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9 Poincaré lemma and cohomologies 190

9.1 Simple examples of closed non-exact forms 191
9.2 Construction of a potential on contractible manifolds 192
9.3∗ Cohomologies and deRham complex 198

Summary of Chapter 9 203
10 Lie groups: basic facts 204

10.1 Automorphisms of various structures and groups 204



Contents vii

10.2 Lie groups: basic concepts 210
Summary of Chapter 10 213

11 Differential geometry on Lie groups 214
11.1 Left-invariant tensor fields on a Lie group 214
11.2 Lie algebra G of a group G 222
11.3 One-parameter subgroups 225
11.4 Exponential map 227
11.5 Derived homomorphism of Lie algebras 230
11.6 Invariant integral on G 231
11.7 Matrix Lie groups: enjoy simplifications 232

Summary of Chapter 11 243
12 Representations of Lie groups and Lie algebras 244

12.1 Basic concepts 244
12.2 Irreducible and equivalent representations, Schur’s lemma 252
12.3 Adjoint representation, Killing–Cartan metric 259
12.4 Basic constructions with groups, Lie algebras and their representations 269
12.5 Invariant tensors and intertwining operators 278
12.6∗ Lie algebra cohomologies 282

Summary of Chapter 12 287
13 Actions of Lie groups and Lie algebras on manifolds 289

13.1 Action of a group, orbit and stabilizer 289
13.2 The structure of homogeneous spaces, G/H 294
13.3 Covering homomorphism, coverings SU (2) → SO(3) and

SL(2, C) → L↑
+ 299

13.4 Representations of G and G in the space of functions on a G-space,
fundamental fields 310

13.5 Representations of G and G in the space of tensor fields of type ρ̂ 319
Summary of Chapter 13 325

14 Hamiltonian mechanics and symplectic manifolds 327
14.1 Poisson and symplectic structure on a manifold 327
14.2 Darboux theorem, canonical transformations and symplectomorphisms 336
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Preface

This is an introductory text dealing with a part of mathematics: modern differential geometry
and the theory of Lie groups. It is written from the perspective of and mainly for the needs
of physicists. The orientation on physics makes itself felt in the choice of material, in the
way it is presented (e.g. with no use of a definition–theorem–proof scheme), as well as in
the content of exercises (often they are closely related to physics).

Its potential readership does not, however, consist of physicists alone. Since the book
is about mathematics, and since physics has served for a fairly long time as a rich source
of inspiration for mathematics, it might be useful for the mathematical community as
well. More generally, it is suitable for anybody who has some (rather modest) preliminary
background knowledge (to be specified in a while) and who desires to become familiar in
a comprehensible way with this interesting, important and living subject, which penetrates
increasingly into various branches of modern theoretical physics, “pure” mathematics itself,
as well as into its numerous applications.

So, what is the minimal background knowledge necessary for a meaningful study of this
book? As mentioned above, the demands are fairly modest. Indeed, the required mathe-
matical background knowledge does not go beyond what should be familiar from standard
introductory undergraduate mathematics courses taken by physics or even engineering ma-
jors. This, in particular, includes some calculus as well as linear algebra (the reader should
be familiar with things like partial derivatives, several variables Taylor expansion, multiple
Riemann integral, linear maps versus matrices, bases and subspaces of a linear space and
so on). Some experience in writing and solving simple systems of ordinary differential
equations, as well as a clear understanding of what is actually behind this activity, is highly
desirable. Necessary basics in algebra in the form used in the main text are concisely sum-
marized in Appendix A at the end of the book, enabling the reader to fill particular gaps
“on the run,” too.

The book is intentionally written in a form which makes it possible to be fully grasped
also by a self-taught person – anybody who is attracted by tensor and spinor fields or by fiber
bundles, who would like to learn how differential forms are differentiated and integrated,
who wants to see how symmetries are related to Lie groups and algebras as well as to
their representations, what is curvature and torsion, why symplectic geometry is useful in
Lagrangian and Hamiltonian mechanics, in what sense connections and gauge fields realize

xi



xii Preface

the same idea, how Noetherian currents emerge and how they are related to conservation
laws, etc.

Clearly, it is highly advantageous, as the scope of the book indicates, to be familiar (at
least superficially) with the relevant parts of physics on which the applications of various
techniques are illustrated. However, one may derive profit from the book (in terms of geom-
etry alone) even with no background from physics. If we have never seen, say, Maxwell’s
equations and we are not aware at all of their role in physics, then although we will not be able
to understand why such attention is paid to them, nevertheless we will understand perfectly
what we do with these equations here from the technical point of view. We will see how
these partial differential equations may be reformulated in terms of differential forms, what
the action integral looks like in this particular case, how conservation laws may be derived
from it by means of the energy–momentum tensor and so on. And if we find it interesting,
we may hopefully also learn some “traditional” material on electrodynamics later.

If we, in like manner, know nothing about general relativity, then although we will not
understand from where the concept of a “curved” space-time endowed with a metric tensor
emerged, still we will learn the basics of what space-time is from a geometrical point of view
and what is generally done there. We will not penetrate into the physical heart of the Einstein
equations for the gravitational field, we will see, however, their formal structure and we will
learn some simple, though at the same time powerful, techniques for routine manipulations
with these equations. Mastering this machinery then greatly facilitates grasping the physical
side of the theory, if later we were to read something written about general relativity from
the physical perspective.

The key qualification asked of the future reader is a real interest in learning the subject
treated in the book not only in a Platonic way (say, for the sake of an intellectual conversation
at a party) but rather at a working level. Needless to say, one then has to accept a natural con-
sequence: it is not possible to achieve this objective by a passive reading of a “noble science”
alone. On the contrary, a fairly large amount of “dirty” self-activity is needed (an ideal poten-
tial reader should be pleased by reading this fact), inevitably combined with due investment
of time. The formal organization of the book strongly promotes this method of study.

A specific feature of the book is its strong emphasis on developing the general theory
through a large number of simple exercises (more than a thousand of them), in which the
reader analyzes “in a hands-on fashion” various details of a “theory” as well as plenty of
concrete examples (the proof of the pudding is in the eating). This style is highly appreciated,
according to my teaching experience, by many students.

The beginning of an exercise is indicated by a box containing its number (as an example,
14.4.3 denotes the third exercise in Section 4, Chapter 14), the end of the exercise is marked
by a square �. The majority of exercises (around 900) are endowed with a hint (often quite
detailed) and some of them, around 50, with a worked solution. The symbol • marks the
beginning of “text,” which is not an exercise (a “theory” or a comment to exercises). Starred
sections (like 12.6∗) as well as starred exercises may be omitted at the first reading (they
may be regarded as a complement to the “hard core” of the book; actually they need not be
harder but more specific material is often treated there).
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This book contains a fairly large amount of material, so that a few words might be useful
on how to read it efficiently. There are several ways to proceed, depending on what we
actually need and how much time and effort we are willing to devote to the study.

The basic way, which we recommend the most, consists in reading systematically from
cover to cover and solving (nearly) all the problems step by step. This is the way in which we
may make full use of the text. The subject may be understood in sufficient broadness, with a
lot of interrelations and applications. This needs, however, enough motivation and patience.

If we lack either, we may proceed differently. Namely, we will solve in detail only those
problems which we, for some reason, regard as particularly interesting or from which we
crucially need the result. Proceeding in this way, it may happen here and there that we will
not be able to solve some problem; we are lacking some vital link (knowledge or possibly
a skill) treated in the material being omitted. If we are able to locate the missing link (the
numbers of useful previous exercises, mentioned in hints, might help in doing so), we simply
fill this gap at the relevant point.

Yet more quickly will proceed a reader who decides to restrict their study to a particular
direction of interest and who is interested in the rest of the book only to the extent that it
is important for his or her preferred direction. As an aid to such a reader we present here a
scheme showing the logical dependence of the chapters:

(The scheme does not represent the dependence completely; several sections, short parts
or even individual exercises would require the drawing of additional arrows, making the
scheme then, however, virtually worthless.)

To be more explicit, one could mention the following possible particular directions of
interest.

1. The geometry needed for the fundamentals of general relativity (covariant derivatives, curvature
tensor, geodesics, etc.).

One should follow the line 1 → 2 → 3 → 4 → 15 (similar material goes well with advanced
continuum mechanics). If we want to master working with forms, too (to grasp, as an example,
Section 15.6, dealing with the computation of the Riemann tensor in terms of Cartan’s structure
equations, or Section 16.5 on Einstein’s equations and their derivation from an action integral), we
have to add Chapters 5–7.

2. Elementary theory of Lie groups and their representations (“(differential) geometry-free mini-
course”).

The route might contain the chapters (or only the explicitly mentioned sections of some of them)
1 → 2.4 → 10 → 11.7 → 12 → 13.1–13.3.
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3. Hamiltonian mechanics and symplectic manifolds.
The minimal itinerary contains Chapters 1 → 2 → 3 → beginning of 4 → 5 → 6 → 7 → 14.

Its extension (the formulation of Lagrangian and Hamiltonian mechanics on the fiber bundles T M
and T ∗ M respectively) takes place in Chapters 17 and 18. If we have the ambition to follow the
more advanced sections on symmetries (Sections 14.5–14.7 and 18.4), we need to understand the
geometry on Lie groups and the actions of Lie groups on manifolds (Chapters 11–13).

4. Basics of working with differential forms.
The route could be 1 → 2 → 3 → beginning of 4 → 5 → 6 → 7 → 8 → 9, or perhaps adding

the beginning of Chapter 16.

This book stems from (and in turn covers) several courses I started to give roughly 15
years ago for theoretical physics students at the Faculty of Mathematics and Physics in
Bratislava. It has been, however, extended (for the convenience of those smart students
who are interested in a broader scope on the subject) as well as polished a bit (although
its presentation often still resembles more the style of informal lectures than that of a dry
“noble-science monograph”). In order to mention an example of how the book may be
used by a teacher, let me briefly note what four particular formal courses are covered by
the book. The first, fairly broad one, is compulsory and it corresponds roughly to (parts of)
Chapters 1–9 and 14–16. Thus it is devoted to the essentials of general differential geometry
and an outline of its principal applications. The other three courses are optional and they
treat more specific parts of the subject. Namely, (elementary) Lie groups and algebras and
their representations (it reproduces more or less the “particular direction of interest” number
2, mentioned above), geometrical methods in classical mechanics (the rest of Chapter 14
and Chapters 17 and 18) and connections and gauge fields (Chapters 19–21).

I have benefited from numerous discussions about geometry in physics with colleagues
from the Department of Theoretical Physics, in particular with Pal’o Ševera and Vlado Balek.

I thank Pavel Bóna for his critical comments on the Slovak edition of the book, Vlado
Bužek and Vlado Černý for constant encouragement during the course of the work and the
former also for the idea to publish it abroad.

Thanks are due to E. Bartoš, J. Buša, V. Černý, J. Hitzinger, J. Chlebı́ková, E. Masár,
E. Saller, S. Slisz and A. Šurda for helping me navigate the troubled waters of computer
typesetting (in particular through the subtleties of TEX) and to my sons, Stanko and Mirko,
for drawing the figures (in TEX).

I would like to thank the helpful and patient people of Cambridge University Press,
particularly Tamsin van Essen, Vincent Higgs, Emma Pearce and Simon Capelin. I would
also like to thank all the (anonymous) referees of Cambridge University Press for valuable
comments and suggestions (e.g. for the idea to complement the summaries of the individual
chapters by a list of the most relevant formulas).

I am indebted to Arthur Greenspoon for careful reading of the manuscript. He helped to
smooth out various pieces of the text which had hardly been continuous before.

Finally, I wish to thank my wife, L’ubka, and my children, Stanko, Mirko and Danka,
for the considerable amount of patience displayed during the years it took me to write this
book.
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I tried hard to make Differential Geometry and Lie Groups for Physicists error-free,
but spotting mistakes in one’s own writing can be difficult in a book-length work. If you
notice any errors in the book or have suggestions for improvements, please let me know
(fecko@fmph.uniba.sk). Errors reported to me (or found by myself) will be listed at my
web page

http://sophia.dtp.fmph.uniba.sk/˜fecko
Bratislava Marián Fecko





Introduction

In physics every now and then one needs something to differentiate or integrate. This is the

reason why a novice in the field is simultaneously initiated into the secrets of differential

and integral calculus.

One starts with functions of a single variable, then several variables occur. Multiple

integrals and partial derivatives arrive on the scene, and one calculates plenty of them on

the drilling ground in order to survive in the battlefield.

However, if we scan carefully the structure of expressions containing partial derivatives

in real physics formulas, we observe that some combinations are found fairly often, but

other ones practically never occur. If, for example, the frequency of the expressions

∂2 f

∂x2
+ ∂2 f

∂y2
+ ∂2 f

∂z2
and

∂3 f

∂x3
+ ∂2 f

∂y∂z
+ 4

∂ f

∂z

is compared, we come to the result that the first one (Laplace operator applied to a function

f ) is met very often, while the second one may be found only in problem books on calculus

(where it occurs for didactic reasons alone). Combinations which do enter real physics

books, result, as a rule, from a computation which realizes some visual local geometrical
conception corresponding to the problem under consideration (like a phenomenological

description of diffusion of matter in a homogeneous medium). These very conceptions

constitute the subject of a systematic study of local differential geometry. In accordance

with physical experience it is observed there that there is a fairly small number of truly

interesting (and, consequently, frequently met) operations to be studied in detail (which is

good news – they can be mastered in a reasonably short time).

We know from our experience in general physics that the same situation may be treated

using various kinds of coordinates (Cartesian, spherical polar, cylindrical, etc.) and it is

clear from the context that the result certainly does not depend on the choice of coordinates

(which is, however, far from being true concerning the sweat involved in the computation –

the very reason a careful choice of coordinates is a part of wise strategy in solving problems).

Thus, both objects and operations on them are independent of the choice of coordinates

used to describe them. It should be not surprising, then, that in a properly built formalism a

great deal of the work may be performed using no coordinates whatsoever (just what part of

the computation it is depends both on the problem and on the level of mastery of a particular

1



2 Introduction

user). There are several advantages which should be mentioned in favor of these “abstract”

(coordinate-free) computations. They tend to be considerably shorter and more transparent,

making repeated checking, as an example, much easier, individual steps may be better un-

derstood visually and so on. Consider, in order to illustrate this fact, the following equations:

Lξ g = 0 ↔ ξ k gi j,k + ξ k
,i gk j + ξ k

, j gik = 0

∇γ̇ γ̇ = 0 ↔ ẍ i + �i
jk ẋ j ẋ k = 0

∇g = 0 ↔ gi j,k − �i jk − � j ik = 0

We will learn step by step in this book that the pairs of equations standing on the left and on

the right side of the same line always tell us just the same: the expression on the right may be

regarded as being obtained from that on the left by expressing it in (arbitrary) coordinates.

(The first line represents Killing equations; they tell us that the Lie derivative of g along

ξ vanishes, i.e. that the metric tensor g has a symmetry given by a vector field ξ . The second

one defines particular curves called geodesics, representing uniform motion in a straight

line (= its acceleration vanishes). The third one encodes the fact that a linear connection is

metric; it says that a scalar product of vectors remains unchanged under parallel translation.)

In spite of the highly efficient way of writing of the coordinate versions of the equations

(partial derivatives via commas and the summation convention – we sum on indices repeat-

ing twice (dummy indices) omitting the
∑

sign), it is clear that they can hardly compete

with the left side’s brevity. Thus if we will be able to reliably manipulate the objects occur-

ring on the left, we gain an ability to manipulate (indirectly) fairly complicated expressions

containing partial derivatives, always keeping under control what we actually do.

At the introductory level calculus used to be developed in Cartesian space R
n or in open

domains in R
n . In numerous cases, however, we apply the calculus in spaces which are not

open domains in R
n , although they are “very close” to them.

In analytical mechanics, as an example, we study the motion of pendulums by solving

(differential) Lagrange equations for coordinates introduced in the pendulum’s configuration

spaces, regarded as functions of time. These configuration spaces are not, however, open

domains in R
n . Take a simple pendulum swinging in a plane. Its configuration space is

clearly a circle S1. Although this is a one-dimensional space, it is intuitively clear (and one

may prove) that it is essentially different from (an open set in) R
1. Similarly the configuration

space of a spherical pendulum happens to be the two-dimensional sphere S2, which differs

from (an open set in) R
2.

Notice, however, that a sufficiently small neighborhood of an arbitrary point on S1 or

S2 is practically indistinguishable from a sufficiently small neighborhood of an arbitrary

point in R
1 or R

2 respectively; they are in a sense “locally equal,” the difference being

“only global.” Various applications of mathematical analysis (including those in physics)

thus strongly motivate its extension to more general spaces than those which are simple

open domains in R
n .

Such more general spaces are provided by smooth manifolds. Loosely speaking they

are spaces which a short-sighted observer regards as R
n (for suitable n), but globally
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(“topologically,” when a pair of spectacles are found at last) their structure may differ

profoundly from R
n .

We can regard as an enjoyable bonus the fact that the formalism, which will be developed

in order to perform coordinate-free computations, happens to be at the same time (free of

charge) well suited to treating global geometrical problems, too, i.e. we may study the objects

and operations on them, being well defined on the manifold as a whole. Therefore, we speak

sometimes about global analysis, or the analysis on manifolds. All the above-mentioned

equations Lξ g = 0, ∇γ̇ γ̇ = 0 and ∇g = 0 represent, to give an example, equations on

manifolds and their solutions may be defined as objects living on manifolds, too.

The key concept of a manifold itself will be introduced in Chapter 1. The exposition is

mainly at the intuitive level. A good deal of material treated in detail in mathematical texts

on differential topology will only be mentioned in a fairly informative way or will even be

omitted completely. The aim of this introductory chapter is to provide the reader with a

minimal amount of material which is necessary to grasp (fully, already at the working level)

the main topic of the book, which is differential geometry on manifolds.



1

The concept of a manifold

• The purpose of this chapter is to introduce the concept of a smooth manifold, including
the ABCs of the technical side of its description. The main idea is to regard a manifold as
being “glued-up” from several pieces, all of them being very simple (open domains in R

n).
The notions of a chart (local coordinates) and an atlas serve as essential formal tools in
achieving this objective.

In the introductory section we also briefly touch upon the concept of a topological space,
but for the level of knowledge of manifold theory we need in this book it will not be used
later in any non-trivial way.

(From the didactic point of view our exposition leans heavily on recent scientific knowl-
edge, for the most part on ethnological studies of Amazon Basin Indians. The studies proved
convincingly that even those prodigious virtuosos of the art of survival within wild jungle
conditions make do with only intuitive knowledge of smooth manifolds and the medicine-
men were the only members within the tribe who were (here and there) able to declaim
some formal definitions. The fact, to give an example, that the topological space underlying
the smooth manifold should be Hausdorff was observed to be told to a tribe member just
before death and as eyewitnesses reported, when the medicine-man embarked on analyzing
examples of non-Hausdorff spaces, the horrified individual preferred to leave his or her soul
to God’s hands as soon as possible.)

1.1 Topology and continuous maps

• Topology is a useful structure a set may be endowed with (and at the same time the
branch of mathematics dealing with these things). It enables one to speak about continuous
maps. Namely, in order to introduce a topology on a set X , one has to choose a system {τ }
of subsets τ of the set X , such that

1. ∅ ∈ {τ }, X ∈ {τ };
2. the union (of an arbitrary number) of elements from {τ } is again in {τ };
3. the intersection of a finite number of elements from {τ } is again in {τ }.
(So that the system necessarily contains the empty set as well as the set X itself, and is
closed with respect to arbitrary unions and finite intersections.) The elements of {τ } are

4



1.1 Topology and continuous maps 5

called open sets and the pair (X, {τ }) is a topological space. Given two topological spaces
(X, {τ }) and (Y, {σ }), a map

f : X → Y

is said to be continuous if f −1(A) ∈ {τ } for any A ∈ {σ }, that is to say if the inverse image1

of any open set is again an open set.2 Moreover, if the map f happens to be bijective and
f −1 is continuous as well, f is called a homeomorphism (topological map); X and Y are
then said to be homeomorphic.

1.1.1 Verify that the “weakest” (coarsest) possible topology on a set X is given by the trivial
topology, where ∅ and X represent the only open sets available, whereas the “strongest”
(finest) topology is the discrete topology, where every subset is open (in particular, this is
also true for every point x ∈ X ); all other topologies reside “somewhere between” these
two extreme possibilities. �

1.1.2 Let {τ }0, {τ }1 be the trivial and the discrete topology respectively (1.1.1). Describe
all continuous maps

f : (X, {τ }a) → (Y, {τ }b) a, b ∈ {0, 1}
realizing thus that continuity of a map depends, in general, on the choice of topologies
both on X and Y . (For a = 1 (b arbitrary) and for a = 0 = b all maps are continuous; for
a = 0, b = 1 the only continuous maps are constant maps (x �→ y0, the same for all x).) �

1.1.3 Let

X
f→ Y

g→ Z ,

f, g being continuous. Show that the composition map

g ◦ f : X → Z

is continuous, too. �

1.1.4 Check that the notion of homeomorphism introduces an equivalence relation among
topological spaces (reflexivity, symmetry and transitivity are to be verified). �

• The reader may find it helpful to visualize homeomorphic spaces as being made of
rubber; Y can then be obtained from X by means of a deformation alone (neither cutting
nor gluing are allowed). Example: a circle, a square and a triangle are all homeomorphic,
the figure-of-eight symbol is not homeomorphic to the circle (provided that the intersection
in the middle of it is regarded as a single point).3

1 Recall that f −1 does not mean the inverse map here (this may not exist at all); f −1(A) denotes the collection of all elements in
X which f sends into A, i.e. the inverse image of the set A.

2 In elementary calculus continuity used to be defined in terms of distance; this turns out to be a particular case of the above
definition (the distance induces a topology, to be mentioned later).

3 Differential Topology by A. H. Wallace can be recommended as a nice introductory text about topology (see the Bibliography
for details).
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One usually restricts oneself (for purely technical reasons, in order not to allow for
manifolds of some fairly complicated objects that we do not want to be concerned with)
to Hausdorff topological spaces. In these spaces (by definition), given any two points x, y,
there exist non-intersecting neighborhoods of them (open sets A, B, such that x ∈ A, y ∈
B, A ∩ B = ∅); one can thus separate any two points by means of open sets. From now
on Hausdorff spaces will be understood automatically when speaking about topological
spaces.

The fact that the Cartesian space R
n (ordered n-tuples of real numbers) represents a

topological space (where open sets coincide with those used in the elementary calculus of
n real variables) will be important in what follows.

1.1.5 Let d(x, y) be the standard Euclidean distance between two points x, y ∈ R
n , i.e.

d2(x, y) := (x1 − y1)2 + · · · + (xn − yn)2

and let

D(a, r ) := {x ∈ R
n, d(x, a) < r}

(open ball ≡ disk, centered at a, the radius being r ). A set A ∈ R
n is open if for any point

x ∈ A there exists an open ball centered at x which lies entirely in A. Check that this
definition of an open set meets the axioms of a topological space. This topology is called
the standard topology in R

n . �

1.2 Classes of smoothness of maps of Cartesian spaces

• Let A be an open set in R
n[x1, . . . , xn] and

f : A → R
m[y1, . . . , ym]

This means that we are given m functions of n variables

ya = ya(x1, . . . , xn) a = 1, . . . , m

If all partial derivatives up to order k exist and are continuous, then f is called a map of
class Ck . In particular, it is called continuous (k = 0), differentiable (k = 1), smooth
(k = ∞) and (real) analytic (if for all x ∈ A the Taylor series of ya(x) converges to the
function ya(x) itself: k = ω). In general, there clearly holds

C0(A, R
m) ⊃ C1(A, R

m) ⊃ · · · ⊃ C∞(A, R
m) ⊃ Cω(A, R

m).

Far less trivial is the fact that not a single inclusion is in fact equality.

1.2.1 Consider the function f : R → R, given by

f (x) = e− 1
x x > 0

f (x) = 0 x ≤ 0

Use this function to prove that in general Cω(A, R
m) �= C∞(A, R

m).
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Hint: show, that f (n)(0) = 0 for n = 0, 1, 2, . . . (so that the Taylor series in the neighborhood
of x = 0 gives a function which vanishes for positive x , too). �

1.3 Smooth structure, smooth manifold

• A tourist map may be regarded as a true map (in the mathematical sense of the word)

ϕ : TD → SP

where TD is a tourist district and SP is a sheet of paper. If the sheet of paper happens to be
in fact in a square paper exercise book, we have another map

χ : SP → R
2[x1, x2]

and their composition results finally in

ψ : TD → R
2 ψ ≡ χ ◦ ϕ

For a good map ψ should be a bijection and this makes it possible to assign a pair of real
numbers – its coordinates – to any point in TD.

In an effort to map a bigger part of a country, an atlas4 (a collection of maps) has proved
to be helpful. A good atlas should be consistent at all overlaps: if some part of the land
happens to be on two (or more) maps (close to the margins, as a rule), information obtained
from them must not be mutually contradictory.

If we enlarge the region to be mapped (district �→ country �→ continent, etc.), we first
observe annoying metric properties of the maps – the continents become (in comparison with
their shape on the globe) somewhat deformed and the intuitive estimation of the distances
becomes unreliable. This is a manifestation of the fact that ψ fails to be an isometry (see
Section 4.6); as a matter of fact such an isometry (of a part of the sphere to a part of a sheet
of paper) does not exist at all.5 Topologically, however, everything is still all right – even
if TD = all of America, ψ still remains a homeomorphism (the latter need not preserve
distances). But even this ceases to be the case abruptly at the moment we try to display
all the globe on a single map. It turns out, once again, that such a map (a bijective and
continuous map of a sphere onto a plane) does not exist; that is to say, more than one single
map – an atlas – is inevitable. An optimistic element in these contemplations lies in the fact
that in spite of the topological complexity of the sphere S2 (as compared with the plane),
its mapping is fairly simple when an atlas containing several maps is used. In a similar way
one can construct (highly practical) atlases of some other two-dimensional surfaces, like
T 2 = the surface of a tire (repairmen in a tire service will then be happy to mark the exact
position of a puncture into this atlas) or the exotic (1.5.9) Klein bottle K 2 (appreciated by
orienteering fans, mainly in sci-fi).

4 Atlas, the brother of Prometheus, hero of Greek mythology, keeps (as he used to do) the cope of heaven on his shoulders on the
title page of a series of detailed maps of various parts of Europe. They were published in 1595, one year after the death of the
author, Gerhard Kramer (Gerardus Mercator in Latin). Since then, every series of maps has been called an “atlas.”

5 There are several characteristics preserved by isometries and the sphere and the sheet of paper differ in some of them (see, e.g.,
the result of the computation of the Lie algebras of Killing fields in (4.6.10) and (4.6.13) or of the scalar curvature in (15.6.11)).



8 The concept of a manifold

The aim, now, will be to formalize the idea of an atlas. This will result in the definition
of the crucial concept of a smooth manifold.

Let (X, {τ }) be a topological space and O ⊂ X an open set. A homeomorphism

ϕ : O → R
n[x1, . . . , xn]

is called a chart, or alternatively local coordinates.
Each point x ∈ O ⊂ X is then uniquely associated
with an n-tuple of real numbers – its coordinates.
The set O is known as a coordinate patch in this
context. So far we have introduced coordinates in a
single coordinate patch – in O. If we want to assign
coordinates to all points from X , we need an open
covering {Oα} of the space X (i.e.

⋃
α Oα = X ) and

local coordinates for each domain Oα

ϕα : Oα → R
n

(n being the same for all α). A collection of charts A ≡ {Oα, ϕα} is called an atlas on X .
If the intersection Oα ∩ Oβ is non-empty, a map

ϕβ ◦ ϕ−1
α : A → R

n, A ≡ ϕα(Oα ∩ Oβ) ⊂ R
n

called a change of coordinates is induced. Since it is a map of Cartesian spaces
(see Section 1.2), it makes sense to talk about its class of smoothness. Automatically (check
(1.1.3)) its class is C0, but it might be higher. If, given an atlas, all maps of this type happen
to be Ck or higher, it is called a Ck-atlas A.

An atlas may be supplemented by additional maps, provided that the consistency with
the maps already present is assured. A map

μ : O → R
n

is said to be Ck-related (and it may be added to A), if it is consistent with all maps (Oα, ϕα)
on the intersectionsO ∩ Oα , i.e. if the class of the map ϕα ◦ μ−1 is Ck or higher. If a Ck-atlas
A is supplemented consecutively with all maps, we are left with a unique maximal Ck-atlas
Â. This in turn endows X with a Ck-structure. A pair (X, Â) is called an (n-dimensional) Ck-
manifold (in particular, topological, differentiable, . . . , smooth, analytic). In this book we
will be concerned exclusively with6 smooth manifolds, or here and there (when Taylor series
are used) even analytic manifolds. The essential structure to be used implicitly throughout
the book and assumed to be available in all discussions and constructions is the smooth
structure on a manifold X .

Since an atlas A leads to the unique maximal atlas Â, for the practical construction of
a manifold it suffices to give the atlas A. In spite of this fact the definition of a manifold

6 This highly convenient option is offered by the result of the Whitney (“embedding”) theorem, to be mentioned later, see
Section 1.4.
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refers to the maximal atlas. This emphasizes the formal equality of rights of all charts
(local coordinates). The constitution (= definition) unambiguously states that the initial
charts from A are by no means privileged in Â with respect to those coming later (so that
there is no fear of them usurping a privileged position at any later moment). This does not
at all mean that privileged coordinates are of no importance in differential geometry. If
the smooth structure is the only structure available, all charts are to be treated equally. In
applications, on the other hand, there are typically additional structures on manifolds. Then,
of course, particular coordinates tailored to these structures (adapted coordinates) would
play a privileged role from the practical point of view.

The simplest n-dimensional manifold is clearly R
n itself. A possible atlas is comprised

of a single chart, given by the identity map

ϕ ≡ id : R
n[x1, . . . , xn] → R

n[x1, . . . , xn]

This atlas is trivially smooth (or analytic as well; there are no intersections to spoil it)
and the maximal atlas generated by this atlas defines the standard smooth structure in R

n .
Any other chart from this atlas corresponds to curvilinear coordinates in R

n (like the polar
coordinates in a part of the plane R

2).
The next two exercises deal with the construction of smooth atlases on spheres and

projective spaces.

1.3.1 On a circle S1 of radius R we introduce local coordinates x, x ′ as shown on the figure
(this is called the stereographic projection). On higher-dimensional spheres S2, . . . , Sn a

natural generalization of this idea results
in coordinates r, r′. Verify that:

(i) on the intersection of the patches, where
the primed and unprimed coordinates are
in operation, we find for S1 and Sn re-
spectively the following explicit transition
relations:

x ′ = (2R)2

x
r′ = (2R)2

r

r
r

(ii) in this way an analytic atlas composed of two charts has been constructed on Sn – the sphere Sn

is thus an n-dimensional analytic manifold;
(iii) if the complex coordinates z and z′ are introduced on S2

r ↔ (x, y) ↔ z ≡ x + iy r′ ↔ (x ′, y′) ↔ z′ ≡ x ′ + iy′

then the transition relations are

z′ = (2R)2/z̄ z̄ ≡ x − iy

Hint: on Sn a projection is to be performed onto n-dimensional mutually parallel planes,
touching the north and south poles respectively (in these planes r ≡ (x1, . . . , xn) represent
common Cartesian coordinates centered at the poles). Then r′ = λr and one easily finds λ
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from the observation that in the (two-dimensional) plane given by the poles and the point
P the situation reduces to S1. �

1.3.2 The real projective space RPn is the set of all lines in R
n+1 passing through the

origin. The complex projective space CPn is introduced similarly – one should replace
R �→ C in the preceding definition. (Here, a complex line consists of all complex multiples
of a fixed (non-vanishing) complex vector (point of C

n+1) z, so that it is a two-dimensional
object from a real point of view.)

(i) Introduce the structure of an n-dimensional smooth man-
ifold (= local coordinates) on RPn .

(ii) The same for CPn (it is 2n-dimensional).
(iii) Show that the states of an n-level system in quantum me-

chanics are in one-to-one correspondence with the points
of CPn−1.

(iv) Show that CP1 = S2 (in the sense of (1.4.7)) ⇒ states
with spin 1

2 correspond to unit vectors n in R
3.

Hint: (i) one line (a point from RPn) consists of those points of R
n+1 which may be obtained

from a fixed (x0, x1, . . . , xn) using the freedom (x0, x1, . . . , xn) ∼ (λx0, . . . , λxn); in the
part of R

n+1 where x0 �= 0 the freedom enables one to make 1 from the first entry of the
array (visually this means that the point of intersection of the line with the plane x0 = 1
has been used as a representative of the line); the other n numbers are to be used as local
coordinates on RPn (they are the coordinates in the plane x0 = 1 mentioned above; see
the figure for n = 1, try to draw the case n = 2): (x0, x1, . . . , xn) ∼ (λx0, . . . , λxn) ∼
(1, ξ 1, . . . , ξ n) for x0 �= 0, ⇒ (ξ 1, . . . , ξ n) are coordinates (there); in this way obtain step-
by-step (n + 1) charts,7 with the last one coming from (x0, x1, . . . , xn) ∼ (λx0, . . . , λxn) ∼
(η1, . . . , ηn, 1) for xn �= 0; (ii) in full analogy, ξ, . . . , η are now complex n-tuples, giving rise
to 2n real coordinates; (iii) two non-vanishing vectors in a Hilbert space, one of them being a
complex constant multiple of the other, correspond to a single state; (iv) spin 1

2 is a two-level
system. �

• From two given manifolds (X, Â) and (Y, B̂), we can form a new manifold called the
Cartesian product. This new manifold is denoted by the symbol X × Y . As a set, it is the
Cartesian product X × Y (points being ordered pairs), an atlas is constructed in the exercise.

1.3.3 Let (X, Â) and (Y, B̂) be smooth manifolds and let

ϕα : Oα → R
n ψa : Sa → R

m

represent two charts on X and Y respectively. Show that

ϕα × ψa : Oα × Sa → R
m+n

(x, y) �→ (ϕα(x), ψa(y)) ∈ R
n+m x ∈ Oα, y ∈ Sa

7 In this context the coordinates (x0, x1, . . . , xn ) in R
n+1 are said to be the homogeneous coordinates (of the points in RPn ).

Note that they are not local coordinates on RPn in the sense of the definition of a manifold, since they are not in one-to-one
correspondence with the points (they are official coordinates only in R

n+1).
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introduces a smooth atlas on X × Y , so that we have a smooth manifold of dimension n + m.
This means, in plain English, that given (x1, . . . , xn) and (y1, . . . , ym) local coordinates
on X and Y respectively (x1, . . . , xn, y1, . . . , ym), may be used as local coordinates on
X × Y . �

1.3.4 Show that the following manifolds represent the configuration spaces of simple
mechanical systems mentioned below: a plane double pendulum S1 × S1, a free wheel on
a road R

2 × SO(3) and a wheel of a car R
2 × S1 × S1.

Hint: a free wheel: R
2 for the centre and SO(3) (see (10.1.8)) for the orientation in space;

a car: the wheel is to be perpendicular to the road (= vertical). �

• We have seen in (1.3.1) in the example of a sphere S2 how two real coordinates (x, y) can
be encoded compactly into a single complex coordinate z. This can be clearly generalized
trivially to any even-dimensional manifold, so that charts may be regarded then as the maps
into C

n (rather than R
2n in the real language).

However, it is far from always that the additional requirement can be fulfilled; namely,
to make all the transition relations of the complex coordinates be given by holomorphic
functions. A manifold is called a complex manifold (of complex dimension n, real dimension
2n) if this is possible. Complex manifolds may thus be regarded at the same time as ordinary
(necessarily even-dimensional) “real” manifolds, but the converse may not be true (there
are even-dimensional manifolds where it is not possible to introduce the above-mentioned
“holomorphic” atlas). The theory of complex manifolds is rich and interesting; however, in
this introductory text we shall not take this subject further.

1.3.5 Show that the two-dimensional sphere S2 is a complex manifold (of complex
dimension 1)

Hint: consider an atlas with charts w, w′, where (using notation from (1.3.1)) w ≡ z̄, w′ =
z′; then w′(w) = 4R2/w, and this is a holomorphic relation (where it is needed). �

1.4 Smooth maps of manifolds

• When manifolds appear in some context, they nearly always go hand in hand with
various mappings of them. This may happen in a direct and overt way sometimes,

or, in contrast, in a modest and inconspicu-
ous way other times (and this by no means
indicates that the mappings are less impor-
tant in those cases). Reminding the reader
that the virtue a manifold is especially proud
of is its smooth structure, those mappings re-
specting (in some sense) the smooth structure
will surely present particular interest. Such
mappings are called smooth. A closer look at
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what is meant by this exactly is necessary. Given (M, Â) and (N , B̂), two smooth manifolds
of dimensions m and n, respectively, and a mapping

f : M → N

let

ϕ : O → R
m[x1, . . . , xm] O ⊂ M

ψ : U → R
n[y1, . . . , yn] U ⊂ N

be local coordinates such that f (O) ⊂ U . Then the composition map

f̂ ≡ ψ ◦ f ◦ ϕ−1 : R
m → R

n

is induced, which is called the coordinate presentation of the mapping f . In technical terms
one has a collection of n functions of m variables

ya = ya(x1, . . . , xm) a = 1, . . . , n

1.4.1 Reconsider the domains of all the mappings involved and refine, if necessary, the
figure in this respect. �

• Since f̂ is a map of Cartesian spaces (see Section 1.2), it makes sense to be interested in
its class of smoothness. By definition, f itself is said to be smooth (or Ck more generally),
if its coordinate presentations with respect to any pair of charts (fromÂ and B̂) happen to
be smooth (Ck).

1.4.2 Let A and B be finite atlases on M and N respectively, which generate maximal
atlases Â and B̂. Show that if the coordinate presentations are smooth with respect to A, B,
then they are smooth with respect to Â, B̂ as well (so that f is smooth).

Hint: one has to check that if ya(xi ) is smooth and x ′i (x j ), y′a(yb) represent changes of
coordinates on M and N respectively, then y′a(x ′i ) is smooth, too. �

• Since a manifold needs in general an atlas consisting of several charts, several coordinate
presentations correspond to a single mapping f : M → N .

1.4.3 Let

f : R
2 × R

2 → R
2 f (z, w) = zw

be the map induced by the multiplication of complex numbers. Check whether it is a
C∞-map. �

1.4.4 Let M = R
2
�(0, 0) and consider the map defined in terms of complex coordinates

as follows

f : M → M f (z) = z−1

Is this a C∞-map? �
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1.4.5 Write down in coordinates the map (canonical projection)

π : R
3
�(0) → RP2

which assigns to a point from R
3 the line (1.3.2) on which the point is situated. Show that

the preimages of any two points of RP2 are diffeomorphic (diffeomorphism is defined a few
lines later). (ξ 1(x, y, z) = y/x, ξ 2(x, y, z) = z/x ; for the remaining two charts on RP2,
similarly.) �

1.4.6 Show that (z, w) �→ z/w (where z, w ∈ C; | z |2 + |w |2 = 1) can be interpreted as
a map

f : S3 → S2

(The Hopf mapping, see also (20.1.7)–(20.1.10).)

Hint: (z, w) �→ (z/w, 1) ↔ z/w is a coordinate presentation of the map C
2 → CP1 ∼ S2

((1.3.2), cf. a similar situation in (1.4.4)); the extended complex plane (the result of the
quotient being there) = (Riemannian) sphere S2. �

• If dim M = dim N ≡ n, f is a bijection and if both f and f −1 happen to be smooth,
then the mapping f is called a diffeomorphism and M and N are said to be diffeomorphic
manifolds.

1.4.7 Check that

(i) the concept of a diffeomorphism defines an equivalence relation
(ii) all diffeomorphisms M → M form a group (it is denoted by Diff (M)). �

1.4.8 Let T 2 be a two-dimensional torus ≡ surface of a tire, © a circle ≡ S1 and � a
square. Show that (≈ meaning a diffeomorphism)

S1 × R ≈ surface of a cylinder R
n × R

m ≈ R
m+n

S1 × S1 ≈ T 2 � ≈ ©
(Caution: � at the end of a hint is a sign of the end of the exercise and there is nothing to
be proved for it.)

Hint: consider coordinates on a square obtained by means of radial rays from the inscribed
(or circumscribed) circle. �

• Consider a smooth map f : M → N , with m ≡ dim M ≤ n ≡ dim N . Let x ∈ M be
mapped to y ∈ N . This map (locally ya = ya(x1, . . . , xm), a = 1, . . . , n) is said to be
an immersion if in some neighborhood U of each point y ∈ f (M) ⊂ N there exist local
coordinates y1, . . . , yn such that for a sufficiently small neighborhood O of x ( f (O) ⊂ U)
it holds there that the subset f (O) is given by the system of equations

ym+1 = · · · = yn = 0
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that is to say, if the image of this immersion may be locally expressed in terms of the
vanishing of some part of the coordinates on N . It is possible to show that this requirement
on the subset f (M) ⊂ N prohibits the existence of “corners” (edges) and cusps (this is the
interesting point about immersions). In this form the definition is not always suitable for a
practical test (in particular, for a proof that a given f is not an immersion; if this is the case
and coordinates with required properties are easily found, it is suitable). One can show that
the following statement holds:8

f : M → N is an immersion ⇔ rank of J a
i ≡ ∂ya

∂xi
is maximal (≡ m) on f (M)

Moreover, if f is injective, it is called an embedding (then f (M) has no self-intersections).

1.4.9 Zero and eight (or infinity), when drawn on a sheet of paper, may be regarded
as f (M) for M = S1, N = R

2. Decide whether the mapping f in these two cases is an
immersion, or perhaps even an embedding. �

• If f : M → N happens to be an embedding, then the subset f (M) ⊂ N is naturally
endowed with the structure of a manifold (y1, . . . , ym , i.e. those ya which do not vanish on
f (M) serve as local coordinates) and it is called a submanifold of a manifold N .9

1.4.10 Given a smooth map f̂ : M → N we define the map

f : M → M × N m �→ (m, f̂ (m))

Show that the graph of the map f̂ , i.e. f (M) ⊂ M × N , is a smooth submanifold in M × N .
Draw a picture for M = N = R and M = R

2, N = R.

Hint: check that f is an immersion. (For xi �→ (xi , ya(x)), there is an m × m unit block in
the Jacobian matrix.) �

1.4.11 Let L be an arbitrary n-dimensional linear space over R. Show that it is an n-
dimensional manifold which is diffeomorphic to R

n .

Hint: if ea is any basis in L , then L � x = xaea defines an atlas consisting of a single global
chart; x �→ xa is a diffeomorphism L → R

n . �

1.4.12 Let πM : M × N → M, (m, n) �→ m be the projection on the factor M and let a
smooth map f : M → M × N satisfy

πM ◦ f = idM

8 The geometrical meaning of the requirement on the rank of the Jacobian matrix J a
i is related to the mapping of tangent vectors,

cf. (3.1.2); technically, the implicit function theorem from several variables differential calculus is behind this.
9 Not all subsets X ⊂ N , although being themselves manifolds, are thus submanifolds in N . They need to be “very nicely” placed

in N – with no edges, cusps or self-intersections – in order to satisfy the strict criteria of the “submanifold club” membership. All
this is guaranteed by the existence of an embedding f . Both a circle and a square, for example, represent (diffeomorphic) smooth
one-dimensional manifolds. The circle is a submanifold in R

2, too, but the square fails to meet the submanifold requirements
(since it has corners).
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Show that

(i) f induces a map f̂ : M → N (and vice versa it is
fully given by this map)

(ii) f is an embedding
(iii) the submanifold f (M) is diffeomorphic to M .

Note: this situation is the simplest realization of
an important geometrical structure, a fiber bundle
(namely the product fiber bundle here). We will
encounter this concept in more detail later (in Chap-
ter 17 and beyond). The map f is a section of the
bundle, πM serves as the canonical projection, M
is its base and M × N its total space.

Hint: (i) f̂ = πN ◦ f ; (ii) (1.4.10); (iii) f : M → f (M) is a diffeomorphism. �

1.4.13 Let f be a diffeomorphism of M to itself and let A ≡ {Oα, φα} be an atlas on M .
Show that

(i) f induces a new atlas Â ≡ {Ôα, φ̂α} on M , which may be regarded as the “shifted” version (by
the diffeomorphism f ) of the original atlas A

Ôα = f (Oα) φ̂α = φα ◦ f −1

(ii) in new coordinates, the f -image of any object (e.g. the equation of a circle) has the same form
that the initial object had in the initial coordinates.

Hint: draw a picture to see what is going on. �

• The official definition of a manifold (a topological space, plus . . . ) is fairly abstract
and one cannot be sure, a priori, whether “nice surfaces,” like spheres, projective spaces,
etc., which ultimately motivated this definition, are the only objects which satisfy all the
properties required. Maybe some ugly creatures, which nobody needed, are compatible
with the definition as well. Fortunately, there is a useful “embedding” theorem, which fully
protects our slumber. We therefore mention its content (without proof) here.

Theorem (Whitney) Each C1 n-dimensional manifold is diffeomorphic to some Cω sub-
manifold of R

2n+1.

Lesson: each manifold M may be realized (up to a diffeomorphism) as a nicely (no edges,
cusps or self-intersections) located “surface” in Cartesian space, one can estimate its di-
mension from above by 2n + 1 (if dim M = n) and if there is an atlas of class C1, it can
be improved up to class Cω (i.e. if a C1 atlas A generates a maximal C1 atlas Â, one can
choose from Â a “better” atlas Ã of class Cω). This enables us to restrict our interest directly
to Cω (or smooth, C∞) manifolds and, in addition, to regard all manifolds as nice smooth
surfaces in Cartesian spaces from the very beginning. This is the reason we now embark on
the study of the two basic ways of treating such smooth surfaces.
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1.5 A technical description of smooth surfaces in R
n

• The first situation when manifolds frequently enter the scene as surfaces in R
n is the

existence of smooth constraints.

Example 1 The configuration space of a mathematical pendulum with the length of the
rod l consists of those points r = (x, y, z) ∈ R

3 which obey

φ(r) = r2 − l2 ≡ x2 + y2 + z2 − l2 = 0

What remains is a sphere S2 ⊂ R
3.

Example 2 Moreover, if the same pendulum can swing only in a fixed vertical plane, one
has to consider an additional constraint, so that together

φ1(r) ≡ x2 + y2 + z2 − l2 = 0

φ2(r) ≡ y = 0

What remains is only a circle S1 ⊂ S2 ⊂ R
3, now.

Example 3 A state of an ideal gas is given by a triple of real numbers (p, V, T ) ⊂ R
3,

constrained through the equation of state

φ(p, V, T ) = pV − RT = 0

(plus some further restrictions on the realistic intervals for the numbers p, V, T are to be
added). What remains is a particular two-dimensional surface in R

3.

In general, several functions φ1, . . . , φm (constraints) in R
n[x1, . . . , xn] are often avail-

able and the interesting subset consists of those points in x ∈ R
n where all of the functions

vanish (≡ satisfy the constraints):

φ1(x) = · · · = φm(x) = 0

If certain conditions are satisfied, one really obtains a smooth manifold (and even subman-
ifold in R

n) in this way.

Theorem (on a submanifold defined implicitly) Let A ⊂ R
n[x1, . . . , xn] be an open set,

g : A → R
m[φ1, . . . , φm] m ≤ n

a smooth map such that the rank of the Jacobian matrix

J a
i (x) ≡ ∂φa(x)

∂xi

is constant10 (and equals k, 0 �= k ≤ m) on the set M ≡ g−1(0). Then M is an (n − k)-
dimensional manifold,11 which is a submanifold of R

n (an atlas may be constructed by
means of the implicit function theorem).

10 If k = m (maximal rank), the constraints are said to be independent (at a given point).
11 More generally one can consider the inverse image of any point in the target space (not necessarily zero). Such an inverse image

is called a level surface. As an example contours (level curves) on a map represent the level surfaces for the “height function,”
regarded as a mapping R

2[x, y] → R
1[z].
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For m = 1, the manifold M is said to be a hypersurface (codimension 1 submanifold). The
Jacobian matrix then reduces to a single row (1 × n matrix) and the requirement on the rank
(k ≡ 1) means that the row does not vanish (i.e. at least one element is non-zero; just which
one saves the good reputation of the Jacobian matrix may depend on the point x ∈ M).

1.5.1 Show that the sphere Sn
r ⊂ R

n+1 of radius r

Sn
r := {x ∈ R

n+1 | (x1)2 + · · · + (xn+1)2 = r2}
is a hypersurface in R

n+1.

Hint: φ(x1, . . . , xn+1) = (x1)2 + · · · + (xn+1)2 − r2. �

1.5.2 The same as in (1.5.1) for the ellipsoid with half-axes a1, . . . , an+1. �

1.5.3 Let SL(n, R) denote the set of real n × n matrices A with unit determinant (see also
(10.1.7)). Show that it can be regarded as a hypersurface in R

n2
.

Hint: define g : R
n2 → R

1 as

g(A11, A12, . . . , Ann) := det A − 1

and check that the relevant row is indeed non-zero (row expansion of a determinant says
that the row in question is given by minors and it is impossible for all minors to vanish,
since the determinant is non-zero on M ; or use the result of (5.6.7). �

1.5.4 Let M = {(x, y) ∈ R
2 | y = f (x)}, where f : R → R. Show that M is a submani-

fold in R
2 and introduce local coordinates on M (see also (1.4.10)). Draw for f (x) = tanh x .

Hint: φ(x, y) = y − f (x); coordinate x . �

• It turns out that it is not possible to treat all manifolds by means of constraints (implic-
itly). One can show (see (6.3.4)) that a manifold constructed by this method is necessarily
orientable. There are, however, non-orientable manifolds, too. A more general approach is
offered by a parametric expression of the latter. Within this scheme a manifold appears as
the image of a smooth mapping

f : A → R
n[x1, . . . , xn], A is an open domain in R

m[u1, . . . , um], m ≤ n

with the maximum (≡ m) rank of the Jacobian matrix

J i
a(x) ≡ ∂xi (u)

∂ua

That is to say

M := Im f ≡ f (A) ⊂ R
n

(Rm is the parameter space, the coordinates u1, . . . , um are parameters).12

12 A comparison of the implicit and parametric ways of defining a manifold: in both cases mappings of Cartesian spaces R
m → R

n

play an essential role. In the implicit way m ≥ n holds and the resulting manifold appears as the subset on the left (as the inverse
image of (say) zero), in the parametric case m ≤ n and the manifold appears as the subset on the right (as the image of the
map).
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1.5.5 Consider a map

f : R
1[u] → R

2[x, y] u �→ (cos u, sin u) ≡ (x(u), y(u))

Verify that

(i)

Im f ≡ M = {(x, y) ∈ R
2 | x2 + y2 = 1} ≡ S1 ⊂ R

2

i.e. the manifold M is a sphere S1 (circle)
(ii) the fact that the sphere S1 appears on the right could be recognized (in advance) in the parameter

space (on the left) as well.

Hint: (ii) introduce the equivalence in R
1[u] as follows:

u ∼ u′ ⇔ f (u) = f (u′)

One can see easily that they are equivalence classes on the left, which are in one-to-
one relation with the points of S1 on the right (1.5.6). What do they look like? We have
u ∼ u + 2πk (k ∈ Z), so that (a) it is enough to restrict oneself to the interval 〈0, 2π〉 and
(b) 0 ∼ 2π , so that the ends of the interval 〈0, 2π〉 ⊂ R

1[u] are to be identified (≡ glued
together); a figure homeomorphic to a circle is obtained. �

• Exercises (1.5.7)–(1.5.11) treat some two-dimensional surfaces in a similar way. Instead
of the interval 〈0, 2π〉 one has a basic square in the parameter plane R

2[u, v], now, and the
formulas of the mapping induce equivalence relations on the boundary of the square, i.e.
the rules of gluing the boundary in order to obtain the resulting two-dimensional surface.
Standard conventions are used for that: “like” gluing of the opposite sides by �, “reverse”
gluing (first turn, then glue) by ↑↓; see the figure in exercise (1.5.11).

1.5.6 Let f : M → N be a mapping of sets. Define a relation ∼ on M as follows:

m ∼ m ′ ⇔ f (m) = f (m ′)

Show that it is an equivalence and that f (M) = M/∼ (where = means bijection and M/∼
denotes the factor-set of M with respect to ∼, that is to say, the elements of M/∼ are the
equivalence classes in M). �

1.5.7 Let f : R
2 → R

3,

(u, v) �→ ((a + b sin v) cos u, (a + b sin v) sin u, b cos v) 0 < b < a

Show that

(i) in the sense of ∼ from (1.5.6) it holds that

(u, v) ∼ (u + 2πn1, v + 2πn2)

for any n1, n2 ∈ Z

(ii) the image of the parametric plane R
2[u, v] in the target space R

3 is the two-dimensional torus,
f (R2) ≈ T 2. What is the visual meaning of the constants a, b and the parameters u, v?
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Hint: see (1.5.6), (3.2.2), (1.5.11) and (1.4.8). �

1.5.8 Consider the mapping f : R
2 → R

4, given by

(u, v) �→ (cos u, sin u, cos v, sin v)

Show that

(i) in the sense of ∼ from (1.5.6) it holds that

(u, v) ∼ (u + 2πn1, v + 2πn2)

for any n1, n2 ∈ Z

(ii) the image of the parametric plane R
2[u, v] in the target space R

4 is the two-dimensional torus
(once again), f (R2) ≈ T 2.

Hint: see (1.5.6), (3.2.3) and (1.5.11). �

1.5.9 Given 0 < b < a define a map f : R
2 → R

4 as follows:

(u, v) �→
(

(a + b cos v) cos u, (a + b cos v) sin u, b sin v cos
u

2
, b sin v sin

u

2

)

Show that the equivalence in the sense of (1.5.6) in R
2 corresponds to the Klein bottle K 2,

i.e. to the third figure in exercise (1.5.11), so that the image of the parametric plane R
2[u, v]

is the Klein bottle embedded into R
4. �

1.5.10 Try to visualize the Klein bottle from (1.5.11), when realized in R
3, and see that

there is no way to avoid a self-intersection. The mapping from (1.5.9) realizes the bottle in
R

4 without self-intersection.

Hint: according to the figure in (1.5.11) the first gluing (identification of the top and bottom
lines) gives a (surface of a) cylinder, by the second one (right and left lines) one is to join
two circles; however, taking into account their orientations, one has to approach one by
another “from the inside” (unlike T 2); this needs self-intersection. �

1.5.11 Think out (visually) that there are three possibilities altogether to identify the
opposite sides of a square in a “like/reverse” way (see above), namely

(the last picture is to be understood as a definition of K 2 ≡ Klein bottle).

Hint: RP2: first deform the square onto a disk (opposite points of the boundary are to be
identified); then blow bottom-up to the disk in order to deform it onto a hemisphere in R

3,
whose opposite points of the boundary (circle) are identified; finally realize that each point
of the resulting entity corresponds uniquely to a line passing through the origin (1.3.2). �
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Summary of Chapter 1

The smooth manifold is the basic playing field in differential geometry. It is a generalization
of the Cartesian space R

n (or an open domain in the latter) to a more elaborate object,
which (only) locally looks like R

n , but its global structure can be much more complicated.
It is, however, always possible to contemplate it as a whole in which several pieces home-
omorphic to R

n are glued together; the number n, which is the same for all pieces, is called
the dimension of the manifold. The technical realization of these ideas is achieved by the
concepts of a chart (local coordinates) and an atlas (consisting of several charts). The Carte-
sian product M × N of two manifolds is a new manifold, constructed from two given ones
M and N . Any manifold admits a realization as a surface, which is nicely embedded in a
Cartesian space of sufficiently large dimension.

(x1 − y1)2 + · · · + (xn − yn)2 Euclidean distance between two points x, y ∈ Rn (1.1.5)
ϕ : O → Rn[x1, . . . , xn] Chart (local coordinates) in a patch O ⊂ (X, {τ }) Sec. 1.3
ϕβ ◦ ϕ−1

α Change of coordinates in a patch Oα ∩ Oβ Sec. 1.3
(x, y) �→ (ϕα(x), ψa(y)) ∈ Rn+m Atlas for the Cartesian product X × Y (1.3.3)
f̂ ≡ ψ ◦ f ◦ ϕ−1 : Rm → Rn Coordinate presentation of f : M → N Sec. 1.4
ym+1 = · · · = yn = 0 Immersion (some coordinates on N vanish) Sec. 1.4
f (M) ⊂ N f (M) is a submanifold of N ( f = embedding) Sec. 1.4
φ1(x) = · · · = φm(x) = 0 Smooth constraints (manifold as a surface in Rn) Sec. 1.5
xi (u1, . . . , um), i = 1, . . . , n ≥ m Parametric expression of a manifold Sec. 1.5
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Vector and tensor fields

• From elementary physics we know vectors as being arrows, exhibiting direction and

length. This means that they have both a head as well as a tail, the latter being drawn as

a point of the same space in which the physics is enacted. A vector, then, is equivalent to

an ordered pair of points in the space. Such a conception works perfectly on the common

plane as well as in three-dimensional (Euclidean) space.

However, in general this idea presents difficulties. One can already perceive them clearly

on “curved” two-dimensional surfaces (consider, as an example, such a “vector” on a sphere

S2 in the case when its length equals the length of the equator). Recall, however, the various

contexts in which vectors enter the physics. One comes to the conclusion that the “tail” point

of the vector has no “invariant” meaning; only the head point of the vector makes sense as

a point of the space. Take as a model case the concept of the (instantaneous) velocity vector

v of a point mass at some definite instant of time t . Its meaning is as follows: if the point

is at position r at time t , then it will be at position r + εv at time t + ε. However long the

vector v is, the point mass will be only infinitesimally remote from its original position. The

(instantaneous) velocity vector v thus evidently carries only “local” information and it is

related in no reasonable way to any “tail” point at finite distance from its head.

And the transition from (say) a plane to a sphere (or any other curved surface) changes

practically nothing in this reasoning: although we may visualize the velocity as an arrow

touching the surface at a given place, it makes no sense to take seriously its tail as a second

point on the surface (within a finite distance from the first one), since all the velocity

vector informs us about is the behavior of the trajectory within the nearest (infinitesimal)

time interval and over such a short time interval all that we manage to do is to move to a

point infinitesimally near to the first one. Consequently, the second point (the tail of the

vector) plays no invariant role in this business. The velocity vector is thus to be treated as a

concept which is strictly confined to a point. A similar analysis of other vectors in physics

(acceleration, force, etc.) leads to the same result. Vectors are objects which are to be treated

as being “point-like” entities, i.e. as existing at a single point.
That means, however, that our approach to vectors on a manifold has to take into account

this essential piece of information. Fortunately, such an approach does exist; in fact, there

are even several equivalent ways of reaching this goal, as described in Section 2.2.

21
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Before doing this, we undertake a short digression on the concepts of a curve and a

function on a manifold, since they play (in addition to being important enough in themselves)

essential roles in the construction of a vector. The simple machinery of multilinear algebra

(see Section 2.4) then makes it possible to take a (long) step forward, introducing objects

of great importance in physics as well as in mathematics – tensor fields on a manifold.

2.1 Curves and functions on M

• A curve on a manifold M is a (smooth) map

γ : R[t] → M t �→ γ (t) ∈ M

or, more generally,

γ : I → M

I ≡ (a, b) being an open interval on R[t]. Note that a definite parametrization of points

from Im γ ⊂ M is inherent in the definition of a curve, and two curves which differ by

the parametrization alone are to be treated as being different (in spite of the fact that their

image sets Im γ on the manifold M coincide). If

ϕ : O → R
n[x1, . . . , xn]

is a chart (i.e. xi are local coordinates on O ⊂ M), one obtains a coordinate presentation
of a curve γ ,

γ̂ ≡ ϕ ◦ γ : R[t] → R
n[x1, . . . , xn]

i.e. a curve on R
n

t �→ (x1(t), . . . , xn(t)) ≡ (x1(γ (t)), . . . , xn(γ (t)))

In general, a curve may convey several coordinate patches, so that several coordinate

presentations are sometimes needed for a single curve.

A function on a manifold M is a (smooth) map

f : M → R x �→ f (x) ∈ R

If

ϕ : O → R
n[x1, . . . , xn]

is a chart, one obtains a coordinate presentation of a function f

f̂ ≡ f ◦ ϕ−1 : R
n → R

i.e. a function on (a part of) R
n

(x1, . . . , xn) �→ f̂ (x1, . . . , xn) ∈ R
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so that f̂ is a common “function of n variables.” We will frequently identify the function

with its coordinate presentation in what follows. What will be “really” meant should be

clear from the context (the same holds for curves).

2.1.1 Show that the prescription

A �→ det A ≡ f (A)

defines a smooth function on the manifold of all real n × n matrices (∼ R
n2

).

Hint: The determinant is a polynomial in the matrix elements. �

2.2 Tangent space, vectors and vector fields

• The concept of a vector in a point x ∈ M is undoubtedly one of the most fundamental

notions in differential geometry, serving as the basis from which the whole machinery of

tensor fields (in particular, differential forms) on a manifold is developed with the aid of

the standard methods of multilinear algebra (to be explained in Section 2.4).

A word of caution is in order. Although the actual computations with vectors (as well

as vector and tensor fields) are very simple and indeed “user friendly,” the definition of a

vector is, in contrast, a fairly subtle and tricky matter for the beginner and it might need

some time to grasp the ideas involved in full detail. Our recommendation is not to be in a

hurry and reserve due time to digest all the details of the exposition. A clear understanding

of what a vector is in differential geometry saves time later, when vectors are used in more

advanced applications.

There are several (equivalent) ways in which the concept of a vector at a point x ∈ M
may be introduced. In what follows we mention four of them. In different contexts different

definitions turn out to be the most natural. That is why it is worth being familiar with all of

them.

Each approach reveals the key fact that one can naturally associate an n-dimensional

vector space with each point P on an n-dimensional manifold M . The elements of this

vector space (the tangent space at P) are then treated as vectors at the point P ∈ M .

The first approach generalizes naturally the concept of the instantaneous velocity v(t) =
ṙ(t) of a point mass moving along a trajectory r(t), mentioned at the beginning of the

chapter. The essential idea is that of tangent curves.

Definition Given two curves γ1, γ2 on M , we say

that γ1 is tangent to γ2 at the point P ∈ M if

1. γ1(0) = γ2(0) = P
2. d

dt

∣
∣
0

xi (γ1(t)) = d
dt

∣
∣
0

xi (γ2(t))

(xi being arbitrary local coordinates in the neighborhood of P). When expressed in the

terminology of analytical mechanics, the definition says that at the moment t = 0 the
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positions of two fictitious points in a configuration space M , moving along trajectories

γ1(t) and γ2(t) respectively, happen to coincide (they are both in P) and, in addition, the

values of their generalized velocities are the same. The curves (trajectories), which are

tangent at t = 0, thus have (at t = 0) the same values of both generalized coordinates and
velocities. It is clear, then, that the motions along these trajectories are up to the first order in

time (within the interval from 0 to ε) equal. (Note that the particular choice t = 0 actually

plays no distinguished role in this concept; the curves may be tangent at any other “time”

as well.)

2.2.1 Show that

(i) the definition does not depend on the choice of local coordinates in a neighborhood of P
(ii) the relation “to be tangent in P” is an equivalence on the set of curves on M obeying γ (0) = P

(iii) the Taylor expansion (the class of smoothness Cω is assumed here) of equivalent curves in a

neighborhood of t = 0 is as follows:

xi (γ (t)) = xi (P) + tai + o(t)

where xi (P), ai ∈ R are common for the whole equivalence class.

Hint: (i) d
dt

∣
∣
0

x ′i (γ (t)) = ∂x ′i
∂x j (P) dx j (γ (t))

dt

∣
∣
∣
0
, i.e. a′i = J i

j (P)a j . �

• It turns out that the equivalence classes γ̇ := [γ ] of curves γ are endowed with a natural

linear structure, which may be introduced by means of representatives.

2.2.2 Given TP M the set of equivalence classes in the sense of (2.2.1), let v, w ∈ TP M
and γ, σ be two representatives of these classes (v = γ̇ ≡ [γ ], w = σ̇ ≡ [σ ]), such that

xi (γ (t)) = xi (P) + tai + o(t)

xi (σ (t)) = xi (P) + tbi + o(t)

Show that the prescription

v + λw ≡ [γ ] + λ[σ ] := [γ + λσ ]

where

xi ((γ + λσ )(t)) := xi (P) + t(ai + λbi ) + o(t)

introduces by means of representatives into TP M the well-defined structure of an n-

dimensional linear space, i.e. that the definition does not depend on

(i) the choice of local coordinates

(ii) the choice of representatives γ, σ of the classes v, w. �

• Because of this result we may for good reasons (and justly indeed) call the elements

v ∈ TP M (tangent) vectors at the point P ∈ M ; the space TP M itself is called the tangent
space at the point P . From the definition of linear combination in (2.2.2) one can see that all
vectors at the point P share the same values of xi (P) and the property by which they can be
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distinguished from one another is by the values

of the coefficients ai ≡ ẋ i (0). Note that a vector

“uses” only the first two terms of the Taylor ex-

pansion of its coordinate presentation (the zeroth

and the first derivatives), the higher terms being

completely arbitrary. This means that a single

vector corresponds to an infinite number of curves which represent this particular vector

(which should be clear in advance from the intuitive vision of all the curves being tangent

to one another), so that there are an infinite number of representatives of each equivalence

class. If we would like to visualize the concept of a vector in the sense of an equivalence

class of tangent curves, we should assign something like a “bunch” or a “sheaf” of curves,

all of them firmly bound together at the point P . And a good old arrow, which cannot be

thought of apart from the vector, could be put at P in the direction of this bunch, too (so that

it does not feel sick at heart that it had been forgotten because of some dubious novelties).

2.2.3 Verify that

(i) if dim M = n, then TP M is an n-dimensional space

(ii) equivalence classes of coordinate curves γ j (t), i.e. the curves obeying xi (γ j (t)) = xi (P) + δi
j t

(the value of the j th coordinate is the only one that varies (namely linearly) with t) constitute a

basis of TP M .

Hint: (i) v ↔ ai is an isomorphism TP M ↔ R
n; (ii) check that v ≡ [γ ] = ai [γi ]. �

• The definition of a vector in terms of curves is intuitively easy to grasp. From the point

of view of practical manipulations with vectors (and tensors) another one proves to be

convenient, too. It is based on the idea of the directional derivative of a function and leans

heavily on algebraic properties of functions and their directional derivatives.

2.2.4 Let F(M) := { f : M → R} denote the set of (smooth) functions on M , f ∈ F(M),

v ∈ TP M . Define the map (derivative of f in the direction of v)

v̂ : F(M) → R f �→ v̂( f ) := d

dt

∣
∣
∣
∣
0

f (γ (t)) v = [γ ]

Prove that v̂ does not depend on the representative γ in the class [γ ] = v (i.e. correctness

of the definition). �

• It turns out that this map has interesting algebraic properties, enabling one to give an

alternative definition of the concept of a vector at the point P ∈ M .

2.2.5 Check that

(i) the prescriptions

( f + λg)(x) := f (x) + λg(x)

( f g)(x) := f (x)g(x)
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( f, g ∈ F(M), λ ∈ R) endow F(M) naturally with the structure of an (∞-dimensional) asso-
ciative algebra (Appendix A.2) and that this algebra turns out to be commutative ( f g = g f ) for

each manifold; it is called the algebra of functions on a manifold M
(ii) the map

v̂ : F(M) → R

from exercise (2.2.4) is a linear functional on F(M), i.e. it behaves on linear combination

according to the rule

v̂( f + λg) = v̂( f ) + λv̂(g)

(iii) in addition this functional has the property (behavior on a product)

v̂( f g) = v̂( f )g(P) + f (P)v̂(g) (Leibniz’s rule)

(iv) such linear functionals (obeying Leibniz’s rule associated with the point P) constitute a linear

space (we denote it as T̂P M , here), if one defines

(v̂ + λŵ)( f ) := v̂( f ) + λŵ( f )

(v) the map

ψ : TP M → T̂P M v �→ v̂

is linear and bijective (i.e. it is an isomorphism).

Hint: (v) surjectivity: if v̂xi =: ai , the inverse image is v = ai [γi ]. �

• Because of the existence of the (canonical) isomorphism TP M ↔ T̂P M , these spaces

are completely equivalent, so that one may alternatively define a vector at the point P ∈ M
as a linear functional on F(M), behaving according to Leibniz’s rule on the product, too.

2.2.6 Define the elements ei ∈ T̂P M, i = 1, . . . , n as follows:

ei ( f ) := ∂ f

∂xi

∣
∣
∣
∣

P

≡ ∂i |P f

or symbolically

ei := ∂i |P

Check that

(i) the ei belong to T̂P M , indeed

(ii) the ei happen to be just the images of vectors [γi ] ∈ TP M (which constitute a basis of TP M)

with respect to the map ψ from exercise (2.2.5)

(iii) any vector v̂ ∈ T̂P M may be uniquely written in the form

v̂ = ai ei where ai = v̂xi

(iv) under the change of coordinates xi �→ x ′i (x), the quantities ai and ei transform as follows:

ai �→ a′i = J i
j a

j ei �→ e′
i = (J −1)

j
i e j
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where

J i
j = ∂x ′i

∂x j
(P) ≡ J i

j (P) = Jacobian matrix of the change of coordinates

(v) the “whole” v̂ ≡ ai ei is not altered under the change of coordinates (it is invariant)

ai ei = a′i e′
i = v̂

(vi) the transformation rules for ai as well as ei meet the consistency condition on the intersection

of three charts (coordinate patches): the composition x �→ x ′ �→ x ′′ is to give the same result as

the direct way x �→ x ′′. �

• These results enable one to introduce immediately another two definitions of a vector

at the point P (and the tangent space as well). The first possibility is to declare as a vector

a first-order differential operator with constant coefficients, i.e. an expression ai ∂i |P , with

linear combinations being given by

ai ∂i |P + λbi ∂i |P := (ai + λbi ) ∂i |P

The second possibility is the definition adopted by classical differential geometry: a

vector at a point P ∈ M is an n-tuple of real numbers ai , i = 1, . . . , n, associated with

the coordinates xi in a neighborhood of P; under change of coordinates the n-tuple should

transform (by definition) according to the rule

xi �→ x ′i (x) ⇒ ai �→ J i
j (P)a j

Altogether we gave four equivalent definitions (one can even add more) of a vector: a vector

as being

1. an equivalence class of curves (with respect to the equivalence relation “being tangent at the

point P”)

2. a linear functional on F(M), which behaves on a product according to Leibniz’s rule

3. a first-order differential operator (together with the evaluation of the result at the point P)

4. an n-tuple of real numbers ai , which transform in a specific way under the change of coordinates.

2.2.7 Check in detail their equivalence: given a vector in any of these four ways, associate

with it corresponding vectors in the other three senses. In particular, make explicit the

correspondence between the basis vectors in all four languages. �

• Taking into account the equivalence of the four definitions mentioned above, we may

regard a vector as being given in any of the possible realizations, from now on. The cor-

responding tangent space will be denoted by a common symbol TP M , as well. The basis

ei ≡ ∂i |P ↔ [γi ] ↔ . . . is said to be the coordinate basis in TP M and the numbers ai

constitute the components of a vector v with respect to the basis ei .

(Note that the linear combination has only been defined for vectors sitting at the same
point of a manifold (i.e. in a single tangent space TP M). The spaces TP M and TP ′ M for

P �= P ′ are to be regarded as different vector spaces. It is true that they are isomorphic (both

being n-dimensional), but there is no canonical isomorphism (there exist infinitely many
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isomorphisms, but none is distinguished, in general) so that there is no natural (preferred)

correspondence between vectors sitting at different points. The fact that vectors are routinely
linearly combined, in spite of sitting at different points, in physics (the momenta of a

collection of particles are added in order to obtain the total momentum vector of the system,

to give an example) is justified by particular additional structure inherent in the Euclidean
space – so-called complete parallelism (to be discussed in Chapter 15).)

We say that a vector field on M has been defined if a rule is given which enables one to

choose exactly one vector residing at each point of a manifold M . Only the fields which

“do not differ too much” at two “neighboring” points will be of interest for us in what

follows (what we need is smoothness of the field). It turns out that this property is most

easily formulated after one learns how vector fields act on (the algebra of) functions, i.e. by

looking at the matter from an algebraic perspective.

One can apply a vector field V to a function f so that at each point P ∈ M the vector
VP ∈ TP M (regarded as a linear functional on F(M), here) is applied to f . In this way we

get a number VP ( f ) residing at each point P of a manifold M , i.e. a new function altogether.

A vector field thus may be regarded as a map (operator)

V : F(M) → F(M) f �→ V f (V f )(P) := VP ( f )

V is said to be a smooth vector field (≡ C∞-field) if the image of the map V above is indeed

in F(M), that is to say, if a smooth function results whenever acted on a smooth function by

V . The set of (smooth) vector fields on M will be denoted by X(M) ≡ T 1
0 (M) (the reason

for the second notation will be elucidated in Section 2.5).

2.2.8 Show that the map

V : F(M) → F(M) f �→ V f

obeys

V ( f + λg) = V f + λV g

V ( f g) = (V f )g + f (V g)

( f, g ∈ F(M), λ ∈ R). The first property alone says that V is a linear operator on F(M);

when taken both together they say that V is a derivation of the algebra of functions F(M)

(in the sense of Appendix A.2).13 �

• As is the case for vectors, components may be assigned to vector fields, too. In a given

coordinate patch O with coordinates xi , a vector field V may be written, according to

(2.2.6), in the form

V = V i (x)∂i ≡ V i (x)
∂

∂xi

13 The converse is true, too: given any derivation D of the algebra of functions F(M), there exists a vector field V such that
D = V . This makes it possible to identify vector fields on M with derivations of the algebra of functions F(M).
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since the coefficients of a decomposition of a vector with respect to the coordinate basis

may be, in general, different at different points (ai , denoted here as V i , depend on x). The

functions V i (x) are called the components of the field V . The vector fields (!) ∂i are called

the coordinate basis of vector fields.

We came to the conclusion, then, that a first-order differential operator with non-constant
coefficients corresponds to a vector field and the action of V on f in coordinates may be

expressed simply as

f (x) �→ (V f )(x) = V i (x)(∂i f )(x) ≡ V i (x)
∂ f (x)

∂xi

2.2.9 Prove that V is smooth if and only if its components V i (x) are smooth functions

and that this criterion does not depend on the choice of local coordinates.

Hint: smooth functions are closed with respect to linear combinations and product (=
operations in F(O)) elements of J i

j (x) are smooth. �

2.2.10 Show that under the change of coordinates x �→ x ′(x) the components of a vector

field transform as follows:

V ′i (x ′) = J i
j (x)V j (x)

Hint: see (2.2.6); V ′i (x ′)∂ ′
i = V i (x)∂i . �

2.2.11 Write down the vector field V = ∂ϕ (in polar coordinates in the plane R
2) in

Cartesian coordinates and try to visualize at various points the direction of the vectors given

by this field.

Hint: see (2.2.10); (V = ∂ϕ = x∂y − y∂x ). �

• One should understand clearly the difference between the algebraic properties of a vector

and a vector field: a vector is a linear functional on F(M) (a map into R), a vector field is

a linear operator on F(M) (a map into F(M)). We have learned in exercise (2.2.5) that the

linear functionals on F(M) comprise a vector space over R, i.e. linear combinations with

coefficients from R are permitted. This kind of combination is permitted for vector fields

as well (so that they comprise a real (albeit ∞-dimensional) vector space, too). It turns out,

however, that the life of vector fields is considerably richer; in particular, one can form

linear combinations with coefficients from the algebra F(M). This means (Appendix A.4)

that vector fields actually comprise a module over the algebra of functions F(M).

2.2.12 Given V, W ∈ X(M) and f ∈ F(M), check that a linear combination V + f W is

a vector field, too, if one defines it in terms of a pointwise combination of the constituent

vectors

(V + f W )P := VP + f (P)WP

or equivalently (in terms of the action on functions) as

(V + f W )g := V g + f (Wg) �
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• If we say, then, that the fields ∂i constitute a basis for vector fields, what we have in

mind is that this is a basis in the sense of a module (as opposed to a linear space over R).

This means that any vector field in a coordinate patch O ↔ xi (this may not hold for the

manifold as a whole) may be uniquely decomposed with respect to ∂i as V = V i∂i , the

coefficients of the decomposition (components) V i being, however, from the algebra F(O)

(R is not enough, in general). Thus X(O) is an ∞-dimensional linear space over R, but it is,

at the same time, finitely generated as a module over F(O). Namely, it has n generators (∂i ,

for example), from which it may be generated completely by means of the algebra F(O) in

full analogy with an n-dimensional linear space, which may be generated from an arbitrary

basis e1, . . . , en with the help of the field14 of real numbers R.

2.2.13
∗

Let L be an n-dimensional linear space over R. Show that

(i) there exists the canonical (independent of the choice of basis in L) isomorphism of L itself and a

tangent space Tx L (x being an arbitrary point in L), so that a linear space L may be canonically

identified with the tangent space at an arbitrary point

(ii) if a fixed vector v ∈ L is successively mapped into all tangent spaces in this way, the vector

field V is obtained on L; explicitly (in coordinates introduced in (1.4.11), v = vaea) it reads

V = va∂a .

Hint: (i) L � v �→ (d/dt)0 (x + tv); a picture might be helpful in order to visualize what

is going on. �

2.2.14 Let M × N be a manifold, which is the Cartesian product of two other manifolds

M and N . Show that

(i) there is a canonical decomposition of tangent spaces at any point (m, n) into the sum of two

subspaces, each of them being isomorphic to the tangent spaces at points m and n respectively of

the initial manifolds

T(m,n)(M × N ) = Tm M ⊕ Tn N

(ii) any vector field V on M × N may be uniquely decomposed into the sum of two vector fields

V = VM + VN , where VM “is tangent to” M and VN “is tangent to” N .

Hint: (i) consider the curves t �→ (m(t), n) and t �→ (m, n(t)); in coordinates from (1.3.3) the

subspaces span ∂i and ∂a ; (ii) pointwise realization of (i); V = Ai (x, y)∂i + Ba(x, y)∂a ≡
VM + VN . �

2.3 Integral curves of a vector field

• Lines of force field provide an aid for visualizing the field; they are essentially a map of

the field. A momentary glance at the pattern of lines provides rich information concerning

the field itself, since if F(r) is the field in question, we know that (by definition) the vector F

14 The field R is hidden in the algebra F(O) in terms of constant functions, so that the algebra F(O) is a much richer object than
R is – this is the reason why far fewer generators are needed to reach the same goal.
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at a point r is tangent to the line of force at r. The concept of an integral curve adds a definite

parametrization to this idea (it is a curve rather than a line), the latter being irrelevant in

the case of force lines: its orientation is all they need.

A vector field V on M determines a vector VP ∈ TP M at each point P ∈ M . On the other

hand, we know from Section 2.1 that a vector VP may be regarded as an equivalence class

of curves, each representative of the class “being the

same” in the immediate vicinity of the point P (up

to order ε). An integral curve of a vector field V is

then the curve γ on M , such that at each point of its

image, the equivalence class [γ ] given by the curve,

coincides with the class VP , given by the value of

the field V in P . Put another way, from each point it

reaches, it moves away exactly in the direction (as

well as with the speed) dictated by15 the vector VP . All this may be written as a succinct

geometrical equation

γ̇ = V i.e. γ̇ (P) = VP

(this is the equation for finding an integral curve γ of a vector field V in a “coordinate-free”

form), where the symbol γ̇ (P) denotes the tangent vector to the curve γ at the point P (i.e.

the equivalence class [γ ], given by the curve γ at the point P). If the vectors on both sides

of this equation are decomposed with respect to a coordinate basis, a system of differential
equations for the functions xi (t) ≡ xi (γ (t)) (for the coordinate presentation of the curve to

be found) is obtained.

2.3.1 Show that the differential equations for finding an integral curve γ of a vector field

V have the form

ẋ i = V i (x) i = 1, . . . , n

i.e. in more detail

ẋ1(t) = V 1(x1, . . . , xn)

. . .

ẋ n(t) = V n(x1, . . . , xn)

Hint: γ̇ (γ (t)) = ẋ i (t) ∂i |γ (t), Vγ (t) = V i (x(t)) ∂i |γ (t). �

2.3.2 Write down and solve the equations for integral curves of the field V from exercise

(2.2.11), both in polar and in Cartesian coordinates. Draw the solutions (ṙ = 0, ϕ̇ = 1; ẋ =
−y, ẏ = x). �

15 Like a well-disciplined hiker, always walking in the direction of arrows on destination signs and obediently following the
instructions concerning time indications given there (how many minutes he or she would need to reach the next arrow).
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2.3.3 Find integral curves of the field V = ∂x + 2∂ϕ on R[x] × S1[ϕ] (the surface of a

cylinder). Draw the results. �

• We may see that, in general, one has to do with a system of n first-order ordinary

differential equations for n unknown functions xi (t). Moreover, the system is quasi-linear
(linear in the highest (= the first, here) derivatives), autonomous (functions on the right-

hand side do not depend explicitly on the variables with respect to which the unknown

functions are differentiated (t here)) and, in general, coupled. Since the functions on the

right-hand side are smooth (2.2.9), the theory of equations of this type guarantees that there

exists a unique solution in some neighborhood of the point, which corresponds to the initial

conditions. There then exists a unique integral curve of a field V , which starts at (any given)

P ∈ M in t = 0. However, it is not, in general, possible to extend this curve for all values

of the parameter t ∈ (−∞, ∞).

2.3.4 A vector field V on M is said to be complete if for any point P ∈ M the integral

curve γ (t), which starts from P , may be extended to all values of the parameter t . Show

that the vector fields V = ∂x on M = (−1, 1) and W = x2∂x on N = R are not complete
(and learn a lesson from these two examples, what some problems with such an extension

might look like). �

2.3.5 Given γ (t), an integral curve of a vector field V on M , let γ̂ (t) := γ (σ (t)) be a

reparametrized curve. Find the most general dependence σ (t), so that γ̂ will be an integral

curve of the vector field V , too.

Hint: (d/dt) f (γ (σ (t))) = σ ′(t)(d/dt) f (γ (t)), so that ˙̂γ = σ ′γ̇ ; [σ (t) = t + constant]. �

• This result is easy to understand. Consider γ (t) as being a trajectory. Then γ̂ is another

trajectory, such that we traverse the same set of points on M at different moments of time.

Put another way, the path remains unchanged, but the (instantaneous) speed of traversing

the path may be different.16 Just how much different depends on the point and the result of

the exercise shows that the new speed is σ ′(t) times the old one at any point γ (t). (As an

example, for σ (t) = 2t , the new speed is twice the old one at each point.) Since the velocity

vector of an integral curve may not be changed (it is given by V uniquely), σ ′(t) = 1 results.

This means that the only possibility to change the trajectory is to traverse the same path

either sooner or later. This freedom (t �→ t + constant) enables one to set an arbitrary

value of the parameter t (time) at the starting point P .

2.3.6 Let γ be an integral curve of a vector field V on M , which starts from P ≡ γ (0) ∈ M .

Show that the integral curve (of the same field V ) γ̂ , which starts from Q ≡ γ (a), is

γ̂ (t) := γ (t + a).

Hint: see (2.3.5). �

16 In fact, we have not enough structure, yet, to speak of the “speed” (a metric tensor, to be introduced later, is needed for it). In
spite of this, we can speak of the ratio of two speeds, since our velocity vectors are proportional.
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• The result of (2.3.1) admits a different interpretation, too. It shows that each system

of equations of the type (2.3.1) may be regarded as a system for finding integral curves

of the particular vector field (we read out its components from the right-hand side of the

equations). This is the important observation, since it provides a key to the investigation of

properties of solutions of such equations by powerful geometrical and topological methods –

corresponding vector fields (or other objects associated with them) are studied instead of

the equations themselves. We will see this, for example, in Chapter 14, where Hamiltonian

systems will be discussed.

2.3.7 Find a vector field V on R
2n[q1, . . . , qn, p1, . . . , pn], which corresponds to the

Hamilton equations

q̇a = ∂ H

∂pa
ṗa = − ∂ H

∂qa
a = 1, . . . , n

(V = (∂ H/∂pa)∂/∂qa − (∂ H/∂qa)∂/∂pa). �

• A vector field V on a manifold M gives rise to a new and interesting structure, a

congruence of integral curves on M : the manifold M is “densely” filled by a system of

(infinitely many) curves, which never intersect and

the “speed” of motion along them is completely de-

termined by the field V . This situation may be con-

veniently visualized as the flow of a river. This flow

is stationary (the velocity vector in a given point

being always the same; in particular, the river does

not flow at the points where the field vanishes) and

for particular types of fields (e.g. for Hamiltonian

fields) the fluid is in addition incompressible (14.3.6). Integral curves correspond to the

streamlines of the flow. If one fine (and hot) afternoon we do not resist the temptation and

let ourselves waft downstream, we get from P ≡ γ (0) ∈ M to the point Q ≡ γ (t) ∈ M ;

naturally a one-parameter class of mappings

�t : M → M P ≡ γ (0) �→ γ (t)

arises, called a (local) flow generated by the vector field V . We will return to this important

concept in more detail later, in Chapter 4 and beyond.

2.3.8 Justify the statement mentioned above, that integral curves never intersect (nor are

tangent to one another).

Hint: from a point P one has to make a move in the direction of VP (uniquely).

2.3.9 Express the results of exercises (2.3.2) and (2.3.3) in the form of a flow �t :

xi �→ xi (t) ≡ �t (xi ) ((r, ϕ) �→ (r, ϕ + t) or (x, y) �→ (x cos t − y sin t, x sin t + y cos t);
(x, ϕ) �→ (x + t, ϕ + 2t)). �
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2.4 Linear algebra of tensors (multilinear algebra)

• It turns out that each linear space L automatically gives rise to a fairly rich algebraic

structure “above” L – a whole infinite cascade of further and further linear spaces, the spaces

of tensors in L and an ∞-dimensional associative graded algebra, the tensor algebra T (L),

associated with them. In this section we will become familiar with tensors at the level of

linear algebra, and in the next section we shift to manifolds and introduce the concept of a

tensor field.

Within this section we consider arbitrary n-dimensional linear space L over the field of

real numbers R.

First, we observe that linear forms on L , i.e. linear maps such that

α : L → R α(v + λw) = α(v) + λα(w) v, w ∈ L , λ ∈ R

form a linear space in its own right, the dual space L∗. Its elements are called covectors
in L .

2.4.1 Check that the prescription

(α + λβ)(v) := α(v) + λβ(v)

introduces a linear structure in L∗ (i.e. check that the linear combination is indeed a linear

map L → R). �

• The resulting value of α(v) ∈ R will be denoted, as a rule, in the form

〈α, v〉 := α(v)

Given a basis ea in L , there already exists the distinguished basis in L∗ (tailored to the basis

ea in L).

2.4.2 Let ea be a basis in L and let v = ∑n
b=1 vbeb ≡ vbeb. Verify that

(i) the maps

ea : L → R ea(vbeb) := va a = 1, . . . , n

are covectors and, in addition, they constitute a basis in L∗ (called the dual basis with respect

to ea):

α = αaea αa := 〈α, ea〉
(ii) an equivalent definition of the dual basis is

〈ea, eb〉 = δa
b

(iii) a change of the basis in L given by a matrix A results in the change of the dual basis given by

the inverse matrix A−1

ea �→ e′
a = Ab

aeb ⇒ ea �→ e′a = (A−1)
a
beb
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(iv) the dimension of a dual space equals the dimension of the original space: dim L∗ = dim L (= n).

Hint: (i) check that α and 〈α, ea〉ea are equal linear maps; (iv) consider the number of

elements of the dual basis. �

• Since L∗ is an n-dimensional vector space in its own right, the whole story may be

repeated again and one can construct the dual space (L∗)∗. It turns out, however, that this

space is (for finite-dimensional L) in a sense redundant. The reason is that it is canonically
isomorphic to the original space L . What do we mean by this and how can one profit

from it?

In general, any two n-dimensional linear spaces are isomorphic, but there are an infinite

number of equally good isomorphisms available (ea �→ Ea , for arbitrary choice of basis

Ea), so that there is no reasonable (independent of arbitrary choices) way to choose a

preferred one. This is true, in particular, for the relation L ↔ L∗. (Try, for example, to

describe your favorite isomorphism to a remote extraterrestrial, who is well educated in

linear algebra and understands all the steps you dictate.) Exercise (2.4.3) shows, however,

that for L → (L∗)∗ the situation is essentially different. In this case, there is a distinguished
isomorphism f , which can be described to our remote extraterrestrial friend and he or

she or it will know what maps into what. This isomorphism suggests using a standard

mathematical trick – identification of the spaces L and (L∗)∗, and, by analogy then, the nth

with the (n − 2)th dual spaces. Only the first two members, L and L∗, thus survive from the

threatening looking, potentially infinite chain of still higher and higher dual spaces. (This,

in a moment, will result in the fact that we will make do with only two kinds of indices,

“lower” and “upper,” on general tensors.)17 If a non-degenerate bilinear form were added
to L , the situation would change significantly, since it would be possible already to identify

L with L∗ in a canonical way (via the “raising and lowering of indices” procedure, see

(2.4.13).)

2.4.3 Prove that the space (L∗)∗ is canonically isomorphic to the space L .

Hint: the canonical isomorphism f : L → (L∗)∗ is 〈 f (v), α〉 := 〈α, v〉.
2.4.4 Imagine we have defined a “canonical” isomorphism L ↔ L∗ with the help of dual
bases by

f (ea) := ea

(i.e. v ↔ α, if they have equal coefficients of decomposition with respect to ea and ea

respectively). Check that if we change the basis as ea �→ Ab
aeb, the isomorphism above will

be changed (and since in general L all bases are equally good, no distinguished f is given

in this way). �

17 This step saves the huge number of higher dual spaces as well as various kinds of indices for future generations, so it can
be regarded as highly satisfactory far-sighted behavior from an ecological point of view; one should not lavishly waste any
non-renewable resources, including mathematical structures.
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• Let us have a look at one aspect, common for linear spaces L , L∗ and R. One may, in

all three cases, regard their elements as linear maps into R, namely

1. α ∈ L∗ maps v �→ 〈α, v〉 ∈ R (v ∈ L)

2. v ∈ L maps α �→ 〈α, v〉 ∈ R (α ∈ L∗)

3. a ∈ R maps ∅ �→ a ∈ R (no input and a real number as output).

Although item 3 might look fairly far-fetched, it proves convenient to incorporate it as a

gear-wheel into a device, which in general operates as follows: several vectors as well as

covectors are inserted and (after a crank is turned, of course) a real number drops out.

Moreover, if this number depends linearly on each argument (which holds for all three

cases, albeit trivially for the third case), we get a tensor.

