliptic operator P.D/ of order m
satisfies the condition that E 2 C1.Rn n 0/, and the singularity is given by

(9.18) E 	
X

`�0
.E` C p`.x/ log jxj/;
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where

(9.19) E` 2 H#
m�nC`.R

n/

andp`.x/ is a polynomial homogeneous of degreem�nC`; these log coefficients
appear only for ` � n �m.

More generally, this result holds forE D .2�/�n=2 Qq whenever q 2 Sm1 has an
expansion of the form (9.14), for any m 2 R, and log terms do not arise if m is
not an integer.

Exercises

1. Using Exercises 1 and 2 of �8, establish an analogue of the regularity result in Proposi-
tion 9.1 when P.D/ is the (nonelliptic) “heat operator”:

P.D/ D @

@x1
�
 
@2

@x22
C � � � C @2

@x2n

!
:

2. Give a detailed proof of (9.12), in order to deduce (9.11).
(Hint: Use

f 2 E 0.Rn/; g 2 C1.Rn/ H) f � g 2 C1.Rn/:

Break up f1 and f2 into pieces. For nonsmooth pieces, establish and use

supp 'j � eK j H) supp '1 � '2 � eK1 CeK2/:

10. Local solvability of constant-coefficient PDE

In the previous sections we have mainly used Fourier analysis as a tool to provide
explicit solutions to the classical linear PDEs. Here we use Fourier series to prove
an existence theorem for solutions to a general constant-coefficient linear PDE

(10.1) P.D/u D f:

We show that, given any f 2 D0.Rn/, and any R < 1, there exists u 2 D0.Rn/
solving (10.1) on the ball jxj < R. This result was originally established by
Malgrange and Ehrenpreis. If f 2 C1.Rn/, we produce u 2 C1.Rn/. We
do not produce a global solution, and other references, particularly [H] and [Tre],
contain much more information on solutions to (10.1) than is presented here. Our
method, due to Dadok and Taylor [DT], does have the advantage of being fairly
straightforward and short.

For any ˛ 2 Rn, solving (10.1) on BR D fx 2 Rn W jxj < Rg is equivalent to
solving

(10.2) P.D C ˛/v D g;
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where v D e�i˛�xu and g D e�i˛�xf . To solve (10.2) on BR, we can cut off
g to be supported on B3R=2 and work on Rn=2RZn. Without loss of generality
(altering P.D/), we can rescale and suppose R D � , so Rn=2RZn D Tn. The
following result then implies solvability on BR.

Proposition 10.1. For almost every ˛ 2 A D f.˛1; : : : ; ˛n/ W 0 � ˛� � 1g,

(10.3) P.D C ˛/ W D0.Tn/ �! D0.Tn/

is an isomorphism, as is P.D C ˛/ W C1.Tn/ ! C1.Tn/.

In view of the characterizations of Fourier series of elements of D0.Tn/ and of
C1.Tn/, it suffices to establish the following.

Proposition 10.2. Let P.�/ be a polynomial of order m on Rn. For almost all
˛ 2 A, there are constants C;N such that

(10.4) jP.k C ˛/�1j � C hkiN ; for all k 2 Zn:

We will prove this using the following elementary fact about the behavior of a
polynomial near its zero set.

Lemma 10.3. Let P.�/ be a polynomial of order m on Rn, not identically zero.
Then there exists ı > 0 such that

(10.5) jP.�/j�ı 2 L1loc.R
n/:

Before proving Lemma 10.3, we show how it yields (10.4). First, we claim
that, for any polynomial of orderm on Rn, not identically zero, there exist ı > 0
and M such that

(10.6)
Z

jP.�/j�ı h�i�M d� < 1:

Indeed, Lemma 10.3 guarantees

Z

j�j�1
jP.�/j�ı d� < 1;

while, forM sufficiently large,

Z

j�j�1
jP.�/j�ı j�j�M d� � C

Z

j�j�1
jP.j�j�2�/j�ı d�;
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and Lemma 10.3 also implies that, for ı > 0 small enough,

jP.j�j�2�/j�ı 2 L1loc:

Now, using (10.6), note that

(10.7)
Z

A

X

k2Zn

jP.k C ˛/j�ı hki�M d˛ � C

Z

Rn

jP.�/j�ı h�i�M d� < 1:

Thus, for almost all ˛ 2 A,

(10.8)
X

k2Zn

jP.k C ˛/j�ı hki�M < 1;

which immediately gives (10.4).
We now prove the lemma for any ı < 1=m. We must prove that jP.�/j�ı is

integrable on any bounded subset of Rn. Rotating coordinates, we can suppose
that P.�1; 0/ is a polynomial of order exactlym:

(10.9) P.�1; 0/ D am�
m
1 C � � � C a0; am ¤ 0:

It follows that, with � 0 D .�2; : : : ; �n/,

(10.10) P.�/ D am�
m
1 C

m�1X

`D0
a`.�

0/�`1;

where a`.� 0/ is a polynomial on Rn�1 of order � m � `. Consequently, we have

(10.11) P.�/ D am

mY

jD1

�
�1 � �j .�

0/
�
:

Hence it is clear that, for any C1 < 1, there is a C2 < 1 such that if ı < 1=m,

(10.12)
Z C1

�C1

jP.�/j�ı d�1 � C2; for j� 0j � C1:

This completes the proof.

Exercises

1. Consider the following boundary problem on Œ0; A� � Tn:

ut t ��u D 0;

u.0; x/ D f1.x/; u.A; x/ D f2.x/;
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where fj 2 C1.Tn/. Show that, for almost all A 2 RC, this has a unique solution
u 2 C1.Œ0; A� � Tn/, for all fj 2 C1.Tn/. Show that, for a dense set of A, this
solvability fails.

11. The discrete Fourier transform

When doing numerical work involving Fourier series, it is convenient to
discretize, and replace S1, pictured as the group of complex numbers of modulus
1, by the group �n generated by ! D e2�i=n. One can also approximate Td by
.�n/

d , a product of d copies of �n. We will restrict attention to the case d D 1

here; results for general d are obtained similarly.
The cyclic group �n is isomorphic to the group Zn D Z=.n/, but we will

observe a distinction between these two groups; an element of �n is a certain
complex number of modulus 1, and an element of Zn is an equivalence class of
integers. For n large, we think of �n as an approximation to S1 and Zn as an
approximation to Z. We note the natural dual pairing �n � Zn ! C given by
.!j ; `/ 7! !j`, which is well defined since !jn D 1.

Now, given a function f W �n ! C, its discrete Fourier transform f # D ˆnf ,
mapping Zn to C, is defined by

(11.1) f #.`/ D 1

n

X

!j 2n

f .!j /!�j`:

Similarly, given a function g W Zn ! C, its “inverse Fourier transform” gb W
�n ! C is defined by

(11.2) gb.!j / D
X

`2Zn

g.`/!j`:

The following is the Fourier inversion formula in this context.

Proposition 11.1. The map

(11.3) ˆn W L2.�n/ �! L2.Zn/

is a unitary isomorphism, with inverse defined by (11.2), so

(11.4) f .!j / D
X

`2Zn

f #.`/!j`:
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Here the space L2.Zn/ is defined by counting measure and L2.�n/ by 1=n
times counting measure, that is,

(11.5) .u; v/L2.n/
D 1

n

X

!j 2n

u.!j /v.!j /:

Note that if we define functions ej on �n by

(11.6) ej .!
k/ D !jk ;

then Proposition 11.1 is equivalent to:

Proposition 11.2. The functions ej; 1 � j � n, form an orthonormal basis of
L2.�n/.

Proof. Since L2.�n/ has dimension n, we need only check that the ej s are
mutually orthogonal. Note that

.ek; e`/ D 1

n

X

!j 2n

!mj ; m D k � `:

Denote the sum by Sm. If we multiply by !m, we have a sum of the same set of
powers of !, so Sm D !mSm. Thus Sm D 0 whenever !m ¤ 1, which com-
pletes the proof. Alternatively, the series is easily summed as a finite geometrical
series.

Note that the functions ej in (11.6) are the restrictions to �n of eij� (i.e., values
at � D 2�k=n). These restrictions depend only on the residue class of j mod n,
which leads to the following simple but fundamental connection between Fourier
series on S1 and on �n.

Proposition 11.3. If f 2 C.S1/ has absolutely convergent Fourier series, then

(11.7) f #.`/ D
1X

jD�1
Of .`C jn/:

We will use (11.7) as a tool to see how well a function on S1 is approximated
by discretization, involving restriction to �n. Precisely, we consider the operators

(11.8) Rn W C.S1/ �! L2.�n/; En W L2.�n/ �! C1.S1/

given by

(11.9) .Rnf /.!
j / D f

	
2�j

n



;
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for f D f .�/; 0 � � � 2� , and

(11.10) En

0

@
X

`2Zn

g.`/!j`

1

A D
��1X

`D��
g.`/ei`� ; n D 2
:

We assume n D 2
 is even; one can also treat n D 2
 � 1, changing the upper
limit in the last sum from 
 � 1 to 
. Clearly, RnEn is the identity operator on
L2.�n/. The question of interest to us is: How close is EnRnf to f , a function
on S1? The answer depends on smoothness properties of f and is expressed in
terms involving (typically) negative powers of n.

We compareEnRn and the partial summing operator

(11.11) Pnf D
��1X

`D��
Of .`/ei`�

for Fourier series. Note that

(11.12) EnRnf .�/ D
��1X

`D��
f #.`/ei`� :

Consequently,

(11.13) EnRnf D Pnf CQnf;

with

(11.14) Qnf .�/ D
��1X

`D��

h
f #.`/� Of .`/

i
ei`� :

By (11.7), we have, for �
 � ` � 
 � 1,

(11.15) f #.`/� Of .`/ D
X

j2Zn0
Of .`C jn/:

Consequently, the sup norm of Qnf is bounded by

(11.16)
��1X

`D��

ˇ̌
f #.`/ � Of .`/ˇ̌ �

X

jkj��
j Of .k/j:
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The right side also dominates the sup norm of f � Pnf , proving:

Proposition 11.4. If f 2 C.S1/ has absolutely convergent Fourier series, then

(11.17) kf � EnRnf kL1 � 2
X

jkj��
j Of .k/j:

The estimates of various norms of f � Pnf is an exercise in Fourier analysis
on S1. There are many estimates involving Sobolev spaces; see Chap. 4. Here we
note a simple estimate, form � 1:

(11.18)
kf � Pnf kC`.S1/ �

X

jkj��
jkj`j Of .k/j

� Cm`kf kC`CmC1.S1/ � n�m;

the last inequality following from (1.49). As the reader can verify, use of the
proof of Proposition 1.3 can lead to a sharper estimate. As for an estimate of the
contribution of Qn to the discretization error, from (11.14) to (11.16) we easily
obtain

(11.19)
kQnf kC`.S1/ �

�n
2

�` X

jkj��
j Of .k/j

� C`mkf kC`CmC1.S1/ � n�m:

We reiterate that sharper estimates are possible.
Recall that solutions to a number of evolution equations are given by Fourier

multipliers on L2.S1/, of the form

(11.20) F.D/u.�/ D
1X

`D�1
F.`/Ou.`/ei`� :

We want to compare such an operator with its discretized version on L2.�n/:

(11.21) F.Dn/

"
X

`2Zn

g.`/!j`

#
D

��1X

`D��
F.`/g.`/!j`:

In fact, a simple calculation yields

(11.22) EnF.Dn/Rnu.�/ D
��1X

`D��
F.`/u#.`/ei`�
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and hence

(11.23) EnF.Dn/Rnu D PnF.D/u C‰nu;

where

(11.24) ‰nu.�/ D
��1X

`D��
F.`/

"
X

j2Zn0
Ou.`C jn/

#
ei`� :

This implies the estimate

(11.25) k‰nukL1 �
"

sup
j`j��

jF.`/j
#
X

jkj��
jOu.k/j:

Also, as in (11.18), we have, for m � 1,

(11.26) k‰nukC`.S1/ � C`m

"
sup
j`j��

jF.`/j
#

kukC`CmC1.S1/ � n�m:

The significance of these statements is that, for u smooth and n large, the
discretized F.Dn/ provides a very accurate approximation to F.D/. This is of
practical importance for a number of numerical problems.

Note the distinction between Dn and the centered difference operator �n,
defined by

.�nf /.!
j / D n

4�i

�
f .!jC1/� f .!j�1/

�
:

We have, in place of (11.21),

(11.27) F.�n/

"
X

`2Zn

g.`/!j`

#
D

��1X

`D��
F

	
n

2�
sin

	
2�`

n



g.`/!j`;

so, for gb 2 L2.�n/ given by (11.2),

(11.28)

F.�n/g
b.!j /�F.Dn/gb.!j / D

��1X

`D��

�
F

	
n

2�
sin

	
2�`

n



�F.`/

�
g.`/!j`:
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This identity leads to a variety of estimates, of which the following is a simple
example. If jF 0.�/j � K for �
 � � � 
, then

(11.29) kF.�n/u � F.Dn/ukL1 � 2

3
� �2K

"
��1X

`D��
j`j3 ju#.`/j

#
� n�2;

since, for �� � x � �; j sin x � xj � .1=6/jxj3. The basic content of this is that
F.�n/ furnishes a second-order-accurate approximation to F.D/ (as n ! 1).
This is an improvement over the first-order accuracy one would get by using a
one-sided difference operator, such as

.�C
n f /.!

j / D n

2�i

�
f .!jC1/� f .!j /

�
;

but not as good as the “infinite-order accuracy” one gets for F.Dn/ as a
consequence of (11.23)–(11.26).

Similar to the case of functions on S1, we have, for u 2 L2.�n/,

(11.30) F.Dn/u.!
j / D .kF � u/.!j / D 1

n

X

`2Zn

kF

�
!j�`

�
u
�
!`
�
;

where

(11.31) kF .!
j / D

��1X

`D��
F.`/!j`:

For example, with F.�/ D e�yj
j, we get the discrete version of the Poisson
kernel:

(11.32) kF .!
j / D py.!

j / D
��1X

`D��
e�yj`j!j`;

which we can write as a sum of two finite geometrical series to get

(11.33) py.!
j / D 1 � r2 � 2r�C1.�1/j cos.2�j=n/

1C r2 � 2r cos.2�j=n/
C r�!�j� ;

with r D e�y and, as usual, ! D e2�i=n; n D 2
. Compare with (1.30). The
reader can produce a similar formula for n odd.

As in the case of S1, the sum (11.31) for the (discretized) heat kernel, with
F.`/ D e�t`2

, cannot generally be simplified to an expression whose size is
independent of n. However, when t is an imaginary integer, such an evaluation
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can be performed. Such expressions are called Gauss sums, and their evaluation is
regarded as one of the pearls of early nineteenth-century mathematics. We present
one such result here.

Proposition 11.5. For any n � 1, even or odd,

(11.34)
n�1X

kD0
e2�ik

2=ne2�i`k=n D 1

2
.1C i/e��i`2=2n

�
1C .�1/`i�n� n1=2:

Proof. The sum on the left is n � f #.�`/, where f 2 C.S1/ is given by

f .�/ D ein�
2=2� ; 0 � � � 2�:

Note that f is Lipschitz on S1, with a simple jump in its derivative, so Of .k/ D
O.jkj�2/. Hence Proposition 11.3 applies, and (11.7) yields

(11.35) f #.�`/ D
1X

jD�1

Z 1

0

e2�inŒy
2C.jC`=n/y� dy:

To evaluate this, we use the “Gaussian integral” (convergent though not absolutely
convergent):

(11.36)
Z 1

�1
e2�iny

2

dy D n�1=2�; � D 1

2
.1C i/;

obtained from (3.20) by a change of variable and analytic continuation, as
in (6.42). We will break up the real line as a countable union of intervalsS
k ŒkCa; kCaC1�, in two different ways, and then evaluate (11.35). Note that

(11.37)
Z kCaC1

kCa
e2�iny

2

dy D
Z 1

0

e2�inŒy
2C2.kCa/y� dy � e2�in.kCa/2 :

If we pick a D `=2n, then 2.k C a/ D 2k C `=n, and as k runs over Z, we get
those integrands in (11.35) for which j is even. If we pick a D �1=2 C `=2n,
then 2.k C a/ D 2k � 1C `=n. Furthermore, we have

(11.38) e2�in.kCa/2 D e�i`
2=2n and e�i.`�n/2=2n;

respectively, for these two choices of a. Thus the sum in (11.35) is equal to n�1=2�
times e��i`2=2n C e��i.`�n/2=2n, which gives the desired formula, (11.34).

The basic case of this sum is the ` D 0 case:

(11.39)
n�1X

kD0
e2�ik

2=n D 1

2
.1C i/.1C i�n/n1=2 D �n � n1=2;
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where �n is periodic of period 4 in n, with

(11.40) �0 D 1C i; �1 D 1; �2 D 0; �3 D i:

This result, particularly when n D p is a prime, is used as a tool to obtain fas-
cinating number-theoretical results. For more on this, see the exercises and the
references [Hua, Land, Rad].

Exercises

1. Generalize the Gauss sum identity (11.34) to

n�1X

kD0
e2�ik

2m=ne2�i`k=n D1C i

2

� n
m

�1=2
e��i`2=2mn

�
2m�1X

�D0
e��in�2=2me��i�`=m:

(11.41)

(Hint: The left side is n � f #.�`/, with

f .�/ D einm�
2=2� ; 0 � � � 2�:

For this, one has a formula like (11.35):

f #.�`/ D
1X

jD�1

Z 1

0
e2�inmŒy

2C.1=m/.jC`=n/y� dy:

Write j D 2m�C 
, so

1X

jD�1
aj D

2m�1X

�D0

X

jD� mod 2m

aj :

For fixed 
, the sum becomes a multiple of the Gaussian integral (11.36), with n re-
placed by nm, and the formula (11.41) arises.)
Note the ` D 0 case of this:

n�1X

kD0
e2�ik

2m=n D 1C i

2

� n
m

�1=2 2m�1X

�D0
e��in�2=2m:

2. Let� be d2=dx2 on S1 D R=.2�Z/. Using Fourier series, show that, for t D 2�m=n,
where m and n are positive integers, e�i t	ı.x/ D H.t; x/ has the form

(11.42) H
�
2�
m

n
; x
�

D 1

n

n�1X

`D0
G.m; n; `/ ı2�`=n.x/;
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whereG.m; n; `/ is given by the left side of (11.41). On the other hand, applying e�i t	,
acting on S 0.R/, to

P
� ı.x � 2�
/, show that (11.42) holds, with G.m; n; `/ given by

the right side of (11.41). Hence deduce another proof of this Gauss sum identity.
3. Let #.`; n/ denote the number of solutions k 2 Zn to

` D k2 .mod n/:

Show that, with ! D e2�i=n,

n�1X

kD0
!jk

2 D
n�1X

`D0
#.`; n/!j`:

4. Show that, more generally,

0

@
n�1X

kD0
!jk

2

1

A
�

D
n�1X

`D0
#.`; nI 
/ !j`;

where #.`; nI 
/ denotes the number of solutions .k1; : : : ; k�/ 2 .Zn/� to

` D k21 C � � � C k2� .mod n/:

5. Let p be a prime. The Legendre symbol .`jp/ is defined to be C1 if ` D k2 mod p
for some k and ` ¤ 0; 0 if ` D 0, and �1 otherwise. If p is an odd prime, #.`; p/ D
.`jp/ C 1. The Legendre symbol has the useful multiplicative property: .`1`2jp/ D
.`1jp/.`2jp/. Check this. Show that, with ! D e2�i=p , if p is an odd prime,

p�1X

kD0
!k

2 D
p�1X

`D0
.`jp/!`;

and, more generally,

p�1X

kD0
!jk

2 D
p�1X

`D0
.`jp/!j` C pıj0;

where ıj0 D 1 if j D 0 .mod p/; 0 otherwise. (Hint: Use Exercise 3.)

6. Denoting
Pp�1
kD0 !

k2
by Gp; p an odd prime, show that

p�1X

kD0
!jk

2 D .j jp/ �Gp C p � ıj0:

(Hint: If 1 � j � p � 1, use
Pp�1
`D0 .`jp/!` D Pp�1

`D0 .j`jp/!j` and .j`jp/ D
.j jp/.`jp/:)
Denote by S.m; n/ the Gauss sum

S.m; n/ D
n�1X

kD0
e2�ik

2m=n:
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Then the content of Exercise 6 is that S.j; p/ D .j jp/S.1; p/, for 1 � j � p � 1,
when p is an odd prime.

7. Assume p and q are distinct odd primes. Show that

S.1; pq/ D S.q; p/S.p; q/:

(Hint: To resum
Ppq�1
kD0 e2�ik

2=pq , use the fact that, as � runs over f0,1,. . . ,p-1g and

 runs over f0; 1; : : : ; q � 1g, then k D �q C 
p runs once over Z mod pq:)

8. From Exercises 6 and 7, it follows that when p and q are distinct odd primes,

.pjq/.qjp/ D S.1; pq/

S.1; p/S.1; q/
:

Use the evaluation (11.39) of S.1; n/ to deduce the quadratic reciprocity law:

.pjq/.qjp/ D .�1/.p�1/.q�1/=4:

This law, together with the complementary results

.�1jp/ D .�1/.p�1/=2; .2jp/ D .�1/.p2�1/=8;

allows for an effective computation of .`jp/, as one application, but the significance
of quadratic reciprocity goes beyond this. It and other implications of Gauss sums are
absolutely fundamental in number theory. For material on this, see [Hua, Land, Rad].

12. The fast Fourier transform

In the last section we discussed some properties of the discrete Fourier transform

(12.1) f #.`/ D 1

n

X

!j 2n

f .!j /!�j`;

where ` 2 Zn D Z=.n/ and �n is the multiplicative group of unit complex
numbers generated by ! D e2�i=n. We now turn to a discussion of the efficient
numerical computation of the discrete Fourier transform. Note that, for any fixed
`, computing the right side of (12.1) involves n�1 additions and nmultiplications
of complex numbers, plus n integer products j` D m and looking up !m and
f .!j /. If the computations for varying ` are done independently, the total effort
to compute f # involves n2 multiplications and n.n � 1/ additions of complex
numbers, plus some further chores. The fast Fourier transform (denoted FFT) is
a method for computing f # in Cn.logn/ steps, in case n is a power of 2.

The possibility of doing this arises from observing redundancies in the
calculation of the Fourier coefficients f #.`/. Let us illustrate this in the case
of �4. We can write



302 3. Fourier Analysis, Distributions, and Constant-Coefficient Linear PDE

(12.2)
4f #.0/ D �

f .1/C f .i2/
�C �

f .i/C f .i3/
�
;

4f #.2/ D �
f .1/C f .i2/

� � �
f .i/C f .i3/

�
;

and

(12.3)
4f #.1/ D �

f .1/ � f .i2/� � i�f .i/ � f .i3/�;
4f #.3/ D �

f .1/ � f .i2/�C i
�
f .i/ � f .i3/�:

Note that each term in square brackets appears twice. Note also that (12.2) gives
the Fourier coefficients of a function on �2; namely, if

(12.4) 0f .1/ D f .1/C f .�1/; 0f .�1/ D f .i/C f .i3/;

then

(12.5) 2f #.2`/ D 0f #.`/; for ` D 0 or 1:

Similarly, if we set

(12.6) 1f .1/ D f .1/� f .�1/; 1f .�1/ D �i�f .i/ � f .i3/
�
;

then

(12.7) 2f #.2`C 1/ D 1f #.`/; for ` D 0 or 1:

This phenomenon is a special case of a more general result that leads to a fast
inductive procedure for evaluating the Fourier transform f #.

Suppose n D 2k; let us use the notation Gk D �n. Note that Gk�1 is a
subgroup of Gk. Furthermore, there is a homomorphism of Gk onto Gk�1, given
by !j 7! !2j . Given f W Gk ! C, define the following functions 0f and 1f on
Gk�1, with !1 D !2, generatingGk�1:

0f .!
j
1 / D f .!j /C f .!jCn=2/;(12.8)

1f .!
j
1 / D !j

�
f .!j / � f .!jCn=2/

�
:(12.9)

Note that the factor !j in (12.9) makes 1f .!j1 / well defined for j 2 Zn=2, that
is, the right side of (12.9) is unchanged if j is replaced by j Cn=2. Then 0f # and
1f #, the discrete Fourier transforms of the functions 0f and 1f , respectively, are
functions on Zn=2 D Z=.2k�1/.

Proposition 12.1. We have the following identities relating the Fourier trans-
forms of 0f; 1f , and f :

(12.10) 2f #.2`/ D 0f #.`/
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and

(12.11) 2f #.2`C 1/ D 1f #.`/;

for ` 2 f0; 1; : : : ; n=2 � 1g.

Proof. Recall that we set !1 D !2. Since !n D 1 and !n=21 D 1, we have

(12.12)

nf #.2`/ D
X

!j 2Gk

f .!j /!2j`

D
X

!
j
1

D!2j 2Gk�1

h
f .!j /C f .!jCn=2/

i
!
j`
1 ;

proving (12.10), and, since !n=2 D �1,

(12.13)

nf #.2`C 1/ D
X

!j 2Gk

f .!j /!j !2j`

D
X

!
j
1

D!2j 2Gk�1

!j
h
f .!j / � f .!jCn=2/

i
!
j`
1 ;

proving (12.11).

Thus the problem of computing f #, given f 2 L2.Gk/, is transformed, after
n=2 multiplications and n additions of complex numbers in (12.8) and (12.9),
to the problem of computing the Fourier transforms of two functions on Gk�1.
After n=4 new multiplications and n=2 new additions for each of these functions
0f and 1f , that is, after an additional total of n=2 new multiplications and n
additions, this is reduced to the problem of computing four Fourier transforms
of functions on Gk�2. After k iterations, we obtain 2k functions on G0 D f1g,
which precisely give the Fourier coefficients of f . Doing this hence takes kn D
.log2 n/n additions and kn=2 D .log2 n/n=2multplications of complex numbers,
plus a comparable number of integer operations and fetching from memory values
of given or previously computed functions.

To describe an explicit implementation of Proposition 12.1 for a computation
of f #, let us identify an element ` 2 Zn (n D 2k) with a k-tuple L D
.Lk�1; : : : ; L1; L0/ of elements of f0; 1g giving the binary expansion of the inte-
ger in f0; : : : ; n � 1g representing ` (i.e., L0 C L1 � 2 C � � � C Lk�1 � 2k�1 D `

mod n). To be a little fussy, we use the notation

(12.14) f #.`/ D f ##.L/:
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Then the formulas (12.10) and (12.11) state that

(12.15) 2f ## .Lk�1; : : : ; L1; 0/ D 0f ## .Lk�1; : : : ; L1/

and

(12.16) 2f ## .Lk�1; : : : ; L1; 1/ D 1f ## .Lk�1; : : : ; L1/ :

The inductive procedure described above gives, from 0f and 1f defined onGk�1,
the functions

(12.17) 00f D 0
�
0f
�
; 10f D 1

�
0f
�
; 01f D 0

�
1f
�
; 11f D 1

�
1f
�

defined on Gk�2, and so forth, and we see from (12.15) and (12.16) that

(12.18) f #.`/ D 1

n
Lf;

where Lf D Lf .1/ is defined on G0 D f1g. From (12.8) and (12.9) we have the
following inductive formula for LmC1Lm���L1f on Gk�m�1:

0Lm ���L1f
�
!
j
mC1

�
D Lm���L1f

�
!jm
�CLm���L1f

�
!jC2k�m�1

m

�
;

1Lm ���L1f
�
!
j
mC1

�
D !jm

h
Lm ���L1f

�
!jm
��Lm���L1f

�
!jC2k�m�1

m

�i
;

(12.19)

where !m is the generator of Gk�m, defined by !0 D ! D e2�i=n .n D 2k/;

!mC1 D !2m, that is, !m D !2
m

.
When doing computations, particularly in a higher-level language, it may be

easier to work with integers ` than with m-tuples .L1; : : : ; L1/. Therefore, let
us set

(12.20) Lm ���L1f .!jm/ D Fm .2
m � j C `/ ;

where

` D L1 C L2 � 2C � � � CLm � 2m�1 2 f0; 1; : : : ; 2m � 1g
and

j 2
n
0; 1; : : : ; 2k�m � 1

o
:

Note that this precisely defines Fm on f0; 1; : : : ; 2k � 1g. For m D 0, we have

(12.21) F0.j / D f
�
!j
�
; 0 � j � 2k � 1:
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The iterative formulas (12.19) give

(12.22)

FmC1
�
2mC1j C `

� D Fm .2
mj C `/C Fm

�
2mj C 2k�1 C `

�
;

FmC1
�
2m C 2mC1j C `

� D !jm

h
Fm .2

mj C `/� Fm
�
2mj C 2k�1 C `

�i
;

for 0 � j � 2k�m�1 � 1; 0 � ` � 2m� 1. It is easy to write a computer program
to implement such an iteration. The formula (12.18) for the Fourier transform of
f becomes

(12.23) f #.`/ D n�1 Fk.`/; 0 � ` � 2k � 1:

While (12.21)–(12.23) provide an easily implementable FFT algorithm, it is
not necessarily the best. One drawback is the following. In passing from Fm to
FmC1 via (12.22), you need two different arrays of n complex numbers. A variant
of (12.19), where LmC1Lm ���L1f is replaced by f L1���LmLmC1 , leads to an iterative
procedure where a transformation of the type (12.19) is performed “in place,” and
only one such array needs to be used. If memory is expensive and one needs
to make the best use of it, this savings can be important. At the end of such an
iteration, one needs to perform a “bit reversal” to produce f #. Details, including
sample programs, can be found in [PFTV].

On any given computer, a number of factors would influence the choice of
the best FFT algorithm. These include such things as relative speed of mem-
ory access and floating-point performance, efficiency of computing trigonometric
functions (e.g., whether this is implemented in hardware), degree of accuracy re-
quired, and other factors. Also, special features, such as computing the Fourier
transform of a real-valued function or of a function whose Fourier transform is
known to be real-valued, would affect specific computer programs designed for
maximum efficiency. Working out how best to implement FFTs on various com-
puters presents many interesting problems.

Exercises

1. Write a computer program to implement the FFT via (12.21)–(12.23). Try to make it
run as fast as possible.

2. Using the FFT, write a computer program to solve numerically the initial-value problem
for the heat equation @u=@t � uxx D 0 on RC � S1.

3. Consider multidimensional generalizations of the discrete Fourier transform, and in
particular the FFT. What size three-dimensional FFT could be handled by a computer
with 4 megabytes of RAM? With 256 MB?

4. Generalize the FFT algorithm to a cyclic group �n with n D 3k . Also, generalize to the
case n D p1 � � �pk where pj are “small” primes.
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A. The mighty Gaussian and the sublime gamma function

The Gaussian function e�jxj2 on Rn is an object whose study yields many won-
derful identities. We will use the identity

(A.1)
Z

Rn

e�jxj2dx D �n=2;

which was established in (3.18), to compute the areaAn�1 of the unit sphere Sn�1
in Rn. This computation will bring in Euler’s gamma function, and other results
will flow from this. Switching to polar coordinates for the right side of (A.1),
we have

(A.2)

�n=2 D An�1
Z 1

0

e�r2

rn�1 dr

D 1

2
An�1

Z 1

0

e�t tn=2�1 dt

D 1

2
An�1�

�n
2

�
;

where the gamma function is defined by

(A.3) �.z/ D
Z 1

0

e�t t z�1 dt;

for Re z > 0. Thus we have the formula

(A.4) An�1 D 2�n=2

�
�
1
2
n
� :

To be satisfied with this, we need an explicit evaluation of �.n=2/. This can be
obtained from �.1=2/ and �.1/ via the following identity:

(A.5)

�.z C 1/ D
Z 1

0

e�t t z dt

D �
Z 1

0

d

dt

�
e�t� t z dt

D z�.z/;

for Re z > 0, where we used integration by parts. The definition (A.3) clearly
gives

(A.6) �.1/ D 1:
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Thus, for any integer k � 1,

(A.7) �.k/ D .k � 1/�.k � 1/ D � � � D .k � 1/Š :

Note that, for n D 2, we have A1 D 2�=�.1/, so (A.6) agrees with the fact that
the circumference of the unit circle is 2� (which, of course, figured into the proof
of (3.18), via (3.20). In case n D 1, we have A0 D 2, which by (A.4) is equal to
2�1=2=�.1=2/, so

(A.8) �

	
1

2



D �1=2:

Again using (A.5), we see that, when k � 1 is an integer,

(A.9)

�

	
k C 1

2



D
	
k � 1

2



�

	
k � 1

2



D � � �

D
	
k � 1

2


	
k � 3

2



� � �
	
1

2



�

	
1

2




D �1=2
	
k � 1

2


	
k � 3

2



� � �
	
1

2



:

In particular, �.3=2/ D .1=2/�.1=2/D �1=2=2, so A2 D 2�3=2=.�1=2=2/

D 4�; which agrees with the well known formula for the area of the unit sphere
in R3.

Note that while �.z/ defined by (A.3) is a priori holomorphic for Re z positive,
the equation (A.5) shows that �.z/ has a meromorphic extension to the entire
complex plane, with simple poles at z D 0;�1;�2; : : : . It turns out that �.z/ has
no zeros, so 1=�.z/ is an entire analytic function. This is a consequence of the
identity

(A.10) �.z/�.1 � z/ D �

sin�z
;

which we now establish. From (A.4) we have (for 0 < Re z < 1)

(A.11)

�.z/�.1� z/ D
Z 1

0

Z 1

0

e�.sCt/s�zt z�1 ds dt

D
Z 1

0

Z 1

0

e�uvz�1.1C v/�1 du dv

D
Z 1

0

.1C v/�1vz�1 dv;

where we have used the change of variables u D s C t; v D t=s. With v D ex ,
the last integral is



308 3. Fourier Analysis, Distributions, and Constant-Coefficient Linear PDE

(A.12)
Z 1

�1
.1C ex/

�1
exz dx;

which is holomorphic for 0 < Re z < 1, and we want to show that it is equal
to the right side of (A.10) on this strip. It suffices to prove identity on the line
z D 1=2C i�; � 2 R; then (A.12) is equal to the Fourier integral

(A.13)
Z 1

�1

�
2 cosh

x

2

��1
eix� dx:

To evaluate this, shift the contour of integration from the real line to the line
Im x D �2� . There is a pole of the integrand at x D ��i , and we have (A.13)
equal to

(A.14) �
Z 1

�1

�
2 cosh

x

2

��1
e2��eix� dx � Residue � .2�i/:

Consequently, (A.13) is equal to

(A.15) �2�i Residue

1C e2��
D �

cosh��
;

and since �
ı

sin�.1=2 C i�/ D �= cosh��, the demonstration of (A.10) is
complete.

The integral (A.3) and also the last integral in (A.11) are special cases of the
Mellin transform:

(A.16) Mf .z/ D
Z 1

0

f .t/t z�1 dt:

If we evaluate this on the imaginary axis:

(A.17) M#f .s/ D
Z 1

0

f .t/t is�1 dt;

given appropriate growth restrictions on f , this is related to the Fourier transform
by a change of variable:

(A.18) M#f .s/ D
Z 1

�1
f .ex/eisx dx:

The Fourier inversion formula and Plancherel formula imply

(A.19) f .r/ D .2�/�1
Z 1

�1
.M#f /.s/r�is ds
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and

(A.20)
Z 1

�1
jM#f .s/j2 ds D .2�/

Z 1

0

jf .r/j2r�1 dr:

In some cases, as seen above, one evaluates Mf .z/ on a vertical line other than
the imaginary axis, which introduces only a slight wrinkle.

An important identity for the gamma function follows from taking the Mellin
transform with respect to y of both sides of the subordination identity

(A.21) e�yA D 1

2
y��1=2

Z 1

0

e�y2=4te�tA2

t�3=2 dt

(if y > 0; A > 0), established in �5; see (5.22). The Mellin transform of the
left side is clearly �.z/A�z. The Mellin transform of the right side is a double
integral, which is readily converted to a product of two integrals, each defining
gamma functions. After a few changes of variables, there results the identity

(A.22) �1=2�.2z/ D 22z�1�.z/�
	

z C 1

2



;

known as the duplication formula for the gamma function. In view of the
uniqueness of Mellin transforms, following from (A.18) and (A.19), the identity
(A.22) conversely implies (A.21). In fact, (A.22) was obtained first (by Legendre)
and this argument produces one of the standard proofs of the subordination
identity (A.21).

There is one further identity, which, together with (A.5), (A.10), and (A.22),
completes the list of the basic elementary identities for the gamma function.
Namely, if the beta function is defined by

(A.23) B.x; y/ D
Z 1

0

sx�1.1 � s/y�1 ds D
Z 1

0

.1C u/�x�yux�1 du

(with u D s=.1 � s/), then

(A.24) B.x; y/ D �.x/�.y/

�.x C y/
:

To prove this, note that since

(A.25) �.z/p�z D
Z 1

0

e�pt t z�1 dt;

we have

.1C u/�x�y D 1

�.x C y/

Z 1

0

e�.1Cu/t txCy�1 dt;
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so

B.x; y/ D 1

�.x C y/

Z 1

0

e�t txCy�1
Z 1

0

e�utux�1 du dt

D �.x/

�.x C y/

Z 1

0

e�t ty�1 dt

D �.x/�.y/

�.x C y/
;

as asserted.
The four basic identities proved above are the workhorses for most applications

involving gamma functions, but fundamental insight is provided by the identities
(A.27) and (A.31) below. First, since 0 � e�t � .1 � t=n/n � e�t � t2=n for
0 � t � n, we have, for Re z > 0,

(A.26)

�.z/ D
Z 1

0

e�t t z�1 dt

D lim
n!1

Z n

0

�
1 � t

n

�n
t z�1 dt

D lim
n!1nz

Z 1

0

.1 � s/nsz�1 ds:

Repeatedly integrating by parts gives

�.z/ D lim
n!1nz n.n � 1/ � � �1

z.z C 1/ � � � .z C n � 1/
Z 1

0

szCn�1 ds;

which yields the following result of Euler:

(A.27) �.z/ D lim
n!1nz 1 � 2 � � �n

z.z C 1/ � � � .z C n/
:

Using the identity (A.5), analytically continuing �.z/, we have (A.27) for all z,
other than 0;�1;�2; : : : . We can rewrite (A.27) as

(A.28) �.z/ D lim
n!1nz z�1.1C z/�1

�
1C z

2

��1 � � �
�
1C z

n

��1
:

If we denote by � Euler’s constant:

(A.29) � D lim
n!1

	
1C 1

2
C � � � C 1

n
� logn



;
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then (A.28) is equivalent to

(A.30)

�.z/ D lim
n!1 e��zez.1C1=2C���C1=n/z�1.1C z/�1

�
1C z

2

��1 � � �
�
1C z

n

��1
;

that is, to the Euler product expansion

(A.31)
1

�.z/
D z e�z

1Y

nD1

�
1C z

n

�
e�z=n:

It follows that the entire analytic function 1=�.z/�.�z/ has the product expansion

(A.32)
1

�.z/�.�z/
D �z2

1Y

nD1

	
1 � z2

n2



:

Since �.1 � z/ D �z�.�z/, by virtue of (A.10) this last identity is equivalent to
the Euler product expansion

(A.33) sin�z D �z
1Y

nD1

	
1 � z2

n2



:

It is quite easy to deduce the formula (A.5) from the Euler product expansion
(A.31). Also, to deduce the duplication formula (A.22) from the Euler product
formula is a fairly straightforward exercise.

Finally, we derive Stirling’s formula, for the asymptotic behavior of �.z/ as
z ! C1. The approach uses the Laplace asymptotic method, which has many
other applications. We begin by setting t D sz and then s D ey in the integral
formula (A.3), obtaining

(A.34)
�.z/ D zz

Z 1

0

e�z.s�log s/s�1ds

D zz
Z 1

�1
e�z.ey�y/ dy:

The last integral is of the form

(A.35)
Z 1

�1
e�z'.y/ dy;

where '.y/ D ey � y has a nondegenerate minimum at y D 0I '.0/ D 1;

' 0.0/ D 0; ' 00.0/ D 1. If we write 1 D A.y/ C B.y/; A 2 C1
0 ..�2; 2//,

A.y/ D 1 for jyj � 1, then the integral (A.35) is readily seen to be

(A.36)
Z 1

�1
A.y/e�z'.y/dy CO.e�.1C1=e/z/:
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We can make a smooth change of variable x D �.y/ such that �.y/ D yCO.y2/;
'.y/ D 1C x2=2, and the integral in (A.36) becomes

(A.37) e�z
Z 1

�1
A1.x/e

�zx2=2 dx;

where A1 2 C1
0 .R/; A1.0/ D 1, and it is easy to see that, as z ! C1,

(A.38)
Z 1

�1
A1.x/e

�zx2=2 dx 	
	
2�

z


1=2 �
1C a1

z
C � � �

�
:

In fact, if z D 1=2t , then (A.38) is equal to .4�t/1=2u.t; 0/, where u.t; x/ solves
the heat equation, ut � uxx D 0; u.0; x/ D A1.x/. Returning to (A.34), we have
Stirling’s formula:

(A.39) �.z/ D
	
2�

z


1=2
zz e�z

�
1CO.z�1/

�
:

Since nŠ D �.nC 1/, we have in particular that

(A.40) nŠ D .2�n/1=2 nn e�n �1CO.n�1/
�

as n ! 1.
Regarding this approach to the Laplace asymptotic method, compare the

derivation of the stationary phase method in Appendix B of Chap. 6.
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4

Sobolev Spaces

Introduction

In this chapter we develop the elements of the theory of Sobolev spaces, a
tool that, together with methods of functional analysis, provides for numerous
successful attacks on the questions of existence and smoothness of solutions to
many of the basic partial differential equations. For a positive integer k, the
Sobolev spaceH k.Rn/ is the space of functions inL2.Rn/ such that, for j˛j � k,
D˛u, regarded a priori as a distribution, belongs to L2.Rn/. This space can be
characterized in terms of the Fourier transform, and such a characterization leads
to a notion ofH s.Rn/ for all s 2 R. For s < 0,H s.Rn/ is a space of distributions.
There is an invariance under coordinate transformations, permitting an invariant
notion of H s.M/ whenever M is a compact manifold. We also define and study
H s.�/ when � is a compact manifold with boundary.

The tools from Sobolev space theory discussed in this chapter are of great
use in the study of linear PDE; this will be illustrated in the following chapter.
Chapter 13 will develop further results in Sobolev space theory, which will be
seen to be of use in the study of nonlinear PDE.

1. Sobolev spaces on Rn

When k � 0 is an integer, the Sobolev space H k.Rn/ is defined as follows:

(1.1) H k.Rn/ D fu 2 L2.Rn/ W D˛u 2 L2.Rn/ for j˛j � kg;

whereD˛u is interpreted a priori as a tempered distribution. Results from Chap. 3
on Fourier analysis show that, for such k, if u 2 L2.Rn/, then

(1.2) u 2 H k.Rn/ ” h�ik Ou 2 L2.Rn/:

M.E. Taylor, Partial Differential Equations I: Basic Theory,
Applied Mathematical Sciences 115, DOI 10.1007/978-1-4419-7055-8 4,
c� Springer Science+Business Media, LLC 1996, 2011

315



316 4. Sobolev Spaces

Recall that

(1.3) h�i D �
1C j�j2�1=2:

We can produce a definition of the Sobolev space H s.Rn/ for general s 2 R,
parallel to (1.2), namely

(1.4) H s.Rn/ D ˚
u 2 S 0.Rn/ W h�is Ou 2 L2.Rn/� :

We can define the operatorƒs on S 0.Rn/ by

(1.5) ƒsu D F�1�h�is Ou�:

Then (1.4) is equivalent to

(1.6) H s.Rn/ D ˚
u 2 S 0.Rn/ W ƒsu 2 L2.Rn/� ;

or H s.Rn/ D ƒ�sL2.Rn/. Each space H s.Rn/ is a Hilbert space, with inner
product

(1.7)
�
u; v

�
H s.Rn/

D �
ƒsu; ƒsv

�
L2.Rn/

:

We note that the dual of H s.Rn/ is H�s.Rn/.
Clearly, we have

(1.8) Dj W H s.Rn/ �! H s�1.Rn/;

and hence

(1.9) D˛ W H s.Rn/ �! H s�j˛j.Rn/:

Furthermore, it is easy to see that, given u 2 H s.Rn/,

(1.10) u 2 H sC1.Rn/ ” Dj u 2 H s.Rn/; 8 j:

We can relate difference quotients to derivatives of elements of Sobolev spaces.
Define �y , for y 2 Rn, by

(1.11) �yu.x/ D u.x C y/:

By duality this extends to S 0.Rn/:

h��yu; vi D hu; �yvi:
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Note that

(1.12) �yv D F�1�eiy�� Ov�;

so it is clear that �y W H s.Rn/ ! H s.Rn/ is norm-preserving for each s 2 R,
y 2 Rn. Also, for each u 2 H s.Rn/, �yu is a continuous function of y with
values in H s.Rn/. The following result is of frequent use, as we will see in the
next chapter.

Proposition 1.1. Let .e1; : : : ; en/ be the standard basis of Rn; let u 2 H s.Rn/.
Then

��1.��ej
u � u/ is bounded in H s.Rn/;

for � 2 .0; 1�, if and only if Dj u 2 H s.Rn/.

Proof. We have ��1.��ej
u�u/ ! iDj u inH s�1.Rn/ as � ! 0 if u 2 H s.Rn/.

The hypothesis of boundedness implies that there is a sequence �� ! 0 such that
��1
� .���ej

u � u/ converges weakly to an element of H s.Rn/; call it w. Since
the natural inclusion H s.Rn/ ,! H s�1.Rn/ is easily seen to be continuous, it
follows that w D iDj u. Since w 2 H s.Rn/, this gives the desired conclusion.

Corollary 1.2. Given u 2 H s.Rn/, then u belongs to H sC1.Rn/ if and only if
�yu is a Lipschitz-continuous function of y with values in H s.Rn/.

Proof. This follows easily, given the observation (1.10).

We now show that elements of H s.Rn/ are smooth in the classical sense for
sufficiently large positive s. This is a Sobolev imbedding theorem.

Proposition 1.3. If s > n=2, then each u 2 H s.Rn/ is bounded and continuous.

Proof. By the Fourier inversion formula, it suffices to prove that Ou.�/ belongs to
L1.Rn/. Indeed, using Cauchy’s inequality, we get

(1.13)
Z

jOu.�/j d� �
�Z

jOu.�/j2h�i2s d�
�1=2

�
�Z

h�i�2s d�
�1=2

:

Since the last integral on the right is finite precisely for s > n=2, this completes
the proof.

Corollary 1.4. If s > n=2C k, then H s.Rn/ � C k.Rn/.

If s D n=2C˛, 0 < ˛ < 1, we can establish Hölder continuity. For ˛ 2 .0; 1/,
we say

(1.14) u 2 C ˛.Rn/ ” u bounded and ju.x C y/ � u.x/j � C jyj˛:
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An alternative notation is Lip˛.Rn/; then the definition above is effective for
˛ 2 .0; 1�.
Proposition 1.5. If s D n=2C ˛, 0 < ˛ < 1, then H s.Rn/ � C ˛.Rn/.

Proof. For u 2 H s.Rn/, use the Fourier inversion formula to write

ju.x C y/ � u.x/j D .2�/�n=2
ˇ̌
ˇ
Z

Ou.�/eix��.eiy�� � 1/ d�
ˇ̌
ˇ

� C

�Z
jOu.�/j2h�inC2˛ d�

�1=2
�
�Z ˇ̌

eiy�� � 1ˇ̌2h�i�n�2˛ d�

�1=2
:

(1.15)

Now, if jyj � 1=2, write

Z
jeiy�� � 1j2h�i�n�2˛ d�

� C

Z

j�j� 1
jyj

jyj2j�j2h�i�n�2˛ d� C 4

Z

j�j� 1
jyj

h�i�n�2˛ d�:(1.16)

If we use polar coordinates, the right side is readily dominated by

(1.17) C jyj2 C C jyj2 jyj2˛�2 � 1

2˛ � 2
C C jyj2˛;

provided 0 < ˛ < 1. This implies that, for jyj � 1=2,

(1.18) ju.x C y/ � u.x/j � C˛jyj˛;

given u 2 H s.Rn/, s D n=2C ˛, and the proof is complete.

We remark that if one took ˛ D 1, the middle term in (1.17) would be modified
to C jyj2 log.1=jyj/, so when u 2 Hn=2C1.Rn/, one gets the estimate

ju.x C y/ � u.x/j � C jyj
�

log
1

jyj
�1=2

:

Elements ofHn=2C1.Rn/ need not be Lipschitz, and elements ofHn=2.Rn/ need
not be bounded.

We indicate an example of the last phenomenon. Let us define u by

(1.19) Ou.�/ D h�i�n

1C logh�i :

It is easy to show that u 2 Hn=2.Rn/. But Ou … L1.Rn/. Now one can show that if
Ou 2 L1loc.R

n/ is positive and belongs to S 0.Rn/, but does not belong to L1.Rn/,
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then u … L1.Rn/; and this is what happens in the case of (1.19). For more on
this, see Exercises 2 and 3 below.

A result dual to Proposition 1.3 is

(1.20) ı 2 H�n=2�".Rn/; for all " > 0;

which follows directly from the definition (1.4) together with the fact that
Fı D .2�/�n=2, by the same sort of estimate on

R h�i�2sd� used to prove
Proposition 1.3. Consequently,

(1.21) D˛ı 2 H�n=2�j˛j�".Rn/; for all " > 0:

Next we consider the trace map � , defined initially from S.Rn/ to S.Rn�1/ by
�u D f , where f .x0/ D u.0; x0/ if x D .x1; : : : ; xn/; x

0 D .x2; : : : ; xn/.

Proposition 1.6. The map � extends uniquely to a continuous linear map

(1.22) � W H s.Rn/ �! H s�1=2.Rn�1/; for s >
1

2
:

Proof. If f D �u, we have

(1.23) Of .� 0/ D 1p
2�

Z
Ou.�/ d�1;

as a consequence of the identity
R
g.x1/e

�ix1�1 dx1 d�1 D 2�g.0/. Thus

j Of .� 0/j2 � 1

2�

�Z
jOu.�/j2h�i2sd�1

�
�
�Z

h�i�2sd�1
�
;

where the last integral is finite if s > 1=2. In such a case, we have

Z
h�i�2s d�1 D

Z �
1C j� 0j2 C �21

��s
d�1

D C
�
1C j� 0j2��sC1=2 D C h� 0i�2.s�1=2/:

(1.24)

Thus

(1.25) h� 0i2.s�1=2/j Of .� 0/j2 � C

Z
jOu.�/j2h�i2s d�1;

and integrating with respect to � 0 gives

(1.26) kf k2
H s�1=2.Rn�1/

� Ckuk2H s.Rn/:



320 4. Sobolev Spaces

Proposition 1.6 has a converse:

Proposition 1.7. The map (1.22) is surjective, for each s > 1=2.

Proof. If g 2 H s�1=2.Rn�1/, we can let

(1.27) Ou.�/ D Og.� 0/
h� 0i2.s�1=2/

h�i2s :

It is easy to verify that this defines an element u 2 H s.Rn/ and u.0; x0/ D cg.x0/
for a nonzero constant c, using (1.24) and (1.23); this provides the proof.

In the next section we will develop a tool that establishes the continuity of a
number of natural transformations on H s.Rn/, as an automatic consequence of
the (often more easily checked) continuity for integer s. This will be useful for
the study of Sobolev spaces on compact manifolds, in ��3 and 4.

Exercises

1. Show that S.Rn/ is dense in H s.Rn/ for each s.
2. Assume v 2 S 0.Rn/ \ L1loc.R

n/ and v.�/ � 0. Show that if Ov 2 L1.Rn/, then
v 2 L1.Rn/ and

.2�/n=2k OvkL1 D kvkL1 :

(Hint: Consider vk.�/ D 	.�=k/v.�/, with 	 2 C1
0 .Rn/, 	.0/ D 1:)

3. Verify that (1.19) defines u 2 Hn=2.Rn/, u … L1.Rn/.
4. Show that the pairing

hu; vi D
Z

Ou.�/ Qv.�/ d� D
Z

Ou.�/h�is Qv.�/h�i�s d�

gives an isomorphism of H�s.Rn/ and the space H s.Rn/0, dual to H s.Rn/.
5. Show that the trace map (1.22) satisfies the estimate

k�uk2
L2.Rn�1/

� CkukL2 � krukL2 ;

given u 2 H1.Rn/, where on the right L2 means L2.Rn/.
6. Show that Hk.Rn/ is an algebra for k > n=2, that is,

u; v 2 Hk.Rn/ H) uv 2 Hk.Rn/:

Reconsider this problem after doing Exercise 5 in �2.
7. Let f W R ! R be C1, and assume f .0/ D 0. Show that u 7! f .u/ defines a

continuous map F W Hk.Rn/ ! Hk.Rn/, for k > n=2. Show that F is a C 1-map,
withDF.u/v D f 0.u/v. Show that F is a C1-map.

8. Show that a continuous map F W HkCm.Rn/ ! Hk.Rn/ is defined by
F.u/ D f .Dmu/, where Dmu D fD˛u W j˛j � mg, assuming f is smooth in
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its arguments, f D 0 at u D 0, and k > n=2. Show that F is C 1, and compute
DF.u/. Show F is a C1-map from HkCm.Rn/ to Hk.Rn/.

9. Suppose P.D/ is an elliptic differential operator of order m, as in Chap. 3. If � <

s Cm, show that

u 2 H� .Rn/; P.D/u D f 2 H s.Rn/ H) u 2 H sCm.Rn/:

(Hint: Estimate h�isCm Ou in terms of h�i� Ou and h�isP.�/Ou:)
10. Given 0 < s < 1 and u 2 L2.Rn/, show that

(1.28) u 2 H s.Rn/ ”
Z 1

0
t�.2sC1/k�tej

u � uk2
L2 dt < 1; 1 � j � n;

where �y is as in (1.12).
(Hint: Show that the right side of (1.28) is equal to

(1.29)
Z

Rn

 s.�j /jOu.�/j2 d�;

where, for 0 < s < 1,

(1.30)  s.�j / D 2

Z 1

0
t�.2sC1/

�
1 � cos t�j

�
dt D Csj�j j2s :/

11. The fact that u 2 H s.Rn/ implies that ��1.��ej
u � u/ ! iDj u in H s�1.Rn/ was

used in the proof of Proposition 1.1. Give a detailed proof of this. Use it to provide
details for a proof of Corollary 1.4.

12. Establish the following, as another approach to justifying Corollary 1.4.

Lemma. If u 2 C.Rn/ and Dj u 2 C.Rn/ for each j (Dj u regarded a priori as a
distribution), then u 2 C 1.Rn/.
(Hint: Consider '" � u for '".x/ D "�n'.x="/; ' 2 C1

0 .Rn/;
R
' dx D 1, and let

" ! 0.)

2. The complex interpolation method

It is easy to see from the product rule that if M' is defined by

(2.1) M'u D '.x/u.x/;

then, for any integer k � 0,

(2.2) M' W H k.Rn/ �! H k.Rn/;
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provided ' is C1 and

(2.3) D˛' 2 L1.Rn/; for all ˛:

By duality, (2.2) also holds for negative integers. We claim it holds when k is
replaced by any real s, but it is not so simple to deduce this directly from the
definition (1.4) of H s.Rn/. Similarly, suppose

(2.4) 	 W Rn �! Rn

is a diffeomorphism, which is linear outside some compact set, and define 	� on
functions by

(2.5) 	� u.x/ D u.	.x//:

The chain rule easily gives

(2.6) 	� W H k.Rn/ �! H k.Rn/;

for any integer k � 0. Since the adjoint of 	� is  � composed with the operation
of multiplication by jdet D .x/j, where  D 	�1, we see that (2.6) also holds
for negative integers k. Again, it is not so straightforward to deduce (2.6) when k
is replaced by any real number s. A convenient tool for proving appropriate gen-
eralizations of (2.2) and (2.6) is provided by the complex interpolation method,
introduced by A. P. Calderon, which we now discuss.

Let E and F be Banach spaces. We suppose that F is included in E, and the
inclusion F ,! E is continuous. If � is the vertical strip in the complex plane,

(2.7) � D fz 2 C W 0 < Re z < 1g;

we define

(2.8)
HE;F .�/ D fu.z/ bounded and continuous on � with values in EI

holomorphic on � W ku.1C iy/kF is bounded, for y 2 Rg:

We define the interpolation spaces ŒE; F �� by

(2.9) ŒE; F �� D fu.
/ W u 2 HE;F .�/g; 
 2 Œ0; 1�:

We give ŒE; F �� the Banach space topology, making it isomorphic to the quotient

(2.10) HE;F .�/=fu W u.
/ D 0g:



2. The complex interpolation method 323

We will also use the convention

(2.11) ŒF;E�� D ŒE; F �1�� :

The following result is of basic importance.

Proposition 2.1. Let E;F be as above; suppose eE;eF are Banach spaces with eF
continuously injected in eE. Suppose T W E ! eE is a continuous linear map, and
suppose T W F ! eF . Then, for all 
 2 Œ0; 1�,

(2.12) T W ŒE; F �� ! ŒeE;eF �� :

Proof. Given v 2 ŒE; F �� , let u 2 HE;F .�/, u.
/ D v. It follows that T u.z/ 2
HeE;eF .�/, so T v D T u.
/ 2 ŒeE;eF �� , as asserted.

We next identify ŒH;D.A/�� when H is a Hilbert space and D.A/ is the
domain of a positive, self-adjoint operator on H . By the spectral theorem, this
means the following. There is a unitary map U W H ! L2.X;�/ such that
B D UAU�1 is a multiplication operator on L2.X;�/:

(2.13) Bu.x/ D Mbu.x/ D b.x/u.x/:

Then D.A/ D U�1D.B/, where

D.B/ D ˚
u 2 L2.X;�/ W bu 2 L2.X;�/� :

We will assume b.x/ � 1, though perhaps b is unbounded. (Of course, if
b is bounded, then D.B/ D L2.X;�/ and D.A/ D H:) This is equivalent
to assuming .Au; u/ � kuk2. In such a case, we define A� to be U�1B�U ,
where B�u.x/ D b.x/�u.x/, if 
 � 0, and D.A� / D U�1D.B� /, where
D.B� / D fu 2 L2.X;�/ W b�u 2 L2.X;�/g. We will give a proof of the spectral
theorem in Chap. 8. In this chapter we will apply this notion only to operators A
for which such a representation is explicitly implemented by a Fourier transform.
Our characterization of interpolation spaces ŒH;D.A/�� is given as follows.

Proposition 2.2. For 
 2 Œ0; 1�,

(2.14) ŒH;D.A/�� D D.A� /:

Proof. First suppose v 2 D.A� /. We want to write v D u.
/, for some
u 2 HH;D.A/.�/. Let

u.z/ D A�zC�v:

Then u.
/ D v, u is bounded with values in H , and furthermore u.1 C iy/ D
A�1A�iy.A�v/ is bounded in D.A/.

Conversely, suppose u.z/ 2 HH;D.A/.�/. We need to prove that u.
/ 2 D.A� /.
Let " > 0, and note that, by the maximum principle,
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kAz.I C i"A/�1u.z/kH
� sup
y2R

max
˚k.I C i"A/�1Aiyu.iy/kH ;

kA1Ciy.I C i"A/�1u.1C iy/kH
� � C;

(2.15)

with C independent of ". This implies u.
/ 2 D.A� /, as desired.

Now the definition of the Sobolev spaces H s.Rn/ given in �1 makes it clear
that, for s � 0, H s.Rn/ D D.ƒs/, where ƒs is the self-adjoint operator on
L2.Rn/ defined by

(2.16) ƒs D F Mh�is F�1;

where F is the Fourier transform. Thus it follows that, for k � 0,

(2.17) ŒL2.Rn/;H k.Rn/�� D H k� .Rn/; 
 2 Œ0; 1�:

In fact, the same sort of reasoning applies more generally. For any �; s 2 R,

(2.18) ŒH � .Rn/;H s.Rn/�� D H �sC.1��/�.Rn/; 
 2 Œ0; 1�:

Consequently Proposition 2.1 is applicable to (2.4) and (2.6), to give

(2.19) M' W H s.Rn/ �! H s.Rn/

and

(2.20) 	� W H s.Rn/ �! H s.Rn/;

for all s 2 R.
It is often convenient to have a definition of ŒE; F �� when neither Banach space

E norF is contained in the other. Suppose they are both continuously injected into
a locally convex topological vector space V . Then G D fe C f W e 2 E; f 2 F g
has a natural structure of a Banach space, with norm

kakG D inffkekE C kf kF W a D e C f in V; e 2 E; f 2 F g:

In fact, G is naturally isomorphic to the quotient .E˚F /=L of the Banach space
E ˚ F , with the product norm, by the closed linear subspace L D f.e;�e/ W e 2
E \ F � V g. Generalizing (2.8), we set

HE;F .�/ D fu.z/ bounded and continuous in � with values in GI holo-

morphic in � W ku.iy/kE and ku.1C iy/kF bounded, y 2 Rg;

(2.21)
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where� is the vertical strip (2.7). Then we define the interpolation space ŒE; F ��
by (2.9), as before. In this context, the identity (2.11) is a (simple) proposition
rather than a definition.

Typical cases where it is of interest to apply such a construction include E D
Lp1.X;�/, F D Lp2.X;�/. If .X;�/ is a measure space that is neither finite nor
atomic (e.g., Rn with Lebesgue measure), typically neither of these Lp-spaces is
contained in the other. We have the following useful result.

Proposition 2.3. Take 
 2 .0; 1/; p1 2 Œ1;1/; p2 � 1. Assume either �.x/ <
1 or p2 < 1. Then

(2.22) ŒLp1.X;�/; Lp2.X;�/�� D Lq.X;�/;

where p1; p2, and q are related by

(2.23)
1

q
D 1 � 


p1
C 


p2
:

Proof. Given f 2 Lq , one can take c D .q � p1/=p1
 D .p2 � q/=p2.1 � 
/

and define

(2.24) u.z/ D jf .x/jc.��z/ f .x/;

by convention zero when f .x/ D 0. Then u belongs to HLp1 ;Lp2 , which gives
Lq � ŒLp1 ; Lp2 �� .

Conversely, suppose that one is given f 2 ŒLp1 ; Lp2 �� ; say f D u.
/ with
u 2 HLp1 ;Lp2 .�/. For g 2 Lq 0, you can define v.z/ D jg.x/jb.��z/ g.x/ with
b D .q0 � p0

1/=p
0
1
 D .p0

2 � q0/=p0
2.1 � 
/, chosen so that v 2 HLp1 0;Lp2 0.�/.

Then the Hadamard three-lines lemma, applied to hu.z/; v.z/i, implies

(2.25) jhf; gij �
 

sup
y2R

ˇ̌hu.iy/; v.iy/iˇ̌
!1�� �

sup
r2R

ˇ̌hu.1C iy/; v.1C iy/
ˇ̌��

;

for each simple function g. This implies

ˇ̌
ˇ
Z

X

f .x/g.x/ d�.x/
ˇ̌
ˇ � C

			jgjb�C1
			
1��
L

p0

1
�
			jgjb.��1/C1

			
�

L
p0

2

D C kgkLq 0 ;

(2.26)

the last identity holding by (2.23) and the identities b
 C 1 D q0=p0
1 and

b.
 � 1/C 1 D q0=p0
2. This implies f 2 Lq .

If �.X/ D 1 and p2 D 1, then (2.24) need not yield an element of
HLp1 ;Lp2 , but the argument involving (2.25)–(2.26) still works, to give
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ŒLp1.X;�/; L1.X;�/�� � Lq.X;�/; q D p1

1 � 

:

We record a couple of consequences of Proposition 2.3 and the remark fol-
lowing it, together with Proposition 2.1. Recall that the Fourier transform has the
following mapping properties:

F W L1.Rn/ �! L1.Rn/I F W L2.Rn/ �! L2.Rn/:

Thus interpolation yields

(2.27) F W Lp.Rn/ �! Lp
0
.Rn/; for p 2 Œ1; 2�;

where p0 is defined by 1=pC 1=p0 D 1. Also, for the convolution product f � g,
we clearly have

Lp � L1 � Lp I Lp � Lp 0 � L1:

Fixing f 2 Lp and interpolating between L1 and Lp 0 give

(2.28) Lp � Lq � Lr ; for q 2 Œ1; p0�;
1

r
D 1

p
C 1

q
� 1:

We return to Hilbert spaces, and an interpolation result that is more general
than Proposition 2.2, in that it involves D.A/ for not necessarily self-adjoint A.

Proposition 2.4. Let P t be a uniformly bounded, strongly continuous semigroup
on a Hilbert spaceH0, whose generatorA has domain D.A/ D H1. Let f 2 H0,
0 < 
 < 1. Then the following are equivalent:

(2.29) f 2 ŒH0;H1�� I

for some u,

f D u.0/; t1=2��u 2 L2.RC;H1/; t1=2�� du
dt

2 L2.RC;H0/I(2.30)

R1
0 t�.2�C1/kP tf � f k2H0

dt < 1:(2.31)

Proof. First suppose (2.30) holds; then u0.t/ � Au.t/ D g.t/ satisfies t1=2��g 2
L2.RC;H0/. Now, u.t/ D P tf C R t

0
P t�sg.s/ ds, by Duhamel’s principle, so

(2.32) P tf � f D �
u.t/� f

� �
Z t

0

P t�sg.s/ ds;

and hence

(2.33) kt�1.P tf � f /kH0
� 1

t

Z t

0

ku0.s/kH0
ds C C

t

Z t

0

kg.s/kH0
ds:
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This implies (2.31), via the elementary inequality (see Exercise 4 below)

kˆhkL2.RC;tˇdt/ � KkhkL2.RC;tˇdt/; ˇ < 1;

ˆh.t/ D 1

t

Z t

0

h.s/ ds;

(2.34)

where we set ˇ D 1 � 2
 and take h.t/ D ku0.t/kH0
or h.t/ D kg.t/kH0

.
Next we show that (2.31) ) (2.30). If f satisfies (2.31), set

(2.35) u.t/ D '.t/

t

Z t

0

P sf ds;

where ' 2 C1
0 .R/ and '.0/ D 1. Then u.0/ D f . We need to show that

(2.36) t1=2��Au 2 L2.RC;H0/ and t1=2��u0 2 L2.RC;H0/:

Now, t1=2��Au D '.t/t�1=2�� .P tf � f /, so the first part of (2.36) follows
directly from (2.31). The second part of (2.36) will be proved once we show that
t1=2��v0 2 L2.RC;H0/, where

(2.37) v.t/ D 1

t

Z t

0

P sf ds:

Now

(2.38) v0.t/ D 1

t

�
P tf � f � � 1

t2

Z t

0

�
P sf � f

�
ds;

and since the first term on the right has been controlled, it suffices to show that

(2.39) w.t/ D t1=2���2
Z t

0

.P sf � f / ds 2 L2.RC;H0/:

Indeed, since s � t in the integrand,

kw.t/kH0
� t1=2��

t

Z t

0

h.s/ ds;

h.t/ D t�1kP tf � f kH0
2 L2.RC; t1�2�dt/;

(2.40)

so (2.39) follows from (2.34).
We now tackle the equivalence (2.39) , (2.31). Since we have (2.30) , (2.31)

and (2.30) is independent of the choice of P t , it suffices to show that (2.29) ,
(2.31) for a single choice of P t such that D.A/ D H1. Now, we can pick a
positive self-adjoint operator B such that D.B/ D H1 (see Exercise 2 below),
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and take A D iB , so P t D ei tB is a unitary group. In such a case, the spectral
decomposition yields the identity

(2.41) kB�f k2H0
D C�

Z 1

0

t�.2�C1/kei tBf � f k2H0
dt I

compare (1.28)–(1.30); and the proof is easily completed.

Exercises

1. Show that the class of interpolation spaces ŒE; F �� defined in (2.9) and (2.15) is un-
changed if one replaces various norm bounds ku.x C iy/k by bounds on e�Kjyjku
.x C iy/k.

In Exercises 2 and 3, let H0 D E and H1 D F be two Hilbert spaces satisfying the
hypotheses of Proposition 2.1. Assume H1 is dense in H0.

2. Show that there is a positive self adjoint operator A on H0 such that D.A/ D H1.
(Hint: Use the Friedrichs method.)

3. Let H� D ŒH0;H1�� , 0 < 
 < 1. Show that if 0 � r < s � 1, then

ŒHr ;Hs �� D H.1��/rC�s; 0 < 
 < 1:

Relate this to (2.18).
4. Prove the estimate (2.34). (Hint: Make the change of variable e.ˇ�1/�=2h.e� / Deh.�/,

and convert ˆ into a convolution operator on L2.R/:)
5. Show that, for 0 � s < n=2,

(2.42) H s.Rn/ � Lp.Rn/; 8 p 2
h
2;

2n

n� 2s
�
:

(Hint: Use interpolation.)
Use (2.42) to estimate .D˛u/.Dˇ v/, given u; v 2 Hk.Rn/, k > n=2, j˛j C jˇj � k.
Sharper and more general results will be obtained in Chap. 13.

3. Sobolev spaces on compact manifolds

Let M be a compact manifold. If u 2 D0.M/, we say u 2 H s.M/ provided that,
on any coordinate patch U � M , any  2 C1

0 .U /, the element  u 2 E 0.U /
belongs toH s.U /, if U is identified with its image in Rn. By the invariance under
coordinate changes derived in �2, it suffices to work with any single coordinate
cover of M . If s D k, a nonnegative integer, then H k.M/ is equal to the set of
u 2 L2.M/ such that, for any ` smooth vector fields X1; : : : ; X` on M , ` � k,
X1 � � �X`u 2 L2.M/. Parallel to (2.17), we have the following result.

Proposition 3.1. For k � 0 an integer, 
 2 Œ0; 1�,

(3.1) ŒL2.M/;H k.M/�� D H k� .M/:
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More generally, for any �; s 2 R,

(3.2) ŒH � .M/;H s.M/�� D H �sC.1��/� .M/:

Proof. These results follow directly from (2.17) and (2.18), with the aid of a
partition of unity on M subordinate to a coordinate cover. We leave the details as
an exercise.

Similarly, the duality ofH s.Rn/ andH�s.Rn/ can easily be used to establish:

Proposition 3.2. If M is a compact Riemannian manifold, s 2 R, there is a
natural isomorphism

(3.3) H s.M/� � H�s.M/:

Furthermore, Propositions 1.3–1.5 easily yield:

Proposition 3.3. If M is a smooth compact manifold of dimension n, and
u 2 H s.M/, then

u 2 C.M/ provided s >
n

2
:(3.4)

u 2 C k.M/ provided s >
n

2
C k;(3.5)

u 2 C ˛.M/ provided s D n

2
C ˛; ˛ 2 .0; 1/:(3.6)

In the case M D Tn, the torus, we know from results on Fourier series given
in Chap. 3 that, for k � 0 an integer,

(3.7) u 2 H k.Tn/ ”
X

m2Zn

jOu.m/j2hmi2k < 1:

By duality, this also holds for k a negative integer. Now interpolation, via
Proposition 2.2, implies that, for any s 2 R,

(3.8) u 2 H s.Tn/ ”
X

m2Zn

jOu.m/j2hmi2s < 1:

Alternatively, if we define ƒs on D0.Tn/ by

(3.9) ƒs u D
X

m2Zn

hmis Ou.m/ eim�� ;
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then, for s 2 R,

(3.10) H s.Tn/ D ƒ�sL2.Tn/:

Thus, for any s; � 2 R,

(3.11) ƒs W H � .Tn/ �! H ��s.Tn/

is an isomorphism.
It is clear from (3.9) that, for any � > 0,

ƒ�� W H s.Tn/ �! H s.Tn/

is a norm limit of finite rank operators, hence compact. Consequently, if j denotes
the natural injection, we have, for any s 2 R,

(3.12) j W H sC� .Tn/ �! H s.Tn/ compact; 8 � > 0:

This is a special case of the following result.

Proposition 3.4. For any compactM , s 2 R,

(3.13) j W H sC�.M/ �! H s.M/ is compact; 8 � > 0:

Proof. This follows easily from (3.12), by using a partition of unity to break up
an element of H sC� .M/ and transfer it to a finite set of elements of H sC�.Tn/,
if n D dim M .

This result is a special case of a theorem of Rellich, which also deals with
manifolds with boundary, and will be treated in the next section. Rellich’s theorem
will play a fundamental role in Chap. 5.

We next mention the following observation, an immediate consequence of
(3.8) and Cauchy’s inequality, which provides a refinement of Proposition 1.3
of Chap. 3.

Proposition 3.5. If u 2 H s.Tn/, then the Fourier series of u is absolutely con-
vergent, provided s > n=2.

Exercises

1. Fill in the details in the proofs of Propositions 3.1–3.4.
2. Show that C1.M/ is dense in each H s.M/, when M is a compact manifold.
3. Consider the projection P defined by

Pf .
/ D
1X

nD0
Of .n/ein� :

Show that P W H s.S1/ ! H s.S1/, for all s 2 R.
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4. Let a 2 C1.S1/, and define Ma by Maf .
/ D a.
/f .
/. Thus Ma W H s.S1/ !
H s.S1/. Consider the commutator ŒP;Ma� D PMa �MaP . Show that

ŒP;Ma�f D
X

k�0;m>0
Oa.k Cm/ Of .�m/eik� �

X

k>0;m�0
Oa.�k �m/ Of .m/e�ik� ;

and deduce that, for all s 2 R,

ŒP;Ma� W H s.S1/ �! C1.S1/:

(Hint: The Fourier coefficients
� Oa.n/� form a rapidly decreasing sequence.)

5. Let aj ; bj 2 C1.S1/, and consider Tj D Maj
P CMbj

.I � P /. Show that

T1T2 D Ma1a2
P CMb1b2

.I � P /CR;

where, for each s 2 R, R W H s.S1/ ! C1.S1/.
6. Suppose a; b 2 C1.S1/ are both nowhere vanishing. Let

T D MaP CMb.I � P /; S D Ma�1P CMb�1.I � P /:
Show that ST D I C R1 and TS D I C R2, where Rj W H s.S1/ ! C1.S1/, for all
s 2 R. Deduce that, for each s 2 R,

T W H s.S1/ �! H s.S1/ is Fredholm:

Remark: The theory of Fredholm operators is discussed in �7 of Appendix A, Functional
Analysis.

7. Let ej .
/ D eij� . Describe explicitly the kernel and range of

Tjk D Mej
P CMek

.I � P /:

Hence compute the index of Tjk . Using this, if a and b are nowhere-vanishing,
complex-valued smooth functions on S1, compute the index of Ta D MaPC
Mb.I � P /, in terms of the winding numbers of a and b. (Hint: If a and b are
homotopic to ej and ek , respectively, as maps from S1 to C n 0, then T and Tjk have
the same index.)

4. Sobolev spaces on bounded domains

Let� be a smooth, compact manifold with boundary @� and interior�. Our goal
is to describe Sobolev spaces H s.�/. In preparation for this, we will consider
Sobolev spaces H s.RnC/, where RnC is the half-space

RnC D fx 2 Rn W x1 > 0g ;

with closure RnC. For k � 0 an integer, we want

(4.1) H k.RnC/ D ˚
u 2 L2.RnC/ W D˛u 2 L2.RnC/ for j˛j � k

�
:
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Here, D˛u is regarded a priori as a distribution on the interior RnC. The space
H k.Rn/ defined above has a natural Hilbert space structure. It is not hard to show
that the space S.RnC/ of restrictions to RnC of elements of S.Rn/ is dense in
H k.RnC/, from the fact that, if �su.x/ D u.x1 C s; x2; : : : ; xn/, then �su ! u in
H k.RnC/ as s & 0, if u 2 H k.RnC/. Now, we claim that each u 2 H k.RnC/ is the
restriction to RnC of an element of H k.Rn/. To see this, fix an integer N , and let

Eu.x/ D u.x/; for x1 � 0;

NX

jD1
aju.�jx1; x0/; for x1 < 0;

(4.2)

defined a priori for u 2 S.RnC/. We have the following.

Lemma 4.1. One can pick fa1; : : : ; aN g such that the map E has a unique con-
tinuous extension to

(4.3) E W H k.RnC/ �! H k.Rn/; for k � N � 1:

Proof. Given u 2 S.Rn/, we get an H k-estimate on Eu provided all the deriva-
tives of Eu of order � N � 1 match up at x1 D 0, that is, provided

(4.4)
NX

jD1
.�j /`aj D 1; for ` D 0; 1; : : : ; N � 1:

The system (4.4) is a linear system of N equations for the N quantities aj; its de-
terminant is a Vandermonde determinant that is seen to be nonzero, so appropriate
aj can be found.

Corollary 4.2. The restriction map

(4.5) � W H k.Rn/ �! H k.RnC/

is surjective.

Indeed, this follows from

(4.6) �E D I onH k.RnC/:

Suppose s � 0. We can define H s.RnC/ by interpolation:

(4.7) H s.RnC/ D ŒL2.RnC/;H k.RnC/�� ; k � s; s D 
k:
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We can show that (4.7) is independent of the choice of an integer k � s. Indeed,
interpolation from (4.3) gives

(4.8) E W H s.RnC/ �! H s.Rn/I

interpolation of (4.5) gives

(4.9) � W H s.Rn/ �! H s.RnC/I

and we have

(4.10) �E D I on H s.RnC/:

This gives

(4.11) H s.RnC/ � H s.Rn/=fu 2 H s.Rn/ W u
ˇ̌
Rn

C

D 0g;

for s � 0, a characterization that is manifestly independent of the choice of k � s

in (4.7).
Now let� be a smooth, compact manifold with smooth boundary. We can sup-

pose that � is imbedded as a submanifold of a compact (boundaryless) manifold
M of the same dimension. If � � Rn, n D dim �, you can arrange this by
putting � in a large box and identifying opposite sides to get � � Tn. In the
general case, one can construct the “double” of�, as follows. Using a vector field
X on @� that points into � at each point, that is, X is nowhere vanishing on @�
and in fact nowhere tangent to @�, we can extend X to a vector field on a neigh-
borhood of @� in �, and using its integral curves construct a neighborhood of
@� in � diffeomorphic to Œ0; 1/ 	 @�, a so-called “collar neighborhood” of @�.
Using this, one can glue together two copies of � along @� in such a fashion as
to produce a smooth, compactM as desired.

If k � 0 is an integer, we define H k.�/ to consist of all u 2 L2.�/ such
that P u 2 L2.�/ for all differential operators P of order � k with coefficients
in C1.�/. We use � to denote � n @�. Similar to the case of RnC, one shows
that C1.�/ is dense in H k.�/. By covering a neighborhood of @� � M with
coordinate patches and locally using the extension operatorE from above, we get,
for each finite N , an extension operator

(4.12) E W H k.�/ �! H k.M/; 0 � k � N � 1:

If, for real s � 0, we define H s.�/ by

(4.13) H s.�/ D ŒL2.�/;H k.�/�� ; k � s; s D 
k;

we see that

(4.14) E W H s.�/ �! H s.M/;
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so the restriction � W H s.M/ ! H s.�/ is onto, and

(4.15) H s.�/ � H s.M/=fu 2 H s.M/ W u
ˇ̌
�

D 0g;

which shows that (4.13) is independent of the choice of k � s.
The characterization (4.15) can be used to define H s.�/ when s is a negative

real number. In that case, one wants to show that the space H s.�/ so defined is
independent of the inclusion � � M . We will take care of this point in the next
section.

The existence of the extension map (4.14) allows us to draw the following
immediate consequence from Proposition 3.3.

Proposition 4.3. If dim � D n and u 2 H s.�/, then

u 2 C.�/ provided s >
n

2
I

u 2 C k.�/ provided s >
n

2
C kI

u 2 C ˛.�/ provided s D n

2
C ˛; ˛ 2 .0; 1/:

We now extend Proposition 3.4, obtaining the full version of Rellich’s theorem.

Proposition 4.4. For any s � 0; � > 0, the natural inclusion

(4.16) j W H sC� .�/ �! H s.�/ is compact:

Proof. Using E and �, we can factor the map (4.16) through the map (3.9):

H sC�.�/
j�����! H s.�/

E

??y
x??�

H sC� .M/
j�����! H s.M/

which immediately gives (4.16) as a consequence of Proposition 3.4.

The boundary @� of � is a smooth, compact manifold, on which Sobolev
spaces have been defined. By using local coordinate systems flattening out @�,
together with the extension map (4.14) and the trace theorem, Proposition 1.6, we
have the following result on the trace map:

(4.17) �u D u
ˇ̌
@�
:

Proposition 4.5. For s > 1=2, � extends uniquely to a continuous map

(4.18) � W H s.�/ �! H s�1=2.@�/:
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We close this section with a consideration of mapping properties on Sobolev
spaces of the Poisson integral considered in �2 of Chap. 3:

(4.19) PI W C.S1/ �! C.D/;

where

(4.20) D D ˚
.x; y/ 2 R2 W x2 C y2 < 1

�
;

given explicitly by

(4.21) PI f .z/ D
1X

kD0
Of .k/zk C

1X

kD1
Of .�k/zk ;

as in (2.4) of Chap. 3, and satisfying the property that

(4.22) u D PI f H) u D 0 in D and u
ˇ̌
S1 D f:

The following result can be compared with Proposition 2.2 in Chap. 3.

Proposition 4.6. The Poisson integral gives a continuous map

(4.23) PI W H s.S1/ �! H sC1=2.D/; for s � �1
2
:

Proof. It suffices to prove this for s D k � 1=2, k D 0; 1; 2; : : : ; this result
for general s � �1=2 will then follow by interpolation. Recall that to say f 2
H k�1=2.S1/ means

(4.24)
1X

nD�1
j Of .n/j2hki2k�1 < 1:

Now the functions fr jnjein� W n 2 Zg are mutually orthogonal in L2.D/, and

(4.25)
“

D

ˇ̌
r jnjein�

ˇ̌2
dx dy D 2�

Z 1

0

r2jnjr dr D �

jnj C 1
:

In particular, f 2 H�1=2.S1/ implies

1X

nD�1
j Of .n/j2hni�1 < 1;

which implies PI f 2 L2.D/, by (4.25).
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Next, if f 2 H k�1=2.S1/, then .@=@
/�f 2 H�1=2.S1/, for 0 � � � k, so
.@=@
/�PI f D PI.@=@
/�f 2 L2.D/. We need to show that

�
r
@

@r

�	 �
@

@


��
PI f 2 L2.D/;

for 0 � �C � � k. Indeed, set

(4.26) Nf D
1X

nD�1
jnj Of .n/ein� :

It follows from Plancherel’s theorem that .@=@
/�N	f 2 H�1=2.S1/, for 0 �
�C � � k, if f 2 H k�1=2.S1/, while, as in (2.18) of Chap. 2, we have

(4.27)

�
r
@

@r

�	 �
@

@


��
PI f D PI

�
@

@


��
N	 f;

which hence belongs to L2.D/. Since PI f is smooth in a neighborhood of the
origin r D 0, this finishes the proof.

The Poisson integral taking functions on the sphere Sn�1 to harmonic func-
tions on the ball in Rn, and more generally the map taking functions on the
boundary of @� of a compact Riemannian manifold � (with boundary), to har-
monic functions on �, will be studied in Chap. 5.

Exercises

1. Let D be the unit disk in R2, with boundary @D D S1. Consider the solution to the
Neumann problem

(4.28) u D 0 on D; @u

@r
D g on S1;

studied in Chap. 3, �2, Exercises 1–4. Show that, for s � 1=2,

(4.29) g 2 H s.S1/ H) u 2 H sC3=2.D/:

(Hint: Write u D PI f , with Nf D g, where N is given by (4.26).)
2. Let� be a smooth, compact manifold with boundary. Show that the following versions

of the divergence theorem and Green’s formula hold:

(4.30)
Z

�



.divX/uv C .Xu/v C u.Xv/

�
dV D

Z

@�

hX; �iuv dS;
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when, among X; u, and v, one is smooth and two belong to H1.�/. Also show that

(4.31) �.u; v/L2.�/ D .du; dv/L2.�/ �
Z

@�

u
@v

@�
dS;

for u 2 H1.�/, v 2 H2.�/. (Hint: Approximate.)
3. Show that if u 2 H2.�/ satisfies u D 0 on � and @u=@� D 0 on @�, then u must

be constant, if � is connected. (Hint: Use (4.31) with v D u:)

Exercises 4–9 deal with the “oblique derivative problem” for the Laplace operator
on the disk D � R2. The oblique derivative problem on higher-dimensional regions is
discussed in exercises in �12 of Chap. 5.

4. Consider the oblique derivative problem

(4.32) u D 0 on D; a
@u

@r
C b

@u

@

C cu D g on S1;

where a; b; c 2 C1.S1/ are given. If u D PI f , show that u is a solution if and only
if Qf D g, where

(4.33) Q D MaN CMb
@

@

CMc W H sC1 �S1

�
�! H s

�
S1
�
:

5. Recall ƒ W H sC1.S1/ ! H s.S1/, defined by

(4.34) ƒf .
/ D
X

hki Of .k/eik� ;

as in (3.9). Show that ƒ is an isomorphism and that

(4.35) ƒ �N W H s.S1/ �! H s.S1/:

6. WithQ as in (4.33), show that Q D Tƒ with

(4.36) T D MaCibP CMa�ib.I � P /CR W H s.S1/ �! H s.S1/;

where
R W H s.S1/ �! H sC1.S1/:

Here P is as in Exercise 3 of �3. (Hint: Note that @=@
 D iPN � i.I � P /N:)
7. Deduce that the operator Q in (4.33) is Fredholm provided a C ib and a � ib are

nowhere vanishing on S1. In particular, if a and b are real-valued, Q is Fredholm
provided a and b have no common zeros on S1. (Hint: Recall Exercises 4–6 of �3.)