Definition Let L be an n-dimensional linear space and L∗ its dual space. A tensor of type( p
q

)
in L is a multilinear (≡ polylinear := linear in each argument) map

t : L × · · · × L︸ ︷︷ ︸
q

× L∗ × · · · × L∗
︸ ︷︷ ︸

p

→ R

(v, . . . , w;
︸ ︷︷ ︸

q

α, . . . , β
︸ ︷︷ ︸

p

) �→ t(v, . . . , w; α, . . . , β) ∈ R

t(. . . , v + λw, . . .) = t(. . . , v, . . .) + λt(. . . , w, . . .)

(and similarly for an arbitrary covector argument). A collection of tensors of type
( p

q

)
in L

will be denoted by T p
q (L), and for p = q = 0 we set T 0

0 (L) := R.

2.4.5 Check that

(i) for t, τ ∈ T p
q (L), λ ∈ R, the rule

(t + λτ )(v, . . . ; α, . . .) := t(v, . . . ; α, . . .) + λτ (v, . . . ; α, . . .)

introduces a linear structure into T p
q (L) (i.e. the linear combination displayed above indeed

happens to be a multilinear map)

(ii) some special instances are given by

T 0
0 (L) = R T 0

1 (L) = L∗ T 1
0 (L) ≈ L

T 1
1 (L) ≈ Hom (L , L) ≈ Hom (L∗, L∗) T 0

2 (L) = B2(L)

where Hom (L1, L2) denotes all linear maps from L1 into L2, B2(L) are bilinear forms on L and

≈ denotes canonical isomorphism.

Hint:
(

0
0

)
,
(

0
1

)
and

(
0
2

)
definitions,

(
1
0

)
(2.4.3);

(
1
1

)
: the isomorphisms Hom(L , L) → T 1

1 (L)

and Hom (L∗, L∗) → T 1
1 (L) read

t(v; α) := 〈α, A(v)〉 and t(v; α) := 〈B(α), v〉
or, equivalently (in the opposite direction),

A(v) := t(v; · ) B(α) := t( · ; α) �
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• Taking into account (multi)linearity, a tensor t ∈ T p
q (L) is known completely if we know

its values on all possible combinations of basis vectors ea and covectors ea . This collection

of numbers

t c...d
a...b := t(ea, . . . , eb; ec, . . . , ed )

is said to form the components of the tensor t with respect to ea . The mnemonic rule of the

notation
(p

q
)

should finally be clear: a tensor t is in the space T p
q (L) if its components have

p upper indices and q lower indices.

2.4.6 Check that

(i) in components, the rule for performing linear combinations from (2.4.5) reduces to

(t + λτ )c...d
a...b = t c...d

a...b + λτ c...d
a...b

(ii) dim T p
q (L) = n p+q ≡ (dim L)p+q (the number (p + q) is known as the rank of a tensor)

(iii) under the change of basis in L , components of a tensor transform as follows:

ea �→ Ab
aeb ≡ e′

a ⇒ t ′c...d
a...b = (A−1)c

k . . . (A−1)d
l Ar

a . . . As
btk...l

r ...s

(iv) if v = vaea, α = αaea . . . represent the decompositions of arguments, then

t(v, . . . , w; α, . . . , β) = t c...d
a...b va . . . wbαc . . . βd

(v) three different applications of a
(

1
1

)
-type tensor t from (2.4.5) in components look like

(vb, αa) �→ ta
b vbαa va �→ ta

b vb αa �→ tb
a αb

Hint: (ii) t �→ t c...d
a...b is the isomorphism T p

q (L) → R
n p+q

(each of (p + q) indices takes n
values); (iii) t ′c...d

a...b := t(e′
a, . . . , e′d ) + linearity in each argument. �

• Thus we have learned that L induces an infinite number of further linear spaces –

for each pair (p, q) of non-negative integers there is the n p+q -dimensional space T p
q (L).

(This means that if we envisage tensor spaces as a

“tower,” the tower dilates in the upward direction,

like a pyramid does on a photograph snapped in Giza

by a distrait yogi, forgetting he has just performed

a headstand.)

If we combine components with a suitable basis,

we get “complete” tensors. It turns out that a suitable

basis may be constructed out of the basis for vectors

and covectors, if an additional operation on tensors is introduced, the tensor product. It may

be regarded as a map

⊗ : T p
q (L) × T p′

q ′ (L) → T p+p′
q+q ′ (L)

i.e. two tensors of arbitrary types
( p

q

)
and

( p′
q ′

)
are multiplied – contrary to linear combi-

nation, where both types have to be equal – and the resulting tensor is of type
(p+p′

q+q ′
)
. The
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definition is as follows:

(t ⊗ σ )(v1, . . . , vq , w1, . . . , wq ′ ; α1, . . . , αp, β1, . . . , βp′ )

:= t(v1, . . . vq ; α1, . . . , αp)σ (w1, . . . , wq ′ ; β1, . . . , βp′ )

(here the indices label complete vectors and covectors, rather than their components!).

Stated in words, we first insert the arguments of both types into the first (left) tensor, until it

is filled completely; the rest we put into the second (right) one. The resulting two numbers
are then simply multiplied.

2.4.7 Verify that

(i) the result of the multiplication t ⊗ σ is a tensor, indeed (i.e. check multilinearity)

(ii) at the level of components the multiplication ⊗ gives

(t ⊗ σ )c...dr ...s
a...bk...l = t c...d

a...b σ r ...s
k...l

(iii) the multiplication ⊗ is associative (we need not bother about brackets in multiple products),

bilinear and non-commutative

(iv) tensors of type (p, q)

ea ⊗ · · · ⊗ eb ⊗ ec ⊗ · · · ⊗ ed ∈ T p
q (L)

constitute the basis of T p
q (L) with respect to which components have been defined above, i.e. an

arbitrary tensor t ∈ T p
q (L) may be decomposed as

t = t c...d
a...b ea ⊗ · · · ⊗ eb ⊗ ec ⊗ · · · ⊗ ed tc...d

a...b := t(ea, . . . , eb; ec, . . . , ed )

Hint: (iv) one has to check that the “original” tensor and its decomposition represent

the same map; since they are (multi)linear, it is enough to check it for the basis; as an

example

(
t c
d ed ⊗ ec

)
(ea ; eb) = t c

d 〈ed , ea〉〈eb, ec〉 = tb
a = t(ea ; eb)

thus the equality t c
d ed ⊗ ec = t of maps (= tensors) has been proved. �

• The result (2.4.7) shows that all tensors constitute an (∞-dimensional non-commutative)

associative algebra (Appendix A.2), called the tensor algebra T (L). As a linear space, it

is a direct sum of all spaces T p
q (L)

T (L) :=
∞⊕

r,s=0

T r
s (L)

≡ T 0
0 (L) ⊕ T 1

0 (L) ⊕ T 0
1 (L) ⊕ T 2

0 (L) ⊕ T 1
1 (L) ⊕ T 0

2 (L) ⊕ · · ·
(up to infinity), i.e. an element from T (L) may be regarded as a linear combination of

tensors of all types
( p

q

)
. Multiplication ⊗ is defined as a linear extension of the definition

of ⊗ on homogeneous terms (terms with fixed
( p

q

)
), i.e. according to the rule “everybody
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with everybody”:18

(k + v + α + · · ·) ⊗ (q + w + β + · · ·) := k ⊗ q + k ⊗ w + k ⊗ β + · · ·
+ v ⊗ q + v ⊗ w + · · ·

Furthermore, this algebra is (Z × Z)-graded (Appendix A.5): its “homogeneous” subspaces

T p
q (L) are labelled by a pair of integers (p, q), i.e. (we define T p

q (L) := 0 for negative p, q)

by an element of group Z × Z, and multiplication in algebra T (L) is compatible with the

grading: the product of any two elements from the subspaces ↔ (p, q) and (p′, q ′) ∈ Z × Z

is homogeneous, too, belonging to the subspace which corresponds to a product in the sense
of Z × Z, i.e. (p + p′, q + q ′).

Operations producing tensors from tensors, are said to be tensor operations. So far we

have met linear combination and tensor product. One further important tensor operation is

provided by contraction. It is defined (for p, q ≥ 1) as follows:

C : T p
q (L) → T p−1

q−1 (L) t �→ Ct := t(. . . , ea, . . . ; . . . , ea, . . .)

where the exact position of arguments ea and ea is to be specified – it forms a part of the

definition (there are several (pq) various possible contractions, in general, and one has to

state which one is to be performed).

2.4.8 Check that

(i) the result is indeed a tensor (multilinearity)

(ii) C does not depend on the choice of the basis ea (when ea has been fixed, however, ea is to be the

dual)

(iii) in components the rule for C looks like19

t .....
..... �→ t ...a.

.a... i.e. as a summation with respect to a pair

of upper and lower indices

(iv) independence of a choice of basis results from the component formula, too.

Hint: (ii) see (2.4.2); (iv) see (2.4.6). �

2.4.9 Show that

(i) the prescription

1̂(V ; α) := 〈α, V 〉
defines a

(
1
1

)
-type tensor, the unit tensor

(ii) its components with respect to any basis ea (ea being dual, as usual) are given by

1̂a
b = δa

b so that 1̂ = ea ⊗ ea

18 The maximum promiscuity rule.
19 Each contraction thus unloads a tensor by two indices. It breathes with fewer difficulties immediately (fewer indices = fewer

worries), it feels like after a rejuvenation cure. This human aspect of the matter is reflected sensitively in German terminology,
where the word Verjüngung (rejuvenescence) is used.
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(iii) it realizes the unit operator (v �→ v, α �→ α) if it is interpreted as a map

1̂ : L → L and 1̂ : L∗ → L∗

respectively

(iv) its contraction (2.4.8) gives

C 1̂ = n ≡ dim L

Hint: (iii) see (2.4.5). �

2.4.10 Show that the evaluation of a tensor on arguments may be regarded as a composition

of tensor product and contractions; as an example, for a
(

1
1

)
-type tensor it is

t(v, α) = CC(t ⊗ v ⊗ α) = (t ⊗ v ⊗ α)ab
ba ≡ (t ⊗ v ⊗ α)(eb, ea ; ea, eb)

In particular, (see exercise 2.4.8),

1̂(v, α) ≡ 〈α, v〉 = C(α ⊗ v) �

• A metric tensor in L is a symmetric non-degenerate tensor of type
(

0
2

)
, i.e. g ∈ T 0

2 (L)

such that

g(v, w) = g(w, v) symmetric

g(v, w) = 0 for all w ⇒ v = 0 non-degenerate

2.4.11 Check that

(i)

gab = gba det gab �= 0

(ii) conditions in (i) do not depend on the choice of basis ea . �

• Sometimes one demands that g meets stronger requirements, namely to be positive
definite,20 so that

g(v, v) ≥ 0 (and equality holds only for v = 0)

and (metric) tensors, which are not positive definite, are said to be pseudo-metric tensors.

We will use, in what follows, the nomenclature metric tensor also for g, which is not positive

definite,21 and if some statement relies heavily on the positive definiteness of the latter (i.e.

“true” metric tensor), it will be specially emphasized.

As is well known from linear algebra, one can bring a matrix of a general symmetric

bilinear form by a suitable (non-unique) choice of basis ea to the canonical form

bab = diag(1, . . . , 1
︸ ︷︷ ︸

r

,−1, . . . , −1
︸ ︷︷ ︸

s

,0, . . . , 0
︸ ︷︷ ︸

l

)

20 Then (v, w) := g(v, w) has the properties of a scalar product in L , see (2.4.13).
21 This is the case both in special and in general relativity, where one speaks of a “metric” in situations where in finer terminology

pseudo-metric tensor (or even tensor field) should be used.
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where the numbers (r, s, l) are inherent properties of the form (Sylvester’s theorem). Non-

degeneracy adds l = 0 (why?), so that the canonical form of a metric tensor reads as

gab = ηab ≡ diag (1, . . . , 1
︸ ︷︷ ︸

r

,−1, . . . ,−1
︸ ︷︷ ︸

s

)

or, in other words,

g = gabea ⊗ eb

= e1 ⊗ e1 + · · · + er ⊗ er − er+1 ⊗ er+1 − · · · − er+s ⊗ er+s

In this case we will speak about a metric tensor with signature (r, s).22 Thus, the positive

definite case corresponds to s = 0 (terms with a minus sign are not present in the canon-

ical form). Any basis ea ↔ ea in which this canonical form of g is obtained is called an

orthonormal basis.

2.4.12 Given ea an arbitrary basis and gab = g(ea, eb), define gab as elements of the inverse
matrix to gab, i.e.

gacgcb := δa
b

Prove that

(i) gab constitute the components of a (symmetric)
(

2

0

)
-type tensor (so that they indeed deserve two

upper indices)

g ≡ gabea ⊗ eb ∈ T 0
2 (L) ⇒ g−1 := gabea ⊗ eb ∈ T 2

0 (L)

(ii) matrix gab is non-singular.

Hint: (i) check the transformation law of gab under a change of basis. �

2.4.13 Consider the maps �g and �g given by

�g : L → L∗ v �→ �gv := g(v, ·)
�g : L∗ → L α �→ �gα := g−1(α, ·)

Check that

(i) they are linear (and canonical) isomorphisms

(ii) when expressed in bases and in components, they look like

�g : ea �→ gabeb va �→ va := gabv
b vaea �→ vaea

�g : ea �→ gabeb αa �→ αa := gabαb αaea �→ αaea

(iii) they are inverse to each other:

�g ◦ �g = idL∗ �g ◦ �g = idL

22 Sometimes, the number r − s is called the signature, too.
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(iv) if scalar products in L and L∗ are introduced23 by

(v, w) := g(v, w) ≡ gabv
awb (α, β) := g−1(α, β) ≡ gabαaβb

then both �g and �g are isometries, i.e. (�gv, �gw) = (v, w), (�gα, �gβ) = (α, β). �

• The maps �g and �g are known as lowering and raising of indices (with the help of g),

respectively. The quantities va, v
a are often called covariant and contravariant components

of (the same) vector v. We will not adopt this nomenclature, however. We will always strictly

discriminate between a vector v = vaea and a covector vaea (as being elements of L and

L∗) and interpret the operations of raising and lowering of indices as maps between two

different spaces L ↔ L∗. Note that the graphical expressions used for these maps originate

from well-known musical symbols.24

The metric tensor makes it possible to change the position of indices on higher rank

tensors, too, for example

ta
bc �→ tabc := gad td

bc Rab
cd �→ Rabcd := gae gbf Ref

cd

This belongs to basic exercises of index gymnastics.25

2.4.14 Prove the validity of the exercise

t ....a.
..a... = t ..a...

....a.

Hint: do you intend to base your proof upon the fact that the total potential energy remains

unchanged? (Red herring.) �

• There are several possibilities of how to raise or lower indices on second or higher rank

tensors, differing in the order of the indices on the resulting tensor. As an example, there

are four places below where one can lower the index on the fourth rank tensor Ra
bcd

Rabcd := gaj R j
bcd Rabcd := gbj R j

acd . . .

The indices are sometimes written so as to have only one index on each vertical line, being

either upper or lower, e.g. R b
a cd . Within this particular convention, it is always clear where

exactly any upper index should be lowered.

It is useful to realize that symmetry of the metric tensor g is of no importance for raising

and lowering of indices, the only property that matters being its non-degeneracy. These

operations might as well be defined by virtue of an antisymmetric tensor ωab = −ωba ,

provided that it happens to be non-degenerate (det ωab �= 0). We will see in what follows

that this possibility is indeed exploited, the most prominent applications being in symplectic

geometry (to be discussed in Chapter 14 and beyond) and in the theory of two-component

spinors (12.5.3).

23 They are positive definite for Euclidean g only!
24 Namely “flat” and “sharp.” Thoughtful graduates of schools of music might recall that no g was present on sharps and flats

they had read in sheets of music – this is simply because the validity of Euclidean geometry is normally assumed in concert
halls, so that musical flats and sharps are conventionally associated with this Euclidean g (and are not indicated explicitly).

25 It should be performed, as is the case for arbitrary gymnastics, at an open window, never directly after a substantial meal.
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Finally, let us contemplate whether the lowering and raising of indices does change the

numerical values of components. The formula va �→ va ≡ gabv
b shows that the numbers va

and va are the same only in the case where g is given, in a given basis, by the identity matrix,

gab = δab. This (only) happens to be true in the positive definite case in the orthonormal
basis; in the indefinite case, this happens in no basis. Therefore, when working with vectors

in Euclidean spaces E2 or E3, one may safely ignore the detailed position (upper/lower)

of indices with respect to an orthonormal basis.26 On the other hand, one should pay due

attention to this issue in all cases when non-orthonormal bases or indefinite metrics are

used. In Minkowski space, for example, the lowering and raising of indices always changes

numerical values of (some) components; in an orthonormal basis this change reduces to the

change of a sign (of some of them), but it may be more complicated in general.

2.4.15 Check that raising and lowering of indices

(i) are tensor operations

(ii) may be regarded as compositions of a tensor product (with the tensor g) and contractions.

Hint: e.g. �gv ≡ g(v, ·) = C(g ⊗ v). �

• The last tensor operations to be mentioned are symmetrizations and antisymmetrizations

in various subgroups of indices. Let us illustrate this on just two indices.

2.4.16 Given t ∈ T 0
2 (L), define

tS := 1

2
(tab + tba)ea ⊗ eb ≡ t(ab)e

a ⊗ eb

tA := 1

2
(tab − tba)ea ⊗ eb ≡ t[ab]e

a ⊗ eb

(symmetric and antisymmetric part of the tensor t respectively). Check that

(i)

t �→ tS ≡ πSt t �→ tA ≡ πAt

are tensor operations, independent of the choice of ea

(ii) tensors, for which t = tS or t = tA is true, constitute subspaces in T 0
2 (L)

(iii) πS and πA satisfy

πS ◦ πS = πS πS ◦ πA = πA ◦ πS = 0

πA ◦ πA = πA πS + πA = 1̂

so that they serve as projection operators on the subspaces of the symmetric and antisymmetric

tensors mentioned above, the whole space T 0
2 (L) being the direct sum of these two subspaces

(only). �

• Finally, two more useful concepts will be introduced at the end of this section on

multilinear algebra, namely those of a dual map and an induced metric tensor.

26 That is, at the level of components one is allowed to make no difference between a vector and the associated covector, like the
gradient as a covector and a gradient as a vector, see the end of Section 2.6.



44 Vector and tensor fields

2.4.17 Let A : L1 → L2 be a linear map, ei a basis of L1 and ea a basis of L2. The

rank of the map A is defined as a dimension of the image of the space L1 in L2, i.e. rank

A := dim Im A. Show that

(i) by the prescription

〈A∗(α2), v1〉 := 〈α2, A(v1)〉 α2 ∈ L∗
2, v1 ∈ L1

a linear map

A∗ : L∗
2 → L∗

1

is defined (dual map)

(ii) on the basis it gives

ei
A�→ Aa

i ea ⇒ ea A∗�→ Aa
i ei

i.e. matrices of the maps A, A∗ are transposes of each other

(iii)

rank A = rank of the matrix of a map A

rank A∗ = rank of the matrix of a map A∗

(iv) rank A = rank A∗ (⇒ that the row and column ranks of a matrix happen to coincide).

Hint: (iv) use adapted bases: a part of ei is a basis of the kernel Ker A of the map (those

v for which v �→ 0 ∈ L2), the rest are chosen arbitrarily to complete a basis; in L2 take

images of the remaining part (they span Im A) + complete a basis. �

2.4.18 Given A : L1 → (L2, h), dim L1 ≤ dim L2 a maximum rank linear map (2.4.17)

(h being a metric tensor in L2), show that

(i) by the rule

g := A∗h (A∗h)(v, w) := h(Av, Aw)

a metric tensor g in L1 is defined (induced metric tensor)

(ii) if ei ∈ L1 and ea ∈ L2 are bases, then

gi j = Aa
i hab Ab

j Aei =: Aa
i ea (in matrix notation g = ATh A)

Hint: (i) (among others) one has to check the maximum rank (2.4.13) of the map

�g : L1 → L∗
1 v �→ g(v, · ) ≡ ṽ ≡ �gv

(≡ non-degeneracy of g). This map is a composition of

�g = A∗ ◦ �h ◦ A L1
A→ L2

�h→ L∗
2

A∗�→ L∗
1 (A∗ in the sense of (2.4.17))

(since ei �→ gi j e j = Aa
i hab Ab

j e
j ), all factors in the composition do have maximum rank

and dim L1 ≤ dim L2 ⇒ �g is a maximum rank (= dim L1) map, too. �
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2.4.19 Let V be a linear space with a distinguished subspace W ⊂ V . Show that in the

dual space V ∗ the associated distinguished subspace Ŵ ⊂ V ∗ of dimension dim V minus

dim W is given canonically; it is said to be an annihilator of the subspace W .

Hint: consider covectors σ ∈ V ∗ annihilated by vectors from W , i.e. such that 〈σ, w〉 = 0

for all w ∈ W (see also (10.1.13)). �

2.5 Tensor fields on M

• In Section 2.2 we showed that there is a vector space associated with each point P of

a manifold M , the tangent space TP M . In Section 2.4 we learned how to construct tensors

of type
( p

q

)
, starting from an arbitrary finite-dimensional vector space L . If we now take

L to be the space TP M , we immediately get (with practically no labor – it simply suffices

to harvest the crop sown earlier in Section 2.4) tensors at the point P ∈ M . In particular,

the dual space to TP M , the space of covectors in P ∈ M , is called the cotangent space in

P and it is denoted by T ∗
P M .

Equally naturally the concept of a tensor field of type
( p

q

)
on M appears. In full analogy

with the special case of a vector field, one has to choose exactly one tensor of type
( p

q

)

residing at each point of a manifold M . Once again, we restrict to fields which vary smoothly

from point to point. In order to formulate this succinctly, an algebraic perspective is useful.

In particular, one should realize what kind of maps tensor fields actually are.

An individual tensor of type
( p

q

)
in P ∈ M takes as its arguments vectors and covectors in

P , and the result is a number which depends linearly on each of the arguments. At the level

of fields, this happens in each point P ∈ M . It is convenient to regard it as if we inserted

vector and covector fields as arguments of a tensor field, obtaining a number at each point,

i.e. a function. Since at each point linearity over R is required, one has to demand linearity

over F(M) for fields. Let us clarify this subtle point in more detail. Consider a covector

field α. At each point P we have αP , and the value VP of a vector field V is inserted in it

as an argument. In this way we obtain a function

〈α, V 〉 ∈ F(M) 〈α, V 〉(P) := 〈αP , VP〉 ∈ R

Since αP is a covector, for any λ ∈ R it holds that

〈αP , VP + λWP〉 = 〈αP , VP〉 + λ〈αP , WP〉

At a different point Q �= P we have

〈αQ, VQ + λWQ〉 = 〈αQ, VQ〉 + λ〈αQ, WQ〉

Both results should be valid, however, for arbitrary λ, so that λ present in the formula cor-

responding to the point P may be completely different from λ in the formula corresponding

to the point Q – a “constant” λ may depend on a point, and therefore for any function
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f ∈ F(M) we must have

〈α, V + f W 〉 = 〈α, V 〉 + f 〈α, W 〉
This is said to be the F(M)-linearity of the map α, which should be contrasted with

the weaker requirement of R-linearity. At the same time, we see the important fact that

the property of being F(M)-linear ultimately springs from the pointwise character of the

construction (the expression 〈α, V 〉 is in fact 〈αP , VP〉 performed in each point P). The

F(M)-linearity means that the arguments (vector fields in the case of a covector field)

constitute a module over the algebra F(M) and the map

α : T 1
0 (M) → F(M)

is linear in the sense of modules.

In terms of these maps the smoothness of a covector field is easily stated: α is said to

be smooth (of class C∞) if the function 〈α, V 〉 is smooth for any smooth vector field V .

Smooth covector fields on M will be denoted by T 0
1 (M).

2.5.1 Given α, β ∈ T 0
1 (M), f ∈ F(M), check that also α + fβ ∈ T 0

1 (M), if the linear

combination is defined as

〈α + fβ, V 〉 := 〈α, V 〉 + f 〈β, V 〉.
�

• This means that not only vector fields, but also covector fields constitute an F(M)-

module. Now, it is clear from this perspective that a tensor field of type
( p

q

)
may be regarded

as a map

t : T 1
0 (M) × · · · × T 1

0 (M)
︸ ︷︷ ︸

q

× T 0
1 (M) × · · · × T 0

1 (M)
︸ ︷︷ ︸

p

→ F(M)

which is F(M)-linear in each argument. If the resulting function happens to be smooth for

arbitrary smooth arguments, the field t is said to be smooth. Smooth tensor fields of type( p
q

)
on M will be denoted by T p

q (M), the case of T 0
0 (M) being identified with F(M). (This

makes the notation T 1
0 (M) comprehensible for vector fields, too.)

2.5.2 Check that each T p
q (M) is naturally endowed with the structure of an F(M)-

module. �

• If we make a comparison between tensors in L and tensor fields on M , we can say that

virtually everything goes the same way, if we substitute T p
q (L) by T p

q (M), linear spaces by

F(M)-modules and R-linearity by F(M)-linearity.

In particular, let us look more closely at the properties of tensor algebra. This concept may

be readily transferred to a manifold, after performing the substitutions mentioned above:

one takes the direct sum of all modules T p
q (M)

T (M) :=
∞⊕

p,q=0

T p
q (M)



2.5 Tensor fields on M 47

(it is anF(M)-module, too) and defines there a pointwise product ⊗, just like in Section 2.4.

This algebra, the algebra of tensor fields on M , is ∞-dimensional (which looks much the

same as for T (L)), but here already each homogeneous part T p
q (M) is ∞-dimensional (over

R; the most salient difference occurs for the lowest degree
(

0
0

)
: R ↔ F(M)). On higher

degrees, the situation is repeated in the form we met already in Section 2.2: although the

spaces T p
q (O) are ∞-dimensional even on “sufficiently small” domains O ⊂ M (e.g. in

coordinate patches O ↔ xi ), when regarded as linear spaces, they are finitely generated,

when regarded as modules. And what do the basis tensor fields actually look like, with

respect to which decomposition is to be performed?

We have seen in Section 2.4 that the most natural basis in L∗, with respect to a given

basis ea in L , is the dual basis ea . At the same time, for vector fields we know a coordinate
basis ∂i . What does a basis for covector fields look like which is dual (in each point) to this

particular basis?

2.5.3 Let f ∈ F(M), and let xi be local coordinates in O ⊂ M . Check that

(i) by the prescription

〈d f, V 〉 := V f

a covector field d f on M is defined. This field is called the gradient of the function f
(ii) gradients of coordinates (= functions!) dxi ∈ T 0

1 (O) constitute a basis for covector fields on O,

i.e. any α ∈ T 0
1 (O) may be decomposed in the form

α = αi (x) dxi αi (x) := 〈α, ∂i 〉 (≡ components with respect to the basis dxi )

and, in particular, for a gradient we have

d f = f,i dxi ≡ ∂ f

∂xi
dxi

(iii) covectors dxi |P constitute a basis for covectors in P , which is dual to the coordinate basis ∂i |P

for vectors in P (the basis dxi is said to be a coordinate basis, too)
(iv)

〈α, V 〉 = αi (x)V i (x)

(v) under the change of coordinates one has (J being, as usual, the Jacobian matrix)

xi �→ x ′i (x) ⇒ dxi �→ dx ′i = J i
j (x) dx j and αi (x) �→ α′

i (x
′) = (J −1)

j
i (x)α j (x)

Hint: (i) see (2.2.12); (v) set f = x ′i in (ii). �

• Since we already have the dual basis dxi to ∂i , we may write down component decom-

positions of arbitrary tensor fields.

2.5.4 Check that if t ∈ T p
q (M), then

(i) locally (in O ↔ xi ) it holds that

t = t i ... j
k...l (x) dxk ⊗ · · · ⊗ dxl ⊗ ∂i ⊗ · · · ∂ j
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(ii) under the change of coordinates x �→ x ′ components transform according to the formula

xi �→ x ′i (x) ⇒ t i ... j
k...l (x) �→ t ′i ... j

k...l (x ′)

≡ J i
r (x) . . . J j

s (x)(J −1)
u
k (x) . . . (J −1)

v

l (x)tr ...s
u...v(x)

�

2.5.5 Prove that the module T p
q (O) has n p+q generators.

Hint: see (2.5.4) and (2.4.6); t i ... j
k...l ∈ F(O). �

• The result given in (2.5.4) might serve as a basis for an independent definition of a tensor

field on M (definition of classical differential geometry; refer to definition no. 4 of a vector in

Section 2.2): the tensor field of type
( p

q

)
on M is a collection of functions t i ... j

k...l (x) associated

with coordinates xi defined in patches O ↔ xi , transforming under the changes of coordi-

nates according to the rule given in (2.5.4). Note that a global object on M is defined here

in terms of its pieces (components t i ... j
k...l (x) on O ⊂ M) as well as a rule of how to globalize

them, i.e. how to glue these pieces together consistently so as to obtain a desired whole. In

order to make this method work, one has to ensure that the rule for transition from one piece

to another satisfies a consistency condition on triple overlap of charts (see (2.2.6)): two steps

x �→ x ′ �→ x ′′ are to lead to the same result as a single one x �→ x ′′. This may be regarded

actually as a requirement, namely that the rule should have particular group properties –

coordinate changes on triple overlaps are naturally endowed with the structure of a group

(multiplication being realized as a composition of the two transformations involved) and the

transformation rules are to have the properties of “action” of the group (in particular, its rep-
resentation in linear spaces, as is the case here; see Section 12.1). Some of these rules may be

fairly complicated (e.g. the rule for Christoffel symbols of a linear connection, see (15.2.3)),

but the property of group action is necessary for a globally defined object (and sufficient as

well).

2.5.6 Check that the rule given in (2.5.4) for transformation of components of a tensor

field meets the requirement of consistency on triple overlaps of charts.

Hint: consider the behavior of Jacobian matrices for the transitions x �→ x ′ �→ x ′′. �

2.5.7 Prove that a tensor field is smooth if and only if its components happen to be smooth

(and this does not depend on the choice of coordinates). �

2.6 Metric tensor on a manifold

• On a manifold M , tensor fields of arbitrary type
( p

q

)
may be introduced. The only

canonical (existing automatically) tensor field on a general manifold is the unit tensor field

1̂ of type
(

1
1

)
(its other names being the contraction tensor or canonical pairing; note that
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the tensor product of several copies of this tensor as well as all possible symmetrizations

and antisymmetrizations of such products are canonical, too)

1̂(V, α) := 〈α, V 〉 i.e. 1̂(V, · ) = V, 1̂( · , α) = α

2.6.1 Check that

(i) in coordinates

1̂ = dxi ⊗ ∂i i.e. 1̂i
j = δi

j

(ii) the expression in (i) does not depend on the choice of coordinates (see (2.4.9)). �

• All other tensor fields on a manifold have to be specially defined and they provide

additional structure on M . What particular manifold we choose and what tensor fields it is

endowed with depend ultimately on the physical context in which the tools of differential

geometry are intended to be used (they represent input data, which characterize the problem

in geometric language). In the majority of physically interesting applications of geometry

(although not in all of them) a metric tensor on a manifold enters the scene, i.e. a field

g ∈ T 0
2 (M) such that for each point P it is a metric tensor in TP M in the sense of (2.4.11).

It is a fairly “strong” structure, indeed, which enables one to perform various operations

directly (such as lowering and raising of indices, association of lengths and angles with

vectors, etc.), but it also induces various additional structures (linear connection, volume

form, etc.) as well. A manifold endowed with a metric tensor, i.e. a pair (M, g), is said

to be the Riemannian manifold and the branch of geometry which treats such manifolds

is Riemannian geometry. If g is not positive definite (see the text just after (2.4.11)), one

sometimes speaks about the pseudo-Riemannian manifold and geometry and, in particular,

about the Lorentzian manifold and geometry for signature (+, −, · · · −) or (−, +, · · · +).

2.6.2 Check that in the coordinate basis it holds that

�g(V i∂i ) = Vi dxi �g(αi dxi ) = αi∂i

where

Vi := gi j V
j αi := gi jα j

Hint: see (2.4.13). �

The simplest n-dimensional manifold is given by Cartesian space R
n . Here the standard

(flat) metric tensor of signature (r, s) (r + s = n) is introduced; by definition, in Cartesian
coordinates we put

gi j = ηi j ≡ diag(1, . . . , 1
︸ ︷︷ ︸

r

, −1, . . . ,−1
︸ ︷︷ ︸

s

)

i.e.

g = ηi j dxi ⊗ dx j = dx1 ⊗ dx1 + · · · + dxr ⊗dxr − dxr+1 ⊗ dxr+1 − · · · − dxn ⊗ dxn
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This manifold will be denoted by (Rn, ηi j ) ≡ Er,s from now on (and called the pseudo-
Euclidean space), and, in particular, in the positive definite case (Rn, δi j ) ≡ En (the Eu-
clidean space).

Let us have a closer look at the motivation for this definition in the most mundane

spaces E2 and E3. In a common plane E2 it says, for example, that the length of the two

vectors ∂x and ∂y is (at each point) 1 and that these vectors are orthogonal to each other.

For |∂x |2 = g(∂x , ∂x ) = (dx ⊗ dx + dy ⊗ dy)(∂x , ∂x ) = 1, the rest similarly. This shows

that the definition nicely matches our intuitive conception of metric conditions in the usual

plane.

2.6.3 Write down the metric tensor in the common plane E2 in polar coordinates. (g =
dx ⊗ dx + dy ⊗ dy
︸ ︷︷ ︸

Cartesian

= dr ⊗ dr + r2dϕ ⊗ dϕ
︸ ︷︷ ︸

polar

.) �

2.6.4 Write down the metric tensor g in the common three-dimensional space E3 in

Cartesian, cylindrical and spherical polar coordinates.

Result:

g = dx ⊗ dx + dy ⊗ dy + dz ⊗ dz Cartesian coordinates

= dr ⊗ dr + r2dϕ ⊗ dϕ + dz ⊗ dz cylindrical coordinates

= dr ⊗ dr + r2 dϑ ⊗ dϑ + r2 sin2 ϑ dϕ ⊗ dϕ spherical polar coordinates

�

• This kind of computation can be done either making use of transformational properties

of tensor components (i.e. reading components from its expression in Cartesian coordinates,

using (2.5.4) or (2.4.18) and “gluing together” a new coordinate basis with new compo-

nents), or computing new “differentials” (= gradients of coordinates), first, according to

(2.5.3), e.g. in (2.6.3) dx = x,r dr + x,ϕ dϕ = cos ϕ dr − r sin ϕ dϕ, and then exploiting

bilinearity of the tensor product. As a rule, this alternative method is quicker for simple

metric tensors. In elementary situations (like that mentioned above) one can see, after a bit

of practice, the result directly from the visual conception of what the geometry is about on

a particular manifold, see (3.2.11) and (3.2.12).

2.6.5 Check that the non-Cartesian coordinate bases in (2.6.3) and (2.6.4) are orthogonal,
but they are not orthonormal.

Hint: see the text prior to (2.4.12). �

• If some local coordinates on (M, g) induce at each point the orthogonal coordinate basis

of the tangent space, they are said to be orthogonal coordinates. We have learned above

that, besides Cartesian coordinates, also polar coordinates in E2 and spherical polar as well

as cylindrical coordinates in E3 (and various others, too; e.g. see (3.2.2)–(3.2.7)) deserve

to be titled by this prestigious nomenclature.

A manifold (R4, ηi j ) ≡ E1,3 with signature (1, 3) is called Minkowski space and it plays

a featured role in the special theory of relativity (being the space-time there; see more in



2.6 Metric tensor on a manifold 51

Chapter 16). Cartesian coordinates are usually labelled in this particular case as (x0, xi ),

i = 1, 2, 3, x0 = t being time and xi corresponding to Cartesian coordinates in our good

old R
3 (the choice of units with c = 1 is adopted).

2.6.6 Write down the Minkowski metric η in spherical polar and cylindrical coordinates

(i.e. (t, r, ϑ, ϕ) and (t, r, ϕ, z) respectively instead of (t, x, y, z)). (η = dt ⊗ dt − h, h from

(2.6.4).) �

• An important metric tensor is unobtrusively hidden in the expression for the kinetic

energy of a system of particles.

2.6.7 Given (r1(t), . . . , rN (t)) a trajectory of a system of N point masses in mechanics,

we may regard it as a curve �(t) on a manifold M ≡ R
3 × · · · × R

3 = R
3N . Check that

the kinetic energy of this system induces the particular metric tensor h ∈ T 0
2 (M) on R

3N

(being different from the standard one, in general) by

kinetic energy ≡ T = 1

2
h(�̇, �̇)

Hint: if (xk, yk, zk) are Cartesian coordinates of the kth point, then h = m1h1 + · · · +
m N hN , where hk := dxk ⊗ dxk + dyk ⊗ dyk + dzk ⊗ dzk . �

2.6.8 Write down the kinetic energy of a single point mass in Cartesian, cylindrical and

spherical polar coordinates.

Hint: see (2.6.7) and (2.6.4); for a single point mass, h is only a multiple of the standard

metric tensor; one obtains

T = 1

2
m(ẋ2 + ẏ2 + ż2) Cartesian coordinates

= 1

2
m(ṙ2 + r2ϕ̇2 + ż2) cylindrical coordinates

= 1

2
m(ṙ2 + r2ϑ̇2 + r2sin2ϑϕ̇2) spherical polar coordinates

�

• The metric tensor turns out to be the essential element for introducing the concept of the

length of a curve on (M, g), too. Let us begin in E3. If a point moves along a trajectory r(t) in

our usual space E3, it traverses (to first order in ε) the distance ds = |v|ε = ε
√

ẋ2 + ẏ2 + ż2

within the time interval between t and t + ε (according to the theorem of Pythagoras; this is

the place, of course, where the metric tensor in E3 is hidden). Note, however, that one can

write this as ε
√

g(γ̇ , γ̇ ) for γ ↔ (x(t), y(t), z(t)). The length of a finite segment between

P = γ (t1) and Q = γ (t2) is given by
∫

dt
√

g(γ̇ , γ̇ ). The most interesting feature of this

expression consists in the fact that one cannot see from it that (M, g) = E3 and Cartesian

coordinates are used. It is then natural to use this very expression for the definition of

the length of a curve in general. One should understand that even in this general case its

meaning remains just the same – for small pieces, the relation “distance = speed × time

interval” is used, and the result is summed over all small pieces (i.e. integrated).
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It is a suitable time now to contemplate the visual meaning of the concept of the length of

a vector V itself. The following is meant by this notion: if we proceed a parametric distance

ε along the vector V , we travel (in the positive definite case) a distance (in the sense of

the length of the curve)27 ε|V | ≡ ε
√

g(V, V ). Keeping this in mind one is often able to

derive explicit forms of metric tensors on two-dimensional surfaces in E3 simply by a “rule

of thumb” (see (3.2.11); the same is true for curves in E3 as well, being fairly useful, for

example, in computing line integrals of the first kind, see (7.7.4)).

There is an alternative way of displaying the metric tensor, which is frequently used

in general relativity, and may be ultimately traced back to the connection between the

length of a curve and a metric tensor. In this convention one writes directly the “square of

the distance” dl2 between two points which are infinitesimally close to one another (i.e.

points with values of coordinates being xi and xi + dxi respectively), where dxi denote

infinitesimal increments of the values of coordinates (so that they are not our base covector

fields (!)). For metric tensors from exercise (2.6.4), as an example, we have

dl2 = dx2 + dy2 + dz2

= dr2 + r2 dϕ2 + dz2

= dr2 + r2 dϑ2 + r2 sin2 ϑ dϕ2

Although we will not, as a rule, use this convention in the course of the book, it is fairly

common in texts on relativity and one should understand clearly its precise meaning.

2.6.9 Let t �→ t(σ ) be a reparametrization of a curve γ , i.e. γ̂ (σ ) := γ (t(σ )). Check that

the functional of the length of a curve (refer to (4.6.1), (7.7.5) and (15.4.8))

length of a curve γ ≡ l[γ ] :=
∫ t2

t1

dt
√

g(γ̇ , γ̇ )

is reparametrization invariant, l[γ ] = l[γ̂ ], i.e. this expression depends on the image set

of a curve (i.e. on the path; recall that the curve is a map) rather than on a particular

parametrization of this set (on a curve).

Hint: according to (2.3.5) γ̂ ′ = (dt/dσ )γ̇ , therefore dσ
√

g(γ̂ ′, γ̂ ′) = dt
√

g(γ̇ , γ̇ ). �

• Finally, we mention the possibility of introducing the gradient as a vector field. The

gradient d f as a covector field has been defined in (2.5.3). If a metric tensor is available, we

can find a vector field, simply by raising the index on the covector d f . The resulting vector

field is called the gradient (of a function f ), too, and will be denoted by grad f or ∇ f

grad f ≡ ∇ f := �gd f ≡ g−1(d f, · ) i.e. (∇ f )i := gi j (d f ) j ≡ gi j f, j

A well-known example is provided by the potential force field in mechanics. It is the gradient

of the (by definition negative) potential energy of a system. Here, indices are raised by means

27 Remember that the vector V officially resides as a whole at a single point x and its length is gx (V, V ). This length (in the sense
of a scalar product in Tx M) now becomes related with a formally different length, namely the length of a small piece of a curve
γ (t) defined by the vector, the representative of a class specified by the vector V . Both computations need g and the definitions
are intentionally designed so as to make the results coincide.
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of the standard metric tensor on M ≡ R
3 × · · · × R

3 = R
3N , that is by h1 + · · · + hN (as

opposed to (2.6.7), where masses are present, too).

2.6.10 Find the lines of electric field of a point charge and of an elementary dipole.

Hint: first, write down equations for integral curves of the electric field E = −∇�, i.e.

ẋ i = −gi j�, j

for

�(r, ϑ, ϕ) = α

r
resp. �(r, ϑ, ϕ) = α

p · r
r3

≡ (αp)
cos ϑ

r2

(α ∈ R) and then disregard parametrization (eliminate dt in the separation of variables

procedure; see also (8.5.13)). �

Summary of Chapter 2

For each point x of an n-dimensional manifold M there is the canonically defined n-

dimensional linear space Tx M , the tangent space at the point x . Its elements are called

vectors at x . There are several mutually equivalent definitions of this concept, useful in

different contexts. A vector field on a manifold M is a smooth assignment of a vector to

each point x ∈ M . The integral curve of a vector field is the curve whose motion at each

point is just that dictated by the vector of the field at this point. Standard constructions of

multilinear algebra (construction of tensors of type
( p

q

)
for a given vector space L) lead to

the notion of a tensor field of type
( p

q

)
on a manifold. In particular, one has functions (type

(
0
0

)
), vector and covector fields (type

(
1
0

)
and

(
0
1

)
), fields of bilinear form (type

(
0
2

)
, in the

symmetric non-degenerate case the metric tensor) and linear operators (type
(

1
1

)
).

γ : R → M A curve γ on a manifold M Sec. 2.1

f : M → R A function f on a manifold M Sec. 2.1

ei := ∂i |P Coordinate basis of TP M (2.2.6)

ai �→ a′i = J i
j (P)a j Transformation of components of a vector in P (2.2.6)

V ( f g) = (V f )g + f (V g) Leibniz rule for action of vector fields (2.2.8)

ẋ i = V i (x) (γ̇ = V ) Equations for finding integral curves of V (2.3.1)

v =
n∑

b=1

vbeb ≡ vbeb Summation convention (2.4.2)

〈ea, eb〉 = δa
b The base ea is dual with respect to ea (2.4.2)

t c...d
a...b := t(ea, . . . , eb; ec, . . . , ed ) Components of tensor t ∈ T p

q (L) (2.4.6)

va := gabv
b , αa := gabαb Lowering and raising of indices by means of g (2.4.13)

〈d f, V 〉 := V f Gradient of a function f as a covector field (2.5.3)

T = 1
2
h(�̇, �̇) Kinetic energy of a system of N point masses (2.6.7)

l[γ ] :=
∫ t2

t1

dt
√

g(γ̇ , γ̇ ) Functional of the length of a curve γ (2.6.9)

(∇ f )i := gi j f, j (∇ f := �g d f ) Gradient of a function f as a vector field Sec. 2.6
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Mappings of tensors induced by mappings of manifolds

• Nearly all situations in geometry, as we will see in this text over and over again, are

closely related to maps of manifolds f : M → N ; in particular, often M = N . It turns out

that each mapping of points of manifolds automatically leads to a mapping of tensors at

these points and (provided some restrictions are satisfied) also of tensor fields on M or

N . Some of them move in the same direction as the points under the action of f , that is

from M to N , while others reverse the arrow and move against the direction of f . A clear

understanding of this transport of tensors serves as a ticket into a number of following

chapters.28

3.1 Mappings of tensors and tensor fields

• We begin with the simplest case, a function. Let us assume that we have functions on

both M and N denoted by χ and ψ respectively, so that altogether three maps are involved.

This situation may be visualized as

R
χ← M

f→ N
ψ→ R

We want to find out whether χ induces some function on N or, alternatively, ψ induces

some function on M . Put another way, whether there is some combination of the three maps

under consideration which is a map M → R other than χ , or a map N → R other than ψ .

A short inspection shows that the answer is yes to the first question and no to the second

question. The composition map

M
f→ N

ψ→ R

is an effective arrow from M to R, i.e. a new function on M

ψ ◦ f : M → R

but one cannot compose the maps χ and f since the reverse of the arrow f is needed for

that ( f −1 should exist), but we do not assume this: f is a general smooth map for which

28 Fortunately, the price/value relation of this ticket is very favorable and since the penalty for fare dodgers is high, there is no
point in trying to travel without paying.

54
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the inverse map may not exist. We thus conclude that one can naturally transport functions

(tensor fields of type
(

0
0

)
) against the direction of the arrow; functions are “pulled back.”

3.1.1 Let f : M → N be a smooth map and ψ : N → R a function on N . Show that

(i) the prescription

f ∗ψ := ψ ◦ f

induces a function on M (pull-back of the function ψ)

(ii) in local coordinates

f : xi �→ ya(x) ⇒ ( f ∗ψ)(x) = ψ(y(x))

(iii) for the composition of maps of manifolds M
f→ N

g→ S we get the simple rule

(g ◦ f )∗ = f ∗ ◦ g∗

(iv) if F(M),F(N ) are the algebras of functions on M, N , then

f ∗ : F(N ) → F(M)

is a morphism of algebras, i.e.

f ∗(ψ1 + λψ2) = f ∗ψ1 + λ f ∗ψ2 f ∗(ψ1ψ2) = ( f ∗ψ1) ( f ∗ψ2) �

• Let us proceed to vectors and vector fields. We will show that vectors are transported

naturally in the direction of the arrow f . There are two equivalent ways to describe this

and the choice depends on how one represents the vector itself, either via curves or via

the algebra of functions (Definitions 1 and 2 in Section 2.2). The idea of these two ways

(to be developed in detail in the exercise) is that a transport of points results automatically

in a transport of curves (in the direction of the arrow) and consequently of vectors; and

a transport of functions backwards enables one to introduce the action of the transported

vectors on functions on N as the action of the original vectors on the function pulled back
to M .

3.1.2 Let f : M → N be a smooth map of manifolds, xi local coordinates on M , ya local

coordinates on N , J a
i ≡ ∂ya(x)/∂xi . We define a map (usually called a differential of the

map f , push-forward or tangent map)

Tx f ≡ f∗ : Tx M → T f (x) N

by the relation

f∗[γ ] := [ f ◦ γ ]

In plain English, the resulting vector is simply iden-

tified with the tangent vector to the mapped curve.

This formula may also be expressed equivalently as
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follows:

f∗

(
d

dt

∣
∣
∣
∣
t=0

γ (t)

)

:= d

dt

∣
∣
∣
∣
t=0

( f ◦ γ )(t) or briefly f∗γ̇ = ( f ◦ γ )̇

Show that

(i) the map is well defined (it does not depend on the choice of the representative γ of the class [γ ]

of curves tangent to each other)

(ii) it is linear

(iii) on the coordinate basis it gives

f∗∂i = J a
i ∂a so that f∗(V i∂i ) = (

J a
i V i

)
∂a

(iv) the rank of the Jacobian matrix determines whether the mapped basis vectors are linearly inde-

pendent or not; namely for dim M ≤ dim N there holds

J a
i (x) has maximum rank ⇔ f∗ is injective ⇔ the vectors f∗∂i are linearly independent

(v) for compositions of maps of manifolds M
f→ N

g→ S we get the simple rule

(g ◦ f )∗ = g∗ ◦ f∗

(vi) if ψ : N → R is a function then

( f∗γ̇ )ψ = γ̇ ( f ∗ψ)

This means that an independent (and equivalent) way to define f∗ is given by the formula29

( f∗V )ψ := V ( f ∗ψ)

Hint: (ii) using (vi); (iv) see (2.4.17). �

• Let us now see whether this transport can be extended to vector fields, too. We find

immediately that we encounter problems if it is not possible to invert f (if f is not a

diffeomorphism). If f is not surjective, there are no vectors outside the image Im f of the

manifold M and so there is no transported field on the entire manifold N . A much more

serious problem arises, however, if f is not injective. If x1, x2 are any two preimages of the

point y = f (x1) = f (x2) ∈ N , then there are two vectors sitting in y, transported from x1

and x2, and there is no reason for them to coincide in general. In the case of non-injective

maps, e.g. projections, only the transport of very special vector fields makes sense, namely

of projectable fields, for which the results of the transport of vectors from all preimages

do coincide by definition. When a vector field W on N is an f∗-image of a field V on M
(W = f∗V ), W and V are said to be f -related. For a general f it is, however, not possible
to construct the f∗-image of a general vector field V .

Let us proceed from vectors to covectors. They move against the direction of the arrow

again and the idea follows exactly the lines of the idea of transport of vectors with the help

29 Whether you put the shoe on your foot or you put your foot in the shoe, the result is the same – your foot is in the shoe. It is
thus possible to define the procedure both ways.
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of functions: if we know how to transport vectors forward, we are able to transport covectors

backward, too. A closer look reveals that the same trick (the shoes, see (3.1.2)) enables one

to transport even arbitrary strictly covariant tensors (:= with lower indices only, i.e. of the

type
(

0
p

)
).

3.1.3 Let f : M → N be a smooth map of manifolds, xi local coordinates on M and ya

local coordinates on N . Define a map

f ∗ : T ∗
f (x) N → T ∗

x M

by the relation

〈 f ∗α, V 〉 := 〈α, f∗V 〉
( f∗ is from (3.1.2)). Show that

(i) it is linear

(ii) on the coordinate basis

f ∗dya = J a
i dxi so that f ∗(αa dya) = (

αa J a
i

)
dxi

(iii) for a composition of maps of manifolds M
f→ N

g→ S we get the simple rule

(g ◦ f )∗ = f ∗ ◦ g∗ �

3.1.4 Let f : M → N be a smooth map of manifolds, xi local coordinates on M and ya

local coordinates on N . Define a map (pull-back of the covariant tensor field)

f ∗ : T 0
p (N ) → T 0

p (M)

by the relation

( f ∗t)(U, . . . , V ) := t( f∗U, . . . , f∗V )

Show that

(i) on the linear combination and tensor product there holds

f ∗(t + λs) = f ∗t + λ f ∗s t, s εT 0
p (N ), λ ∈ R

f ∗(t ⊗ τ ) = ( f ∗t) ⊗ ( f ∗τ )

(ii) on the coordinate basis

f ∗(dya ⊗ · · · ⊗ dyb) = J a
i . . . J b

j dxi ⊗ · · · ⊗ dx j = ( f ∗dya) ⊗ · · · ⊗ ( f ∗dyb)

and consequently

t = ta...b(y) dya ⊗ · · · ⊗ dyb �→ f ∗t = ta...b(y(x))J a
i (x) . . . J b

j (x) dxi ⊗ · · · ⊗ dx j

(iii) for a composition of maps of manifolds M
f→ N

g→ S we get

(g ◦ f )∗ = f ∗ ◦ g∗
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(iv) exercise (3.1.3) is a special case for p = 1

(v) exercise (3.1.1) is a special case for p = 0. �

• Note that, as a matter of fact, in (3.1.4) we have introduced directly the (pointwise)

transport of fields, and no surjectivity or injectivity of f was needed for that (see the text

after (3.1.2)).

3.1.5 Be sure that you understand that in the case of pull-back of strictly covariant tensor

fields no problems occur for any smooth map f (i.e. f need be neither surjective nor injective

in order to be well defined). �

• If one needs to transport tensor fields with upper indices, too, f has to be the diffeomor-

phism (we encountered this fact already when dealing with vector fields). Then the strategy

can be based on the fact (established empirically by centuries of diverse human activities)

that to move forward via f is the same thing as to move backward via f −1 (and vice versa).

3.1.6 Let f : M → N be a diffeomorphism. Define a map (pull-back of a general tensor

field)

f ∗ : T r
s (N ) → T r

s (M)

by the relation

( f ∗t)(U, . . . , V ; α, . . . , β) := t( f∗U, . . . , f∗V ; ( f −1)∗α, . . . , ( f −1)∗β)

(the above-mentioned trick was applied to covector arguments). Show that

(i) on linear combination and tensor product there holds

f ∗(t + λs) = f ∗t + λ f ∗s t, s ε T r
s (N ), λ ∈ R

f ∗(t ⊗ τ ) = ( f ∗t) ⊗ ( f ∗τ )

(ii) on the coordinate basis

f ∗(dya ⊗ · · · ⊗ ∂b) = J a
i . . . (J −1)

j
b dxi ⊗ · · · ⊗ ∂ j

and consequently

t = ta...
...b (y) dyb ⊗ · · · ⊗ ∂a �→ f ∗t = ta...

...b (y(x))J b
i (x) . . . (J −1) j

a(x) dxi ⊗ · · · ⊗ ∂ j

(iii) for a composition of maps of manifolds M
f→ N

g→ S we get

(g ◦ f )∗ = f ∗ ◦ g∗

(iv) if the push-forward of a general tensor field is defined by

f∗ := ( f −1)∗ : T r
s (M) → T r

s (N )

then this f∗ coincides on X(M) with the pointwise extension of the construction from (3.1.2)

(v) (g ◦ f )∗ = g∗ ◦ f∗
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(vi) the definition mentioned at the beginning can also be written as

( f ∗t)(V, . . . , ; α, . . .) = t( f∗V, . . . , f∗α, . . .)

(vii) f ∗ : T (N ) → T (M)

is an (iso)morphism of tensor algebras (it reduces to (3.1.1) on the component T 0
0 (N ) ≡ F(N )),

i.e. it is a bijective map which respects the degree and commutes with linear combination and

(tensor) product. �

3.1.7 Let f : M → N be a diffeomorphism. Show that the pull-back of a tensor field

commutes with (any) contraction, i.e.

f ∗ ◦ C = C ◦ f ∗

Hint: for t ∈ T r
s (N )

(C ◦ f ∗t)(V, . . . ; α, . . .) = t( f∗V, . . . , ei , . . . ; f∗α, . . . , ei , . . .)

( f ∗ ◦ Ct)(V, . . . ; α, . . .) = t( f∗V, . . . , f∗ei , . . . ; f∗α, . . . , f∗ei , . . .)

For a diffeomorphism f∗ei is a basis, too ( f∗ei being dual to f∗ei ); see (2.4.8). �

3.1.8 Prove that for a diffeomorphism f

f ∗(t(V, . . . ; α, . . .)) = ( f ∗t)( f ∗V, . . . ; f ∗α, . . .)

and, in particular,

f ∗1̂ = 1̂

f ∗〈α, V 〉 = 〈 f ∗α, f ∗V 〉
Hint: see (2.4.10) and (3.1.7). �

3.1.9 Let

d : T 0
0 (M) → T 0

1 (M) ψ �→ dψ

be the operation of the gradient of a function (2.5.3). Verify that d commutes with arbitrary

pull-back, i.e. that if f : M → N then the diagram commutes

T 0
0 (N )

f ∗

−−→ T 0
0 (M)

d
⏐
⏐
�

⏐
⏐
�d i.e. d f ∗ = f ∗d

T 0
1 (N ) −−→

f ∗
T 0

1 (M)

Hint: the question is whether for every function ψ and vector field V there holds

〈d f ∗ψ, V 〉 = 〈 f ∗dψ, V 〉 or equivalently V ( f ∗ψ) = ( f∗V )ψ ; this is, however, exactly what

the (“independent”) definition of f∗ in (3.1.2) says. �
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3.1.10 Let ψ : M → R be a function on M . Show that its gradient (dψ)x at the point

x ∈ M can be canonically identified with the differential (= push-forward) ψ∗x of a map

ψ at the point x (that is why the notions of the gradient and the differential of a function

are often freely interchanged).

Hint: the gradient gives a number (∂iψ)(x) on a vector ∂i and the differential a vector
(∂iψ)(x)∂ψ (the function is treated as a map M[xi ] → R[ψ], xi �→ ψ(xi )). The vector field

∂ψ is, however, canonical on R[ψ]. �

3.1.11 Show that f∗ can be used to characterize f : M → N (dim M ≤ dim N ) as an

immersion or embedding in the following way:

f : M → N is an immersion ⇔ f∗ is (for each x ∈ M) injective

f : M → N is an embedding ⇔ f∗ as well as f are injective

Hint: see Section 1.4 and (3.1.2). �

3.2 Induced metric tensor

• The construction of an induced metric tensor provides an important example of maps

of covariant tensor fields. It enables one to endow an “empty” manifold M with a metric

tensor, using an embedding of M into a manifold N where a metric tensor already exists.

3.2.1 Let

f : M → (N , h)

be an embedding of M into a (pseudo-)Riemannian manifold (N , h). Show that

(i) g := f ∗h

is a (pseudo-)metric tensor on M , i.e. (M, g) is a (pseudo-)Riemannian manifold

(ii) in coordinates

gi j (x) = J a
i (x)hab(y(x))J b

j (x) ≡ ya
,i (x)hab(y(x))yb

, j (x)

Hint: see (3.1.4) and consider non-degeneracy (see 2.4.18). �

• Let us have a closer look at how the induced metric tensor actually works. By the

definition in (3.1.4), the scalar product of two vectors V, W in the sense of g on M is

g(V, W ) ≡ ( f ∗h)(V, W ) := h( f∗V, f∗W )

We can see from this formula that if we use the induced metric tensor the result is the same

as if we first transported the vectors V, W onto N and then performed the computation of

the scalar product in the sense of h there.30

30 The following analogy with computer networks could be helpful: M and N are computers “here” and “there”, h is a useful piece
of software there (we are sitting here). We have to make a choice: either to run the program there (which might be inconvenient,
if the work is to be done at the time when the network is overloaded), or first to download the software onto our disk ( f ∗ serves
as, say, ftp), obtaining (M, f ∗h) (↔ our computer endowed with useful downloaded software), and then run the program (for
performing scalar products and computing expressions containing them) conveniently at any time here.
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3.2.2 Induce a metric tensor on a torus T 2 from its embedding (1.5.7) into E3

x = (a + b sin ψ) cos ϕ y = (a + b sin ψ) sin ϕ z = b cos ψ

(g = (a + b sin ψ)2 dϕ ⊗ dϕ + b2 dψ ⊗ dψ). �

3.2.3 Induce a metric tensor on a torus T 2 from its embedding (1.5.8) into E4 (flat torus)

x1 = cos α x2 = sin α x3 = cos β x4 = sin β

(g = dα ⊗ dα + dβ ⊗ dβ). �

3.2.4 Induce a metric tensor on a sphere S2 from its embedding into E3

x = R sin ϑ cos ϕ y = R sin ϑ sin ϕ z = R cos ϑ

(g = R2(dϑ ⊗ dϑ + sin2ϑ dϕ ⊗ dϕ)). �

3.2.5 Induce a metric tensor on a sphere S3 from its embedding into E4

x = R sin ϑ cos ϕ y = R sin ϑ sin ϕ z = R cos ϑ cos ψ w = R cos ϑ sin ψ

Show that the coordinates (ϑ, ϕ, ψ) (they are called biharmonic coordinates) are orthogonal

(g = R2(dϑ ⊗ dϑ + sin2ϑ dϕ ⊗ dϕ + cos2ϑ dψ ⊗ dψ)). �

3.2.6 Let r, z, ϕ be cylindrical coordinates in E3 and consider a rotational surface S given

by both expressions r (z) and z(r ). Induce a metric tensor (in coordinates z, ϕ and r, ϕ
respectively) on S. Specify for the surface of a cylinder and a cone as well as for both

kinds of rotational hyperboloids and rotational paraboloids (g = (1 + (r ′(z))2) dz ⊗ dz +
r2(z) dϕ ⊗ dϕ = (1 + (z′(r ))2) dr ⊗ dr + r2 dϕ ⊗ dϕ). �

3.2.7 Let E1,2 be 1 + 2 Minkowski space (signature + − −).

(i) Induce a metric tensor g on the pseudosphere (2-sheeted hyperboloid endowed with the metric

from E1,2), i.e. the set of points satisfying

ημν xμxν ≡ (x0)2 − (x1)2 − (x2)2 = R2.

(ii) Verify that the pseudosphere is a space-like hypersurface, i.e. that its metric is negative definite.

Hint: use coordinates α, ϕ such that

x0 = ±R cosh α x1 = R sinh α cos ϕ x2 = R sinh α sin ϕ

(g = −R2(dα ⊗ dα + sinh2α dϕ ⊗ dϕ)). �

3.2.8 Find a coordinate expression of the loxodrome, i.e. a path on the ocean surface

(= a part of (S2, g)) traced by a ship keeping the course (azimuth α = angle with a local

north-oriented meridian) fixed. Compute the length of the loxodrome with given ϑinitial and

ϑfinal.
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Hint: the curve to be found has γ̇ = ϑ̇∂ϑ + ϕ̇∂ϕ , a north-oriented meridian has σ̇ = −∂ϑ ;

write down the condition

cos α = g(γ̇ , σ̇ )√
g(γ̇ , γ̇ )

√
g(σ̇ , σ̇ )

g is from (3.2.4)

and solve the resulting differential equation (tan (ϑ/2) = tan (ϑinitial/2) exp{±(ϕ − ϕinitial)/

tan α}, where ± = − cos α/| cos α|; dl = −R dϑ/ cos α ⇒ l = −R(ϑfinal − ϑinitial)/

cos α (≥ 0)). �

• The induced metric tensor also occurs in theoretical mechanics, namely in the definition

of the kinetic energy of constrained systems. In (2.6.7) we have seen that the kinetic energy

of a system of N point masses can be written in the form

T = 1

2
h(�̇, �̇)

If one imposes smooth constraints on the possible positions of the point masses (see

Section 1.5), the motion becomes restricted to a configuration space M ⊂ R
3N . This space

may be thought of as an abstract manifold M and we can forget about its origin from R
3N if

we remember, however (just before we start the forgetting procedure), the most important

chunk of information concerning this “big” ambient space, which is precisely the metric

tensor needed for the expression of the kinetic energy.31 Put another way, we need to map

(via pull-back) a metric tensor h onto a manifold M . In technical language, an embedding

of M into R
3N is given by a parametrization of position “vectors” of all particles in terms

of generalized coordinates

f : M → R
3N (q1, . . . , qn)

f�→ (r1(q1, . . . , qn), . . . , rN (q1, . . . , qn))

(being arbitrary local coordinates on M). If we represent the motion in configuration space

M as a curve γ (t) ↔ qa(t), a = 1, . . . , n on M , its image with respect to the embedding

f into R
3N is �(t) = ( f ◦ γ )(t) ↔ rk(q(t)), and kinetic energy may be written in two

equivalent ways

T = 1

2
h(�̇, �̇) = 1

2
g(γ̇ , γ̇ ) g := f ∗h

This is the same kinetic energy (the same number of joules on both sides of the equality

sign), but the second expression is written entirely in “intrinsic” terms of the configuration

space M , namely in terms of the curve γ and the metric tensor g ≡ f ∗h on it.

3.2.9 Verify that

(i) the standard expression of analytical mechanics for kinetic energy on a configuration space

T = 1

2
Tab(q)q̇a q̇b Tab(q) =

N∑

k=1

mk
∂rk(q)

∂qa
· ∂rk(q)

∂qb

is nothing but the pull-back of (2.6.7) onto M

31 The potential energy should be remembered, too; see (3.2.9).
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(ii) the standard expression for potential energy in terms of generalized coordinates

U (q1, . . . , qn) := U(r1(q1, . . . , qn), . . . , rN (q1, . . . , qn))

is the pull-back of a function U from R
3N on M , too

(iii) one can summarize the situation by saying that

on R
3N: L(rk, ṙk) = 1

2
h(�̇, �̇) − U

on M: L(qa, q̇a) = 1

2
g(γ̇ , γ̇ ) − U

where

g = f ∗h U = f ∗U � = f ◦ γ �

3.2.10 Write down the metric tensor on a torus, entering the kinetic energy of the

double (plane) mathematical pendulum (in coordinates where ϕ1, ϕ2 are the angles

of displacement of two material points comprising the pendulum with respect to the

vertical direction) (g = 1
2
(m1 + m2)l2

1 dϕ1 ⊗ dϕ1 + 1
2
m2l2

2 dϕ2 ⊗ dϕ2 + m2l1l2 cos(ϕ1 −
ϕ2)(dϕ1 ⊗ dϕ2 + dϕ2 ⊗ dϕ1)). �

3.2.11 Derive by a “rule of thumb” (use your intuitive understanding of geometry in E3)

metric tensors on the two-dimensional surfaces treated in exercises (3.2.2), (3.2.4) and

(3.2.6). The solution for (3.2.2): according to the definition of coordinates ϕ, ψ we proceed

along the lines given in the text before (2.6.9) as follows: a step of (parametric) length ε

in a coordinate ψ (i.e. in the direction of ∂ψ ) induces in E3 a step of (true) length bε (the

arc of a circle of radius b) ⇒ |∂ψ | = b ⇒ gψψ = b2. The same in coordinate ϕ leads to a

step of length (a + b sin ψ)ε (the arc of a circle again) ⇒ |∂ϕ| = (a + b sin ψ) ⇒ gϕϕ =
(a + b sin ψ)2. These two steps are always mutually orthogonal ⇒ ∂ψ · ∂ϕ ≡ gψϕ = 0.

�

3.2.12 Derive by a “rule of thumb” (use your intuitive understanding of the geometry of

E2 and E3) expressions for the standard metric tensors in E2 and E3 in polar, spherical

polar and cylindrical coordinates.

Hint: see (3.2.11), (2.6.3) and (2.6.4). �

Summary of Chapter 3

Each (smooth) mapping of the points of manifolds f : M → N induces a mapping of

tensors living on them. It is denoted by f∗ if it pushes tensors forward (in the same direction

as f , from M to N ) and f ∗ if it pulls tensors back (in the opposite direction, from N
to M). For diffeomorphisms it is possible to define both f∗ and f ∗ for tensor fields of

arbitrary type; if f is not the diffeomorphism, several kinds of problems may occur. There

always exists a pull-back map f ∗ for tensor fields of type
(

0
p

)
. In particular, one can induce
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(via pull-back) a metric tensor on M from a Riemannian manifold (N , h), giving rise to

a Riemannian manifold (M, g), g = f ∗h. The most common instance of this procedure is

that one induces a metric tensor onto a submanifold M of the Euclidean space N = En (or

more generally Er,s), starting from the canonical metric tensor h = η on N .

f ∗ψ := ψ ◦ f Pull-back of a function ψ (3.1.1)

f∗[γ ] := [ f ◦ γ ] Push-forward of a vector [γ ] (3.1.2)

( f∗V )ψ := V ( f ∗ψ) Push-forward of a vector V (3.1.2)

( f ∗t)(U, α) := t( f∗U, ( f −1)∗α) Pull-back of a tensor field (3.1.6)

(g ◦ f )∗ = f ∗ ◦ g∗ Pull-back for the composition of maps (3.1.6)

(g ◦ f )∗ = g∗ ◦ f∗ Push-forward for the composition of maps (3.1.6)

f ∗ ◦ C = C ◦ f ∗ Pull-back commutes with contractions (3.1.7)

d f ∗ = f ∗d Pull-back commutes with gradient (3.1.9)

g := f ∗h Induced metric tensor ( f : M → (N , h)) (3.2.1)

gi j = J a
i hab J b

j ≡ ya
,i hab yb

, j Induced metric tensor (components) (3.2.1)

T = 1
2
g(γ̇ , γ̇ ) Kinetic energy on a configuration space (3.2.9)
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Lie derivative

• Various equations in physics contain partial derivatives of components of tensors. A

possible combination of such derivatives corresponds to an important geometrical object

known as the Lie derivative of a tensor field.

If we speak about a derivative of a tensor field, we should compare (subtract) its values

at infinitesimally close points. However, two tensors at different points (no matter how

close they are to one another) represent elements of completely different linear spaces and

therefore it is not possible to perform their subtraction (linear combination) straight from
the definition (if no tricks are used). A general way to validate the required comparison

should consist in some kind of transport of the tensor from one point to another. Making

use of the concept of transport, comparison may be defined as follows: given two tensors

sitting at two nearby points, one of them is to be transported to the point where the other

resides. In this way two tensors are now available at the same point. If the two tensors

happen to coincide, we may infer that their values at the original points “are equal” (in the

sense of the particular rule of transport) and, consequently, that the derivative of the tensor

(field) in the direction given by the two points vanishes. If the two tensors do not coincide,

we get a non-zero derivative.

In this chapter we thrash out the question of how to carry out this simple idea in the

case where Lie transport is used in the above-mentioned scheme. A highly important and

useful way of differentiating tensor fields emerges from these considerations, namely the

Lie derivative. Later (in Chapter 15), we will return to this idea once again. Another way

of transporting tensors will be introduced there, so-called parallel transport. Consequently,

another kind of derivative will enter the scene, which is known as the covariant derivative.

4.1 Local flow of a vector field

• At the end of Section 2.3 we encountered an important concept associated with a vector

field, namely that of a local flow. Recall briefly the main idea of this notion.

A vector field “tears up” a manifold into a system of integral curves. If each point P ∈ M
moves a parametric distance t along “its own” integral curve, we get a map

�t : M → M P ≡ γ (t0) �→ γ (t0 + t)

which is called the local flow generated by the field V .

65
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(Here, the term local indicates a slightly tricky point in these ideas; namely it means

that �t need not be defined for arbitrarily large t , but rather in general only in some

neighborhood of t = 0 and this neighborhood may, in turn, depend on P ∈ M ; the reader

should contemplate the flow given by the first field in (2.3.4) in order to feel the issue clearly.

If a flow �t exists for t ∈ (−∞, ∞), so that the field V is complete, one speaks about a

global flow, or simply a flow. A local flow is enough for the definition of the central concept

of this chapter, the Lie derivative. Therefore, in what follows we will often omit the word

“local” and speak about a “flow” in spite of being only local.)

4.1.1 Check that this map does not depend on the value of the parameter t0 which we

assign to the point P , so that the definition is correct in this sense.

Hint: see (2.3.5). �

• The essential feature of a flow �t is its “composition” property with respect to the

parameter t .

4.1.2 Show that the flow �t of a vector field V satisfies

�t+s = �t ◦ �s

Hint: let γ be the integral curve of the field V from P ≡ γ (t0) ∈ M, with � being the

integral curve of V starting from Q ≡ γ (t0 + t). By means of (2.3.6) show that �s(Q) =
�t+s(P). �

• Sometimes a flow is expressed in terms of a map

� : M × R → M (x, t) �→ �t (x)

4.1.3 Rewrite the “composition” property (4.1.2) using the language of the map �. �

• There is a one-to-one correspondence between vector fields and their flows: with each

vector field we may associate a flow �t (in the way described above) and vice versa, any

flow �t uniquely determines a field V , by which it is in turn generated (�t (P) is the integral

curve of the field V and by means of the derivative V is itself then recovered).

4.1.4 Check that if

�t : xi �→ xi (t ; x)

is the coordinate expression of a flow, then

V = ẋ i (0; x)∂i

Test the method on the result of exercise (2.3.9). �

4.1.5 Check that the prescription

r �→ eλt r ≡ �t (r) λ ∈ R

describes a (global) flow on R
3; find the vector field V which generates this flow and draw

some of its integral curves.

Hint: see (4.1.4) (V = λ(x∂x + y∂y + z∂z) ≡ λr · ∇). �
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4.1.6 Show that fixed points of the flow �t (i.e. those points on a manifold which do not

move under the maps �t for all values of t) coincide with zero points of the generating

vector field V (i.e. the points P ∈ M such that VP = 0 holds). Check this interrelation

on concrete flows and generators that we have encountered (or will encounter in the near

future). �

4.1.7 Check that the prescription

�t : (x, y, z) �→ (x(t), y(t), z(t)) := (x cos t − y sin t, x sin t + y cos t, z)

gives a (global) flow on R
3, find the vector field V which generates this flow and draw

some of its integral curves. Write down both �t and V in cylindrical as well as in spherical

polar coordinates (V = −y∂x + x∂y = ∂ϕ = ∂ϕ in Cartesian, cylindrical and spherical polar

coordinates). �

• In the following account it is essential to realize that �t is a diffeomorphism M → M
(at least for some neighborhood of t = 0; often this turns out to be the case, however, for a

fairly large interval, or even for the whole R[t]). The inverse map for �t is (according to

(4.1.2)) clearly given by �−t and the statement about the smoothness of �t is a (non-trivial)

theorem from the theory of ordinary differential equations of the type studied here (a smooth

dependence of solutions on the initial conditions).

The map �t is also known as a one-parameter group of transformations of a manifold

M ; the following exercise elucidates the reason for this terminology.

4.1.8 Check that

φ̂ : (R, +) → Diff (M) t �→ �t

is a homomorphism of groups (or, more precisely, only of local groups, i.e. a homomor-

phism of some neighborhood of the unit element on the left (small enough t) into some

neighborhood of the unit element on the right (those diffeomorphisms which are close to

the identity on M)). �

• If a diffeomorphism f : M → N is available, a flow may be easily shifted from M
to N .

4.1.9 Let f : M → N be a diffeomorphism and �t a flow on M . Show that

(i) ψt := f ◦ �t ◦ f −1 is a flow (on N , however), too

(ii) if the flow �t is generated by the field V , then the flow ψt is generated by the field f∗V (i.e. the

generators happen to be f -related). �

4.1.10 Let f : M → M be a diffeomorphism and let γ (t) be the integral curve of a field

V which starts in x ∈ M . Show that the curve f (γ (t)) is then the integral curve of the field

f∗V which starts in f (x) (so that we obtain the f -image of the initial situation).

Hint: an assumption is γ̇ = V , the aim is f∗γ̇ = f∗V . �

• The flow of a vector field induces specific local coordinates on a manifold, which

correspond to an observer who “drifts” with the flow.
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4.1.11 Let �t be a flow on M and let A ≡ {Oα, φα} be an atlas (local coordinates xi ) on

M . Check that

(i) the flow �t induces (for each t) a new atlas At ≡ {Ot
α, φ

t
α} on M , which results from the “shift”

by the flow �t of the initial atlas

Ot
α = �t (Oα) φt

α = φα ◦ �−1
t

(it uses coordinates xi
t := �∗

t x i ≡ xi ◦ �t )

(ii) in new coordinates the �t -image of any object has the same coordinate expression as the original

object had in the original coordinates

(iii) these coordinates correspond to (are used by) an observer drifting in the flow �t ; in (4.1.7), say;

this is an observer who rotates uniformly around the z-axis.

Hint: see (1.4.13); see also (4.6.26). �

• The concept of a flow promotes the clarification of the local structure of a vector field.

Given an n-dimensional manifold M , let V be a vector field which is non-vanishing at the
point P . It is then non-vanishing on some neighborhood of the point P as well (the property

of smooth components V i (x)). Fix any (n − 1)-dimensional submanifold S on this neigh-

borhood which is “transversal” with respect to V , i.e. such that the ((n − 1)-dimensional)

tangent space to this submanifold is at each point complementary to the one-dimensional

subspace given by the vector V . If we let the points of this submanifold drift away by means

of the infinitesimal flow �t of the field V (−ε < t < ε), we find a neighborhood of P which

happens to be an n-dimensional manifold equipped with coordinates (x1 ≡ t, x2, . . . , xn),

where (x2, . . . , xn) are the coordinates on S and x1 ≡ t informs us how “far” we have

moved by means of the flow of the field V .

4.1.12 Consider as a manifold Cartesian space R
3[x, y, z] and as a vector field V =

−y∂x + x∂y . Check that

(i) this field is non-vanishing everywhere outside the z-axis

(ii) for any point P apart from the z-axis we may take as a submanifold S a small piece of a plane

(around P) given by the z-axis and the point P
(iii) an infinitesimal flow �t generates a three-dimensional manifold U which has the shape of a

“cylinder over S” (S expanded in the perpendicular direction). �

• Now, it is clear from the general construction

described above what is the essential property of the

coordinates introduced in just this way: the vector

field V looks like

V = ∂1 i.e. V 1(x1, . . . , xn) = 1,

remaining V j (x1, . . . , xn) = 0.

In these coordinates the field V “straightens out”

(in the small patch under consideration), its integral
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curves being straight lines (the first coordinate curves)

x1(t) = x1(0) + t, remaining x j (t) = x j (0)

This statement is known as the straightening out lemma.32 It ensures that the “local structure”

of a vector field in a (small enough) neighborhood of a point in which it does not vanish is

always the same, and moreover it is very simple: each field is “locally straight.”

4.1.13 Consider the situation treated in (4.1.12). Check that the field V in S straightens

out in cylindrical coordinates,

V = ∂1 ≡ ∂ϕ x1 = ϕ, x2 = r, x3 = z

�

• And what about the local structure of a vector field in a neighborhood of a point, in

which it does vanish? The situation is less boring, here, allowing for more possibilities.

4.1.14
∗

Given a vector field V which vanishes at a point P (being non-zero, however, in

a neighborhood of the point), consider any coordinates centered in this point (xi (P) = 0;

this may always be arranged by means of a shift). Check that if the situation is linearized
in a small neighborhood of P , then

(i) locally (in a small neighborhood of P) the field is characterized (with respect to coordinates xi )

completely33 by a matrix ki
j with numerical entries

(ii) a change of coordinates (all of them always being centered at P) is encoded in a non-singular
numerical matrix Ai

j and the matrix ki
j then transforms as a type (1, 1) tensor

ki
j �→ k ′i

j ≡ Ai
sks

r (A−1)r
j

so that by means of an appropriate change of coordinates one can get a canonical form of the

matrix ki
j ; possible types of behavior of the field V in a neighborhood of P are thus classified by

the possible canonical forms of the tensor ki
j of type (1, 1).

Hint: (i) V i (x) = ki
j x

j + · · · ; (ii) x ′i (x) = Ai
j x

j + · · · , so that J i
j (P) = Ai

j and the rule

k ′i
j x ′ j ≡ V ′i (x ′) = J i

j (x)V j (x) (2.2.10) gives k ′i
j = Ai

sks
r (A−1)r

j . �

4.1.15
∗

Classify all the possible types of behavior of a vector field in the neighborhood

of its zero point on a two-dimensional manifold (with non-singular matrix ki
j ). For each

possibility write down explicitly the corresponding field as well as its integral curves.

Hint: using appropriate A the symmetric part of ki
j may be diagonalized and the antisym-

metric part gets multiplied by the determinant of A; thus the resulting ki
j is given by the

sum of the diagonal part diag (a, b) and an antisymmetric part cεi j , so that locally the vec-

tor field looks like V = ax∂x + by∂y + c(y∂x − x∂y); if, for example, a = −b = 1, c = 0,

the field is V = x∂x − y∂y , the integral curves being x(t) = x(0)et , y(t) = y(0)e−t ; for

32 The previous lines are not to be understood as a proof of this important lemma, but rather as a visual explanation of its content.
33 This holds when the matrix ki

j described in the hint happens to be non-singular. Otherwise the higher-order terms matter and
the situation gets fairly complicated.
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a = b = 0, c = 1 we obtain V = y∂x − x∂y and the integral curves rotate around the ori-

gin (try to draw corresponding pictures and learn how they differ for various combinations

of a, b, c = positive/negative/vanishing). �

4.2 Lie transport and Lie derivative

• Let V be a vector field on M and let

�t : M → M

be the corresponding flow. Since �t is a diffeomorphism, it induces, according to (3.1.6),

the mapping (pull-back) of tensor fields of arbitrary type on M :

�∗
t : T p

q (M) → T p
q (M)

This mapping is known as Lie transport (or, sometimes, Lie dragging) of tensor fields. Note

that the fields are transported a parametric distance t along the integral curves of the field

V against the direction of the flow �t (if a transport in the direction of the flow is needed,

one clearly has to use �∗
−t ).

4.2.1 Check that �∗
t is (for each t) a linear operator on T p

q (M). �

• Let us have a look, to start with the simplest example, at how this map works visually

on functions (scalar fields, p = q = 0).

4.2.2 Consider a function ψ on M . Imagine it is drawn in the form of a graph, i.e. as a

hypersurface (x, ψ(x)) ⊂ M × R.

(i) For M = R, V = ∂x , ψ(x) = e−x2
, draw the graph of the Lie transported function �∗

t ψ

(ii) do the same for M = R
2, V = −y∂x + x∂y, ψ(x, y) = e−[(x−2)2+(y−3)2]

(iii) take a lesson from these particular examples and realize that in general the graph of a function

�∗
t ψ may be obtained from the graph of ψ simply by a shift of the former by a parameter t

against the integral curves of the field V . �

• A simple trick – the use of the field lines (or, more precisely, the integral curves of the

field) – enables one to visualize the Lie transported vector fields as well.

4.2.3 Given �t ↔ V , let γ (τ ) be the integral curves of a field W . Justify the idea that

the integral curves �(τ ) of the Lie transported vector field �∗
t W are given simply as the

�−t -images of the initial curves γ (τ ).

Hint: differentiate �−t ◦ γ (τ ) = �(τ ) with respect to τ , see (3.1.6). �

4.2.4 Consider two electrostatic fields, the homogeneous field E(1) = E∂x directed along

x and the Coulomb field of a point charge E(2) = (k/r2) ∂r . Consider, in addition, three

vector fields, generating (three different) flows in E3, namely V = ∂x , U = ∂y and W =
y∂x − x∂y . Sketch (performing no calculations at all) the field lines of

(i) the initial electrostatic fields E(1) and E(2)

(ii) the electrostatic fields, obtained by the Lie transport along the three vector fields V, U, W (by

some fixed values of the parameter t , e.g. t = π/2; altogether 2 × 3 = 6 cases are to be discussed).
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Hint: (ii) see (4.2.3); the drawings resulting from (i) are to be shifted by π/2 in the direction

of x and y respectively (for V, U ) and rotated by π/2 around the z-axis (for W ). �

• It may happen, for particular tensor fields, that one gets34

�∗
t A = A t ∈ R

Such specific fields are said to be invariant with respect to the flow �t (or vector field V ),

or alternatively, Lie dragged. This condition means that the value of A in x ∈ M coincides

with the value of A being transported into x from an arbitrary point lying on the integral

curve passing through x .

(So we obtained in exercise (4.2.4) that the field E(1) is invariant (Lie dragged) with

respect to translations along both the x and y axes and E(2) is in turn invariant with respect

to rotations around the z-axis; one easily verifies that E(1) is, in fact, invariant with respect

to translations in any direction and E(2) is invariant with respect to rotations around any axis

passing through the origin.)

There is no reason for a general tensor field A, however, to be constant along the integral

curves of a field V : the tensor (�∗
t A)(x), which has been transported into x from the point

�t (x), in general depends on t . A convenient measure of this dependence (i.e. of Lie non-

constancy = non-invariance with respect to V ) is given by the object

LV A := d

dt

∣
∣
∣
∣
0

�∗
t A

which is called the Lie derivative of a tensor field35 A along a vector field V . This derivative

“palpates” the changes of tensor fields induced by a tiny Lie transport along V : first, the

value of the field A at the “slightly drained away” point �ε(x) is transported back into x
and then it is compared with the initial value of A in x . The comparison := their difference

(which makes sense already, since both tensors, the one transported back as well as the

original one, sit at a single point, i.e. they represent elements of a single linear space),

divided by the increment of the parameter ε, resulting in a quantity measuring just the

“change of the tensor field per unit value of the parameter t” (or the “rate of change of the

field” A along V ).

Right from the definition it follows that

LV : T p
q (M) → T p

q (M)

(it preserves the degree of a tensor field) and

LV A = 0 ⇔ A is invariant (Lie dragged) with respect to V

34 This occurred in three out of six cases in exercise (4.2.4), namely when E(1) was transported along both V and U and when
E(2) was transported along W .

35 In Arnold’s monograph the Lie derivative is also mentioned under the well-turned name the fisherman’s derivative: a fisherman
stands in a river and differentiates tensor fields, floating around him. Unfortunately, the present-day status of the human
environment makes this juicy bon mot barely intelligible to the younger generation. The lamentable quality of water causes
tensor fields of higher ranks to simply not be able to survive in the overwhelming majority of rivers and the exciting stories
narrated by our grandfathers on how they (when small boys) used “to guddle fifth-rank completely antisymmetric tensors in a
spruit behind a village” may seem to be typical fish stories, today.
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In the next section the general properties of LV (i.e. how it behaves in some standard

situations) will be studied in detail. This will result, in particular, in explicit formulas

for the component calculation of the Lie derivative of an arbitrary tensor. Moreover, the

appropriate use of these properties alone provides an efficient way to compute a number of

useful expressions with no reference to components.

4.3 Properties of the Lie derivative

• As we will see in a while (4.3.4), the component expression of the Lie derivative of

a general tensor field is a sum of several pieces, each one carrying a number of indices.

The overall structure is given by a system of clear rules; the resulting expression looks,

however, fairly complicated at first glance. All the properties of LV may, in principle, be

derived36 from its component expression, but the use of simple algebraic properties of the

Lie derivative (which may be ultimately traced back to the simple properties of the pull-back

�∗
t ) turns out to be both more efficient and more instructive.

Recall that pull-back with respect to a diffeomorphism M → M is an isomorphism of the

tensor algebra T (M), which commutes with contractions, see (3.1.6) and (3.1.7). A simple

(and very useful) consequence of this is the fact that the Lie derivative is a derivation of the

tensor algebra, which commutes with contractions.

4.3.1 Check that

(i) for |ε| � 1

�∗
ε A = A + εLV A + o(ε2)

(ii) LV preserves the degree and satisfies

LV (A + λB) = LV A + λLV B

LV (A ⊗ B) = (LV A) ⊗ B + A ⊗ (LV B)

i.e. (see Appendix A.2) that LV happens to be a derivation of the tensor algebra T (M)

(iii) if C is an arbitrary contraction and 1̂ denotes the unit tensor (field), then

LV ◦ C = C ◦ LV LV 1̂ = 0

i.e. LV commutes with contractions

(iv)
LV (A(W, . . . ; α, . . .)) = (LV A)(W, . . . ; α, . . .) + A(LV W, . . . ; α, . . .) + · · ·

+ A(W, . . . ;LV α, . . .) + · · ·
and, in particular,

(v) LV 〈α, W 〉 = 〈LV α, W 〉 + 〈α,LV W 〉
36 It used to be done in this way in older textbooks. As an example, the walls of Altamira and Lascaux caverns have been reported

to be densely covered by such fairly long component expressions. Let us remark, as a nice illustration of the inventiveness of the
primeval hunters in masterful use of terrain irregularities, that in caves of calcite, limestone and dolomite they used stalactites
for the location of upper indices, stalagmites for lower indices and stalagnates as the most convenient places for the contraction
of a pair of indices.
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Hint: (i) right from the definition; (ii) see (3.1.6) and (2.4.7) and (i) here; (iii) see (3.1.7);

(iv) see (3.1.8); (v) see Exercise (2.4.9), put A = 1̂ in (iv). �

• The result of (iv) reveals that a function, a vector field and a covector field are all one

really needs to be able to compute LV A of an arbitrary tensor field. According to (v), a

function and a vector or a covector field is enough.

4.3.2 Consider the arbitrary derivative D of the tensor algebra T (M), which commutes

with contractions. Show that it is completely specified once its action on degree
(

0
0

)
and

either
(

1
0

)
or

(
0
1

)
is given.

Hint: see (2.4.10), apply D on a tensor with all slots being filled by arguments. �

• So we now embark on the derivation of explicit expressions for the action of LV on a

function and a covector field.

4.3.3 Check that the Lie derivative LV acts as follows:

(i) on functions

LV ψ = V ψ (≡ V i (x)ψ,i (x))

(ii) on covector fields, which happen to be gradients of functions

LV (dψ) = d(LV ψ) ≡ d(V ψ)

(iii) on general covector fields α = αi (x) dxi

LV α =
(

V jαi, j + V j
,iα j

)
dxi

Hint: (i) see (3.1.1); (ii) see (3.1.9); (iii) α = αi dxi ≡ αi ⊗ dxi . �

• Since we learned how to cope with functions and covector fields, we are in a position,

according to (4.3.2) and (4.3.1), to derive a component expression of the Lie derivative of

an arbitrary rank tensor field.

4.3.4 Check that

(i) the Lie derivative of the coordinate basis fields reads

LV dxi = V i
, j dx j LV ∂i = −V j

,i∂ j

(ii) this results in the following component expression of the Lie derivative of an arbitrary rank tensor

field:

(LV A)
i ... j
k...l = V m Ai ... j

k...l,m + V m
,k Ai ... j

m...l + · · · − V j
,m Ai ...m

k...l

i.e. there is the first term (flat amount), plus there is one term to be added for each index of the

tensor (with a + sign for a lower index and a − sign for an upper one). These rules may be

concisely summarized in the form of a table – a recipe for cooking the house speciality (LV A)
i ... j
k...l ;
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compare with (15.2.7):

− − − − − − − − −−
| for preparation of LW A |

− − − − − − − − − − − − − − − | − − − − − − − − −− |
| first put on the bottom of a pan | W A...

... ≡ W m A...
...,m |

| plus for each A...i ... add | −W i
,m A...m... |

| plus for each A...i ... add | +W m
,i A...m... |

− − − − − − − − − − − − − − − − − − − − − − − −−

Hint: (i) see (4.3.3) for ψ = xi and (4.3.1) for α = dx j and W = ∂i ; (ii)

(LW A)
i ... j
k...l dxk ⊗ · · · ⊗ ∂ j := LW

(
Ai ... j

k...l dxk ⊗ · · · ⊗ ∂ j
)

= (
LW Ai ... j

k...l

)
dxk ⊗ · · · ⊗ ∂ j

+ Ai ... j
k...l (LW dxk) ⊗ · · · ⊗ ∂ j + · · ·

+ Ai ... j
k...l dxk ⊗ · · · ⊗ (LW ∂ j ) = · · · �

4.3.5 Write down explicit component expressions of the Lie derivative of tensors of rank

0, 1 and 2 (six formulas altogether). �

4.3.6 Show that

(i) the Lie derivative of a vector field turns out to be

LV W = [V, W ]

where the vector field on the right-hand side is called the commutator (or Lie bracket) of the

vector fields V and W and it is defined as follows:

[V, W ]ψ := V (Wψ) − W (V ψ)

(ii) if V, W are two vector fields, then their “product” V W ((V W )ψ := V (Wψ)) is not a vector

field, whereas their antisymmetrized product (= commutator) is a vector field

(iii) a product of first-order differential operators is a second-order differential operator, in general,

but their commutator happens to be only the first-order operator

(iv) “the same thing” has been said in (ii) and (iii)

(v) the collection of all vector fields endowed with the bracket operation [ · , · ] constitutes a (∞-

dimensional) Lie algebra, i.e. the following hold (cf. Appendix A.3):

[V, W ] = −[W, V ] antisymmetry

[V1 + λV2, W ] = [V1, W ] + λ[V2, W ] (bi)linearity

0 = [[V, W ], U ] + [[U, V ], W ] + [[W, U ], V ] Jacobi identity

Hint: (i) compute [V, W ] in components and compare with (4.3.4); (ii) apply on a product

of two functions. �

• The properties of LV mentioned up to now were related to its behavior with respect

to particular arguments. They may be summarized concisely as a statement that the Lie
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derivative LV is a derivation of the tensor algebra, which commutes with contractions

(4.3.1) as well as with the operator of gradient d (4.3.3).

Some additional (very useful) properties of the Lie derivativeLV are related to its behavior

with respect to its “parameter,” the vector field V (along which it is computed). Here, an

algebraic approach turns out to be the most effective way of reasoning as well. We start

with the following property of arbitrary derivations of the tensor algebra (useful in its own

right, too).

4.3.7 Let D1, D2 be two derivations of the tensor algebra. Check that

(i) their linear combination as well as the commutator

D := D1 + λD2 resp. D := [D1, D2] ≡ D1 D2 − D2 D1

happen to be derivations of the tensor algebra, too

(ii) if D1, D2 commute with contractions, then this is true for linear combination and the commutator,

too. �

• This may be rephrased as the statement that the collection of all derivations of the

tensor algebra is naturally endowed with the structure of the Lie algebra (it is denoted by

Der T (M)) and, furthermore, the derivations which commute with contractions constitute

a subalgebra. This elementary observation provides a simple proof of the following useful

proposition.

4.3.8 Prove that

(i)

LV +λW = LV + λLW

L[V,W ] = [LV ,LW ] ≡ LVLW − LWLV

(ii) the mapping

L : X(M) → Der T (M) V �→ LV

is a homomorphism of Lie algebras.

Hint: (i) according to (4.3.7) we are to prove the equality of two derivations of the tensor

algebra which commute with contractions, or equivalently (after reshuffling of all terms

to one side of the equation), that a certain derivation of this type vanishes. By (4.3.2) it is

enough to verify this on functions and vector fields, which is easy (4.3.6); (ii) just this is

asserted in (i). �

4.4 Exponent of the Lie derivative

• The Lie derivative LV has been defined in Section 4.2 in terms of the pull-back of a

flow �∗
t . It turns out that the pull-back �∗

t may in turn often be expressed in terms of the

Lie derivative in a useful form of the exponent �∗
t = etLV . Let us have a look, first, at what

this formula actually says in the simplest case. Then we prove its validity in a more general
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setting. (One should realize that if the map �t itself is problematic globally, which is the

case for (only) local flows (see the note before (4.1.1)), the formula is problematic as well.

The reader is once again referred to contemplate the particular example (2.3.4), which is

mentioned in the note.)

4.4.1 Let M = R[x], V = ∂x . Check that the Taylor expansion of a function

ψ(x + t) = ψ(x) + tψ ′(x) + t2

2!
ψ ′′(x) + · · ·

may be expressed in the form

�∗
t ψ = etLV ψ etLV := 1̂ + tLV + t2

2!
LVLV + · · ·

i.e. that in this particular case there holds

�∗
t = etLV

Hint: see (3.1.1) and (4.3.3). �

4.4.2 Let �t be the flow generated by a vector field V . Starting from the definition

LV := d

dt

∣
∣
∣
∣
0

�∗
t

prove that

(i)

d

dt
�∗

t = �∗
t LV

(ii) for Cω tensor fields there holds

�∗
t = etLV ≡ 1 + tLV + t2

2!
LVLV + · · ·

Hint: (i) d
dt �

∗
t = d

ds

∣
∣
s=0

�∗
t+s , (4.1.2); (ii) ( d

dt )
n
�∗

t = �∗
t (LV )n . �

• This formula proves very useful in providing the tool for a systematic expansion of

the infinitesimal flow �∗
ε in powers of the parameter ε. If, for example, we need second-

order accuracy, we may write �∗
ε = eεLV ≡ 1 + εLV + ε2

2!
LVLV . We will make use of this

particular result in the next section in order to grasp the visual meaning of the commutator

of two vector fields.

Pull-back of a flow �∗
t enables one to write down explicitly solutions of linear first-order

partial differential equations in terms of initial conditions, too.

4.4.3 Let V = V i (x)∂i be a complete vector field on M and let �t be the corresponding

flow. Consider a first-order linear partial differential equation on M × R[t] of the form

(∂t − V i (x)∂i ) f (x, t) = 0

together with an initial condition

f (x, 0) = h(x)
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Check that the solution may be written as

f (x, t) = h(�t (x))

≡ (�∗
t h)(x)

Hint: see (4.4.2); this means (in visual terms) that

the graph which corresponds to the initial condi-

tions h(x) is moved against the direction of in-

tegral curves of the vector field V on M . For

(M, V ) = (R, ∂x ), this looks (for particular h(x)) something like in the figure displayed

here, since in this case we explicitly obtain f (x, t) = h(�t (x) = h(x + t)). �

4.5 Geometrical interpretation of the commutator [V, W ], non-holonomic frames

• We encountered the concept of the commutator [V, W ] of two vector fields V and W
when the Lie derivative of a vector field was computed. Here, we would like to examine

consequences of the fact that the commutator does not vanish for particular vector fields,

i.e. to grasp the geometrical meaning of the commutator.

Suppose we undertake two infinitesimal journeys, both of them starting at a point

P ∈ M . The first one consists of motion by ε along V and subsequently by ε along W ,

the second one performs the same steps in reversed

order. Now, the question arises as to whether or not

we reach the same point. It turns out that the an-

swer is positive within first-order accuracy in ε, but

it already happens to be negative within order ε2,

and the necessary correction (i.e. a step to be added
to the first journey in order to arrive at the end of

the second one) in this order consists in a motion

by ε2 along the commutator [W, V ]. There is an

equivalent formulation of the same problem, which

is represented by the schematic drawing here. The question is whether we return to the same

point or not if we, after reaching the end of the first journey, keep on traveling further, by

ε along (−V ) and subsequently by ε along (−W ). If the flows corresponding to the fields

V and W are denoted by �V
t and �W

t respectively, the question about the closure of such a

“circular tour” may be written as follows:

P ′ ≡ (
�W

−ε ◦ �V
−ε ◦ �W

ε ◦ �V
ε

)
(P)

?= P

Once again, a commutator correction is needed within ε2 accuracy. Thus the geometrical

role of a commutator is “to close a parallelogram, which fails to close (a bit), yet.” These

statements are easily proved. In order to compute the left-hand side within the desired

accuracy we may exploit the result (4.4.2), provided that coordinates of the expression on

the left are computed. (Remember that (4.4.2) refers to the pull-back of a flow, rather than
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the flow itself, and that a coordinate is a function ⇒ pull-back may be applied to it, whereas

it is not possible to apply it directly on a point.)

4.5.1 Check that the expansion in ε explicitly gives

xi
(
�V

ε (P)
) = ((

�V
ε

)∗
xi

)
(P)

=
((

1 + εLV + ε2

2!
LVLV + · · ·

)

xi

)

(P)

xi
(
�V

ε ◦ �W
ε (P)

) = ((
�W

ε

)∗(
�V

ε

)∗
xi

)
(P)

=
((

1 + εLW + ε2

2!
LWLW + · · ·

)(

1 + εLV + ε2

2!
LVLV + · · ·

)

xi

)

(P)

etc.

Hint: see (3.1.1) and (4.4.2). �

4.5.2 Check that

(i) to within ε2 accuracy the following identity holds:

�W
−ε ◦ �V

−ε ◦ �
[V,W ]

−ε2 ◦ �W
ε ◦ �V

ε = 1̂ + o(ε2)

(ii) the term containing the commutator may be reshuffled into any other place on the left (five

possibilities together). �

4.5.3 The result of exercise (4.5.2) shows that already in second order in ε, the point P ′

differs from the initial point P if the commutator [V, W ] does not vanish in P and that

the path may be closed (within the same accuracy) by an appropriate small piece. Outline

a schematic drawing corresponding to the closed path composed of five pieces to all five

possible identities mentioned in (4.5.2). �

• This knowledge helps in understanding the situation with so-called non-holonomic

frames.

In Chapter 2 the concept of a coordinate basis ∂i for vector fields (as well as the dual

basis dxi for covector fields) was introduced. We know from linear algebra, however, that

each basis is equally good in a general linear space and, moreover, an arbitrary basis may

be obtained from any other one by “mixing” (making linear combinations) the elements of

the first basis with the help of a non-singular matrix:

ea �→ e′
a = Ab

aeb

This means that it is not necessary to use coordinate frames for the decomposition of tensor

fields. Instead we are free to use any non-singular linear combinations (depending on x)

ea(x) = ei
a(x)∂i ea(x) = ea

i (x) dxi

the only two requirements concerning the new frame fields ea, ea being smoothness



4.5 Geometrical interpretation of the commutator [V, W ], non-holonomic frames 79

(resulting in the smoothness of the matrices ei
a(x), ea

i (x)) and linear independence (leading

to non-singularity of the matrices).

4.5.4 Check that the requirements regarding duality and completeness of new frames

ea ↔ ea result in

ea
i (x)ei

b(x) = δa
b ei

a(x)ea
j (x) = δi

j

i.e. the matrices ei
a(x), ea

i (x) are to be inverse to each other at each point x .

Hint: see (2.4.2) and (2.4.9); δa
b = 〈ea, eb〉 = · · ·, 1̂ = dxi ⊗ ∂i

!= ea ⊗ ea = · · · . �

4.5.5 Check that

ea
i (x) = 〈ea, ∂i 〉 = 1̂(∂i , ea) ≡ 1̂a

i

ei
a(x) = 〈dxi , ea〉 = 1̂(ea, dxi ) ≡ 1̂i

a

⇒
1̂ = ea

i (x) dxi ⊗ ea = ei
a(x)ea ⊗ ∂i

This means that the functions ei
a(x) and ea

i (x) may also be regarded as components of the

unit tensor with respect to non-dual frames. �

• As we will see later, the appropriate choice of a frame field ea(x) and a coframe field
ea(x) may strongly simplify both reasoning and computation in various situations. Important

examples are provided by orthonormal frame fields on Riemannian manifolds (see, for

example, Section 15.6) or left-invariant fields on Lie groups (see Section 11.1). In the

general theory of relativity a frame field (appropriately chosen, most often orthonormal) is

usually called a tetrad field37 and a formalism working with components of tensors with

respect to this kind of frame field is known as the tetrad formalism (see, for example,

(15.6.20) and Sections 16.5 and 22.5).

4.5.6 Find the coefficients ei
a(x), ea

i (x), if xi = Cartesian coordinates in R
3 and ea = ∂a =

coordinate basis with respect to the spherical polar coordinates in R
3. �

• Imagine we were given (only) the result of the last exercise, not being told, however,

that the new frame field ea (mixing well the old Cartesian frame field ∂i ) is, in fact, the

coordinate one, too (with respect to other coordinates, of course; here spherical polar).

Is it possible to reveal this fact from the structure of ea? And, more fundamentally, is

it possible to construct a frame field, for which no coordinates ya exist at all, such that

ea = ∂a?

It turns out that the correct answer to both questions is yes. Thus there are frame fields

which are not generated by coordinates (i.e. such that ea �= ∂a), and if there are some

37 Since a space-time (M, g) is a four-dimensional manifold; in general, the nomenclature vielbein field is widely used, i.e. a
“manypod” or “manyvet field;” a frame in three dimensions resembles (with a bit of fantasy, no doubt a fairly useful instrument
in the realm of mathematics as such) a dreibein ≡ a tripod or a trivet, so that a tetrad is the same thing as a vierbein.
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coordinates hidden behind a frame field, it is an easy job to recognize this fact (one can

even compute these coordinates explicitly).

Consider first the case, when ea ≡ ei
a(x)∂i = ∂a , i.e. when the frame is a coordinate one

(with respect to ya). Then

[ea, eb] = [∂a, ∂b] = 0

since the order of partial derivatives is (on the class of functions we are working with) not

relevant. This means that just one non-vanishing commutator reveals that the frame under

consideration is non-holonomic = non-coordinate, i.e. there are no coordinates ya such that

ea = ∂a (⇒ ea = dya).

4.5.7 Check that

(i) the coordinate frame fields corresponding to polar coordinates in R
2 and both spherical polar and

cylindrical coordinates in R
3 happen to be orthogonal, but they fail to be orthonormal

(ii) if their lengths are “corrected” so as to be orthonormal, the resulting frame fields turn out to

already be non-holonomic.

Hint: for polar coordinates |∂r | ≡ √
g(∂r , ∂r ) ≡ grr = 1, but |∂ϕ| = · · · = r (�= 1) ⇒

“orthonormal polar” frame consists of er = ∂r , eϕ = r−1∂ϕ and [er , eϕ] �= 0. �

• The vanishing of all commutators [ea, eb] is thus a necessary condition for a frame field

to be holonomic = coordinate. The question whether this condition is at the same time

sufficient remains, however, open. This problem may be tackled in the language of vector

fields and the answer is yes. There is, though, a simpler way to demonstrate the same fact,

using differential forms, namely the so-called Poincaré lemma (9.2.11); we will return to

this issue later.

The simpler question alone, whether it is possible to mix a coordinate frame ∂i so as to

generate a non-coordinate one, may be resolved by “counting of degrees of freedom,” too.

A change of coordinates xi �→ ya(x) provides “n degrees of freedom,” namely the choice

of new functions ya(x). Then the transformation of the (co)frame field is already fixed:

dxi �→ dya = J a
i (x) dxi ≡ ea

i (x) dxi . Notice, however, that the matrix ea
i (x) has a very

specific structure here – it is the Jacobi matrix, clearly carrying less freedom (n functions

only) in comparison with a general non-singular matrix ea
i (x) (encoding n2 functions). In

these terms the question is whether it is possible to choose a matrix ea
i (x) so as not to be

a Jacobian matrix for any choice of new coordinates ya(x). Since n2 > n (for n ≥ 2), the

answer reads yes, non-holonomic frames do exist.

We started this section with the problem of whether we return to the point of departure

after taking a (particular) circular tour, i.e. whether two flows generated by vector fields V
and W commute. The lesson from the analysis is that this issue may be reduced to the much

simpler problem of investigating the commuting of generators of the flows, the vector fields

V and W .
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4.5.8 Let �V
t and �W

s be two flows generated by vector fields V, W . We say that the flows

commute, if for each t, s there holds

�V
t ◦ �W

s = �W
s ◦ �V

t

Prove that the flows �V
t and �W

s commute if and only if their generators V, W commute

(in the sense of vector fields).

Hint: see (4.4.2) and (4.3.8); f ∗ = g∗ ⇔ f = g. �

4.6 Isometries and conformal transformations, Killing equations

• Imagine several geometrical figures (triangles, rectangles, circles, etc.) drawn in a plane

R
2. We search for bijective maps of the plane to itself (transformations) such that all the

figures look “the same” (both in shape and in size), after the transformation.

Think about how this requirement might be reformulated in terms of the concepts we

have met before.

Geometrical figures are composed of lines (possibly curved), which have a length and

some of them intersect under some angles. There is, however, a metric tensor beyond both

the lengths and angles, see (2.6.9) and (3.2.8). Let us examine in detail how, for example,

the length of a curve γ changes under a general transformation f .

4.6.1 Let γ be a curve on M , f a transformation of M (= diffeomorphism f : M → M)

and γ̂ := f ◦ γ the curve transformed by f . Denote by l[γ, g] the functional of the length
of a curve (2.6.9) on a manifold (M, g), i.e.

l[γ, g] :=
∫ t2

t1

dt
√

g(γ̇ , γ̇ )

Check that one obtains for the length of the transformed curve the following simple

expression38

l[ f ◦ γ, g] = l[γ, f ∗g]

Hint: γ �→ f ◦ γ ⇒ γ̇ �→ f∗γ̇ ⇒ √
g(γ̇ , γ̇ ) �→ √

g( f∗γ̇ , f∗γ̇ ) = √
( f ∗g)(γ̇ , γ̇ ). �

• If we require that the length of any curve γ should not change, we have to restrict the

class of the maps under consideration to

f : M → M such that f ∗g = g

These transformations of M are called isometries39 of a (Riemannian) manifold (M, g).

38 The length of a transformed curve differs, in general, from the length of the initial one since the new curve (= the image of the
initial one) is situated in a domain characterized by quite different “metric conditions.” The same effect is achieved, however
(the trick with a shoe, see (3.1.2)), if we pull back the metric conditions from the domain where the new curve is situated. Put
another way, instead of traveling there we simulate “here” the metric conditions which are valid “there.”

39 More generally, given two Riemannian manifolds (M, g) and (N , h), a map f : M → N is called an isometry if f ∗h = g
(then the length of the f -image of any curve on M happens to be the same as the length of the curve itself). In particular, for
M = N , g = h we find that the isometries are transformations of a single Riemannian manifold.
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4.6.2 Check that isometries automatically preserve the angles under which arbitrary
curves intersect, too.

Hint: let two curves intersect in x ∈ M at an an-

gle α and let the vectors v, w be tangent (of any

lengths) to the curves in x . Then there holds x �→
f (x), v �→ f∗v, w �→ f∗w and cos α �→ cos α′ =
cos α, since according to the definition of an angle

cos α := g(v, w)√
g(v, v)

√
g(w, w)

we find for the dashed angle

cos α′ := g( f∗v, f∗w)√
g( f∗v, f∗v)

√
g( f∗w, f∗w)

= ( f ∗g)(v, w)√
( f ∗g)(v, v)

√
( f ∗g)(w, w)

= cos α

using f ∗g = g. Intuitively, it looks fairly reasonable that all angles are preserved if the

lengths of all lines remain unchanged. Simply imagine the angle being realized in some

(infinitesimal, in order that our Euclidean intuition works) triangle and realize that it is

impossible to affect its angles if the lengths of all of its sides are preserved. �

• From the expression for the change of cos α we can see, however, that a weaker require-

ment is enough for the preservation of (all) the angles alone (i.e. if we do not insist at the

same time on preserving the lengths of all lines), namely

f ∗g = σg 0 < σ : M → R, arbitrary

Such transformations are called conformal transformations of a manifold (M, g) (in par-

ticular, for σ = constant we have homotheties and for σ = 1 they reduce to isometries).

4.6.3 Check that conformal transformations constitute a group, homotheties form a sub-

group and isometries are a subgroup of the group of homotheties. �

4.6.4 Count up the “degrees of freedom” and check that a general manifold (M, g) has

no non-trivial isometries (= differing from f = idM ).

Hint: there are n levers (coordinates of new points as functions of the initial ones) at our

disposal to meet n(n + 1)/2 conditions (in components f ∗g = g turns into the equality of

two symmetric matrices), i.e. f ∗g = g results in an overdetermined system of equations

(see (4.6.6)). �

• A highly effective tool for finding a relevant part of all isometries (namely those isome-

tries which may be obtained by a smooth deformation of the trivial isometry = identity)

provides the infinitesimal approach. In the first step, the strategy consists in finding all

infinitesimal isometries �ε : M → M (differing only slightly from the identity; in coordi-

nates xi �→ xi + εξ i (x)) and then, in the second step, one obtains the finite (“large”) maps

by iteration of the infinitesimal ones. (A rotation by an angle α may be, as an example,
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regarded as the N -fold repetition of rotation by an angle α/N .) In this way we get a whole

one-parameter group = flow of isometries �t : M → M with the generator of the flow

being the vector field ξ = ξ i (x)∂i . We now embark on the derivation of the equations which

specify the key vector field.

4.6.5 Let �t : M → M be a one-parameter group (flow) of isometries, generated by a

vector field ξ . Show that ξ satisfies the Killing equations

Lξ g = 0

Hint: differentiate the defining equation �∗
t g = g with respect to t in t = 0. �

4.6.6 Check that

(i) a component expression of the Killing equations reads

ξ k gi j,k + ξ k
,i gk j + ξ k

, j gik = 0

(ii) it is an overdetermined system of equations for unknown functions ξ 1(x), . . . , ξ n(x) ⇒ no (non-

vanishing) solution is guaranteed, in general

(iii) given ξ and η two solutions of the Killing equations, then both

ξ + λη and [ξ, η]

represent solutions, as well

(iv) Killing vectors (i.e. solutions of the Killing equations) constitute a subalgebra of the Lie algebra

of all vector fields on M .

Hint: (i) see (4.3.5); (ii) n(n + 1)/2 equations for n unknowns, see also (4.6.4); (iv) see

(4.3.8). �

• The Lie algebra of Killing vectors is, unlike the Lie algebra of all vector fields, always

finite-dimensional and one can show that its dimension may be (for an n-dimensional

manifold) at most n(n + 1)/2 (this maximal value is achieved, as an example, on (pseudo-)

Euclidean spaces Er,s as well as on spheres, see (4.6.10) and (4.6.11)).

The fact that the space of solutions of the partial differential equations under consider-

ation (Killing equations) is endowed with the structure of the Lie algebra40 may be used,

sometimes, for finding additional solutions, when only some solutions are known: we sim-

ply form all the possible commutators of the solutions which are known so far and, if we

are lucky enough, a new solution drops out in this way.41

4.6.7 Find Killing vectors and the corresponding flows for the ordinary Euclidean plane.

Hint: denote ξ 1(x, y) ≡ A(x, y), ξ 2(x, y) ≡ B(x, y). Then the Killing equations read

A,x = 0 = B,y ⇒ A(y), B(x)

A,y = −B,x ⇒ A′(y) = −B ′(x) = constant

40 Linear combinations are trivial, since the equations are linear; however, the commutator is non-trivial.
41 If we are a bit less lucky, we only find linear combinations of the solutions we already know, in particular the zero field solution.
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so that the general solution is

ξ ≡ A∂x + B∂y = k1e1 + k2e2 + k3e3,

e1, e2 and e3 being three linearly independent solutions

e1 = ∂x e2 = ∂y e3 = −y∂x + x∂y

(they are linearly independent over R; this is a basis of the Lie algebra of Killing fields,

not to be confused with a basis (in the sense of a frame field) of vector fields in R
2[x, y]!).

Their flows are translations along the x and y directions and rotations around the origin

(0, 0) respectively. �

4.6.8 Let x ′ = x − x0, y′ = y − y0 be the coordinates in R
2 with respect to the origin,

which is translated into (x0, y0).

(i) Check that a general Killing vector, expressed in the initial coordinates (x, y) as well as the new

coordinates (x ′, y′), reads

ξ = k1∂x + k2∂y + k3(−y∂x + x∂y)

= (k1 − k3 y0)∂x ′ + (k2 + k3x0)∂y′ + k3(−y′∂x ′ + x ′∂y′ )

(ii) give an interpretation of this computation

Hint: (ii) unless the isometry (which may be obtained by the deformation of the identity)

is a pure translation (i.e. k3 �= 0), it may be regarded as a pure rotation around the appro-

priate point (x0, y0) (this point is obtained by equating the coefficients of the generators of

translations ∂x ′ , ∂y′ to zero, or using (4.1.6)). �

4.6.9 Guess (and then test your intuition by plugging the guess into Killing equations) a

Killing vector for a general rotational surface discussed in (3.2.6).

Hint: the surface is symmetric with respect to rotations around the z-axis; see (4.1.7). �

4.6.10 Find all Killing vectors for the (pseudo-)Euclidean space, i.e. for E p,q ≡ (Rn, η),

where η is the Minkowskian metric with the signature (p, q), p + q = n. Show that there

are three types of flows: translations, rotations and hyperbolic rotations (for p = 1, q = 3

they are known as Poincaré transformations, for q = 0 Euclidean transformations, see also

(10.1.15) and (12.4.8)).

Hint: in Cartesian coordinates the Killing equations read

ξi, j + ξ j,i = 0 ξi ≡ ηi jξ
j

Differentiation with respect to xk gives

ξi, jk + ξ j,ik = 0

In full analogy we get

ξi,k j + ξk,i j = 0 ξ j,ik + ξk, j i = 0
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Then,

ξi, jk = −ξ j,ik = ξk,i j = −ξi,k j ⇒ ξi, jk = 0

⇒
ξ i = Ai

j x
j + ai A, a = constant

and plugging into the initial equations leads to the restriction for the matrix A

(ηA) + (ηA)T = 0 ⇒ A ∈ so(p, q)

(see (11.7.6)), i.e.

ξ = (
Ai

j x
j + ai

)
∂i ≡ ξ (A,a) (A, a) ∈ so(p, q) � R

n

One can check that

ξ (A,a) ↔ −
(

A a
0 0

)

is an isomorphism of the Killing algebra with the semidirect sum so(p, q) � R
p+q (see

(12.4.9)). We can verify as well that the field ξ (A,a) may be written in the form

ξ (A,a) = 1

2
(Aη)i j M ji + ai Pi

((Aη)i j = −(Aη) j i being a consequence of (ηA) + (ηA)T = 0) where the vector fields

Mi j ≡ −M ji ≡ xi∂ j − x j∂i Pi ≡ ∂i xi ≡ ηi j x
j

constitute a basis of the Killing algebra. Flows: solve the equations for the flow of Mi j and

Pj respectively. The fields Pj correspond to translations, Mi j yield rotations and hyperbolic

rotations in the plane (i j), depending on the sign of the product ηi iη j j (not to be summed;

+1 rotations, −1 hyperbolic rotations (boosts)). �

4.6.11 Find the Killing vectors on the standard sphere (S2, g) from (3.2.4).

Hint: the first possibility is to solve the Killing equations directly in coordinates ϑ, ϕ.

Another (instructive) way: it is clear intuitively that isometries of a sphere are given by

all the possible rotations around its centre. The only problem is how to write down their

generators in coordinates ϑ, ϕ. This may be achieved in the following way: the generators of

the flows corresponding to rotations in R
3 in Cartesian coordinates are known from (4.6.10)

(they are Mi j ). The only thing to do is to express them in spherical polar coordinates in R
3

(convince yourself that they are tangent to the spheres centered in the origin) and set42 r = 1

in these formulas. We obtain three vector fields on (S2, g) and it is now a simple matter to

check that they indeed provide solutions of the Killing equations (see also (13.4.6)). �

42 In principle; in practice there are no rs present.
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4.6.12 Find the Killing vectors on a torus (T 2, g) treated in (3.2.2) and (3.2.3).

Hint: on a “curved” torus in R
3 show (by solving the Killing equations) that the only

solution is given by the generator of rotations around the z-axis (this is intuitively clear in

advance, see (4.6.9)). On a “flat” torus the Killing equations coincide with the equations

in the Euclidean plane (4.6.7), but the tricky point is that the counterpart of the field e3,

i.e. −β∂α + α∂β is not acceptable, here, since this field is not (even) continuous on T 2 (its

components are not periodic). This means that the (global) topology of the torus selects

only part of the solutions offered by (local) Killing equations. �

• A lesson we learned from the last example is that the global characteristics of a manifold

may sometimes force us to abandon some Killing vectors we have obtained by local analysis

(solving differential Killing equations), so that finally we are left with only part of the solu-

tions. In the language of Lie algebras this means that the initial Lie algebra of all solutions

of Killing equations reduces to some subalgebra, in general.43 The initial (bigger) algebra

carries (invariant, coordinate-independent) information about the local metric situation on a

manifold – the resulting (smaller) one already encodes the global metric conditions. It is clear

that if two manifolds differ in their local Killing algebras, they cannot be locally isometric
(isometric within sufficiently small domains; if they were, one could choose

local coordinates such that both the metric tensors looked identical, so that the solutions of

Killing equations were the same).

4.6.13 Show that both the (surface of the) cylinder and a cone (3.2.6) happen to be locally

isometric with an “ordinary” plane (consequently they may be, after being slit – which

alters its global properties only – painlessly unfolded into the plane). Does this hold for the

sphere S2 (3.2.4), too?

Hint: find a change of coordinates, making metrics of the cylinder and the cone look the

same as the metric of the plane (in Cartesian or polar coordinates). For a sphere try to do

the same in a reasonable time and then give it up, recalling that the sphere’s (both local and

global) Killing algebra turned out to be so(3) (see (4.6.11) and (11.7.6)), which differs from

the Euclidean plane’s e(2) (see an argument based on different scalar curvatures in (15.5.7),

too). �

• So far we have interpreted Killing equations Lξ g = 0 in the following way: g is a given
metric tensor and ξ is an unknown generator (to be determined) of the symmetry of g (i.e.

the isometry of (M, g)). The same equations may be used, however, for just the opposite
task: for finding the most general form of g, possessing a prescribed set of isometries (say,

a rotationally invariant metric tensor g). In this case, the same equations are to be solved,

just the role of unknowns and known objects has to be interchanged.44

43 On a flat torus, as an example, one starts with a three-dimensional algebra of the plane e(2), but it is to be reduced to its two-
dimensional “translation” subalgebra (the whole algebra e(2) happens to be a semidirect sum of a two-dimensional translational
and a one-dimensional rotational part, see (12.4.9)).

44 Note that Killing equations (4.6.6) contain the first derivatives of both the components ξ i and gi j , so that if we treat any of
these objects as being given, we get a system of first-order partial differential equations for the other one.
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More generally, any equation of the form Lξ A = 0, where A is a tensor field (not neces-

sarily a metric tensor) may be interpreted in this dual way. We either look for the symmetries

of a given tensor field (given A, unknown ξ ), or for the most general tensor field A pos-

sessing prescribed symmetries (given ξ , unknown A). The latter point of view is especially

important for finding exact solutions of complicated partial differential equations; here, one

often looks for solutions with the particular type of symmetry. This involves, first, finding

the most general expression exhibiting this particular type of symmetry and then using this

expression in the role of an ansatz (a tentative solution containing some freedom, which

is then fixed by plugging into the equations). This procedure is often implicitly assumed

when one says “let us search for the solution in the form. . . .”

4.6.14 Find the most general
(

0
2

)
-type tensor in En , which is both translation and rota-

tion invariant (homogeneous and isotropic). What is exceptional about the case n = 2? In

particular, the metric tensor.

Hint: let h be a tensor to be determined, then Lξ h = 0 is needed for ξ = Pi and Mi j from

(4.6.10). Pi lead to constancy of components (with respect to the Cartesian coordinate

frame), Mi j then results in hi j = λδi j . For n = 2 Mi j yields a more general expression

hi j = λ1δi j + λ2εi j , where εi j is the two-dimensional Levi-Civita symbol (5.6.1). �

4.6.15 Find the most general rotationally invariant vector field in E3 (W = f (r )∂r in

spherical polar coordinates (as expected intuitively)). �

• And what about an analog of the Killing equations for the case of conformal transfor-

mations?

4.6.16 Let �t : M → M be a one-parameter group (flow) of conformal transformations,

generated by a vector field ξ . Show that

(i) ξ satisfies the conformal Killing equations

Lξ g = χg χ “arbitrary” (unknown) function

(ii) χ = constant corresponds to homotheties.

Hint: differentiate the defining equation �∗
t g = σ (x, t)g with respect to t in t = 0; χ ≡

∂t |0 σ (x, t). �

4.6.17 Check that

(i) the component expression of conformal Killing equations reads

ξ k gi j,k + ξ k
,i gk j + ξ k

, j gik = χgi j

(ii) it is an overdetermined system of equations for the unknown functions ξ 1(x), . . . , ξ n(x) ⇒ no

(non-vanishing) solution is guaranteed, in general

(iii) given ξ and η two solutions of the Killing equations, then both

ξ + λη and [ξ, η]

represent solutions as well
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(iv) conformal Killing vectors (= solutions of conformal Killing equations) constitute a subalgebra

of the Lie algebra of all vector fields on M and Killing vectors, in turn, constitute a subalgebra

of the Lie algebra of conformal Killing vectors.

Hint: see (4.6.6). �

• We mentioned already (see the text after (4.6.6)) the Lie algebra of Killing vectors

is always finite-dimensional. As a rule, the Lie algebra of conformal Killing vectors is

finite-dimensional, too; however, there exist important exceptions.

4.6.18 Check that the conformal Killing algebra of an ordinary Euclidean plane happens

to be infinite-dimensional.

Hint (cf. (4.6.7)): denote ξ 1(x, y) ≡ A(x, y), ξ 2(x, y) ≡ B(x, y). Then the conformal

Killing equations read

A,x = B,y (= χ/2) A,y = −B,x

These are, however, just Cauchy–Riemann relations for a complex function

ψ(z) := A(x, y) + i B(x, y) z = x + iy

This means that any holomorphic function f (z) = u + iv yields a conformal Killing vector

ξ = u(x, y)∂x + v(x, y)∂y . In particular, the powers zn, n = 0, 1, . . . generate an infinite

number of solutions (with the first degree polynomial P1(z) = ik3z + k1 + ik2, k1, k2, k3 ∈
R corresponding to isometries from (4.6.7)). �

• A connection between conformal transformations of the Euclidean plane and holomor-

phic functions may be understood in an alternative way, too.

The complex plane C may be regarded as a (two-dimensional real) manifold R
2. We use

either Cartesian coordinates (x, y) or complex45 coordinates (z, z̄) on it, the latter being

defined standardly as

z = x + iy, z̄ = x − iy or x = 1

2
(z + z̄), y = 1

2i
(z − z̄)

Consider (smooth) functions on C ≡ R
2 with values in C, too, f : C → C. There are

two “ordinary” (real-valued) functions f (z, z̄) = u(x, y) + iv(x, y) “hidden” in it. A key

restriction is given by the introduction of holomorphic functions.

4.6.19 We say that f is a holomorphic function, if it “does not depend on z̄,” i.e. if it

satisfies

∂z̄ f = 0 so that f = f (z)

Check that

45 Strictly speaking, this already needs an extension of the formalism to “V -valued” tensors (V being a vector space; here V = C),
to be discussed in more detail in Sections 6.4 and 8.6.
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(i) in coordinates (x, y) this yields

(∂x + i∂y) f = 0

(ii) in terms of the functions u, v this results in the Cauchy–Riemann relations

∂z̄ f = 0 ⇔ ∂x u = ∂yv ∂xv = −∂yu

�

4.6.20 We may use either coordinate frame fields dx, dy or dz ≡ dx + i dy, dz̄ ≡ dx −
i dy for decomposition of a general covector field on C. Check that

(i) the coordinate expression of the standard metric tensor on the Euclidean plane E2 in coordinates

z, z̄ reads

g = 1

2
(dz ⊗ dz̄ + dz̄ ⊗ dz)

(ii) if we consider a map F : E2 → E2 of the (appropriate part of the) plane given by a holomorphic
function w(z) (i.e. a map z �→ w(z), obeying ∂w(z)/∂z �= 0), the metric tensor transforms as

follows:

g �→ F∗g = σg

∣
∣
∣
∣
∂w(z)

∂z

∣
∣
∣
∣

2

≡ σ > 0

so that each such map of (an appropriate part of) the plane is a conformal map (it preserves all

angles of mutually intersecting lines)

(iii) if we take, as an example, the (holomorphic) function w(z) = z2, the corresponding conformal

map (of the first quadrant onto the upper half-plane) reads (when expressed in polar coordinates)

as (r, ϕ) �→ (r 2, 2ϕ) and we get σ = 4|z|2 ≡ 4r 2.

Hint: F∗dz = dw(z) = (∂w(z)/∂z) dz. �

• Conformal Killing algebras corresponding to higher-dimensional Euclidean spaces turn

out to be already finite-dimensional.

4.6.21
∗

Find the conformal Killing vectors for En , n �= 2. Show that the corresponding

Lie algebra is isomorphic to so(1, n + 1) (11.7.6).

Hint: modify the procedure used in (4.6.10). Manipulating the equations one has to show

that ξi, jkl = 0 here, so that ξ i = Ai
jk x j xk + Ai

j x
j + Ai , . . . . �

4.6.22 Check that the vector field V encountered in (4.1.5) is a conformal Killing vector

in E3, which corresponds to a homothety. �

4.6.23 Let M be the surface of a cone in E3, which makes an angle of 45◦ with the z-axis,

endowed with a metric induced from E3. Check that there exists a conformal Killing vector

on M of the form V = f (z)∂z (the remaining coordinate being ϕ). Find the flow of the field

V (the corresponding finite conformal transformations of M).

Hint: see (3.2.6), z(r ) = r . �
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4.6.24 In the mechanics of elastic continua one introduces the strain tensor in the following

way: when the points in the continuum are (infinitesimally) displaced according to r �→ r +
u(r) (a vector field46 u(r) is called the displacement (field)), the corresponding deformation

is encoded in a second-rank tensor (field) with components (in Cartesian coordinates)

εi j := 1

2
(∂i u j + ∂ j ui )

Check that the coordinate-free expression of this tensor reads

ε = 1

2
Lug

where g is the (standard) metric tensor in E3 and that it follows from the definition of the Lie

derivative as well as from the context that a deformation of the medium (a shift of points,

which alters distances between them) is measured by the Lie derivative of a metric tensor

(ε = 0 ⇔ a deformation did not take place ⇔ it is an isometry).

Hint: see (4.6.5). �

4.6.25 In the hydrodynamics of viscous fluids we encounter a tensor (field), which re-

sembles the strain tensor, with velocity field v of the fluid’s flow replacing, however, the

displacement u. It is called the rate of deformation tensor or the strain-rate tensor. Namely,

the η-multiple (η = coefficient of viscosity) of this tensor stands for an inner friction (vis-

cosity) part of the stress tensor. The full stress tensor of the viscous fluid then reads (in

Cartesian coordinates)

σi j = −pδi j + η(∂iv j + ∂ jvi )

Check that

(i) the coordinate-free expression of this tensor is

σ = −pg + ηLvg

g being the (standard) metric tensor in E3

(ii) the Lie derivative of g just corresponds intuitively to Newton’s idea of a phenomenological

description of viscosity: a term responsible for viscosity is to be proportional to the “relative

velocity of the nearby points” (the force is due to the friction between adjacent layers of the fluid;

if they are not moving with respect to each other, there is no reason for the frictional force

to arise; a quicker motion results in a larger transfer of momentum, so that the resulting force

increases).

Hint: Lvg measures the rate of deformation, i.e. the rate of change of relative distances of

points in the fluid. �

4.6.26 Given �t a flow of isometries on M (�∗
t g = g) letAt be an atlas (local coordinates)

on M , which arises from A through a displacement by the flow (it uses coordinates xi
t :=

46 A shift r �→ r + u(r) is interpreted as an infinitesimal flow generated by a vector field u(r).
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�∗
t x i ≡ xi ◦ �t of the co-moving observer (drifted by the flow �t ), see (4.1.11)). Check

that

(i) it holds then that

g = gi j (x) dxi ⊗ dx j = gi j (xt ) dxi
t ⊗ dx j

t

so that the components of the metric tensor are the same both in initial and in transformed

coordinates47

(ii) if the components have been constant in the initial coordinates, they still remain constant (being

the same constants)

(iii) in particular, for the Euclidean metric in En , the matrix of components turns out to be the identity

matrix in Cartesian coordinates used by the arbitrarily oriented observer.

Hint: (4.1.11), (1.4.13); (i) g ≡ gi j (x) dxi ⊗ dx j = �∗
t g ≡ gi j (xt ) dxi

t ⊗ dx j
t . �

• This result is used sometimes (mainly in strictly coordinate sources) for a derivation of

the Killing equations: one looks for a collection of functions ξ i (x) such that the functional

form of the components gi j (x) remains (up to first order) unchanged under the infinites-

imal transformations of coordinates xi �→ xi
ε(x) ≡ xi + εξ i (x). What we get defines the

(infinitesimal) flow �ε : xi �→ xi + εξ i (x) (and eventually the “finite” one �t ↔ ξ ).

Summary of Chapter 4

Each vector field V on M naturally induces a map �t : M → M , which translates a point

x along the integral curve starting in x by the parametric distance t . It is called the flow

generated by V or, taking into account its composition property �t+s = �t ◦ �s , a one-

parameter group of transformations. According to the results of Chapter 3 the map �t

of a manifold M onto itself induces a mapping of tensor fields �∗
t , which is called the

Lie transport of tensors (along the integral curves of the field V ). The natural measure of

sensitivity of a tensor field A to Lie transport is the Lie derivative. One can assign to any

two vector fields V, W a third one, their commutator [V, W ] (which happens to coincide

with LV W ). Two fields commute if and only if their flows do; non-commuting of vector

fields thus results in anholonomy phenomena (dependence on the path). A Killing vector is

a vector field with respect to which the metric tensor is Lie constant. The flow of a Killing

vector is the isometry of a Riemannian manifold (M, g), i.e. a map of M onto itself which

preserves all lengths and angles. If the angles alone are preserved, we speak of conformal

transformations and the corresponding generators are called conformal Killing vectors.

�t+s = �t ◦ �s “Composition” property of a flow (4.1.2)

�∗
t A = A A is Lie invariant (dragged) Sec. 4.2

LV A := (d/dt)0�
∗
t A Lie derivative of A along V ↔ �t Sec. 4.2

47 There are two Jacobian matrices there, in general; now, the situation is fairly specific and they drop out (in matrix notation
G �→ J TG J = G).
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LV (A + λB) = LV A + λLV B Lie derivative of a linear combination (4.3.1)

LV (A ⊗ B) = LV A ⊗ B + A ⊗ LV B Lie derivative of a tensor product (4.3.1)

LV ◦ C = C ◦ LV Lie derivative commutes with contractions (4.3.1)

LV W = [V, W ] Lie derivative of W along V (4.3.6)

LV +λW = LV + λLW Lie derivative along a linear combination (4.3.8)

L[V,W ] = [LV ,LW ] Lie derivative along a commutator (4.3.8)

�∗
t = etLV ≡ 1 + tLV + · · · Exponent of the Lie derivative (4.4.2)

�W
−ε ◦ �V

−ε ◦ �
[V,W ]

−ε2 ◦ �W
ε ◦ �V

ε = 1̂ + · · · Interpretation of the commutator [V, W ] (4.5.2)

l[ f ◦ γ, g] = l[γ, f ∗g] Behavior of the length functional (4.6.1)

f ∗g = g f is an isometry of (M, g) (4.6.2)

f ∗g = σg f is a conformal transformation of (M, g) (4.6.3)

Lξ g = 0 Killing equations (ξ generates isometries) (4.6.5)

f ∗η = η f is the Poincaré transformation (4.6.10)

Lξ g = χg Conformal Killing equations (4.6.16)

ε = 1
2
Lug Strain tensor (elastic continuum) (4.6.24)

1
2
Lvg Strain-rate tensor (viscous fluids) (4.6.25)
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Exterior algebra

• In Chapter 2 we met tensor fields on a manifold. It turns out that a prominent role is

played in geometry by a specific class of tensor fields, namely the totally antisymmetric

(reversing sign under interchange of any pair of arguments), fully covariant (with lower

indices only) tensor fields. They are known as differential forms, or simply forms. The

power and beauty of forms ultimately springs from a simple observation in linear algebra

(see Section 5.1) that just these objects (their linear space prototypes) provide the ideal

tool in order to introduce the concept of the volume of a parallelepiped in a linear space.

The volume of the (infinitesimal) parallelepiped is a key element within the context of

integration48 and the integral calculus is closely related to differential calculus. These are

the reasons why differential forms occur naturally as objects of the highest importance in

differential as well as in integral calculus on manifolds.

As we will see, there are several algebraic and differential operations which are specific

for forms and, in a sense, forms represent the only objects one can integrate at all (i.e. each
integral may be regarded as an integral of a differential form; in this sense differential forms

may be understood simply as the quantities under the integral sign, too).

In this chapter a linear algebra of forms will be discussed, which is just a part of the

theory of tensors. Thus, it may be regarded as a continuation of Section 2.4, which dealt

with the algebra of general tensors of type
(p

q
)
. Here we restrict ourselves to the features

that are specific for totally antisymmetric tensors of type
(

0
p

)
.

5.1 Motivation: volumes of parallelepipeds

• A place where the introduction of forms is most natural is the computation of the volume

of the parallelepiped. Let us have a look at how this takes place.

5.1.1 Given three vectors a, b and c in L ≡ R
3, imagine we want to compute the volume

of a parallelepiped spanned by them. After a short browse through a suitable reference book

entitled “Mathematical formulas” (or on Google; experts browse in their memory, true

experts derive the formula quickly from scratch) we come to the result V = |(a × b) · c|.
48 An integral of a function equals a limit of sums of numbers, each of them being the product of the volume of an infinitesimal

parallelepiped and the value of the function somewhere inside this parallelepiped.

93
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This expression has a fairly remarkable structure, es-

pecially if we concentrate on the part inside the abso-

lute value (the latter only guarantees non-negativity

of the volume). Check that

(i) the map

Ṽ : L × L × L → R Ṽ (a, b, c) := (a × b) · c

is a tensor of type
(

0

3

)

(ii) the tensor is completely antisymmetric, i.e. the interchange of any two arguments results in the

change of sign of the resulting number

Ṽ (a, b, c) = −Ṽ (b, a, c) = −Ṽ (c, b, a) = −Ṽ (a, c, b)

(iii) if e1, e2, e3 is any right-handed (to be defined more precisely later, see Section 5.5) orthonormal

basis in L , then the value Ṽ on this particular triplet is Ṽ (e1, e2, e3) = 1

(iv) interpret (iii).

Hint: (iv) the volume of a unit cube is equal to 1. �

5.1.2 Repeat the analysis from (5.1.1) for L = R
2, i.e. for the area P(a, b) of a parallelo-

gram spanned by two vectors a, b ∈ L = R
2.

Hint: an explicit formula may be obtained from P(a, b) = Ṽ (a, b, e3). �

• These results enable one to define the volume of a parallelepiped spanned by an n-tuple

(be wise, generalize) of vectors v, . . . , w ∈ L (n = dim L) in a natural way as

P(v, . . . , w) := |P̃(v, . . . , w)|
with P̃ being a tensor of type

(
0
n

)
, which is completely antisymmetric

P̃(. . . , v, . . . , w, . . .) = −P̃(. . . , w, . . . , v, . . .)

The expression P̃(v, . . . , w) itself is known as the oriented volume of the parallelepiped

spanned by the vectors v, . . . , w. The oriented volume may be both positive and negative, its

sign depends on the order of the arguments and the “usual” volume is given by its absolute

value. Note that from the perspective of linear algebra the concept of the oriented volume

is, in fact, simpler than the “usual” one (the absolute value spoils both multilinearity and

antisymmetry).

5.1.3 A parallelepiped is said to be degenerate if it is spanned by a system of linearly

dependent vectors.

(i) Find the visual meaning of this for n = 2, 3

(ii) check that the volume of such a parallelepiped vanishes

(iii) check that, conversely, the requirement of vanishing of the volume of any degenerate paral-

lelepiped plus the linearity yields antisymmetry (which is a natural motivation to pay attention

to just such tensors).
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Hint: (ii) antisymmetry of Ṽ ; (iii) first show that P̃(. . . , v, . . . , v, . . .) = 0, then put v =
u + w. �

5.2 p-forms and exterior product

• This section includes material to familiarize the reader with the algebra of completely

antisymmetric tensors with lower indices.

Given an n-dimensional (real) linear space L , consider T 0
p (L), the space of tensors of

type
(

0
p

)
over L (cf. Section 2.4). A tensor α ∈ T 0

p (L) will be called a p-form in L if it is

completely antisymmetric, i.e. if

α(. . . , v, . . . , w, . . .) = −α(. . . , w, . . . , v, . . .)

The collection of p-forms in L will be denoted by �p L∗ (the origin of the star becomes

clear in Section 5.3). The definition makes sense only for p ≥ 2 (when there is something

to be interchanged). The structure to be obtained extends, however, to p = 0, 1, too, if one

defines

�0L∗ := T 0
0 (L) ≡ R �1L∗ := T 0

1 (L) ≡ L∗

0-forms thus being simply real numbers and 1-forms coinciding with covectors.

5.2.1 Thus, in general, p-forms are those tensors of type
(

0
p

)
which happen to be completely

antisymmetric whenever it makes sense. Check that

(i) in components

α ∈ �p L∗ ⇔ α...a...b... = − α...b...a...

(ii) �p L∗ is a subspace of T 0
p (L)

(iii) the dimension of the space of p-forms in n-dimensional

space is

dim �p L∗ =
(

n

p

)

≡ n!

(n − p)!p!

(iv) dim �p L∗ = dim �n−p L∗

(v) non-zero p-forms can only exist for p = 0, 1, . . . , n.

Forms thus resemble a television tower rather than (an infinite modification of) an inverted

pyramid from Giza (cf. the note before (2.4.7)). The tower widens only up to half its height

and then starts to narrow down; item (v) then guarantees its finite height.

Hint: (iii) from (i) it follows that a component αa...b may be non-vanishing only if there are

no repeating values of indices in it (all the indices take different values). The number of

mutually independent components of a general form α (≡ dim �p L∗) thus coincides with

the number of ways in which one can choose p numbers out of n numbers, i.e.
( n

p

)
; (iv) a

property of the combinatorial numbers
( n

p

)
; (v) for p > n at least two indices necessarily

have the same value. �
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• Thus we have learned an important, albeit fairly simple fact that, unlike the infinite

“tower” of general tensors, non-trivial (non-vanishing) p-forms terminate at p = n =
dim L .

5.2.2 Given a tensor t ∈ T 0
p (L) we define the tensor π At ∈ T 0

p (L) as follows:

(π At)(v, . . . , w) := 1

p!

∑

σ

(sgn σ )t(σ (v, . . . , w))

with σ being a permutation and sgn σ being +1 for even permutations and −1 for odd ones.

Check that

(i) πA is a tensor operation (i.e. π At is indeed a tensor)

(ii) πA is a projector onto p-forms, i.e.

πA : T 0
p (L) → �p L∗ ⊂ T 0

p (L) πA ◦ πA = πA

The tensor π At is said to represent the antisymmetric part (= skew-symmetric part) of the

tensor t (2.4.16)

(iii) for p = 1, 2, 3 we have explicitly

(π At)(v) = t(v)

(π At)(v, w) = 1

2!
(t(v, w) − t(w, v))

(π At)(u, v, w) = 1

3!
(t(u, v, w) + t(w, u, v) +t(v, w, u) −t(v, u, w) − t(w, v, u) − t(u, w, v))

(iv) in components πA reads

ta...b 
→ (π At)a...b = t[a...b]

where the square brackets denote complete antisymmetrization in indices, i.e.

t[a...b] := 1

p!
(ta...b ± all the remaining permutations of indices)

(+ for even, − for odd permutations)

(v) for p = 2, 3 explicitly

t[ab] = 1

2!
(tab − tba)

t[abc] = 1

3!
(tabc + tcab + tbca − tbac − tcba − tacb)

Hint: (ii) permutations constitute a group Sp with respect to composition, σ 
→ sgn σ is a ho-

momorphism Sp → {1, −1}, an interchange of two arguments is realized by a transposition
σ̂ , which has sgn σ̂ = −1,

∑
σ 1 = p! �

• The fact that p-forms constitute a subspace of the space of all tensors of type
(

0
p

)
means

that they are closed with respect to linear combinations. But tensors may be multiplied

(tensorially) with one another too, so that a natural question arises as to whether the forms

are closed with respect to this kind of multiplication. One easily verifies that they are not.
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5.2.3 Check that the tensor product of a p-form and a q-form is no longer a form in general

(it is “only” a tensor of type
(

0
p+q

)
), i.e.

⊗ : �p L∗ × �q L∗ → T 0
p+q (L)

Hint: a tensor αa...bβc...d is antisymmetric within both subgroups (a . . . b) and (c . . . d), but

it is not within the whole group (a . . . bc . . . d) ⇒ α ⊗ β /∈ �p+q L∗. �

• However, since the resulting object happens to be a tensor with lower indices only, we

may project out its antisymmetric part with the help of πA, which already yields a form!

In this way one arrives at the definition of a new product, which is specific for forms. It is

called the exterior product, denoted by ∧ and49 it is defined by

∧ : �p L∗ × �q L∗ → �p+q L∗ (α, β) 
→ α ∧ β

∧ := (p + q)!

p!q!
πA ◦ ⊗ i.e. α ∧ β := (p + q)!

p!q!
πA(α ⊗ β)

�
(Awkward factors, containing factorials, occur inevitably in the theory of forms. They

originate in combinatorics and (unfortunately) one cannot avoid them, indeed. There are two

main conventions, differing in where exactly these factors do appear (one of them is used

in this book). If we had not used, for example, the above-mentioned factor in the definition

of the exterior product (which is possible), several factors would emerge elsewhere. This

should be borne in mind, in particular, when using various sources dealing with forms: in

different conventions “the same” formulas may contain different factors.)

5.2.4 Verify that the exterior product has the following properties:

(i) bilinearity

α ∧ (β + λτ ) = α ∧ β + λα ∧ τ λ ∈ R

(β + λτ ) ∧ α = β ∧ α + λτ ∧ α

(ii) associativity

(α ∧ β) ∧ γ = α ∧ (β ∧ γ )

(iii) Z-graded commutativity (see Appendix A.5)

α ∧ β = (−1)pqβ ∧ α α ∈ �p L∗, β ∈ �q L∗

Hint: (ii) in addition to prefactors one should check that α[[a...bβc...d]γe... f ] =
α[a...bβ[c...dγe... f ]], for which (5.2.6) may come in handy; (iii) there holds

(α ∧ β)a...bc...d ∼ α[a...bβc...d] = β[c...dαa...b] ∼ (β ∧ α)c...da...b

(∼ means that factorials are not written explicitly, but we take the sign seriously; think over

the validity of =). Now one has to interchange the group (c . . . d) with (a . . . b) (in order to

49 Sometimes, this is read as wedge.
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get the (a . . . bc . . . d)-component of the result), from where a factor (−1)pq emerges (each

interchange of a pair of indices results in (−1)). �

• Both associativity and bilinearity of ∧ are properties inherited from the tensor product ⊗
(2.4.7). Graded commutativity, to the contrary, is specific for the exterior product and it has

no counterpart within tensor multiplication (the tensors α ⊗ β and β ⊗ α are not related,

in general). This means, from the practical point of view, that two forms commute as a rule,

with the exception of both degrees being odd (both p and q odd) when they anticommute.

5.2.5 Check that

(i) in components we have

(α ∧ β)a...bc...d = (p + q)!

p!q!
α[a...bβc...d]

(ii) multiplication by a scalar may be regarded as an exterior product:

λα = λ ∧ α = α ∧ λ λ ∈ R ≡ �0 L∗

�

• The following exercises in index gymnastics50 will prove to be useful in what follows.

5.2.6 Justify the legitimacy of the following steps (α, β, A, t being arbitrary indexed

objects commuting one with another, such as the components of tensors)

(i)

α[a...b]β
a...b = α[a...b]β

[a...b] = αa...bβ
[a...b]

α(a...b)β
a...b = α(a...b)β

(a...b) = αa...bβ
(a...b)

(ii)

Aa
[c . . . Ab

d] = A[a
[c . . . Ab]

d] = A[a
c . . . Ab]

d

Aa
(c . . . Ab

d) = A(a
(c . . . Ab)

d) = A(a
c . . . Ab)

d

(iii)

t ...
[...a...[...b...c...]...d...] = t ...

[...a...b...c...d...]

t ...
(...a...(...b...c...)...d...) = t ...

(...a...b...c...d...)

(iv)

t ...
[...a...(...b...c...)...d...] = t ...

(...a...[...b...c...]...d...) = 0

where the round brackets represent complete symmetrization (all the terms on the right are to

be summed with a plus sign in the definition from (5.2.2)). The idea of (i)–(iii) is to recognize

typical situations, in which some (anti)symmetrizations may be omitted (or conversely added

formally), since they are ensured automatically by means of other (anti)symmetrizations;

50 They used to be fairly popular in those fitness centers in which both square and round brackets are installed.
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(iv) says that a symmetrization, when performed inside an antisymmetrization (and vice

versa), gives zero. �

• We know from (2.4.7) that the tensors

p pieces
︷ ︸︸ ︷
ea ⊗ · · · ⊗ eb may be used as a basis of T 0

p (L).

Their number equals n p, just matching the dimension of the space T 0
p (L). Since the dimen-

sion of the subspace of p-forms is (for p ≥ 2) lower than this (dim �p L∗ = ( n
p

)
< n p =

dim T 0
p (L)), it is clear that although p-forms may be decomposed with respect to the basis

of “general” tensors of type
(

0
p

)
, we can make do very well with a more economical basis,

containing just
( n

p

)
members.

5.2.7 Check that

(i) the antisymmetrized tensor basis

e[a ⊗ · · · ⊗ eb] ≡ πA(ea ⊗ · · · ⊗ eb)

is enough to decompose any p-form

(ii) those tensors e[a ⊗ · · · ⊗ eb] which obey a < · · · < b form a basis of �p L∗.

Hint: (i) α = αa···bea ⊗ · · · ⊗ eb = α[a···b]ea ⊗ · · · ⊗ eb (5.2.6)= αa···be[a ⊗ · · · ⊗ eb]; (ii) the

rest may differ at most by a sign. �

• It turns out that these objects may be expressed in a simple and very useful form,

containing just exterior products of the basis 1-forms (covectors) ea .

5.2.8 Given two 1-forms α and β, check that

(i)

α ∧ β = α ⊗ β − β ⊗ α

(ii) in particular, for basis 1-forms we have

ea ∧ eb = 2! e[a ⊗ eb] ≡ 2! πA(ea ⊗ eb)

Hint: (i) evaluate both sides on general arguments u, v, making use of (5.2.5) and (2.4.7).

�

5.2.9 Check that

(i)

ea ∧ · · · ∧ eb
︸ ︷︷ ︸

p entries

= p! e[a ⊗ · · · ⊗ eb] ≡ p! πA(ea ⊗ · · · ⊗ eb)

(ii) any p-form may be written in the following standard way:

α = 1

p!
αa...b ea ∧ · · · ∧ eb
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(iii) there holds

ea ∧ · · · ∧ eb
︸ ︷︷ ︸

p entries

(v, . . . w) = p! v[a . . . wb]

Hint: (i) induction with respect to p, (5.2.5) and (5.2.6); (ii) (5.2.7) and (i). �

• Expressing forms in terms of exterior products of basis 1-forms turns out to be highly

convenient, indeed, making practical manipulations with forms so simple as to border on

the trivial. To make this clearer, let us look at an algorithm for computation of an exterior

product α ∧ β of two forms. The properties of ∧ (discussed in problems (5.2.4) and (5.2.5))

result in the following (amazingly simple) instructions for use:

1. juxtapose the forms (both expressed in terms of exterior products alone)

2. multiply out all terms

3. reshuffle all constants to the left

4. delete those of the resulting terms which contain some basis covector ea more than once (such

terms vanish because of the anticommutation of the basis covectors: ea ∧ eb = −eb ∧ ea ⇒
e1 ∧ e1 = e2 ∧ e2 = · · · = 0).

As an illustration, consider dim L = 3, a basis of L∗ being e1, e2, e3,

α = 2e1 + e3 β = −3e1 ∧ e3 + 4e2 ∧ e3

Then,

α ∧ β = (2e1 + e3) ∧ (−3e1 ∧ e3 + 4e2 ∧ e3)

= −6 e1 ∧ e1
︸ ︷︷ ︸

0

∧e3 + 8e1 ∧ e2 ∧ e3 − 3 e3 ∧ e1
︸ ︷︷ ︸
−e1∧e3

∧e3 + 4 e3 ∧ e2
︸ ︷︷ ︸
−e2∧e3

∧e3

= 8e1 ∧ e2 ∧ e3 + 3e1 ∧ e3 ∧ e3
︸ ︷︷ ︸

0

−4e2 ∧ e3 ∧ e3
︸ ︷︷ ︸

0

= 8e1 ∧ e2 ∧ e3

We see that three out of four terms drop out (vanish). After some practice, such unlucky

terms are immediately recognized and one displays directly the non-vanishing part of the

result alone. Note that it is the highly effective (and merciless) mechanism no. 4 which bears

full responsibility for the fact that so many (innocent and agreeable) terms are not allowed

to survive.51

This method of computation of the exterior product is very convenient; indeed, it is much

quicker than working with components (i.e. applying the result of (5.2.5)).

51 “Heterogeneity” turns out to be a strong evolutionary advantage within the population of exterior forms: e1 ∧ e2 ∧ e3 survives,
e1 ∧ e1 ∧ e3 is not fit enough (its mortal sin being “repeating e1”). Remarkably, five years on the Beagle (1831–1836) seemed
to be not enough for young Charles Darwin to notice this simple example of how natural selection works (although, in those
times, there was a flourishing colony of exterior forms living in the Galapagos, their multiplication being routine activity, well
known to native people; nor did Alfred Russel Wallace use it in his independent speculations). It was observed only by a teacher
of “Gymnasium” in Stettin (today’s Szczecin in Poland), Hermann Grassmann, in 1844. Because of the lukewarm response to
his work, however, he was so frustrated as to leave this battlefield and set his brain to the understanding Sanskrit (where he was
fairly successful, at last). The ideas of Grassmann were fully appreciated and then developed by Elie Cartan.



5.2 p-forms and exterior product 101

5.2.10 Repeat the computation of the product α ∧ β (treated above) in components and

convince yourself how cumbersome the component method is in comparison with the way

presented above.

Hint: starting with the standard expressions (5.2.9) α = αaea and β = 1
2
βabea ∧ eb, identify

first the components αa, βab, then plug them into (5.2.5), thus computing (α ∧ β)abc and

finally reconstruct the whole form 1
3!

(α ∧ β)abcea ∧ eb ∧ ec; in the course of the compu-

tation, do your best to avoid (in spite of the temptation being increasingly hard to resist)

shouting highly substandard words (all the more accurate, however), unworthy of a true

lady (or gentleman). �

5.2.11 Reproduce the component result from (5.2.5) by direct multiplication of forms,

both of them being represented according to (5.2.9).

Solution:

α ∧ β =
(

1

p!
αa···bea ∧ · · · ∧ eb

)

∧
(

1

q!
βc...dec ∧ · · · ∧ ed

)

= 1

p!q!
αa...bβc...dea ∧ · · · ∧ eb ∧ ec ∧ · · · ∧ ed

= 1

p!q!
α[a...bβc...d]e

a ∧ · · · ∧ eb ∧ ec ∧ · · · ∧ ed

!= 1

(p + q)!
(α ∧ β)a...bc...dea ∧ · · · ∧ eb ∧ ec ∧ · · · ∧ ed

so that we indeed get (5.2.5). �

5.2.12 Check that

(

p entries
︷ ︸︸ ︷
ea ∧ · · · ∧ eb)c...d ≡ (ea ∧ · · · ∧ eb)(ec, . . . ed ) = p! δa

[c . . . δb
d] ≡ p! δa...b

c...d

Hint: (5.2.9), (5.2.6); δa...b
c...d is defined in (5.6.2). �

5.2.13 Check that

α ≡ 1

p!
αa...b ea ∧ · · · ∧ eb =

∑

a<···<b

αa...b ea ∧ · · · ∧ eb

Hint: in the sum on the left, we always have p! terms, differing only in the order of indices,

thus being equal. As an example, for p = n = 2 one has

α = 1

2!
(α12e1 ∧ e2 + α21e2 ∧ e1) = α12e1 ∧ e2

A basis of �p L∗ is given by the terms ea ∧ · · · ∧ eb with a < · · · < b alone, but since

all terms without any restrictions whatsoever are present in the decomposition (5.2.9), the

factor 1/p! appears. �

• Let us close this section with a very simple, but nevertheless fairly useful, criterion of

the linear independence of a set of (co)vectors.
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5.2.14 Let α, β, . . . , σ be any covectors (1-forms). Verify the validity of the following

criterion to test their linear independence:

α, β, . . . , σ are linearly independent ⇔ α ∧ β ∧ · · · ∧ σ �= 0

Hint: ⇒: denote α ≡ e1, β ≡ e2, . . . , σ ≡ ek and complete arbitrarily to a basis ea , a =
1, . . . , n. According to (5.2.9), the k-form e1 ∧ · · · ∧ ek represents an element of the basis

of the space of all k-forms (thus being necessarily non-vanishing: e.g. if ea is the dual basis,

then (e1 ∧ · · · ∧ ek)(e1, . . . , ek) = 1 �= 0); the opposite direction by a contradiction: being

linearly dependent, some of them may be expressed in terms of the others ⇒ after plugging

this expression back, each term necessarily contains two identical 1-forms. �

5.3 Exterior algebra �L∗

• In Section 2.4 we introduced the concept of the tensor algebra T (L). If we restrict

ourselves to p-forms and at the same time replace the tensor product by the exterior product,

we get in like manner another interesting object, the exterior algebra �L∗ of a space L∗.

Regarded as a linear space, it is the direct sum

�L∗ := n⊕
p=0

�p L∗ ≡ �0L∗ ⊕ �1L∗ ⊕ · · · ⊕ �n L∗

so that its general element is a linear combination of forms with various values of p =
0, 1, . . . , n. Such a general element is called an inhomogeneous form and the elements of a

subspace with fixed value of p (p-forms) are then said to be homogeneous. The number p
is called the degree (of the form) in this context and it is usually denoted as deg α = p (for

α ∈ �p L∗).

The definition of �p L∗ may be readily extended to all integers p by defining �p L∗ := 0

for p < 0, p > n (we have encountered a similar extension in dealing with T (L)). What we

obtain in this way is a Z-graded algebra (Appendix A.5); that is to say �L∗ is a Z-graded

linear space (it is a direct sum of homogeneous subspaces labeled by elements of the group

(Z, +)) endowed with a multiplication rule compatible with the grading (the product of

two homogeneous elements with degrees p and q respectively is homogeneous as well, its

degree being p + q , which just equals the result of the product of integers in the group

(Z, +)), i.e.

�p L∗ ∧ �q L∗ ⊂ �p+q L∗

5.3.1 Find the dimension of the linear space �L∗ (dim �L∗ = ∑n
p=0 dim �p L∗ =

(5.2.1). . . = 2n). �

• The concept of an exterior algebra is canonically induced by any (finite-dimensional)

linear space. It may also be introduced in the following way. Let e1, . . . , en be (any) basis

in L . We define a formal multiplication, satisfying the relations

eaeb = −ebea
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The elements of the algebra are then given as the results of arbitrary products and linear

combinations52 of the elements ea and 1 (we say that ea constitute a set of generators of

the algebra; there are n = dim L of them). This algebra is denoted by �L .

5.3.2 Check that

(i) this construction of exterior algebra does not depend on the choice of the basis ea in L
(ii) the algebra resulting from this construction is isomorphic to the algebra �L∗ from the beginning

of the section.

Hint: a basis of �L is given by the elements 1 for �0L ≡ R, ea for �1L , eaeb for �2L , . . .

(the indices in ea . . . eb ∈ �p L fulfilling a < · · · < b), an isomorphism is ea . . . eb ↔ ea ∧
· · · ∧ eb. �

• It is seen now that the above-mentioned algebra “is actually” just the exterior algebra

of the space L∗ (its generators being ea , the particular realization of a formal product being

given by the antisymmetrized tensor product ∧, which just fulfills the relations needed by

the definition). This is the reason why a star occurs in denoting �L∗.

5.3.3 Given an exterior algebra �L∗ one defines a linear operator

η̂ : �L∗ → �L∗ η̂α = (−1)pα ≡ (−1)deg α α for α ∈ �p L∗

Prove that η̂ is an automorphism of the exterior algebra �L∗ (called its main automorphism),

i.e. a bijection of �L∗ onto itself, such that

(i) it respects the Z-grading

η̂(�p L∗) ⊂ �p L∗

(ii) it respects the structure of an algebra (both the linear structure and the product)

η̂(α + λβ) = η̂α + λη̂β η̂(α ∧ γ ) = η̂α ∧ η̂γ

(iii) In addition, it obeys

η̂2 = 1̂

�

• One further useful point of view consists in regarding the exterior algebra as the result

of appropriate factorization of the tensor algebra. Consider a linear space L and its “purely

covariant” tensor algebra, i.e. the linear space

T(·)(L) := ∞⊕
r=0

T 0
r (L) ≡ T 0

0 (L) ⊕ T 0
1 (L) ⊕ T 0

2 (L) ⊕ · · ·
≡ R ⊕ L∗ ⊕ T 0

2 (L) ⊕ · · · (up to infinity)

endowed with the product induced by the tensor product of the homogeneous terms (just

like in Section 2.4). In this ∞-dimensional algebra consider, now, the two-sided ideal I

52 With possible simplifications of multiple products by means of the definition relations, e.g. e1e2e1 = − e1e1e2 = 0.
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(see Appendix A.2) generated by elements of the form α ⊗ α, where α ∈ L∗. The ideal I
thus consists (by definition) of all sums of terms of the form

t1 ⊗ (α ⊗ α) ⊗ t2 t1, t2 ∈ T(·)(L), α ∈ L∗

Both the algebra T(·)(L) and the ideal I under consideration are ∞-dimensional; however,

the factor-algebra T(·)(L)/I turns out to be finite-dimensional.

5.3.4
∗

Consider the algebra T(·)(L) and the set I discussed above. Convince yourself that

(i) the set I is indeed a two-sided ideal of the algebra T(·)(L)

(ii) the same ideal is also generated by elements of the form

α ⊗ β + β ⊗ α α, β ∈ L∗

(iii) the factorization under consideration effectively annihilates symmetric parts of tensors and leaves

unchanged just their completely antisymmetric part; this is the reason why the factor-algebra

T(·)(L)/I is isomorphic to the exterior algebra �L∗ (as defined before)53

T(·)(L)/I = �L∗

(iv) the ideal I is generated by homogeneous elements of the initial Z-graded algebra T(·)(L); this

gives rise to the fact that the factor-algebra inherits the Z-grading.

Hint: (i) t ⊗ (· · · + t1 ⊗ (α ⊗ α) ⊗ t2 + · · ·) = · · · + (t ⊗ t1) ⊗ (α ⊗ α) ⊗ t2 + · · · ≡ · · ·
t ′
1 ⊗ (α ⊗ α) ⊗ t2 · · · ∈ I , so that I is a left ideal; the right one in full analogy; (ii)

I � (α + β) ⊗ (α + β) = α ⊗ α + β ⊗ β + (α ⊗ β + β ⊗ α); (iii) according to the mean-

ing of a factorization process the elements of an ideal become “vanishing”; here ea ⊗
eb + eb ⊗ ea ∈ I , so the rules of computation “by means of representatives” lead to

[α] + λ[β] := [α + λβ] and [α][β] := [α ⊗ β], so that finally

0 = [ea ⊗ eb + eb ⊗ ea] = [ea][eb] + [eb][ea]

We obtained the key rule characterizing the exterior product. From tensors themselves we

get forms, since (for a homogeneous term)

[α] = [αa...bea ⊗ · · · ⊗ eb] = αa...b[ea] · · · [eb] = α[a...b][e
a] · · · [eb]

so that only the completely antisymmetric part of a tensor survives. This is the origin of

the fact that the resulting factor-algebra is finite-dimensional: completely antisymmetric

tensors with sufficiently high rank necessarily vanish. If square brackets denoting classes

are not explicitly displayed and the resulting multiplication is denoted as ∧, we just get the

algebra known as �L∗. (iv) Since each generator z := α ⊗ α is homogeneous (namely, it

has degree 2), all elements of the ideal i = · · · + t1 ⊗ z ⊗ t2 + · · · may be written as a sum

of homogeneous terms i = ∑
ik , each ik being from the ideal, so that the ideal itself (not

only the algebra T(·)(L) as a whole) is Z-graded, too; next see Appendix A.5. �
53 This algebra, as a matter of fact, uses a slightly different convention for the numerical prefactors present in the multiplication

rule of forms (see the note after (5.2.3); as an example, here we get for the product of classes of basis 1-forms [ea ][eb] :=
[ea ⊗ eb] = [e[a ⊗ eb]] + [e(a ⊗ eb)] = [e[a ⊗ eb]] = 1

2
[ea ∧ eb] so that the product used here differs by a factor of 1

2
from

the “wedge-product” ∧ introduced previously.
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• It turns out that in addition to the Z-grading discussed until now, the exterior algebra

�L∗ is naturally endowed with a “coarser” (less distinguishing) grading, too. Namely, it

may be regarded as a Z2-graded algebra (Z2 being the group with two elements, realized

as the set of integers, with multiplication given by addition modulo 2; this means there are

two elements there, [0] and [1] (the square bracket denotes an equivalence class), and the

rules of an addition read [0] + [0] = [0], [0] + [1] = [1], [1] + [0] = [1], [1] + [1] = [0],

see (13.2.11)). The new grading arises by dividing the forms (only) into those with even

and odd degrees first and observing then that the exterior product is compatible with this
grading, too. Now, the grading is given by the direct sum

�L∗ = �[0]L∗ ⊕ �[1]L∗

where

�[0]L∗ := �0L∗ ⊕ �2L∗ ⊕ · · · �[1]L∗ := �1L∗ ⊕ �3L∗ ⊕ · · ·
and there holds

�[i]L∗ ∧ �[ j]L∗ ⊂ �[i+ j]L∗

Such a Z2-grading plays an essential role in supermathematics (superspaces, super-

algebras, supermanifolds, supersymmetries, etc.) and supersymmetric field theories (the

latter being the main source of inspiration for establishing supermathematics itself). The

exterior algebra �L∗, regarded as Z2-graded space, provides a simple example of a (asso-

ciative) superalgebra.

(In supermathematics, the subspaces of degrees 0 and 1 are said to be the subspaces of

even and odd elements, respectively; supersymmetries in physical theories relate bosons

(represented by even variables) to fermions (represented by odd variables); namely, super-

symmetric models are invariant with respect to particular transformations, mixing bosons

with fermions.)

5.4 Interior product iv

• The interior product is a simple, albeit fairly useful and important, operation on forms.

For a given vector v ∈ L this is a map α 
→ ivα, which consists in inserting v as the first

argument into a p-form α, i.e.

(ivα)(u, . . . , w) := α(v, u, . . . , w) α ∈ �p L∗, p ≥ 1

ivα := 0 p = 0

5.4.1 Check that

(i)

iviw = −iwiv (⇒ (iv)2 = 0) iv+λw = iv + λiw (ivα)a...b = vcαca...b
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(ii)

iv = vaia ia := iea

(iii) the computation of ia(eb ∧ · · · ∧ ec) may be performed in the following formal way: if a is not

among (b, . . . c), it is zero; otherwise the corresponding (co)vector ea is to be reshuffled to the
leftmost position (there is some ± because of this) and then deleted. It thus resembles a “partial

differentiation” of a homogeneous “polynomial” eb . . . ec with respect to ea , modulo a slight

sign complication caused by the reshuffling (see the comment at the end of Section 5.6 about

“anticommuting variables” θa , too). �

5.4.2 Check that iv is a derivation of �L∗ of degree (−1) (see Appendix A.5), i.e. that

there holds54

(i) iv : �p L∗ → �p−1 L∗ it lowers the degree by 1

(ii) iv(α + λβ) = ivα + λ ivβ it is linear

(iii) iv(α ∧ β) = (ivα) ∧ β + (η̂α) ∧ (ivβ) it obeys a graded Leibniz rule

Hint: (iii) because of the linearity and the possibility of renaming the basis elements it is

sufficient to verify (i1 ≡ ie1
)

i1{(ea ∧ · · · ∧ eb
︸ ︷︷ ︸

p entries

) ∧ (ec ∧ · · · ∧ ed )} = {i1(ea ∧ · · · ∧ eb)} ∧ (ec ∧ · · · ∧ ed )

+ (−1)p(ea ∧ · · · ∧ eb) ∧ {i1(ec ∧ · · · ∧ ed )}
Four cases are to be analyzed (in the spirit of the mnemonics learned in (5.4.1)); namely,

when e1 is/is not present in the first/second factor. �

5.4.3
∗

Prove that all derivations of �L∗ of degree (−1) are of the form iv (for some

vector v).

Hint: given any such derivation, it is uniquely defined by its action on the subspaces with

degrees 0 and 1; on degree 0 it is necessarily zero (D1 = 0, no (−1)-forms available), on

degree 1 we have by definition Dea =: va ∈ R; the same result is clearly obtained, however,

when acted on by iv with v := vaea . �

• The operation of the interior product has a useful interpretation in the integral calculus

of (differential) forms; we will return to this point in the problem (7.6.11).

5.5 Orientation in L

• It turns out that E(L), the set of all bases in L , may be naturally divided into two “equally

large” halves. To introduce an orientation in L means declaring one of these two halves of

E(L) to represent right-handed bases. One should remember, however, that the two halves

are completely equivalent, so that there is no preferred choice in fact. In practice, to declare

54 The interior product ivα is often denoted by v�α; the graded Leibniz rule then reads v�(α ∧ β) = (v�α) ∧ β + (η̂α) ∧ (v�β).
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a single basis as being right-handed is clearly enough to make the choice mentioned above

(the half containing the right-handed basis is then regarded as being right-handed).55 A

linear space endowed with an orientation will be denoted by (L , o).

5.5.1 Let E(L) be the set of all bases of a vector space L and let f ∈ E(L). Then any

basis e may be uniquely expressed as

ea = fb Ab
a i.e. e = f A A ∈ GL(n, R)

(GL(n, R) being the set of all non-singular n × n real matrices, see (10.1.3) and beyond).

Show that

(i) each basis falls either into E(L)+ or into E(L)−, i.e.

E(L) = E(L)+ ∪ E(L)− E(L)+ ∩ E(L)− = ∅
E(L)± = {e ∈ E(L); det A ≷ 0}

(ii) E(L)+ and E(L)− are “equally large,” i.e. there exists a bijection of E(L)+ onto E(L)−
(iii) dividing of E(L) into E(L)+ and E(L)− does not depend on the choice of f ∈ E(L), i.e. if e

and ẽ share the same half with respect to f , they share the same half with respect to any other

reference basis f̂ ∈ E(L).

Hint: (ii) (e1, e2, . . . , en) ↔ (−e1, e2, . . . , en); (iii) det (AB) = det A det B. �

• In the Cartesian linear space R
n (ordered n-tuples of numbers) a standard orientation is

introduced by declaring the “canonical basis” e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . .

to be right-handed.

5.6 Determinant and generalized Kronecker symbols

• Generalized Kronecker symbols δa...b
c...d (p-delta symbols) play a similar role in the ma-

chinery of forms as does the ordinary Kronecker delta symbol δa
b for vectors or covectors.

In this section several useful identities involving p-deltas are derived.56 Furthermore, we

will learn how they are related to some other useful objects, like the Levi-Civita symbol

and the determinant.

5.6.1 The Levi-Civita symbol εa...b (carrying n indices, each running from 1 to n) is

uniquely defined by just two properties:

εa...b = εa...b = ε[a...b] = ε[a...b] ε12...n := 1

(i.e. it is completely antisymmetric and one of its components is explicitly given). Check

that

(i) these data indeed fully determine its value for any other n-tuple of indices

55 Orientation may also be introduced by means of a volume form; see (5.7.5).
56 A reader who suffers from index sickness might use a half tablet of an anti-indexicum or, preferably, skip this section completely.
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(ii)

εa...b εa...b = n!

(iii) if ω is an n-form in n-dimensional space L , then its components may be written in the form

ωa...b = λ εa...b λ ∈ R

Hint: (iii) λ = ω1...n. �

(For the Levi-Civita symbol there holds (by definition) εa...b = εa...b, i.e. the position of

indices (upper or lower) does not matter – it is a symbol, not a tensor. A word of caution is

in order, however. The same symbol often denotes something else in the literature, namely

components of so-called volume form, which is a tensor, to be denoted by ω (see (5.7.3))

in this book. The only reason to use a particular position of indices (upper or lower) on

the Levi-Civita symbol is to make the typographical layout of a formula more transparent;

for example, in (ii) the indices are displayed both in upper and lower position in order to

indicate that a summation convention is understood there.)

5.6.2 Let us define the p-delta symbol (the generalized Kronecker symbol δ(p)) as a

completely antisymmetric (with respect to upper and lower indices separately) tensor of

type
( p

p

)
, which serves as the unit operator on p-forms, i.e. fulfilling

δa...b
c...d = δ

[a...b]
c...d = δa...b

[c...d] = δ
[a...b]
[c...d]

δc...d
a...bαc...d = αa...b or in brief δ(p)α = α α ∈ �p L∗

Show that

(i) it may be composed of ordinary delta symbols:

δa...b
c...d = δa

[c . . . δb
d] ≡ δ[a

c . . . δ
b]
d ≡ δ

[a
[c . . . δ

b]
d]

(ii) for the Levi-Civita symbol there holds

εa...bε
c...d = n! δc...d

a...b or in brief εε = n! δ(n)

(iii)

δa...b
r ...s δr ...s

c...d = δa...b
c...d or in brief δ(p)δ(p) = δ(p)

(iv) the projection πA from (5.2.2) (antisymmetrization) may be written as

ta...b 
→ δc...d
a...btc...d or in brief t 
→ δ(p)t

(v)

(ea ∧ · · · ∧ eb
︸ ︷︷ ︸

p entries

)c...d = p! δa...b
c...d
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Hint: (i) see (5.2.6); (ii) according to (5.6.1) the components of arbitrary n-form are given

by αa...b = λεa...b. Then,

εa...bε
c...dαc...d = λεa...b(εc...dεc...d︸ ︷︷ ︸

n!

) ≡ n! αa...b

(v) (5.2.12). �

• Sometimes one encounters contractions of Levi-Civita or p-delta symbols in manipu-

lations with forms. We will derive several useful results for such contractions.

5.6.3
∗

Prove the identity

δ

p
︷︸︸︷
ra...b
rc...d︸︷︷︸

p

= n − p + 1

p
δ

p−1
︷︸︸︷
a...b
c...d︸︷︷︸
p−1

or in the notation δ(p) ↔ p-delta, δk(p) ↔ k-times contracted p-delta, the identity

δ1(p) = n − p + 1

p
δ(p − 1)

Hint: according to (5.6.2)

δra...b
rc...d = δr

[rδ
a
c . . . δb

d]

Write down explicitly the sum indicated by [ ] on lower indices; perform the sum separately

for the terms which begin with r (= n
p δa...b

c...d ), with c (= − 1
p δa...b

c...d ), . . . and finally with

d (= − 1
p δa...b

c...d ). �

5.6.4
∗

Use the notation from (5.6.3) and prove that

(i)

δk(n) = 1
( n

k

) δ(n − k) or alternatively δ(p) =
(

n

p

)

δn−p(n)

(ii)

(εε)k = k! (n − k)! δ(n − k)

i.e. in detail

ε a...b︸︷︷︸
k

i ... jε
a...br ...s = k! (n − k)! δr ...s

i ... j

(iii)

δk(p) =
(

n
p

)

(
n

n−p+k

) δ(p − k)

Hint: (i) δ1(n) = 1
n δ(n − 1), δ2(n) = 1

n δ1(n − 1) = 1·2
n(n−1)

δ(n − 2), . . .; (ii) see (5.6.2). �
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5.6.5 Define the determinant of a square n × n matrix57 with entries Aa
b by the formula

det A := εa...b Aa
1 . . . Ab

n

Check that

(i) this definition leads to the same result as your favorite definition yields (in case it differs from

the one given here)

(ii) one has also

det A = 1

n!
εa...bε

c...d Aa
c . . . Ab

d

from which it is clear that the determinant of the transposed matrix equals the determinant of

the original one

(iii)

det A = δc...d
a...b Aa

c . . . Ab
d︸ ︷︷ ︸

n matrices

or in brief det A = δ(n)A . . . A︸ ︷︷ ︸
n matrices

(iv) for matrices close to the unit matrix we get a useful first term of the expansion

det(I + εC) = 1 + ε Tr C + · · ·
(v)

εa...b Aa
c . . . Ab

d = det A εc...d

(vi)

A[a
[c . . . Ab]

d]
︸ ︷︷ ︸

n matrices

= det A δa...b
c...d

Hint: (iv) set Aa
b = δa

b + εCa
b and use (5.6.4); (v) the expression on the left is completely

antisymmetric ⇒ we may use (5.6.1). �

5.6.6
∗

Prove that

(i) the elements of the inverse matrix may be written explicitly as

(n − 1)! det A (A−1)a
b = εak...lεbr ...s Ar

k . . . As
l =: (n − 1)! �a

b

⇒ for det A �= 0

(A−1)a
b = 1

det A
�a

b

(ii) �a
b is the (a, b)th minor, i.e. the determinant of a matrix which we get from A when the ath

column and the bth row are deleted

(iii) it holds that

Aa
b�

b
c = δa

c det A

57 This formal definition is the output of a computation, based on an intuitively comprehensible interpretation of the determinant
as a coefficient, by which all volumes are multiplied under the linear transformation A, see (5.7.6).
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which gives for a = c the expansion of a determinant with respect to the ath row and

�a
b Ab

c = δa
c det A

which gives for a = c the expansion of a determinant with respect to the ath column.

Hint: (i) see (5.6.5) and (5.6.4); (ii) εak...l with fixed a effectively behaves as εk...l in (n − 1)-

dimensional space. �

5.6.7
∗

Prove the formula for the partial derivative of a determinant with respect to a matrix

element

∂(det A)

∂ Aa
b

= (det A)(A−1)b
a ≡ �b

a so that d(det A) = (det A) Tr (A−1d A)

Hint: see (5.6.5) and (5.6.6). �

5.6.8
∗

Let L be an even-dimensional linear space (its dimension being n = 2m (m ≥
1)), ea a basis in L , ea the dual basis in L∗, Aab = −Aba , Ba

b ∈ GL(n, R), (BT AB)ab ≡
Bc

a Acd Bd
b , (eB)a ≡ eb Bb

a , and finally

αe
A := 1

2
Aab ea ∧ eb ∈ �2L∗

One defines then the Pfaffian Pf(A) of the matrix A by

αe
A ∧ · · · ∧ αe

A =: m! Pf (A) e1 ∧ · · · ∧ e2m

Prove that

(i) the explicit expression for the Pfaffian is

Pf (A) = 1

2mm!
ε

2m
︷︸︸︷
ab...cd Aab . . . Acd︸ ︷︷ ︸

m matrices

(ii)

αe
BT AB = αeB

A Pf (BT AB) = (det B)Pf (A)

(iii) the numerical value of the square of the Pfaffian is equal to the determinant

(Pf (A))2 = det A

Hint: (i) see (5.6.1); (ii) see (5.7.2); (iii) make use of the existence of the canonical form of

a skew-symmetric matrix: ∃C ∈ GL(n, R) such that

A 
→ CT AC ≡ A ≡
⎛

⎝
0 1 0

−1 0 0

0 0 0

⎞

⎠

(a block expression of the matrix A is used), and directly check that Pf (A) = ±1 (or 0 if A
happens to be singular, i.e. if indeed there is a zero block displayed in the rightmost down

position). �
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5.6.9
∗

Introduce the exponent of an arbitrary form β by making use of the formal expansion

eβ := 1 + β + 1

2!
β ∧ β + · · ·

The resulting object is an inhomogeneous form, i.e. an element of the exterior algebra �L∗.

Check that

(i) the series necessarily terminates, so that it is, in fact, a finite expression rather than an infinite

series (unless the degree of the form equals 0, of course)

(ii) for forms of odd degree it contains only the first two terms

(iii) if we substitute the 2-form αe
A from problem (5.6.8) as β, the series looks like

eαe
A := 1 + αe

A + 1

2!
αe

A ∧ αe
A + · · · + 1

m!
αe

A ∧ · · · ∧ αe
A

so that the Pfaffian enters the 2m-form

{eαe
A }top = Pf (A) e1 ∧ · · · ∧ e2m ≡

√
det(A) e1 ∧ · · · ∧ e2m

which is a top degree form of the series.

• This simple result has an important application in the quantum theory of fermion fields,

where it is found under the name “integral (of an exponent of a quadratic form) over an-
ticommuting variables.” The correspondence is as follows: the “anticommuting variables”

θa from there match our ea , our symbol ∧ of the exterior product is omitted and as the

“integral”
∫

dθ1 . . . dθn(· · ·) of a general “function of anticommuting variables” (an ele-

ment of the exterior algebra here) one defines the coefficient of θ1 . . . θn in this function

(the only component of the top degree form). The result from (5.6.9) may be then written

in the form58

∫

dθ1 . . . dθne
1
2

Aabθ
aθb =

√
det A

In this notation the interior product from (5.4.1) may be written as

ia(eb ∧ · · · ∧ ec) ↔ ∂

∂θa
(θb . . . θ c)

5.7 The metric volume form

• At the beginning of the chapter we came to the conclusion that a completely antisym-

metric tensor of type
(

0
n

)
, i.e. an n-form in L , is needed to enable one to compute the volume

of a parallelepiped spanned by n vectors in an n-dimensional space L . This is the reason

why such a (non-vanishing) n-form used to be called a volume form in L . We know from

58 A similar integral for ordinary commuting variables (over the whole R
n ) is the well-known Gaussian integral (the matrix Aab

then being symmetric and negative definite), and it gives the result which very much resembles that obtained here, the square
root of the determinant being, however, in the denominator rather than in the numerator, as is the case here.
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(5.2.1) that the space of n-forms �n L∗ is, in fact, one-dimensional. This means that any

two volume forms may differ at most by a (non-vanishing) constant factor.

5.7.1 Let (ea) be an arbitrary basis in L∗. Check that

(i)

ea ∧ · · · ∧ eb
︸ ︷︷ ︸

n pieces

= εa...b e1 ∧ · · · ∧ en

(ii) the most general n-form ω may be expressed as

ω = λe1 ∧ · · · ∧ en λ ∈ R

(iii) if ea 
→ êa ≡ eb Ab
a , then

ω ≡ λe1 ∧ · · · ∧ en = λ̂ê1 ∧ · · · ∧ ên

where

λ̂ = (det A) λ

A quantity which transforms in this way under a change of basis is called a scalar density (of

weight −1; see the text after (6.3.7) and problem (21.7.10)).

Hint: (ii) (5.2.9), (5.6.1), λ = ω1...n; (iii) (2.4.2), (5.6.5). �

• So there is a freedom in a single parameter λ in the formula for computation of the

volume of a parallelepiped in L . This parameter may be fixed by ascribing a definite value of

the volume to any one particular (non-degenerate) parallelepiped. In a “general” linear space

(endowed with no additional structure, like a metric tensor), however, all (non-degenerate)

parallelepipeds are completely equivalent (a parallelepiped is given by an n-tuple of vectors

and all vectors are equivalent) and there is no reason for preferring some of them for the

purpose of fixing the constant λ. Put another way, there is no natural scale of volumes. All
the volume forms and, consequently, all the formulas for computation of volumes (i.e. with

any choice of λ) based on them are equivalent. We can speak of a ratio of two volumes

rather than of “the” volume itself.59

The state of affairs changes substantially, however, in (L , g, o), i.e. if L is endowed

with a metric tensor and orientation, too, since the additional structures (g, o) single out

59 Intense and merciless advertisements, hammering us day after day, try to make us think that an individual has not the remotest
chance of surviving without a credit card, wireless phone and a metric tensor. Some of us, however, never shared this opinion.
John Lennon, as an example, expressed his visionary dreams about a life in a linear space with no metric tensor (a situation one
nowadays can hardly imagine, indeed) in his famous composition Imagine. In the original version we might hear the courageous
verse

Imagine there’s no metric Imagine there’s no countries
It isn’t hard to do It isn’t hard to do
No way to measure angles Nothing to kill or die for
No lengths of vectors too And no religion too

The time was, however, not ripe and people not mature enough to be able to accept such a far-reaching idea in those times;
censorship (closely intertwined to the tensor lobby, of course) forced him (under pressure) to revise substantially the first strophe
and the result is well known today: in the new innocent first strophe, which occurred at the shop counters and which we like to
sing up to the present day, no reference to the metric tensor has remained at all.
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a distinguished class of bases; namely, they enable one to speak about orthonormal right-
handed bases. A parallelepiped spanned by an arbitrary such basis is a good old (oriented)

unit cube and a natural choice is to assign the unit volume just to this figure (as is customarily

done from time immemorial for n = 1, 2, 3). The unique volume form resulting from this

way of fixing the freedom mentioned above is called the metric volume form (or, more

precisely, the volume form compatible with the metric and orientation) and will be denoted

by ωg,o, or more frequently only by ωg .