8. Let H D fu 2 C 2.D/ W u D 0 in Dg. Take s > 0. Using the commutative diagram

H sC1.S1/ PI�����! H sC 3
2 .D/ \ H

Q

??y
??yB

H s.S1/
I�����! H s.S1/

(4.37)
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where Q is as in (4.33) and

(4.38) Bu D a
@u

@r
C b

@u

@

C cu

ˇ̌
S1 ;

deduce that B is Fredholm provided a; b 2 C1.S1/ are real-valued and have no
common zeros on S1. In such a case, compute the index of B . (Hint: Recall Exercise
7 from �3. Also note that the two horizontal arrows in (4.37) are isomorphisms.)

9. Let B be as above; assume a; b; c 2 C1.S1/ are all real-valued. Also assume that a
is nowhere vanishing on S1. If c=a � 0 on S1, show that Ker B consists at most of
constant functions. (Hint: See Zaremba’s principle, in �2 of Chap. 5.)
If, in addition, c is not identically zero, show that Ker B D 0. Using Exercise 8,
show that B has index zero in this case. Draw conclusions about the solvability of the
oblique derivative problem (4.32).

10. Prove that C1.�/ is dense in H s.�/ for all s � 0.
(Hint: With E as in (4.14), approximate Eu by elements of C1.M/:)

11. Consider the Vandermonde determinant

nC1.x0; : : : ; xn/ D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

1 1 � � � 1

x0 x1 � � � xn
:::

:::
: : :

:::

xn0 xn1 � � � xnn

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
:

Show that nC1.x0; : : : ; xn�1; t/ is a polynomial of degree n in t , with roots
x0; : : : ; xn�1, hence equal to K.t � x0/ � � � .t � xn�1/; the coefficient K of tn is
equal to n.x0; : : : ; xn�1/. Deduce by induction that

nC1.x0; : : : ; xn/ D
Y

0�j<k�n
.xk � xj /:

12. Given 0 < s < 1 and f 2 L2.RC/, show that

(4.39) f 2 H s.RC/ ”
Z 1

0
t�.2sC1/k�tf � f k2

L2.RC/
dt < 1;

where �tf .x/ D f .x C t/. (Hint: Use Proposition 2.4, with P tf .x/ D f .x C t/,
whose infinitesimal generator is d=dx, with domain H1.RC/. Note that “)” also
follows from (4.14) plus (1.28).)
More generally, given 0 < s < 1 and f 2 L2.RnC/, show that

(4.40) f 2 H s.RnC/ ”
Z 1

0
t�.2sC1/k�tej

f � f k2
L2.Rn

C

/
dt < 1; 1 � j � n;

where �y is as in (1.12).

5. The Sobolev spaces Hs
0 .�/

Let � be a smooth, compact manifold with boundary; we denote the interior by
�, as before. As before, we can suppose � is contained in a compact, smooth
manifold M , with @� a smooth hypersurface. For s � 0, we define H s

0 .�/ to
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consist of the closure of C1
0 .�/ inH s.�/. For s D k a nonnegative integer, it is

not hard to show that

(5.1) H k
0 .�/ D fu 2 H k.M/ W supp u � �g:

This is because a norm giving the topology of H k.�/ can be taken to be the
square root of

(5.2)
KX

jD1
kPj uk2

L2.�/
;

for a certain finite number of differential operators Pj of order � k, which implies
that the closure ofC1

0 .�/ inH k.�/ can be identified with its closure inH k.M/.
Since the topology of H s.M/ for s … ZC is not defined in such a localizable
fashion, such an argument does not work for general real s. For a general closed
set B in M , set

(5.3) H s
B .M/ D fu 2 H s.M/ W supp u � Bg:

It has been proved in [Fu] that, for s � 0,

(5.4) H s
0 .�/ � H s

�
.M/ if s C 1

2
… Z:

See the exercises below for some related results.
Recall our characterization of the space H s.�/ given in (4.15), which we

rewrite as

(5.5) H s.�/ � H s.M/=H s
K.�/; K D M n�:

This characterization makes sense for any s 2 R, not just for s � 0, and we use
it as a definition of H s.�/ for s < 0. For k 2 ZC, we can redefine H�k.�/ in a
fashion intrinsic to �, making use of the following functional analytic argument.

In general, if E is a Banach space, with dual E�, and F a closed linear sub-
space of E, we have a natural isomorphism of dual spaces:

(5.6) F � � E�=F?;

where

(5.7) F? D fu 2 E� W hv; ui D 0 for all v 2 F g:

If E D H k.M/, we take F D H k
0 .�/, which, as discussed above, we can regard

as the closure of C1
0 .�/ in H k.M/ D E. Then it is clear that F? D H�k

K .M/,

with K D M n�, so we have proved:
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Proposition 5.1. For � open in M with smooth boundary, k � 0 an integer, we
have a natural isomorphism

(5.8) H k
0 .�/

� � H�k.�/:

Let P be a differential operator of order 2k, with smooth coefficients on �.
Suppose

(5.9) P D
LX

jD1
AjBj ;

where Aj and Bj are differential operators of order k, with coefficients smooth on
�. Then we have a well-defined continuous linear map

(5.10) P W H k
0 .�/ �! H�k.�/;

and, if Atj denotes the formal adjoint of Aj on �, endowed with a smooth

Riemannian metric, then, for u; v 2 H k
0 .�/, we have

(5.11) hu; P vi D
LX

jD1
.Atj u; Bj v/L2.�/;

the dual pairing on the left side being that of (5.8). In fact, the formula (5.5) gives

(5.12) P W H s.�/ �! H s�2k.�/

for all real s, and in particular

(5.13) P W H k.�/ �! H�k.�/;

and the identity (5.11) holds for v 2 H k.�/, provided u 2 H k
0 .�/. In Chap. 5 we

will study in detail properties of the map (5.10) when P is the Laplace operator
(so k D 1).

The following is an elementary but useful result.

Proposition 5.2. Suppose � is a smooth, connected, compact manifold with
boundary, endowed with a Riemannian metric. Suppose @� ¤ ;. Then there
exists a constant C D C.�/ < 1 such that

(5.14) kuk2
L2.�/

� Ckduk2
L2.�/

; for u 2 H 1
0 .�/:

It suffices to establish (5.14) for u 2 C1.�/. Given u
ˇ̌
@�

D 0, one can write

(5.15) u.x/ D �
Z


.x/

du;
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for any x 2 �, where �.x/ is some path from x to @�. Upon making a reasonable
choice of �.x/, obtaining (5.14) is an exercise, which we leave to the reader. (See
Exercises 4–5 below.)

Finding a sharp value of C such that (5.14) holds is a challenging problem,
for which a number of interesting results have been obtained. As will follow from
results in Chap. 5, this is equivalent to the problem of estimating the smallest
eigenvalue of � on �, with Dirichlet boundary conditions.

Below, there is a sequence of exercises, one of whose implications is that

(5.16) ŒL2.�/;H 1
0 .�/�s D H s

0 .�/ D H s.�/; 0 < s <
1

2
:

Here we will establish a result that is useful for the proof.

Proposition 5.3. Let � � Rn be a bounded region with smooth boundary. If
0 � s < 1=2, and T u D 	�u, then

(5.17) T W H s.Rn/ �! H s.Rn/:

Proof. It is easy to reduce this to the case � D RnC, and then to the case n D 1,
which we will treat here. Also, the case s D 0 is trivial, so we take 0 < s < 1=2.
By (1.28), it suffices to estimate

(5.18)
Z 1

0

t�.2sC1/k�teu �euk2
L2.R/ dt;

whereeu.x/ D T u.x/, so, for t > 0,

�teu.x/ �eu.x/ D u.t C x/ � u.x/; x > 0

u.t C x/; �t < x < 0
0; x < �t

(5.19)

Hence (5.18) is

(5.20) �
Z 1

0

t�.2sC1/k�tu � uk2
L2.R/ dt C

Z 1

0

t�.2sC1/
Z 0

�t
ju.t C x/j2 dx dt:

The first term in (5.20) is finite for u 2 H s.R/, 0 < s < 1, by (1.28). The last
term in (5.20) is equal to

Z 1

0

Z t

0

t�.2sC1/ju.t � x/j2 dx dt D
Z 1

0

Z t

0

t�.2sC1/ju.x/j2 dx dt

D Cs

Z 1

0

jxj�2s ju.x/j2 dx:

(5.21)

The next lemma implies that this is finite for u 2 H s.R/, 0 < s < 1=2.
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Lemma 5.4. If 0 < s < 1=2, then

(5.22) u 2 H s.Rn/ H) jx1j�su 2 L2.Rn/:

Proof. The general case is easily deduced from the case n D 1, which we estab-
lish here. Also, it suffices to show that, for 0 < s < 1=2,

(5.23) u 2 H s.R/ H) x�seu 2 L2.RC/;

whereeu D u
ˇ̌
RC

. Now, for x > 0, u 2 C1
0 .R/, set

(5.24) v.x/ D 1

x

Z x

0



u.x/ � u.y/

�
dy; w.x/ D

Z 1

x

v.y/

y
dy:

We claim that

(5.25) u.x/ D v.x/ �w.x/; x > 0:

In fact, if u 2 C1
0 .R/, then v.x/ ! 0 and w.x/ ! 0 as x ! C1, and

one verifies easily that u0.x/ D v0.x/ � w0.x/. Thus it suffices to show that, for
0 < s < 1=2,

(5.26) kx�svkL2.RC/ � CkukH s.R/; kx�swkL2.RC/ � CkukH s.R/;

for u 2 C1
0 .R/.

To verify the first estimate in (5.26), we will use the simple fact that jv.x/j2 �
.1=x/

R x
0 ju.x/ � u.y/j2 dy. Hence

Z 1

0

x�s jv.x/j2 dx �
Z 1

0

Z x

0

x�.2sC1/ ˇ̌u.x/ � u.y/
ˇ̌2
dy dx

D
Z 1

0

Z 1

0

.y C t/�.2sC1/
ˇ̌
u.y C t/ � u.y/

ˇ̌2
dt dy

�
Z 1

0

y�.2sC1/k�tu � uk2
L2.RC/

dy:

(5.27)

Since the L2.RC/-norm is less than the L2.R/-norm, it follows from (1.28) that
the last integral in (5.27) is dominated by Ckuk2

H s.R/, for 0 < s < 1.
Thus, to prove the rest of (5.26), it suffices to show that

(5.28) kx�swkL2.RC/ � Ckx�svkL2.RC/; 0 < s <
1

2
;

or equivalently, that kwkL2.RC;x�2sdx/ � CkvkL2.RC;x�2sdx/. In turn, this fol-
lows from the estimate (2.34), with ˇ D 2s, since we have w D ˆ�v, where ˆ�
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acting on L2.RC; x�ˇdx/ is the adjoint of ˆ in (2.34). This completes the proof
of the lemma, hence of Proposition 5.3.

Corollary 5.5. If Sv.x/ D v.x/ for x 2 �, and Sv.x/ D 0 for x 2 Rn n�, then

(5.29) S W H s.�/ �! H s.Rn/; 0 � s <
1

2
:

Proof. Apply Proposition 5.3 to u D Ev, where E W H s.�/ ! H s.�/ is any
extension operator that works for 0 � s � 1.

Exercises

1. Give the a detailed proof of (5.1).
2. With �u D u

ˇ̌
@�

, as in (4.17), prove that

(5.30) H1
0 .�/ D fu 2 H1.�/ W �u D 0g:

(Hint: Given u 2 H1.�/ and �u D 0, define Qu D u.x/ for x 2 �; Qu.x/ D 0 for
x 2 M n�. Use (4.30) to show that Qu 2 H1.M/.)

3. Let u 2 Hk.�/. Prove that u 2 Hk
0 .�/ if and only if �.P u/ D 0 for all differential

operators P (with smooth coefficients) of order � k � 1 on M .
4. Give a detailed proof of Proposition 5.2 along the lines suggested, involving (5.15).
5. Give an alternative proof of Proposition 5.2, making use of the compactness of the

inclusion H1.�/ ,! L2.�/. (Hint: If (5.14) is false, take uj 2 H1
0 .�/ such that

kduj kL2 ! 0, kuj kL2 D 1. The compactness yields a subsequence uj ! v in
H1.�/. Hence kvkL2 D 1 while kdvkL2 D 0:)

6. Suppose � � Rn lies between two parallel hyperplanes, x1 D A and x1 D B . Show
that the estimate (5.14) holds with C D .B � A/2=�2.
Reconsider this problem after reading �1 of Chap. 5.

7. Show that C1.�/ is dense inH�s.�/, for s � 0. Compare Exercise 10 of �4.
8. Give a detailed proof that (5.11) is true for u 2 Hk

0 .�/, v 2 Hk.�/.
(Hint: Approximate u by uj 2 C1

0 .�/ and v by vj 2 C1.�/:)
9. Show that ifP t is the formal adjoint ofP , then hu; P vi D hP tu; vi for u; v 2 Hk

0 .�/.

In the following problems, let � be an open subset of a compact manifold M , with
smooth boundary @� and closure �. Let O D M n�.

10. Define Z W L2.�/ ! L2.M/ by Zu.x/ D u.x/ for x 2 �, 0 for x 2 O. Show that

(5.31) Z W Hk
0 .�/ �! Hk

�
.M/; k D 0; 1; 2; : : :

and that Z is an isomorphism in these cases. Deduce that

(5.32) Z W ŒL2.�/;Hk
0 .�/�� �! Hk�

�
.M/; 0 < 
 < 1; k 2 ZC:

11. For fixed but large N , let E W H s.O/ ! H s.M/ be an extension operator, similar to
(4.14), for 0 � s � N . Define T u D u �ERu, where Ru D u

ˇ̌
O. Show that
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(5.33) T W H s.M/ �! H s
�
.M/; 0 � s � N:

Note that T u D u for u 2 H s
�
.M/.

12. Set T bu D T u
ˇ̌
�

, so T b W Hk.M/ ! Hk
0 .�/, for 0 � k � N , and hence

T b W Hk� .M/ �! ŒL2.�/;Hk
0 .�/�� :

Show that
T bjZ D id: on ŒL2.�/;Hk

0 .�/�� ;

where j W H s
�
.M/ ,! H s.M/ is the natural inclusion. Deduce that (5.32) is an

isomorphism. Conclude that

(5.34) ŒL2.�/;Hk
0 .�/�� � ŒH0

�
.M/;Hk

�
.M/�� D Hk�

�
.M/; 0 < 
 < 1:

13. Show that H s
�
.M/ is equal to the closure of C1

0 .�/ in H s.M/. (This can fail when
@� is not smooth.) Conclude that there is a natural injective map

� W H s
�
.M/ �! H s

0 .�/; s � 0:

(Hint: Recall that H s
0 .�/ is the closure of C1

0 .�/ in H s.�/ � H s.M/=H s
O.M/:)

14. If Z is defined as in Exercise 10, use Corollary 5.5 to show that

(5.35) Z W H s
0 .�/ �! H s.M/; 0 � s <

1

2
:

15. If v 2 C1.�/, and w D v on�, 0 on O, show that w 2 H s.M/, for all s 2 Œ0; 1=2/.
If v D 1, show that w … H1=2.M/.

16. Show that

(5.36) H s
0 .�/ D H s.�/; for 0 � s � 1

2
:

(Hint: To show thatC1
0 .�/ is dense inH s.�/, show that fu 2 C1.M/ W u D 0 near @�g

is dense in H s.M/, for 0 � s � 1=2:)
17. Using the results of Exercises 10–16, show that, for k 2 ZC,

(5.37) ŒL2.�/;Hk
0 .�/�� D H s

0 .�/ D H s.�/ if s D k
 2 Œ0; 12 /:
See [LM], pp. 60–62, for a demonstration that, for s > 0,

Z W H s
0 .�/ �! H s.M/ ” s � 1

2
… Z;

which, by Exercise 12, implies (5.4) and also, for k 2 ZC,

ŒL2.�/;Hk
0 .�/�� D H s

0 .�/ if s D k
 … Z C 1

2
:

18. If F is a closed subspace of a Banach space, there is a natural isomorphism .E=F /� �
F? D f! 2 E� W hf; !i D 0;8 f 2 F g. Use this to show that

(5.38) H s.�/� � H�s
�
.M/:



6. The Schwartz kernel theorem 345

19. Applying (5.6) withE D Hk.�/; F D Hk
0 .�/, in conjunction with (5.8) and (5.38),

show that for k 2 N,

(5.39) H�k.�/ � H�k
�
.M/=H�k

@� .M/:

6. The Schwartz kernel theorem

Let M and N be compact manifolds. Suppose

(6.1) T W C1.M/ �! D0.N /

is a linear map that is continuous. We give C1.M/ its usual Fréchet space topol-
ogy and D0.N / its weak� topology. Consequently, we have a bilinear map

(6.2) B W C1.M/ 	 C1.N / �! C;

separately continuous in each factor, given by

(6.3) B.u; v/ D hv; T ui; u 2 C1.M/; v 2 C1.N /:

For such u; v, define

(6.4) u ˝ v 2 C1.M 	N/

by

(6.5) .u ˝ v/.x; y/ D u.x/v.y/; x 2 M; y 2 N:

We aim to prove the following result, known as the Schwartz kernel theorem.

Theorem 6.1. Given B as in (6.2), there exists a distribution

(6.6) � 2 D0.M 	N/

such that

(6.7) B.u; v/ D hu ˝ v; �i;

for all u 2 C1.M/; v 2 C1.N /.

We note that the right side of (6.7) defines a bilinear map (6.2) that is con-
tinuous in each factor, so Theorem 6.1 establishes an isomorphism between
D0.M 	N/ and the space of maps of the form (6.2), or equivalently the space of
continuous linear maps (6.1).
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The first step in the proof is to elevate the hypothesis of separate continuity
to an apparently stronger condition. Generally speaking, let E and F be Fréchet
spaces, and let

(6.8) ˇ W E 	 F �! C

be a separately continuous bilinear map. Suppose the topology of E is defined
by seminorms p1 � p2 � p3 � � � � and that of F by seminorms q1 � q2 �
q3 � � � � . We have the following result.

Proposition 6.2. If ˇ in (6.8) is separately continuous, then there exist seminorms
pK and qL and a constant C 0 such that

(6.9) jˇ.u; v/j � C 0pK.u/qL.v/; u 2 E; v 2 F:

Proof. This will follow from the Baire category theorem, in analogy with the
proof of the uniform boundedness theorem. Let SC;j � E consist of u 2 E such
that

(6.10) jˇ.u; v/j � Cqj .v/; for all v 2 F:

The hypothesis that ˇ is continuous in v for each u implies

(6.11)
[

C;j

SC;j D E:

The hypothesis that ˇ is continuous in u implies that each SC;j is closed.
The Baire category theorem implies that some SC;L has nonempty interior.
Hence S1=2;L D .2C /�1SC;L has nonempty interior. Since Sc;L D �Sc;L and
S1=2;L C S1=2;L D S1;L, it follows that S1;L is a neighborhood of 0 in E.
Picking K so large that, for some C1, the set of u 2 E with pK.u/ � C1 is
contained in this neighborhood, we have (6.9) with C 0 D C=C1. This proves the
proposition.

Returning to the bilinear map B of (6.2), we use Sobolev norms to define the
topology of C1.M/ and of C1.N /:

(6.12) pj .u/ D kukHj .M/; qj.v/ D kvkHj .N/:

In the case of M D Tm, we can take

(6.13) pj .u/ D
0

@
X

j˛j�j
kD˛uk2

L2.Tm/

1

A
1=2

;
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and similarly for pj .v/ if N D Tn. Proposition 6.2 implies that there are C;K;L
such that

(6.14) jB.u; v/j � CkukHK.M/kvkHL.N/:

Recalling that the dual of HL.N / is H�L.N /, we have the following result.

Proposition 6.3. Let B be as in Theorem 6.1. Then for some K;L, there is a
continuous linear map

(6.15) T W HK.M/ �! H�L.N /

such that

(6.16) B.u; v/ D hv; T ui; for u 2 C1.M/; v 2 C1.N /:

Thus, if a continuous linear map of the form (6.1) is given, it has a continuous
linear extension of the form (6.15).

In the next few steps of the proof of Theorem 6.1, it will be convenient to work
with the case M D Tm, N D Tn. Once Theorem 6.1 is established in this case,
it can readily be extended to the general case.

Recall from (3.7) the isomorphisms

(6.17) ƒs W H � .Tm/ �! H ��s.Tm/;

for all real s; � , where ƒ2 D I �. It follows from (6.15) that

(6.18) Tjk D .I �/�jT .I �/�k W L2.Tm/ �! H s.Tn/

as long as k � K=2 and j � L=2C s. Note that

(6.19) T D .I �/jTjk.I �/k:

The next step in our analysis will exploit the fact that if j is picked sufficiently
large in (6.18), then Tjk is a Hilbert–Schmidt operator from L2.Tm/ to L2.Tn/.

We recall here the notion of a Hilbert–Schmidt operator, which is discussed in
detail in �6 of Appendix A. Let H1 andH2 be two separable infinite dimensional
Hilbert spaces, with orthonormal bases fuj g and fvj g, respectively. Then A W
H1 ! H2 is Hilbert–Schmidt if and only if

(6.20)
X

j

kAuj k2 D
X

j;k

jajk j2 < 1;
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where ajk D .Auj ; vk/. The quantity on the left is denoted kAk2HS. It is not hard to
show that this property is independent of choices of orthonormal bases. Also, if
there are bounded operators V1 W X1 ! H1 and V2 W H2 ! X2 between Hilbert
spaces, we have

(6.21) kV2AV1kHS � kV2k � kAkHS � kV1k;

where of course kVj k are operator norms. If Vj are both unitary, there is identity
in (6.21). For short, we call a Hilbert–Schmidt operator an “HS operator.”

From the definition, and using the exponential functions for Fourier series as
an orthonormal basis, it easily follows that

(6.22) ƒ�s is HS on L2.Tn/ ” s >
n

2
:

Consequently, we can say of the operator Tjk given by (6.18) that

(6.23) Tjk W L2.Tm/ �! L2.Tn/ is HS if 2k � K and 2j > LC n:

Our next tool, which we call the Hilbert–Schmidt kernel theorem, is proved in
�6 of Appendix A.

Theorem 6.4. Given a Hilbert–Schmidt operator

T1 W L2.X1; �1/ �! L2.X2; �2/;

there exists K 2 L2.X1 	X2; �1 	 �2/ such that

(6.24) .T1u; v/L2 D
“

K.x1; x2/u.x1/v.x2/ d�1.x1/ d�2.x2/:

To proceed with the proof of the Schwartz kernel theorem, we can now estab-
lish the following.

Proposition 6.5. The conclusion of Theorem 6.1 holds when M D Tm and
N DTn.

Proof. By Theorem 6.4, there existsK 2 L2.Tm 	 Tn/ such that

(6.25) hv; Tjkui D
“

K.x; y/u.x/v.y/ dx dy;

for u 2 C1.Tm/; v 2 C1.Tn/, provided Tjk, given by (6.18), satisfies (6.23). In
view of (6.19), this implies
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hv; T ui D h.I �/jv; Tjk.I �/kui

D
“

K.x; y/ .I �y/
j v.y/ .I �x/

ku.x/ dx dy;
(6.26)

so (6.7) holds with

(6.27) � D .I �x/k.I �y/
jK.x; y/ 2 D0.Tm 	 Tn/:

Now Theorem 6.1 for general compactM and N can be proved by writing

(6.28) B.u; v/ D
X

j;k

B.'ju;  kv/;

for partitions of unity f'j g, f kg subordinate to coordinate covers of M and N ,
and transferring the problem to the case of tori.

Exercises

1. Extend Theorem 6.1 to treat the case of

B W C1
0 .M/ 	 C1

0 .N / �! C;

when M and N are smooth, paracompact manifolds. State carefully an appropriate
continuity hypothesis on B .

2. What is the Schwartz kernel of the identity map I W C1.Tn/ ! C1.Tn/?

7. Sobolev spaces on rough domains

With � � M as in ��4–5, suppose O � � is an open subset, perhaps with quite
rough boundary. As in our definitions ofH k.�/ andH k

0 .�/, we set, for k 2 ZC,

(7.1) H k.O/ D fu 2 L2.O/ W P u 2 L2.O/; 8P 2 Diffk.M/g;

where Diffk.M/ denotes the set of all differential operators of order � k, with
C1 coefficients, on M . Then we set

(7.2) H k
0 .O/ D closure of C1

0 .O/ in H k.O/:

There exist operators Pk1; : : : ; PkN 2 Diffk.M/ spanning Diffk.M/ over
C1.M/, N D N.k/, and we can take
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(7.3) kuk2
Hk.O/ D

nX

jD1
kPkj uk2

L2.O/:

It readily follows that

(7.4) H k
0 .O/ D closure of C1

0 .O/ in H k.M/;

with u 2 H k
0 .O/ extended by 0 off O. We have

(7.5) H k
0 .O/ � H k

O.M/;

where

(7.6) H k
O.M/ D fu 2 H k.M/ W supp u � Og:

Unlike in (5.1), the reverse inclusion can fail for rough @O. Here is a condition
favorable for such a reverse inclusion.

Proposition 7.1. If at each point @O is locally the graph of a continuous function,
then

(7.7) Hk
0 .O/ D H k

O.M/:

In such a case, given u 2 H k
O.M/, one can use a partition of unity, slight shifts,

and mollifiers to realize u as a limit in H k.M/ of functions in C1
0 .O/.

A simple example of a domain O for which (7.7) fails, for all k � 1, is the slit
disk:

(7.8) O D ˚
x 2 R2 W jxj < 1g n f.x1; 0/ W 0 � x1 < 1

�
:

Another easy consequence of (7.4), plus Proposition 4.4, is that for k � 1, the
natural injection

(7.9) H k
0 .O/ ,! L2.O/ is compact:

Also, the extension of u 2 H k
0 .O/ by zero off O gives

(7.10) H k
0 .O/ ,! H k

0 .�/; closed subspace:

Specializing this to k D 1 and recalling Proposition 5.2, we have

(7.11) kuk2
L2.O/ � eCkduk2

L2.O/; 8 u 2 H 1
0 .O/;

with eC � C , where C is as in (5.14).
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Recall the restriction map � W H k.M/ ! H k.�/, considered in �4. Similarly
we have � W H k.M/ ! H k.O/, but for rough @O this map might not be onto.
There might not be an extension operator E W H k.O/ ! H k.M/, as in (4.12).
Here is one favorable case for the existence of an extension operator.

Proposition 7.2. If at each point @O is locally the graph of a Lipschitz function,
then there exists

(7.12) E W H k.O/ �! H k.M/; for k D 0; 1; �E D I on H k.O/:

In such a case, given u 2 H k.O/, one can use a partition of unity to reduce
the construction to extending u supported on a small neighborhood in O of a
point p0 2 @O and use a bi-Lipschitz map to flatten out @O on this support. Such
bi-Lipschitz maps preserveH k for k D 0 and 1, and we can appeal to Lemma 4.1.

If (7.12) holds, then, as in Proposition 4.4, we have

(7.13) H 1.O/ ,! L2.O/

compact. However, for rough @O, compactness in (7.13) can fail. A simple exam-
ple of such failure is given by

(7.14) O D
1[

kD1
Ok; Ok D fx 2 R2 W jx � .2�k; 0/j < 8�kg:

When (7.12) holds, results on

(7.15) H s.O/ D ŒL2.O/;H 1.O/�s ; 0 < s < 1;

parallel to those presented in �4, hold, as the reader is invited to verify.

Exercises

1. The example (7.8), for which (7.7) fails, is not equal to the interior of its closure.
Construct O � Rn, equal to the interior of its closure, for which (7.7) fails.

2. The example (7.14), for which (7.13) is not compact, has infinitely many connected
components. Construct a connected, open, bounded O � Rn, such that (7.13) is not
compact.
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5

Linear Elliptic Equations

Introduction

The first major topic of this chapter is the Dirichlet problem for the Laplace
operator on a compact domain with boundary:

(0.1) �u D 0 on �; u
ˇ̌
@�

D f:

We also consider the nonhomogeneous problem �u D g and allow for lower-
order terms. As in Chap. 2,� is the Laplace operator determined by a Riemannian
metric. In �1 we establish some basic results on existence and regularity of solu-
tions, using the theory of Sobolev spaces. In �2 we establish maximum principles,
which are useful for uniqueness theorems and for treating (0.1) for f continuous,
among other things.

For general �, one does not expect to write down an explicit integral formula
for solutions to (0.1), but when � is the unit ball in Rn this is possible. The re-
sulting formula, called the Poisson integral formula, is derived in �3, generalizing
the formula for the disk in R2 derived in �2 of Chap. 3.

One of the most famous classical applications of the solvability of (0.1) is to
a proof of the Riemann mapping theorem. We prove this theorem for bounded,
simply connected domains, with smooth boundary, in �4. To prove the Riemann
mapping theorem for general simply connected planar domains, it is necessary to
extend the existence theory of � 1 to compact domains whose boundaries are not
smooth. We provide results on this in �5, not giving an exhaustive treatment but
going far enough to accomplish the goal of proving the Riemann mapping theorem
in general in �6. The analysis in �5 makes strong use of the maximum principle
established in �2. Further results on irregular boundaries will be established in
Chap. 11, via the use of Brownian motion.

Sections 7–9 include material on other boundary conditions. Section 7 looks at
the Neumann boundary condition

(0.2) �u D g on �;
@u

@�
D f on @�:

M.E. Taylor, Partial Differential Equations I: Basic Theory,
Applied Mathematical Sciences 115, DOI 10.1007/978-1-4419-7055-8 5,
c� Springer Science+Business Media, LLC 1996, 2011
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It is shown that the methods of �1 extend to treat this when� has smooth bound-
ary. Unlike the case of the Dirichlet problem, we do not discuss the Neumann
boundary condition on domains with nonsmooth boundary, though much has been
done on this; we refer to [Gri, DK, Wil] and works cited therein. In �8 we con-
sider the Laplace operator on k-forms, and derive the Hodge theorem. When �
has a boundary, there arise natural boundary conditions, which we treat in �9.
The Hodge decomposition is extended to the case of manifolds with boundary.
These results have topological significance, providing useful tools in deRham co-
homology. We develop some of these topological consequences, particularly in
exercise sets following ��8 and 9. The results of these sections also have physical
significance, as will be seen in the analysis of Maxwell’s equations for the electro-
magnetic field, in Chap. 6. Further use of this material will be made in Chap. 17,
on fluid mechanics.

In �10 there is a brief return to the Dirichlet problem for the Laplace operator,
in order to prove the existence of isothermal coordinates on any two-dimensional
Riemannian manifold. We treat this topic so late in the chapter only to have the
luxury of exploiting the Hodge star operator, introduced in �8.

In �11 we discuss general elliptic boundary problems. The method of freez-
ing coefficients, introduced in �9, plays a major role here in producing Sobolev
space estimates for variable-coefficient equations out of estimates for constant-
coefficient equations (and flat boundaries). The latter estimates can be obtained
via Fourier analysis. We analyze which boundary-value problems lead to esti-
mates and regularity of the sort obtained in earlier sections for the Dirichlet and
Neumann problems. These are called regular elliptic boundary problems. Further
study of regular boundary problems is made in �12. We mention that Hölder space
estimates for solutions to regular elliptic boundary problems will be obtained in
�8 of Chap. 13.

At the end of this chapter are two appendices. One studies spaces of functions
and generalized functions on a compact manifold with boundary, arising from a
self-adjoint elliptic boundary problem. This material will be useful for the discus-
sion of fundamental solutions to parabolic and hyperbolic equations in the next
chapter. The second appendix, on the Mayer–Vietoris sequence, complements
some results on deRham cohomology obtained in ��8 and 9. We illustrate the
use of this sequence with several applications to topology, including a proof of a
variant of the Jordan–Brouwer separation theorem, in the smooth case.

1. Existence and regularity of solutions to the Dirichlet
problem

Let � be a smooth, compact Riemannian manifold with boundary,� the interior
of �. Let � denote the Laplace operator. We have

(1.1) .��u; u/ D kduk2
L2.�/

; for u 2 C1
0 .�/:
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We will assume here that each connected component of � has nonempty
boundary. Thus we have the estimate

(1.2) kuk2
L2.�/

� Ckduk2
L2.�/

; u 2 C1
0 .�/;

by Proposition 5.2 of Chap. 4. Hence

(1.3) kduk2
L2.�/

� kuk2
H1.�/

; for u 2 H 1
0 .�/:

Recall from �5 of Chap. 4 that

(1.4) � W H 1
0 .�/ �! H�1.�/

is well defined. It follows that (1.1) continues to hold for u 2 H 1
0 .�/. Conse-

quently, (1.3) implies

(1.5) .��u; u/ � Ckuk2
H1.�/

if u 2 H 1
0 .�/:

Furthermore, we have

(1.6) k�ukH�1.�/ � CkukH1.�/ if u 2 H 1
0 .�/:

We can now obtain our first existence theorem.

Proposition 1.1. In (1.4),� is one-to-one and onto.

Proof. Clearly, (1.6) implies � is injective, with closed range. If it is not surjec-
tive, there must be an element of

�
H�1.�/

�� D H 1
0 .�/ that is orthogonal to the

range, that is, an element u0 2 H 1
0 .�/ that satisfies

.��u; u0/ D 0; for all u 2 H 1
0 .�/:

Setting u D u0, we deduce from (1.5) that u0 D 0, so the proposition is proved.

Thus there is a uniquely determined inverse

(1.7) T W H�1.�/ �! H 1
0 .�/:

Note that if ' D �u,  D �v, with u; v 2 H 1
0 .�/, then

(1.8)

.T '; / D .T�u; �v/ D .u; �v/

D �.du; dv/ D .�u; v/

D .'; T  /;
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where we have used the fact that (1.1) extends to

(1.9) .��u; v/ D .du; dv/L2 ; for u; v 2 H 1
0 .�/:

If we consider the restriction of T to L2.�/, we have

(1.10) T D T �:

Since T W L2.�/ ! H 1
0 .�/, we have by Rellich’s theorem that T is compact on

L2.�/. We record this useful fact:

Proposition 1.2. The inverse T to � in (1.4) is a compact (negative) self adjoint
operator on L2.�/.

Hence there is an orthonormal basis fuj g of L2.�/ consisting of eigenfunc-
tions of T :

(1.11) T uj D ��j uj ; �j & 0:

In view of (1.7), we have

(1.12) uj 2 H 1
0 .�/; for each j:

Furthermore, it is clear that

(1.13) �uj D ��j uj ; �j D 1

�j
% C1:

We next investigate higher-order regularity of solutions to �u D f , and more
generally to

(1.14) Lu D f; u 2 H 1
0 .�/:

We consider operators L of the form

(1.15) Lu D ��u CXu;

where X is a first-order differential operator, with smooth coefficients on �.

Theorem 1.3. Given f 2 H k�1.�/, for k D 0; 1; 2; : : : , a solution u 2 H 1
0 .�/

to (1.14) belongs to H kC1.�/, and we have the estimate

(1.16) kuk2
HkC1 � CkLuk2

Hk�1 C Ckuk2
Hk ;

for all u 2 H kC1.�/ \H 1
0 .�/.
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Proof. First we establish the estimate (1.16) for k D 0. By (1.5), together with
the estimate

j.Xu; u/j � CkukH1kukL2 � C

2

h
"kuk2

H1 C 1

"
kuk2

L2

i
;

we have

(1.17) Re .Lu; u/ � Ckuk2
H1 � C 0kuk2

L2 ;

for u 2 H 1
0 .�/. Hence

(1.18) kuk2
H1 � C Re .Lu; u/C C 0kuk2

L2 :

Cauchy’s inequality gives

(1.19)

Re .Lu; u/ � CkLukH�1 kukH1

� C"kuk2
H1 C C

"
kLuk2

H�1 ;

and taking " small enough, we can absorb the kuk2
H1-term into the left side of

(1.18), obtaining

(1.20) kuk2
H1 � CkLuk2

H�1 C Ckuk2
L2 ; u 2 H 1

0 .�/:

We now proceed to prove Theorem 1.3 by induction on k. Given that

u 2 H 1
0 .�/;Lu D f 2 H k�1.�/ H) u 2 H kC1.�/

and that (1.16) is true, suppose now that

(1.21) u 2 H 1
0 .�/; Lu 2 H k.�/:

So, we know that u 2 H kC1.�/, and we want to establish that u 2 H kC2.�/ and
also show that u satisfies the estimate (1.16), with k replaced by k C 1.

First, note that, for any � 2 C1.�/,

(1.22) L.�u/ D �.Lu/C ŒL; �	u;

and since the commutator ŒL; �	 is a first-order differential operator, the hypoth-
esis (1.21), together with the observation that u 2 H kC1.�/, gives L.�u/ 2
H k.�/, so our analysis of u on � can be localized.
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So suppose u, belonging to H kC1.�/ and satisfying (1.21), is supported on a
coordinate neighborhood O, either one with no boundary or one in which @� is
given by fxn D 0g. In either case, we now apply (1.16), with u replaced by

(1.23) Dj;hu.x/ D 1

h

�

j;hu.x/ � u.x/

� D 1

h

�
u.x C hej / � u.x/

�
;

where e1; : : : ; en are the standard coordinate vectors in Rn. In case O has no
boundary, we can take 1 � j � n; otherwise 1 � j � n � 1. By (1.16), we have

(1.24)
kDj;huk2

HkC1 � CkLDj;huk2
Hk�1 C Ckuk2

HkC1

� CkDj;hLuk2
Hk�1 C CkŒL;Dj;h	uk2

Hk�1 C Ckuk2
HkC1 :

As in (1.22), we have a commutator to estimate. This time, there is the following
result.

Lemma 1.4. As h & 0, ŒL;Dj;h	 is a bounded family of operators of order two:

(1.25) kŒL;Dj;h	ukHk�1 � CkukHkC1 ; k � 0;

given u 2 H 1
0 .�/ \H kC1.�/, supported in O.

Proof. The estimate (1.25) follows directly from

(1.26) kŒM' ;Dj;h	vkHk � CkvkHk ; k � �1; ' 2 C1.�/;

which in turn is easy to demonstrate, as

ŒM' ;Dj;h	v D �M.Dj;h'/ ı 
j;hv:

Using (1.25), we can deduce from (1.24) that

(1.27) kDj;huk2
HkC1 � CkLuk2

Hk C Ckuk2
HkC1 ;

and passing to the limit h & 0 gives

(1.28) Dj u 2 H kC1.�/:

If O has no boundary, then (1.28) is valid for 1 � j � n, and we have u 2
H kC2.�/. Otherwise, we have (1.28) for 1 � j � n � 1, and it remains to
establish

(1.29) Dnu 2 H kC1.�/:
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Recall that k � 0. Thus we need to know

(1.30) DjDnu 2 H k.�/; 1 � j � n:

But DjDnu D DnDj u 2 H k.�/ if 1 � j � n � 1, since we have (1.28) for
1 � j � n � 1. It remains only to establish

(1.31) D2
nu 2 H k.�/:

To see this, write

(1.32) gnn.x/D2
nu D Lu �

X

.j;k/¤.n;n/
gjk.x/DjDku � Y u;

where Y is a first-order differential operator. All the terms on the right side of
(1.32) have been shown to be in H k.�/. This establishes (1.31) and completes
the proof of Theorem 1.3.

From Theorem 1.3, we can draw an immediate corollary about the eigenfunc-
tions uj of�, satisfying (1.11)–(1.13). We have

Lj uj D .�� � �j /uj D 0;

which gives the following.

Corollary 1.5. The eigenfunctions uj of � belong to C1.�/.

We note that the localization argument from (1.22) gives the following local
regularity result.

Proposition 1.6. Let O �� �. Say u 2 H 1.�/ and Lu D f 2 H k�1.�/,
k � 0. Then u 2 H kC1.O/. Thus if f 2 C1.�/, then u 2 C1.O/ for all
O �� �, so u 2 C1.�/. Furthermore, if � D M is a compact manifold
without boundary, then, for k � 0,

(1.33) u 2 H 1.M/; Lu D f 2 H k�1.M/ H) u 2 H kC1.M/:

We also remark that the first order operator X in (1.15) could have matrix co-
efficients. The regularity result being localizable, we could suppose L operates
on sections of a vector bundle, as long as the principal part of L has scalar co-
efficients. For example, Proposition 1.6 holds when L is the Laplace operator on
p-forms. We will pursue this further in �8.

We now turn to a consideration of the following boundary problem for u:

(1.34) �u D 0 on �; u
ˇ̌
@�

D f;
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where

(1.35) f 2 C1.@�/

is given. Let F 2 C1.�/ be constructed so that F
ˇ̌
@�

D f . Then (1.34) is
equivalent to

(1.36) u D F C v;

where

(1.37) �v D g D ��F; v
ˇ̌
@�

D 0:

Since g 2 C1.�/, we see that

(1.38) v D Tg 2 H 1
0 .�/

satisfies (1.37), and by virtue of Theorem 1.3, v 2 C1.�/. Thus, for any f 2
C1.@�/, we have a unique u 2 C1.�/ solving (1.34), assuming each connected
component of � has nonempty boundary. We denote the solution to (1.34) by

(1.39) u D PI f:

In analogy with Proposition 4.6 of Chap. 4, we have

Proposition 1.7. The map (1.39) has a unique continuous extension

(1.40) PI W H s.@�/ �! H sC1=2.�/; s � 1

2
:

Proof. It suffices to prove this for s D kC1=2, k D 0; 1; 2; : : : , by interpolation.
Given f 2 HkC1=2.@�/, there exists F 2 H kC1.�/ such that F

ˇ̌
@�

D f , by
Proposition 1.7 of Chap. 4. Then PI f D F C v, where v is defined by

�v D ��F 2 H k�1.�/; v 2 H 1
0 .�/:

The regularity result of Theorem 1.3 gives v 2 H kC1.�/, which establishes
(1.40) for s D k C 1=2.

We note that Proposition 4.6 of Chap. 4 was established for a slightly greater
range of s than in (1.40), namely for s � �1=2. This was done by analyzing
the explicit formula for PI f , given by Fourier series. In Chap. 7, �12, we will
obtain an accurate approximation (called a parametrix) for PI, as well as solution
operators for other elliptic boundary problems. We advertise here the following
consequence of Proposition 12.4–Corollary 12.8 of Chap. 7.
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Proposition 1.8. In the setting of Proposition 1.7, we have

PI W H s.@�/ �! H sC1=2.�/; s � �1
2
:

Furthermore, if O � @� is open and f 2 H s.@�/ is C1 on O, then PI f is C1
on a neighborhood in � of O.

Amalgamating the equations �u D f , u
ˇ̌
@�

D 0 and �u D 0, u
ˇ̌
@�

D g, we
can solve the nonhomogeneous Dirichlet boundary problem

(1.41) �u D f; u
ˇ̌
@�

D g:

Given g 2 H kC1=2.@�/ and f 2 H k�1.�/, k D 0; 1; 2; : : : , there exists a
unique solution u 2 H kC1.�/. Generalizing (1.16), we have the estimate

(1.42) kuk2
HkC1.�/

� Ck�uk2
Hk�1.�/

C Ckuk2
HkC1=2.@�/

C Ckuk2
Hk.�/

;

for all u 2 H kC1.�/.
Next, we briefly consider existence of solutions to the more general equation

(1.43) Lu D f; u 2 H 1
0 .�/;

where, as in (1.14), L D ��C X , X being a first-order differential operator on
�. With T denoting the inverse of �, as in (1.7), we look for a solution of the
form u D T v, for some v 2 H�1.�/. The equation (1.43) becomes

(1.44) .I � XT /v D �f; v 2 H�1.�/:

Note that

(1.45) XT W H�1.�/ �! L2.�/:

By Rellich’s theorem,XT is a compact operator onH�1.�/. Thus the Fredholm
alternative applies to the map I � XT W H�1.�/ ! H�1.�/; this map is sur-
jective if and only if it is injective. Note that v is in the kernel of this map if and
only if u D T v 2 H 1

0 .�/ is annihilated by �� C X . We have established the
following.

Proposition 1.9. Given a first-order differential operator X on �, the map

(1.46) ��CX W H 1
0 .�/ �! H�1.�/

is Fredholm of index zero; hence it is surjective if and only if it is injective.
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Of course, given a solution to (1.43), the regularity results of Theorem 1.3
apply. In particular, any element of the kernel of ��CX belongs to C1.�/. We
will see in the next section that the map (1.46) is injective when X is a real vector
field, so one has solvability in that case.

To close this section, we mention a few situations other than the Dirichlet
problem on a connected manifold with nonempty, smooth boundary. For exam-
ple, given a smooth, compact, connected manifold M without boundary, we can
consider an open subset �, whose closure has nonempty complement, making no
smoothness assumptions on @�. Then one can still define H 1

0 .�/ as the comple-
tion of C1

0 .�/ with respect to either of the equivalent norms

�
kduk2

L2.�/
C kuk2

L2.�/

�1=2
or kdukL2.�/:

The estimate (1.5) continues to hold. See �7 of Chap. 4 for more details. One can
no longer identifyH 1

0 .�/
� with H�1.�/, but we still have

(1.47) � W H 1
0 .�/ �! H 1

0 .�/
�;

and the proof of Proposition 1.1 extends to show that the map (1.47) is bijective.
We have a natural injection L2 ,! H 1

0 .�/
�, and the inverse operator

(1.48) T W H 1
0 .�/

� �! H 1
0 .�/

to � in (1.47) still restricts to a compact, self-adjoint operator on L2.�/. The
global regularity result of Theorem 1.3 does not extend, although of course, by
(1.22), one has such a regularity result on the interior. We will take a further look
at the Dirichlet problem on domains with nonsmooth boundaries in �5.

Another variation is the case where� is compact, without boundary. Then the
map � W H 1.�/ ! H�1.�/ is not injective, since 1 2 Ker �. But we have

(1.49)
�
.��C 1/u; u

� D kduk2
L2.�/

C kuk2
L2.�/

;

which gives

(1.50) ��C 1 W H 1.�/ �! H�1.�/ bijective:

Its inverse,

(1.51) T1 W H�1.�/ �! H 1.�/;

is again seen to define a compact, self-adjoint operator on L2.�/, so we again
have an orthonormal basis fuj g ofL2.�/ satisfying T1uj D ��j uj , with�j & 0

and �0 D 1. Hence

(1.52) �uj D ��j uj ; �j D 1

�j
� 1 % 1:
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Of course, �0 D 0, with corresponding u0 D const. By (1.22), the regularity result
of Theorem 1.3 extends to this case; we have T1 W H k�1.�/ ! H kC1.�/, for
k D 0; 1; 2; : : : , giving a two-sided inverse of the operator ��C1 W H kC1.�/ !
H k�1.�/. By interpolation, we have

(1.53) T1 W H s.�/ �! H sC2.�/;

for real s � �1, giving a two-sided inverse of

(1.54) ��C 1 W H sC2.�/ �! H s.�/:

Since T1 D T �
1 , by duality (1.53) holds for all real s.

Returning to the case of � with nonempty smooth boundary, we remark that
boundary problems other than the Dirichlet problem arise naturally, such as the
Neumann problem. We discuss some of these other boundary problems later in
this chapter.

Exercises

1. Prove the following local boundary regularity result. If u 2 H1
0 .�/ and Lu D f , as

in Theorem 1.3, and if f
ˇ̌
O 2 Hk.O/, for some open O � �, with O \ @� perhaps

nonempty, then u 2 HkC2.O0/ for any open O0 � O such that O0 � O [ @�.
(Hint: Recall the observation about (1.22).)

2. Let T be the operator inverting�, as in Proposition 1.2. Show that the largest eigenvalue
�0 of �T satisfies

�0 D sup
˚
.�T u; u/ W u 2 L2.�/I kukL2 D 1

�
;

and this supremum is achieved for u D u0; in fact any v for which this supremum is
achieved satisfies T v D ��0v. Deduce that

(1.55) �0 D inf
˚kduk2

L2.�/
W u 2 H1

0 .�/; kukL2 D 1
�
;

and furthermore, for any v 2 H1
0 .�/ for which this infimum is achieved, v is a

�0-eigenfunction of ��.
3. Suppose � is an open region in Rn, lying between two hyperplanes x1 D A and
x1 D B . If �0 is the smallest eigenvalue of ��, as in (1.55), show that

�0 � �2

.B �A/2 :

(Hint: First consider the case n D 1:)
4. Show that the argument preceding Proposition 1.2 has the following generalization. Let

H0 be a Hilbert space, H1 a dense linear subspace, with a Hilbert space structure,
continuously injected in H0. Denote by H�1 the conjugate dual of H1, so there are
continuous inclusions

H1 � H0 � H�1:
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Suppose L W H1 ! H�1 is continuous, bijective, and Hermitian symmetric. Let T
denote the restriction of L�1 W H�1 ! H1 to H0:

T W H0 �! H0:

Show that T is a bounded self-adjoint operator on H0. Relate this to the Friedrichs
extension method, discussed in �8 of Appendix A.

5. Extend Proposition 1.1 to the case where� is the Laplace operator on�, endowed with
a continuous metric tensor.

6. Show that Theorem 1.3 holds in the case k D 1, provided gij are Lipschitz on �.
7. Show that if � is a bounded open set in Rn with a C 1;1-boundary, one can smooth

out the boundary, transforming the Laplace operator to an operator to which Problem 6
applies. Why doesn’t this work if � merely has a Lipschitz boundary?

8. Consider Lu D �u�V.x/u, that is, L of the form (1.15) withXu D V.x/u. Show that
(1.45), and hence Proposition 1.8, hold, provided

V 2 Ln.�/; n � 3;

where n D dim �, given that

H1.�/ � L2n=.n�2/.�/; for n � 3;

a result that will be established in �1 of Chap. 13. Try to show that Proposition 1.8 holds
under the even weaker hypothesis

V 2 Lq.�/; q >
n

2
:

2. The weak and strong maximum principles

In this section, we takeM to be a smooth, compact Riemannian manifold without
boundary, and � to be a connected open subset of M , with nonempty boundary.
We will derive several results related to the maximum principle for second-order
differential operators of the form

(2.1) L D �CX;

where X is a real vector field on M . In local coordinates, L has the form

(2.2) L D gjk.x/@j @k C bj .x/@j ;

with
�
gjk.x/

�
the metric on cotangent vectors, a positive-definite matrix, and

bj .x/ smooth and real-valued. We begin with the following, a weak maximum
principle.

Proposition 2.1. Suppose� is an open bounded domain in Rn and L is given by
(2.2), with coefficients smooth on a neighborhood of �. If u 2 C.�/ \ C 2.�/

and



2. The weak and strong maximum principles 365

(2.3) Lu � 0 on �;

then

(2.4) sup
x2�

u.x/ D sup
y2@�

u.y/:

Furthermore, if

(2.5) Lu D 0 on �;

then also

(2.6) sup
x2�

ju.x/j D sup
y2@�

ju.y/j:

Proof. First note that if Lu > 0 on �, an interior maximum is impossible, since
@j u.x/ D 0 and

�
@j @ku.x/

�
is negative semidefinite at any interior maximum.

So we certainly have (2.4) in that case. To show that (2.3))(2.4), note that if
� �� Rn,

L.e�x1/ D �
�2g11.x/C �b1.x/

�
e�x1 > 0;

for � > 0 large enough. Fix � so large that L.e�x1/ > 0. Then, for any " > 0,
L.u C "e�x1/ > 0, so we have

sup
x2�

u.x/C "e�x1 D sup
y2@�

u.y/C "e�y1 ;

for each " > 0. Passing to the limit " & 0 yields (2.4). If (2.5) holds, then (2.4)
also holds with u replaced by �u, which gives (2.6).

In the following proposition, we will not need to suppose� � Rn; we resume
the hypotheses on � made at the beginning of this section. Proposition 2.3 will
contain the extension of Proposition 2.1 to this general class of domains; it will
also be sharper than Proposition 2.1 in other respects.

The following result, sometimes called Zaremba’s principle, has many impor-
tant uses, including providing a tool to establish the strong maximum principle.

Proposition 2.2. In addition to the hypotheses above, suppose @� is smooth and
u 2 C 1.�/\ C 2.�/. If Lu � 0 and if y 2 @� is a point such that

(2.7) u.y/ > u.x/; for all x 2 �;

then, if � denotes the inward-pointing normal to @�,

(2.8)
@u

@�
.y/ < 0:
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FIGURE 2.1 The Boundary Point y

Proof. Pick a coordinate system centered at y. In this coordinate system, put a
small ball O in�, whose boundary is tangent to @� at y, as illustrated in Fig. 2.1.

Let p denote the center of O; let R denote the radius of O (in this coordinate
system; forget about the Riemannian metric on �). Let

(2.9) r.x/2 D jx � pj2;

for x 2 O. A short calculation gives

(2.10)
L
�
e�˛r2 � e�˛R2� D L

�
e�˛r2 �

D e�˛r2
h
4˛2gjk.xj � pj /.xk � pk/ � 2˛�gj j C bj .xj � pj /

�i
:

What can be deduced from this calculation is that if  2 .0;R/ is fixed, then, for
˛ > 0 sufficiently large,

(2.11) w D e�˛r2 � e�˛R2

implies

(2.12) Lw > 0 on the shell A;

defined by

(2.13) A D fx 2 O W r.x/ > g

(see Fig. 2.2). Consequently, for any " > 0, if w is given by (2.11), then Lu � 0

implies

(2.14) L.u C "w/ > 0 on A;
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FIGURE 2.2 The Shell

so, by Proposition 2.1, we have

(2.15) sup
A
.u C "w/ D sup

@A
.u C "w/:

Note that w D 0 on @O D fr.x/ D Rg. Since, by the hypothesis (2.7),

(2.16) sup
fr.x/D�g

u.x/ < u.y/;

we see that, for " > 0 sufficiently small, the right side of (2.15) is equal to u.y/.
Fix ", sufficiently small. Then (2.15) yields

(2.17) u.x/C "w.x/ � u.y/; for all x 2 A;

and hence

(2.18)
u.y/� u.x/

jy � xj � "
w.x/

jy � xj D "
w.x/ � w.y/

jy � xj ;

since w.y/ D 0. Now the formula (2.11) for w implies

(2.19)
@w

@�
.y/ > 0;

so letting x ! y along the normal to @� at y gives (2.8), as a consequence of
(2.18).

We can now elevate Proposition 2.1 to the strong maximum principle. In this
result, we do not need any smoothness on @�.

Proposition 2.3. If u 2 C.�/\C 2.�/ and Lu � 0, then either u is constant, or

(2.20) u.x/ < sup
z2@�

u.z/; for all x 2 �:
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Proof. First we prove the weaker estimate (2.4) in this case. Indeed, if this
estimate fails, u must have an interior maximum, say on a nonempty compact
set K � �. If we put a ball D in � nK , touchingK at a point y, then Zaremba’s
principle (2.8), applied to functions on D, contradicts the fact that we must have
du D 0 at y. This shows that K is empty.

Now, if u is not constant, we see that O, the set of points x 2 �, where u.x/ <
supz2@� u.z/, is nonempty and open in �. If O is not all of �, pick p0 in the
boundary of O in �, as illustrated in Fig. 2.3. Then pick q0 2 O closer to p0 than
to @�, and let D be the largest ball, centered at q0, lying in O. Then @D intersects
� n O at (at least) one point; call it y.

Since y … O, we must have u.y/ D sup
z2@�

u.z/ D sup
x2�

u.x/. This implies both

that

(2.21) du.y/ D 0

and that

(2.22) u.y/ > u.x/; for all x 2 D:

Again, this contradicts Zaremba’s principle for u 2 C 1.D/ \ C 2.D/ satisfying
Lu � 0 in D. Proposition 2.3 is proved.

In case � is a smooth, connected, compact manifold with nonempty smooth
boundary, recall from �1 that we have a map

(2.23) PI W C1.@�/ �! C1.�/

FIGURE 2.3 Applying Zaremba’s Principle
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with the property that, for f 2 C1.@�/, PI f D u is the unique element of
C1.�/ satisfying

(2.24) �u D 0 on �; u
ˇ̌
@�

D f:

It follows from Proposition 2.3 that

(2.25) sup
�

juj D sup
@�

jf j:

Consequently, the map (2.23) has a unique continuous extension to

(2.26) PI W C.@�/ �! C.�/:

We will discuss the situation where @� is not smooth in �5.
Using the strong maximum principle, we draw a conclusion about the funda-

mental eigenspace of �. Let �0 be the smallest eigenvalue of ��, as in (1.13);
�0 > 0. Assume � is a connected, compact manifold with nonempty smooth
boundary.

Proposition 2.4. If u0 2 H 1
0 .�/ is an eigenfunction for �� corresponding to

�0, that is,

(2.27) �u0 D ��0u0;

then u0 is nowhere vanishing on the interior of�.

Proof. We have u0 2 C1.�/. Define uC
0 and u�

0 , respectively, by

uC
0 .x/ D max .u0.x/; 0/;

u�
0 .x/ D min .u0.x/; 0/:

It is easy to see that

(2.28) uC
0 ; u

�
0 2 H 1

0 .�/

and

(2.29) kdu0̇ k2
L2.�/

D
Z

�˙

jdu0j2 dV;

where
�˙ D fx 2 � W ˙u0.x/ > 0g:

Next we invoke the variational characterization (1.55) of �0 and associated eigen-
functions. It follows that either uC

0 or u�
0 must be a �0-eigenfunction of ��.
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Therefore, Proposition 2.4 will be proved if we show that its conclusion holds
under the additional hypothesis that

(2.30) u0.x/ � 0 on �:

Indeed, if this holds, then (2.27) yields

(2.31) �.�u0/ D �0u0 � 0 on �:

Thus Proposition 2.3 applies to �u0, so, since u0
ˇ̌
@�

D 0,

(2.32) �u0.x/ < 0; for all x 2 �:

This finishes the proof of Proposition 2.4.

Corollary 2.5. If �0 is the smallest eigenvalue of �� for �, with Dirichlet
boundary conditions, as in Proposition 2.4, then the corresponding�0-eigenspace
is one-dimensional.

Proof. If there were a �0-eigenvector u1 orthogonal to u0, then u1 would have to
change sign in �, contradicting Proposition 2.4.

The following result, involving a zero-order term, is often useful. With L as in
(2.2), let

(2.33) Lu D Lu � c.x/u:

We assume c 2 C.�/, with � � Rn, bounded.

Proposition 2.6. Suppose c.x/ � 0 in (2.33). For u; v 2 C 2.�/ \ C.�/,

(2.34) Lu � Lvon�; u � v on @� H) u � v on�:

Proof. By linearity, it suffices to show that

Lv � 0 on �; v � 0 on @� H) v � 0 on �:

If we let O D fx 2 � W v.x/ > 0g, then Lv D cv � 0 on O, and v D 0 on @O.
But Proposition 2.1 implies supO v D sup@O v. This is impossible if O ¤ ;.

Corollary 2.7. If c.x/ � 0 and Lu D 0, then, with ˛ D sup@� u, we have

(2.35) ˛ � 0 ) sup
�

u D ˛; and ˛ < 0 ) sup
�

u < 0:
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Proof. The first implication follows from (2.34), with .u; v/ replaced by .˛; u/,
since ˛ � 0 ) L˛ � 0. For the second implication, let O D fx 2 � W u.x/ > 0g.
If O ¤ ;, we must have O � � and u D 0 on @O. But now the first implication
of (2.35) applies to u

ˇ̌
O , so we have a contradiction.

In case L D �, there is the following useful strengthening of Proposition 2.6.

Proposition 2.8. Assume c 2 C.�/ and that L D �� c is negative-definite with
the Dirichlet boundary condition, that is,

(2.36) �kduk2
L2 � .cu; u/ < 0; for nonzero u 2 H 1

0 .�/:

Then, for v 2 H 1.�/,

(2.37) .� � c/v � 0 on �; v � 0 on @� H) v � 0 on �:

Proof. Let vC D max.v; 0/. Then the hypotheses in (2.37) imply that vC 2
H 1
0 .�/ and

�.dv; dvC/� .cv; vC/ � 0:

Since .dv; dvC/ D .dvC; dvC/ in this case, it follows that �.dvC; dvC/ �
.cvC; vC/ � 0. By (2.36) this implies vC D 0, proving the proposition.

Further results involving zero-order terms are given in the exercises.
To close this section, we discuss the extension of (2.26) to

(2.38) PI W L1.@�/ �! L1.�/:

In fact, by Proposition 1.8,

(2.39) PI W L2.@�/ �! H 1=2.�/:

Given f 2 L1.@�/, we can use a partition of unity, and mollifiers, to construct

(2.40) f� 2 C1.@�/; kf�kL1 � kf kL1 ; f� ! f;

the convergence holding pointwise a.e., hence in Lp-norm for all p < 1 (in
particular, for p D 2). Then PI f� 2 C1.�/, PI f� ! PI f in H 1=2.�/, and
k PI f�kL1 � kf k� � kf kL1 , so k PI f kL1.�/ � kf kL1.@�/. The following
is a consequence of the local regularity result stated in Proposition 1.8, together
with (2.26).

Proposition 2.9. Let � be a smooth, connected, compact manifold with
nonempty, smooth boundary, and let O � @� be open. If f 2 L1.@�/ (or
more generally f 2 L2.@�/) and f is continuous on O, then PIf is continuous
on a neighborhood in � of O.
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Exercises

1. If Lu is as in (2.33) with c.x/ � 0 and u 2 C 2.�/ \ C.�/ satisfies Lu D 0, show
that kukL1.�/ D kukL1.@�/. (Hint: Supplement (2.35) with the following for ˇ D
inf@� u:

ˇ � 0 ) inf
�

u D ˇ; ˇ > 0 ) inf
�

u > 0:/

2. Show that if u; v 2 C 2.�/\ C.�/, f 2 C 1.R/, f 0.t/ � 0, and

�Lu C f .u/ � �Lv C f .v/ on �; u � v on @�;

then u � v on �. (Hint: Let w D u � v. Then �Lw C c.x/w � 0, with

c.x/ D f .u.x//� f .v.x//

u.x/� v.x/
:/

3. Suppose u 2 C 2.�/ \ C.�/ satisfies

(2.41) Lu D f; u
ˇ̌
@�

D g:

Suppose V 2 C 2.�/ \ C.�/ satisfies

(2.42) LV � 1; V
ˇ̌
@�

� 0:

(Note that V < 0 in �:) Show that, for x 2 �,

(2.43)
u.x/ � .sup fC/V .x/C .inf g/;

u.x/ � .inf f�/V .x/C .sup g/:

(Hint: Compare u respectively with v D .sup fC/V C.inf g/ and with v D .inf f�/VC
.sup g/. In the first case, show that Lu � Lv on � and u � v on @�:)

In case � is a bounded region in Rn and � is the flat Laplacian, apply this with

V.x/ D 1

2n

�jx � x0j2 � R2
�
; R2 D sup

x2�
jx � x0j2:

4. Extend estimates of Exercise 3 to the case

(2.44)
�
L � c.x/

�
u D f; u

ˇ̌
@�

D g;

under the hypothesis c.x/ � 0. Show that if V satisfies (2.42), then (2.43) holds, with
inf g replaced by inf g� and sup g replaced by sup gC.

In Exercises 5 and 6, we outline an approach to estimates for a solution v to

(2.45)
�
�� c.x/

�
v D f; v

ˇ̌
@�

D g;

where, rather than c.x/ � 0, we assume that � � c.x/ is negative-definite, with the
Dirichlet boundary condition, as in Proposition 2.8. For example, we might have

(2.46) c.x/ � � > ��0;
�0 being the smallest eigenvalue of �� on �, with the Dirichlet boundary condition.
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5. Set v D F u with F 2 C 2.�/, F � 1 on �. Show that (2.45) is equivalent to

Lu � c1.x/u D f

F
; u

ˇ̌
@�

D g

F
;

where

Lu D �u C 2F�1hrF;rui; and c1.x/ D �F�1��F � c.x/F �:
6. Estimates derived in Exercise 4 will apply to u in Exercise 5, provided

(2.47) �F � c.x/F � 0 on �; F � 1 on �:

By Proposition 2.8, this holds for F D 1C F1, provided

�F1 � c.x/F1 � c�.x/ on �; F1 � 0 on @�:

Given (2.46), with � < 0, this holds provided

.�� �/F1 � � on �; F1 � 0 on @�:

Using these results, provide estimates for solutions to (2.45), under the hypothesis
(2.46).

3. The Dirichlet problem on the ball in Rn

If B D fx 2 Rn W jxj < 1g is the unit ball in Rn, with boundary @B D Sn�1, the
unit sphere, we know there is a unique map

(3.1) PI W C.Sn�1/ �! C.B/\ C1.B/

satisfying

(3.2) u D PI f H) �u D 0 on B; u
ˇ̌
Sn�1 D f:

We also know that

(3.3) PI W H s.Sn�1/ �! H sC1=2.B/; for s � 1

2
;

and in particular

(3.4) PI W C1.Sn�1/ �! C1.B/:

Our goal here is to produce an explicit integral formula for this solution operator.
Before deriving this explicit formula, we record the classical mean-value property,
which has been proved, in �2 of Chap. 3.
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Proposition 3.1. For f 2 C.Sn�1/, u D PI f satisfies

(3.5) u.0/ D AvgSn�1 f D 1

An�1

Z

Sn�1

f .!/ dS.!/;

where An�1 is the area of Sn�1; An�1 D 2�n=2=�.n=2/.

In view of its fundamental nature, we give two more proofs of this result, one
based on the rotational symmetry of the Laplace operator, the other based on
Green’s formula.

For the first proof, let

(3.6) v.x/ D AvgSO.n/ u.g � x/ D
Z

SO.n/

u.g � x/ dg

be the average of the set of rotates of u.x/. Then, since� is rotationally invariant,
we have

(3.7) �v D 0 on B:

Now, clearly,

(3.8) v
ˇ̌
Sn�1 D AvgSn�1 f D C

and

(3.9) v.0/ D u.0/:

But a solution to (3.7)–(3.8) is

(3.10) v0.x/ D C;

and by the maximum principle this solution must be unique. Thus the conclusion
(3.5) follows from (3.9) and (3.10).

As was already noted in �2 of Chap. 3, we could also obtain uniqueness by
applying Green’s formula

(3.11) .dw; dw/ D �.�w;w/C
Z

@B

w
@w

@�
dS

to w D v � v0, at least if we know w 2 C 2.B/, which in this case would follow
from u 2 C 2.B/. To pass to general u 2 C.B/, harmonic in B, we can replace
u.x/ by u�.x/ D u.x/ for  < 1, which belongs to C1.B/ since we know
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u 2 C1.B/. Then passing to the limit  % 1 yields another variation on the
proof of Proposition 3.1 (which is not counted as the second proof).

Our second proof uses Green’s formula:

(3.12) .�u; v/L2.B/ D .u; �v/L2.B/ C
Z

@B

�
u
@v

@�
� v

@u

@�

�
dS:

We will use this in a slightly different context than before, via the following result,
which is an exercise in distribution theory.

Lemma 3.2. The formula (3.12) is valid provided u 2 C1.B/ and v is a distri-
bution on B, equal near @B to a function in C1.B/.
Thus, we apply (3.12) to u D PI f , assumed to be in C1.B/, and to

(3.13) v.x/ D 1 � jxj2�nI v.x/ D log jxj if n D 2:

As shown in Proposition 4.9 of Chap. 3, we have

(3.14) �v D Cnı; Cn D .n� 2/An�1; C2 D 2�:

Since v D 0 on @B, while @v=@r D n � 2 on @B, (3.12) yields

(3.15) .n� 2/An�1u.0/ D .n � 2/

Z

Sn�1

u.x/ dS.x/;

with an obvious modification for n D 2. We can go from u 2 C1.B/ to u 2 C.B/
by the limiting argument described above. This completes the second proof. See
the exercises for yet another proof.

Of course, one could use the mean-value property, established via the second
proof, to derive the maximum principle for harmonic functions on open regions in
Rn, as was done in Chap. 3, �2. The advantage of the method of �2 of this chapter
is its much more general applicability.

We now tackle our main goal of this section, which is to obtain an explicit inte-
gral formula for the map (3.1). First we recall analogous computations performed
in Chap. 3. As shown in (5.21) of Chap. 3,

PI W S.R/ �! C1.R2C/

is given by

(3.16) u.y; x/ D y

�

Z 1

�1
f .x0/

y2 C .x � x0/2
dx0:

Formula (5.24) of that chapter shows that, more generally,

PI W S.Rn�1/ �! C1.RnC/
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is given by

(3.17) u.y; x/ D cn�1y
Z

Rn�1

f .x0/
�
y2 C jx � x0j2�n=2

dx0:

Also, formula (2.5) of Chap. 3 shows that

PI W C1.S1/ �! C1.D/
is given by

(3.18) u.x/ D 1� jxj2
2�

Z

S1

f .x0/
jx � x0j2 dS.x

0/:

In order to define PI on C1.Sn�1/, there are systematic methods, involving
conformal transformations, which are used in many texts, such as [Hel] and [Keg].
The method we will use here is the method of the “inspired guess,” based on
extrapolation from (3.16)–(3.18). Note that (3.16) and (3.17) differ only in the
constant factor in front and in the exponent on .y2 C jx � x0j2/ in the integrand.
The denominator in the integrand in (3.17) is the nth power of the distance from
.0; x0/ to .y; x/ in Rn. This makes it very tempting to try to generalize (3.18) to

(3.19) u.x/ D c0
n

�
1 � jxj2�

Z

Sn�1

f .x0/
jx � x0jn dS.x

0/;

for u D PI f , f 2 C1.Sn�1/. We have only to show that this works. First we
show that u is harmonic in B. This is a consequence of the following.

Lemma 3.3. For a given x0 2 Sn�1 (i.e., jx0j D 1), set

(3.20) v.x/ D .1 � jxj2/jx � x0j�n:

Then v is harmonic on Rn n fx0g.

One can apply � to (3.20) in a straightforward manner, but the formulas can
get very bulky if produced naively, so we give a clean route to the calculations. It
suffices to show thatw.x/ D v.xCx0/ is harmonic on Rnn0. Since 1�jxCx0j2 D
�.2x � x0 C jxj2/ provided jx0j D 1, we have

(3.21) �w.x/ D 2.x0 � x/jxj�n C jxj2�n:

That jxj2�n is harmonic on Rn n 0 we already know, as a consequence of the
formula for� in polar coordinates, which yields

(3.22) g.x/ D '.r/ H) �g D ' 00.r/C n � 1
r

' 0.r/:
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Now, applying @=@xj to a harmonic function on an open set in Rn gives another,
so the following are harmonic on Rn n 0:

(3.23) wj .x/ D @

@xj
jxj2�n D .2� n/xj jxj�n:

For n D 2, we take

(3.24)
@

@xj
log jxj D xj jxj�2:

Thus the first term on the right side of (3.21) is a linear combination of these
functions, so the lemma is established.

To justify (3.19), it remains to show that if u is given by this formula, and c0
n is

chosen correctly, then u D f on Sn�1. Note that if we write x D r!, ! 2 Sn�1,
then (3.19) gives

(3.25) u.r!/ D
Z

Sn�1

p.r; !; !0/f .!0/ dS.!0/;

where

(3.26) p.r; !; !0/ D c0
n.1 � r2/jr! � !0j�n:

It is clear that

(3.27) p.r; !; !0/ ! 0 as r % 1 if ! ¤ !0:

We claim that

(3.28)
Z

Sn�1

p.r; !; !0/ dS.!0/ D c00
n ;

a constant independent of r . By rotational invariance, this integral is clearly inde-
pendent of !. Thus we could integrate with respect to !. But Lemma 3.3 implies
that

(3.29) p.r; x; !0/ D c0
n

�
1 � r2jxj2�jrx � !0j�n

is harmonic in x, for jxj < 1=r , so the mean-value theorem gives

(3.30)
1

An�1

Z

Sn�1

p.r; !; !0/ dS.!/ D c0
n;



378 5. Linear Elliptic Equations

for all r < 1, !0 2 Sn�1. This implies (3.28), with c00
n D c0

nAn�1. Thus, in view
of (3.27), p.r; !; !0/ is highly peaked near ! D !0 as r % 1, so the limit of
(3.25) as r % 1 is equal to c0

nAn�1f .!/, for any f 2 C.Sn�1/. This justifies the
formula (3.19) and fixes the constant:

(3.31) c0
n D 1

An�1
:

We summarize:

Proposition 3.4. The map (3.1) is given by the Poisson integral formula

(3.32) u.x/ D 1 � jxj2
An�1

Z

Sn�1

f .x0/
jx � x0jn dS.x

0/:

Exercises

1. If � �� Rn is smooth, and u 2 C 2.�/ is harmonic, show that
Z

@�

@u

@�
dS D 0:

(Hint: Set v D 1 in Green’s formula (3.12), with B replaced by �:)
2. Derive the mean-value property as follows. For u harmonic on a neighborhood BR D

fx 2 Rn W jxj < Rg of 0, if 0 < r < R, it follows from Exercise 1 that

d

dr

Z

Sn�1

u.r!/ dS.!/ D
Z

Sn�1

@

@r
u.r!/ dS.!/ D 0;

so Avg@Br
u is constant for 0 < r � R.

3. Modify the approach to Exercise 2 to show that, if u is subharmonic (i.e., �u � 0 on
BR), then

u.0/ � Avg@BR
u:

4. If u D PI f as in (3.1)–(3.2), show that, for any ! 2 Sn�1,

(3.33) ! � ru.0/ D n � 1
An�1

Z

Sn�1

.! � �/f .�/ dS.�/:

Deduce that if u is harmonic on � � Rn and p 2 Br .p/ � �, then

(3.34)

! � ru.p/ D n� 1

An�1
1

rnC1
Z

@Br .p/

! � .y � p/u.y/ dS.y/

D n � 1
r2

Avg@Br .p/

˚
! � .y � p/u.y/�:
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5. Deduce from Proposition 3.4 that a harmonic function on a domain � � Rn is real
analytic on �.

6. Replacing the Poisson integral formula (2.5) by (3.32), extend the scope of the Harnack
inequality arguments in Exercises 13–16 in �2 of Chap. 3 to the n-dimensional setting.

4. The Riemann mapping theorem (smooth boundary)

Let� be a bounded domain in C, with smooth boundary. Assume� is connected
and simply connected. In particular, this implies that @� is connected, so diffeo-
morphic to the circle S1. Let p be a point in�. We aim to construct a holomorphic
functionˆ on� such thatˆ.p/ D 0 andˆ W � ! D is a diffeomorphism, where
D D fz 2 C W jzj < 1g is the unit disk. This will be done via solving a Dirichlet
problem for the Laplace operator on �.

Note that the function log jz � pj is harmonic on C n p. Let G0.x; y/ be the
solution to the Dirichlet problem

(4.1) �G0 D 0 in �; G0
ˇ̌
@�

D � log jz � pjˇ̌
@�
:

As we know, there is a unique such G0 2 C1.�/. Then

(4.2) G.x; y/ D log jz � pj CG0.x; y/

is harmonic on � n fpg and vanishes on @�. This is a Green function.
We next constructH0 2 C1.�/, the harmonic conjugate ofG0. It is given by

(4.3) H0.z/ D
Z z

p

h
�@G0
@y

dx C @G0

@x
dy
i
;

the integral being along any path from p to z in �. Green’s theorem, and the
harmonicity of G0, imply that the integral is independent of the choice of path.
Making appropriate choices of path, we readily see that

(4.4)
@H0

@x
D �@G0

@y
;

@H0

@y
D @G0

@x
;

so G0 C iH0 is holomorphic. Now

(4.5) H.x; y/ D Im log.z � p/CH0.x; y/

is multivalued, but

(4.6) ˆ.z/ D eGCiH D .z � p/eG0CiH0
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is a single-valued holomorphic function on �, with ˆ.p/ D 0. Note that z 2
@� ) G D Re .G C iH/ D 0, so

(4.7) ˆ W @� �! S1

and hence, by the maximum modulus principle,

(4.8) ˆ W � �! D:

The Riemann mapping theorem (for this class of domains) asserts the following.

Theorem 4.1. ˆ is a holomorphic diffeomorphism of � onto D.

Proof. We must show that ˆ W � ! D is one-to-one and onto, with nowhere-
vanishing derivative. This will be easy once we establish that

(4.9) ' D ˆ
ˇ̌
@�

W @� �! S1

has nowhere-vanishing derivative. Note that since G
ˇ̌
@�

D 0, ' D eiH
ˇ̌
@�

. In
view of the Cauchy–Riemann equations yielding holomorphy of G C iH , to say
that the tangential derivative of H on @� is nowhere zero is equivalent to saying

(4.10)
@G

@�
.z/ ¤ 0; for all z 2 @�:

On the other hand, since G.z/ ! �1 as z ! p, G.z/ is maximal on @�, and
so Zaremba’s principle implies (4.10). Thus (4.9) is a local diffeomorphism, and
hence a covering map. To finish off the argument, we make use of the following
result, known as the argument principle.

Proposition 4.2. Let ˆ 2 C 1.�/ be holomorphic inside �, a bounded region in
C with smooth boundary, @� D � . Take q 2 C, not in the image of � under ˆ.
Then the number of points pj in �, counting multiplicity, for which ˆ.pj / D q

is equal to the winding number of the curve ˆ.�/ about q.

Here, if ˆ.pj / D q, we say pj has multiplicity 1 if ˆ0.pj / ¤ 0, and we say it
has multiplicity k C 1 if ˆ0.pj / D � � � D ˆ.k/.pj / D 0 but ˆ.kC1/.pj / ¤ 0. A
proof of this elementary result can be found in most complex analysis texts, e.g.,
[Ahl] or [Hil]. A substantial generalization of this result can be found in Exercises
19–22 in the set of exercises on cohomology, after �9 of this chapter.

Now, to finish off the proof of Theorem 4.1, we show that the map (4.9) has
winding number 1, by appealing to the argument principle, with q D 0. We see
from (4.6) that p is the unique zero of ˆ, a simple zero. Hence the map (4.9) is
a diffeomorphism. Thus, again by the argument principle, any q 2 D is equal to
ˆ.w/ for precisely one w 2 �. This implies ˆ0.w/ ¤ 0 for all w 2 �, and the
proof of Theorem 4.1 is complete.
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Remark: A common proof of Proposition 4.2 starts like this. Suppose q … ˆ.�/

andˆ.z/�q has k roots in�, counted with multiplicity; call then pj ; 1 � j � k,
with pj 2 �, repeated according to multiplicity. Then, on �,

(4.11) ˆ.z/ � q D
kY

jD1
.z � pj / �‰.z/;

with ‰ 2 C 1.�/, holomorphic on � and nowhere zero on �. The Leibniz for-
mula gives

(4.12)
ˆ0.z/

ˆ.z/ � q
D

kX

jD1

1

z � pj C ‰0.z/
‰.z/

:

Hence

(4.13)

1

2�i

Z

@�

ˆ0.z/
ˆ.z/ � q d z D

kX

jD1

1

2�i

Z

@�

d z

z � pj
C 1

2�i

Z

@�

‰0.z/
‰.z/

d z

D k;

the latter identity by the Cauchy integral theorem.

Rather than identify (4.13) with the winding number of ˆ.�/ about q, we can
finish the proof of Theorem 4.1 as follows. The identity (4.13) shows that when-
ever q ¤ ˆ.�/, the left side of (4.13) is an integer. On the other hand, this quantity
is clearly continuous in q on each connected component of C nˆ.�/, hence con-
stant on each such component. In the setting of Theorem 4.1 , ˆ.�/ D S1, and
(4.13) is seen to be equal to 1 for q D 0. Hence (4.13) is equal to 1 for all q 2 D.

Two smooth, bounded domains in C that are homeomorphic may not be holo-
morphically equivalent if they are not simply connected. We discuss the analogue
of the Riemann mapping theorem in the next simplest case, when � is a smooth,
bounded domain in C whose boundary has two connected components, say �0
and �1. Assume �0 is the “outer” boundary component, touching the unbounded
component of C n�.

In such a case, let u.x; y/ be the solution to the Dirichlet problem

(4.14) �u D 0 on �; u
ˇ̌
�0

D 0; u
ˇ̌
�1

D �1:

Given c > 0, consider G D cu, which will play a role analogous to the function
G in (4.2). Consider the 1-form

(4.15) ˇ D �@G
@y

dx C @G

@x
dy;
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which is closed by the harmonicity of G. If �0 is oriented in the clockwise
direction, we have

R
�0
ˇ D cA, for

A D �
Z

�0

@u

@�
ds > 0:

Hence there is a unique value of c 2 .0;1/ for which
R
�0
ˇ D 2� . In that case we

can write ˇ D dH , whereH , a harmonic conjugate ofG, is a smooth, real-valued
“function” on �, well defined mod 2� . Hence

(4.16) ‰.z/ D eGCiH

is a single-valued holomorphic function on�. It maps �0 to the circle jzj D 1 and
it maps �1 to the circle jzj D e�c . Using Zaremba’s principle as in the proof of
Theorem 4.1, we see that ‰ maps �0 to S1 D fz W jzj D 1g and �1 to fz W jzj D
e�cg (which we denote S1c ), locally diffeomorphically. The fact that

R
�0
ˇ D 2�

implies that �0 is mapped diffeomorphically onto S1. Similarly, �1 is mapped
diffeomorphically onto S1c . From here, an application of the argument principle
yields:

Theorem 4.3. If � is a smooth, bounded domain in C with two boundary
components, and ‰ is constructed by (4.14)–(4.16), then ‰ is a holomorphic dif-
feomorphism of � onto the annular region

(4.17) A� D fz 2 C W  � jzj � 1g;  D e�c :

It is easy to show that if 0 <  < � < 1, then A� and A� are not holomor-
phically equivalent. If there were a holomorphic diffeomorphism F W A� ! A� ,
then, using an inversion if necessary, we could assume F maps jzj D 1 to it-
self and that it maps jzj D  to jzj D � . Then, applying the Schwartz reflection
principle an infinite sequence of times, we can extend F to a holomorphic diffeo-
morphism of D D fjzj � 1g onto itself, preserving the origin. Then we must have
F.z/ D az, jaj D 1 (see Exercise 4 below), which would imply  D � .

Exercises

1. Let� be the unit disk in C, f 2 C1.S1/, real-valued, with mean zero. Let u D PI f .
Show that, for g 2 C1.S1/ real-valued, v D PI g is the harmonic conjugate of u
(satisfying v.0/ D 0) if and only if

g D �iHf;
where H is the operator (2.16) of Chap. 3, that is,
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Hf .�/ D
1X

kD�1
.sgn k/ Of .k/ eik� :

2. Let � be a bounded, simply connected domain in C, and suppose F W � ! D is
holomorphic, taking @� to @D. Suppose F.p/ D 0, p 2 �, F 0.p/ ¤ 0, and F has
no other zeros. Show that F.z/ D .z � p/ef.z/ with f W � ! C holomorphic, and
eRe f.z/ D jz � pj�1 on @�. Use this to motivate the constructions used in this section
to prove the Riemann mapping theorem.

3. Given a; b 2 C, jaj2 � jbj2 D 1, set

A D
 
a b

b a

!
:

We say A 2 SU.1; 1/. Define the map

FA.z/ D az C b

bz C a
:

Show that each such FA maps D one-to-one and onto itself. Show that FAB .z/ D
FA.FB.z//. Show that, for any q 2 D, there exists A 2 SU.1; 1/ such that FA.q/ D 0.

4. Suppose F W D ! D is a holomorphic diffeomorphism such that F.0/ D 0. Show that
F.z/ D az, for some a 2 C, jaj D 1. (Hint: Consider the behavior of F.z/=z and of
z=F.z/:)

5. Deduce that every holomorphic diffeomorphism F W D ! D is of the form FA of
Exercise 3. (Hint: First construct FAj

such that FA2
ı F ı FA1

.0/ D 0:)
6. Given p 2 �, simply connected, etc., show that there is a unique holomorphic diffeo-

morphism ˆ W � ! D such that ˆ.p/ D 0 and ˆ0.p/ > 0.

5. The Dirichlet problem on a domain with a rough boundary

Let � be an open connected subset of the interior of M , a smooth, compact,
connected Riemannian manifold with nonempty boundary. The boundary of �
can be quite wild. We want to formulate and study the Dirichlet problem for the
Laplace operator on �.

Let us start with a function ' 2 C1.M/ given; let  D '
ˇ̌
@�

. We want to find
u 2 C1.�/ such that

(5.1) �u D 0 in �; and u
ˇ̌
@�

D  ; in some sense.

In the best cases, we will have u 2 C.�/, but not always.
A particular example of the problem we’re interested in solving is the follow-

ing, when � is a bounded open subset of Rn. Let Ep.x/ be (a multiple of) the
fundamental solution to the Laplace equation on Rn, with pole at p, given by
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(5.2)
Ep.x/ D log jx � pj .n D 2/;

� jx � pj2�n .n � 3/:

We want to construct a functionGp , harmonic on � n fpg, with the same type of
singularity as Ep at p, so

�Gp D cnıpI Gp
ˇ̌
@�

D 0; in some sense:

Recall from �4 that such a function was constructed for � �� R2 with smooth
boundary, as a tool to prove the Riemann mapping theorem for smooth, simply
connected domains. One motivating force pushing our analysis here will be to
generalize Theorem 4.1 to an arbitrary bounded, simply connected domain � in
C, with no smoothness assumptions whatsoever on @�. To relate Gp to (5.1),
note that if we write

(5.3) Gp D Ep C F;

then u D F solves (5.1), with  D �Ep
ˇ̌
@�

. We then have  D '
ˇ̌
@�

, where
 D ��Ep , with � 2 C1.Rn/ equal to zero on a neighborhood of p, 1 on a
neighborhood of @�.