5.7.2 Let e ≡ (ea), a = 1, . . . , n be a basis in a vector space L , E(L) the collection of all

bases in L and (ea) the dual basis in L∗. Define the maps

ω : E(L) → �n L∗ ω(e) := e1 ∧ · · · ∧ en

RA : E(L) → E(L) (RAe)a := eb Ab
a ≡ (eA)a A ∈ GL(n, R)

Show that

(i) RA is a right action of GL(n, R) on E(L) (see more in Section 13.1 and in problem (13.2.7)),

i.e. that there holds

RAB = RB ◦ RA

(ii) ω responds to the right action RA in the following way:60

ω(eA) = (det A)−1ω(e) i.e. ω ◦ RA = (det A)−1ω

(iii) a straightforward consequence of this behavior of ω and RA is (a well-known fact)

det (AB) = (det A)(det B)

(iv) in particular, for the matrices which belong to the special orthogonal group (10.1.8) we have

A ∈ SO(r, s) ⇒ ω(eA) = ω(e)

(v) (ω(e))(e1, . . . , en) = 1.

Hint: (ii) see (2.4.2) and (5.6.5); (v) see (5.2.12). �

5.7.3 Let (L , g, o) be an n-dimensional vector space endowed with a metric tensor g and

an orientation o, e ≡ (ea) and ê ≡ (êa), two right-handed orthonormal bases respectively,

f ≡ ( fa) an arbitrary basis and ω( f ) := f 1 ∧ · · · ∧ f n (5.7.2). Prove that

(i)

ω(e) = ω(ê)

i.e. ωg := ω(e) does not depend on the choice of right-handed orthonormal basis

(ii) its expression in terms of the arbitrary basis f reads

ωg ≡ ω(e) = o( f )
√

|g| ω( f )

where o( f ) is +1 or −1 depending on whether f is right-handed or left-handed and |g| ≡
| det g( fa, fb)|

60 Using the terminology introduced in Section 13.5, this is a 0-form on E(L) of type ρ̂ = det, i.e. R∗
Aω = (det A)−1ω.
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(iii)

ωg( f1, ..., fn) = o( f )
√

|g| so that ωa...b = o( f )
√

|g| εa...b

(iv)

ωa...b = o( f ) sgn g
1√|g| εa...b

where sgn g is the sign of the determinant of the matrix gab ≡ g( fa, fb) (for a metric tensor with

signature (r, s) (see the text before (2.4.12)) this is (−1)s)

(v) a change of orientation in L results in the change

ωg 
→ −ωg i.e. ωg,−o = −ωg,o

if (−o) is the orientation which is opposite with respect to o.

Hint: (ii) let fa be the arbitrary basis, fa = eb Bb
a (i.e. f = eB). Then

g( fa, fb) ≡ gab = Bc
aηcd Bd

b ≡ (BTηB)ab ⇒ det g = (det B)2 det η

⇒ det B = ±
√

| det g|
The sign is given (since e is right-handed) by the orientation of the basis f , so that det B =
o( f )

√| det g|. According to (5.7.2) then

ω(e) = ω( f B−1) = det B ω( f ) = o( f )
√

| det g| ω( f )

(iv) ωa...b ≡ gac . . . gbdωc...d = . . . (5.6.5); (v) the only change is o( f ) 
→ −o( f ). �

• The form

ωg ≡ ω(e) = e1 ∧ · · · ∧ en = o( f )
√

|g| f 1 ∧ · · · ∧ f n

is the metric volume form in (L , g, o) mentioned above. We see that its explicit expression

is especially simple in terms of an (arbitrary) orthonormal right-handed basis, being merely

a product of basis 1-forms. In a general basis, there is a “correction factor” in front of

the product of the basis 1-forms, which is the square root of the (absolute value of the)

determinant of the component matrix of the metric tensor with respect to this basis (and

possibly the minus sign, if the basis is left-handed).

Note that the letter g in these formulas denotes the determinant of the matrix correspond-

ing to the metric tensor (with lower indices), rather than the metric tensor itself. The actual

meaning of the letter g in any particular formula should always be clear from the context.

5.7.4 Let ωg be a metric volume form and f an arbitrary basis. Check that the (oriented)

volume of the parallelepiped P spanned by the vectors (v, . . . , w) may be written as

(oriented) volume of the parallelepiped P = o( f )
√

|g| det A

where A denotes the matrix with the columns (or, equivalently, rows) given by the compo-

nents of the vectors v, . . . , w with respect to the basis f . (In particular, for a right-handed

orthonormal basis the term det A alone stands on the right.)
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Hint: the volume := ω(v, . . . , w) = ωa...b va . . . wb = . . . , (5.7.3), (5.6.5). �

5.7.5 Prove that any volume form may be used to define an orientation on L , moreover in

such a way that the form ωg,o ≡ ωg from (5.7.3) will give just the orientation with which it

is compatible.

Hint: for 0 �= α ∈ �n L∗ a basis f will be right-handed (see Section 5.5), if α( f1, . . . , fn)

> 0. �

• Let us devote some time, in closing the section, to the interpretation of the concept of

the determinant of a matrix. We present two useful (and closely related) ways in which it

may be understood.

The first one says that the determinant is a factor by which the volume (in the sense of

an arbitrary volume form) of a parallelepiped is multiplied when all of its “constituent”

vectors undergo a linear map A. The second one introduces the determinant in terms of a

lift of the map A to the (one-dimensional linear) space of forms of top degree.

Note that in both approaches an invariant notion of the determinant of a linear map is

introduced as a primary concept and it is then a matter of computation to show that they

actually coincide with a common expression for the determinant of the matrix of the map

(with respect to an arbitrary basis).

5.7.6 Let A : L → L be a linear map. Consider a non-degenerate parallelepiped, spanned

by the vectors (u, . . . , v). Its volume (in the sense of an arbitrary but fixed volume form ω)

is

volume (u, . . . , v) ≡ ω(u, . . . , v)

Define the determinant of the map A as the factor by which the volume of the initial

parallelepiped is to be multiplied in order to get the volume of the parallelepiped spanned

by the vectors (Au, . . . , Av)

volume (Au, . . . , Av) =: (det A) volume (u, . . . , v)

Show that

(i) the number det A does not depend on the choice of parallelepiped (so that it informs us about

the factor by which each volume in L gets multiplied under the map A)

(ii) the determinant of a map A may be computed as the “ordinary” determinant of the matrix Aa
b

of the map (with respect to an arbitrary basis)

(iii) the determinant of the product (composition) of maps is the product of determinants

det(AB) = det A det B

Hint: (ii) see (5.6.5); if ω = λe1 ∧ · · · ∧ en , then

ω(Au, . . . , Av) = λεa...b(Au)a . . . (Av)b = · · · = (d̃et A)λεc...duc . . . vd

≡ (d̃et A)ω(u, . . . , v)
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where d̃et A already denotes the determinant of the matrix; (iii) under a map B each volume

increases q times (q ≡ det B), with the additional map A causing each volume to increase k
times (k ≡ det A), so that the volume, which is already q times bigger, increases altogether

kq times. �

5.7.7 Let A : L → L be a linear map and let Aa
b be its matrix with respect to a basis ea

(associated by the standard relation Aea := Ab
aeb). Consider the dual map A∗ : L∗ → L∗;

on the dual basis then A∗ea := Aa
beb (2.4.17). We introduce the lift (prolongation, induced

map) of A to the space of arbitrary p-forms, Â : �p L∗ → �p L∗, by

( Âα)(u, . . . v) := α(Au, . . . Av)

(for p = 1 there holds Â = A∗), so that in components

A : wa 
→ Aa
bw

b ⇒ Â : αa...b 
→ Ac
a . . . Ad

bαc...d

In particular, on n-forms (n = dim L∗) this is a (linear) map on a one-dimensional linear

space; it is then given by a single number. This number is defined to be the determinant of
a map A

det A ≡ Â : �n L∗ → �n L∗

Show that

(i) the determinant of the map A may be computed as an “ordinary” determinant of the matrix Aa
b

of the map (with respect to an arbitrary basis)

(ii) the lift of a map copies (in the reversed order) the composition61 of the initial maps, i.e.

ÂB = B̂ Â

(iii) the determinant of the product (composition) of maps is the product of determinants

det(AB) = det A det B

(iv) the definition of the determinant of a map A presented here is equivalent to the definition given

in (5.7.6) (and thus to that from (5.6.5) as well).

Hint: (ii) for a general n-form αa...b = λεa...b, so that

(det A)αa...b ≡ ( Âα)a...b = α(Aea, . . . , Aeb) = Ac
a . . . Ad

bαc...d = · · ·
(5.6.5); (iii) the special case of (ii) for p = n; (iv)

(det A)(5.7.6)volume (u, . . . , v) = volume (Au, . . . , Av) = ω(Au, . . . , Av)

= ( Âω)(u, . . . , v) = (det A)(5.7.7)ω(u, . . . , v)

= (det A)(5.7.7)volume (u, . . . , v)

�
61 For non-singular maps the prescription A 
→ Â thus provides an (anti)representation of the group GL(L) in the space of

p-forms �p L∗, see Section 12.1.
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5.8 Hodge (duality) operator ∗
• From the result of problem (5.2.1) it follows that the dimensions of the spaces of p-

forms and (n − p)-forms in an n-dimensional space L happen to coincide, being in both

cases
( n

p

)
. This means that the spaces are isomorphic, albeit not canonically, in general.

It turns out, however, that if L is endowed with a metric tensor and orientation, a canon-
ical isomorphism is available, which is of great importance in various applications of

forms.

5.8.1 Let (L , g, o) be an n-dimensional linear space with a metric tensor and orientation

and let ω ≡ ωg,o be the metric volume form from (5.7.3). Define a map ∗ ≡ ∗g,o (called the

Hodge operator or the duality operator)

α 
→ ∗α α ∈ �p L∗

(∗α)a...b := 1

p!
αc...d ωc...da...b αc...d ≡ gcr . . . gds αr ...s

Check that

(i)

∗ : �p L∗ → �n−p L∗

(ii) ∗ is a linear map

∗(α + λβ) = ∗α + λ ∗ β

(iii) on a (general) basis it gives

∗(ea ∧ · · · ∧ eb
︸ ︷︷ ︸

p entries

) = 1

(n − p)!
ωa...b

c...d ec ∧ · · · ∧ ed

where ωa...b
c...d ≡ gar . . . gbsωr ...sc...d

(iv) on a right-handed orthonormal basis it gives

∗(ea ∧ · · · ∧ eb
︸ ︷︷ ︸

p entries

) = 1

(n − p)!
ηac . . . ηbdεc...dr ...s er ∧ · · · ∧ es

(v) in particular, for p = 0, n we have

∗g1 = ωg ∗ ωg = sgn g

(vi) a change of orientation in L results in

∗g 
→ − ∗g i.e. ∗g,−o = −∗g,o

if (−o) denotes the orientation, which is opposite to o.

Hint: (iii) see (5.6.2); (v) ∗ω = ∗(e1 ∧ · · · ∧ en) = ω1...n (5.7.3)= sgn g holds in a right-handed

orthonormal basis. �
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5.8.2 Check that

(i) repeated application of the duality operator

�p L∗ ∗→ �n−p L∗ ∗→ �p L∗

happens to coincide (modulo a sign) with the identity map in �p L∗, i.e. that there holds (in

detail)

∗g∗g = sgn g (−1)p(n−p) on �p L∗

(ii)

(−1)p(n−p) = (−1)p(n+1)

and so62 one can also write this as

∗g∗g = sgn g η̂n+1 so that ∗−1
g = sgn g ∗g η̂n+1

(
it fulfills ∗g ∗−1

g = 1
)

(iii) ∗ is a canonical isomorphism

Hint: (i) a direct computation in components gives

(∗ ∗ α)a...b = · · · = (−1)p(n−p)

p!(n − p)!
ωc...dr ...s ωc...da...b αr ...s

Complete the calculation with the help of (5.7.3), (5.6.4) and (5.3.3) (most easily in a

right-handed orthonormal basis); (iii) the non-trivial kernel contradicts ∗∗ ∼ 1̂. �

5.8.3 A conformal rescaling of a metric is a replacement g 
→ κg (0 �= κ ∈ R; the angles

between vectors remain unchanged,63 but their lengths do change under this transformation).

Prove that for the Hodge operator with respect to a conformally rescaled metric one has a

simple formula

∗λ2g = λn−2p ∗g

Hint: in a fixed basis gab ≡ g( fa, fb) 
→ λ2gab ⇒ √|g| 
→ λn√|g| ⇒ ωλ2g = λnωg,

gab 
→ λ−2gab (5.8.1)⇒ just what is needed. �

• The Hodge operator enables one to express a scalar product in the space of p-forms

(as well as in the exterior algebra �L∗, then) in a compact and component-free way. This

scalar product plays an essential role in many applications (like in the action integrals in

field theory). The way one can easily arrive at this concept might look like this: given α and

β as two p-forms, α ∧ ∗β is always an n-form (for all p = 0, 1, . . . , n), depending linearly

on both α and β. The space of n-forms is one-dimensional, however, so that any n-form may

be regarded as a multiple of some fixed (reference) n-form. If one chooses the metric volume

form ωg to serve this purpose (which is clearly the most natural choice in (L , g, o)), we get

α ∧ ∗β = (α, β)ωg , where the coefficient (α, β) ∈ R depends linearly on both α and β.

62 From this expression one can see that in odd-dimensional space the resulting sign does not depend on the degree of a form (in
particular, in ordinary E3 we always have ∗∗ = 1̂). In (1 + 3)-Minkowski space E1,3 we have ∗∗ = −η̂.

63 If a conformal transformation of a manifold (4.6.3) is given, it results in a conformal rescaling of g(x) at each point x ∈ M .
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5.8.4 Given α and β two p-forms in an n-dimensional space (L , g, o), define (α, β)g ∈ R

by

α ∧ ∗gβ =: (α, β)gωg

Check that

(i) in components this gives

(α, β)g = 1

p!
αa...b βa...b ≡ 1

p!
gac . . . gbd αa...bβc...d

(ii) (α, β) is a symmetric,64 non-degenerate bilinear form in the space �p L∗, i.e. that

(α, β) = (β, α) (α + λγ, β) = (α, β) + λ(γ, β)

(α, β) = 0 for all β ⇒ α = 0

(iii) for Euclidean space (L , g) (positive definite g) (α, β) is positive definite, i.e.

(α, α) ≥ 0 and the equality occurs only for α = 0

⇒ (α, β) is the scalar product in �p L∗

(iv) for p = 0 and 1 we get the ordinary product in R and the product from (2.4.13) respectively.

Hint: (i) compute in an orthonormal right-handed basis, make use of the results of (5.7.1),

(5.7.3) and (5.6.4); (iii) (α, α) turns out to be the sum of squares in the orthonormal basis.

�

5.8.5
∗

Prove that

(i) for α, β ∈ �p L∗

(∗α, ∗β) = sgn g (α, β)

(ii) in the Euclidean case ∗ is an isometry
(iii) for α ∈ �p L∗, γ ∈ �n−p L∗

(∗α, γ ) = (α, ∗η̂n+1γ )

Hint: (∗α, ∗β)ω = (∗α) ∧ ∗ ∗ β = · · · (5.8.2), (5.2.4), (5.8.4); (ii) this is just what (i) says

for this case; (iii) (∗α, γ ) = sgn g (∗ ∗ α, ∗γ ) = · · · . �

5.8.6 Check that

(ivα, β) = (α, jvβ)

where

jvβ := ṽ ∧ β ṽ ≡ �gv ≡ g(v, · )

64 Note that its symmetry with respect to α ↔ β is not evident at all from the definition relation alone. It is clear, however, from
the component expression (i).
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Hint: according to (5.4.1), (5.8.4) and (5.2.6)

(ivα, β) = 1

(p − 1)!
vaαab...c βb...c = 1

(p − 1)!
αab...c v[aβb...c] = (α, ṽ ∧ β)

�

5.8.7
∗

Given α and β two p-forms, check that

(i) under the conformal rescaling of a metric g 
→ λ2g the n-form α ∧ ∗β transforms as follows:

α ∧ ∗λ2gβ = λn−2p α ∧ ∗gβ

(ii) in particular, the forms of “middle” degree in an even-dimensional space (n = 2p; e.g. 2-forms

in four-dimensional space) this n-form turns out to be conformally invariant
(iii) if one defines appropriately a scaling of forms, σ 
→ λ f (p)σ for σ ∈ �p L∗, the n-form α ∧ ∗gβ

remains unchanged; explicitly

g 
→ λ2g ≡ ĝ
α 
→ λ(p−n/2)α ≡ α̂ ⇒ α̂ ∧ ∗ĝβ̂ = α ∧ ∗gβ

β 
→ λ(p−n/2)β ≡ β̂

(iv) the situation in (ii) is a special case of (iii).

Hint: see (5.8.3). �

• The bilinear form (α, β), as well as the linear operators defined before (like iv, ∗, . . .),

may be naturally regarded as being defined on the whole exterior algebra �L∗.

5.8.8
∗

Consider inhomogeneous forms α, β ∈ �L∗, α = α(0) + α(1) + · · · + α(n), α(p) ∈
�p L∗ and similarly β. Define

(α, β) := (α(0), β(0)) + (α(1), β(1)) + · · · + (α(n), β(n))

where

(α(p), β(p)) = according to (5.8.4)

Check that

(i) in components this gives

(α, β) = α(0)β(0) + (α(1))a(β(1))
a + 1

2!
(α(2))ab(β(2))

ab + · · · + 1

n!
(α(n))a...b(β(n))

a...b

(ii) (α, β) is a symmetric, non-degenerate bilinear form in the space �L∗

(iii) for Euclidean space (L , g) it is positive definite (a scalar product in �L∗).

Hint: see (5.8.4). �

5.8.9
∗

Consider a linear extension to the whole of �L∗ of the operators discussed up to

now; for example,

∗α ≡ ∗(α(0) + α(1) + · · · + α(n)) := ∗α(0) + ∗α(1) + · · · + ∗α(n)

ivα ≡ iv(α(0) + α(1) + · · · + α(n)) := ivα(0) + ivα(1) + · · · + ivα(n)
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etc. Check the following identities:

(i)

η̂∗ = (−1)n ∗ η̂

(ii)

∗iv = − jv ∗ η̂ iv∗ = ∗ jvη̂

(iii)

ivη̂ = −η̂iv jvη̂ = −η̂ jv

(iv)

iv jw + jwiv = g(v, w)1̂

(v)

(ivα, β) = (α, jvβ) (∗α, β) = (α, ∗η̂n+1β) (∗α, ∗β) = sgn g (α, β)

Hint: (ii) on homogeneous terms: according to (5.8.4) and (5.8.6) there holds (ivα) ∧ ∗β =
α ∧ ∗ jvβ. Making use of (5.4.2) on the left and realizing that α ∧ ∗β = 0 (since it is an

(n + 1)-form), we get α ∧ iv ∗ η̂β = α ∧ ∗ jvβ, from which (α, β arbitrary) iv ∗ η̂ = ∗ jv .

Similarly for the second relation. Extend to inhomogeneous terms by linearity. (iv) Using

(5.4.2) and (5.8.6) we have iv jwα = iv(w̃ ∧ α) = (ivw̃) ∧ α − w̃ ∧ (ivα) = · · · .
�

5.8.10
∗

Let ea be an orthonormal basis in L = Er,s , ηab = g(ea, eb), ea the dual basis in

L∗ and ωg ≡ ∗g1 the metric volume form. Define the operators (see (5.8.6) and (5.4.1))

ia := iea i a := ηabib ≡ i�gea

ja := jea j a := ηab jb ≡ j�gea

γa := ia + ja γ a := i a + j a

Show that

(i)

ia j b + j bia = δb
a 1̂ ia jb + jbia = ηab1̂ i a j b + j bi a = ηab1̂

(ii)65

γaγb + γbγa = 2ηab1̂ γ aγ b + γ bγ a = 2ηab1̂

(iii)

ea ∧ · · · ∧ eb = j a . . . j b1

(iv)

∗(ea ∧ · · · ∧ eb) = i b . . . i a ∗ 1 ≡ i b . . . i aω

65 The operators γa realize a (real, reducible) representation of the Clifford algebra C(r, s) (see Section 22.1) in the exterior
algebra �L∗.
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(v)

iaω = d�a iaibω = d�ab

etc. (the forms d�a , d�ab, . . . are defined in (6.3.11) and they play an important role then in

integral calculus, see (8.2.8)).

Hint: (i) see (5.8.6); (iv) see (5.8.9); (v) ω = ∗1. �

5.8.11
∗

Prove that for α ∈ �p L∗

j aiaα = pα ia jaα = (n − p)α

Hint: computation on a monomial ec ∧ · · · ∧ ed
︸ ︷︷ ︸

p entries

+ linearity, (5.8.10). �

5.8.12
∗

Let ia, j a be the operators defined in (5.8.10). Show

(i) that

j aib : �L∗ → �L∗

is a derivation of �L∗ of degree 0 (see (5.4.2) and Appendix A.5)

(ii) that if Aa
b are the components of a tensor of type

(
1

1

)
, then

Â ≡ Aa
b jbia : �L∗ → �L∗

is a derivation of �L∗ of degree 0, which already does not depend on the choice of a frame field

(it may not be orthonormal, as is needed in (5.8.10))

(iii) how Â acts on �0 L∗, �1 L∗ and �2 L∗.

�

5.8.13
∗

Let B be a linear operator in �L∗ and (· , ·) the bilinear form on �L∗ discussed

in (5.8.8). Define the adjoint operator B+ by the standard formula

(B+α, β) := (α, Bβ)

Check that

i+
v = jv j+

v = iv η̂+ = η̂ ∗+ = ∗η̂n+1

Hint: see (5.8.6). �

5.8.14
∗

Consider a linear space L with the Euclidean scalar product (ηab = δab). Check

that �L∗ realizes the Hilbert space of n fermions. Namely, check that

(i) the operators ia and ja ≡ (ia)+ ≡ j a act as the annihilation and the creation operators of the ath

fermion respectively

(ii) the subspace of p-forms corresponds to the p-particle states

(iii) N̂ ≡ j aia ≡ i+
a ia acts as the operator of the total number of particles.
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Hint: (i) (5.8.10) and (5.8.13) say that ia(ib)+ + (ib)+ia = δab1̂; (iii) see (5.8.11). �

5.8.15
∗

Let α ∈ �p L∗. Define a linear map

α̂ : L → �p−1L∗ v 
→ ivα

The rank of this map (2.4.17) is called the rank of the form α. A p-form α is said to be

decomposable if it can be written as a product of p 1-forms (a general p-form can only be

written, according to (5.2.9), as a sum of several such products). Check that

(i) the minimal rank of a (non-vanishing) p-form is p
(ii) a form is decomposable if and only if it has minimal rank.

Hint: Let (eA) ≡ (ei , ea) be a basis of L , which is adapted to the kernel of the map α̂ (ei ∈
Ker α̂). Then α decomposes with respect to the eas alone (since p!α = (iB . . . i Aα)eA ∧
· · · ∧ eB). By definition the rank of α equals the number of entries of ea . If we are to

compose a p-form from them, their number should be at least p. If there are exactly p of

them, we have α = (ke1) ∧ · · · ∧ ep, so that it is decomposable. �

5.8.16
∗

The characteristic subspace L (α) of a form α is the kernel of the map α̂ introduced

in (5.8.15), i.e.

L (α) := {v ∈ L | ivα = 0} ≡ Ker α̂

Check that

(i) the characteristic subspaces of the forms α and ∗α are orthogonal to one another

L (α) ⊥g L (∗gα)

i.e. the characteristic subspace of the form ∗α is a part (subspace) of the orthogonal complement
to the characteristic subspace of the initial form α (⊥g denotes orthogonality in the sense of g)

(ii) for a decomposable form α

L (∗α) = (L (α))
⊥g

i.e. in this case ∗α corresponds to the entire orthogonal complement (“geometrical meaning” of

the operator ∗g).

Hint: (i) let ivα = 0, iw ∗ α = 0. Then,

0 = iw ∗ α
(5.8.9)= ∗ jwη̂α ⇒ jwα = 0 ⇒ g(v, w)α

(5.8.9)= iv jwα + jwivα = 0

⇒ g(v, w) = 0

(ii) make use of a right-handed orthonormal basis (ei , ea) (adapted to the subspace L (α));

if α happens to be decomposable, it is of the form α = ke1 ∧ · · · ∧ ep due to (5.8.15);

according to (5.8.1) ∗α = k̂ep+1 ∧ · · · ∧ en so that L is a direct sum of (the orthogonal

subspaces) L (α) and L (∗gα). �
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Summary of Chapter 5

The computation of volumes of parallelepipeds (and consequently the integration procedure,

where the values of functions are multiplied by the volumes of infinitesimal parallelepipeds)

singles out completely antisymmetric fully covariant tensors, usually called forms. This

chapter makes the reader acquainted with forms at the level of linear algebra. Forms enjoy

several important unique properties (not shared with general tensors). They are naturally

Z-graded, one can multiply them one with another via the (graded commutative) exterior

(wedge) product ∧ (giving rise to a graded exterior = Grassmann algebra) and with vectors

via the interior product iv (which turns out to be a derivation of degree −1 of the exterior

algebra). If a vector space is endowed with a metric tensor and orientation, there are also

the canonical volume form and Hodge star operator ∗ on forms available. The determinant

is naturally related to these concepts.

∧ := (p + q)!

p!q!
πA ◦ ⊗ Exterior (wedge) product of forms (5.2.4)

(β + λτ ) ∧ α = β ∧ α + λτ ∧ α

α ∧ (β + λτ ) = α ∧ β + λα ∧ τ Bilinearity of ∧ (5.2.4)

(α ∧ β) ∧ γ = α ∧ (β ∧ γ ) Associativity of ∧ (5.2.4)

α ∧ β = (−1)pqβ ∧ α Z-graded commutativity of ∧ (5.2.4)

α = (1/p!) αa...b ea ∧ · · · ∧ eb Expression of a p-form in terms of ea (5.2.9)

η̂α := (−1)deg αα Main automorphism of �L∗ (5.3.3)

(ivα)(u, . . . , w) := α(v, u, . . . , w) Interior product (of v and α) (5.4.1)

(ivα)a...b = vcαca...b Component expression of iv (5.4.1)

iv(α ∧ β) = (ivα) ∧ β + (η̂α) ∧ (ivβ) Graded Leibniz rule for iv (5.4.2)

δa...b
c...d = δa

[c . . . δb
d] ≡ δ[a

c . . . δ
b]
d ≡ δ

[a
[c . . . δ

b]
d] p-delta (generalized Kronecker) symbol (5.6.2)

n! det A = εa...bε
c...d Aa

c . . . Ab
d Determinant and Levi-Civita symbol (5.6.2)

ωg = o( f )
√|g| f 1 ∧ · · · ∧ f n Metric volume form (5.7.3)

vol (Au, . . . , Av) =: (det A) vol (u, . . . , v) Determinant of a linear map A (5.7.6)

p!(∗α)a...b := αc...d ωc...da...b Hodge star (duality) operator (5.8.1)

∗g∗g = sgn g (−1)p(n+1) Star squared is ± the unity (5.8.2)

α ∧ ∗gβ =: (α, β)gωg Scalar product (α, β)g of forms (5.8.4)

p!(α, β)g = αa...b βa...b Component expression of (α, β)g (5.8.4)
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Differential calculus of forms

6.1 Forms on a manifold

• In Section 2.5 we described how one may progress from the linear algebra of tensors

(Section 2.4) to tensor fields on a manifold M . Since p-forms in L are nothing but special

tensors in L , the same construction brings us to tensor fields on M again, namely to com-

pletely antisymmetric tensor fields of the type
(

0
p

)
in this particular case. Such objects66 are

called (differential) p-forms on M and the space of p-forms on M will be denoted by �p(M).

The straightforward pointwise approach of Section 2.5 thus enables us to carry all the

objects and operations, introduced at the level of linear algebra in Chapter 5, to the manifold.

In particular, we get a Cartan algebra of differential forms67 on M

�(M) := ⊕∞
p=−∞

�p(M) ≡ �0(M) ⊕ �1(M) ⊕ · · · ⊕ �n(M)

and F(M)-linear operators iV , jV , ∗g and η̂ on it (V is a vector field on M and g is the field
of a metric tensor68 on M).

6.1.1 Check that an arbitrary p-form α on M may be written locally (in a coordinate patch

O ↔ xi ) as

α = 1

p!
αi ... j (x) dxi ∧ · · · ∧ dx j

︸ ︷︷ ︸
p entries

Hint: see (5.2.9) and (2.5.4). �

6.1.2 Write down the most general forms on M = R
2[x, y] (�0(R2) � f (x, y), �1(R2) �

α = α1(x, y) dx + α2(x, y) dy, �2(R2) � β = β̂(x, y) dx ∧ dy). �

6.1.3 Let M = R
3[x, y, z], α = x dy − y dz, β = z2 dx ∧ dz − dy ∧ dx, V = (xy)2∂x+

∂y . Compute

α ∧ β iV α iV β iV (α ∧ β)

66 As in Section 5.2 we put �0(M) := T 0
0 (M) ≡ F(M), �1(M) := T 0

1 (M).
67 Its origin being in the exterior algebra �T ∗

P M (cf. T (M) ↔ T (TP M) in Section 2.5); the subspaces of degrees p < 0 and
p > n are trivial and so they need not be displayed explicitly.

68 The introduction of ∗ needs, in fact, an oriented manifold, see Section 6.3.
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Hint: the calculation before (5.2.10) and (5.4.2); (−(xz2 + y) dx ∧ dy ∧ dz, x , −dx +
(xy)2dy + (xyz)2, (xz2 + y) dx ∧ dz − (xz2 + y)(xy)2 dy ∧ dz). �

• Taking into account the result of (3.1.5) we see that differential forms (being special

strictly covariant tensors) behave nicely under (smooth) maps of manifolds (one can always

pull them back). Since the exterior product is based on the tensor product, pull-back behaves

very simply on the former, too.

6.1.4 Check that a map of manifolds f : M → N induces a morphism of their Cartan
algebras, i.e. the map f ∗ : �(N ) → �(M) (pull-back of differential forms), which respects

grading, linear structure and product, so that there holds

f ∗ : �p(N ) → �p(M) f ∗(α + λβ) = f ∗α + λ f ∗β

f ∗(α ∧ σ ) = f ∗α ∧ f ∗σ

Hint: see (3.1.4), the definition of ∧. �

6.1.5 Check that if a map f : M → N is given in coordinates as xi 
→ ya(x) and if

α ∈ �p(N ), then

f ∗α ≡ f ∗
{

1

p!
αa···b(y) dya ∧ · · · ∧ dyb

︸ ︷︷ ︸
p entries

}

= 1

p!
αa...b(y(x)) dya(x) ∧ · · · ∧ dyb(x)

= 1

p!
αa...b(y(x)) J a

i (x) . . . J b
j (x) dxi ∧ · · · ∧ dx j

︸ ︷︷ ︸
p entries

Hint: see (3.1.4). �

6.1.6 Let f : S2 → R
3 be the standard realization of the two-dimensional sphere in the

three-dimensional space (3.2.4). Compute f ∗β for the 2-form β discussed in (6.1.3) for

R = 1 (the unit sphere).

Hint:

f ∗(z2 dx ∧ dz − dy ∧ dx) = z2(ϑ, ϕ) dx(ϑ, ϕ) ∧ dz(ϑ, ϕ) − dy(ϑ, ϕ) ∧ dx(ϑ, ϕ) = · · ·
= sin ϑ cos ϑ(1 − sin ϑ cos ϑ sin ϕ) dϑ ∧ dϕ

�

• We come now to more technical results concerning properties of derivations of the

Cartan algebra. This algebra, as already mentioned above, is Z-graded and it is also graded
commutative (5.2.4). Let us state two fairly simple, albeit very useful, results in the abstract

language of such algebras.

6.1.7 Let A be a Z-graded and graded commutative algebra and let Dk and Dl be its

derivations of degree k and l respectively; so there holds

A = ⊕∞
p=−∞

Ai ai a j = (−1)i j a j ai ai ∈ Ai a j ∈ A j

Dk : Ai → Ai+k Dk(ai b) = (Dkai )b + (−1)ikai (Dkb) ai ∈ Ai , b ∈ A
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Show that their graded commutator

[Dk, Dl] := Dk Dl − (−1)kl Dl Dk

(being actually a commutator, unless both derivations are of odd degree, when it becomes

the anticommutator69) is a derivation of the algebra A (of degree k + l), too.

Hint: brute force (apply [Dk, Dl] on the product ai b and make use of the definitions). �

6.1.8 Let A be a Z-graded and graded commutative algebra, Dk a derivation of degree k
and let ar be an element of degree r (i.e. ar ∈ Ar ). Show that

D ≡ ar Dk : Ai → Ai+r+k b 
→ ar (Dk(b))

is a derivation of the algebra A (of degree k + r ), too.

Hint: as in (6.1.7). �

The result (6.1.7) will be used as early as in the next section (see, for example, (6.2.8)),

(6.1.8) will be used in Chapter 15, which deals with a linear connection (15.6.17).

We will close this section by mentioning two concepts, which will not be used directly

in what follows. They are, however, fairly common in modern mathematical physics.

The objects treated in problem (6.1.7) provide an example of a graded Lie algebra (Ap-

pendix A.5). In the case under consideration, its underlying linear space is given as a direct

sum of linear spaces of derivations of degree k and a graded commutator is then introduced

into this space according to (6.1.7) (extended to non-homogeneous elements by linearity).

If a coarser Z2 grading were to be considered (i.e. if forms and their derivations were di-

vided only into even and odd), it would result in a Lie superalgebra. The corresponding

Z2-graded commutator is usually called the supercommutator, being (like in (6.1.7)) actu-

ally a commutator, unless both elements are odd, when it becomes the anticommutator).

It obeys the super-Jacobi identity, details of which are left to the ambitious reader (less

ambitious readers may find it in Appendix A.5).

The problem (6.1.8) provides a basis of another useful trick, frequently met in supermath-

ematics, namely the use of odd parameters. We see that if an expression ar Dk is combined

with r and k such that their sum is even, the resulting derivation turns out to be even. In the

Z2-case this opens up the possibility of getting rid of considering odd derivations (one al-

ways combines them with auxiliary odd “parameters,” i.e. with odd elements of an auxiliary

algebra A) as well as anticommutators (for even derivatives ordinary commutators suffice).

6.2 Exterior derivative

• In addition to algebraic operations on forms on a manifold (∗, iV , jV , η̂) being merely

pointwise extensions of corresponding operations at each point P ∈ M , a differential oper-

ation of highest importance appears on �(M), namely the exterior derivative. As we will see

69 Although it is written as an ordinary commutator, in graded algebra this means automatically the graded commutator (since
the latter is much more important than the former).
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later in Section 8.5, this derivative represents a “common base” (core) hidden behind all the

basic differential operations known from vector analysis in E3 (gradient, divergence, curl

and Laplace operator), but also of various far-reaching generalizations. In the next chapter,

which deals with the integral calculus of forms, we will derive the (very simple, general and

useful) Stokes’ theorem, which relates “volume integrals” to particular “surface integrals”

(over the boundaries of the volumes) and it turns out that the exterior derivative happens to

play a prominent role in this theorem, too.70

The exterior derivative is often introduced in an axiomatic way (see items 1–5 in (6.2.5)),

but we will try, as is done frequently in this book, to arrive at its definition “bottom up,”

through a rough motivation first, and possibly a further improvement of the raw result,

afterwards.

Consider the following problem: given a tensor field of type
(

0
p

)
, examine whether the

operation of partial differentiation of its components

ti ... j 
→ ti ... j,k ≡ ∂k ti ... j

represents a tensor operation. We see that an additional lower index has appeared, so that it

might represent a map T 0
p (M) → T 0

p+1(M). A short calculation, however, cures us quickly

of these expectations.

6.2.1 Given a tensor field ti ... j (x) of type
(

0
p

)
, check that

si ... jk(x) := ti ... j,k ≡ ∂k ti ... j

fails to be a tensor field (of type
(

0
p+1

)
) in general.

Hint: this object transforms under a change of coordinates xi 
→ xi ′
as follows (ti ′... j ′,k ′ ≡

∂k ′ ti ′... j ′ ):

ti ′... j ′,k ′ =
(

∂xk

∂xk ′ ∂k

) (
∂xi

∂xi ′ · · · ∂x j

∂x j ′ ti ... j

)

= ∂xk

∂xk ′
∂xi

∂xi ′ · · · ∂x j

∂x j ′ ti ... j,k

︸ ︷︷ ︸
tensorial (good) terms

+
(

∂2xi

∂xk ′
∂xi ′ · · · ∂x j

∂x j ′ + · · · + ∂xi

∂xi ′ · · · ∂2x j

∂xk ′
∂x j ′

)

ti ... j

︸ ︷︷ ︸
non-tensorial (bad) terms

�

6.2.2 Check that non-tensorial terms actually do not appear if:

(i) p = 0 (so that f 
→ f, j is a genuine tensor operation; namely, the good old gradient f 
→ d f )

(ii) one restricts to affine changes of coordinates xi ′ = Ai
j x

j + ai (in particular, linear changes for

ai = 0).

Hint: see (6.2.1) and (2.5.3). �
70 The exterior derivative may also be defined in terms of this theorem (and this way of acquainting oneself with it is fairly

instructive, too; see the reputable monographs by Arnold and by Misner, Thorne and Wheeler for more details. In this approach
the exposition of integral calculus of forms precedes that of the differential calculus; the idea generalizes well-known procedures
leading to divergence in terms of (the limit of) a flux of a vector field for the boundary of the region and the curl in terms of
(the limit of) a circulation of a vector field for the boundary of a surface, given standardly in the courses of hydrodynamics and
electrodynamics (or in textbooks devoted to vector analysis, such as that by Marder).
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• So, in general, mere partial differentiation of components of tensor fields does not lead
in turn to components of tensor fields. The structure of “bad” (non-tensorial) terms present

in the expression above, however, strongly suggests a simple (but non-trivial) way to get

rid of them.71 Let us consider the case when ti ... j is a completely antisymmetric tensor (i.e.

a p-form) and let us arrange the antisymmetry of the result as well:

ti ... j ≡ t[i ... j] 
→ t[i ... j,k]

6.2.3 Check that if α ∈ �p(M), then the component rule

d0 : αi ... j 
→ α[i ... j,k]

provides a map

d0 : �p(M) → �p+1(M)

(so that d0 actually is a tensor operation).

Hint: antisymmetrization cancels out “bad” terms in (6.2.1), since they are symmetric (each

one in a pair of indices), (5.2.6). �

6.2.4 Check that the map d0 from (6.2.3) enjoys the following properties:

(i) d0(α + λβ) = d0α + λd0β λ ∈ R

(ii) d0 f = d f f ∈ �0(M), d is the gradient from (2.5.3)

(iii) d0d0 = 0

(iv) if α ∈ �p(M), β ∈ �q (M), then on their product we have

d0(α ∧ β) = A(p, q)(d0α) ∧ β + B(p, q)α ∧ d0β

where

A(p, q) = p + 1

p + q + 1
(−1)q B(p, q) = q + 1

p + q + 1

Hint: (iii) α[[i ... j,k]l] = α[i ... j,(kl)]
(5.2.6)= 0; (iv) a direct computation of components right from

the definition. �

• The first three properties are very simple. The fourth one would be simple, too (it

resembles Leibniz’s rule), if it did not contain the awkward factors A and B. We may get rid

of these factors easily, however (without losing the nice properties of d0), if a new operation

d, the exterior derivative, is defined as being just an appropriate multiple of d0 (depending

on the degree of a form, i.e. d = C(p)d0 on �p(M)).

6.2.5 Check that the component rule (with respect to the coordinate basis)

(dα)i ... jk := (−1)p (p + 1) α[i ... j,k] α ∈ �p(M)

71 Another, technically more involved, possibility is to introduce a covariant derivative (Chapter 15). Here, further terms occur
in addition to partial derivatives, resulting in exact cancellation with the non-tensorial terms from (6.2.1). There is an essential
difference between these two lines of reasoning: while the covariant derivative needs an additional structure on a manifold
(namely a linear connection), the exterior derivative makes do with a “bare” manifold (endowed with a smooth structure
alone).
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(i.e. the choice72 C(p) = (−1)p (p + 1)) defines a map on forms, enjoying the properties

1. d : �p(M) → �p+1(M) a map of degree +1

2. d(α + λβ) = dα + λdβ it is R-linear (λ ∈ R)

3. d f = d f f ∈ �0(M), d on the right being the gradient

4. dd = 0 it is nilpotent

5. d(α ∧ β) = (dα) ∧ β + (η̂α) ∧ dβ graded Leibniz’s rule

i.e. put all together, d is a derivation of the Cartan algebra of degree +1 (items 1, 2 and 5;

see Appendix A.5 or (6.1.7)), which moreover happens to be nilpotent (item 4) and which

coincides with the gradient of a function on degree 0.

Hint: item 5: see (6.2.6). �

6.2.6 Check that properties 1–5 fully characterize the operator d and that, in particular,

they already result in the component formula displayed in problem (6.2.5).

Hint: since (6.2.5) yields ddxi = 0 (!), we find

dα = d

(
1

p!
αi ... j dxi ∧ · · · ∧ dx j

)

= 1

p!
dαi ... j ∧ dxi ∧ · · · ∧ dx j

= 1

p!
αi ... j,k dxk ∧ dxi ∧ · · · ∧ dx j = (−1)p

p!
α[i ... j,k] dxi ∧ · · · ∧ dx j ∧ dxk

�

6.2.7 Compute dα, dβ for α, β given in (6.1.3).

Hint: making direct use of the properties mentioned in (6.2.5) turns out to be a much quicker

method of computation than the component formula from (6.2.5). Here, for example, we

may write

d(x dy − y dz) = dx ∧ dy + x ∧ ddy − dy ∧ dz − y ∧ ddz = dx ∧ dy − dy ∧ dz

since ddy = 0 = ddz (compare with the similar situation when the exterior product was

discussed before (5.2.10)). �

6.2.8 Show that the Lie derivative of differential forms may be expressed in the following

(very useful) form:73

LV = iV d + d iV Cartan’s identity

Hint: according to (6.1.7) this is an equality of two derivations (of degree 0) of the algebra

�(M) ⇒ it suffices to verify it in degrees 0 and 1, where it is easy (e.g. in components). �

6.2.9 Prove the validity of the (fairly useful) identity

[LV , iW ] ≡ LV iW − iW LV = i[V,W ]

Hint: just like in (6.2.8). �
72 Making use of another choice of C(p) an “opposite” convention may be arranged, by which d̂(α ∧ β) = α ∧ (d̂β) + (d̂α) ∧ η̂β

(d̂ = dη̂ is enough for that). This convention is often adopted in the context of supermanifolds.
73 The operators which enter this formula may be given a visual meaning in the integral calculus of forms and this identity itself

may be interpreted in terms of Stokes’ theorem, see (7.8.2).



132 Differential calculus of forms

6.2.10 Prove that the exterior derivative commutes with the Lie derivative (along an arbi-

trary vector field)

[d,LV ] ≡ d LV − LV d = 0

Hint: just like in (6.2.8), or use the result of (6.2.8). �

6.2.11 Prove that the exterior derivative commutes with pull-back (with respect to an

arbitrary smooth map f : M → N ); that is to say, the following commutative diagram holds:

�p(N )
f ∗

−−−−→ �p(M)

d

⏐
⏐
⏐



⏐
⏐
⏐



d i.e. [d, f ∗] ≡ d f ∗ − f ∗d = 0

�p+1(N ) −−−−→
f ∗

�p+1(M)

Hint: denote Â := [d, f ∗] and check that it is linear and on a product it gives (see (6.1.4)

and (6.2.5))

Â(α ∧ β) = ( Âα) ∧ f ∗β + (η̂ f ∗α) ∧ Âβ

⇒ it suffices to verify Â = 0 in degrees 0 and 1; degree 0 is treated in (3.1.9), from degree

1 just dψ is enough for an arbitrary function ψ , which results immediately from dd = 0

and (once again) (3.1.9); or everything in components. �

6.2.12 Derive (6.2.10) from (6.2.11). Generalize to the following statement: each oper-

ation (not only d) which is invariant with respect to diffeomorphisms commutes with the

Lie derivative.

Hint: for d: differentiate (in t = 0) [d, 
∗
t ] = 0 for 
∗

t ↔ V ; in general: invariant with

respect to diffeomorphisms means that it commutes with the latter; the Lie derivative is a

generator (of the pull-back) of diffeomorphisms. �

• Often one needs to evaluate the exterior derivative dα of a form α on general arguments

(for a 2-form, as an example, to evaluate dα(U, V, W ) on arbitrary vector fields U, V, W ).

Although this certainly can be done in components (= values on special arguments, a

coordinate basis), in many cases of interest “Cartan formulas” (to be discussed in the

following problem) prove to be much more efficient.

6.2.13 Prove

(i) the validity of the Cartan formulas (from a practical point of view one makes do with the particular

cases p = 0, 1, 2 mostly) for the evaluation of the exterior derivative of a form on arbitrary

arguments (vector fields), i.e. not only on a coordinate basis

dα(X1, . . . , X p+1) =
p+1∑

j=1

(−1) j+1 X jα(X1, . . . , X̂ j , . . . , X p+1)

+
∑

i< j

(−1)i+ jα([Xi , X j ], . . . , X̂i , . . . , X̂ j , . . . , X p+1)

where α ∈ �p(M) and the hat indicates that corresponding arguments are to be omitted
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(ii) that on the coordinate basis they yield just (6.2.5)

(iii) that for p = 0, 1, 2 they explicitly read as

d f (U ) = U f

dα(U, V ) = U (α(V )) − V (α(U )) − α([U, V ])

dβ(U, V, W ) = U (β(V, W )) − V (β(U, W )) + W (β(U, V ))

− β([U, V ], W ) + β([U, W ], V ) − β([V, W ], U )

(iv) that in the case where p = 2 it may also be written as

dβ(U, V, W ) = {U (β(V, W )) − β([U, V ], W )} + cycl.

Hint: first show that the formulas to be proved are equivalent to74 the identities

iU d = LU on �0(M)

iV iU d = LU iV − LV iU − i[U,V ] on �1(M)

iW iV iU d = (LU iW iV + cycl.) − (iW i[U,V ] + cycl.) on �2(M)

etc.

In order to prove these identities (as well as further ones, i.e. iX p+1
. . . iX1

d = · · ·) one has

to commute in successive steps d through the interior products, making use of (6.2.8) and

(6.2.9); the term with d at the leftmost position vanishes (why?). �

6.2.14
∗

Check that for the Lie derivative of forms along a field σ V , where σ is a function,

there holds

L(σ V )α = σLV α + dσ ∧ iV α

Hint: see (6.2.8) and (5.4.1). �

6.3 Orientability, Hodge operator and volume form on M

• In Chapter 5 we encountered the concepts of orientation (Section 5.5), the Hodge oper-

ator (Section 5.7) and the volume form (Section 5.8) at the level of linear algebra. Now we

would like to carry these objects onto a manifold.

Each tangent space TP M, P ∈ M , is a linear n-dimensional space and one may introduce

an orientation there. As explained in detail in Section 5.5, given a space L there exist just two
possible orientations in it (one particular basis is declared to be either right-handed or left-

handed), i.e. the orientation in L turns out to be a discrete quantity. If one intends to set an

orientation on each tangent space on a (smooth) manifold, an additional requirement arises.

Namely, it is natural to restrict to smooth choices of orientations (so that two “nearby”

points, roughly speaking, do not have opposite, i.e. “the farthest possible,” orientations

of their tangent spaces). This may be stated simply within a single coordinate patch as

follows: coordinates xi ↔ O induce the coordinate basis in each tangent space in O. To

74 A possible point of view is that Cartan formulas express the exterior derivative in terms of the Lie derivative.
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make a smooth choice of orientation in O ⊂ M means to declare all the coordinate bases

to be, say, right-handed. If the coordinate basis {∂i } is right, the coordinates themselves are

said to be right-handed.

On a manifold R
n the standard orientation is introduced by declaring Cartesian coordi-

nates to be right-handed.75

6.3.1 Let two coordinates xi and xi ′
be available in a patch O. Check that

(i) it is the sign of the Jacobian matrix J (x) := det J i
j ≡ det(∂xi ′/∂x j ) which determines the relative

orientations of the coordinates xi with respect to xi ′

(ii) the interchange of any pair of coordinates (like x1 ↔ x2) changes the orientation.

Hint: see (2.2.6) and Section 5.5 and use the properties of the determinant. �

• If we try, however, to introduce in this way an orientation onto the manifold as a whole,

insurmountable problems may arise. Imagine there are only two charts on the manifold and

let their intersection O ∩ O′ be connected. Then if one chooses an orientation in O, the

orientation O′ is induced automatically (making use of the consistency on the overlap) and

so on the whole manifold M = O ∪ O′ as well.

Consider a case with M = O ∪ O′ still, where the intersection O ∩ O′ is, however, no
longer connected. Now, the orientation from O gets to O′ via two (or more) channels and it

might happen that the results which stem from these two sources will contradict one another.

A simple76 example illustrating that this threat is real is provided by the Möbius band.

6.3.2 Take two bands P, P ′ cut out of a square pa-

per exercise book (so that they are both endowed with

Cartesian coordinates, x, y and x ′, y′ respectively).

Denote by A, B ↔ P and A′, B ′ ↔ P ′ respectively

their (two-dimensional) marginal regions. Now put

B and B ′ over each other and glue together; a (longer)

band with margins A, A′ results. On the regions

B, B ′ (when glued together) a natural change of coor-

dinates arises, x ′(x, y) = x + c, y′(x, y) = y, with

positive Jacobian matrix (= 1). Now put A and A′

over each other and glue together again. Check (by

experiment) that

(i) if A and A′ are glued together “as it is proper” (no flip over ⇒ a ring results), the Jacobian of

the change of coordinates in this region is positive, too

(ii) if we flip the band over at A′ by the angle π around the longitudinal axis of the band, first, and

only then glue together A and A′ (⇒ the Möbius band results), the change of coordinates in this

region is x ′(x, y) = x + c1, y′(x, y) = −y + c2 with negative Jacobian (= −1)

(iii) in general, if we flip the band over by an angle 2kπ , the Jacobian is positive, for (2k + 1)π it is

negative. �

75 Since a single chart is enough on R
n , the orientation is fixed by this on the whole manifold.

76 It is also popular, see Escher’s art works Band van Möbius I, II.
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• We see that the orientations of the band P ′, induced from P via the channels A = A′

and B = B ′ respectively, contradict one another. This actually means that we obtain no
consistent global orientation on the union (on the whole Möbius band). One can prove that

this is really an inherent problem with the Möbius band itself.77

(Here we encountered the tiny tip of a huge iceberg on our voyage, the volume of its

underwater part being, as is well known, much bigger than that of its visible part. Un-

fortunately the majority of the iceberg will remain under the surface until the end of the

book. What we are speaking about is the close relation between the differential geome-

try and the topology of manifolds. We see that global topological properties of manifolds

may, as an example, obstruct the introduction of some particular geometrical structures

(here the orientation or, equivalently (6.3.5), a volume form). Similar “topological condi-

tions” are imposed by several other celebrities of the geometrical heaven, such as spinor

fields or a metric tensor with Lorentzian signature (the latter cannot be globally defined

on the ordinary sphere S2). They might be more modest and follow the example of such

a reputable and useful quantity as the “ordinary” (positive definite) metric tensor: with-

out any idle talk it gladly allows itself to be defined, when nicely asked, on an arbitrary
manifold.)

Manifolds like the Möbius band are said to be non-orientable manifolds.78 In contrast,

a manifold is called orientable if it can be endowed with an oriented atlas, which is an

atlas in which the Jacobian of the change of coordinates happens to be positive on every

non-empty overlap of coordinate patches. Thus, if we are given an atlas on a manifold,

we may try to improve it (as regards orientability) by interchanging, if necessary, the

order of coordinates (6.3.1) and, if the manifold is orientable, we end up with the oriented

atlas.

6.3.3 Check that the spheres Sn are orientable manifolds.

Hint: inspect the structure of overlapping region(s?) of charts in the atlas consisting of

stereographic coordinates (1.3.1); or use the result of (6.3.4). �

6.3.4
∗

Check that each manifold which can be defined implicitly (in terms of constraints;

(see Section 1.5)) is necessarily orientable.

Hint: in a neighborhood of the manifold M (given by m independent constraints in R
n+m) we

may use as local coordinates the constraints φ1, . . . , φm plus some n additional coordinates

z1, . . . , zn (the latter then provide an atlas for M itself). Order these further n coordinates

so that (φ1, . . . , φm, z1, . . . zn) is right-handed (in the sense of the standard orientation in

R
n+m). Check that the atlas on M constructed in this manner is oriented. �

• The test of the orientability of a manifold by direct construction of the oriented atlas

may turn out to be far from simple. There is, fortunately, another practical criterion79 based

77 It is unavoidable by any trick like, say, some ingenious choice of coordinate patches and the structure of their overlaps; see
(6.3.6).

78 There are long lasting heated disputes among scientists as to whether non-orientability of a manifold is congenital, unalterable
by upbringing at all, or results from an emotionless approach within babyhood (some claim even during the prenatal period,
when being glued from trivial pieces).

79 This criterion enables one to prove in an elegant way the orientability of each Lie group (11.1.6) as well as of each phase space
in mechanics (14.3.6).
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on a volume form. A volume form on an n-dimensional manifold M is an arbitrary (globally

defined, smooth and) everywhere non-vanishing n-form on M (i.e. ω ∈ �n(M), ω(x) �=
0, x ∈ M).80

6.3.5 Prove the following statement:

M is orientable ⇔ ∃ a volume form ω on M

Hint: → let x ≡ xi , y ≡ ya , z ≡ zα be charts of an oriented atlas. In the coordinate patch

of z define

ω := dz ≡ dz1 ∧ · · · ∧ dzn

Then on z ∩ y it is

ω = J (y 
→ z)
︸ ︷︷ ︸

>0

dy �= 0

⇒ it may be extended (being non-vanishing) to the region y, etc. Consistency on a triple

overlap x ∩ y ∩ z follows from

J (x 
→ z) = J (x 
→ y)J (y 
→ z)

← any atlas may become oriented as follows: in the patches of x and y we accomplish (by

the interchange x1 ↔ x2 or y1 ↔ y2, if necessary)

ω

(
∂

∂x1
, . . . ,

∂

∂xn

)

> 0 ω

(
∂

∂y1
, . . . ,

∂

∂yn

)

> 0

(5.7.5); since

J (x 
→ y)ω

(
∂

∂y1
, . . . ,

∂

∂yn

)

︸ ︷︷ ︸
>0

= ω

(
∂

∂x1
, . . . ,

∂

∂xn

)

︸ ︷︷ ︸
>0

, we have J (x 
→ y) > 0

�

• One more criterion of orientability stems from the idea of the continuous transport of a

frame along a curve. Consider a point x ∈ M and let (O, xi ) be its coordinate neighborhood.

Let γ be a curve passing through x = γ (0). If there is a frame e(x) at the point x , it may be

decomposed with respect to the coordinate frame field, ea = Ai
a∂i . When speaking about

the continuous transport of a frame along a curve (its part in O), we will understand such

a frame field on γ (t) which, when decomposed with respect to the local coordinate basis,

leads to a continuous (matrix valued) function Ai
a(t) (where Ai

a(0) = Ai
a). If a frame is

transported in this way along a loop which lies entirely in O, it is clear that the frame

carried back has the same orientation that it had at the beginning (since the determinant of

A does not vanish anywhere it cannot change sign along the way). If, however, the loop

traverses several coordinate patches, the matter gets more complicated.

80 Thereby defining a volume form in the sense of Section 5.7 in each tangent space.
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6.3.6 Think over the fact that

(i) a manifold is orientable if and only if a frame, after being continuously transported along an

arbitrary loop, preserves its orientation

(ii) the Möbius band is non-orientable.81

Hint: (i) given two coordinate patches with non-empty overlap Oα ∩ Oβ , an orientation

may be carried from one to the other by constructing a loop which lies in both of the patches

and transporting an arbitrary frame along it; (ii) consider a frame which is transported along

the central line of the Möbius band, e1 being directed along the motion and e2 always in the

same half with respect to the line; after finishing the circuit e2 lies on the opposite side. �

• On an oriented Riemannian manifold (M, g, o) we may introduce (by pointwise con-

struction) the metric volume form (see Section 5.7) as well as the Hodge (duality) operator

(see Section 5.8). Things are now easy, the essential part of the work having been done in

the linear algebra.

6.3.7 Check that

(i) any volume form on M may be expressed in local coordinates as

ω = f (x) dx1 ∧ · · · ∧ dxn f �= 0 on O ↔ xi

(ii) in particular, the metric volume form on M reads as follows

ωg = o(x)
√

|g(x)| dx1 ∧ · · · ∧ dxn

where o(x) (being ±1) is given by the orientation of coordinates xi and g(x) := det gi j (x).

Hint: see (5.7.1) and (5.7.3). �

• The “function” f (x), which arises as a (single independent) component of the volume

form, does not stand for a genuine function on M . Namely, it transforms under the change

of coordinates according to the rule

x 
→ x ′ ⇒ f (x) 
→ f ′(x ′) = J−1(x ′(x)) f (x)

whereas, as we know, the Jacobian is absent for a true function (= “scalar field”). Such a

quantity is called a scalar density (of weight −1) on M (see (5.7.1) and (21.7.10)).

6.3.8 Write down the metric volume form in E2 in Cartesian and polar coordinates and

in E3 in Cartesian, spherical polar and cylindrical coordinates.

[E2: ωg = dx ∧ dy = r dr ∧ dϕ;

E3: ωg = dx ∧ dy ∧ dz
︸ ︷︷ ︸

Cartesian

= r dr ∧ dϕ ∧ dz
︸ ︷︷ ︸

cylindrical

= r2 sin ϑ dr ∧ dϑ ∧ dϕ
︸ ︷︷ ︸

spherical polar

] �

81 Note that the criterion in terms of transporting frames along loops is particularly well suited to proving non-orientability of a
manifold (a single suitable loop is enough for that), whereas the criterion in terms of a volume form serves well for the proof
of orientability (a single volume form guarantees its orientability).
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6.3.9 Write down the metric volume form in Minkowski space E1,3 in Cartesian, spherical

polar and cylindrical coordinates (ωg = dt ∧ ω̂, where ω̂ are the expressions valid for E3

from (6.3.8)). �

6.3.10 Check that the metric volume forms ωg on manifolds from problems (3.2.2)–(3.2.7)

read

(a + b sin ψ)b dϕ ∧ dψ for T 2 ⊂ E3

dα ∧ dβ for T 2 ⊂ E4

R2 sin ϑ dϑ ∧ dϕ for S2 ⊂ E3

R3 | sin ϑ cos ϑ | dϑ ∧ dϕ ∧ dψ for S3 ⊂ E4

r (z)

√

(1 + (r ′(z))2) dz ∧ dϕ for a rotational surface

R2 | sinh α| dα ∧ dϕ for the pseudosphere

�

6.3.11 Let (M, g, o) be an n-dimensional (pseudo-)Riemannian oriented manifold and let

ω ≡ ωg be the metric volume form on M . Show that

(i) the following results are true in a (right-handed) coordinate basis82

∗dxi = gi j d� j

∗(dxi ∧ dx j ) = gik g jld�kl

etc.

where the (n − 1), (n − 2), . . . -forms on the right are defined as follows:

d�i := 1

(n − 1)!
ωi j ...k dx j ∧ · · · ∧ dxk ≡ 1

(n − 1)!

√
|g(x)| εi j ...k dx j ∧ · · · ∧ dxk

d�i j := 1

(n − 2)!
ωi jk...l dxk ∧ · · · ∧ dxl ≡ 1

(n − 2)!

√
|g(x)| εi jk...l dxk ∧ · · · ∧ dxl

etc.

(ii) in a (right-handed) orthonormal basis we have

∗ea = ηab d�b

etc.

where

d�a := 1

(n − 1)!
εab...ceb ∧ · · · ∧ ec

etc.

Hint: see (5.8.1). �

82 Caution: the letter d in d�i (just like in d�i j , . . . ) is conventional and does not denote (!) the exterior derivative, here (see
(6.3.12)).
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6.3.12 Check that the forms d�i and d�i j come out in E3 as follows:

(i) in Cartesian coordinates

d�x = dy ∧ dz d�y = dz ∧ dx d�z = dx ∧ dy
d�xy = dz d�yz = dx d�zx = dy

(ii) in spherical polar coordinates

d�r = r 2 sin ϑ dϑ ∧ dϕ d�ϑ = r 2 sin ϑ dϕ ∧ dr d�ϕ = r 2 sin ϑ dr ∧ dϑ

d�rϑ = r 2 sin ϑ dϕ d�ϑϕ = r 2 sin ϑ dr d�ϕr = r 2 sin ϑ dϑ

(iii) verify that “d” in their labeling does not stand for the exterior derivative (find such d�i (or d�i j ),

for which d(d�i ) �= 0 ⇒ d�i �= d(. . .) in the sense of the exterior derivative).

Hint: (6.3.11); (iii) d(d�r ) = 2rdr ∧ sin ϑdϑ ∧ dϕ �= 0. �

6.3.13 Show that a volume form on E3 which is translationally invariant is automatically

rotationally invariant (i.e. homogeneity yields isotropy). Is the opposite true? Compare with

the metric tensor (4.6.14).

Hint: translations are generated (in Cartesian coordinates) by the basis vector fields ∂i ; then

if ω = f (x, y, z) dx ∧ dy ∧ dz, translational invariance gives f = constant. (The opposite

does not hold. The form
(r )ω̂,
(r ) being any non-vanishing function of the radial spherical

coordinate and ω̂ being the standard (metric) volume form, is rotationally invariant albeit

it is not (unless 
 = constant) translationally invariant.) �

6.4 V -valued forms

• In a number of applications of forms (Lie groups, fiber bundles, connections, etc.)

one actually encounters slightly more general objects than we have discussed up to now,

namely forms with values in a (finite-dimensional) vector space V . They represent a simple

generalization of “ordinary” (R-valued) forms, which are, however, a fairly convenient

tool, economizing both the conceptual and computational sides of the matter. We will treat

V -valued forms first at the level of linear algebra and then carry them onto a manifold.

Recall that p-forms in L (the elements of �p L∗, see Section 5.2) were introduced as the

multilinear, completely antisymmetric maps

σ : L × · · · × L︸ ︷︷ ︸
p

→ R (v, . . . , w
︸ ︷︷ ︸

p

) 
→ σ (v, . . . , w) ∈ R

Multilinearity itself is perfectly meaningful, however, in a more general case, when the target

space is an arbitrary vector space V rather than (the simplest one) R. Consider accordingly

multilinear, completely antisymmetric83 maps

α : L × · · · × L︸ ︷︷ ︸
p

→ V (v, . . . , w
︸ ︷︷ ︸

p

) 
→ α(v, . . . , w) ∈ V

83 Complete antisymmetry is not required, as usual, for p = 0, 1 (when it makes no sense).
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Such maps will be called V -valued p-forms in L and the space of such forms84 will be

denoted by �p(L∗, V ).

6.4.1 Let α ∈ �p(L∗, V ), ei be a basis in L , E A be a basis in V and ei , E A be corresponding

dual bases. Show that

(i) by the rule

αA(v, . . . , w) := 〈E A, α(v, . . . , w)〉
N pieces of “ordinary” (R-valued) p-forms in L are defined, where N ≡ dim V ; they are called

component forms and together they carry the same information as α does

(ii) the component forms depend on the choice of a basis in V (but not in L) and

E A 
→ Ê A ≡ AB
A EB ⇒ αA 
→ α̂A ≡ (A−1)A

BαB

(iii) if the form α is decomposed as

α = αA E A i.e. α(v, . . . , w) = αA(v, . . . , w)E A then αA E A = α̂A Ê A

from which we see that the whole does not depend on the choice of a basis (as should be the

case)

(iv) a complete decomposition (including a basis in L) of the form α reads

α ≡ αA E A =
(

1

p!
αA

i ... j e
i ∧ · · · ∧ e j

)

E A

so that the components αA
i ... j (already being real numbers) of these forms carry one upper index

of “type A” in addition to the usual lower indices of “type i” (with respect to which they are

completely antisymmetric).85 �

• The vector space V , in which forms take their values, is often endowed with some

supplementary structure (besides the linear one); this enables one to perform various sup-

plementary operations (besides linear combinations). If, to give an example, the target space

V turns out to be an algebra (either associative or Lie), one can multiply its elements and

this is reflected in the possibility of introducing the exterior product of such forms. The

simplest way to define this product is in terms of the decompositions from (6.4.1).

6.4.2 Let α ∈ �p(L∗,A) and β ∈ �q (L∗,A) be A-valued forms (A being an algebra),

and let the product in A be given by the relations E A EB = cC
AB EC with respect to a basis

E A (see Appendix A.2). Show that

(i) the rule (exterior product of such forms)

∧ : �p(L∗,A) × �q (L∗,A) → �p+q (L∗,A)

α ∧ β ≡ (αA E A) ∧ (βB EB) := (αA ∧ βB)E A EB ≡ (
cC

ABαA ∧ βB
)

EC

is well defined (= does not depend on the choice of E A; the exterior product of the component

forms is assumed to be known already)

84 For p = 0, 1, we set by definition �0(L∗, V ) := V , �1(L∗, V ) := Hom(L , V ) (linear maps from L to V ).
85 If we return to the special case where V = R, i.e. when we consider “ordinary” forms, the index A takes just a single value,

becoming a futile luxury, and it is therefore omitted; again only the lower indices remain.
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(ii) if the multiplication in the algebraA happens to be symmetric (E A EB = EB E A), then there holds

α ∧ β = (−1)pqβ ∧ α

(iii) if the multiplication in the algebra A is antisymmetric (E A EB = −EB E A), then86 an extra minus

sign arises

α ∧ β = −(−1)pqβ ∧ α

Hint: (i) see (6.4.1); (ii) and (iii) see (5.2.4). �

• We pass to the manifold from linear algebra in just the same way as we did in Section 6.1,

when treating ordinary forms (for the fields L 
→ Tx M at each point of a manifold).

6.4.3 Check that

(i) the V -valued forms on a manifold M may also be decomposed in terms of a basis in V and the

component forms

α = αA E A αA(U, . . . , W ) := 〈E A, α(U, . . . , W )〉

with αA already being ordinary forms on a manifold and U, . . . , W being vector fields

(ii) a “complete” decomposition of the forms of this type (with respect to a frame field on a manifold,

too) reads

α ≡ αA E A =
(

1

p!
αA

i ... j e
i ∧ · · · ∧ e j

)

E A

or, in particular, for a coordinate frame field

α ≡ αA E A =
(

1

p!
αA

i ... j dxi ∧ · · · ∧ dx j

)

E A

so that the components αA
i ... j (x) (“functions” already) of such forms carry one upper index of “type

A” in addition to the usual lower indices of “type i” (with respect to which they are completely

antisymmetric). �

• The space of V -valued p-forms on M will be denoted by �p(M, V ); in particular,

ordinary forms are �p(M, R) ≡ �p(M). Then the decomposition reads

�p(M, V ) � α = αA E A αA ∈ �p(M)

Numerous operations, which we know already from the context of ordinary forms, may be

performed with V -valued forms as well, if they are applied on the component forms alone.

6.4.4 Show that the following operations are well defined (they do not depend on the

choice of a basis in E A):

86 The algebra A = R (corresponding to ordinary forms) provides an example for the symmetric product, Lie algebras in turn
provide an example for the antisymmetric “product” (it is usually denoted as a commutator E A EB ≡ [E A, EB ] there). In a
general algebra it is neither symmetric nor antisymmetric (like in the complete matrix algebra), which means that α ∧ β and
β ∧ α are not related at all.
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(i) exterior derivative87

d : �p(M, V ) → �p+1(M, V ) dα ≡ d(αA E A) := (dαA)E A

and dd = 0 still holds

(ii) interior product (U being a vector field on M)

iU : �p(M, V ) → �p−1(M, V ) iU α ≡ iU (αA E A) := (iU αA)E A

(iii) pull-back (for any map f : M → N )

f ∗ : �p(N , V ) → �p(M, V ) f ∗α ≡ f ∗(αA E A) := ( f ∗αA)E A

(iv) if V = A is an algebra, then the exterior product is just like in (6.4.2) and the multiplication of

a form by an element of the algebra (a A ∈ R)

aα ≡ (a A E A)(αB EB) := (a AαB)E A EB ≡ (
cC

ABa AαB
)

EC

(v) on a Riemannian oriented manifold the Hodge operator ∗
∗ : �p(M, V ) → �n−p(M, V ) ∗ α ≡ ∗(αA E A) := (∗αA)E A

(vi) if there is a scalar product h = h AB E A ⊗ E B in V and α, β ∈ �p(M, V ), then

h ABαA ∧ ∗βB ≡ h AB(αA, βB)ωg

is an ordinary n-form on M . �

• An especially important particular case of the forms treated in this section is provided by

forms with values in the algebra of complex numbers. There we have a basis E1 = 1, E2 = i ,
so that each form may be decomposed as

σ = σ A E A ≡ α + iβ σ ∈ �p(M, C), α, β ∈ �p(M)

6.4.5 Check that the operations mentioned above reduce to

d(α + iβ) = dα + idβ

iU (α + iβ) = iU α + i(iU β)

f ∗(α + iβ) = f ∗α + i f ∗β

(α + iβ) ∧ (α̂ + i β̂) = (α ∧ α̂ − β ∧ β̂) + i(α ∧ β̂ + β ∧ α̂)

∗(α + iβ) = ∗α + i ∗ β

(k + iq)(α + iβ) = (kα − qβ) + i(qα + kβ)

Hint: see (6.4.4). �

6.4.6
∗

Consider two forms on M with values in two (possibly different) vector spaces,

α ∈ �p(M, V1) and β ∈ �q (M, V2). Let the bases in these spaces be Ea ∈ V1 and E A ∈ V2.

Show that

87 Another way to express the same idea: notice that �(M, V ) = �(M) ⊗ V and d = d ⊗ id, where d on the left is the new
one and d on the right is the good old one acting on ordinary forms. A similar approach may be used for some other
operators.
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(i) the rule

α ∧⊗ β ≡ (αa Ea) ∧⊗ (β A E A) := (αa ∧ β A)(Ea ⊗ E A)

correctly introduces their product, being a form with values in the tensor product V1 ⊗ V2

(Appendix A.1)

(ii) for the exterior derivative and interior product of such forms we have

d(α ∧⊗ β) = dα ∧⊗ β + η̂α ∧⊗ dβ iV (α ∧⊗ β) = iV α ∧⊗ β + η̂α ∧⊗ iV β

By analogy various further operations mentioned above may be expressed on such a product of

forms. �

Summary of Chapter 6

Forms are treated as fields on a manifold (differential forms). All the algebraic constructions

known from Chapter 5 still work, but a new differential operation of crucial importance

enters the scene, the exterior derivative. It turns out to be a nilpotent (dd = 0) derivation

of degree +1 of the Cartan algebra �(M) of forms on a manifold. A simple (but useful)

generalization of ordinary forms is provided by arbitrary vector space valued forms (the

ordinary ones being R-valued).

α = (1/p!) αi ... j (x) dxi ∧ · · · ∧ dx j Coordinate expression of a form (6.1.1)

Dk(ai b) = (Dkai )b + (−1)ikai (Dkb) Dk is a derivation of degree k (6.1.7)

(dα)i ... jk := (−1)p (p + 1) α[i ... j,k] Exterior derivative in coordinates (6.2.5)

dd = 0 Exterior derivative is nilpotent (6.2.5)

d(α ∧ β) = (dα) ∧ β + (η̂α) ∧ dβ Graded Leibniz’s rule for d (6.2.5)

LV = iV d + d iV Cartan’s identity (6.2.8)

[d,LV ] ≡ d LV − LV d = 0 Exterior and Lie derivatives commute (6.2.10)

[d, f ∗] ≡ d f ∗ − f ∗ d = 0 Exterior derivative commutes with pull-back (6.2.11)

dα(U, V ) = · · · Cartan formula (for p = 1) (6.2.13)

dβ(U, V, W ) = · · · Cartan formula (for p = 2) (6.2.13)

α = αA E A V -valued form on M (6.4.1)
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Integral calculus of forms

• In this chapter we adopt a highly useful point of view on integral calculus (in particular,

on line, surface, volume, etc. integrals), in which the quantities under the integral sign are

regarded as differential forms. The reader is expected to already have elementary experience

with the concept of the multiple (Riemann) integral and our intention will be to build a

bridge over troubled waters that flow between this standard background knowledge and the

machinery of differential forms, which we have learned in the previous chapter.

The graphical presentation of the integral reflects

the fact that the integral combines two independent

and completely different objects: a quantity under

the integral sign (what is to be integrated) and a do-

main of integration (over what is the first object to

be integrated). The quantities under the integral sign are discussed in Section 7.1. The main

observation will be the fact that it is very natural to regard these quantities as differential

forms (already familiar to us from the last chapter). The structure of the domains of inte-

gration is studied in Sections 7.2. and 7.3. We restrict ourselves to domains which can be

triangulated, i.e. decomposed into simple parts, known as simplices.88 We will see that the

simplices (and their formal linear combinations: chains) are endowed with an interesting

algebraic structure, resembling very much the structure which we encountered when deal-

ing with differential forms (a degree is defined and a nilpotent operator, altering the degree

by one unit (thus resembling d on forms), operates there): they form a (chain) complex in

the language of Section 9.3. In the rest of the chapter the key concept of the integral of a
form over a chain is introduced, its essential properties are examined and a central theorem

of the integral calculus of forms on manifolds (Stokes’ theorem) is proved.

7.1 Quantities under the integral sign regarded as differential forms

• Let us begin with a simple example. Consider a function f (x, y) in R
2[x, y]. Recall that

if we compute its integral over the disc © ≡ {(x, y)|x2 + y2 ≤ R2}, we save some labor,

as a rule, by passing to polar coordinates r, ϕ (the integration domain is simply stated in

88 It turns out that all “reasonable” domains occurring in standard theoretical physics belong to this class.
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these coordinates – it becomes a rectangle � ≡ [0, R] × [0, 2π ]). It reads
∫

©
f (x, y) dx dy =

∫

�

f̃ (r, ϕ) r dr dϕ f̃ (r, ϕ) ≡ f (x(r, ϕ), y(r, ϕ))

One usually says that the “volume element” is to be re-expressed in new coordinates

dx dy �→ r dr dϕ

Note that in new coordinates the “product of differentials” dr dϕ should be supplemented

by the factor r (in general, the Jacobian of a change of coordinates).

In geometry we used expressions like dx, dy, . . . to denote covector fields (1-forms).

Here, under the integral sign, these objects are “multiplied” somehow and it might be

interesting to investigate whether the manipulations with the differentials regarded as 1-
forms are related in some way or not with the changes of the “volume elements” under

the integral sign. Two of the products already mentioned are eligible: the tensor product

dx ⊗ dy and the exterior product dx ∧ dy.

7.1.1 Check that the tensor product does not result in anything interesting here, whereas

the exterior product of differentials yields just the needed expression.89

Hint: for dx = cos ϕ dr − r sin ϕ dϕ and dy = sin ϕ dr + r cos ϕ dϕ we have dx ∧ dy =
r dr ∧ dϕ. �

• The lesson so far is that if we regard dx dy under the integral sign as the exterior product

dx ∧ dy, a standard conversion of this 2-form to polar coordinates leads just to the needed

expression r dr dϕ ↔ r dr ∧ dϕ. A simple computation reveals even more.

7.1.2 Let � : (r, ϕ) �→ (x, y) be the coordinate change under consideration (polar �→
Cartesian). Check that

(i)

�(�) = ©
(ii)

�∗ f = f̃

(iii)

�∗( f (x, y) dx ∧ dy) = f̃ (r, ϕ)r dr ∧ dϕ

so that if α := f (x, y) dx ∧ dy ∈ �2(R2[x, y]), we may write down the above-mentioned equal-

ity of integrals in an amazingly simple and transparent way:
∫

�(�)

α =
∫

�

�∗α

�

89 The relation between forms and the concept of a volume, discussed at the beginning of Chapter 5 and in Section 5.1, is behind
this result; we recommend that the reader contemplate this visually in more detail.
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• What is remarkable in this formula is that the result which is obtained in integral calculus

with no reference to the machinery of forms acquires a particularly clear expression in the

language of differential forms – conversion of the quantity under the integral sign is nothing

but a standard operation on forms – namely its pull-back with respect to the diffeomorphism

corresponding to the change of coordinates. One easily verifies that this fact is not limited

to the particular case under consideration, but rather holds in general.

7.1.3 Let � : (y1, . . . , yn) �→ (x1, . . . , xn) be a change of coordinates y �→ x(y) and let

α := f (x1, . . . , xn) dx1 ∧ · · · ∧ dxn be an arbitrary n-form. Check that

(i)

�∗α ≡ �∗( f (x) dx1 ∧ · · · ∧ dxn) = f (x(y))J dy1 ∧ · · · ∧ dyn

where J ≡ J (x(y)) denotes the Jacobian of the change of coordinates, so that

(ii) a general expression of the well-known result concerning the change of coordinates in the multiple

integral may be written in the language of forms as follows:

∫

�(D)

α =
∫

D
�∗α

(D being an integration domain).

Hint:

�∗(dx1 ∧ · · · ∧ dxn) = x1
,i . . . xn

, j dyi ∧ · · · ∧ dy j

︸ ︷︷ ︸
εi ... j dy1∧···∧dyn

(5.6.5)= Jdy1 ∧ · · · ∧ dyn

�

• Thus, in general, the quantities under the integral sign transform under the change of

coordinates (i.e. when “the same” integral is expressed in two sets of coordinates) just

like differential forms do,90 and therefore it is quite natural to identify these objects and

regard all integrals as being the integrals of differential forms. The fact that this is not a

red herring will be confirmed later, when we learn that other natural operations on forms

(exterior derivative, interior product, etc.) play an important part in integral calculus as

well.

7.2 Euclidean simplices and chains

• In this section we begin with a systematic study of the objects which in the theory of

integration of forms will play the role of the domains of integration. The building blocks

from which general integration domains will be composed are provided by simplices on

manifolds. Before this, however, we say what the simplices in R
n are.

90 Under the correspondence f dx1 . . . dxn ↔ f dx1 ∧ · · · ∧ dxn .
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In R
n , consider points P0, . . . , Pp (p ≤ n), for which the “relative vectors”

−→
P0 Pa are

linearly independent (a = 1, . . . , p). Denote by sp ≡ (P0, . . . , Pp) a set of points of the

form91

sp ≡ (P0, . . . , Pp) := {P ∈ R
n | P = tμ Pμ ≡ t0 P0 + · · · + tp Pp}

tμ ≥ 0 (μ = 0, . . . , p),

p∑

μ=0

tμ = 1

This set will be called the Euclidean p-simplex. An orientation is ascribed to this object,

too. A simplex which has the opposite orientation with respect to (P0, . . . , Pp) is denoted

by −(P0, . . . , Pp); by definition, the interchange of an arbitrary pair of points alters the

orientation, for example (P0, P1) = −(P1, P0).

7.2.1 Check that the 0-simplex is an oriented point, the 1-simplex is an oriented segment,

the 2-simplex is an oriented triangle (including its interior), the 3-simplex is an oriented

tetrahedron (including its interior), etc. Draw suitable figures. �

• The formal92 linear combinations

c = ci s
i
p ci ∈ R, si

p = i th p-simplex

of p-simplices are called p-chains93 and the corresponding (∞-dimensional) linear space

is denoted by C p.

7.2.2 Define a linear map (the boundary operator)

∂ : C p → C p−1

by the prescription

∂
(
ci si

p

)
:= ci

(
∂si

p

)
∂ P0 := 0 ∂(P0, . . . , Pp) :=

p∑

μ=0

(−1)μ (P0, . . . , P̂μ, . . . , Pp)

(where the hatted points are to be omitted). Check that this operator happens to be nilpotent
or, as it is standardly rephrased, that the boundary has no boundary

∂∂ = 0

Hint: if ∂∂ is applied on a simplex (P0, . . . , Pp), one obtains a sum of terms of the form

(P0, . . . , P̂μ, . . . , P̂ν, . . . , Pp);

each term appears twice there, with mutually opposite signs. �
91 Here, the points Pμ are regarded as the tips of vectors, so that their linear combinations are permitted.
92 A linear space may be specified by enumerating the basis elements. If A is an apple and P is a pear, we may introduce the

two-dimensional linear space of elements of the form v = v1A + v2P (the apple and the pear constitute its basis). In the case
under consideration, the basis consists of simplices.

93 The sum of simplices s1
p + s2

p may be visualized by drawing both of them in the plane at the same time and the simplex 3sp by
three simplices sp . Less visual is the direct interpretation of the expressions with coefficients which are not natural numbers, but
(as we will see in Section 7.4) in the context of integration (a simplex being regarded as a domain of integration) this “problem”
does not manifest itself at all.
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7.2.3 Check that

(i) explicitly we have

∂(P0, P1) = P1 − P0

∂(P0, P1, P2) = (P1, P2) + (P2, P0) + (P0, P1)

∂(P0, P1, P2, P3) = (P1, P2, P3) + (P0, P3, P2) + (P0, P1, P3) + (P0, P1, P2)

(ii) these expressions say that ∂ deserves its name, i.e. it indeed yields the boundary of a simplex

(including the intuitively perceived orientation).

Hint: (ii) draw the pictures. �

7.2.4 Given two n-simplices (P0, . . . , Pn) and (Q0, . . . , Qn) in R
n , prove that

(i) there exists the unique affine transformation χ : R
n → R

n , such that it just matches the vertices

of these simplices, i.e.

χ : Pμ �→ Qμ for μ = 0, 1, . . . , n

(ii) in general (including the interior points) then

χ (tμ Pμ) = tμ Qμ

Hint: an arbitrary affine transformation x �→ Ax + a has the freedom in n2 + n parameters

(a matrix A and a column a), the condition Pi �→ Qi gives n(n + 1) linear equations for

the parameters. �

• This enables one to regard an arbitrary n-simplex in R
n as the image of some preferred

“canonical” n-simplex with respect to an appropriate affine map. The role of this preferred

simplex is usually played by the standard n-simplex in R
n with vertices

P0 = (0, . . . , 0) P1 = (1, . . . , 0) . . . Pn = (0, . . . , 1)

which will be denoted by sn .

7.2.5 Write down explicitly the affine transformation which maps the standard 2-simplex

s2 ≡ (P0, P1, P2) onto the 2-simplex (Q0, Q1, Q2), where Q0 = (1, 1), Q1 = P2 and Q2 =
P1 ((x, y) �→ (−x + 1, −y + 1)). �

7.2.6 Check that

(i) the standard 2-simplex may also be characterized as a set by

s2 = {(x, y) | x ≥ 0, y ≥ 0; x + y ≤ 1}
= {(x, y) | x ≥ 0, y ≥ 0; x ≤ 1; y ≤ (1 − x)}
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(ii) the standard n-simplex may also be characterized as a set by

sn =
{

(x1, . . . , xn) | xi ≥ 0, i = 1, . . . , n;
n∑

i=1

xi ≤ 1

}

=
{

(x1, . . . , xn) | xi ≥ 0, i = 1, . . . , n;
n−1∑

j=1

x j ≤ 1; xn ≤
(

1 −
n−1∑

j=1

x j

)}

�

7.3 Simplices and chains on a manifold

• Now we take a step forward and introduce the concept of a p-simplex (and a p-chain)

on the n-dimensional manifold M . Provisionally, this is a pair (sp, �), where sp is the

Euclidean p-simplex and

� : sp → M

is a smooth map.94 Within the context of integration, it is convenient to regard a simplex on

a manifold as the image σp := �(sp) of a simplex in R
n , together with the map �, which

provides a parametrization on this image.95 Now, if there is another “provisional” simplex

(s ′
p, �

′), such that the points, matching in the sense of the affine map χ from (7.2.4), share

the same image,

�(ti Pi ) = �′(ti P ′
i ) ≡ �′ ◦ χ (ti Pi )

we declare it to be equivalent96 to the simplex (sp, �)

(sp, �) ∼ (χ (sp), �′) ⇔ � = �′ ◦ χ

and we define the true simplex σp on a manifold to be given as the whole equivalence class
[(sp, �)] of such provisional simplices.

A formal linear combination of p-simplices on a manifold M is a p-chain on M and the

(∞-dimensional) space of all chains is denoted by C p(M). In what follows such chains will

serve as domains of integration.

Making use of the map �, the boundary operator ∂ is carried onto a manifold, too.

Natural definitions read

∂c ≡ ∂
(
ciσ

i
p

)
:= ci∂σ i

p ∂σp ≡ ∂(�(sp)) := �(∂sp)

7.3.1 Check that this boundary operator is

94 More precisely, it is even a triple (sp, �,U), where U is some neighborhood of sp and � : U → M (i.e. the map � is to be
defined on a slightly larger domain than sp itself). In this way one avoids possible problems with the differentiability at the
boundary.

95 This parametrization (in contrast to local coordinates) may fail to be one-to-one (� may not be injective). The domain σp

thus may also be “covered” more than once. For example, � : t �→ eit , t ∈ s1 = 〈0, 4π〉 defines a 1-simplex on the manifold
S1 ⊂ C, being a twofold covering of the image σ1 ≡ �(s1) = S1.

96 Compare with the equivalence from problem (1.5.6).
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(i) a linear map

Cp(M) → C(p−1)(M)

(ii) which is nilpotent (the boundary has no boundary)

∂∂ = 0

(iii) and which indeed yields the boundary of a chain in the intuitive sense.

Hint: see (7.2.2) and (7.2.3). �

7.4 Integral of a form over a chain on a manifold

• Now we have learned all we need about the objects of both types (quantities under the

integral sign as well as domains of integration) and we put them together in this section.

From the elementary experience with performing integrals in R
2 and R

3 we know that

1. if the domain of integration is one-dimensional (a line integral), the quantity under the integral

sign contains differentials of coordinates linearly

2. if the domain of integration is two-dimensional (a surface integral), the quantity under the integral

sign contains a “product” of two differentials of coordinates

3. if the domain of integration is three-dimensional (a volume integral), the quantity under the integral

sign contains a “product” of three differentials of coordinates, etc.

From the perspective of our new interpretation of the quantities under the integral sign

and the domains of integration this means that if the integral is performed over a p-chain,

the quantity under the integral sign should be a p-form. Clearly, the next thing to do then is

to introduce officially the most important concept of this chapter: the integral of a p-form
on M over a p-chain on M

∫

c
α c ∈ C p(M), α ∈ �p(M)

The definition consists of a sequence of three steps. In the first step97 one reduces the

definition by the prescription
∫

c
α ≡

∫

ci σ i
p

α := ci

∫

σ i
p

α

from a p-chain to a p-simplex, in the second step98

∫

σ

α ≡
∫

�(s p)

α :=
∫

s p

�∗α

97 This part of the definition is related to the additivity of an integral with respect to the domain of integration.
98 Here the integral is carried from an abstract object, as a manifold is, into a parameter space – the good old Cartesian space R

p ;
the rule is consistent with the special case of a change of coordinates (7.1.3).
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from a p-simplex on a manifold to the standard p-simplex in R
p. Now, a general p-form

in R
p reads (6.3.7)

α = f (x1, . . . , x p) dx1 ∧ · · · ∧ dx p

and if we keep the order of the differentials from 1 to p, the (only independent) component

f (x) ≡ f (x1, . . . , x p) is unique. In the third step, finally, the integral of the form reduces

by the rule

∫

s p

α ≡
∫

s p

f (x1, . . . , x p) dx1 ∧ · · · ∧ dx p :=
∫

s p

f (x1, . . . , x p) dx1 . . . dx p

to a standard p-fold Riemann integral of the function f (x1, . . . , x p) over the domain s p

(reducing then through Fubini’s theorem to p consecutive ordinary integrals). This ends the

definition of the integral of an arbitrary p-form on a manifold over an arbitrary p-chain on

the manifold.

7.4.1
∗

Check that

(i) the integral defined above may be regarded as a map

I ≡
∫

: Cp(M) × �p(M) → R (c, α) �→
∫

c
α ≡ I (c, α)

(ii) this map actually gives a bilinear pairing (Appendix A.1) of the linear spaces involved and it

turns out to be non-degenerate with respect to the chain slot – if the integral of a form vanishes

for all chains, the form is necessarily zero (this is not true for the form slot; just consider a chain

consisting of going there and back along the same path). �

7.5 Stokes’ theorem

• Stokes’ theorem fully deserves to be appreciated as a culmination point of this chapter; it

is the most important theorem of the integral calculus on manifolds, with numerous impor-

tant applications, many of them in physics. In fact, all theorems which equate two integrals,

the domain of integration of one of them being the boundary of the domain of integration of

the second one, may be ultimately traced back to be merely particular cases of this theorem

(see Chapter 8 for more details). In general, the theorem states the following.

Theorem Given c ∈ C p+1 and α ∈ �p(M), there holds

∫

c
dα =

∫

∂c
α

or, making use of notation from (7.4.1),

I (c, dα) = I (∂c, α)
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(so that the operators d and ∂ are “adjoint” to each other in the sense of the pairing I ; the

reason for the quotation marks is that this pairing is actually degenerate (as we mentioned

in problem 7.4.1)).

7.5.1 Check that the validity of Stokes’ theorem in the general case follows easily from

its validity in a very special case, namely from the statement

∫

s p+1

dη =
∫

∂s p+1

η

where

η := f (x1, . . . , x p+1) dx1 ∧ · · · ∧ dx p ∈ �p(Rp+1)

and s p+1 is the standard (p + 1)-simplex in R
p+1.