A construction of the solution to (5.1) is given by

(5.4) u D v C ';

where v is defined by

(5.5) v 2 H 1
0 .�/; �v D ��' D ˆ:

See (1.47)–(1.48) for unique solvability of (5.5). We proceed to give a more pre-
cise sense to the assertion that u

ˇ̌
@�

D  .
We will analyze the behavior of the solution u defined by (5.4)–(5.5) by the fol-

lowing limiting process. Pick a sequence of connected domains �j with smooth
boundary such that

(5.6) �j �� �jC1;
[

j

�j D �:

Then as shown in �1, we have uj 2 C1.�j / such that

(5.7) �uj D 0 on �j ; uj
ˇ̌
@�j

D  j D '
ˇ̌
@�j

:

Parallel to (5.4)–(5.5), we have

(5.8) uj D vj C 'j ;
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where

(5.9) 'j D '
ˇ̌
�j
;

and vj 2 C1.�j / is uniquely determined by

(5.10) vj 2 H 1
0 .�j /; �vj D ˆj D ˆ

ˇ̌
�j
;

with ˆ 2 C1.M/ defined as in (5.5). Extending each vj 2 C1.�j / to be zero
in � n �j , we can regard each vj as an element of H 1

0 .�/. We then have the
following.

Lemma 5.1. The set fvj g is bounded in H 1
0 .�/.

Proof. We have

kvj k2
H1.�/

D kvj k2
H1.�j /

D kdvj k2
L2.�j /

C kvj k2
L2.�j /

:

By (5.10),

(5.11) kdvj k2
L2 D �.�vj ; vj / D �.ˆ; vj / � kˆkL2 kvj kL2 :

Now there is a constant K such that

(5.12) kukL2 � KkdukL2 ; for all u 2 H 1
0 .�/;

indeed, for all u 2 H 1
0 .M/. Inserting this estimate into (5.11) and cancelling a

factor of kdvj kL2 , we have

(5.13) kdvj kL2 � KkˆkL2 :

Appealing again to (5.12), we have a bound on the H 1.�/-norm of vj .

Since any closed ball in the Hilbert space H 1
0 .�/ is compact and metrizable

in the weak topology, any subsequence of fvj g in turn has a weakly convergent
subsequence. Any limit must satisfy (5.5). Since the solution to (5.5) is unique,
we have

(5.14) vj �! v weakly in H 1
0 .�/:

Since �vj Dˆ on �j , we deduce from interior regularity estimates the
following.

Lemma 5.2. Let O �� �; say O �� �J . Then

fvj
ˇ̌
O W j � J g is bounded in C1.O/:
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It follows that

(5.15) vj �! v in C1.O/:

Thus, by (5.4) and (5.8),

(5.16) uj �! u in C1.O/; for each O �� �:

We can use this to obtain the following version of the strong maximum principle
for u.

Proposition 5.3. The function u defined by (5.4)–(5.5) satisfies

(5.17) inf
@�

 .y/ < u.x/ < sup
@�

 .y/; x 2 �;

unless u is constant.

Proof. For uj 2 C1.�j /, the strong maximum principle established in �2 im-
plies

(5.18) inf
@�j

'.y/ < uj .x/ < sup
@�j

'.y/; for x 2 �J ; j � J

(unless uj is constant). It follows from (5.16) that

(5.19) inf
@�

'.y/ � u.x/ � sup
@�

'.y/;

for all x 2 �J , for all J , that is, (5.19) holds for all x 2 �. Since the strong
maximum principle holds for u

ˇ̌
�j

, we see that, unless u
ˇ̌
�j

is constant,

inf
@�j

u.y/ < u.x/ < sup
@�j

u.y/; for x 2 �J ; j � J;

so the estimate (5.17) follows.

One obvious consequence of Proposition 5.3, or even of (5.19), is that u is
uniquely determined by  D '

ˇ̌
@�

, independent of the extension ' to M . We
hence have a map

(5.20) PI W E.@�/ �! L1.�/ \ C1.�/;

where E.@�/ denotes the space of restrictions of elements of C1.M/ to @�. In
(5.20), PI  D u for  D '

ˇ̌
@�

, with u given by (5.4)–(5.5). This map preserves
the sup norm. It follows from the Stone–Weierstrass theorem that E.@�/ is dense
in C.@�/, so there is a unique continuous extension

(5.21) PI W C.@�/ �! L1.�/ \ C1.�/:
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If  2 C.@�/, u D PI  satisfies �u D 0 in �. It is clear that Proposition 5.3
continues to hold for u D PI  , given  2 C.@�/.

We now examine conditions for PI  D u to be continuous at a given boundary
point z0 2 @�, involving the use of barriers. By definition, a functionw 2 C 2.�/
is a barrier at z0 for� provided�w � 0 in�, w.x/ ! 0 as x ! z0, and, for any
neighborhoodU of z0 in M , there is a ı > 0 such that

(5.22) w.x/ > ı; for x 2 � n U:

There are more general concepts of barriers, and we will use some of them later
on, though for clarity we will give them different names, like “weak barriers,” and
so on. A point z0 2 @� is called a regular point provided the conclusion of the
following proposition holds.

Proposition 5.4. If there is a barrier at z0 2 @�, then, for  2 C.@�/,
u D PI  ,

(5.23) lim
x!z0

u.x/ D  .z0/:

Proof. By a simple limiting argument, it suffices to prove the result for  2
E.@�/; suppose  D '

ˇ̌
@�

, ' 2 C1.M/. Fix " > 0. Then there exists k > 0

such that, for each j ,

(5.24) �" � kw C '.z0/ � uj .x/ � '.z0/C "C kw

on @�j . This is arranged by picking k so large that j'.y/ � '.z0/j � "C kw on
@�j for all j , so (5.24) holds on @�j . By the maximum principle, (5.24) must
hold on �j if w satisfies �w � 0. Letting j ! 1, by (5.16), we have

(5.25) �" � kw.x/C '.z0/ � u.x/ � '.z0/C "C kw.x/; x 2 �:

Since w.x/ ! 0 as x ! z0, this implies

(5.26) '.z0/ � " � lim inf
x!z0

u.x/ � lim sup
x!z0

u.x/ � '.z0/C ";

for all " > 0, which proves the proposition.

It turns out to be easier to construct an object that we call a weak barrier,
defined as follows. A function w 2 C 2.�/ is a weak barrier at z0 2 @� provided
�w � 0 in �, w.x/ > 0 for x 2 �, and w.x/ ! 0 as x ! z0.

We give a couple of examples of barriers and weak barriers, for planar
domains.

Proposition 5.5. Let � �� R2 D C, z0 2 @�. Suppose there is a simple curve
� , lying in C n �, connecting z0 to 1. Then there is a barrier at z0, so z0 is a
regular point.
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Proof. Cut C along � ; for anyK > 0, log
�
.z�z0/=K

�
can be defined as a single-

valued holomorphic function in C n � . For K > diam �, the harmonic function

(5.27) V D � Re
1

log
�

z�z0

K

�

is easily verified to be a barrier, so z0 is a regular point.

We note that if .z � z0/=K D rei� , with � continuous on C n � , then

(5.28) V.z/ D � log r

.log r/2 C �2
:

A larger class of planar domains is treated by the following result.

Proposition 5.6. If � � C is any bounded, simply connected domain, z0 2 @�,
then we can define a single-valued branch of (5.27) on �, which will be a weak
barrier function.

Proof. This is clear. Note that the conclusion also holds if � is contained in a
simply connected region�0, with z0 2 @�0.

We remark that there exist domains satisfying the hypotheses of Proposition
5.6, for which V , given by (5.27), is not a genuine barrier, in the sense of the first
definition. We indicate one example in Fig. 5.1. The region � illustrated there
winds infinitely often around the circle that is its inner boundary, and z0 lies on
this circle. Below we will show that whenever a weak barrier exists, then a genuine
barrier exists. Indeed, somewhat more will be demonstrated, in Proposition 5.12.

First, we show how to use the concept of weak barrier directly to examine
the continuity at the boundary of Green functions (5.3). Let Gpj be such Green
functions defined on the domain�j , with smooth boundary, so

(5.29) Gpj D Ep C Fj ;

where Fj 2 C1.�j / satisfies �Fj D 0, Fj
ˇ̌
@�j

D �Ep
ˇ̌
@�j

. Thus

(5.30) Gp �Gpj D F � Fj on �j ;

and hence, by (5.15),

(5.31) Gp �Gpj �! 0; in C1.O/; for O �� �:

Since Gp`.x/ ! �1 as x ! p and Gp`.x/ D 0 for x 2 @�`, then, by the
maximum principle,

Gp`.x/ < 0; for x 2 �` n fpg;
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FIGURE 5.1 A Winding Region

and hence for x 2 �j n fpg, for all ` � j , so we certainly have Gp.x/ � 0

on � n fpg. Applying the strong maximum principle on �j , j ! 1, we can
strengthen this to

(5.32) Gp.x/ < 0 on� n fpg:
Now we show directly that weak barriers yield continuity of the Green function
Gp at boundary points.

Proposition 5.7. Let z0 2 @�. Suppose there exists a function V 2 C 2.�/ that
is a weak barrier at z0. Then Gp.x/ ! 0 as x ! z0.

Proof. Fix a compact set K � �1, containing a neighborhood of p. Then there
exists a k such that, for all j ,

�kV < Gpj on @.�j nK/;
since we know fGpj g is uniformly bounded on @K , and Gpj D 0 on @�j . Then,
by the maximum principle,

�kV < Gpj on �j nK:
By (5.31) and (5.32), we have

(5.33) �kV � Gp < 0 on � nK;

which yields the proposition.
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Propositions 5.6 and 5.7 will suffice for our treatment of the Riemann mapping
theorem for general, simply connected domains in the next section, but we will
proceed with some further results.

First, we consider local versions of barriers. A function w 2 C 2.�/ is a local
barrier (resp., weak local barrier) at z0 2 @� provided there is a neighborhood
U of z0 in M such that w

ˇ̌
�\U is a barrier (respectively, weak barrier) at z0 for

� \ U .
The motivation for studying this concept is that local barriers and weak local

barriers are frequently easier to construct than their global counterparts. However,
when the local objects exist, their global counterparts do, too. This is easy to prove
for (genuine) barriers.

Proposition 5.8. If w is a local barrier at z0, then there exists a barrier for �
at z0, equal to w in some neighborhood of z0.

Proof. Let f W R ! R be a C1-function, with f .0/ D 0; f 0.0/ > 0. A simple
calculation shows

(5.34) �f.u/ D f 0.u/�u C f 00.u/jduj2;
where jduj2 D gjk.x/@j u @ku. Thus, if �w � 0 on�\U , we have�f.w/ � 0

on � \ U provided

(5.35) f 0.u/ � 0; f 00.u/ � 0:

Take f to be such a function, with the additional property of being identically 1
for u � ı, so the graph of f is as depicted in Fig. 5.2.

Ifw satisfies the barrier condition on�\U and in particularw.x/ > ı outside
U1 �� U , define w1.x/ by

(5.36)
w1.x/ D f .w.x//; for x 2 U1 \�;

1; for x 2 � n U1:

Then w1 is a barrier for � at z0.

FIGURE 5.2 Graph of the Function f
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The argument above does not work if w is a weak local barrier. We now tackle
the problem of dealing with weak local barriers.

Proposition 5.9. If w is a weak local barrier for � at z0 2 @�, then there exists
a local barrier for� at z0.

Proof. Start with the function

(5.37) h.x/ D
X

j

�
xj � z0;j

�2

in a local coordinate patch about z0, chosen to be normal at z0. Thus h.z0/ D 0

and this is the strict minimum of h. While � may not be the flat Laplacian �0 in
these coordinates, their coefficients do coincide at z0. Thus, if U1 is a sufficiently
small neighborhood of z0 in M ,

(5.38) �h.x/ � C > 0 in U1:

Also pick U1 sufficiently small that w is a weak barrier for � \ U1 at z0. Then
define w1 to be the Poisson integral of h

ˇ̌
@.�\U1/

, where

PI W C �@.� \ U1/
� �! L1.� \ U1/:

We claim thatw1 is a barrier for�\U1, hence is the desired local barrier. Clearly
�w1 D 0 on� \ U1. Next we claim that

(5.39) w1.x/ � h.x/; for x 2 � \ U1:

Indeed, we can write

(5.40) w1.x/ D lim
j!1 uj .x/;

where uj are harmonic on Oj % � \ U1, with @Oj smooth and

uj
ˇ̌
@Oj

D h.x/;

and we can apply the maximum principle, Proposition 2.1, to h� uj . This proves
(5.39). To prove Proposition 5.9, it remains to establish that

(5.41) lim
x!z0

w1.x/ D h.z0/ D 0:

This takes some effort, so we will take a break and advertise this formally.

Lemma 5.10. The function w1 constructed above satisfies (5.41) in � \ U1.
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Proof. For convenience, we relabel � \ U1, calling it �; also denote Oj above
by �j . Recall that we are working in an exponential coordinate system centered
at z0; in particular, gjk.z0/ D ıjk . Let B� be the ball of radius  in Rn centered at
the origin (identified with z0), as illustrated in Fig. 5.3. Assume  > 0 is small. We
can suppose that @B� \� ¤ ;. Let F be a compact subset of @B� \� such that
the .n�1/-dimensional measure of @B�\�nF is less than =2 times the measure
of @B�. Assume that F � @B� has a smooth .n � 2/-dimensional boundary.

Let f be the product of the characteristic function of @B� \ � with a non-
negative C1 function, � 1, equal to 1 on @B� \� n F , such that

(5.42)
1

A�

Z

@B�

jf j2 dS � ;

where A� is the area of @B�. Then define

(5.43) q 2 C1.B�/ \H 1=2.B�/;

by

(5.44) �q D 0 on B�; q
ˇ̌
@B�

D f:

Results presented in �2 (cf. Proposition 2.9) imply that there is a unique such q,
and such q also satisfies kqkL1.B�/ � 1, and

(5.45) q.x/ �! f .y/ as x ! y; 8 y 2 @B� n @�I

FIGURE 5.3 Setup for Local Barrier Construction
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in particular,

(5.46) q.x/ �! f .y/ as x ! y; 8 y 2 @B� \�:

The mapping property PI W L2.@B�/ ! C1.B�/ (cf. Proposition 1.8 plus (5.42)
give

(5.47) 0 < q.z0/ � C1=2:

Remark: In case � D �0 D @21 C � � � C @2n, the results (5.43)–(5.47) also follow
from the formula for PI in �3. One can replace (5.42) by the condition that f have
mean value �  on @B� , and then (5.47) is sharpened to q.z0/ � C, by the mean
value property.

Now let

(5.48) M D sup
�

h.x/ D sup
�

w1.x/;

let

(5.49) k D inf
F
w.x/ > 0;

where w is the weak (local) barrier hypothesized in Proposition 5.9, and consider

(5.50) s.x/ D w1.x/ �  � M

k
w.x/ �Mq.x/; x 2 O�;

where O� D � \ B�. We know that

(5.51) s.x/ D lim
j!1 sj .x/;

where

(5.52) sj .x/ D uj .x/ �  � M

k
w.x/ �Mq.x/ on �j \ B�;

uj being given by (5.40). Now sj .x/ is continuous on �j \ B�, and �sj � 0
on the interior, by (5.47). Also, using (5.45), and noting that, on @�j \ B�,
uj D h � 2 <  for  small, we see that

(5.53) sj .x/ � 0

on @.�j \B�/ D .@�j \B�/[ .�j \ @B�/. By the maximum principle, (5.53)
holds on�j \ B� . Passing to the limit gives s.x/ � 0 on � \ B�, hence
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(5.54) w1.x/ � C M

k
w.x/CMq.x/; for x 2 � \ B�:

This implies

(5.55) lim sup
x!z0;x2B�\�

w1.x/ � CMC1=2;

since w.x/ ! 0 as x ! z0, and hence

(5.56) lim sup
x!z0

w1.x/ � 0:

Together with (5.39), this gives (5.41). The proof that w1 is a barrier is complete;
hence so is the proof of Proposition 5.9.

Combining Propositions 5.4, 5.8, and 5.9, we have the following conclusion,
essentially due to G. Bouligand.

Proposition 5.11. Given z0 2 @�, the following are equivalent:

there is a weak local barrier at z0I(5.57)

there is a barrier at z0I(5.58)

z0 is a regular point.(5.59)

Proof. To close the argument, we show that (5.59) ) (5.57). Indeed, given z0 2
@�, define f 2 C.@�/ as f .x/ D dist .x; z0/, and setw D PIf . We see that if z0
is a regular point, thenw is a weak barrier, and a fortiori a weak local barrier, at z0.

We next record the following consequence of localizability of the concept of a
regular point.

Corollary 5.12. Suppose � and �0 are open subsets of M , with a common
boundary point z0. Suppose there is a neighborhoodU of z0 such that

(5.60) �0 \ U � � \ U:

If z0 is regular for �0, then z0 is regular for �.

Proof. A barrier at z0 for �0 gives a local barrier at z0 for �.

As an application, we can localize the result on simply connected planar do-
mains given in Proposition 5.6, to obtain the following result of H. Lebesgue.

Proposition 5.13. Let � � R2 be an open, bounded, connected region, and let
z0 2 @�. Suppose the connected component of @� containing z0 consists of more
than one point (i.e., is a “continuum”). Then z0 is a regular point.
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Proof. Let � be the connected component of @� containing z0. Let �0 be the
connected component of C n � containing �. Thus @�0 D � . If �0 is bounded,
then @�0 connected implies that the planar domain�0 is simply connected, so, by
Proposition 5.6 , z0 is regular for �0. Hence, by Corollary 5.12, z0 is regular for
� in this case.

On the other hand, if �0 is not bounded, pick z1 2 � , at a maximal distance
from z0 (z1 ¤ z0, under the hypothesis of the proposition). Let  denote the ray
from z1 to infinity, directly away from z0. Then let �00 be �0 n , intersected with
some disk D of large radius centered at z1, so @�00 D � [ . \D/ [ @D. Thus
�00 is simply connected. Since�00 coincides with�0 on a neighborhood of z0, we
again have z0 regular for�, and the proof is complete.

It is not hard to show that an isolated boundary point of � is always irregular,
when dim � � 2. This can be obtained as a consequence of the following simple
result.

Proposition 5.14. The space F of functions in C1
0 .R

n/ vanishing in a neighbor-
hood of a given point p is dense in H 1.Rn/ if n � 2.

Proof. The annihilator of F is the space of elements ofH�1.Rn/ supported at p.
But any distribution supported at p is a linear combination of derivatives of the
delta function ıp, and none of these belong to H�1.Rn/, except for 0.

More generally, we say a compact set K in the interior of M is negligible if it
supports no nonzero elements of H�1.M/. For example, a smooth submanifold
of codimension � 2 is negligible.

Proposition 5.15. Suppose a boundary point z0 2 @� has a neighborhood U in
M whose intersection with @� is negligible. Then z0 is an irregular boundary
point.

Proof. Let�0 D �[U . Thus z0 is an interior point of�0. The hypothesis implies

H 1
0 .�

0/ D H 1
0 .�/:

Now, pick f 2 E.@�/ such that f D 0 near z0, f � 0 on all of @�, and f > 0

somewhere. We claim that if we consider

u D PI f I PI W C.@�/ �! C1.�/;

then u.x/ does not tend to 0 as x ! z0. Indeed, u is simply the restriction to � of
u0 D PI f 0, where

PI W C.@�0/ �! C1.�0/

and f 0 is the restriction of f to @�0. The strong maximum principle implies that
u0 > 0 everywhere in �0, including at z0, so the proof is done.
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N. Wiener obtained a precise characterization of regular and irregular points in
terms of “capacity,” a certain countably subadditive set function defined on Borel
sets. A boundary point z0 2 @� is irregular provided the capacity of @� inter-
sected with a small ball centered at z0 decreases fast enough. The negligible sets
defined above are precisely the compact sets of capacity zero. This characteriza-
tion has a natural probabilistic analysis, using the theory of Brownian motion. In
Chap. 11 we will discuss Brownian motion and present such a proof of Wiener’s
theorem.

We will derive one more sufficient condition for z0 2 @� to be a regular point,
due to S. Zaremba.

Proposition 5.16. Let � be a bounded, open, connected subset of Rn, with its
flat metric. Suppose z0 2 @� and there exists a cone C with vertex at z0 such that,
for some ball B centered at z0,

(5.61) B \ C n fz0g � Rn n�:

Then z0 is a regular point for �.

Proof. By Corollary 5.12, it suffices to show that z0 is a regular point for B n C,
where B is some ball centered at z0. We can translate coordinates so that z0 is the
origin. We will construct a weak barrier for B n C at z0 D 0 of the form

(5.62) v.x/ D r˛'0.!/; x D r!;

where '0.!/ is an eigenfunction of the Laplace operator �S on the region O D
Sn�1 n C, an open subset of the sphere with nonempty smooth boundary:

(5.63) '0 2 H 1
0 .O/; �S'0 D ��'0;

and � > 0 is the smallest eigenvalue of ��S on O. The formula for the Laplace
operator in polar coordinates

(5.64) �v D @2v

@r2
C n � 1

r

@v

@r
C 1

r2
�Sv

shows that (5.62) defines a function harmonic in �1 D B n C, continuous on �1,
and vanishing at z0, if we take

(5.65) ˛ D � � n� 2

2
; � D

h
�C .n � 2/2

4

i1=2
:

Note that ˛ > 0. Furthermore, as shown in Proposition 2.4, since� is minimal, the
eigenfunction '0 is nowhere vanishing on the interior of O; thus it can be taken
to be positive there. This makes v a weak barrier and completes the proof. Note
that if the cone is shrunk, such construction produces a (genuine) local barrier for
� at z0.
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We remark that, by considering v1 D f .v/ with f 0 > 0; f 00 < 0; f .0/ D
0, we can construct a weak barrier v1 satisfying �0v1 � �C < 0 on B n C,
where �0 D @21 C � � � C @2n is the flat Laplacian considered in Proposition 5.16.
Such v1 would also be a weak barrier with the flat Laplacian �0 replaced by a
small perturbation, of the form (5.44). In this way we can obtain an analogue of
Proposition 5.16 for the general class of subdomains of a Riemannian manifold
with boundary, which we have been dealing with in this section. Details are left
as an exercise.

Exercises

1. Suppose � is a bounded region in Rn. Suppose there is a point p 2 Rn n� such that
z0 is the point in @� closest to p. Show that

(5.66) w.x/ D �jx � pj2�n .log jx � pj if n D 2/

is a barrier at z0. Note that such p exists provided there exists a sphere in Rn n �,
touching @� precisely at z0. If this happens, we say � satisfies the exterior sphere
condition at z0. Show that this condition holds for every C 2-boundary, but not for every
C 1-boundary. Show it holds whenever � is convex.

2. Denote by C k.@�/ the space of restrictions to @� of elements of C k.Rn/. Let f 2
C 2.Rn/, and assume that � satisfies the exterior sphere condition. Given z0 2 @�,
show that there exists a barrier of the form (5.66) and a K < 1, such that, for all
z 2 @�,

�K�w.z/� w.z0/
� � f .z/� f .z0/ � .z � z0/ � rf .z0/ � K

�
w.z/� w.z0/

�
;

with strict inequality except at z0 2 @�. Deduce from the maximum principle that such
an inequality holds inside �, for u D PI.f /. When can you deduce that

PI W C 2.@�/ �! Lip.�/‹

(Hint: Look for uniform estimates on �j :)
When can you replace Lip.�/ by C 1.�/?

3. Replace barriers (5.66) by barriers of the form (5.62), and obtain boundary regularity
results for more general domains � and less regular f , such as

PI W Lip.@�/ �! C˛.�/;

for an appropriate class of domains � � Rn, with 0 < ˛ < 1.
For a systematic treatment of Hölder estimates, see Chap. 6 of [GT], and references
given there.

4. For the Green functions Gpj on �j % �, approaching Gp as in (5.31), show that

Gpj & Gp :

5. For the approximating solutions vj 2 H1
0 .�j / in (5.9)–(5.14), show that (5.14) can be

strengthened to
vj �! v in the H1.�/-norm:

(Hint: Show that kdvj k2
L2 ! kdvk2

L2 :)



398 5. Linear Elliptic Equations

6. Show that if� � Rn is open and bounded (with smooth boundary) and �u D f on�,
u
ˇ̌
@�

D 0, then

(5.67)
X

j;k

Z

�

ˇ̌
@j @ku.x/

ˇ̌2
dx D

Z

�

j�u.x/j2 dx C .n� 1/
Z

@�

ˇ̌
ˇ
@u

@�

ˇ̌
ˇ
2
H.x/ dS.x/;

whereH.x/ is the mean curvature of @� (with respect to the outward-pointing normal).
This is known as Kadlec’s formula.

7. Using Exercise 6, deduce that, for � convex, but with no other regularity assumed,

u 2 H1
0 .�/; �u D f 2 L2.�/ H) u 2 H2.�/:

(Hint: Look for uniform estimates on �j . Each mean curvature Hj .x/ is � 0:)
Compare results in [Gri].

6. The Riemann mapping theorem (rough boundary)

Let � be a bounded open domain in R2 D C which is connected and simply
connected. We aim to construct a one-to-one holomorphic map

(6.1) ˆ W � �! D

of � onto the unit disk D. The construction of ˆ will be similar to that given in
�4 for domains with smooth boundary, but the proof that (6.1) is one-to-one and
onto will be slightly different from the smooth case, and of course the conclusion
will be weaker.

With p 2 � given, we take the Green function G D Gp constructed in �5.
Thus �G D cıp .c > 0/;G.z/ < 0 on � n fpg. By Propositions 5.6 and 5.11,
every point of @� is regular, so limz!z0

G.z/ D 0 for each z0 2 @� (i.e., G is
continuous on � n fpg). We can write, for z 2 �,

(6.2) G.z/ D log jz � pj CG0.z/;

with G0 2 C.�/ \ C1.�/, �G0 D 0, and we can construct the harmonic
conjugate of G0,

(6.3) H0 2 C1.�/;

as

(6.4) H0.z/ D
Z z

p

h
�@G0
@y

dx C @G0

@x
dy
i
;

the integral being along any path from p to z in �, as before. As opposed to the
case where @� is smooth, in general we cannot guarantee that H0 2 C.�/. In
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particular, there is no guarantee that ˆ extends continuously to � unless some
restrictions are placed on @�. As before, ˆ is defined by

(6.5) ˆ.z/ D eGCiH D .z � p/eG0CiH0 ;

where H.z/ D Im log.z � p/ C H0. We aim to prove the following Riemann
mapping theorem.

Theorem 6.1. If � is a bounded, simply connected domain, then the map ˆ W
� ! D given by (6.5) is one-to-one and onto.

Proof. Since G is continuous on � n fpg, we see that

(6.6) jˆj W � �! Œ0; 1	

is continuous, hence uniformly continuous; it takes @� to f1g. Fix " > 0. If
�" � � is a simple closed curve, enclosing p, which stays sufficiently close to
@�, then

(6.7) �" D ˆ.�"/ � D n D1�";

where D� D fz 2 C W jzj < g. By the argument principle, for any c 2 D1�",
the degree of �" about c is equal to the number (counting multiplicities) of points
qj 2 �" (the region enclosed by �") such that ˆ.qj / D c. This winding number
is independent of c 2 D1�". But for c D 0, we see from (6.5) that p is the only
zero of ˆ, a simple zero, so the winding number is one. Thus, for all c 2 D1�",
there is a unique q 2 �" such thatˆ.q/ D c. Letting " ! 0, we have the theorem.

As noted in Exercise 6 of �4, such a map ˆ is essentially unique. It is called
the Riemann mapping function.

The Riemann mapping function ˆ does not always extend to be a homeo-
morphism of � onto D; clearly a necessary condition for this is that @� be
homeomorphic to S1, that is, that it be Jordan curve. In fact, C. Caratheodory
proved that this condition is also sufficient. A proof can be found in [Ts]. Here we
establish a simpler result.

Proposition 6.2. Assume � � R2 is a simply connected region whose boundary
@� is a finite union of smooth curves. Then the Riemann mapping function ˆ
extends to a homeomorphismˆ W � ! D.

Proof. Local elliptic regularity impliesG0 and henceH0 andˆ extend smoothly
to the smooth part of @�. Also, an application of Zaremba’s principle as in �4
shows that the smooth parts of @� are mapped diffeomorphically onto open in-
tervals in S1 D @D. Let J1 and J2 be smooth curves in @�, meeting at p,
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FIGURE 6.1 Approaching the Boundary

as illustrated in Fig. 6.1, and denote by I� the images in S1, I� D ˆ.J�/. It
will suffice to show that I1 and I2 meet, that is, the endpoints q1 and q2 pictured
in Fig. 6.1 coincide.

Let �r be the intersection � \ fz W jz � pj D rg, and let `.r/ be the length of
ˆ.�r/ D �r . Clearly, jq1 � q2j � `.r/ for all (small) r > 0, so we would like to
show that `.r/ is small for (some) small r .

We have `.r/ D R
�r

jˆ0.z/j jd zj, and Cauchy’s inequality implies

(6.8)
`.r/2

r
� 2�

Z

�r

jˆ0.z/j2 ds:

If `.r/ � ı for " � r � R, then integrating over r 2 Œ"; R	 implies

(6.9) ı2 log
R

"
� 2�

“

�.";R/

jˆ0.z/j2 dx dy D 2� � Area ˆ
�
�.";R/

� � 2�2;

where�.";R/ D �\ fz W " � jz �pj � Rg. Since log.1="/ ! 1 as " & 0, this
implies that, for any ı > 0, there exists arbitrarily small r > 0 such that `.r/ < ı.
Hence jq1 � q2j < ı, so q1 D q2, as needed to complete the proof.

We next discuss a particularly important case of the Riemann mapping function
of a domain � whose boundary is not smooth. Namely, � is a subdomain of the
unit disk D, whose boundary consists of three circles, intersecting @D at right
angles, at the points f1; e2�i=3; e�2�i=3g (see Fig. 6.2). Denote by

(6.10) ‰ W � �! D
the Riemann mapping function that preserves each of these three points. By
Proposition 6.2, ‰ extends to a homeomorphism of � onto D. If we denote by

' W D �! U D fz 2 C W Im z > 0g
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FIGURE 6.2 Fundamental Domains

FIGURE 6.3 Upper Half-Space Versions

the linear fractional transformation of D onto U with the property that '.1/ D 0,
'.e2�i=3/ D 1, and '.e�2�i=3/ D 1, then we have

(6.11) e‰ D ' ı‰ ı '�1 W e� �! U ;

where e� D '.�/ is pictured in Fig. 6.3. e‰ extends to map @e� continuously onto
the real axis, with e‰.0/ D 0 and e‰.1/ D 1.

Now the Schwarz reflection principle can clearly be applied to e‰, reflecting
across the vertical lines in @e�, to extend e‰ to the regions eO2 and eO3 in Fig. 6.3.
A variant extends e‰ to eO1. Note that this extension maps the closure in U of
e� [ eO1 [ eO2 [ eO3 onto C n f0; 1g. Now we can iterate this reflection process
indefinitely, obtaining

(6.12) e‰ W U �! C n f0; 1g;

which is a holomorphic covering map. Composing on the right with ' gives the
holomorphic covering map
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(6.13) � D e‰ ı ' W D �! C n f0; 1g:

The existence of such a covering map is very significant. One simple
application is to the following result of Picard.

Proposition 6.3. If u W C ! C n f0; 1g is holomorphic, then it is constant.

Proof. Using � , we lift u to a holomorphic function v W C ! D, such that
u D � ı v. But Liouville’s theorem implies that v is constant.

With some more effort, one can prove the following result of Montel.

Proposition 6.4. If F is a family of holomorphic maps u˛ W D ! S2 D C [f1g
with range in S2 n f0; 1;1g, then F is equicontinuous.

We leave the proof to the reader, with the comment that the trick is to make a
careful choice of lifts v˛ W D ! D.

Exercises

1. With how little regularity of @� can you show that G0 2 C 1.�/? With how little
regularity can you show that H0 2 C 1.�/? When can you show that ˆ W � ! D is a
C 1-diffeomorphism?

2. Extend Proposition 6.2 to the case where @� is assumed only to be a Jordan curve.
3. Let � be the following (unbounded) region in C:

� D fz D x C iy W 0 < x < 1; 0 < y < x�1g:
Consider a Riemann mapping function ˆ W � ! D, with inverse ˆ�1 W D ! �.
Show that Re ˆ�1 is continuous on D, while Im ˆ�1 is unbounded.

4. Let � be a simply connected, unbounded region in C, with nonempty complement.
Show that, given z0 2 C n�, the function .z � z0/1=2 can be defined on � as a one-to-
one holomorphic map of � onto a domain O � C whose complement has nonempty
interior.
(Hint: If w 2 O, then �w … O:)
Using this, extend the Riemann mapping theorem to all such �.
(Hint: Use an inversion to map O to a bounded region.)

5. State and prove an analogue of Theorem 4.3 for bounded � � C of the form � D
O1 nO2, where Oj and O2 are simply connected, and O2 � O1, in case @� is rough.

6. In the proof of Proposition 6.2, it was stated that it sufficed to show that I1 and I2 must
meet. Why can’t they overlap?

7. The Neumann boundary problem

Let � be a connected, compact manifold with nonempty smooth boundary, as in
�1. We want to study the existence and regularity of solutions to the Neumann
problem
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(7.1) �u D f on �;
@u

@�
D 0 on @�:

Recall that, by Green’s formula, if u and v are smooth on �,

(7.2) .��u; v/ D .du; dv/�
Z

@�

v
@u

@�
dS:

By continuity, this identity holds for u 2 H 2.�/, v 2 H 1.�/. The boundary
integral vanishes if @u=@� D 0 on @�, so we are motivated to consider the
operator

(7.3) LN W H 1.�/ �! H 1.�/�

defined by

(7.4) .LN u; v/ D .du; dv/; u; v 2 H 1.�/:

The operator LN is not injective, since it annihilates constants, but

(7.5)
�
.LN C 1/u; u

� D kduk2
L2 C kuk2

L2 ;

so we have

Proposition 7.1. The map

LN C 1 W H 1.�/ �! H 1.�/�

is one-to-one and onto.

As in �1, it is clear that the inverse map

(7.6) TN W H 1.�/� �! H 1.�/

restricts to a compact, self-adjoint operator on L2.�/, so there is an orthonormal
basis uj of L2.�/ consisting of eigenfunctions of TN :

(7.7) TN uj D �j uj ; �j & 0; uj 2 H 1.�/:

It follows that

(7.8) LN uj D �uj ; �j D 1

�j
� 1 % 1:
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Note that since (7.4) is equal to .��u; v/ for u 2 H 1.�/, v 2 C1
0 .�/, we have

(7.9) �.LN u/ D ��u in D0.�/;

for u 2 H 1.�/, where � W H 1.�/� ! D0.�/ is the adjoint of the inclusion
C1
0 .�/ ,! H 1.�/, but � is not injective. Nevertheless, (7.8) implies that, in the

distributional sense, the eigenvectors uj satisfy

(7.10) �uj D ��j uj on �:

We will establish regularity theorems that imply that each uj belongs to
C1.�/ and satisfies the Neumann boundary condition. The proof of such reg-
ularity results is just slightly more elaborate than the proof of Theorem 1.3. We
divide it into two parts.

Proposition 7.2. Given f 2 L2.�/, u D TNf satisfies

(7.11) u 2 H 2.�/;
@u

@�

ˇ̌
ˇ
@�

D 0;

and

(7.12) .��C 1/u D f:

Furthermore, we have the estimate

(7.13) kuk2
H2 � Ck�uk2

L2 C Ckuk2
H1 ;

for all u satisfying (7.11).

Proof. First we establish the estimate

(7.14) kuk2
H1 � CkLN uk2

H1�

C Ckuk2
L2 :

Indeed, by (7.4) and Cauchy’s inequality, we have

(7.15)

kuk2
H1 D .LN u; u/C kuk2

L2

� kLN ukH1�
� kukH1 C kuk2

L2

� 1

2
kuk2

H1 C 1

2
kLN uk2

H1�

C kuk2
L2 ;

which readily gives (7.14). To proceed, we localize to coordinate patches, as in the
proof of Theorem 1.3. Suppose � 2 C1.�/ is supported in a coordinate patch,
and either � 2 C1

0 .�/ or @�=@� D 0 on @�. We need to analyze the commutator
ŒLN ;M		, where M	 u D �u. Note that M	 acts continuously on H 1.�/ and on
H 1.�/�. For u; v 2 H 1.�/,
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(7.16) .LNM	u; v/ D .d.�u/; dv/ D ..d�/u; dv/C .�du; dv/;

while

(7.17) .M	LN u; v/ D .LN u; �v/ D .du; .d�/v/C .du; �dv/;

so

(7.18) .ŒLN ;M		u; v/ D ..d�/u; dv/ � .hd�; dui; v/:

We can integrate the first term on the right by parts, using formula (9.17) of
Chap. 2, extended to u; v 2 H 1.�/. The boundary integral is

Z

@�

� � .d�/uv dS D 0;

by the hypothesis @�=@� D 0 on @�, so we have

(7.19) ŒLN ;M		u D d�..d�/u/� hd�; dui D �.��/u � 2hd�; dui;

for u 2 H 1.�/, in view of the identity

(7.20) d�.u˛/ D ud�˛ � hdu; ˛i

when u is a scalar function and ˛ a 1-form. (Compare formula (2.19) of Chap. 2,
and also Exercise 7 in �10 of Chap. 2. In particular,

(7.21) ŒLN ;M		 W H 1.�/ �! L2.�/:

Consequently, it suffices to prove Proposition 7.2 for u supported in a coordinate
patch.

We proceed by applying the estimate (7.14) to Dj;hu, as in the proof of Theorem
1.3, where 1 � j � n � 1 if u is supported in a coordinate patch with boundary.
Of course, interior regularity results proved in �1 apply here. We have

(7.22)
kDj;huk2

H1 � CkLNDj;huk2
H1�

C CkDj;huk2
L2

� CkDj;hLN uk2
H1�

C CkŒLN ;Dj;h	uk2
H1�

C CkDj;huk2
L2 ;

whereDj;h is defined onH 1� in a natural fashion by duality. We need to estimate
ŒLN ;Dj;h	u. We have

(7.23) .LNDj;hu; v/ D .dDj;hu; dv/ D .D
.1/

j;h
du; dv/;
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where, if translation x 7! x C hej is denoted 
j;h, we define D.1/

j;h
on 1-forms as

(7.24) D
.1/

j;h
' D h�1.
�

j;h' � '/:

In order to analyze .Dj;hLN u; v/, we simplify the calculation by requiring that
the coordinate map of a piece of � to a part of RnC preserve volume elements,
which is easily arranged. Then the adjoint of Dj;h is Dj;�h, so

(7.25) .Dj;hLN u; v/ D .LN u;Dj;�hv/ D .du;D.1/

j;�h dv/;

and hence

(7.26) .ŒLN ;Dj;h	u; v/ D .ŒD
.1/�
j;�h �D.1/

j;h
	 du; dv/:

We have a uniform bound on the right side of (7.26):

Lemma 7.3. If ˇ is a 1-form on�,

kŒD.1/�
j;�h �D

.1/

j;h
	ˇkL2 � CkˇkL2 :

Proof. This is similar to Lemma1.4 , and we leave it as an exercise.

We note that, as h ! 0, D.1/

j;h
' tends to the Lie derivative L@j

', for a 1-form
'. Thus the uniform estimate is related to the fact that the difference between L@j

and �L�
@j

is a zero-order operator. Compare with formula (3.43) of Chap. 2.
Applying the lemma to (7.26), we have

(7.27) kŒLN ;Dj;h	ukH1�
� CkdukL2 :

Hence, (7.22) yields

(7.28) kDj;huk2
H1 � CkDj;hLN uk2

H1�

C Ckuk2
H1 :

Given LN u D f1 2 L2.�/, we have .Dj;hf1; v/ D .f1;Dj;�hv/ for v 2
H 1.�/, and hence

(7.29) kDj;hf1k2H1�

� Ckf1k2L2 ;

so we get

(7.30) kDj;huk2
H1 � Ckf1k2L2 C Ckuk2

H1 ;

provided LN u D f1 2 L2. Letting h ! 0, we get Dj u 2 H 1.�/, and an
accompanying norm estimate.

As in �1, the rest of the proof that u 2 H 2.�/ comes down to showingD2
nu 2

L2.�/. But by (7.9) we have�u D �f1 in the distributional sense, and
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(7.31) gnn.x/D2
nu D �f1 �

X

.j;k/¤.n;n/
gjk.x/DjDku �

X
bj .x/Dj u;

so the proof that u 2 H 2.�/ is complete.
It remains to show that u satisfies the Neumann boundary condition. However,

for u D TNf 2 H 2.�/, v 2 H 1.�/, the identity (7.2) holds, so

(7.32)

.f; v/ D .LN u; v/C .u; v/ D .du; dv/C .u; v/

D ..��C 1/u; v/C
Z

@�

v
@u

@�
dS:

This holds for all v 2H 1.�/. Applying it for arbitrary v 2C1
0 .�/ yields

.��C 1/u D f . Hence

.f; v/ D .f; v/C
Z

@�

v
@u

@�
dS;

for all v 2 H 1.�/ This forces @u=@� to vanish on @�. The proof of Proposition
7.2 is complete.

To complete the parallel with Theorem 1.3, we have the following.

Proposition 7.4. For k D 1; 2; 3; : : : , given f1 2 H k.�/, a function u 2
H kC1.�/ satisfying

(7.33) �u D f1 on �;
@u

@�
D 0 on @�

belongs to H kC2.�/, and we have an estimate

(7.34) kuk2
HkC2 � Ck�uk2

Hk C Ckuk2
HkC1 ;

for all u 2 H kC2.�/ such that @u=@� D 0 on @�.

Proof. We proceed from Proposition 7.2 inductively, using cut-offs � and dif-
ference operators Dj;h, as in the proof of Theorem 1.3. We need to require
@�=@� D 0 on @�, so �u satisfies the Neumann boundary condition. In order
for Dj;hu to satisfy the Neumann boundary condition, this time pick coordinate
charts so that the normal � to @� is mapped to @=@xn. Then the proof works out
just as in Theorem 1.3.

One can also analyze nonhomogeneous boundary problems, such as

(7.35) .��C 1/u D f in �;
@u

@�
D g on @�:
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Given g 2 H kC1=2.@�/, k D 0; 1; 2; : : : , you can pick h 2 H kC2.�/ such that
@h=@� D g on @�, and then write u D v C h, where v solves

(7.36) .��C 1/v D f C .� � 1/h in �;
@v

@�
D 0 on @�:

Then v 2 H kC2.�/ if f 2 H k.�/, so also u 2 H kC2.�/, and one has the
estimate

(7.37) kuk2
HkC2.�/

� Ck�uk2
Hk.�/

C C
			
@u

@�

			
2

HkC1=2.@�/
C Ckuk2

HkC1.�/
;

valid for all u 2 H kC2. Let us formally record this as the following generalization
of Proposition 7.4.

Proposition 7.5. For k D 0; 1; 2; : : : , given f 2 H k.�/, g 2 H kC1=2.@�/,
there is a unique solution u 2 H kC2.�/ to (7.35), and the estimate (7.37) holds.

We note that to prove this result, one could bypass Proposition7.4 and proceed
as follows. For k D 0, the construction (7.36) gets the result as a consequence of
Proposition 7.2. Then you can proceed by induction on k, using cut-offs and dif-
ference operators as in the proof of Theorem 1.3. The (slight) advantage of doing
this is that one does not need to preserve the homogeneous boundary condition,
so there is no need to arrange @�=@� D 0 on @� or use coordinate charts mapping
� to @=@xn. In the case of more elaborate boundary conditions, such as considered
in �9, the flexibility gained by this sort of strategy will be of greater importance.

Returning to the original Neumann boundary problem (7.1), we see that the fact
that 0 is an eigenvalue in (7.8), with eigenspace consisting of constants, implies

Proposition 7.6. Given f 2 L2.�/, the boundary problem (7.1) has a solution
u 2 H 2.�/ if and only if

(7.38)
Z

�

f .x/ dV.x/ D 0:

Provided this condition holds, the solution u is unique up to an additive constant
and belongs to H kC2.�/ if f 2 H k.�/, k � 0.

We have an extension of this for the nonhomogeneous boundary problem

(7.39) �u D f on �;
@u

@�
D g on @�:
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Note that if we set v D 1 in (7.2), we get

(7.40)
Z

�

�u.x/ dV.x/ D
Z

@�

@u

@�
dS:

Thus a necessary condition for (7.39) to have a solution is

(7.41)
Z

�

f .x/ dV.x/ D
Z

@�

g.x/ dS:

This condition is also sufficient.

Proposition 7.7. If k � 0, f 2 H k.�/, and g 2 H kC 1
2 .@�/, then (7.39) has a

solution u 2 H kC2.�/ if and only if (7.41) holds.

Proof. Define the linear operator

(7.42) T W H kC2.�/ �! H k.�/˚H kC1=2.@�/;

(7.43) T u D
�
�u;

@u

@�

�
:

The estimate (7.37) implies that T has closed range, by Proposition 6.7 in
Appendix A. We know that the kernel of T consists of constants. The identity
(7.41) implies that

(7.44) .�1; 1/ 2 C1.�/˚ C1.@�/

is orthogonal to the range R.T /. It remains to show that this is all of the orthogo-
nal complement of R.T /, which follows if we show that T in (7.42) is Fredholm
of index zero. Now T differs from

(7.45) T # W H kC2.�/ �! H k.�/˚H kC1=2.@�/; T #u D
�
.�� 1/u; @u

@�

�

by the operator Ku D .�u; 0/, which is compact, by Rellich’s theorem. Propo-
sition 7.5 implies that T # is an isomorphism, and by Corollary 7.5 of Appendix
A, this implies that T is Fredholm of index zero. This completes the proof of
Proposition 7.7.

Exercises

1. Given two Riemannian manifoldsM andN with boundary, p 2 @M , and q 2 @N , show
that there exists a diffeomorphism ˆ from a neighborhood of p to a neighborhood of q,
ˆ.p/ D q, which preserves volumes. (Hint: Set up a first order PDE for one component
of ˆ:)
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Use this to justify (7.25). Show that ˆ can also be arranged to preserve unit normals to
the boundaries.

2. Give a detailed proof of Lemma 7.3.
3. If � is a compact Riemannian manifold with boundary, show that the Robin boundary

condition
@u

@�
D a.x/u.x/; for x 2 @�;

given a 2 C1.@�/, has the regularity properties established in this section for the
Neumann condition (which is the a D 0 case). (Hint: Make use of (7.37).)
If a is real-valued, show that � is self-adjoint on L2.�/, with domain

D.�/ D fu 2 H2.�/ W @�u D a.x/u on @�g:
Reconsider this problem when reading �12.

4. Let � � Rn be bounded, but do not assume @� is smooth. Note that the map TN in
(7.6) is well defined. Assume there exist smoothly bounded �j % � satisfying the
following hypotheses:

(i) There exist extension maps Ej W H1.�j / ! H1.�/ of uniformly bounded norm.
(ii) The inclusion H1.�/ ,! L2.�/ is compact.

(iii) Meas.� n�j / ! 0.

Then show that if f 2 L2.�/; fj D f
ˇ̌
�j

, we have

TNj fj �! TN f in L2.�/;

where TNj is as in (7.6), with� replaced by �j , and we set TNj fj D 0 on � n�j .
More information on this type of problem is given in [RT].

8. The Hodge decomposition and harmonic forms

Let M be a compact Riemannian manifold, without boundary. Recall from
Chap. 2 the Hodge Laplacian on k-forms,

(8.1) � W C1.M;ƒk/ �! C1.M;ƒk/;

defined by

(8.2) �� D .d C ı/2 D dı C ıd;

where d is the exterior derivative operator and ı its formal adjoint, satisfying

(8.3) .du; v/ D .u; ıv/;

for a smooth k-form u and .kC1/-form v; ı D 0 on 0-forms. The local coordinate
expression

(8.4) �u D gj`.x/ @j @`u C Yj u;
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where Yk are first-order differential operators, derived in (10.23) of Chap. 2,
indicates that the Hodge Laplacian on k-forms is amenable to an analysis similar
to that for the Laplace operator on functions in �1. Note that, for smooth k-forms,
by (8.3),

(8.5) �.�u; v/ D .du; dv/C .ıu; ıv/:

Now we have� operating on Sobolev spaces; in particular,

(8.6) � W H 1.M;ƒk/ �! H�1.M;ƒk/;

and (8.5) holds for u; v 2 H 1.M;ƒk/. We want to study invertibility of the
operator �� C C1, where C1 is a convenient positive constant, and to produce
consequences of this. Our first result is the following analogue of the estimates
(1.5), (1.49), and (7.15).

Proposition 8.1. There exist positive constants C0 and C1 such that

(8.7) �.�u; u/ � C0kuk2
H1 � C1kuk2

L2

for a k-form u 2 H 1.

Proof. Cover M with coordinate patches Uj , and pick 'j 2 C1
0 .Uj / such thatP

'2j D 1, so

(8.8)

�.�u; u/ D �
X

j

�
�.'2j u/; u

�

D �
X

j

�
�.'j u/; 'ju

�C .Y u; u/;

where Y is a first-order differential operator, Y D P
Œ�; 'j 	. The local coordinate

formula (8.4) and integration by parts yield

(8.9) �.�.'j u/; 'ju/ � Ck'j uk2
H1 � C 0k'j uk2

L2 ;

and summing gives

(8.10) �.�u; u/ � C2kuk2
H1 � C3kuk2

L2 � C4kY ukL2kukL2 :

We can dominate the last term in (8.10) by "kuk2
H1 C .C="/kuk2

L2 , and absorb
"kuk2

H1 into the first term on the right side of (8.10), to prove (8.7).

From here, a number of results follow just as in ��1 and 7. We have the estimate
k.��C C1/ukH�1 � C0kukH1 , and hence

(8.11) ��C C1 W H 1.M;ƒk/ �! H�1.M;ƒk/
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is injective with closed range. The annihilator of the range, in H�1� D H 1,
belongs to the kernel of ��C C1, and so is zero, so the map (8.11) is bijective.
We have a two-sided inverse

(8.12) T W H�1.M;ƒk/ �! H 1.M;ƒk/:

As in (1.8), T D T �, and by Rellich’s theorem T is a compact self adjoint opera-
tor on L2.M;ƒk/. The identity (8.5) implies

(8.13) 0 < .T u; u/ � C�1
1 kuk2

L2 ;

for nonzero u. The space L2.M;ƒk/ has an orthonormal basis u.k/j consisting of
eigenfunctions of T :

(8.14) T u.k/j D �
.k/
j u.k/j I u.k/j 2 H 1.M;ƒk/:

By (8.13), we have

(8.15) 0 < �
.k/
j � C�1

1 :

For each k, we can order the u.k/j so that �.k/j & 0, as j % 1. It follows that

(8.16) ��u.k/j D �
.k/
j u.k/j ;

with

(8.17) �
.k/
j D 1

�
.k/
j

� C1;

so

(8.18) �
.k/
j � 0; �

.k/
j % 1 as j ! 1:

The local regularity results proved in Theorem 1.3 apply to �, by (8.4), and
since M has no boundary, we conclude that

(8.19) u.k/j 2 C1.M;ƒk/:

In particular, the 0-eigenspace of � on k-forms is finite-dimensional and consists
of smooth k-forms. These are called harmonic forms. We denote this 0-eigenspace
by Hk . By (8.5), we see that

(8.20) u 2 Hk ” u 2 C1.M;ƒk/; du D 0; and ıu D 0 onM:
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Denote by Pk the orthogonal projection of L2.M;ƒk/ onto Hk . We also define a
continuous linear map

(8.21) G W L2.M;ƒk/ �! L2.M;ƒk/

by

(8.22)

Gu.k/j D 0 if �.k/j D 0;

1

�
.k/
j

u.k/j if �.k/j > 0:

Hence ��Gu.k/j D .I � Pk/u
.k/
j . Since � W L2.M;ƒk/ ! H�2.M;ƒk/ con-

tinuously, it follows that

(8.23) ��Gu D .I � Pk/u; for u 2 L2.M;ƒk/:

Now the local regularity implies

(8.24) G W L2.M;ƒk/ �! H 2.M;ƒk/;

and more generally

(8.25) G W H j .M;ƒk/ �! H jC2.M;ƒk/;

for j � 0. Using (8.2), we write (8.23) in the following form, known as the Hodge
decomposition.

Proposition 8.2. Given u 2 H j .M;ƒk/, we have

(8.26) u D dıGu C ıdGu C Pku:

The three terms on the right are mutually orthogonal in L2.M;ƒk/.

Proof. Only the orthogonality remains to be established. But if u 2H 1.M;ƒk�1/
and v 2 H 1.M;ƒkC1/, then

(8.27) .du; ıv/ D .d 2u; v/ D 0;

and if w 2 Hk , so dw D ıw D 0, we have

(8.28) .du; w/ D .u; ıw/ D 0 and .ıv; w/ D .v; dw/ D 0;

so the orthogonality is established.
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A smooth k-form u is said to be exact if u D dv for some smooth .k � 1/-form
v, and closed if du D 0. Since d 2 D 0, every exact form is closed:

(8.29) Ek.M/ � Ck.M/;

where Ek.M/ and Ck.M/ respectively denote the spaces of exact and closed
k-forms. Similarly, a k-form u is said to be co-exact if u D ıv for some smooth
.k C 1/-form v, and co-closed if ıu D 0, and since ı2 D 0 we have

(8.30) CEk.M/ � CCk.M/;

with obvious notation. The deRham cohomology groups are defined as quotient
spaces:

(8.31) Hk.M/ D Ck.M/=Ek.M/:

The following is one of the most important consequences of the Hodge decompo-
sition (8.26).

Proposition 8.3. If M is a compact Riemannian manifold, there is a natural iso-
morphism

(8.32) Hk.M/ � Hk :

Proof. Since every harmonic form is closed, there is an injection

(8.33) j W Hk ,! Ck.M/;

which hence gives rise to a natural map

(8.34) J W Hk �! Hk.M/;

by passing to the quotient (8.31). It remains to show that J is bijective. The ortho-
gonality (8.28) shows that

.Image j / \ Ek.M/ D 0;

so J is injective. Also (8.28) shows that if u 2 Ck.M/, then ıdGu D 0 in (8.26),
so u D dıGu C Pku, or u D Pku mod Ek.M/. Hence J is surjective, and the
proof is complete.

Clearly, the space Hk.M/ is independent of the Riemannian metric chosen forM .
Thus the dimension of the space Hk of harmonic k-forms is independent of the
metric. Indeed, since the isomorphism (8.32) is natural, we can say the following.
Given two Riemannian metrics g and g0 for M , with associated spaces Hk and
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H0
k

of harmonic k-forms, there is a natural isomorphism Hk � H0
k

. Otherwise
said, each u 2 Hk is cohomologous to a unique u0 2 H0

k
.

An important theorem of deRham states that Hk.M/, defined by (8.31), is
isomorphic to a certain singular cohomology group. A variant is an isomorphism
of Hk.M;R/ with a certain Cech cohomology group. We refer to [SiT] and [BoT]
for material on this.

We now introduce the Hodge star operator

(8.35) 	 W C1.M;ƒk/ �! C1.M;ƒm�k/ .m D dim M/;

in fact, a bundle map
	 W ƒkT �

x �! ƒm�kT �
x ;

which will be seen to relate ı to d . For (8.35) to be defined, we need to assume
M is an oriented Riemannian manifold, so there is a distinguished volume form

(8.36) ! 2 C1.M;ƒm/:

Then the star operator (8.35) is uniquely specified by the relation

(8.37) u ^ 	v D hu; vi!;

where hu; vi is the inner product on ƒkT �
x , which was defined by (10.3) of

Chap. 2. In particular, it follows that 	1 D !. Furthermore, if fe1; : : : ; emg is an
oriented, orthonormal basis of T �

xM , we have

(8.38) 	.ej1
^ � � � ^ ejk

/ D .sgn �/ e`1
^ � � � ^ e`m�k

;

where fj1; : : : ; jk ; `1; : : : ; `m�kg D f1; : : : ; mg, and � is the permutation map-
ping the one ordered set to the other. It follows that

(8.39) 		 D .�1/k.m�k/ on ƒk.M/;

where, for short, we are denoting C1.M;ƒk/ by ƒk.M/. We denote (8.39) by
w, and also set

(8.40) w D .�1/k on ƒk.M/;

so

(8.41) d.u ^ v/ D du ^ v C w.u/ ^ dv:

It follows that if u 2 ƒk�1.M/; v 2 ƒk.M/, thenw.u/^d 	v D �u^d 	w.v/,
so

(8.42)
d.u ^ 	v/ D du ^ 	v � u ^ d 	 w.v/

D du ^ 	v � u ^ 	w 	 d 	 w.v/;
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since 	w	 D id., by (8.39). Integrating over M , since @M D ;, we have, by
Stokes’ formula,

R
M
d.u ^ 	v/ D 0 and hence

(8.43) .du; v/ D
Z

M

du ^ 	v D
Z

M

u ^ 	w 	 d 	 w.v/ D .u; w 	 d 	 w.v//:

In other words,

(8.44) ı D w 	 d 	 w D .�1/k.m�k/�mCk�1 	 d 	 onƒk.M/:

Thus, by the characterization (8.20) of harmonic k-forms, we have

(8.45) 	 W Hk �! Hm�k ;

and, by (8.39), this map is an isomorphism. In view of Proposition 8.3, we have
the following special case of Poincaré duality.

Corollary 8.4. If M is a compact, oriented Riemannian manifold, there is an
isomorphism of deRham cohomology groups

(8.46) Hk.M/ � Hm�k.M/:

As a further application of the Hodge decomposition, we prove the following
result on the deRham cohomology groups of a Cartesian product M 
 N of two
compact manifolds, a special case of the Kunneth formula.

Proposition 8.5. If M and N are compact manifolds, of dimension m and n
respectively, then, for 0 � k � mC n,

(8.47) Hk.M 
N/ �
M

iCjDk

h
Hi .M/˝ Hj .N /

i
:

Proof. EndowM and N with Riemannian metrics, and give M 
N the product
metric. If fu.i/
 g is an orthonormal basis of L2.M;ƒi / and fv.j /� g is an orthonor-
mal basis of L2.N;ƒj /, each consisting of eigenfunctions of the Hodge Laplace
operator, then the collection fu.i/
 ^ v.j /� W i C j D kg is an orthonormal basis of
L2.M 
N;ƒk/, consisting of eigenfunctions of the Hodge Laplacian, and since
all these Laplace operators are negative-semidefinite, we have the isomorphism

(8.48) Hk.M 
N/ �
M

iCjDk

h
Hi .M/˝ Hj .N /

i
;

where Hi .M/ denotes the space of harmonic i -forms on M , etc., and by (8.32)
this proves the proposition.
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We define the i th Betti number of M to be

(8.49) bi .M/ D dim Hi .M/:

Thus, (8.47) implies the identity

(8.50) bk.M 
N/ D
X

iCjDk
bi .M/bj .N /:

This identity has an application to the Euler characteristic of a product. The Euler
characteristic of M is defined by

(8.51) �.M/ D
mX

iD0
.�1/i bi .M/;

wherem D dim M . From (8.50) follows directly the product formula

(8.52) �.M 
N/ D �.M/�.N /:

Exercises

1. Let ˛ 2 ƒ1.Mn/; ˇ 2 ƒk.Mn/. Show that

(8.53) 	.�˛ˇ/ D ˙˛ ^ 	ˇ:
Find the sign. (Hint: Start with the identity � ^ ˛ ^ 	ˇ D h� ^ ˛; ˇi!, given � 2
ƒk�1.M/:)
Alternative: Show 	ı D ˙d	, which implies (8.53) by passing to symbols.

2. Show that if X is a smooth vector field on M , and ˇ 2 ƒk.Mn/, then

rX .	ˇ/ D 	.rXˇ/:
3. Show that if F W M ! M is an isometry that preserves orientation, then F �.	ˇ/ D

	.F �ˇ/.
4. If f W M ! N is a smooth map between compact manifolds, show that the pull-back
f � W ƒk.N / ! ƒk.M/ induces a homomorphism f � W Hk.N / ! Hk.M/. If ft ,
0 � t � 1, is a smooth family of such maps, show that f �

0 D f �
1 on Hk.N /.

(Hint: For the latter, recall formulas (13.60)–(13.64) of Chap. 1.)
5. If M is compact, connected, and oriented, and dim M D n, show that

H0.M/ � Hn.M/ � R:

Relate this to Proposition 19.5 of Chap. 1.

In Exercises 6–8, let G be a compact, connected Lie group, endowed with a bi-
invariant Riemannian metric. For each g 2 G, there are left and right translations
Lg .h/ D gh, Rg .h/ D hg. Let Bk denote the space of bi-invariant k-forms on G,

(8.54) Bk D fˇ 2 ƒk.G/ W R�
gˇ D ˇ D L�

gˇ for all g 2 Gg:
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6. Show that every harmonic k-form on G belongs to Bk . (Hint: If ˇ 2 Hk , show R�
gˇ

and L�
gˇ are both harmonic and cohomologous to ˇ. )

7. Show that every ˇ 2 Bk is closed (i.e., dˇ D 0). Also, show that 	 W Bk ! Bn�k
(n D dim G). Hence conclude

Bk D Hk :
(Hint: To show that dˇ D 0, note that if � W G ! G is �.g/ D g�1, then ��ˇ 2 Bk and
��ˇ.e/ D .�1/kˇ.e/. Since also dˇ 2 BkC1, deduce that ��dˇ equals both .�1/kdˇ
and .�1/kC1dˇ:)

8. WithG as above, show that B1 is linearly isomorphic to the center Z of the Lie algebra
g of G. Conclude that if g has trivial center, then H1.G/ D 0.

Exercises 9–10 look at Hk.Sn/.
9. Let ˇ be any harmonic k-form on Sn. Show that g�ˇ D ˇ, where g is any element of

SO.nC 1/, the group of rotations on RnC1, acting as a group of isometries of Sn.
(Hint: Compare the argument used in Exercise 6.)

10. Consider the point p D .0; : : : ; 0; 1/ 2 Sn. The group SO.n/, acting on Rn � RnC1,
fixes p. Show that Hk.Sn/ is isomorphic to (a linear subspace of)

(8.55) Vk D fˇ 2 ƒkRn W g�ˇ D ˇ for all g 2 SO.n/g:
Show that Vk D 0 if 0 < k < n. Deduce that

(8.56) Hk.Sn/ D 0 if 0 < k < n:

(Hint: Given ˇ 2 ƒkRn, 1 � j; ` � n, average g�ˇ over g in the group of rotations
in the xj � x` plane.)
Note: By Exercise 5, if n � 1,

(8.57) Hk.Sn/ D R if k D 0 or n:

Recall the elementary proof of this, for k D n, in Proposition19.5 of Chap. 1.
11. Suppose M is compact, connected, but not orientable, dim M D n. Show that

Hn.M/ D 0. (Hint: Let QM be an orientable double cover, with natural involution
�. A harmonic n-form on M would lift to a harmonic form on QM , invariant under ��;
but � reverses orientation.)

Exercises on the div-curl Lemma

This problem set will derive a result known as the “div-curl lemma” of Murat–Tartar
[Tar], an ingredient in the method of “compensated compactness.” The approach here
follows [RRT]; a related approach is used in [Kic]. Further results are given in Chap. 13,
��6, 11, and 12, and there are applications in Chaps. 14 and 16.

1. Let ˛j� 2 ƒ`jM be, for each j , a sequence of forms such that

(8.58) ˛j� �! ˛j weakly in H1 as � ! 1:

Show that
d˛1� ^ d˛2� �! d˛1 ^ d˛2 weakly in D0 as � ! 1:

(Hint: Write d˛1� ^ d˛2� D d.˛1� ^ d˛2�/; note that ˛1� ! ˛1 strongly in L2:)
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2. Let �j� 2 ƒ`jM be, for each j , a sequence of forms such that

(8.59) �j� �! �j weakly in L2 as � ! 1:

Suppose furthermore that

(8.60) d�j� is compact inH�1:

Show that you can write �j� D d˛j� C ˇj� where ˛j� satisfies (8.58) and fˇj�g is
compact in L2. (Hint: Use the Hodge decomposition

� D dıG� C ıdG� C P� D d˛ C ˇ:

Note that d� D dˇ; ıˇ D 0. Then set ˛j� D ıG�j� :)
3. Under the hypotheses on �j� in Exercise 2, show that

�1� ^ �2� �! �1 ^ �2 weakly in D0 as � ! 1:

Show that this can fail in examples where (8.60) is violated.
(Hint: Write

�1� ^ �2� D d.˛1� ^ d˛2�/C d˛1� ^ ˇ2� C ˇ1� ^ d˛2� C ˇ1� ^ ˇ2� :/

4. Let dim M D 3, and let X� and Y� be two sequences of vector fields such that

(i) X� ! X; Y� ! Y weakly in L2;
(ii) div X� and curl Y� are compact in H�1:
Show that X� � Y� ! X � Y weakly in D0. Show that the conclusion can fail in cases
where (ii) is violated. (Hint: Produce equivalent 1-forms, and use the Hodge star oper-
ator to deduce this as a special case of Exercise 3.)

Auxiliary exercises on the Hodge star operator

In most of the exercises to follow, adopt the following notational convention. For a
vector field u on an oriented Riemannian manifold, leteu denote the associated 1-form.

1. Show that
f D div u ” f D 	d 	 Qu:

If M D R3, show that
v D curl u ” Qv D 	d Qu:

2. If u and v are vector fields on R3, show that

w D u 
 v ” Qw D 	.Qu ^ Qv/:
Show that, for Qu; Qv 2 ƒ1.Mn/, 	.Qu ^ Qv/ D .	Qu/cv.
If u 
 v is defined by this formula for vector fields on an oriented Riemannian 3-fold,
show that u 
 v is orthogonal to u and v.

3. Show that the identity

(8.61) div .u 
 v/ D v � curl u � u � curl v;
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for u and v vector fields on R3, is a special case of

	d.Qu ^ Qv/ D h	d Qu; Qvi � hQu;	d Qvi; Qu; Qv 2 ƒ1.M 3/:

Deduce this from d.Qu ^ Qv/ D .d Qu/ ^ Qv � Qu ^ d Qv.

In Exercises 4–6, we produce a generalization of the identity

(8.62)
curl .u 
 v/ D v � ru � u � rv C .div v/u � .div u/v

D Œv; u	C .div v/u � .div u/v;

valid for u and v vector fields on R3.
4. For Qu; Qv 2 ƒ1.Mn/, use Exercise 2 to show that

d 	 .Qu ^ Qv/ D �.d 	 Qu/cv C Lv.	Qu/:
5. If ! 2 ƒn.Mn/ is the volume form, show that 	.!cv/ D Qv. Deduce that

	�d.	Qu/cv� D .div u/ Qv:

6. Applying Lv to .	Qu/ ^ Qw D hu; Qwi!, show that

	Lv.	Qu/ D eŒv; u	C .div v/Qu;
and hence

	d 	 .Qu ^ Qv/ D eŒv; u	C .div v/Qu � .div u/ Qv;
generalizing (8.62).

In Exercises 7–10, we produce a generalization of the identity

(8.63) grad .u � v/ D u � rv C v � ru C u 
 curl v C v 
 curl u;

valid for u and v vector fields on R3. Only Exercise 10 makes contact with the Hodge
star operator.

7. Noting that, for Qu; Qv 2 ƒ1.Mn/, d.Qucv/ D Lv Qu � .d Qu/cv, show that

2d.Qucv/ D Lv Qu C Lu Qv � .d Qu/cv � .d Qv/cu:

8. Show that
Lv Qu D eŒv; u	C .Lvg/.�;u/;

where g is the metric tensor, and where h.�; u/ D w means h.X; u/ D g.X;w/ D
hX; wi. Hence

Lv Qu C Lu Qv D .Lvg/.�;u/C .Lug/.�; v/:

9. Show that
.Lvg/.�;u/C .Lug/.�; v/ D d.Qucv/C ru Qv C rv Qu:

10. Deduce that
d hu; vi D ru Qv C rv Qu � .d Qu/cv � .d Qv/cu:

To relate this to (8.63), show using Exercises 1 and 2 that, for vector fields on R3,

w D v 
 curl u ” Qw D �.d Qu/cv:
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11. If u; v 2 ƒk.Mn/ and w 2 ƒn�k.Mn/, show that

.w; 	v/ D .�1/k.n�k/.	w; v/
and

.	u;	v/ D .u; v/:

12. Show that 	d D .�1/kC1ı	 on ƒk.M/.
13. Verify carefully that �	 D 	�. In particular, on ƒk.Mn/,

	� D �	 D .˙1/�.˙1/d 	 d C .˙1/ 	 d 	 d	�:
Find the signs.

9. Natural boundary problems for the Hodge Laplacian

LetM be a compact Riemannian manifold with boundary, dimM D m. We have
the Hodge Laplace operator

� W C1.M;ƒk/ �! C1.M;ƒk/:

As shown in �11 of Chap. 2, we have a generalization of Green’s formula, ex-
pressing �.�u; v/ as .du; dv/C .ıu; ıv/ plus a boundary integral. Two forms of
this, equivalent to formula (10.18) of Chap. 2, are

(9.1)

�.�u; v/ D .du; dv/C .ıu; ıv/

C 1

i

Z

@M

�h�d .x; �/ıu; vi C hdu; �d .x; �/vi� dS

and

(9.2)

�.�u; v/ D .du; dv/C .ıu; ıv/

C 1

i

Z

@M

�hıu; �ı.x; �/vi C h�ı.x; �/du; vi� dS:

Recall from (10.12) to (10.14) of Chap. 2 that

(9.3)
1

i
�d .x; �/u D � ^ u;

1

i
�ı.x; �/u D ���u:

We have studied the Dirichlet and Neumann boundary problems for � on 0-
forms in previous sections. Here we will see that, for each k 2 f0; : : : ; mg, there
is a pair of boundary conditions generalizing these. To begin, suppose M is half
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of a compact Riemannian manifold without boundary N , having an isometric
involution 
 W N ! N , fixing @M and switchingM andN nM . For short, we will
say N is the isometric double of M . Note that elements of C1.N / that are odd
with respect to 
 vanish on @M , hence satisfy the Dirichlet boundary condition,
while elements even with respect to 
 have vanishing normal derivatives on @M ,
hence satisfy the Neumann boundary condition. Now, if u 2 ƒk.N /, then the
hypothesis 
�u D �u (which implies 
�du D �du and 
�ıu D �ıu) implies

(9.4) �d .x; �/u D 0 and �d .x; �/ıu D 0 on @M;

while the hypothesis 
�u D u (hence 
�du D du and 
�ıu D ıu) implies

(9.5) �ı.x; �/u D 0 and �ı.x; �/du D 0 on @M:

We call the boundary conditions (9.4) and (9.5) relative boundary conditions and
absolute boundary conditions, respectively. Thus, specialized to 0-forms, relative
boundary conditions are Dirichlet boundary conditions, and absolute boundary
conditions are Neumann boundary conditions.

It is easy to see that

(9.6) � ^ u
ˇ̌
@M

D 0 ” j �u D 0; where j W @M ,! M:

Thus the relative boundary conditions (9.4) can be rewritten as

(9.7) j �u D 0; j �.ıu/ D 0:

Using (9.3), we can rewrite the absolute boundary conditions (9.5) as

(9.8) uc� D 0 and .du/c� D 0 on @M:

Also, from Exercise 1 of �8, it follows that

(9.9)
�d .x; �/.	u/ D ˙ 	 �ı .x; �/u;
�d .x; �/ı 	 u D ˙ 	 �ı .x; �/ du:

Thus the Hodge star operator interchanges absolute and relative boundary condi-
tions. In particular, the absolute boundary conditions are also equivalent to

(9.10) j �.	u/ D 0; j �.ı 	 u/ D 0:

Note that if u and v satisfy relative boundary conditions, then the boundary inte-
gral in (9.1) vanishes. Similarly, if u and v satisfy absolute boundary conditions,
then the boundary integral in (9.2) vanishes.
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We define the following closed subspaces of Sobolev spaces of k-forms:

(9.11)

H 1
R.M;ƒ

k/ D fu 2 H 1.M;ƒk/ W �d .x; �/u
ˇ̌
@M

D 0g;
H 1
A.M;ƒ

k/ D fu 2 H 1.M;ƒk/ W �ı.x; �/u
ˇ̌
@M

D 0g;
H 2
R.M;ƒ

k/ D fu 2 H 2.M;ƒk/ W (9.4) holdsg;
H 2
A.M;ƒ

k/ D fu 2 H 2.M;ƒk/ W (9.5) holdsg:

We have the following simple result, whose proof is left as an exercise.

Lemma 9.1. Suppose M has an isometric double N , as above. Given u 2
ƒk.M/, set

(9.12) Ou D u onM; �
�u on N nM; Eu D u onM; 
�u on N nM:

Then, for j D 1; 2,

(9.13) O W H j
R.M;ƒ

k/ ! H j .N;ƒk/; E W H j
A.M;ƒ

k/ ! H j .N;ƒk/:

Now the estimates for � on k-forms on N established in �8 consequently
imply the following.

Lemma 9.2. If M has an isometric double N , then we have an estimate

(9.14) kuk2
H1.M/

� Ckduk2
L2.M/

C Ckıuk2
L2.M/

C Ckuk2
L2.M/

;

both for all u 2 H 1
R.M;ƒ

k/ and for all u 2 H 1
A.M;ƒ

k/. Furthermore, with
b D R or A, if

u 2 H 1
b .M;ƒ

k/ and .du; dv/C .ıu; ıv/ � CkvkL2.M/;

for all v 2 H 1
b
.M;ƒk/, then u 2 H 2

b
.M;ƒk/.

It is convenient to rewrite the estimate (9.14) as the following pair of estimates:

(9.15)
kuk2

H1.M/
� Ckduk2

L2.M/
C Ckıuk2

L2.M/

C Ck�d .x; �/uk2
H1=2.@M/

C Ckuk2
L2.M/

and

(9.16)
kuk2

H1.M/
� Ckduk2

L2.M/
C Ckıuk2

L2.M/

C Ck�ı .x; �/uk2
H1=2.@M/

C Ckuk2
L2.M/

;

both valid for all u 2 H 1.M;ƒk/.
So far, the estimates (9.15) and (9.16) have been shown to hold when M has

an isometric double. Now any compact manifold M with smooth boundary has
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a double N , a smooth manifold without boundary, together with a smooth in-
volution 
 fixing @M . Also, N possesses Riemannian metrics invariant under 
 .
However, if M is endowed with some Riemannian metric, it may not extend to
a smooth invariant Riemannian metric on N . For example, a necessary condition
for such a metric to exist on N would be that @M is totally geodesic in M . Our
next task will be to show that the estimates (9.15) and (9.16) hold in general.

To begin, if � 2 C1.M/ is a cut-off, since the commutators Œd; �	 and Œı; �	
are bounded on L2.M/, we see that it suffices to prove the following.

Lemma 9.3. For any p 2 M , there is a neighborhood O of p inM such that the
estimates (9.15) and (9.16) hold for u supported in O.

Of course, for interior points p, such estimates follow from the analysis of �8,
so we need only consider p 2 @M .

For p 2 @M , choose a coordinate mapping of a neighborhood O1 of p in M
to a neighborhood U1 of 0 in RnC, such that the induced Riemannian metric gjk
is equal to ıjk at 0. In addition to the induced metric g on U1 (which gives rise to
ı D ˙	d	), we have the flat metric g0 onU1, g0

jk
D ıjk , and associated operator

ı0. The differential operators ı and ı0 are first-order differential operators whose
principal symbols agree at the origin 0. Of course, the exterior derivative operator
d is independent of the metric; d D d0. We also note that the unit normal � to
@M with respect to the metric g is equal to the normal �0 D dxn with respect
to the flat metric, at the origin, so the 0-order operators �d .x; �/ and �d0.x; �0/

agree at 0, and so do the 0-order operators �ı .x; �/ and �ı0.x; �0/.
Now the reflection argument described above shows that if we have u 2

H 1.U1; ƒ
k/, vanishing on the upper boundary, then

(9.17)
kuk2

H1.U1/
� Ckd 0uk2

L2.U1/
CCkı0uk2

L2.U1/
CCkB0uk2

H1=2.�/
CCkuk2

L2.M/
;

where � is Rn�1 D @RnC, compactified into a torus by putting U 1 \ Rn�1 in a
big box and identifying opposite sides. Also, B0 in (9.17) is either �d0.x; �0/ or
�ı0.x; �0/. On the other hand, if in addition the support of u is in a sufficiently
small neighborhood of 0, we have

(9.18) kıu � ı0uk2
L2.U1/

� "kuk2
H1.U1/

C c."/kuk2
L2.U1/

and

(9.19) kBu � B0uk2
H1=2.�/

� "kuk2
H1=2.�/

� C0"kuk2
H1.U1/

;

where B is either �d .x; �/ or �ı.x; �/, depending on the choice of B0. Con-
sequently, for u with sufficiently small support, the estimates (9.15) and (9.16)
follow from (9.17). This proves Lemma 9.3 and consequently, in view of the ob-
servation on cut-offs, we have the following.
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Proposition 9.4. IfM is a compact Riemannian manifold with smooth boundary,
then the estimates (9.15) and (9.16) hold for all u 2 H 1.M;ƒk/. Hence the
estimate (9.14) holds both for all u 2 H 1

R.M;ƒ
k/ and for all u 2 H 1

A.M;ƒ
k/.

In analogy with our treatment of the Neumann boundary condition in �7, we
define an operator

(9.20) LR W H 1
R.M;ƒ

k/ �! H 1
R.M;ƒ

k/�

by

(9.21) .LRu; v/ D .du; dv/C .ıu; ıv/; u; v 2 H 1
R.M;ƒ

k/;

and we also define

(9.22) LA W H 1
A.M;ƒ

k/ �! H 1
A.M;ƒ

k/�

by

(9.23) .LAu; v/ D .du; dv/C .ıu; ıv/; u; v 2 H 1
A.M;ƒ

k/:

The estimates (9.15) and (9.16) show that, with b D R or A, and some C0 > 0,

(9.24)
�
.Lb C C0/u; u

� � Ckuk2
H1.M/

; u 2 H 1
b .M;ƒ

k/;

which as before leads to the following.

Proposition 9.5. For b D R or A, the maps

(9.25) Lb C C0 W H 1
b .M;ƒ

k/ �! H 1
b .M;ƒ

k/�

are one-to-one and onto.

The maps

(9.26) Tb W H 1
b .M;ƒ

k/� �! H 1
b .M;ƒ

k/

giving two-sided inverses of (9.25) are compact, self-adjoint operators on L2.M;
ƒk/, so we have orthonormal bases fu.k/j g and fv.k/j g of L2.M;ƒk/ satisfying

(9.27) TRu.k/j D �
.k/
j u.k/j ; u.k/j 2 H 1

R.M;ƒ
k/;

and

(9.28) TAv
.k/
j D �

.k/
j v

.k/
j ; v

.k/
j 2 H 1

A.M;ƒ
k/:
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Since clearly ..Lb C 1/u; u/ � kuk2
L2 , we can take C0 D 1 in (9.25). Then the

eigenvalues of TR and TA all have magnitude � 1, and we can order them so that,
for each k; �.k/j and �.k/j & 0 as j ! 1. It follows that, for each k,

(9.29) LRu.k/j D 
.k/
j u.k/j ; 

.k/
j D 1

�
.k/
j

� 1 % 1;

and

(9.30) LAv.k/j D ˛
.k/
j v

.k/
j ; ˛

.k/
j D 1

�
.k/
j

� 1 % 1:

Here, .k/j � 0 and ˛.k/j � 0, and only finitely many of these quantities are equal
to zero.

We can produce higher-order regularity results by the same techniques as used
for the Dirichlet and Neumann problems. In analogy with Proposition 7.2, we
have

Proposition 9.6. With b D R or A, given f 2 L2.M;ƒk/, u D Tbf satisfies

(9.31) u 2 H 2
b .M;ƒ

k/;

and there is the estimate

(9.32)
kuk2

H2.M/
� Ck�uk2

L2.M/
C CkB.0/

b
uk2
H3=2.@M/

C CkB.1/
b

uk2
H1=2.@M/

C Ckuk2
H1.M/

;

for all u 2 H 2.M;ƒk/, where

(9.33)
B
.0/
R u D �d .x; �/u; B

.0/
A u D �ı .x; �/u;

B
.1/
R u D �d .x; �/ıu; B

.1/
A u D �ı .x; �/du:

This can be proved in the same way as Proposition 7.2. We give details on why
the boundary conditions hold in (9.31), which are slightly more involved than
before. We claim that, given u 2 H 1

b
.M;ƒk/, with �u 2 L2.M;ƒk/, then the

boundary term in (9.1)–(9.2) vanishes for all v 2 H 1
b
.M;ƒk/ if and only if all the

appropriate boundary data for u vanish; for example, �d .x; �/ıu D 0 on @M , in
case b D R. We need to establish the “only if” part. Take the case b D R. Pick
� 2 C1.M;Hom.ƒk�1; ƒk// such that �.x/ D �d .x; �/, for x 2 @M . Then,
for any w 2 ƒk�1.M/, we have v D �w 2 H 1

R.M;ƒ
k/, and hence, for any

u 2 H 1
R.M;ƒ

k/, the boundary term in (9.1) is equal to
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ˇ.u; v/ D 1

i

Z

@M

˝
�d .x; �/ ıu; �d .x; �/w

˛
dS

D 1

i

Z

@M

˝
�d .x; �/

��d .x; �/ .ıu/; w
˛
dS:

This vanishes for all w 2 ƒk�1.M/ if and only if �d .x; �/��d .x; �/ .ıu/ D 0 on
@M , which in turn occurs if and only if �d .x; �/ .ıu/ D 0 on @M . Thus, obtaining
u 2 H 2.M;ƒk/ by the methods used in Proposition 7.2, we have (9.31), in case
b D R. The case b D A is similar.

Next, the same arguments proving Proposition 7.5 and Theorem 1.3 establish
the following.

Proposition 9.7. Given f1 2 H j .M;ƒk/, j D 1; 2; 3; : : : , a k-form u 2
H jC1.M;ƒk/ satisfying

(9.34) �u D f1 on M

and either of the boundary conditions (9.4) or (9.5), belongs to H jC2.M;ƒk/.
Furthermore, we have estimates

(9.35)
kuk2

Hj C2.M/
� Ck�uk2

Hj .M/
C CkB.0/

b
uk2
Hj C3=2.@M/

C CkB.1/
b

uk2
Hj C1=2.@M/

C Ckuk2
Hj C1.M/

;

for all u 2 H jC2.N;ƒk/, where B.`/
b

are given by (9.33).

One corollary of this is that the eigenfunctions u.k/j and v.k/j are inC1.M;ƒk/

and satisfy the boundary conditions (9.4) and (9.5), respectively. The 0-eigen-
spaces of LR and LA are finite-dimensional spaces in C1.M;ƒk/; denote them
by HR

k
and HA

k
, respectively. We see that, for b D R or A,

(9.36)
u 2 Hb

k ” u 2 C1.M ;ƒk/; B
.0/

b
u D 0 on @M;

and du D ıu D 0 on M:

Again, B.0/
b

are given by (9.33). Equivalently,

(9.37) B
.0/
R u D � ^ u; B

.0/
A u D uc�:

Also recall that we can replace �^u by j �u. To state the result slightly differently,

(9.38) u 2 Hb
k ” u 2 H 1

b .M;ƒ
k/ and du D ıu D 0:
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We call HR
k

and HA
k

the spaces of harmonic k-forms, satisfying relative and ab-
solute boundary conditions, respectively.

Denote by PR
h

and PA
h

the orthogonal projections of L2.M;ƒk/ onto HR
k

and
HA
k

. Parallel to (8.22)and (8.23) we have continuous linear maps

(9.39) Gb W L2.M;ƒk/ �! H 2
b .M;ƒ

k/; b D R or A;

such thatGb annihilatesHb
k

and inverts �� on the orthogonal complement ofHb
k

:

(9.40) ��Gbu D .I � P bh /u; for u 2 L2.M;ƒk/;

and furthermore, for j � 0,

(9.41) Gb W H j .M;ƒk/ �! H jC2.M;ƒk/:

The identity (9.40) then produces the following two Hodge decompositions for a
compact Riemannian manifold with boundary.

Proposition 9.8. Given u 2 H j .M;ƒk/, j � 0, we have

(9.42) u D dıGRu C ıdGRu C PRh u D PRd u C PRı u C PRh u

and

(9.43) u D dıGAu C ıdGAu C PAh u D PAd u C PAı u C PAh u:

In both cases, the three terms on the right side are mutually orthogonal in
L2.M;ƒk/.

Proof. It remains only to check orthogonality, which requires a slightly longer
argument than that used in Proposition 8.2. By continuity, it suffices to check the
orthogonality for u 2 C1.M;ƒk/. We will use the identity

(9.44) .du; v/ D .u; ıv/C �.u; v/;

for u 2 ƒj�1.M/ and v 2 ƒj .M/, with

(9.45) �.u; v/ D 1

i

Z

@M

h�d .x; �/u; vi dS D 1

i

Z

@M

hu; �ı.x; �/vi dS:

Note that �.u; v/ D 0 if either u 2 H 1
R.M;ƒ

j�1/ or v 2 H 1
A.M;ƒ

j /. In partic-
ular, we see that
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(9.46)
u 2 H 1

R.M;ƒ
k�1/ H) du ? ker ı \H 1.M;ƒk/;

v 2 H 1
A.M;ƒ

k/ H) ıv ? ker d \H 1.M;ƒk�1/:

From the definitions, we have

(9.47)
ı W H 2

R.M;ƒ
j / �! H 1

R.M;ƒ
j�1/;

d W H 2
A.M;ƒ

j / �! H 1
A.M;ƒ

jC1/;

so

(9.48)
dıH 2

R.M;ƒ
k/ ? ker ı \H 1.M;ƒk/;

ıdH 2
A.M;ƒ

k/ ? ker d \H 1.M;ƒk/:

Now (9.48) implies for the ranges:

(9.49) R.PRd / ? R.PRı /C R.PRh /; R.PAı / ? R.PAd /C R.PAh /:

Furthermore, if u 2 HR
k

and v D dGRw, then �.u; v/ D 0, so .u; ıv/ D
.du; v/ D 0. Similarly, if v 2 HA

k
and u D ıGAw, then �.u; v/ D 0, so

.du; v/ D .u; ıv/ D 0. Thus

(9.50) R.PRı / ? R.PRh /; R.PAd / ? R.PAh /:

The proposition is proved.

We can produce an analogue of Proposition 8.3, relating the spaces Hb
k

to
cohomology groups. We first look at the case b D R. Set

(9.51) C1
r .M;ƒk/ D fu 2 C1.M;ƒk/ W j �u D 0g:

Since d ı j � D j � ı d , it is clear that

(9.52) d W C1
r .M;ƒk/ �! C1

r .M ;ƒkC1/:

Our spaces of “closed” and “exact” forms are

(9.53)
CkR.M/ D fu 2 C1

r .M;ƒk/ W du D 0g;
EkR.M/ D d C1

r .M;ƒk�1/:

We set

(9.54) Hk.M; @M/ D CkR.M/=EkR.M/:
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Proposition 9.9. If M is a compact Riemannian manifold with boundary, there
is a natural isomorphism

(9.55) Hk.M; @M/ � HR
k :

Proof. By (9.36) we have an injection

j W HR
k �! CkR.M/;

which yields a map

J W HR
k �! Hk.M; @M/;

by composing with (9.54). The orthogonality of the terms in (9.42) implies
(Image j / \ EkR.M/ D 0, so J is injective. Furthermore, if u 2 CkR.M/, then u
is orthogonal to ıv for any v 2 C1.M;ƒkC1/, so the term ı.dGRu/ in (9.42)
vanishes, and hence J is surjective. This proves the proposition.

As in �8, it is clear that Hk.M; @M/ is independent of a metric on M . Thus
the dimension of HR

k
is independent of such a metric.

Associated to absolute boundary conditions is the family of spaces

(9.56) C1
a .M;ƒk/ D fu 2 C1.M;ƒk/ W ��u D ��.du/ D 0g;

replacing (9.51); we have

(9.57) d W C1
a .M ;ƒk/ �! C1

a .M;ƒkC1/;

and, with CkA.M/ the kernel of d in (9.57) and EkC1
A .M/ its image, we can form

quotients. The following result is parallel to Proposition 9.9.

Proposition 9.10. There is a natural isomorphism

(9.58) HA
k � CkA.M/=EkA.M/:

Proof. This is exactly parallel to the proof of Proposition 9.9.

We have refrained from denoting the right side of (9.58) by Hk.M/, since the
deRham cohomology of M has the standard definition

(9.59) Hk.M/ D Ck.M/=Ek.M/;

where Ck.M/ is the kernel and EkC1.M/ the image of d in

(9.60) d W C1.M;ƒk/ �! C1.M ;ƒkC1/:
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Note that no boundary conditions are imposed here. We now establish that (9.58)
is isomorphic to Hk.M/.

Proposition 9.11. The quotient spaces CkA.M/=EkA.M/ and Hk.M/ are natu-
rally isomorphic. Hence

(9.61) HA
k � Hk.M/:

Proof. It is clear that there is a natural map

� W CkA.M/=EkA.M/ �! Hk.M/;

since CkA.M/ � Ck.M/ and EkA.M/ � Ek.M/. To show that � is surjective, let
˛ 2 C1.M;ƒk/ be closed; we want Q̨ 2 Cka .M/ such that ˛� Q̨ D dˇ for some
ˇ 2 C1.M;ƒk�1/.

To arrange this, we use a 1-parameter family of maps

(9.62) 't W M �! M; 0 � t � 1;

such that '0 is the identity map, and as t ! 1, 't retracts a collar neighborhood
O of @M onto @M , along geodesics normal to @M . Set Q̨ D '�

1˛. It is easy to see
that Q̨ 2 Cka .M/. Furthermore, ˛ � Q̨ D dˇ with

(9.63) ˇ D �
Z 1

0

'�
t

�
˛cX.t/� dt 2 C1.M;ƒk�1/;

where X.t/ D .d=dt/'t . Compare the proof of the Poincaré lemma, Theorem
13.2 of Chap. 1, and formulas (13.61)–(13.64) of that chapter. It follows that � is
surjective.

Consequently, we have a natural surjective homomorphism

(9.64) Q� W HA
k �! Hk.M/:

It remains to prove that Q� is injective. But if ˛ 2 HA
k

and ˛ D dˇ, ˇ 2
C1.M;ƒk�1/, then the identity (9.44) with du D dˇ, v D ˛ implies .˛; ˛/ D
0, hence ˛ D 0. This completes the proof.

One can give a proof of (9.61) without using such a homotopy argument, in
fact without using CkA.M/=EkA.M/ at all. See Exercise 5 in the set of exercises on
cohomology after this section. Such an argument will be useful in Chap. 12. On
the other hand, homotopy arguments similar to that used above are also useful,
and will arise in a number of problems in this set of exercises.

We can now establish the following Poincaré duality theorem, whose proof
is immediate, since by (9.9) the Hodge star operator interchanges absolute and
relative boundary conditions.
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Proposition 9.12. If M is an oriented, compact Riemannian manifold with
boundary, then

(9.65) 	 W HR
k �! HA

m�k

is an isomorphism, where m D dim M . Consequently,

(9.66) Hk.M; @M/ � Hm�k.M/:

We end this section with a brief description of a sequence of maps on coho-
mology, associated to a compact manifoldM with boundary. The sequence takes
the form

(9.67) � � � ! Hk�1.@M/
ı�! Hk.M; @M/

��! Hk.M/
��! Hk.@M/ ! � � � :

These maps are defined as follows. The inclusion

C1
r .M;ƒk/ ,! C1.M;ƒk/;

yielding CkR.M/ � Ck.M/ and EkR.M/ � Ek.M/, gives rise to � in a natural
fashion. The map � comes from the pull-back

j � W C1.M;ƒk/ �! C1.@M;ƒk/;

which induces a map on cohomology since j �d D dj �. Note that j � annihilates
C1
r .M;ƒk/, so � ı � D 0.

The “coboundary map” ı is defined on the class Œ˛	 2 Hk�1.@M;R/ of a
closed form ˛ 2 ƒk�1.@M/ by choosing a form ˇ 2 C1.M;ƒk�1/ such that
j �ˇ D ˛ and taking the class Œdˇ	 of dˇ 2 CkR.M/. Note that dˇ might not
belong to EkR.M/ if j �ˇ is not exact. If another Q̌ is picked such that j � Q̌ D
˛ C d� , then d.ˇ � Q̌/ does belong to EkR.M/, so ı is well defined:

ıŒ˛	 D Œdˇ	; with j �ˇ D ˛:

Note that if Œ˛	 D �Œ Q̌	, via ˛ D j � Q̌ with Q̌ 2 Ck.M/, then d Q̌ D 0, so ı ı � D 0.
Also, since dˇ 2 Ek.M/, � ı ı D 0.

In fact, the sequence (9.67) is exact, that is, the image of each map is equal to
the kernel of the map that follows. This “long exact sequence” in cohomology is
a useful computational tool. Exactness will be sketched in some of the following
exercises on cohomology.

Another important exact sequence, the Mayer–Vietoris sequence, is discussed
in Appendix B at the end of this chapter.
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Exercises

1. Let u be a 1-form onM with associated vector field U . Show that the relative boundary
conditions (9.4) are equivalent to

U ? @M and div U D 0 on @M:

If dim M D 3, show that the absolute boundary conditions (9.5) are equivalent to

U k @M and curl U ? @M:

Treat the case dim M D 2.
2. Let b D R or A. Consider the unbounded operator Db on H D L

k

L2.M;ƒk/:

Db D d C ı; D.Db/ D
M

k

H1
b .M;ƒ

k/:

Here D.Db/ denotes the domain of Db . Show that Db is self adjoint, that D.D2
b
/ D

L

k

H2
b
.M;ƒk/, and that D2

b
D �� on this domain. Show that

u D .d C ı/Gb.d C ı/u C P b
k

u; for u 2 H1
b
.M;ƒk/:

Reconsider this problem after reading ��11 and 12. For a discussion of unbounded
operators defined on dense domains, see �8 in Appendix A.

3. Show that d and ı map D.DjC1
b

/ to D.Dj
b
/, for j � 0.

4. Form the orthogonal projections P b
d

D dıGb , P b
ı

D ıdGb . With b D R or A, show
that the four operators

Gb ; P bh ; P
b
d ; and P bı

all commute. Deduce that one can arrange the eigenfunctions u.k/j , forming an orthonor-

mal basis of L2.M;ƒk/, such that each one appears in exactly one term in the Hodge

decomposition (9.42), and that the same can be done with the eigenfunctions v.k/j , rel-
ative to the decomposition (9.43).

5. If M is oriented, and 	 the Hodge star operator, show that

TA 	 D 	 TR;
where TA and TR are as in (9.26). Show that

PA
h

	 D 	 PR
h

and GA 	 D 	 GR :

Also, with P b
d

and P b
ı

the projections defined above, show that

PA
d

	 D 	 PR
ı

and PA
ı

	 D 	 PR
d
:

Exercises on cohomology

1. Let M be a compact, connected manifold with nonempty boundary, and double N .
Endow N with a Riemannian metric invariant under the involution 
 . Show that
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(9.68) Hk.M; @M/ � fu 2 Hk.N / W 
�u D �ug:
Deduce that if M is also orientable,

(9.69) Hn.M; @M/ D R; n D dim M:

2. If M is connected, show directly that

H0.M/ D R:

By Poincaré duality, this again implies (9.69), when M is orientable.
3. Show that if M is connected and @M ¤ ;,

H0.M; @M/ D 0:

Deduce that if M is also orientable, n D dim M , then

Hn.M/ D 0

Give a proof of this that also works in the nonorientable case.
4. Show directly, using the proof of the Poincaré lemma, Theorem 13.2 of Chap. 1, that

(9.70) Hk.Bn/ D 0; 1 � k � n;

where Bn is the closed unit ball in Rn, with boundary Sn�1. Deduce that

(9.71)
Hk.Bn; Sn�1/ D 0; 0 � k < n;

R; k D n:

5. Use (9.48) to show directly from Proposition 9.8 (not using Proposition 9.11) that, if
˛ 2 C1.M;ƒk/ is closed, then ˛ D dˇ C PA

h
˛ for some ˇ 2 C1.M;ƒk�1/, in

fact, for ˇ D ıGA˛. Hence conclude that

HA
k

� Hk.M/

without using the homotopy argument of Proposition 9.11.

Let M be a smooth manifold without boundary. The cohomology with compact
supports Hkc .M/ is defined via

(9.72) d W C1
0 .M;ƒk/ �! C1

0 .M;ƒkC1/;

as
Hkc .M/ D Ckc .M/=Ekc .M/;

where the kernel of d in (9.72) is Ckc .M/ and its image is EkC1
c .M/.

In Exercises 6 and 7, we assume M is the interior of a compact manifold with
boundary M .

6. Via C1
0 .M;ƒk/ ,! C1

r .M;ƒk/, we have a well-defined homomorphism

 W Hkc .M/ �! Hk.M; @M/:
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Show that  is injective. (Hint: Let 't W M ! M be as in (9.62); also, givenK �� M ,
arrange that each 't is the identity onK. If ˛ 2 Ckc .M/ has support inK and ˛ D dˇ,
with ˇ 2 C1

r .M;ƒk�1/, show that Q̌ D '�
1ˇ has compact support and d Q̌ D ˛:)

7. Show that  is surjective, and hence

(9.73) Hkc .M/ � Hk.M; @M/:

(Hint: If ˛ 2 Ck
R
.M/, set Q̨ D '�

1˛ and parallel the argument using (9.63), in the proof
of Proposition 9.11.)

8. If M is connected and oriented, and dim M D n, show that

Hnc .M/ D R;

even if M cannot be compactified to a manifold with smooth boundary.
(Hint: If ˛ 2 C1

0 .M;ƒn/ and
R
M ˛ D 0, fit the support of ˛ in the interior Y of

a compact, smooth manifold with boundary Y � M . Then apply arguments outlined
above.)

9. Let X be a compact, connected manifold; given p 2 X , let M D X n fpg. Then
C1
0 .M;ƒk/ ,! C1.X;ƒk/ induces a homomorphism

� W Hkc .M/ �! Hk.X/:

Show that � is an isomorphism, for 0 < k � dimX . (Hint: Construct a family of maps
 t W X ! X , with properties like 't used in Exercises 6 and 7, this time collapsing
a neighborhood O of p onto p as t ! 1. Establish the injectivity and surjectivity of
� by arguments similar to those used in Exercises 6 and 7, noting that the analogue of
the argument in Exercise 7 fails in this case when k D 0:)

10. Using Exercise 9, deduce that

(9.74) Hk.Sn/ � Hkc .Rn/; 0 < k � n:

In light of Exercises 4 and 7, show that this leads to

(9.75)
Hk.Sn/ D 0 if 0 < k < n;

R if k D 0 or n;

provided n � 1, giving therefore a demonstration of (8.56)–(8.57) different from that
suggested in Exercise 9 of �8.

Exercises 11–13 establish the exactness of the sequence (9.67).
11. Show that ker � � im � . (Hint: Given u 2 Ck.M/, j�u D dv, pick w 2 ƒk�1.M/

such that j�w D v, to get u � dw 2 C1
r .M;ƒk/, closed.)

12. Show that ker ı � im �. (Hint: Given ˛ 2 Ck.@M/, if ˛ D j�ˇ with Œdˇ	 D 0 in
HkC1.M; @M/, that is, dˇ D d Q̌, Q̌ 2 C1

r .M;ƒk/, show that Œ˛	 D �Œˇ � Q̌	:)
13. Show that ker � � im ı. (Hint: Given u 2 Ck

R
.M/, if u D dv, v 2 ƒk�1.M/, show

that Œu	 D ıŒv	:)
14. Applying (9.67) to M D BnC1, the closed unit ball in RnC1, yields

(9.76) Hk.BnC1/ ��! Hk.Sn/ ı�! HkC1.BnC1; Sn/ ��! HkC1.BnC1/:
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Deduce that
Hk.Sn/ � HkC1.BnC1; Sn/; for k � 1;

since by (9.70) the endpoints of (9.76) vanish for k � 1. Then, by (9.71), there follows
a third demonstration of the computation (9.75) of Hk.Sn/.

15. Using Exercise 3, show that if M is connected and @M ¤ ;, the long exact sequence
(9.67) begins with

0 ! H0.M/
��! H0.@M/

ı�! H1.M; @M/ ! � � �
and ends with

� � � ! Hn�1.M/
��! Hn�1.@M/

ı�! Hn.M; @M/ ! 0:

16. Define the relative Euler characteristic

�.M ; @M/ D
X

k�0
.�1/k dim Hk.M; @M/:

Define �.M/ and �.@M/ as in (8.51). Show that

�.M/ D �.M; @M/C �.@M/:

(Hint: Show that, for any exact sequence of the form

0 ! V1 ! � � � ! VN ! 0;

with Vk finite-dimensional vector spaces over R,
P
.�1/k dim Vk D 0:)

17. Using Poincaré duality show that if M is orientable, n D dim M ,

�.M/ D .�1/n�.M ; @M/:

Deduce that if n is odd and M orientable, �.@M/ D 2�.M/.
18. If N is the double of M , show that

dim Hk.N / D dim Hk.M/C dim Hk.M; @M/:

Deduce that if M is orientable and dim M is even, then �.N/ D 2�.M/.

In Exercises 19–21, let �j be compact, oriented manifolds of dimension n, with
boundary. Assume that @�j ¤ ; and that �2 is connected. Let F W �1 ! �2 be a
smooth map with the property that f D F

ˇ̌
@�1

W @�1 ! @�2. Recall that we have
defined Deg f in �19 of Chap. 1, when @�2 is connected.

19. Let � 2 ƒn.�2/ satisfy
R
�2
� D 1. Show that

R
�1
F �� is independent of the choice

of such � , using Hn.�j ; @�j / D R. Compare Lemma 19.6 of Chap. 1. Define

Deg F D
Z

�1

F ��:

20. Produce a formula for Deg F , similar to (19.16) of Chap. 1, making use of F�1.y0/,
with y0 2 �2.
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21. Prove that Deg F D Deg f , assuming @�2 is connected.
(Hint: Pick ! 2 ƒn�1.@�2/ such that

R
@�2

! D 1, pick Q! 2 ƒn�1.�2/ such that
j� Q! D !, and let � D d Q!. Formulate an extension of this result to cases where @�2
has several connected components.)

22. Using the results of Exercises 19–21, establish the “argument principle,” used in the
proof of the Riemann mapping theorem in �4. (Hint: A holomorphic map is always
orientation preserving.)

In Exercise 23, we assume that M is a compact manifold with boundary, with in-
terior M . Define Hk.M/ via the deRham complex, d W ƒk.M/ ! ƒkC1.M/. It is
desired to establish the isomorphism of this with Hk.M/.

23. Let C be a small collar neighborhood of @M , so M 1 D M n C is diffeomorphic toM .
With j W M 1 ,! M , show that the pull-back j� W ƒk.M/ ! ƒk.M 1/ induces an
isomorphism of cohomology:

Hk.M/ � Hk.M 1/:

(Hint: For part of the argument, it is useful to consider a smooth family

't W M �! M t ; 0 � t � 1

of diffeomorphisms of M onto manifolds M t , with M 0 D M and '0 D id . If
ˇ 2 ƒk.M/ and dˇ D 0, and if ˇ1 D '�

1 j
�ˇ, then

ˇ D ˇ1 � d
�Z 1

0
'�
t ˇcX.t/ dt

�
;

where X.t/.x/ D .d=dt/'t .x/. Contrast this with the proof of Proposition 9.11.)

Exercises on spaces of gradient and divergence-free vector fields

In this problem set, we will work with the spaces

(9.77) V� D fv 2 C1.M;ƒ1/ W ıv D 0 on M; ��v D 0 on @M g � H1
A.M;ƒ

1/

and

(9.78) G D fdp W p 2 H1.M/g:
We assume thatM is a compact Riemannian manifold with boundary. These are spaces
of 1-forms rather than vector fields, but recall that under the correspondence induced
by the Riemannian metric, ıv $ div V and dp $ grad p.

1. Show that V� ? G.
2. Suppose v 2 L2.M;ƒ1/ is orthogonal to G. Show that ıv D 0 on M , that ��v exists

on @M , and that ��v D 0 on @M , as the identity

.v; dp/L2 D .ıv; p/L2 C
Z

@M

h��v; pi dS

is valid under these hypotheses. Conclude that G? � eV � , where
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eV � D fv 2 L2.M;ƒ1/ W ıv D 0 on M; ��v D 0 on @M g:
Show that actually G? D eV � . (Hint: The space fdp W p 2 C1.M/g is dense in G:)

3. Show that ��du
ˇ̌
@M

D 0 ) ��ıdu
ˇ̌
@M

D 0. (Hint: Use (9.6) and (9.9).)
4. Show that v 2 L2.M;ƒ1/ is orthogonal to G if and only if its Hodge decomposition

(9.43) takes the form
v D ıdGAv C PA1 v:

(Hint: Show that ıdH2
A
.M;ƒ1/ ? G. To see this, use either (9.48) or Exercises 2–3.)

5. Deduce that

(9.79) G? D eV � D ıdH2
A.M;ƒ

1/˚ HA1 D V � ;

where V � denotes the closure of V� in L2.M;ƒ1/, and that the decomposition

(9.80) L2.M;ƒ1/ D G ˚ V �

is implemented by the Hodge decomposition (9.43), for k D 1.
(Hint: H2

A
.M;ƒ1/ has a dense subspace of smooth forms on M:)

6. Deduce that if u 2 H j .M;ƒ1/, then its L2-orthogonal projections onto G and onto
V � belong toH j .M;ƒ1/, j � 0.

7. From Exercise 4, it follows that dH1.M/ D G D dıH2
A
.M;ƒ1/. Establish that in fact

H1.M/ D ıH2
A.M;ƒ

1/C R;

via the Hodge decomposition for 0-forms,

L2.M/ D ıdH2
A.M/˚ HA0 I HA0 D R

(provided M is connected), where H2
A
.M/ D H2

A
.M;ƒ0/ is given by the Neumann

boundary condition. We have u D ıdGAu C PA0 u, where

GA W H j .M/
��!
n
v 2 H jC2

A
.M/ W

Z

M

v dV D 0
o

comes from solving the Neumann problem.

10. Isothermal coordinates and conformal structures on
surfaces

Let M be an oriented manifold of dimension 2, endowed with a Riemannian
metric g. We aim to apply some results on the Dirichlet problem to prove the
following result.

Proposition 10.1. There exists a covering Uj of M and coordinate maps

(10.1) 'j W Uj �! Oj � R2

which are conformal (and orientation preserving).
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By definition, a map ' W U ! O between two manifolds, with Riemannian
metrics g and g0, is conformal provided

(10.2) '�g0 D �g;

for some positive � 2 C1.U /. In (10.1), Oj is of course given the flat metric
dx2 C dy2. Coordinates (10.1) that are conformal are also called “isothermal
coordinates.” It is clear that the composition of conformal maps is conformal, so
if Proposition 10.1 holds, then the transition maps

(10.3)  jk D 'j ı '�1
k W Ojk �! Okj

are conformal, where Ojk D 'k.Uj \ Uk/. This is particularly significant, in
view of the following fact:

Proposition 10.2. An orientation-preserving conformal map

(10.4)  W O �! O0

between two open domains in R2 D C is a holomorphic map.

One way to see this is with the aid of the Hodge star operator 	, introduced in
�8, which maps ƒ1.M/ to ƒ1.M/ if dim M D 2. Note that, for M D R2, with
its standard orientation and flat metric,

(10.5) 	dx D dy; 	dy D �dx:

Since the action of a map (10.4) on 1-forms is given by

(10.6)

 �dx D @f

@x
dx C @f

@y
dy D df;

 �dy D @g

@x
dx C @g

@y
dy D dg;

if  .x; y/ D .f; g/, then the Cauchy–Riemann equations

(10.7)
@f

@x
D @g

@y
;

@g

@x
D �@f

@y
.i.e., 	 df D dg/

are readily seen to be equivalent to the commutativity relation

(10.8) 	 ı � �� D �
 �� ı 	 on 1-forms:
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Thus Proposition 10.2 is a consequence of the following:

Proposition 10.3. If M is oriented and of dimension 2, then the Hodge star op-
erator 	 W T �

pM ! T �
pM is conformally invariant.

In fact, in this case, 	 can be simply characterized as counterclockwise rotation
by 90ı, as can be seen by picking a coordinate system centered at p 2 M such that
gjk D ıjk at p and using (10.5). This characterization of 	 is clearly conformally
invariant.

Thus Proposition 10.1 implies that an oriented, two-dimensional Riemannian
manifold has an associated complex structure. A manifold of (real) dimension two
with a complex structure is called a Riemann surface.

To begin the proof of Proposition 10.1, we note that it suffices to show that, for
any p 2 M , there exists a neighborhoodU of p and a coordinate map

(10.9)  D .f; g/ W U ! O � R2;

which is conformal. If df .p/ and dg.p/ are linearly independent, the map .f; g/
will be a coordinate map on some neighborhood ofp, and .f; g/will be conformal
provided

(10.10) 	df D dg:

Note that if df .p/ ¤ 0, then df .p/ and dg.p/ are linearly independent. Suppose
f 2 C1.U / is given. Then, by the Poincaré lemma, if U is diffeomorphic to a
disk, there will exist a g 2 C1.U / satisfying (10.10) precisely when

(10.11) d 	 df D 0:

Now, as we saw in �8, the Laplace operator on C1.M/ is given by

(10.12) �f D �ıdf D � 	 d 	 df;

when dimM D 2, so (10.11)is simply the statement that f is a harmonic function
on U . Thus Proposition 10.1 will be proved once we establish the following.

Proposition 10.4. There is a neighborhood U of p and a function f 2 C1.U /
such that �f D 0 on U and df .p/ ¤ 0.

Proof. In a coordinate system x D .x1; x2/, we have

�f.x/ D g.x/�1=2 @j
�
gjk.x/g.x/1=2 @kf

�

D gjk.x/ @j @kf C bk.x/ @kf:

Pick some coordinate system centered at p, identifying the unit disk D � R2 with
some neighborhood U1 of p. Now dilate the variables by a factor ", to map the
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small neighborhood U" of p (the image of the disk D" of radius " in the original
coordinate system) onto the unit disk D. In this dilated coordinate system, we have

(10.13) �f.x/ D gjk."x/ @j @kf C "bk."x/ @kf:

Now we define f D f" to be the harmonic function on U" equal to x1=" on @U"
(in the original coordinate system), hence to x1 on @D in the dilated coordinate
system. We need only show that, for " > 0 sufficiently small, we can guarantee
that df".p/ ¤ 0.

To see this note that, in the dilated coordinate system, we can write

(10.14) f" D x1 � "v" on D;

where v" is defined by

(10.15) �"v" D b1."x/ on D; v"
ˇ̌
@D D 0;

and �" is given by (10.13) Now the regularity estimates of Theorem 1.3 hold
uniformly in " 2 .0; 1	 in this case, so we have uniform estimates in H k.D/ on
v" as " ! 0 for each k, and consequently uniform estimates on v" in C 1.D/ as
" ! 0. This shows that df".p/ ¤ 0 for " small and completes the proof.

Exercises

1. SupposeM is an n-dimensional, oriented manifold, with metric tensor g. Let g0 D eug

be a new metric tensor. Use these two metrics to define Hodge star operators 	 and 	0,
respectively. Show that

	0 D e.
n
2 �j /u 	 on ƒj .M/:

In particular, if n D 2k is even, 	0 D 	 on ƒk.M/.
2. Express ı0u in terms of ıu and other operators, when u 2 ƒj .M/, where ı0 is the

analogue of ı when g is replaced by g0. Do the same for dı0u, ı0du, and �0u.
3. Show that if n D 2, u 2 ƒ0.M/, then �u D 0 if and only if �0u D 0.
4. If M is compact and n D 2k, show that u 2 ƒk.M/ is a harmonic form for g if and

only if it is a harmonic form for g0.

11. General elliptic boundary problems

An elliptic differential operator of orderm on a manifoldM is an operator that in
local coordinates has the form

(11.1) P.x;D/u D
X

j˛j�m
a˛.x/D

˛u;
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and whose principal symbol

(11.2) Pm.x; �/ D
X

j˛jDm
a˛.x/�

˛

is invertible for nonzero � 2 Rn .n D dim M/. Here P.x;D/ could be a k 
 k
system, or it could map sections of a vector bundle E0 to sections of E1. We will
assume the coefficients of P.x;D/ are smooth. IfM is the interior ofM , a com-
pact, smooth manifold with boundary, we require the coefficients to be smooth on
M , and we also want Pm.x; �/ to be invertible for x 2 M , � ¤ 0. If @M ¤ ;,
there will be various boundary conditions to study.

First we study interior regularity for solutions to P.x;D/u D f . In Chap. 3 we
treated this for constant-coefficient elliptic operators P.D/. We will exploit the
technique (which was used in the proof of Lemma 9.3) of freezing the coefficients
of P.x;D/ and using estimates on the resulting constant-coefficient operators.
Our interior regularity result is the following.

Theorem 11.1. If P.x;D/ is elliptic of order m and u 2 D0.M/, P.x;D/u D
f 2 H s.M/, then u 2 H sCm

loc .M/, and, for each U �� V �� M , � < s Cm,
there is an estimate

(11.3) kukH sCm.U / � CkP.x;D/ukH s.V / C CkukH� .V /:

For the proof, we can assume u
ˇ̌
V

belongs to some Sobolev space, say u 2
H  .V /. We will first establish the estimate

(11.4) kukH� .U / � CkP.x;D/ukH��m.V / C CkukH��1.V /:

Once this is done, we will establish u 2 H C1.V / if 
 � m C 1 � s, with an
analogous estimate, following in outline the program used in �1.

If we pick � 2 C1
0 .V /, then

(11.5) P.x;D/.�u/ D �.x/P.x;D/u CQ.x;D/u;

whereQ.x;D/ D ŒP.x;D/; �	 is a differential operator of orderm � 1, so

kQ.x;D/ukH��m.V / � CkukH��1.V /:

Hence, just as in the chain of reasoning involving (1.22), we can localize the task
of proving (11.4). We can suppose u 2 H  .V / is compactly supported and that V
is an open set in Rn, and establish (11.4) in that case.

The next step will be to apply cut-offs with very small support, to effect the
freezing of coefficients. Let ƒ D ƒ" be the lattice "Zn D f"j W j 2 Zng.
Take a partition of unity on Rn of the form 1 D P

j2Zn �j .x/, with �j .x/ D
�0.x � j /; �0.x/ 2 C1

0 .R
n/ supported in �1 < x� < 1. Then define a partition

of unity
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(11.6) 1 D
X

�2ƒ
��.x/;

with ��.x/ D �0
�
.x � �/="

�
, when ƒ D ƒ". We will suppress the dependence

on " in the notation, though of course this dependence is very important.
Now, for each � 2 ƒ, set

(11.7) P�.D/ D P.�;D/:

This is the constant-coefficient elliptic operator obtained by freezing the coeffi-
cients of P.x;D/ at x D �. If P.x;D/u D f , then

(11.8) ��.x/P�.D/u D ��f �R�.x;D/u;

where

(11.9)

R�.x;D/ D ��.x/
�
P.x;D/ � P�.D/

�

D ��.x/
X

j˛j�m

�
a˛.x/ � a˛.�/

�
D˛:

Therefore

(11.10) P�.D/.��u/ D ��f � R�.x;D/u �Q�.x;D/u;

where

(11.11) Q�.x;D/ D Œ��; P�.D/	 has orderm � 1:

Now the functions P�.�/ are all bounded away from zero on a set

(11.12) f� 2 Rn W j�j � Kg:

Thus, taking a cut-off '.�/ 2 C1
0 .R

n/, equal to 1 on j�j � K , we can set

(11.13) E�.�/ D �
1 � '.�/

�
P�.�/

�1:

Then, as seen in (9.4) of Chap. 3,

(11.14) E�.�/ 2 S�m
1 .Rn/;

which is to say, there are estimates

(11.15) jD˛E�.�/j � C˛h�i�m�j˛j:
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We have

(11.16) E�.D/P�.D/ D I C �.D/;

with �.�/ 2 C1
0 .R

n/. Furthermore, E� and � are bounded in their respective
spaces, for all � 2 ƒ", independently of " 2 .0; 1	. ApplyingE�.D/ to each side
of (11.10), and summing over �, we have

(11.17) u D Fƒ�
X

�2ƒ

n
E�.D/R�.x;D/uCE�.D/Q�.x;D/uC�.D/.��u/

o
;

where

(11.18) Fƒ D
X

�2ƒ
E�.D/.��f /:

To prove (11.4), we need (11.15) only for ˛ D 0, which implies

(11.19) E�.D/ W H � .Rn/ �! H �Cm.Rn/;

for all � 2 R, with norm bound independent of �; ", and � . Since at this point u
has compact support in V � Rn, all our Sobolev norms in the estimates (11.20)–
(11.22) below can be taken to be H � .Rn/-norms, for various � . Looking at the
first term on the right side of (11.17), we see that

(11.20) kFƒkH� � C."; 
/kf kH��m :

In view of (11.11) and the compact support of �.�/,

(11.21)
X

�

		E�.D/Q�.x;D/u C �.D/.��u/
		
H� � C."; 
/kukH��1 ;

and by (11.9), we have

(11.22)
			
X

�

E�.D/R�.x;D/u
			
H�

� C.
/"kukH� C C."; 
/kukH��1 ;

where C.
/ is independent of ". Thus, when we estimate theH  -norm of (11.17),
the term C.
/"kukH� can be absorbed into the left side, for " > 0 sufficiently
small. We obtain then the estimate (11.4).

Passing from (11.4) to H C1-regularity of u, given f 2 H C1�m, involves
an argument similar to (1.23)–(1.28). Recall we have u 2 H  .Rn/, compactly
supported. With the difference operatorsDj;h defined by (1.23), we apply (11.4)
to Dj;hu, obtaining

(11.23) kDj;huk2H� � CkP.x;D/Dj;huk2H��m C CkDj;huk2
H��1 :
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As in (1.24), we replace P.x;D/Dj;h by Dj;hP.x;D/ plus the commutator
ŒP.x;D/;Dj;h	, and use

(11.24) ŒDj;h; a˛.x/D
˛ 	u D �.Dj;ha˛/D˛
j;hu;

where 
j;hu.x/ D u.x C hej /, as in (1.23). Hence

(11.25) kŒDj;h; P.x;D/	uk2H��m � Ckuk2H� :

Thus (11.23) yields

(11.26) kDj;huk2H� � Ckuk2H� C Ckf k2
H��mC1 ;

and hence taking h ! 0 gives u 2 H C1 and

(11.27) kuk2
H�C1 � CkP.x;D/uk2

H��mC1 C Ckf k2H� :

With this advance over (11.4), we have a proof of Theorem 11.1, by a straightfor-
ward iteration.

We turn now to boundary conditions. In addition to having the elliptic operator
P on M , we suppose there are differential operators Bj , j D 1; : : : ; `, of order
mj � m � 1, defined on a neighborhood of @M , and we consider

(11.28) P u D f on M; Bj u D gj on @M; 1 � j � `:

When M is a compact, smooth manifold with boundary, we seek estimates of
the form

kuk2
HmCk .M/

� CkP uk2
Hk .M/

C C
X

j

kBj uk2
H

mCk�mj �1=2
.@M/

C Ckuk2
HmCk�1.M/

(11.29)

and corresponding regularity theorems. Such estimates are called coercive esti-
mates.

Applying a cut-off as in (11.5), we see that it suffices to establish the estimate
(11.29) for u supported near @M , indeed, for u supported in a boundary coordinate
patch.

We now introduce the hypothesis of regularity upon freezing coefficients.
Given q 2 @M , pick a coordinate neighborhood O of q, mapped diffeomorphi-
cally onto a compact subset O0 of RnC D fx 2 Rn W xn � 0g. The operatorsP and
Bj are transformed to operators on functions on O0. Now freeze their coefficients
at q, obtaining constant-coefficient operatorsPq.D/ andBqj .D/. The hypothesis
of regularity upon freezing coefficients is that there are estimates
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(11.30)

kuk2
HmCk � CkPq.D/uk2

Hk

C C
X

j

jBjq.D/uj2
H

mCk�mj �1=2 C Ckuk2
HmCk�1 ;

valid for smooth u with bounded support in RnC, with constants C uniform in
q 2 @M . Here, kukHk D kuk

Hk.Rn
C

/
and jvjH s D kvkH s.Rn�1/: The following

result reduces the study of (11.29) to the constant-coefficient case.

Proposition 11.2. Suppose P is elliptic on M and the boundary problem
(11.28) satisfies the hypothesis of regularity upon freezing coefficients. Given
u 2 Hm.M/; k 2 ZC, if P u 2 H k.M/ and Bj u 2 HmCk�mj �1=2.@M/, then
u 2 HmCk.M/, and the estimate (11.29) holds.

To prove this, let ƒ D ƒ" be the lattice in Rn used before, except we restrict
attention to � 2 RnC. We use the partition of unity (11.6). For P�.D/.��u/, we
still have (11.10), and similarly, if � 2 Rn�1 � RnC,

(11.31) Bj�.D/.��u/ D ��gj �Rj�.x;D/u �Qj�.x;D/u;

where

(11.32) Rj�.x;D/ D ��.x/
�
Qj .x;D/ �Qj�.D/

�

and

(11.33) Qj�.x;D/ D Œ��;Qj�.D/	 has ordermj � 1:

Thus, granted the hypothesis of Proposition 1.2, for each � 2 Rn�1\ƒ", we have
an estimate

(11.34)
k��ukHmCk

� C
h
k��f kHk C kR�.x;D/ukHk C kQ�.x;D/ukHk C k��ukHmCk�1

i

C C
X

j

h
j��gj jH�.j;k/ C jRj�.x;D/ujH�.j;k/ C jQj�.x;D/ujH�.j;k/

i
;

where, in the last three terms, �.j; k/ D m C k �mj � 1=2. If � 2 ƒ n Rn�1,
we can estimate k��ukHmCk by the sum of the first three terms on the right.
Summing over �, we get an estimate for kukHmCk . Note that

(11.35)
X

�

kR�.x;D/ukHk � C"kukHmCk C C."/kukHmCk�1 ;
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as in (11.22). Using the trace theorem, we can also estimate the quantityP
j;� jRj�.x;D/ujH�.j;k/ by the right side of (11.35), and we can also use

the trace theorem to estimate
P
j;� jQj�.x;D/ujH�.j;k/ . We can absorb the

C"kukHmCk into the left side, obtaining the estimate (11.29), given u 2 HmCk .
To obtain the associated regularity theorem, we use the difference quotients

Dj;h; 1 � j � n � 1, as in (1.23)–(1.32). Given u 2 HmCk while f 2 H kC1,
gj 2 HmCk�mj C1=2, if we apply (11.29) to Dj;hu (localized to have sup-
port in a coordinate patch) and use (11.24) together with the analogous result
for ŒDj;h; Bi .x;D/	, just as in (11.26) and (11.27), we get Dj u 2 HmCk , for
1 � j � n � 1, and

(11.36)
kDj uk2

HmCk � CkP uk2
HkC1 C C

X
jBiuj

H
mCk�mi C

1
2

C Ckuk2
HmCk ;

for 1 � j � n. From here, as in (1.29)–(1.32), we proceed as follows. We need to
know that Dnu 2 HmCk , that is,

(11.37) D˛Dnu 2 H kC1; j˛j � m � 1:
Now if D˛Dn ¤ Dm

n , we can write D˛Dnu D DjD
ˇu, with jˇj � m � 1; 1 �

j � n � 1, and conclude from (11.36) that this belongs to H kC1, with an appro-
priate bound. Finally, to estimate Dm

n u, we use the PDE P u D f to write

(11.38) Dm
n u D a.x/f �

X

j˛j�m
b˛.x/D

˛u;

where D˛ ¤ Dm
n in the last sum, and then estimate the H kC1-norm of the right

side of (11.38) by kaP ukHkC1 plus the right side of (11.36). This completes the
proof of Proposition 11.2.

We now turn to the problem of establishing an estimate of the form (11.30), for
constant-coefficient operators, that is,

(11.39)

kuk2
HmCk � CkP.D/uk2

Hk

C C
X

j

jBj .D/uj2
H

mCk�mj �1=2 C Ckuk2
HmCk�1 :

We will take u 2 S.RnC/, that is, u will be the restriction to RnC of an element
of S.Rn/. Also, we will assume that u vanishes for xn � 1. It is convenient to
relabel the coordinate variables; set x D .x1; : : : ; xn�1/; y D xn. We write P.D/
in the form

(11.40) P.D/ D @m

@ym
C
m�1X

jD0
Aj .Dx/

@j

@yj
; order Aj .Dx/ D m � j:
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We convert P.D/u D f to a first-order system; set v D .v1; : : : ; vm/
t , with

(11.41) v1 D ƒm�1u; : : : ; vj D @j�1
y ƒm�j u; : : : ; vm D @m�1

y u:

Then P.D/u D f becomes the system

(11.42)
@v

@y
D K.Dx/v C F;

where F D .0; : : : ; 0; f /t and

(11.43) K D

0
BBBBB@

0 ƒ

0 ƒ
: : :

: : :

ƒ

C0 C1 C2 : : : Cm�1

1
CCCCCA
;

where

(11.44) Cj D �Aj .Dx/ƒ1�.m�j /:

As in Chap. 4, we defineƒ W H s ! H s�1 by

(11.45)
�
ƒu
�
b.�/ D h�iOu.�/:

Note that the matrix entries of K are not differential operators, though they are
well-behaved Fourier multipliers:

(11.46) K W H s.Rn�1/ �! H s�1.Rn�1/:

In fact, K 2 S11 .R
n�1/, that is, estimates of the form (11.15) hold for D˛K.�/,

with �m replaced by 1. This fact will be explored further in Chap. 7. Now let us
note that K.�/ D K1.�/ C K0.�/, where K0 is bounded and K1.�/ is homoge-
neous of degree 1; K1.�/ has the form (11.43) with ƒ replaced by j�j and Aj
replaced by the principal symbol A0j .�/, homogeneous of degreem � j .

Lemma 11.3. The operator P.D/ is elliptic if and only if, for all nonzero � 2
Rn�1, K1.�/ has no purely imaginary eigenvalues.

Proof. Indeed, det .i� � K1.�// D Pm.�; �/ is the principal symbol of the op-
erator (11.40) if P.D/ is scalar. If P.D/ is a k 
 k system, the equivalence
of Pm.�; �/ having a nonzero eigenvector in Ck and of i� � K1.�/ having a
nonzero eigenvector in Ckm follows by the same reasoning as the reduction of
P.D/u D f to (11.42).
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We also rewrite the boundary conditionsBj .D/u D gj at xn D 0. Let

(11.47) Bj D Bj

�
Dx ;

@

@y

�
D

X

k�mj

bjk.Dx/
@k

@yk
:

Then we have the boundary conditions

(11.48)
X

k�mj

bjk.Dx/ƒ
mj �kvk.0/ D ƒm�mj �1gj D hj ; 1 � j � `;

which we write as

(11.49) B.Dx/v.0/ D h;

with B.�/ 2 S01 .Rn�1/.
The estimate (11.39) translates to the estimate

(11.50) kvk2
HkC1 � CkLvk2

Hk C C jBv.0/j2
HkC1=2 C Ckvk2

Hk ;

where

(11.51) Lv D
h @
@y

�K.Dx/
i
v;

and we assume v 2 S.RnC/, with v.y/ D v.y; �/ D 0 for y � 1.
We want to decouple the (11.42) into a forward evolution equation and a back-

ward evolution equation. Let � D �.�/ be a curve in the right half-plane of C,
encircling all the eigenvalues of K1.�/ with positive real part, and set

(11.52) E0.�/ D 1

2�i

Z

�

�
� �K1.�/

��1
d�:

Then E0.�/ is smooth on Rn�1 n 0, homogeneous of degree zero, and, for each
�, it is a projection onto the sum of the generalized eigenspaces of K1.�/ corre-
sponding to eigenvalues of positive real part, while I � E0.�/ similarly captures
the spectrum of K1.�/ with negative real part. If we set

(11.53) A1.�/ D �
2E0.�/ � I �K1.�/;

then A1.�/ is homogeneous of degree 1 in � and its eigenvalues all have positive
real part, for � ¤ 0. We want to construct a new inner product on L2.Rn�1/ with
respect to which �A1.Dx/ is “dissipative.”
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Lemma 11.4. Let MC
K denote the space of complex K 
 K matrices with spec-

trum in Re z > 0, and let PC
K be the space of positive-definite, complex K 
 K

matrices. There is a smooth map

(11.54) ˆ W MC
K �! PC

K ;

homogeneous of degree 0, such that

(11.55) A 2 MC
K ; P D ˆ.A/ H) PAC A�P 2 PC

K :

Proof. First we observe that if A0 2 MC
K is fixed, there exists P0 2 PC

K such
that P0A0 C A�

0P0 2 PC
K . To see this, use the Jordan normal form to make A0

similar to B", where B" has the eigenvalues of A0 on its diagonal, "s and 0s right
above the diagonal, and 0s elsewhere. Pick " small compared to the real part of
each eigenvalue. Declaring the basis of CK with respect to which A0 takes the
formB" to be orthonormal specifies a new Hermitian inner product on CK , of the
form ..u; v// D .P0u; v/, where .u; v/ is the standard inner product, and this P0
works.

Thus, given A 2 MC
K , the set P.A/ of P 2 PC

K such that PA C A�P 2 PC
K

is nonempty. One readily verifies that P.A/ is an open convex set. Furthermore,
given P 2 PC

K , the set of A 2 MC
K such that PA C A�P 2 PC

K is open. The
existence of ˆ satisfying the conditions of the lemma now follows by a partition
of unity argument.

Corollary 11.5. Given A1.�/ constructed by (11.53), there exists P0.�/, smooth
on Rn�1 n 0, homogeneous of degree 0, such that both P0.�/ and P0.�/A1.�/C
A�
1.�/P0.�/ are positive-definite, for all � ¤ 0. In fact, for some a > 0,

(11.56) P0.�/A1.�/C A�
1.�/P0.�/ � aj�jI:

With .u; v/ denoting the inner product in L2.Rn�1/, we have

(11.57)

d

dy
.P0ƒ

1=2E0v;ƒ
1=2E0v/ D 2 Re .P0ƒ

1=2E0
@v

@y
;ƒ1=2E0v/

D 2 Re .P0E0Kƒ1=2v;ƒ1=2E0v/C 2 Re .P0ƒ1=2E0F;ƒ1=2E0v/;

given Lu D F . Now E0 D .2E0 � I /E0 implies P0E0K1 D P0A1E0, so

(11.58)
2 Re .P0E0Kƒ1=2v;ƒ1=2E0v/ D .ŒP0A1 CA�

1P0	E0ƒ
1=2v;E0ƒ

1=2v/

C 2 Re .P0ƒ1=2E0K0v;ƒ1=2v/:
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Thus integrating (11.57) over 0 � y � 1 and using (11.56) yield

(11.59)

jE0v.1/j21=2 � jE0v.0/j21=2

� CkE0vk2.0;1/ � C 0
Z 1

0

jF.y/j0 � jv.y/j1 dy � C 0kvk2.0;1=2/;

where, for simplicity of notation, we have set

jwj2s D kwk2
H s.Rn�1/

;

and we define

(11.60) kvk2.0;s/ D
Z 1

0

jv.y/j2s dy D
Z 1

0

kƒsv.y/k2
L2.Rn�1/

dy:

More generally, it will be convenient to define the Sobolev-like spacesH.k;s/.�/,
for� D Œ0; 1	 
 Rn�1, by

(11.61) kvk2.k;s/ D
kX

jD0

Z 1

0

kDj
yƒ

k�jCsv.y/k2
L2.Rn�1/

dy:

Note that H.k;0/.�/ D H k.�/. We also note that the standard trace theorem
generalizes naturally to

(11.62) 
 W H.k;s/.�/ �! H kCs�1=2.Rn�1/; 
u.x0/ D u.0; x0/:

Changing the constants C and C 0, we can replace kvk2
.0;1=2/

in (11.59) by

kvk2
.0;�/

, for any � < 1 (e.g., � � 0). Also, we can write

Z 1

0

jF.y/j0 � jv.y/j1 dy � "

2
kvk2.0;1/ C 1

2"
kF k2.0;0/;

and picking "=2 < C=2C 0, obtain from (11.59) the estimate

(11.63) kvk2.0;1/ C jE0v.0/j21=2 � CkLvk2.0;0/ C C jE0v.1/j21=2 C Ckvk2.0;�/:

Replacing v by ƒsv, we have the estimate

(11.64)
kE0vk2.0;sC1/ C jE0v.0/j2sC1=2

� CkLvk2.0;s/ C C jE0v.1/j2sC1=2 C Ckvk2.0;�/;
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for any � < s C 1. Similarly, with E1 D I � E0,

(11.65)
kE1vk2.0;sC1/ C jE1v.1/j2sC1=2

� CkLvk2.0;s/ C C jE1v.0/j2sC1=2 C Ckvk2.0;�/:

Summing the last two estimates, we have

(11.66)
kvk2.0;sC1/ C jE0v.0/j2sC1=2 C jE1v.1/j2sC1=2

� CkLvk2.0;s/ C C jE0v.1/j2sC1=2 C C jE1v.0/j2sC1=2 C Ckvk2.0;�/:

Since kvk2
.1;s/

D kDyvk2
.0;s/

C kvk2
.0;sC1/, and @v=@y D Kv C F , we hence

arrive at the estimate

(11.67)
kvk2.1;s/ C jE0v.0/j2sC1=2 C jE1v.1/j2sC1=2

� CkLvk2.0;s/ C C jE0v.1/j2sC1=2 C C jE1v.0/j2sC1=2 C Ckvk2.0;�/:

We can now give a natural condition for the estimate (11.50) to hold. In fact,
(11.50) is the s D 0 case of the following.

Proposition 11.6. For any k 2 ZC; s 2 R; � < s, there is an estimate

(11.68) kvk2.k;s/ � CkLvk2.k�1;s/ C C jBv.0/j2kCs�1=2 C Ckvk2.0;�/;

for all v 2 S.RnC/ vanishing for y � 1, provided that for all s there is an estimate

(11.69) jgj2s � C1jBgj2s C C1jE0gj2s C C1jgj2s�1;

for all g 2 S.Rn�1/.

Proof. First take k D 1. Since (11.67) holds for v 2 H.1;s/.�/, substitute E0v
for v in this estimate. Then E1E0v.0/ D 0, and LE0v D .@y � K/E0v D
E0Lv �K0E0v. Thus we obtain

kE0vk2.1;s/ C jE0v.0/j2sC1=2 � CkLvk2.0;s/ C C jE0v.1/j2sC1=2 C CkE0vk2.0;s/;

and hence

(11.70) jE0v.0/j2sC1=2 � CkLvk2.0;s/ C C jE0v.1/j2sC1=2 C Ckvk2.0;�/:

Now use (11.69), with g D v.0/ and s replaced by s C 1=2, to obtain

(11.71)
jv.0/j2sC1=2 � C jBv.0/j2sC1=2 C CkLvk2.0;s/

C C jE0v.1/j2sC1=2 C Ckvk2.0;�/:



11. General elliptic boundary problems 453

We can dominate the termC jE1v.0/j2sC1=2 on the right side of (11.67) by (11.71),
and if v.1/ D 0, this yields the k D 1 case of (11.68).

Then, making use of @v=@y D Kv C Lv, one gets (11.68) by induction for
k � 1. This completes the proof of the proposition.

NowB.Dx/ andE0.Dx/ are Fourier multipliers by functionsB.�/ andE0.�/.
The latter function is homogeneous of degree 0, while the former belongs to
S01 .R

n�1/. In fact, we can write B.�/ D b0.�/C br .�/, where b0.�/ is homoge-
neous of degree 0 and jbr.�/j � C h�i�1. By the characterization ofH s.Rn�1/ in
terms of behavior of Fourier transforms, we have the following.

Lemma 11.7. Suppose (1.1) is a k 
 k system, so K;B , and E0 act on functions
with values in C� ; � D km. The estimate (11.69) holds if and only if, for each
� ¤ 0, there is no nonzero v 2 C� such that

(11.72) b0.�/v D 0 and E0.�/v D 0:

Note that this is an “ellipticity condition” for some operators that are not dif-
ferential operators. This is another point to which we will return in Chap. 7.

We want to make the condition for regularity even more explicit by relating it
directly to the symbols of P and Bj . We establish the following.

Proposition 11.8. For given nonzero � 2 Rn�1, the condition that there is no
nonzero v 2 C� satisfying (11.72) is equivalent to each of the following two
conditions:

(i) There is no nonzero bounded solution on Œ0;1/ of the ODE

(11.73)
d'

dy
�K1.�/' D 0; b0.�/'.0/ D 0:

(ii) There is no nonzero bounded solution on Œ0;1/ of the ODE

(11.74)
dm

dym
ˆC

m�1X

jD0
eAj .�/

d j

dyj
ˆ D 0; QBj

�
�; d=dy

�
ˆ.0/ D 0; 1 � j � `:

Here eAj .�/ is the part of Aj .�/ of (11.40) homogeneous of degree m � j , and
QBj
�
�; d=dy

�
comes from taking the part of (11.47) homogeneous of degree mj ,

and replacingDx by �.

Proof. The equivalence of the hypothesis of Lemma 11.7 to (i) comes because
the solution to (11.73) has the form

'.y/ D eyK1.�/'.0/;
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and this is bounded for y 2 Œ0;1/ if and only if E0.�/'.0/ D 0. The equivalence
of (i) and (ii) arises because (11.74) becomes (11.73) when transformed to a first-
order system.

It is also useful to note that we can replace (ii) by:
(ii0) There is no nonzero solution to (11.74) that is rapidly decreasing as

y ! C1,
and make a similar replacement of (i).

Since we want to consider boundary problems for which there will be a
reasonable existence result as well as a regularity result for solutions, it is nat-
ural to consider a further restriction on the boundary condition. Suppose that
QBj .�; d=dy/ˆ.0/ 2 C�j , so

b0.�/ W C� �! C�; � D �1 C � � � C �`:

Proposition 11.9. For given nonzero � 2 Rn�1, the following three conditions
are equivalent.

(i) Given � 2 C�, there exists a unique bounded solution on Œ0;1/ to the ODE

(11.75)
d'

dy
�K1.�/' D 0; b0.�/'.0/ D �:

(ii) Given �j 2 C�j , there exists a unique bounded solution on Œ0;1/ to the
ODE

(11.76)
dm

dym
ˆC

X QAi .�/ d
i

dyi
ˆ � 0; QBj

�
�;
d

dy

�
ˆ.0/ D �j :

(iii) With V.�/ denoting the null space of E0.�/ on C� ,

(11.77) b0.�/ W V.�/ �! C� isomorphically:

Proof. The argument here is the same as in the proof of Proposition 11.8. We also
note that if these conditions hold, the unique solutions to (11.75) and (11.76) are
rapidly decreasing as y ! C1.

If the boundary problem fP.D/;Bj .D/; 1 � j � `g satisfies the conditions of
Proposition 11.9, it is called a regular boundary problem. More generally, if the
variable-coefficient boundary problem (11.28) for an elliptic operator P.x;D/
produces frozen coefficient problems that satisfy this condition, it is called a reg-
ular boundary problem.

As a useful tool for establishing regularity, note that if

(11.78) V.�/ D ker E0.�/ has dimension � for each nonzero �;
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then (11.77) holds if and only if no nonzero v 2 C� satisfies (11.72). Thus, given
(11.78), the conditions of Proposition 11.9 are equivalent to those of Proposition
11.8. Of course, for (11.77) to hold for all � ¤ 0, it is necessary that (11.78)
be true.

We now give some examples of regular elliptic boundary problems. Our list
will include those studied in ��1, 7, and 9, as well as others, not readily amenable
to the methods developed there.

We begin with operatorsP.x;D/, which are strongly elliptic, of ordermD 2�.
By definition, this means

(11.79) Re Pm.x; �/ � C j�jm;

withC > 0. IfP is a k
k system, Re Pm.x; �/ stands for the matrix-valued func-
tion

�
Pm.x; �/CPm.x; �/�

�
=2. The Dirichlet boundary condition in this case can

be written as follows. Let @=@� denote any vector field defined on a neighborhood
of @M and everywhere transverse to @M . Then the boundary condition is

(11.80) u D g0;
@

@�
u D g1; : : : ;

� @
@�

�
�1
u D g
�1 on @M:

If � D 1, this reduces to u D g0 on @M , as in �1.

Proposition 11.10. If P is a strongly elliptic k 
 k system of order 2�, then the
Dirichlet boundary condition is regular.

Proof. Since (11.78) holds in this case, it suffices to check the uniqueness,
namely, that any solution ˆ to (11.74) that is rapidly decreasing as y ! C1
is 0. To see this, write

(11.81)�
Pm

�
�; i

d

dy

�
ˆ;ˆ

�

L2.RC/
D
X�

Lj

�
�; i

d

dy

�
ˆ;Mj

�
�; i

d

dy

�
ˆ
�

L2.RC/
;

where Lj and Mj are differential operators (with coefficients depending on �)
in y of order � �. Then, by Fourier analysis, if ˆ.0/Dˆ0.0/D � � � Dˆ.
�1/
.0/D 0, we have (11.81) equal to

(11.82)
Z 1

�1
Pm.�; �/j Ô .�/j2 d�:

Here Ô .�/ is defined by extendingˆ.y/ to be zero for y � 0. Since

Re Pm.�; �/ � C.j�jm C j�jm/;

if Pm.�; id=dy/ˆ D 0, this implies ˆ D 0, as desired, proving the proposition.
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The Dirichlet problem is regular in many additional cases. For example, if
P.x;D/ is a scalar elliptic differential operator onM , then the Dirichlet problem
is always regular, provided dim M � 3. See the exercises.

The next result contains the fact that the Neumann boundary problem for the
Laplace operator is regular. Let M have a smooth Riemannian metric.

Proposition 11.11. If X is a real vector field on @M which is everywhere
transversal, then the boundary condition Xu D g1 on @M is regular for the
Laplace operator�.

Proof. To freeze coefficients at a point p 2 M , pick normal coordinates centered
at p, with @=@y coinciding at p with the unit normal given by the metric tensor.
We have (11.78), with � D 1. Checking uniqueness of (11.74) comes down to
looking at solutions ˆ.y/ to

(11.83)
d2

dy2
ˆ �Q.�/ˆ D 0; Bˆ0.0/C iA.�/ˆ.0/ D 0;

which are bounded for y 2 Œ0;1/. Here Q.�/ is a positive definite quadratic
form, B is a nonzero constant, and A.�/ a real linear form in �. For � ¤ 0, any
bounded solution must be a multiple of e�yp

Q.�/, which has boundary data

(11.84) �B
p
Q.�/C iA.�/ ¤ 0:

This proves the proposition.

When X is orthogonal to @M , this is the Neuman problem; otherwise it is
called an oblique derivative problem. Note that if dimM D 2, so � 2 R1, then one
gets a regular elliptic boundary problem for any real vector field that is nowhere
vanishing on @M , since then (11.84) holds for all � ¤ 0 as long as either B ¤ 0

or A ¤ 0. Compare Exercises 4–9 in �4 of Chap. 4. However, when dim M � 3,
so � 2 Rn�1 with n � 1 � 2, if B D 0, then A.�/ D 0 also for � in a hyperplane,
so regularity fails then.

We start our next line of analysis with an obvious comment. Namely, the direct
sum of two regular elliptic boundary problems of (the same) degree m on M is
also regular. By the same token, if the frozen-coefficient problems all break up
into direct sums of regular problems, then they are regular, and hence so is the
variable-coefficient problem that gave rise to them (even though it may not break
up into such a direct sum). This applies to the Hodge Laplacian � on ƒk.M/,
with either relative or absolute boundary conditions. In each case, the frozen-
coefficient problems can clearly be seen to break up into direct sums of Dirichlet
and Neumann problems. This proves:

Proposition 11.12. If� is the Hodge Laplacian onƒk.M/, then both the relative
boundary problem
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(11.85) �u D f on M; j �u D g0; j
�ıu D g1 on @M;

and the absolute boundary problem

(11.86) �u D f on M; uc� D g0; .du/c� D g1 on @M;

are regular elliptic boundary problems.

In (11.85), gj are forms on @M , of degree k� j . In (11.86), gj are sections of
the subbundles of ƒk�1Cj .M/

ˇ̌
@M

, defined by gj c� D 0.
Sometimes the fact that the Dirichlet problem is regular can be used as a tool to

determine whether another boundary problem is regular. To illustrate this, suppose
P D P.x;D/ is a strongly elliptic, k 
 k system of order 2. Then the ODE in
(11.76) takes the form

(11.87)
d2

dy2
ˆC

1X

jD0
QAj .�/ d

j

dyj
ˆ D 0:

Let us consider a boundary problem of the form

(11.88) P u D f; B0.x/u D g0; C0.x/
@u

@y
C C1.x;Dx/u D g1:

Here we use coordinates .y; x/ on a collar neighborhood of @M ,

(11.89) B0.x/ W Ck �! C�1 ; C0.x/ W Ck �! C�2 ;

and C1.x;Dx/ is a first-order differential operator whose coefficients map Ck !
C�2 . The hypothesis (11.78) is equivalent to �1C�2 D k. To complement (11.87)
and reproduce (11.76), we have

(11.90) B0ˆ.0/ D �0; C0ˆ
0.0/C C1.�/ˆ

0.0/ D �1;

where B0 W Ck ! C�1 , B1 W Ck ! C�2 , and C1.�/ D P
Aj �j , with Aj W

Ck ! C�2 . These arise from freezing the coefficients of B0.x/ and C1.x;Dx/.
Now, for x 2 @M; � 2 Rn�1 n 0, we define a map

(11.91) B.x; �/ W Ck �! Ck

as follows. Given ' 2 Ck , let ˆ�.y/ be the unique bounded solution to (11.87)
such that ˆ�.0/ D ', and then set

(11.92) N .x; �/' D ˆ0
�.0/;

and define

(11.93) B.x; �/' D �
B0.x/'; C0.x/N .x; �/' C C1.x; �/'

�
:
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The following is an immediate consequence of Propositions 11.9 and 11.10 and
their proofs.

Proposition 11.13. If P is a second-order, strongly elliptic k 
 k system, then
the boundary problem (11.88) is regular provided that, for all x 2 @M , � 2
Rn�1 n 0, the map B.x; �/ in (11.91) is an isomorphism.

Note that the proof of Proposition 11.11 can be regarded as a special case
of this argument, with k D 1. Then B.x; �/ (with x suppressed) is given by
(11.84). It is appropriate to think of B.x; �/ and N .x; �/ as defined on T �.@M/ n
0. In Chap. 7 we will see that N .x; �/ is the principal symbol of an important
pseudodifferential operator.

To close this section, we say a little more about regularity estimates. There
are advantages in using spaces like H.k;s/.�/ to formulate regularity results of a
more general nature than in Proposition 11.2, for regular elliptic boundary prob-
lems. Thus, take a collar neighborhood � of @M , diffeomorphic to Œ0; 1/ 
 @M ,
sitting inside a larger collar neighborhood C, diffeomorphic to Œ0; 2/ 
 @M . We
use normsH.k;s/.�/, given by

(11.94) kuk2.0;s/ D
Z 1

0

ku.y; �/k2H s.@M/ dy;

and more generally

(11.95) kuk2.k;s/ D
kX

jD0

Z 1

0

		Dj
yu.y; �/		2

Hk�j Cs.@M/
dy:

Norms on H.k;s/.C/ are analogously defined. These spaces depend on the choice
of collaring, but that will not cause a difficulty. Techniques used above are readily
extended to prove the following.

Proposition 11.14. If P.x;D/ has order m and fP.x;D/, Bj .x;D/, 1 �
j � `g defines a regular elliptic boundary problem, then, given that

(11.96) u 2 H.m;�/.C/;

for some � 2 R, and given

(11.97) P.x;D/u D f 2 H.k;s/.C/; Bj .x;D/u 2 HmCk�mj � 1
2 Cs.@M/;

it follows that

(11.98) u 2 H.mCk;s/.�/;

with a corresponding estimate.
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Part of the usefulness of this extension of Proposition 11.2 arises from the
following fact.

Proposition 11.15. If P is a differential operator of order m, for which @M is
noncharacteristic, then, for some � 2 R,

(11.99) u 2 L2.M/; P u D f 2 L2.M/ H) u 2 H.m;�/.�/:

Proof. Using an expansion like (11.40) for P , we have

(11.100) @my u D f �
m�1X

jD0
Aj .y; x;Dx/ @

j
yu:

If the hypotheses of (11.99) hold, then

Aj .y; x;Dx/ @
j
yu 2 H�j .I;H�mCj .@M//;

where I D Œ0; 1	. A solution vj to @mvj D Aj .y; x;Dx/ @
j
yu hence belongs to

the space Hm�j .I;H�mCj .@M//, so u 2 H.1;1�m/.�/. Iterating this argument
gives (11.99).

Thus Proposition 11.14 is applicable to such u 2 L2.M/. Note that the bound-
ary valueBj .x;D/uj@M is well defined when u satisfies the conclusion of (11.99).

We stated that part of the point of putting a further restriction on the boundary
conditions, as in Proposition 11.9, to define a regular elliptic boundary problem,
is to have an existence result as well as a regularity result. In fact, the following is
true.

Proposition 11.16. If fP.x;D/, Bj .x;D/; 1 � j � `g defines a regular elliptic
boundary problem, with

(11.101) P.x;D/ W C1.M;E0/ �! C1.M ;E1/ elliptic of orderm

and

(11.102) Bj .x;D/ W C1.M;E0/ �! C1.@M;Gj / of ordermj ;

then, for each k � 0, the map

(11.103) T W HmCk.M;E0/ �! H k.M;E1/˚
M̀

jD1
HmCk�mj �1=2.@M;Gj /

defined by

(11.104) T u D �
P.x;D/uIB1.x;D/u; : : : ; B`.x;D/u

�

is Fredholm.
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The estimate (11.29) clearly implies that T has finite dimensional kernel. Also,
by Proposition 6.7 of Appendix A, the estimate implies that T has closed range.
It remains to show that the range of T has finite codimension.

One way to do this is to construct a right Fredholm inverse of T , by the results
of �7 in Appendix A. Pseudodifferential operators, introduced in Chap. 7, form a
convenient tool to do this. At this stage it is convenient to make a weaker con-
struction, of something that might be called an “approximate Fredholm inverse”
of T . The operator we will construct will be called S :

(11.105) S W Hk.M;E1/˚
M̀

jD1
HmCk�mj �1=2.@M;Gj / �! HmCk.E0/:

The function u D S.f Ig1; : : : ; g`/ is to be an “approximate solution” to

P.x;D/u D f; Bj .x;D/u D gj :

To begin, we ignore the boundary condition. Suppose M � �, on which P
is elliptic. Let Qf 2 H k.U;E1/ be an extension of f . Use a partition of unity to
write Qf as a sum of terms Qf� with support in coordinate charts V� on �. Then
pick a lattice ƒ D ƒ", as in (11.6), and set

(11.106) v� D ��
X

�2ƒ
E�.D/.�� Qf /;

where the sum is as in (11.18), and �� 2 C1
0 .�/ is equal to 1 on V . Now set

v D P
v�
ˇ̌
M

. Note that v 2 HmCk . The arguments yielding such estimates as
(11.20)–(11.23) also give

(11.107) kPv � f kHk � "kf kHk C C."/kf kHk�1 :

Of course, v depends on ". Let hj D Bj .x;D/v
ˇ̌
@M

.
We want u D v C w, where w is an approximate solution to

P.x;D/w D 0; Bj .x;D/w D gj � hj :

Cover a collar neighborhood of @M inM with coordinate charts V � , straightened
out to be regarded as regions in RnC. Write ej D gj � hj as a sum of terms ej�
supported in V� \ @M , using a partition of unity. Again pick a lattice ƒ D ƒ". If
� 2 ƒ\ Rn�1 D ƒ0, we take w�� to be the Fourier transform (with respect to �)
of the solution to (11.76), with �j .�/ D Oej��.�/, where ej�� D ��ej� . Then set

w D
X

�

��
X

�2ƒ0

w��:
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Parallel to (11.107), or to (11.35), we have, for ' D .f Ig1; : : : ; g`/,

(11.108) k.I � TS/'kVk
� "k'kVk

C C."/k'kVk�1
;

where Vk is the range space of T in (11.103), and one obtains Vk�1 by replacing
the index k by k � 1 at each occurrence. Now this estimate implies that the norm
of ŒI � TS	 2 L.Vk/=K.Vk/ is � ". As long as it is < 1, we have [Ts] invertible
in this quotient algebra, hence TS is a Fredholm operator, with a two-sided Fred-
holm inverse F . But then SF is a right Fredholm inverse of T , and the proof of
Proposition 11.16 is complete.

Recall that in previous sections we have obtained existence results by differ-
ent means. Some of these methods will be pushed in the next section, leading to
an independent proof of the surjectivity, or “almost” surjectivity, of T in many
important cases. In �12, the proof above that T in (11.103) has range of finite
codimension will not be used.

Exercises

1. If P.x;D/ is a strongly elliptic operator of order 2m, show that

Re
�
P.x;D/u; u

� � Ckuk2Hm.M/ � C 0kuk2
L2.M/

for u 2 C1
0 .M/. (Hint: Use cut-offs as in the proof of Theorem 11.1 to reduce to an

estimate on the quantity Re .P�.D/u; u/, where P�.D/ is obtained by freezing coeffi-
cients. Analyze this inner product via Fourier analysis.)

2. For strongly elliptic P.x;D/, show that, for C1 sufficiently large,

(11.109) P.x;D/C C1 W Hm
0 .M/ �! H�m.M/; isomorphically:

3. Parallel arguments of �1 to show that

(11.110) P.x;D/C C W H2mCk
D

.M/ �! Hk.M/; isomorphically;

where H `
D
.M/ D H `.M/\Hm

0 .M/. Deduce that

P.x;D/ W H2mCk
D

.M/ �! Hk.M/ is Fredholm;

of index zero.
4. As an alternative, show that (11.109) leads to (11.110) via Propositions 11.14–11.15.

In Exercises 5–7, let P.x;D/ be a scalar elliptic operator of orderm, on� D Œ0; 1	

@M . Let Pm.x0; �0; �/ be the principal symbol at x0 2 @M , �0 2 T �

x0
@M n 0, � 2 R.

Then none of the roots �1; : : : ; �m of Pm.x0; �0; �/ D 0 are real. Let

MC.x0; �0; �/ D
Ỳ

kD1

�
�� �k.x0; �0/

�
;
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the product being over k such that �k.x0; �0/ have positive imaginary part. Let
QBj .x0; �0; �/ be the principal symbol of Bj .x:D/.

5. Show that the conditions for regularity of .P; Bj / in Proposition 11.9 are equivalent to
the condition that the set of polynomials in �

(11.111) f QBj .x0; �0; �/ W 1 � j � `g
gives a basis of

(11.112) CŒ�	=
�
MC.x0; �0; �/

�
;

the quotient of the ring CŒ�	 of polynomials in �, by the ideal generated by
MC.x0; �0; �/.
(Hint: Show that a solution ˆ to (11.76), obtained by freezing coefficients at x0, is
bounded if and only if

MC�x0; �0;
d

dy

�
ˆ D 0:/

We say that P.x;D/ is properly elliptic provided the degree of MC.x0; �0; �/ in � is
independent of .x0; �0/ 2 T �@M n 0. Evidently, if (11.111) is to provide a basis for
all .x0; �0/ 2 T �@M n 0, then P.x;D/ must be properly elliptic, since the quotient
(11.112) is a vector space whose dimension is the degree of MC.x0; �0; �/.

6. Show that any scalar elliptic P.x;D/ is properly elliptic if dim M � 3.
(Hint: Rk�1 n 0 is connected for k � 3:)
Show that m D 2`.

7. Show that the Dirichlet problem is regular for any properly elliptic scalar opera-
tor P.x;D/ of order m D 2�. (Hint: Show that f1; �; : : : ; �
�1g gives a basis of
CŒ�	=

�
MC.x0; �0; �/

�
under these circumstances.)

8. Consider the following second-order elliptic operator on R2:

L D
� @
@z

�2 D 1

4

� @
@x

C i
@

@y

�2
:

Show that L is not properly elliptic. Verify that the Dirichlet problem on the disk for
L is not regular by constructing an infinite-dimensional space of solutions to Lu D 0,
u
ˇ̌
S1 D 0.

9. Let D D d C ı, acting on the space ˚ƒjM of forms on M . Let R0u D � ^ u and
A0u D ��u, as in (9.11). Show that the boundary problems fD;R0g and fD;A0g are
both regular. Take another look at Exercise 2 in the first set of exercises for �9.

12. Operator properties of regular boundary problems

We want to extend the existence theory, obtained for the Dirichlet and Neumann
problems for the Laplace operator in ��1 and 7 and for relative and absolute
boundary problems for the Hodge Laplacian in �9, to further classes of ellip-
tic boundary problems. We also study other properties of an elliptic operator
P D P.x;D/, regarded as an unbounded operator on L2.M;E0/, with domain
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(12.1) D.P / D fu 2 Hm.M;E0/ W Bj .x;D/u D 0 on @M; 1 � j � `g:

We begin with strongly elliptic, second-order k
k systems. Note that, in each
case studied in ��1, 7, and 9, we had (up to sign) the form

(12.2) P D D�D CX;

where

(12.3) D W C1.M;E0/ �! C1.M;E1/ has injective symbol;

that is, �D.x; �/ W E0x ! E1x is injective, for each x 2 M; � ¤ 0. If the bundles
Ej are endowed with metrics andM has a Riemannian metric, thenD� is defined,
and D�D is elliptic. Set L D D�D, so P D LCX .

An important tool in the analysis done in ��1, 7, and 9 was Green’s formula,
which in this generality can be written as

(12.4) .Lu; v/ D .Du;Dv/C 1

i

Z

@M

˝
�D�.x; �/Du; v

˛
dS;

for sufficiently regular sections u; v of E0. The boundary integral vanishes for all
v 2 C1.M;E0/ if and only if

(12.5) �D�.x; �/Du D 0 on @M:

The approach to the Neumann boundary problem in �7 started with the fact
that kduk2

L2 C kuk2
L2 defines the square H 1.M/-norm, to establish Proposition

7.1. There exist first-order differential operatorsD for which the estimate

(12.6) kDuk2
L2 � Ckuk2

H1 � C 0kuk2
L2 ; u 2 H 1.M/;

is true, but not straightforward, as jDu.x/j does not pointwise dominate a multi-
ple of jru.x/j. There are also first-order elliptic differential operators for which
(12.6) is false. We give here a sufficient criterion for the validity of (12.6).

Proposition 12.1. If (12.5) is a regular elliptic boundary condition for L D
D�D, then the estimate (12.6) holds.

Proof. It is convenient to give this a functional analytic formulation. Let D1 be
the unbounded operator from L2.M;E0/ to L2.M;E1/ with domain

(12.7) D.D1/ D fu 2 L2.M;E0/ W Du 2 L2.M;E1/g;

and D1u D Du for such u; D1 is the “maximal” extension of D; it is a closed,
densely defined operator. Clearly, H 1.M;E0/ � D.D1/. The estimate (12.6) is
equivalent to
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(12.8) D.D1/ D H 1.M;E0/:

To establish this, we define an unbounded operator L on L2.M;E0/ by

(12.9)
D.L/ D fu 2 H 2.M;E0/ W �D�.x; �/Du D 0 on @M g;

Lu D Lu D D�Du; for u 2 D.L/:

It is clear that

(12.10) D.L/ � D.D�
1D1/:

In fact, an element u 2 L2.M;E0/ belongs to D.D�
1D1/ if and only if

(12.11)
Du 2 L2.M;E1/; D�Du 2 L2.M;E0/; and �D�.x; �/Du D 0 on @M:

Note that Proposition 11.15 implies that the boundary condition makes sense for
u 2 D.D�

1D1/. It also implies that the regularity result of Proposition 11.14 is
applicable, so D.D�

1D1/ � H 2.M;E0/. Hence

(12.12) D�
1D1 D L:

By von Neumann’s theorem, D�
1D1 is automatically self-adjoint; see �8 in Ap-

pendix A. Thus L is self-adjoint. Furthermore,

(12.13) D.D1/ D D.L1=2/I

a proof of this is given in �1 of Chap. 8. By interpolation, we have

(12.14) D.L1=2/ � H 1.M;E0/;

establishing D.D1/ � H 1.M;E0/ and hence (12.8).

An important example of this phenomenon is the operator that associates to a
vector field X its deformation tensor, a tensor field of type .0; 2/ defined by

(12.15) .Def X/.Y;Z/ D 1

2
hrYX;Zi C 1

2
hrZX; Y iI

in coordinate notation,

(12.16) .Def X/jk D 1

2
.Xj Ik CXkIj /:

This was introduced in (3.35) of Chap. 2. We have

(12.17) Def W C1.M; T / �! C1.M; S2T �/:
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If Qu 2 T � corresponds to u 2 T via the metric tensor, then

(12.18)
1

i
�Def.x; �/u D 1

2
.� ˝ Qu C Qu ˝ �/ D �sQu:

We also have

(12.19) �1
i
�Def�.x; �/.vsw/ D 1

2

�hv; �iw C hw; �iv�;

and hence, for L D Def�Def,

(12.20) �L.x; �/u D 1

2

�j�j2u C h�; ui�� D 1

2
j�j2�I C P�

�
u;

where P� is the orthogonal projection parallel to �, if T and T � are identified via
the metric tensor.

Proposition 12.2. The boundary condition

(12.21) �Def�.x; �/Def u D g

is regular for L D Def�Def.

Proof. We will apply Proposition 11.13. For a point p0 2 @M , choose local
coordinates so that the normal is @=@xn D @=@y. Then the symbol of D�D is (up
to a factor of 1=2)

(12.22) .I C Pn/�
2 C .I C P�/j�j2:

Here we are replacing � 2 Rn in (12.20) by .�; �/, � 2 Rn�1. Thus, referring
to the notation of (12.20), Pn stands for P.0;1/, and P� here stands for P.�;0/.
Consequently, the quantity N .x; �/ used in the proof of Proposition 11.13, and
defined by (11.92), is seen to be

(12.23) N .x; �/ D �
˛Pn C P?

n .I C ˇP�/
�j�j; ˛ D 1p

2
; ˇ D p

2 � 1:

Here P?
n D I � Pn. Note that the range of P� is contained in that of P?

n , and so
Pn; P

?
n , and P� in (12.23) all commute.

In the present case, B.x; �/ has the form C0.x/N .x; �/ C C1.x; �/. In fact, a
calculation gives

(12.24) 2B.x; �/' D .I C Pn/N .x; �/' C i

n�1X

jD1
'n�j ej ;
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where fej W 1 � j � n � 1g is the standard basis of Rn�1. In matrix form,

(12.25) 2B.x; �/ D

0

BBB@

i�1

P?
n .I C ˇP�/j�j

:::

i�n�1
0 � � � � � � � � � 0 2˛j�j

1

CCCA :

It is clear that the determinant of the right side of (12.25) is 2˛.1C ˇ/j�jn, so the
asserted regularity follows by Proposition 11.13.

Therefore, Proposition 12.1 yields the following.

Corollary 12.3. If M is a compact Riemannian manifold with boundary, then

(12.26) kXkH1.M/ � CkDef XkL2.M/ C CkXkL2.M/;

for all smooth vector fields X on M .

This is called Korn’s inequality and is useful in elasticity theory.
We have the following Fredholm result.

Proposition 12.4. If P is given by (12.2) and if (12.5) is a regular boundary
condition for D�D, hence for P , then for k � 0, the operator

(12.27) T W H kC2.M;E0/ �! H k.M;E0/˚H kC 1
2 .@M;E0/

given by

(12.28) T u D �
P u; �D�.x; �/Du

ˇ̌
@M

�

is Fredholm.

Proof. Let H kC2
B D fu 2 H kC2.M;E0/ W B1u D 0g, where B1u D

B1.x;D/u D �D�.x; �/Du
ˇ̌
@M

. From the proof of Proposition 12.1, we
know that

(12.29) LC I W H 2
B �! L2.M;E0/ is bijective;

since H 2
B D D.L/. By elliptic regularity,

(12.30) LC I W H kC2
B �! H k.M;E0/ is bijective:

Now P differs from LC I by a compact operatorK W H kC2
B ! H k.M;E0/, so

(12.31) P W H kC2
B �! H k.M;E0/ is Fredholm:
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The Fredholmness of T is an easy consequence.

To return to the study of (12.2)–(12.4), we have the following solvability result.

Proposition 12.5. If D satisfies (12.3) and B1 is given by the left side of (12.5),
then, with L D D�D,

(12.32) .LC I /˚ B1 W H kC2.M/ �! H k.M/˚H kC1=2.@M/;

isomorphically, and, if P D LCX , X of order 1,

(12.33) P ˚ B1 W H kC2.M/ �! H k.M/˚H kC1=2.@M/

is Fredholm, of index zero.

We next look at existence results for oblique derivative problems for the
Laplace operator, namely,

(12.34) �u D f on M;
� @
@�

CX
�

u D g on @M;

whereX is a first-order differential operator of the formXu D Y uC'u, with Y a
real vector field tangent to @M , ' 2 C1.@M/, real. Here we will take the Green
identity

(12.35) .�u; v/ D .u; �v/C ˇ.u; v/;

with

(12.36) ˇ.u; v/ D
Z

@M

�
u
@v

@�
� @u

@�
v
�
dS;

and rewrite this boundary term as

(12.37) ˇ.u; v/ D
Z

@M

n
u
�@v
@�

CX tv
�

�
�@u

@�
CXu

�
v
o
dS;

where X t is the formal adjoint of X , with respect to the L2.@M/-inner product,
that is,

X tu D �Y u C .' � div Y /u;

where the divergence is taken with respect to surface measure dS on @M .
We define two unbounded operators on L2.M/, denoted L1;L2. These are

defined to be �� on their domains, which we specify to be
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(12.38)
D.L1/ D ˚

u 2 H 2.M/ W @u

@�
CXu D 0 on @M

�
;

D.L2/ D ˚
u 2 H 2.M/ W @u

@�
CX tu D 0 on @M

�
:

Proposition 12.6. The operators Lj have the relation

(12.39) L�
1 D L2;

where L�
1 is the Hilbert space adjoint of L1. Furthermore, with V u D .@u=@�/C

Xu
ˇ̌
@M

, we have

(12.40) ��˚ V W H kC2.M/ �! H k.M/˚H kC1=2.@M/

is Fredholm, of index zero, and the annihilator of the image, a priori inH k.M/�˚
H�k�1=2.@M/, is a finite-dimensional subspace of C1.M/ ˚ C1.@M/ which
is independent of k � 0.

Proof. To start, suppose v 2 D.L�
1/, that is, v 2 L2.M/, and the map D.L1/ 3

u 7! .L1u; v/ satisfies an estimate

(12.41) j.�u; v/j � C.v/kukL2.M/:

By (12.35) and (12.36), this can happen if and only if �v 2 L2.M/ (hence its
boundary data are well defined), and ˇ.u; v/ D 0 for all u 2 D.L1/, hence

(12.42)
Z

@M

u
�@v
@�

CX tv
�
dS D 0; for all u 2 D.L1/:

Since there exist u 2 D.L1/ for which u
ˇ̌
@M

is an arbitrary element of C1.@M/,
we see that .@v=@�/CX tv D 0 on @M . Now this is a regular boundary problem
for �, and Proposition 11.14 applies, to give v 2 D.L2/. Clearly, L�

1 � L2, so
this proves (12.39). By the same reasoning, L�

2 D L1.
Now consider the map

(12.43) � W D.L1/ �! L2.M/:

We know it has closed range, R.L1/. Let V � L2.M/ be its orthogonal com-
plement. Then, by definition, V � D.L�

1/ and L�
1 D 0 on V . Since we know

L�
1 D L2, the regularity estimates on L2 imply that

(12.44) R.L1/? is a finite-dimensional subspace of C1.M/:

From this we deduce that, for k D 0, the range of ��˚ V in (12.40), which
we know to be closed, has orthogonal complement which is a finite dimensional
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subspace W � C1.M/ ˚ C1.@M/. Then elliptic regularity implies that, for
any k 2 ZC, the annihilator ofW inH k.M/˚H kC1=2.@M/, which we know is
in the range of ��˚ V acting on H 2.M/, must be in the range of this operator
acting on H kC2.M/. Consequently, the annihilator of the range of �� ˚ V in
(12.40) is exactlyW .

As for the index in (12.40), note that, if Vs D @=@� C sX , s 2 Œ0; 1	, then
�� ˚ Vs is a continuous family of Fredholm operators, on which the index is
constant. At s D 0 we have the Neumann boundary condition, which has index
zero, so Proposition 12.6 is proved.

The method used above for the oblique derivative problem extends to many
other situations. For example, suppose P.x;D/ is a scalar elliptic operator, of
order m, and B1.x;D/; : : : ; B`.x;D/ scalar operators defining boundary condi-
tions, each of distinct orders mj < m, and each noncharacteristic on @M . As
indicated in Exercises 5–7 of �11, P.x;D/ must be “properly elliptic,” of order
m D 2`, and there is an algebraic characterization of regularity. Let P t .x;D/
denote the formal adjoint of P.x;D/.

Proposition 12.7. If fP.x;D/; Bj .x;D/; 1 � j � `g is a (scalar) regular
elliptic boundary problem of the form above, then there are boundary operators
B 0
j .x;D/ such that fP t .x;D/; B 0

j .x;D/; 1 � j � `g is a regular elliptic bound-

ary problem, and such that, given v 2 L2.M/, P t .x;D/v 2 L2.M/,

�
P.x;D/u; v

� D �
u; P t .x;D/v

�
;

for all u 2 C1.M/ satisfying Bj .x;D/u D 0 on @M , 1 � j � `, if and only if
B 0
j .x;D/v D 0 on @M , 1 � j � `.

A proof of this can be found in [Sch], pp. 224–237. A related discussion is
given in [Ag], pp. 134–151. The reader can try it as an exercise. Once this result
is demonstrated, the arguments used above also establish the following.

Proposition 12.8. For the regular boundary problem fP.x;D/; Bj .x;D/, 1 �
j � `g above, if we define P and P t , closed unbounded operators on L2.M/, to
be P.x;D/ and P t .x;D/, respectively, on domains

(12.45)
D.P/ D fu 2 Hm.M/ W Bj .x;D/u D 0 on @M g;
D.P t / D fu 2 Hm.M/ W B 0

j .x;D/u D 0 on @M g;

then

(12.46) P� D P t ;

where P� is the Hilbert space adjoint of P . Furthermore, with

T u D �
P.x;D/uIB1.x;D/u; : : : ; B`.x;D/u

�
;
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we have

(12.47) T W H kCm.M/ �! H k.M/˚
M̀

jD1
H kCm�mj �1=2.@M/ Fredholm:

We leave it to the reader to consider extensions of these last results to systems,
or elliptic operators on sections of vector bundles. As the examples of relative
and absolute boundary problems for the Hodge Laplacian illustrate, one natural
variant for the noncharacteristic hypothesis on Bj .x;D/ made above is that, for
x0 2 @M ,

�Bj
.x0; �/ W E0x0

�! Gjx0
is surjective;

where E0; Gj are the vector bundles used in (11.101) and (11.102).
We postpone until the beginning of Chap. 12 a treatment of natural boundary

conditions arising for “elliptic complexes” other than the deRham complex. As
we will see, in other cases one need not get regular boundary problems.

Exercises

In Exercises 1–3, we study the oblique derivative problem

�u D f on M;
@u

@�
CXu D g on @M;

where Xu D Y u C 'u, as in (12.34), and the associated map

T D ��˚ V W HkC2.M/ �! Hk.M/˚HkC1=2.@M/

of (12.40). AssumeM is connected and @M ¤ ;. This problem was treated via Fourier
analysis in the case where M is the disk in R2, in Exercises 4–9 of �4, Chap. 4.