Hint: by definitions from Section 7.4 we have

∫

c=ci σ
i
p+1

dα
?=

∫

∂(ci σ
i
p+1)

α ⇔
∫

σ

dα
?=

∫

∂σ

α

(reduction of the proof from a chain to a simplex),

∫

σ=�(s p+1)

dα
?=

∫

∂σ

α ⇔
∫

s p+1

dβ
?=

∫

∂s p+1

β

(reduction from a general simplex on M to the standard simplex in R
p+1; β ∈

�p(Rp+1)); finally, for β �→ η it suffices to realize that β is a sum of terms of type

η (by renaming of coordinates, if necessary, one can make the omitted differential

just dx p+1). �

7.5.2 Prove the “very special case” from (7.5.1) for p = 1.

Solution: we live in R
2[x, y], now; then η = f (x, y) dx , dη = − ∂ f

∂y dx ∧ dy, so that

∫

s2

dη = −
∫

s2

∂ f

∂y
dx ∧ dy = −

∫ 1

0

dx
∫ 1−x

0

∂ f

∂y
dy =

∫ 1

0

dx ( f (x, 0) − f (x, 1 − x))

The boundary of s2 consists of three 1-simplices in R
2, which may be written as the images

of the standard 1-simplex s1 = 〈0, 1〉 in R
1[t] with respect to the maps

�1 : t �→ (t, 0) �2 : t �→ (1 − t, t) �3 : t �→ (0, 1 − t)

(drawing of a simple picture is highly recommended). Since

�∗
1η = f (t, 0) dt �∗

2η = − f (1 − t, t) dt �∗
3η = 0
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we obtain
∫

∂s2

η =
∫

s1

(�∗
1η + �∗

2η + �∗
3η) =

∫ 1

0

dt ( f (t, 0) − f (1 − t, t))

=
∫ 1

0

dt ( f (t, 0) − f (t, 1 − t))

�

7.5.3 Prove the “very special case” from (7.5.1) for arbitrary p.

Hint: just like in (7.5.2) we have

η = f (x1, . . . , x p+1) dx1 ∧ · · · ∧ dx p

dη = (−1)p ∂ f

∂x p+1
dx1 ∧ · · · ∧ dx p ∧ dx p+1

⇒
∫

s p+1

dη = (−1)p
∫

s p+1

∂ f

∂x p+1
dx1 . . . dx pdx p+1 = (7.2.6). . .

= (−1)p
∫

∑p
i=1

xi ≤1

xi ≥0

dx1 . . . dx p

(

f

(

x1, . . . , x p, 1 −
p∑

i=1

xi

)

− f (x1, . . . , x p, 0)

)

For the computation of
∫

∂s p+1

η

one should realize that

∂s p+1 ≡ ∂(P0, P1, . . . , Pp+1) = (P1, . . . , Pp+1) + (−1)p+1(P0, P1, . . . , Pp)

+ other faces

Making use of the maps � j , j = 1, . . . , p + 2 (cf. (7.5.2)) show that the simplices referred

to as “other faces” yield zero (which justifies the use of this impersonal, even dishonor-

able, name), whereas the explicitly mentioned two faces lead just to the required two

terms. �

7.6 Integral over a domain on an orientable manifold

• In real applications, one seldom encounters directly a formal chain as a domain of

integration in
∫

D α; rather some “well-behaved” subset D ⊂ M (a cube, a ball, a sphere,

etc.) on an orientable manifold M occurs there. Such subsets may, however, be naturally

made to behave like chains: it is enough to divide them, if necessary, into several parts such
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that each of them may be regarded as a simplex on M . In order that the integral introduced

along this line really produces what is intuitively expected from it, one should be careful

about the orientation of the simplices.

Let us explain first what is meant in general by saying that a map of manifolds preserves

orientation. Consider a map f : M → N of manifolds, both being oriented and of equal

dimension. Then we say that f preserves orientation if for each x ∈ M the induced map

f∗ always sends a right-handed basis in x into a right-handed basis in f (x) ∈ N (i.e. if the

orientation is preserved at the level of tangent spaces).

7.6.1 Let (M, oM ) and (N , oN ) be oriented manifolds of equal dimension endowed with

volume forms ωM and ωN compatible with orientations oM and oN respectively (cf. (5.7.5)

and (6.3.5)). Define a function ϕ : M → R by

f ∗ωN =: ϕ ωM

Check that

f preserves orientation ⇔ ϕ > 0

�

• Now, consider an n-dimensional domain D on an n-dimensional oriented manifold

(M, oM ). The maps � : R
n → D ⊂ M which occur in simplices (realizing D as a chain)

then happen to be just of the type under consideration (the standard orientation being

understood in “parameter” space R
n). We adopt the convention that D should always be

represented by a chain in which all the maps � preserve orientation (then we say that the

simplices themselves preserve orientation).

What is the meaning of this condition? Contem-

plate an example, which is so simple as to bor-

der on the trivial, the computation of the area of a

square � ≡ P Q RS in R
2[x, y], where P = (0, 0),

Q = (1, 0), R = (1, 1) and S = (0, 1). The area is

given, as is well known, by the integral
∫
� dx dy.

Since the square is a two-dimensional figure, we

know that an integral of a 2-form in R
2[x, y] is to

be evaluated
∫

�
dx dy ↔

∫

�
ω ω ≡ dx ∧ dy

The square on the right is to be realized as a 2-chain in R
2[x, y]; choose, for example, the

following two possibilities

� = (P, Q, S) + (Q, R, S) ≡ σ 1
2 + σ 2

2

�′ = (Q, P, S) + (Q, R, S) ≡ σ ′1
2 + σ 2

2
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7.6.2 Check that if we evaluate the integrals of the form dx ∧ dy over the two chains

under consideration (both of them match the square perfectly from the “naive area point of

view”), we get the following results:

(i)
∫

�
ω ≡

∫

σ 1
2

ω +
∫

σ 2
2

ω = 1

2
+ 1

2
= 1 = just the expected area of the square

∫

�′
ω ≡

∫

σ ′1
2

ω +
∫

σ 2
2

ω = −1

2
+ 1

2
= 0 = something different from what we need

(ii) the simplices σ 1
2 and σ 2

2 preserve orientation, whereas σ ′1
2 fails to preserve it (so that the chain

�′ does not meet the above-mentioned convention).

Hint: (P, Q, S) is the standard simplex (i.e. � : (x, y) �→ (x, y)), for (Q, R, S) one may

use � : (x, y) �→ (1 − y, x + y) and for (Q, P, S) similarly � : (x, y) �→ (y, x). �

• In general, one defines the volume of a domain D on (M, ω), an oriented manifold

endowed with a volume form, as the number

vol (D) ≡ volume of D :=
∫

D
ω ω = volume form on M

If each piece (simplex) of D is to contribute to the total volume with the same sign (positive,

usually), all the maps � have to preserve the orientation.

7.6.3 Let P0 = (a, c), P1 = (b, c), P2 = (b, d), P3 = (a, d) be the points in R
2. Then the

2-chain σ = (P0, P1, P3) + (P1, P2, P3) represents a rectangle. Show by direct computation

that for a 2-form α = f (x, y) dx ∧ dy there holds
∫

σ

α =
∫ b

a
dx

∫ d

c
f (x, y) dy

Lesson: a domain on a manifold which turns out to be a rectangle in coordinates (a cuboid in

general dimension) need not be explicitly divided into simplices (!), but rather we perform

the integration over it in just the same way as we have done until now. �

• There is yet another motivation to meet the orientation convention mentioned above: it

greatly simplifies the computation of the boundary ∂ D of a domain D. Consider again a

simple example.

7.6.4 Check that in the case of the chains � and �′ from problem (7.6.2) there holds

(i) for �

∂� = (P, Q) + (Q, R) + (R, S) + (S, P)

i.e. the inner part of the boundary (the diagonal), which occurs (twice) in the formal computation

of ∂�, cancels out and only the “true boundary” (= its outer part) contributes

(ii) for �′ the inner part of the boundary fails to cancel out (it even doubles instead). �
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• The canceling out of all “inner parts of the boundary” occurs in all those cases when

one satisfies the convention concerning orientations of simplices which add up to D. This

is especially important in the context of Stokes’ theorem – in order to evaluate the integral

over the boundary
∫
∂ D α, it is enough to restrict to the “true” (outer) boundary of the domain

D.

Since ∂ D is the boundary of a chain, the orientation o∂ D of all relevant (outer) simplices,

which add up to ∂ D, is unambiguously given (by the formula which defines the action of the

boundary operator). This orientation may also be described independently, namely in terms

of an outer normal. The latter is defined as an arbitrary vector ν on the boundary ∂ D, which

“sticks out” of the domain99 D, i.e. it is given by an equivalence class of curves for which

there holds γ (0) = x ∈ ∂ D, γ (ε) /∈ D for small enough ε > 0. Given an orientation oM on

an n-dimensional manifold M , the orientation o∂ D of the boundary ∂ D of the domain100

D is introduced in terms of the outer normal as follows: a basis (e2, . . . , en) in the tangent

space Tx (∂ D) is declared to be right-handed if the basis (ν, e2, . . . , en) in the whole tangent

space Tx M happens to be right-handed.

7.6.5 Draw a picture of the standard 2-simplex in R
2 and check that the orientation of its

boundary, which is given by the formula from (7.2.2), coincides with the orientation in the

sense of an outer normal. Do the same for the standard 3-simplex in R
3. �

7.6.6 Let D be a (two-dimensional) domain in C ≡ R
2 endowed with the standard ori-

entation (↔ ω = dx ∧ dy) and let � ≡ ∂ D be its boundary (contour). Check that the

orientation of � may also be characterized as being such that whenever one moves along �

in the “positive” (right) direction, the domain D is situated on the left. �

7.6.7 Contemplate this until it is clear: Stokes’ theorem (see Section 7.5) may be specified

for the case of integration over an n-dimensional domain D on an n-dimensional oriented

manifold (M, oM ) in the form
∫

D
dα =

∫

∂ D
α α ∈ �(n−1)(M)

∂ D being the “true” boundary alone, oriented according to the rule of the outer normal. �

• A few words will be said about the situation where a p-form is integrated over a p-

dimensional submanifold S of an n-dimensional manifold M , p being less than n (as an

example, if a 2-form is integrated over a two-dimensional surface in R
3). Here, one should

realize first that no preferred orientation is induced from M on such a submanifold S, in

general.101 Consequently, we are to choose the orientation (arbitrarily) first (if this is not

99 This vector need not be perpendicular (i.e. “normal”) to the boundary; since no reference was made to a metric tensor, it makes
no sense to speak about orthogonality; this will change in the context of Gauss’ theorem (8.2.8), where a “true” (perpendicular)
normal occurs.

100 Recall that here we are concerned with an n-dimensional domain D and its (n − 1)-dimensional boundary ∂ D.
101 An exception is provided, as discussed above, by the case of an (n − 1)-dimensional submanifold S which happens to be the

boundary of an n-dimensional domain D, S = ∂ D (like a sphere S2, which is the boundary of a ball D3 in R
3); such closed

surfaces may be oriented in terms of the outer normal.
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specified, the integral is only given up to the sign). Secondly, one should restrict the form

α (to be integrated) from M to S. This results in a p-form on S, reducing the situation to

the standard case – there is a p-form on a p-dimensional oriented domain.

7.6.8 Let M be an n-dimensional manifold and let α be a p-form on M . What is then

meant when we say to restrict the form α to a p-dimensional submanifold S (α �→ α|S)?

It is an irrevocable vow that from this time forth only vectors tangent to S (i.e. vectors

from the subspace Tx S ⊂ Tx M, x ∈ S ⊂ M) will be offered (as arguments) to α. (So, the

first restriction concerns points, x ∈ S ⊂ M , and the second one vectors at allowed points,

v ∈ Tx S ⊂ Tx M .) Check that if

j : S → M x �→ x

is the canonical embedding of S into M , then

α|S = j∗α

i.e. if in coordinates we have j : qa �→ xi (qa), a = 1, . . . , p, i = 1, . . . , n, then α �→ α|S

reads as follows:

1

p!
αi ... j (x) dxi ∧ · · · ∧ dx j �→ 1

p!
αi ... j (x(q))J i

a(q) . . . J j
b (q) dqa ∧ · · · ∧ dqb

Hint: the only allowed arguments are of the form j∗v, where v ∈ Tx S; see (6.1.5). �

• The restriction is also implicit in the integral on the right-hand side in Stokes’ theorem:

in full it should read
∫

D
dα =

∫

∂ D
α|∂ D

7.6.9 Check the validity of Stokes’ theorem for M = R
3, D ≡ S2

+ = the upper unit half-

sphere and the form α = x dy.

Hint: the orientation on S2
+ is to be (arbitrarily) chosen, the orientation of the boundary (the

equator S1) is then already given by the outer normal; if we choose (∂ϑ, ∂ϕ) to be right-handed

on D, then ∂ϕ is right-handed on ∂ D ≡ S1 ⊂ S2. A straightforward computation (using

parametrization from (3.2.4) with R = 1) yields explicit expressions for α|S1 = cos2 ϕ dϕ

and (dα)|S2 = sin ϑ cos ϑ dϑ ∧ dϕ and eventually one should check whether

∫

S2+
(dα)|S2 ≡

∫ π/2

0

dϑ

∫ 2π

0

dϕ sin ϑ cos ϑ
?=

∫ 2π

0

cos2 ϕ dϕ ≡
∫

S1

α|S1

�

7.6.10 Consider L-valued differential forms (L being a vector space); check that the

integral of a p-form over a p-dimensional domain
∫

D
: �p(M, L) → L

∫

D
α ≡

∫

D
(αA E A) :=

(∫

D
αA

)

E A
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(the result being the element of L) is well defined (does not depend on the choice of a basis

E A in L) and that Stokes’ theorem holds for this integral.

Hint: see (6.4.4). �

• We will close this section by a useful visual interpretation of the operation of the interior

product iV within the integral calculus of forms.

7.6.11 Let α be a (p + 1)-form on M , V a vec-

tor field and let iV α denote their interior product

(which is a p-form on M). Check the validity of the

following102 “coin interpretation” of the form iV α:

the integral of iV α over a p-dimensional domain D
is related to the integral of α itself over the (p + 1)-

dimensional domain DεV , the “coin over D of thickness ε.” Namely (up to first-order

accuracy in ε), there holds

ε

∫

D
iV α =

∫

DεV

α

where DεV may be obtained from D by “expansion by ε” along the field V ; thus it is

bounded from below by D, from above by �ε(D) (the image of D with respect to the flow

�ε ↔ V ) and from the side by the (infinitesimal) integral curves of the field V , which start

at the boundary ∂ D of the domain D.103

Hint: instead of D (regarded as a chain) consider rather a single simplex σ = �(s p) and

let xi be any right-handed coordinates on σ . Then the “coin” σεV which corresponds to

this simplex admits the parametrization by coordinates (t, xi ), t ∈ 〈0, ε〉 (these are just the

coordinates discussed at the end of Section 4.2, t corresponds to the flow); the orienting

volume form in σεV is −dt ∧ dx1 ∧ · · · ∧ dx p (since the outer normal on D is −∂t ). The

form α reads α = −dt ∧ a(t, x) dx1 ∧ · · · ∧ dx p, so that iV α = −a(t, x) dx1 ∧ · · · ∧ dx p

(recall that the field V itself looks like V = ∂t ). Then
∫

σεV

α = −
∫

σεV

dt ∧ a(t, x) dx1 ∧ · · · ∧ dx p

= −
∫ ε

0

dt
∫

σ

a(t, x) dx1 ∧ · · · ∧ dx p = +ε

∫

σ

iV α

�

102 Warning: this is not official terminology.
103 The orientation in DεV is such that D is its “bottom” face (the coin is over D), i.e. it enters the boundary with a negative sign:

∂(DεV ) = −D + · · · (the outer normal is oriented downwards on D); note that then the whole boundary = �ε (D) − D+ the
“side face,” the latter also being the coin, however, over ∂ D. The analysis of the orientation shows that the side face enters the
boundary as the coin with negative sign (the rules of the outer normal and of the coin lead to opposite results); that is to say
that ∂(DεV ) = �ε (D) − D − (∂ D)εV .
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7.7 Integral over a domain on an orientable Riemannian manifold

• Now consider the integration on an orientable Riemannian manifold. A new element –

a distinguished volume form – enters into play in this situation, namely the metric volume

form ωg (i.e. compatible with the metric and the orientation, see (6.3.7)). This then results

in the distinguished definition of the volume of a domain D (dim D = dim M)

vol D ≡ the volume of D :=
∫

D
ωg

7.7.1 Compute the area of the sphere S2
R of radius R in E3 and of (two-dimensional) tori

in E3 and E4; all of them by the direct integration of the metric volume forms.

Hint: first induce the metric tensors onto the corresponding submanifolds from E3 and E4

respectively (see (3.2.2)–(3.2.4)), then associate the metric volume forms with them and

finally integrate the forms over the submanifolds; compare the results with those obtained

by elementary mathematics. �

7.7.2 On the sphere S2
R of radius R (endowed with the metric induced from E3) draw a

disk of radius r using the gardener’s technique; namely, fasten two pins at the ends of a

rope of length r , stick one of them in the ground and draw the boundary circle of the disk

by means of the remaining pin (keeping the rope tight). Compute (first by direct integration

of the volume form and then check visually by common sense)

(i) the area A(r ) of the disk

(ii) the perimeter P(r ) of the circle (the boundary of the disk).

Compare with the corresponding results in the Euclidean plane E2. What do we obtain in

the limit R → ∞? Why?

Hint: like in (7.7.1); recall that both the concepts of area and length are just particular cases

of the “volume” discussed here. �

7.7.3 Show that the area of a rotational figure given by the function r (z), z ∈ 〈a, b〉 (in

cylindrical coordinates in E3) reads

A = 2π

∫ b

a
r (z)

√
1 + [r ′(z)]2 dz

Apply this to the surface of a cone and a cylinder.

Hint: see (3.2.6) and (6.3.10). �
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• The volume form ωg enables one also to define the integral of a function f over a

domain D using the prescription104

∫

D
f :=

∫

D
f ωg ≡

∫

D
∗g f

Such integrals already occur frequently in elementary physics, namely in the situations

where one speaks about line, surface and volume densities of physical quantities. Consider,

as an example, the electric charge continuously distributed on a curve, a surface or in a

volume. The total amount of charge is then computed using the integrals
∫

l
ρ1 dl

∫

S
ρ2 d S or

∫

V
ρ3 dV

where dl, d S and dV denote the line, surface and volume “elements” respectively and

ρ1, ρ2 and ρ3 represent the corresponding charge densities. These “elements” correspond

in the language of forms just to the (metric) volume forms ωg on the curve,105 the surface

or the volume. In more detail we mean on the curve and surface the 1-form or the 2-form

ωĝ respectively, where ĝ is the restriction (compare with (7.6.8)) of the metric tensor g to

the curve l or the surface S, i.e.

j : l(or S) → (M, g) ⇒ ĝ := j∗g

The reader may recall such integrals from introductory calculus, too; they are called (line

or surface) integrals of the first kind, whereas integrals of the second kind have a “general”

form as the expression under the integral sign, e.g. (in R
3)

∫

l
A dx + B dy + C dz or

∫

S
a dx ∧ dy + b dx ∧ dz + c dy ∧ dz

(Note that we do not need a metric tensor to perform integrals of the second kind, but it is
needed for integrals of the first kind.)

7.7.4 Let M = E3 and assume that we are given (arbitrary) parametrizations using the

variables u, (u, v) or (u, v, w) of a curve l, a surface S or of a volume V respectively. That

is to say we are given the maps

for l : u �→ r(u) for S : (u, v) �→ r(u, v) for V : (u, v, w) �→ r(u, v, w)

(i) Check the validity of the following standard formulas (expressed in terms of the “vector product”

in E3, cf. (8.5.8)):

dl ≡ ωĝ =
∣
∣
∣
∣
∂r
∂u

∣
∣
∣
∣ du d S ≡ ωĝ =

∣
∣
∣
∣
∂r
∂u

× ∂r
∂v

∣
∣
∣
∣ du ∧ dv

dV ≡ ωg = Jdu ∧ dv ∧ dw =
∣
∣
∣
∣

(
∂r
∂u

× ∂r
∂v

)

· ∂r
∂w

∣
∣
∣
∣ du ∧ dv ∧ dw

(J being the Jacobian of the map r(u, v, w))

104 In Section 7.4 the integral of a p-form over a p-chain was defined. One sometimes extends formally the definition of the
integral to the case of a q-form and a p-chain to be zero for p �= q . Here we introduce the integral of a function (= 0-form)
over an n-chain as a non-zero number in such a way that the n-form f ωg ≡ ∗g f is actually integrated rather than the 0-form
f (we say we do something but in fact we do something else, as often happens).

105 The word “curve” is used here to denote only a (unparametrized) line (1-chain).



7.8 Integral and maps of manifolds 161

(ii) re-derive in this way the “surface element” on the sphere, d S = R2 sin ϑdϑ ∧ dϕ.

Hint: (i) for dl we have ĝuu = · · · = J i
uδi j J j

u = ∂r
∂u · ∂r

∂u ⇒ dl ≡ ωĝ ≡ √|ĝuu | du = . . .;

(ii) r(ϑ, ϕ) = from (3.2.4), compare with the result of (6.3.10). �

• Consider an n-dimensional manifold (M, g) together with a (lower-dimensional) sub-

manifold (“surface”) S; we may then induce (by restriction) the metric tensor ĝ ≡ j∗g
on S. The integral of the first kind with the unit function f = 1 yields the volume of the
submanifold S in the sense of the (restriction of the) metric tensor g on M

the volume of S :=
∫

S
ωĝ

When the dimension of S is 1, 2, . . . this “volume” reduces to the length of a curve, the

area of a two-dimensional surface, etc.

7.7.5 Check that for a curve γ and a two-dimensional surface S, parametrized as

γ : t �→ xμ(t) S : (u1, u2) �→ xμ(u1, u2)

we get106

the length of γ =
∫

√
gμν ẋμ ẋν dt ≡

∫ √
g(γ̇ , γ̇ ) dt

the area of S =
∫ √

det(gμνxμ
,a xν

,b) du1 ∧ du2 xμ
,a ≡ ∂xμ

∂ua

Hint: (γ ∗g)t t = gμν ẋμ ẋν , (S∗g)ab = gμνxμ
,a xν

,b. �

• The volume integral (of the first kind) of a function (of the density ρ of some quantity)

enables one also to introduce the concept of the mean value of the (scalar) quantity over a

domain D as107

〈ρ〉D :=
∫

D ρωg
∫

D ωg
≡

∫
D ρωg

vol D
i.e.

∫

D
ρωg = 〈ρ〉D vol D

7.8 Integral and maps of manifolds

• The language of differential forms proves to be extremely convenient for analyzing the

behavior of the integral with respect to maps of manifolds.

7.8.1 Let f : M → N be a map and let � : s p → M be a p-simplex σp on M . By

composition with the map f we then get the p-simplex σ̂p := f (σp) on N (given by

f ◦ � : s p → N ) and the linear extension to p-chains

f (c) ≡ f
(
ciσ

i
p

)
:= ci f

(
σ i

p

)

106 The formula for the length of a curve thus coincides with the expression (2.6.9) given earlier.
107 This makes sense for a domain with finite volume; for infinite domains appropriate limits are needed.
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induces the map

f̂ : C p(M) → C p(N ) c �→ f (c)

(we will not distinguish explicitly between f and f̂ in what follows). Check that

(i) if α is an arbitrary p-form on N , there holds
∫

f (c)

α =
∫

c
f ∗α

(ii) in terms of the pairing introduced in (7.4.1) this result

may also be written as

I ( f (c), α) = I (c, f ∗α)

(iii) the special case is provided by the formula (7.1.3) for

the change of coordinates in the integral.

Hint: (i) according to the definition of the integral

and (6.1.4) we obtain for the simplex σp

∫

f (σp)

α ≡
∫

f ◦�(s p)

α =
∫

s p

( f ◦ �)∗α =
∫

s p

�∗ f ∗α =
∫

σp

f ∗α

for the chain by linearity; (iii) see (7.1.3). �

• As a small application (many further applications will be encountered later) we show

how this result, when combined with the “coin” interpretation of the interior product iV

(7.6.11), makes it possible to gain insight into the visual meaning of the good old identity

LV = diV + iV d from (6.2.8) and to understand its close relation to Stokes’ theorem.108

7.8.2
∗

Show that Stokes’ theorem is hidden behind the (differential) identity LV =
diV + iV d.

Hint: let DεV be the “coin” based on D (7.6.11). If �t ↔ V , then using �∗
ε = 1̂ + εLV + · · ·

and ∂(DεV ) = �ε(D) − D − (∂ D)εV there holds
∫

DεV

dα
1= ε

∫

D
iV dα

2=
∫

∂ DεV

α =
∫

�ε (D)

α −
∫

D
α −

∫

(∂ D)εV

α

=
∫

D
�∗

εα −
∫

D
α − ε

∫

∂ D
iV α = ε

∫

D
(LV − diV )α

so that
∫

D(diV + iV d − LV )α = 0, from which (both D and α being arbitrary) we finally

get diV + iV d = LV . �

108 I learned this from Pal’o Ševera, which I warmly appreciate.
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Summary of Chapter 7

Inspection of several simple examples and facts from elementary integral calculus leads to

the conclusion that the objects under the integral sign should be treated as differential forms

from Chapter 6. The crucial concept of the integral of a form over a chain is introduced,

assuming the standard background knowledge on basics of the Riemann multiple integral.

Stokes’ theorem for differential forms is presented. It relates the integral of a form over

the boundary of a chain to the integral of the exterior derivative of the form over the chain

itself. Reinterpretation of the integral over a domain on an oriented manifold in terms of

the integral over the chain (including Stokes’ theorem) is given and particular features of

integration over a Riemannian manifold are mentioned. The remarkably simple behavior

of the integral with respect to maps between manifolds is revealed.

c = ci si
p Euclidean p-chain Sec. 7.2

∂(P0, . . . , Pp) = · · · Action of the boundary operator on a simplex (7.2.2)

∂∂ = 0 Boundary has no boundary (7.2.2)∫

c
dα =

∫

∂c
α Stokes’ theorem Sec. 7.5

vol (D) :=
∫

D
ω Volume of a domain D on (M, ω) Sec. 7.6

ε

∫

D
iV α =

∫

DεV

α A “coin interpretation” of the form iV α (7.6.11)

∫

D
f :=

∫

D
f ωg Integral of the first kind on (M, g, o) Sec. 7.7

∫ √
det(gμν xμ

,a xν
,b) du1 ∧ du2 Area of a two-dimensional surface (7.7.5)

〈ρ〉D :=
∫

D ρωg
∫

D ωg
Mean value of the (scalar) quantity ρ over D Sec. 7.7

∫

f (c)

α =
∫

c
f ∗α Integral and maps of manifolds (7.8.1)
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Particular cases and applications of Stokes’ theorem

• As already mentioned at the beginning of Section 7.5, Stokes’ theorem
∫

c

dα =
∫

∂c

α

is actually hidden behind all theorems which equate two integrals, the domain of integration

of one of them being the boundary of the domain of integration of the other. In this chapter

we discuss explicitly the particular cases one encounters most frequently.

8.1 Elementary situations

• By far the simplest version of Stokes’ theorem is provided by the Newton–Leibniz
formula.109

8.1.1 The most natural definition of the integral of a 0-form (function) f over a 0-simplex

(point) is given by110

∫

P
f := f (P)

Check that the Newton–Leibniz formula
∫ b

a
f ′(x)dx = f (b) − f (a)

may then be regarded as a particular case111 of Stokes’ theorem.

Hint: M = R
1, c = [a, b]. �

• The next unostentatious application of Stokes’ theorem is hidden within the context

of the calculation of the area under a given curve. Recall that this particular calculation

109 Stokes’ theorem may be regarded as a far-reaching generalization of just this fundamental formula.
110 The intuitive meaning of the integral, as is well known, is the sum of the values of the function in infinitesimal domains

(resulting from the division of the total domain of integration) multiplied by the volumes of these domains. If the total domain
reduces to a single point P , there is nothing to be divided and it suffices to take the value of the function right at this point.
Note that in doing this the volume of the point P is effectively regarded to be 1 (

∫
P 1 = 1(P) = 1).

111 Although in a sense a tautological one – the definition of the integral of a 0-form has been extended in such a way as to make
the theorem hold.

164
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is usually presented as the very first problem which motivates the integral calculus itself.

Then, after becoming familiar with multiple integrals, one learns that the same area may

alternatively be computed as an appropriate double integral and that the same “duplication”

is also true for the calculation of the volume under a given surface. What is the origin of

this “duplication?” It turns out that this is nothing but a simple manifestation of Stokes’

theorem.

8.1.2 Let D be the domain in the xy plane which

is bounded by the straight lines x = a, x = b, y =
0 and by the curve y = f (x) from above. In full

analogy let V be the domain in the space xyz which

lies above the domain S in the plane xy and which

is bounded from above by the surface z = f (x, y).

Then we know that the area of the domain D may

be computed in two (completely different) ways,

namely either as

∫ b

a
f (x) dx or as

∫

D
dx dy

Similarly, the volume of the domain V may be computed in two (completely different)

ways, namely as
∫

S f (x, y) dx dy or as
∫

V dx dy dz. Show that both cases may be regarded

as a manifestation of Stokes’ theorem.

Hint: dx ∧ dy = d(−y dx), dx ∧ dy ∧ dz = d(z dx ∧ dy). �

• The well-known trick of integration by parts (per partes) turns out to be another simple

consequence of Stokes’ theorem and the behavior of the exterior derivative on the (exterior)

product of forms.

8.1.3 Let α, β be two forms on an n-dimensional manifold M , with their degrees being

such that deg α + deg β + 1 = n and let D be an n-dimensional domain. Check that

(i) the following identity holds:

∫

D
dα ∧ β = −

∫

D
η̂α ∧ dβ +

∫

∂ D
α ∧ β

(ii) the formula representing the “by parts” method of integration

∫ b

a
f ′(x)g(x) dx = −

∫ b

a
f (x)g′(x) dx + [ f g]b

a

is but a simple special case of this identity.

Hint: (i) see (6.2.5) and (7.6.7); (ii) M = R, D = [a, b], α = f, β = g. �

• Finally we mention the fairly popular Green’s theorem in the plane R
2.
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8.1.4 Given two functions f (x, y), g(x, y) ∈ F(R2) and a (two-dimensional) domain D,

let C ≡ ∂ D be its (oriented) boundary (closed curve, the contour). Show that there holds
∮

C
f dx + g dy =

∫

D
(∂x g − ∂y f ) dx ∧ dy

Hint: set α = f dx + g dy in (7.6.7). �

8.2 Divergence of a vector field and Gauss’ theorem

• Consider an n-dimensional Riemannian manifold with orientation (M, g, o) and let

ωg be the metric volume form on M . Any other n-form is then necessarily a multiple

of ωg by an appropriate function. In particular, given any vector field V on M , we have

LV ωg = (some function) × ωg . The function specified by this equation (depending on V
and g) is called the divergence of the vector field V

LV ωg =: (div V ) ωg

8.2.1 Show that

(i)

LV ωg = d(iV ωg) = d(∗g Ṽ ) Ṽ ≡ g(V, ·) ≡ �g V

(ii)

div V = ∗−1
g d ∗g Ṽ = sgn g ∗g d ∗g Ṽ

(iii) in (right-handed) local coordinates the following explicit formula may be used:

div V = 1√| g | (
√

| g | V k),k

Hint: (i) see (6.2.8), (5.4.1) and (5.8.1); (iii) see (6.3.7) and (6.3.11) or (14.3.7). �

• What is the visual meaning of the function div V ? In this section we will mention two

basic interpretations of this concept. The first relates the divergence to the change of local

volumes due to the flow of the field V (this aspect is treated in a more general setting in

problem (14.3.7)).

8.2.2 Given a flow �t ↔ V on M let �t (D) ≡
D(t) denote the domain D drifted by the flow �t a

(parametric) distance t . Check that

(i) the volume of the drifted domain may be expressed

in terms of the infinite series

vol D(t) ≡
∫

D(t)
ωg =

∫

D
�∗

t ωg

=
∫

D

(
1 + tLV + t2

2!
L2

V + · · ·
)
ωg
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(ii) so that for ε 	 1 we get

vol D(ε) = vol D + ε

∫

D
(div V ) ωg + · · · ≡ vol D + ε〈div V 〉Dvol D + · · ·

(iii) the relative change of the volume within the time interval ε turns out to be

vol D(ε) − vol D

vol D
= ε〈div V 〉D + o(ε2) or 〈div V 〉D = d

dt

∣
∣
∣
∣
t=0

vol D(t)

vol D

so that the mean value of the divergence of the field V over the domain D measures the rate of
relative change of the volume of the domain D (at “time” t = 0) due to the flow �t

(iv) the divergence of the field V at the point x measures the rate of relative change of the volume

(at “time” t = 0) in the neighborhood of the point x due to the flow �t .

Hint: (i) see Section 7.7 and (7.8.1), (4.4.2); (iv) take the infinitesimal neighborhood of the

point x as the domain D. �

8.2.3 Check that

vol D(t) = vol D ⇔ div V = 0

The vector fields with vanishing divergence thus generate the flows �t which preserve the
volumes.

Hint: see (8.2.2); see also (14.3.7). �

• Consider the “hydrodynamical” interpretation of the flow (so that the vector field V is

interpreted as the velocity field of the flow of a fluid (4.6.25)). The general vector field V on

M then corresponds to a situation which is a rather particular one and which is called the

stationary flow of a fluid in physics. (This is, by definition, the flow which always remains the

same; namely, the velocity field V does not depend on time.)112 Under these fairly general

conditions the fluid may not preserve its volume (it may happen to be compressible). From

the considerations of this section it should now be clear (see (8.2.3)) that vanishing of the
divergence of the velocity field V may also be used as the condition of incompressibility of

the fluid:

incompressible fluid ⇒ div V = 0

(Recall that the standard form of the continuity equation in fluid dynamics reads ∂tρ +
div j = 0, where ρ(r, t) is the mass density of the fluid and j(r, t) = ρv, with v(r, t) being

the velocity field (see also (16.2.4)). For the incompressible fluid ρ(r, t) = constant and we

find div v = 0.)

8.2.4 Let D be the unit ball centered at the origin of E3 and consider the vector field V
from problem (4.1.5).

(i) Compute explicitly vol D(t).

112 Since it is a field on M , it is given locally as V = V i (x)∂i . For a non-stationary flow V = V i (x, t)∂i is needed, which may be
regarded either as a one-parameter family of vector fields on M , or (from a different point of view) as a field on M × R[t].
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(ii) Compute the divergence of V both from the definition and using the component formula derived

in (8.2.1).

(iii) Check the interpretation of the divergence mentioned in (8.2.2) (iii) in this particular case. �

8.2.5 Let M = E3
�(0), V = f (r )∂r (in the spherical polar coordinates r, ϑ, ϕ). Choose

the function f so that div V = 0 holds. Write down the resulting flow �t ↔ V .

Hint: according to (6.3.8) and (8.2.1), in spherical polar coordinates one obtains

(div V )ωg ≡ d(iV ωg) = d( f (r )r2 sin ϑ dϑ ∧ dϕ) = · · · = ( f ′r2 + 2r f ) ωg

(�t : (r, ϑ, ϕ) �→ ((r3 + kt)1/3, ϑ, ϕ), k ≡ 3 f (1).) �

8.2.6 Let V be the vector field from (8.2.5), Da,b the spherical layer between r = a and

r = b and �t (Da,b) its image with respect to the flow of the field V . Compute the volume

�t (Da,b) and explain why it does not depend on t .

Hint: see (8.2.3). �

• We now embark on the derivation of Gauss’ theorem. This theorem relates the volume

integral of the divergence of a vector field to a certain (“surface”) integral over the boundary

of the volume. There are two forms in which the integral over the boundary may be written

down; one of them may be used “always” and the other one encounters (insurmountable)

problems, sometimes. We first mention the version which is “generally valid.”

8.2.7 Let D be an m-dimensional domain on an m-dimensional (possibly pseudo-)

Riemannian manifold (M, g), ∂ D its boundary oriented in the sense of the outer normal

and V a vector field on M . From Stokes’ theorem
∫

D dα = ∫
∂ D α derive as a particular case

Gauss’ theorem:
∫

D
(div V ) ωg =

∫

∂ D
V i d�i |∂ D

Hint: according to (5.4.1), (5.8.10) and (8.2.1) there holds (div V )ωg = LV ωg = d(iV ωg) =
d(V i d�i ), from where Stokes’ theorem already yields immediately the result being sought.

�

• The alternative way to write down the integral over the boundary may be used in

those cases in which the unit outer normal field n exists (n ⊥ ∂ D, g(n, n) = 1) over all

the boundary ∂ D (except for at most a set of “measure zero”) and in addition the (non-

degenerate) metric tensor ĝ is induced on the (whole) boundary ∂ D; then the metric volume

form ωĝ on the boundary is also available. This requirement is not fulfilled, for example,

when a part of the boundary in the case of mixed signature contains “isotropic directions”

(vectors such that their lengths vanish).113 In the positive definite case these problems do

not occur.

113 Consider, for example, a triangle in the two-dimensional Minkowski plane R
2[t, x] with the vertices A = (0, 0), B = (1, 0)

and C = (1, 1); then on the part C A of the boundary the induced metric ĝ vanishes and we lack the unit normal there as well.
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8.2.8 Let n be the field of the outer normal on ∂ D, which is in addition perpendicular to

the boundary and normalized to unity and let ωĝ be the volume form which corresponds to

the induced metric ĝ. Show that Gauss’ theorem may then also be written in the form
∫

D
(div V ) ωg =

∫

∂ D
(V · n) ωĝ

Hint: in a neighborhood of a point x ∈ ∂ D choose an orthonormal right-handed frame field

ea such that e1 = n (so that e2, . . . en||∂ D then); let ea be the dual coframe field. Check that

e1 = ñ := g(n, · ) ≡ �gn and that if ωg and ωĝ represent the metric volume forms on M
and ∂ D respectively, they may be expressed as follows:

ωg = ñ ∧ e2 ∧ · · · ∧ en ωĝ = (e2 ∧ · · · ∧ en)|∂ D

Then

iV ωg = (n · V ) e2 ∧ · · · ∧ en − ñ ∧ iV (e2 ∧ · · · ∧ en) n · V := g(n, V ) ≡ V⊥ ≡ 〈ñ, V 〉
so that the restriction (7.6.8) to ∂ D gives

(iV ωg)|∂ D = (n · V ) ωĝ

(upon restriction the arguments ea with a = 2, . . . , n get into the 1-form ñ). By comparison

we can also see that d�i |∂ D = ni ωĝ . �

• Let us also mention how the expressions mentioned above may be transcribed from

the noble hieroglyphic writing into the demotic writing used by common people. Common

people use the notation

ωg ↔ d� ≡
√

|g| dn x ωĝ ↔ d S d�i ↔ d Si ↔ dS

in which Gauss’ theorem looks like
∫

D
(div V ) d� ≡

∫

D
(div V )

√
|g| dn x =

∮

∂ D
(V · n) d S ≡

∮

∂ D
V · dS ≡

∮

∂ D
V i d Si

with the small circle around the integral sign indicating that the integral is performed over

a closed “surface” (the boundary114 of the domain D). Again it is true (see the note in

(6.3.11)) that in general neither d� nor d S are exterior derivatives of anything else; this

is nothing but the conventional way to write down such objects (here “d” is related to the

conception of being “infinitesimal”).

The divergence often enters the scene in situations where some volume flows out from a

given domain across its boundary.

8.2.9 We adopt the “hydrodynamical” point of view once again, i.e. we regard V as the

velocity field of a (stationary) flow of a fluid.115 Check that

114 So that it is not, as some books mistakenly claim, the trendy jewelry known as (body) piercing.
115 An abstract “fluid” on an n-dimensional Riemannian manifold M in general; in particular, also a real fluid.
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(i) the volume of the fluid which flows out from a fixed do-

main D within an infinitesimal time ε is given by the

integral

ε

∫

∂ D
iV ωg ≡ ε

∮

∂ D
V i d Si ≡ ε

∮

∂ D
(V · n) d S

so that the expression V i d Si ≡ (V · n) d S corresponds

to the volume of the fluid which flows out per unit time

across the surface element d S (the volume which flows
inwards is to be counted with a negative sign); the expression

∫
S W i d Si is often called the flux

of a vector field W for the surface S and, in general, the field W may not be related to any

“flow” whatsoever (in electrodynamics one computes, say, the flux of the electric field for some

surface)

(ii) Gauss’ theorem then relates the volume which flows out to the volume integral of the divergence

of the velocity field

ε〈div V 〉D = the volume which flows out from D within time ε

the volume of the domain D

= ε
the flux of the field V for the boundary D

the volume of the domain D

so that the mean value of the divergence of the field W over the domain D is (also) the ratio of

the flux of the field for its boundary to the volume of the domain116

〈div W 〉D =
∮

∂ D W i d Si
∫

D ωg

≡ the flux of W for ∂ D

the volume of D

(iii) this fact may also be obtained from the first interpretation of the divergence (as the rate of relative

change of the volume due to the flow corresponding to the field V ).

Hint: (i) if a small surface d S spans117 the vectors

e2, . . . , en , then the volume which flows out across

d S within the time interval ε is (by definitions of

both the volume form and the velocity field) given

as ωg(εV, e2, . . . , en) ≡ ε(iV ωg)(e2, . . . , en); al-

ternatively use the “coin” interpretation of iV

(7.6.11); (iii) observe the motion of the fluid during

the time interval ε across the domain D (we follow the “tube” of the fluid on the picture,

which moves across D to the right). Let a be the region which enters (the part under

consideration of) D, thus substituting the volume of the former b ≡ a(ε) ⊂ D and let c ⊂ D

116 In the limit where the volume of D approaches zero, we get another well-known interpretation of the divergence in the point
x .

117 The small surface does not actually depend on the individual vectors e2, . . . , en , but rather on their exterior product alone or,
put another way, on the (p − 1)-vector given by them.
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be the region which flows out, thus becoming d ≡ c(ε). The volumes of these regions are of

order ε and to this order there holds (according to (8.2.2)) the volume of a = the volume of

b, the volume of c = the volume of d . Then D = b + D + c, D(ε) = D + c + d (with D
being the interior of D except b, c). According to (8.2.2) the volume of D(ε) = {the volume

of D}{1 + ε〈div V 〉D}, so that

ε〈div V 〉D = vol D(ε) − vol D

vol D
= · · · = the volume of d − the volume of a

the volume of D

= the net volume flowing out from D

the volume of D
�

• The value of the divergence of a vector field W at the point x thus informs us about two

closely related characteristics of the field: about the rate of relative change of the volume

due to the flow �t generated by the field W as well as about the limit of the ratio of the net

flux
∮
∂ D W i d Si for the boundary of an infinitesimal domain around x to the volume of the

domain.

8.2.10
∗

Prove that for the divergence of the commutator of two fields there holds

div [V, W ] = V (div W ) − W (div V )

Hint: see (4.3.8) and (8.2.1). �

8.2.11
∗

Let f be a function which has a finite integral over a manifold M (
∫

M f ωg < ∞)

and let �t ↔ V be an (at least local) flow on M . Prove that the following integral vanishes:
∫

M
(V f + f div V )ωg = 0

and, in particular, that given f an integrable (smooth) function in R
n , the integral

∫

Rn

(xi∂i f + n f ) dn x = 0

vanishes.

Hint: since �ε(M) = M , we have
∫

M f ωg = ∫
�ε (M)

f ωg = ∫
M �∗

ε ( f ωg) = ∫
M f ωg+

ε
∫

M LV ( f ωg) + · · · = ∫
M f ωg + ε

∫
M (V f + f div V )ωg + · · · . �

8.3 Codifferential and Laplace–deRham operator

• We learned in (5.8.4) that if a linear space L is endowed with a metric tensor g and an

orientation o, a natural scalar product in the space of p-forms118

(· , · ) : �p(L∗) × �p(L∗) → R

118 If the metric tensor is not positive definite, it is “only” a non-degenerate bilinear form on �p(L∗).
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may be defined by the prescription

α ∧ ∗gβ =: (α, β)gωg = 1

p!
αa...b βa...b ωg

By integration of this expression over the domain D ∈ M we get a scalar product (or at least

a non-degenerate bilinear form) 〈· , · 〉 on �p(M). This opens up the possibility of defining

in a standard way the adjoint operator A+ to each linear operator A acting on forms by the

rule

〈A+α, β〉 := 〈α, Aβ〉.
The case A = d turns out to be especially important in applications. The adjoint opera-

tor to the “differential” d (= exterior derivative) is called the codifferential δ = d+ and

the (self-adjoint) combination −(dd+ + d+d) is known as the Laplace–deRham operator
(“Laplacian on forms”).

8.3.1 Let D be a domain on an n-dimensional Riemannian oriented manifold (M, g, o).

For all p = 0, 1, . . . , n we define the map

〈 · , · 〉 : �p(M) × �p(M) → R

by the prescription119

〈α, β〉 :=
∫

D
α ∧ ∗gβ

=
∫

D
(α, β)gωg =

∫

D

1

p!
αa...b βa...b ωg α, β ∈ �p(M)

Check that

(i) it is a symmetric, non-degenerate bilinear form on �p(M) (regarded as an ∞-dimensional linear

space over R)

(ii) moreover, for positive definite g it happens to be positive definite (⇒ the scalar product on

�p(M))

(iii) for p = 0 it reduces to a good old120 scalar product on functions

〈ψ, χ〉 :=
∫

D
ψχ ωg ≡

∫

D
ψχ

√
|g| dn x

(iv) an analogous role for V -valued forms is played by the expression

〈α, β〉 :=
∫

D
h ABαA ∧ ∗βB

Hint: (iv) see (6.4.4) and (7.6.10). �

119 This map is not to be confused with the canonical pairing 〈· , · 〉, which is denoted in the same way (see Section 2.6). The
pairing assigns a function to a vector and a covector field, the bilinear form introduced here assigns a number to a pair of
p-forms.

120 This is well known, for example, from the theory of Fourier series or special functions; for the wave functions in quantum
mechanics the complex conjugation of the function ψ is to be added since C-valued functions, the linear spaces over C and
the (C-valued) hermitian scalar product, are used there.
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8.3.2 Check that for α ∈ �p−1(M), β ∈ �p(M) there holds

(i)

dα ∧ ∗β = α ∧ ∗δβ + d(α ∧ ∗β)

where the codifferential δ ≡ δg is defined as

δg : �p(M, g) → �p−1(M, g) δg := ∗−1
g d ∗g η̂

(ii)

〈dα, β〉 = 〈α, δβ〉 +
∫

∂ D
α ∧ ∗β

Hint: (i) d(α ∧ ∗β) = dα ∧ ∗β + (η̂α) ∧ d ∗ β. But (η̂α) ∧ d ∗ β = (η̂α) ∧ ∗ ∗−1 d ∗ β =
−α ∧ ∗(∗−1d ∗ η̂β) ≡ −α ∧ ∗δβ; (ii) use Stokes’ theorem. �

• From this result we can see that if for some reason the integral over the boundary of the

domain D vanishes, the codifferential δ would be the adjoint121 operator d+ to the operator

d in the sense of 〈· , · 〉. There are actually several reasons why the integral often vanishes:

1. we consider the space of forms which vanish on ∂ D (this is the case in applications in the calculus
of variations, see (16.3.2) or (21.5.2))

2. D = M = a compact manifold (like the sphere Sn , torus T n , groups U (n) and O(n), . . .); then

∂ D = ∂ M = ∅
3. D = M is not compact, but we consider the space of forms with compact support or the forms

which decrease “sufficiently quickly at infinity” (for example, for r → ∞ in R
n the expression

under the integral sign has to decrease rapidly enough in comparison with the increasing of the

area of the sphere Sn−1
r ).

In all of these cases the codifferential δ is the adjoint operator to the differential d (δ = d+)

and we will automatically assume in what follows that this is the case.

8.3.3 Check that the Laplace–deRham operator

�g := −(δgd + dδg) ≡ −(d+d + dd+)

is self-adjoint in the sense of 〈· , · 〉, i.e. there holds

〈�gα, β〉 = 〈α, �gβ〉
Hint: see (8.3.2) or (d+d + dd+)+ = · · · . �

• The codifferential is also known as the “generalized divergence.” The reason should

be clear from the next two exercises. First we will notice that on 1-forms this “indeed is”

the divergence, then we will see that the component expression for δ in the general case

121 Both d and δ change the degree of forms so that the fact that they happen to be adjoint to each other in more detail looks like
〈dα, β〉p = 〈α, δβ〉p−1, where 〈· , · 〉p is the scalar product in the space of p-forms. Since the official definition of the adjoint
operator 〈A+α, β〉 := 〈α, Aβ〉 assumes a single scalar product in a single linear space one should actually regard the Cartan
algebra as this single space, i.e. the direct sum �(M) := ⊕n

p=0�
p(M) endowed with the scalar product which is a natural

extension to inhomogeneous forms (i.e. after the fashion of (5.8.8)).
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(on p-forms) may be regarded as a generalization of the corresponding expression for the

divergence.

8.3.4 Check that if V is a vector field and Ṽ = g(V, · ) ≡ �gV is the corresponding

covector field, then

δṼ = −div V

so that in coordinates

δα ≡ δ(αi dxi ) = − 1√| g | (
√

| g |gkjα j ),k α ∈ �1(M)

Hint: see (8.2.1) and (8.3.2). �

8.3.5 Check that

(i) the coordinate expression of the codifferential reads122

(δgα)i... j = − 1√| g | (
√

| g |αki... j ),k (δgα)i... j := gir . . . g js(δgα)r...s

(ii) the coordinate expression of the Laplace–deRham operator on functions (0-forms) is123

� f = 1√| g | (
√

| g |gkj f, j ),k f ∈ �0(M) ≡ F(M)

Hint: (i) see (6.2.5), (5.8.1), (5.8.2), (6.3.7) and (5.6.4); (ii) here � = −δd (only). �

• Recall (6.2.11) that the differential d commutes with the pull-back of arbitrary smooth

maps, including diffeomorphisms f : M → M . It turns out that a fairly simple behavior

with respect to diffeomorphisms is also true for the codifferential as well as for the Laplace–

deRham operator. However, since both of them depend (unlike d!) on the metric tensor, it

should not be surprising that they nevertheless prefer (behave more simply with respect to)

those diffeomorphisms which respect the metric tensor, namely the isometries (or at least

conformal transformations). We will now investigate this behavior explicitly.

If an operator A = AB is available which depends on a tensor B and which in addition

behaves with respect to a diffeomorphism f : M → M according to the rule124

f ∗ AB = A f ∗ B f ∗

we say that the operator A is natural with respect to diffeomorphisms. This (fairly simple)

behavior occurs for several operators we have already encountered or we will encounter in

the future.

8.3.6 Check that the operators iV and jV are

122 The codifferential δ (as well as the differential d itself) may also be conveniently expressed in terms of the covariant derivatives,
see (15.6.17).

123 This operator is also known as the Laplace–Beltrami operator.
124 That is, the commuting of f ∗ with A leaves certain persistent effects on A; namely, the change B �→ f ∗ B occurs.
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(i) natural with respect to diffeomorphisms, i.e. that there holds

f ∗iV = i f ∗V f ∗ f ∗ jV = j f ∗V f ∗

(ii) adjoint to each other in the sense of 〈· , · 〉

iV = ( jV )+, jV = (iV )+ i.e. 〈 jV α, β〉 = 〈α, iV β〉

Hint: (i) apply to a p-form α, then “fill by” arguments and use definitions; (ii) see (5.8.6).

�

8.3.7 Check that the operator of the Lie derivative LV (on arbitrary tensor fields, in

particular on forms) is natural with respect to diffeomorphisms, i.e. that there holds

f ∗LV = L f ∗V f ∗

Hint: in general making use of (4.1.9):

f ∗ ◦ LV := d

dt

∣
∣
∣
∣
0

f ∗ ◦ �∗
t = d

dt

∣
∣
∣
∣
0

( f −1 ◦ �t ◦ f )∗ ◦ f ∗ = L f ∗V ◦ f ∗

on forms alternatively using (6.2.8) and (8.3.6). �

8.3.8 Check that the following operators on forms (or vector fields) on (M, g, o) happen

to be natural with respect to diffeomorphisms:

(i) the raising and lowering index operators �g and �g and the Hodge star operator ∗g,o, i.e.

f ∗�g = � f ∗g f ∗ f ∗�g = � f ∗g f ∗ f ∗∗g,o = ∗ f ∗g, f (o) f ∗

( f (o) = ±o if f preserves (does not preserve) an orientation o on M)

(ii) the codifferential δg and the Laplace–deRham operator �g , i.e.

f ∗δg = δ f ∗g f ∗ f ∗�g = � f ∗g f ∗

Hint: (i) �gα = C(g−1 ⊗ α), �gV = C(g ⊗ V ), (3.1.7); ∗g,o: compute according to (5.8.1)

in a right-handed orthonormal basis ea in the sense of (g, o) and use the fact that Ea := f ∗ea

is right-handed orthonormal in the sense of ( f ∗g, f (o)); (ii) the definitions and (6.2.11).

�

8.3.9 Check that the codifferential as well as the Laplace–deRham operator (unlike the

Hodge operator) do not depend on the choice of the orientation on (M, g, o) (i.e. they

actually feel (M, g) alone)

δg,o = δg,−o ≡ δg �g,o = �g,−o ≡ �g

Hint: according to (5.8.1) δg,−o := ∗−1
g,−od ∗g,−o η̂ = (−∗−1

g,o)d(−∗g,o)η̂ = + ∗−1
g,o d ∗g,o

η̂ ≡ δg,o. �
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8.3.10 Check that the volume form ωg,o, which is compatible with the metric and orien-

tation, is natural with respect to diffeomorphisms, i.e. there holds

f ∗ωg,o = ω f ∗g, f (o)

Hint: according to (8.3.8) f ∗ωg,o = f ∗ ∗g,o 1 = ∗ f ∗g, f (o) f ∗1 = ω f ∗g, f (o). �

8.3.11 Let ξ be a conformal Killing vector, so that Lξ g = χg. Show that

(i) the function χ is then a constant multiple of the divergence of the field ξ , namely χ = (2/n) div ξ

(where n = dim M), so that the conformal Killing equations may be written in the form

Lξ g =
(

2

n
div ξ

)

g

(ii) any Killing vector is necessarily divergence-less.

Hint: (i) for the infinitesimal flow �ε which corresponds to ξ we have

�∗
εωg

1= (1 + εLξ )ωg = (1 + ε div ξ )ωg

2= ω�∗
ε g = ωg+εχg = ∗(1+εχ )g1 = ∗λ2g1 = λn ∗g 1 = λnωg

where λ = 1 + χε/2 and we have also used (5.8.3). Since λn = 1 + χnε/2, by comparison

we get what is needed; (ii) χ = 0; or with no computation: Killing vectors generate isome-

tries, preserving (even more than) the (metric!) volume so that by (8.2.2) its divergence

necessarily vanishes. �

8.3.12 Check that the codifferential is (just like the “differential” d) a nilpotent operator,

i.e.

δδ = 0

Hint: ∗−1d ∗ η̂ ∗−1 d ∗ η̂ = ± ∗−1 d ∗ ∗−1d∗ = ± ∗−1 dd∗. �

8.3.13 Let f : M → M be a conformal transformation of a two-dimensional
(pseudo-)Riemannian oriented manifold (M, g, o) and let f ∗g = σ 2g (σ 2 > 0). Show that

(i) the Laplace operator on functions is “conformally covariant” in the sense that

f ∗�g = σ−2�g f ∗

(ii)

u = harmonic ⇒ f ∗u = harmonic

(u = a harmonic function means that it satisfies the Laplace equation �gu = 0)

(iii) if u is a solution of the Dirichlet problem for the Laplace equation

�gu = 0 in the domain U
u|S = 0 on S ≡ ∂U

then f ∗u is the solution of the Dirichlet problem with U �→ f −1(U) and S �→ f −1(S)
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(iv) a similar statement (which one?) is true for the Poisson equation �gu = v.

Hint: (i) check that (on functions, i.e. for �g = −δgd) there holds f ∗(�gu) =
σ−2�g( f ∗u) + (n − 2)(d ln σ, d f ∗u)g so that for n = 2 we are finished; (iv) �g( f ∗u) =
σ 2 f ∗v. �

8.3.14 Consider a Killing vector ξ on (M, g). Check that the Lie derivative Lξ commutes

with the operators �g , �g , ∗g , δg and �g

[Lξ , Âg] = 0 Âg = �g, �g, ∗g, δg, �g

Hint: ξ generates isometries ⇒ �∗
t g = g; all the operators are natural with respect to

diffeomorphisms (8.3.8), so that [�∗
t , Âg] = 0; the differentiation with respect to t at t = 0

gives just [Lξ , Âg] = 0 (which is nothing but an infinitesimal version of [�∗
t , Âg] = 0).

8.4 Green identities

• The next useful direct consequence of Stokes’ theorem is provided by the Green

identities.

8.4.1 Let u, v be two functions on an m-dimensional oriented Riemannian manifold

(M, g, o), D an m-dimensional domain on M and ∂ D its boundary oriented in the sense of

the outer normal. Prove the Green identities:

(i)

〈du, dv〉 + 〈u, �v〉 =
∫

∂ D
u ∗ dv “ordinary” Green identity

〈u, �v〉 − 〈v, �u〉 =
∫

∂ D
(u ∗ dv − v ∗ du) “symmetric” Green identity

(ii) if the field n of the “unit perpendicular” outer normal on ∂ D exists (n ⊥ ∂ D, g(n, n) = 1, cf. the

text before (8.2.8)), then there holds
∫

∂ D
u ∗ dv =

∫

∂ D
u

∂v

∂n
d S

with ∂ f/∂n := n f being the normal derivative of f (the derivative of the function f along the

unit outer normal) so that the Green identities may also be expressed in the form
∫

D
(∇u · ∇v + u�v) d� =

∫

∂ D
u

∂v

∂n
d S

∫

D
(u�v − v�u) d� =

∫

∂ D

(

u
∂v

∂n
− v

∂u

∂n

)

d S

Hint: (i) set α = u, β = dv in (8.3.2) or V = u∇v in (8.2.8), then subtract the equations

with u ↔ v; (ii):

∗dv|∂ D = v,i (∗dxi )
∣
∣
∂ D

(6.3.11)= v,i g
i j d� j

∣
∣
∂ D

(8.2.7)= ni g
i jv, j d S ≡ (nv) d S =:

∂v

∂n
d S

and (8.2.8) (d� ≡ √|g| dn x denotes the “volume element,” i.e. it coincides with ωg). �
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8.4.2 Check the validity of the (first) Green identity for M = E3 and

(i)

D = {(x, y, z)|x2 + y2 + z2 ≤ 1, y ≥ 0}, u = z2, v = x2 + y2 − z2

(ii)

D = {(x, y, z)|x2 + y2 ≤ 1, 0 ≤ z ≤ 1}, u = 2x2, v = x2 + z2

Hint: (i) spherical polar coordinates; (ii) cylindrical coordinates. �

8.4.3 Making use of the Green identity on (M, g) prove the uniqueness of the solution of

the Poisson equation in a domain D

�u = f f a given function

with the Dirichlet or the Neumann boundary condition

u|∂ D = g or
∂u

∂n

∣
∣
∣
∣
∂ D

= h

(with g and h being given functions on ∂ D).

Hint: given two solutions u, v, w := u − v turns out to be a solution of the problem

�w = 0 w|∂ D = 0 or
∂w

∂n

∣
∣
∣
∣
∂ D

= 0

The (“ordinary”) Green identity then yields (in both cases)

〈dw, dw〉 ≡
∫

D
(∇w)2 d� = 0

⇒ (in the positive definite case) ∇w = 0 ⇒ w = constant. For the Dirichlet case the

constant = 0, in the Neumann case the constant is arbitrary, being the freedom which is

clear from the outset. �

8.5 Vector analysis in E3

• Vector analysis in the “usual” three-dimensional space E3 serves as an indispensable

mathematical tool in physics. Let us start our contemplation on this topic with the inspection

of two key formulas of vector analysis, namely the integral identities
∮

∂S
A · dr =

∫

S
(curl A) · dS

∮

∂ D
A · dS =

∫

D
(div A) dV

They both relate a pair of integrals over domains of neighboring dimensions (volume ↔
surface ↔ line), raising thus a suspicion that the Stokes’ theorem (for differential forms)
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might be behind them.125 Notice also that we see explicitly scalar and vector fields under

the integral sign, but we know that, in fact, differential forms are there (e.g. a 2-form in

the surface integral). It seems a possibility exists to parametrize differential forms in terms

of scalar and vector fields; the differential operations applied on scalar and vector fields,

gradient, curl and divergence could then be the “effective” operators resulting from this

parametrization.

In this section we learn that this is really the case – after the above-mentioned parametriza-

tion the whole machinery of vector analysis “drops out” as a simple special case of the

standard operations on forms (d, δg, ∗g, ∧) and Stokes’ theorem (for forms).

Let us begin with the possibility of encoding scalar and vector fields into forms and vice

versa. If we have an n-dimensional manifold endowed with a metric tensor and orientation,

the canonical isomorphisms � ≡ �g , � ≡ �g (the raising and lowering of indices) and∗ ≡ ∗g,o

(the Hodge operator) are available. One can then identify the spaces of vector fields, 1-forms

and (n − 1)-forms, as well as the spaces of 0-forms and n-forms. This means that it is easy to

encode scalar and vector fields into forms, but we are not able to express forms of all degrees
in terms of scalar and vector fields (it is possible for the “marginal pairs” 0, 1, (n − 1), n, but

it is not for forms of “inner” degrees 2, 3, . . . , (n − 2)). There exists an important exception,

however, namely three-dimensional manifolds (the most interesting from the practical point

of view being undoubtedly the simplest one, the good old Euclidean space E3), where the

“inner” degrees are simply missing.126

Thus, on a three-dimensional manifold endowed with a metric tensor and orientation one

can parametrize all forms in terms of the scalar and vector fields (0- and 3-forms via the

scalar fields and 1- and 2-forms via the vector fields).127

8.5.1 Be sure to understand that on a three-dimensional manifold (M, g, o) the following

canonical identifications are possible:128

X(E3)
�

�
�

�1(E3)
∗
�
∗−1

�2(E3) �0(E3)
∗
�
∗−1

�3(E3)

Hint: see (2.6.2) and (5.8.1). �

8.5.2 Show that if we define in E3 the forms (xi being arbitrary coordinates)

d Si := 1

2
ωi jk dx j ∧ dxk (see (6.3.11))

dV := 1

3!
ωi jk dxi ∧ dx j ∧ dxk ≡ ω ≡ ωg,o (the metric volume form)

125 This suspicion probably occurred in the reader’s mind independently as far as he or she did not fail to observe that this section
is a part of the chapter entitled “Special cases and applications of Stokes’ theorem.”

126 And they are also missing of course on one- and two-dimensional manifolds; on these manifolds there thus exists a (simplified
version of) “vector analysis,” too (it may also be regarded as the vector analysis “diluted up to homeopathic concentrations”).
After reading this section the interested reader can work up the details of the corresponding theory as a simple exercise by
him(her)self.

127 To be more precise, one should add pseudoscalar and pseudovector fields, too, since the operator ∗ changes the sign as a result
of a change of orientation of a manifold, (5.8.1).

128 According to (5.8.2) ∗∗ = 1 on E3 holds, i.e. ∗−1 = ∗.
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then the most general 0-, 1-, 2- and 3-forms read

f A · dr ≡ Ai dxi = A j g ji dxi B · dS ≡ Bi d Si h dV

i.e. that one can take 1, dxi , d Si and dV as the basis for differential forms of degrees 0, 1, 2

and 3 on E3.

Hint: d Si happen to be the images under isomorphism of the basis dxi , thus they are linearly

independent. �

• From these expressions we see explicitly how arbitrary differential forms in E3 may be

parametrized in terms of the scalar (0- and 3-forms) or the vector (1- and 2-forms) fields.

8.5.3 The bases defined in (8.5.2) turn out to be very convenient in that they are adapted

to those of the identifications (isomorphisms) of (8.5.1) which concern forms (half of the

forms being, in fact, the ∗-images of the other one). Check that

∗ f = f dV ∗(h dV ) = h

∗(B · dS) = B · dr ∗(A · dr) = A · dS

so that the identifications read

Ai∂i

�

�
�

Ai gi j dx j ≡ A · dr
∗
�
∗

Ai d Si ≡ A · dS f
∗
�
∗

f dV

or at the level of bases

1
∗
�
∗

dV dxi
∗
�
∗

gi j d S j

�

• The fact that we may parametrize forms of all (non-trivial) degrees is of vital importance:

it means that also an arbitrary operation on forms may be translated into the language of

the operations on scalar and vector fields.129 The most important one turns out to be in this

respect the translation of the operator d (exterior derivative) and Stokes’ theorem closely

related to it.

As we know, the operator d raises the degree of a form by one unit. On a three-dimensional

manifold it thus acts as follows:

�0(M)
d−−→ �1(M)

d−−→ �2(M)
d−−→ �3(M)

If one applies d , say, on a 1-form, a 2-form results. This means, however (since the spaces

of both 1- and 2-forms are identified with the space of vector fields), that the operator

d induces some (differential) operation which assigns a vector field to a vector field. A

similar reasoning for the remaining two objects (0- and 2-forms) reveals that altogether

three differential operators are induced, namely of the type scalar �→ vector, vector �→
129 If for some degree p the identification with vectors or scalars did not exist, one would not be able to translate the operations

on forms producing a p-form.
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vector and vector �→ scalar. We will see that they are nothing but the three well-known

operations of vector analysis: the gradient, the curl and the divergence.

8.5.4 On an arbitrary three-dimensional manifold (M, g, o) let us define the operations

grad, curl and div via the commutative diagram

�0(M)
d−−→ �1(M)

d−−→ �2(M)
d−−→ �3(M)

id
⏐
⏐



⏐
⏐

�

⏐
⏐

�∗

⏐
⏐

∗

F(M) −−→
grad

X(M) −−→
curl

X(M) −−→
div

F(M)

Show that

(i) their “abstract” expressions read

grad = � d curl = � ∗ d � div = ∗ d ∗ � ≡ −δ �

(ii) in local coordinates

grad f ≡ ∇ f = (gi j f, j )∂i

curl (Ai∂i ) = (ωi jk(gkl Al ), j )∂i ≡ (curl A)i∂i

div (Ai∂i ) = 1√| g | (
√

| g |Ai ),i

(iii) on E3 they indeed do represent the operations gradient, curl and divergence known from vector

analysis

(iv) the following identities hold:

curl grad = 0 div curl = 0

(v) there holds

d f = (grad f ) · dr ≡ (∇ f ) · dr d(A · dr) = ( curl A) · dS

d(B · dS) = (div B) dV d(h dV ) = 0

Hint: (i) compose the arrows according to the diagram; (iii) write down in Cartesian coor-

dinates and compare with the output of your memory (see also their presence in the integral

identities (8.5.6)); (iv) use (i) or just have a quick look at the defining diagram (since there

holds dd = 0 in the upper line, the composition of the corresponding operators in the bottom

line should also vanish); (v) cf. the hint to (i). �

8.5.5 Show that

(i) the commutative diagram with differential from (8.5.4) results in a similar diagram with codif-

ferential

�0(M)
δ←−− �1(M)

δ←−− �2(M)
δ←−− �3(M)

id

⏐
⏐
⏐



⏐
⏐
⏐



�

⏐
⏐
⏐



�∗
⏐
⏐
⏐



∗

F(M) ←−−
−div

X(M) ←−−
curl

X(M) ←−−
−grad

F(M)
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(ii) there holds

δ(A · dr) = −div A

δ(B · dS) = (curl B) · dr

δ(h dV ) = −(grad h) · dS ≡ −(∇h) · dS

�

• The combination of the results of exercise (8.5.4) with the general Stokes’ theorem for

differential forms gives us immediately the three fundamental integral theorems of vector

analysis.

8.5.6 Prove the following integral theorems of the vector analysis on E3:

(i) let C be a curve (1-chain) from the point A to B and f a function. Then
∫

C
(∇ f ) · dr = f (B) − f (A)

(ii) let S be a two-dimensional surface (2-chain) in E3, ∂S its (one-dimensional) boundary and A a

vector field. Then Stokes’ theorem holds
∮

∂S
A · dr =

∫

S
(curl A) · dS

(iii) let D be a three-dimensional domain (3-chain) in E3, ∂ D its (two-dimensional) boundary and A
a vector field. Then Gauss’ theorem holds130

∮

∂ D
A · dS =

∫

D
(div A) dV

Hint: see (7.6.7) and (8.5.4). �

8.5.7 Check that the Laplace–deRham operator � = −(δd + dδ) acts here as follows:

� f = div grad f

�(A · dr) = (− curl curl A + grad div A) · dr

�(B · dS) = (− curl curl B + grad div B) · dS

�(hdV ) = (div grad h) dV ≡ (�h) dV

Hint: see (8.3.3), (8.5.4) and (8.5.5). �

• Also the algebraic operations performed on forms induce some algebraic operations on

functions and vector fields. The most interesting novelty consists in the vector product of

two vectors resulting from the exterior product of the forms.

8.5.8 Check that

130 Clearly this version of Gauss’ theorem is only a particular case of (8.2.8) for m = 3 and the divergence of a vector field
introduced in (8.5.4) is a particular case of (8.2.1). All of these theorems are, as we see, special cases of the general Stokes’
theorem for forms (7.6.7) or see Section 7.5 (including Stokes’ theorem presented in this section).
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(i) the exterior products of forms on E3 give

(A · dr) ∧ (B · dr) = (A × B) · dS

(A · dr) ∧ (B · dS) = (A · B) dV

where A × B and A · B are the common vector and scalar products of two vectors respectively,

i.e.

(A × B)i := gi jω jkl Ak Bl A · B := gi j Ai B j

and that from this (and from (8.5.3)) it follows that the objects under the integral signs in the

scalar product of type (8.3.1) are

f ∧ ∗h = ( f dV ) ∧ ∗(h dV ) = ( f h) dV

(A · dr) ∧ ∗(B · dr) = (A · dS) ∧ ∗(B · dS) = (A · B) dV

(ii) the interior products lead to

iA(B · dr) = A · B

iA(B · dS) = (B × A) · dr

iA(h dV ) = hA · dS

(iii) the behavior of iA on the exterior product of forms gives the vector identity

(A × B) × C = (A · C)B − (B · C)A

Hint: (iii) see (5.4.2). �

• All of the component expressions for the operations mentioned in this section use

the coordinate components of vector fields. In vector analysis the orthonormal (non-

coordinate, in general) components are used, however, quite frequently. As a rule one uses a

“corrected coordinate frame field” (see, for example, (4.5.7)). This means that one starts

with orthogonal coordinates (see Section 2.6), in which the metric tensor reads

g = h2
1 dx1 ⊗ dx1 + h2

2 dx2 ⊗ dx2 + h2
3 dx3 ⊗ dx3 ≡ e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3

for

e1 := h1 dx1 e2 := h2 dx2 e3 := h3 dx3

The functions h1, h2 and h3 are known as the Lamé coefficients corresponding to given

(orthogonal) coordinates.

8.5.9 Determine the Lamé coefficients for Cartesian, spherical polar and cylindrical

coordinates.

Hint: see (2.6.4) (Cartesian 1, 1, 1; spherical polar 1, r, r sin ϑ ; cylindrical 1, r, 1). �

8.5.10 Let us denote the components with respect to an orthonormal basis by a hat

A = Ai∂i = Aî eî e1̂ = 1

h1

∂1 etc.
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Check that if one plugs the orthonormal components of vectors into the component expres-

sions from (8.5.4), the following formulas result:131

grad f = 1

h1

(∂1 f )e1̂ + 1

h2

(∂2 f )e2̂ + 1

h3

(∂3 f )e3̂ ≡ ∇ f

curl (Aî eî ) = 1

h2h3

[∂2(h3 A3̂) − ∂3(h2 A2̂)]e1̂ + 1

h1h3

[∂3(h1 A1̂) − ∂1(h3 A3̂)]e2̂

+ 1

h1h2

[∂1(h2 A2̂) − ∂2(h1 A1̂)]e3̂

div (Aî eî ) = 1

h1h2h3

[∂1(h2h3 A1̂) + ∂2(h1h3 A2̂) + ∂3(h1h2 A3̂)]

� f = 1

h1h2h3

[

∂1

(
h2h3

h1

(∂1 f )

)

+ ∂2

(
h3h1

h2

(∂2 f )

)

+ ∂3

(
h1h2

h3

(∂3 f )

)]

Hint: gi j = h2
i δi j (no summation), |g| = (h1h2h3)2. �

8.5.11 Write down these formulas explicitly for Cartesian, spherical polar and cylindrical

coordinates.

Hint: see (8.5.9). �

8.5.12 Check that the Laplace operator (on functions) in spherical polar coordinates has

the following structure:

� = �r + 1

r2
�ϑ,ϕ

where

�r := 1

r2
∂r r2∂r �ϑ,ϕ := 1

sin ϑ
∂ϑ sin ϑ∂ϑ + 1

sin2ϑ
∂2
ϕ

Hint: see (8.5.11). �

8.5.13 Let us return for a while to the problem of finding the lines of force for a given

electrical field. Show that

(i) one can write the differential equations for the lines of the field E as

E × dr = 0 i.e. ∇� × dr = 0

(ii) in (coordinate) components this is equivalent to132

εi jk g jl�,l dxk = 0

131 They are frequently found in the appendices of various books on theoretical physics. Usually the authors do not use hats,
however, since they work with the components of vectors with respect to an orthonormal basis alone (here we also display
the formulas using coordinate components of vectors (8.5.4) and we need to distinguish somehow between these two kinds of
components).

132 The expressions dxi here are not to be regarded as differential forms but rather as small increments of coordinates along the
curve; the advantage of this form of equations consists in avoiding the (redundant) parameter of the integral curves.
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(iii) in particular, in spherical polar coordinates this results in the system of equations

sin2 ϑ�,ϑ dϕ = �,ϕ dϑ r 2�,r dϑ = �,ϑ dr r 2 sin2 ϑ�,r dϕ = �,ϕ dr

(iv) for the dipole field from (2.6.10) this reduces to

2r cos ϑ dϑ = sin ϑ dr dϕ = 0

the solution being

r (ϑ) = rmax sin2 ϑ ϕ(ϑ) = constant

Hint: (i) according to (2.6.10) we have ṙ = E, i.e. dr = E dt ⇒ E × dr = 0; (ii) (8.5.8).

�

8.6 Functions of complex variables

• In this section we will try to indicate briefly how the differential forms (and, in particular,

Stokes’ theorem) are hidden in the machinery of elementary complex analysis (the theory

of functions of a complex variable).

In this theory one deals with complex valued functions of a complex variable; that is

to say one studies maps C → C. The complex plane C, where such functions are defined,

may be regarded as the (two-dimensional real) manifold R
2, the ordinary Euclidean plane.

In this plane now consider C-valued functions, which we will treat as a particular case of

the “V -valued forms” discussed in Section 6.4. To summarize, we contemplate 0-forms on

R
2 with values in the algebra C. Since the vectors 1, i constitute the (most natural) basis

in this algebra, we may express an arbitrary function (0-form) in terms of this basis and

corresponding component functions (0-forms)

f = u(x, y) + iv(x, y) f : C → C

Particular (and important) examples are provided by the “coordinate functions” themselves

z = x + iy z̄ = x − iy

Consider 1-forms now. Each C-valued 1-form may be written as

σ = α + iβ

with the component forms α and β being already “ordinary” (R-valued) 1-forms.

In general, V -valued 1-forms may be expressed (for more details see Section 6.4) as

σ = σ A E A ≡ σ A
μ dxμ E A

so that the V -valued 1-forms dxμ E A may serve as a “basis” in the space of such forms (in

the sense of generators of a module over the algebra of functions, see the text after (2.2.12)).

In the particular case treated here the (C-valued) 1-forms

dx, dy, i dx, i dy
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may be used as the generators (over the algebra of real functions). Instead of these four

generators, just two other (properly chosen) generators would be enough, however, if we

extend the algebra of (R-valued) functions to the algebra of C-valued functions (if the

number of generators is reduced, the set of coefficients is to be extended in order to reach

the same goal).

8.6.1 Introduce two C-valued 1-forms on R
2 as the exterior derivatives (in the sense of

(6.4.4)) of the functions z, z̄, i.e.

dz = dx + i dy dz̄ = dx − i dy

Check that an arbitrary C-valued 1-form on R
2 may be decomposed with respect to this

basis (set of generators), if C-valued functions are allowed as coefficients

σ = f dz + f̂ d z̄ f, f̂ : C → C

Hint: σ = A(x, y) dx + B(x, y) dy + C(x, y) i dx + D(x, y) i dy
?=(u(x, y) + iv(x, y))

dz + (û(x, y) + i v̂(x, y)) dz̄. �

• Since for a general 1-form the functions f, f̂ are arbitrary (smooth) functions in the xy
plane, both coordinates z and z̄ are needed in order to rewrite the functions in terms of the

variables z, z̄ rather than x, y (for example, x2 + y2 = zz̄, so that neither z nor z̄ alone is

enough). Put another way, the expression of a general (smooth) C-valued 1-form in the xy
plane reads in more detail as

σ = f (z, z̄) dz + f̂ (z, z̄) dz̄

so that it may be parametrized by two independent complex functions of both complex

coordinates z, z̄,

f (z, z̄) = u(x, y) + iv(x, y) f̂ (z, z̄) = û(x, y) + i v̂(x, y)

Such 1-forms may be integrated (as all 1-forms may) over 1-chains; here, in particular, over

the curves in the plane.133

Now recall that usually simpler expressions are found under the integral sign in complex

analysis, however; namely, the expressions f (z) dz. A question then arises as to what exactly

is special about just these forms, i.e. about the 1-forms σ such that the part f̂ (z, z̄) dz̄ is

absent at all and, moreover, the coordinate z̄ is missing in the only function which remains,

so that f happens to be a holomorphic function.134

It turns out that the first specific property mentioned above is related to the concept of

“(anti-)self-duality” (to be explained in the next exercise; here it manifests itself in the fact

that the two real 1-forms α, β cease to be independent) and the second one adds simply

the closedness of both α and β (this concept is essential for Chapter 9; a form is said to be

closed if its exterior derivative vanishes).

133 The integral is understood in the sense of (7.6.10), its result being a complex number.
134 Recall (4.6.19) that for a holomorphic function there holds (∂x + i∂y ) f = 0, which may also be written as ∂z̄ f = 0, and that

this condition is equivalent to the validity of the Cauchy–Riemann relations ∂x u = ∂yv, ∂x v = −∂y u for the function u, v.
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8.6.2 A p-form α on an n-dimensional manifold (M, g, o) is called (anti-)self-dual if it is

an eigenvector of the Hodge operator ∗, i.e. if

∗α = λα λ = the eigenvalue (a number)

Check that

(i) α is necessarily a form of the “middle degree” on an even-dimensional manifold (n = 2p)

(ii) the eigenvalue λ may be only ±1 or ±i ; namely, for the metric tensor with signature (r, s) it is

λ = ±1 if s + p = even

λ = ±i if s + p = odd

(⇒ the real self-dual (non-vanishing) forms may occur only in the case where s + p = even; for

odd s + p we necessarily need C-valued forms)

(iii) an arbitrary p-form on a 2p-dimensional manifold may be uniquely decomposed into the sum

of the self-dual (λ = +1 or +i) and the anti-self-dual (λ = −1 or −i) parts

(iv) if an (anti-)self-dual form happens to be closed, it is then automatically also coclosed and

harmonic

dα = 0 ⇒ δα = 0 and �α ≡ −(δd + dδ)α = 0

Hint: (i) deg α ≡ p = deg ∗α ≡ n − p; (ii) ∗∗ = · · · (5.8.2); (iii) there holds α = (P+ +
P−)α = α+ + α−, where the projection operators to the self-dual and anti-self-dual parts

are given by

P+ := 1

2
(1 + ∗) P− := 1

2
(1 − ∗) for s + p = even

P+ := 1

2
(1 − i∗) P− := 1

2
(1 + i∗) for s + p = odd

�

8.6.3 Consider the standard metric tensor and orientation in C ≡ R
2 (we are thus indeed

in the Euclidean plane) and the corresponding Hodge operator ∗. Check that

(i) for the basis dz, dz̄ there holds

∗dz = −i dz ∗ dz̄ = i d z̄

so that the form dz happens to be anti-self-dual and dz̄ is self-dual

(ii) the presentation (8.6.1) of the most general 1-form just corresponds to the sum of its anti-self-dual

and self-dual parts

σ = f dz + f̂ d z̄ ⇒ f dz is the anti-self-dual part

⇒ f̂ d z̄ is the self-dual part

(iii) if we restrict to the anti-self-dual 1-form f dz and associate the component 1-forms α and β (the

“real and imaginary parts”) with it

f (z, z̄) dz = α + iβ
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then α and β happen to be closely related, namely

β = ∗α i.e. f (z) dz = α + i ∗ α

Hint: (i) ∗dx = dy, ∗dy = −dx ; (ii) ∗ f dz = f ∗ dz; (iii) combine (i) and f dz = α + iβ.

�

• In Section 4.6 we learned that the holomorphic functions play an important role in

treating the conformal mappings of the plane. Now we encounter another important situation

where these functions are essential: for holomorphic f (z) the 1-form f (z) dz happens to

be closed (with all subsequent consequences).

8.6.4 Consider a C-valued 1-form of the form σ = f (z) dz in the plane C, so that in

comparison with the general case its self-dual part vanishes and, moreover, f is holomorphic.

Check that

(i) this form is closed

d( f (z) dz) = 0 i.e. for the component forms dα = 0 = dβ

(ii) the form α is, in addition, coclosed and harmonic

δα = 0 �α = 0 (� = −(δd + dδ))

(iii) the functions u and v themselves turn out to be harmonic, too

�u = 0 = �v

Hint: (i) d( f dz) = d{(u + iv)(dx + i dy)} = · · · = 0 due to the Cauchy–Riemann rela-

tions (or alternatively d( f (z) dz) = f ′(z) dz ∧ dz = 0); (ii) the combination with the anti-

self-duality: 0 = dβ = d ∗ α ⇒ δα = 0; (iii) Cartesian coordinates. �

• If we now apply Stokes’ theorem to the closed 1-form σ = f (z) dz, we immediately

arrive at the important Cauchy theorem.

8.6.5 Let f be a holomorphic function in the domain D ⊂ C. Show that then135

∮

∂ D
f (z) dz ≡

∮

∂ D
α + i

∮

∂ D
β = 0

Hint:
∮
∂ D α = ∫

D dα = 0 due to (8.6.4). �

Summary of Chapter 8

One often encounters the general Stokes’ theorem for differential forms from Chapter 7

as hidden behind one of its numerous classical versions. Here we demonstrate this, in

135 If there is a pole in the domain D, the integral over the “outer” boundary may be expressed in terms of the residue at the
pole. This procedure is also based on the application of Stokes’ theorem, namely to a modified domain D̃ = D minus the
infinitesimal disk centered at the pole. For this modified domain the theorem again holds (remember that the form failed to be
smooth if f had a pole) and it enables one to replace the integral over the outer boundary by the integral over the boundary of
the small disk (∂ D consists of the outer boundary plus the boundary of the disk, the total integral over ∂ D being zero).
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particular, for the divergence (Gauss’) theorem, Green’s identities, the “common” Stokes’

theorem known from vector analysis or some well-known facts from elementary complex

analysis. The codifferential δ is introduced (as the operator adjoint to the differential d =
exterior derivative) and the self-adjoint combination � = −(dδ + δd), the Laplace–

deRham operator (a generalization of the Laplace operator on functions to forms of arbitrary

degree). In the section devoted to standard vector analysis we learn that the essence of the

well-known operations of gradient, curl and divergence is simply the exterior derivative

acting on forms of all non-trivial degrees in three-dimensional space.

LV ωg =: (div V ) ωg Definition of the divergence of V (8.2.1)

div V = 1√| g | (
√

| g | V k),k Coordinate expression of div V (8.2.1)

〈div V 〉D = d

dt

∣
∣
∣
∣
t=0

vol D(t)

vol D
Interpretation of div V (8.2.2)

〈div V 〉D = the flux of V for ∂ D

the volume of D
Another interpretation of div V (8.2.9)

∫

D
(div V ) ωg =

∫

∂ D
V i d�i |∂ D Gauss’ theorem (8.2.7)

〈α, β〉 :=
∫

D
α ∧ ∗β Scalar product of forms on (M, g) (8.3.1)

δ := ∗−1d ∗ η̂ Definition of the codifferential δ (8.3.2)

〈dα, β〉 = 〈α, δβ〉 +
∫

∂ D
α ∧ ∗β Basic property of the codifferential δ (8.3.2)

� := −(δd + dδ) ≡ −(d+d + dd+) Laplace–deRham operator (8.3.3)

� f = −δd f ≡ 1√| g | (
√

| g |gkj f, j ),k Laplace–Beltrami operator (8.3.5)

〈du, dv〉 + 〈u, �v〉 =
∫

∂ D
u ∗ dv “Ordinary” Green identity (8.4.1)

〈u, �v〉 − 〈v, �u〉 =
∫

∂ D
(u ∗ dv − v ∗ du) “Symmetric” Green identity (8.4.1)

f, A · dr, B · dS, h dV Differential forms on E3 (8.5.2)

d(A · dr) = (curl A) · dS A definition of curl A (8.5.4)

(A · dr) ∧ (B · dr) = (A × B) · dS How the vector (cross) product appears (8.5.8)

g = h2
1 dx1 ⊗ dx1 + · · · Lamé coefficients (8.5.9)

d( f (z) dz) = 0 Why the Cauchy theorem holds (8.6.5)
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• One of the most remarkable properties of the exterior derivative operator

d : �p(M) → �p+1(M)

is its nilpotence (6.2.5), the property dd = 0. So if some form α is the differential of another

form β, then the differential of the form α necessarily vanishes

α = dβ ⇒ dα = 0

However, the issue of the possible validity of the converse of this statement (the opposite

implication) is an independent problem, with an a priori unclear solution (in no way does

it result directly from dd = 0)

dα = 0
?⇒ α = dβ

In this chapter we adopt the standard terminology which is widely used in this context.

Namely, we introduce the concepts of a closed form (such α that dα = 0) and an exact form
(α such that α = dβ for some form β; the form β is then called the potential of the form

α). The formulation of the statements in terms of these concepts then reads

α is exact ⇒ α is closed (dd = 0)

α is closed
?⇒ α is exact (the converse of dd = 0)

and the key question is: does a potential always exist for a closed form? If not, under what

conditions is its existence guaranteed?

In physics there are numerous situations in which it is tacitly assumed that the converse
of dd = 0 also holds.

In mechanics, as an example, one infers the existence of the potential energy from the

vanishing of the work done by a force on an object along an arbitrary closed path C , so the

deduction is
∮

C
F · dr = 0 ⇒ F = −∇U

In thermodynamics, in a similar way, one often adopts the following reasoning: since the

integral of a 1-form along an arbitrary cycle C vanishes, the state quantity necessarily exists,

190
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i.e. such a function (0-form) whose differential just equals the 1-form under consideration.

In symbols
∮

C
(. . .) = 0 ⇒ (. . .) = d(state quantity)

It turns out that the converse of dd = 0 is behind both of these situations. For if D is an

arbitrary two-dimensional domain, we may write for its boundary ∂ D

0 =
∮

∂ D
(. . .) =

∫

D
d(. . .)

(7.4.1)⇒ d(. . .) = 0
?⇒ (. . .) = d(. . .)′

Finally, the standard reasoning in electrodynamics (see Section 16.3 for more details)

contains the deductions of the existence of both vector and scalar potentials from the struc-

ture of a part of the equations of motion (Maxwell equations):

div B = 0 ⇒ ∃A such that B = curl A

curl (E + ∂t A) = 0 ⇒ ∃� such that E = −∇� − ∂t A

In light of (8.5.4) one easily sees that here also the converse of dd = 0 is the key element.

In this chapter we first convince ourselves using simple examples that the converse of

dd = 0 cannot be true in general. This is a rather frustrating piece of knowledge, but

fortunately we will then learn that under some circumstances (on topologically sufficiently

simple manifolds) the statement actually is true (which restores our equanimity again).

In this important case (a manifold contractible to a point)136 the converse of dd = 0 is

known as the Poincaré lemma and we will derive the explicit formula for computation of

the potential for a given closed form. After this we adopt the algebraic perspective and learn

what role cohomology theory plays in this context.

9.1 Simple examples of closed non-exact forms

• A whole family of examples of forms, which contradict the converse of dd = 0, is

provided by the following general scheme.

9.1.1 Let (M, ω) be a compact n-dimensional manifold (⇒ ∂ M = ∅) endowed with a

volume form ω. Show that

(i) the integral of an arbitrary exact n-form over the whole manifold M necessarily vanishes

(ii) the form ω is closed and its integral over M is non-zero, so that the form ω may serve as a

counterexample to the general validity of the converse of dd = 0.

Hint: if the n-form σ is exact, σ = dβ, then
∫

M
σ =

∫

M
dβ =

∫

∂ M
β =

∫

∅
β = 0.

136 One also often speaks about the local validity of the converse of dd = 0: it is true in some neighborhood of any point (however
complicated the manifold is).
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The form ω is trivially closed (it is of maximum degree for non-vanishing forms). The

volume of the manifold is by definition (see Section 7.7)
∫

M ω and it is clearly non-zero by

the meaning of the concept of volume. �

• Another simple concrete example is given by an appropriate 1-form on the circle S1 ⊂
R

2, or more generally on the spheres Sn ⊂ R
n+1.

9.1.2 Consider as a manifold the circle M = S1 = ∂ D2 ⊂ R
2, where D2 = {(x, y) ∈

R
2 | x2 + y2 ≤ 1} is the unit disk. Show that

(i) the 1-form α := (x dy)|S1 has a non-vanishing integral over S1 ⇒ it is a closed albeit non-exact

form on S1

(ii) the same is true for the form α̂ := (x dy − y dx)|S1 , being now the special case of (9.1.1)

(iii) in terms of the standard local coordinate ϕ we find

α = cos2ϕ dϕ α̂ = dϕ

(iv) the form α̂ is not exact in spite of the way it is written.

Hint: (i) 0 
= π = ∫
D2 d(x dy) = ∫

S1 α, similarly for α̂; (ii) α̂ = ωg for g = dϕ ⊗ dϕ;

(iv) ϕ /∈ F(S1) (it is not continuous at the point ϕ = 0 ∼ 2π ). �

9.1.3 Generalize item (i) from problem (9.1.2) to S2 = ∂ D3 ⊂ R
3, . . . , Sn = ∂ Dn+1 ⊂

R
n+1.

Hint: α := (x dy ∧ dz)|S2 and α := (x1 dx2 ∧ · · · ∧ dxn+1)
∣
∣

Sn . �

• Thus the converse of dd = 0 is indeed not always valid and it fails to hold even on

such simple manifolds, like spheres or tori. In Section 9.2 we will learn that a class of

manifolds where in contrast the converse of dd = 0 does hold is given by the manifolds

which are contractible to a point,137 like R
n or all the manifolds diffeomorphic to R

n , the

most important representative being a neighborhood (e.g. a coordinate patch) of an arbitrary

point on a (general) manifold.