1. If ' D 0, show that ker T is the one-dimensional space of constants.
2. If ' � 0 on @M , ' not identically zero, show that ker T D 0. Deduce that T is surjective

in this case. (Hint: Use Zaremba’s principle, from �2.)
Our convention here is that � is the outward-pointing unit normal to @M .

3. Give examples where ' changes sign and ker T has dimension 1. Can you make ker T
have dimension greater than 1?

4. In linear elasticity, one considers the elliptic operator L on vector fields on � � Rn,
defined by

(12.48) Lu D ��u C .�C �/ grad div u;

with boundary condition

(12.49)
X

j

�j �jk D 0 on @�; �jk D �.div u/ıjk C �
� @uj
@xk

C @uk
@xj

�
;

where �j are the components of the normal vector �. For what values of �;� 2 R is this
a regular elliptic boundary problem? Show that, for such values, one gets a self-adjoint
operator.
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5. Let M be a compact Riemannian manifold with boundary. Consider the functional

K.u/ D
Z

M

f
�
x;Def u.x/

�
dV; f .x;A/ D 2� Tr A2 C �.Tr A/2;

arising in linear elasticity. Show that

DK.u/w D 4�.Def u;Def w/C 2�.div u; div w/ D �.Lu; w/C
Z

@M

hˇu; wi dS;

where (compare formula (4.26) in Chap. 10 and (4.3)–(4.4) in Chap. 17)

Lu D ��u C .�C �/grad div u C 2� Ric u;

ˇu D �.div u/� C 2��Def� .x; �/Def u:

Show that this leads to the boundary condition (12.49).
6. Let � be a smooth, bounded region in Rn, and let P1.�/; : : : ; Pk.�/ be (scalar) poly-

nomials, homogeneous of degree m in � . Show that there is an estimate

(12.50) kuk2
Hm.�/

� C
X

j

kPj .D/uk2
L2.�/

C Ckuk2
L2.�/

;

for all u 2 Hm.�/, if and only if P1.�/; : : : ; Pk.�/, as polynomials in � 2 Cn, have
no common zeros, except for � D 0.
Remarks: Under the hypothesis of no common zeros for fPj .�/g in Cn n 0, there exists
M such that, for each ˛ with j˛j D M ,

�˛ D
X

j

Aj˛.�/Pj .�/;

for some polynomials Aj˛.�/, homogeneous of degree M � m. To prove that such an
estimate holds when fPj .�/ W j � kg D f�˛ W j˛j D mg, an inductive approach can be
taken. This would yield a variant of (12.50). See Agmon [Ag] for further discussion.

7. As noted in the remarks after Proposition 11.11, for P D � on M , of dimension 2,
the boundary problem B1u D g on @M , with B1u D Xu, X any nowhere-vanishing
real vector field, possibly tangent to @M at points, is regular. Then the noncharacteristic
hypothesis of Proposition 12.7 fails. Can you extend Propositions 12.7 and 12.8 to treat
this case?

A. Spaces of generalized functions on manifolds with
boundary

Let M be a compact manifold with smooth boundary. We will define a one-
parameter family of spaces of functions and “generalized functions” on M , anal-
ogous to the Sobolev spaces defined when @M D ;. The spaces will be defined
in terms of a Laplace operator� onM , and a boundary condition for the Laplace
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operator. We will explicitly discuss only the Dirichlet boundary condition, though
the results given work equally well for other coercive boundary conditions yield-
ing self-adjoint operators, such as the Neumann boundary condition.

Fixing on the Dirichlet boundary condition, let us recall from (1.7) the map

(A.1) T W H�1.M/ �! H 1.M/;

inverting the Laplace operator

(A.2) � W H 1
0 .M/ �! H�1.M/:

The restriction of T to L2.M/ is compact and self-adjoint, and we have an or-
thonormal basis of L2.M/ consisting of eigenfunctions:

(A.3) uj 2 H 1
0 .M/\ C1.M/; T uj D ��j uj ; �uj D ��j uj ;

where �j & 0, 0 < �j % 1.
For a given v 2 L2.M/, set

(A.4) v D
X

j

Ov.j / uj ; Ov.j / D .v; uj /:

Now, for s � 0, we define

(A.5)

Ds D
n
v 2 L2.M/ W

X

j�0
j Ov.j /j2�sj < 1

o

D
n
v 2 L2.M/ W

X

j�0
Ov.j /�s=2j uj 2 L2.M/

o
:

In view of (A.3), an equivalent characterization is

(A.6) Ds D .�T /s=2L2.M/:

Clearly, we have

(A.7) D0 D L2.M/:

Also, D2 D T L2.M/, and by Theorem 1.3 we have

(A.8) D2 D H 2.M/\H 1
0 .M/:

Generally, DsC2 D T Ds , so Theorem 1.3 also gives, inductively,

(A.9) D2k � H 2k.M/; k D 1; 2; 3; : : : :
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A result perhaps slightly less obvious than (A.7)–(A.9) is that

(A.10) D1 D H 1
0 .M/:

To see this, note that Ds is the completion of the space F of finite linear combi-
nations of the eigenfunctions fuj g, with respect to the Ds-norm, defined by

(A.11) kvk2Ds
D
X

j

j Ov.j /j2�sj :

Now, if v 2 F , then

(A.12) .dv; dv/ D .v;��v/ D
X

.v; uj /.uj ;��v/ D
X

j Ov.j /j2�j ;

so

(A.13) kvk2D1
D kdvk2

L2.M/
;

for v 2 F . In fact, Ds is the completion of D� in the Ds-norm for any � > s.
We see that (A.13) holds for all v 2 D2, and, with D2 characterized by (A.8), it is
clear that the completion in the norm (A.13) is described by (A.10).

If the Neumann boundary condition were considered, we would replace �j by
h�j i to take care of �0 D 0. In such a case, we would have

D2 D
n
u 2 H 2.M/ W @u

@�
D 0 on @M

o
; D1 D H 1.M/:

Now, for s < 0, we define Ds to be the dual of D�s :

(A.14) Ds D D��s :

In particular, for any v 2 Ds , and any s 2 R, .v; uj / D Ov.j / is defined, and
we see that the characterizations involving the sums in (A.5) continue to hold for
all s 2 R. Also the norm (A.11) provides a Hilbert space structure on Ds for all
s 2 R. By (A.10) we have (for Dirichlet boundary conditions)

(A.15) D�1 D H�1.M/:

Also, we have the interpolation identity

(A.16) ŒDs ;D� 	� D D��C.1��/s;

for all s; � 2 R; � 2 Œ0; 1	, where the interpolation spaces are as defined in
Chap. 4.
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The isomorphism

(A.17) � W DsC2 �! Ds ; with inverse T W Ds �! DsC2;

obviously valid for s � 0, extends by duality to an isomorphism � W D�s !
D�s�2 for s � 0, so (A.17) also holds for s � �2. By interpolation, it holds for
all real s.

By interpolation, (A.9) implies

(A.18) Ds � H s.M/; for s � 0:

The natural map Ds ,! H s.M/ is injective, for s � 0, but it is not generally
onto, and the transposeH�s.M/ ! D�s is not generally injective. However, the
natural map

(A.19) H�s
comp.M/ �! D�s

is injective, whereH�s
comp.M/ denotes the space of elements ofH�s.N / (N being

the double of M ) with support in the interior of M . In particular, for any interior
point p 2 M ,

(A.20) ıp 2 D�s ; for s >
n

2
.n D dim M/:

Note that as p ! @M , ıp ! 0 in any of these spaces. From the isomorphism in
(A.17), we have

(A.21) Gp D ��1ıp D T ıp

well defined, and

(A.22) Gp 2 D�n=2C2�"; for all " > 0:

This object is equivalent to the Green function studied in this chapter.
We can write any v 2 Ds , even for s < 0, as a Fourier series with respect

to the eigenfunctions uj . In fact, defining Ov.j / D .v; uj /, as before, the seriesP
j Ov.j /uj is convergent in the space Ds to v, provided v 2 Ds , so we are justi-

fied in writing

(A.23) v D
X

j

Ov.j /uj ; v 2 Ds; for any s 2 R:

Note that �� W Ds ! Ds�2 is given by

(A.24) ��v D
X

j

�j Ov.j /uj ;
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for any s 2 R. We can define

(A.25) .��/.�Ci/ W Ds �! Ds�2� ;

for any �; 
 2 R, by

(A.26) .��/.�Ci/v D
X

�
.�Ci/
j Ov.j /uj ;

where v 2 Ds is given by (A.23). The maps (A.25) are all isomorphisms. Note
that we can write the Ds-inner product coming from (A.11) as

(A.27) .v; w/Ds
D �

v; .��/sw�;
where on the right side the pairing arises from the natural Ds W D�s duality.

B. The Mayer–Vietoris sequence in deRham cohomology

Here we establish a useful complement to the long exact sequence (9.67) and
illustrate some of its implications. Let X be a smooth manifold, and supposeX is
the union of two open sets, M1 andM2. Let U D M1 \M2. The Mayer–Vietoris
sequence has the form

(B.1) � � � ! Hk�1.U / ı�! Hk.X/
��! Hk.M1/˚ Hk.M2/

��! Hk.U / ! � � � :
These maps are defined as follows. A closed form ˛ 2 ƒk.X/ restricts to a pair
of closed forms on M1 and M2, yielding  in a natural fashion. The map � also
comes from restriction; if �� W U ,! M� , a pair of closed forms ˛� 2 ƒk.M�/

goes to ��1˛1 � ��2˛2, defining � . Clearly, ��1.˛jM1
/ D ��2.˛jM2

/ if ˛ 2 ƒk.X/, so
� ı  D 0.

To define the “coboundary map” ı on a class Œ˛	, with ˛ 2 ƒk.U / closed, pick
ˇ� 2 ƒk.M�/ such that ˛ D ˇ1 � ˇ2. Thus dˇ1 D dˇ2 on U . Set

(B.2) ıŒ˛	 D Œ�	 with � D dˇ� on M� :

To show that (B.2) is well defined, suppose ˇ� 2 ƒk.M�/ and ˇ1 � ˇ2 D d!

on U . Let f'�g be a smooth partition of unity supported on fM�g, and consider
 D '1ˇ1C'2ˇ2, where '�ˇ� is extended by 0 offM� . We have d D '1dˇ1C
'2dˇ2 C d'1 ^ .ˇ1 � ˇ2/ D � C d'1 ^ .ˇ1 � ˇ2/: Since d'1 is supported on
U , we can write

� D d � d.d'1 ^ !/;
an exact form on X , so (B.2) makes ı well defined. Obviously, the restriction of
� to each M� is always exact, so  ı ı D 0. Also, if ˛ D ��1˛1 � ��2˛2 on U , we
can pick ˇ� D ˛� to define ıŒ˛	. Then dˇ� D d˛� D 0, so ı ı � D 0.
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In fact, the sequence (B.1) is exact, that is,

(B.3) im ı D ker ; im  D ker �; im � D ker ı:

We leave the verification of this as an exercise, which can be done with arguments
similar to those sketched in Exercises 11–13 in the exercises on cohomology after
�9.

If M� are the interiors of compact manifolds with smooth boundary, and U D
M1 \M2 has smooth boundary, the argument above extends directly to produce
an exact sequence

(B.4) � � � ! Hk�1.U / ı�! Hk.X/
��! Hk.M 1/˚ Hk.M 2/

��! Hk.U / ! � � � :

Furthermore, suppose that insteadX D M 1[M 2 andM 1\M 2 D Y is a smooth
hypersurface in X . One also has an exact sequence

(B.5) � � � ! Hk�1.Y / ı�! Hk.X/
��! Hk.M 1/˚ Hk.M 2/

��! Hk.Y / ! � � � :

To relate (B.4) and (B.5), let U be a collar neighborhood of Y , and form (B.4)
with M � replaced by M � [ U . There is a map � W U ! Y , collapsing orbits of
a vector field transversal to Y , and �� induces an isomorphism of cohomology
groups, �� W Hk.U / � Hk.Y /.

To illustrate the use of (B.5), suppose X D Sn; Y D Sn�1 is the equator,
andM � are the upper and lower hemispheres, each diffeomorphic to the ball Bn.
Then we have an exact sequence

(B.6)
� � � ! Hk�1.Bn/˚ Hk�1.Bn/

��!Hk�1.Sn�1/ ı�! Hk.Sn/

��! Hk.Bn/˚ Hk.Bn/ ! � � � :

As in (9.70), Hk.Bn/ D 0 except for k D 0, when you get R. Thus

(B.7) ı W Hk�1.Sn�1/ ��! Hk.Sn/; for k > 1:

Granted that the computation H1.S1/ � R is elementary, this implies Hn.Sn/ �
R, for n � 1. Looking at the segment

0 ! H0.Sn/
��! H0.Bn/˚ H0.Bn/

��! H0.Sn�1/ ı�! H1.Sn/ ! 0;

we see that if n � 2, then ker � � R, so � is surjective, hence ı D 0, so
H1.Sn/ D 0, for n � 2. Also, if 0 < k < n, we see by iterating (B.7) that
Hk.Sn/ � H1.Sn�kC1/, so Hk.Sn/ D 0, for 0 < k < n. Since obviously
H0.Sn/ D R for n � 1, we have a fourth computation of Hk.Sn/, distinct
from those sketched in Exercise 10 of �8 and in Exercises 10 and 14 of the set of
exercises on cohomology after �9.
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We note an application of (B.5) to the computation of Euler characteristics,
namely

(B.8) �.M 1/C �.M 2/ D �.X/C �.Y /:

Note that this result contains some of the implications of Exercises 17 and 18 in
the exercises on cohomology, in �9.

Using this, it is an exercise to show that if one two-dimensional surface X1
is obtained from another X0 by adding a handle, then �.X1/ D �.X0/ � 2. In
particular, ifM g is obtained from S2 by adding g handles, then �.M g/ D 2�2g.
Thus, if M g is orientable, since H0.M g/ � H2.M g/ � R, we have

(B.9) H1.M g/ � R2g :

It is useful to examine the beginning of the sequence (B.5):

(B.10) 0 ! H0.X/
��! H0.M 1/˚ H0.M 2/

��! H0.Y /
ı�! H1.X/ ! � � � :

Suppose C is a smooth, closed curve in S2. Apply (B.10) with M1 D C, a collar
neighborhood of C , and M 2 D �, the complement of C. Since @C is diffeomor-
phic to two copies of C , and since H1.S2/ D 0, (B.10) becomes

(B.11) 0 ! R
��! R ˚ H0.�/

��! R ˚ R
ı�! 0:

Thus � is surjective while ker � D im  � R. This forces

(B.12) H0.�/ � R ˚ R:

In other words,� has exactly two connected components. This is the smooth case
of the Jordan curve theorem. Jordan’s theorem holds when C is a homeomorphic
image of S1, but the trick of putting a collar about C does not extend to this case.

More generally, if X is a compact, connected, smooth, oriented manifold such
that H1.X/ D 0, and if Y is a smooth, compact, connected, oriented hypersurface,
then letting C be a collar neighborhood of Y and� D X n C, we again obtain the
sequence (B.11) and hence the conclusion (B.12). The orientability ensures that
@C is diffeomorphic to two copies of Y . This produces the following variant of
(the smooth case of) the Jordan–Brouwer separation theorem.

Theorem B.1. IfX is a smooth manifold, Y is a smooth submanifold of codimen-
sion 1, both are

compact, connected, and oriented,

and
H1.X/ D 0;

then X n Y has precisely two connected components.
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If all these conditions hold, except that Y is not orientable, then we replace
R ˚ R by R in (B.11) and conclude that X n Y is connected, in that case. As an
example, the real projective space RP2 sits in RP3 in such a fashion.

Recall from �19 of Chap. 1 the elementary proof of Theorem B.1 when X D
RnC1, in particular the argument using degree theory that if Y is a compact, ori-
ented surface in RnC1 (hence, in SnC1), then its complement has at least two
connected components. One can extend the degree-theory argument to the nonori-
entable case, as follows.

There is a notion of degree mod 2 of a map F W Y ! Sn, which is well defined
whether or not Y is orientable. For one approach, see [Mil]. This is also invariant
under homotopy. Now, if in the proof of Theorem 19.11 of Chap. 1, one drops the
hypothesis that the hypersurface Y (denotedX there) is orientable, it still follows
that the mod 2 degree of Fp must jump by ˙1 when p crosses Y , so RnC1 n Y
still must have at least two connected components. In view of the result noted after
Theorem B.1, this situation cannot arise. This establishes the following.

Proposition B.2. If Y is a compact hypersurface of RnC1 (or SnC1), then Y is
orientable.
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6

Linear Evolution Equations

Introduction

Here we study linear PDE for which one poses an initial-value problem, also
called a “Cauchy problem,” say at time t D t0. The emphasis is on the wave and
heat equations:

(0.1)
@2u

@t2
��u D 0;

@u

@t
��u D 0;

though some other sorts of PDE, such as symmetric hyperbolic systems, are also
discussed.

Sections 1 and 2 in particular treat (0.1), for u D u.t; x/, where x is in a com-
pact Riemannian manifold, or a noncompact but complete Riemannian manifold
(perhaps with boundary), respectively. We make essential use of finite propagation
speed for solutions to the wave equation to pass from the compact to the noncom-
pact case. In �3 we treat Maxwell’s equations, for the electromagnetic field, by
converting this system to the wave equation, where � is the Hodge Laplacian,
and the boundary conditions are of the form studied in �10 of Chap. 5.

Section 4 establishes the Cauchy–Kowalewsky theorem, for linear PDE with
real analytic coefficients and real analytic initial data. We show that the solution
u.t; x/ is given as a convergent power series

P
uj .x/tj =j Š, whose coefficients

uj .x/ belong to certain Banach spaces of holomorphic functions. The argument
here differs from the classical method of majorants. While it is straightforward, it
does not generalize easily to nonlinear analytic PDE. We will give a treatment of
the Cauchy–Kowalewsky theorem in the nonlinear case in Chap. 16.

In �5 we use energy estimates for general second-order, scalar, hyperbolic
PDE, derived in Chap. 2 to establish the existence of solutions to the Cauchy
problem. We also provide a parallel study of first-order, symmetric, hyperbolic
systems. The technique we use involves approximating the coefficients (and initial
data) by real analytic functions and using the Cauchy–Kowalewsky theorem.
A different technique will be presented in �7 of Chap. 7.

M.E. Taylor, Partial Differential Equations I: Basic Theory,
Applied Mathematical Sciences 115, DOI 10.1007/978-1-4419-7055-8 6,
c� Springer Science+Business Media, LLC 1996, 2011
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Section 6 discusses geometrical optics, a technique for constructing approxi-
mate solutions to certain types of initial-value problems for hyperbolic equations.
We continue this discussion in �7, illustrating the simplest situation where the
eikonal equation of geometrical optics breaks down and caustics are formed. We
study the geometry behind the formation of the simplest sort of caustics, and we
study a class of oscillatory integrals, whose relation to solutions to the wave equa-
tion will follow from material developed in the next chapter.

In �8 we return to the heat equation on a smoothly bounded domain, with
the Dirichlet boundary condition, and study boundary layer effects that arise for
solutions with initial data that do not vanish at the boundary. Our analysis makes
use of wave equation techniques and material from �6.

There are two appendices at the end of this chapter. Appendix A establishes
estimates for @=@xj acting on certain spaces of harmonic functions on the ball,
of use in the proof of the linear Cauchy–Kowalewsky theorem in �4. Appendix
B establishes the multidimensional case of the stationary phase method, whose
one-dimensional case arose in �7. The stationary phase method has other uses; in
Chap. 9, we will apply it to some problems in scattering theory.

1. The heat equation and the wave equation on bounded
domains

Let M be a compact, Riemannian manifold with boundary (which might be
empty). On C1.M/ is defined the Laplace operator, as usual. We consider here
existence and regularity of solutions to the heat equation, and the wave equation.
The heat equation is

(1.1)
@u

@t
D �u;

for u D u.t; x/, t 2 RC, x 2 M . Here, we use RC to denote Œ0;1/. We set the
initial condition

(1.2) u.0; x/ D f .x/:

If @M ¤ ;, we also pose a boundary condition. The Dirichlet condition is

(1.3) u.t; x/ D 0; x 2 @M:

The same methods apply to the Neumann boundary problem, @u=@� D 0, for
x 2 @M; t 2 RC, and a number of other boundary problems.

Solutions to (1.1)–(1.3) can be constructed with the aid of the eigenfunctions
of �, which arose in (1.11)–(1.13) of Chap. 5. Recall the orthonormal basis fuj g
of L2.M/ satisfying
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(1.4) uj 2 H 1
0 .M/\ C1.M/; �uj D ��j uj ; 0 � �j % 1:

Given f 2 L2.M/, we can write

(1.5) f D
X

j

Of .j /uj ; Of .j / D .f; uj /:

Then set

(1.6) u.t; x/ D
X

j

Of .j /e�t�j uj .x/; t > 0:

Recalling the spaces Ds defined in �A of Chap. 5, we see that

(1.7) f 2 Ds H) u 2 C.RC;Ds/I @
j
t u 2 C.RC;Ds�2j /:

It is clear that @tu D �u, for t > 0. If f 2 Ds with s > n=2, then u 2 C.Œ0;1/�
M/, and u.t; x/ satisfies (1.2) and (1.3) in the ordinary sense.

The uniqueness of solutions to (1.1)–(1.3) within the class

(1.8) C.RC;Ds/\ C 1.RC;Ds�2/

is easy to obtain, either by showing that the coefficients in the eigenfunction
expansion in terms of the uj must be given by (1.6), or from the simple energy
estimate

(1.9)
d

dt
ku.t/k2Ds�2

D 2 Re

�
@u

@t
; u.t/

�

Ds�2

D �2ku.t/k2Ds�1
� 0;

for a solution to (1.1) belonging to (1.8). We denote the solution to (1.1)–(1.3) as

(1.10) u.t; x/ D et�f .x/:

Let us note that, by (1.6),

(1.11) u 2 C1..0;1/;D� /; for all � 2 R:

In particular, for the solution u to (1.1)–(1.3), for any f 2 Ds ,

(1.12) u 2 C1..0;1/ �M/:

There is a maximum principle for solutions to the heat equation (1.1) similar
to that for the Laplace equation, discussed in �2 of Chap. 5, namely the following.
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Proposition 1.1. If u 2 C.Œ0; a/ � M/ \ C 2..0; a/ � M/ and u solves (1.1) in
.0; a/ �M , then

(1.13) sup
Œ0;a/�M

u.t; x/ D max

(
sup
x2M

u.0; x/; sup
x2@M;t2Œ0;a/

u.t; x/

)
:

In particular, if (1.2) and (1.3) hold, then

(1.14) sup
Œ0;a/�M

u.t; x/ D sup
M

f .x/:

Proof. It suffices to show that

u > 0 on f0g �M [ Œ0; a/ � @M H) u � 0 on Œ0; a/ �M:

In turn, if we set u�.t; x/ D u.t; x/C�t , it suffices to show that, for any � > 0, the
hypothesis above on u implies u� > 0 on Œ0; a/ � M . Indeed, if this implication
is false for some u, then, sinceM is compact, there must be a smallest t0 2 .0; a/
such that u�.t0; x0/ D 0, for some x0 2 M . We must have @tu�.t0; x0/ � 0 and
�u�.t0; x0/ � 0. However, u� satisfies the equation @tu� D �u�C�, so this yields
a contradiction, proving the proposition.

There are sharper versions of the maximum principle, analogous to the Hopf
maximum principle for elliptic equations proved in Chap. 5. See [J] and [PW] for
more on this.

One corollary of (1.14) is that the map (1.10) extends uniquely from a map of
f 2 Ds 7! u 2 C.RC;Ds/ (say for some s > n=2) to a mapping

(1.15) f 2 Co.M/ 7! u 2 C.Œ0;1/ �M/;

where Co.M/ is the space of continuous functions on M vanishing on @M , that
is, the sup norm closure of C1

0 .M/.
Recall from �A of Chap. 5 that ıp 2 D�n=2�" for all " > 0. The “fundamental

solution” to the heat equation is

(1.16) H.t; x; p/ D et�ıp.x/:

By (1.12),H.t; x; p/ is smooth in .t; x/, for t > 0. Since ıp is a limit in D�n=2�"
of elements of C1

0 .M/ that are � 0, it follows that

(1.17) H.t; x; p/ � 0; for t 2 .0;1/; x 2 M;p 2 M:

In fact, there is a variant of the strong maximum principle, which strengthens
(1.17) to H.t; x; p/ > 0 for t > 0; x; p 2 M . We refer to [J] and [PW] for
details.
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Next we look at the wave equation

(1.18)
@2u

@t2
��u D 0;

for u D u.t; x/; t 2 R; x 2 M . The initial conditions are

(1.19) u.0; x/ D f .x/; ut .0; x/ D g.x/;

and if @M is not empty, we impose the Dirichet boundary condition

(1.20) u.t; x/ D 0; x 2 @M:

If we write u.t; x/ as

(1.21) u.t; x/ D
X

j

aj .t/uj .x/;

with uj the eigenfunctions (1.4), then the coefficients aj .t/ satisfy

(1.22) a00
j .t/C �jaj .t/ D 0; aj .0/ D Of .j /; a0

j .0/ D Og.j /;

where Of .j / D .f; uj /; Og.j / D .g; uj /, and hence

(1.23) aj .t/ D Of .j / cos�1=2j t C Og.j /��1=2
j sin�1=2j t:

If @M D ; (and M is connected), then 0 is an eigenvalue of multiplicity one;
�0 D 0. In that case, (1.23) is replaced by

a0.t/ D Of .0/C Og.0/t:

For simplicity in writing formulas, we will ignore that case.
Thus, assuming all �j are nonzero, a solution to (1.18)–(1.20) is given by

(1.24) u.t; x/ D
X

j

� Of .j / cos�1=2j t C Og.j /��1=2
j sin�1=2j t

�
uj .x/:

This is equivalent to the operator expression

(1.25) u.t; x/ D cos t
p�� f C sin t

p��p�� g:
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We see that

(1.26) f 2 Ds ; g 2 Ds�1 H) u 2 C.R;Ds/; @
j
t u 2 C.R;Ds�j /;

if u is given by (1.24). If s > n=2, then u 2 C.R�M/, and the boundary condition
(1.20) is satisfied in the ordinary sense.

If we use the “energy norm,” whose square is

(1.27) Es.t/ D ku.t/k2Ds
C kut .t/k2Ds�1

;

where kvkDs
D k.��/s=2vkL2.M/, we see that if

(1.28) u 2 C 1.R;Ds/\ C 2.R;Ds�1/;

then

dEs

dt
D 2 Re

�
ut .t/; u.t/

�
Ds

C 2 Re
�
ut .t/; ut t .t/

�
Ds�1

D 2 Re
�
ut .t/; .��/su.t/

�C 2 Re
�
ut .t/;�.��/s�1u.t/

�

D 0;

(1.29)

provided u solves the wave equation (1.18). Thus we have the energy identity

(1.30) Es.t/ D Es.0/;

for all t 2 R. In the case �0 D 0, (1.27) annihilates constants, so we don’t quite
get a norm.

We saw in Chap. 2 that solutions to the wave equation that are sufficiently
smooth satisfy the finite propagation speed property. We now show that this holds
for general solutions, with initial data f; g as in (1.26). Thus we need to define the
support of an element f 2 Ds . Consider

(1.31) D1 D
\

j

Dj :

We know that D1 � C1.M/, and we use the usual notion of support of an
element of this space. If K � M is closed, s 2 R, we will say f 2 Ds is
“D-supported” in K if and only if

(1.32) .v; f / D 0; for all v 2 D1 such that supp v � M nK:

Soon we will just say f is supported in K , but a distinct term will be useful until
a few points are clarified. We show right away that this notion coincides with the
familiar notion of support when s � 0.



1. The heat equation and the wave equation on bounded domains 487

Lemma 1.2. Let K � M be closed, s 2 Œ0;1/; v 2 Ds � L2.M/. Then v is
D-supported in K ” v is supported in K in the usual sense, that is, v.x/ D 0

for almost all x 2 M nK .

Proof. Let w 2 D1 have support (in the usual sense) in a closed set L �
M n K . If v 2 D0 vanishes pointwise a.e. on M n K , then certainly .v; w/ DR
M
v.x/w.x/dV D 0. This establishes the implication (.

Suppose conversely that .v; w/ D 0 for all w 2 D1 that vanish pointwise on
a neighborhood of K . In particular, .v; w/ D 0 for all w 2 C1

0 .M n K/, so v
vanishes pointwise a.e. on the open set U D M nK � M , hence on the closure
of U in M nK . This completes the proof.

It is useful to draw attention to one point related to the proof above, namely

(1.33) for s � 0; C1
0 .M/ is dense in Ds:

To illustrate the notion of “D-supported” for s < 0, we note that, given
p 2 @M , there is a nonzero �p 2 Ds , for any s < �n=2 � 1, defined by
.u; �p/ D @u.p/=@�, and �p is D-supported on fpg.

We now state the result on finite propagation speed.

Proposition 1.3. If K � M is closed, and

(1.34) Kd D fx 2 M W dist.x;K/ � d g;

then if f 2 Ds ; g 2 Ds�1 are D-supported in K , it follows that

(1.35) cos t
p�� f and

sin t
p��p�� g are D-supported in Kd ;

for jt j � d .

Proof. Let v 2 D1 be supported in M nKd . We have

(1.36)
�

cos t
p�� f; v

	
D
�
f; cos t

p�� v
	
:

But the results of Chap. 2 apply to cos t
p�� v, which is smooth, so the right

side of (1.36) vanishes for jt j � d . The same sort of analysis applies to
.��/�1=2 sin t

p�� g, to complete the proof.

The next result should justify one’s simply saying that f 2Ds is supported in
a closed set K when it is D-supported in K .

Proposition 1.4. If s 2 R and f 2 Ds is D-supported in a closed set K �M ,
then for any neighborhood Kd of K , there exists a sequence fj 2 D1, all sup-
ported in Kd , such that fj ! f in Ds .
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Proof. Pick ' 2 C1
0 .�d; d/,

R
'.t/dt D 1, and consider

(1.37) fj D
Z
'j .t/ cos t

p�� f dt; 'j .t/ D j'.jt/:

Integration by parts shows that

.��/kfj D
Z
'
.2k/
j .t/ cos t

p�� f dt 2 Ds;

for all k, so fj 2 D1. That fj ! f in Ds is clear. Finally, by Proposition 1.3,
each fj is D-supported inKd , and so by Lemma 1.2 each fj is supported in Kd .

Exercises

1. Let f 2 C.R;Ds/. Show that the unique solution u 2 C.R;DsC1/ to

@2u

@t2
��u D f; u.0/ D ut .0/ D 0

is given by

(1.38) u.t/ D
Z t

0

sin.t � �/p��p�� f .�/d�;

suitably interpreted in case 0 2 Spec .��/. Show that

(1.39) ku.t/kDsC1
C kDtu.t/kDs

� C

Z t

0
kf .�/kDs

d�:

2. Let u 2 C.R; L2.M// satisfy

@2u

@t2
��u D f on R �M; u D 0 on R � @M; u D 0; for t < 0:

Assume f 2 C k.R �M/. Show that u 2 HkC1�Œ0; T 	 �M �
for any T < 1.

(Hint: Apply a variant of the s D 0 case of Exercise 1 to Djt u, 0 � j � k. Once you
have @2t u D g 2 C �R;H1

0 .M/
� \ C 1�R; L2.M/

�
, apply the PDE to write

.@2t C�/u D 2g � f; u D 0 on R � @M;
and use elliptic regularity. Continue this argument.)

3. Adapt the proof of Hopf’s maximum principle, given in �2 of Chap. 5, to the case of
the heat equation, proving a stronger version of Proposition 1.1. Establish a version
that treats u.t; x/ D et.��V /f .x/, given V 2 C1.M/ real-valued and � 0. Using
e�˛tu.t; x/ D et.��V�˛/f .x/, remove the hypothesis that V � 0.

Exercises 4–10 deal with regularity of solutions to the PDE

(1.40)
@u

@t
��u D f; u

ˇ̌
RC�@M D 0:

We assume that u 2 C.RC;D1/. Let I D Œ0; T 	.
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4. Suppose that (1.40) holds and u.0/ D 0. Show that

f 2 L2.I �M/ H) �u and @tu 2 L2.I �M/;

and k�ukL2.I�M/ � kf kL2.I�M/. (Hint: If u is sufficiently smooth, compute

.d=dt/k.��/1=2uk2
L2.M/

to show that



.��/1=2u.T /


2
L2.M/

C 2

Z T

0



�u.t/


2
L2.M/

dt D �2
Z T

0

�
f .t/;�u.t/

�
L2 dt

�
Z T

0

h
kf k2

L2 C

�u.t/


2
L2

i
dt:/

5. Omit the hypothesis that u.0/ D 0. If I 0 D Œt0; T 	 for some t0 > 0, show that

f 2 L2.I �M/ H) �u and @tu 2 L2.I 0 �M/:

(Hint: Set v D '.t/u, where ' 2 C1.R/, '.t/ D 1 for t � t0, 0 for t � t0=2. Then
@tv ��v D '.t/f C '0.t/u:)

6. Show that

@tf 2 L2.I �M/ H) @2t u 2 L2.I 0 �M/; and @tu 2 C.I 0;D1/:

(Hint: If ıhu.t; x/ D h�1�u.tCh; x/� u.t; x/
�
, consider estimates for @t .ıhu/, using

the PDE @t .ıhu/ ��.ıhu/ D ıhf , and let h ! 0:)

7. Deduce that if @jt f 2 L2.I �M/, for 0 � j � k, then

@
jC1
t u 2 L2.I 0 �M/; and @jt u 2 C.I 0;D1/; 0 � j � k:

8. Assume now that

(1.41) @tf 2 L2.I �M/; and f 2 L2�I;H2.M/
�
:

Show that �u 2 L2�I 0;H2.M/
�
, and hence u 2 L2�I;H4.M/

�
.

(Hint: Note that �.�u/ D @2t u � @tf ��f , while�u
ˇ̌
I�@M D �f ˇ̌

I�@M .
The term @2t u is controlled by Exercise 6. For fixed t , apply elliptic estimates.)

9. Now assume that

(1.42) @
j
t f 2 L2�I;H2k�2j .M/

�
; 0 � j � k:

Show that

(1.43) @
j
t u 2 L2�I 0;H2kC2�2j .M/

�
; 0 � j � k C 1:

(Hint: Reason inductively. Note that �j u satisfies

�.�j u/ D @
jC1
t u � .@

j
t C @

j�1
t �C � � � C @t�

j�1 C�j /f

�j u
ˇ̌
I�@M D �.@j�1

t C @
j�2
t �C � � � C @t�

j�2 C�j�1/f
ˇ̌
I�@M :/
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10. Deduce in particular that

(1.44) f 2 C1�
Œ0; T 	 �M � H) u 2 C1�

.0; T 	 �M �
:

11. Parallel the results of Exercises 4–10 for solutions to @u=@t ��u D f , given
(a) Neumann boundary condition, @�u

ˇ̌
RC�@M D 0,

(b) Robin boundary condition, @�u � a.x/u
ˇ̌
RC�@M D 0.

2. The heat equation and wave equation on unbounded
domains

Here we look at the heat and wave equations on R �M whenM is a noncompact
Riemannian manifold.

First we assume that M is complete and without boundary. We construct the
solution to the wave equation

(2.1)
@2u

@t2
��u D 0 on R �M; u.0; x/ D f .x/; ut .0; x/ D g.x/;

first under the hypothesis that

(2.2) f 2 H 1
0 .M/; g 2 L2.M/; supp f; g � K;

whereK � M is compact. We produce the unique solution

(2.3) u 2 C.R;H 1.M//\ C 1.R; L2.M//

having the property that

(2.4) supp u.t/ is compact in M; 8 t 2 R:

To do this, let Oj � M be compact subsets with smooth boundary, such that
O1 �� O2 �� � � � �� Oj ��% M . Given supp f; g � K and s > 0,
pick N so large that Ks � ON , where Ks D fx 2 M W dist.x;K/ � sg. Now
let �j be the Laplace operator on Oj , with Dirichlet boundary condition, so that
cos t

p��j and .��j /�1=2 sin t
p��j are defined on L2.Oj /,H 1

0 .Oj /, and so
forth, as in �1. By finite propagation speed, we see that

(2.5) u.t/ D cos t
p��j f C sin t

p��jp��j
g; for jt j < s; j � N;

has support in ON and is independent of j � N . This specifies the solution to
(2.1), given (2.2).
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We can define

(2.6) U.t/ff; gg D fu.t/; @tu.t/g;

obtaining a one-parameter family of maps

(2.7) U.t/ W C1
0 .M/˚ C1

0 .M/;

satisfying the group property

(2.8) U.0/ D I; U.t1 C t2/ D U.t1/U.t2/:

Also, if f; g 2 C1
0 .M/, the proof of energy conservation given in Chap. 2 works:

(2.9) kdf k2
L2.M/

C kgk2
L2.M/

D kdxu.t/k2
L2.M/

C k@tu.t/k2L2.M/
;

for each t 2 R. Let us set

(2.10) H D completion of C1
0 .M/ in the norm kf kH D kdf kL2.M/:

We have the following proposition.

Proposition 2.1. The family of maps U.t/ in (2.6) has a unique extension to a
unitary group

(2.11) U.t/ W H ˚ L2.M/ �! H ˚ L2.M/:

We move on to the heat equation

(2.12)
@u

@t
D �u; u.0; x/ D f .x/;

first assuming that f 2 L2.M/ has support in a compact set K . As with the wave
equation, if K � Oj , then et�j f is defined by �1. Note that, in that case,

(2.13) et�j f D 1p
4
t

Z 1

�1
e�s2=4t cos s

p��j f ds:

This suggests considering

(2.14) H.t/f .x/ D 1p
4
t

Z 1

�1
e�s2=4t W.s/f .x/ ds;
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where W.s/f .x/ D v.t; x/ solves (2.1), with g D 0. Thus, if f is supported
on K ,

(2.15) W.s/f .x/ D cos s
p��j f .x/ if Kjsj � Oj :

Then
(2.16)

H.t/f .x/ D et�j f .x/C 1p
4
t

Z

Tj

e�s2=4t
h
W.s/f .x/�cos s

p��j f .x/
i
ds;

where, assuming K � Oj , we set

(2.17) Tj D ˚
s 2 R W dist.K; @Oj / < jsj�:

Since cos s
p��j and (by (2.15))W.s/ have L2-operator norms � 1, we have

(2.18) H.t/f D lim
j!1 et�j f in L2.M/;

given f 2 L2.M/ with compact support. Here, et�j f .x/ is set equal to zero on
M nOj . ThusH.t/ extends uniquely to an operator on L2.M/, of norm � 1, and
we have

(2.19) H.t/f D lim
j!1 et�jPjf in L2.M/; 8f 2 L2.M/;

where Pjf .x/ D �Oj
.x/f .x/. Material in Chap. 8, �2, will show that H.t/ is a

semigroup, whose infinitesimal generator is the unique self-adjoint extension of
� from C1

0 .M/, when M is a complete Riemannian manifold.
We will show that, for t > 0, the operatorH.t/ has a smooth integral kernel:

(2.20) H.t/f .x/ D
Z

M

h.t; x; y/ f .y/ dV.y/:

Furthermore, under certain hypotheses onM , h.t; x; y/ will be shown to decrease
rapidly as dist.x; y/ ! 1, for fixed t > 0. Let Uj be open sets in M , containing
points xj , and suppose � D dist.U1; U2/ D inffdist.y1; y2/ W yj 2 Uj g. Assume
f is supported in U1. Then finite propagation speed implies that

(2.21) H.t/f .x/ D 1p
4
t

Z

jsj��
e�s2=4t W.s/f .x/ ds; for x 2 U2:
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Thus, if Rjf .x/ D �Uj
.x/f .x/, we have

(2.22) kR2H.t/R1kL.L2/ � 1p
4
t

Z

jsj��
e�s2=4t ds � e��2=4t ;

since, for � > 0,

(2.23)
Z 1

�

e�s2=4 ds D e��2=4

Z 1

0

e�.s2C2s�/=4 ds � p

 e��2=4:

To estimate derivatives, we can use the equation @2sW.s/ D �W.s/ and inte-
grate by parts, to write

(2.24) �kH.t/f .x/ D 1p
4
t

Z

jsj��

�
@2ks e

�s2=4t
	
W.s/f .x/ ds;

given x 2 U2; supp f � U1. Now there are estimates of the form

(2.25)
ˇ̌
ˇ@2ks e�s2=4t

ˇ̌
ˇ � Ckt

�k ˝.4t/�1s2
˛k
e�s2=4t :

Hence

kR2�kH.t/R1kL.L2/

� Ckt
�k
Z 1

�=
p
t

.1C s2/k e�s2=4 ds � Ckt
�k ˝t�1�2

˛k
e��2=4t ;

(2.26)

the last inequality following by an appropriate variant of (2.23). Pick k > n=4,
where n D dim M . There is a Sobolev estimate of the form

(2.27) jf .x2/j � C.U2/
h
k�kf kL2.U2/

C kf kL2.U2/

i
;

so we have

(2.28) kh.t; x2; �/kL2.U1/
� C 0C.U2/

�
1C t�kht�1�2ik�e��2=4t :

By symmetry and another application of the argument above, we have

(2.29) jh.t; x2; x1/j � C 0C.U1/C.U2/
�
1C t�kht�1�2ik�2e��2=4t :

Similarly, one can estimate higher derivatives. We have the following.

Proposition 2.2. If M is a complete Riemannian manifold of dimension n, the
operator H.t/ given by (2.14) and (2.19) has integral kernel h.t; x; y/, smooth
on .0;1/�M �M , and satisfying an estimate
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(2.30) 0 � h.t; x; y/ � C.x; ı/.y; ı/
�
1C t�kht�1�2ik�2e��2=4t ;

where dist.x; y/ D � C 2ı, .x; ı/ D C.U /, for U the ball of radius ı, centered
at x, and k > n=4.

The positivity in (2.30) follows from the positivity of the heat kernels
hj .t; x; y/ of et�j (set equal to zero if x or y is in M n Oj ). In fact, using
the maximum principle for the heat equation on RC � Oj , we obtain

(2.31) 0 � hj .t; x; y/ % h.t; x; y/ as j ! 1:

In some cases, such as when M is a homogeneous space, perhaps with a
compactly supported perturbation in the metric, one has a uniform estimate
.x; ı/ � c.ı/, independent of x 2 M . Then (2.30) implies the very rapid de-
cay of h.t; x; y/ as dist.x; y/ ! 1. Estimates of the form (2.30) will be of
occasional use later, for example, in Chap. 8, �3. Somewhat sharper estimates are
proved in [CGT]. Other approaches to heat kernel estimates can be found in [CLY]
and [Dav].

The results above can be extended to the case of M , a complete Riemannian
manifold with (smooth) boundary. On @M , one could place one of a number of
boundary conditions, such as Dirichlet or Neumann. Of course, it is no longer true
that the solution operator U.t/ as in (2.6) preserves C1

0 .M/˚ C1
0 .M/, but we

do have such results as

(2.32) U.t/ W H 1
0;comp.M/˚ L2comp.M/ �! H 1

0;comp.M/˚ L2comp.M/;

in the case of the Dirichlet boundary condition, where H 1
0;comp.M/ consists of

functions u 2 H 1
0 .M/ such that u is supported on a compact subset of M . We

leave further details on such extension of the results above to the reader.
We now discuss when the heat kernel h.t; x; y/ satisfies

(2.33)
Z

M

h.t; x; y/ dV.x/ D 1;

for all t > 0, y 2 M . This has probabilistic significance. IfM is compact (without
boundary), (2.33) is clear. IfM has boundary, and one uses the Dirichlet boundary
condition, then (2.33) fails, but it continues to hold if the Neumann boundary
condition is used.

If M is a complete Riemannian manifold (without boundary), then we always
have

(2.34)
Z

M

h.t; x; y/ dV.x/ � 1;



2. The heat equation and wave equation on unbounded domains 495

as a consequence of (2.31), but (2.33) may fail in some cases; some examples are
given in [Az]. In “nice” cases, such as when M has bounded geometry, (2.33)
does not fail, as we will now show.

Note that (2.33) holds if and only if

(2.35)
Z

M

et�f .x/ dV.x/ D
Z

M

f .x/ dV.x/; for all f 2 C1
0 .M/;

given that M is complete. Our approach to specifying a class of M for which
(2.35) holds will use the identity (2.14). Given f 2 L2.M/, the integral on the
right side of (2.14) is convergent in L2.M/. As long as M is complete, we have

(2.36)
Z

M

cos s
p�� f.x/ dV.x/ D

Z

M

f .x/ dV.x/;

for all s 2 R, f 2 C1
0 .M/. Consequently, (2.35) holds, for a given t > 0,

f 2 C1
0 .M/, whenever it can be shown that, for some ˇ < 1=4t ,

(2.37)


cos s

p�� f



L1.M/

� C eˇs
2

:

Three ingredients go into the estimate of this L1-norm. Two are Cauchy’s
inequality plus the fact that the L2-operator norm of cos s

p�� is � 1, yielding

(2.38)


cos s

p�� f 


L1.BsC� .p//

� 

cos s
p�� f 



L2.M/

�
vol BsC�.p/

	1=2
;

where BsC� .p/ D fx 2 M W dist.x; p/ � s C �g. The third ingredient is finite
propagation speed; if f is supported onB� .p/, then cos s

p�� f is supported on
BsC� .p/, so the left side of (2.38) is all of k cos s

p�� f kL1.M/. Consequently,
given t > 0, (2.35) holds provided that, for some ˇ < 1=4t , we have a volume
estimate:

(2.39) vol BsC� .p/ � C.�/ eˇs
2

; 8 s > 0; � > 0:

In other words, if (2.39) holds, then (2.35) holds for all t < 1=4ˇ. Then (2.35)
extends to all f 2 L1.M/, for t < 1=4ˇ. Consequently, it holds for all t > 0,
and so does (2.33), as long as (2.39) holds, for some ˇ. Note that (2.39) follows
from the estimate vol Bs.p/ � C eˇs

2=2. Relabeling ˇ, we summarize what has
been shown.
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Proposition 2.3. If M is a complete Riemannian manifold satisfying, for some
ˇ < 1, the volume estimate

(2.40) vol Bs.p/ � Cp e
ˇs2

;

then (2.33) and (2.35) hold.

Exercises

1. Let V.t/ denote the solution operator to the following variant of (2.1):

@2u

@t2
� .�� 1/u D 0; u.0/ D f; @tu.0/ D g:

AssumeM is complete. Show that V.t/ preserves C1
0 .M/˚C1

0 .M/ and has a unique
extension to a unitary group on H1

0 .M/ ˚ L2.M/, where H1
0 .M/ is, as usual, the

completion of C1
0 .M/ in the norm defined by kf k2

H1
0

D kdf k2
L2.M/

C kf k2
L2.M/

.

2. Verify the estimates of the s-derivatives of e�s2=4t , given in (2.25).

3. Maxwell’s equations

Maxwell’s equations for the propagation of electromagnetic waves in a vacuum
are written as follows, as seen in �11 of Chap. 2:

(3.1)
@E

@t
D curl B;

@B

@t
D � curl E;

and

(3.2) div E D 0; div B D 0:

Here, E is the electric field and B is the magnetic field, both vector fields in a
region of R3, and both varying with time t . Units are chosen so the speed of light
c is 1. If the region M in R3 is bounded by a “perfect conductor,” one sets the
boundary conditions

(3.3) � � E D 0; � � B D 0 on @M:

We will investigate the initial-value problem for (3.1)–(3.3), where E.0; x/ and
B.0; x/ are specified, subject to the condition (3.3).

We will transform (3.1)–(3.3) into a system of equations for
1-forms on M rather than vector fields on M , using the metric tensor to identify
these, and then make contact with material developed in �10 of Chap. 5. If we
let QE; QB be 1-forms on M corresponding to the vector fields E and B , then the
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equations above become, respectively,

(3.4)
@ QE
@t

D �d QB; @ QB
@t

D � � d QE;

(3.5) ı QE D 0; ı QB D 0;

and

(3.6) � ^ QE D 0; �� QB D 0 on @M:

Here, QE D QE.t; x/, QB D QB.t; x/, and of course d and ı involve only differentia-
tion in the x-variables. The identity div E D �ı QE was demonstrated in Chap. 2;
see (10.25) of Chap. 2. Note that we are using forms to describe the electromag-
netic field in a completely different way than that used in �11 of Chap. 2. Here we
are considering functions of t taking values in spaces of forms on a 3-fold, rather
than forms on a 4-fold.

We can define the energy of the field . QE; QB/ to be

(3.7) E.t/ D k QE.t/k2
L2.M/

C k QB.t/k2
L2.M/

:

The following result expresses conservation of energy and of course also gives a
uniqueness result.

Proposition 3.1. If QE; QB 2 H 1.ŒT1; T2	 � M/ satisfy (3.4) and the first part of
(3.6), then

(3.8)
dE
dt

D 0; for t 2 .T1; T2/;

so

(3.9) E.t1/ D E.t2/; for tj 2 .T1; T2/:

Proof. We have

dE
dt

D 2 Re

 
@ QE
@t
; QE
!

L2

C 2 Re

 
@ QB
@t
; QB
!

L2

D 2 Re .�d QB; QE/� 2 Re .�d QE; QB/:

Now
.�d QB; QE/ D .ı � QB; QE/ D .� QB; d QE/ D . QB;�d QE/;

where the second identity uses the hypothesis that � ^ QE D 0 on @M . Thus (3.8)
is proved.
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In order to establish the existence of solutions to (3.4)–(3.6), we will produce
a second-order wave equation satisfied by . QE; QB/, which can be solved by the
methods of �1. Note that if we set

(3.10) v D @ QE
@t

� �d QB; w D @ QB
@t

C �d QE;

then a short computation gives

@v

@t
C �dw D @2 QE

@t2
C ıd QE;

@w

@t
� �dv D @2 QB

@t2
C ıd QB:

(3.11)

If (3.5) holds, then we can replace ıd QE and ıd QB in (3.11) by �� QE and �� QB ,
respectively. Now, if (3.4) holds, then v D w D 0, and hence (3.11) implies

(3.12)
@2 QE
@t2

�� QE D 0;
@2 QB
@t2

�� QB D 0:

The appropriate boundary conditions for QE and QB are relative

(3.13) � ^ QE D 0; � ^ ı QE D 0 on @M (relative boundary conditions),

and

(3.14) �� QB D 0; ��d QB D 0 on @M (absolute boundary conditions),

where the last boundary condition is derived from (3.4) and (3.13), together with
the fact that

� ^ �d QB D 0 ” ��d QB D 0:

Now the existence of solutions to the initial value problem

QE.0; x/ D QE0.x/; QEt .0; x/ D QE1.x/;
QB.0; x/ D QB0.x/; QBt .0; x/ D QB1.x/;

(3.15)

follows from the methods of �1, given the material on the Hodge Laplacian with
relative or absolute boundary conditions in �9 of Chap. 5.

It remains to show that solving (3.12)–(3.15) produces solutions to the initial-
value problem for (3.4)–(3.6). We have the following result.

Proposition 3.2. Let . QE; QB/ solve (3.12)–(3.15), and suppose the initial data in
(3.15) satisfy
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(3.16) ı QE0 D 0; ı QB0 D 0

and

(3.17) QE1 D �d QB0; QB1 D � � d QE0:

Then . QE; QB/ satisfies Maxwell’s equations (3.4) and (3.5).

Proof. To see that solving the wave equations, (3.12)–(3.14), preserves the prop-
erty of being annihilated by ı, note that the eigenfunctions of � with either of
these boundary conditions can be arranged to belong to one of the terms in the
Hodge decomposition; see Exercise 5 of �9, Chap. 5. Thus (3.16) yields (3.5). It
remains to prove (3.4). For this, define v;w by (3.10), so (3.17) implies

(3.18) v.0; x/ D 0; w.0; x/ D 0:

On the other hand, (3.12) plus ı QE D ı QB D 0 implies that (3.11) vanishes, that is,

(3.19)
@v

@t
C �dw D 0;

@w

@t
� �dv D 0:

Furthermore, the boundary conditions (3.13) and (3.14) imply

(3.20) � ^ v D 0 and ��w D 0 on @M:

Consequently, Proposition 3.1 applies to the pair .v;�w/, so v and w are identi-
cally zero. This finishes the proof.

Exercises

1. Suppose .E;B/ solve Maxwell’s equations (3.1)–(3.2) and the boundary condition

� �E D 0; for .t; x/ 2 R � @M:
Suppose that � � B D 0 on @M at t D 0. Show that � � B D 0 on @M for all t .
(Hint: Compare .E;B/ to the solution discussed in Proposition 3.2.)
What can you say if you drop the hypothesis that � � B D 0 on @M at t D 0‹

4. The Cauchy–Kowalewsky theorem

The Cauchy–Kowalewsky theorem, in the linear case, asserts the local existence
of a real analytic solution to the “Cauchy problem”

(4.1)

@mu

@tm
C
m�1X

jD0

X

j˛j�m�j
Aj˛.t; x/

@˛

@x˛
@j u

@tj
D f .t; x/;

u.t0; x/ D g0.x/; : : : ; @
m�1
t u.t0; x/ D gm�1.x/;



500 6. Linear Evolution Equations

given that Aj˛.t; x/ and f .t; x/ are real analytic on a neighborhood of .t0; x0/ in
RnC1 and g0; : : : ; gm�1 are real analytic on a neighborhood of x0 in Rn. There is
no loss of generality in taking t0 D 0; x0 D 0.

Any system of the form (4.1) can be converted to a first-order system

(4.2)
@u

@t
D L.t; x/@xu C L0.t; x/u C f; u.0; x/ D g.x/;

where L.t; x/@x D Pn
jD1Lj .t; x/ @=@xj . Here we assume that Lj .t; x/ are real

analytic, K � K , matrix-valued functions, and f and g are real analytic, with
values in CK . Note that if (4.2) holds, then

(4.3) @
jC1
t u D

jX

`D0

 
j

`

!h�
@
j�`
t L

�
@x@

`
t u C �

@
j�`
t L0

�
@`t u

i
C @

j
t f:

In particular, we inductively have @jC1
t u.0; x/ uniquely determined. Thus (4.2)

has at most one real analytic, local solution u.
On the other hand, if we can use (4.3) to get sufficiently good estimates on

@
jC1
t u

ˇ̌
tD0 D ujC1.x/ that the power series

(4.4) u.t; x/ D
1X

jD0

1

j Š
uj .x/t

j

is shown to converge, for t in some neighborhood of 0, then (4.4) furnishes the
solution to (4.2). To be more precise, we set u0.x/ D g.x/ and define ujC1.x/
inductively by

(4.5) ujC1.x/ D
jX

`D0

X

�

 
j

`

!
@
j�`
t L�.0; x/ � @�u`.x/C @

j
t f .0; x/:

We sum over 0 � � � n and make the convention that @� D @=@x� for � � 1,
while @0u D u. Our goal will be to get estimates on ujC1.x/ guaranteeing the
local convergence of (4.4).

As illustrated in results on vector fields with real analytic coefficients (say on
an open set U � Rn) in Chap. 1, it is often useful to extend the real analytic
coefficients and other data to holomorphic functions, defined on a neighborhood
of U in Cn. Here we will similarly extend L.t; x/; f .t; x/, and g.x/ as functions
holomorphic in x, in a neighborhood of 0 2 Cn. We keep t real, for now. Without
loss of generality, we can suppose that L.t; z/; f .t; z/, and g.z/ are all holomor-
phic for z in a neighborhood of the closed unit ball B � Cn, with real analytic
dependence on t , for jt j � 1.

We will use the Banach spaces Hj of functions f , holomorphic on B , having
the property that
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(4.6) Nj .f / D sup
z2B

ı.z/j jf .z/j

is finite, where ı.z/ D 1 � jzj is the distance of z from @B . We will inductively
obtain estimates for Nj .uj /. From (4.5), we have

(4.7)

NjC1.ujC1/ �
jX

`D0

X

�

 
j

`

!


@j�`
t L�.0/




L1.B/

NjC1.@�u`/CNjC1.@jt f /:

A key estimate is that, for a certain constant � , depending only on n, we have

(4.8) NjC1.@x�
u`/ � �.j C 1/Nj .u`/:

In order not to interrupt the flow of the argument, we establish this in Appendix A;
see (A.8). Since

(4.9) Nj .v/ � N`.v/; for ` � j;

we have

(4.10)

NjC1.ujC1/ � �.j C 1/

jX

`D0

X

�

 
j

`

!


@j�`
t L�.0/




L1

N`.u`/CNjC1.@jt f /:

Given the hypothesis on L, we can assume there are estimates of the form

(4.11)
X

�



@mt L�.0/



L1.B/

� C1�
m mŠ;

for certain constants C1 and �. Now, our inductive hypothesis on u` is that there
exist constants C2 and � such that

(4.12) N`.u`/ � C2 �
` `Š; 0 � ` � j:

The ` D 0 case follows from our hypothesis on g.x/. We can also assume that,
for all j ,

(4.13) NjC1.@jt f / � C2 �
j .j C 1/Š:

Substitution of these estimates into (4.10) yields

(4.14) NjC1.ujC1/ � �C1C2.j C 1/Š

jX

`D0
�j�`�` C C2 �

j .j C 1/Š:
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We are permitted to assume that �D 2� and �� 2�C1 C 1. Then
Pj

`D0 �
j�`

�` � 2�j , so we have

(4.15)
NjC1.ujC1/ � C2.j C 1/Š .2�C1/�

j C C2 �
j .j C 1/Š � C2 �

jC1 .j C 1/Š:

This completes the induction; in other words

(4.16) Nj .uj / � C2 �
j j Š; for all j:

We hence have the following proposition.

Proposition 4.1. Given the real analyticity hypotheses on (4.1), there is a unique
real analytic solution u.t; x/ on a neighborhood of .t0; x0/ in RnC1. The size
of the region on which u.t; x/ is defined and analytic depends on the size of the
regions to which the coefficients and data of (4.1) have holomorphic extensions,
in a fashion determined by (4.11), (4.12), and (4.16).

Another approach to the use of estimates of the form (4.8) to prove the linear
Cauchy–Kowalewsky theorem can be found in [Ho].

We restate the Cauchy–Kowalewsky theorem in a coordinate-invariant fashion.
Let S be a smooth hypersurface in an open set O � Rn. We say that S is nonchar-
acteristic for a differential operator P D p.x;D/ of order m if, for each x 2 S ,
�P .x; �/ D pm.x; �/ is invertible, where � is a nonvanishing normal to S at x.
Now assume that p.x;D/ has real analytic coefficients and S is a real analytic
hypersurface. Let Y be a real analytic vector field transverse to S . We consider
the following Cauchy problem:

(4.17) p.x;D/u D f; u
ˇ̌
S

D g0; Y u
ˇ̌
S

D g1; : : : ; Y
m�1u

ˇ̌
S

D gm�1:

Then, on a neighborhood of any given x0 2 S , we can make a real analytic change
of variable such that, for some real analytic invertibleA.x/,Q D A.x/�1p.x;D/
has the form of the operator in (4.1) and S is given by t D 0. We do not claim that
Y D @=@t , but clearly @jt u

ˇ̌
S

can be determined inductively from u
ˇ̌
S
; : : : ; Y j u

ˇ̌
S

,
and vice versa. Then, with new f and gj , (4.17) acquires the form (4.1), so we
have:

Proposition 4.2. If p.x;D/ is a differential operator of order m with real ana-
lytic coefficients on O, S is a real analytic hypersurface in O, Y is a real analytic
vector field transverse to S , and f and gj are real analytic, then there exists a
unique real analytic solution to (4.7), on some neighborhood of S .

Given the linear Cauchy–Kowalewsky theorem, we proceed to a uniqueness
result of Holmgren.

Proposition 4.3. Let P D p.x;D/ be a differential operator of order m, with
real analytic coefficients on an open set O � Rn, and let S � O be a smooth,
noncharacteristic hypersurface. Suppose that u 2 Hm.O/ solves
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(4.18) p.x;D/u D 0 on O; u
ˇ̌
S

D 0; Y u
ˇ̌
S

D 0; : : : ; Y m�1u
ˇ̌
S

D 0;

where Y is a smooth vector field transverse to S . Then u D 0 on a neighborhood
of S .

Proof. We can assume that O nS has two connected components, OC and O�.
Alter u to produce v.x/, equal to u.x/ for x 2 OC and to 0 for x 2 O�. Then the
hypothesis (4.16) implies

(4.19) v 2 Hm.O/; p.x;D/ D 0 on O:

Pick x0 2 S . If S is noncharacteristic at x0, then there exists a real analytic
hypersurface†0, tangent to S at x0. Cutting down O if necessary, we can make a
real analytic change of variable so that Q D A.x/�1p.x;D/ has the form (4.1),
for some invertible, real analytic A.x/, and †0 is given by ft D 0g, as illustrated
in Fig. 4.1. (Say t D xn:) Picking†0 appropriately, we can arrange that S is given
by t D '.x0/ � jx0j2, where x0 D .x1; : : : ; xn�1/. The adjoint operator Q� also
has real analytic coefficients on O. Let †� D O \ ft D �g.

Now, according to the Cauchy–Kowalewsky theorem, together with the esti-
mates on the size of domains of existence discussed above, we have the following.
There exists ı > 0 such that, for any � 2 .�ı; ı/ and any polynomial a.x/ on Rn,
the Cauchy problem

(4.20) Q�w D a; w D @tw D � � � D @m�1
t w D 0 on †�

has a solution w, real analytic on fx 2 O W jx � x0j < ı C p
ıg. Thus, if we pick

� 2 .0; ı/ and let A� be the set bounded by †� and S (so A� � OC),

(4.21) .u; a/L2.A� /
D .v;Q�w/L2.A� /

D .Qv;w/L2.A� /
D 0:

Since, by the Stone–Weierstrass theorem, the set of polynomials is dense in
C.A� /, this implies u D 0 on A� . Similarly, one establishes that u D 0 near
x0 in O�, and the proposition is proved.

FIGURE 4.1 The Noncharacteristic Surface S
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Exercises

1. Show that the conclusion (4.16), leading to the Cauchy–Kowalewsky theorem, still
holds if the hypothesis (4.11) on @mt L�.0; x/ is weakened to

(4.11a)
X

�

Nm
�
@mt L�.0/

� � C1 �
mmŠ:

2. In the estimation of (4.14), we took � D 2�. More generally, work out the analogue of
(4.15) when � D �=K, K > 1. What happens if you try to take � D �? How does this
affect your ability to generalize (4.2)–(4.16) to the quasilinear case:

@u

@t
D

nX

jD1
Lj .t; x; u/

@u

@xj
C L0.t; x; u/‹

For a proof of the Cauchy–Kowalewsky theorem for nonlinear PDE, see �4 of Chap. 16.
3. If P;O; S , and Y are as in Proposition 4.3, show that whenever u 2 D0.O/ satisfies
P u D 0 on O, then Y j u

ˇ̌
S

is a well-defined element of D0.S/, for all j . Extend
Proposition 4.3 to the case of all u 2 D0.O/ satisfying (4.18).

5. Hyperbolic systems

We will use energy estimates and Sobolev space theory to establish the existence
of solutions to linear hyperbolic equations of a more general form than considered
in �1. To begin, let us examine second-order hyperbolic equations, of the form

(5.1) Lu D �u CXu D f; u
ˇ̌
S0

D g0; Y u
ˇ̌
S0

D g1;

where � is the wave operator on a Lorentz manifold�, assumed to be foliated by
compact, spacelike hypersurfaces S� , the operator X is a first-order differential
operator, and Y is a vector field transverse to S0. The operator � D @2t � � on
R � M , with S� D f.t; x/ W t D �g, dealt with in �1, is a special case, provided
@M D ;.

Energy estimates for (5.1) were established in �8 of Chap. 2. In particular, if O
is the region in � swept out by S� , 0 � � � T , then, by (8.19) of Chap. 2,

(5.2) kuk2
H1.O/ � CkLuk2

L2.O/ C Ckg0k2H1.S0/
C Ckg1k2L2.S0/

:

The argument of Chap. 2 applies as long as u 2 H 2.O/. If L has formal adjoint
L� D � CX1, we similarly have

(5.3) kvkH1.O/ � CkL�vkL2.O/; for v 2 VT .O/;
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where

(5.4) VT .O/ D fw 2 C1.O/ W w D dw D 0 on ST g:

Now, to solve (5.1), when g0 D g1 D 0, given f 2 L2.O/, it suffices to obtain u
such that

(5.5) .u; L�v/ D .f; v/; for all v 2 VT .O/:

However, by (5.3), given f 2 L2.O/, we have

(5.6)
ˇ̌
.f; v/

ˇ̌ � Ckf kL2.O/ � kL�vkL2.O/;

so by the Riesz representation theorem, the existence of u 2 L2.O/ such that
(5.5) holds is guaranteed. In fact, more generally, given f 2 H 1.O/�, we have

(5.7)
ˇ̌
.f; v/

ˇ̌ � Ckf kH1.O/� kL�vkL2.O/;

so we have a solution u 2 L2.O/ to (5.5) for all f 2 H 1.O/�.
Note that if u 2 L2.O/ and Lu 2 L2.O/, then u

ˇ̌
S0

and Y u
ˇ̌
S0

always exist, in

H�2.S0/. If u satisfies (5.7), these Cauchy data vanish. Also, in this case, if we
set f D 0 and u D 0 on

S
��0 S� D Ob , we have Lu D f on O [ Ob D O#.

Moving to the nonhomogeneous initial-value problem (5.1), if one has g0 2
H 3=2.S0/ and g1 2 H 1=2.S0/, one can construct U 2 H 2.O/ with such Cauchy
data and subtract this off. Thus the argument above yields a solution u 2 L2.O/
to (5.1), given

(5.8) f 2 L2.O/; g0 2 H 3=2.S0/; g1 2 H 1=2.S0/:

This existence result is not at all satisfactory and will be improved below.
We can extend (5.2) to higher-order a priori estimates for sufficiently smooth

solutions to (5.1), as follows. Suppose u 2H kC1.O/, which is more than adequate
to imply that f 2 H k�1.O/; g0 2 H k.S0/, and g1 2 H k�1.S0/. For simplicity,
take� D R�Tn, S� D f�g�Tn, so we have natural coordinate systems making
D˛ meaningful. Then define

(5.9) u˛ D D˛u:

We produce a system of PDE satisfied by .u˛ W j˛j � k � 1/, as follows. There
exist first-order differential operatorsXˇ on � such that

(5.10) LD˛ D D˛LC
X

jˇ j�j˛j
XˇD

ˇ :
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Then

(5.11) Lu˛ �
X

jˇ j�j˛j
Xˇuˇ D Dˇf:

We can also determine u˛
ˇ̌
S0

and Y u˛
ˇ̌
S0

, in terms of derivatives of f; g0, and g1,
and we have

u˛
ˇ̌
S0

D g0˛ 2 H k�j˛j.S0/ � H 1.S0/;

Y u˛
ˇ̌
S0

D g1˛ 2 H k�1�j˛j.S0/ � L2.S0/:
(5.12)

Now the energy estimate (5.2) applies to the system (5.11)–(5.12), so we have

(5.13)X

j˛j�k�1
ku˛k2

H1.O/ � C
X

˛

h
kD˛f k2

L2.O/ C kg0˛k2
H1.S0/

C kg1˛k2
L2.S0/

i
;

and hence

(5.14) kuk2
Hk.O/ � CkLuk2

Hk�1.O/ C Ckg0k2Hk .S0/
C Ckg1k2Hk�1.S0/

:

We want to show that, given f 2 H k.O/, g0 2 H k.S0/, g1 2 H k�1.S0/,
with k � 1, there exists a unique solution u to (5.1) and that u 2 H k.O/. We will
establish this by obtaining u as a limit of solutions to approximating hyperbolic
equations, having analytic coefficients and data, for which a solution is guaranteed
by the Cauchy–Kowalewsky theorem. A different sort of existence argument can
be found in Chap. 7, �7.

Let us assume S� is given by t D � in � D R � Tn, and Y D @=@t . Now we
can approximate the coefficients of L in C1.R � Tn/ by functions that are real
analytic on R � Tn. We can think of these functions as being defined on R � Rn,
and Zn-periodic, and can arrange that the coefficients have entire holomorphic
extensions to C � Cn. Denote the resulting operators by L� . Given k 2 ZC, let
us assume that

(5.15) f 2 H k�1.�/; g0 2 H k.S0/; g1 2 H k�1.S0/:

We approximate these functions, in the appropriate norms, by real analytic func-
tions f� , g0� , g1� , having entire holomorphic extensions in the sense mentioned
above. Consider the initial-value problems

(5.16) L�u� D f� ; u�
ˇ̌
S0

D g0� ; @tu�
ˇ̌
S0

D g1� :

The Cauchy–Kowalewsky theorem applies to (5.16), and results of �4 imply that,
for each �, there is a unique solution u�.t; x/ that is real analytic on all of R�Tn.
The energy estimates of the form (5.14) hold uniformly in �, for any given O D
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Œ�T; T 	�Tn. In other words, given (5.15), fu�g is bounded inH k.O/. Thus there
is a subsequence u�j

! u weakly in H k.O/. It is clear that such a limit u solves
(5.1). We have the following result.

Proposition 5.1. Given f; g0; g1 satisfying (5.15), there is a unique solution
u 2H k.�/ to (5.1).

The final point to discuss in this result is uniqueness. If k � 2, this is immediate
from the energy estimate (5.2). In fact, we can derive a more general uniqueness
result by a duality argument. Namely, suppose

(5.17) u 2 D0.�/; u D 0 on
[

�<0

S� ; Lu D 0 on �:

Given f 2 C1
0 .�/, we can apply the existence part of the proposition, with L

replaced by L�, and with time reversed, to produce, for arbitrarily large k > 0,

(5.18) v 2 H k.�/; v D 0; for t >> 0; L�v D f:

Pick k so large that u 2 H 2�k , on a neighborhood of the support of f . Then

(5.19) .u; f / D .u; L�v/ D .Lu; v/ D 0;

which implies u D 0. This finishes the proof of Proposition 5.1 and also estab-
lishes the uniqueness of the solution u in (5.8), which can consequently be seen
to belong to H 1.O/.

We now look at a class of first-order N �N systems, of the form

(5.20)
@u

@t
C

nX

jD1
Aj .t; x/

@u

@xj
CB.t; x/u D f .t; x/; u.0; x/ D g.x/:

Let us suppose the various functions, f .t; x/, and so on, are defined on � D
R � Tn. The system (5.20) is said to be symmetric hyperbolic provided each
N �N matrix Aj satisfies

(5.21) Aj .t; x/
� D Aj .t; x/:

We will derive energy estimates for solutions to (5.21) in a fashion similar to that
used in �8 of Chap. 2. Suppose O � R � Tn is bounded by two surfaces, †1 and
†2, as illustrated in Fig. 5.1. If we denote the left side of (5.20) by Lu, then, by
the Gauss–Green formula, in the form established in (9.17) of Chap. 2,

(5.22) .Lu; u/� .u; L�u/ D 1

i

Z

@O

˝
�L.t; x; �/u; u

˛
dS;
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FIGURE 5.1 Spacelike Bounded Regions

where the inner products on the left are inner products in L2.O/, and � is the
inward normal to @O, as illustrated in Fig. 5.1. Note that

(5.23) L�u D �Lu C Cu; Cu D �
X @Aj

@xj
u C Bu;

provided (5.21) holds. Thus we have

(5.24) 2 Re.Lu; u/� .u; Cu/ D 1

i

Z

@O

˝
�L.t; x; �/u; u

˛
dS:

Note that if � D .�0; �1; : : : ; �n/ 2 T �.R � Tn/, then

(5.25)
1

i
�L.t; x; �/ D �0I C

nX

jD1
Aj .t; x/�j :

Thus .1=i/�L.t; x; �/ is positive-definite on †1 and negative-definite on †2 if
these surfaces are close enough to horizontal, that is, if � is close enough to
.1; 0; : : : ; 0/ on †1 and to .�1; 0; : : : ; 0/ on †2. If this definiteness condition
holds on †j , we say †j is spacelike, for the operator L. Compare the notion of
a spacelike surface for �, given in Chap. 2. Also, we say � 2 T �

z .�/ n 0 is
(forward or backward) timelike if .1=i/�L.z; �/ D �.z; �/ is (positive- or
negative-) definite.

Suppose †1 and †2, bounding O as above, are both spacelike. Also, suppose
that O is swept out by spacelike surfaces. To be precise, suppose that there is a
smooth function ' on a neighborhood of O such that d' is timelike, and set

(5.26) O.s/ D O \ f' � sg; †2.s/ D O \ f' D sg:

We suppose O is swept out by †2.s/, s0 � s � s1, as illustrated in Fig. 5.2, with
†2 D †2.s1/. Also set

(5.27) †b1.s/ D †1 \ f' � sg:
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FIGURE 5.2 Spacelike Sweeping

As in (5.22), we have (with �2 D d'=jd'j):

Z

†2.s/

h�.z; �2/u; ui dS D
Z

†b
1
.s/

h�.z; �/u; ui dS � 2 Re.Lu; u/C .u; Cu/

�
Z

†b
1
.s/

h�.z; �/u; ui dS CK

Z

O.s/

�jLuj2 C juj2� dV:

(5.28)

Now, parallel to (8.13) of Chap. 2, we set

(5.29) E.s/ D
Z

O.s/

h�.z; �2/u; ui dV

and estimate the rate of change of E.s/. Clearly,

(5.30)
dE

ds
� C

Z

†2.s/

h�.z; �2/u; ui dS;

so, by (5.28), we have an estimate of the form

(5.31)
dE

ds
� CE.s/C F.s/;

where

(5.32) F.s/ D C

Z

†1

juj2 dS C C

Z

O.s/

jLuj2 dV:

This differential inequality yields

(5.33) E.s/ �
Z s

s0

eC.s�r/F.r/ dr:
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Consequently,

(5.34)
Z

O.s/

juj2 dV � C.s � s0/

Z

†1

juj2 dS C C

Z

O.s/

jLuj2 dV:

From here, the existence and uniqueness of solutions to (5.20), as well as the finite
propagation speed, follow by arguments parallel to those used for L D � C X .
We leave the formulation of such results to the reader.

Exercises

1. Supplement (5.2) with

kuk2
H1.ST /

C kY uk2
L2.ST /

� CkLuk2
L2.O/ C Ckg0k2

H1.S0/
C Ckg1k2

L2.S0/
;

when L has the form (5.1). More generally, supplement (5.14) with

kuk2
Hk .ST /

CkY uk2
Hk�1.ST /

� CkLuk2
Hk�1.O/CCkg0k2

Hk.S0/
CCkg1k2

Hk�1.S0/
:

(Hint: Look at (8.20), in Chap. 2.)
2. Show that the part of Maxwell’s equations given by (3.1) forms a symmetric hyperbolic

system.
3. Supplement (5.34) with

kuk2
L2.†2/

� CkLuk2
L2.O/ C Ckuk2

L2.†1/
;

when L has the form (5.20).
4. Making use of (5.22)–(5.34), formulate and prove an existence and uniqueness result

for the symmetric hyperbolic system (5.20), parallel to Proposition 5.1. Also give a
precise formulation of finite propagation speed for solutions to such a system.

5. Generalize the study of symmetric hyperbolic systems (5.20) to include

(5.35) Lu D A0.t; x/
@u

@t
C

nX

jD1
Aj .t; x/

@u

@xj
C B.t; x/;

where Aj satisfy (5.21), and in addition A0.t; x/ is positive-definite.

6. Geometrical optics

In this section we look at solutions to the wave equation

(6.1)
@2u

@t2
��u D 0;
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on R �M , where M is a Riemannian manifold, having either initial data with a
simple jump across a smooth surface, of the form

(6.2) u.0; x/ D a.x/H
�
'.x/

�
;

or highly oscillatory initial data:

(6.3) u.0; x/ D a.x/F
�
�'.x/

�
:

Here, H.s/ is the Heaviside function; H.s/D 1 for s >0, H.s/D 0 for s < 0,
while F 2C1.R/ is bounded, together with all its derivatives, as well as an
infinite sequence of antiderivatives. We imagine that � is large. We assume
a 2 C1

0 .M/ and r' ¤ 0 on a neighborhood U of supp a. For simplicity, we
complete the set of initial conditions with

(6.4) ut .0; x/ D 0;

though the methods developed below extend to more general cases. We will show
that, at least for jt j < T , with T small enough, u.t; x/ has an asymptotic behavior

(6.5) u.t; x/ 	
X

j�0
uj .t; x/;

in a sense that will be made precise below, where, in case (6.2),

(6.6) uj .t; x/ D
X

˙
aj̇ .t; x/hj

�
'˙.t; x/

�
;

for certain functions hj 2 C1.R n 0/ whose j th derivative jumps at 0, and, in
case (6.3),

(6.7) uj .t; x/ D uj .t; x; �/ D
X

˙
��jaj̇ .t; x/Fj

�
�'˙.t; x/

�
;

for certain Fj 2 C1.R/. In both cases, aj̇ ; '
˙ 2 C1�.�T; T / �M �

, with

(6.8) '˙.0; x/ D '.x/;

and aC
0 .0; x/C a�

0 .0; x/ D a.x/. The functions '˙ are called “phase functions,”
and the functions aj̇ are called “amplitudes.” We take h0 D H and F0 D F .

The asymptotic relation (6.5) will imply in particular that u � P
j�N uj is,

for large N , relatively smooth, in case (6.2), and also relatively “small” in case
(6.3), as � ! 1. We give the details of the construction in the case (6.3) before
sketching a similar treatment of the case (6.2).
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In order to compute the action of @2t �� on (the sum over 0 � j � N of) the
right side of (6.5), when uj .t; x/ has the form (6.7), we recall that

�.uv/ D .�u/v C 2ru � rv C u.�v/;

�
�
F.u/

� D F 0.u/�u C F 00.u/jruj2:(6.9)

Here, we use the dot product to denote the inner product with respect to the
Riemannian metric; ru �rv D gjk.@j u/.@kv/. Thus, if uj has the form (6.7), we
obtain

.@2t ��/uj D
X

˙

h
�2�j aj̇ F 00

j .�'
˙/
�ˇ̌
@t'

˙ ˇ̌2 � ˇ̌rx'˙ ˇ̌2	

C �1�jF 0
j .�'

˙/
�
2'ṫ @taj̇ � 2rx'˙ � rxaj̇ C aj̇ �'˙�

� ��jFj .�'˙/
�
�aj̇

�i
:

(6.10)

In particular, the coefficients of �	 D �1�j in .@2t ��/
P
j�0 uj .t; x/ are of the

following form:

� D 2:
X

˙
a0̇ F

00.�'˙/
�ˇ̌
@t'

˙ˇ̌2 � ˇ̌rx'˙ˇ̌2	;(6.11)

� D 1:
X

˙

h
a1̇ F

00
1 .�'

˙/
�ˇ̌
@t'

˙ˇ̌2 � ˇ̌rx'˙ˇ̌2	

C F 0.�'˙/
�
2'ṫ @ta0̇ � 2rx'˙ � rxa0̇ C a0̇ �'˙�i;(6.12)

� � 0:
X

˙

h
aj̇C1F 00

jC1.�'˙/
�ˇ̌
@t'

˙ ˇ̌2 � ˇ̌rx'˙ ˇ̌2	

C F 0
j .�'

˙/
�
2'ṫ @taj̇ � 2rx'˙ � rxaj̇ C aj̇ �'˙�(6.13)

C Fj�1.�'˙/
�
�aj̇�1

�i
:

We will set these terms successively equal to zero. To begin, the term (6.11)
vanishes provided '˙ satisfies the eikonal equation:

(6.14)
ˇ̌
@t'

˙ ˇ̌2 � ˇ̌rx'˙ ˇ̌2 D 0:

If we use (6.8) to specify '˙.0; x/, then the results on this first-order nonlinear
PDE obtained in �15 of Chap. 1 apply. There is a neighborhoodU ofK D supp a
and a T > 0 such that this initial-value problem has a unique pair of solutions
'˙ 2 C1�.�T; T / � U �, satisfying

(6.15) '˙.0; x/ D '.x/; @t'
˙.0; x/ D ˙ˇ̌rx'.x/

ˇ̌
:
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Having so specified '˙, we see that the terms (6.12) and (6.13) simplify. The term
(6.12) vanishes provided

(6.16) 2'ṫ
@a0̇
@t

D 2rx'˙ � rxa0̇ � a0̇ .�'˙/:

By (6.15) we see that '˙ ¤ 0 on U (if jt j is small enough). The linear equations
(6.16) for a0̇ are called the first transport equations. The initial conditions for a0̇
are deduced from (6.3) and (6.4). We want

(6.17) aC
0 C a�

0 D a; 'C
t a

C
0 C '�

t a
�
0 D 0; at t D 0I

hence, in light of (6.15),

(6.18) aC
0 .0; x/ D a�

0 .0; x/ D 1

2
a.x/:

We have a0̇ 2 C1�.�T; T / � U
�
, compactly supported in U for each t 2

.�T; T /, if T is small enough.
Next, the term (6.13), for � D 1 � j � 0 (i.e., j � 1), vanishes provided that

F 0
j .�'

˙/ D Fj�1.�'˙/, that is,

(6.19) Fj .s/ D
Z
Fj�1.s/ ds

and

(6.20) 2'ṫ
@aj̇

@t
D 2rx'˙ � rxaj̇ � .�'˙/aj̇ � �aj̇�1; j � 1;

which are higher-order transport equations. To obtain the initial conditions, note
that if u.t; x/ is given by (6.5) and (6.7), then

(6.21) @tuj 	
X

˙

h
�1�jaj̇ F 0

j .�'
˙/'ṫ C ��j .@taj̇ /Fj .�'˙/

i
:

Thus, using (6.4) and also requiring uj .0; x/ D 0 for j � 1, we require

(6.22)

aC
j C a�

j D 0;
X

˙

h
aj̇ F

0
j .�'

˙/'ṫ C .@taj̇�1/Fj�1.�'˙/
i

D 0; at t D 0;

or, using (6.19) and (6.15),

(6.23) aC
j C a�

j D 0; 'C
t .a

C
j � a�

j / D �@t
�
aC
j�1 C a�

j�1
�
; at t D 0:
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This specifies aC
j .0; x/ and a�

j .0; x/. Then the transport equations (6.20) have

unique solutions aj̇ 2 C1�.�T; T / � U
�
, compactly supported in U for each

t 2 .�T; T /.
The construction described above, via the eikonal and transport equations, is

the basic case of the method of geometrical optics. We now obtain some estimates
on the degree to which such a construction approximates the solution to (6.1),
(6.3), and (6.4). If we set

(6.24) vN D
NX

jD1
uj ;

then vN satisfies

(6.25)

@2vN

@t2
��vN D rN .t; x/;

vN .0; x/ D a.x/F
�
�'.x/

�
; @tvN .0; x/ D �N .x/;

where

(6.26) �N .x/ D ��N X

˙
@taṄ .0; x/ � FN .�'/

and

(6.27) rN .t; x/ D ��N X

˙
.�aṄ /FN .�'˙/:

The following result is elementary.

Proposition 6.1. If '˙ 2 C1�.�T; T / �M �
and b 2 C1

0 .M/, then

(6.28) f��	b.x/FN .�'˙/ W � > 1g

is bounded in C j
�
.�T; T /;H	�j .M/

�
, for each �, j � 0, provided FN .s/ and

all its derivatives are bounded.

Now, u � vN satisfies

(6.29)
.@2t ��/.u � vN / D �rN ;

.u � vN /.0; x/ D 0; @t .u � vN /.0; x/ D ��N .x/;

so we have the following. (Compare with Exercise 1 of �1.)

Proposition 6.2. The geometrical optics construction of vN produces an approx-
imation to the solution u to (6.1), (6.3), and (6.4), satisfying
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(6.30) u � vN is O.���/ in C j
�
.�T; T /;HNC1���j .M/

�
;

for 0 � � � N , j � 0, as long as, for each N , FN .s/ and all its derivatives are
bounded.

The most common function to take for F.s/ D F0.s/ is F.s/ D eis, in which
case FN .s/ D i�N eis. Other equally good functions include F.s/ D cos s and
F.s/ D sin s.

Let us note that (6.28) is not sharp. We can improve it to

(6.31) f��	b.x/FN .�'˙/ W � > 1g is bounded in C	
�
.�T; T / �M �

:

Consequently, we can say that if N 0 > N ,

(6.32) vN 0 � vN is O.���/ in CNC1���.�T; T / �M �
;

for 0 � � � N . Then if we apply (6.30) to u � vN 0 , with N 0 very large, we
conclude that

(6.33) u � vN is O.���/ in CNC1���.�T; T / �M �
;

for 0 � � � N .
There is a construction analogous to (6.10)–(6.23) for the initial-value problem

(6.1), (6.2), and (6.4), whose initial data have a simple jump discontinuity. As
mentioned above, the form (6.5)–(6.6) furnishes an approximate solution. The
phase functions '˙ also satisfy the eikonal equation (6.14), and the amplitudes
aj̇ .t; x/ satisfy transport equations similar to (6.16), and (6.20). Parallel to the
relation (6.19) between Fj�1.s/ and Fj .s/, we have hj .s/ D R

hj�1.s/ ds, with
h0.s/ D H.s/, the Heaviside function. Thus, for j � 1, we can take

hj .s/ D 0; for s < 0;

sj

j Š
; for s > 0:

(6.34)

Having constructed the terms uj .t; x/ of the form (6.6), we can again use energy
estimates for the wave equation to show that u�Pj�N uj has high-order Sobolev
regularity if N is large. Comparison with the sum

P
j�N 0

uj for N 0 >> N ,
parallel to (6.32)–(6.33), then shows that

(6.35) u �
X

j�N
uj 2 C .N;1/�.�T; T / �M �

;

i.e., N th order derivatives are Lipschitz continuous.
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Note that the singular support of
P
j�N uj , hence of u, in .�T; T / � M is

contained in the union of the level sets '˙.t; x/ D 0, each of which is a charac-
teristic surface for �. This phenomenon is a special case of a general result about
the “propagation of singularities” of a solution to a PDE, which will be treated in
Chap. 7, �9.

Let us mention a geometrical characterization of the level surfaces

(6.36) Sˇ D f.t; x/ W '.t; x/ D ˇg

of a solution ' to the eikonal equation (6.14). Namely, each Sˇ is swept out by
“light rays” �.t/ D .t; x.t// passing orthogonally over the level set †ˇ D fx W
'.x/ D ˇg at t D 0, where a light ray is a null geodesic for the Lorentz metric
�dt2 C P

gjk dxj dxk on R � M . Equivalently, x.t/ is a unit-speed geodesic
on M , such that Px.0/ is orthogonal to †ˇ . This follows by arguments used to
establish Proposition 15.4 and Corollary 15.5 in Chap. 1.

So far we have looked at approximate solutions to the wave equation whose
supports do not intersect a boundary. We now consider the reflection of such
waves. Thus, let � be an open subset of M , with smooth boundary. Suppose
the function a.x/ in (6.2)–(6.3) belongs to C1

0 .�/, and we want to solve (6.1) on
R ��, with the Dirichlet boundary condition,

(6.37) u.t; x/ D 0; x 2 @�;

plus an initial condition: either (6.2) or (6.3), and (6.4). Suppose that the geometri-
cal optics construction above works, for t 2 .�T; T /, if we make the construction
on .�T; T / �M , and that the associated uj .t; x/, of the form (6.6) or (6.7), have
supports intersecting @�. In that case, we want to construct u, to satisfy (6.36), by
subtracting w, the solution to

(6.38)

@2w

@t2
��w D 0 on R ��; w.0; x/ D wt .0; x/ D 0;

w D v on R � @�;

where v D P
j�N uj .

Let us restrict attention to t 2 .0; T /. Suppose our wave has the form (6.5)–
(6.6), so it has singularities on the surfaces '˙.t; x/ D 0. By the superposition
principle, we can consider just one of the terms in the sum over j and ˙, so let us
drop the ˙ superscript and suppose

(6.39) v D aj .t; x/hj
�
'.t; x//

in (6.38). Then we will construct an approximate solution to (6.38), in the form

(6.40) w.t; x/ 	
X

`�j
b`.t; x/h`

�
 .t; x/

� D
X

`�j
w`.t; x/;
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granted a geometrical restriction, which we describe below. To do this, we have
computations parallel to (6.10)–(6.13). Thus, as in (6.14), we have for  .t; x/ the
eikonal equation:

(6.41) j@t j2 � jrx j2 D 0:

We want wj D v on .0; T / � @�, so we set

(6.42)  .t; x/ D '.t; x/ on .0; T / � @�:

There are several ways to describe our geometrical hypothesis. One is that the
surface .0; T / � @� in .0; T / � M is noncharacteristic for the eikonal equation
(6.41), at the data (6.42) (on the support of aj .t; x//. An equivalent formulation
is that if we set

(6.43) Cˇ D Sˇ \ f.0; T / � @�g;

where Sˇ is the level set (6.36), then Cˇ is a spacelike hypersurface of .0; T /�@�,
with its induced Lorentz metric. Recall that Sˇ is a union of light rays. Another
equivalent hypothesis is that each of these light rays that hits .0; T /� @� does so
transversally. Let us assume in addition that each such light ray (inside some Sˇ ,
issuing from supp a at t D 0) hits .0; T / � @� exactly once.

To continue our construction of the transversally reflected wave, we want to
solve (6.41)–(6.42). In fact, under the geometrical hypothesis just stated, this has
exactly two solutions. One of them is '.t; x/ itself. The level sets f'.t; x/ D ˇg
are swept out by light rays issuing from Cˇ which point in the negative t-direction
as they go into �. The solution of current interest to us is the other one; its level
sets f .t; x/ D ˇg are swept out by light rays issuing from Cˇ which point in the
positive t-direction as they go into �. See Fig. 6.1

Having  .t; x/, we construct the amplitudes b`.t; x/ by solving transport
equations, parallel to (6.16) and (6.20). We take

(6.44) bj .t; x/ D aj .t; x/; b`.t; x/ D 0; x 2 @�; ` > j:

In particular, each b`.t; x/, hence eachw`.t; x/, vanishes on Œ0; T1/��, for some
T1 2 .0; T /. Now if WN D P

j�`�N
w`, we have w �WN satisfying:

�
@2

@t2
��

�
.w �WN / D �ern;

.w �WN /.0; x/ D 0; @t .w �WN /.0; x/ D 0;

.w �WN /.t; x/ De�N .t; x/; x 2 @�;
(6.45)

similar to (6.29), where erN and e�N are fairly smooth, on .0; T / � � and on
.0; T /� @�, respectively, if N is large, and both vanish for 0 � t < T1, for some
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FIGURE 6.1 Reflected Wave Front

T1 > 0. It follows from the results of Exercise 2 in �1 that w �WN is arbitrarily
smooth, forN sufficiently large, so such a construction succeeds in approximating
the reflected wave, granted the transversal reflection hypothesis made above.

When the transversality hypothesis made above is violated, the reflected wave
can have a much more complicated structure. Some of the basic cases of this
phenomenon are dealt with in detail in [Tay], Vol. 3 of [Ho], and [MeT], to which
we refer for citations of the original papers.

Exercises

1. Extend the geometrical optics construction of approximate solutions to (6.1) and (6.3),
with (6.4) replaced by

ut .0; x/ D b.x/�F 0��'.x/
�
:

2. Work out geometrical optics approximations for solutions to hyperbolic systems, of the
form (5.20), assuming strict hyperbolicity, that is, for each � 2 Rn n 0,

P
Aj .t; x/�j

has n eigenvalues ��.x; �/, all real and distinct.

7. The formation of caustics

The geometrical optics construction of �6 breaks down when the eikonal equation
(6.14) does not have a global solution, which is a typical state of affairs. We can
see this happen in the case whereM is Rn, with its flat Euclidean metric. In such
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FIGURE 7.1A Caustics IA

a case, for small t , the solution to (6.14) is given implicitly by

(7.1) '˙.t; y/ D '.x/; y D x ˙ tN.x/; N.x/ D jr'.x/j�1r'.x/:

In other words, if S � Rn is a level set of ', then, for fixed t , the level sets of
'˙.t; �/ (i.e., the “wavefronts”) are the images F˙t .S/ of S under the maps F˙t
on Rn, defined by F˙t .x/ D x ˙ tN.x/. As jt j gets larger, these images can
develop singularities, or “caustics,” as illustrated in Figs. 7.1a and b, in the case
n D 2, where the level sets are curves.

FIGURE 7.1B Caustics IB
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Note that DN.x/ annihilates N.x/ and, if x 2 †ˇ D f'.x/ D ˇg, then
DN.x/ leaves Tx†ˇ invariant and acts on it as �A, the negative of the Weingarten
map (discussed in �4 of Appendix C, on connections and curvature). Thus the
eigenvalues of DN.x/ are 0 and the negatives of the principal curvatures of †ˇ
at x. Consequently, the derivative

(7.2) DFt .x/ D I C tDN.x/

is singular if and only if 1=t is the value of a principal curvature of†ˇ at x.
We will describe some of the simplest asymptotic behaviors of solutions to

(6.1), (6.3), and (6.4) whenM D R2. To recall the equations, we have

(7.3)

@2u

@t2
��u D 0 on R � R2;

u.0; x/ D a.x/F
�
�'.x/

�
; ut .0; x/ D 0:

We will take

(7.4) F.s/ D eis:

As before, a 2 C1
0 .R

2/. As shown in �6, there is a short-time approximate solu-
tion of the form

(7.5) u.t; x/ 	
X

˙

X

j�0
��j aj̇ .t; x/ ei�'

˙.t;x/;

where this time we have absorbed the factors i�j into the amplitudes. We now
want an asymptotic formula as � ! 1 for the solution near the caustics, where
(7.5) breaks down.

Recall that the exact solution to (7.3) is

(7.6) u.t; x/ D R0.t/ � u0.x/;

where u0.x/ D a.x/ei�'.x/ and R0.t/ is the t-derivative of the Riemann function

R.t; x/ D c2
�
t2 � jxj2��1=2; for jxj < t;
0; for jxj > t

(7.7)

if t > 0; see (5.46) of Chap. 3. Note that, for fixed t > 0, R0.t/ is a radial
distribution that is singular precisely on the circle of radius t , centered at the
origin. We expect u.t; x/ in (7.6) to have qualitative features similar to
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v.t; x/ D 1

t

Z

jy�xjDt
u0.y/ ds.y/

D 1

2


Z 


�

a
�
x C t cis.s/

�
ei�'.xCt cis.s// ds;

(7.8)

where cis.s/ D .cos s; sin s/. The precise relation between u.t; x/ and v.t; x/ is
most easily analyzed using techniques to be developed in the next chapter; see the
exercises after �9 of Chap. 7. At this point, we will concentrate on an asymptotic
analysis of (7.8).

In the simplest cases, an integral of the form

(7.9) I.�/ D
Z 1

�1
a.s/ ei� .s/ ds; a 2 C1

0 .R/;

can be analyzed by the “stationary phase method.” This works when  is real-
valued and has a finite number of critical points, each of which is nondegenerate.
In fact, if there are no critical points of  on supp a, then I.�/ is rapidly decreas-
ing as j�j ! 1, as can readily be seen by writing

I.�/ D
Z
a.s/

�
1

i� 0
d

ds

�k
ei� .s/ ds;

and integrating by parts.
Thus we can reduce our analysis of (7.9) to the case where  has exactly one

critical point, at s0, assumed to be nondegenerate, and a is supported near s0. In
such a case, either  .s/ �  .s0/ or its negative has a smooth, real-valued square
root t.s/, such that t.s0/ D 0, t 0.s0/ > 0, and we can use t as a new coordinate,
to write

(7.10) I.�/ D ei�'.s0/
Z
b.t/ ei˛�t

2

dt; b 2 C1
0 .R/;

where ˛ D ˙1. There are several ways to evaluate (7.10) asymptotically; one is
to set x D t2, so

I.�/ D 1

2
ei�'.s0/

Z 1

0

�
b.x1=2/C b.�x1=2/�x�1=2ei˛�x dx

	 ei�'.s0/ ��1=2�˛0 C ˛1�
�1 C � � � �;

(7.11)

in view of results on Fourier transforms of singular functions in �8 of Chap. 3.
Another method, in the context of the multidimensional stationary phase method,
will be given in Appendix B at the end of this chapter.

More generally, if there are a finite number of critical points sj of  .s/, all
nondegenerate, then
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(7.12) I.�/ 	
X

j

Aj .�/�
� 1

2 ei� .sj /; Aj .�/ 	 ˛0j C ˛1j�
�1 C � � � :

If a.s/ D a.y; s/ and  .s/ D  .y; s/ in (7.9) depend smoothly on the para-
meters y, then we have (7.12) for I.�/ D I.y; �/, with ˛kj D ˛kj .y/ and
 .sj / D  .y; sj .y// depending smoothly on y, as long as the critical points
of  .y; s/, as a function of s, are all nondegenerate and consequently depend
smoothly on y.

Let’s return to (7.8). We are assuming that r'.y/ ¤ 0 for y 2 supp a. Now,
given x 2 R2, t > 0, let us denote by St .x/ the circle of radius t centered at x.
The way in which St .x/ is tangent to various level curves†ˇ of ' determines the
nature of the stationary points of the phase in the last integral in (7.8). Clearly,
if 1=t is bigger than the largest curvature of any †ˇ , then St .x/ will have only
simple tangencies with such level curves, so only nondegenerate stationary points
of the phase will appear in (7.8). If y 2 †ˇ (so '.y/ D ˇ) is such a point of inter-
section, then its contribution to the asymptotic behavior of v.t; x/ as � ! 1 is
an amplitude times ei�'.y/, in agreement with the geometrical optics construction
given in �6, since in this case '.t; x/ D '.y/. This is illustrated in Fig. 7.2.

On the other hand, suppose y 2 †ˇ and 1=t D .y/, the curvature of †ˇ
at y. Let x D y C tN.y/, as illustrated in Fig. 7.3. Then St .x/ has higher-order
tangency with †ˇ at y. Let us assume that y is not a stationary point for  on
†ˇ , that is, if one travels on †ˇ at unit speed,  is monotonically increasing
(or decreasing) at a nonzero rate at y. In such a case, Fig. 7.3. captures the behav-
ior of the image of†� (for � close to ˇ) under Ft , by our analysis of (7.2). In this
case, the phase function in (7.8) has a simply degenerate critical point at y, so we
have an integral of the form (7.9) with  .s0/ D ˇ,  0.s0/ D  00.s0/ D 0, and
 000.s0/ ¤ 0 (say it is > 0). We can treat this in a fashion similar to the nondegen-
erate case. This time,  .s/ � ˇ has a smooth cube root near s D s0, call it t.s/,
such that t.s0/ D 0; t 0.s0/ > 0, and we can take t as a new coordinate to write

FIGURE 7.2 Caustics II
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FIGURE 7.3 Caustics III

(7.13) I.�/ D ei�'.s0/
Z
b.t/ ei�t

3

dt; b 2 C1
0 .R/:

Parallel to (7.10)–(7.11), we can set x D t3 and write

(7.14)
I.�/ D 1

3
ei�'.s0/

Z
b.x1=3/x�1=3 ei�x dx

	 ei�'.s0/ ��2=3 �˛0 C ˛1�
�1 C � � � �:

Note that the exponent in ��2=3 here differs from the exponent in ��1=2, which
appears in (7.11).

Now we want to examine the uniform asymptotic behavior of (7.8), as � ! 1,
for x in a neighborhood of a caustic point x0. We will retain the hypothesis on the
curvature made above, namely x0 D Ft .y0/ with .y0/ D 1=t , y0 2 †ˇ , and 
not stationary on†ˇ at y0, so the geometry of Ft .†� / for � near ˇ is as illustrated
in Fig. 7.3. Thus portions of Ft .†� / lie on one side of the caustic set Ct , namely,
the image of the critical set of Ft .

Take a point x on this side of Ct , as illustrated in Fig. 7.4. For such x, the circle
St .x/ is simply tangent to two level sets of ', at points y1 and y2, as indicated
in Figs. 7.4 and 7.5, and as x approaches Ct , the points y1 and y2 coalesce, to
a point y such as depicted in Fig. 7.3. Consequently, if  .s/ D  .t; x; s/ D
'
�
xC t cis.s/

�
, then for x on one side of Ct ,  .s/ has two nondegenerate critical

points, s1 and s2, which coalesce to a single degenerate critical point s0 as x
approaches Ct .

The side of Ct on which such x lies is foliated in two ways, by level sets of
'.t; �/. This arises because the graph of d', a Lagrangian submanifold of T �R2,
is mapped by the time-t geodesic flow to a Lagrangian manifold ƒt � T �R2,
whose projection
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FIGURE 7.4 Caustics IV

FIGURE 7.5 Caustics V

(7.15) 
 W ƒt �! R2

onto x-space has a simple fold, Ct , mapped by 
 onto the caustic set Ct . In other
words, D
.p/ W Tpƒt ! R2 isomorphically for p 2 ƒt n Ct , while D
.p/ has
rank 1 for p 2 Ct , and the degeneration is of first order. A fold map between two
two-dimensional regions is illustrated in Fig. 7.6. The following result elucidates
the structure of such a folded Lagrangian manifold.

Lemma 7.1. Fix t > 0. Given x0 2 Ct , there exist smooth functions � and �,
defined on a neighborhood U of x0, with the following properties.

(7.16) � D 0; d� ¤ 0; on Ct :
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FIGURE 7.6 Folding

If U˙ D fx 2 U W ˙�.x/ > 0g, then ƒt projects onto UC and is the graph of
d'˙, where '˙ is the “double-valued” function

(7.17) '˙.x/ D �.x/˙ 2

3
�.x/3=2:

Proof. That (7.15) is a fold implies that, over UC, ƒt is the graph of a “double-
valued” closed 1-form, i.e., of d'˙. We can put '˙ in the form (7.17) by taking

(7.18) �.x/ D 1

2

�
'C.x/C '�.x/

�
; �.x/ D

�
3

4

�
'C.x/ � '�.x/

�2=3
:

We need to establish that � and � are smooth on the closure of UC in U , in
particular at Ct . This is best seen by constructing a function ˆ 2 C1.ƒt / such
that '˙ D ˆ ı 
�1. In fact, if  D P

�j dxj is the contact form on T �R2 and
� W ƒt ,! T �R2, then �� is closed, hence locally exact, and we take ˆ such that
dˆ D ��. Compare Exercise 5 in �15 of Chap. 1. There is a smooth involution j
on ƒt , interchanging points with the same image under 
 , and we can set

(7.19) ‚ D 1

2

�
ˆCˆ ı j

	
; R D

�
3

4

�
ˆ �ˆ ı j

	2=3
:
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These formulas define ‚ and R as functions on ƒt that are invariant under j ,
related to (7.18) by

(7.20) ‚ D � ı 
; R D � ı 
:

It is clear that ‚ is smooth, and hence the desired smoothness of � is established.
To examine the smoothness of R and �, we reason as follows. Since (7.15) is
assumed to be a fold, we know that, for x 2 UC close to x0,

C1ı.x/
1=2 � jd'C.x/ � d'�.x/j � C2ı.x/

1=2;

for some Cj 2 .0;1/, where ı.x/ D dist.x; Ct /. This implies that

C3ı
3=2.x/ � j'C.x/ � '�.x/j � C4ı.x/

3=2;

and hence, for z 2 ƒt , close to z0 D 
�1.x0/,

C5ı.z/
3 � ˇ̌

ˆ
�
z
� �ˆ

�
j.z/

�ˇ̌ � C6ı.z/
3;

where ı.z/ D dist.z; Ct /. This implies that R, defined in (7.19), is smooth onƒt ,
which in turn yields the desired smoothness of �, and also that d�.x/ ¤ 0 on Ct .

We now establish a result that puts the phase function in (7.8) into a normal
form, near Ct .

Proposition 7.2. Fix t > 0 and take x0 2 Ct . For x near x0, there is a family
of diffeomorphisms of R, depending smoothly on the parameter x, transform-
ing  .s/ D  .t; x; s/ D '

�
x C t cis.s/

�
, for s near the stationary point s0 of

 0.s/ D  .t; x0; s/, to

(7.21) e .s/ D 1

3
s3 � �.x/s C �.x/;

near s D 0.

Proof. We first note that at xDx0 (so �D 0), .s/ can be transformed to s3=3C
�.x0/, as the argument leading to (7.13) shows. We can therefore consider the
following situation. Suppose  .�; s/ is smooth,

(7.22)  .0; s/ D 1

3
s3;

@

@�

@

@s
 .0; 0/ < 0:

We want a smooth map, of the form

(7.23) .�; s/ 7! �
�; f .�; s/

�
;



7. The formation of caustics 527

FIGURE 7.7 The Curve �

transforming to Q .�; s/ D s3=3� �.�/s C �.�/, where � is determined as fol-
lows, for � > 0. By (7.22), for � small and positive, .�; �/ has two critical points,
close to 0, at s D s1.�/; s2.�/, and we take �.�/ D �

 .�; s1/C  .�; s2/
�
=2. The

set

(7.24) � D ˚
.�; s/ W @s .�; s/ D 0

�

is a curve tangent to the s-axis at .0; 0/, as pictured in Fig. 7.7. There is a smooth
involution of � , interchanging the points with the same �-coordinate, and �.�/
is the value of the symmetrization of  

ˇ̌
�

with respect to this involution, so � is
easily seen to be a smooth function of � .

We may as well subtract �.�/ and try to achieve the form Q .�; s/ D s3=3 �
�.�/s. Note that, in this model case, the analogue of (7.24) is

(7.25) e� D f.�; s/ W s D ˙p
�g; Q .�;˙p

�/ D 
2

3
�3=2:

So �.�/ is uniquely defined for � � 0 by the requirement that �.�/ > 0 for � > 0
and

(7.26)  D 
2

3
�.�/3=2; on �:

To put it simply, 
.2=3/�.�/3=2 are the critical values of  .�; s/, as a function
of s (once �.�/ has been subtracted). Given that now  

ˇ̌
�

has been arranged to
be odd with respect to the involution of � described above, it is easy to show
that �.�/ is a smooth function of � , via the sort of argument used in the proof of
Lemma 7.1. Also, d� ¤ 0 at � D 0.

Having specified �.�/, we start to construct the diffeomorphism, of the form
(7.23). We want f .0; s/ D s. For � > 0, the fact that  .�; �/ and Q .�; �/ have
identical ranges, for s � �p�.�/, for �p�.�/ � s � p

�.�/, and for s �p
�.�/, implies that there is a unique homeomorphism s 7! f .�; s/ transforming

 .�; �/ to Q .�; �/. This homeomorphism is clearly a diffeomorphism (as a function
of s), away from s D 
p�.�/, and, by the sort of argument leading to (7.10),
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we see that, for each fixed � > 0, it is a diffeomorphism in a neighborhood of these
points too. For � < 0, both  .�; �/ and Q .�; �/ have no critical points (near 0),
so the existence of a unique diffeomorphism s 7! f .�; s/ transforming  to Q 
is easy.

The continuous dependence of f .�; s/ on � is easy to establish, but the smooth
dependence on � , at � D 0, is a bit more subtle, so we finally turn to that point.
We will use a device similar to that used in the proof of the Morse lemma (given
in Appendix C, �8).

We may as well use � instead of � as a coordinate, so we assume we have a
smooth function  .�; s/ satisfying

(7.27)  .0; s/ D 1

3
s3; @�@s .0; 0/ < 0;

and, for � > 0,

(7.28) @s .�;˙p
�/ D 0;  .�;˙p

�/ D 
�3=2:

We want to produce a diffeomorphism of the form .�; s/ 7! �
�; f .�; s/

�
, such

that f .0; s/ D s, transforming to

(7.29) Q .�; s/ D 1

3
s3 � �s;

a function that also satisfies (7.28). Now consider the family of functions connect-
ing  and Q :

(7.30) ‰.�; �; s/ D .1 � �/ .�; s/C �
�1
3
s3 � �s

	
:

Thus ‰.0; �; s/ D  .�; s/, ‰.1; �; s/ D s3=3 � �s, and, for any fixed � 2 R,
‰.�; �; s/ satisfies (7.27) and (7.28). We will construct a family of diffeomor-
phisms s 7! F.�; �; s/ D F�;�.s/, transforming  .�; �/ to ‰.�; �; �/, generated
by a smooth family of vector fields on a neighborhood of 0 in R:

(7.31) X.�; �; s/ D �.�; �; s/
@

@s
:

Given X.�; �; s/, F is defined by F.0; �; s/ D s, and

(7.32)
@

@�
F.�; �; s/ D �.�; �; F /:

If F �
�;�g.s/ D g

�
F�;�.s/

�
, then

(7.33)
d

d�
F �
�;�g� .s/ D F �

�;�LX�;�
g� C F �

�;�

� d
d�
g�

	
;
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and this quantity vanishes, provided

(7.34) �.�; �; s/
@

@s
g� D @

@�
g� :

Applying this to g� .s/ D g�;�.s/ D ‰.�; �; s/ D  �;�.s/, we have

(7.35) F �
�;� �;�.s/ D  0;�.s/; 8 �;

provided

(7.36) �.�; �; s/ D s3=3� �s �  .�; s/
.@=@s/‰.�; �; s/

:

Now the denominator of this fraction vanishes on � , but by (7.27) the gradient
of the denominator does not vanish on � . Meanwhile, the numerator vanishes
to second order on � , so the quotient � is C1 and vanishes on � . Thus (7.31)
generates a smooth flow (which leaves � invariant, of course), and the proof of
Proposition 7.2 is complete.

In order to analyze (7.8), we are now led to discuss the asymptotic evaluation,
as � ! 1, of integrals of the form

(7.37) I.aI�; �/ D 1

2


Z 1

�1
a.s/ ei�.s

3=3�	s/ ds;

given a 2 C1
0 .R/. Such integrals are called Airy integrals. We fix K <1 and

assume j�j � K2. The phase function '	.s/ D s3=3��s has derivative ' 0
	.s/ D

s2 � �, with roots s D ˙p
�, which are the stationary points of the phase when

� � 0.
Our first goal is to show simultaneously that the uniform asymptotic behavior

of (7.37), as � ! 1, j�j � K2, depends only on a.s/ for �2K � s � 2K ,
and that (7.37) makes sense for a wider class of amplitudes a.s/; namely we
allow a.s/ 2 Sm1 .R/, for some m 2 R (i.e., jDj

s a.s/j � Cj hsim�j ). A general
a 2 Sm1 .R/ can be written as a sum of a term in C1

0 .�2K; 2K/ and a term in
Sm1 .R/ which vanishes on Œ�.3=2/K; .3=2/K	. If a2.s/ has the latter property,
then we can make a change of variable, y D '	.s/, and write

(7.38) I.a2I�; �/ D 1

2


Z
b	.y/e

i�y dy; b	.y/ 2 Sm=31 .R/;

where b	.y/ depends smoothly on �. We know that Ob	.�/ is an element of S 0.R/
that is smooth on R n 0 and rapidly decreasing as j�j ! 1, from material in �8
of Chap. 3. Thus we can take a 2 Sm1 .R/ in (7.37).
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In particular, we can take a.s/ D 1, obtaining

(7.39) I.1I�; �/ D 1

2


Z 1

�1
ei�.s

3=3�	s/ ds D ��1=3Ai
����2=3�; � > 0;

where Ai.x/ is the Airy function

(7.40) Ai.x/ D 1

2


Z 1

�1
ei.s

3=3Cxs/ ds D I.1I �x; 1/;

for x 2 R. If we set � D ˙1, � D x3=2 in (7.39), we have

(7.41)
Ai.x/ D x1=2 I.1I �1; x3=2/;

Ai.�x/ D x1=2 I.1I 1; x3=2/;

for x > 0. In these cases, � is a fixed, nonzero quantity, and we can apply the
stationary phase method, to get

(7.42) Ai.x/ D O.x�1/; Ai.�x/ 	 1p


x�1=4 cos

�2
3
x3=2 � 


4

	
;

as x ! C1. Let us also note that, since Ai.x/ (as an element of S 0.R/) is the
inverse Fourier transform of eis

3=3, which satisfies an obvious first-order, linear
ODE, then Ai.x/ satisfies the differential equation

(7.43) Ai 00.x/ � x Ai.x/ D 0;

known as Airy’s equation. It follows that Ai.x/ continues to an entire holomor-
phic function on the complex plane. The graph of Ai.x/ is shown in Fig. 7.8.
It was constructed by numerically integrating (7.43), using initial data

(7.44) Ai.0/ D 3�2=3

�.2
3
/
; Ai 0.0/ D �3

�1=3

�.1
3
/
:

Note that Ai.x/ is real for x 2 R. In fact, (7.40) can be written as

(7.45) Ai.x/ D 1

2


Z 1

�1
cos
�1
3
s3 C xs

	
ds:

Taking the Airy function as a basic special function, we see that (7.39) gives
the uniform asymptotic behavior of (7.37), for � in any bounded interval, in the
case a D 1. We now seek a uniform asymptotic expansion of (7.37), of a similar
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FIGURE 7.8 The Airy Function

form, for general a 2 Sm1 .R/. In fact, the general case will involve both the Airy
function and its derivative:

(7.46) Ai 0.x/ D i

2


Z 1

�1
s ei.s

3=3Cxs/ ds:

To obtain it, write

(7.47) a.s/ D a0 C a1s C b	.s/.� � s2/;

where b	.s/ 2 S`1.R/, ` D max.m=2; 1=2/, with smooth dependence on�. Then,
for � > 0,

(7.48)

I.aI�; �/ D a0�
�1=3 Ai

����2=3�� ia1��2=3 Ai 0
����2=3�� 1

i�
I.b0

	I�; �/;

where we have used

(7.49) .� � s2/ei�.s3=3�	s/ D 1

i�

d

ds
ei�.s

3=3�	s/

and integration by parts to evaluate

(7.50)
Z
b	.s/ .� � s2/ ei�.s3=3�	s/ ds:

Now we can apply the same transformation to I.b0
	I�; �/ and iterate this ar-

gument arbitrarily often, to establish the following result:
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Proposition 7.3. Given a 2 Sm1 .R/, as � ! C1, we have

(7.51)
I.aI�; �/ 	 b0.�; �/�

�1=3 Ai
����2=3� � ib1.�; �/��2=3 Ai 0

����2=3�;

where

(7.52) bj .�; �/ 	 bj0.�/C bj1.�/�
�1 C bj2.�/�

�2 C � � � ;

and where bj�.�/ are smooth in �. The expansion (7.51) is valid uniformly for
j�j � K2, for any fixedK < 1.

When we combine this with an application of Proposition 7.2, we have the fol-
lowing result on the behavior of (7.8) near a caustic set.

Proposition 7.4. Granted the geometric hypotheses made on the formation of the
caustic set Ct before Lemma 7.1, the oscillatory integral (7.8) has the following
asymptotic behavior for x near Ct , as � ! C1:

(7.53)
v.t; x; �/ D ��1=3hb0.t; x; �/Ai

���.t; x/�2=3�

� i��1=3b1.t; x; �/Ai 0
���.t; x/�2=3�

i
ei�.t;x/;

mod O.��1/, where

(7.54) bj .t; x; �/ 	 bj0.t; x/C bj1.t; x/�
�1 C bj2.t; x/�

�2 C � � � ;

and the functions �.t; x/, �.t; x/, and bj�.t; x/ are smooth in .t; x/.

Finally, u.t; x/ D u.t; x; �/ in (7.6) has a similar expansion, where the leading
factor ��1=3 above is replaced by �1=6, as will follow from results in Chap. 7.

The next order of complexity of a caustic is illustrated in Fig. 7.9. It arises
when we alter our hypothesis on the curvature of level curves of '. In this case, z
is a point on a level curve at which  is stationary, in fact a (nondegenerate) local
maximum, such that .z/ D 1=t . On nearby curves, this is not a locally maximum
value of ; the set where  D 1=t is denoted Kt and is mapped by Ft onto the
caustic set Ct , which is singular at the “cusp” v D Ft .z/. The asymptotic behavior
of the functions (7.6) and (7.8) on a neighborhood of v is more complicated than
(7.53). A discussion of this (and more complicated caustics) can be found in the
last chapter of [GS]. See also [AVG] and [Dui].

In the last chapter of [GS] one can also find an analysis of the wave equation
near a caustic of the fold type considered above, making use of a result similar
to Lemma 7.1, but replacing the use of Proposition 7.2 by results in “microlocal
analysis.” The next chapter of this work includes a brief introduction to this area;
other applications of microlocal analysis to topics in wave propagation can be
found in Vols. 3–4 of [Ho], and in[Tay]. For other approaches to the type of caustic
considered here, see[Lud] and references given therein.
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FIGURE 7.9 More Complex Caustic

Exercises

1. Fix r > 0. Let �r 2 E 0.R2/ denote the unit-mass density on the circle of radius r :

hu; �r i D 1

2


Z 


�

u.r cos �; r sin �/ d�:

Show that there exist

˛r .�/ 	 ��1=2�˛0r C ˛1r�
�1 C � � � �;

ˇr .�/ 	 �1=2
�
ˇ0r C ˇ1r�

�1 C � � � �;

such that, modulo O
�j�j�1�

,

(7.55) O�r .�/ D ˛r .j�j/ cos r j�j C ˇr .j�j/ sin r j�j
j�j ; j�j ! 1:

(Hint: Use the stationary phase method.)
Compare with formula (6.56) in Chap. 3, in the case � D 0, in view of the identity

O�r .�/ D cJ0.r j�j/:
2. Give a proof that if f 2 C1.R/ and f .x/ D f .�x/, then there exists g 2
C1.R/ such that f .x/ D g.x2/. (Hint: For fixed but large k, compare f .

p
x/ withP

j�k f .2j /.0/xj =.2j /Š. Show that if F 2 C1.R/ vanishes at x D 0 to order 2kC1,

then F.
p
x/ belongs to C k

�
Œ0;1/

�
:)

3. Extend the result of Exercise 2 to show that if (7.15) is a fold and f 2 C1.ƒt / is
invariant under the involution j of ƒt , which interchanges points with the same image
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under 
 , then there exists g 2 C1.R2/ such that f .x/ D g
�

.x/

�
. This result is used

in the proof of Lemma 7.1 and that of Proposition 7.2.
For more material on folds, see [GoG].

4. Suppose R2 is replaced by R3 in (7.3). Analyze the following variant of (7.8):

v.t; x/ D 1

4
t

Z

jy�xjDt
u0.y/ dS.y/ D t

4


Z

S2

a.x C y/ei�'.xCy/ dS.y/:

Recall the formula for the Riemann function in this case, and relate v.t; x/ to u.t; x/.

Exercises on the Airy function

1. Show that

Ai.z/ D 1

2
i

Z

L

ev
3=3�zv dv;

where L is any contour in C that begins at a point at infinity in the sector �
=2 �
arg.v/ � �
=6 and ends at infinity in the sector 
=6 � arg.v/ � 
=2. The integral on
the right is convergent for all z 2 C.

2. Show that, for j arg zj < 
 ,

(7.56)

Ai.z/D 1

2

e�.2=3/z3=2

Z 1

0
cos

�
1

3
t3=2

�
exp

�
�tz1=2

	
t�1=2dtD‰.z/ e�.2=3/z3=2

;

where

(7.57) ‰.z/ 	 z�1=4
1X

jD0
aj z�3j=2; a0 D 1

4

�3=2; z ! 1; j arg zj � 
 � ı:

In particular,

Ai.x/ 	 1

4

�3=2x�1=4e�.2=3/x3=2

; x ! C1:

3. If we set A˙.z/ D Ai
�
e�2
i=3z

�
, show that A˙.z/ also satisfies the Airy equation.

Evaluate A˙.x/ asymptotically as x ! C1, showing that jA˙.x/j ! 1 as x !
C1. Show that any two of the functions Ai , AC, A� form a basis of solutions to
Airy’s equation u00.z/� zu.z/ D 0. Show that

(7.58) A�.z/ D AC
�
z
�
; and Ai.z/ D e
i=3AC.z/C e�
i=3A�.z/:

Using Exercise 2, note that, for x > 0,

AC.�x/ D ‰.e
i=3x/e�.2=3/ix3=2

;

which, in light of (7.57), implies the second part of (7.42).
4. Show that

(7.59) Ai.z/ D 1




� z

3

	1=2
K1=3

�2
3

z3=2
	
; j arg zj < 2


3
;
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where K�.r/ is the modified Bessel function, defined by (6.50) of Chap. 3 (and satis-
fying the modified Bessel equation (6.52). (Hint: Denoting the right side of (7.59) by
u.z/, show that u.z/ satisfies Airy’s equation and has the same asymptotic behavior as
Ai.z/, as z ! C1 in RC. For the behavior of K�.r/ as r ! C1, use Exercise 2 in
�6 of Chap. 3.)

5. Show that

(7.60) Ai.0/ D 1

2

3�1=6�

�1
3

	
D 3�2=3

�.23 /
;

as asserted in (7.44). (Hint: Show that, given � > 0,

K�.r/ 	 �.�/2��1r�� ; as r & 0:

For the last identity in (7.60), use �.z/�.1 � z/ D 
=.sin
z/:)
6. With A˙.z/ as in Exercise 3, establish the Wronskian relation

A0C.z/A�.z/� AC.z/A0�.z/ D 1

2
i
:

(Hint: Once you show that the right side is a constant c, use the asymptotic behavior
of A˙.x/ as x ! C1, obtained via Exercise 2, and the corresponding asymptotic
behavior of A0̇ .x/, to evaluate c:)

7. Deduce from Exercises 5 and 6 that

(7.61) Ai 0.0/ D � 1

2

31=6�

�
2

3

�
D �3

�1=3
�.13 /

;

as asserted in (7.44).
8. Show that

�.13 /

�.23 /
D 2�2=3

p


�

�
1

6

�
;

�.23 /

�.13 /
D 2�1=3

p


�

�
5

6

�
:

Using �.1=3/�.2=3/ D 2
=
p
3, relate �.1=3/2 and �.2=3/2 to �.1=6/. (Hint: Use

the duplication formula for the gamma function, established in Chap. 3.)
9. Consider the problem of deriving numerical approximations to �.1=3/ and �.2=3/. Try

to obtain 10-digit approximations to these quantities. Then write a computer program
to produce the graph of y D Ai.x/, shown in Fig. 7.8., by solving (7.43) numerically.

8. Boundary layer phenomena for the heat semigroup

Let� be a compact Riemannian manifold with nonempty boundary. Let� denote
the Laplace–Beltrami operator on �, with the Dirichlet boundary condition, i.e.,
with domain D.�/ D H 2.�/ \ H 1

0 .�/. As we have seen in �1, fet� W t � 0g
is a strongly continuous contraction semigroup on Lp.�/ for each p 2 Œ1;1/.
Also et� is a contraction on L1.�/ and on C.�/, for t � 0, but the family
is not strongly continuous as t & 0. Indeed, given f 2 C.�/, it follows from
(1.11) that u.t/ D et�f 2 \sDs for each t > 0. In particular, u.t/ is smooth on
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� and vanishes on @� for each t > 0, so u.t/ cannot converge to f in sup-
norm if f does not vanish identically on @�. As noted in (1.15), we do have
uniform convergence u.t/! f if f 2Co.�/, i.e., f 2C.�/ and f j@� D 0. Here
we will show that et�f !f uniformly on each compact subset of � when f
is continuous, and smoothly when f is smooth, and discuss the boundary layer
phenomena that arise on a small neighborhood of @� as t & 0.

To accomplish this, we will use wave equation techniques, previewed in �2. To
start, if ' 2 S.R/ is an even function, we have

(8.1) '.
p��/f D 1p

2


Z 1

�1
O'.s/ cos s

p��f ds;

as follows form the Fourier inversion formula and the eigenfunction decomposi-
tion of L2.�/. Taking '.�/ D 't .�/ D e�t�2

gives, as in (2.13),

(8.2) et�f D 1p
4
t

Z 1

�1
e�s2=4t cos s

p��f ds:

Note that if we use .��/k cos s
p�� D .d=ds/2k cos s

p�� and integrate by
parts, we get

(8.3) .��/k'.p��/f D 1p
2


Z 1

�1
O'.2k/.s/ cos s

p��f ds;

hence, since k cos s
p��f kL2 � kf kL2 ,

(8.4) k'.p��/f kH2k .�/ � Ck

�Z 1

�1
j O'.2k/.s/j ds

�
kf kL2.�/:

We now have the following localization result.

Proposition 8.1. Let Oj be smoothly bounded regions satisfying O1��O0���.
Let f 2 L2.�/ and set u.t/ D et�f . Then

(8.5) f
ˇ̌
O0

D 0 H) u 2 C1.Œ0;1/ � O1/:

Proof. Since @jt u D �j u, it suffices to show that u.t/jO1
is bounded in H k.O1/

for t 2 Œ0; 1	, for each k. We proceed as follows. Pick a > 0 such that dist.p;� n
O0/ � a for each p 2 O1. Pick an even function 1 2 C1

0 .R/ such that  1.s/ D
0 for jsj � a;  1.s/ D 1 for jsj � a=2, and set  2.s/ D 1 �  1.s/. Using (8.2),
write

(8.6) et�f D ˆt1.
p��/f Cˆt2.

p��/f;
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where

(8.7) ˆtj .
p

�ı/f D 1p
4
t

Z 1

�1
 j .s/e

�s2=4t cos s
p��f ds:

Using (8.4), we have, for each k;N 2 N ,

(8.8) kˆt2.
p��/f kHk.�/ � Ck;N t

N kf kL2.�/:

Meanwhile, if f D 0 on O0, then finite propagation speed gives

(8.9) jsj � a H) cos s
p��f ˇ̌O1

D 0;

so ˆt1.
p��/f D 0 on O1, and hence

(8.10) et�f D ˆt2.
p��/f on O1:

This proves the proposition

Corollary 8.2. Take Oj as in Proposition 8.1, and f 2 L2.�/. Then

(8.11) f
ˇ̌
O0

2 H k.O0/ H) u 2 C.Œ0;1/;H k.O1//;

and

(8.12) f
ˇ̌
O0

2 C.O0/ �! u 2 C.Œ0;1/ � O1/:

Proof. Take O1=2 such that O1 �� O1=2 �� O0. In case (8.9), set f D g C
.f � g/ where g 2 H k.�/ is supported in O0 and f � g D 0 on O1=2. We
have g 2 Dk , so et�g is continuous in t 2 Œ0;1/ with values in Dk . Meanwhile,
Proposition 8.1 (with O0 replaced by O1=2) applies to et�.f � g/.

In case (8.10), set f D g C .f � g/ where g 2 C.�/ is supported in O0 and
f � g D 0 on O1=2 and argue similarly, using the strong continuity of fet� W
t � 0g on Co.�/.

We now take f 2 C1.�/ and seek a detailed uniform analysis of et�f .x/
as t & 0, for x 2 �, particularly for x near @�. We follow an approach taken
in [MaT], which arose in the investigation of fluid flows with small viscosity. For
more on this, see Chap. 17, �6. To proceed, we can assume� is an open subset of
a smooth, compact Riemannian manifoldM , without boundary. Let L denote the
Laplace–Beltrami operator onM , and let Qf 2 C1.M/ be an extension of f . We
have etL Qf 2 C1.Œ0;1/ �M/, so, for each k;N 2 N ,

(8.13) etL Qf .x/ D Qf .x/C
NX

kD1

tk

kŠ
Lk Qf .x/CRN .t; x/;
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with

(8.14) kRN .t; �/kCk.M/ � Ck;N t
N ; 0 < t � 1:

We want to compare et�f and etL Qf on RC � �. We use the wave equation
formulas (8.6)–(8.7), supplemented by

(8.15) etL Qf D ˆt1.
p�L/ Qf Cˆt2.

p�L/ Qf ;

with ˆtj as in (8.7), where we have picked a > 0 and constructed  j .s/ as above
(8.6). As in (8.8), we have, for each k;N 2 N ,

(8.16) kˆt2.
p�L/ Qf kHk.M/ � Ck;N t

N k Qf kL2.M/:

Thus, modulo a negligible contribution, we have, for x 2 �,

(8.17) et�f .x/ � etL Qf .x/ D 1p

t

Z 1

0

 1.s/e
�s2=4tV.s; x/ ds;

where

(8.18) V.s; x/ D cos s
p��f.x/ � cos s

p�L Qf .x/; s � 0; x 2 �;

satisfies

@2V

@s2
��V D 0; on R ��;

V.s; x/ D 0; for s < 0;

V .s; x/ D ��RC
.s/v.s; x/; for x 2 @�;

(8.19)

with

(8.20) v.s; x/ D cos s
p�L Qf .x/:

Note that v 2 C1.R �M/, and, parallel to (8.13), we have

(8.21) cos s
p�L Qf .x/ D Qf .x/C

NX

kD1
.�1/k s

2k

.2k/Š
Lk Qf .x/C eRN .s; x/;

with an estimate like (8.14) on the remainder. Note that the boundary value im-
posed on V in (8.19) is piecewise smooth, with a jump across fs D 0g. Hence,
if a > 0 is picked small enough, the progressing wave expansion discussed in
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�6 is applicable to the description of V.s; x/ for s 2 Œ0; a	; x 2 �. Also, finite
propagation speed guarantees that for s � 0; x 2 �,

(8.22) V.s; x/ D 0 for '.x/ > s;

where

(8.23) '.x/ D dist.x; @�/:

Pick a > 0 so small that

(8.24) C D fx 2 � W '.x/ � ag H) ' 2 C1.C/;

and use this value of a to pick  1 and  2 in (8.17). Then, for s 2 Œ0; a	, V.s; x/
is given by a progressing wave expansion of the form

(8.25) V.s; x/ 	
X

j�0
aj .s; x/.s � '.x//jC;

with coefficients aj 2 C1.Œ0; a	��/, determined by certain transport equations.
The meaning of (8.25) is that for each N 2 N ,

(8.26) V.s; x/ D
NX

jD0
aj .s; x/.s � '.x//jC CRN .s; x/;

where

(8.27) RN .s; x/ D 0 for '.x/ > s; RN 2 CN .Œ0; a	 ��/:

Writing

(8.28) a0.s; x/ D a0.'.x/; x/C Qa1.s; x/.s � '.x//;

we can shift the latter term onto the j D 1 term in (8.26). Continuing this process,
we have

(8.29) V.s; x/ D
NX

jD0
bj .x/.s � '.x//

j
C CRN .s; x/;

(with slightly altered RN , still satisfying (8.27)), valid on Œ0; a	 � �, with bj 2
C1.�/. Inserting this into the formula (8.17), we have (modulo a negligible con-
tribution)
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et�f .x/ � etL Qf .x/ D
NX

jD0

bj .x/p

t

Z 1

0

e�s2=4t .s � '.x//jC 1.s/ ds

C
Z 1

0

e�s2=4tRN .s; x/ 1.s/ ds:

(8.30)

Elementary estimates show that

(8.31)
Z 1

0

e�s2=4t .s � '.x//
j
C 2.s/ ds

is rapidly decreasing as t & 0, together with all x-derivatives, so the sum over
0 � j � N in (8.30) has the identical asymptotic behavior as t & 0 as does

NX

jD0
bj .x/Wj .t; x/;

Wj .t; x/ D 1p

t

Z 1

0

e�s2=4t .s � '.x//jC ds:

(8.32)

A change of variable gives

(8.33) Wj .t; x/ D 2.4t/j=2Ej

�'.x/p
4t

	
;

where

Ej .y/ D 1p



Z 1

y

e�s2

.s � y/j ds

D e�y2

p



Z 1

0

e�s2�2sysj ds:

(8.34)

Using (8.27), one easily bounds the last integral in (8.30) by CWN .t; x/. Conse-
quently

(8.35) et�f .x/ � etL Qf .x/ D
NX

jD0
2bj .x/.4t/

j=2Ej

�'.x/p
4t

	
C eRN .t; x/;

with

(8.36) keRN .t; �/kC0.�/ � C tN=2:

Similar arguments give estimates keRN .t; �/kCk.�/ � C tM=2, for each k;M 2 N ,
if N is large enough.
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Putting together (8.13) and (8.35), we obtain our main result:

Proposition 8.3. Given f 2 C1.�/,

et�f .x/ D f .x/C
NX

kD1

tk

kŠ
�kf .x/

�
2NX

jD0
2bj .x/.4t/

j=2Ej

�'.x/p
4t

	
C bRN .t; x/;

(8.37)

where bj 2 C1.�/ are as in (8.29), and, for eachM;k 2 N , there existsN such
that

(8.38) kbRN .t; �/kCk.�/ � CM;kt
M ; t 2 .0; 1	:

Remark: It follows readily from (8.19) to (8.21) and (8.29) that bj j@� D 0 when
j is odd. Also b0j@� D f j@�, and E0.0/ D 1=2.

The following corollary, which follows by inspection of (8.37), is of indepen-
dent interest.

Corollary 8.4. Given f 2 C1.�/, we have

(8.39) kret�f kL1.�/ � Cf ; 8 t 2 .0;1/:

Remark: Such a uniform bound does not hold in any Lp-space with p > 1, unless
f j@� D 0.

Exercises

1. Suppose f 2 C1.�/ and f j@� D 0. How does that affect the behavior of (8.37)?
Produce an improvement on (8.39) in this case

2. Establish analogues of the results of this section, with the Dirichlet boundary condition
replaced by the Neumann boundary condition. Note the differences in the results.

A. Some Banach spaces of harmonic functions

If B is the unit ball in Rk , consider the space Xj of harmonic functions f on B
such that

(A.1) Nj .f / D sup
x2B

ı.x/j jf .x/j
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is finite, where ı.x/ D 1 � jxj is the distance of x from @B . In case k D 2n and
we identify R2n with Cn, via z` D x` C ixnC`, the space Hj of holomorphic
functions on B such that (A.1) is finite is a closed, linear subspace of Xj . For
results in �3, it is useful both to know that

(A.2)
@

@z`
W Hj �! HjC1

and to estimate its norm. It is just as convenient to estimate the norm of

(A.3) @` W Xj �! XjC1;

where @` D @=@x`; then the desired estimate on (A.2) will follow from that on
(A.3).

Given x 2 B , letB�.x/ be the ball of radius � centered at x; take � 2 .0; ı.x//.
Then, as a consequence of the Poisson integral formula for functions harmonic on
a ball (see (3.34) of Chap. 5), we have

(A.4) @`u.x/ D k � 1

�2
Avg@B�.x/

˚
.y` � x`/u.y/

�

if u is harmonic on B . Now, for y 2 @B�.x/, jy` � x`j � �; furthermore, ı.y/ �
ı.x/ � �. If we take � D ˇı.x/, ˇ 2 .0; 1/, we obtain

j@`u.x/j � k � 1

�2
� � � �.1 � ˇ/ı.x/��jNj .u/

D k � 1
ˇ.1 � ˇ/j

ı.x/�.jC1/Nj .u/;
(A.5)

and hence

(A.6) NjC1.@`u/ � k � 1

ˇ.1 � ˇ/j Nj .u/;

for u 2 Xj . The factor on the right is minimized at ˇ D 1=.j C 1/. Using the
power series expansion of log.1 � �/, one readily verifies that

�
1 � 1

j C 1

	�j � e;

so, for all j � 0, u 2 Xj ,

(A.7) NjC1.@`u/ � �k .j C 1/Nj .u/; �k D .k � 1/e:
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Since @=@z` D .1=2/.@` � i@nC`/, we also have, for all j � 0, u 2 Hj ,

(A.8) NjC1
� @u

@z`

	
� �2n .j C 1/Nj .u/:

Note that repeated application of (A.7) yields

(A.9) Nm.D
˛u/ � �mk .mŠ/ N0.u/; j˛j D m;

for u 2 X0. This estimate of course implies the well-known real analyticity of
harmonic functions. In order for such analyticity to follow from (A.7), it is crucial
to have linear dependence in j of the factor on the right side of(A.7). The fact that
we can establish (A.7) and (A.8) in this form also makes it an effective tool in the
proof of the Cauchy–Kowalewsky theorem, in �4.

B. The stationary phase method

The one-dimensional stationary phase method was derived in �7. Here we discuss
the multidimensional case. If M is a Riemannian manifold, F 2 C1

0 .M/, and
 2 C1.M/ is real-valued, with only nondegenerate critical points, there is a
formula for the asymptotic behavior of

(B.1) I.�/ D
Z
F.x/ ei� .x/ dV.x/

as � ! 1, given by the stationary phase method, which we now derive. First,
using a partition of unity supported on coordinate neighborhoods, we can write
(B.1) as a finite sum of integrals of the form

(B.2) J.�/ D
Z
f .x/ ei�'.x/ dx;

where f 2 C1
0 .R

n/ and ' has either no critical points on supp f or only one
critical point, located at x D 0.

Lemma B.1. If ' has no critical point on supp f , then J.�/ is rapidly decreasing
as � ! 1.

Proof. Cover supp f with open sets on which, by a change of variable, '.x/
becomes linear, that is, '.x/ D � � x C c, � ¤ 0. Then J.�/ is converted to a sum
of integrals of the form

Z
fj .x/e

i�x	�Cic� dx D eic� Qfj .��/;
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with Qfj 2 S.Rn/. If � ¤ 0, the rapid decrease as � ! 1 is clear.

It remains to consider the case of (B.2) when '.x/ has a single critical point, at
x D 0, which is nondegenerate. In such a case, there exists a coordinate chart
near 0 such that

'.x/ D Ax � x C c;

where A is the nonsingular, real, symmetric matrix .Ajk/ D .1=2/.@j@k'.0//,
and c 2 R. We can assume this holds on supp f . That this can be done is known
as the Morse lemma; a proof is given in �8 of Appendix C. Thus it remains to
consider

(B.3) eic� K.�/ D eic�
Z
g.x/ ei�Ax	x dx;

as � ! C1, where g 2 C1
0 .R

n/. Using a rotation, we could assume Ax � x DP
ajx

2
j , where the factors aj are the eigenvalues of A.

Note that if P.�/ D B� � �, where B is an invertible, symmetric, real matrix,
then

(B.4) eitP.D/ı.x/ D .2
/�n=2 F�ei tP �.x/:

By diagonalizing B and looking at the one-dimensional cases, ei tb�
2
, via tech-

niques used in (6.42) of Chap. 3, we obtain

(B.5) e�i tP.D/ı.x/ D det
�
4
iB

��1=2
t�n=2 eiAx	x=t ; A D .4B/�1;

for t > 0, where the determinant is calculated as

(B.6) lim
�&0

det
�
4
i.B � i�/

��1=2
;

using analytic continuation, and the convention that det.C4
�I /�1=2 > 0, for
real � > 0.

Thus, for K.�/ in (B.3), we have

(B.7) K.t�1/ D C.A/ tn=2 u.t; 0/;

where C.A/ D det.4
iB/1=2, 4B D A�1, and u.t; x/ solves a generalized
Schrödinger equation:

(B.8) u.t; x/ D e�itP.D/g.x/:

Given g 2 C1
0 .R

n/, we know from material of Chap. 3, �5, that

u 2 C1�Œ0;1/;S.Rn/� � C1�Œ0;1/ � Rn
�
:
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Thus we have, for t & 0, an expansion

(B.9) u.t; 0/ 	
X

j�0
aj t

j ;

with

(B.10) aj D 1

j Š

� @
@t

	j
u.0; 0/ D .�i/j

j Š
P.D/jg.0/:

Consequently, for (B.3) we have

(B.11) eic� K.�/ 	 C��n=2�a0 C a1�
�1 C a2�

�2 C � � �
	
eic� ; � ! C1;

where C D C.A/ is as in (B.7) and the factors aj are given by (B.10). We can
conclude that I.�/ in (B.1) is asymptotic to a finite sum of such expansions, un-
der the hypotheses made on F.x/ and  .x/. Let us summarize what has been
established.

Proposition B.2. If F 2 C1
0 .M/ and  2 C1.M/ is real-valued, with only

non-degenerate critical points, at x1; : : : ; xk , then, as � ! C1, the integral
(B.1) has the asymptotic behavior

I.�/ 	
kX

jD1
Aj .�/�

�n=2ei� .xj /;

Aj .�/ 	 aj0 C aj1�
�1 C aj2�

�2 C � � � :
(B.12)
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A

Outline of Functional Analysis

Introduction

Problems in PDE have provided a major impetus for the development of func-
tional analysis. Here, we present some basic results, which are useful for the
development of such subjects as distribution theory and Sobolev spaces, discussed
in Chaps. 3 and 4; the spectral theory of compact and of unbounded operators,
applied to elliptic PDE in Chap. 5; the theory of Fredholm operators and their in-
dices, needed for the study of the Atiyah–Singer index theorem in Chap. 10; and
the theory of semigroups, of particular value in Chap. 9 on scattering theory, and
also germane to studies of evolution equations in Chaps. 3 and 6. Indeed, what is
thought of as the subject of functional analysis naturally encompasses some of the
development of these chapters as well as the material presented in this appendix.
One particular case of this is the spectral theory of Chap. 8. In fact, it is there that
we present a proof of the spectral theorem for general self-adjoint operators. One
reason for choosing to do it this way is that my favorite approach to the spectral
theorem uses Fourier analysis, which is not applied in this appendix, though some
of the exercises make contact with it. Thus in this appendix the spectral theorem
is proved only for compact operators, an extremely simple special case. On the
other hand, it is hoped that by the time one gets through the Fourier analysis as
developed in Chap. 3, the presentation of the general spectral theorem in Chap. 8
will appear to be very simple too.

1. Banach spaces

A Banach space is a complete, normed, linear space. A norm on a linear space V
is a positive function kvk having the properties

kavk D kak � kvk for v 2 V; a 2 C .or R/;

kv C wk � kvk C kwk;
kvk > 0 unless v D 0:

(1.1)

M.E. Taylor, Partial Differential Equations I: Basic Theory,
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The second of these conditions is called the triangle inequality. Given a norm on
V , there is a distance function d.u; v/ D ku � vk, making V a metric space.

A metric space is a set X , with distance function d W X �X ! RC, satisfying

d.u; v/ D d.v; u/;

d.u; v/ � d.u; w/C d.w; v/;

d.u; v/ > 0 unless u D v:

(1.2)

A sequence .uj / is Cauchy provided d.vn; vm/ ! 0 as m; n ! 1; complete-
ness is the property that any Cauchy sequence converges. Further background on
metric spaces is given in �1 of Appendix B.

We list some examples of Banach spaces. First, let X be any compact metric
space, that is, a metric space with the property that any sequence .xn/ has a con-
vergent subsequence. Then C.X/, the space of continuous functions on X , is a
Banach space, with norm

(1.3) kuksup D supfju.x/j W x 2 Xg:

Also, for any ˛ 2 Œ0; 1�, we set

(1.4) Lip˛.X/ D fu 2 C.X/ W ju.x/ � u.y/j � C d.x; y/˛ for all x; y 2 Xg:

This is a Banach space, with norm

(1.5) kuk˛ D kuksup C sup
x;y2X

ju.x/� u.y/j
d.x; y/˛

:

Lip0.X/ D C.X/; the space Lip1.X/ is typically denoted Lip .X/. For ˛ 2
.0; 1/, Lip˛.X/ is frequently denoted C ˛.X/. In all these cases, it is straight-
forward to verify the conditions (1.1) on the proposed norms and to establish
completeness.

Related spaces arise when X is specialized to be a compact Riemannian man-
ifold. We have C k.M/, the space of functions whose derivatives of order � k

are continuous on M . Norms on C k.M/ can be constructed as follows. Pick
Z1; : : : ; ZN , smooth vector fields on M that span TpM at each p 2 M . Then
we can set

(1.6) kukCk D
X

`�k
kZj1

� � �Zj`
uksup:

If one replaces the sup norm on the right by the C ˛-norm (1.5), for some
˛ 2 .0; 1/, one has a norm for the Banach space C k;˛.M/.

More subtle examples of Banach spaces are the Lp-spaces, defined as follows.
First take p D 1. Let .X;�/ be a measure space. We say a measurable function
f belongs to L1.X;�/ provided
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(1.7)
Z

X

jf .x/j d�.x/ < 1:

Elements of L1.X;�/ consist of equivalence classes of elements of L1.X;�/,
where we say

(1.8) f � Qf , f .x/ D Qf .x/; for �-almost every x:

With a slight abuse of notation, we denote by f both a measurable function in
L1.X;�/ and its equivalence class in L1.X;�/. Also, we say that f , defined
only almost everywhere on X , belongs to L1.X;�/ if there exists Qf 2 L1.X;�/
such that Qf D f a.e. The norm kf kL1 is given by (1.7); it is easy to see that this
norm has the properties (1.1).

The proof of completeness of L1.X;�/ makes use of the following key con-
vergence results in measure theory.

Monotone convergence theorem. If fj 2 L1.X;�/, 0 � f1.x/ � f2.x/ � � � � ,
and kfj kL1 � C < 1, then limj!1 fj .x/ D f .x/, with f 2 L1.X;�/ and
kfj � f kL1 ! 0 as j ! 1.

Dominated convergence theorem. If fj 2 L1.X;�/; limfj .x/ D f .x/,
�-a.e., and there is an F 2 L1.X;�/ such that jfj .x/j � F.x/ �-a.e., for all
j , then f 2 L1.X;�/ and kfj � f kL1 ! 0.

To show that L1.X;�/ is complete, suppose .fn/ is Cauchy in L1. Passing to
a subsequence, we can assume kfnC1�fnkL1 � 2�n. Consider the infinite series

(1.9) f1.x/C
1X

nD1

�
fnC1.x/ � fn.x/

�
:

Now the partial sums are dominated by

Gm.x/ D
mX

nD1
jfnC1.x/ � fn.x/j;

and since 0 � G1 � G2 � � � � and kGmkL1 � P
2�n � 1, we deduce from the

monotone convergence theorem that Gm % G �-a.e. and in L1-norm. Hence
the infinite series (1.9) is convergent a.e., to a limit f .x/, and via the domi-
nated convergence theorem we deduce that fn ! f in L1-norm. This proves
completeness.

Continuing with a description of Lp-spaces, we define L1.X;�/ to consist
of bounded, measurable functions, L1.X;�/ to consist of equivalence classes of
such functions, via (1.8), and we define kf kL1 to be the smallest sup of Qf � f .
It is easy to show that L1.X;�/ is a Banach space.
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For p 2 .1;1/, we define Lp.X;�/ to consist of measurable functions f
such that

(1.10)
hZ

X

jf .x/jp d�.x/
i1=p

is finite. Lp.X;�/ consists of equivalence classes, via (1.8), and the Lp-norm
kf kLp is given by (1.10). This time it takes a little work to verify the triangle
inequality. That this holds is the content of Minkowski’s inequality:

(1.11) kf C gkLp � kf kLp C kgkLp :

One neat way to establish this is by the following characterization of theLp-norm.
Suppose p and q are related by

(1.12)
1

p
C 1

q
D 1:

We claim that if f 2 Lp.X;�/,

(1.13) kf kLp D sup
˚kf hkL1 W h 2 Lq.X;�/; khkLq D 1

�
:

We can apply (1.13) to f C g, which belongs to Lp.X;�/ if f and g do, since
jf Cgjp � 2p.jf jpCjgjp/. Given this, (1.11) follows easily from the inequality
k.f C g/hkL1 � kf hkL1 C kghkL1 .

The identity (1.13) can be regarded as two inequalities. The “�” part can be
proven by choosing h.x/ to be an appropriate multiple C jf .x/jp�1. We leave
this as an exercise. The converse inequality, “�;” is a consequence of Hölder’s
inequality:

(1.14)
Z

jf .x/g.x/j d�.x/ � kf kLp kgkLq ;
1

p
C 1

q
D 1:

Hölder’s inequality can be proved via the following inequality for positive
numbers:

(1.15) ab � ap

p
C bq

q
; a; b > 0;

assuming that p 2 .1;1/ and (1.12) holds; (1.15) is equivalent to

(1.16) x1=py1=q � x

p
C y

q
; x; y > 0:

Since both sides of this are homogeneous of degree 1 in .x; y/, it suffices to
prove it for y D 1, that is, to prove that x1=p � x=p C 1=q for x 2 Œ0;1/.
Now '.x/ D x1=p � x=p can be maximized by elementary calculus; one finds a
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unique maximum at x D 1, with '.1/ D 1� 1=p D 1=q. This establishes (1.16),
hence (1.15). Applying this to the integrand in (1.14) gives

(1.17)
Z

jf .x/g.x/j d�.x/ � 1

p
kf kpLp C 1

q
kgkqLq :

This looks weaker than (1.14), but now replace f by tf and g by t�1g, so that
the left side of (1.17) is dominated by

tp

p
kf kpLp C 1

qtq
kgkqLq :

Minimizing over t 2 .0;1/ then gives Hölder’s inequality. Consequently, (1.10)
defines a norm onLp.X;�/. Completeness follows as in the p D 1 case discussed
above.

We next give a discussion of one important method of manufacturing new
Banach spaces from old. Namely, suppose V is a Banach space,W a closed linear
subspace. Consider the linear space L D V=W , with norm

(1.18) kŒv�k D inf
˚kv � wk W w 2 W �

;

where v 2 V , and Œv� denotes its class in V=W . It is easy to see that (1.18) defines
a norm on V=W . We record a proof of the following.

Proposition 1.1. If V is a Banach space andW is a closed linear subspace, then
V=W , with norm (1.18), is a Banach space.

It suffices to prove that V=W is complete. We use the following; compare the
use of (1.9) in the proof of completeness of L1.X;�/.

Lemma 1.2. A normed linear space L is complete provided the hypothesis

xj 2 L;
1X

jD1
kxj k < 1;

implies that
P1
jD1 xj converges in L.

Proof. If .yk/ is Cauchy in L, take a subsequence so that kykC1 � ykk � 2�k ,
and consider y1 CP1

jD1.yjC1 � yj /.
To prove Proposition 1.1 now, say Œvj � 2 V=W ,

P kŒvj �k < 1. Then pick
wj 2 W such that kvj � wj k � kŒvj �k C 2�j , to get

P1
jD1 kvj � wj k <

1. Hence
P
.vj � wj / converges in V , to a limit v, and it follows that

P
Œvj �

converges to Œv� in V=W .
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Note that if W is a proper closed, linear subspace of V , given v 2 V n W ,
we can pick wn 2 W such that kv � wnk ! dist.v;W /. Normalizing v � wn
produces vn 2 V such that the following holds.

Lemma 1.3. IfW is a proper closed, linear subspace of a Banach space V , there
exist vn 2 V such that

(1.19) kvnk D 1; dist.vn;W / % 1:

In Proposition 2.1 we will produce an important sharpening of this for Hilbert
spaces. For now we remark on the following application.

Proposition 1.4. If V is an infinite-dimensional Banach space, then the closed
unit ball B1 � V is not compact.

Proof. If Vj is an increasing sequence of spaces, of dimension j , by (1.19) we
can obtain vj 2 Vj , kvj k D 1; each pair a distance � 1=2; thus .vj / has no
convergent subsequence.

It is frequently useful to show that a certain linear subspace L of a Banach
space V is dense. We give a few important cases of this here.

Proposition 1.5. If � is a Borel measure on a compact metric space X , then
C.X/ is dense in Lp.X;�/ for each p 2 Œ1;1/.

Proof. First, let K be any compact subset of X . The functions

(1.20) fK;n.x/ D �
1C n dist.x;K/

��1 2 C.X/

are all � 1 and decrease monotonically to the characteristic function �K equal to
1 on K , 0 on X n K . The monotone convergence theorem gives fK;n ! �K in
Lp.X;�/ for 1 � p < 1. Now let A � X be any measurable set. Any Borel
measure on a compact metric space is regular, that is,

(1.21) �.A/ D supf�.K/ W K � A; K compactg:

Thus there exists an increasing sequence Kj of compact subsets of A such that
�.An[jKj / D 0. Again, the monotone convergence theorem implies�Kj

! �A
in Lp.X;�/ for 1 � p < 1. Thus all simple functions on X are in the closure
of C.X/ in Lp.X;�/ for p 2 Œ1;1/. The construction of Lp.X;�/ directly
shows that each f 2 Lp.X;�/ is a norm limit of simple functions, so the result
is proved.

This result is easily extended to give the following:

Corollary 1.6. If X is a metric space that is locally compact and a countable
union of compact Xj , and � is a (locally finite) Borel measure on X , then the
space C00.X/ of compactly supported, continuous functions on X is dense in
Lp.X;�/ for each p 2 Œ1;1/.
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Further extensions, involving more general locally compact spaces, can be
found in [Lo].

The following is known as the Weierstrass approximation theorem.

Theorem 1.7. If I D Œa; b� is an interval in R, the space P of polynomials in one
variable is dense in C.I /.

There are many proofs of this. One close to Weierstrass’s original (and
my favorite) goes as follows. Given f 2 C.I /, extend it to be continuous
and compactly supported on R; convolve this with a highly peaked Gaussian; and
approximate the result by power series. For a more detailed sketch, in the context
of other useful applications of highly peaked Gaussians, see Exercises 14 and 15
in �3 of Chap. 3.

The following generalization is known as the Stone–Weierstrass theorem.

Theorem 1.8. Let X be a compact Hausdorff space and A a subalgebra of
CR.X/, the algebra of real-valued, continuous functions on X . Suppose that
1 2 A and that A separates points of X , that is, for distinct p; q 2 X , there
exists hpq 2 A with hpq.p/ ¤ hpq.q/. Then the closure A is equal to CR.X/.

We sketch a proof of Theorem 1.8, making use of Theorem 1.7, which implies
that if f 2 A and ' W R ! R is continuous, then ' ı f 2 A. Consequently, if
fj 2 A, then sup.f1; f2/ D .1=2/jf1 � f2j C .1=2/.f1 C f2/ 2 A.

The hypothesis of separating points implies that, for distinct p; q 2 X , there
exists fpq 2 A, equal to 1 at p, 0 at q. Applying appropriate ', we can arrange
also that 0 � fpq.x/ � 1 on X and that fpq is 1 near p and 0 near q. Taking
infima, we can obtain fpU 2 A, equal to 1 on a neighborhood of p and equal to
0 off a given neighborhood U of p. Applying sups to these, we obtain, for each
compact K � X and open U 	 K , a function gKU 2 A such that gKU is 1 on
K , 0 off U , and 0 � gKU .x/ � 1 on X . Once we have gotten this far, it is easy
to approximate any continuous u � 0 on X by a sup of (positive constants times)
such gKU , and from there it is easy to prove the theorem.

Theorem 1.8 has a complex analogue. In that case, we add the assumption that
f 2 A ) f 2 A and conclude that A D C.X/. This is easily reduced to the
real case.

Exercises

1. Let L be the subspace of C.S1/ consisting of finite linear combinations of the expo-
nentials ein� , n 2 Z. Use the Stone–Weierstrass theorem to show that L is dense in
C.S1/.

2. Show that the space of finite linear combinations of the functions

E� .t/ D e��t ;

as � ranges over .0;1/, is dense in C0.RC/, the space of continuous functions on
RC D Œ0;1/, vanishing at infinity. (Hint: Make a slight generalization of the Stone–
Weierstrass theorem.)
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3. Given f 2 L1.RC/, the Laplace transform

.Lf /.�/ D
Z 1

0
e��tf .t/ dt

is defined and holomorphic for Re � > 0. Suppose .Lf /.�/ vanishes for � on some open
subset of .0;1/. Show that f D 0, using Exercise 2. (Hint: First show that .Lf /.�/ is
identically zero.)

4. Let I be a compact interval, V a Banach space, and f W I ! V a continuous function.
Show that the Riemann integral

R
I f .x/ dx is well-defined. Formulate and establish

the fundamental theorem of calculus for V -valued functions. Formulate and verify ap-
propriate basic results on multidimensional integrals of V -valued functions.

5. Let � � C be open, V a (complex) Banach space, and f W � ! V . We say f
is holomorphic if it is a C 1-map and, for each z 2 �, Df .z/ is C-linear. Establish for
such V -valued holomorphic functions the Cauchy integral theorem, the Cauchy integral
formula, power-series expansions, and the Liouville theorem.

A Banach space V is said to be uniformly convex provided that for each " > 0, these
exists ı > 0 such that, for x; y 2 V ,

kxk; kyk � 1;
���
1

2
.x C y/

��� � 1 � ı H) kx � yk < ":

6. Show that Lp.X; �/ is uniformly convex provided 2 � p < 1.
(Hint: Prove and use the fact that, for a; b 2 C; p 2 Œ2;1/,

ja C bjp C ja � bjp � 2p�1.jajp C jbjp/;
so that

kf C gkp
Lp C kf � gkp

Lp � 2p�1.kf kp
Lp C kgkp

Lp /:/

Remark: Lp.X; �/ is also uniformly convex for p 2 .1; 2/, but the proof is harder. See
[Kot], pp. 358–359.

2. Hilbert spaces

A Hilbert space is a complete inner-product space. That is to say, first the space
H is a linear space provided with an inner product, denoted .u; v/, for u and v in
H , satisfying the following defining conditions:

(2.1)

.au1 C u2; v/ D a.u1; v/C .u2; v/;

.u; v/ D .v; u/;

.u; u/ > 0 unless u D 0:

To such an inner product is assigned a norm, by

(2.2) kuk D p
.u; u/:
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To establish that the triangle inequality holds for ku C vk, we can expand
kuCvk2 D .uCv; uCv/ and deduce that this is � �kukCkvk�2, as a consequence
of Cauchy’s inequality:

(2.3) j.u; v/j � kuk � kvk;

a result that can be proved as follows. The fact that .u � v; u � v/ � 0 implies
2 Re .u; v/ � kuk2 C kvk2; replacing u by ei�u with ei� chosen so that ei�.u; v/
is real and positive, we get

(2.4) j.u; v/j � 1

2
kuk2 C 1

2
kvk2:

Now in (2.4) we can replace u by tu and v by t�1v, to get j.u; v/j � .t=2/kuk2C
.1=2t/kvk2; minimizing over t gives (2.3). This establishes Cauchy’s inequality,
so we can deduce the triangle inequality. Thus (2.2) defines a norm, as in �1, and
the notion of completeness is as stated there.

Prime examples of Hilbert spaces are the spaces L2.X;�/ for a measure space
.X;�/, that is, the case of Lp.X;�/ discussed in �1 with p D 2. In this case, the
inner product is

(2.5) .u; v/ D
Z

X

u.x/v.x/ d�.x/:

The nice properties of Hilbert spaces arise from their similarity with familiar
Euclidean space, so a great deal of geometrical intuition is available. For example,
we say u and v are orthogonal, and write u ? v, provided .u; v/ D 0. Note that
the Pythagorean theorem holds on a general Hilbert space:

(2.6) u ? v H) ku C vk2 D kuk2 C kvk2:

This follows directly from expanding .u C v; u C v/.
Another useful identity is the following, called the “parallelogram law,” valid

for all u; v 2 H :

(2.7) ku C vk2 C ku � vk2 D 2kuk2 C 2kvk2:

This also follows directly by expanding .u Cv; u Cv/C .u � v; u � v/, observing
some cancellations. One important application of this simple identity is to the
following existence result.

LetK be any closed, convex subset ofH . Convexity implies that x; y 2 K )
.x C y/=2 2 K . Given x 2 H , we define the distance from x to K to be

(2.8) d D inffkx � yk W y 2 Kg:
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Proposition 2.1. If K � H is a closed, convex set, there is a unique z 2 K such
that d D kx � zk.

Proof. We can pick yn 2 K such that kx � ynk ! d . It will suffice to show that
.yn/ must be a Cauchy sequence. Use (2.7) with u D ym � x, v D x � yn, to get

kym � ynk2 D 2kyn � xk2 C 2kym � xk2 � 4��x � 1

2
.yn C ym/

��2:

SinceK is convex, .1=2/.ynCym/ 2 K , so kx�.1=2/.ynCym/k � d . Therefore,

lim sup
m;n!1

kyn � ymk2 � 2d 2 C 2d 2 � 4d 2 � 0;

which implies convergence.

In particular, this result applies when K is a closed, linear subspace of H . In
this case, for x 2 H , denote by PKx the point in K closest to x. We have

(2.9) x D PKx C .x � PKx/:

We claim that x � PKx belongs to the linear space K?, called the orthogonal
complement of K , defined by

(2.10) K? D fu 2 H W .u; v/ D 0 for all v 2 Kg:

Indeed, take any v 2 K . Then

�.t/ D kx � PKx C tvk2
D kx � PKxk2 C 2t Re .x � PKx; v/C t2kvk2

is minimal at t D 0, so �0.0/ D 0 (i.e., Re.x � PKx; v/ D 0), for all v 2 K .
Replacing v by iv shows that .x �PKx; v/ also has vanishing imaginary part for
any v 2 K , so our claim is established. The decomposition (2.9) gives

(2.11) x D x1 C x2; x1 2 K; x2 2 K?;

with x1 D PKx, x2 D x � PKx. Clearly, such a decomposition is unique. It
implies that H is an orthogonal direct sum of K and K?; we write

(2.12) H D K ˚K?:

From this it is clear that

(2.13)
�
K?�? D K;
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that

(2.14) x � PKx D PK?

x;

and that PK and PK?
are linear maps on H . We call PK the orthogonal projec-

tion of H onK . Note that PKx is uniquely characterized by the condition

(2.15) PKx 2 K; .PKx; v/ D .x; v/; for all v 2 K:

We remark that if K is a linear subspace of H which is not closed, then K?

coincides with K
?

, and (2.13) becomes
�
K?�? D K.

Using the orthogonal projection discussed above, we can establish the follow-
ing result.

Proposition 2.2. If ' W H ! C is a continuous, linear map, there exists a unique
f 2 H such that

(2.16) '.u/ D .u; f /; for all u 2 H:

Proof. Consider K D Ker ' D fu 2 H W '.u/ D 0g, a closed, linear subspace
of H . If K D H , then ' D 0 and we can take f D 0. Otherwise, K? ¤ 0;
select a nonzero x0 2 K? such that '.x0/ D 1. We claimK? is one-dimensional
in this case. Indeed, given any y 2 K?, y � '.y/x0 is annihilated by ', so it
belongs to K as well as to K?, so it is zero. The result is now easily proved by
setting f D ax0 with a 2 C chosen so that (2.16) works for u D x0, namely
a.x0; x0/ D 1.

We note that the correspondence ' 7! f gives a conjugate linear isomorphism

(2.17) H 0 ! H;

whereH 0 denotes the space of all continuous linear maps ' W H ! C.
We now discuss the existence of an orthonormal basis of a Hilbert space H .

A set fe˛ W ˛ 2 Ag is called an orthonormal set if each ke˛k D 1 and e˛ ? eˇ for
˛ ¤ ˇ. If B � A is any finite set, it is easy to see via (2.15) that, for all x 2 H ,

(2.18) PV x D
X

ˇ2B
.x; eˇ /eˇ ; V D span feˇ W ˇ 2 Bg;

where PV is the orthogonal projection on V discussed above. Note that

(2.19)
X

ˇ2B
j.x; eˇ /j2 D kPV xk2 � kxk2:

In particular, we have .x; e˛/ ¤ 0 for at most countably many ˛ 2 A, for any
given x. (Sometimes, A can be an uncountable set.) By (2.19) we also deduce
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that, with c˛ D .x; e˛/,
P
˛2A jc˛j2 < 1, and

P
˛2A c˛e˛ is a convergent series

in the norm topology of H . We can apply (2.15) again to show that

(2.20)
X

˛2A
.x; e˛/e˛ D PLx;

where PL is the orthogonal projection on

(2.21) L D closure of the linear span of fe˛ W ˛ 2 Ag:

We call an orthonormal set fe˛ W ˛ 2 Ag maximal if it is not contained in any
larger orthonormal set. Such a maximal orthonormal set is a basis of H ; the term
“basis” is justified by the following result.

Proposition 2.3. An orthonormal set fe˛ W ˛ 2 Ag is maximal if and only if its
linear span is dense in H , that is, if and only if L in (2.21) is all of H . In such a
case, we have, for all x 2 H ,

(2.22) x D
X

˛2A
c˛e˛; c˛ D .x; e˛/:

The proof of the first assertion is obvious; the identity (2.22) then follows from
(2.20).

The existence of a maximal orthonormal set in any Hilbert space can be in-
ferred from Zorn’s lemma; cf. [DS] and [RS]. This existence can be established
on elementary logical principles in caseH is separable (i.e., has a countable dense
set fyj W j D 1; 2; 3; : : : g). In this case, let Vn be the linear span of fyj W j � ng,
throwing out any yn for which Vn is not strictly larger than Vn�1. Then pick unit
e1 2 V1, unit e2 2 V2, orthogonal to V1, and so on, via the Gramm–Schmidt
process, and consider the orthonormal set fej W j D 1; 2; 3; : : : g. The linear span
of fej g coincides with that of fyj g, hence is dense in H .

As an example of an orthonormal basis, we mention

(2.23) ein� ; n 2 Z;

a basis of L2.S1/ with square norm kuk2 D .1=2	/
R
S1 ju.
/j2 d
 . See Chap. 3,

�3, or the exercises for this section.

Exercises

1. Let L be the finite, linear span of the functions ein� , n 2 Z, of (2.23). Use Exercise
1 of �1 to show that L is dense in L2.S1/ and hence that these exponentials form an
orthonormal basis of L2.S1/.

2. Deduce that the Fourier coefficients
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(2.24) Ff .n/ D Of .n/ D 1

2	

Z �

��
f .
/ e�in� d


give a norm-preserving isomorphism

(2.25) F W L2.S1/ �! `2.Z/;

where `2.Z/ is the set of sequences .cn/, indexed by Z, such that
P jcnj2 < 1.

Compare the approach to Fourier series in Chap. 3, �1.

In the next set of exercises, let � and � be two finite, positive measures on a space
X , equipped with a �-algebra B. Let ˛ D �C 2� and ! D 2�C �.

3. On the Hilbert space H D L2.X; ˛/, consider the linear functional ' W H ! C
given by '.f / D R

X f .x/ d!.x/. Show that there exists g 2 L2.X; ˛/ such that
1=2 � g.x/ � 2 and

Z

X

f .x/ d!.x/ D
Z

X

f .x/g.x/ d˛.x/:

4. Suppose � is absolutely continuous with respect to � (i.e., �.S/ D 0 ) �.S/ D 0).
Show that fx 2 X W g.x/ D 1

2 g has �-measure zero, that

h.x/ D 2 � g.x/

2g.x/� 1
2 L1.X; �/;

and that, for positive measurable F ,
Z

X

F.x/ d�.x/ D
Z

X

F.x/h.x/ d�.x/:

5. The conclusion of Exercise 4 is a special case of the Radon–Nikodym theorem, using an
approach due to von Neumann. Deduce the more general case. Allow � to be a signed
measure. (You then need the Hahn decomposition of �:) Cf. [T], Chap. 8.

6. Recall uniform convexity, defined in the exercise set for �1. Show that every Hilbert
space is uniformly convex.

3. Fréchet spaces; locally convex spaces

Fréchet spaces form a class more general than Banach spaces. For this structure,
we have a linear space V and a countable family of seminorms pj W V ! RC,
where a seminorm pj satisfies part of (1.1), namely

(3.1) pj .av/ D jajpj .v/; pj .v C w/ � pj .v/C pj .w/;

but not necessarily the last hypothesis of (1.1); that is, one is allowed to have
pj .v/ D 0 but v ¤ 0. However, we do assume that

(3.2) v ¤ 0 H) pj .v/ ¤ 0; for some pj :
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Then, if we set

(3.3) d.u; v/ D
1X

jD0
2�j pj .u � v/

1C pj .u � v/
;

we have a distance function. That d.u; v/ satisfies the triangle inequality follows
from the next lemma, with .a/ D a=.1C a/.

Lemma 3.1. Let ı W X �X ! RC satisfy

(3.4) ı.x; z/ � ı.x; y/C ı.y; z/;

for all x; y; z 2 X . Let  W RC ! RC satisfy

.0/ D 0; 0 � 0; 00 � 0;

so that .a C b/ � .a/C .b/. Then ı�.x; y/ D 
�
ı.x; y/

�
also satisfies (3.4).

Proof. We have


�
ı.x; z/

� � 
�
ı.x; y/C ı.y; z/

� � 
�
ı.x; y/

�C 
�
ı.y; z/

�
:

Thus V , with seminorms as above, gets the structure of a metric space. If it is
complete, we call V a Fréchet space. Note that one has convergence un ! u in
the metric (3.3) if and only if

(3.5) pj .un � u/ ! 0 as n ! 1; for each pj :

A paradigm example of a Fréchet space isC1.M/, the space ofC1-functions
on a compact Riemannian manifold M . Then one can take pk.u/ D kukCk ,
defined by (1.6). These seminorms are actually norms, but one encounters real
seminorms in the following situation. SupposeM is a noncompact, smooth mani-
fold, a union of an increasing sequenceM k of compact manifolds with boundary.
Then C1.M/ is a Fréchet space with seminorms pk.u/ D kukCk .Mk/

. Also,
for such M , and for 1 � p � 1, Lploc.M/ is a Fréchet space, with seminorms
pk.u/ D kukLp.Mk /

.
Another important Fréchet space is the Schwartz space of rapidly decreasing

functions

(3.6) S.Rn/ D fu 2 C1.Rn/ W jD˛u.x/j � CN˛hxi�N for all ˛;N g;
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with seminorms

(3.7) pk.u/ D sup
x2Rn;j˛j�k

hxikjD˛u.x/j:

This space is particularly useful for Fourier analysis; see Chap. 3.
A still more general class is the class of locally convex spaces. Such a space

is a vector space V , equipped with a family of seminorms, satisfying (3.1)–(3.2).
But now we drop the requirement that the family of seminorms be countable, that
is, j ranges over some possibly uncountable set J , rather than a countable set like
ZC. Thus the construction (3.3) of a metric is not available. Such a space V has
a natural topology, defined as follows. A neighborhood basis of a point x 2 V is
given by

(3.8) O.x; "; q/ D fy 2 V W q.x � y/ < "g; " > 0;

where q runs over finite sums of seminorms pj . Then V is a topological vector
space, that is, with respect to this topology, the vector operations are continuous.
The term “locally convex” arises because the sets (3.8) are all convex.

Examples of such more general, locally convex structures will arise in the next
section.

Exercises

1. LetE be a Fréchet space, with topology determined by seminorms pj , arranged so that
p1 � p2 � � � � . Let F be a closed linear subspace. Form the quotient E=F . Show that
E=F is a Fréchet space, with seminorms

qj .x/ D inf fpj .y/ W y 2 E; 	.y/ D xg;
where 	 W E ! E=F is the natural quotient map. (Hint: Extend the proof of
Proposition 1.1. To begin, if qj .a/ D 0 for all j , pick bj 2 E such that 	.bj / D a

and pj .bj / � 2�j ; hence pj .bk/ � 2�k , for k � j . Consider b1 C .b2 � b1/ C
.b3 � b2/C � � � D b 2 E. Show that 	.b/ D a and that pj .b/ D 0 for all j . Once this
is done, proceed to establish completeness.)

2. If V is a Fréchet space, with topology given by seminorms fpj g, a set S � V is called
bounded if each pj is bounded on S . Show that every bounded subset of the Schwartz
space S.Rn/ is relatively compact. Show that no infinite-dimensional Banach space can
have this property.