9.2 Construction of a potential on contractible manifolds

• In this section we derive the explicit formula for a potential of an arbitrary closed form

on a particular class of manifolds, namely on manifolds contractible to a point. A manifold

M is said to be (smoothly) contractible to a point, if there exists a vector field ξ on the

manifold such that the flow �t ↔ ξ gradually shrinks the manifold to the point x0 ∈ M ,

i.e. it fulfills

�0 = idM lim
t→∞ �t (x) = x0

where the point x is arbitrary and x0 is fixed (it does not depend on x). Put another way, the

flow �t “begins” (at t = 0) with the identity, it is then, however, deformed more and more

137 Also indirectly by this that the spheres Sn and the tori T n are not contractible to a point.
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and finally it “ends” (at t = ∞) with the trivial map, which sends the whole manifold to one

of its points x0.138 Each point x gradually moves to x0 along a smooth curve γ (t) = �t (x)

(the integral curve of the field ξ ), which lies completely in M .

9.2.1 Show that the manifold R
n is indeed contractible to a point.

Hint: the generator of the flow is, for example, ξ = −xi∂i (in Cartesian coordinates), the

flow itself (the shrinking homotopy) is �t : xi �→ e−t x i and it shrinks the whole R
n into the

origin. By a translation (i.e. by the field ξ = −(xi − ci )∂i ) one can achieve the shrinking

into any other point ci . �

9.2.2 Show that an arbitrary manifold which is diffeomorphic to R
n (in particular, an open

neighborhood of an arbitrary point x on an arbitrary, possibly non-contractible, manifold)

is also contractible to a point.

Hint: if f : R
n → M is a diffeomorphism, then �̂t := f ◦ �t ◦ f −1 shrinks M into f (0);

its generator is according to (4.1.9) the field ξ = f∗(−xi∂i ). �

• In the next two problems we (constructively) show that on a contractible manifold each

closed form has a potential, i.e. that here the converse of dd = 0 does hold.

9.2.3 Let M be contractible to a point, the shrinking homotopy (the flow �t ) being

generated by the vector field ξ . Define the homotopy operator by139

ĥ : �p(M) → �(p−1)(M) ĥα := −
∫ ∞

0

dt �∗
t iξα

Check that the following identity holds:

d ◦ ĥ + ĥ ◦ d = �∗
0 − �∗

∞ = 1̂ ≡ id�p(M)

Hint: there holds dĥα = − ∫ ∞
0

dt �∗
t diξα and so making use of (6.2.8) and (4.4.2) we get

(dĥ + ĥd)α = −
∫ ∞

0

dt �∗
t (diξ + iξ d)α = −

∫ ∞

0

dt �∗
t Lξα

= −
∫ ∞

0

dt
d

dt
(�∗

t α) = −(�∗
∞α − �∗

0α)

Now �∗
0 = id∗

M = id�p(M) and one easily verifies (in coordinates, say; alternatively: the

pull-back is actually from a point!) that �∗
∞α = 0. �

138 If some one-parameter family of maps ft : M → N smoothly joins two maps ft1 and ft2 (both of them being from M to
N ), it is called (smooth) homotopy and ft1 and ft2 themselves are called (smoothly) homotopic maps (they may be smoothly
deformed into one another). On a contractible manifold the identity map is homotopic to the trivial one (the homotopy is
provided by the flow �t ).

139 The convergence of this integral is not evident. This “problem” does not occur if one adopts a more general approach (a clear
(and warmly recommended) exposition may be found, for example, in the book by Flanders), where the contractibility itself
is introduced in a slightly different way (it may not be realized by a flow and it lasts only a finite time, so that the issue of the
convergence of the integral becomes trivial). The computation is a bit lengthier, however, and that was the reason we preferred
the approach given here.



194 Poincaré lemma and cohomologies

9.2.4 Prove that on a contractible manifold the Poincaré lemma140 holds: each closed form

is necessarily exact.

Hint: if dα = 0, then due to (9.2.3) α = d(ĥα) ≡ dβ. �

• The form of the miraculous homotopy operator ĥ := − ∫ ∞
0

dt �∗
t iξ , which indeed did a

very good job, appeared all at once with no attempt at motivation or derivation (we merely

plucked the operator out of thin air and it is not clear at all why it looks as it does and does

what it does). At the end of the section we sketch a simple geometrical picture which is

hidden behind the formula and which leads by a straightforward computation to its structure

presented here (9.2.13).

9.2.5 Let M be an arbitrary manifold (not necessarily contractible). Show that

(i) a potential β of an exact form α (α = dβ) is not given uniquely, but rather one has the freedom

of performing a “gauge transformation”

β �→ β ′ = β + ρ ρ closed

(ii) in particular, on a contractible manifold the freedom is

β �→ β ′ = β + dσ σ arbitrary

(iii) β ∼ β ′ is the equivalence on the set of all potentials of a given (exact) form α.

Hint: dd = 0, see (9.2.4). �

• A condition which is imposed on a potential and which is not invariant with respect to

the transformations discussed in (9.2.5) (so that not all potentials equivalent to each other

meet this condition), is called a gauge condition.141

9.2.6 Check that

(i) the potential β given by the formula β = ĥα from the problem (9.2.4) satisfies the gauge condition

(not very often used in physics)

iξ β = 0

(ii) the conditions

dβ = α iξ β = 0

still do not fix the potential β uniquely.

Hint: the freedom β �→ β ′ = β + dσ remains, but only with dσ such that iξ dσ = 0

holds. �

140 The “reversed” terminology may also be occasionally found in the literature: the statement dd = 0 is called the Poincaré
lemma and what we call the Poincaré lemma is then said to be “the converse” of the Poincaré lemma.

141 It is also known as “fixing of the gauge”; the fixation may not be complete, in fact, still leaving some, although restricted,
freedom.
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• Let us now compute the explicit coordinate expression of the potential given by the

“abstract” formula (9.2.4) for the case of shrinking of R
n as discussed in (9.2.1).

9.2.7 Given the field ξ = −xi∂i on R
n check that

(i) if the components with respect to Cartesian coordinates of a (closed) p-form α in R
n are αki ... j (x),

then (for p ≥ 1)

(�∗
t iξ α)i ... j (x) = −(e−t )

pxkαki ... j (e
−t x)

(ii) the component formula for the potential β then reads

βi ... j (x) ≡ (ĥα)i ... j (x) = xk

∫ ∞

0

dt (e−t )
p
αki ... j (e

−t x)

= xk

∫ 1

0

dλ λp−1αki ... j (λx)

(iii) here the gauge condition from problem (9.2.6) reduces to

xiβi ... j (x) = 0

Hint: use the field ξ from (9.2.1). �

• Let us see now what the general formulas yield in some simple situations mentioned

at the beginning of the chapter. Namely we compute, making use of these formulas, the

potential energy U (r) for a given (conservative) force field F(r) as well as the scalar and

vector potentials (�, A) for given electric and magnetic fields (E, B).

9.2.8 Let F(r) be a conservative force (vector) field in R
3 and let F · dr be the correspond-

ing covector field (in the sense of (8.5.1)). According to the introduction to this chapter

there thus holds d(F · dr) = 0. Check that

(i) in “vector notation” this is the condition curl F = 0
(ii) here the formula for the potential from (9.2.7) leads to the well-known result

F = −∇U U (r) = −r ·
∫ 1

0

dλ F(λr) ≡ −
∫ r

0

F′ · dr′ F′ ≡ F(r′)

where the integral on the right is to be performed along the straight line142 from the origin to

the point r (and it has the physical meaning of minus the work done by the force F on an object

along the path from 0 to r)

(iii) here the freedom from problem (9.2.5) yields

U ′(r) = U (r) + a constant function

Hint: (i) (8.5.4); (ii) r(λ) = rλ. �

9.2.9 Check that

142 However, just the condition d(F · dr) = 0 guarantees that the same result would be obtained if the integral were computed
along any other curve sharing its ends with the straight line discussed above.
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(i) the electrostatic equation curl E = 0 leads to the scalar potential �(r) and that (9.2.7) gives

E = −∇� �(r) = −
∫ r

0

E′ · dr′

(ii) the magnetostatic equation div B = 0 (it is valid in electrodynamics as well) leads to the vector

potential A and that (9.2.7) gives

B = curl A A(r) = −r ×
∫ 1

0

λ dλ B(λr) ≡ −1

r

∫ r

0

dr′ × r ′B′ r · A = 0

Hint: (9.2.8), (8.5.4); Ai (r) = xk
∫ 1

0
λ dλ Bki (λr), Bki = εki j B j . �

• Recall that we have to square up to the reader concerning a debt from Chapter 4. We

spoke about non-holonomic frames there (see, for example, (4.5.7)) and it turned out that

the necessary condition that the frame ea is holonomic (coordinate) consists in the vanishing

of all the mutual commutators. Now we have mastered the formalism which enables us to

cope with the problem easily and to prove that this condition is actually both necessary and

sufficient.

9.2.10 The coefficients of anholonomy cc
ab(x) of the frame field ea are defined by the

relations

[ea, eb] = cc
ab(x)ec

Show that

(i) in spite of their suggestive graphical form they do not form the components of a tensor

(ii) for the dual coframe field the following equations hold:

dea + 1

2
ca

bc(x)eb ∧ ec = 0

Hint: (i) the vanishing or non-vanishing of the components of a tensor does not depend

on the choice of the frame and for the coordinate frame field the coefficients vanish;

(ii) dea(eb, ec) = · · · by means of Cartan formulas (6.2.13). �

9.2.11 Prove the criterion for a frame field ea to be holonomic (coordinate):

ea = ∂a ⇔ [ea, eb] = 0

Hint: to the right: once upon a time (see before (4.5.7), trivial); to the left: cc
ab(x) = 0 ⇒

due to (9.2.10) dea = 0 ⇒ according to the Poincaré lemma there are functions (0-forms)

xa such that ea = dxa ; since ea is a (co)frame field, we have

e1 ∧ · · · ∧ en ≡ dx1 ∧ · · · ∧ dxn 
= 0

⇒ the functions xa happen to be independent and we may use them as coordinates. The

dual basis is then ea = ∂a . �
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• It turns out to be useful to realize the following simple fact concerning the codifferential.

9.2.12 Prove that (also) for the codifferential (8.3.2) the analog of the Poincaré lemma

holds: from the coclosedness (δgα = 0) there locally follows the coexactness (α = δgβ).

Hint: ∗−1d ∗ η̂α = 0 ⇒ d ∗ α = 0 ⇒ ∗α = dσ ≡ d ∗ η̂β ⇒ α = ∗−1d ∗ η̂β. �

U
∂U
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• We will return now to the homotopy operator in-

troduced in (9.2.3) and explain (as promised there)

its geometrical origin. Let us contemplate a slightly

more general situation where the flow �t corre-

sponding to the vector field ξ does not shrink the

manifold M necessarily to a point, but possibly only

to some submanifold N ⊂ M . (The point is a special

case. For example, the field

ξ = (1 − r )∂r

shrinks E3 without the origin only to the unit sphere S2
1 ⊂ E3.) If there is a p-simplex

σ ≡ σ0 on M , it will move on M due to the flow �t and it will end as σ∞ ≡ �∞(σ ). This

creates a “full tube” U . It is bounded by σ from the left and by �∞(σ ) from the right,

and the side faces are formed from the integral curves of the field ξ , emanating from the

boundary ∂σ . Our aim now is to compare the integral of an arbitrary p-form α over the

end image of the simplex with the integral over the initial simplex itself, i.e. to compare

the integrals
∫
�∞(σ )

α and
∫
σ

α.143 Since both �∞(σ ) and σ are parts of the boundary of

U , both the integrals occur in Stokes’ theorem written for the form α and the domain U . In

addition to the longed-for two integrals, Stokes’ theorem appends two more terms, one of

them being a “volume” integral over U and also a “surface” integral over the “side faces”

of the boundary ∂U . So we are expected to be able to compute these two integrals. The key

idea lies in the observation that the tube (as well as the side faces of its boundary) may be

put together from infinitesimal slices144 of thickness dt (put together as
∫ ∞

0
dt . . .). Stokes’

theorem thus yields the equation in which there are two integrals, which we need, plus two

additional integrals which contain the procedure of putting together the slices
∫ ∞

0
dt . . . .

The last crucial technical point is to realize that the slices may be actually regarded as the

“coins” from the problem (7.6.11), so that we may profit from the “coin interpretation” of

the interior product iV .

9.2.13 ∗ Carry out the steps indicated above and convince yourself that they indeed result in
∫

σ∞
α =

∫

σ0

α −
∫

σ0

(dĥ + ĥd)α

or, in terms of the forms themselves (with no integrals involved),

�∗
∞α = α − (dĥ + ĥd)α

143 Or, what results simply from that, the pulled-back form �∗
∞α and the form α ≡ �∗

0α itself.
144 Just like a piece of ham (or rather a carrot for us vegetarians) may be cut into thin slices.
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where the homotopy operator did not fall from heaven, now (neither did we pluck it out of

thin air), but rather it comes out just in the form

ĥ = −
∫ ∞

0

�∗
t iξ dt

Hint:
∫

U
dα

1=
∫ ∞

0

∫

(σt )dtξ

dα =
∫ ∞

0

dt
∫

σt

iξ dα =
∫ ∞

0

dt
∫

�t (σ0)

iξ dα =
∫

σ0

∫ ∞

0

dt �∗
t iξ dα

2=
∫

∂U
α =

∫

σ∞
α −

∫

σ0

α −
∫ ∞

0

∫

(∂σt )dtξ

α =
∫

σ∞
α −

∫

σ0

α −
∫ ∞

0

dt
∫

∂σt

iξα

=
∫

σ∞
α −

∫

σ0

α −
∫ ∞

0

dt
∫

σ0

d�∗
t iξα =

∫

σ∞
α −

∫

σ0

α −
∫

σ0

d
∫ ∞

0

dt �∗
t iξα

so that we have the required equality of integrals − ∫
σ0

ĥ dα = ∫
σ∞

α − ∫
σ0

α + ∫
σ0

dĥ α.

If this is written in the form
∫
σ0

(�∗
∞α − α + dĥ α + ĥ dα) = 0 we may infer (since the

simplex σ0 is arbitrary) the vanishing of the form under the integral sign, whence finally

�∗
∞α − α + dĥ α + ĥ dα = 0. �

• Now if the flow �t shrinks the manifold to a point, the pull-back �∗
∞α vanishes (unless

α happens to be a 0-form; the forms are then pulled back from a zero-dimensional manifold),

so that only

α = dĥ α + ĥ dα

remains. And if at last the form α is closed, we finish with the result which provides the

formula for the potential,

α = d(ĥα) ≡ dβ

9.3∗ Cohomologies and deRham complex

• Recall that this chapter started with the contemplation of the relation between closed
and exact forms on a manifold. The easy part of the issue was the observation that whenever

a form happens to be exact, it is necessarily also closed (dd = 0). The hard part concerns

the converse of this statement.

There is a specialized and mature branch of mathematics called cohomology theory
(which is a part of algebraic topology) which studies things like this as a full-time job. It

thus provides a convenient language as well as sophisticated and elaborate computational

machinery tailored to the very relation between the objects generalizing “closed and exact

forms.” In this section we say a few words about the concepts needed for understanding

how cohomology theory is related to the issue of the converse of dd = 0.

The basic object in the theory is called a complex (C, d). It is a Z-graded vector space

C := ∞⊕
r=−∞

Cr ≡ · · · ⊕ C−1 ⊕ C0 ⊕ C1 ⊕ C2 ⊕ · · · ⊕ Cn ⊕ · · ·



9.3 Cohomologies and deRham complex 199

(often only a finite number of subspaces Cr are non-trivial), in which a family of linear

maps (operators) between subspaces with “adjacent” degrees is defined

· · · d−1→ C0 d0→ C1 d1→ C2 d2→ · · · dn−1→ Cn dn→ · · ·
obeying moreover the condition dk+1 ◦ dk = 0. The whole family of these operators is called

the differential d of the complex (C, d) and the condition mentioned above is often written

concisely (with no indices) in the form dd = 0, so that the differential is by definition a

nilpotent operator.145

The differential singles out two types of distinguished subspaces in C .

9.3.1 Let (C, d) be a complex. Define the subspaces

Z p := Ker dp ≡ {c ∈ C p | dc = 0}
B p := Im dp−1 ≡ {c ∈ C p | c = dĉ; ĉ ∈ C p−1}

The elements of Z p are called p-cocycles and those of B p are called p-coboundaries.

Sometimes we will use the terminology (the reason for that will be made clear in a while)

closed and exact elements.146 Check that

(i)

B p ⊂ Z p ⊂ C p

(so that each coboundary is necessarily a cocycle)

(ii) c ∼ c′ := c + dĉ defines an equivalence in the space Z p . We thus regard as being equivalent

those p-cocycles which differ from each other by (at most) a p-coboundary. The elements which

are equivalent in this sense are said to be cohomologous
(iii) the p-coboundaries are cohomologous to zero.

�

• Although the reader must already understand why the concept of a complex is the
structure which is relevant in the context of the Poincaré lemma, we will formulate it

explicitly.

9.3.2 Contemplate the following items until they are clear:

(i) (�(M), d), i.e. the space of differential forms on a manifold endowed with the exterior derivative

operator constitutes a (cochain) complex

�0(M)
d→ �1(M)

d→ �2(M)
d→ · · · d→ �n(M)

(with only degrees 0 to n ≡ dim M being represented non-trivially); this complex is called the

deRham complex of a manifold M

145 The differential may also act in the opposite direction (to lower the degree – see, for example, (9.3.2) and (9.3.4)); then its
nilpotency looks in detail like dk ◦ dk+1 = 0 and the homogeneous subspaces are denoted by Cr .

146 The standard convention is that in the case when the differential raises the degree by one unit we speak of the cochain complex,
cocycles Z p , coboundaries B p and cohomologies H p , whereas in the case when the differential lowers the degree by one unit
we use the lower indices and the concepts of a chain complex, cycles Z p , boundaries Bp and homologies Hp .
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(ii) in this complex the role of p-cocycles is played by the closed p-forms and the role of p-cobound-

aries is played by the exact p-forms (in the sense of the beginning of the chapter)

(iii) the validity of the Poincaré lemma on M is equivalent to the statement that for each p there holds

B p(M) = Z p(M), so that all cocycles are cohomologous to zero
(iv) another (chain) complex related to the manifold M is the complex (C(M), ∂) of its singular

chains

C0(M)
∂← C1(M)

∂← C2(M)
∂← · · · ∂← Cn(M)

(again with only degrees 0 to n being represented non-trivially); here the subspace of degree p is

the space Cp(M) from Section 7.3, the space of p-chains on a manifold M and as a differential

(which lowers the degree here) we take the boundary operator ∂ from problem (7.3.1).

• According to (9.3.1) the spaces B p and Z p may not be identical, in general; the only

thing we know a priori is that B p is a subspace of Z p. The existence of closed (but) non-

exact forms, which we illustrated explicitly in problems (9.1.1)–(9.1.3) shows that (at least

for the deRham complex) one encounters cases when B p is a non-trivial subspace of Z p

(B p 
= Z p). It turns out that highly useful information is carried by the structure of the

equivalence classes in the sense of the equivalence from (9.3.1), i.e. so-called cohomology
classes.

9.3.3 Check that

(i) if all p-cocycles happen to be p-coboundaries (Z p = B p), there will be (for given p) only a single
class (the class [0]).

(ii) if there is a non-trivial p-cocycle z (such that it is not a p-coboundary), then all of its (non-zero)

multiples λz are also non-trivial; moreover, the multiples by different numbers are inequivalent.

Hint: (i) if z ∈ Z p = B p, then z = dw for some w ∈ C p−1. Then z = dw = 0 + dw ⇒
[z] = [0], and this is true147 for each z; (ii) z 
= d(. . .) ⇒ λz 
= d(. . .)′; if λ1z = λ2z +
d(. . .), then (λ1 − λ2)z = d(. . .) ⇒ z = d(. . .)′, which is a contradiction. �

• So if there exists a non-trivial p-cocycle z, automatically we are given an infinite number

of additional p-cocycles, non-equivalent to one another (non-zero multiples of z) which

span altogether a one-dimensional subspace in Z p. From the perspective of finding a useful

measure of “all non-equivalent p-cocycles,” however, it is not too interesting to distinguish

between vectors from the same subspace, since the whole subspace (ray) may be completely

reconstructed from a single representative; what really matters is the subspace alone. There

may exist, of course, other subspaces of non-trivial p-cocycles (linearly independent of

the first one). The relevant quantitative information which succinctly encodes the relation

between the cocycles and the coboundaries (closed and exact elements) of a complex is

thus given in a certain linear space. This space may be formally defined as the factor

147 Herein the author would like to thank the Indians for inventing the concept of zero (as well as all nations, individuals and firms
that have merit in putting it on the market). In this (as well as in numerous other) proof(s) it came in handy.
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space148 of the space of p-cocycles Z p with respect to the subspace of p-coboundaries B p

H p := Z p/B p

and it is called the pth cohomology group.149 The Z-graded vector space

H := ∞⊕
r=−∞

Hr ≡ · · · ⊕ H 0 ⊕ H 1 ⊕ H 2 ⊕ · · · ⊕ H n ⊕ · · ·

is called the cohomology of a complex (C, d). A complex is said to be coexact at C p if

Z p = B p and coexact if this happens for all p. Thus the cohomology of a cochain complex

is a measure of the lack of coexactness of the cochain complex. The dimension of the space

H p is known as the (pth) Betti number bp := dim H p. This number simply says how many

linearly independent non-trivial p-cocycles there are in Z p (or, in particular, for the case of

the deRham complex, how many linearly independent non-exact (albeit closed) differential

p-forms there are on a manifold).

9.3.4 Two simple examples of complexes are provided by (�L∗, iv) and (�L∗, jv), i.e.

the exterior algebra of a linear space, where the differential is given either by the interior

product iv (5.4.1) or by the (adjoint) operator jv introduced in (5.8.6)

�0L∗ iv← �1L∗ iv← �2L∗ iv← · · · iv← �n L∗

�0L∗ jv→ �1L∗ jv→ �2L∗ jv→ · · · jv→ �n L∗

(recall that (iv)2 = 0 = ( jv)2). Check that

(i)

ĥ := |v|−2 jv plays the role of a homotopy operator for the complex (�L∗, iv)

ĥ := |v|−2iv plays the role of a homotopy operator for the complex (�L∗, jv)

(ii) both of the complexes have trivial cohomologies (bp = 0 for all p).

Hint: (i) iv jv + jviv = |v|21̂ due to (5.8.9), then (9.2.3), (9.2.4): for example if ivα = 0,

then α = ivβ ≡ iv(|v|−2 jvα) (so that β ≡ |v|−2 jvα is a “potential” for α). �

• A slightly more involved complex, which is related to the representations of Lie algebras,

will be discussed in Section 12.5. Let us return to manifolds, however, i.e. to the deRham

complex of differential forms on a manifold.

9.3.5 Justify the statement that in the case of the deRham complex (�(M), d) the

zeroth cohomology H 0(M) carries (only) the information about the number of connected

148 See Appendix A.1; we simply need to “subtract” those dimensions in Z p which are “irrelevant” within the context under
discussion; just this is done by the formal procedure of factorization.

149 H p is a linear space, which is (a bit more than) an Abelian group (= a commutative group; we can multiply the elements by
scalars from R in addition to the structure of a group). The term cohomology group stems from a more general definition of a
complex, where C p are (only) Abelian groups and dp are homomorphisms of groups. In this situation we get as H p (indeed
only) Abelian groups.
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components of the manifold M (see (11.7.15)), namely

b0 ≡ dim H 0(M) = the number of connected components of the manifold M

Hint: there are no exact 0-forms, the closed forms coincide with the locally constant func-

tions on M ; if M has several connected components, the value of the constants may differ
on them, so that a particular closed 0-form on M is given by a point of R

k (a k-tuple of
numbers, the values of the function on k connected components). �

9.3.6 Consider again the situation from before problem (9.2.13), where a manifold M was

shrunk by the flow �t ↔ ξ to some submanifold N ⊂ M . Moreover, let the flow �t be

such that the points of the submanifold N itself remain fixed in the course of the shrinking

(such shrinking is called the deformation retraction and the resulting manifold N ⊂ M is

the deformation retract of the manifold M). Check that

(i) the cohomology class [α] of an arbitrary (closed) form α on M is completely specified by the

restriction of the form α to N , i.e. the information about the class is actually encoded in a far

simpler form, the restriction of α to the deformation retract150

(ii) the unit n-dimensional sphere is the deformation retract of the space R
n+1 minus the origin, so

that the cohomological classes of the forms in R
n+1 minus the origin are given by their restriction

on the sphere Sn

(iii) for n = 1 complete information about the class of a (general closed) 1-form α = a(r, ϕ) dr +
b(r, ϕ) dϕ in the plane minus the origin is in the 1-form on the circle

α̂ = b(1, ϕ) dϕ

(iv) there are no (cohomologically) non-trivial 2-forms in the plane minus the origin.

Hint: (i) if we denote by π ≡ �∞ the projection of the whole manifold M onto the

deformation retract N ⊂ M (indeed π ◦ π = π holds), then due to (9.2.13) we have

π∗α = α − d(ĥα), so that [α] = [π∗α] = [π∗(α|N )]; (ii) π : r �→ r/r ; (iii) in polar co-

ordinates π : (r, ϕ) �→ (1, ϕ); (iv) there are no non-zero 2-forms on the circle. �

• The knowledge of the Betti numbers of a given manifold (i.e. the Betti numbers for

the deRham complex of the manifold M) for p ≥ 1 yields a (more than) exact quantitative

answer to the question about the validity of the converse of dd = 0: the converse holds

for p-forms if and only if bp(M) = 0. On a manifold which is contractible to a point the

converse holds for all p ≥ 1 ⇒ all the Betti numbers (for p ≥ 1) vanish:

M is contractible ⇒ b1 = · · · = bn = 0 (and b0 = 1)

The contractibility is, however, an unreasonably strong request in order that the potential

exist for a closed form of some fixed degree p: evidently the vanishing of a single Betti

number, bp = 0 alone, is sufficient. For example, one can prove that for the sphere S2

the Betti numbers read b0 = 1 = b2, b1 = 0. The fact that b1 = 0 means that each closed

1-form has a potential, but non-vanishing b2 indicates that for closed 2-forms this is no

150 In particular if the deformation retract of M happens to be a point, the classes are specified by the restrictions of the forms on
the point, so that they necessarily vanish (unless they are 0-forms).
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longer true (in accordance with the result of problem (9.1.3); b2 = 1 moreover says that

there are no other non-trivial classes except the one we revealed in the problem). For the

plane the Betti numbers read b0 = 1 (it is connected) and all remaining ones vanish (it is

contractible), but for the plane minus the origin there already holds b1 
= 0, since this is true

on the circle (9.3.6), (9.1.3).

From the pragmatic point of view the formalism of the deRham complex would say noth-

ing about the issue of the converse of dd = 0 if an independent method of computation of

the cohomological groups of a manifold did not exist. Yet this method does exist. It turns out

that one may also associate some completely different complexes with a manifold, which

may be identified with the deRham complex, however, at the level of cohomologies (i.e.

they result in the same cohomologies in spite of being completely dissimilar as complexes).

And what is essential, the cohomologies of some of them may be computed fairly easily for

numerous cases of considerable interest. Such statements about coincidence of cohomolo-

gies of two different complexes associated with a manifold are non-trivial and very useful

mathematical theorems. Let us mention at least the complex of “singular chains” (M, ∂) or

the complex given by “cell decomposition of a manifold”; see the books by Nash and Sen

or Schwartz.

Summary of Chapter 9

A form is closed if its exterior derivative vanishes, and exact if it is itself the exterior

derivative of some other form (its potential). Since the operator d is nilpotent (i.e. dd = 0),

each exact form is necessarily closed. Simple counterexamples show that the converse of

this statement, freely used in elementary physics, does not hold in general. It does hold,

however, on contractible manifolds. In particular it holds locally, i.e. within a sufficiently

small neighborhood of any point on any manifold; this statement is known as the Poincaré

lemma. An explicit formula for the potential is then given. A more subtle treatment of the

issue is provided by cohomology theory, namely by cohomologies of the deRham complex.

ĥ = −
∫ ∞

0

dt �∗
t iξ Homotopy operator (9.2.3)

d ◦ ĥ + ĥ ◦ d = 1̂ Essential property of ĥ (9.2.3)

α = d(ĥα) ≡ dβ β ≡ ĥα is a potential of α (9.2.4)

xk

∫ 1

0

dλ λp−1αki ... j (λx) Coordinate expression of (ĥα)i ... j (x) (9.2.7)

[ea, eb] = cc
ab(x)ec Coefficients of anholonomy of ea (9.2.10)

ea = ∂a ⇔ [ea, eb] = 0 When a frame field is holonomic (coordinate) (9.2.11)

ea = dxa ⇔ dea = 0 When a coframe field is holonomic (9.2.11)

Z p := Ker dp p-cocycles (9.3.1)

B p := Im dp−1 p-coboundaries (9.3.1)

H p := Z p/B p pth cohomology group Sec. 9.3

bp := dim H p pth Betti number Sec. 9.3

�0(M)
d→ �1(M)

d→ · · · d→ �n(M) deRham complex of a manifold M (9.3.2)
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Lie groups: basic facts

• Groups may be ranked among the most important objects in mathematics and indirectly

in theoretical physics as well. This reputation is by no means accidental, but it is related to

the fact that they serve as a formal tool for utilizing symmetries; the importance of groups

is then simply a reflection of the importance of symmetries.

From the perspective of differential geometry a special class of groups turns out to be

of particular interest, namely the Lie groups. They represent objects in which their two

distinct aspects peacefully coexist in a happy symbiosis, shoulder to shoulder: algebraic

(they are groups) and geometrical or differential-topological (they are smooth manifolds).

These two aspects restrict one another,151 but (as the world goes in a good partnership) they

also immensely enrich one another – the richness of the geometry on Lie groups ultimately

springs from the existence of the algebraic structure of groups.

10.1 Automorphisms of various structures and groups

• Groups occur in all applications by means of their actions, as groups of transformation
of something. The transformations of an arbitrary set X (bijective maps g : X → X ; for

finite sets the permutations) are endowed naturally with the structure of a group (with respect

to the composition of maps). A simple, albeit highly important, observation is that if we

add some structure on X (being for now only a set), X �→ (X, s), then the transformations

which preserve (respect) the structure,152 the automorphisms of the structure (X, s), also

constitute a group, which is clearly a subgroup of the group of all transformations of the

“bare” set X ; we will denote this group by G.

10.1.1 Consider X to be the four-element set X = {a, b, c, d}. The group of its transfor-

mations is S4 = the permutation group of four elements. Introduce the structure (X, s) as

151 We will see, for example (11.1.6), that a manifold, which yearns to become a Lie group, has to first vow that for all its life it
will be parallelizable (a global frame field should exist on it, i.e. n = dim M nowhere vanishing vector fields, being moreover
linearly independent at each point) and not all manifolds are disposed to bind themselves by oath to this. It turns out that on
the common sphere S2, to give an example, there is not a single nowhere vanishing vector field, so that it is not possible to
introduce the structure of a Lie group on S2.

152 A structure may be defined as a rule in terms of some maps; then to preserve the structure means that the transformation
commutes with these maps. The analysis of several particular situations is the best way to gain a feeling for this point.
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follows: we regard the elements of X as the vertices of a square. Find the transformation

group G ⊂ S4 which preserves this structure (i.e. from a square makes a square again).

Hint: such g ∈ S4 which do not produce “non-neighbors” from neighbors. �

10.1.2 Let (X, s) be a smooth manifold M , i.e. “s” is the smooth structure on a manifold. Be

sure you understand that in this case the group is G = Aut M , the group of diffeomorphisms
of the manifold.153 �

10.1.3 Let (X, s) be a (finite-dimensional real) linear space V . The group G of auto-

morphisms of this structure is denoted by Aut V ≡ GL(V ) (GL = general linear). Show

that

(i) it is the group of invertible linear operators on V
(ii) it is (non-canonically) isomorphic to the group GL(n, R) ≡ GL(Rn) of non-singular real n × n

matrices.

Hint: (i) here preserving “s” means commuting with the operation of making linear com-

binations, g(v + λw) = g(v) + λg(w), i.e. it means the linearity of the transformations,

being bijective, yields the invertibility; (ii) a basis ea ∈ V (an arbitrary choice) in a standard

way identifies V ↔ R
n and the operators on V with the square matrices (if Aea = Ab

aeb,

then A ↔ Ab
a). �

10.1.4 Let (X, s) be a linear space V endowed with a bilinear form h : V × V → R and let

(X, s) := (V, h). The group G of automorphisms of this structure consists of those invertible

linear operators A on V (10.1.3), which moreover satisfy the condition

h(Av, Aw) = h(v, w)

Show that

(i) such operators are indeed closed with respect to group operations

(ii) at the level of their matrices we get

Aa
c Ab

d hab = hcd ↔ ATh A = h

Hint: (ii) insert a basis (hab := h(ea, eb)). �

10.1.5 If the bilinear form h from (10.1.4) is symmetric and non-degenerate (i.e. a metric

tensor in V ) with signature (r, s), the corresponding group is denoted by O(r, s) and it is

called the pseudo-orthogonal group. Show that

(i) at the level of matrices it may be characterized by the condition

ATηA = η η = diag (1, . . . , 1
︸ ︷︷ ︸

r

, −1, . . . , −1
︸ ︷︷ ︸

s

)

153 The group Diff (M) is not a (finite-dimensional) Lie group. However, some of its subgroups which will be of great importance
for us are Lie groups.



206 Lie groups: basic facts

The matrices A which satisfy this condition are called pseudo-orthogonal matrices. The best

known example is the Lorentz group ≡ O(1, 3).

(ii) in particular for s = 0 (or equivalently r = 0) we get the orthogonal matrices defined by the

condition

AT A = 1

(and the orthogonal group O(n; R) ≡ O(n) := O(n, 0)).154

Hint: (i) choose a basis in which h has the canonical form (= ηab). �

10.1.6 If the bilinear form h from (10.1.4) happens to be antisymmetric and non-
degenerate (i.e. a non-degenerate 2-form in V ), we get the symplectic group Sp (m, R)

(for dim V = 2m). Show that

(i) the dimension of the space V must indeed be even (dim V = 2m)

(ii) at the level of matrices we have 2m × 2m matrices A characterized by the condition

ATωA = ω ω :=
(

0 −I

I 0

)

(the elements of ω are m × m blocks; it is the canonical form of h under consideration).

Hint: (i) ωT = −ω ⇒ det ωT = · · · ; (ii) (5.6.8). �

10.1.7 Let (X, s) be a linear space V endowed with a volume form ω (see Section 5.7),

(X, s) := (V, ω). The group G of automorphisms of this structure consists of the invertible

linear operators A on V (10.1.3), such that they in addition satisfy the condition

ω(Av, . . . , Aw) = ω(v, . . . , w)

i.e. the parallelepiped spanned by (v, . . . , w) is transformed to the parallelepiped spanned

by (Av, . . . , Aw) with the same (oriented) volume. The corresponding group is denoted by

SL(V ) (special linear). Show that

(i) such operators are indeed closed with respect to group operations

(ii) at the level of matrices we have

Aa
c . . . Ab

dεa...b = εc...d ↔ det A = 1

This group of matrices is standardly denoted as SL(n, R).

Hint: (ii) insert a basis, (5.7.1) and (5.7.6) �

10.1.8 Show that

(i) for the determinant of the (pseudo-)orthogonal matrices we get

A ∈ O(r, s) ⇒ det A = ±1

154 The (pseudo-)orthogonal groups exist in both versions R and C. In the first case the matrices are real, in the second one they
are complex.
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(ii) there is a bijection between the parts of the group characterized by det A = +1 and det A = −1

(iii) the part with det A = +1 constitutes a subgroup (denoted by SO(r, s): the special (pseudo-)

orthogonal matrices)

ATηA = η, det A = +1 ↔ SO(r, s)

AT A = 1, det A = +1 ↔ SO(n)

(iv)

SO(r, s) = O(r, s) ∩ SL(r + s, R)

Hint: (i) take the determinant of both sides of the defining equation; (ii) for example,

A �→ σ A, σ := diag (−1, 1, . . . , 1). �

10.1.9 Let (X, s) be a linear space V with an orientation (see Section 5.5), (X, s) := (V, o).

The group GL+(V ) of the automorphisms of this structure consists of the invertible linear

operators A on V (10.1.3) which satisfy the condition

ea is a right-handed basis ⇒ e′
a := Aea is also a right-handed basis

Show that

(i) such operators are indeed closed with respect to group operations

(ii) at the level of matrices we get

det A > 0

(this group is standardly denoted as GL+(n, R)).

Hint: (ii) see (5.5.1). �

10.1.10 Let (X, s) be an n-dimensional complex linear space V (a linear space over C).

Show that

(i) the group G consists in this case of the invertible C-linear operators in V
(ii) G is (non-canonically) isomorphic to the group GL(n, C) ≡ GL(Cn) of non-singular complex

n × n matrices.

Hint: like (10.1.3) but with λ ∈ C. �

• It turns out that the situation from the last problem may also be expressed in “real”

language.

10.1.11 A point z ∈ C
n (a column of n complex numbers) may be naturally identified

with the point (x, y) ∈ R
2n (the column of 2n real numbers; zn = xn + iyn). If the matrices

acting in C
n are written in the same spirit as A = B + iC , a C-linear map in C

n , z �→ Az,

then induces a certain R-linear map in R
2n . Show that
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(i) explicitly we get

z �→ Az ↔
(

x
y

)

�→
(

B −C
C B

)(
x
y

)

(ii) the map

ρ : GL(n, C) → GL+(2n, R) A ≡ B + iC �→
(

B −C
C B

)

is induced by this, which is an injective homomorphism of groups; its image Im ρ ⊂ GL(2n, R)

is then an isomorphic copy of GL(n, C) in GL(2n, R)

(iii) for n = 1 we obtain a useful realization of the complex numbers themselves in the form of 2 × 2

matrices

z ≡ x + iy �→
(

x −y
y x

)

≡ x

(
1 0

0 1

)

+ y

(
0 −1

1 0

)

(iv) the matrices from Im ρ (“complex” matrices realized as double size real matrices) may also be

characterized uniquely as such matrices D ∈ GL(2n, R) which commute155 with the matrix J

[D, J ] := D J − J D = 0 J := ρ (0 + i1) ≡
(

0 −1

1 0

)

Hint: (i) (B + iC)(x + iy) = (. . .) + i(. . .); (ii) we have det ρ(A) = | det A|2 > 0, since

det

(
B −C
C B

)

= det

(
B − iC −C
C + i B B

)

= det

(
B − iC . . .

0 B + iC

)

= | det (B + iC)|2

�

10.1.12 Let (X, s) be a complex linear space C
n endowed with the Hermitian scalar

product (n = p + q)

h(z, w) := ηab z̄awb ≡ z̄1w1 + · · · + z̄ pw p − z̄ p+1w p+1 − · · · − z̄ p+qw p+q

i.e. (X, s) := (Cn, h). Show that

(i) the group G ≡ U (p, q) of automorphisms of this structure consists of those non-singular complex

matrices (10.1.10) which satisfy the condition

A+ηA = η

(they are known as pseudo-unitary matrices)

(ii) in particular, for q = 0 we get the group U (n) := U (n, 0) of unitary matrices

A+ A = 1 ↔ A ∈ U (n)

(iii) the determinant of A ∈ U (p, q) obeys

| det A| = 1 so that det A = eiα, α ∈ R

155 Not all matrices from GL(2n, R) thus correspond to some complex linear operators; it is easy to check that those which
anticommute with J correspond to antilinear operators and that each matrix may be uniquely written as a sum of two terms
with this simple behavior with respect to J .
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(iv) the condition det A = 1 singles out a subgroup in U (p, q) (it is denoted by SU (p, q)); for q = 0

it is the group (fairly ubiquitous in physics) of special unitary matrices SU (n)

A+ A = 1, det A = 1 ↔ A ∈ SU (n)

Hint: (i) h(Az, Aw) = h(z, w) gives straightforwardly A+ηA = η. �

10.1.13 Let (X, s) be a (finite-dimensional real) linear space V in which a subspace
W ⊂ V is singled out. The group G which preserves this structure consists of those A ∈
AutV ≡ GL(V ) for which A(W ) ≡ ImA ⊂ W (they take vectors from W into W again;

the subspace W is said to be invariant with respect to the action of such As).

(i) Check that at the level of matrices corresponding to the basis ea = (ei , eα) which is adapted to

the subspace W (i.e. ei ∈ W, i = 1, . . . , p ≡ dim W , then to be completed arbitrarily by vectors

eα to a basis of V ), it is the group of non-singular matrices of structure (in block notation)

A =
(

B C
0 D

)

i.e. explicitly

(ei , eα) �→ (êi , êα) ≡ (Aei , Aeα) =
(

B j
i e j , Ci

αei + Dβ
α eβ

)

(ii) determine the dimensions of the blocks involved and justify the non-singularity of B and D
(iii) the dual basis (ei , eα) is transformed in the following way:

(ei , eα) �→ (êi , êα) =
(

(B−1)i
j e

j − (B−1C D−1)i
αeα,

(
D−1

)α

β
eβ

)

i.e. by the inverse matrix

A−1 =
(

B−1 −B−1C D−1

0 D−1

)

(iv) in the dual space V ∗ a subspace Ŵ ⊂ V ∗ of dimension dim V − dim W is singled out canonically,

which may be characterized as the annihilator of the subspace W , i.e. it contains those covectors

σ ∈ V ∗ which annihilate vectors from W , 〈σ, w〉 = 0 for all w ∈ W
(v) the covectors eα constitute a basis in Ŵ .

Hint: (ii) det A = det B det D; (iii) see (2.4.2); (iv) see (2.4.19). �

10.1.14 Let (X, s) be a (finite-dimensional real) linear space V , which is a direct sum
(Appendix A.1) of two subspaces, V = V1 ⊕ V2. This means that any vector from V may

be uniquely decomposed into the sum v = v1 + v2 such that v1 ∈ V1 and v2 ∈ V2. The

group G which preserves this structure consists of A ∈ Aut V ≡ GL(V ) such that A(Vi ) ⊂
Vi , i = 1, 2, so that both the subspaces V1 and V2 are invariant with respect to A. Check that

at the level of matrices with respect to a basis ea which is adapted to the direct sum structure

(e1, . . . , ep ∈ V1, p ≡ dim V1, the rest ∈ V2), this is the group of non-singular matrices of
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the structure (in block notation)

A =
(

B 0

0 D

)

�

• All the groups of automorphisms mentioned in problems (10.1.3)–(10.1.14) were sub-

groups of GL(k, R) for appropriate k,156 i.e. we treated the real matrix groups. In this book

we will be concerned virtually always with groups which are of this type either directly, or

they are isomorphic to groups of this type.157 Let us mention an example (important enough

in its own right) of a group which is not a matrix group by its very definition, which may

be, however, easily replaced by an isomorphic copy which is already a matrix group.

10.1.15 Consider the affine transformations of R
n , i.e. the transformations

R
n � x �→ Ax + a ≡ (A, a)x A ∈ GL(n, R), a ∈ R

n

Check that

(i) they constitute a group (we will denote it by G A(n, R), the general affine group), the linear group

being a subgroup, GL(n, R) ⊂ G A(n, R)

(ii) the multiplication in G A(n, R) turns out to be158 (see also (12.4.8))

(A, a) ◦ (B, b) = (AB, Ab + a)

(iii) the map

ρ : G A(n, R) → GL(n + 1, R) (A, a) �→
(

A a
0 1

)

is an injective homomorphism of groups ⇒ its image Im ρ is an isomorphic copy of G A(n, R)

in GL(n + 1, R) and it may therefore be used as a fully fledged substitute for the “original”

G A(n, R), being, moreover, already a matrix group. �

10.2 Lie groups: basic concepts

• The majority of the groups (all but the first two) which we encountered in Section 10.1

were endowed with the structure of a smooth manifold in addition to the structure of a

group. The first sign of this is that their group elements did not constitute a discrete set (like

in (10.1.1)), but rather a “continuum” in which coordinates may be introduced in order to

label the points. We already know, however, that they are exactly the coordinates which are

at the heart of the concept of a manifold. Let us inspect some simple examples.

156 According to (10.1.11) this also applies to “complex” groups, if we interpret the words “were subgroups . . . ,” as is often the
case, in the sense of “were, up to an isomorphism, subgroups . . . ”

157 The geometrical machinery to be developed in the near future will, however, not be dependent on this at all. Sometimes one
can still profit significantly from the fact that the group elements happen to be matrices, see Section 11.7.

158 The expression on the left of the equals sign is to be understood in such a way (as it is common when treating maps) that the
transformation on the right of the multiplication sign is performed first.
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10.2.1 Consider the group SO(2), i.e. (10.1.8) the 2 × 2 real matrices, which satisfy the

conditions

AT A = 1 det A = 1

Show that

(i) each such matrix may be written in the form

A = A(α) ≡
(

cos α sin α

− sin α cos α

)

α ∈ R

(ii) SO(2) is a smooth manifold which is diffeomorphic to the circle (sphere S1).

Hint: see (1.5.5). �

10.2.2 Consider the group U (1), i.e. (10.1.12) the 1 × 1 complex matrices (i.e. numbers),

which satisfy the condition

A+ A = 1 i.e. actually |A| = 1, A ∈ C

Show that

(i) each such “matrix” may be written in the form

A = A(α) ≡ eiα = cos α + i sin α α ∈ R

(ii) U (1) is a smooth manifold which is diffeomorphic to the circle (sphere S1).

Hint: (i) cos α + i sin α ↔ (cos α, sin α) ∈ R
2; (ii) see (1.5.5). �

10.2.3 Consider the group GL(n, R) itself. Show that it is an n2-dimensional manifold.

Hint: the matrix elements Aa
b may be used as coordinates for A ∈ GL(n, R) (a single chart

is enough). �

10.2.4 Consider the group GL(n, C). Show that it is a 2n2-dimensional manifold.159

Hint: write A ≡ B + iC ∈ GL(n, C); then the (real) matrix elements Ba
b , Ca

b (a single chart)

may be used as coordinates. �

• The examples we have analyzed here were very simple. The same result could be

obtained (with the devotion of more time and labor), however, for all the remaining groups

we treated in the previous section. All of them happen to be smooth manifolds, moreover

the subgroups of GL(n, R) mentioned there actually also turn out to be submanifolds of

GL(n, R). This is ample motivation for introducing a separate concept, which combines

159 Notice that this group is even endowed with the (stronger) structure of a complex manifold of dimension n in the sense of the
text at the end of Section 1.3. One can use (complex) matrix elements Aa

b as the coordinates for A ∈ GL(n, C) in this case
(1-chart).
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the structure of a group with the structure of a smooth manifold. This is exactly what a Lie
group is.

If two different structures are expected to live together peacefully in a common household,

they have to agree on the terms of this coexistence; they have to be compatible. One of the

parties involved, the smooth structure on a manifold, insists on meeting at any moment only

maps which are smooth. Its imperative towards the group (the other party involved) thus

consists in always bringing home only smooth maps (if any).160 The group cannot imagine

its life without three key maps (so that it will certainly bring them home); thus, first and

foremost, the request of smoothness concerns these three maps.

10.2.5 Let G be a group which is at the same time a (smooth) manifold. Show that

(i) the definition of a group may be rephrased in terms of three maps161

m : G × G → G i : G → G j : G → G

m(g, h) := gh i(g) := g−1 j(g) := e ≡ the unit element of the group

which satisfy some identities (try to write down all of them!). The map m is known as the

composition law on a group, i defines the inverse element and j singles out (as the image Im j)

the most distinguished element in the group, the unit element

(ii) the map j is automatically smooth (so that m and i are the only maps to bother about)

(iii) the demand on the smoothness of all three maps m, i, j may be equivalently reformulated as a

demand on the smoothness of a single (combined) map

f : G × G → G f (g, h) := gh−1 ≡ m(g, i(h))

Hint: (i) what (for example) does m(g, i(g)) = j(g) say? (ii) It is “constant.” �

10.2.6 Find the explicit coordinate presentation of the composition law m on the groups

(i) G = (R, +), GL(1, R), GL(n, R)

(ii) G A(1, R), G A(n, R)

(iii) the group of upper-triangular matrices, i.e. matrices of the form

A(x, y, z) :=

⎛

⎜
⎝

1 x z
0 1 y
0 0 1

⎞

⎟
⎠

Hint: (i) m(x, y) = x + y, m(x, y) = xy, (m(x, y))i
j = xi

k yk
j ; (ii) under the correspondence

(x, y) ↔
( x y

0 1

)
(for n = 1, in general similarly) it is m((a, b), (x, y)) = (ax, ay + b),

m((a, b), (x, y)) = (ai
k xk

j , ai
k yk + bi ); (iii) m((a, b, c), (x, y, z)) = (a + x, b + y, c + z+

ay). �

160 Some requirements of the group structure towards the manifold were mentioned in Section 10.1.
161 Instead of j it is more common to consider ĵ : {a} → G, a �→ e ∈ G (where {a} is a zero-dimensional manifold, which

contains just a single point).
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• In this way we eventually come to the official definition of a Lie group as an object

which is a group and at the same time a manifold, the operations of multiplication and the

transition to the inverse element being smooth maps (which is sometimes formulated in

terms of smoothness of the map (g, h) �→ gh−1).

10.2.7 Check the compatibility of the smooth structure with the structure of the group for

G = GL(n, R) and G = GL(n, C), i.e. prove that both these groups are indeed Lie groups.

Hint: G = GL(n, R): any matrix element of the result of AB−1 is a quotient of two poly-

nomials in matrix elements of the initial matrices, the denominator being all right (since the

determinant of B is non-vanishing); G = GL(n, C) in full analogy (this group is even a com-
plex Lie group, since the corresponding coordinate presentation of the map (g, h) �→ gh−1

is given by holomorphic functions). �

• Note that there is a subtlety in the notion of a Lie subgroup. This object is, as one would

expect, a subgroup from the algebraic point of view. However, the requirement of being a

closed subset is added lest we avoid certain pathological constructions that are waiting for

their chance (a textbook example is given by the so-called irrational wrapping of the torus

T 2). This concerns, in particular, the concept of a matrix group: it is a subgroup G of the

group GL(n, R), which is at the same time a closed subset in GL(n, R). All of the cases

we will encounter are all right from this point of view.

Summary of Chapter 10

Groups enter into play both in physics and in mathematics as symmetry groups, i.e. (in

mathematical terms) as groups of automorphisms of various structures. Several structures

leading to the common “classical groups” (general linear, orthogonal, symplectic, unitary,

etc.) are discussed from this point of view. The Lie group combines in a single object the

algebraic concept of a group with the differential-topological notion of a manifold. All of

the above-mentioned groups (as well as some others) are examples of Lie groups.

G = Aut (X, s) Group of automorphisms of a structured set Sec. 10.1

h(Av, Aw) = h(v, w) A preserves the bilinear form h (10.1.4)

Aa
c hab Ab

d = hcd Component expression of the same fact (10.1.4)

ATh A = h Matrix expression of the same fact (10.1.4)

ω(Av, . . . , Aw) = ω(v, . . . , w) A preserves the volume form ω (10.1.7)

Aa
c . . . Ab

dεa...b = εc...d Component expression of the same fact (10.1.7)

det A = 1 Matrix expression of the same fact (10.1.7)

m(g, h) := gh Composition law in a group (10.2.5)

“Classical” matrix groups introduced They are summarized in problem (11.7.6)
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Differential geometry on Lie groups

• Lie groups should be mentioned as role models in all handbooks on the “art of living”

(savoir vivre) – from the point of view of differential geometry they indeed live life to

the full. There are several canonical geometrical objects living on them and some specific

procedures may be performed only on them. This richness of the Lie group as a manifold

is due to the group properties of the Lie group, i.e. it can ultimately be traced back to the

symbiosis of its algebraic and differential-topological structures. Numerous constructions

to be discussed in what follows are based on the fundamental concept of an (left-) invariant
field. We will learn about this in the next section.

11.1 Left-invariant tensor fields on a Lie group

• On any (not only Lie) group an important role is played by special maps G → G, which

are called left (and right) translations.

11.1.1 Given any element g ∈ G define the maps

Lg : G → G h �→ Lgh := gh left translation

Rg : G → G h �→ Rgh := hg right translation

i.e.

Lg := m(g, ·) Rg := m( · , g)

Show that

(i) both maps are bijective

(ii) for Lie groups both maps are smooth, so that (together with (i)) they are diffeomorphisms of G
to itself

(iii) the following relations hold:

Lgh = Lg ◦ Lh Rgh = Rh ◦ Rg

L−1
g = Lg−1 R−1

g = Rg−1

(iv) the right and left translations commute with one another (for arbitrary g, h)

Lg ◦ Rh = Rh ◦ Lg

214
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(v) a diffeomorphism f : G → G which commutes with all left translations is necessarily the right

translation f = Rk , namely by the element k = f (e).

Hint: (ii) Lgh = m(g, h), with m being smooth (10.2.5); (v) the requirement f ◦ Lg =
Lg ◦ f when applied on e yields f (g) = R f (e)(g). �

11.1.2 Write down the explicit coordinate presentation of the map Lg for the groups

(i) G = (R, +), GL(1, R), GL(n, R)

(ii) G A(1, R), G A(n, R).

Hint: see (10.2.6); (i) La x = a + x , La x = ax , (La x)i
j = ai

k xk
j ; (ii) L (a,b)(x, y) =

(ax, ay + b) or L (a,b)(x, y) = (ai
k xk

j , ai
k yk + bi ). �

• Let us digress from the main path towards Lie groups for a while in order to see a

simple application to finite groups, namely the classification of groups containing a (very)

small number of elements. Such a group may be displayed lucidly by its multiplication
table. In this table (a square matrix) the i j th entry is defined to be the result of the product

of the i th and j th group elements.

11.1.3 Given G a finite group, show that

(i) in its multiplication table no element occurs more than once in any column or row (so that an

arbitrary column or row actually represents some permutation of the group elements)

(ii) this enables one to classify easily the groups of (very) low orders (the order of a (finite) group :=

the number of its elements); in particular, check that there is just one group (up to isomorphism)

of orders 1, 2, 3 and two non-isomorphic groups of order 4.

Hint: (i) the kth row is the image of G with respect to Lgk , with Lgk being a bijection

(permutation); for columns use the same idea with Rg; (ii) for n = 1, 2, 3 they are {e}, Z2,

Z3, for n = 4 either Z4 or Z2 × Z2 (for the explanation of × see Section 12.4). �

• Let us return to the main object of our interest, namely to Lie groups. Since Lg is (for

each g ∈ G) a diffeomorphism G → G, its pull-back L∗
g may be applied to an arbitrary

tensor field on a group G, the result being again a tensor field on G. In particular, we may

raise the question of whether there exist tensor fields which do not change under such a

pull-back map thus being Lg-invariant. A closer analysis shows that there even exist fields

which are invariant in this sense with respect to all g ∈ G at once.

11.1.4 A tensor field T of type
( p

q

)
on G is said to be left-invariant if it satisfies162

L∗
gT = T for all g ∈ G

Show that the left-invariant fields are

162 In what follows we will develop the whole machinery for the left translation Lg , but everything may always be repeated almost
verbatim for the right translation Rg as well. One obtains then, for example, the right-invariant fields, which satisfy R∗

g T = T
and so on. If a situation occurs where the difference is important, we specify it explicitly.
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(i) uniquely specified by its value at the unit element e ∈ G of the group (or at any other point h ∈ G
as well)

(ii) smooth.

Hint: (i) since L∗
g−1 = Lg∗, the definition in detail says T (gh) = Lg∗T (h), which for h = e

gives T (g) = Lg∗T (e), so that the tensor T in the point g is to be the Lg∗-image of its

value at the point e. Check that if in turn we define the tensor field T by the prescription

T (g) := Lg∗T (e), it is left-invariant; (ii) a consequence of the smoothness of multiplication.

�

• The fact that the whole left-invariant field may be reconstructed from its value at a single

point e ∈ G means that its information content is necessarily much poorer than that of a

general field. There should then be a very “small number” of left-invariant fields in com-

parison with general fields where the values at various points are completely independent.

Recall that the tensor fields of arbitrary (fixed) type
( p

q

)
constitute an ∞-dimensional linear

space (see Section 2.5). It turns out that the left-invariant fields always constitute only a

finite-dimensional subspace.

11.1.5 Let T ∈ T p
q (G) denote the left-invariant field on G which is generated by its value

T (e) in e. Show that

(i) the prescription T (e) �→ T defines an isomorphism of the space (Te)p
q of tensors of type

(
p
q

)
in

e ∈ G and the space of left-invariant tensor fields on G (regarded as linear spaces over R)

(ii) the dimension of the linear space of left-invariant fields of type
(

p
q

)
is thus n(p+q), where n = dim G

(iii) the left-invariant functions (the tensor fields of type
(

0

0

)
) are just all constant functions on G (the

space of such functions being evidently one-dimensional, as needed).

Hint: (i) Lg is a diffeomorphism ⇒ Lg∗ is a linear isomorphism of the spaces of tensors in

e and g respectively; (ii) see (2.4.6); (iii) (L∗
g f )(e) ≡ f (g)

!= f (e). �

• We learned that the spaces of left-invariant tensor fields are just the isomorphic images

of the (finite-dimensional) spaces of tensors at the point e. Let us study the structure and

convenient expression of such fields in more detail. The fields of type
(

0
0

)
(functions) were

already discussed and we came to the conclusion that they are just constant functions. Let us

take a step further, to the tensors of type
(

1
0

)
, i.e. to the left-invariant vector fields. According

to the general result (11.1.5) they constitute an n-dimensional linear space, which copies

exactly the tangent space in the unit element of the group.

11.1.6 Let Ea be a basis of the tangent space in the unit element and let ea denote the

left-invariant fields on G generated by Ea ; there thus holds

ea(g) = Lg∗Ea Ea = ea(e)

Show that

(i) the fields ea constitute a global frame field on G
(ii) any Lie group is a parallelizable as well as orientable manifold
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(iii) the vector field V = V aea is left-invariant if and only if it has constant components V a with

respect to the left-invariant frame field ea

(iv) if êa = Ab
aeb is any other left-invariant frame field, then the transition matrix Ab

a is necessarily

constant.

Hint: (i) a linear dependence of the vectors ea(g) at a point g would need the linear de-

pendence of Ea (contradiction); (ii) the definition of being parallelizable; a volume form

is, for example, given by e1 ∧ · · · ∧ en , (6.3.5); (iii) L∗
g(V aea) = (L∗

gV a)ea
!= V aea , so that

the components V a are to be left-invariant, i.e. according to (11.1.5) constant; (iv) consider

the consequence of item (iv). �

• It turns out that the explicit expressions of the left-invariant vector fields for concrete

groups may be found most easily in a slightly roundabout way, making use of the left-

invariant 1-forms (see (11.1.11)). So let us take another step further, to the tensor fields of

type
(

0
1

)
, i.e. to left-invariant 1-forms on G.

11.1.7 Let Ea be the basis of the cotangent space in the unit element which is dual to the

basis Ea and let ea denote the left-invariant 1-form on G generated by Ea ; there thus holds

〈Ea, Eb〉 = δa
b ea(g) = Lg∗Ea Ea = ea(e)

Show that

(i) the fields ea constitute a global coframe field on G
(ii) ea and ea from (11.1.6) happen to be the dual coframe and frame fields to one another, i.e.

〈ea(g), eb(g)〉 = δa
b at each point g ∈ G

(iii) the 1-form α = αaea is left-invariant if and only if it has constant components αa with respect

to the left-invariant coframe field ea

(iv) a vector field V is left-invariant if and only if

〈α, V 〉 = constant for any left-invariant form α

(v) a 1-form α is left-invariant if and only if

〈α, V 〉 = constant for any left-invariant field V

Hint: see (11.1.6). �

• Now it is clear how things look in general for tensor fields of type
( p

q

)
.

11.1.8 Let Ea and Ea be mutually dual bases in the tangent and cotangent space in the unit

element of a group and let ea , ea be the left-invariant frame and coframe fields respectively

generated by Ea and Ea . Show that

(i) an arbitrary tensor field T (in particular, an arbitrary p-form α) on G may be written as

T = T a...b
c...d ec ⊗ · · · ⊗ ed ⊗ ea ⊗ · · · ⊗ eb α = 1

p!
αa...bea ∧ · · · ∧ eb
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(ii) these fields are left-invariant if and only if they have constant components (with respect to this

basis)

T a···b
c···d = constant or αa...b = constant

(iii) left-invariance of tensor fields is preserved under the tensor product ⊗, linear combinations (over

R) and the Lie derivative LV with respect to the left-invariant field V
(iv) left-invariance of forms is preserved under the exterior product ∧, the interior product iV with a

left-invariant field V and the exterior derivative d
(v) a tensor field T is left-invariant if and only if

T (V, . . . ; α, . . .) = constant

for any left-invariant arguments V, . . . , α . . . . �

• Now, let us find explicitly the left-invariant 1-forms and vector fields on the group

GL(n, R). As we will see later, this easy computation is the key element of a very convenient

method of computation of these objects on all matrix groups.

11.1.9 Find all left-invariant 1-forms on the group G = GL(n, R). In order to do this

show in successive steps that

(i) in coordinates xi
j (the matrix elements) for x ∈ GL(n, R) the left translation by A ∈ GL(n, R)

reads

xi
j �→ (L Ax)i

j = (Ax)i
j = Ai

k xk
j

(ii) the condition of left-invariance L∗
Aα = α for a general 1-form163

α = ai
j (x) dx j

i ≡ Tr {a(x) dx}
leads to the requirement

ai
k(Ax)Ak

j = ai
j (x) or in matrix notation a(Ax)A = a(x)

(iii) the most general solution is

ai
j (x) = (Cx−1)

i
j ≡ Ci

k(x−1)
k
j or in matrix notation a(x) = Cx−1

where C ≡ a(In) is an arbitrary constant n × n matrix

(iv) the most general left-invariant 1-form is parametrized by a matrix C and reads

α ≡ αC = Ci
k(x−1)

k
l dxl

i ≡ Tr (Cx−1 dx)

(v) if C is decomposed with respect to the Weyl basis164

(
Ei

j

)k

l
= δi

l δ
k
j C = Ci

j E j
i

163 It is convenient to label the coordinates by a pair of indices here (since the composition law is very simple then), which
naturally doubles the number of all indices on the components of tensors in comparison with a common situation. In particular,
the components of 1-forms have (as many as) two indices.

164 Ei
j is the matrix where the j i th entry equals unity and all remaining elements vanish. It is clear that such matrices indeed form

a basis in the n2-dimensional linear space of all n × n matrices.
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then

αEi
j
=: α̂i

j = (x−1)i
k dxk

j ≡ (x−1 dx)
i
j

(αi
j (x), being functions (components of the forms), should not be confused with α̂i

j , which are

the 1-forms themselves)

(vi) the 1-forms α̂i
j may be used as a basis of the n2-dimensional space of left-invariant 1-forms on

GL(n, R) and

αC = Ci
j α̂

j
i ≡ Tr (C α̂)

Hint: (i) see (11.1.2); (iii) set x = In ≡ the identity matrix; (vi) the forms dxi
j are linearly in-

dependent (being the coordinate basis), α̂i
j constitute their non-singular linear combinations

(although different at different points, but everywhere non-singular). �

11.1.10 Find all left-invariant vector fields on the group G = GL(n, R). In order to do

this show in successive steps that

(i) the most general left-invariant vector field is parametrized by a matrix C and reads

V ≡ VC = xi
kCk

j ∂
j

i ≡ Tr (xC∂)

(ii) if C is decomposed with respect to the Weyl basis (Ei
j )

k
l = δi

l δ
k
j as C = Ci

j E j
i , then

VEi
j
=: V̂ i

j = xi
k∂

k
j ≡ (x∂)i

j

(iii) the fields V̂ i
j may be used as a basis of the n2-dimensional space of left-invariant vector fields on

GL(n, R) and

VC = Ci
j V̂

j
i ≡ Tr (CV̂ )

(V i
j (x), being functions (components of the fields), should not be confused with V̂ i

j , which are

the vector fields themselves)

(iv) if αD is the most general left-invariant 1-form, then

〈αD, VC 〉 = Ci
j D j

i ≡ Tr (C D) and, in particular,
〈
αi

j , V k
l

〉 = δi
l δ

k
j

so that V̂ i
j and α̂k

l are global (dual to one another) frame and coframe fields on GL(n, R)

respectively (they were mentioned in a general setting in (11.1.7)).

Hint: (i) set V = V i
j (x)∂

j
i and analyze the expression 〈αD, V 〉 (11.1.7); for the remaining

items see the hint to (11.1.9). �

• Concerning the group GL(n, R) the matter is settled. And what about the remaining

matrix groups – the subgroups G of GL(n, R)? It turns out that this matter is virtually settled

as well. The convenient way for finding left-invariant fields is contained in the following

simple observation.

11.1.11 Let f : G → H be a homomorphism of Lie groups and let α be a left-invariant

form on H . Then prove that f ∗α is a left-invariant form on G. In particular, check that
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(i) if L̂h and Lg are the left translations on H and G
respectively, then they are related by the identity

f ◦ Lg = L̂ f (g) ◦ f

(ii) from this it follows that (∀h ∈ H, ∀g ∈ G)

L̂∗
hα = α ⇒ L∗

g( f ∗α) = f ∗α

(iii) if f moreover happens to be an embedding (⇒ f (G) ⊂ H is an isomorphic copy of G in H ),

then in this way we obtain all the left-invariant forms on G.

Hint: (i) f (gg̃) = f (g) f (g̃); (iii) f∗ realizes an isomorphism of the tangent space in the

unit element on G onto its image in the tangent space in the unit element on H , which is

enough according to (11.1.5). �

• Now if we take the group GL(n, R) (where we

already know all the left-invariant 1-forms) as H
and some subgroup (i.e. an arbitrary matrix group)

as G, the pull-back with respect to the canonical

embedding of G as a subgroup of GL(n, R) then

gives us all the left-invariant 1-forms (and according

to (11.1.8) trivially also the higher degree forms or

tensors) on G. A general scheme looks as follows. Given a matrix group G ⊂ GL(n, R)

endowed with local coordinates zμ, we may write down explicitly the embedding

j : G → GL(n, R) zμ �→ xi
j (z

μ)

Since we know from (11.1.9) that a basis of the space of the left-invariant 1-forms on

GL(n, R) is given by the forms (x−1)i
k dxk

j , all of them being stored in the matrix x−1 dx ,

it suffices to make the pull-back

j∗(x−1 dx) = x−1(z) dx(z)

and take then all the linearly independent 1-forms from the resulting matrix (a slightly

different point of view on the same material will be presented in Section 11.7). Let us

illustrate how it works with some simple examples.

11.1.12 Find explicitly a basis of the left-invariant 1-forms as well as vector fields on

SO(2).

Solution: SO(2) ⊂ GL(2, R), the parametrization (embedding) being presented in problem

(10.2.1). We then have

x(ϕ) =
(

cos ϕ sin ϕ

− sin ϕ cos ϕ

)

⇒ x−1 (ϕ) =
(

cos ϕ − sin ϕ

sin ϕ cos ϕ

)

⇒
x−1(ϕ) dx(ϕ) =

(
cos ϕ − sin ϕ

− sin ϕ cos ϕ

)

d

(
cos ϕ sin ϕ

− sin ϕ cos ϕ

)

=
(

0 dϕ

−dϕ 0

)
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so that the bases are: the left-invariant basis 1-form on SO(2) is e1 = dϕ and the duality

condition then yields that the left-invariant basis vector field is e1 = ∂ϕ . �

11.1.13 Find on G A(1, R) explicitly a basis of the left-invariant 1-forms, vector fields and

2-forms (i.e. here the volume forms)

Solution: according to (10.1.15) or (11.1.2)

A(x, y) =
(

x y
0 1

)

⇒ A−1 d A = · · · =
(

x−1 dx x−1 dy
0 0

)

so that we may take as the corresponding bases, for example,

for 1-forms e1 = x−1 dx e2 = x−1 dy
for vector fields e1 = x∂x e2 = x∂y

for 2-forms e1 ∧ e2 = x−2 dx ∧ dy

(since the points with x = 0 do not belong in the group, the denominators are all right). �

• We mentioned already that for the right-invariant objects everything works similarly.

For the sake of completeness let us examine what changes occur for the group GL(n, R)

and then for our well-studied simple example G A(1, R).

11.1.14 Show that

(i) a basis of the right-invariant 1-forms on GL(n, R) is provided by the elements of the matrix

(dx)x−1

(ii) the most general right-invariant 1-form reads

αC = Tr (x−1Cdx)

(iii) the most general right-invariant vector field reads

VC = Tr (Cx∂)

(iv) there holds

〈αC , VD〉 = Tr (C D)

Hint: see (11.1.9) and (11.1.10). �

11.1.15 Find on G A(1, R) explicitly a basis of the right-invariant 1-forms, vector fields

and 2-forms.

Hint: making use of (11.1.13) and (11.1.14) you should end up with

for 1-forms f 1 = x−1 dx f 2 = dy − yx−1 dx
for vector fields f1 = x∂x + y∂y f2 = ∂y

for 2-forms f 1 ∧ f 2 = x−1 dx ∧ dy
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so that they may be expressed in terms of the left-invariant objects as

f 1 = e1 f 2 = −ye1 + xe2

f1 = e1 + yx−1e2 f2 = x−1e2

f 1 ∧ f 2 = xe1 ∧ e2

�

11.2 Lie algebra G of a group G

• In problem (11.1.8) we already learned that some standard operations performed on ten-

sors (in particular, on forms), like ⊗, ∧, d, . . . , do not spoil the left-invariance of the objects

on which they act so that they may be restricted to the corresponding finite-dimensional

subspaces given by the left-invariant fields. Here we first convince ourselves that the commu-
tator of vector fields also has this remarkable property. This turns out to be very important.

It means that the left-invariant vector fields on a Lie group constitute a finite-dimensional
Lie algebra. A Lie group thus always induces canonically a simple algebraic object: its
Lie algebra.165 More detailed analysis shows that this algebra is not only a rich source of

information about the group itself, it also serves as an efficient tool to exploit the strength

of the group in applications.

11.2.1 Check that

(i) if f : M → M is a diffeomorphism and V, W arbitrary vector fields, then

f ∗[V, W ] = [ f ∗V, f ∗W ]

(ii) if V, W happen to be left-invariant vector fields on G, then both their linear combinations (over R)

and the commutator are, in turn, left-invariant vector fields; thus the space XL (G) of left-invariant

vector fields on a group G is a (finite-dimensional) Lie algebra

(iii) if ea is a left-invariant frame field on G, then

[ea, eb] = cc
abec

the coefficients of anholonomy of the frame field ea now being constants
(iv) explain why the object

c := cc
abea ⊗ eb ⊗ ec ≡

(
1

2
cc

abea ∧ eb

)

⊗ ec

(ea being a left-invariant frame field) is now a tensor field,166 whilst in the general case (9.2.10)

it was not.

165 We know (see (4.3.6)), that all vector fields on the Lie group (as is the case on an arbitrary smooth manifold) constitute the
Lie algebra X(G). It is, however, ∞-dimensional, i.e. much more complicated. The Lie algebra XL (G) ⊂ X(G) which we
are speaking about here is, in contrast, finite dimensional. (This resembles the Lie algebra of Killing vectors (4.6.6) on a
Riemannian manifold; in both cases some specific property asked of vector fields (and preserved by the commutator) reduces
the Lie algebra of specific fields to be finite-dimensional.)

166 Notice that it is a canonical tensor field of type
(

1
2

)
on G.
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Hint: (i) f ∗[V, W ] = f ∗(LV W ), (8.3.7); (ii) f = Lg; (iii) (9.2.10), the expression on

the right represents a decomposition with respect to the left-invariant basis ⇒ (11.1.6);

(iv) restriction of the definition on the left-invariant fields; although we may change the

basis fields at will, of course, the components will no longer coincide with the coefficients

of anholonomy of the new basis in a general frame. �

• The Lie algebra XL (G) of left-invariant vector fields on G is sometimes already called

the Lie algebra of a group G. More often, however the relation between the left-invariant

fields and the tangent space in the unit element is used and the definition is adopted in which

the Lie algebraG of a group G is identified with the tangent space (in the unit element) itself,

TeG =: G. In this space there is clearly a linear structure, but we still lack a commutator

there; for two vectors in a single tangent space on a general manifold there is indeed no

commutator (there is nothing to be used for the required definition). However, it turns out

that on a Lie group this may be arranged.

11.2.2 Let X, Y ∈ G be two vectors from the tangent space TeG =: G in the unit element

of the Lie group G and let L X , LY ∈ XL (G) be the left-invariant vector fields induced by

them, so that X = L X (e), Y = LY (e). Show that

(i) the definition167

[X, Y ] := [L X , LY ](e) or equivalently L [X,Y ] := [L X , LY ]

introduces a commutator (with all the needed properties) into G, so that G becomes a Lie algebra.

This algebra is called the Lie algebra G of the group G
(ii) if Ea ↔ ea , then

[ea, eb] = cc
abec ⇔ [Ea, Eb] = cc

ab Ec

so that the same coefficients cc
ab = the structure constants of the Lie algebra G occur in both

formulas

(iii) the structure constants

cc
ab ≡ 〈Ec, [Ea, Eb]〉

constitute the components of a tensor (in the Lie algebra)

ĉ := cc
ab Ea ⊗ Eb ⊗ Ec ∈ T 1

2 (G)

the tensor field c from (11.2.1) being the left-invariant tensor field on G generated just by ĉ.

Hint: (i) all the necessary properties are inherited from the commutator of the fields;

(iii) the map G × G → G, (X, Y ) �→ [X, Y ] is bilinear. �

• We know from (11.2.1) that the structure constants cc
ab actually coincide with the coef-

ficients of anholonomy of the left-invariant frame field ea so that they carry information not

only about the objects at the point e, but at least in some neighborhood of this point. Recall

167 One associates first “their” left-invariant vector fields to the vectors X, Y , these fields are commuted as vector fields then and
finally the result is in turn read off in the unit element, so that we end up again in G.
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that a left-invariant field is uniquely “extended” from its prescribed value Ea = ea(e) at e
to points apart from e by a left translation Lg = m(g, · ), which in turn depends on the

composition law m : G × G → G on a group G (i.e. we get different left-invariant fields

and consequently different structure constants for the same vectors Ea (⇒ different Lie

algebra) if we modify the composition law). We see then that “genetic” information of

vital importance about the composition law on a group (being “the heart” of the group) is

encoded in a concentrated form in the structure constants (or, as a matter of fact, in the Lie

algebra G itself)168 even though they are formally expressed in terms of objects living at a

single point (the unit element e) alone.

The following formula reveals another “habitat” of the structure constants ca
bc in nature

(as well as another useful method of how to compute them explicitly).

11.2.3 Show that the structure constants of the Lie algebra G of a group G also enter the

following relations and are valid for the dual left-invariant coframe field

dea + 1

2
ca

bceb ∧ ec = 0 the Maurer–Cartan formula

Hint: see (9.2.10) and (11.2.1). �

11.2.4 Find the structure constants of the Lie algebra ga(1, R) of the group G A(1, R)

both in terms of the left-invariant vector fields and by the Maurer–Cartan formula.

Hint: see (11.1.13) and (11.2.3) (c2
12 = −c2

21 = 1, all the remaining ones being 0). �

11.2.5 Show that dd = 0 leads (via the Maurer–Cartan formula) to the identity

c f
d[acd

bc] = 0

for the structure constants (the same identity also being a consequence of the Jacobi identity

for the commutator).

Hint: 0 = ddea = . . . (11.2.3); 0 = [Ea, [Eb, Ec]] + cycl., (11.2.2). �

• We now introduce another canonical object on a Lie group, the Lie algebra valued 1-

form θ . If the notation from Section 6.4 is adopted, then θ ∈ �1(G,G). This form will play

an important role in connection theory, where it occurs in the formula describing the change

of gauge potentials under gauge transformations (see (21.2.3)).

11.2.6 Given a Lie group G, define the G-valued canonical 1-form169 θ ∈ �1(G,G) by

the prescription

〈θ (g), v〉 := Lg−1∗v v ∈ TgG

168 Some analogy may be found with the relation between some foodstuffs (a Lie group) and their “powdered” versions (its
Lie algebra); the powdered form represents a “simplified” (“compressed”, “zipped”) version of the original one, preserving
essential (total according to advertisements) parts of the properties of the original.

169 It is also known as the Maurer–Cartan 1-form.
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Put another way, we simply map the vector v by appropriate (unique) left translation from

g to e (so that θ (g) : TgG → TeG ≡ G). Show that

(i) an equivalent definition is (L X is the left-invariant field generated by X ∈ G)

〈θ, L X 〉 := X

(both sides being G-valued functions on G)

(ii) this form is left-invariant170

L∗
gθ = θ

(iii) if Ea is a basis in G and if ea is the left-invariant coframe field generated by Ea , then

θ = ea Ea

so that the component 1-forms (see Section 6.4) of the form θ coincide with the left-invariant

1-forms ea

(iv) if for G-valued forms we introduce the operation (see (6.4.2) and the footnote therein)

[α ∧ β] := (αa ∧ βb)[Ea, Eb] ≡ (
cc

abα
a ∧ βb

)
Ec α = αa Ea, β = βb Eb

then for θ there holds

dθ + 1

2
[θ ∧ θ ] = 0

and this formula is equivalent to the Maurer–Cartan formula from (11.2.3).

Hint: (i) by (11.1.4) there is unique X such thatv= L X (g) ≡ Lg∗ X ; (ii) 〈(L∗
hθ )(g), v〉 = · · · ;

(iii) each α ∈ �1(G,G) may be written in the form α = (αa
b eb)Ea ; the definition of θ then

gives αa
b = δa

b ; (iv) by (6.4.4) and (11.2.3) dθ = (dec)Ec = (− 1
2
ea ∧ eb)cc

ab Ec = − 1
2
(ea ∧

eb)[Ea, Eb] ≡ − 1
2
[θ ∧ θ ]. �

• For practical computation of the canonical form θ it is convenient to exploit the virtue

of the matrix formalism, which we will learn about in Section 11.7.

11.3 One-parameter subgroups

• On each Lie group there exist distinguished curves, which are called one-parameter
subgroups. These curves γ (t) may be uniquely characterized by the properties

γ (t + s) = γ (t)γ (s) γ (0) = e t, s ∈ R

Let us formulate the same thing differently and see what consequences follow from this.

11.3.1 Check that any one-parameter subgroup may be regarded (or defined as well) as the

image of a homomorphism γ : (R, +) → G, i.e. as a homomorphic image of the additive

group of real numbers in the group G. �

170 It also behaves nicely under right translations (we need the concept of the representation of a group, however, to express it
explicitly, see (12.3.4)).
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11.3.2 Let us divide the interval [0, t] into a large number N of equal pieces of length

ε = t/N . Check that

γ (t) = γ (ε) . . . γ (ε)
︸ ︷︷ ︸

N times

Hint: γ (t/2)γ (t/2) = γ (t). �

• This means that we can reach the point γ (t) so that we will multiply N times the

starting point e (from the right or from the left, it does not matter) repeatedly by the

same group element “close to the unit element” γ (ε). The whole curve thus depends in a

sense (which becomes clearer in (11.3.3)) on this “small” element alone.171 The method of

construction mentioned above is evidently far from being convenient. Fortunately it turns

out that there is a much easier way based upon the use of the left-invariant vector fields

on G.

11.3.3 Let L X be the left-invariant vector field on G which is generated by a vector X ∈ G.

Show that

(i) its integral curve γ X (t) starting from e is a one-

parameter subgroup

γ X (t + s) = γ X (t)γ X (s) γ X (0) = e

(ii) if, in turn, γ (t) is an arbitrary one-parameter subgroup,

then it is necessarily the integral curve of the left-

invariant172 field L X with X ≡ L X (e) = γ̇ (0); the com-
plete trajectory γ (t) then turns out to be given by its

initial velocity (in which direction and how fast does it

rush forth), i.e. by the tangent vector γ̇ (0) = X at the

starting point e.

Solution: (i) the curve �(t) := γ X (t + s) is by (2.3.6) the integral curve of L X starting at

γ X (s). Since Lg∗L X = L X , the curve �(t) is also the integral curve of the field Lγ (s)∗L X .

By (4.1.10) this is true for the curve Lγ (s)γ (t) ≡ γ (s)γ (t). Put together γ X (t + s) =
γ X (t)γ X (s); (ii) we have

γ̇ (t) = d

ds

∣
∣
∣
∣
s=0

γ (t + s) = d

ds

∣
∣
∣
∣
0

γ (t)γ (s) = d

ds

∣
∣
∣
∣
0

Lγ (t)γ (s) = Lγ (t)∗
d

ds

∣
∣
∣
∣
0

γ (s) = Lγ (t)∗ X

= L X (γ (t))

�

171 Since γ (0) = e, we expect (on the grounds of continuity) that γ (ε) would not be far from e even though we do not specify this
distance more precisely by introducing some metric tensor.

172 It came to our knowledge (as top-secret information; don’t spread, please!) that the same curve leaves nothing to its fate (“a
curve never can tell”) and that it systematically prepares for the time when in all textbooks throughout the country authors
will give attention mainly to right-invariant objects. In secrecy, completely unwitnessed even now it is at the same time the
integral curve of the right-invariant field RX as well, which any investigative journalist may easily convince himself/herself
of by a computation. Individuals of a less inquisitive nature are recommended to consult (11.4.7).
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11.3.4 Be sure to understand that there is a one-to-one correspondence

elements of the Lie algebra ↔ one-parameter ↔ left-invariant

of the group subgroups vector fields

so that each element X ∈ G may be associated uniquely with its one-parameter subgroup

as well as with its left-invariant vector field.

Hint: X ↔ γ X (t) ↔ L X . �

11.3.5 Find the explicit form of the one-parameter subgroups on the group GL(n, R). In

order to do this check that

(i) the equations for integral curves of a general left-invariant field VC read

ẋ a
b (t) = xa

c (t)Cc
b or in matrix form a single equation ẋ(t) = x(t)C, x(0) = In

(ii) the solution of this (matrix) equation is173

x(t) = exp tC ≡ etC := In + tC + t2

2!
C2 + · · ·

Hint: (i) (11.1.10). �

11.3.6 Find the explicit form of the one-parameter subgroups on G A(1, R). Namely, check

that

(i) the equations for integral curves of a general left-invariant field L X = k1e1 + k2e2 (for X =
k1 E1 + k2 E2) read

ẋ = k1x ẏ = k2x x(0) = 1 y(0) = 0

(ii) the solution for k1 �= 0 is

x(t) = ek1t y(t) = k2

k1

(
ek1t − 1

)

(for k1 = 0 it is x(t) = 1, y(t) = k2t , being just the limit of the expression given above)

(iii) in the plane (x, y) (with the y-axis excluded) they represent the radial lines emanating from the

unit element of the group, the point (1, 0) ↔ e ∈ G A(1, R).

Hint: (i) (11.1.13); (iii) y(t) = constant (x(t) − 1). �

11.4 Exponential map

• Consider the one-parameter subgroup γ X (t) generated by the element X of the Lie

algebra G. Thus, it satisfies

γ X (0) = e γ X (t + s) = γ X (t)γ X (s) γ̇ X (0) = X

173 The diligent reader is invited to prove the convergence of the series (i.e. the convergence of all the numerical series (eX )i j ) for
any finite matrix X .
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Define the exponential map by

exp : G → G X �→ exp X ≡ eX := γ X (1)

The resulting point (the image of the element X ) thus lies on the one-parameter subgroup

γ X (t) at a parametric distance of 1 from the unit of the group. This map enjoys several

remarkable properties.

11.4.1 Show that

(i) the one-parameter subgroup satisfies

γ X (kt) = γ k X (t) k ∈ R

(ii) this enables one to express the one-parameter subgroup

in terms of an exponential map in the form

γ X (t) = exp t X ≡ et X

(iii) this expression says that the motion along a one-

parameter subgroup is the image with respect to exp of

the “uniform straight-line motion” in the Lie algebra.

Hint: (i) both sides are one-parameter subgroups with the same initial conditions, (11.3.3);

(ii) t �→ 1, k �→ t ; (iii) t �→ t X is clearly the motion inG which is both uniform and straight-

line. �

11.4.2 Show that

exp 0 = e exp(−X ) = (exp X )−1 exp(t + s)X = exp t X exp s X
�

• The origin (point 0) of a Lie algebra is thus mapped to the unit element of the group. It

turns out (15.4.10), that one can say even more; namely, that some neighborhood of the origin

is diffeomorphically mapped onto some neighborhood of the unit element of the group.174

Since the Lie algebra is a linear space ∼ R
n , we have all that is needed for the introduction

of local coordinates on some neighborhood of the unit element of the group.

11.4.3 Let Ea be a basis ofG, X = Xa Ea . Define a chart in a neighborhood of e ∈ G as fol-

lows: assign to the point g = exp X the n-tuple xa := Xa . The coordinates xa constructed in

this way are called the normal coordinates175 on (a part of) G. Show that the coordinate pre-

sentation of the one-parameter subgroups is extremely simple in normal coordinates, namely

γ X (t) ↔ xa(t) = Xat

so that it actually coincides with the coordinate presentation of the straight lines in G,

being the exp-preimages of γ X (t) (see (11.4.2)).

174 The map exp∗0 : T0G → TeG is an isomorphism (its kernel vanishes).
175 It is a special case of the (Riemann) normal coordinates constructed in terms of geodesics (see (15.4.11)); we will see that one

can introduce a connection on a Lie group such that one-parameter subgroups turn out to be exactly the geodesics.
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Hint: γ X (t) ≡ exp t X ⇒ we assign the coefficients of the decomposition t Xa . �

11.4.4 Write down explicitly the exponential map for GL(1, R). Show that we get the

ordinary exponential function.

Solution: according to (11.1.10) the left-invariant field is V = kx∂x ⇒ the one-parameter

subgroup reads x(t) = ekt ⇒ the exp map is k �→ ek . �

11.4.5 Write down explicitly the exponential map for G A(1, R) (X = k1 E1 + k2 E2 �→
(ek1

, k2(k1)−1(ek1 − 1)), (11.3.6)).

• Now we will discuss the flows generated by the left-invariant and right-invariant vector

fields. �

11.4.6 Denote by �
L X
t : G → G the flow generated by the left-invariant field L X and

�
RX
t : G → G the flow generated by the right-invariant field RX . Check that

�L X
t = Rexp t X �RX

t = Lexp t X

or

�L X
t (g) = g(exp t X ) ≡ get X �RX

t (g) = (exp t X )g ≡ et X g

so if we go from g along the left-invariant field L X by t , we arrive at get X ; if we go along

the right-invariant field RX , we end up at et X g. Thus, the map �
L X
t is the right translation

by the element exp t X , whereas �
RX
t is the left translation by (the same) element exp t X .

We say that the left-invariant fields generate right translations, whereas the right-invariant

fields generate left translations.

Hint: L X ↔ �
L X
t ⇒ by (4.1.9) Lg∗L X ↔ Lg ◦ �

L X
t ◦ L−1

g ; but Lg∗L X = L X ⇒ Lg ◦
�

L X
t ◦ L−1

g = �
L X
t , i.e. �

L X
t commutes with all left translations ⇒ by (11.1.1) it is the

right translation Rk by the element k = �
L X
t (e) = γ X (t) = exp t X ; the flow �

RX
t in full

analogy. �

11.4.7 Show that it follows from (11.4.6) that the one-parameter subgroup γ X (t) happens

to be at the same time the integral curve of both the left-invariant as well as the right-invariant

field generated by the element X ∈ G (i.e. of both L X and RX ).

Hint: �
L X
t (e) = �

RX
t (e) = γ X (t). �

11.4.8 The result of (11.4.7) implies that although

the right-invariant and the left-invariant fields differ

in general, they necessarily coincide on the one-

parameter subgroups, i.e. that both the fields L X and

RX have the same values at the curve γ X (t) (X being

the same in all three cases). Check this explicitly on

the group G A(1, R).

Hint: see (11.1.14) and (11.3.6). �
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11.5 Derived homomorphism of Lie algebras

• Let f : G → H be a homomorphism of Lie groups. It turns out then that a homomor-

phism of the corresponding Lie algebras is automatically induced. It is known as the derived

homomorphism. Let us start with a simple observation.176

11.5.1 Let f : G → H be a homomorphism of Lie groups and let

g(t) = γ X (t) ≡ et X

be the one-parameter subgroup on G generated by the element X ∈ G. Check that its f -

image on H is also a one-parameter subgroup.

Hint: if h(t) := f (g(t)), then h(t + s) = · · · = h(t)h(s) and h(0) = eH . �
• However in (11.4.1) we learned that each one-parameter subgroup is necessarily of the

form etY , Y being an element of a Lie algebra (in the present case H). In this way we obtain

the assignment X �→ Y , which is a map G → H.

11.5.2 Let f : G → H be a homomorphism of

Lie groups. Show that

(i) the one-parameter subgroup f (g(t)) ≡ f (et X ) ≡ etY

generates the element

Y ≡ f ′(X ) := f∗ X ∈ H X ∈ G

(ii) the left-invariant field on H generated by this element

is f∗L X (or possibly the extension of this field to the

whole group H , if f fails to be surjective)

(iii) the field L X is projectable with respect to f , so that the f -related field f∗L X on Im f ⊂ H is
well defined ( f need not be injective so that in principle this question may be addressed).

Hint: (i) for g(t) = et X we have X = d
dt

∣
∣
0

et X so that for f (g(t) =: et f ′(X ) it is f ′(X ) =
d
dt

∣
∣
0

f (g(t)) ≡ f∗e X ; (iii) the text after (3.1.2); here one should check that if f (g) = f (g̃)

(i.e. if ( f ◦ Lg)(e) = ( f ◦ Lg̃)(e)), then f∗L X (g) = f∗L X (g̃). �

11.5.3 Let f : G → H be a homomorphism of Lie groups. Show that

(i) the map f ′ : G → H from (11.5.2) is a homomorphism of Lie algebras (derived homomorphism)

(ii) we have the commutative diagram

G
f−−−−→ H

exp

�
⏐
⏐
⏐
⏐

�
⏐
⏐
⏐
⏐

exp i.e. f ◦ exp = exp ◦ f ′ f (eX ) = e f ′(X )

G −−−−→
f ′

H

176 This observation is always to be performed under a soft red light in a thoroughly blacked-out room. In the literature one can
also find the recommendations to prepare in advance some hemp yarn, a magnifying (or reducing) glass, a diode and a bit
of lip-salve. However, the rich and long-lasting personal experience of the author of this book shows that one can always
somehow get along without the facilities listed above and they might be used equally well in the course of some other amazing
observation.
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(iii) for the composition of two homomorphisms we have a simple rule

( f1 ◦ f2)′ = f ′
1 ◦ f ′

2

Hint: (i) preservation of the operations: f ′ consists of two steps: first f∗ of left-invariant

fields (resulting in their homomorphic images – also left-invariant fields on H ), then the

evaluation of the result in e ∈ H , i.e. ( f∗L X )(e) ∈ Te H ≡ H; the first step preserves both

linear combinations and the commutator; (ii) on the argument t X it is the definition of f ′;
(iii) (3.1.2). �

11.6 Invariant integral on G

• An important special case of the left-invariant forms on a Lie group is provided by a

left-invariant form of top degree, a left-invariant volume form on G.