3. Let T W V ! V be a continuous, linear map on a locally convex space. Suppose K is a
compact, convex subset of V and T .K/ � K. Show that T has a fixed point in K.
(Hint: Pick any v0 2 K and set

wn D 1

nC 1

nX

jD0
T j v0 2 K:

Show that any limit point of fwng is a fixed point of T . Note that Twn � wn D
.T nC1v0 � v0/=.nC 1/:)
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4. Duality

Let V be a linear space such as discussed in ��1–3, for example, a Banach space,
or more generally a Fréchet space, or even more generally a Hausdorff topological
vector space. The dual of V , denoted V 0, consists of continuous, linear maps

(4.1) ! W V �! C

(! W V ! R if V is a real vector space). Elements ! 2 V 0 are called linear
functionals on V . Sometimes one finds the following notation for the action of
! 2 V 0 on v 2 V :

(4.2) hv; !i D !.v/:

If V is a Banach space, with norm k k, the condition for the map (4.1) to
be continuous is the following: The set of v 2 V such that j!.v/j � 1 must be
a neighborhood of 0 2 V . Thus this set must contain a ball BR D fv 2 V W
kvk � Rg, for some R > 0. With C D 1=R, it follows that ! must satisfy

(4.3) j!.v/j � Ckvk;

for some C < 1. The infimum of the C ’s for which this holds is defined to be
k!k; equivalently,

(4.4) k!k D sup fj!.v/j W kvk � 1g:

It is easy to verify that V 0, with this norm, is also a Banach space.
More generally, let ! be a continuous, linear functional on a Fréchet space V ,

equipped with a family fpj W j � 0g of seminorms and (complete) metric given
by (3.3). For any ">0, there exists ı >0 such that d.u; 0/� ı implies j!.u/j � ".
Take " D 1 and the associated ı; pick N so large that

P1
NC1 2�j < ı=2. It

follows that
PN
1 pj .u/ � ı=2 implies j!.u/j � 1. Consequently, we see that the

continuity of ! W V ! C is equivalent to the validity of an estimate of the form

(4.5) j!.u/j � C

NX

jD1
pj .u/:

For general Fréchet spaces, there is no simple analogue of (4.4); V 0 is typically
not a Fréchet space. We will give a further discussion of topologies on V 0 later in
this section.

Next we consider identification of the duals of some specific Banach spaces
mentioned before. First, if H is a Hilbert space, the inner product produces a
conjugate linear isomorphism of H 0 with H , as noted in (2.17). We next identify
the dual of Lp.X;�/.
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Proposition 4.1. Let .X;�/ be a �-finite measure space. Let 1 � p < 1. Then
the dual space Lp.X;�/0, with norm given by (4.4), is naturally isomorphic to
Lq.X;�/, with 1=pC 1=q D 1.

Note that Hölder’s inequality and its refinement (1.13) show that there is a
natural inclusion � W Lq.X;�/ ! Lp.X;�/0, which is an isometry. It remains
to show that � is surjective. We sketch a proof in the case when �.X/ is finite,
from which the general case is easily deduced. If ! 2 Lp.X;�/0, define a set
function � on measurable sets E � X by �.E/ D h�E ; !i, where �E is the
characteristic function of E; � is readily verified to be countably additive, as long
as p < 1. Furthermore, � annihilates sets of �-measure zero, so the Radon–
Nikodym theorem implies

Z
f d� D

Z
f w d�;

for some measurable function w. A variant of the proof of (1.13) gives w 2
Lq.X;�/, with kwkLq D k!k.

Note that the countable additivity of � fails for p D 1; in fact,L1.X;�/0 can
be identified with the space of finitely additive set functions on the �-algebra of
�-measurable sets that annihilate sets of �-measure zero.

Remark: In the argument above, you need the Radon–Nikodym theorem for
signed measures. The result of Exercise 4, �2 does not suffice; see Exercise 5
of �2.

The following complement to Proposition 4.1 is one of the fundamental results
of measure theory. For a proof, we refer to [Ru] and [Yo]

Proposition 4.2. If X is a compact metric space, C.X/0 is isometrically iso-
morphic to the space M.X/ of (complex) Borel measures on X , with the total
variation norm.

In fact, the generalization of this to the case where X is a compact Hausdorff
space, not necessarily metrizable, is of interest. In that case, there is a distinction
between the Borel �-algebra, generated by all compact subsets of X , and the
Baire �-algebra, generated by the compact Gı subsets of X . For M.X/ here
one takes the space of Baire measures to give C.X/0. It is then an important fact
that each Baire measure has a unique extension to a regular Borel measure. For
details, see [Hal].

If M is a smooth, compact manifold, the dual of the Fréchet space C1.M/

is denoted D0.M/ and is called the space of distributions on M . It is discussed
in Chap. 3; also discussed there is the space S 0.Rn/ of tempered distributions on
Rn, the dual of S.Rn/.
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For a Banach space, since V 0 is a Banach space, one can construct its dual, V 00.
Note that the action (4.2) produces a natural linear map

(4.6) � W V �! V 00;

and it is obvious that k�.v/k � kvk. In fact, k�.v/k D kvk, that is, � is an
isometry. In other words, for any v 2 V , there exists ! 2 V 0, k!k D 1, such that
!.v/ D kvk. This is a special case of the Hahn–Banach theorem, stated below in
Proposition 4.3.

Sometimes � in (4.6) is surjective, so it gives an isometric isomorphism of V
with V 00. In this case, we say V is reflexive. Clearly, any Hilbert space is reflex-
ive. Also, in view of Proposition 4.1, we see that Lp.X;�/ is reflexive, provided
1 < p < 1. On the other hand, L1.X;�/ is not reflexive; L1.X;�/0 is strictly
larger than L1.X;�/, except for the trivial cases where L1.X;�/ is finite-
dimensional.

We now state the Hahn–Banach theorem, referred to above. It has a fairly gen-
eral formulation, useful also for Fréchet spaces and more general, locally convex
spaces.

Proposition 4.3. Let V be a linear space (real or complex),W a linear subspace.
Let p be a seminorm on V . Suppose ! is a linear functional on W satisfying
j!.v/j � p.v/, for v 2 W . Then there exists an extension of ! to a linear func-
tional� on V (� D ! onW ), such that j�.v/j � p.v/ for v 2 V .

Note that in case V is a Hilbert space and p the associated norm, this result
follows readily from the orthogonal decomposition established in (2.9)–(2.10).

The key to the proof in general is to show that ! can be extended to V when
V is spanned by W and one element z 2 V nW . So one looks for a constant c so
that the prescription�.v C az/ D !.v/C ac works; c is to be picked so that

(4.7) j!.v/C acj � p.v C az/; for v 2 W; a 2 R .or C/:

First consider the case of a real vector space. Then (4.7) holds provided !.v/ C
ac � p.v C az/, for all v 2 W , a 2 R, or equivalently provided

(4.8)
c � a�1�p.v C az/ � !.v/

�
;

�c � a�1�p.v � az/ � !.v/
�
;

for v 2 W , a > 0. Such a constant will exist provided

(4.9)

sup
v12W;a1>0

a�1
1

�
!.v1/ � p.v1 � a1z/

�

� inf
v22W;a2>0

a�1
2

�
p.v2 C a2z/ � !.v2/

�
:
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Equivalently, for such vj and aj , one must have

(4.10) !.a2v1 C a1v2/ � a1p.v2 C a2z/C a2p.v1 � a1z/:

We know that the left side is dominated by

p.a2v1 C a1v2/ D p.a2v1 � a2a1z C a1a2z C a1v2/;

which is readily dominated by the right side of (4.10). Hence such a number c
exists to make (4.7) work.

A Zorn’s lemma argument will then work to show that ! can be extended to
all of V in general (i.e., it has a “maximal” extension). In case V is a separa-
ble Fréchet space and p a continuous seminorm on V , an elementary inductive
argument provides an extension from W to a space dense in V , and hence by
continuity to V .

The complex case can be deduced from the real case as follows. Define � W
W ! R as �.v/ D Re !.v/. Then !.v/ D �.v/ � i�.iv/. If � W V ! R is a
desired real, linear extension of � to V , then one can set �.v/ D � .v/ � i� .iv/.

We now make note of some further topologies on the dual space V 0. The first
is called the weak�-topology. It is the topology of pointwise convergence and is
specified by the family of seminorms

(4.11) pv.!/ D j!.v/j;

as v varies over V . The following result, called Alaoglu’s theorem, is useful.

Proposition 4.4. If V is a Banach space, then the closed unit ball B � V 0 is
compact in the weak�-topology.

This result is readily deduced from the following fundamental result in
topology:

Tychonov’s Theorem. If fX˛ W ˛ 2 Ag is any family of compact Hausdorff
spaces, then the Cartesian product

Q
˛ X˛, with the product topology, is a com-

pact Hausdorff space.

Indeed, the space B � V 0 above, with the weak�-topology, is homeomorphic
to a closed subset of the Cartesian product

QfXv W v 2 B1g, where B1 � V is
the unit ball in V , each Xv is a copy of the unit disk in C, and � W B ! Q

Xv is
given by �.!/ D f!.v/ W v 2 B1g. For a proof of Tychonov’s theorem, see [Dug]
and [RS].

We remark that if V is separable, then B is a compact metric space. In fact, if
fvj W j 2 ZCg is a dense subset of B1 � V , the weak�-topology on B is given
by the metric

(4.12) d.!; �/ D
X

j�0
2�j jhvj ; ! � �ij:
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Conversely, on V there is the weak topology, the topology of pointwise con-
vergence on V 0, with seminorms

(4.13) p!.v/ D j!.v/j; ! 2 V 0:

When V is a reflexive Banach space, V D V 00, then the weak topology of V
coincides with its weak�-topology, as the dual of V 0; thus Proposition 4.4 applies
to the unit ball in V in this case.

More generally, we say two vector spaces V and W have a dual pairing if
there is a bilinear form hv;wi, defined for v 2 V , w 2 W , such that for each
v ¤ 0; hv;wi ¤ 0 for some w 2 W , and for each w ¤ 0, this form is nonzero
for some v 2 V . Then the seminorms pw.v/ D jhv;wij on V define a Hausdorff
topology called the �.V;W /-topology, and symmetrically we have the �.W; V /
topology on W . Thus the weak topology on V defined above is the �.V; V 0/-
topology, and the weak�-topology on V 0 is the �.V 0; V /-topology.

We define another topology on the dual space V 0 of a locally convex space
V , called the strong topology. This is the topology of uniform convergence on
bounded subsets of V . A set Y � V is bounded provided each seminorm pj
defining the topology of V is bounded on Y . The strong topology on V 0 is defined
by the seminorms

(4.14) pY .!/ D supfj!.y/j W y 2 Y g; Y � V bounded:

In case V is a Banach space, Y � V is bounded if and only if it is contained in
some ball of finite radius, and then each seminorm (4.14) is dominated by some
multiple of the norm on V 0, given by (4.3). Thus in this case the strong topology
and the norm topology on V 0 coincide. For more general Fréchet spaces, such as
V D C1.M/, the strong topology on V 0 does not make V 0 a normed space, or
even a Fréchet space.

There are many interesting results in the subject of duality, concerning the
topologies discussed above and other topologies, such as the Mackey topology,
which we will not describe here. For further material, see [S].

We return to the setting of the Hahn–Banach theorem, Proposition 4.3, and
produce some complementary results. First, instead of taking p W V ! RC to
be a seminorm, we can more generally take p to be a gauge, which is a map
p W V ! RC satisfying

(4.15) p.av/ D ap.v/; 8 a > 0; p.v Cw/ � p.v/C p.w/;

instead of (3.1). A simple variant of the proof of Proposition 4.3 gives the
following.

Proposition 4.5. Let V be a real linear space,W a linear subspace. Assume p is
a gauge on V . If ! W W ! R is a linear functional satisfying !.v/ � p.v/, for
v 2 W , then there is an extension of ! to a linear functional � on V , such that
�.v/ � p.v/ for all v 2 V .
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Note that the conclusion gives �.�v/ � p.�v/, hence j�.v/j � Qp.v/ D
max.p.v/; p.�v//, so � is continuous if Qp.v/ is dominated by a seminorm that
helps define the topology of V .

Here is an example of a gauge. Let V be a locally convex space and O a convex
neighborhood of 0 2 V . Define pO W V ! RC by

(4.16) pO.v/ D inf fa > 0 W a�1v 2 Og:

This is called the Minkowski gauge ofO. This object will take us from Proposition
4.5 to the following result, known as the separating hyperplane theorem.

Proposition 4.6. Let V be a locally convex space (over R), and let K1; K2 � V

be disjoint convex sets.

(i) If K1 is open, then K1 and K2 can be separated by a closed hyperplane.
(ii) If K1 and K2 are both open, they can be strictly separated by a closed

hyperplane.
(iii) IfK1 is compact andK2 is closed, they can be strictly separated by a closed

hyperplane.

Here (i) means there exists a continuous linear functional � W V ! R and a
number a 2 R such that�.v1/ � a � �.v2/ for all vj 2 Kj , and (ii) means there
exist such � and a with the property that �.v1/ < a < �.v2/ for all vj 2 Kj .
The separating hyperplane is given by fv 2 V W �.v/ D ag.

Proof. For (i), pick w 2 K2 � K1 D fv2 � v1 W vj 2 Kj g, and let O D
K1 � K2 C w. Then O is an open, convex neighborhood of 0, and w … O.
Let p D pO be the associated Minkowski gauge, and define ! on Span.w/ by
!.aw/ D a. Since w … O, p.w/ � 1, so !.aw/ � p.aw/ for all a � 0,
hence for all a 2 R. By Proposition 4.5, ! can be extended to a continuous linear
functional� on V such that �.v/ � p.v/, for all v 2 V . Hence �.v/ � 1 for all
v 2 O. Thus, for each vj 2 Kj ,

�.v1/ � �.v2/C .1 � !.w//:

But !.w/ D 1, so

(4.17) �.v1/ � �.v1/; 8 vj 2 Kj :

This proves (i).
For (ii), take � as in (i). If Kj is open f�.v/ W v 2 Kj g is readily verified so

be an open subset of R. So we have two open subsets of R, which by (4.17) share
at most one point. They must hence be disjoint.

In case (iii), consider C D K2 �K1. Disjointness implies 0 … C . Since K1 is
compact,C is closed. Thus there is an open, convex neighborhoodU of 0, disjoint
from C . Let eK1 D K1 C .1=2/U and eK2 D K2 � .1=2/U . Then eK1 and eK2 are
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disjoint, open, convex sets, and (ii) applies. Any closed hyperplane that strictly
separates eK1 and eK2 also strictly separates K1 and K2.

Proposition 4.6 has the following important topological consequence.

Proposition 4.7. Let K be a closed, convex subset of the locally convex space V
(over R). ThenK is weakly closed.

Proof. Suppose v˛ 2 K and v˛ ! v weakly, that is, �.v˛/ ! �.v/ for all
� 2 V 0. If v … K , this contradicts the conclusion of (iii) of Proposition 4.6 (with
K1 D fvg; K2 D K), so v 2 K .

NOTE: If V is a linear space over C with a locally convex topology, its weak
topology coincides with that produced by regarding V as a linear space over R.

Proposition 4.7 interfaces as follows with Proposition 4.4.

Proposition 4.8. Let V be a reflexive Banach space and K � V a closed,
bounded, convex set. Then K is compact in the weak topology.

Proof. Proposition 4.4, with V and V 0 switched, implies that each closed ball
BR � V is compact in the weak topology (which coincides with the weak�
topology by reflexivity). The hypotheses imply K � BR for some R, and, by
Proposition 4.7,K is a closed subset of BR, in the weak topology.

Exercises

1. Suppose fuj W j 2 ZCg is an orthonormal set in a Hilbert space H . Show that uj ! 0

in the weak� topology as j ! 1.
2. In the setting of Exercise 1, suppose H D L2.X; �/, and the uj also satisfy uniform

bounds: juj .x/j � M . Show that uj ! 0 in the weak� topology of L1.X; �/, as the
dual to L1.X; �/.

3. Deduce that if f 2 L1.S1/, with Fourier coefficients Of .n/ given by (2.24), then
Of .n/ ! 0 as n ! 1.

4. Prove the assertion made in the text that, when V is a separable Banach space, then
the unit ball B in V 0, with the weak� topology, is metrizable. (Hint: To show that
(4.12) defines a topology coinciding with the weak� topology, use the fact that if ' W
X ! Y is continuous and bijective, with X compact and Y Hausdorff, then ' is a
homeomorphism.)

5. On a Hilbert space H , suppose fj ! f weakly. Show that if

(4.18) kf k � lim sup
j!1

kfj k;

then fj ! f in norm. (Hint: Expand .f � fj ; f � fj /:)
6. Extend Exercise 5 as follows. Let V be a uniformly convex Banach space (cf. �1, Ex-

ercise 6). Suppose fj ; f 2 V and fj ! f weakly. Show that if (4.18) holds, then
fj ! f in norm. (Hint. Assume kf k D 1. Take ! 2 V 0 such that k!k D 1 and
hf; !i D 1. Investigate implications of
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�
f C fj

2
; !

	
�! hf; !i; as j ! 1;

in concert with (4.18).)
7. Suppose X is a closed, linear subspace of a reflexive Banach space V . Show that X is

reflexive. (Hint: Use the Hahn–Banach theorem. First show that X 0 
 V 0=X?, where
X? D f! 2 V 0 W !.v/ D 0;8 v 2 Xg. Thus, a bounded linear functional on X 0 gives
rise to a bounded linear functional on V 0, annihilating X?:)

8. Let V be a C-linear space, and let ˛ W V ! R be R-linear. Define ˇ W V ! C by
ˇ.v/ D ˛.v/� i˛.iv/. Show that ˇ is C-linear.

9. Suppose V D H is a Hilbert space, K � H a closed, convex subset, and v … K. As
an alternative to Proposition 4.6, use Proposition 2.1 to produce a closed hyperplane
strongly separating K and v. Apply this to Propositions 4.7 and 4.8, in case V is a
Hilbert space.

5. Linear operators

If V andW are two Banach spaces, or more generally two locally convex spaces,
we denote by L.V;W / the space of continuous, linear transformations from V to
W . As in the derivation of (4.4), it is easy to see that, when V and W are Banach
spaces, a linear map T W V ! W is continuous if and only if there exists a
constant C < 1 such that

(5.1) kT vk � Ckvk

for all v 2 V . Thus we call T a bounded operator. The infimum of all the C ’s for
which this holds is defined to be kT k; equivalently,

(5.2) kT k D sup fkT vk W kvk � 1g:

It is clear that L.V;W / is a linear space. If V and W are Banach spaces and
Tj 2 L.V;W /, then kT1 C T2k � kT1k C kT2k; completeness is also easy to
establish in this case, so L.V;W / is also a Banach space. If X is a third Banach
space and S 2 L.W;X/, it is clear that ST 2 L.V;X/, and

(5.3) kST k � kSk � kT k:

The space L.V / D L.V; V /, with norm (5.2), is a Banach algebra for any
Banach space V . Generally, a Banach algebra is defined to be a Banach space B
with the structure of an algebra, so that, for any S; T 2 B , the inequality (5.3)
holds. Another example of a Banach algebra is the space C.X/, for compact X ,
with norm (1.3), the product being given by the pointwise product of functions.

If V and W are Banach spaces and T 2 L.V;W /, then the adjoint T 0 2
L.W 0; V 0/ is uniquely defined to satisfy

(5.4) hT v;wi D hv; T 0wi; v 2 V; w 2 W 0:
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Using the Hahn–Banach theorem, it is easy to see that

(5.5) kT k D kT 0k;
both norms being the sup of the absolute value of (5.4) over kvk D 1, kwk D 1.
When V and W are reflexive, it is clear that T 00 D T . We remark that (5.4) also
defines T 0 for general locally convex V andW .

In case V and W are Hilbert spaces and T 2 L.V;W /, then we also have an
adjoint T � 2 L.W; V /, given by

(5.6) .T v;w/ D .v; T �w/; v 2 V; w 2 W;
using the inner products on W and V , respectively. As in (5.5) we have kT k D
kT �k. Also it is clear that T �� D T .

When H is a Hilbert space, the Banach algebra L.H/ is a C�-algebra. Gen-
erally, a C�-algebra B is a Banach algebra, equipped with a conjugate linear
involution T 7! T �, satisfying kT �k D kT k and

(5.7) kT �T k D kT k2:
To see that (5.7) holds for T 2 L.H/, note that both sides are equal to the sup of
the absolute value, over kv1k � 1, kv2k � 1, of

(5.8) .T �T v1; v2/ D .T v1; T v2/;

such a supremum necessarily being obtained over the set of pairs satisfying
v1 D v2. Note that C.X/, considered above, is also a C�-algebra. However, for a
general Banach space V , L.V / will not have the structure of a C�-algebra.

We consider some simple examples of bounded linear operators. If .X;�/ is
a measure space, f 2 L1.X;�/, then the multiplication operator Mf , defined
by Mf u D f u, is bounded on Lp.X;�/ for each p 2 Œ1;1�, with kMf k D
kf kL1 . IfX is a compact Hausdorff space and f 2 C.X/, thenMf 2 L.C.X//,
with kMf k D kf ksup. In case X is a compact Riemannian manifold and P is a
differential operator of order k on X , with smooth coefficients, then P does not
give a bounded operator on C.X/, but one has P 2 L.C k.X/; C.X//, and more
generally P 2 L.C kCm.X/; Cm.X//, for m � 0. For related results on Sobolev
spaces, see Chap. 4.

Another class of examples, a little more elaborate than those just mentioned, is
given by integral operators, of the form

(5.9) Ku.x/ D
Z

X

k.x; y/ u.y/ d�.y/;
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where .X;�/ is a measure space. We have the following result:

Proposition 5.1. Suppose k is measurable on X �X and

(5.10)
Z

X

jk.x; y/j d�.x/ � C1;

Z

X

jk.x; y/j d�.y/ � C2;

for all y and for all x, respectively. Then (5.9) defines K as a bounded operator
on Lp.X;�/, for each p 2 Œ1;1�, with

(5.11) kKk � C
1=p
1 C

1=q
2 ;

1

p
C 1

q
D 1:

Proof. For p 2 .1;1/, we estimate

(5.12)
ˇ̌
ˇ
Z

X

Z

X

k.x; y/f .y/g.x/ d�.x/ d�.y/
ˇ̌
ˇ

via the estimate ab � ap=p C bq=q of (1.15), used to prove Hölder’s inequality.
Apply this to jf .y/g.x/j. Then (5.12) is dominated by

(5.13)
C1

p
kf kpLp C C2

q
kgkqLq

provided (5.10) holds. Replacing f; g by tf; t�1g, we see that (5.12) is domi-
nated by .C1tp=p/kf kpLp C .C2=qt

q/kgkqLq ; minimizing over t 2 .0;1/, via
elementary calculus, we see that (5.12) is dominated by

(5.14) C
1=p
1 C

1=q
2 kf kLp kgkLq ;

proving the result. The exceptional cases p D 1 and p D 1 are easily handled.

We call k.x; y/ the integral kernel of K . Note that K 0 is an integral operator,
with kernel k0.x; y/ D k.y; x/. In the case of the Hilbert space L2.X;�/, K� is
an integral operator, with kernel k�.x; y/ D k.y; x/.

Chapter 7 includes a study of a much more subtle class of operators called
singular integral operators, or pseudodifferential operators of order zero; Lp-
estimates for this class are made in Chap. 13.

We next consider some results about linear transformations on Banach spaces
which use the following general result about complete metric spaces, known as
the Baire category theorem.

Proposition 5.2. Let X be a complete metric space, and Xj , j 2 ZC, nowhere-
dense subsets; that is, the closure Xj contains no nonempty open set. ThenS
j Xj ¤ X .
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Proof. The hypothesis on X1 implies there is a closed ball Br1.p1/ � X n X1,
for some p1 2 X , r1 > 0. Then the hypothesis on X2 gives a ball Br2.p2/ �
Br1.p1/ n X2, 0 < r2 � r1=2. Continue, getting balls

(5.15) Brj .pj / � Brj �1
.pj�1/ n Xj ; 0 < rj � 2�jC1r1:

Then .pj / is Cauchy; it must converge to a point p … [j Xj , as p belongs to
each Brj .pj /.

Our first application is to a result called the uniform boundedness principle.

Proposition 5.3. Let V;W be Banach spaces, Tj 2 L.V;W /, j 2 ZC. Assume
that for each v 2 V , fTjvg is bounded in W . Then fkTj kg is bounded.

Proof. Let X D V . Let Xn D fv 2 X W kTj vk � n for all j g. The hypothesis
implies [n Xn D X . Clearly, each Xn is closed. The Baire category theorem
implies that some XN has nonempty interior, so there exists v0; r > 0 such that
kvk � r ) kTj .v0 C v/k � N , for all j . Hence

(5.16) kvk � r ) kTj vk � N C kTj v0k � R 8 j;

using the boundedness of fTj v0g. This implies kTj k � R=r , completing the
proof.

The next result is known as the open mapping theorem.

Proposition 5.4. If V and W are Banach spaces and T 2 L.V;W / is onto, then
any neighborhood of 0 in V is mapped onto a neighborhood of 0 in W .

Proof. Let B1denote the unit ball in V , Xn D T .nB1/ D nT .B1/. The hypoth-
esis implies

S
n�1Xn D W . The Baire category theorem implies that some XN

has nonempty interior, hence contains a ballBr .w0/; symmetry under sign change
implies XN also contains Br .�w0/. Hence X2N D 2XN contains B2r .0/. By
scaling, X1 contains a ball B".0/. Our goal now is to show thatX1 itself contains
a ball. This will follow if we can show that X1 � X2.

So let y 2 X1 D T .B1/. Thus there is an x1 2 B1 such that y � T x1 2
B"=2.0/ � X1=2. For the same reason, there is an x2 2 B1=2 such that .y �
T x1/� T x2 2 B"=4.0/ � X1=4. Continue, getting xn 2 B21�n such that

y �
nX

jD1
T xj 2 B"=2n.0/:

Then x D P1
jD1 xj is in B2 and T x D y. This completes the proof.

Corollary 5.5. If V and W are Banach spaces and T W V ! W is continuous
and bijective, then T �1 W W ! V is continuous.

In such a situation, we say that T is a topological isomorphism.
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The third basic application of the Baire category theorem is called the closed-
graph theorem. For a given linear map T W V ! W , its graph is defined to be

(5.17) GT D f.v; T v/ 2 V ˚W W v 2 V g:

It is easy to see that, whenever V and W are topological vector spaces, then if T
is continuous,GT is closed. The following is a converse.

Proposition 5.6. Let V and W be Banach spaces, T W V ! W a linear map. If
GT is closed in V ˚W , then T is continuous.

Proof. The hypothesis implies that GT is a Banach space, with norm k.v; T v/k
D kvkCkT vk. Now the maps J W GT ! V ,K W GT ! W , given by J.v; T v/ D
v, K.v; T v/ D T v, are clearly continuous, and J is bijective. Hence J�1 is
continuous, and so T D KJ�1 is also continuous.

Propositions 5.3–5.6 have extensions to Fréchet spaces, since they are also
complete metric spaces. For example, let V be a Fréchet space in Proposition 5.3
(keep W a Banach space). In this case, the hypothesis that fTjvg is bounded in
W for each v 2 V implies that there exists a neighborhood O of the origin in V ,
of the form (3.8), such that v 2 O ) kTj vk � 1 for all j , that is, for some finite
sum q of seminorms defining the Fréchet space structure of V ,

(5.18) kTj vk � K q.v/; for all j;

with K independent of j .
Propositions 5.4–5.6 extend directly to the case where V and W are Fréchet

spaces, with only slight extra complications in the proofs.
We now give an important application of the open mapping theorem, to a result

known as the closed-range theorem. IfW is a Banach space andL � W is a linear
subspace, we denote by L? the subspace of W 0 consisting of linear functionals
on W that annihilate L.

Proposition 5.7. If V andW are Banach spaces and T 2 L.V;W /, then

(5.19) Ker T 0 D T .V /?:

If, in addition, T .V / is closed in W , then T 0.W 0/ is closed in V 0 and

(5.20) T 0.W 0/ D .Ker T /?:

Proof. For the first identity, by hT v;wi D hv; T 0wi, it is obvious that T .V /? D
Ker T 0. If T .V / is closed, it follows from Corollary 5.5 that eT W V=Ker T !
T .V / is a topological isomorphism. Thus we have a topological isomorphism

(5.21) eT 0 W T .V /0 �! .V=Ker T /0:



576 A. Outline of Functional Analysis

Meanwhile, there is a natural isomorphism of Banach spaces

(5.22) .V=Ker T /0 
 .Ker T /?;

and, by the Hahn–Banach theorem, there is a natural surjection W 0 ! T .V /0.
(See Exercise 4 below.) Composing these operators yields T 0. Thus we have
(5.20).

In the Hilbert space case, we have the same result for T �.
Since one frequently looks at equations T u D v, it is important to consider

the notion of invertibility. An operator T 2 L.V;W / is invertible if there is an
S 2 L.W; V / such that ST and TS are identity operators. One useful fact is that
all operators close to the identity in L.V / are invertible.

Proposition 5.8. Let V be a Banach space, T 2 L.V /, with kT k < 1. Then I�T
is invertible.

Proof. The power series
P1
nD0 T n converges to .I � T /�1.

When V is a Banach space, we say � 2 C belongs to the resolvent set of
an operator T 2 L.V / (denoted .T /) provided �I � T is invertible; then the
resolvent of T is

(5.23) R� D .�I � T /�1:

It easily follows from the method of proof of Proposition 5.8 that the resolvent set
of any T 2 L.V / is open in C. Furthermore,R� is a holomorphic function of � 2
.T /. In fact, if �0 2 .T /, then we can write ��T D .�0�T /�I � .�0��/R�0

�
,

and hence, for � close to �0,

R� D R�0

1X

nD0
Rn�0

.�0 � �/n:

It is also clear that � belongs to the resolvent set whenever j�j > kT k, since

(5.24) .� � T /�1 D ��1.I � ��1T /�1:

The complement of the resolvent set is called the spectrum of T . Thus, for
any T 2 L.V /, the spectrum of T (denoted �.T /) is a compact set in C. By
(5.24), kR�k ! 0 as j�j ! 1. Since R� is holomorphic on .T /, it follows by
Liouville’s theorem that, for any T 2 L.V /, .T / cannot be all of C, so �.T / is
nonempty.

Using the resolvent as a tool, we now discuss a holomorphic functional cal-
culus for an operator T 2 L.V /, and applications to spectral theory. Let � be a
bounded region in C, with smooth boundary, containing the spectrum �.T / in its
interior. If f is holomorphic on a neighborhood of �, we set
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(5.25) f .T / D 1

2	i

Z

�

f .�/ .� � T /�1 d�;

where � D @�. Note that if T were a complex number in �, this would be
Cauchy’s formula. Here are a couple of very basic facts.

Lemma 5.9. If f .z/ D 1, then f .T / D I , and if f .z/ D z, then f .T / D T .

Proof. Deform � to be a large circle and use (5.24), plus

(5.26) .I � ��1T /�1 D I C
1X

nD1
.��1T /n:

We next derive a multiplicative property of this functional calculus, making
use of the following result, known as the resolvent identity.

Lemma 5.10. If z; � 2 .T /, then

(5.27) Rz �R� D .� � z/RzR� :

Proof. For any � 2 .T /, R� commutes with � � T , hence with T , hence with
any z � T . If, in addition, z 2 .T /, we have both R�Rz.z � T / D R� and
RzR� .z � T / D Rz.z � T /R� D R� , hence

(5.28) RzR� D R�Rz:

Thus
Rz � R� D .� � T /R�Rz � .z � T /RzR�

D .� � z/R�Rz;

proving (5.27).

Now for our multiplicative property:

Proposition 5.11. If f and g are holomorphic on a neighborhood of �, then

(5.29) f .T /g.T / D .fg/.T /:

Proof. Let � D @�, as above, and let �1 be the boundary of a slightly larger
region, on which f and g are holomorphic. Write

g.T / D 1

2	i

Z

�1

g.z/.z � T /�1 d z;

and hence, using (5.25), write f .T /g.T / as a double integral. The product R�Rz

of resolvents of T appears in the new integrand. Using the resolvent identity
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(5.27), we obtain

(5.30) f .T /g.T / D � 1

4	2

Z

�1

Z

�

.� � z/�1f .�/g.z/.Rz �R� / d� d z:

The term involving Rz as a factor has d�-integral equal to zero, by Cauchy’s
theorem. Doing the d z-integral for the other term, using Cauchy’s identity

g.�/ D 1

2	i

Z

�1

.z � �/�1g.z/ d z;

we obtain from (5.30)

(5.31) f .T /g.T / D 1

2	i

Z

�

f .�/g.�/R� d�;

which gives (5.29).

One interesting situation that frequently arises is the following. � can have
several connected components,� D �1[� � �[�M , each�j containing different
pieces of �.T /. Taking a function equal to 1 on�j and 0 on the other components
produces operators

(5.32) Pj D 1

2	i

Z

�j

.� � T /�1 d�; �j D @�j :

By (5.29) we see that

(5.33) P 2j D Pj ; PjPk D 0; for j ¤ k;

soP1; : : : ; PM are mutually disjoint projections. By Lemma 5.9,P1C� � �CPM D
I . It follows easily that if Tj denotes the restriction of T to the range of Pj , then

(5.34) �.Tj / D �.T / \�j :

Exercises

1. Extend the p D 2 case of Proposition 5.1 to the following result of Schur. Let .X; �/
and .Y; �/ be measure spaces, and let k.x; y/ be measurable on .X �Y;���/. Assume
that there are measurable functions p.x/, q.y/, positive a.e. on X and Y , respectively,
such that

(5.35)
Z

X

jk.x; y/jp.x/ d�.x/ � C1q.y/;

Z

Y

jk.x; y/jq.y/ d�.y/ � C2p.x/:
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Show that Ku.x/ D R
Y k.x; y/u.y/ d�.y/ defines a bounded operator

K W L2.Y; �/ �! L2.X; �/; kKk2 � C1C2:

Give an appropriate modification of the hypothesis (5.35) in order to obtain an operator
bound K W Lp.Y; �/ ! Lp.X; �/.

2. Show that k.x; y/ is the integral kernel of a bounded map K W L2.Rn/ ! L2.RnC/
provided it has support in fx1; y1 2 Œ0; 1�g and satisfies the estimate

(5.36) jk.x; y/j � C


jx0 � y0j2 C x21 C y21

��n=2
; x D .x1; x

0/; y D .y1; y
0/:

(Hint: Construct p.x/ and q.y/ so that (5.35) holds. Here, RnC D fx 2 Rn W x1 � 0g:)
3. Show that k.x; y/ is the integral kernel of a bounded map K W Lp.RnC/ ! Lp.RnC/,

for 1 � p � 1, provided it has support in fx1; y1 2 Œ0; 1�g and satisfies the estimates

jk.x; y/j � Cx1



jx1 C y1j C jx0 � y0j

��.nC1/

and

jk.x; y/j � Cy1



jx1 C y1j C jx0 � y0j

��.nC1/
:

4. Let K be a closed, linear subspace of a Banach space V ; consider the natural maps
j W K ,! V and 	 W V ! V=K. Show that j 0 W V 0 ! K0 is surjective and that
	 0 W .V=K/0 ! V 0 has range K?.

5. Show that the set of invertible, bounded, linear maps on a Banach space V is open in
L.V /. (Hint: If T �1 exists, write T CR D T .I C T �1R/:)

6. Let X be a compact metric space and F W X ! X a continuous map. Define T W
C.X/ ! C.X/ by T u.x/ D u.F .x//. Show that T 0 W M.X/ ! M.X/ is given by
.T 0�/.E/ D �.F�1.E//, for any Borel set E � X . Using Exercise 3 of �3, show that
there is a probability measure � on X such that T 0� D �.

6. Compact operators

Throughout this section we will restrict attention to operators on Banach spaces.
An operator T 2 L.V;W / is said to be compact provided T takes any bounded
subset of V to a relatively compact subset ofW , that is, a set with compact closure.
It suffices to assume that T .B1/ is relatively compact in W , where B1 is the
closed unit ball in V . We denote the space of compact operators by K.V;W /. The
following proposition summarizes some elementary facts about K.V;W /.

Proposition 6.1. K.V;W / is a closed, linear subspace of L.V;W /. Any T in
L.V;W /with finite-dimensional range is compact. Furthermore, if T 2 K.V;W /,
S1 2 L.V1; V /, and S2 2 L.W;W2/, then S2TS1 2 K.V1;W2/.

Most of these assertions are obvious. We show that if Tj 2 K.V;W / is norm
convergent to T , then T is compact. Given any sequence .xn/ in B1, one can pick
successive subsequences on which T1xn converges, then T2xn converges, and so
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on, and by a diagonal argument produce a single subsequence (which we’ll still
denote .xn/) such that for each j , Tjxn converges as n ! 1. It is then easy to
show that T xn converges, giving compactness of T .

A particular case of Proposition 6.1 is that K.V / D K.V; V / is a closed, two-
sided ideal of L.V /.

The following gives a useful class of compact operators.

Proposition 6.2. If X is a compact metric space, then the natural inclusion

(6.1) � W Lip.X/ �! C.X/

is compact.

Proof. It is easy to show that any compact metric space has a countable, dense
subset; let fxj W j D 1; 2; 3; : : : g be dense in X . Say .fn/ is a bounded se-
quence in Lip.X/. We want to prove that a subsequence converges in C.X/. Since
bounded subsets of C are relatively compact, we can pick a subsequence of .fn/
converging at x1; then we can pick a further subsequence of this subsequence,
converging at x2, and so forth. The standard diagonal argument then produces a
subsequence (which we continue to denote .fn/) converging at each xj . We claim
that .fn/ converges uniformly on X , as a consequence of the uniform estimate

(6.2) jfn.x/ � fn.y/j � K d.x; y/;

with K independent of n. Indeed, pick " > 0. Then pick ı > 0 such that
Kı < "=3. Since X is compact, we can select from fxj g finitely many points,
say fx1; : : : ; xN g, such that any x 2 X is of distance � ı from one of these. Then
pick M so large that fn.xj / is within "=3 of its limit for 1 � j � N , for all
n � M . Now, for any x 2 X , picking ` 2 f1; : : : ; N g such that d.x; x`/ � ı, we
have, for k � 0, n � M ,

(6.3)

jfnCk.x/ � fn.x/j � jfnCk.x/� fnCk.x`/j
C jfnCk.x`/� fn.x`/j C jfn.x`/ � fn.x/j

� KıC "

3
CKı < ";

proving the proposition.

The argument given above is easily modified to show that � W Lip˛.X/ !
C.X/ is compact, for any ˛ > 0. Indeed, there is the following more general
result. Let ! W X � X ! Œ0;1/ be any continuous function, vanishing on the
diagonal � D f.x; x/ W x 2 Xg. Fix K 2 RC. Let F be any subset of C.X/
satisfying

(6.4) ju.x/j � K; ju.x/ � u.y/j � K !.x; y/:
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The latter condition is called equicontinuity. Ascoli’s theorem states that such a
set F is relatively compact in C.X/ whenever X is a compact Hausdorff space.
The proof is a further extension of the argument given above.

We note another refinement of Proposition 6.2, namely that the inclusion
� W Lip˛.X/ ! Lipˇ .X/ is compact whenever 0 � ˇ < ˛ � 1, X a compact
metric space. Compare results on inclusions of Sobolev spaces given in Chap. 4.

We next look at persistence of compactness upon taking adjoints.

Proposition 6.3. If T 2 K.V;W /, then T 0 is also compact.

Proof. Let .!n/ be sequence in B 0
1, the closed unit ball in W 0. Consider .!n/

as a sequence of continuous functions on the compact space X D T .B1/, B1
being the unit ball in V . Ascoli’s theorem, indeed its special case, Proposition
6.2, applies; there exists a subsequence .!nk

/ converging uniformly on X . Thus
.T 0!nk

/ is a sequence in V 0 converging uniformly on B1, hence in the V 0-norm.
This completes the proof.

The following provides a useful improvement over the a priori statement that,
for T 2 K.V;W /, the image T .B1/ of the closed unit ball B1 � V is relatively
compact in W .

Proposition 6.4. Assume V is separable and reflexive. If T W V ! W is compact,
then the image of the closed unit ball B1 � V under T is compact.

Proof. From Proposition 4.4 and the remark following its proof, B1, with the
weak�-topology (the �.V; V 0/-topology, since V D V 00), is a compact metric
space, granted that V 0 is also separable, which we now demonstrate. Indeed, for
any Banach space Y , it is a simple consequence of the Hahn–Banach theorem that
Y is separable provided Y 0 is separable; if Y is reflexive, this implication can be
reversed.

Consequently, given a sequence vn 2 B1, possessing a subsequence v.1/n such
that T v.1/n converges in W , say to w, you can pass to a further subsequence v.2/n ,
which is weak�-convergent in V , with limit v 2 B1. It follows that T v.2/n is
weakly convergent to T v; for any ! 2 W 0, T v.2/n .!/ D v

.2/
n .T 0!/ ! v.T 0!/ D

.T v/.!/. Hence T v D w. This shows that T .B1/ is closed in W , and hence
completes the proof.

Remark: It is possible to drop the assumption that V is separable, via an argument
replacing sequences by nets in order to construct the weak� limit point v.

We next derive some results on the spectral theory of a compact operator A on
a Hilbert space H that is self-adjoint, so A D A�. For simplicity, we will assume
that H is separable, though that hypothesis can easily be dropped.
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Proposition 6.5. If A 2 L.H/ is compact and self-adjoint, then either kAk or
�kAk is an eigenvalue of A, that is, there exists u ¤ 0 in H such that

(6.5) Au D �u;

with � D ˙kAk.

Proof. By Proposition 6.4, we know that the image under A of the closed unit
ball in H is compact, so the norm assumes a maximum on this image. Thus there
exists u 2 H such that

(6.6) kuk D 1; kAuk D kAk:

Pick any unit w ? u. Self-adjointness implies kAxk2 D .A2x; x/, so we have,
for all real s,

(6.7)
�
A2.u C sw/; u C sw

� � kAk2.1C s2/;

equality holding at s D 0. Since the left side is equal to

kAk2 C 2s Re .A2u; w/C s2kAwk2;

this inequality for s ! 0 implies Re.A2u; w/ D 0; replacing w by iw gives
.A2u; w/ D 0 whenever w ? u. Thus A2u is parallel to u, that is, A2u D cu
for some scalar c; (6.6) implies c D kAk2. Now, assuming A ¤ 0, set v D
kAku C Au. If v D 0, then u satisfies (6.5) with � D �kAk. If v ¤ 0, then v is
an eigenvector of A with eigenvalue � D kAk.

The space of u 2 H satisfying (6.5) is called the �-eigenspace of A. Clearly,
if A is compact and � ¤ 0, such a �-eigenspace must be finite-dimensional. If
Auj D �j uj , A D A�, then

(6.8) �1.u1; u2/ D .Au1; u2/ D .u1; Au2/ D �2.u1; u2/:

With �1 D �2 and u1 D u2, this implies that each eigenvalue of A D A� is
real. With �1 ¤ �2, it then yields .u1; u2/ D 0, so any distinct eigenspaces
of A D A� are orthogonal. We also note that if Au1 D �1u1 and v ? u1, then
.u1; Av/ D .Au1; v/ D �1.u1; v/ D 0, soA D A� leaves invariant the orthogonal
complement of any of its eigenspaces.

Now if A is compact and self-adjoint on H , we can apply Proposition 6.5,
restrict A to the orthogonal complement of its ˙kAk-eigenspaces (where its
norm must be strictly smaller, as a consequence of Proposition 6.5), apply the
proposition again, to this restriction, and continue. In this fashion we arrive at
the following result, known as the spectral theorem for compact, self-adjoint
operators.
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Proposition 6.6. If A 2 L.H/ is a compact, self-adjoint operator on a Hilbert
space H , thenH has an orthonormal basis uj of eigenvectors of A. With Auj D
�j uj , .�j / is a sequence of real numbers with only 0 as an accumulation point.

The spectral theorem has a more elaborate formulation for general self-adjoint
operators. It is proved in Chap. 8.

We next give a result that will be useful in the study of spectral theory of
compact operators that are not self-adjoint. It will also be useful in �7. Let V;W
and Y be Banach spaces.

Proposition 6.7. Let T 2 L.V;W /. SupposeK 2 K.V; Y / and

(6.9) kukV � CkT ukW C CkKukY ;

for all u 2 V . Then T has closed range.

Proof. Let T un ! f in W . We need v 2 V with T v D f . Let L D Ker T . We
divide the argument into two cases.

If dist.un; L/ � a < 1, take vn D un mod L, kvnk � 2a; then T vn D
T un ! f . Passing to a subsequence, we have Kvn ! g in Y . Then (6.9),
applied to u D vn � vm, implies that .vn/ is Cauchy, so vn ! v and T v D f .

If dist.un; L/ ! 1, we can assume that dist.un; L/ � 2 for all n. Pick vn D
un modL such that dist.un; L/ � kvnk � dist.un; L/C1, and setwn D vn=kvnk.
Note that dist.wn; L/ � 1=2. Since kwnk D 1, we can take a subsequence and
assumeKwn ! g in Y . Since Twn ! 0, (6.9) applied to wn �wm implies .wn/
is Cauchy. Thus wn ! w in V , and we see that simultaneously dist.w;L/ �
1=2 and Tw D 0, a contradiction. Hence this latter case is impossible, and the
proposition is proved.

Note that Proposition 6.7 applies to the case V D W D Y and T D �I�K , for
K 2 K.V / and � a nonzero scalar. Such an operator therefore has closed range.
The next result is called the Fredholm alternative.

Proposition 6.8. For � ¤ 0, K 2 K.V /, the operator T D �I �K is surjective
if and only if it is injective.

Proof. Assume T is injective. Then T W V ! R.T / is bijective. By Propo-
sition 6.7, R.T / is a Banach space, so the open mapping theorem implies that
T W V ! R.T / is a topological isomorphism. If R.T / D V1 is not all of
V , then V2 D T .V1/, V3 D T .V2/, and so on, form a strictly decreasing fam-
ily of closed subspaces. By Lemma 1.3, we can pick vv 2 Vn with kvnk D 1,
dist.vn; VnC1/ � 1=2. Thus, for n > m,

(6.10)
Kvm �Kvn D �vm C Œ��vn � .T vm � T vn/�

D �vm C wmn;
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with wmn 2 VmC1. Hence kKvn �Kvmk � j�j=2, contradicting compactness of
K . Consequently, T is surjective if it is injective.

For the converse, we use Proposition 5.7. If T is surjective, (5.19) implies
T 0 D �I�K 0 is injective on V 0. SinceK 0 is compact, the argument above implies
T 0 is surjective, and hence, by (5.20), T is injective.

A substantial generalization of this last result will be contained in Proposition
7.4 and Corollary 7.5.

It follows that every � ¤ 0 in the spectrum of a compactK is an eigenvalue of
K . We hence derive the following result on �.K/.

Proposition 6.9. IfK 2 K.V /, the spectrum �.K/ has only 0 as an accumulation
point.

Proof. Suppose we have linearly independent vn 2 V , kvnk D 1, with Kvn D
�nvn, �n ! � ¤ 0. Let Vn be the linear span of fv1; : : : ; vng. By Lemma 1.3,
there exist yn 2 Vn, kynk D 1, such that dist.yn; Vn�1/ � 1=2. With T� D
�I �K , we have, for n > m,

(6.11)
��1
n Kyn � ��1

m Kym D yn C ��ym C ��1
n T�n

yn C ��1
m T�m

ym
�

D yn C znm;

where znm 2 Vn�1 since T�n
yn 2 Vn�1. Hence k��1

n Kyn � ��1
m Kymk � 1=2,

which contradicts compactness of K .

Note that if �j ¤ 0 is such an isolated point in the spectrum �.K/ of a compact
operator K , and we take �j to be a small circle enclosing �j but no other points
of �.K/, then, as in (5.32), the operator

Pj D 1

2	i

Z

�j

.� �K/�1 d�

is a projection onto a closed subspace Vj of V with the property that the restriction
ofK to Vj (equal to PjKPj ) has spectrum consisting of the one point f�j g. Thus
Vj must be finite-dimensional. KjVj

may perhaps not be scalar; it might have a
Jordan normal form with �j down the diagonal and some ones directly above the
diagonal.

Having established a number of general facts about compact operators, we take
a look at an important class of compact operators on Hilbert spaces: the Hilbert–
Schmidt operators, defined as follows. Let H be a separable Hilbert space and
A 2 L.H/. Let fuj g be an orthonormal basis of H . We say A is a Hilbert–
Schmidt operator, or an HS operator for short, provided

(6.12)
X

j

kAuj k2 < 1;
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or equivalently, if

(6.13)
X

j;k

jajk j2 < 1; ajk D .Auk; uj /:

The class of HS operators onH will be denoted HS.H/. The first characterization
makes it clear that if A is HS andB is bounded, thenBA is HS. The second makes
it clear that A� is HS if A is; hence AB D .B�A�/� is HS if A is HS and B is
bounded. Thus (6.12) is independent of the choice of orthonormal basis fuj g. We
also define the Hilbert–Schmidt norm of an HS operator:

(6.14) kAk2HS D
X

j

kAuj k2 D
X

j;k

jajk j2:

The first identity makes it clear that kBAkHS � kBk � kAkHS if A is HS and B is
bounded, and in particular

kUAkHS D kAkHS

when U is unitary. The second identity in (6.14) shows that

kA�kHS D kAkHS:

Using AU D .U �A�/�, we deduce that

kAU kHS D kAkHS

when U is unitary. Thus, for U unitary, kUAU�1kHS D kAkHS, so the HS-norm
in (6.14) is independent of the choice of orthonormal basis forH .

From (6.12) it follows that an HS operator A is a norm limit of finite-rank
operators, hence compact. If A D A�, and we choose an orthonormal basis of
eigenvectors of A, with eigenvalues �j , then

(6.15)
X

j

j�j j2 D kAk2HS:

A compact, self-adjoint operator A is HS if and only if the left side of (6.15) is
finite.

If A W H1 ! H2 is a bounded operator, we can say it is HS provided AV is
HS for some unitary map V W H2 ! H1, with obvious adjustments when either
H1 or H2 is finite-dimensional.

The following classical result might be called the Hilbert–Schmidt kernel the-
orem. In Chap. 4 it is used as an ingredient in the proof of the celebrated Schwartz
kernel theorem.

Proposition 6.10. If T W L2.X1; �1/ ! L2.X2; �2/ is HS, then there exists a
functionK 2 L2.X1 �X2; �1 � �2/ such that

(6.16) .T u; v/L2 D
“

K.x1; x2/u.x1/v.x2/ d�1.x1/ d�2.x2/:
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Proof. Pick orthonormal bases ffj g for L2.X1/ and fgkg for L2.X2/, and set

K.x1; x2/ D
X

j;k

ajkfj .x1/gk.x2/;

where ajk D .Tfj ; gk/. The hypothesis that T is HS is precisely what is neces-
sary to guarantee that K 2 L2.X1 � X2/, and then (6.16) is obvious. It is also
clear that

(6.17) kT k2HS D kKk2
L2 :

Also of interest is the converse, proved simply by reversing the argument:

Proposition 6.11. If K 2 L2.X1 � X2; �1 � �2/, then (6.16) defines an HS
operator T , satisfying (6.17).

We note that the HS-square norm polarizes to a Hilbert space inner product on
HS.H/:

(6.18) .A;B/HS D
X

j;k

ajkbjk

if, parallel to (6.13), bjk D .Buk; uj /, given an orthonormal basis fuj g. Since the
norm uniquely determines the inner product, we have without further calculation
the independence of .A;B/HS under change of orthonormal basis; more generally,
.A;B/HS D .UAV;UBV /HS for unitary U and V on H .

Note that
P
k ajkb`k D cj` form the matrix coefficients of C D AB�, and

(6.18) is the sum of the diagonal elements of C ; we write

(6.19) .A;B/HS D Tr AB�:

Generally, we say an operator C 2 L.H/ is trace class if it can be written as
a product of two HS operators; call them A and B�, and then Tr C is defined
to be given by (6.19). It is not clear at first glance that TR, the set of trace class
operators, is a linear space, but this can be seen as follows. If Cj D AjB

�
j , then

(6.20) C1 C C2 D �
A1 A2

� �B�
1

B�
2


:

Note that a given C 2 TR may be written as a product of two HS operators in
many different ways, but the computation of Tr C is unaffected, since as we have
already seen, the definition (6.19) leads to the computation

(6.21) Tr C D
X

j

cjj ; cjj D .Cuj ; uj /:
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This formula shows that Tr:TR ! C is a linear map. Furthermore, by our previous
remarks on . ; /HS, the trace formula (6.21) is independent of the choice of or-
thonormal basis of H .

There is an intrinsic characterization of trace class operators:

Proposition 6.12. An operator C 2 L.H/ is trace class if and only if C is com-
pact and the operator .C �C/1=2 has the property that its set of eigenvalues f�j g
is summable;

P
�j < 1.

Proof. Given C compact, let fuj g be an orthonormal basis of H consisting of
eigenvectors of C �C , which is compact and self-adjoint. Say C �Cuj D �2j uj ,

�j � 0. Then the identity .C �C/1=2uj D �j uj defines .C �C/1=2.
Note that, for all v 2 H ,

(6.22) k.C �C/1=2vk2 D .C �Cv; v/ D kCvk2:

ThusCv 7! .C �C/1=2v extends to an isometric isomorphism between the ranges
of C and of .C �C/1=2, yielding in turn operators V andW of norm 1 such that

(6.23) C D V.C �C/1=2; .C �C/1=2 D WC:

Now, if
P
�j < 1, define A 2 L.H/ by Auj D �

1=2
j uj . Hence A is Hilbert–

Schmidt, and C D VA � A, so C is trace class. Conversely, if C D AB� with
A;B 2 HS, then .C �C/1=2 D WA � B� is a product of HS operators, hence of
trace class. The computation (6.21), using the basis of eigenvectors of C �C , then
yields

P
�j D Tr.C �C/1=2 < 1, and the proof is complete.

It is desirable to establish some results about TR as a linear space. Given C 2
TR, we define

(6.24) kCkTR D inf fkAkHSkBkHS W C D AB�g:

This is a norm; in particular,

(6.25) kC1 C C2kTR � kC1kTR C kC2kTR:

This can be seen by using (6.20), with A2 replaced by tA2 and B�
2 by t�1B�

2 , and
minimizing over t 2 .0;1/ the quantity

k.A1; tA2/k2HS � k.B1; t�1B2/tk2HS

D �kA1k2HS C t2kA2k2HS

� � �kB1k2HS C t�2kB2k2HS

�
:

Next, we note that (6.24) easily yields

(6.26) kC �kTR D kCkTR
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and, for bounded Sj ,

(6.27) kS1CS2kTR � kS1k � kCkTR � kS2k;

with equality if S1 and S2 are unitary. Also, using (6.23), we have

(6.28) kCkTR D k.C �C/1=2kTR:

Using (6.24) with C replaced by D D .C �C/1=2, the choice A D B D D1=2

yields

(6.29) k.C �C/1=2kTR � k.C �C/1=4k2HS D Tr .C �C/1=2:

On the other hand, we have, by (6.19) and Cauchy’s inequality,

(6.30) jTr.AB�/j � kAkHSkBkHS;

and hence, for C 2 TR,

(6.31) jTr C j � kCkTR:

If we apply this, with C replaced by .C �C/1=2, and compare with (6.28)–(6.29),
we have

(6.32) kCkTR D Tr .C �C/1=2:

Either directly or as a simple consequence of this, we have

(6.33) kCkTR � kCkHS � kCk:

We can now establish:

Proposition 6.13. Given a Hilbert spaceH , the space TR of trace class operators
on H is a Banach space, with norm (6.24).

Proof. It suffices to prove completeness. Thus let .Cj / be Cauchy in TR. Passing
to a subsequence, we can assume kCjC1�CjkTR � 8�j . Then write C D PeC j ,
where eC 1 D C1 and, for j � 2, eC j D Cj � Cj�1. By (6.33), C is a bounded
operator on H . Write

eC j D eAjeB�
j ; keAkHS; keBkHS � 2�j :

Then we can form

A D eA1 ˚eA2 ˚ � � � ; B D eB1 ˚ eB2 ˚ � � � 2 L.H;H/;
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where H D H ˚H ˚� � � , check that A and B are Hilbert–Schmidt, and note that
C D AB�. Hence C 2 TR and Cj ! C in TR-norm.

The classes HS and TR are the most important cases of a continuum of ideals
Ip � L.H/, 1 � p < 1. One says C 2 K.H/ belongs to Ip if and only if
.C �C/p=2 is trace class. Then TR D I1 and HS D I2. For more on this topic,
see [Si].

We next discuss the trace of an integral operator. Let A and B be two HS
operators on L2.X;�/, with integral kernelsKA; KB 2 L2.X �X;���/. Then
C D AB is given by

(6.34) Cu.x/ D
“

KA.x; z/KB .z; y/u.y/ d�.y/ d�.z/;

and we have, by (6.17) and (6.19),

(6.35) Tr C D
“

KA.x; z/KB .z; x/ d�.z/ d�.x/:

Now C has an integral kernelKC 2 L2.X �X;� � �/:

(6.36) KC .x; y/ D
Z
KA.x; z/KB .z; y/ d�.z/;

which strongly suggests the trace formula

(6.37) Tr C D
Z
KC .x; x/ d�.x/:

The only sticky point is that the diagonal f.x; x/ W x 2 Xg may have measure 0
in X �X , so one needs to defineKC .x; y/ carefully. The formula (6.35) implies,
via Fubini’s theorem, that

KC .x; x/ D
Z
KA.x; z/KB .z; x/ d�.z/

exists for�-almost every x 2 X , and for this function, the identity (6.37) holds. In
many cases of interest, X is a locally compact space and KC .x; y/ is continuous,
and then passing from (6.35) to (6.37) is straightforward.

We next give a treatment of the determinant of I C A, for trace class A. This
is particularly useful for results on trace formulas and the scattering phase, in
Chap. 9. Our treatment largely follows [Si]; another approach can be found in
Chap. 11 of [DS].

With ƒjC the operator induced by C on ƒjH , we define

(6.38) det .I C C/ D 1C
X

j�1
Tr ƒjC:
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It is not hard to show that if Cj D ƒjC and Dj D .C �
j Cj /

1=2, then Dj D
ƒj .C �C/1=2, so

(6.39) kCj kTR D Tr Dj D
X

i1<���<ij
�i1 � � ��ij ;

where �i ; i � 1, are the positive eigenvalues of the compact, positive operator
.C �C/1=2, counted with multiplicity. In particular,

(6.40) kCj kTR � 1

j Š
kCkjTR;

so (6.38) is absolutely convergent for any C 2 TR. Note that in the finite-
dimensional case, (6.38) is simply the well-known expansion of the characteristic
polynomial. Replacing C by zC , z 2 C, we obtain an entire holomorphic function
of z:

(6.41) det .I C zC/ D 1C
X

j�1
zj Tr ƒjC:

This replacement causes Dj to be replaced by jzjjDj , and (6.39) implies

(6.42) jdet .I C zC/j � det .I C jzjD/ D
Y

i�1
.1C �i jzj/;

the latter identity following by diagonalization of the compact, self-adjoint oper-
ator D. Note that since 1C r � er , for r � 0,

(6.43)
Y

i�`
.1C �i jzj/ � e�`jzj; �` D

X

i�`
�i :

Taking ` D 1, we have

(6.44) jdet .I C zC/j � ejzjkCkTR :

Also,

(6.45) jdet .I C zC/j �
n`�1Y

iD1
.1C �i jzj/

o
e�`jzj; 8 `:

Hence, for any C 2 TR,

(6.46) jdet .I C zC/j � C"e
"jzj; 8 " > 0:
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We next establish the continuous dependence of the determinant.

Proposition 6.14. We have a continuous map F :TR ! C, given by

F.A/ D det .I C A/:

Proof. For fixed C;D 2 TR, g.z/ D F.C C zD/ is holomorphic, as one sees
from (6.40) and (6.41). Now consider

(6.47) h.z/ D F

�
1

2
.ACB/C z.A� B/


:

Then

(6.48)
jF.A/ � F.B/j D

ˇ̌
ˇh

1
2

�
� h



�1
2

�ˇ̌
ˇ � sup

�
jh0.t/j W �1

2
� t � 1

2

�

� R�1 sup
jzj�RC1=2

jh.z/j:

In turn, we can estimate jh.z/j using (6.45). If we take R D kA � Bk�1
TR , we get

(6.49) jF.A/ � F.B/j � kA � BkTR exp
˚kAkTR C kBkTR C 1

�
;

which proves the proposition.

One use of Proposition 6.14 is as a tool to prove the following.

Proposition 6.15. For any A;B 2 TR,

(6.50) det
�
.I C A/.I C B/

� D det .I C A/ � det .I C B/:

Proof. By Proposition 6.14, it suffices to prove (6.50) when A and B are finite
rank operators, in which case it is elementary.

The following is an important consequence of (6.50).

Proposition 6.16. Given A 2 TR, we have

(6.51) I C A invertible ” det .I C A/ ¤ 0:

Proof. If I C A is invertible, the inverse has the form

(6.52) .I C A/�1 D I CB; B D �A.I C A/�1 2 TR:

Hence (6.50) implies det.I C A/ det.I C B/ D 1, so det.I C A/ ¤ 0.
For the converse, assume I C A is not invertible, so �1 2 Spec .A/. Since A

is compact, we can consider the associated spectral projection P of H onto the
generalized .�1/-eigenspace of A. Since .PA/.I � P/A D 0, we have
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(6.53) det .I CA/ D det .I C AP/ � det .I C A.I � P//:

It is elementary that det.I C AP/ D 0, so the proposition is proved.

As another application of (6.50), we can use the identity

(6.54) I C AC sB D .I C A/
�
I C s.I C A/�1B

�

to show that

(6.55)
d

ds
det

�
I C A.s/

� D det
�
I C A.s/

� � Tr
�
.I C A.s//�1A0.s/

�
;

when A.s/ is a differentiable function of s with values in TR.

Exercises

1. If A is a Hilbert–Schmidt operator, show that

kAk � kAkHS;

where the left side denotes the operator norm. (Hint: Pick unit u1 such that kAu1k �
kAk � ", and make that part of an orthonormal basis.)

2. Suppose K 2 L2.X �X;� � �/ satisfies K.x; y/ D K.y; x/. Show that

K.x; y/ D
X

cj uj .x/ uj .y/

with fuj g an orthonormal set in L2.X; �/, cj 2 R, and
P
c2j < 1.

(Hint: Apply the spectral theorem for compact, self-adjoint operators.)
3. Define T W L2.I / ! L2.I /, I D Œ0; 1�, by

Tf .x/ D
Z x

0
f .y/ dy:

Show that T has range R.T / � fu 2 C.I / W u.0/ D 0g. Show that T is compact, that
T has no eigenvectors, and that �.T / D f0g. Also, show that T is HS, but not trace
class.

4. Let K be a closed bounded subset of a Banach space B . Suppose Tj are compact
operators on B and Tj x ! x for each x 2 B . Show that K is compact if and only if
Tj ! I uniformly on K.

5. Prove the following result, also known as part of Ascoli’s theorem. If X is a compact
metric space, Bj are Banach spaces, and K W B1 ! B2 is a compact operator, then
�f .x/D K.f .x// defines a compact map � W C ˛.X; B1/ ! C.X;B2/, for any ˛ > 0.

6. Let B be a bounded operator on a Hilbert space H , and let A be trace class. Show that

Tr.AB/ D Tr.BA/:

(Hint: Write A D A1A2 with Aj 2 HS.)
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7. Given a Hilbert spaceH , defineƒjH as a Hilbert space and justify (6.39). Also, check
the finite rank case of (6.50).

8. Assume fuj W j � 1g is an orthonormal basis of the Hilbert space H , and let Pn denote
the orthogonal projection of H onto the span of fu1; : : : ; ung. Show that if A 2 TR,
then PnAPn ! A in TR-norm. (This is used implicitly in the proof of Proposition
6.15.)

7. Fredholm operators

Again in this section we restrict attention to operators on Banach spaces. An
operator T 2 L.V;W / is said to be Fredholm provided

(7.1) Ker T is finite-dimensional

and

(7.2) T .V / is closed in W; of finite codimension;

that is, W=T .V / is finite-dimensional. We say T belongs to Fred.V;W /. We
define the index of T to be

(7.3) Ind T D dim Ker T � dim W=T .V /;

the last term also denoted Codim T .V /. Note the isomorphism
�
W=T .V /

�0 

T .V /?. By (5.19), T .V /? D Ker T 0. Consequently,

(7.4) Ind T D dim Ker T � dim Ker T 0:

Furthermore, using Proposition 5.7, and noting that

.Ker T /0 
 V 0=.Ker T /? D V 0=T 0.W 0/;

we deduce that if T is Fredholm, T 0 2 L.W 0; V 0/ is also Fredholm, and

(7.5) Ind T 0 D � Ind T:

The following is a useful characterization of Fredholm operators.

Proposition 7.1. Let T 2 L.V;W /. Then T is Fredholm if and only if there exist
Sj 2 L.W; V / such that

(7.6) S1T D I CK1

and

(7.7) TS2 D I CK2;

with K1 and K2 compact.
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Proof. The identity (7.6) implies Ker T � Ker.I C K1/, which is finite-
dimensional. Also, by Proposition 6.7, (7.6) implies T has closed range. On
the other hand, (7.7) implies T .V / contains the range of I CK2, which has finite
codimension in light of the spectral theory of K2 derived in the last section. The
converse result, that T 2 Fred.V;W / has such “Fredholm inverses” Sj , is easy.

Note that, by virtue of the identity

(7.8) S1.I CK2/ D S1TS2 D .I CK1/S2;

we see that whenever (7.6) and (7.7) hold, S1 and S2 must differ by a compact
operator. Thus we could take S1 D S2.

The following result is an immediate consequence of the characterization of
the space Fred.V;W / by (7.6)–(7.7).

Corollary 7.2. If T 2 Fred.V;W / and K W V ! W is compact, then T CK 2
Fred.V;W /. If also T2 2 Fred.W;X/, then T2T 2 Fred.V;X/.

Proposition 7.1 also makes it natural to consider the quotient space Q.V / D
L.V /=K.V /. Recall that K.V / is a closed, two-sided ideal of L.V /. Thus the
quotient is a Banach space, and in fact a Banach algebra. It is called the Calkin
algebra. One has the natural algebra homomorphism 	 W L.V / ! Q.V /, and
a consequence of Proposition 7.1 is that T 2 L.V / is Fredholm if and only if
	.T / is invertible in Q.V /. For general T 2 Fred.V;W /, the operators S1T and
TS2 in (7.6) and (7.7) project to the identity in Q.V / and Q.W /, respectively.
Now the argument made in �5 that the set of invertible elements of L.V / is open,
via Proposition 5.8, applies equally well when L.V / is replaced by any Banach
algebra with unit. Applying it to the Calkin algebra, we have the following:

Proposition 7.3. Fred.V;W / is open in L.V;W /.

We now establish a fundamental result about the index of Fredholm operators.

Proposition 7.4. The index map

(7.9) Ind W Fred.V;W / �! Z

defined by (7.3) is constant on each connected component of Fred.V;W /.

Proof. Let T 2 Fred.V;W /. It suffices to show that if S 2L.V;W / and if
kT � Sk is small enough, then Ind S D Ind T . We can pick a closed subspace
V1 � V , complementary to Ker T and a (finite-dimensional) W0 � W , comple-
mentary to T .V /, so that

(7.10) V D V1 ˚ Ker T; W D T .V /˚W0:
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Given S 2 L.V;W /, define

(7.11) �S W V1 ˚W0 ! W; �S .v; w/ D Sv C w:

The map �T is an isomorphism of Banach spaces. Thus kT �Sk small implies �S
is an isomorphism of V1 ˚ W0 onto W . We restrict attention to such S , lying in
the same component of Fred.V;W / as T .

Note that �S .V1/ is closed in W , of codimension equal to dim W0; now
�S .V1/ D S.V1/, so we have the semicontinuity property

(7.12) Codim S.V / � Codim T .V /:

We also see that Ker S \ V1 D 0. Thus we can write

V D Ker S ˚Z ˚ V1;

for a finite-dimensional Z � V: S is injective on Z ˚ V1, taking it to S.V / D
S.Z/˚ S.V1/, closed in W , of finite codimension. It follows that

(7.13) Codim S.V / D Codim T .V /� dim S.Z/;

while

(7.14) dim Ker S C dim Z D dim Ker T:

Since S.Z/ and Z have the same dimension, this gives the desired identity,
namely Ind S D Ind T .

Corollary 7.5. If T 2 Fred.V;W / and K 2 K.V;W /, then T C K and T have
the same index.

Proof. For s 2 Œ0; 1�, T C sK 2 Fred.V;W /.

The next result rounds out a useful collection of tools in the study of index
theory.

Proposition 7.6. If T 2 Fred.V;W / and S 2 Fred.W;X/, then

(7.15) Ind ST D Ind S C Ind T:

Proof. Consider the following family of operators in L.V ˚W;W ˚X/:

(7.16)

�
I 0

0 S

�
cos t sin t

� sin t cos t

�
T 0

0 I


;
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the middle factor belonging to L.W ˚W /. For each t 2 R, this is Fredholm. For
t D 0, it is �

T 0

0 S


;

of index Ind TC Ind S , while for t D �	=2, it is

�
0 �I
ST 0


;

of index Ind ST . The identity of these two quantities now follows from
Proposition 7.4.

Exercises

Exercises 1–4 may be compared to Exercises 3–7 in Chap. 4, �3. Let H denote the
subspace of L2.S1/ that is the range of the projection P :

Pf .
/ D
1X

nD0
Of .n/ein� :

Given ' 2 C.S1/, define the “Toeplitz operator” T' W H ! H by T'u D P.'u/.
Clearly, kT'k � k'ksup.

1. By explicit calculation, for '.
/ D Ek.
/ D eik� , show that

TEk
TE`

� TEkE`
is compact on H:

2. Show that, for any ';  2 C.S1/, T'T � T' is compact on H . (Hint: Approximate
' and  by linear combinations of exponentials.)

3. Show that if ' 2 C.S1/ is nowhere vanishing, then T' W H ! H is Fredholm.
(Hint: Show that a Fredholm inverse is given by T ,  .
/ D '.
/�1:)

4. A nowhere-vanishing ' 2 C.S1/ is said to have degree k 2 Z if ' is homotopic to
Ek.
/ D eik� , through continuous maps of S1 to C n 0. Show that this implies

Index T' D Index TEk
:

Compute this index by explicitly describing Ker TEk
and Ker T �

Ek
. Show that the cal-

culation can be reduced to the case k D 1.

8. Unbounded operators

Here we consider unbounded linear operators on Banach spaces. Such an operator
T between Banach spaces V and W will not be defined on all of V , though for
simplicity we write T W V ! W . The domain of T , denoted D.T /, will be some
linear subspace of T . Generalizing (5.17), we consider the graph of T :
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(8.1) GT D f.v; T v/ 2 V ˚W W v 2 D.T /g:

ThenGT is a linear subspace of V ˚W ; if GT is closed in V ˚W , we say T is a
closed operator. By the closed-graph theorem, if T is closed and D.T / D V , then
T is bounded. If T is a linear operator, the closure of its graph GT may or may
not be the graph of an operator. If it is, we write GT D GT and call T the closure
of T .

For a linear operator T WV !W with dense domain D.T /, we define the ad-
joint T 0 W W 0 ! V 0 as follows. There is the identity

(8.2) hT v;w0i D hv; T 0w0i;

for v 2 D.T /, w0 2 D.T 0/ � W 0. We define D.T 0/ to be the set of w0 2 W 0
such that the map v 7! hT v;w0i extends from D.T / ! C to a continuous,
linear functional V ! C. For such w0, the identity (8.2) uniquely determines
T 0w0 2 V 0.

It is useful to note the following relation between the graphs of T and T 0. The
graph GT has annihilatorG?

T � V 0 ˚W 0 given by

(8.3) G?
T D f.v0; w0/ 2 V 0 ˚W 0 W hT v;w0i D �hv; v0i for all v 2 D.T /g:

Comparing the definition of T 0, we see that, with

J W V 0 ˚W 0 ! W 0 ˚ V 0; J .v0; w0/ D .w0;�v0/;

we have

(8.4) GT 0 D J G?
T :

We remark that D.T / is dense if and only if the right side of (8.4) is the graph
of a (single-valued) transformation. Using X?? D X for a linear subspace of a
reflexive Banach space, we have the following.

Proposition 8.1. A densely defined linear operator T WV !W between reflexive
Banach spaces has a closure T if and only if T 0 is densely defined. T 0 is always
closed, and T 00 D T .

IfH0 andH1 are Hilbert spaces and T W H0 ! H1, with dense domain D.T /,
we define the adjoint T � W H1 ! H0 by replacing the dual pairings in (8.2) by
the Hilbert space inner products. Parallel to (8.4), we have

(8.5) GT � D J G?
T ;

where J WH0˚H1 !H1˚H0, J .v; w/ D .w;�v/, and one takes Hilbert space
orthogonal complements. Again, T has a closure if and only if T � is densely
defined, T � is always closed, and T �� D T . Note that, generally, the range R.T /
of T satisfies
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(8.6) R.T /? D Ker T �:

A densely defined operator T WH !H on a Hilbert space is said to be sym-
metric provided T � is an extension of T (i.e., D.T �/ 	 D.T / and T D T � on
D.T /). An equivalent condition is that D.T / is dense and

(8.7) .T u; v/ D .u; T v/; for u; v 2 D.T /:

If T � D T (so D.T �/ D D.T /), we say T is self-adjoint. In light of (8.5), T is
self-adjoint if and only if D.T / is dense and

(8.8) G?
T D J GT :

Note that if T is symmetric and D.T / D H , then T � cannot be a proper exten-
sion of T , so we must have T � D T ; hence T is closed. By the closed graph
theorem, T must be bounded in this case; this result is called the Hellinger–
Toeplitz theorem.

For a bounded operator defined on all of H , being symmetric is equiva-
lent to being self-adjoint; in the case of unbounded operators, self-adjointness
is a stronger and much more useful property. We discuss some results on self-
adjointness. In preparation for this, it will be useful to note that if T W H0 ! H1
has range R.T /, and if T is injective on D.T /, then T �1 W H1 ! H0 is defined,
with domain D.T �1/ D R.T /, and we have

(8.9) GT�1 D J G�T :

Since generally R.T /? D Ker T �, the following is an immediate consequence.

Proposition 8.2. If T is self-adjoint on H and injective, then T �1, with dense
domain R.T /, is self-adjoint.

From this easy result we obtain the following more substantial conclusion.

Proposition 8.3. If T W H ! H is symmetric and R.T / D H , then T is self-
adjoint.

Proof. The identity (8.6) implies Ker T D 0 if R.T / D H , so T �1 is defined.
Writing f; g 2 H as f D T u; g D T v, and using

.T �1f; g/ D .T �1T u; T v/ D .u; T v/ D .T u; v/ D .f; T �1g/;

we see that T �1 is symmetric. Since D.T �1/ D H , the Hellinger–Toeplitz the-
orem implies that T �1 is bounded and self-adjoint, so Proposition 8.2 applies to
T �1.
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Whenever T W H0 ! H1 is a closed, densely defined operator between Hilbert
spaces, the spaces GT and JGT � provide an orthogonal decomposition of H0 ˚
H1; that is,

(8.10) H0 ˚H1 D f.v; T v/C .�T �u; u/ W v 2 D.T /; u 2 D.T �/g;

where the terms in the sum are mutually orthogonal. Using this observation, we
will be able to prove the following important result, due to J. von Neumann.

Proposition 8.4. If T W H0 ! H1 is closed and densely defined, then T �T is
self-adjoint, and I C T �T has a bounded inverse.

Proof. Pick f 2 H0. Applying the decomposition (8.10) to .f; 0/ 2 H0 ˚ H1,
we obtain unique v 2 D.T /, u 2 D.T �/, such that

(8.11) f D v � T �u; u D �T v:

Hence

(8.12) v 2 D.T �T / and .I C T �T /v D f:

Consequently, ICT �T W D.T �T / ! H0 is bijective, with inverse .ICT �T /�1 W
H0 ! H0 having range D.T �T /. Now, with u D .I C T �T /�1f and v D
.I C T �T /�1g, we easily compute

(8.13)

�
f; .I C T �T /�1g

� D �
.I C T �T /u; v

�

D .u; v/C .T u; T v/ D �
.I C T �T /�1f; g

�
;

so .I C T �T /�1 is a symmetric operator on H . Since its domain is H , we have
.I C T �T /�1 bounded and self-adjoint, and thus Proposition 8.2 finishes the
proof.

If T is symmetric, note that

(8.14) k.T ˙ i/uk2 D kT uk2 C kuk2; for u 2 D.T /:

If T is closed, it follows that the ranges R.T ˙ i/ are closed. The following result
provides an important criterion for self-adjointness.

Proposition 8.5. Let T W H ! H be symmetric. The following three conditions
are equivalent:

T is self-adjoint;(8.15)

T is closed and Ker .T � ˙ i/ D 0;(8.16)

R.T ˙ i/ D H:(8.17)
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Proof. Assume (8.17) holds, that is, both ranges are all ofH . Let u 2 D.T �/; we
want to show that u 2 D.T /:R.T � i/ D H implies there exists v 2 D.T / such
that .T � i/v D .T � � i/u. Since D.T / � D.T �/, this implies u � v 2 D.T �/
and .T � � i/.u�v/ D 0. Now the implication (8.17) ) Ker.T � � i/ D 0 is clear
from (8.6), so we have u D v; hence u 2 D.T /, as desired. The other implications
of the proposition are straightforward.

In particular, if T is self-adjoint on H , T ˙ i W D.T / ! H bijectively. Hence

(8.18) U D .T � i/.T C i/�1 W H �! H;

bijectively. By (8.14) this map preserves norms; we say U is unitary. The as-
sociation of such a unitary operator (necessarily bounded) with any self-adjoint
operator (perhaps unbounded) is J. von Neumann’s unitary trick. Note that I �
U D 2i.T C i/�1, with range equal to D.T /. We can hence recover T from U as

(8.19) T D i.I C U /.I � U /�1;

both sides having domain D.T /.
We next give a construction of a self-adjoint operator due to K. O. Friedrichs,

which is particularly useful in PDE. One begins with the following set-up. There
are two Hilbert spaces H0 and H1, with inner products . ; /0 and . ; /1, respec-
tively, and a continuous injection

(8.20) J W H1 �! H0;

with dense range. We think of J as identifying H1 with a dense linear subspace
of H0; given v 2 H1, we will often write v for Jv 2H0. A linear operator
A W H0 ! H0 is defined by the identity

(8.21) .Au; v/0 D .u; v/1;

for all v 2 H1, with domain

(8.22)
D.A/ D fu 2H1 � H0 W v 7! .u; v/1 extends fromH1 ! C to a

continuous, conjugate-linear functionalH0 ! Cg:

Thus the graph of A is described as

(8.23)
GA D f.u; w/ 2 H0 ˚H0 W u 2 H1 and

.u; v/1 D .w; v/0 for all v 2 H1g:

We claim that GA is closed in H0 ˚ H0; this comes down to establishing the
following.
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Lemma 8.6. If .un; wn/ 2 GA, un ! u, wn ! w in H0, then u 2 H1 and
un ! u in H1.

Proof. Let umn D um � un, wmn D wm � wn. We know that .umn; v/1 D
.wmn; v/0, for each v 2 H1. Taking v D umn gives kumnk21 D .wmn; umn/0 ! 0

as m; n ! 1. This implies that .un/ is Cauchy in H1, and the rest follows.

Actually, we could have avoided writing down this last short proof, as it will
not be needed to establish our main result:

Proposition 8.7. The operator A defined above is a self-adjoint operator on H0.

Proof. Consider the adjoint of J , J � W H0 ! H1. This is also injective with
dense range, and the operator JJ � is a bounded, self-adjoint operator onH0, that
is injective with dense range. To restate (8.22),D.A/ consists of elements u D J Qu
such that v 7! .Qu; v/1 is continuous in Jv, in the H0-norm, that is, there exists
w 2 H0 such that .Qu; v/1 D .w; J v/0, hence Qu D J �w. We conclude that

(8.24) D.A/ D R.JJ �/

and, for u 2 H0, v 2 H1,

(8.25) .AJJ �u; J v/0 D .J �u; v/1 D .u; J v/0:

It follows that

(8.26) A D .JJ �/�1;

and Proposition 8.2 finishes the proof.

We remark that, given a closed, densely defined operator T on H0, one can
make D.T / D H1 a Hilbert space with inner product .u; v/1 D .T u; T v/0 C
.u; v/0. Thus Friedrichs’ result, Proposition 8.7, contains von Neumann’s result,
Proposition 8.4. This construction of Friedrichs is used to good effect in Chap. 5.

We next discuss the resolvent and spectrum of a general closed, densely defined
operator T W V ! V . By definition, � 2 C belongs to the resolvent set .T / if
and only if � � T W D.T / ! V , bijectively. Then the inverse

(8.27) R� D .� � T /�1 W V �! D.T / � V

is called the resolvent of T ; clearly, R� 2 L.V /. As in �5, the complement of
.T / is called the spectrum of T and denoted �.T /.

Such an operator may have an empty resolvent set. For example, the un-
bounded operator on L2.R2/ defined by multiplication by x1 C ix2, with domain
consisting of all u 2 L2.R2/ such that .x1 C ix2/u 2 L2.R2/, has this property.
There are also examples of unbounded operators with empty spectrum. Note that
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Proposition 8.5 implies that ˙i 2 .T / whenever T is self-adjoint. The same
argument shows that any � 2 C n R belongs to .T /, hence �.T / is contained in
R, when T is self-adjoint.

We note some relations between �.T / and �.R� /, given that � 2 .T /. Clearly,
0 belongs to .R� / if and only if D.T / D V . Since R� is bounded, we know that
its spectrum is a nonempty, compact subset of C. If � 2 .R� /, write S� D
.� � R� /

�1. It follows easily that S� and R� commute, and both preserve D.T /.
A computation gives

(8.28)
I D .� � R� /S� D �.� � T /S�.� � T /�1 � S�.� � T /�1

D �.� � ��1 � T /S�.� � T /�1 on V;

and similarly,

(8.29)
I D �.� � T /�1S�.� � T /� .� � T /�1S�

D �S�.� � T /�1.� � ��1 � T / on D.T /:

This establishes the following:

Proposition 8.8. Given � 2 .T /, if � 2 .R� / and � ¤ 0, then ����1 2 .T /.
Hence .T / is open in C. We have, for such �,

(8.30) .� � ��1 � T /�1 D �.� � R� /
�1.� � T /�1:

The second assertion follows from the fact that � 2 .R� / provided j�j >
kR�k.

If there exists � 2 .T / such that R� is compact, we say T has compact
resolvent. By Proposition 8.8 it follows that when T has compact resolvent, then
�.T / is a discrete subset of C. Every resolvent in (8.30) is compact in this case.
If T is self-adjoint on H with compact resolvent, there exists z 2 .T / \ R, and
.z � T /�1 is a compact, self-adjoint operator, to which Proposition 6.6 applies.
ThusH has an orthonormal basis of eigenvectors of T :

(8.31) vj 2 D.T /; T vj D �j vj ;

where f�j g is a sequence of real numbers with no finite accumulation point. Im-
portant examples of unbounded operators with compact resolvent arise amongst
differential operators; cf. Chap. 5.

Exercises

1. Consider the following operator, which is densely defined on L2.R/:

Tf .x/ D f .0/e�x2

; D D C1
0 .R/:

Show that T is unbounded and also that T has no closure.
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9. Semigroups

If V is a Banach space, a one-parameter semigroup of operators on V is a set of
bounded operators

(9.1) P.t/ W V �! V; t 2 Œ0;1/;

satisfying

(9.2) P.s C t/ D P.s/P.t/;

for all s; t 2 RC, and

(9.3) P.0/ D I:

We also require strong continuity, that is,

(9.4) tj ! t H) P.tj /v ! P.t/v;

for each v 2 V , the convergence being in the V -norm. A semigroup of operators
will by definition satisfy (9.1)–(9.4). If P.t/ is defined for all t 2 R and satisfies
these conditions, we say it is a one-parameter group of operators.

A simple example is the translation group

(9.5) Tp.t/ W Lp.R/ �! Lp.R/; 1 � p < 1;

defined by

(9.6) Tp.t/f .x/ D f .x � t/:

The properties (9.1)–(9.3) are clear in this case. Note that kTp.t/k D 1 for each t .
Also, kTp.t/ � Tp.t

0/k D 2 if t ¤ t 0; to see this, apply the difference to a
function f with support in an interval of length jt � t 0j=2. To verify the strong
continuity (9.4), we make the following observation. As noted in �1, the space
C00.R/ of compactly supported, continuous functions on R is dense in Lp.R/
for p 2 Œ1;1/. Now, if f 2C00.R/, tj ! t , then Tp.tj /f .x/ D f .x � tj / have
support in a fixed compact set and converge uniformly to f .x � t/, so clearly
we have convergence in (9.4) in Lp-norm for each f 2C00.R/. The following
simple but useful lemma completes the proof of (9.4) for Tp.

Lemma 9.1. Let Tj 2 L.V;W / be uniformly bounded. Let L be a dense, linear
subspace of V , and suppose

(9.7) Tj v ! T0v; as j ! 1;

in the W -norm, for each v 2 L. Then (9.7) holds for all v 2 V .
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Proof. Given v 2 V and " > 0, pick w 2 L such that kv � wk < ". Suppose
kTj k � M for all j . Then

kTj v � T0vk � kTj v � Tjwk C kTjw � T0wk C kT0w � T0vk
� kTjw � T0wk C 2M kv �wk:

Thus
lim sup
j!1

kTj v � T0vk � 2M";

which proves the lemma.

Many examples of semigroups appear in the main text, particularly in Chaps. 3,
6, and 9, so we will not present further examples here.

We note that a uniform bound on the norm

(9.8) kP.t/k � M; for jt j � 1

for some M 2 Œ1;1/, holds for any strongly continuous semigroup, as a conse-
quence of the uniform boundedness principle. From (9.8) we deduce that, for all
t 2 RC,

(9.9) kP.t/k � M eKt ;

for some K; for a group, one would use M eKjt j, t 2 R.
Of particular interest are unitary groups–strongly continuous groups of opera-

tors U.t/ on a Hilbert space H such that

(9.10) U.t/� D U.t/�1 D U.�t/:

Clearly, in this case kU.t/k D 1. The translation group T2 on L2.R/ is a simple
example of a unitary group.