11.6.1 Show that the left-invariant volume form on G always exists and that it is moreover

given uniquely up to a constant (non-zero) factor as

ωL = λe1 ∧ · · · ∧ en 0 �= λ ∈ R

with ea being an arbitrary left-invariant coframe field on G.

Hint: see (11.1.5) and (11.1.6); the space of n-forms in the unit element is one-dimensional.

�

• Since we have the distinguished volume form on G, we may also integrate functions

over G. The definition of the integral reads (see the text after (7.7.3))
∫

G
f :=

∫

G
f ωL f ∈ F(G)

The integral introduced in this way is specific in that it is left-invariant in the following

sense.

11.6.2 Let f ∈ F(G) be an arbitrary function on G and assume that the integral
∫

G f =∫
G f ωL exists. Show that then

∫

G
f ◦ Lg =

∫

G
f

i.e.
∫

G
( f ◦ Lg)ωL ≡

∫

G
(L∗

g f )ωL =
∫

G
f ωL

where Lg is an arbitrary left translation on G.

Hint: (7.8.1), Lg(G) = G (Lg is a diffeomorphism); therefore
∫

G
(L∗

g f )ωL =
∫

G
L∗

g( f ωL ) =
∫

Lg(G)

f ωL =
∫

G
f ωL

�
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11.6.3 Check that the general statement (11.6.2) leads in particular cases to the following

elementary results:

(i) for G = U (1)
∫ 2π

0

f (α + β) dα =
∫ 2π

0

f (α) dα f (α + 2π ) = f (α)

(ii) for G = GL(1, R)
∫ ∞

−∞
f (ax)

dx

x
=

∫ ∞

−∞
f (x)

dx

x

(iii) for G = G A(1, R)
∫ ∞

−∞

∫ ∞

−∞
f (ax, ay + b)

dx dy

x2
=

∫ ∞

−∞

∫ ∞

−∞
f (x, y)

dx dy

x2

Hint: (ii) see (11.1.2) and (11.1.9); (iii) see (11.1.2) and (11.1.13). �

• In full analogy one obtains the right-invariant volume form ωR . This form is different
in general from the left-invariant form ωL (see for example (12.3.16)), and consequently

also the result of the right-invariant integral (defined as
∫

G f ωR) is different. It is a fairly

important and useful fact that on each compact Lie group G (see problem (12.3.17)) the two

volume forms happen to coincide: ωL = ωR . On these groups there thus exists a bi-invariant
integral.

11.7 Matrix Lie groups: enjoy simplifications

• Numerous facts about matrix Lie groups and their Lie algebras may also be obtained

with no use at all of the geometrical ideas like left-invariant fields, their integral curves,

etc. Here we try to “derive” this standard simplified machinery from the formalism adopted

up to now and to work up convenient and quick algorithms,177 which we then apply to

analyzing some particular common Lie groups mentioned in Section 10.1.

First, we look at the matrix Lie algebras as such, with no relation whatsoever to the Lie

algebras of groups.

11.7.1 Consider End V , the set of all endomorphisms of a linear space V , i.e. the set

Hom (V, V ) of all linear maps from V to V . Check that

(i) it is naturally endowed with the structure of an associative algebra178

(ii) for V = R
n we may identify this (associative) algebra with the algebra Mn(R) ≡ R(n) of real

n × n matrices

177 A natural and valid objection might be raised as to why we actually started with a “complicated” geometrical exposition, when
there is a “simple” matrix formalism available on the market. We can allege ad defendendum before the Court of Conscience
that (i) after ten chapters we have got chummy with differential geometry in so far as we can understand its reasoning with
equal ease as we understand matrix multiplication and (ii) some issues look more complicated from the perspective of matrix
fundamentalism or they need fairly non-ecological (highly paper-consuming) computations.

178 Note that the subset given by the automorphisms of V (being bijective ⇒ invertible linear maps) is not closed with respect to
linear combinations and so it does not constitute a subalgebra; its closure with respect to the product gives rise naturally to a
group, as we already know from (10.1.3).
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(iii) the prescription (see Appendix A.3)

[A, B] := AB − B A

makes from End V (and, in particular, also from Mn(R)) a Lie algebra as well

(iv) some subsets, like the traceless matrices or the antisymmetric matrices, happen to be closed with

respect to the operations of Lie algebra, and thus constitute Lie algebras (subalgebras of Mn(R))

in their own right.

Hint: (i) product = a composition of the maps. �

• Now, it turns out that the matrix Lie algebras happen to be closely related to the Lie

algebras of groups, which we discussed. In order to make this relation clear recall the results

of problem (11.1.10) concerning the structure of the left-invariant vector fields on GL(n, R).

11.7.2 According to (11.1.10) a general left-invariant vector field on the group GL(n, R)

in coordinates xi
j reads V ≡ VC = xi

kCk
j ∂

j
i ≡ Tr (xC∂) so that it is parametrized by the

n × n real matrix C . Show that

(i) for a linear combination and the commutator of two left-invariant vector fields on GL(n, R) we

get

VC + λVD = VC+λD [VC , VD] = V[C,D]

(ii) the maps

End R
n → XL (GL(n, R)) C �→ VC

End R
n → gl(n, R) ≡ TeGL(n, R) C �→ VC (e)

are Lie algebra isomorphisms.

Hint: (i) for example, making use of the coordinate expression from (11.1.10). �

• This means, however, that the official and starchy Lie algebra gl(n, R), defined abstractly

as the tangent space in the unit element endowed with a sophisticated commutator, may be

replaced by its humanized isomorphic copy Mn(R) ≡ End R
n , which is the mundane n × n

matrices with a simple commutator C D − DC .

11.7.3 Show that the elements of the matrix C may be regarded as the components of

the vector VC (e) (i.e. the most general element of the Lie algebra gl(n, R) of the group

GL(n, R)) with respect to the coordinate basis.

Solution: for the unit element e we have xi
j = δi

j ⇒ VC (e) = δi
kCk

j ∂
j

i

∣
∣
e = Ci

j∂
j

i

∣
∣
e. �

• Now, given an arbitrary matrix group G ⊂ GL(n, R), its Lie algebra is officially realized

as a subspace of the tangent space of the group GL(n, R) in the unit element. With regard to

the isomorphism C ↔ VC (e) from (11.7.1) this means, however, that we may also consider

its isomorphic copy instead, the subspace of the space of n × n matrices. To summarize,

there are already three realizations of the Lie algebra of a Lie group G available:
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1. G as the set of left-invariant vector fields on G,

2. G as the tangent space in the unit element (the most official definition),

3. G as a subalgebra of the algebra of n × n matrices End R
n .

The isomorphisms VC ↔ VC (e) ↔ C found above enable one, as usual, not to discrim-
inate between “the real” Lie algebra and its “isomorphic copies,” but rather to work with

them as with truly equivalent objects. The concrete choice of the realization will depend,

as was the case for example with the definition of the tangent vector in Section 2.2, on the

concrete context. The natural consequence then is to use the same nomenclature for any of

the triple of the mutually isomorphic algebras so that, for example, the labeling gl(n, R)

will also, in what follows, be used for the Lie algebra of all n × n real matrices End R
n

(whereas Mn(R) ≡ R(n) will be reserved for the corresponding associative algebra of all

n × n real matrices).

Let us illustrate this with the example of the orthogonal group G = O(n, R) ⊂ GL(n, R)

how (easily) the corresponding subspace of n × n matrices may be found.

11.7.4 Let G = O(n, R) ⊂ GL(n, R). Show that

(i) if we identify the tangent space in the unit element of the group GL(n, R) (i.e. the Lie al-

gebra gl(n, R)) with the n × n matrices, then the subspace corresponding to the subgroup

G = O(n, R) ⊂ GL(n, R) (i.e. the Lie algebra o(n, R)) corresponds to antisymmetric n × n
matrices

(ii) all antisymmetric matrices happen to be closed with respect to both the linear combinations and

the commutator, so that they constitute a Lie algebra in their own right.

Hint: (i) let x(t) be the coordinate presentation of an arbitrary curve, which starts at the

unit element and which is situated (for any t) in O(n, R) (i.e. not only in GL(n, R)); then

x(0) = In = xT(0), xT(t)x(t) = In; differentiation with respect to t in t = 0 for ẋ(0) =:

C, ẋT(0) = CT yields the restriction on the matrices C in the form CT + C = 0. �

• We see that finding the (isomorphic copies of the) Lie algebras of matrix groups by

this method is indeed simple. In general, we may summarize the algorithm for finding the

matrix versions of the Lie algebras as follows: the matrices C from the algebra are obtained

by differentiation (with respect to t in t = 0) of the defining relations valid for the matrices

x(t) from the group, in particular

1. we consider the curves in G ⊂ GL(n, R) starting from the unit element; in coordinates x(t) ∈
G ⊂ GL(n, R), x(0) = In

2. the matrix version of the Lie algebra is constituted exactly by all the matrices C := ẋ(0).

11.7.5 Check that this algorithm may also be reformulated in the following way: one

writes an element of the group in the form x = In + εC , plugs the ansatz into the defining

relations of the group and leaves only the terms within first-order accuracy in ε.

Hint: if x(t) = x(0) + tC + · · · then ẋ(0) = C . �
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• Let us now see what this algorithm gives for the most important matrix Lie groups from

Section 10.2.

11.7.6 The matrix groups from Section 10.1 may be lucidly summarized as follows:

GL(n, R) det A �= 0 non-singular matrices

O(r, s) ATηA = η pseudo-orthogonal matrices

SO(r, s) ATηA = η, det A = 1 pseudo-orthogonal unimodular matrices

O(n) AT A = I orthogonal matrices

SO(n) AT A = I, det A = 1 orthogonal unimodular matrices

SL(n, R) det A = 1 unimodular matrices

U (n) A+ A = I unitary matrices

SU (n) A+ A = I, det A = 1 unitary unimodular matrices

Show that the corresponding matrix Lie algebras are given in terms of the following

restrictions:

gl(n, R) nothing all n × n matrices

o(r, s) (ηC)T = −ηC pseudo-antisymmetric matrices

so(r, s) just as o(r, s) just as o(r, s)

o(n) CT = −C antisymmetric matrices

so(n) just as o(n) just as o(n)

sl(n, R) Tr C = 0 traceless matrices

u(n) C+ = −C antihermitean matrices

su(n) C+ = −C, Tr C = 0 antihermitean traceless matrices

Hint: see (10.1.5), (10.1.7) and (10.1.12); the condition Tr C = 0 is already automatically

fulfilled for so(r, s) and so(n); by (5.6.5) we have det(In + εC) = 1 + ε Tr C . �

11.7.7 Show that the dimensions of the Lie algebras are (for r + s ≡ n)

dim o(r, s) = dim so(r, s) = dim o(n) = dim so(n) = n(n − 1)

2

dim sl(n, R) = n2 − 1 dim u(n) = n2 dim su(n) = n2 − 1

Hint: n(n − 1)/2 is the number of elements above the diagonal in an n × n matrix; there

are imaginary numbers on the diagonal of antihermitean matrices, above the diagonal we

have 2n(n − 1)/2 real independent numbers ⇒ for u(n) this gives 2n(n − 1)/2 + n ≡ n2

real independent numbers altogether. �

11.7.8 Explain why the dimension of the Lie algebra o(r, s) ≡ so(r, s) does not depend

on the detailed splitting of n into r + s, but rather only on the sum n.

Hint: C �→ Ĉ := ηC is a linear (which is enough here) isomorphism o(n) ↔ o(r, s). �
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11.7.9 Check explicitly in all cases in (11.7.6) that the sets of matrices which satisfy the

restrictions listed in the table are indeed closed with respect to linear combinations and

commutators, therefore being Lie subalgebras of the algebra gl(n, R) ≡ End R
n . �

11.7.10 Use the algorithm from before (11.7.5) to find the Lie algebra ga(1, R) of the

group G A(1, R) and compare the result with (11.2.4).

Solution: by (11.1.13) the curve in G A(1, R) needed for determining of C reads

A(t) =
(

x(t) y(t)
0 1

)

x(0) = 1, y(0) = 0

Then the corresponding element of the Lie algebra ga(1, R) reads

C := Ȧ(0) =
(

ẋ(0) ẏ(0)

0 0

)

≡
(

k1 k2

0 0

)

= k1

(
1 0

0 0

)

+ k2

(
1 0

0 0

)

≡ k1 E1 + k2 E2

The Lie algebra ga(1, R) thus consists of the matrices of the form
( k1

0
k2

0

)
and a basis

E1, E2 may be chosen. One easily verifies that [Ea, Eb] = cc
ab Ec, the structure constants

being identical with those from (11.2.4). �

• The explicit construction of one-parameter subgroups and the exponential map reduces

in the matrix formalism to the computation of exponentials of matrices, i.e. the infinite

series eX := In + X + (1/2!)X2 + · · · , where X is an n × n matrix (an element of the Lie

algebra corresponding to the subgroup). We already encountered this in problem (11.3.5)

for the case of GL(n, R), but it is clear from the solution of the problem that it holds for

any subgroup G ⊂ GL(n, R) (i.e. matrix group G) as well, if X belongs to the subalgebra

G ⊂ gl(n, R).

11.7.11 Find the one-parameter subgroups and the exponential map for G A(1, R) ⊂
GL(2, R) by explicit summation of the series etC , where C is the matrix from the prob-

lem (11.7.10). Show that in this way one obtains formulas which coincide with those from

(11.3.6) and (11.4.5), i.e.

exp

{

t

(
k1 k2

0 0

)}

=
(

x(t) y(t)
0 1

)

x(t) = ek1t , y(t) = k2

k1

(
ek1t − 1

)

so that

exp : (k1, k2) �→ (
ek1

, (k2/k1)
(
ek1 − 1

))

Hint: explore several powers and gain insight into the structure of the series (what the nth

power looks like). �

• The series of the form etC may also be fairly easily summed explicitly in some other

cases. In the problems discussed below this will be carried out for SU (2) and SO(3) (the
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results may come in handy one day) as well as for the group SL(2, R), from which one can

learn that the exponential map need not always be surjective (there may exist elements in

G which cannot be written as eX for X ∈ G).

11.7.12 Let G = su(2). Show that

(i) given σ j , j = 1, 2, 3 the Pauli matrices

σ1 =
(

0 1

1 0

)

σ2 =
(

0 −i
i 0

)

σ3 =
(

1 0

0 −1

)

we may use the matrices e j := − 1
2
iσ j as a basis in su(2)

(ii) the structure constants with respect to this basis read ck
i j = εi jk (compare with (11.7.13))

(iii) a general element X ∈ su(2) may be written in the form

X = − i

2
αn · σ ≡ − i

2
αn jσ j α ∈ R, |n| = 1

(iv) the one-parameter groups in SU (2) are

A(t) = e− 1
2 i tαn ·σ α ∈ R, |n| = 1

or, when written in an alternative form

A(t) = I2 cos
tα

2
− i(n · σ) sin

tα

2

(v) the most general matrix A ∈ SU (2) reads

A =
(

z −w̄

w z̄

)

|z|2 + |w|2 = 1 (z, w ∈ C)

or, equivalently

A = I2a0 + i(a · σ) ≡
(

a0 + ia3 a2 + ia1

−a2 + ia1 a0 − ia3

)

a2
0 + a · a ≡ a2

0 + a2
1 + a2

2 + a2
3 = 1

from which we can see immediately that topologically SU (2) = S3

(vi) the general A ∈ SU (2) may always be written in the form eX , X ∈ su(2), i.e. the exponential

map “covers” the whole group SU (2) (it is surjective).

Hint: (iv) since (check) (n · σ)2 ≡ (niσi )(n jσ j ) = I2, the identity eiαn·σ = I2 cos α +
i(n · σ) sin α holds; (vi) the form of the one-parameter groups of item (iv) exactly matches

item (v) for a0 = cos(tα/2), a = −n sin(tα/2); the most general solution of the require-

ment a2
0 + a · a = 1 is, however, just a0 = cos β, a = n sin β (|n| = 1) so that each matrix

from SU (2) lies in some one-parameter subgroup. �

11.7.13 Let G = so(3). Show that

(i) we may use the 3 × 3 matrices li with the elements

(li ) jk := −εi jk
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i.e. explicitly

l1 =

⎛

⎜
⎝

0 0 0

0 0 −1

0 1 0

⎞

⎟
⎠ l2 =

⎛

⎜
⎝

0 0 1

0 0 0

−1 0 0

⎞

⎟
⎠ l3 =

⎛

⎜
⎝

0 −1 0

1 0 0

0 0 0

⎞

⎟
⎠

as a basis in so(3)

(ii) the structure constants with respect to this basis read ck
i j = εi jk

(iii) a general element X ∈ so(3) may be expressed as

X = αn · l ≡ αni li α ∈ R, |n| = 1

(iv) the one-parameter subgroups in SO(3) are A(t) = R(tα, n), where

R(α, n) := eαn·l

(v) the explicit form of the 3 × 3 matrices R ≡ R(α, n) is

Ri j ≡ (R(α, n))i j = δi j cos α + (1 − cos α)ni n j − εi jknk sin α

so that if we multiply a column x ∈ R
3 from the left by such a matrix,

xi �→ x ′
i := Ri j x j

the result may be written as

x′ = x cos α + (1 − cos α)(n · x)n + (n × x) sin α

(vi) this formula describes the result of the rotation of the vector x by an angle α around the axis

given by the vector n, so that the matrix R(α, n) corresponds to the most general rotation in the

Euclidean space E3 ⇒ the most general matrix from SO(3) ⇒ the exponential map “covers”

the whole group SO(3) (it is surjective, each matrix A ∈ SO(3) is of the form eX for some

X ∈ so(3))

(vii) motion along the one-parameter subgroup A(t) = R(tα, n) corresponds to a uniform rotation

with angular velocity ω = αn.

Hint: (v) compute several powers and gain insight into the structure of the series (what the

nth power looks like); for example, Xi j = αnk(lk)i j = −αεi jknk, X2
i j = Xik Xkj = · · · ,

(5.6.4); (vii) in time t we turn by tα around (always the same) n. �

11.7.14 Let G = sl(2, R). Show that

(i) a general element of the Lie algebra has the form179

X =
(

a b
c −a

)

a, b, c ∈ R

(ii) for the square of the matrix X we get

X 2 = κI2 κ ≡ a2 + bc ≡ − det X ∈ R

179 A word of caution for beginner relativists is in order: c in this expression has nothing to do with the velocity of light in
vacuum.
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(iii) the one-parameter subgroups A(t) ≡ et X read as

A(t) =
(

cosh |k|t + a
|k| sinh |k|t b

|k| sinh |k|t
c
|k| sinh |k|t cosh |k|t − a

|k| sinh |k|t

)

for κ ≡ k2 > 0

A(t) =
(

1 + ta tb
tc 1 − ta

)

for κ = 0

A(t) =
(

cos |k|t + a
|k| sin |k|t b

|k| sin |k|t
c
|k| sin |k|t cos |k|t − a

|k| sin |k|t

)

for κ ≡ −k2 < 0

(iv) the traces of the matrices come out as follows in these three cases:

Tr A(t) = 2 cosh |k|t ≥ 2 κ > 0

Tr A(t) = 2 κ = 0

Tr A(t) = 2 cos |k|t ∈ 〈−2, 2〉 κ < 0

so that we always get Tr A(t) ≥ −2

(v) the matrix

B =
(

−2 0

0 − 1
2

)

is from SL(2, R) and Tr B = − 5
2

< −2. Therefore the image exp(sl(2, R)) is not the whole

SL(2, R), i.e. the exponential map “does not cover” the whole group SL(2, R).

• There may sometimes be a simple topological reason why the exponential map fails to

“cover” the whole group – the non-connectedness of the group. A topological space M is

said to be (arcwise) connected if for any two points a, b ∈ M there is a continuous map of

the interval 〈0, 1〉 to M such that the image of 0 is the point “a” and the image of 1 is the

point “b.” Visually this means that any two points may be linked together by a (continuous)

curve, all of its points being in M .

11.7.15 Be sure to understand that

(i) the relation “may be linked together. . .” is an equivalence on M ; one may then factorize with

respect to this equivalence and get the factorspace (classes of this particular equivalence are

called the connected components)

(ii) the space M is connected ⇔ there is only a single equivalence class (the whole space is thus a

single connected component)

(iii) the connected components are already connected.

Hint: (i) if a ∼ b, b ∼ c, a curve from a to c is given by the “linkage” of the curves plus a
reparametrization (in order that 1 maps to c). �

11.7.16 Check that the groups GL(n, R) and O(n, R) are not connected, so that they have

at least two connected components (actually both have just two).
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Hint: the map GL(n, R) → R, A �→ det A is continuous, so that one cannot link two points

(non-singular matrices) which differ in the sign of the determinant (the determinant of a

joining curve A(t) is a continuous function of t , which has different signs at t = 0 and t = 1

⇒ it should vanish somewhere inside the interval, which corresponds to a singular matrix;

so the curve is not wholly in GL(n, R)). For A ∈ O(n, R) we have det A = ±1. �

• A general Lie group thus may have more than one connected component and the identity

element of the group lies in one of them. It is called the connected component of the identity.

In the context we are interested in now it is important to realize that the image of the

exponential map cannot contain more than this component of the group.

11.7.17 Show that the image of the exponential map always lies in the connected com-

ponent of the identity, i.e. the group elements which are not lucky enough to live in this

component cannot be written as eX for any X ∈ G.

Hint: the one-parameter subgroup et X links together the identity with the element g = eX .

�

11.7.18 For the group G A(1, R) show explicitly (and also draw a picture) that

(i) it has two connected components

(ii) no one-parameter subgroup reaches “the other” component (not belonging to the identity)

(iii) the exponential map “covers” the whole component of the identity.

Hint: (i) non-singularity of

(
x y
0 1

)

excludes the y-axis in the plane xy; (ii), (iii) see

(11.3.6). �

• Now we should appreciate much more the non-triviality of the result (11.7.14). We

learned there that the exponential map on SL(2, R) does not “cover” the whole group.

We mention without proof that this group happens to be connected. Non-surjectivity of

the exponential map is thus not related to what was discussed above and it provides the

lesson that even on connected Lie groups it may not be possible to write down each element

as eX .

In connection with all of this the term exponential group is sometimes introduced (if

G = expG). We learned that SU (2) and SO(3) are exponential groups, whereas SL(2, R)

as well as any non-connected group are not exponential. Notice that if a group happens

to be exponential, it is necessarily also connected (we get from eX to eY along the path

consisting of two parts, first by et X to e ∈ G and then by etY to eY ).

Now we would like to make good the election pledges we gave to our electorate at the end

of Section 11.2 (and as an indication in a note before (11.1.12)). This concerned the technique

of finding the canonical 1-form θ on G as well as the left-invariant 1-forms. The first step is

to realize that the matrix x−1dx (with 1-form elements), which we encountered in (11.1.9),

may be actually regarded as the canonical 1-form on GL(n, R).
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11.7.19 Be sure to understand that the canonical 1-form θ̂ on GL(n, R) is indeed given

by the matrix (-valued 1-form)

θ̂ = x−1dx = (x−1dx)i
j E j

i ≡ (x−1)i
k dxk

j E j
i

and check explicitly its left-invariance.

Solution: it is a matrix-valued (i.e. a gl(n, R)-valued) 1-form on GL(n, R). It sat-

isfies the definition relation (11.2.6): 〈θ̂ , VC 〉 = x−1〈dx, VC 〉 = x−1VC x = C . Finally,

L∗
A(x−1 dx) = (Ax)−1 d(Ax) = x−1 dx . �

• Now we will take a step forward and try to elucidate the relation between the canonical

forms on G and H , provided that j : G → H is an injective homomorphism.

11.7.20 Let j : G → H be a homomorphic embedding of Lie groups (so that j(G) ⊂ H
is an isomorphic copy of G in H ) and let θ̂ = θ̂a Ea be the canonical 1-form on H (Ea being

a basis in H). Show that its pull-back j∗θ̂ ≡ ( j∗θ̂a)Ea is “almost” the canonical 1-form on

G; the difference lies only in the fact that it is not (“true”) G-valued, but its values are in

the isomorphic copy j∗eG ⊂ H.

Hint: making use of (11.1.11) and (11.2.6) we get ( j∗θ̂ )(g) = θ̂ ( j(g)) ◦ j∗ = L̂ j(g)−1∗ ◦ j∗ =
(L j(g)−1 ◦ j)∗ = j∗e ◦ Lg−1∗ ≡ j∗θ (g). If Ei is a basis in G, j∗eEi is its image in H (its linear

envelope being the copy of G in H), so that in detail ( j∗θ̂a)Ea = θ i ( j∗eEi ). This means

that, in general, the form j∗θ̂ does not need the whole basis Ea of the algebra H for its

decomposition, but rather only j∗eEi , which is just the basis of the subalgebra j∗eG ⊂ H.

�

• This already gives a straightforward conclusion concerning the situation with arbitrary

matrix groups. We simply take GL(n, R) as H and some of its subgroups as G.

11.7.21 Be sure to understand that

(i) if we introduce local coordinates zμ on a matrix group, i.e. if

j : G → GL(n, R) zμ �→ xi
j (z

μ)

is an injective homomorphism, then the 1-form on G

θ := j∗(x−1 dx)

may be actually regarded as the canonical 1-form on G
(ii) its decomposition into component forms

θ = θa Ea ≡ (
θa
μ dzμ

)
Ea

contains only the matrices Ea , which constitute a basis of the subalgebra G ⊂ gl(n, R) (rather

than the whole Weyl basis Ei
j of the algebra gl(n, R)).

Hint: see (11.7.19) and (11.7.20). �
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• Let us review some facts we have already encountered earlier from this new point of

view.

11.7.22 Express the results of the problems (11.1.12) and (11.1.13) in the language of

problem (11.7.21).

Solution: for SO(2)

θ =
(

0 dϕ

−dϕ 0

)

= dϕ

(
0 1

−1 0

)

≡ θ1 E1

and for G A(1, R)

θ =
(

x−1dx x−1dy
0 0

)

= e1

(
1 0

0 0

)

+ e2

(
0 1

0 0

)

≡ θ1 E1 + θ2 E2

where θa = ea from (11.1.13) and Ea is the basis from (11.7.10), which matches the

decomposition in (11.2.6). �

The technique of finding explicit expression of the canonical 1-form θ (and consequently

the left-invariant 1-forms ea) on a matrix group G may be thus summarized in general as

follows:

(i) we parametrize the group elements xi
j (z

μ) in terms of arbitrary local coordinates zμ

(ii) we form the expression (a matrix, whose entries are 1-forms) θ := x−1(z) dx(z)

(iii) this object may be decomposed uniquely as θ = θa Ea with respect to the matrices Ea , which

constitute a basis of G; the “coefficients of the decomposition” turn out to be just the left-

invariant180 1-forms ea , moreover just corresponding to this very basis (ea ↔ Ea ↔ Ea).

• Now, let us apply this technique to a new situation, the computation of the canonical

1-form and left-invariant fields on the group SU (2).

11.7.23 Find the canonical 1-form θ on the group SU (2) and the left-invariant 1-forms

corresponding to the basis Ea = − 1
2
iσa in su(2). In order to do this show in successive

steps that

(i) the constraint |z|2 + |w|2 = 1 from (11.7.12) may be solved by parametrization in terms of the

Euler angles

z = cos
ϑ

2
e− 1

2 i(ψ+ϕ) w = sin
ϑ

2
e− 1

2 i(ψ−ϕ)

ϑ ∈ 〈0, π〉, ϕ ∈ 〈0, 2π〉, ψ ∈ 〈0, 4π〉
(ii) on SU (2) we have A−1 = A+ and so the canonical 1-form may also be written as

θ ≡ A−1 d A = A+ d A A = A(ϑ, ϕ, ψ)

(iii) the left-invariant 1-forms ea , given by the decomposition

A−1 d A = A+ d A
!= ea Ea ≡ − i

2

(
e3 e1 − ie2

e1 + ie2 −e3

)

180 To find the right-invariant forms f a we start with the matrix (dx)x−1 and make a decomposition (dx)x−1 = f a Ea .
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and the dual left-invariant vector fields ea turn out to be

e1 = sin ψ dϑ − sin ϑ cos ψ dϕ e1 = sin ψ∂ϑ + cot ϑ cos ψ∂ψ − cos ψ

sin ϑ
∂ϕ

e2 = cos ψ dϑ + sin ϑ sin ψdϕ e2 = cos ψ∂ϑ − cot ϑ sin ψ∂ψ + sin ψ

sin ϑ
∂ϕ

e3 = dψ + cos ϑ dϕ e3 = ∂ψ

(iv) the right-invariant 1-forms f a , given by the decomposition

(d A)A−1 = (d A)A+ != f a Ea ≡ − i

2

(
f 3 f 1 − i f 2

f 1 + i f 2 − f 3

)

and the dual right-invariant vector fields fa turn out to be

f 1 = − sin ϕ dϑ + sin ϑ cos ϕ dψ f1 = − sin ϕ∂ϑ − cot ϑ cos ϕ∂ϕ + cos ϕ

sin ϑ
∂ψ

f 2 = cos ϕ dϑ + sin ϑ sin ϕ dψ f2 = cos ϕ∂ϑ − cot ϑ sin ϕ∂ϕ + sin ϕ

sin ϑ
∂ψ

f 3 = dϕ + cos ϑdψ f3 = ∂ϕ

Hint: see (11.7.12) and (10.1.12). �

Summary of Chapter 11

Differential geometry turns out to provide an effective tool for studying such sophisticated

objects as Lie groups represent. Their rich geometry stems from the compatibility of the

two structures involved. A much simpler object, the Lie algebra (it is a finite-dimensional

vector space), may be associated canonically with each Lie group with the help of the left-
invariant vector fields. In spite of its simplicity the Lie algebra of a group encodes a great

deal (the essential part) of information concerning the group itself. The exponential map

from the Lie algebra to the group is introduced.

Lgh := gh, Rgh := hg Left translation, right translation (11.1.1)

L∗
gT = T T is left-invariant tensor field on G (11.1.4)

ea(g) = Lg∗Ea, Ea = ea(e) Left-invariant frame field generated by Ea (11.1.6)

(x−1)i
k dxk

j ≡ (x−1 dx)
i
j Left-invariant 1-forms on GL(n, R) (11.1.9)

xi
k∂

k
j ≡ (x∂)i

j Left-invariant vector fields on GL(n, R) (11.1.10)

[Ea, Eb] = cc
ab Ec Structure constants with respect to Ea (11.2.2)

dea + 1
2
ca

bceb ∧ ec = 0 Maurer–Cartan formula in terms of ea (11.2.3)

〈θ, L X 〉 := X, θ = ea Ea Canonical (Maurer–Cartan) 1-form θ on G (11.2.6)

dθ + 1
2
[θ ∧ θ ] = 0 Maurer–Cartan formula in terms of θ (11.2.6)

γ (t + s) = γ (t)γ (s), γ (0) = e One-parameter subgroup on G Sec. 11.3

γ X (t) = et X One-parameter subgroup in terms of exp (11.4.1)

f (eX ) = e f ′(X ) Derived homomorphism f ′ (11.5.3)

x−1 dx Canonical 1-form on GL(n, R) (11.7.19)

j∗(x−1 dx) = x−1(z) dx(z) Canonical 1-form on matrix groups (11.7.21)
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Representations of Lie groups and Lie algebras

• As we already mentioned at the beginning of Section 10.1, groups always occur as
groups of transformations of something, through their action on a set (usually endowed
with some additional structure). Thus, there exists a rule which assigns to each element
g of a group a transformation Lg of some set M . A study of group theory thus naturally
incorporates181 besides knowledge of the groups themselves also the question of where and
how a given group may act.

In this chapter we will systematically treat a particular, but very important, class of actions,
which are called representations. From the perspective of general actions, to be discussed in
more detail in Chapter 13, they are singled out by operating in linear spaces and, moreover,
linearly. Such a distinguished position of just this class of actions within the scope of all
actions is simply the reflection of the distinguished position of linear spaces within the scope
of various mathematical structures. Representations may be found wherever symmetries and
linearity meet in one place.

12.1 Basic concepts

• If a symmetry group is to act in a linear space V , it is natural to ask for the compatibility
of the symmetry operations with the linear structure. This means that to each group element
g we should assign a linear operator ρ(g), i.e. ρ(g) ∈ End V . Moreover, these maps should
also “reproduce” the behavior of the abstract group G itself, i.e. to be homomorphisms
from G to End V . Recall, however, that all the linear maps (i.e. End V ) do not constitute
a group so that the concept of a homomorphism from G to End V formally (as a group
homomorphism) makes no sense.

12.1.1 Be sure to understand that

(i) Aut V ⊂ EndV ≡ Hom (V, V )

181 Especially in those despicable cases when we put our mind to this with, from the very beginning, the view of using our
knowledge somewhere.

244
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(ii) if ρ is to be a homomorphism, its image Im ρ ≡ ρ(G) has to lie in the part Aut V , i.e. each operator
ρ(g) is to be invertible; in general, we may write

ρ(G) ⊂ Aut V ⊂ End V

Hint: (ii) to each g there is a g−1. �

• Symmetries in V are thus described by homomorphisms

ρ : G → Aut V ≡ GL(V ) ρ(gg̃) = ρ(g)ρ(g̃)

Such a homomorphism182 is called a representation of a group G in a vector space V . The
dimension of the space V is called the dimension of the representation ρ. The representation
is thus a left linear action.183

There is an alternative “matrix” point of view on representations: to each group element
g a representation ρ assigns a linear (invertible) operator ρ(g) and thus, after introducing a
basis Ea in V , also the matrix of the operator

ρ(g)Ea =: (ρ(g))b
a Eb g �→ (ρ(g))b

a

Then we obtain an assignment “group element �→ matrix,” in which a product of elements
is mapped to the product of the corresponding matrices.

Consider, for example, the group consisting of just three elements G = {e, a, b} from
problem (11.1.3). Then one easily checks that the assignment

e �→
⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ a �→
⎛

⎝
0 1 0
0 0 1
1 0 0

⎞

⎠ b �→
⎛

⎝
0 0 1
1 0 0
0 1 0

⎞

⎠

is a representation of the group in R
3. Let us look at two further simple (and important)

examples.

12.1.2 Given G ⊂ GL(n, R), a matrix group, check that the prescription

A �→ ρ(A) ≡ A

is a representation of the group in R
n (the matrix A, regarded as an element of the group

G, is represented by the matrix A itself, interpreted, however, as a linear operator in
R

n). We will denote this representation as ρ = id (“identity”; sometimes it is also called
“tautological”). �

12.1.3 Given a non-singular square matrix A (i.e. A ∈ GL(n, R)) check that

(i) the prescription A �→ det A may be regarded as a (one-dimensional) representation of the group
GL(n, R)

182 When we speak about Lie groups, it is natural to add the requirement of a smooth dependence on g, i.e. of the smoothness of
the map G × V → V , (g, v) �→ ρ(g)v.

183 The (more general) concept of left action is introduced in Section 13.1.
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(ii) if H is a subgroup of G then the representation of G also automatically gives the representation
of H (the restriction on a subgroup); in particular, A �→ det A is the representation of an arbitrary
subgroup of GL(n, R) (= matrix group)

(iii) the generalization to A �→ (det A)λ, λ ∈ R is also a representation. �

• Recall that the idea of a representation of a group stems from the simple observation that
invertible linear operators are naturally endowed with the structure of a group. More careful
observations, however, result in a more general statement; namely, that particular subsets
of linear operators are naturally endowed with various useful algebraic structures. Repre-
sentations are then homomorphisms (in order to preserve the operations) of the structure
under consideration to the corresponding class of operators. Two (or three) important cases
are of particular interest for us: the invertible operators, i.e. Aut V ≡ GL(V ), constitute
a group (the case we started with) whereas all linear operators, i.e. End V , constitute an
associative algebra and consequently also a Lie algebra (the commutator being realized as
[A, B] := AB − B A – we learned this in (11.7.1); this will be used (now) to represent Lie
algebras and (later) Clifford algebras). Namely, the representation of a Lie algebra G in a
vector space V is a Lie algebra homomorphism

f : G → End V

i.e. we assign to an arbitrary element X of the Lie algebra G a linear operator f (X ) so that

f (X + λY ) = f (X ) + λ f (Y ) depends linearly on X

f ([X, Y ]) = [ f (X ), f (Y )] ≡ f (X ) f (Y ) − f (Y ) f (X ) preserves the commutator

Note that (as many as) two184 linearities occur here: f (X ) is a linear operator in V , depending
moreover linearly on X .

12.1.4 Let f : G → End V be a representation of a Lie algebra G in V , E j a basis in G
and let E j := f (E j ) be the generators of the representation, i.e. the linear operators in V
which represent the basis elements of the Lie algebra. Check that the operators E j satisfy
“the same commutation relations” as the basis elements E j do for the Lie algebra itself, i.e.

[Ei , E j ] = ck
i j Ek ⇒ [Ei , E j ] = ck

i jEk

To find a representation of a Lie algebra thus (also) means finding a set of operators E j ,
whose commutation relations coincide with the commutation relations of the basis E j .

Hint: f is a homomorphism. �

12.1.5 Let G, G̃ be two Lie algebras of the same dimension. Check that

(i) they are isomorphic if and only if their structure constants happen to coincide in appropriately
chosen bases

(ii) the Lie algebras so(3) and su(2) are isomorphic, moreover they are isomorphic to the Lie algebra
(E3, ×) (common three-dimensional vectors, commutator := the vector product)

184 In a more general case of action on a manifold (see Section 13.4) the first linearity dies away, but the second one still survives.
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(iii) the correspondence is

a · l ↔ − i

2
a · σ ↔ a

(iv) the commutators of the general elements turn out to be

[a · l, b · l] = (a × b) · l
[

− i

2
a · σ, − i

2
b · σ

]

= − i

2
(a × b) · σ [a, b] = a × b

(v) these isomorphisms may also be regarded as either a two-dimensional complex (≡ in the space C
2)

representation of the algebra so(3) or a three-dimensional real (≡ in the space R
3) representation

of the algebra su(2)

a · l �→ ρ1(a · l) := − i

2
a · σ − i

2
a · σ �→ ρ2

(

− i

2
a · σ

)

:= a · l

or on the bases

l j �→ ρ1(l j ) := − i

2
σ j − i

2
σ j �→ ρ2

(

− i

2
σ j

)

:= l j

(vi) similarly, any homomorphism of two matrix Lie algebras may be regarded as a representation.

Hint: (i) E j ↔ Ẽ j ≡ f (E j ); (iii) see (11.7.12) and (11.7.13). �

• The relation between Lie groups and Lie algebras is reflected in a corresponding relation
between their representations. The unique and trouble-free route G �→ G (a Lie group G
induces its Lie algebra G) corresponds to the unique and trouble-free route ρ �→ ρ ′ at
the level of their representations: a representation ρ of a Lie group G induces a unique
representation ρ ′ of the Lie algebra G; it is called the derived representation (12.1.6).
However, just as the route G �→ G need not be so simple (two isomorphic algebras may
have “above them” non-isomorphic groups, e.g. su(2) = so(3), but SU (2) 
= SO(3)), in
general also the route ρ ′ �→ ρ may be more involved.

The explicit form of the derived representation of G is but a special case of the derived
homomorphism from Section 11.5.

12.1.6 Given ρ a representation of a Lie group G in V , show that

(i) the Lie algebra of the group H = Aut V ≡ GL(V ) is H = End V (in the matrix version H =
GL(n, R) leads to H = gl(n, R) = all real n × n matrices)

(ii) the derived homomorphism ρ ′, given by the commutative diagram

G
ρ−−−−→ Aut V

exp



⏐
⏐
⏐



⏐
⏐
⏐exp

G −−−−→
ρ′

End V

i.e. ρ(eX ) = eρ′(X )

and by the explicit formula

ρ ′(X ) = d

dt

∣
∣
∣
∣
0

ρ(et X )

is indeed a representation of G in V ; it is called the derived representation
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(iii) the formula given above for the computation of ρ ′ may be rewritten in the convenient form

ρ(1 + εX ) = 1 + ερ ′(X ) within order ε

(iv) if a basis Ea is fixed in V then the derived representation ρ ′ of the Lie algebra is encoded in the
matrix elements ρb

ai of the generators Ei ≡ ρ ′(Ei ) of the representation, given by

ρ ′(Ei )Ea =: ρb
ai Eb

Hint: (i) the operator 1 + εX has the inverse 1 − εX (i.e. it has an inverse operator for any
linear map X ); (ii) see (11.5.3). �

12.1.7 Let A �→ det A, or more generally A �→ (det A)λ, be representations of the group
GL(n, R). Show that

(i) for their derived representations we get

ρ : A �→ det A ⇒ ρ ′ : C �→ Tr C

ρ : A �→ (det A)λ ⇒ ρ ′ : C �→ λTr C

(ii) the maps ρ ′ are indeed linear and (trivially) preserve the commutator.

Hint: (i) see (5.6.5), (12.1.3) and (12.1.6). �

12.1.8 Let ρ : G → Aut V be a representation of G. Show that

(i) the prescription

〈ρ̌(g)α, v〉 := 〈α, ρ(g−1)v〉 α ∈ V ∗, v ∈ V

defines the representation

ρ̌ : G → Aut V ∗

of the group G in the dual space V ∗, called the contragredient representation (or sometimes the
dual representation)

(ii) if we adopt the dual bases in V and V ∗ we get

ρ(g)Ea = Ab
a Eb ⇒ ρ̌(g)Ea = (A−1)a

b Eb

so that at the level of matrices the transition from a given representation to the contragredient is

ρ : g ↔ A ρ̌ : g ↔ (A−1)T

(iii) the canonical pairing is invariant185 with respect to the simultaneous action of ρ in V and ρ̌ in
V ∗ (that is the point about ρ̌)

〈ρ̌(g)α, ρ(g)v〉 = 〈α, v〉
or at the level of components

va �→ v′a ≡ Aa
bv

b αa �→ α′
a ≡ (A−1)b

aαb ⇒ αav
a �→ α′

av
′a = αav

a

Hint: a straightforward check. �

185 This invariance should not be confused with the concept of invariant scalar product in V , to be discussed in (12.1.10) and
beyond.
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12.1.9 Let ρ : G → Aut V be a representation of G, ρ ′ its derived representation of G and
let ρb

ai be the corresponding matrix elements. Show that

(i) the matrix elements of the (derived) contragredient representation (with respect to the dual basis)
are −ρb

ai

ρ ′(Ei )Ea = ρb
ai Eb ⇒ ρ̌ ′(Ei )Eb = −ρb

ai Ea

so that at the level of the matrices the transition from a given representation to the contragredient
one (for the derived representation ρ ′) consists in C �→ −CT

(ii) arbitrary commutation relations of matrices are invariant with respect to this substitution, so that

[Ei , E j ] = ck
i jEk ⇒ [(−Ei )

T, (−E j )
T] = ck

i j (−Ek)T

Hint: (12.1.6), (12.1.8). �

• A representation ρ of a group G is called a faithful representation if the map
ρ : G → Aut V is injective (and the same holds for representations of Lie algebras). The
(abstract) group itself is then isomorphic to the subgroup Im ρ ⊂ Aut V of operators (ma-
trices), the isomorphism being g ↔ ρ(g). For example, the embedding of the affine group
G A(n, R) into GL(n + 1, R) from (10.1.15) may also be regarded as a faithful representa-
tion of G A(n, R) in R

n+1. (We will encounter faithful representations of Clifford algebras
in Chapter 22.)

Consider a representation of a group G in a linear space V , i.e. a pair (V, ρ). The same
linear space may also be endowed with a scalar product h; thus we also have (V, h). If
both the structures happen to occur simultaneously in some situation, as a rule they are
compatible – we have a compatible triple (V, h, ρ). This means that the scalar product of
any two vectors does not change if an arbitrary group element g is applied (by means of the
representation ρ) simultaneously on both of the vectors. If this is the case we speak about
a ρ-invariant scalar product.

12.1.10 Let h be a ρ-invariant scalar product of the type (r, s) in V . So we have186

h(ρ(g)v, ρ(g)w) = h(v, w) v, w ∈ V ; g ∈ G

Check that

(i) the operators ρ(g) are (pseudo-)orthogonal, i.e.

ρ : G → O(r, s) ≡ Aut (V, h) ⊂ Aut V r + s = dim V

(ii) the operators of the derived representation satisfy

h(ρ ′(X )v, w) = −h(v, ρ ′(X )w)

so that they are (pseudo-)antisymmetric;187 ρ ′ : G → o(r, s)

186 If the representation is fixed and it cannot be confused with some other possible representation, a more compact (and lucid)
way of writing is preferred, namely ρ(g)v ≡ gv (this is also the way it is often written in the general case of a left action, see
Section 13.1). Then the invariance of the scalar product is simply h(gv, gw) = h(v, w).

187 A linear operator A is said to be (pseudo-)antisymmetric (with respect to h) if the bilinear form B(v, w) := h(v, Aw) turns
out to be antisymmetric; in components Bab := hac Ac

b and Bab = −Bba .
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(iii) the matrix elements ρb
ai of the derived representation of the Lie algebra G (defined by ρ ′(Ei )Ea =

ρb
ai Eb) satisfy

hbcρ
c
ai + hacρ

c
bi = 0 or ρbai = −ρabi for ρabi := hacρ

c
bi

Hint: (i) see (10.1.4) and (10.1.5); (ii) set g = et X and differentiate in t = 0; (iii) see (12.1.6).
�

• In this situation we speak about an orthogonal representation of a group. More fre-
quently, however, a complex version of this concept occurs, the unitary representation of
a group (in a complex space endowed with the scalar product of the type (10.1.12), which
happens to be ρ-invariant) and (derived) antihermitean representation of its Lie algebra.

Sometimes a situation offers invariant scalar products naturally (as in the case of the
Killing metric in G, see (12.3.8)). Another time it might be fairly useful to know when and
how one can construct such a product if it is not available and we need it. Now we describe
a simple construction of a ρ-invariant scalar product, which is applicable for finite groups
and then we will contemplate what is to be improved in the method in order for it to be
viable for Lie groups as well and what problems possibly may occur.

12.1.11 Let G ≡ {e ≡ g1, . . . , gn} be a finite group, ρ its representation in V and h0 any
positive-definite scalar product in V . Show that

(i) the new scalar product

h(v, w) := 1

n

n∑

j=1

h0(g jv, g jw)

already turns out to be ρ-invariant
(ii) if h0 is already invariant, then h0 �→ h = h0, so that a “bad” scalar product gets repaired and a

“good” one remains unchanged (this is the only role of the factor 1/n in front; h also is clearly
invariant without it).

Hint: nh(gv, gw) := ∑n
j=1 h0(g j gv, g j gw) ≡ n

∑n
j=1 h0((Rgg j )v, (Rgg j )w); since Rg is

a bijection, we perform the summation effectively again over the whole group so that we
only get nh(v, w). �

• We see that the invariance of the product is accomplished by averaging over the group
(one performs the arithmetic mean of the scalar products188 with the arguments being
transformed step by step by all the elements of the group). It is clear that for a continuous
(Lie) group one should replace the sum by the integral. For the integral over the group
we need a volume form but there are an infinite number of volume forms on the group
(multiples of a single one by an arbitrary non-vanishing function). Which volume form
should we choose? An approved mentor, the computation, will be consulted again.

12.1.12 Let ω be a (not yet specified) volume form on a compact Lie group G, so that
the volume of the group vol G := ∫

G ω turns out to be finite. Let further h0 be an arbitrary

188 The procedure of performing the linear combination of the bilinear forms (which is done in the averaging) may spoil the
non-degeneracy; this does not happen, however, in the positive-definite case. In general, it can happen that the averaging of
h0 gives rise to degenerate (although invariant) h, so that it cannot then be used as a scalar product.
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(positive definite) scalar product in V , where the representation ρ of the group G acts. For
fixed vectors v, w ∈ V we define the function on the group

fv,w(g) := h0(gv, gw)

(the scalar product of g-transformed vectors) and introduce in V a new scalar product by
the prescription (stolen from finite groups)

h(v, w) := 1

vol G

∫

G
fv,wω ≡ 〈 fv,w〉G

The operation 〈( · )〉G is again (see the end of Section 7.7) the average over the group,
so that h(v, w) is actually the mean value of the scalar product of g-transformed vectors.
Check that

(i) the function fv,w on G satisfies

fgv,gw = fv,w ◦ Rg ≡ R∗
g fv,w

(ii) if we take ω to be the right-invariant volume form (R∗
gω = ω), then h turns out to be ρ-invariant

(iii) if h0 already is invariant, then h0 �→ h = h0, so that a “bad” scalar product gets repaired and
a “good” one remains unchanged (this is the only role of the factor 1/vol G in front; h is also
clearly invariant without it).

Hint: (i) ρ is a homomorphism, from which fgv,gw(k) = fv,w(kg); (ii)

h(gv, gw) = 1

vol G

∫

G
(R∗

g fv,w)ω = 1

vol G

∫

G
R∗

g( fv,wω) = 1

vol G

∫

Rg(G)≡G
fv,wω

≡ h(v, w)

(iii) fv,w is then a constant function and it may be put in front of the integral. �

12.1.13 Consider the standard representation of SO(2) in R
2, i.e. ordinary rotations of the

Euclidean plane v �→ Av, A ∈ SO(2). Check that

(i) after averaging over SO(2) the “bad” (= rotation non-invariant) scalar product h0 changes to the
“good” one, which looks as anticipated:

h0(v, w) ≡ (v1, v2)

(
1 0
0 2

)(
w1

w2

)

�→ h (v, w) := (v1, v2)

(
k 0
0 k

)(
w1

w2

)

(ii) after the averaging over SO(2) of the (also rotation non-invariant) scalar product ĥ0 of type
(1, −1), the computation gives

ĥ0(v, w) ≡ (v1, v2)

(
1 0
0 −1

)(
w1

w2

)

�→ ĥ0(v, w) := (v1, v2)

(
0 0
0 0

)(
w1

w2

)

so that the averaging spoils non-degeneracy (even in an extreme way, since the resulting invariant
“scalar product” is useless: it simply vanishes).

Hint: see (12.1.12), the right- (as well as left-) invariant volume form on SO(2) is dϕ

(11.1.12). �
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• We see that for compact Lie groups a more or less straightforward modification of the
method used for finite groups may be applied with the same positive result – an invariant
scalar product always exists (and we even know the algorithm of its construction). For non-
compact groups the situation differs significantly since the crucial integral

∫
G f ω need not

exist. An invariant scalar product then cannot be constructed in this way and its existence
is not guaranteed in general. This is one of the reasons why the theory of representations of
non-compact groups gets much more complicated in comparison with compact (or finite)
groups.

12.2 Irreducible and equivalent representations, Schur’s lemma

• Sometimes in a given representation (V, ρ) a smaller representation (of the same group
G) is hidden. This happens when there exists an invariant subspace W ⊂ V in V , i.e. such
that the vectors which belong there also remain in it after a transformation by an arbitrary
operator of the representation (10.1.13); formally

ρ(G)W ⊂ W i.e. w ∈ W ⇒ ρ(g)w ∈ W g ∈ G

We emphasize that we are speaking about a simultaneous invariant subspace of all operators
ρ(g).

Two such subspaces are always available: W = the whole V and W = {0}. They are said
to be trivial. If a representation ρ has no other invariant subspaces, it is called an irreducible
representation (so that it cannot be reduced to a smaller representation (a subrepresentation),
which we would get by restriction of the initial one on the subspace W , i.e. by confining
a domain of ρ(g) to W alone). A reducible representation, in contrast, has at least one
non-trivial invariant subspace.

12.2.1 Consider the representation of SO(2) in R
2 from (12.1.13), i.e. the ordinary

rotations of the Euclidean plane v �→ Av, A ∈ SO(2). Show that this representation is
irreducible.

Hint: a non-trivial subspace would have to be one-dimensional, i.e. a line passing through
the origin; no such line is, however, invariant with respect to rotations. �

• If we find in V a non-trivial subspace W , we feel fairly encouraged and start to seek
its invariant complement Ŵ , i.e. a subspace which is (also) invariant and which together
with W constitutes the whole space V , so that V = W ⊕ Ŵ . If such a complement exists,
the representation is said to be completely reducible; it essentially decomposes into two
smaller representations: the first in W and the second in Ŵ (compare the concept of a sum
of representations in problem (12.4.10)). It turns out, however, that the invariant complement
need not always exist, i.e. a reducible189 representation need not always also be completely
reducible.

189 For example the two-dimensional representation (x, y) �→ (x + ay, y) of the group G = (R, +) has only a single one-
dimensional invariant subspace, given by the vectors of the form (x, 0). It is reducible, but not decomposable.
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12.2.2 Let ρ be a reducible or completely reducible representation of a Lie group G. Show
that

(i) the reducibility as well as the complete reducibility automatically carries over to the derived
representation ρ ′ of the Lie algebra G (i.e. to operators ρ ′(X ) for all X ∈ G)

(ii) in an appropriately chosen basis in V the matrices of all the operators ρ(g) and ρ ′(X ) have the
following block structure:

(
A C
0 B

)

or

(
A 0
0 B

)

(iii) if there is an invariant scalar product h in V , then each reducible representation is already
necessarily also completely reducible

(iv) for compact (as well as finite) groups each reducible representation is already necessarily also
completely reducible.

Hint: (i) the definition of the derived representation; (ii) adapted bases (10.1.13) and
(10.1.14); for example, for a reducible one

if v = xi ei + yαeα ↔
(

x
y

)
then ρ(g) :

(
x
y

)
�→

(
A C
0 B

)(
x
y

)

(iii) the orthogonal complement W ⊥ is invariant; (iv) there exists an invariant scalar product
(12.1.12). �

• It is convenient to introduce an equivalence relation among representations, since the
difference is irrelevant between some of them. Given two representations (ρ1, V1) and
(ρ2, V2) of a group G, a linear map A is said to be equivariant if it “commutes” with the
corresponding operators of the representations, i.e. if the following diagram commutes:

V1

ρ1(g)−−−−−→ V1

A
⏐
⏐
�

⏐
⏐
�A

V2 −−−−−→
ρ2(g)

V2

i.e. ρ2(g)A = Aρ1(g) ∀g ∈ G

Such a map A is alternatively called an intertwining operator for these two representa-
tions.190 Note that the same operator then also “intertwines” the derived representations
of G

V1

ρ
′
1(X )

−−−−−→ V1

A
⏐
⏐
�

⏐
⏐
�A

V2 −−−−−→
ρ

′
2(X )

V2

i.e. ρ ′
2(X )A = Aρ ′

1(X ) ∀X ∈ G

190 They are also studied in Section 12.5. The concept of equivariance itself turns out to be useful also in the broader context of
actions (linearity drops out), see (13.1.13).
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One can easily check that the intertwining operators for the fixed two representations are
naturally endowed with the structure of a linear space and in the particular case of equal
representations they even constitute an associative (unital) algebra.

12.2.3 Representations (ρ1, V1) and (ρ2, V2) of a group G are called equivalent if there
exists an equivariant isomorphism between V1 and V2; the intertwining operator is thus an
isomorphism and

ρ2(g) = Aρ1(g)A−1

Show that

(i) this indeed introduces an equivalence on the set of representations of G
(ii) in appropriately chosen bases equivalent representations have equal matrices of the corresponding

operators (i.e. ρ1(g) and ρ2(g) for the same g)
(iii) for derived representations then ∀X ∈ G

ρ ′
2(X ) = Aρ ′

1(X )A−1

(iv) if there is a ρ-invariant scalar product h in (V, ρ), the contragredient representation ρ̌ is equivalent
to the representation ρ itself.

Hint: (ii) if Ea ∈ V1, take A(Ea) ≡ Ẽa ∈ V2; (iii) set g = et X and differentiate with respect
to t in t = 0; (iv) v �→ h(v, · ) ≡ 	hv (lowering of the index by h) is an intertwining
isomorphism. �

12.2.4 The prescription l j �→ − 1
2 iσ j ≡ Sj defines a (complex) representation of so(3) in

C
2 (12.1.5). Show that

(i) the complex conjugate matrices S∗
i also provide a representation

(ii) Si and S∗
i are (in this particular case) equivalent.

Hint: (ii) see (12.2.3) with A = σ2 (which is a linear isomorphism C
2 → C

2, since det σ2 
=
0); σ ∗

j ≡ σ T
j = −σ2σ jσ2 may come in handy. �

12.2.5 Check that

(i)

Sj ≡ − i

2
σ j and N j ≡ 1

2
σ j

is a representation of G = so(1, 3) (= the Lie algebra of the Lorentz group)
(ii) the complex conjugate matrices S∗

j , N ∗
j also provide a representation of so(1, 3)

(iii) the two representations are now (contrary to (12.2.4)) inequivalent.191

Hint: according to (12.2.3) one is to find a non-singular complex 2 × 2 matrix A such that
(

− i

2
σ j

)∗
= A

(

− i

2
σ j

)

A−1 and at the same time

(
1

2
σ j

)∗
= A

(
1

2
σ j

)

A−1

See that this is a bit too much for a single matrix A. �
191 This turns out to be important for the theory of “dotted and undotted spinors” (see the text after (13.3.15)).
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• Schur’s lemma is a standard formal tool used in connection with irreducible representa-
tions. We mention two Schur lemmas here; the first one deals with the intertwining operators
between two irreducible representations and the second one is then a simple consequence
for a special case of two equal representations, i.e. it is a statement about the intertwining
maps for a single irreducible representation. When we read a reference to “Schur’s lemma”
in physics texts, as a rule the second one is meant.

12.2.6 Let (ρ1, V1) and (ρ2, V2) be two irreducible representations of a group G. Consider
all intertwining operators A between them, i.e. all linear maps satisfying

A : V1 → V2 Aρ1(g) = ρ2(g)A

Prove the (“first”) Schur lemma: then,

(i) there are (only) two possibilities: either ρ1, ρ2 are inequivalent and then the only A is A = 0,
or ρ1, ρ2 are equivalent and then A is an isomorphism (put together, an intertwining operator A
between two irreducible representations may be either zero or an isomorphism)

(ii) if ρ1, ρ2 are equivalent complex representations, then the isomorphism A is unique up to the
freedom (clear in advance) A �→ λA (λ ∈ C).

Hint: (i) Ker A and Im A are invariant subspaces (check) ⇒ they are necessarily trivial.
Analyze the four possibilities available (three of them give A = 0, the fourth, Ker A =
0, Im A = V2, says that A is an isomorphism so that they are equivalent); (ii) let B be
another candidate, then (recall the linear structure) also C ≡ A − λB for any λ ∈ C is good
⇒ also for the root of the equation det (A − λB) = 0 (a complex root exists for sure192 and
it is acceptable here (check; see (12.2.8)). In this case, however, C fails to be invertible ⇒
it is not an isomorphism ⇒ by item (i) it is necessarily zero, C = 0. �

12.2.7 Let (ρ, V ) be an irreducible complex representation of a group G and let A be its
intertwining operator, or equivalently (!) a linear operator in V , which commutes with all
the operators of the representation: ∀g ∈ G we have

ρ(g)A = Aρ(g) i.e. [A, ρ(g)] = 0 ∀g ∈ G

Prove the (“second”) Schur lemma: then

A = λ1 λ ∈ C

i.e. A is necessarily only a multiple of the identity operator (of course, any multiple of the
identity operator commutes with all ρ(g); we assert that no other operator does).

Hint: for ρ1 = ρ2 in (12.2.6) item (ii) is true; since A = 1 clearly is acceptable, the most
general A is A = λ1. �

12.2.8 Convince yourself by means of the following counterexample that the assumption
of the complexity of the representation in Schur’s lemma is essential (and not a specific

192
C is an algebraically closed field, i.e. such that all the solutions of the equations “polynomial with coefficients from C = 0”
belong to the field as well; we are not forced to extend the field because of them (contrary to R, where the equation x2 + 1 = 0
forces us to sit down and invent the imaginary number i /∈ R).
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feature of the proof, which may be bypassed by some other proof): consider again the
“identical” representation of SO(2) (12.1.13), (12.2.1) A �→ ρ(A) = A. We already know
that (when regarded as a real representation, i.e. in R

2) it is irreducible. Check that

(i) in spite of being irreducible, all of its operators ρ(A) commute (besides the multiples of the
identity matrix) with an independent non-singular matrix

B =
(

0 1
−1 0

)

(but already with no other independent matrices)
(ii) geometrically this stems from the fact that in addition to the standard metric tensor there is also a

rotationally invariant volume form in E2 (in two-dimensional space its components form a 2 × 2
matrix)

(iii) the proof from (12.2.6) fails in that the equation det (A − λB) ≡ det (1 − λB) = 0 has no real
solution.

Hint: (iii) det (1 − λB) = 1 + λ2 = 0 gives only λ = ±i ; this is not acceptable for a real
representation, since 1 ± i B is not a linear map R

2 → R
2. �

12.2.9 Let G be a commutative group. Show that all its complex irreducible representations
are necessarily one-dimensional.

Hint: for fixed g the operator ρ(g) commutes with all ρ(g′), g′ ∈ G; therefore ρ(g) = λ(g)1;
if the space (V, ρ) is more than one-dimensional, it contradicts irreducibility (each subspace
is invariant for λ(g)1). �

12.2.10 Give a complete classification of all irreducible complex representations of the
Lie group U (1). What do the corresponding derived representations of the algebra u(1) look
like?

Solution: from (12.2.9) they are one-dimensional, i.e. we have z �→ w(z), ||z|| = 1, w ∈ C;
the requirement of homomorphism gives (within first-order accuracy in ε)

ρ(z(1 + iε))
1= ρ(z)ρ[1 + εi] = ρ(z)[1 + ερ ′(i)] definition of ρ ′

2= w(z + εi z) = w(z) + εi z
dw(z)

dz
Taylor expansion of w(z)

so that i zw′(z) = λw(z), λ ≡ ρ ′(i) ∈ C; continuity restricts λ to λ = in, n ∈ N; so z �→
ρn(z) = zn , where n ∈ N and the derived representation is then ρ ′

n(i) = in; equivalently

eiα �→ ρn(eiα) := einα ρ ′
n(i) = in n ∈ N

The integer n, which completely characterizes a given irreducible representation, is in
applications in physics connected with the charge of the object transforming according to
this representation. What kind of charge it is (electrical, etc.) depends on the particular
context; in general, it is some U (1)-charge. �
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12.2.11 If ρ(g) in (12.2.8) is regarded as an operator in C
2 (instead of R

2; one speaks
about the complexification of the representation), the representation becomes reducible (it
is two-dimensional, see (12.2.9)).

(i) Explain why it is even completely reducible, so that there exist in C
2 two invariant (complex)

one-dimensional subspaces.
(ii) Find the corresponding invariant subspaces and thus obtain the form of the matrices from problem

(12.2.2).
(iii) Find out which irreducible representations (in the sense of (12.2.10)) act in the one-dimensional

invariant subspaces (i.e. they appear as the diagonal elements of the matrices in the form (12.2.2)).

Solution: (i) the group SO(2) is compact (12.1.12), (12.2.2); (ii), (iii) first we find the in-
tertwining operator A : C

1 → C
2 between the nth irreducible representation (eiα �→ einα)

and the two-dimensional (complex) representation under consideration from (12.2.8). Be-
cause of the freedom A �→ λA we may seek it in the form 1 �→ ( 1

w

)
, where w ∈ C is to be

determined. For the corresponding derived representations (which is a bit simpler) we get
the equivariance condition (the text before (12.2.3))

(
1
w

)

in =
(

0 1
−1 0

) (
1
w

)

from where n2 = 1, w = in

So the non-trivial (non-zero) intertwining operators exist only for the representations
labelled by n = ±1 and their matrices explicitly read

A =
(

1
i

)

for n = 1 A =
(

1
−i

)

for n = −1

The images of these operators constitute in C
2 two one-dimensional (searched) subspaces,

in which the representations ρn with n = 1 and n = −1 operate. Thus they are spanned by

the vectors

(
1
i

)

and

(
1
−i

)

. A change of basis in C
2 resulting in just these two vectors is

given by the matrix Â =
(

1 1
i −i

)

; one checks that it indeed satisfies

(
1 1
i −i

) (
eiα 0
0 e−iα

) (
1 1
i −i

)−1

=
(

cos α sin α

− sin α cos α

)

so that Â is an intertwining isomorphism between ρ1 ⊕ ρ−1 and the given representation
from problem (12.2.8). �

• In (12.2.11) we found the invariant subspaces by comparison (through the construction
of the intertwining operator) with known irreducible representations. There are also other
methods available. We may use, for example, the result of the problem (12.2.8), where
we learned that there are (in this particular case) only two independent operators which
happen to commute with all the operators of the representation, namely 1 and B. As we
have already mentioned before, the operators commuting with all the operators ρ(g) of the
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representation (i.e. the intertwining operators for this representation) are endowed with the
structure of an algebra and it turns out that this algebra encodes the invariant subspaces of
the representation.

12.2.12
∗

Let ρ be a representation of G in V . Consider all linear isomorphisms A : V → V
which commute with all operators of the representation. Check that

(i) these operators are closed with respect to linear combinations as well as product (composition),
so that they constitute a (unital) associative algebra (see Appendix A.2)

(ii) for the representation of SO(2) from (12.2.8) this algebra is two-dimensional and it is spanned
by the basis 1, B (B2 = −1), so that a general element is a1 + bB and the product reads

(a1 + bB)(a′1 + b′ B) = (aa′ − bb′)1 + (ab′ + a′b)B

(iii) if we consider this algebra over C (i.e. the coefficients may be from C), one can form the linear
combinations P±, which behave like projectors and they realize the decomposition of unity

P2
+ = P+ P2

− = P− P+ P− = 0 = P− P+ P+ + P− = 1

(iv) the space of the representation V ≡ C
2 may be then decomposed into the sum of invariant

(one-dimensional) subspaces P±V

V = (P+ + P−)V ≡ P+V ⊕ P−V ≡ V+ ⊕ V−

in which the restrictions of the operators ρ(g) act
(v) in this way we get exactly the decomposition from (12.2.11)

(vi) if a representation is irreducible, the algebra is only one-dimensional and we can project out no
non-trivial invariant subspace.

Hint: (iii) write down the requirements with general coefficients and solve. (P± = 1
2 (1 ±

i B); ρ(g) = ρ(g)1 = ρ(g)P+ + ρ(g)P− ≡ ρ±(g), where ρ±(g) effectively acts (only) in
V±.) �

• Let us look more closely at the structure of the intertwining operators between two
representations whose spaces may be decomposed into the sum of invariant subspaces.

12.2.13
∗

Let (ρ1, V ≡ ⊕i Vi ) and (ρ2, W ≡ ⊕αWα) be two complex representations of G,
the subspaces Vi and Wα being invariant and not containing already smaller (non-trivial)
invariant subspaces (so that the restrictions of the representations to these subspaces are
irreducible). Let Pi and Pα be the projectors onto these subspaces. Check that

(i) if A : V → W is an intertwining operator between ρ1 and ρ2, then the operators

Aαi : Vi → Wα Aαi := Pα APi , A =
∑

i,α

Aαi

are the intertwining operators for the irreducible subrepresentations which arise by the restriction
to Vi and Wα

(ii) each operator Aαi is either zero or an isomorphism given uniquely up to multiplication by a
constant
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(iii) all the intertwining operators between ρ1 and ρ2 constitute a linear space (it is denoted byC(ρ1, ρ2)
or HomG(V1, V2))

(iv) the dimension of the space C(ρ1, ρ2) expresses the total number of pairs of mutually equivalent
irreducible subrepresentations (one member of the pair being in ρ1 and the other one in ρ2)

(v) if some particular irreducible representation ρ̂ occurs k times in ρ1 and l times in ρ2, it contributes
to the dimension of the space C(ρ1, ρ2) by a term kl.

Hint: (ii) use Schur’s lemma. �

• Let us remark at the end of this section that in the proof of Schur’s lemma we actually
never used the fact that the operators ρ(g) (or ρ ′(X )) represent a group (or a Lie algebra).
As a matter of fact, the lemma tells something about any family of operators which act
in a common linear space: what are the properties of an operator commuting with the
whole family, what happens when the family acts irreducibly (i.e. there is no simultaneous
non-trivial invariant subspace), etc.? A practical consequence of this observation is that
the lemma may be used (and in fact is used) in connection with representations of other
algebraic structures, like associative algebras and, in particular, Clifford algebras.

12.3 Adjoint representation, Killing–Cartan metric

Both the adjoint representation Ad of a group G as well as its derived representation ad of
the Lie algebra G are frequently encountered in various applications. The group does not
worry too much about finding a vector space V to carry the representation. It simply uses
its own Lie algebra to do this. So (V, ρ, ρ ′) becomes in this particular case (G, Ad, ad).

Although this may be regarded as an admirably economical behavior of G (instead of
two structures G, V to be paid from taxpayers’ money a single one makes do), it might
at the same time make it a bit harder to grasp these ideas quickly (one should always be
careful to understand clearly whether a given X ∈ G stands in the role of the Lie algebra
element to be represented or in the role of an element of the carrier space V ≡ G).

12.3.1 Consider the conjugation Ig on a Lie group G, i.e. (see also (13.1.3)) the map

Ig : G → G k �→ gkg−1

Check that

(i) Ig is (for fixed g ∈ G) a bijective homomorphism, i.e. an automorphism of the group G; it is also
called an inner automorphism

(ii) if the derived homomorphism to Ig is denoted by Adg := I ′
g ≡ Ig∗, the following commutative

diagram holds:

G
Ig−−−−−→ G

exp



⏐
⏐
⏐



⏐
⏐
⏐

exp

G −−−−−→
Adg≡I ′

g

G
i.e. geX g−1 = eAdg X

(this diagram (or formula) actually may be regarded as defining the map Adg)
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(iii) for matrix groups the map AdA (g ≡ A being a matrix from G) may be explicitly written as
follows:193

AdA X = AX A−1

Hint: (ii) see (11.5.3); (iii) BeX B−1 = B(1 + X + 1
2 X X + · · ·)B−1 = 1 + B X B−1 +

· · · = eB X B−1
. �

• For each g ∈ G we thus have the automorphism Ig of the group G as well as the
automorphism Adg of the Lie algebra G (the bijectivity of the latter will be checked in a
while). Let us concentrate now on their behavior with respect to its “parameter” g.

12.3.2 Check that

(i) both the maps Ig and Adg behave with respect to the “parameter” g as left actions, i.e.

Igh = Ig ◦ Ih Adgh = Adg ◦ Adh

(ii) for each g the map Adg is a bijection so that, when put together, it is an automorphism of the Lie
algebra G

(iii) the map

Ad : G → AutG g �→ ρ(g) ≡ Adg

is a representation194 of G in G; it is called the adjoint representation of the group G.

Hint: (i) Igh trivial, Adgh = I ′
gh = (Ig ◦ Ih)′ = · · · (11.5.3); (ii) the preimage for X is

Adg−1 X ; if Adg X = AdgY , then X = Y (apply Adg−1 ); (iii) the definition and the preceding
results here. �

• We now mention two geometrical situations in which this representation occurs. The
first is the transformation of the left-invariant objects with respect to the right translations
on a group, the second one concerns the relation between the right- and left-invariant fields.

12.3.3
∗

Let L X be the left-invariant vector field on G which is given by its value X at
the point e ∈ G, i.e. L X (e) = X . Also let Ei be a basis in G ≡ TeG, Ei the dual basis in
G∗ ≡ T ∗

e G and ei , ei the corresponding left-invariant fields on G and finally let Lg and Rg

be the left and right translation on G. Check that

(i) the left-invariant fields behave with respect to Lg and Rg as follows:195

L∗
g L X = L X R∗

g L X = LAdg X

193 We emphasize that this (simple) expression is meaningful only for matrix groups, since in general the product of a group
element with a Lie algebra element is not defined at all. In the case of the matrix groups, however, both objects are matrices and
they may be multiplied (as matrices). Note that in the general formula geX g−1 = eAdg X the objects get multiplied correctly
also from an “abstract” point of view.

194 It is actually even more than a representation, since the operators from AutG are not only linear, but they also happen to
preserve free of charge (beyond their legal duties resulting from being a representation of a group) the commutator in G (recall
that Adg is defined as a derived homomorphism so that Adg[X, Y ] = [Adg X, AdgY ]); automorphism of a Lie algebra G means
more than an automorphism of a vector space G, being a part of the structure of the Lie algebra G.

195 Recall that both Lg and Rg are diffeomorphisms of G on itself so that it makes sense (3.1.6) to apply both maps L∗
g and Lg∗

to arbitrary tensor fields. In particular, one can perform the pull-back of vector fields and L∗
g = Lg−1∗.
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(ii) in particular, for the frame and coframe fields ei , ei

L∗
gei = ei R∗

gei = (Adg) j
i e j

L∗
gei = ei R∗

gei = (Adg−1 )i
j e

j

We see that left-invariant frame fields ei transform under right translations on G into one another
by the Adg-representation and they remain unchanged under the left translation, since they
remember well from schooldays what the word “invariant” means in plain English

(iii) the values themselves of the right- and left-invariant fields L X and RX corresponding to the same
X are related in the point g by

L X (g) = RAdg X (g) RX (g) = LAdg−1 X (g)

or for the bases

ei (g) = (Adg) j
i f j (g) fi (g) = (Adg−1 ) j

i e j (g)

ei (g) = (Adg−1 )i
j f j (g) f i (g) = (Adg)i

j e
j (g)

Hint: (i) according to (11.1.1), (11.1.4), (12.3.1) we have

Rg∗L X (h) = Rg∗Lh∗ X = Lh∗ Rg∗ X = Lh∗Lg∗Lg−1∗ Rg∗ X = Lh∗Lg∗ Ig−1∗ X

= Lh∗Lg∗Adg−1 X = Lhg∗Adg−1 X ≡ LAdg−1 X (hg)

(ii) it should be 〈ei , e j 〉 = 〈R∗
gei , R∗

ge j 〉; (iii) L X (g) = Lg∗ X = Rg∗ Rg−1∗Lg∗ X =
Rg∗ Ig∗ X ≡ Rg∗Adg X = RAdg X (g). �

12.3.4 Let θ be the canonical 1-form on G. Check that it behaves under the left and right
translation on G as follows:

L∗
gθ = θ i.e. (L∗

gθ
i )Ei = θ i Ei

R∗
gθ = Adg−1θ i.e. (R∗

gθ
i )Ei = (

(Adg−1 )i
jθ

j
)
Ei

The form θ is thus left-invariant and with respect to right translations it is (in the terminology
of Section 13.5) “of type Ad.”

Hint: left-invariance is already known from (11.2.6), with respect to Rg: the component
forms of θ happen to coincide (11.2.6) with ei , (12.3.3). �

• Let us look more closely at how the adjoint representation appears in these formulas. If
we apply, for example, R∗

g on ei , the result is to be some constant linear combination of the
fields e j (since R∗

gei constitute a left-invariant frame field, see (11.1.1iv) and (11.1.6v)). One
checks that the matrices by which ei are combined realize a representation of G, which may
be regarded as acting in the Lie algebra G. Only at this stage does the true question arise:
which representation of G in G comes out there? There are just two natural possibilities: the
adjoint and the trivial one. The computation showed us that it is the adjoint representation
(the trivial one is realized on right-invariant fields fi ).

Now we look at the derived representation of the adjoint one.
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12.3.5 Let ρ = Ad be the adjoint representation of G in G. Its derived representation will
be denoted by ρ ′ ≡ Ad′ =: ad. Check that

(i) the commutative diagram holds

G
Ad−−−−−→ AutG

exp



⏐
⏐
⏐



⏐
⏐
⏐

exp

G −−−−−→
ad≡Ad′

EndG
i.e. Adexp X = eadX

(ii) the explicit formula for ad is196

adX Y = [X, Y ]

(iii) this formula indeed defines a representation of G in G, i.e.

adX+λY = adX + λadY

ad[X,Y ] = adX adY − adY adX ≡ [adX , adY ]

(iv) if ck
i j are the structure constants with respect to a basis Ei ∈ G, then the matrix elements of the

operator adEi with respect to the basis E j (a special case of ρb
ai ; the indices of the type a, b, . . .

and i, j, . . . coincide here) are

(adEi )
k
j = ck

i j i.e. adEi E j = (adEi )
k
j Ek = ck

i j Ek

This is usually referred to as that in the adjoint representation the “generators are given directly
in terms of the structure constants”

(v) check directly that these matrices satisfy appropriate commutation relations.

Hint: (i) (12.1.6); (ii) in the matrix case it is easily computed from (12.3.1); in gen-
eral, consider on G the flow �

L X
t := Rexp t X , generated by the field L X (11.4.6); the re-

sult (12.3.3) says that R∗
exp t X LY = L (Adexp t X Y ) and its differentiation with respect to t at

t = 0 gives LL X LY = L (adX Y ) (LL X is the Lie derivative along the field L X ) and since
LL X LY = [L X , LY ] = L [X,Y ] and X ↔ L X is a bijection, we get adX Y = [X, Y ]; (v) the
Jacobi identity [Ei , [E j , Ek]] + · · · = 0. �

12.3.6 Write down explicitly the matrices adEi with respect to the basis Ei for the Lie
algebras so(3), su(2) and ga(1, R).

Hint: (11.7.12), (11.7.13) and (11.7.10) (for both su(2) and so(3) it turns out that adE j = l j ;
thus, in particular, ad = id for so(3)). �

• In a Lie algebra G there is often a distinguished scalar product, given by the Killing–
Cartan metric tensor. Its importance lies in the fact that it is invariant with respect to the
adjoint representation, i.e. it is Ad-invariant. When we spread this metric tensor by left

196 Notice that we write ad(X ) as adX , just like Ad(g) is written as Adg (so that the argument of the maps is written as if it were
an index). It is more convenient, since in the usual form the left-hand side of the formula to be proved, as an example, would
be ad (X )(Y ), which is rather obscure.
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translations over the whole group, we gain a metric tensor on G (already as a field on a
manifold G), which is (trivially) left-invariant, but (surprisingly = non-trivially) it is also
right-invariant. In a series of problems we now learn more details about this important idea.

12.3.7 Let ρ be a representation of a Lie group G in V and let ρ ′ be the derived represen-
tation of G. Check that

(i) the operators ρ(g) and ρ ′(X ) (where g ∈ G, X ∈ G) satisfy

ρ(g)ρ ′(X )ρ(g−1) = ρ ′(Adg X ) and on the basis ρ(g)Eiρ(g−1) = (Adg) j
i E j

(ii) in the Lie algebra G we may define a symmetric bilinear form

B(X, Y ) := Tr (ρ ′(X )ρ ′(Y )) ≡ 〈Ea, ρ ′(X )ρ ′(Y )Ea〉
which is Ad-invariant

(iii) its matrix of components with respect to the basis Ei ∈ G is

Bi j ≡ B(Ei , E j ) = ρa
biρ

b
aj

and it does not depend on the choice of a basis Ea in V (even though the parts from which it is
pieced together, the matrix elements ρa

bi , do depend on the choice).

Hint: (i) apply ρ to geεX g−1 = eεAdg X , (12.1.6); (ii) symmetry: under the trace symbol the
operators do commute; invariance:

B(Adg X, AdgY ) = Tr (ρ(g)ρ ′(X )ρ ′(Y )ρ(g−1)) = B(X, Y )

due to the cyclic invariance of a trace; (iii) ρa
bi behave as the components of a tensor of the

type
( 1

1

)
in V in the pair of indices

( )a

b
. �

12.3.8 Check that

(i) in the Lie algebra G we may define a symmetric bilinear form

K (X, Y ) := Tr (adX adY ) ≡ 〈Ei , adX adY Ei 〉
which is Ad-invariant; it is called the Killing–Cartan form

(ii) its matrix of components with respect to the basis Ei ∈ G is

ki j ≡ K (Ei , E j ) = ck
il c

l
jk and it satisfies ki j (Adg)i

r (Adg) j
s = krs

(iii) the form197 K (X, Y ) is invariant with respect to all the automorphisms of G (not only with respect
to inner automorphisms, i.e. Adg).

Hint: (i), (ii) see (12.3.7) for ρ = Ad; (iii) rewrite the definition of the automorphism
A([X, Y ]) = [A(X ), A(Y )] as adA(X ) = A ◦ adX ◦ A−1. �

197 The word “form” does not mean a form in the sense of Chapter 5 (an “exterior” form) here, since K is symmetric (bilinear
form) and the exterior forms are, in contrast, antisymmetric.
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12.3.9 Let K be the Killing–Cartan form in a Lie algebra G. Check that

(i) the infinitesimal version of its Ad-invariance is

K (adZ X, Y ) + K (X, adZ Y ) = 0

i.e. K ([Z , X ], Y ) + K (X, [Z , Y ]) = 0

(ii) on a basis it gives

ci jk + c jik = 0 ci jk := kilc
l
jk

(iii) this condition gives that ci jk are the components of some (truly “exterior”) 3-form in the Lie
algebra (see also (12.6.5)); its explicit expression reads

c(X, Y, Z ) := K (X, [Y, Z ]) ≡ ci jk X i Y j Zk

(iv) the 3-form c(X, Y, Z ) is Ad-invariant

c(Adg X, AdgY, Adg Z ) = c(X, Y, Z ).

Hint: (i), (ii): (12.1.10) for ρ = Ad; (iii) antisymmetry of ci jk in the first and the last
pair results automatically in the antisymmetry of the pair (ik), so that ci jk is a completely
antisymmetric tensor of the type

( 0
3

)
; (iv)

c(Adg X, AdgY, Adg Z ) = K (Adg X, [AdgY, Adg Z ]) = · · · �

12.3.10 Write down explicitly the matrices of the components of the Killing–Cartan forms
ki j for the Lie algebras so(3), su(2) and ga(1, R). Check that for su(2) = so(3) the bilinear
form − 1

2 K (X, Y ) is positive definite and Ad-invariant (so that it gives an invariant scalar
product in G)

Solution: according to (12.3.8), (11.7.12), (11.7.13) and (11.7.10) we get for su(2) and

so(3) the result ki j = −2δi j ; for ga(1, R) we get ki j =
(

1 0
0 0

)

. �

12.3.11 Consider the matrix Lie algebras gl(n, R) and sl(n, R). Show

(i) that the Killing–Cartan form for G = gl(n, R) turns out to be

K (X, Y ) = 2nTr (XY ) − 2(Tr X )(Tr Y )

(ii) explicitly its Ad-invariance
(iii) that it is (on gl(n, R)) degenerate
(iv) that its restriction to sl(n, R) gives

K (X, Y ) = 2nTr (XY )

Hint: (i) the trace in the definition of K may be computed with the help of the Weyl’s basis
(Ei

j )
k
l = δi

l δ
k
j ; check that if ÂEi

j = Aik
jl El

k , then Tr Â = Ai j
ji ; (ii) (12.3.1) and the cyclic

invariance of a trace; (iii) the elements of the form λ1 are orthogonal to the whole of
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gl(n, R) (this is visible right from the form of K , but also from the fact that these elements
commute with all elements so that adX = 0 for them); (iv) TrX = 0. �

• We can learn from these results that the Killing–Cartan form may not always be used
as an invariant scalar product in G – sometimes it is degenerate. In the case of so(3) =
su(2) it turns out to be negative definite, so that if we help it a bit by multiplying it by
a negative number, we get a beautiful positive definite invariant scalar product. For the
algebras ga(1, R) and gl(n, R) the form K turns out, however, to be degenerate and there
is no chance in this case to make a scalar product (even indefinite) from it. It turns out that
the form K is non-degenerate just for a particular class of Lie algebras, which are called the
semi-simple Lie algebras. By definition they are the algebras which do not contain non-zero
commutative ideals198 (see Appendix A.3). For our particular algebras under consideration
we easily verify that this statement indeed holds.

12.3.12 Check that

(i) the algebras ga(1, R) and gl(n, R) indeed do have a non-zero commutative ideal
(ii) the algebra so(3) = su(2) indeed does not have a non-zero commutative ideal.

Hint: (i) in ga(1, R) the needed ideal is spanned by E2 (in the notation of (11.7.10)), in
gl(n, R) by the identity matrix I; (ii) the only non-zero ideal is given here by the whole
algebra G and this, in turn, is non-commutative (if I is an ideal, [G, I] ⊂ I should hold;
this means that I is an invariant subspace for the ad-representation of G. In the language
of (12.1.5) the subspace is constituted by the vectors b such that they remain there when
multiplied “vectorially” by any vector a). �

• The operators in the representation space, which are formed from the generators of
the representation and which in turn happen to commute with all the generators, play an
important role in the representation theory of Lie algebras. They are called the Casimir
operators. By Schur’s lemma (12.2.7) they are necessarily just scalar multiples of the
identity operator (for an irreducible representation). The value of the multiple (the number
λ in λ1) depends on the representation, so it may in turn be used to characterize it. There
exists a theory199 which says how many independent Casimir operators a given Lie algebra
has (and so how many numbers are to be specified to fix an irreducible representation of this
algebra) and how they are constructed from the generators (they form “polynomials” in the
generators). It turns out that this issue is closely related with the structure of the Ad-invariant
tensors in Lie algebra. As an illustration (which is the case of greatest interest in physics)
we mention the construction of the quadratic Casimir operator. For the Lie algebra so(3),
this used to be the starting point of the construction of all irreducible representations, which
is worked out in every textbook on quantum mechanics in chapters devoted to the theory of
angular momentum.

198 Any such algebra is, in turn, the direct sum (see (12.4.2)) of simple algebras (i.e. non-commutative algebras which have only
trivial ideals – zero and the whole algebra) and the simple algebras are classified (i.e. all of them are known), so that in this sense
the structure of all the semi-simple Lie algebras is known. We shall not be concerned with the structure and the classification
of the Lie algebras in this book; this may be found in almost every book on Lie algebras.

199 We shall not be concerned with this part of representation theory in this book.
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12.3.13 Let G be a Lie algebra such that an Ad-invariant (non-degenerate) metric tensor
k exists in it. Let ρ ′ be a representation of G with generators Ei ≡ ρ ′(Ei ), ki j the matrix of
k and ki j the inverse matrix to ki j . Check that

(i) the quadratic Casimir operator

Ĉ ≡ Ĉ2 := ki jEiE j

commutes with all generators of the representation

[Ĉ, E j ] = 0 j = 1, . . . , dimG

(ii) for any irreducible representation

Ĉ = λ1

(iii) for so(3) = su(2) it is (when multiplied by an appropriate constant) the standard quantum-
mechanical operator of the square of the angular momentum

−�
2Ĉ = J2 ≡ J · J ≡ J1 J1 + J2 J2 + J3 J3 Jj ≡ −i�E j ≡ −i�ρ ′(E j )

Hint: [Ĉ, Ei ] = k jk[E jEk, Ei ] = · · · = c jk
i (E jEk + EkE j ), where c jk

i := kkr c j
ri ; this van-

ishes if c jk
i = −ck j

i , which is, however, a consequence of the Ad-invariance of k (ci jk is
completely antisymmetric by (12.3.9)); (ii) Schur’s lemma; (iii) (12.3.10), take − 1

2 K . �

• Now we would like to carry these objects from the Lie algebra G onto the corresponding
Lie group G. We will assume that the form K is non-degenerate. By the standard technique
from (11.1.4) and (11.1.8) we may then assign to the tensor K in the Lie algebra G ≡ TeG
the left-invariant tensor field K of type

(
0
2

)
on the group G. Since it is non-degenerate in G

and the left translation is bijective, it will also be non-degenerate at each point g ∈ G, so that
we obtain the left-invariant metric tensor on the group. This field would be, however, left-
invariant (by the construction) for any choice of the metric tensor in G. A natural question
then arises, what then is the reward for a particular choice of K ?

12.3.14 Let K be the Killing–Cartan metric tensor in G, and let K be the corresponding
left-invariant metric tensor on G. Check that

(i) it may be written in terms of the left-invariant or right-invariant coframe fields ei ↔ Ei ↔ f i as
follows:

K = ki j e
i ⊗ e j = ki j f i ⊗ f j ki j ≡ K (Ei , E j ) = constant

(ii) the metric tensor K is actually even bi-invariant, i.e. invariant with respect to both left as well as
right translations on G

L∗
gK = K R∗

gK = K

Hint: (i) (11.1.8); according to (12.3.3) and (12.3.8) we have

K(g) = ki j e
i (g) ⊗ e j (g) = ki j (Adg−1 )i

r (Adg−1 ) j
s f r (g) ⊗ f s(g)

= krs f r (g) ⊗ f s(g)
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(ii) left-invariance by means of the presentation in terms of ei (L∗
gei = ei ⇒ L∗

g(ki j ei ⊗
e j ) = · · · = ki j ei ⊗ e j ), right-invariance in full analogy by means of the presentation in
terms of f i . �

12.3.15 Express the (improved = positive definite) Killing–Cartan metric tensor − 1
2K

on the group SU (2) in coordinates (ϕ, ϑ, ψ) (the Euler angles). Convince yourself that the
expression containing the left-invariant 1-forms ei indeed gives the same result as with the
right-invariant 1-forms f i (i.e. that indeed ki j ei ⊗ e j = ki j f i ⊗ f j ).

Hint: according to (12.3.14) and the explicit expressions in (11.7.23)

−1

2
K = e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3

= ( dϑ dϕ dψ ) ⊗
⎛

⎝
1 0 cos ϑ

0 1 0
cos ϑ 0 1

⎞

⎠

⎛

⎝
dϑ

dϕ

dψ

⎞

⎠ �

• Let ωL ≡ e1 ∧ · · · ∧ en and ωR ≡ f 1 ∧ · · · ∧ f n be the left- and right-invariant volume
forms on a Lie group G. As we already mentioned in Section 11.6, in general they differ.
Let us see more closely by “how much” these forms differ.

12.3.16 Check that

(i) in general, the forms ωR and ωL are related as200

ωR(g) = (det Adg) ωL (g)

(ii) for the group G A(1, R) it turns out that

Ad(x,y) =
(

1 0
−y x

)

ωR = x ωL

which perfectly matches the general result from item (i)
(iii) for the group SO(3) we have

AdA = the rotation given by the matrix A ωR = ωL

once more perfectly matching the general result from item (i); this means that on SO(3) the
right-invariant volume form happens to be at the same time also left-invariant.