A one-parameter semigroup P.t/ of operators on V has an infinitesimal gen-
erator A, which is an operator on V , often unbounded, defined by

(9.11) Av D lim
h!0

h�1�P.h/v � v
�
;

on the domain

(9.12) D.A/ D fv 2 V W lim
h!0

h�1�P.h/v � v� exists in V g:

The following provides some basic information on the generator.

Proposition 9.2. The infinitesimal generator A of P.t/ is a closed, densely de-
fined operator. We have
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(9.13) P.t/D.A/ � D.A/;

for all t 2 RC, and

(9.14) AP.t/v D P.t/Av D d

dt
P.t/v; for v 2 D.A/:

If (9.9) holds and Re � > K , then � belongs to the resolvent set of A, and

(9.15) .� � A/�1v D
Z 1

0

e��t P.t/v dt; v 2 V:

Proof. First, if v 2 D.A/, then for t 2 RC,

(9.16) h�1�P.h/P.t/v � P.t/v� D P.t/ h�1�P.h/v � v
�
;

which gives (9.13), and also (9.14), if we replace P.h/P.t/ by P.tCh/ in (9.16).
To show that D.A/ is dense in V , let v 2 V , and consider

v" D "�1
Z "

0

P.t/v dt:

Then

h�1�P.h/v" � v"
� D "�1

h
h�1

Z "Ch

"

P.t/v dt � h�1
Z h

0

P.t/v dt
i

! "�1�P."/v � v
�
; as h ! 0;

so v" 2 D.A/ for each " > 0. But v" ! v in V as " ! 0, by (9.4), so D.A/ is
dense in V .

Next we prove (9.15). Denote the right side of (9.15) byR� , clearly a bounded
operator on V . First we show that

(9.17) R� .� � A/v D v; for v 2 D.A/:

In fact, by (9.14) we have

R� .� �A/v D
Z 1

0

e��tP.t/.�v �Av/ dt

D
Z 1

0

�e��tP.t/v dt �
Z 1

0

e��t d
dt
P.t/v dt;

and integrating the last term by parts gives (9.17). The same sort of argument
shows that R� W V ! D.A/, that .� � A/R� is bounded on V , and that

(9.18) .� �A/R�v D v;
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for v 2 D.A/. Since .� � A/R� is bounded on V and D.A/ is dense in V , (9.18)
holds for all v 2 V . This proves (9.15). Finally, since the resolvent set of A is
nonempty, and .��A/�1, being continuous and everywhere defined, is closed, so
is A. The proof of the proposition is complete.

We write, symbolically,

(9.19) P.t/ D etA:

In view of the following proposition, the infinitesimal generator determines
the one-parameter semigroup with which it is associated uniquely. Hence we are
justified in saying “A generates P.t/.”

Proposition 9.3. If P.t/ and Q.t/ are one-parameter semigroups with the same
infinitesimal generator, then P.t/ D Q.t/ for all t 2 RC.

Proof. Let v 2 V and w 2 V 0. Then, for Re � large enough,

(9.20)

Z 1

0

e��t hP.t/v; wi dt D h.� � A/�1v;wi

D
Z 1

0

e��t hQ.t/v; wi dt:

Uniqueness for the Laplace transform of a scalar function implies hP.t/v; wi
D hQ.t/v; wi for all t 2 RC and for any v 2 V and w 2 V 0. Then the Hahn–
Banach theorem implies P.t/v D Q.t/v, as desired.

We note that if P.t/ is a semigroup satisfying (9.9) and if we have a function
' 2 L1.RC; eKtdt/, we can define P.'/ 2 L.V / by

(9.21) P.'/v D
Z 1

0

'.t/ P.t/v dt:

In particular, this works if ' 2 C1
0 .0;1/. In such a case, it is easy to verify that,

for all v 2 V , P.'/v belongs to the domain of all powers of A and

(9.22) AkP.'/v D .�1/k
Z 1

0

'.k/.t/P.t/v dt:

This shows that all the domainsD.Ak/ are dense in V , refining the proof of dense-
ness of D.A/ in V given in Proposition 9.2.

A general characterization of generators of semigroups, due to Hille and
Yosida, is briefly discussed in the exercises. Here we mention two important spe-
cial cases, which follow from the spectral theorem, established in Chap. 8.
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Proposition 9.4. IfA is self-adjoint and positive (i.e., .Au; u/ � 0 for u 2 D.A/),
then �A generates a semigroup P.t/ D e�tA consisting of positive, self-adjoint
operators of norm � 1.

Proposition 9.5. If A is self-adjoint, then iA generates a unitary group,
U.t/ D eitA.

In both cases it is easy to show that the generator of such (semi)groups must be
of the form hypothesized. For example, if U.t/ is a unitary group and we denote
by iA the generator, the identity

(9.23) h�1�ŒU.h/ � I �u; v� D h�1�u; ŒU.�h/� I �v
�

shows that A must be symmetric. By Proposition 9.2, all � 2 C n R belong to the
resolvent set of A, so by Proposition 8.5, A is self-adjoint. If A is self-adjoint, iA
is said to be skew-adjoint.

We now give a criterion for a symmetric operator to be essentially self-adjoint,
that is, to have self-adjoint closure. This is quite useful in PDE; see Chap. 8 for
some applications.

Proposition 9.6. Let A0 be a linear operator on a Hilbert spaceH , with domain
D, assumed dense inH . Let U.t/ be a unitary group, with infinitesimal generator
iA, so A is self-adjoint, U.t/ D eitA. Suppose D � D.A/ and A0u D Au for
u 2 D, or equivalently

(9.24) lim
h!0

h�1�U.h/u � u
� D A0u; for all u 2 D:

Also suppose D is invariant under U.t/:

(9.25) U.t/D � D:

Then A0 is essentially self-adjoint, with closure A. Suppose, furthermore, that

(9.26) A0 W D �! D:

Then Ak0 , with domain D, is essentially self-adjoint for each positive integer k.

Proof. It follows from Proposition 8.5 that A0 is essentially self-adjoint if and
only if the range of i C A0 and the range of i � A0 are dense in H . So suppose
v 2 H and (for one choice of sign)

(9.27)
�
.i ˙ A0/u; v

� D 0; for all u 2 D:

Using (9.25) together with the fact that A0 D A on D, we have

(9.28)
�
.i ˙ A0/u; U.t/v

� D 0; for all t 2 R; u 2 D:
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Consequently,
R
.t/U.t/v dt is orthogonal to the range of i ˙ A0, for any  2

L1.RC/. Choosing  2 C1
0 .0;1/ an approximate identity, we can approximate

v by elements of D.A/, indeed of D.Ak/ for all k. Thus we can suppose in (9.27)
that v 2 D.A/. Hence, taking adjoints, we have

(9.29)
�
u; .�i ˙ A/v

� D 0; for all u 2 D:

Since D is dense in H and Ker.�i ˙ A/ D 0, this implies v D 0. This yields
the first part of the proposition. Granted (9.26), the same proof works with A0
replaced by Ak0 (but U.t/ unaltered), so the proposition is proved.

This result has an extension to general semigroups which is of interest.

Proposition 9.7. Let P.t/ be a semigroup of operators on a Banach space B ,
with generator A. Let L � D.A/ be a dense, linear subspace of B , and suppose
P.t/L � L for all t � 0. Then A is the closure of its restriction to L.

Proof. By Proposition 9.2, it suffices to show that .� � A/.L/ is dense in B
provided Re � is sufficiently large, namely, Re � > K with kP.t/k � MeKt .
If w 2 B 0 annihilates this range and w ¤ 0, pick u 2 L such that hu; wi ¤ 0.
Now

d

dt
hP.t/u; wi D hAP.t/u; wi D h�P.t/u; wi

since P.t/u 2 L. Thus hP.t/u; wi D e�t hu; wi. But if Re � > K as above, this
is impossible unless hu; wi D 0. This completes the proof.

We illustrate some of the preceding results by looking at the infinitesimal gen-
eratorAp of the group Tp given by (9.5)–(9.6). By definition, f 2 Lp.R/ belongs
to D.Ap/ if and only if

(9.30) h�1�f .x � h/� f .x/
�

converges in Lp-norm as h ! 0, to some limit. Now the limit of (9.30) always
exists in the space of distributions D0.R/ and is equal to �.d=dx/u, where d=dx
is applied in the sense of distributions. In fact, we have the following.

Proposition 9.8. For p 2 Œ1;1/, the group Tp given by (9.5)–(9.8) has infinites-
imal generator Ap given by

(9.31) Apf D �df

dx
;

for f 2 D.Ap/, with

(9.32) D.Ap/ D ff 2 Lp.R/ W f 0 2 Lp.R/g;

where f 0 D df=dx is considered a priori as a distribution.
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Proof. The argument above shows that (9.31) holds, with D.Ap/ contained in the
right side of (9.32). The reverse containment can be derived as a consequence of
the following simple result, taking L D C1

0 .R/.

Lemma 9.9. Let P.t/ be a one-parameter semigroup on B , with infinitesimal
generator A. Let L be a weak�-dense, linear subspace of B 0. Suppose that u; v 2
B and that

(9.33) lim
h!0

h�1hP.h/u � u; wi D hv;wi; 8 w 2 L:

Then u 2 D.A/ and Au D v.

Proof. The hypothesis (9.33) implies that hP.t/u; wi is differentiable and that

d

dt
hP.t/u; wi D hP.t/v; wi; 8 w 2 L:

Hence hP.t/u � u; wi D R t
0
hP.s/v; wi ds, for all w 2 L. The weak� denseness

of L implies P.t/u � u D R t
0 P.s/v ds, and the convergence in the B-norm of

h�1�P.h/u � u
� D h�1 R h

0
P.s/v ds to v as h ! 0 follows.

The space (9.32) is the Sobolev space H 1;p.R/ studied in Chap. 13; in case
p D 2, it is the Sobolev space H 1.R/ introduced in Chap. 4.

Note that if we define

(9.34) A0 W C1
0 .R/ �! C1

0 .R/; A0f D �df

dx
;

then Proposition 9.7 applies to Tp, p 2 Œ1;1/, with B D Lp.R/, L D C1
0 .R/,

to show that, as a closed operator on Lp.R/,

(9.35) Ap is the closure of A0; for p 2 Œ1;1/:

This amounts to saying that C1
0 .R/ is dense in H 1;p.R/ for p 2 Œ1;1/, which

can easily be verified directly.
The fact that a semigroupP.t/ satisfies the operator differential equation (9.14)

is central. We now establish the following converse.

Proposition 9.10. Let A be the infinitesimal generator of a semigroup. If a func-
tion u 2 C �Œ0; T /;D.A/� \ C 1

�
Œ0; T /; V

�
satisfies

(9.36)
du

dt
D Au; u.0/ D f;

then u.t/ D etAf , for t 2 Œ0; T /.
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Proof. Set v.s; t/ D esAu.t/ 2 C 1.Q; V /, Q D Œ0;1/ � Œ0; T /. Then (9.36)
implies that .@s � @t /v D esAAu.t/ � esAAu.t/ D 0, so u.t/ D v.0; t/ D
v.t; 0/ D etAf .

We can thus deduce that, given g 2 C �Œ0; T /;D.A/�, f 2 D.A/, the solution
u.t/ to

(9.37)
@u

@t
D Au C g.t/; u.0/ D f;

is unique and is given by

(9.38) u.t/ D etAf C
Z t

0

e.t�s/Ag.s/ ds:

This is a variant of Duhamel’s principle.
We can also define a notion of a “weak solution” of (9.37) as follows. If A

generates a semigroup, then D.A0/ is a dense, linear subspace of V 0. Suppose
that, for every  2 D.A0/, hu.t/;  i 2 C 1.Œ0; T //; if f 2 V , g 2 C.Œ0; T /; V /,
and

(9.39)
d

dt
hu.t/;  i D hu.t/; A0 i C hg.t/;  i; u.0/ D f;

we say u.t/ is a weak solution to (9.37).

Proposition 9.11. Given f 2 V and g 2 C �Œ0; T /; V �, (9.37) has a unique weak
solution, given by (9.38).

Proof. First, consider (9.38), with f 2 V , g 2 C.J; V /, and J D Œ0; T /. Let
fj ! f in V and gj ! g in C.J; V /, where fj 2 D.A/ and gj 2 C 1.J; V / \
C.J;D.A//. Then, by Proposition 9.10,

(9.40) uj .t/ D etAfj C
Z t

0

e.t�s/Agj .s/ ds

is the unique solution in C 1.J; V / \ C.J;D.A// to

@uj
@t

D Auj C gj ; uj .0/ D fj :

Thus, for any  2 D.A0/, uj solves (9.39), with g and f replaced by gj and fj ,
respectively, and hence

(9.41) huj .t/;  i D hfj ;  i C
Z t

0

huj .s/; A
0 i ds C

Z t

0

hgj .s/;  i ds:
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Passing to the limit, we have

(9.42) hu.t/;  i D hf; i C
Z t

0

hu.s/; A0 i ds C
Z t

0

hg.s/;  i ds;

which implies (9.39).
For the converse, suppose that u 2 C.J; V / is a weak solution, satisfying

(9.39), or equivalently, that (9.42) holds. Set '.t/ D j for 0 � t � 1=j , 0 else-
where, and consider P.'j /, defined by (9.21). We see that hAv;P.'j /0 i D
hAP.'j /v;  i. Hence P.'j /0 W V 0 ! D.A0/, and also hv;A0P.'j /0 i D
hAP.'j /v;  i for v 2 D.A/,  2 V 0. If you replace  by P.'j /

0 in
(9.41), then uj .t/ D P.'j /u.t/ satisfies (9.41), with fj D P.'j /f , gj .t/ D
P.'j /g.t/; hence uj 2 C 1.J; V / \ C.J;D.A// is given by (9.40), and passing
to the limit gives (9.38) for u.

We close this section with a brief discussion of when we can deduce that, given
a generator A of a semigroup and another operator B , then AC B also generates
a semigroup. There are a number of results on this, to the effect that A C B

works if B is “small” in some sense, compared to A. These results are part of the
“perturbation theory” of semigroups. The following simple case is useful.

Proposition 9.12. If A generates a semigroup etA on V and B is bounded on V ,
then AC B also generates a semigroup.

Proof. The idea is to solve the equation

(9.43)
@u

@t
D Au C Bu; u.0/ D f;

by solving the integral equation

(9.44) u.t/ D etAf C
Z t

0

e.t�s/ABu.s/ ds:

In other words, we want to solve

(9.45) .I � N /u.t/ D etAf 2 C �Œ0;1/; V
�
;

where

(9.46) Nu.t/ D
Z t

0

e.t�s/ABu.s/ ds; N W C.RC; V / ! C.RC; V /:
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Note that

(9.47)

N ku.t/ D
Z t

0

Z tk�1

0

� � �
Z t1

0

e.t�tk�1/ABe.tk�1�tk�2/A � � �
� � �Be.t1�t0/ABu.t0/ dt0 � � �dtk�1:

Hence, if etA satisfies the estimate (9.9),

(9.48) sup
0�t�T

kN ku.t/k � �
M kBk�ketK � �vol STk

� � sup
0�t�T

ku.t/k;

where vol ST
k

is the volume of the k-simplex

STk D f.t0; : : : ; tk�1/ W 0 � t0 � � � � � tk�1 � T g:
Looking at the case A D 0, B D b (scalar) of (9.43), with solution u.t/ D etbf ,
we see that

(9.49) vol STk D T k

kŠ
:

It follows that

(9.50) Sg.t/ D g.t/C
1X

kD1
N kg.t/

is convergent in C.RC; V /, given g.t/ 2 C.RC; V /. Now consider

(9.51) Q.t/f D etAf C
1X

kD1
N k

�
etAf

�
:

It is straightforward to verify thatQ.t/ is a strongly continuous semigroup on V ,
with generator AC B .

An extension of Proposition 9.12–part of the perturbation theory of R. Phillips–
is given in the exercises. We mention another perturbation result, due to T. Kato.
A semigroup P.t/ is called a contraction semigroup on V if kP.t/k � 1 for all
t � 0.

Proposition 9.13. If A generates a contraction semigroup on V , then A C B

generates a contraction semigroup, provided D.B/ 	 D.A/, B is “dissipative,”
and

(9.52) kBf k � #kAf k C C1kf k;

for some C1 < 1 and # < 1=2. If V is a Hilbert space, we can allow any # < 1.
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To say that B is dissipative means that if u 2 D.B/ � V and u# 2 V 0 satisfies
hu; u#i D kuk2, then

(9.53) Re hBu; u#i � 0:

If V is a Hilbert space with inner product . ; /, this is equivalent to

(9.54) Re .Bu; u/ � 0; for u 2 D.B/:

Proofs of Proposition 9.13 typically use the Hille–Yosida characterization of
which A generate a contraction semigroup. See the exercises for further discus-
sion.

Exercises

In Exercises 1–3, define, for I D .0; 1/,

(9.55) A0 W C1
0 .I / �! C1

0 .I /; A0f D �df
dx
:

1. Given f 2 L2.I /, define Ef on R to be equal to f on I and to be periodic of period
1, and define U.t/ W L2.I / ! L2.I / by

(9.56) U.t/f .x/ D .Ef /.x � t/jI :
Show that U.t/ is a unitary group whose generator D is a skew-adjoint extension of
A0. Describe the domain of D.

2. More generally, for ei� 2 S1, define Ef on R to equal f on I and to satisfy

.Ef /.x C 1/ D ei�f .x/:

Then define U� .t/ W L2.I / ! L2.I / by (9.56), with this E. Show that U� .t/ is a
unitary group whose generator D� is a skew-adjoint extension of A0. Describe the
domain of D� .

3. This time, define Ef on R to equal f on I and zero elsewhere. For t � 0, define
P.t/ W L2.I / ! L2.I / by (9.56) with this E. Show that P.t/ is a strongly continu-
ous semigroup. Show that P.t/ D 0 for t � 1. Show that the infinitesimal generator
B of P.t/ is a closed extension of A0 which has empty spectrum. Describe the do-
main of B .

4. Let P t be a strongly continuous semigroup on the Banach space X , with infinitesimal
generator A. Suppose A has compact resolvent. If K is a closed bounded subset of
X , show that K is compact if and only if P t ! I uniformly on K. (Hint: Let Tj D
h�1 R h

0 P
t dt , h D 1=j , and use Exercise 4 of �6.)

Exercises 5–8 deal with the case where P.t/ satisfies (9.1)–(9.3) but the strong
continuity of P.t/ is replaced by weak continuity, that is, convergence in (9.4) holds
in the �.V; V 0/-topology on V . We restrict attention to the case where V is reflexive.
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5. If ' 2 C1
0 .RC/, show that P.'/v is well defined in V , satisfying

hP.t/v; !i D
Z 1

0
'.t/hP.t/v; !i dt; v 2 V; ! 2 V 0:

6. Show that V0 D spanfP.'/v W v 2 V; ' 2 C1
0 .RC/g is dense in V . (Hint: Suppose

! 2 V 0 annihilates V0:)
7. Show thatP.tj /P.'/v D P.'j /v, where 'j .�/ D '.��tj / for � � tj , 0 for � < tj .

Deduce that as tj ! t ,

P.tj /P.'/v ! P.t/P.'/v; in V -norm;

for v 2 V , ' 2 C1
0 .RC/. (Hint: Estimate kP.'j � '0/vk, with '0.�/ D '.� � t/.

To do this, show that (9.9) continues to hold.)
8. Deduce that the hypotheses on P.t/ in Exercises 5–7 imply the strong continuity (9.4).

(Hint: Use Lemma 9.1.)
9. If P.t/ is a strongly continuous semigroup on V , then Q.t/ D P.t/0, acting on V 0,

satisfies (9.1)–(9.3), with weak� continuity in place of (9.4). Deduce that if V is re-
flexive, Q.t/ is a strongly continuous semigroup on V 0. Give an example of P.t/
on a (nonreflexive) Banach space V for which P.t/0 is not strongly continuous in
t 2 Œ0;1/.

10. Extend Proposition 9.12 to show that if A generates a semigroup etA on V and if
D.B/ 	 D.A/ is such that BetA is bounded for t > 0, satisfying

kBetAkL.V / � C0t
�˛ ; t 2 .0; 1�;

for some ˛ < 1, then AC B also generates a semigroup.
(Hint: Show that (9.51) still works. Note that the integrand in the formula (9.57) for
N k.etAf / is of the form � � �Be.t1�t0/ABet0Af:)

11. Recall that P.t/ is a contraction semigroup if it satisfies (9.1)–(9.4) and kP.t/k � 1

for all t � 0. Show that the infinitesimal generator A of a contraction semigroup has
the following property:

(9.57) � > 0 H) � 2 .A/; and k.�� A/�1k � 1

�
:

12. The Hille–Yosida theorem states that whenever D.A/ is dense in V and there exist
�j > 0 such that

(9.58) �j % C1; �j 2 .A/; k.�j � A/�1k � 1

�j
;

then A generates a contraction semigroup. Try to prove this. (Hint: With � D �j , set
A� D �A.� � A/�1, which is in L.V /. Define P�.t/ D etA� by the power-series
expansion. Show that

(9.59) kP�.t/k � 1;
���P�.t/� P	.t/

�
f
�� � t

��.A� �A	/f
��;

and construct P.t/ as the limit of P�j
.t/:)

13. If P.t/ satisfies (9.9), set Q.t/ D e�KtP.t/, so kQ.t/k � M for t � 0. Show
that jkf kj D supt�0 kQ.t/f k defines an equivalent norm on V , for which Q.t/ is a
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contraction semigroup. Then, using Exercisess 11 and 12, produce a characterization
of generators of semigroups.

14. Show that if P.t/ is a contraction semigroup, its generator A is dissipative, in the
sense of (9.53).

15. Show that if D.A/ is dense, if �0 2 .A/ for some �0 such that Re �0 > 0, and
if A is dissipative, then A generates a contraction semigroup. (Hint: First show that
the hypotheses imply � 2 .A/ whenever Re � > 0. Then apply the Hille–Yosida
theorem.)
Deduce Propositions 9.4 and 9.5 from this result.

16. Prove Proposition 9.13. (Hint: Show that � 2 .A C B/ for some � > 0, and apply
Exercise 15. To get this, show that when A is dissipative and � > 0, � 2 .A/, then

kA.�� A/�1k � �;

where � D 2 for a general Banach space V , while � D 1 if V is a Hilbert space.)
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B

Manifolds, Vector Bundles, and Lie
Groups

Introduction

This appendix provides background material on manifolds, vector bundles, and
Lie groups, which are used throughout the book. We begin with a section on
metric spaces and topological spaces, defining some terms that are necessary for
the concept of a manifold, defined in �2, and for that of a vector bundle, defined
in �3. These sections contain mostly definitions; however, a few results about
compactness are proved.

In �4 we establish the easy case of a theorem of Sard, a useful result in manifold
theory. It is used only once in the text, in the development of degree theory in
Chap. 1, �19.

In �5 we introduce the concept of a Lie group G and its Lie algebra g and
establish the correspondence between Lie subgroups of G and Lie subalgebras of
g. We also define a Haar measure on a Lie group. In �6 we establish an important
relation between Lie groups and Lie algebras, known as the Campbell–Hausdorff
formula.

In �7 we discuss representations of a Lie group and associated representations
of its Lie algebra. Some basic results on representations of compact Lie groups
are given in �8, and in �9 we specialize to the groups SU(2) and SO(3) and to
some related groups, such as SO(4). Material in �9 is useful in Chap. 8, Spectral
Theory, particularly in its study of the simplest quantum mechanical model of the
hydrogen atom.

1. Metric spaces and topological spaces

A metric space is a set X together with a distance function d W X �X ! Œ0;1/,
having the properties that

M.E. Taylor, Partial Differential Equations I: Basic Theory,
Applied Mathematical Sciences 115, DOI 10.1007/978-1-4419-7055-8 8,
c� Springer Science+Business Media, LLC 1996, 2011
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d.x; y/ D 0 ” x D y;

d.x; y/ D d.y; x/;

d.x; y/ � d.x; z/C d.y; z/:

(1.1)

The third of these properties is called the triangle inequality. An example of a
metric space is the set of rational numbers Q, with d.x; y/ D jx � yj. Another
example is X D Rn, with d.x; y/ D p

.x1 � y1/2 C � � � C .xn � yn/2.
If .x�/ is a sequence in X , indexed by � D 1; 2; 3; : : : (i.e., by � 2 ZC), one

says x� ! y if d.x� ; y/ ! 0, as � ! 1. One says .x�/ is a Cauchy sequence
if d.x� ; x�/ ! 0 as �; � ! 1. One says X is a complete metric space if every
Cauchy sequence converges to a limit inX . Some metric spaces are not complete;
for example, Q is not complete. One can take a sequence .x�/ of rational numbers
such that x� ! p

2, which is not rational. Then .x�/ is Cauchy in Q, but it has
no limit in Q.

If a metric space X is not complete, one can construct its completion bX as
follows. Let an element � of bX consist of an equivalence class of Cauchy se-
quences in X , where we say .x�/ � .y�/, provided d.x� ; y�/ ! 0. We write the
equivalence class containing .x�/ as Œx� �. If � D Œx� � and � D Œy� �, we can set
d.�; �/ D lim�!1 d.x� ; y�/ and verify that this is well defined and makes bX a
complete metric space.

If the completion of Q is constructed by this process, you get R, the set of real
numbers.

A metric spaceX is said to be compact provided any sequence .x�/ in X has a
convergent subsequence. Clearly, every compact metric space is complete. There
are two useful conditions, each equivalent to the characterization of compactness
just stated, on a metric space. The reader can establish the equivalence, as an
exercise.

(a) If S � X is a set with infinitely many elements, then there is an accumulation
point, that is, a point p 2 X such that every neighborhood U of p contains
infinitely many points in S .

Here, a neighborhood of p 2 X is a set containing the ball

(1.2) B".p/ D fx 2 X W d.x; p/ < "g;
for some " > 0.

(b) Every open cover fU˛g of X has a finite subcover.

Here, a set U � X is called open if it contains a neighborhood of each of its
points. The complement of an open set is said to be closed. Equivalently,K � X

is closed provided that

(1.3) x� 2 K; x� ! p 2 X H) p 2 K:
It is clear that any closed subset of a compact metric space is also compact.

If Xj , 1 � j � m, is a finite collection of metric spaces, with metrics dj , we
can define a product metric space
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(1.4) X D
mY

jD1
Xj ; d.x; y/ D d1.x1; y1/C � � � C dm.xm; ym/:

Another choice of metric is ı.x; y/ D p
d1.x1; y1/2 C � � � C dm.xm; ym/2. The

metrics d and ı are equivalent; that is, there exist constants C0; C1 2 .0;1/ such
that

(1.5) C0ı.x; y/ � d.x; y/ � C1ı.x; y/; 8 x; y 2 X:

We describe some useful classes of compact spaces.

Proposition 1.1. If Xj are compact metric spaces, 1 � j � m, so is the product
space X D Qm

jD1Xj .

Proof. Suppose .x�/ is an infinite sequence of points in X ; let us write x� D
.x1� ; : : : ; xm�/. Pick a convergent subsequence .x1�/ in X1, and consider the
corresponding subsequence of .x�/, which we relabel .x�/. Using this, pick a
convergent subsequence .x2�/ in X2. Continue. Having a subsequence such that
xj� ! yj in Xj for each j D 1; : : : ; m, we then have a convergent subsequence
in X .

The following result is called the Heine–Borel theorem:

Proposition 1.2. If K is a closed bounded subset of Rn, thenK is compact.

Proof. The discussion above reduces the problem to showing that any closed in-
terval I D Œa; b� in R is compact. Suppose S is a subset of I with infinitely
many elements. Divide I into two equal subintervals, I1 D Œa; b1�, I2 D Œb1; b�,
b1 D .aCb/=2. Then either I1 or I2 must contain infinitely many elements of S .
Say Ij does. Let x1 be any element of S lying in Ij . Now divide Ij in two equal
pieces, Ij D Ij1 [ Ij2. One of these intervals (say Ijk) contains infinitely many
points of S . Pick x2 2 Ijk to be one such point (different from x1). Then subdi-
vide Ijk into two equal subintervals, and continue. We get an infinite sequence of
distinct points x� 2 S , and jx� �x�Ck j � 2��.b�a/, for k � 1. Since R is com-
plete, .x�/ converges, say to y 2 I . Any neighborhood of y contains infinitely
many points in S , so we are done.

If X and Y are metric spaces, a function f W X ! Y is said to be continuous
provided x� ! x in X implies f .x�/ ! f .x/ in Y .

Proposition 1.3. If X and Y are metric spaces, f W X ! Y continuous, and
K � X compact, then f .K/ is a compact subset of Y .

Proof. If .y�/ is an infinite sequence of points in f .K/, pick x� 2 K such that
f .x�/ D y� . If K is compact, we have a subsequence x�j

! p in X , and then
y�j

! f .p/ in Y .
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If F W X ! R is continuous, we say f 2 C.X/. A corollary of Proposition
1.3 is the following:

Proposition 1.4. IfX is a compact metric space and f 2 C.X/, then f assumes
a maximum and a minimum value on X .

A function f 2 C.X/ is said to be uniformly continuous provided that, for
any " > 0, there exists ı > 0 such that

(1.6) x; y 2 X; d.x; y/ � ı H) jf .x/ � f .y/j � ":

An equivalent condition is that f have a modulus of continuity, in other words, a
monotonic function ! W Œ0; 1/ ! Œ0;1/ such that ı & 0 ) !.ı/ & 0 and such
that

(1.7) x; y 2 X; d.x; y/ � ı � 1 H) jf .x/ � f .y/j � !.ı/:

Not all continuous functions are uniformly continuous. For example, if X D
.0; 1/ � R, then f .x/ D sin.1=x/ is continuous, but not uniformly continuous,
on X . There is a case where continuity implies uniform continuity:

Proposition 1.5. If X is a compact metric space and f 2 C.X/, then f is uni-
formly continuous.

Proof. If not, there exist x� ; y� 2 X and " > 0 such that d.x� ; y�/ � 2�� but

(1.8) jf .x�/� f .y�/j � ":

Taking a convergent subsequence x�j
! p, we also have y�j

! p. Now con-
tinuity of f at p implies f .x�j

/ ! f .p/ and f .y�j
/ ! f .p/, contradicting

(1.8).

IfX and Y are metric spaces, the space C.X; Y / of continuous maps f W X !
Y has a natural metric structure, under some additional hypotheses. We use

(1.9) D.f; g/ D sup
x2X

d
�
f .x/; g.x/

�
:

This sup exists provided f .X/ and g.X/ are bounded subsets of Y , where to say
B � Y is bounded is to say d W B�B ! Œ0;1/ has bounded image. In particular,
this supremum exists if X is compact. The following result is useful in the proof
of the fundamental local existence theorem for ODE, in Chap. 1.

Proposition 1.6. If X is a compact metric space and Y is a complete metric
space, then C.X; Y /, with the metric (1.9), is complete.

We leave the proof as an exercise.
The following extension of Proposition 1.1 is a special case of Tychonov’s

theorem.
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Proposition 1.7. If fXj W j 2 ZCg are compact metric spaces, so is the product
X D Q1

jD1Xj .

Here, we can make X a metric space by setting

(1.10) d.x; y/ D
1X

jD1
2�j dj .pj .x/; pj .y//

1C dj .pj .x/; pj .y//
;

where pj W X ! Xj is the projection onto the j th factor. It is easy to verify
that if x� 2 X , then x� ! y in X , as � ! 1, if and only if, for each j ,
pj .x�/ ! pj .y/ in Xj .

Proof. Following the argument in Proposition 1.1, if .x�/ is an infinite sequence
of points in X , we obtain a nested family of subsequences

(1.11) .x�/ 	 .x1�/ 	 .x2�/ 	 � � � 	 .xj �/ 	 � � �

such that p`.xj �/ converges in X`, for 1 � ` � j . The next step is a “diagonal
construction.” We set

(1.12) �� D x�� 2 X:

Then, for each j , after throwing away a finite number N.j / of elements, one
obtains from .��/ a subsequence of the sequence .xj �/ in (1.11), so p`.��/ con-
verges in X` for all `. Hence .��/ is a convergent subsequence of .x�/.

We turn now to the notion of a topological space. This is a set X , together with
a family O of subsets, called “open,” satisfying the following conditions:

X;; open;

Uj open; 1 � j � N )
N\

jD1
Uj open;

U˛ open; ˛ 2 A )
[

˛2A
U˛ open;

(1.13)

where A is any index set. It is obvious that the collection of open subsets of a
metric space, defined above, satisfies these conditions. As before, a set S � X is
closed provided X n S is open. Also, we say a subset N � X containing p is a
neighborhood of p providedN contains an open set U that in turn contains p.

If X is a topological space and S is a subset, S gets a topology as follows. For
each U open in X , U \ S is declared to be open in S . This is called the induced
topology.

A topological space X is said to be Hausdorff provided that any distinct
p; q 2 X have disjoint neighborhoods. Clearly, any metric space is Hausdorff.
Most important topological spaces are Hausdorff.
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A Hausdorff topological space is said to be compact provided the following
condition holds. If fU˛ W ˛ 2 Ag is any family of open subsets of X , covering
X (i.e., X D S

˛2A U˛), then there is a finite subcover, that is, a finite subset
fU˛1

; : : : ; U˛N
W ˛j 2 Ag such that X D U˛1

[ � � � [ U˛N
. An equivalent

formulation is the following, known as the finite intersection property. Let fS˛ W
˛ 2 Ag be any collection of closed subsets of X . If each finite collection of these
closed sets has nonempty intersection, then the complete intersection

T
˛2A S˛

is nonempty. It is not hard to show that any compact metric space satisfies this
condition.

Any closed subset of a compact space is compact. Furthermore, any compact
subset of a Hausdorff space is necessarily closed.

Most of the propositions stated above for compact metric spaces have exten-
sions to compact Hausdorff spaces. We mention one nontrivial result, which is the
general form of Tychonov’s theorem; for a proof, see [Dug].

Theorem 1.8. If S is any nonempty set (possibly uncountable) and if, for any
˛ 2 S , X˛ is a compact Hausdorff space, then so is X D Q

˛2S X˛.

A Hausdorff space X is said to be locally compact provided every p 2 X has
a neighborhoodN that is compact (with the induced topology).

A Hausdorff space is said to be paracompact provided every open cover fU˛ W
˛ 2 Ag has a locally finite refinement, that is, an open cover fVˇ W ˇ 2 Bg such
that each Vˇ is contained in some U˛ and each p 2 X has a neighborhood Np
such that Np \ Vˇ is nonempty for only finitely many ˇ 2 B . A typical example
of a paracompact space is a locally compact Hausdorff space X that is also �-
compact (i.e., X D S1

nD1Xn with Xn compact). Paracompactness is a natural
condition under which to construct partitions of unity, as will be illustrated in the
next two sections.

A map F W X ! Y between two topological spaces is said to be continuous
provided F �1.U / is open in X whenever U is open in Y . If F W X ! Y is
one-to-one and onto, and both F and F�1 are continuous,F is said to be a home-
omorphism. For a bijective map F W X ! Y , the continuity of F�1 is equivalent
to the statement that F.V / is open in Y whenever V is open in X ; another equiv-
alent statement is that F.S/ is closed in Y whenever S is closed in X .

If X and Y are Hausdorff, and F W X ! Y is continuous, then F.K/ is
compact in Y wheneverK is compact inX . In view of the discussion above, there
arises the following useful sufficient condition for a continuous map F W X ! Y

to be a homeomorphism. Namely, if X is compact, Y is Hausdorff, and F is one-
to-one and onto, then F is a homeomorphism.

2. Manifolds

A manifold is a Hausdorff topological space with an “atlas,” that is, a covering
by open sets Uj together with homeomorphisms 'j W Uj ! Vj , Vj open in Rn.
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The number n is called the dimension ofM . We say thatM is a smooth manifold
provided the atlas has the following property. IfUjk D Uj\Uk ¤ ;, then the map

(2.1)  jk W 'j .Ujk/ ! 'k.Ujk/;

given by 'k ı '�1
j , is a smooth diffeomorphism from the open set 'j .Ujk/ to the

open set 'k.Ujk/ in Rn. By this, we mean that  jk is C1, with a C1-inverse.
If the  jk are all C `-smooth,M is said to be C `-smooth. The pairs .Uj ; 'j / are
called local coordinate charts.

A continuous map fromM to another smooth manifoldN is said to be smooth
if it is smooth in local coordinates. Two different atlases on M , giving a priori
two structures ofM as a smooth manifold, are said to be equivalent if the identity
map onM is smooth from each one of these two manifolds to the other. Actually,
a smooth manifold is considered to be defined by equivalence classes of such
atlases, under this equivalence relation.

One way manifolds arise is the following. Let f1; : : : ; fk be smooth func-
tions on an open set U � Rn. Let M D fx 2 U W fj .x/ D cj g, for a given
.c1; : : : ; ck/ 2 Rk . Suppose thatM ¤ ; and, for each x 2 M , the gradients rfj
are linearly independent at x. It follows easily from the implicit function theorem
that M has a natural structure of a smooth manifold of dimension n � k. We say
M is a submanifold of U . More generally, let F W X ! Y be a smooth map
between smooth manifolds, c 2 Y , M D F�1.c/, and assume that M ¤ ; and
that, at each point x 2 M , there is a coordinate neighborhood U of x and V of c
such that the derivativeDF at x has rank k. More pedantically, .U; '/ and .V;  /
are the coordinate charts, and we assume the derivative of  ıF ı'�1 has rank k
at '.x/; there is a natural notion of DF.x/ W TxX ! TcY , which will be defined
in the next section. In such a case, again the implicit function theorem gives M
the structure of a smooth manifold.

We mention a couple of other methods for producing manifolds. For one, given
any connected smooth manifoldM , its universal covering space QM has the natural
structure of a smooth manifold. QM can be described as follows. Pick a base point
p 2 M . For x 2 M , consider smooth paths from p to x, 	 W Œ0; 1� ! M .
We say two such paths 	0 and 	1 are equivalent if they are homotopic, that is, if
there is a smooth map � W I � I ! M.I D Œ0; 1�/ such that �.0; t/ D 	0.t/,
�.1; t/ D 	1.t/, �.s; 0/ D p, and �.s; 1/ D x. Points in QM lying over any given
x 2 M consist of such equivalence classes.

Another construction produces quotient manifolds. In this situation, we have a
smooth manifold M and a discrete group 
 of diffeomorphisms on M . The quo-
tient space 
 n M consists of equivalence classes of points of M , where we set
x � 	.x/ for each x 2 M , 	 2 
 . If we assume that each x 2 M has a neighbor-
hood U containing no 	.x/, for 	 ¤ e, the identity element of 
 , then 
 nM has
a natural smooth manifold structure.

We next discuss partitions of unity. Suppose M is paracompact. In this case,
using a locally finite covering of M by coordinate neighborhoods, we can con-
struct  j 2 C1

0 .M/ such that, for any compact K � M , only finitely many  j
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are nonzero onK (we say the sequence  j is locally finite) and such that, for any
p 2 M , some  j .p/ ¤ 0. Then

(2.2) 'j .x/ D
 
X

k

 k.x/
2

!�1
 j .x/

2

is a locally finite sequence of functions in C1
0 .M/, satisfying

P
j 'j .x/ D 1.

Such a sequence is called a partition of unity. It has many uses.
Using local coordinates plus such cut-offs as appear in (2.2), one can easily

prove that any smooth, compact manifoldM can be smoothly imbedded in some
Euclidean space RN , though one does not obtain so easily Whitney’s optimal
value of N (N D 2dimM C 1, valid for paracompact M , not just compact M ),
proved in [Wh].

A more general notion than manifold is that of a smooth manifold with bound-
ary. In this case, M is again a Hausdorff topological space, and there are two
types of coordinate charts .Uj ; 'j /. Either 'j takes Uj to an open subset Vj
of Rn as before, or 'j maps Uj homeomorphically onto an open subset of
RnC D f.x1; : : : ; xn/ 2 Rn W xn � 0g. Again appropriate transition maps are
required to be smooth. In case M is paracompact, there is again the construction
of partitions of unity. For one simple but effective application of this construction,
see the proof of the Stokes formula in �13 of Chap. 1.

3. Vector bundles

We begin with an intrinsic definition of a tangent vector to a smooth manifoldM ,
at a point p 2 M . It is an equivalence class of smooth curves through p, that is,
of smooth maps 	 W I ! M , I an interval containing 0, such that 	.0/ D p. The
equivalence relation is 	 � 	1 provided that, for some coordinate chart .U; '/
about p, ' W U ! V � Rn, we have

(3.1)
d

dt
.' ı 	/.0/ D d

dt
.' ı 	1/.0/:

This equivalence is independent of the choice of coordinate chart about p.
If V � Rn is open, we have a natural identification of the set of tangent vectors

to V at p 2 V with Rn. In general, the set of tangent vectors toM at p is denoted
TpM . A coordinate cover of M induces a coordinate cover of TM , the disjoint
union of TpM as p runs over M , making TM a smooth manifold. TM is called
the tangent bundle ofM . Note that each TpM has the natural structure of a vector
space of dimension n, if n is the dimension ofM . If F W X ! M is a smooth map
between manifolds, x 2 X , there is a natural linear map DF.x/ W TxX ! TpM ,
p D F.x/, which agrees with the derivative as defined in �1 of Chap. 1, in local
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coordinates.DF.x/ takes the equivalence class of a smooth curve 	 through x to
that of the curve F ı 	 through p.

The tangent bundle TM of a smooth manifold M is a special case of a vector
bundle. Generally, a smooth vector bundle E ! M is a smooth manifold E,
together with a smooth map � W E ! M with the following properties. For
each p 2 M , the “fiber” Ep D ��1.p/ has the structure of a vector space, of
dimension k, independent of p. Furthermore, there exists a cover of M by open
sets Uj , and diffeomorphismsˆj W ��1.Uj / ! Uj � Rk with the property that,
for each p 2 Uj , ˆj W Ep ! fpg � Rk ! Rk is a linear isomorphism, and if
Uj` D Uj \ U` ¤ ;, we have smooth “transition functions”

(3.2) ˆ` ıˆ�1
j D ‰j` W Uj` � Rk ! Uj` � Rk ;

which are the identity on the first factor and such that for each p 2 Uj`, ‰j`.p/
is a linear isomorphism on Rk . In the case of complex vector bundles, we system-
atically replace Rk by Ck in the discussion above.

The structure above arises for the tangent bundle as follows. Let .Uj ; 'j / be a
coordinate cover of M , 'j W Uj ! Vj � Rn. Then ˆj W T Uj ! Uj � Rn takes
the equivalence class of smooth curves through p 2 Uj containing an element 	
to the pair

�
p; .'j ı 	/0.0/� 2 Uj � Rn.

A section of a vector bundle E ! M is a smooth map ˇ W M ! E such
that �.ˇ.p// D p for all p 2 M . For example, a section of the tangent bundle
TM ! M is a vector field on M . If X is a vector field on M , generating a flow
F t , then X.p/ 2 TpM coincides with the equivalence class of 	.t/ D F tp.

Any smooth vector bundle E ! M has associated a vector bundle E� ! M ,
the “dual bundle” with the property that there is a natural duality of Ep and E�

p

for each p 2 M . In case E is the tangent bundle TM , this dual bundle is called
the cotangent bundle and is denoted T �M .

More generally, given a vector bundle E ! M , other natural constructions
involving vector spaces yield other vector bundles over M , such as tensor bun-
dles ˝jE ! M with fiber ˝jEp, mixed tensor bundles with fiber

�˝jEp
� ˝�˝kE�

p

�
, exterior algebra bundles with fiber �Ep, and so forth. Note that a

k-form, as defined in Chap. 1, is a section of �kT �M . A section of
�˝jT

� ˝�˝kT ��M is called a tensor field of type .j; k/.
A Riemannian metric tensor on a smooth manifold M is a smooth, symmet-

ric section g of ˝2T �M that is positive-definite at each point p 2 M ; that is,
gp.X;X/ > 0 for each nonzero X 2 TpM . For any fixed p 2 M , using a local
coordinate patch .U; '/ containingp, one can construct a positive, symmetric sec-
tion of ˝2T �U . Using a partition of unity, we can hence construct a Riemannian
metric tensor on any smooth, paracompact manifoldM . If we define the length of
a path 	 W Œ0; 1� ! M to be

L.	/ D
Z 1

0

g
�
	 0.t/; 	 0.t/

�1=2
dt;
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then

(3.3) d.p; q/ D inffL.	/ W 	.0/ D p; 	.1/ D qg

is a distance function making M a metric space, providedM is connected.
The notion of vector bundle often aids in making intrinsic definitions of im-

portant mathematical concepts. As an illustration, we note the following intrinsic
characterization of the contact form  on T �M , which was specified in local co-
ordinates in (14.17) of Chap. 1. Let z 2 T �M ; if � W T �M ! M is the natural
projection, let p D �.z/, so z 2 T �

pM . To define  at z, as .z/ 2 T �
z .T

�M/, we
specify how it acts on a tangent vector v 2 Tz.T

�M/. The specification is

(3.4) hv; .z/i D h.D�/v; zi;

where D� W Tz.T
�M/ ! TpM is the derivative of � , and the right side of (3.4)

is defined by the usual dual pairing of TpM and T �
pM . It is routine to check

that this agrees with (14.17) of Chap. 1 in any coordinate system on M . This
establishes again the result of �14 of Chap. 1, that the symplectic form � D d is
well defined on a cotangent bundle T �M .

4. Sard’s theorem

Let F W ˝ ! Rn be a C 1-map, with ˝ open in Rn. If p 2 ˝ and DF.p/ W
Rn ! Rn is not surjective, then p is said to be a critical point and F.p/ a critical
value. The set C of critical points can be a large subset of˝ , even all of it, but the
set of critical values F.C / must be small in Rn. This is part of Sard’s theorem.

Theorem 4.1. If F W ˝ ! Rn is a C 1-map, then the set of critical values of F
has measure 0 in Rn.

Proof. If K � ˝ is compact, cover K \ C with m-dimensional cubes Qj , with
disjoint interiors, of side ıj . Pick pj 2 C \ Qj , so Lj D DF.pj / has rank
� n � 1. Then, for x 2 Qj ,

F.pj C x/ D F.pj /C Ljx CRj .x/; kRj .x/k � �j D �j ıj ;

where �j ! 0 as ıj ! 0. Now Lj .Qj / is certainly contained in an .n � 1/-
dimensional cube of side C0ıj , where C0 is an upper bound for

p
mkDF k onK .

Since all points of F.Qj / are a distance � �j from (a translate of) Lj .Qj /, this
implies

meas F.Qj / � 2�j .C0ıj C 2�j /
n�1 � C1�j ı

n
j ;

provided ıj is sufficiently small that �j � ıj . Now
P
j ı

n
j is the volume of the

cover ofK \ C . For fixedK , this can be assumed to be bounded. Hence
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meas F.C \K/ � CK �;

where � D max f�j g. Picking a cover by small cubes, we make � arbitrarily small,
so meas F.C \K/ D 0. Letting Kj % ˝ , we complete the proof.

Sard’s theorem also treats the more difficult case when ˝ is open in Rm; m >

n. Then a more elaborate argument is needed, and one requires more differentia-
bility, namely that F is class C k , with k D m � nC 1. A proof can be found in
[Stb]. The theorem also clearly extends to smooth mappings between separable
manifolds.

Theorem 4.1 is applied in Chap. 1, in the study of degree theory. We give an-
other application of Theorem 4.1, to the existence of lots of Morse functions. This
application gives the typical flavor of how one uses Sard’s theorem, and it is used
in a Morse theory argument in Appendix C. The proof here is adapted from one
in [GP]. We begin with a special case:

Proposition 4.2. Let ˝ � Rn be open, f 2 C1.˝/. For a 2 Rn, set fa.x/ D
f .x/�a �x. Then, for almost every a 2 Rn, fa is a Morse function, that is, it has
only nondegenerate critical points.

Proof. Consider F.x/ D rf .x/I F W ˝ ! Rn. A point x 2 ˝ is a critical
point of fa if and only if F.x/ D a, and this critical point is degenerate only if,
in addition, a is a critical value of F . Hence the desired conclusion holds for all
a 2 Rn that are not critical values of F .

Now for the result on manifolds:

Proposition 4.3. LetM be an n-dimensional manifold, imbedded in RK . Let f 2
C1.M/, and, for a 2 RK , let fa.x/ D f .x/ � a � x, for x 2 M � RK . Then,
for almost all a 2 RK , fa is a Morse function.

Proof. Each p 2 M has a neighborhood ˝p such that some n of the coor-
dinates x� on RK produce coordinates on ˝p. Let’s say x1; : : : ; xn do it. Let
.anC1; : : : ; aK/ be fixed, but arbitrary. Then, by Proposition 5.2, for almost every
.a1; : : : ; an/ 2 Rn, fa has only nondegenerate critical points on ˝p. By Fubini’s
theorem, we deduce that, for almost every a 2 RK , fa has only nondegenerate
critical points on ˝p . (The set of bad a 2 RK is readily seen to be a countable
union of closed sets, hence measurable.) Covering M by a countable family of
such sets ˝p, we finish the proof.

5. Lie groups

A Lie group G is a group that is also a smooth manifold, such that the group
operations G � G ! G and G ! G given by .g; h/ 7! gh and g 7! g�1 are
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smooth maps. Let e denote the identity element of G. For each g 2 G, we have
left and right translations, Lg and Rg , diffeomorphisms on G, defined by

(5.1) Lg.h/ D gh; Rg.h/ D hg:

The set of left-invariant vector fields X on G, that is, vector fields satisfying

(5.2) .DLg /X.h/ D X.gh/;

is called the Lie algebra of G, and is denoted g. If X; Y 2 g, then the Lie bracket
ŒX; Y � belongs to g. Evaluation of X 2 g at e provides a linear isomorphism of g
with TeG.

A vector field X on G belongs to g if and only if the flow F tX it generates
commutes with Lg for all g 2 G, that is, g.F tXh/ D F tX .gh/ for all g; h 2 G. If
we set

(5.3) 	X .t/ D F tXe;

we obtain 	X .t C s/ D F sX .F tXe/ � e D .F tXe/.F sXe/, and hence

(5.4) 	X .s C t/ D 	X .s/	X .t/;

for s; t 2 R; we say 	X is a smooth, one-parameter subgroup of G. Clearly,

(5.5) 	 0
X .0/ D X.e/:

Conversely, if 	 is any smooth, one-parameter group satisfying 	 0.0/ D X.e/,
then F tg D g �	.t/ defines a flow generated by the vector field X 2 g coinciding
with X.e/ at e.

The exponential map

(5.6) Exp W g �! G

is defined by

(5.7) Exp.X/ D 	X .1/:

Note that 	sX .t/ D 	X .st/, so Exp.tX/ D 	X .t/. In particular, under the identi-
fication g ! TeG,

(5.8) D Exp.0/ W TeG �! TeG is the identity map:

The fact that each element X 2 g generates a one-parameter group has the
following generalization, to a fundamental result of S. Lie. Let h � g be a Lie
subalgebra, that is, h is a linear subspace and Xj 2 h ) ŒX1; X2� 2 h. By
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Frobenius’s theorem (established in �9 of Chap. 1, through each point p of G
there is a smooth manifold Mp of dimension k D dim h, which is an integral
manifold for h (i.e., h spans the tangent space of Mp at each q 2 Mp). We can
take Mp to be the maximal such (connected) manifold, and then it is unique. Let
H be the maximal integral manifold of h containing the identity element e.

Proposition 5.1. H is a subgroup of G.

Proof. Take h0 2 H and consider H0 D h�1
0 H ; clearly, e 2 H0. By left in-

variance, H0 is also an integral manifold of h, so H0 D H . This shows that
h0; h1 2 H ) h�1

0 h1 2 H , so H is a group.

In addition to left-invariant vector fields on G, one can consider all left-
invariant differential operators on G. This is an algebra, isomorphic to the “uni-
versal enveloping algebra” U.g/, which can be defined as

(5.9) U.g/ D
O

gC=J;

where gC is the complexification of g and J is the two-sided ideal in the tensor
algebra

N
gC generated by fXY � YX � ŒX; Y � W X; Y 2 gg.

There are other classes of objects whose left-invariant elements are of par-
ticular interest, such as tensor fields (particularly metric tensors) and differential
forms.

Given any ˛0 2 �kT �
e G, there is a unique k-form ˛ onG, invariant underLg ,

that is, satisfying L�
g˛ D ˛ for all g 2 G, equal to ˛0 at e. In case k D n D

dim G, if !0 is a nonzero element of �nT �
e G, the corresponding left-invariant

n-form ! onG defines also an orientation onG, and hence a left-invariant volume
form on G, called a (left) Haar measure. It is uniquely defined up to a constant
multiple. Similarly one has a right Haar measure. It is very important to be able
to integrate over a Lie group using Haar measure.

In many but not all cases left Haar measure is also right Haar measure; then G
is said to be unimodular. Note that if ! 2 �n.G/ gives a left Haar measure, then,
for each g 2 G, R�

g! is also a left Haar measure, so we must have

(5.10) R�
g! D �.g/!; � W G ! .0;1/:

Furthermore, �.gg0/ D �.g/�.g0/. If G is compact, this implies �.g/ D 1 for
all g, so all compact Lie groups are unimodular.

There are some particular Lie groups that we want to mention. Let n 2 ZC
and F D R or C. Then Gl.n; F / is the group of all invertible n� n matrices with
entries in F . We set

(5.11) Sl.n; F / D fA 2 Gl.n; F / W det A D 1g:
We also set

O.n/ D fA 2 Gl.n;R/ W At D A�1g;
SO.n/ D fA 2 O.n/ W det A D 1g;(5.12)
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and

U.n/ D fA 2 Gl.n;C/ W A� D A�1g;
SU.n/ D fA 2 U.n/ W det A D 1g:(5.13)

The Lie algebras of the groups listed above also have special names. We have
gl.n; F / D M.n; F /, the set of n � n matrices with entries in F . Also,

sl.n; F / D fA 2 M.n; F / W Tr A D 0g;
o.n/ D so.n/ D fA 2 M.n;R/ W At D �Ag;
u.n/ D fA 2 M.n;C/ W A� D �Ag;

su.n/ D fA 2 u.n/ W Tr A D 0g:
(5.14)

There are many other important matrix Lie groups and Lie algebras with
special names, but we will not list any more here. See [Helg, T], or [Var1] for
such lists.

6. The Campbell–Hausdorff formula

The Campbell–Hausdorff formula has the form

(6.1) Exp.X/ Exp.Y / D Exp
�C.X; Y /�;

whereG is any Lie group, with Lie algebra g, and ExpW g ! G is the exponential
map defined by (5.7);X and Y are elements of g in a sufficiently small neighbor-
hood U of zero. The map C W U �U ! g has a universal form, independent of g.
We give a demonstration similar to one in [HS], which was also independently
discovered by [Str].

We begin with the case G D Gl.n;C/ and produce an explicit formula for the
matrix-valued analytic functionX.s/ of s in the identity

(6.2) eX.s/ D eXesY ;

near s D 0. Note that this function satisfies the ODE

(6.3)
d

ds
eX.s/ D eX.s/Y:

We can produce an ODE for X.s/ by using the following formula, derived in
Exercises 7–10 of �4, Chap. 1:

(6.4)
d

ds
eX.s/ D eX.s/

Z 1

0

e��X.s/X 0.s/e�X.s/ d�:
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As shown there, we can rewrite this as

(6.5)
d

ds
eX.s/ D eX.s/„

�
ad X.s/

�
X 0.s/:

Here, ad is defined as a linear operator on the space of n � n matrices by

(6.6) ad X.Y / D XY � YX I

the function„ is

(6.7) „.z/ D
Z 1

0

e��z d� D 1 � e�z

z
;

an entire holomorphic function of z; and a holomorphic function of an operator is
defined either as in Exercise 10 of that set, or as in �5 of Appendix A. Comparing
(6.3) and (6.5), we obtain

(6.8) „
�
ad X.s/

�
X 0.s/ D Y; X.0/ D X:

We can obtain a more convenient ODE for X.s/ as follows. Note that

(6.9) eadX.s/ D Ad eX.s/ D Ad eX � Ad esY D ead X es ad Y :

Now let ‰.�/ be holomorphic near � D 1 and satisfy

(6.10) ‰.ea/ D 1

„.a/
D a

1 � e�a ;

explicitly,

(6.11) ‰.�/ D � log �

� � 1
:

It follows that

(6.12) ‰
�
ead Xes ad Y

�
„
�
ad X.s/

� D I;

so we can transform (6.8) to

(6.13) X 0.s/ D ‰
�
eadXes ad Y

�
Y; X.0/ D X:

Integrating gives the Campbell–Hausdorff formula for X.s/ in (6.2):

(6.14) X.s/ D X C
Z s

0

‰
�
eadXet ad Y

�
Y dt:

This is valid for ksY k small enough, if also X is close enough to 0.
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Taking the s D 1 case, we can rewrite this formula as

(6.15) eXeY D eC.X;Y /; C.X; Y / D X C
Z 1

0

‰
�
ead Xet ad Y �Y dt:

The formula (6.15) gives a power series in ad X and ad Y which is norm-
summable provided

(6.16) kad Xk � x; kad Y k � y;

with exCy � 1 < 1, that is,

(6.17) x C y < log 2:

We can extend the analysis above to the case where X and Y are vector fields
on a manifoldM , asking for a vector field X.s/ such that

(6.18) F1X.s/ D F1XF sY ;

where F tX is the flow generated by X , evaluated at time t . If there is such a family
X.s/, depending smoothly on s, material in �6 of Chap. 1, in place of material
in �4 cited above, leads to a formula parallel to (6.4), and hence to (6.8), in this
context. However, we cannot always solve (6.8), because ad X.s/ tends not to act
as a bounded operator on a Banach space of vector fields, and in fact one cannot
always solve (6.18) for X.s/ is this case. However, if there is a finite-dimensional
Lie algebra g of vector fields containing X and Y , then the analysis (6.9)–(6.17)
extends. We have

(6.19) F tXF tY D F tC.t;X;Y /;

with

(6.20) C.t; X; Y / D X C
Z 1

0

‰
�
ead tXead stY �Y ds;

provided kad tXk C kad tY k < log2, the operator norm kad Xk being computed
using any convenient norm on g. In particular, if M D G is a Lie group with Lie
algebra g, and X; Y 2 g, this analysis applies to yield the Campbell–Hausdorff
formula for general Lie groups.

7. Representations of Lie groups and Lie algebras

We define a representation of a Lie group G on a finite-dimensional vector space
V to be a smooth map

(7.1) � W G �! End.V /
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such that

(7.2) �.e/ D I; �.gg0/ D �.g/�.g0/; g; g0 2 G:

If F 2 C0.G/, that is, if F is continuous with compact support, we can define
�.F / 2 End.V / by

(7.3) �.F /v D
Z

G

F.g/�.g/v dg:

We get different results depending on whether left or right Haar measure is used.
Right now, let us use right Haar measure. Then, for g 2 G, we have

(7.4) �.F /�.g/v D
Z

G

F.x/�.xg/v dx D
Z

G

F.xg�1/�.x/v dx:

We also define the derived representation

(7.5) d� W g �! End.V /

by

(7.6) d� D D�.e/ W TeG �! End.V /;

using the identification g 
 TeG. Thus, for X 2 g,

(7.7) d�.X/v D lim
t!0

1

t

�
�.Exp tX/v � v�:

The following result states that d� is a Lie algebra homomorphism.

Proposition 7.1. For X; Y 2 g, we have

(7.8)
�
d�.X/; d�.Y /

� D d�
�
ŒX; Y �

�
:

Proof. We will first produce a formula for �.F /d�.X/, given F 2 C1
0 .G/.

In fact, making use of (7.4), we have

�.F /d�.X/v D lim
t!0

1

t

Z

G

�
F.g/�.g/�.Exp tX/ � F.g/�.g/�v dg

D lim
t!0

1

t

Z

G

�
F
�
g � Exp.�tX/� � F.g/

�
�.g/v dg

D ��.XF /v;

(7.9)



634 B. Manifolds, Vector Bundles, and Lie Groups

where XF denotes the left-invariant vector field X applied to F . It follows that

�.F /
�
d�.X/d�.Y / � d�.Y /d�.X/�v

D �.YXF � XYF /v D ���ŒX; Y �F �v;(7.10)

which by (7.9) is equal to �.F /d�
�
ŒX; Y �

�
v. Now, if F is supported near e 2 G

and integrates to 1, is easily seen that �.F / is close to the identity I , so this
implies (7.8).

There is a representation of G on g, called the adjoint representation, defined
as follows. Consider

(7.11) Kg W G �! G; Kg.h/ D ghg�1:

ThenKg.e/ D e, and we set

(7.12) Ad.g/ D DKg.e/ W TeG �! TeG;

identifying TeG 
 g. Note that Kg ı Kg 0 D Kgg 0 , so the chain rule implies
Ad.g/Ad.g0/ D Ad.gg0/.

Note that 	.t/ D g Exp.tX/g�1 is a one-parameter subgroup of G satisfying
	 0.0/ D Ad.g/X . Hence

(7.13) Exp.t Ad.g/X/ D g Exp.tX/ g�1:

In particular,

(7.14) Exp
�
.Ad Exp sY /tX

� D Exp.sY /Exp.tX/ Exp.�sY /:

Now, the right side of (7.14) is equal to F�s
Y ı F tX ı F sY .e/, so by results on the

Lie derivative of a vector field given in (8.1)–(8.3) of Chap. 1, we have

(7.15) Ad.Exp sY /X D F sY #X:

If we take the s-derivative at s D 0, we get a formula for the derived representation
of Ad, which is denoted ad, rather than d Ad. Using (8.3)–(8.5) of Chap. 1, we
have

(7.16) ad.Y /X D ŒY;X�:

In other words, the adjoint representation of g on g is given by the Lie bracket.
We mention that Jacobi’s identity for Lie algebras is equivalent to the statement
that

(7.17) ad
�
ŒX; Y �

� D �
ad.X/; ad.Y /

�
; 8 X; Y 2 g:
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If V has a positive-definite inner product, we say that the representation (7.1) is
unitary provided �.g/ is a unitary operator on V , for each g 2 G (i.e., �.g/�1 D
�.g/�).

We say the representation (7.1) is irreducible if V has no proper linear sub-
space invariant under �.g/ for all g 2 G. Irreducible unitary representations are
particularly important. The following version of Schur’s lemma is useful.

Proposition 7.2. A unitary representation � of G on V is irreducible if and only
if, for any A 2 End.V /,

(7.18) �.g/A D A�.g/; 8 g 2 G H) A D �I:

Proof. First, suppose � is irreducible and A commutes with �.g/ for all g. Then
so doesA�, henceACA� and .1=i/.A�A�/, so we may as well supposeA D A�.
Now, any polynomial p.A/ commutes with �.g/ for all g, so it follows that each
projection P� onto an eigenspace of A commutes with all �.g/. Hence the range
of P� is invariant under � , so if P� ¤ 0, it must be I , and A D �I .

Conversely, suppose the implication (7.18) holds. Then if W � V is invariant
under � , the orthogonal projection P of V onto W must commute with all �.g/,
so P is a scalar multiple of I , hence either 0 or I . This completes the proof.

Corollary 7.3. Assume G is connected. Then a unitary representation ofG on V
is irreducible if and only if, for any A 2 End.V /,

(7.19) d�.X/A D A d�.X/; 8 X 2 g H) A D �I:

Proof. We mention that

(7.20) �.Exp tX/ D et d�.X/

and leave the details to the reader.

Given a representation � of G on V , there is also a representation of the uni-
versal enveloping algebra U.g/, defined as follows. If

(7.21) P D
X

��m
ci1���i�Xi1 � � �Xi� ; Xj 2 g;

with ci1���i� 2 C, we have

(7.22) d�.P / D
X

��m
ci1���i�d�.Xi1/ � � �d�.Xi�/:

Proposition 7.4. SupposeG is connected. Let P 2 U.g/, and assume

(7.23) PX D XP; 8 X 2 g:
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If � is an irreducible unitary representation of G on V , then d�.P / is a scalar
multiple of the identity, that is,

d�.P / D �I:

Proof. Immediate from Corollary 7.3.

So far in this section we have concentrated on finite-dimensional representa-
tions. It is also of interest to consider infinite-dimensional representations. One
example is the right-regular representation of G on L2.G/:

(7.24) R.g/f .x/ D f .xg/:

If G has right-invariant Haar measure, then R.g/ is a unitary operator on L2.G/
for each g 2 G, and one readily verifies that R.g/R.g0/ D R.gg0/. However,
the smoothness hypothesis made on � in (7.1) does not hold here. When working
with an infinite-dimensional representation � of G on a Banach space V , one
makes instead the hypothesis of strong continuity: For each v 2 V , the map
g 7! �.g/v is continuous from G to V , with its norm topology. If the map is
C1, one says v is a smooth vector for the representation v. For example, each
f 2 C1

0 .G/ is a smooth vector for the representation (7.24). Of course, C1
0 .G/

is dense in L2.G/. More generally, the set of smooth vectors for any strongly
continuous representation � of G on a Banach space V is dense in V . In fact, for
F 2 C1

0 .G/, �.F / is still well defined by (7.3), and the space

(7.25) G� D f�.F /v W F 2 C1
0 .G/; v 2 V g

is readily verified to be a dense subspace of V consisting of smooth vectors. If V
is finite dimensional, this implies that G� D V , so any strongly continuous, finite-
dimensional representation of a Lie group automatically possesses the smoothness
property used above.

The occasional use made of Lie group representations in this book will not
require much development of the theory of infinite-dimensional representations,
so we will not go further into it here. One can find treatments in many places,
including [HT, Kn, T, Var2, Wal1].

8. Representations of compact Lie groups

Throughout this section, G will be a compact Lie group. If � is a representation
of G on a finite-dimensional complex vector space V , we can always put an inner
product on V so that � is unitary. Indeed, let ..u; v// be any Hermitian inner
product on V , and set
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(8.1) .u; v/ D
Z

G

..�.g/u; �.g/v// dg:

Note that if V1 is a subspace of V invariant under �.g/ for all g 2 G, and if
� is unitary, then the orthogonal complement of V1 is also invariant. Thus, if �
is not irreducible on V , we can decompose it, and we can obviously continue this
process only a finite number of times if dim V is finite. Thus � breaks up into a
direct sum of irreducible unitary representations of G.

Let � and � be two representations of G, on V and W , respectively. We say
they are equivalent if there is A 2 L.V;W /, invertible, such that

(8.2) �.g/ D A�1�.g/A; 8 g 2 G:

If these representations are unitary, we say they are unitarily equivalent if A can
be taken to be unitary.

Suppose that � and � are irreducible and unitary, and (8.2) holds. Then
�.g/� D A��.g/�.A�1/�, for all g 2 G, so �.g/ D .A�A/�.g/.A�A/�1. By
Schur’s lemma, A�A must be a (positive) scalar, say b2. Replacing A by b�1A
makes it unitary. Breaking up a general � into irreducible representations, we de-
duce that whenever� and � are finite-dimensional, unitary representations, if they
are equivalent, then they are unitarily equivalent.

We now derive some results known as Weyl orthogonality relations, which play
an important role in the study of representations of compact Lie groups. To begin,
let � and � be two irreducible representations of a compact group G, on finite-
dimensional spaces V andW , respectively. Consider the representation � D �˝�
on V ˝W 0 
 L.W; V /, defined by

(8.3) �.g/.A/ D �.g/A�.g/�1; g 2 G; A 2 L.W; V /:

Let Z be the linear subspace of L.V;W / on which � acts trivially. We want to
specify Z. Note that A0 2 Z if and only if

(8.4) �.g/A0 D A0�.g/; 8 g 2 G:

Since this implies that the range ofA0 is invariant under � and KerA0 is invariant
under �, we see that either A0 D 0 or A0 is an isomorphism fromW to V . In the
latter case, we have �.g/ D A0�.g/A

�1
0 , so the representations � and � would

have to be equivalent. In this case, for arbitrary A 2 Z, we would have

�.g/A D A�.g/ D AA�1
0 �.g/A0;

or �.g/AA�1
0 D AA�1

0 �.g/, so Schur’s lemma implies that AA�1
0 is a scalar. We

have proved the following result:
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Proposition 8.1. If � and � are finite-dimensional, irreducible representations
of G and if � D � ˝ �, then the trivial representation occurs not at all in � if �
and � are not equivalent, and it occurs acting on a one-dimensional subspace of
V ˝W 0 if � and � are equivalent.

The next ingredient for the orthogonality relation is the study of the operator

(8.5) P D
Z

G

�.g/ dg:

Here � is a finite-dimensional representation of the compact group G, not nec-
essarily irreducible, and dg denotes Haar measure, with total mass 1. Note that

(8.6) �.y/P D
Z

G

�.yg/ dg D P D P�.y/;

for all y 2 G. Hence

(8.7) P 2 D P

Z

G

�.g/ dg D
Z

G

P�.g/ dg D P;

so P is a projection. Also, if � is unitary, we see that P D P �.
Now, if � is unitary, it gives a representation both on the range R.P / and on

the kernel Ker P . It is clear from (8.5) that, given v 2 V , kPvk < kvk unless
�.g/v D v, for all g 2 G. Consequently, � operates like the identity on R.P /,
but we do not have �.g/v D v for all g 2 G, for any nonzero v 2 Ker P . We
have proved:

Proposition 8.2. If � is a unitary representation of G on V , then P , given by
(8.5), is the orthogonal projection onto the subspace of V on which � acts triv-
ially.

The following is a special case:

Corollary 8.3. If � is a nontrivial, irreducible, unitary representation, and P is
given by (8.5), then P D 0.

We apply Proposition 8.2 to

(8.8) Q D
Z

G

�.g/˝ �.g/ dg;

with � and � irreducible. By Proposition 8.1, we see that

(8.9) Q D 0 if � and � are not equivalent.
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On the other hand, if � D � , thenQ has as its range the set of scalar multiples of
the identity operator on V (if � acts on V ). Note that � ˝ � leaves invariant the
space of elementsA 2 L.V; V / of trace zero, which is the orthogonal complement
(with respect to the Hilbert–Schmidt inner product) of the space of scalars, so Q
must annihilate this space. Thus Q is given by

(8.10) Q.A/ D .d�1 Tr A/I; � D �; d D dim V:

The identities (8.9) and (8.10) are equivalent to the Weyl orthogonality relations.
If we express � and � as matrices, with respect to some orthonormal bases, we
get the following theorem:

Theorem 8.4. Let � and � be inequivalent irreducible, unitary representations
of G, on V and W , with matrix entries �ij and �k`, respectively. Then

(8.11)
Z

G

�ij .g/�k`.g/ dg D 0:

Also,

(8.12)
Z

G

�ij .g/�k`.g/ dg D 0; unless i D k and j D `:

Furthermore,

(8.13)
Z

G

j�ij .g/j2 dg D d�1;

where d D dim V D Tr �.e/.

Hence, if f�kg is a complete set of inequivalent, irreducible, unitary represen-
tations of G on spaces Vk , of dimension dk , then

(8.14) d
1=2

k
�kij .g/

forms an orthonormal set in L2.G/. The following is the Peter–Weyl theorem:

Theorem 8.5. The orthonormal set (8.14) is complete.

In other words, the linear span of (8.14) is dense. If G is given as a group of
unitaryN�N matrices, this result is elementary. In fact, the linear span of (8.14) is
an algebra (take tensor products of �k and �` and decompose into irreducibles),
and is closed under complex conjugates (pass from � to �), so if we know it
separates points (which is clear if G � U.N/), the Stone–Weierstrass theorem
applies.
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If we do not know a priori that G � U.N/, we can prove the theorem by
considering the right-regular representation of G on L2.G/:

(8.15) R.g/f .x/ D f .xg/:

If we endowG with a bi-invariant Riemannian metric and consider the associated
Laplace operator�, which is then a bi-invariant differential operator, we see that
the representation R leaves invariant each eigenspace E` of �. Now, E` is finite-
dimensional, and the restriction R` of R to E` splits into irreducibles:

(8.16) E` D E`1 ˚ � � � ˚ E`N ; N D N.`/;

say R`
ˇ̌
E`m

D R`m. Thus there is a unitary map A W E`m ! Vk , for some

k D k.`;m/, such that R`m D A�kA�1. If feig is an orthonormal basis of Vk
with respect to which the matrix of �k.g/ is

�
�kij .g/

�
, then ui D A�1ei gives an

orthonormal basis of E`m, and we have

(8.17) ui .xg/ D
X

j

�kij .g/uj .x/:

In particular, taking x D e,

(8.18) ui .g/ D
X

j

cj�
k
ij .g/; cj D uj .e/:

This shows that each space E`m consists of finite linear combinations of the func-
tions in (8.14). Since

L2.G/ D
M

`

E` D
M

`

M

m

E`m;

this proves Theorem 8.5.
The following corollary will be useful in the next section.

Corollary 8.6. If G1 and G2 are two compact Lie groups, then the irreducible,
unitary representations of G D G1 �G2 are, up to unitary equivalence, precisely
those of the form

(8.19) �.g/ D �1.g1/˝ �2.g2/;

where g D .g1; g2/ 2 G, and �j 2 bGj is a general, irreducible, unitary repre-
sentation of Gj .

Proof. Given irreducible, unitary representations �j ofGj , the irreducibility and
unitarity of (8.19) are clear. It remains to prove the completeness of the set of
such representations. For this, it suffices to show that the matrix entries of such
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representations have dense linear span in L2.G1 � G2/. This follows from the
general elementary fact that tensor products of orthonormal bases of L2.G1/ and
L2.G2/ form an orthonormal basis of L2.G1 �G2/.

9. Representations of SU(2) and related groups

The group SU(2) is the group of 2�2, complex, unitary matrices of determinant 1,
that is,

(9.1) SU.2/ D
��

z1 z2
�z2 z1

�
W jz1j2 C jz2j2 D 1; zj 2 C

	
:

As a set, SU(2) is naturally identified with the unit sphere S3 in C2. Its Lie algebra
su(2) consists of 2 � 2, complex, skew-adjoint matrices of trace zero. A basis of
su(2) is formed by

(9.2) X1 D 1

2

�
i 0

0 �i
�
; X2 D 1

2

�
0 1

�1 0
�
; X3 D 1

2

�
0 i

i 0

�
:

Note the commutation relations

(9.3) ŒX1; X2� D X3; ŒX2; X3� D X1; ŒX3; X1� D X2:

The group SO(3) is the group of linear isometries of R3 with determinant 1. Its
Lie algebra so(3) is spanned by elements J`, ` D 1; 2; 3, which generate rotations
about the x`-axis. One readily verifies that these satisfy the same commutation
relations as in (9.3). Thus SU(2) and SO(3) have isomorphic Lie algebras. There
is an explicit homomorphism

(9.4) p W SU.2/ �! SO.3/;

which exhibits SU(2) as a double cover of SO(3). One way to construct p is the
following. The linear span g of (9.2) over R is a three-dimensional, real vector
space, with an inner product given by .X; Y / D � Tr XY . It is clear that the
representation p of SU(2) by a group of linear transformations on g given by
p.g/ D gXg�1 preserves this inner product and gives (9.4). Note that Ker p D
fI;�I g.

If we regardXj as left-invariant vector fields on SU(2), set

(9.5) � D X21 CX22 CX23 ;
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a second-order, left-invariant differential operator. It follows easily from (9.3) that
Xj and � commute:

(9.6) �Xj D Xj�; 1 � j � 3:

Suppose � is an irreducible unitary representation of SU(2) on V . Then �
induces a skew-adjoint representationd� of the Lie algebra su(2) and an algebraic
representation of the universal enveloping algebra. By (9.6), d�.�/ commutes
with d�.Xj /, j D 1; : : : ; 3. Thus, if � is irreducible, Proposition 7.4 implies

(9.7) d�.�/ D ��2I;

for some � 2 R. (Since d�.�/ is a sum of squares of skew-adjoint operators, it
must be negative.) Let

(9.8) Lj D d�.Xj /:

Now we will diagonalize L1 on V . Set

(9.9) V� D fv 2 V W L1v D i�vg; V D
M

i�2 spec L1

V�:

The structure of � is defined by how L2 and L3 behave on V�. It is convenient
to set

(9.10) L˙ D L2 � iL3:

We have the following key identity, as a direct consequence of (9.3):

(9.11) ŒL1; L˙� D ˙iL˙:

Using this, we can establish the following:

Lemma 9.1. We have

(9.12) L˙ W V� �! V�˙1:

In particular, if i� 2 spec L1, then either LC D 0 on V� or � C 1 2 spec L1,
and also either L� D 0 on V� or � � 1 2 spec L1.

Proof. Let v 2 V�. By (9.11) we have

L1L˙v D L˙L1v ˙ iL˙v D i.�˙ 1/L˙v;

which establishes the lemma. The operatorsL˙ are called ladder operators.
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To continue, if � is irreducible on V , we claim that spec i�1L1 must consist
of a sequence

(9.13) spec i�1L1 D f�0; �0 C 1; : : : ; �0 C k D �1g;

with

(9.14) LC W V�0Cj ! V�0CjC1 isomorphism, for 0 � j � k � 1;

and

(9.15) L� W V�1�j ! V�1�j�1 isomorphism, for 0 � j � k � 1:

In fact, we can compute

(9.16) L�LC D L22 C L23 C i ŒL3; L2� D ��2 � L21 � iL1
on V , and

(9.17) LCL� D ��2 �L21 C iL1

on V , so

(9.18)
L�LC D �.�C 1/� �2 on V�;

LCL� D �.� � 1/� �2 on V�:

Note that since L2 and L3 are skew-adjoint, LC D �L��, so

LCL� D �L��L�; L�LC D �L�CLC:

Thus
Ker LC D Ker L�LC; Ker L� D Ker LCL�:

These observations establish (9.13)–(9.15).
Considering that d� acts on the linear span of fv;LCv; : : : L�1��0C vg for any

nonzero v 2 V�0
, and that irreducibility implies this must be all of V , we have

(9.19) dim V� D 1; �0 � � � �1:

From (9.18) we see that �1.�1 C 1/ D �2 D �0.�0 � 1/. Hence,

(9.20) �1 � �0 D k H) �0 D �k
2
; �1 D k

2
;
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and we have

(9.21) dim V D k C 1; �2 D 1

4
k.k C 2/ D 1

4
.dim V 2 � 1/:

A nonzero element v 2 V such that LCv D 0 is called a “highest-weight
vector” for the representation � of SU(2) on V . It follows from the analysis above
that all highest-weight vectors for an irreducible representation on V belong to
the one-dimensional space V�1

.
The calculations above establish that an irreducible, unitary representation �

of SU(2) on V is determined uniquely up to equivalence by dim V . We are ready
to prove the following:

Proposition 9.2. There is precisely one equivalence class of irreducible, unitary
representations of SU(2) on CkC1, for each k D 0; 1; 2; : : : .

We will realize each such representation, which is denotedDk=2, on the space

(9.22) Pk D fp.z/ W p homogeneous polynomial of degree k on C2g;

with SU(2) acting on Pk by

(9.23) Dk=2.g/f .z/ D f .g�1z/; g 2 SU.2/; z 2 C2:

Note that, for X 2 su(2),

(9.24) dDk=2.X/f .z/ D d

dt
f
�
e�tX z

�ˇ̌
tD0 D �.@1f; @2f / �X

�
z1
z2

�
;

where @jf D @f=@zj . A calculation gives

L1f .z/ D � i
2
.z1@1f � z2@2f /;

L2f .z/ D �1
2
.z2@1f � z1@2f /;

L3f .z/ D � i
2
.z2@1f C z1@2f /:

(9.25)

In particular, for

(9.26) 'kj .z/ D zk�j
1 zj2 2 Pk; 0 � j � k;

we have

(9.27) L1'kj D i


�k
2

C j
�
'kj ;
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so

(9.28) V D Pk H) span 'kj D V�k=2Cj ; 0 � j � k:

Note that

(9.29) LCf .z/ D �z2@1f .z/; L�f .z/ D z1@2f .z/;

so

(9.30) LC'kj D �.k � j /'k;jC1; L�'kj D j'k;j�1:

We see that the structure of the representation Dk=2 of SU(2) on Pk is as
described in (9.12)–(9.21). The last detail is to show that Dk=2 is irreducible. If
not, then Pk splits into a direct sum of several irreducible subspaces, each of
which has a one-dimensional space of highest-weight vectors, annihilated by LC.
But as seen above, within Pk , only multiples of zk2 are annihilated by LC, so the
representaitonDk=2 of SU(2) on Pk is irreducible.

We can deduce the classification of irreducible, unitary representations of
SO(3) from the result above as follows. We have the covering homomorphism
(9.4), and Ker p D f˙I g. Now each irreducible representation dj of SO(3) de-
fines an irreducible representation dj ı p of SU(2), which must be equivalent to
one of the representationsDk=2 described above. On the other hand,Dk=2 factors
through to yield a representation of SO(3) if and only if Dk=2 is the identity on
Ker p, that is, if and only if Dk=2.�I / D I . Clearly, this holds if and only if
k is even. Thus all the irreducible, unitary representations of SO(3) are given by
representations eDj on P2j , uniquely defined by

(9.31) eDj

�
p.g/

� D Dj .g/; g 2 SU.2/:

It is conventional to use Dj instead of eDj to denote such a representation of
SO(3). Note that Dj represents SO(3) on a space of dimension 2j C 1, and

(9.32) dDj .�/ D �j.j C 1/:

Also, we can classify the irreducible representations of U(2), using the results
on SU(2). To do this, use the exact sequence

(9.33) 1 ! K ! S1 � SU.2/ ! U.2/ ! 1;

where “1” denotes the trivial multiplicative group, and

(9.34) K D f.!; g/ 2 S1 � SU.2/ W g D !�1I; !2 D 1g:
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The irreducible representations of S1 � SU.2/ are given by

(9.35) �mk.!; g/ D !mDk=2.g/ on Pk;

with m; k 2 Z, k � 0. Those giving a complete set of irreducible represen-
tations of U(2) are those for which �mk.K/ D I , that is, those for which
.�1/mDk=2.�I / D I . Since Dk=2.�I / D .�1/kI , we see the condition is that
mC k be an even integer.

We now consider the representations of SO(4). First note that SO(4) is covered
by SU(2)�SU(2). To see this, equate the unit sphere S3 � R4, with its standard
metric, to SU(2), with a bi-invariant metric. Then SO(4) is the connected compo-
nent of the identity in the isometry group of S3. Meanwhile, SU(2)�SU(2) acts
as a group of isometries, by

(9.36) .g1; g2/ � x D g1xg
�1
2 ; gj 2 SU.2/:

Thus we have a map

(9.37) � W SU.2/ � SU.2/ �! SO.4/:

This is a group homomorphism. Note that .g1; g2/2 Ker � implies g1 Dg2 D ˙I .
Furthermore, a dimension count shows � must be surjective, so

(9.38) SO.4/ 
 SU.2/ � SU.2/=f˙.I; I /g:

As shown in �8, ifG1 andG2 are compact Lie groups, andG D G1�G2, then
the set of all irreducible, unitary representations of G, up to unitary equivalence,
is given by

(9.39) f�.g/ D �1.g1/˝ �2.g2/ W �j 2 bGj g;

where g D .g1; g2/ 2 G and bGj parameterizes the irreducible, unitary rep-
resentations of Gj . In particular, the irreducible unitary representations of
SU(2)�SU(2), up to equivalence, are precisely the representations of the form

(9.40) 	k`.g/ D Dk=2.g1/˝D`=2.g2/; k; ` 2 f0; 1; 2; : : : g;

acting on Pk ˝ P` 
 CkC1 ˝ C`C1. By (9.38), the irreducible, unitary rep-
resentations of SO(4) are given by all 	k` such that k C ` is even, since, for
p0 D .�I;�I / 2 SU(2)�SU(2), 	k`.p0/ D .�1/kC`I .

We next consider the problem of decomposing the tensor-product representa-
tionsDk=2˝D`=2 of SU(2) (i.e., the composition of (9.40) with the diagonal map
SU(2),!SU(2)�SU(2)) into irreducible representations. We may as well assume
that ` � k. Note that �k` D Dk=2 ˝D`=2 acts on
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Pk` D ff .z; w/ W polynomial on C2 � C2;

homogeneous of degree k in z; ` in wg;(9.41)

as

(9.42) �k`.g/f .z; w/ D f .g�1z; g�1w/:

Parallel to (9.25) and (9.29), we have, on Pk`,

L1f D � i

2
.z1@z1

f � z2@z2
f C w1@w1

f �w2@w2
f /;

LCf D � z2@z1
f �w2@w1

f; L�f D z1@z2
f C w1@w2

f:

(9.43)

To decompose Pk` into irreducible subspaces, we specify KerLC. In fact, a holo-
morphic function f .z; w/ annihilated by LC is of the form

(9.44) f .z; w/ D g.z2; w2; w2z1 � z2w1/;

and the kernel of LC in Pk` is the linear span of

(9.45)  k`�.z; w/ D zk��
2 w

`��
2 .w2z1 � z2w1/

�; 0 � � � `:

A calculation gives

(9.46) L1 k`� D i

2
.k C ` � 2�/ k`�:

It follows that, for fixed k; `, 0 � ` � k, and for each � D 0; : : : ; `,  k`� is the
highest-weight vector of a representation equivalent to D.kC`�2�/=2, so we have

(9.47)

Dk=2 ˝D`=2 

M̀

�D0
D.kC`�2�/=2 D D.k�`/=2 ˚D.k�`/=2C1 ˚ � � � ˚D.kC`/=2:

This is called the Clebsch–Gordon series.
Extensions of the results presented here to more general compact Lie groups,

due mainly to E. Cartan and H. Weyl, can be found in a number of places, includ-
ing [T, Var1, Wal1].
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