Hint: (i) according to (12.3.3) we have ωR(g) ≡ f 1(g) ∧ · · · ∧ f n(g) = · · · =
(det Adg) e1(g) ∧ · · · ∧ en(g) ≡ (det Adg) ωL (g); (ii) (11.1.15) and

Ad(x,y)(aE1 + bE2) =
(

x y
0 1

) (
a b
0 0

) (
x−1 −yx−1

0 1

)

=
(

a xb − ya
0 0

)

≡ aE1 + (xb − ya)E2

200 We mean the relation between the forms, which arose on G by the right and left translation of the same form E1 ∧ · · · ∧ En

in the tangent space of the unit element (i.e. the Lie algebra).
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(iii) by (12.3.6) we have (for SO(3)!) Adexp X = e(adX ) = e(idX ) = eX , i.e. AdA = A ⇒
det AdA = det A = 1; by (11.7.23) e1 ∧ e2 ∧ e3 = f 1 ∧ f 2 ∧ f 3 = sin ϑ dϑ ∧ dϕ ∧
dψ . �

• We obtained a fairly remarkable result on the group SO(3), namely that the left- and
the right-invariant volume forms coincide; in other words, that we have the bi-invariant
volume form ωL = ωR . In the following problem we convince ourselves that it turns out
likewise on an arbitrary compact Lie group (and trivially also on a commutative one, where
ea = f a ; on a non-commutative one non-trivially, since there ea 
= f a in general and only
their product happens to coincide).

12.3.17 Prove that on each compact Lie group there exists a bi-invariant volume form,
namely that each right-invariant volume form turns out to be at the same time also left-
invariant (and vice versa).

Hint: since Rg is a diffeomorphism of G onto itself, R∗
gωL is also a volume form; this

form is left-invariant (L∗
h(R∗

gωL ) = R∗
g L∗

hωL = R∗
gωL ), so that it may be at most a constant

multiple of ωL , the “constant” being possibly dependent on g, R∗
gωL = �(g)ωL . Then

vol G =
∫

G
ωL =

∫

Rg(G)
ωL =

∫

G
R∗

gωL =
∫

G
�(g)ωL = �(g)

∫

G
ωL = �(g) vol G

so that �(g) = 1 and R∗
gωL = ωL ; the left-invariant volume form ωL is at the same time

also right-invariant. �

12.3.18 Prove that there exists a positive-definite Ad-invariant metric tensor in the Lie
algebra of each compact Lie group201

B(Adg X, AdgY ) = B(X, Y )

so that there also holds

B(adZ X, Y ) + B(X, adZ Y ) ≡ B([Z , X ], Y ) + B(X, [Z , Y ]) = 0

Any Lie algebra in which there exists a positive-definite scalar product satisfying
B([Z , X ], Y ) + B(X, [Z , Y ]) = 0 is called a compact Lie algebra. We see that compact
Lie groups have compact Lie algebras.

Hint: average over the group (12.1.12) the arbitrary positive-definite initial scalar product
B0 (δi j in some fixed basis in G); the relation for ad is the infinitesimal version of the relation
for Ad. �

• This result is useful, for example, for the structure of the action integrals in the theory
of gauge fields (21.5.6).

To close the section let us have a look at an important representation of G which takes
place in the dual space G∗ to the Lie algebra G. (The reason why this representation is fairly
interesting will be clarified in Section 14.6).
201 For example, in su(2) = so(3) it is minus the Killing–Cartan metric tensor.
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12.3.19 The coadjoint representation Ad∗
g of a Lie group G is the contragredient (12.1.8)

representation to the adjoint one Adg . It thus acts in the linear space G∗ by the prescription

〈Ad∗
g X∗, Y 〉 := 〈X∗, Adg−1 Y 〉 X∗ ∈ G∗, Y ∈ G

Check that

(i) if there is an Ad-invariant (non-degenerate) scalar product in G, then the coadjoint representation
Ad∗

g is equivalent to the adjoint one Adg

(ii) it acts on the dual basis via inverse and transpose matrices of the adjoint representation

Ad∗
g Ei = E j (Adg−1 )i

j

(iii) in the derived representation ad∗
X the “generators are given (just like for adX ) directly in terms

of the structure constants”

〈ad∗
X Z∗, Y 〉 = −〈Z∗, [X, Y ]〉 ad∗

Ei
E j ≡ (ad∗

Ei
) j
k Ek = −c j

ik Ek

Hint: (i) see (12.2.3); (ii) see (12.1.8); (iii) see (12.3.5). �

Note: sometimes the coadjoint representation is introduced without “re-doing the right
action to the left one” (the trick g �→ g−1), i.e. by the relation 〈Ad∗

g X∗, Y 〉 := 〈X∗, AdgY 〉.
This clearly results in the right linear action (“antirepresentation”).

12.4 Basic constructions with groups, Lie algebras and their representations

• In this section we will speak about the simplest (and at the same time the most frequent
and important) constructions which are routinely performed with groups, Lie algebras and
their representations. Let us start with the direct and semidirect product of groups and the
corresponding direct and semidirect sum of Lie algebras.

12.4.1 Given two groups G and H , consider the Cartesian product of the sets G × H (the
elements being ordered pairs (g, h)) and introduce the multiplication “by components” into
it

(g1, h1) ◦ (g2, h2) := (g1g2, h1h2)

Check that

(i) this multiplication indeed satisfies the axioms of a group; thus we get a new group, the direct
product of the groups G and H ; it is denoted by G × H

(ii) if matrix groups are concerned, a simple realization of their direct product reads

(g, h) ↔
(

g 0
0 h

)

that is to say, the group of matrices of the block-diagonal form displayed above (endowed with
the operation of a product realized by the common matrix multiplication) is isomorphic to the
“official” group G × H
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(iii) within the group G × H there are hidden the subgroups G̃ and H̃ , which are isomorphic to
the original building blocks G and H ; the elements of G̃ and H̃ commute with each other and
moreover each element from G × H may be uniquely expressed in the form of a product g̃h̃,
where g̃ ∈ G̃, h̃ ∈ H̃ (this will be written as G̃ · H̃ )

(iv) the opposite statement also holds: if a group K has two mutually commuting subgroups G and
H such that K = G · H (i.e. if each element form K may be uniquely expressed in the form of
a product k = gh, where g ∈ G, h ∈ H ), then K is isomorphic to the direct product G × H in
the sense of the definition from item (i).

Hint: (iii) G̃ ↔ (g, eH ), H̃ ↔ (eG, h), e... being the identity elements in the corresponding
groups; (iv) k ≡ gh ↔ (g, h). �

12.4.2 Given two Lie algebras G and H, consider the Cartesian product of the sets G × H
(the elements being ordered pairs (X, Y )) and introduce the linear structure and commutator
“by components” into it

(X1, Y1) + λ(X2, Y2) := (X1 + λX2, Y1 + λY2)

[(X1, Y1), (X2, Y2)] := ([X1, X2], [Y1, Y2])

Check that

(i) the axioms of a Lie algebra are indeed satisfied; thus we get a new Lie algebra, the direct sum of
the Lie algebras G and H; it is denoted by G + H

(ii) if matrix Lie algebras are concerned, a simple realization of their direct sum reads

(X, Y ) ↔
(

X 0
0 Y

)

that is to say, the Lie algebra of matrices of the block-diagonal form displayed above (endowed
with the operation of the commutator realized by the common matrix commutator) is isomorphic
to the Lie algebra G + H

(iii) within the Lie algebra G + H there are hidden the subalgebras G̃ and H̃, which are isomorphic
to the original building blocks G and H; the elements of G̃ and H̃ commute with each other and
moreover each element fromG + Hmay be uniquely expressed in the form of a sum X̃ + Ỹ , where
X̃ ∈ G̃, Ỹ ∈ H̃ (so that the Lie algebra as a linear space is the direct sum of these commuting
subalgebras)

(iv) the opposite statement also holds: if an algebra K has two mutually commuting subalgebras G
and H such that it is as a linear space a direct sum of these subalgebras (each element from K
may be uniquely expressed in the form of a sum Z = X + Y , where X ∈ G, Y ∈ H), then K is
isomorphic to the direct sum G + H (in the sense of the definition from item (i)).

Hint: (iii) G̃ ↔ (X, 0), H̃ ↔ (0, Y ); (iv) Z ≡ X + Y ↔ (X, Y ). �

12.4.3 Let K = G × H be a direct product of Lie groups G and H and let K,G and H
be the corresponding Lie algebras. Show that K is isomorphic to the direct sum of G and
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H, so that “under” a direct product of groups there is the direct sum of their Lie algebras202

K = G × H ⇒ K = G + H

Hint: in matrix language it is elementary: close to the unit element of G × H is
(

g(ε) 0
0 h(ε)

)

=
(

1 + εX 0
0 1 + εY

)

≡
(

1 0
0 1

)

+ ε

(
X 0
0 Y

)

so that K is given by the matrices

(
X 0
0 Y

)

, being just G + H. “Scientifically”: K
is the tangent space in (eG, eH ) ∈ G × H ; the latter is decomposed by (2.2.14) into
TeG G ⊕ TeH H ≡ G ⊕ H, so that Z = X + Y . Left-invariant fields arise standardly by the
left translation (11.1.4) from the unit element, L Z (g, h) = L (g,h)∗ Z . Since L X and LY gener-
ate, according to (11.4.6), the flows (g, h) �→ (get X , h) and (g, h) �→ (g, hetY ) respectively
and the flows commute, also their generators, namely L X and LY , commute and conse-
quently also X and Y commute. Within their own “halves” (two Xs or two Y s) life goes on
as before, which gives altogether the rule from problem (12.4.2). �

• The fact that a group (Lie algebra) happens to be the direct product (sum) of its subgroups
(subalgebras) need not be evident at first sight. This is illustrated by the following simple
examples.

12.4.4 Consider the Lie group GL+(n, R) and its Lie algebra gl(n, R). Check that

(i) the group GL+(n, R) is a direct product of the groups GL+(1, R) and SL(n, R)

GL+(n, R) = GL+(1, R) × SL(n, R)

(ii) the Lie algebra gl(n, R) is a direct sum of the algebras gl(1, R) ∼ R and sl(n, R)

gl(n, R) = R + sl(n, R)

Hint: (i) if A ∈ GL+(n, R), then A = (det A)1/n B ≡ λB ↔ (λ, B); (ii) if X ∈ gl(n, R),
then X = (1/n)(Tr X )I + Y ↔ ((1/n)(Tr X ), Y ). �

12.4.5 Show that the Lie algebra u(n) is a direct sum of its subalgebras (isomorphic to)
su(n) and u(1), but the corresponding “capitals version” of the statement does not hold, i.e.
the group U (n) is not a direct product of SU (n) and U (1),

u(n) = su(n) + u(1) U (n) 
= SU (n) × U (1)

Hint: once more one should extract203 a trace: X = (1/n)(Tr X )I + Y ↔ (Y, (1/n)(Tr X ));
the decomposition A = λB with λ ∈ U (1) and B ∈ SU (n) is now ambiguous (there are n

202 The opposite statement does not hold in general: “over” a direct sum G + H need not be only G × H (the latter is clearly
there), but the issue gets complicated topologically. In general, it turns out that several groups related through a covering
(being a discrete version of a bundle, a concept to be found in Chapter 17 and beyond) may have isomorphic Lie algebras or
conversely through a factorization (projection in the language of bundles); see an example in (12.4.5).

203 The “scalar” matrices λI commute with all other matrices and they constitute a one-dimensional subalgebra; such an algebra
is (up to an isomorphism) unique; here we denote it by u(1), and in the preceding problem it was written as gl(1, R) or R.
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possibilities, A = λ1 B1 = λ2 B2 = · · · = λn Bn , where λk is the kth copy of the nth root (we
have n pieces of nth roots) of det A ≡ eiα; see also (13.2.13), where it is shown that the
product turns out to be isomorphic to the group U (n) after being factorized by the subgroup
Zn). �

12.4.6 Check that the Lie algebra so(4) is a direct sum of two copies of so(3)

so(4) = so(3) + so(3)

Hint: first introduce the antisymmetrized Weyl basis Ẽab := eab − eba ((eab)cd = δacδbd ),
a, . . . = 1, . . . , 4; then set Ei := 1

2εi jk Ẽ jk , Fi := Ẽi4 (i, . . . = 1, 2, 3) and finally ei = Ei +
Fi , fi = Ei − Fi ; convince yourself that the commutation relations of the basis (ei , fi )
correspond to a direct sum of the type mentioned above. �

• Now we will introduce a slightly more involved product for the case of groups and sum
for Lie algebras, corresponding to a semidirect product and sum. In order to do this, however,
it is not enough to have two groups G, H (or the algebras G,H). Instead we need some
more structure, namely an action of G by automorphisms of H (and of G by derivations of
H). Well-known examples of this construction are provided by the semidirect product in
the affine group and its subgroups (the Poincaré group and the Euclidean group).

12.4.7
∗

Let G and H be two groups and let G act from the left by automorphisms on H ,
i.e. there exists a map

φ : G → Aut H such that φgg̃ = φg ◦ φg̃

g �→ φg φg(hh̃) = φg(h)φg(h̃)

On the Cartesian product of the sets G × H we introduce a multiplication by the prescription

(g1, h1) ◦ (g2, h2) := (g1g2, h1φg1 (h2))

(in the right slot there is the product (in the group H ) of the element h1 and the φg1 -image
of the element h2). Check that

(i) this multiplication satisfies the axioms of a group; thus we get a new group, the semidirect product
of the groups G and H ; it will be denoted by G � H or G ×φ H

(ii) for the trivial automorphism φg = id (i.e. φg(h) = h) the semidirect product reduces to the direct
one

(iii) the elements of the form (eG, h) constitute a normal (= invariant) subgroup (the concept to be
defined in (13.2.10)) isomorphic to H . �

12.4.8
∗

Let G be a group and (V, ρ) a representation. Check that

(i) any vector space V may be regarded as a (commutative = Abelian) Lie group
(ii) the representation ρ in V provides a left action of G by the automorphisms of (a group) V , so

that the assumptions for introducing a semidirect product from (12.4.4) are satisfied
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(iii) in this particular case the product explicitly reads

(g, v) ◦ (g̃, ṽ) := (gg̃, v + ρ(g)ṽ)

(iv) the product in the affine, Poincaré or Euclidean group (see (4.6.10) and (10.1.15))

(A, a) ◦ (B, b) := (AB, a + Ab)

(where a, b are the columns from R
n , A, B belong to GL(n, R) for the affine group, to SO(1, 3)

for the Poincaré group and to SO(n) for the Euclidean group) is of just that type, so that the
affine (etc.) group is a semidirect product of its (linear and translational) subgroups.

Hint: (i) multiplication is v + w; (ii) ρ(g) are linear; (iv) ρ = id, so that ρ(A)b = Ab. �

12.4.9
∗

Let G and H be two Lie algebras and let G be represented by derivations of H, i.e.
there exists a map

D : G → Der H DX+λX̃ = DX + λDX̃ DX (Y + λỸ ) = DX Y + λDX Ỹ

X �→ DX D[X,X̃ ] = DX DX̃ − DX̃ DX DX [Y, Ỹ ] = [DX Y, Ỹ ] + [Y, DX Ỹ ]

On the Cartesian product of the sets G × H we introduce a structure of a Lie algebra by the
prescriptions

(X1, Y1) + λ(X2, Y2) := (X1 + λX2, Y1 + λY2)

[(X1, Y1), (X2, Y2)] := ([X1, X2], [Y1, Y2] + DX1 Y2 − DX2 Y1)

Check that

(i) the axioms of a Lie algebra are satisfied; thus we get a new Lie algebra, the semidirect sum of
the Lie algebras G and H; it will be denoted by G � H (i.e. in the same way as the semidirect
product of groups; it should be clear what is actually meant from what objects are around the
symbol) or G +D H

(ii) the alternative way to define this commutator is the following: inside the original Lie algebras
life goes on as before and the “mixed” commutator is defined as

[X, Y ] := DX (Y )

(iii) for the trivial (= zero) derivation the semidirect sum reduces to the direct one (the mixed com-
mutator is now defined to vanish)

(iv) the elements of the form (0, Y ) constitute an ideal of this algebra
(v) the derivation DX corresponding to the construction from (12.4.8) is DX x = ρ ′(X )x (ρ ′ being

the derived representation of the representation ρ, x is an element of the Abelian (commutative)
Lie algebra of the group V ), so that the commutator reads

[(X, x), (Y, y)] = ([X, Y ], ρ ′(X )y − ρ ′(Y )x)

and in the particular case of the affine (Poincaré, Euclidean) Lie algebra we get

[(X, x), (Y, y)] = ([X, Y ], X y − Y x)



274 Representations of Lie groups and Lie algebras

which matches the result obtained from the embedding of ga(n, R) into gl(n + 1, R), resulting
from the embedding of the corresponding groups (10.1.15)

(A, a) �→
(

A a
0 1

)

⇒ (X, x) �→
(

X x
0 0

)

Hint: (ii) write down the particular cases [(X1, 0), (X2, 0)], [(0, Y1), (0, Y2)] and
[(X, 0), (0, Y )]. �

• Let us turn our attention to the constructions leading to the direct sum and direct product
of representations. Assume that we are given two representations of the same group G,
namely (ρ1, V1) and (ρ2, V2). Then, as is described in detail in Appendix A.1, two “new”
vector spaces are automatically available, the direct sum V1 ⊕ V2 and the direct product
V1 ⊗ V2. If we are also given some linear operators in the initial spaces (A in V1 and B in V2),
we may consider new operators A ⊕ B in V1 ⊕ V2 and A ⊗ B in V1 ⊗ V2. Simple algebraic
properties of these particular operators guarantee that if the initial operators corresponded
to the representations of a group, the resulting operators define a representation as well.
These representations are called the direct sum ρ1 ⊕ ρ2 and the direct product ρ1 ⊗ ρ2 of
the initial representations.

12.4.10 Let (ρ1, V1) and (ρ2, V2) be two representations of the same group G. Check that

(i) by the prescription

(ρ1 ⊕ ρ2)(g) := ρ1(g) ⊕ ρ2(g)

(the right-hand side, i.e. the operator of the structure A ⊕ B, being in the sense of Appendix A.1)
one indeed defines a representation of the group G

(ii) its dimension is n1 + n2 (if n1 ≡ dim V1 and n2 ≡ dim V2)
(iii) in matrix language this reads

(ρ1 ⊕ ρ2)(g) ↔
(

ρ1(g) 0
0 ρ2(g)

)

(iv) the derived representation of the Lie algebra is the direct sum of the initial derived representations

(ρ1 ⊕ ρ2)′(X ) = ρ ′
1(X ) ⊕ ρ ′

2(X )

Hint: (i) according to Appendix A.1 the following identity holds: (A ⊕ B)(C ⊕ D) = AC ⊕
B D; (iv)

(ρ1 ⊕ ρ2)(eεX )(v1, v2) = ρ1(eεX ) ⊕ ρ2(eεX )(v1, v2) = (ρ1(eεX )v1, ρ2(eεX )v2)

= (v1 + ερ ′
1(X )v1 + · · · , v2 + ερ ′

2(X )v2 + · · ·)
≡ (v1, v2) + ε(ρ ′

1(X ) ⊕ ρ ′
2(X ))(v1, v2) + · · ·

�
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12.4.11 Let (ρ1, V1) and (ρ2, V2) be two representations of the same group G. Check that

(i) by the prescription204

(ρ1 ⊗ ρ2)(g) := ρ1(g) ⊗ ρ2(g)

(the right-hand side, i.e. the operator of the structure A ⊗ B, being in the sense of Appendix A.1)
one indeed defines a representation of the group G

(ii) its dimension is n1 · n2 (if n1 ≡ dim V1, n2 ≡ dim V2)
(iii) the expression of the derived representation of the Lie algebra in terms of the initial derived

representations turns out to be

(ρ1 ⊗ ρ2)′(X ) = ρ ′
1(X ) ⊗ 1̂ + 1̂ ⊗ ρ ′

2(X )

Hint: (i) according to Appendix A.1 the identity (A ⊗ B)(C ⊗ D) = AC ⊗ B D holds; (iii)
first check the bilinearity of the direct product of operators, i.e. (A + λC) ⊗ B = A ⊗
B + λC ⊗ B and similarly on the right; then (ρ1 ⊗ ρ2)(eεX ) = ρ1(eεX ) ⊗ ρ2(eεX ) = (1̂ +
ερ ′

1(X ) + · · ·) ⊗ (1̂ + ερ ′
2(X ) + · · ·) = 1̂ ⊗ 1̂ + ε(1̂ ⊗ ρ ′

1(X ) + ρ ′
2(X ) ⊗ 1̂) = · · · . �

• We often encounter representations which are sums or products of simpler ones in the
index language. Recall how these look.

12.4.12 According to Appendix A.1 a general vector u ∈ V1 ⊕ V2 may be written as
u = ui Ei + uα Eα . Be sure to understand that

(i) (the components of) vectors from u ∈ V1 ⊕ V2 carry only a single index, taking values “of two
types” (i or α)

(ii) the indices of type i transform under the action of ρ1 ⊕ ρ2 by the matrix (ρ1(g))i
j , the indices of

type α transform by the matrix (ρ2(g))αβ , i.e.

ui �→ (ρ1(g))i
j u

j uα �→ (ρ2(g))αβuβ

(iii) for the derived representation (ρ1 ⊕ ρ2)′ in full analogy

ui �→ (ρ ′
1(X ))i

j u
j uα �→ (ρ ′

2(X ))αβuβ

Hint: according to Appendix A.1 the operators A ⊕ B act on a component column (ui , uα)
as follows:

(
ui

uα

)

�→
(

Ai
j 0

0 Bα
β

) (
u j

uβ

)

�

12.4.13 According to Appendix A.1 a general vector u ∈ V1 ⊗ V2 may be written as
u = uiα Ei ⊗ Eα . Be sure to understand that

204 Note that the construction of the direct sum of representations ρ1 ⊕ ρ2 may be obtained amazingly simply (and surprisingly
no literature mentions this fact!) from the direct product ρ1 ⊗ ρ2 by the well-known operation “turning a bulb by an angle
±π/4” (its iteration is usually applied when the bulb ⊗ is blown and we replace it by a new one).
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(i) (the components of) vectors from u ∈ V1 ⊗ V2 carry two indices, one “of the type i” and the
other “of the type α”

(ii) the index of type i is transformed under the action of (ρ1 ⊗ ρ2)(g) by the matrix (ρ1(g))i
j and at

the same time the index of the type α is transformed by the matrix (ρ2(g))αβ , i.e.

uiα �→ (ρ1(g))i
j (ρ2(g))αβu jβ

A general rule (valid for the direct product of an arbitrary number of representations) thus reads:
each index is transformed by “its” matrix, this occurring all at once: under ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn

the components transform according to the rule

uiα...a �→ (ρ1(g))i
j (ρ2(g))αβ . . . (ρn(g))a

bu jβ...b

(iii) for the derived representation (ρ1 ⊗ ρ2)′ we get

uiα �→ (ρ ′
1(X ))i

j u
jα + (ρ ′

2(X ))αβuiβ

(and in full analogy for the derived representation of the product of more than two representations
we get a sum of several such terms).

Hint: (ii) according to Appendix A.1 the operators A ⊗ B act on the components uiα as
follows: uiα �→ Ai

j Bα
β u jβ ; (iii) see (12.4.11). �

12.4.14 Consider tensors of the type
(p

q
)

in a linear space L . Check that

(i) in the formula for the transformation of components t ≡ ta...b
c...d under the change of a basis ea �→

Ab
aeb in L a representation ρ of the group GL(n, R) occurs205

t(eA) = ρ(A−1)t(e)

(t(e) being the components of the tensor with respect to the basis e) which is a tensor product of
several representations of the type ρ1

0 ≡ id (A �→ A) and several representations of the type ρ0
1 ,

contragredient to the former

ρ ≡ ρ p
q = ρ1

0 ⊗ · · · ⊗ ρ1
0︸ ︷︷ ︸

p

⊗ ρ0
1 ⊗ · · · ⊗ ρ0

1︸ ︷︷ ︸
q

i.e.

(ρ(A)t)a...b
c...d = Aa

i . . . Ab
j (A−1)k

c . . . (A−1)l
d t i ... j

k...l

(so that there is one ρ1
0 for each upper index and one ρ0

1 for each lower index)
(ii) its derived representation turns out to be

(ρ ′(C)t)a...b
c...d = Ca

i t i ...b
c...d + · · · + Cb

i ta...i
c...d − Ci

cta...b
i ...d − · · · − Ci

d ta...b
c...i

(iii) as an example, for a metric tensor we get

(ρ(A)g)ab = (A−1)k
a(A−1)l

bgkl (ρ ′(C)g)ab = −Ci
a gib − Ci

bgai

Hint: see (2.4.6). �

205 A right action is present in this formula due to the argument A−1 in ρ (13.1.1); this is all right, since also e �→ eA is a right
action.
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12.4.15 We denote by (V p
q , ρ

p
q ) the representation of the group GL(n, R) in the space of

components of tensors of type
(p

q
)

in the linear space L in the sense of (12.4.14); thus it
acts by the formula

(
ρ p

q (A)t
)a...b

c...d = Aa
i . . . Ab

j (A−1)k
c . . . (A−1)l

d t i ... j
k...l

(there are p matrices A and q matrices A−1). Check that an arbitrary contraction C is an
intertwining operator between the representations (V p

q , ρ
p
q ) and

(
V p−1

q−1 , ρ
p−1
q−1

)
, i.e. that

C :
(
V p

q , ρ p
q

) → (
V p−1

q−1 , ρ
p−1
q−1

)
C ◦ ρ p

q (A) = ρ
p−1
q−1 (A) ◦ C

Hint: see (2.4.8). �

• In connection with a gauge fields theory another simple construction of a representation
might come in handy, namely the representation of a direct product of groups G1 × G2 in
the tensor product V1 ⊗ V2 from two given representations ρ1 of the group G1 in V1 and
ρ2 of G2 in V2, as well as a little thing concerning an Ad-invariant metric tensor in the Lie
algebra of a product of groups.

12.4.16
∗

Let ρ1 be a representation of a group G1 in V1 and ρ2 a representation of G2 in
V2. Denote by Ea a basis in V1 and E A a basis in V2, so that a basis in the tensor product
V1 ⊗ V2 is Ea ⊗ E A. Recall that the Lie algebra of the product G1 × G2 is the direct sum
G1 ⊕ G2, so that its general element may be written as X = X1 + X2. Check that

(i) the prescription

ρ(g1, g2) := ρ1(g1) ⊗ ρ2(g2)

provides a representation of G1 × G2 in V1 ⊗ V2 (compare with the tensor product of represen-
tations in (12.4.11); note that the latter may be obtained from the representation considered here
if we represent the “diagonal” in G × G, i.e. the elements of the form (g, g))

(ii) its derived representation turns out to be

ρ ′(X1 + X2) = ρ ′
1(X1) ⊗ 1̂ + 1̂ ⊗ ρ ′

2(X2)

(iii) if Ei is a basis of the Lie algebra G1 and EI is a basis of the Lie algebra G2, then for the matrix
elements ρbB

a Ai and ρbB
a AI of the derived representation we get

ρbB
a Ai = ρb

aiδ
B
A ρbB

a AI = δb
aρ

B
AI

where ρb
ai and ρB

AI are the matrix elements of the initial derived representations (12.1.6)
(iv) if h1 is a ρ1-invariant scalar product in V1 and h2 is a ρ2-invariant scalar product in V2, then

h := h1 ⊗ h2 (h1 ⊗ h2)(Ea ⊗ Eα, Eb ⊗ Eβ ) := h1(Ea, Eb)h2(Eα, Eβ )

turns out to be ρ-invariant in V1 ⊗ V2.

Hint: (ii) ρ1(eεX )Ea ⊗ ρ2(eεY )E A = · · · . �
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12.4.17
∗

We now look at a simple fact concerning Ad-invariant scalar products in Lie
algebras for the case of a direct product of two groups

G = G1 × G2 G = G1 + G2

Namely, verify that if h1 is an AdG1 -invariant scalar product inG1 and h2 is an AdG2 -invariant
scalar product in G2, then

h ≡ λ1h1 ⊕ λ2h2

is G-invariant for arbitrary λ1, λ2

Hint: h(X1 + X2, X̃1 + X̃2) := λ1h1(X1, X̃1) + λ2h2(X2, X̃2), Ad(g1,g2)(X1 + X2) =
Adg1 X1 + Adg2 X2. �

• If, for example, the scalar products h1 and h2 were given uniquely up to a constant
factor, we see that the freedom in G1 + G2 is already bigger, namely it is as large as a two-
parameter class of invariant scalar products, now (the freedom up to a factor would be only
a one-parameter class). This simple fact is reflected in the structure of the action integrals
in the gauge theories: if a gauge group happens to be a product, the corresponding action
contains more free constants (resulting in the lower “predictive power” of the theory).

To close the section let us say a few words on irreducibility. If the initial representations
(V1, ρ1) and (V2, ρ2) happen to be irreducible, then their direct sum clearly fails to be an
irreducible representation (both V1 and V2 being invariant subspaces). In general, neither is
the direct product irreducible. For certain classes of groups the product may be decomposed
into a direct sum of irreducible representations; this is called the Clebsch–Gordan series.
The decomposition procedure may be rephrased as finding another basis in V1 ⊗ V2 (instead
of Ei ⊗ Eα , which is adapted to the initial representations ρ1 and ρ2), namely a basis which
is adapted to the structure of invariant subspaces with respect to the action of the resulting
representation ρ1 ⊗ ρ2. This (important and extensive) subject will not be treated in this
book. Elements of the technique for the representations of SU (2) may be found in textbooks
on quantum mechanics (“addition of angular momenta”).

12.5 Invariant tensors and intertwining operators

• Each equivariant map A : (V1, ρ1) → (V2, ρ2) provides us with a wand which enables
us to reach the wishful thinking of whole generations of alchemists, namely a “transmutation
of a quantity of type ρ1 into a quantity of type ρ2.” It is enough to pretend deep concentration
for a while, to mutter mysteriously abracadabra and (not forget) at the same time to assign
to a vector v1 ∈ V1 in an unobtrusive way206 the vector Av1 =: v2 ∈ V2, since the action of
g then gives

v1 �→ ρ1(g)v1 ⇒ v2 ≡ Av1 �→ A(ρ1(g)v1) = ρ2(g)(Av1) ≡ ρ2(g)v2

206 The words in an unobtrusive way should be emphasized. Sometimes small children in the audience succeed in seeing through
the trick and then they shout “ha ha, he applied the equivariant map A : (ρ1, V1) → (ρ2, V2)!”
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so that the effect of the equivariant map A consists in a loss of cultural heritage of V1 and
the complete assimilation to the novel milieu of V2. Now we are going to learn that the same
thing may also be achieved with the help of an invariant element in the space V ∗

1 ⊗ V2.

12.5.1 Check that there exists a close relation between intertwining operators (= equiv-
ariant maps V → W ) and invariant elements in V ∗ ⊗ W . In more detail, let A be an
intertwining operator between the representations (ρ1, V1) and (ρ2, V2) of a group G, Ei a
basis in V1 and Ea a basis in V2

A : V1 → V2 ρ2(g)A = Aρ1(g) AEi =: Aa
i Ea

Check that then

(i) the element Â of the space V ∗
1 ⊗ V2

Â := Aa
i Ei ⊗ Ea i.e. Â(v1, v

∗
2 ) := 〈v∗

2 , Av1〉

is invariant with respect to the representation ρ̌1 ⊗ ρ2

(ρ̌1 ⊗ ρ2)(g) Â = Â

(ii) in the opposite direction, an element B̂ ∈ V1 ⊗ V2 which is invariant with respect to the repre-
sentation ρ1 ⊗ ρ2 induces the intertwining operator B between (V ∗

1 , ρ̌1) and (V2, ρ2)

(ρ1 ⊗ ρ2)(g)B̂ = B̂ ⇒ B : V ∗
1 → V2 B̂(v∗

1 , v
∗
2 ) =: 〈v∗

2 , Bv∗
1〉

ρ2(g)B = Bρ̌1(g)

Hint: (i) A ↔ Â for Â(v1, v
∗
2 ) := 〈v∗

2 , Av1〉; then

((ρ̌1 ⊗ ρ2)(g) Â)(v1, v
∗
2 ) = 〈ρ̌2(g)v∗

2 , Aρ1(g)v1〉 = 〈ρ̌2(g)v∗
2 , ρ2(g)Av1〉

= 〈v∗
2 , ρ2(g−1)ρ2(g)Av1〉 = Â(v1, v

∗
2 )

or (ρ̌1 ⊗ ρ2)(g) Â = Aa
i ρ̌1(g)Ei ⊗ ρ2(g)Ea = · · · . �

• Such invariant elements are often called invariant tensors; in general they are elements
Â of a multiple tensor product V1 ⊗ · · · ⊗ Vn , which happen to be invariant with respect
to the action of the natural representation in this space, namely the tensor product of the
individual representations ρi

(ρ1 ⊗ · · · ⊗ ρn)(g) Â = Â Â = Ai ...a Ei ⊗ · · · ⊗ Ea ∈ V1 ⊗ · · · ⊗ Vn

Note that a single invariant tensor induces207 several intertwining operators in general; for
example, an invariant tensor Â for the product of two representations V1 ⊗ V2

Â = Aia Ei ⊗ Ea

207 Just as one may interpret in several ways a tensor in L; see, for example, the three ways in which one may regard a tensor of
type (1, 1) in (2.4.5).
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defines as many as four intertwining operators:

A(1) : V ∗
1 → V2 Ei �→ Aia Ea

A(2) : V ∗
2 → V1 Ea �→ Aia Ei

A(3) : V ∗
1 ⊗ V ∗

2 → R Ea ⊗ Ei �→ Aia

A(4) : R → V1 ⊗ V2 1 �→ Aia Ea ⊗ Ei

(R being the trivial one-dimensional representation of a group G). A single invariant tensor
may thus serve for several “transmutations” of the quantities of different types.

Let us look at some concrete examples of important invariant tensors.

12.5.2 Consider the “constants” ρa
bi , which emerge as the matrix elements of the rep-

resented basis of a Lie algebra G, i.e. in the formula ρ ′(Ei )Ea =: ρb
ai Eb (12.1.6). Check

that

(i) in these constants, there is information about an invariant tensor Â with respect to the represen-
tation Ad∗ ⊗ ρ̌ ⊗ ρ in the space G∗ ⊗ V ∗ ⊗ V , defined by

Â := ρa
bi Ei ⊗ Eb ⊗ Ea Â(X, v1, v

∗
2 ) := 〈v∗

2 , ρ
′(X )v1〉

(ii) this tensor induces (for example) the intertwining operators208

A(1) : G → V ∗ ⊗ V Ei �→ ρa
bi Eb ⊗ Ea i.e. Xi �→ ρa

bi X i =: Xa
b

A(2) : V ∗ ⊗ V → G∗ Ea ⊗ Eb �→ ρa
bi Ei i.e. vb

a �→ ρa
biv

b
a =: vi

The objects “of type Ad” are thus converted to the objects “of type ρ̌ ⊗ ρ” and vice versa
(iii) the structure constants of a Lie algebra G provide an invariant tensor Â with respect to the

representation Ad∗ ⊗ Ad∗ ⊗ Ad in the space G∗ ⊗ G∗ ⊗ G, defined by

Â := ci
jk E j ⊗ Ek ⊗ Ei (Ei ∈ G) Â(X, Y, Z∗) := 〈Z∗, [X, Y ]〉

Hint: (i) according to (12.1.8) and (12.3.7)

((Ad∗ ⊗ ρ̌ ⊗ ρ)(g) Â)(X, v1, v
∗
2 ) = Â(Adg X, ρ(g)v1, ρ̌(g)v∗

2 )

= 〈ρ̌(g)v∗
2 , ρ

′(Adg X )ρ(g)v1〉
= 〈v∗

2 , ρ(g−1)ρ ′(Adg X )ρ(g)v1〉 = 〈v∗
2 , ρ

′(X )v1〉
≡ Â(X, v1, v

∗
2 )

(ii) the text before (12.5.2); (iii) the special case for ρ = Ad. �

12.5.3 In quantum mechanics one works with a two-component complex wave function
ψ(r) in order to describe a particle with spin 1

2 ; this function transforms under rotations (by
α around n) according to the rule209

ψ �→ Aψ ≡ e− 1
2 iαn·σψ A ∈ SU (2)

208 The first of them will be used, for example, to introduce the “represented connection form” (and the gauge potential) ωa
b :=

ρa
bi ω

i , Aa
b := ρa

biAi in (20.4.6) and (21.2.4), the second one in a while (12.5.3) for creating a vector from two spinors in
quantum mechanics as well as in (21.5.4), where the current J i = ki j ρabj φ

a (Dφ)b is introduced.
209 It is a representation treated in general in (13.4.11). In addition to the transformation of components the argument is altered,

too, r �→ R(−α, n)r; however, this is not relevant now.
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Often one makes use of the statement that it is possible to form a vector from two such
wave functions ψ, χ

w = ψ+σχ or, in particular, from ψ alone ψ+σψ

Check that

(i) this statement stems from the fact that the matrix elements of Pauli matrices provide an invariant
SU (2)-tensor210

(σ j )
a
b

(the indices of type ( )a correspond to the representation ρ = id in C
2, the indices ( )i correspond

to ρ(A) = R = a common rotation in the sense of covering from (13.3.3))
(ii) also, the two-dimensional Levi-Civita symbols εab and εab are invariant SU (2)-tensors – this is

the reason one can canonically raise and lower indices of the type a, b, . . . by them.

Hint: (i) like in (12.3.16) we check that for SU (2) the Ad-representation reduces to ordinary
rotation (AdA performs a rotation in su(2) = E3 by the matrix R(A), covered by A in the
sense of (13.3.3)); the lower index on σi then indicates Ad∗ (in the dual space su(2)∗), i.e.
the transformation by the inverse matrix R−1. The question thus is whether

(R−1)i
j Aa

b(A−1)c
d (σi )

b
c

?= (σ j )
a
d i.e. Aσi A+ ?= R j

i σ j

The positive answer results from (13.3.3); alternatively the same: the question is whether
ψ �→ Aψ, χ �→ Aχ (⇒ χ+ �→ χ+ A+ ≡ χ+ A−1, so that χ+ has lower index) and a �→ Ra
lead to

χ+(a · σ)ψ �→ χ+ A+(Ra · σ)Aψ ≡ Ra · χ+(A+σA)ψ
?= χ+(a · σ)ψ

The positive answer once again comes from (13.3.3); (ii) Aa
b Ac

dεac = det Aεbd = εbd (5.6.5),
similarly for εab use A−1; thus the raising and lowering of an index ( )a �→ εab( )b and
( )a �→ εab( )b are indeed equivariant maps, which “transmute the quantities of type id” to
the “quantities of type ˇid” and vice versa. �

12.5.4 Check that

(i) for any representation (V, ρ) of a group G the identity tensor is an invariant tensor with respect
to ρ̌ ⊗ ρ

1̂ := δa
b Eb ⊗ Ea ≡ Ea ⊗ Ea i.e. 1̂(v, w∗) := 〈w∗, v〉 (ρ̌ ⊗ ρ)(g)1̂ = 1̂

(ii) for the (pseudo-)orthogonal group G = O(r, s) the tensors

ηab as well as ηab

are invariant and for SO(r, s) we can furthermore add211

εa...b as well as εa...b

210 In a similar way Dirac matrices provide (22.5.9) Lorentzian tensors ψ̄γ a . . . γ bψ composed of Dirac spinors.
211 That is to say, if we assigned to the Levi-Civita symbol upper indices (corresponding to the representation ρ = id of the

group SO(r, s)), we did it just as it should be. In the same way, if we assigned to the same Levi-Civita symbol lower indices
(corresponding to the representation ρ = ǐd of the group SO(r, s)), we did it just as it should be again. One checks easily,
however, that only these two possibilities actually work – the indices should be either all upper or all lower.
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(iii) for the symplectic groups G = Sp(n, R) the tensors

ωab as well as ωab

are invariant, ω ≡ ε ⊗ I being the canonical form of a non-degenerate antisymmetric matrix
(10.1.6).

Hint: (i) the definition of ρ̌ (12.1.8); (ii) and (iii) the definition of the groups; for ex-
ample, the (pseudo-)orthogonal matrices satisfy ATηA = η, being just the invariance
of ηab (with respect to ρ̌ ⊗ ρ̌), the same relation for A �→ A−1 says that also ηab is
an invariant tensor (with respect to ρ ⊗ ρ); the restriction “determinant = 1” gives
Aa

b . . . Ac
dεa...c = (det A) εb...d = εb...d , so that the indices of εa...b are justified; similarly

(use det AT = det A) Aa
b . . . Ac

dε
b...d = (det A) εa...c = εa...c, so that the indices εa...b are

justified, too. �

12.5.5 Check that

(i) the invariant tensors are naturally endowed with the structure of an algebra (with respect to the
tensor product)

(ii) a contraction (if it is meaningful) does not spoil the invariance of a tensor
(iii) therefore, as an example

ρa
biρ

c
d j ρa

bkck
i j δa

b δc
d

are also invariant tensors (and enable one to “transmute the type of objects”).

Hint: (i)

{ρ1(g) Â = Â, ρ2(g)B̂ = B̂} ⇒ (ρ1 ⊗ ρ2)(g)( Â ⊗ B̂) = ρ1(g) Â ⊗ ρ2(g)B̂

= Â ⊗ B̂ �

12.6∗ Lie algebra cohomologies

• The concept of cohomology, which we introduced in Chapter 9, has numerous applica-
tions in modern mathematics and mathematical physics. Here we will speak about a complex
canonically induced by a triple (G, ρ, V ), i.e. by a Lie algebra G and its representation ρ in
the vector space V . This complex appears naturally in its various forms (with various G, ρ

and V ) in a number of unrelated contexts. For example, we will encounter it in Chapter 14,
when treating the Poisson actions of groups.

Let us have a look at the Cartan formulas from problem (6.2.13) from a different point
of view. It turns out that these formulas may be naturally reinterpreted in the language of
Lie algebras and their representations.

12.6.1 LetG := X(M) be a (∞-dimensional) Lie algebra of the vector fields on a manifold
M , X ∈ X(M) and let V := F(M) be the (∞-dimensional) algebra (thus in particular a
vector space) of (smooth) functions on M . Show that
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(i) the prescription

ρ(X ) f := LX f ≡ X f

defines a representation of G in V
(ii) Cartan formulas may be rewritten in the form

dα(X1, . . . , X p+1) =
p+1∑

j=1

(−1) j+1ρ(X j )α(X1, . . . , X̂ j , . . . , X p+1)

+
∑

i< j

(−1)i+ jα([Xi , X j ], . . . , X̂i , . . . , X̂ j , . . . , X p+1)

Hint: see (6.2.13). �

• This form suggests strongly that the operation d might also be introduced in a more
general context than on “ordinary” differential forms on manifolds. In the new context,
nevertheless, all the properties will be preserved which are essential for introducing a
complex and its cohomologies (i.e. a new d will operate as a differential in an appropriate
complex, which will substitute for the deRham complex of differential forms).

Consider (V, ρ)-valued p-forms in G, ρ being a representation of G in V . Thus what we
have in mind are polylinear completely antisymmetric maps

α : G × · · · × G︸ ︷︷ ︸
p

→ (V, ρ) (v, . . . , w
︸ ︷︷ ︸

p

) �→ α(v, . . . , w) ∈ (V, ρ)

Denote the space of such forms by �p(G∗, V ) (see Section 6.4). Now regard this space as a
subspace of degree p of the Z-graded space �(G∗, V ) := ⊕n

p=0 �p(G∗, V ). The last stage
of the construction of a complex we look for will consist in the definition of an appropriate
differential d̂.

12.6.2 Define a linear operator

d̂ : �p(G∗, V ) → �p+1(G∗, V ) α �→ d̂α

by the prescription212 inspired by (12.6.1)

d̂α(X1, . . . , X p+1) =
p+1∑

j=1

(−1) j+1ρ(X j )α(X1, . . . , X̂ j , . . . , X p+1)

+
∑

i< j

(−1)i+ jα([Xi , X j ], . . . , X̂i , . . . , X̂ j , . . . , X p+1) X j ∈ G

Show that

212 A view based on components might also be instructive: we have αA
i ... j and we want to get (d̂α)A

i ... jk , so that we need somehow

to add a single lower index of type “i .” Now the structure constants ci
jk as well as the matrices of the generators of the

representation ρ A
Bi (given by ρ(ei )eA =: ρB

Ai eB ) are available. If we set

(d̂α)A
i jk...l := λ(p)cr

[i j α
A
k...l]r + μ(p)ρ A

B[i α
B
jk...l]

then for appropriate λ(p), μ(p) we may eventually obtain (making use of Jacobi identity as well as of the fact that ρ is a
representation) d̂d̂ = 0.
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(i) in the first three degrees the formulas read

d̂v(X ) = ρ(X )v

d̂α(X, Y ) = ρ(X )(α(Y )) − ρ(Y )(α(X )) − α([X, Y ])

d̂β(X, Y, Z ) = ρ(X )(β(Y, Z )) − ρ(Y )(β(X, Z )) + ρ(Z )(β(X, Y ))

− β([X, Y ], Z ) + β([X, Z ], Y ) − β([Y, Z ], X )

(ii) the operator d̂ is nilpotent, i.e. d̂d̂ = 0
(iii) the diagram

�0(G∗, V )
d̂→ �1(G∗, V )

d̂→ �2(G∗, V )
d̂→ · · · d̂→ �n(G∗, V )

represents a complex; its cohomologies

H p(G; V ) := Z p(G; V )/B p(G; V ) ≡ Ker d̂ p/Im d̂ p−1

are called Lie algebra cohomologies (or, in more detail, the cohomologies of G with respect to
the representation (ρ, V ))

(iv) the particular formulas from item (i) are indeed consistent with d̂d̂ = 0, i.e. that

d̂d̂v(X, Y ) = 0 d̂d̂α(X, Y, Z ) = 0

Hint: (iv) d̂d̂v(X, Y ) = ρ(X )(d̂v)(Y ) − ρ(Y )(d̂v)(X ) − (d̂v)([X, Y ]) = · · · . �

• For the construction of the complex we need, as we can see, not only the Lie algebra G
itself, but also a representation ρ in V . The corresponding cohomologies depend in general
on both constituents involved. Let us have a look in more detail at two particular repre-
sentations, which are always available (free of charge), namely the trivial representation
(ρ(X ) = 0) in R and the adjoint representation (ρ(X ) = adX ) in the Lie algebra G itself.

For the trivial representation we actually work with ordinary (R-valued) forms in G, i.e.
�p(G∗, V ) ≡ �pG∗.

12.6.3 Let (V, ρ) be the trivial representation in R. Check that

(i) the operator d̂ then simplifies to213

d̂α(X1, . . . , X p+1) =
∑

i< j

(−1)i+ jα([Xi , X j ], . . . , X̂i , . . . , X̂ j , . . . , X p+1) X j ∈ G

or in the first three degrees explicitly

d̂λ(X ) = 0 λ ∈ R

d̂α(X, Y ) = −α([X, Y ])

d̂β(X, Y, Z ) = −β([X, Y ], Z ) + β([X, Z ], Y ) − β([Y, Z ], X )

≡ β(X, [Y, Z ]) + cycl.

(ii) the corresponding complex reads

R
0→G∗ d̂→ �2G∗ d̂→ · · · d̂→ �nG∗ �

213 In components to (d̂α)i jk...l = λ(p)cr
[i j αk...l]r .
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• For the Poisson actions of groups mentioned above (to be introduced after (14.5.6))
the essential information is encoded in the second cohomology class of this very complex,
H 2(G∗, R). The crucial question to be answered is thus whether there exist 2-cocycles which
are not coboundaries. It turns out (we do not give a proof here) that, in general, such 2-
cocycles do exist; for semi-simple Lie algebras, however, “Whitehead’s lemmas” state that
this is not possible

H 1(G∗, R) = 0 H 2(G∗, R) = 0

12.6.4 “Smell” the cohomologies of this type for the Lie algebra G = so(3), i.e. compute
explicitly H (so(3)∗, R). In particular, check that

(i) the general forms of the relevant degrees in so(3) look like (λ, μ ∈ R)

λ α(X ) = a · x β(X, Y ) = b · (x × y) σ (X, Y, Z ) = μx · (y × z)

(ii) the operator d̂ acts as follows:

λ �→ 0 a �→ a b �→ 0 μ �→ 0

(μ is trivial due to the dimension), i.e. in detail

d̂λ(X ) = 0 d̂α(X, Y ) = a · (x × y) d̂β(X, Y, Z ) = 0

(iii) this means that

�0 ∼ R �1 ∼ R
3 �2 ∼ R

3 �3 ∼ R

Z 0 ∼ R Z 1 ∼ 0 Z 2 ∼ R
3 Z 3 ∼ R

B0 ∼ 0 B1 ∼ 0 B2 ∼ R
3 B3 ∼ 0

H 0 ∼ R H 1 ∼ 0 H 2 ∼ 0 H 3 ∼ R

so that

H (so(3)∗, R) ≡ H 0 ⊕ H 1 ⊕ H 2 ⊕ H 3 ∼ R ⊕ 0 ⊕ 0 ⊕ R

(iv) these results are consistent with Whitehead’s lemmas.

Hint: (i) see (12.1.5); (ii) see (12.6.3), ci
jk = εi jk , (a × b)i = εi jka j bk . �

12.6.5 Let c ∈ �3G∗ be the 3-form which arises by the lowering of the index on the tensor
of structure constants by means of the Killing–Cartan form, i.e.

c = 1

3!
ci jkei ∧ e j ∧ ek ci jk := kir cr

jk

or (12.3.9)

c(X, Y, Z ) := k(X, [Y, Z ])

Show that

(i) this form is always closed (= a cocycle, d̂c = 0)
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(ii) for G = so(3) it is not exact ( 
= a coboundary), so that H 3(so(3)∗, R) 
= 0.

Hint: (i) Jacobi identity; (ii) εi jk
?= εr [i jβk]r ⇒ (multiply both sides by εi jk) 6

?= 2β j j ≡ 0,
answer truly no! �

• Let us look at the second gratis representation, now, (V, ρ) = (G, ad).

12.6.6 Let (V, ρ) = (G, ad). Show that

(i) the corresponding complex reads

G d̂→L(G,G)
d̂→ �2(G∗,G)

d̂→ · · · d̂→ �n(G∗,G)

(ii) the operator d̂ acts as214

d̂α(X1, . . . , X p+1) =
p+1∑

j=1

(−1) j+1[X j , α(X1, . . . , X̂ j , . . . , X p+1)]

+
∑

i< j

(−1)i+ jα([Xi , X j ], . . . , X̂i , . . . , X̂ j , . . . , X p+1) X j ∈ G

or in the first three degrees explicitly

d̂ X (Y ) = [X, Y ]

d̂α(X, Y ) = [X, α(Y )] − [Y, α(X )] − α([X, Y ])

d̂β(X, Y, Z ) = [X, β(Y, Z )] − [Y, β(X, Z )] + [Z , β(X, Y )]

− β([X, Y ], Z ) + β([X, Z ], Y ) − β([Y, Z ], X )

≡ [X, β(Y, Z )] + β(X, [Y, Z ]) + cycl.

(iii) closed 1-forms coincide with derivations of the Lie algebra, the exact 1-forms being the inner
derivations (so that vanishing of H 1(G∗,G) means that in the Lie algebra under consideration
there are no other derivations than the inner ones)

(iv) the identity tensor 1̂ in G may be regarded as 1̂ ∈ �1(G∗,G), the tensor of structure constants ĉ
(with components ci

jk) as ĉ ∈ �2(G∗,G), the latter being the differential of the former

d̂1̂ = ĉ (⇒ d̂ ĉ = 0)

Hint: (iii) d̂α = 0 ⇔ α([X, Y ]) = [α(X ), Y ] + [X, α(Y )]; (iv) according to (i) for α = 1̂
we have d̂1̂(X, Y ) = [X, Y ] ≡ ĉ(X, Y ). �

12.6.7 Show directly that for the Lie algebra so(3) any derivation is necessarily inner and
deduce from this that H 1(so(3)∗, so(3)) = 0.

Hint: look for linear maps D : so(3) → so(3) such that D([x, y]) = [D(x), y] + [x, D(y)];
if D(ei ) = D j

i e j , then check (on a basis, for ci
jk = εi jk) that Di

j = εi jk zk , so that always
D = adz for some z ∈ so(3). �

214 In components ρ A
Bi �→ cr

ji .
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• Let us mention, to close the section, that the general differential d̂ from the problem
(12.6.2) may also be expressed in an alternative way, with no use of “catalytic” arguments.
Instead the operators iv and jv known from (5.8.6) are used.

12.6.8
∗

Show that the differential d̂ , being the key element of the section, may also be
written in the form

d̂ = −1

2
ck

mn jm jnik ⊗ 1̂ + j k ⊗ ρ(Ek)

where Ek is a basis in the Lie algebra, j k(αA E A) = (Ek ∧ αA)E A, ik(αA E A) = (iEk α
A)E A

and (C ⊗ D)(αA E A) = (CαA)(DE A). Check its nilpotence explicitly. �

Summary of Chapter 12

A Lie group often shows its presence via its representations, i.e. there exists a homomor-
phism of the former to the group of invertible linear operators in a vector space and in a given
situation we encounter only the image of the group with respect to this homomorphism.
Each representation of a Lie group induces automatically a representation of its Lie algebra
(called the derived representation), the latter meaning in general a homomorphism of a Lie
algebra into the Lie algebra of (all) linear operators (in a fixed vector space). If a represen-
tation admits a non-trivial invariant subspace it is called reducible, since it may be reduced
(by restriction) to a (smaller) representation in this subspace. Irreducible representations
cannot be reduced in this way. Schur’s lemma provides a useful criterion of irreducibility. If
the invariant subspace admits an invariant complement as well, the representation is equiv-
alent to a direct sum of two simpler ones. Such a complement sometimes happens to be
orthogonal with respect to an invariant scalar product (if it does exist; on compact groups
its existence is guaranteed and the procedure for its construction is given here). One can
perform some standard constructions with representations, such as the dual (contragredient)
one and the direct sum and the direct product; combining these two with the restriction to
invariant subspaces in the resulting spaces, a lot of new representations may be obtained
from a small number of them at the beginning (like all “tensor” representations ρ

p
q from a

single “vector” one ρ1
0 ; in some cases even all irreducible representations from just a single

one, see Section 13.3). Invariant tensors and related intertwining operators enable one to
“transmute the type” of quantities, i.e. associate with vectors acted by a representation ρ1

vectors acted by a representation ρ2 (of the same group). A representation of a Lie algebra
induces a complex; we study its cohomologies for a while.

ρ(1 + εX ) = 1 + ερ ′(X ) Computation of the derived representation ρ ′ (12.1.6)
ρ ′(Ei )Ea =: ρb

ai Eb Matrix elements of generators (12.1.6)
〈ρ̌(g)α, v〉 := 〈α, ρ(g−1)v〉 Contragredient (dual) representation ρ̌ (12.1.8)
h(ρ(g)v, ρ(g)w) = h(v, w) Scalar product h is ρ-invariant (12.1.10)
hbcρ

c
ai + hacρ

c
bi = 0 Component expression of the same fact (12.1.10)
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ρ2(g)A = Aρ1(g) A is intertwining operator for ρ1 and ρ2 Sec. 12.2
geX g−1 = eAdg X Adjoint representation Ad of G (12.3.1, 2)
AdA X = AX A−1 Explicit expression of Ad for matrix groups (12.3.1)
adX Y = [X, Y ] (ad ≡ Ad′) Adjoint representation ad of G (12.3.5)
adEi E j = ck

i j Ek Component expression of ad (12.3.5)
K (X, Y ) := Tr (adX adY ) Killing–Cartan form on G (12.3.8)
Ĉ2 := ki jρ ′(Ei )ρ ′(E j ) Quadratic Casimir operator (12.3.13)
(g1, h1) ◦ (g2, h2) := (g1g2, h1h2) Direct product of groups (12.4.7)
(ρ1 ⊗ ρ2)(g) := ρ1(g) ⊗ ρ2(g) Direct product of representations of G (12.4.11)
(ρ1 ⊗ ρ2)′ = ρ ′

1 ⊗ 1̂ + 1̂ ⊗ ρ ′
2 Derived representation for ρ1 ⊗ ρ2 (12.4.11)
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Actions of Lie groups and Lie algebras on manifolds

• In the last chapter we discussed the particular cases of actions, the representations (the

actions in linear spaces). Here we will treat more general actions of Lie groups and algebras,

namely the actions on manifolds.215 It might be useful to mention, however, that the validity

of some concepts and results discussed in this chapter is actually even broader. We will

use “narrower” language speaking about the actions of Lie groups on manifolds, but we

recommend always to think about the particular situation whether the group which acts

indeed needs to be a Lie group and whether the set where the group acts indeed needs to be

a manifold.

13.1 Action of a group, orbit and stabilizer

• Given a Lie group G and a smooth manifold M we say that G acts from the left (or acts
from the right)216 on M if for each group element g ∈ G a diffeomorphism Lg (or Rg) is

given, which satisfies (g, h ∈ G)

Lg : M → M Lgh = Lg ◦ Lh Le = idM G acts from the left on M

Rg : M → M Rgh = Rh ◦ Rg Re = idM G acts from the right on M

For a given action (left or right) the shorthand notation is often used (x ∈ M)

x �→ Lgx =: gx or x �→ Rgx =: xg

so that the property of being a left or right action looks like

(gh)x = g(hx) or x(gh) = (xg)h

We emphasize that gx does not denote a product,217 it is nothing but a shorthand notation

for Lgx .

A manifold M on which a left action of a group G is available is called left G-space (and

right G-space for a right action).

215 Of course, linear spaces are also manifolds, so that now we begin to study the more general situation, relaxing the assumption
of linearity; sometimes one finds the terminology non-linear realizations in a physics literature, which we will, however, not
use. Our actions will be simply “general,” they need not (but may) be linear.

216 Alternatively, G has a left action (or right action) on M .
217 Although in particular cases it may be realized in terms of appropriate products; see, for example, (13.1.3).

289
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13.1.1 Check that

(i) (Lg)−1 = Lg−1 , (Rg)−1 = Rg−1 holds

(ii) if Lg is a left action, then the prescription R̂g := Lg−1 provides a right action

(iii) if Rg is a right action, then the prescription L̂ g := Rg−1 provides a left action. �

13.1.2 Often the actions mentioned above are introduced in terms of the maps

L : G × M → M L(g, x) := Lgx ≡ gx

R : M × G → M R(x, g) := Rgx ≡ xg

the smooth action being defined in terms of smoothness of these maps. Write down the

conditions which L and R are to satisfy in order to indeed correspond to actions. (L(gh, x) =
L(g, L(h, x)), R(x, gh) = R(R(x, g), h)).) �

• On the same manifold sometimes several actions of the same group may be defined; we

then regard them as different G-spaces. A simple albeit very important example provides

the group G itself, regarded as (its own) G-space (so that we speak about the case in which

M = G).

13.1.3 Check that a group G may be regarded in as many as three ways as a left G-space

and moreover in (as many as) three ways as a right G-space:

left actions h �→ gh h �→ hg−1 h �→ Igh := ghg−1

right actions h �→ hg h �→ g−1h h �→ Ig−1 h := g−1hg

In the first column we recognize the good old left and right translations (11.1.1), the second

column is obtained from the first one by the trick from (13.1.1) and the third column (being

actually a combination of the two) is the (good old as well, see (12.3.1)) conjugation Ig (by

the elements g and g−1). �

13.1.4 Check that

(i) R
n may be regarded in two ways as a left GL(n, R)-space and also in two ways as a right

GL(n, R)-space (A ∈ GL(n, R), x ∈ R
n):

left actions x �→ Ax x �→ (AT)−1x
right actions x �→ ATx x �→ A−1x

The prescription x �→ ATx may also be equivalently written as xT �→ xT A (both of them actually

mean xi �→ A ji x j , whereas x �→ Ax corresponds to xi �→ Ai j x j )

(ii) the same is true for the complex analog, the space C
n and the group GL(n, C). �

13.1.5 Consider the structure (X, s) (in the sense of Section 10.1) to be realized as a group

G ≡ X together with a right action Rgk := kg (the right translation). Check that the group

of automorphisms of (X, s) is isomorphic to the group G itself.

Solution: let f : G → G be from the group to be determined. In order to preserve the

structure “s,” f has to commute with Rg for each g ∈ G. Then it turns out, however, that f
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is necessarily a left translation f = Lh for appropriate h ∈ G. Indeed, Rg f (k) ≡ f (k)g
!=

f (Rgk) ≡ f (kg). For k = e this gives f (g) = f (e)g ≡ L f (e)g, so that f = L f (e). �

• If a group G acts on M , both players in the relation become marked for the rest of their

lives; on both of them, willy-nilly, an additional structure arises. Namely, on M a system

of subsets occurs, called the orbits, whereas on G subgroups arise, called stabilizers.

13.1.6 The orbit Ox of a point x ∈ M is the set of points in M which may be reached

from x by an action of an appropriate element of the group, so that

M ⊃ Ox := {y ∈ M | ∃g ∈ G such that y = gx}
Be sure to understand that

(i) an orbit is fully given by any of its points

y ∈ Ox ⇔ Ox = Oy

(ii) “to share an orbit” is an equivalence ∼ on M .

A G-space thus, in general, falls into several orbits, which actually do not communicate

(by the action of the group) with each other. �

• It may happen sometimes that a G-space consists of a single orbit; this means that any

two points may be connected by the action of the group. We then speak about a transitive
action and the corresponding G-space is called a homogeneous space. The opposite extreme

is provided by the case when an orbit Ox consists of a single point x ; we then speak about

a fixed point of the action.

13.1.7 Find the orbits of the action of GL(n, R) in R
n (as well as GL(n, C) in C

n), treated

in problem (13.1.4). Decide whether R
n (and C

n) is a homogeneous space.

Hint: the point 0 ∈ R
n represents an orbit in its own right (it is a fixed point); the rest of

R
n is an orbit, too, which may be generated from (say) the point x0 := (0, . . . , 1) (so that

R
n fails to be a homogeneous space). Indeed, the equation x = Ax0 for x �= 0 fixes the last

column of the matrix A: Ain = xi ; complete arbitrarily to a basis in R
n and locate the basis

vectors as columns of the matrix A. The matrix A belongs to GL(n, R) and it sends x0 to

x . The complex case follows in full analogy. �

13.1.8 Consider the restriction of the action x �→ Ax of the group GL(n, R) in R
n to the

subgroup SO(n). Show that

(i) the orbits of the new action coincide with the spheres Sn−1
r of all possible radii r and centered at

the origin

Sn−1
r := {x ∈ R

n | η(x, x) ≡ (x1)2 + · · · + (xn)2 = r 2}
(ii) the new action is indeed transitive on each sphere; an arbitrary point on the sphere of radius r

may be generated from (say) the point x0 := (0, . . . , r ).
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Hint: η(Ax, Ax) = η(x, x) according to (10.1.5); the equation x = Ax0 (for x from the

sphere of radius r ) fixes the last column218 of the matrix A: Ain = r−1xi (it is normalized to

unity); complete arbitrarily to a right-handed orthonormal basis in En and locate the basis

vectors as columns of the matrix A. The matrix A belongs to SO(n) and it sends x0 to x . �

13.1.9 Let V be a complete vector field on M and consider its flow �t . Check that

(i) the map x �→ �t x may be regarded as an action of the Lie group (R, +) on M
(ii) the orbits of the action are just the integral curves (or rather “integral paths,” since the parametriza-

tion is irrelevant) of the field V .

Hint: Rt x := �t (x), Rt+s x = �t+s(x) = (�t ◦ �s)(x) = (Rt ◦ Rs)x . �

13.1.10 Let a group G act (say, from the left) on M and let x ∈ M . The stabilizer219 of

the point x is the subgroup Gx ⊂ G which contains only those elements g of the group G,

which leave the point x fixed

Gx := {g ∈ G | gx = x}
Check that

(i) it is indeed a subgroup (not only a subset)
(ii) the stabilizers of all points from the same orbit happen to be isomorphic; in more detail, if y = ĝx ,

then G y may be obtained from Gx by conjugation by the element ĝ

y = ĝx (⇒ y ∈ Ox ) ⇒ G y = Iĝ(Gx ) ≡ ĝGx ĝ−1 ≡ {g̃ ∈ G | g̃ = Iĝg for some g ∈ Gx }
(iii) in general, if H is a subgroup of a group G, then for any g ∈ G also Ig(H ) ≡ gHg−1 turns out

to be a subgroup of the group G, which is moreover isomorphic to the group H (it is called a

conjugate subgroup); the conjugation is an equivalence relation on the set of subgroups of the

group G, so that all the subgroups fall into the classes of subgroups which are conjugate to each

other

(iv) each orbit fixes such a class.

Hint: gy = y gives (gĝ)x = ĝx , so that Iĝ−1 g ∈ Gx . �

13.1.11 Show that the stabilizer of any point on the sphere Sn−1
r , regarded as an orbit of

the action (13.1.8) of the group SO(n) in En , is a subgroup isomorphic to SO(n − 1).

Hint: according to (13.1.10) the subgroup does not depend (up to an isomorphism given

by the conjugation) on the choice of a point on the sphere; choose the north pole. For this

particular point we have

Ax0 ≡

⎛

⎜
⎝

A1
1 . . . A1

n
...

. . .
...

An
1 . . . An

n

⎞

⎟
⎠

⎛

⎜
⎝

0
...

r

⎞

⎟
⎠ =

⎛

⎜
⎝

r A1
n

...

r An
n

⎞

⎟
⎠

!=

⎛

⎜
⎝

0
...

r

⎞

⎟
⎠ ⇒

⎛

⎜
⎝

A1
n

...

An
n

⎞

⎟
⎠ =

⎛

⎜
⎝

0
...

1

⎞

⎟
⎠

218 A watchful reader of hints might feel this reasoning to be familiar.
219 The other frequently used terms for the stabilizer of the point x are the stationary subgroup or the little group of x .
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The orthogonality conditions AT A = AAT = I fulfilled by the matrix A (saying that both

the columns as well as the rows of the matrix constitute an orthonormal system) result

in that its bottom row is necessarily (0, . . . , 1) and that the remaining (n − 1) × (n − 1)

block B has to be an orthogonal matrix. The condition det A = 1 gives det B = 1, so that

B ∈ SO(n − 1). Together

A =
(

B 0

0 1

)

, B ∈ SO(n − 1) so that B ↔
(

B 0

0 1

)

is an isomorphism of the group SO(n − 1) and Gx0
≡ the stabilizer of the north pole. �

13.1.12 Given two (left) G-spaces (M, Lg) and (N , L̂g), check that the prescription

(x, y) �→ (gx, gy) ≡ (Lgx, L̂g y) =: L̃g(x, y)

defines a new (left) G-space (their product (M × N , L̃g)). In particular, also for some of

the actions being trivial (the identity transformation for each g). �

13.1.13 Given two G-spaces (M, Rg) and (N , R̂g), check that

(i) the prescription

Lg : F(M, N ) → F(M, N ) Lg f := R̂g−1 ◦ f ◦ Rg

defines a left action of G on F(M, N ), the set of all maps from M to N ; it is a simultaneous right
action on arguments (the domain) of f and a left action (by the same group element) on values

(the image set) of the map f
(ii) the stable points of the action are given just by the equivariant maps M → N , being the maps

which “commute with the action” in the sense of

M
f−−−−→ N

Rg

⏐
⏐
⏐
�

⏐
⏐
⏐
�

R̂g

M −−−−→
f

N

i.e. f ◦ Rg = R̂g ◦ f

Such maps may also be regarded as the maps compatible with the (right) actions on M and N
and they constitute morphisms for the category of (here right) G-spaces (see Appendix A.6).

Hint: Lgh f = R̂(gh)−1 ◦ f ◦ Rgh = R̂g−1 ◦ (R̂h−1 ◦ f ◦ Rh) ◦ Rg ≡ (Lg ◦ Lh) f . �

13.1.14 Consider a subgroup H of SO(3) which rotates vectors around a fixed unit vector

n (it is a one-parameter subgroup containing the matrices R(α, n) mentioned in (11.7.13)).

Prove that

(i) the elements of SO(3), which are conjugate to R(α, n), are just R(α, m), i.e. they rotate vectors

by the same angle around an arbitrary unit vector m
(ii) any subgroup conjugate to H consists of the rotations around arbitrary fixed axes (so the subgroups

are labeled by unit vectors m or, alternatively, by the points of the unit sphere).
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Hint: (i) let R ≡ R(α, m) and let Rea = Rb
aeb in some basis; then for any A ∈ SO(3) we

have (AR A−1)(Aea) = Rb
a (Aeb), so if we denote Ea := Aea , we have (IA R)Ea = Rb

a Eb;

thus the (conjugate) matrix IA R acts on the basis Ea in the same way as R acts on the basis

ea ; in particular, if e3 = n, then An =: m is the new axis of rotation ((IA R)m = m) and the

angle of rotation is the same (Re1 = e1 cos α + e2 sin α ⇒ (IA R)E1 = E1 cos α + E2 sin α,

similarly for e2). �

13.2 The structure of homogeneous spaces, G/H

• It turns out that any homogeneous space M of a group G may be replaced by its

isomorphic copy, which is constructed directly in terms of the group. First, we will look at

these particular homogeneous spaces and then we learn how exactly such a space may be

assigned to a given homogeneous space.

13.2.1 Let G be a group, H ⊂ G a subgroup, g ∈ G. The left coset gH ⊂ G is the set of

all elements of the form gh for h from the subgroup H , i.e.

gH = {k | k = gh, h ∈ H}
Show that

(i) the cosets realize a decomposition of G, i.e. each element k ∈ G belongs in just one coset

(ii) all cosets have the same cardinality (“number of elements”), i.e. there exists a bijection g1 H ↔
g2 H for any two cosets

(iii) the relation on G, defined as

g1 ∼ g2 ⇔ g1 = g2h for some h ∈ H

is an equivalence and the equivalence classes just coincide with the left cosets.

Hint: (ii) g1h ↔ g2h (with the same h ∈ H ). �

13.2.2 Let H ⊂ G be a subgroup of G. Define (yet nothing more than) a set G/H as a

factor-set of G with respect to the equivalence from (13.2.1), i.e. a point [g] ∈ G/H is the

equivalence class of the point g in (G, ∼). Be sure to understand that

(i) the canonical projection

π : G → G/H g �→ [g]

is a surjective map

(ii) the preimage of a point [g] ∈ G/H is just the coset gH ⊂ G. �

13.2.3 Let G ≡ (Z, +) be the group of integers220 with respect to addition and consider

the subgroup H ≡ nZ containing all the (integer) multiples of a fixed number n ∈ Z.

220 So that it is not a Lie group.
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(i) Check that nZ is indeed a subgroup of Z

(ii) how many elements does the set G/H ≡ Z/nZ contain?

(iii) what is π (7) for n = 4?

(iv) what is π−1([0]) and π−1([1]) for n = 2?

((ii) n; (iii) [3]; (iv) even and odd numbers.) �

13.2.4 Consider a finite group G and prove the validity of

(i) the Lagrange theorem: for any subgroup H ⊂ G we have

o(G) = k · o(H ) k ∈ N

(o(G) is the order of the group, i.e. the number of elements). So the theorem simply says that

the order of a group is always divisible by the order of any of its subgroups

(ii) a corollary: if o(G) = a prime number, then G has only trivial subgroups (H = G or H = {e})
(iii) another corollary: given any element g in a finite group, there holds

go(G) ≡ g · g · · · g
︸ ︷︷ ︸
o(G) entries

= e

Hint: (i) see (13.2.1), k = the number of cosets, i.e. points of G/H ; (iii) the order of G is

to be divisible (also) by the order of the cyclic subgroup Gg ⊂ G generated by the element

g (all powers of g), o(G) = k · o(Gg) so that go(G) = gk·o(Gg) = (go(Gg))k = ek = e, since

go(Gg) = e (due to the definition of the order of a cyclic group). �

• Now we learn that there is a natural left transitive action of the group G on G/H so that

G/H is naturally endowed with the structure of a homogeneous space.

13.2.5 Check that

(i) by the prescription

Lĝ[g] ≡ ĝ[g] := [ĝg]

a left action of the group G on G/H is well defined (it is a prescription of the type “by means of

representatives,” check that it does not depend on their choice)

(ii) the action is transitive, so that G/H is a natural homogeneous space of the group G
(iii) if we denote byLg the left translation on G, then for the relation between Lg andLg the following

commutative diagram holds:

G
Lg−−−−→ G

π

⏐
⏐
⏐
�

⏐
⏐
⏐
�

π

G/H −−−−→
Lg

G/H

i.e. π ◦ Lg = Lg ◦ π

so that the action Lg on G/H may actually be regarded as the projection of the action Lg on the

group G itself (and the projection π is then an equivariant map)

(iv) in problem (13.2.3) we have

Ln[m] = [n + m]
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(v) for the two extreme cases, H = G and H = {e}, we get Lg = id (G/H ≡ G/G then reduces to

a single point) and Lg = Lg respectively.

Hint: (ii) the left translation is transitive on G. �

• Now we have at our disposal a tool for a simple construction of the class of homogeneous

spaces of a group G – it is enough to find its subgroups H . Our pleasure, being already

far from negligible, grows to a true rapture when we learn that (up to isomorphism) there

are actually no other homogeneous spaces at all except this class so that this construction

exhausts as a matter of fact all homogeneous spaces.221

13.2.6 Two (left) homogeneous spaces (M, Lg) and (N , L̃g) of the same group G are called

isomorphic (equivalent) if there exists an equivariant bijective map between them.222 Check

that this indeed introduces an equivalence among homogeneous spaces. �

13.2.7 Prove that

(i) if H, H ′ are conjugate subgroups of the group G, then the canonical homogeneous spaces G/H
and G/H ′ are isomorphic

(ii) each homogeneous space of the group G is isomorphic to an appropriate canonical homogeneous

space G/H (i.e. there are, in fact, no other homogeneous spaces than G/H )

(iii) the biggest homogeneous space of the group G is the principal homogeneous space, the space

isomorphic to the group G itself (regarded as a homogeneous space with an action given by the

left or right translation)

(iv) the action of GL(n, R) on the bases e �→ eA ≡ RA from problem (5.7.2) makes from the space

of bases E(L) just a principal homogeneous space; note that E(L) is not a group (two bases

cannot be multiplied, there is no unit basis), but still it is diffeomorphic to the group GL(n, R)

and from the algebraic point of view it is “only” a (principal) homogeneous space of the group.

Hint: (i) if π, π ′ are the canonical projections of G onto G/H and G/H ′, then f : G/H →
G/H ′ is given by π (g) �→ π ′(g) (i.e. f ◦ π = π ′); (ii) let (M, L̂g) be a given homogeneous

space, x ∈ M and Gx ⊂ G the stabilizer of the point x ; then the map f from the commutative

diagram

M
f−−−−→ G/Gx

L̂g

⏐
⏐
⏐
�

⏐
⏐
⏐
�

Lg

M −−−−→
f

G/Gx

f : y ≡ gx �→ [g]

is an isomorphism M → G/Gx (check), so that the given space is indeed isomorphic to

the space G/H , namely for the subgroup H ≡ Gx ; another choice of the point x only leads

(according to item (i) and (13.1.10)) to an isomorphic space; (iii) the biggest homogeneous

space results from the smallest subgroup. �
221 Including the homogeneous spaces, which any missions from other planets, “solar systems” or even other galaxies will carry

sometime in the future (with a view to investigating it in laboratories under the microscope). Sometimes the strength of our
slender earthly mathematics indeed takes the breath away.

222 The bijectivity gives the “isomorphism of sets,” the equivariance adds the “isomorphism of the actions.”
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13.2.8 Consider the standard spheres in Cartesian spaces (radius 1, centered at the ori-

gin). Check that there are the following isomorphisms of homogeneous spaces (denoted

by “=”):

(i) Sn = SO(n + 1)/SO(n) = O(n + 1)/O(n)

(ii) S2n−1 = SU (n)/SU (n − 1) = U (n)/U (n − 1)

(iii) S1 = (R, +)/Z

(iv) T n = (Rn, +)/Z
n

Hint: (i) (13.1.11) and its modification for O(n); (ii) a similar action of U (n) and SU (n) in

C
n ∼ R

2n , |z1|2 + · · · + |zn|2 = 1 is a sphere S2n−1; (iii) the action of R on S1 of the form

z �→ Lx z := ei2πx z (|z| = 1); (iv) the torus is a product of circles, a similar action to the

preceding item. �

• The general method common to all of these examples (as well as for numerous further

situations) might be summed up in terms of the following steps:

1. find an action Lg of the group G on a set X
2. find the orbit Ox =: M of a point x ∈ X ; this is already a homogeneous space

3. find the stabilizer H ≡ Gx of the point x
4. write down the result in the (“deep science”) form M = G/H , i.e. Ox = G/Gx .

For matrix groups it is useful to keep in mind that they naturally act in the space of columns

of appropriate dimension (equal to the dimension of the matrices), realizing thus item 1;

the remaining items should now be just straightforwardly computed. One more possibility

for 2 × 2 matrices adds the following observation.

13.2.9 Consider the (extended) complex plane and an element A ∈ GL(2, C). Show that

(i) the Möbius transformation of the plane (also known as the linear-fractional transformation) given

by the formula

z �→ az + b

cz + d
≡ L Az A ≡

(
a b
c d

)

∈ GL(2, C)

defines a left action of GL(2, C) (as well as any of its subgroups) in the (extended) complex plane

(ii) for 0 �= λ ∈ C we have

LλA = L A

so that from the class of matrices λA we can always choose an unimodular representative, A ∈
SL(2, C). �

• So far we have learned that the set G/H is always endowed with the structure of a (left)

homogeneous space (and that there are no other homogeneous spaces). It turns out that this

object is sometimes also endowed with another structure, namely with the structure of a
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group. If this is the case, it is called the factor group. Let us investigate when exactly this

is the case. The idea is fairly standard (it has proved to be useful many times, the last time

when we defined the action of G in G/H ), namely we try to define a multiplication in G/H
by means of the representatives (i.e. by a projection of the product in the group).

13.2.10 Define a multiplication in G/H by the prescription

[g][g̃] := [gg̃] i.e. π (g)π (g̃) := π (gg̃)

Check that

(i) the multiplication, in general, depends on the choice of the representatives (and is thus useless)

(ii) if one requires the multiplication to be independent of the representative, this imposes a condition

on the subgroup H , namely

Ig H ≡ gHg−1 = H for all g ∈ G

i.e. the subgroup is to be invariant with respect to conjugation by an arbitrary element of G. Such

a subgroup is usually called a normal subgroup, or sometimes also an invariant subgroup
(iii) the prescription

H �→ Ig H ≡ gHg−1

defines a left action of G on the set of its subgroups; the orbit OH is given by the class of the

subgroups conjugate to the subgroup H and the fixed points of the action are represented just by

the normal subgroups.

Hint: (ii) if gg̃ = ĝ (so that [g][g̃] = [ĝ]), then if we require the product to be independent

of the representative, it needs (gh)(g̃h̃) = gg̃h′ for some h′ ∈ H . This may be written as

gHg−1 = H (i.e. ghg−1 = some h′′ again ∈ H ). �

13.2.11 Check that

(i) in a commutative group each subgroup is normal

(ii) the subgroup nZ is a normal subgroup in Z

(iii) the product in Zn := Z/nZ reduces to the good old addition of numbers “modulo n.”

Hint: see (13.2.3); the multiplication (addition here) is [k] + [l] := [k + l]. �

• Now we introduce a theorem which generates

numerous interesting isomorphisms of groups. The

input datum consists of an arbitrary homomorphism

of groups, the output is then a certain isomorphism

of (modified) groups.

13.2.12 Let f : G → G̃ be a homomorphism of

groups. Check that

(i) the kernel of the homomorphism Ker f (i.e. the elements which are mapped to the unit element of

G̃) is a normal subgroup of the group G
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(ii) the image of the homomorphism Im f (those elements in G̃ which have a preimage in G) is a

subgroup in G̃
(iii) the canonical projection π : G → G/Ker f is a surjective homomorphism

(iv) the following homomorphism theorem holds: the map f̂ : G/Ker f → Im f , f̂ (π (g)) := f (g) is

an isomorphism of groups; thus

G/Ker f = Im f (= is an isomorphism of groups)

Hint: (iii) preservation of the operation: π (g) = [g], (13.2.10), surjection by means of

(13.2.2); (iv) a straightforward (easy) check. �

• The patient f may complain at most of being non-injective and non-surjective (if

compared with an isomorphism). The non-injectivity is healed by factorization and the

non-surjectivity by ignoring that part of G̃ which is outside the image of f . The patient

(becoming f̂ after the medical help) may then be discharged from the hospital and (bubbling

over with sound health) left to plunge into the whirl of life again.

13.2.13 Check that the homomorphisms on the left give the isomorphisms on the right:223

GL(n, R) → GL(1, R) A �→ det A ⇒ GL(n, R)/SL(n, R) = GL(1, R)

GL(1, C) → GL(1, R) z �→ |z| ⇒ GL(1, C)/U (1) = GL+(1, R)

GL(1, C) → GL(1, C) z �→ z2 ⇒ GL(1, C)/Z2 = GL(1, C)

SU (n) × U (1) → U (n) (A, eiα) �→ eiα A ⇒ SU (n) × U (1)/Zn = U (n)

GL+(1, R) → (R, +) x �→ ln x ⇒ GL+(1, R) = (R, +)

Hint: A �→ det A: an equivalence class (left coset) in GL(n, R)/SL(n, R) is specified

by the value of the determinant of matrices. Since the classes are multiplied by means

of representatives and since the determinant of the product of matrices is the prod-

uct of their determinants, the multiplication of classes exactly matches the multiplica-

tion of ordinary real numbers, i.e. the multiplication in GL(1, R), giving rise to the iso-

morphism GL(n, R)/SL(n, R) = GL(1, R). z �→ |z|: an equivalence class (left coset) in

GL(1, C)/U (1) is specified by the modulus of complex numbers (the radius of the corre-

sponding circle). Since the modulus of the product of complex numbers is the product of

their moduli, the multiplication of classes exactly matches the multiplication of ordinary

(positive) real numbers, i.e. the multiplication in GL+(1, R), giving rise to the isomorphism

GL(1, C)/U (1) = GL+(1, R). The remaining cases can be treated along similar lines. �

13.3 Covering homomorphism, coverings SU (2) → SO(3) and SL(2, C) → L↑
+

• An important particular case of a homomorphism of Lie groups f : G → G̃ (13.2.12)

is provided by a situation where the image Im f turns out to be the whole group G̃ and the

kernel Ker f is a discrete (normal, possibly infinite) subgroup. If we denote the elements of

223 The last isomorphism (given by the logarithm) is the heart of how the slide rule functions, some years ago an essential piece
of equipment for any true engineer. It converts a product into a sum, the latter then being realized mechanically. Rulers based
on the remaining isomorphisms still await a producer.
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the subgroup by (g1 ≡ e, g2, . . . , gk, . . .), then (by

definition) they constitute the preimage of the unit

element ẽ ∈ G̃. It results from the continuity of f
that the pre-image of a (sufficiently small) neigh-
borhood Õ of the unit element ẽ ∈ G̃ is given by

some neighborhoods Ok of the elements gk , each

of them being mapped bijectively onto Õ.224 This

does not occur, however, only “over” the unit ele-

ment ẽ, but rather this picture may be found over

each element g̃ = f (g) in G̃ (the preimages of

f (g) being (gg1 ≡ g, gg2, . . . , ggk, . . .)). In general, a map of manifolds which has these

properties is called a covering or a local homeomorphism.225 If the number of preimages

is n, we speak about an n-sheeted covering. If the covering of Lie groups f : G → G̃
moreover happens to be a homomorphism (as is the case in the situation we started with

at the beginning of the section), it is called a covering homomorphism. And finally if G is

connected as well as simply connected (i.e. one can shrink to a point each loop (lasso) in

this space), G is called the universal covering group of the group G̃ (one can show that for

a given connected Lie group G̃ there is up to isomorphism a unique such group). Let us

have a look at how some objects are related which are connected with the group G̃ and the

covering group G, namely their Lie algebras and representations.

13.3.1 Let G and G̃ be Lie groups and let f :

G → G̃ be a covering homomorphism. Check that

(i) their Lie algebras are isomorphic (even if the groups

themselves are only homomorphic)

f : G → G̃ is a covering

homomorphism ⇒ G = G̃

(ii) each representation of the group G̃ “is” at the same time also a representation (i.e. induces a

representation) of the covering group G (this may not be true in the opposite direction, however,

so that the covering group may have “more” representations in general – see problem (13.3.8)).

Hint: (i) the Lie algebras are hidden in the infinitesimal neighborhoods of the unit elements

of the groups; these neighborhoods are mapped isomorphically one onto another; (ii) if

ρ̃ : G̃ → Aut V is a representation of G̃, we may “lift” it to the representation ρ ≡ ρ̃ ◦ f :

G → Aut V ; what obstructs the opposite assignment ρ �→ ρ̃ is the fact that f may not be

invertible (since it is non-injective, nor in general does a canonical choice of one of the

possible preimages exist.)226 �

224 So there are several preimages of Õ with respect to π (their number coinciding with the number of elements of the subgroup
Ker f ), each of them being homeomorphic to Õ itself.

225 The restriction of f to a single homeomorphic copy mentioned above is already a “true” homeomorphism.
226 A covering is a special case of the concept of a bundle (see Section 17.2), when the fiber happens to be discrete; f : G →

G/Ker f is a principal bundle (see Section 20.1). The canonical choice of one of the preimages would provide a global section
of the bundle, resulting (20.1.3) in its triviality, G = (G/Ker f ) × Ker f .
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13.3.2 Check that the map (13.2.8)

f : (R, +) → U (1) x �→ e2π i x

(visually a winding of the real axis onto the unit circle in the complex plane) is a covering

homomorphism and that moreover it is the universal covering. Verify the isomorphism of

the Lie algebras and check that the “lift” of the representation ρ̃n : eiα �→ einα (12.2.10) of

the group U (1) to a representation ρn of the covering group reads

ρn : x �→ e2π inx (⇒ ρn(x + y) = ρn(x)ρn(y))

Hint: the real axis is connected as well as simply connected. �

• At first sight the figure at the beginning of the section may give the false impression

that it is possible somehow to link together the individual “pancakes” in the upper part and

end with several copies of the group G̃ (the number of copies coinciding with the number

of leaves; that, for example, O1 and U1 are parts of a first copy, etc.). The elementary

problem (13.3.2) shows, however, that the matter is not so simple (and that the concept of

the covering might be interesting and non-trivial): there is a single circle S1 = U (1) in the

lower part, but in the upper part we do not have infinitely many circles but rather only a
single long (infinite) line R.

(Imagine we covered the circle in the lower part by several “pancakes” (neighborhoods)

of the type Ũ . Choose over one of them, say Ũ1, a fixed preimageU1. Now glue a neighboring

“pancake” Ũ2 to Ũ1 (such that they have a non-empty overlap) and choose that particular

preimage U2 over Ũ2, which has non-empty overlap with U1 (for sufficiently small domains

it is unique). What we have obtained are two “bigger pancakes,” one of them in G and the

other one (its projection) in G̃ (in the example (13.3.2) the pancakes have the form of short

lines and these lines are glued into longer lines). If we continue with this procedure, in

the lower part, on U (1), we will eventually glue together the whole circle (a closed line),

whereas in the upper part an open line still continues to carry on which may be visually

regarded also as part of an infinite helix produced over the circle.)

A nice, non-trivial and important illustration of a covering homomorphism is the two-
sheeted covering of the rotational group in three dimensions SO(3) by the group SU (2).

(This is closely related to spinors and we will return to the subject at a more sophisticated

level in Chapter 22.) Since SU (2) is a sphere S3 (so that it is connected as well as simply

connected), this is an example of a universal covering.227 Let us have a look at how it

happens.

13.3.3 Denote by H0(2, C) the 2 × 2 Hermitian traceless matrices. Check that

(i) it is a three-dimensional (real) vector space with a basis σa and that the prescription

ψ : R
3 → H0(2, C) x �→ ψ(x) ≡ x̃ := xaσa ≡

(
x3 x1 − i x2

x1 + i x2 −x3

)

is a linear isomorphism

227 And at the same time a reaffirmation of the warning mentioned in the preceding paragraph: SU (2) regarded as a manifold
differs from two copies of the manifold SO(3) (the latter being non-connected).
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(ii) the standard Euclidean structure is in H0(2, C) incorporated by

det x̃ = −xa xa ≡ −x · x ≡ −||x||2 x̃ x̃ = ||x||2I2

(iii) the prescription

x̃ �→ L Ax̃ := Ax̃ A+

gives a left linear action (i.e. a representation) of SU (2) in H0(2, C), which moreover preserves

the Euclidean norm ||x||2; thus it is a representation by means of orthogonal operators and we

get the map (homomorphism) f : SU (2) → O(3) being sought (so far we (only) see that it is to

O(3); as a matter of fact it will be clear in a moment that its image is in SO(3))

(iv) on the basis σa this gives the matrix elements of the orthogonal operator

σa �→ Aσa A+ =: Rbaσb Rab = 1

2
Tr (σa Aσb A+)

so that effectively in coordinates

xa �→ x ′
a ≡ Rabxb

Hint: (iii) det(L Ax̃) = det x̃ , Tr (L Ax̃) = 0; (iv) the formula for Rab with the help of (13.3.4).

�

13.3.4 Prove the validity of the following useful identities for the traces of Pauli matrices:

Tr σa = 0 Tr (σaσbσc) = 2iεabc

Tr (σaσb) = 2δab Tr (σaσbσcσd ) = 2(δabδcd − δacδbd + δadδcb)

Hint: σaσb = δabI2 + iεabcσc. �

13.3.5 Show that if we parametrize the matrices A ∈ SU (2) according to (11.7.12)

A = e− 1
2

iαn·σ ≡ I2 cos
α

2
− i(n · σ) sin

α

2

then the matrix Rab from (13.3.3) turns out to be

Rab = δab cos α + (1 − cos α)nanb − εabcnc sin α ≡ (eαn·l)ab

which is by (11.7.13) the most general matrix from SO(3). Thus, the image of SU (2) is not

given by the whole orthogonal group O(3), but rather228 by the (whole) subgroup SO(3). �

• Thus for each rotation (a matrix Rab ∈ SO(3)) we are in a position to find a matrix

A ∈ SU (2) which is mapped to the rotation. It even turns out that the matrix A is not

unique, but there are actually two of them. This fact results from the examination of the

kernel of the homomorphism f : SU (2) → SO(3).

228 Since the map SU (2) → O(3) is continuous and SU (2) is connected, the image is necessarily a connected group, i.e. (the unit
element goes to the unit element) the image necessarily lies in SO(3). It is not clear from this argument, however, that it is the
whole group SO(3).
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13.3.6 Prove that the map under consideration

f : SU (2) → SO(3)

given explicitly by the prescription229

( f (A)x)˜ := Ax̃ A+

i.e. f (A) := ψ−1 ◦ L A ◦ ψ or also e− 1
2

iαn·σ �→ eαn·l

is a surjective homomorphism with the kernel

Ker f = (I2, −I2) ≡ Z2 ⊂ SU (2)

so that each rotational matrix R ≡ f (A) has just two preimages, A and −A.

Hint: the homomorphism is clear, surjectivity is from (13.3.5). The matrices from the kernel

are to satisfy Aσa A+ = σa , i.e. [A, σa] = 0, from where A = λI2 (a direct computation,

or certain multiples of σa realize a complex irreducible representation of su(2), Schur’s

lemma). This belongs to SU (2) only for λ = ±1. �

13.3.7 Be sure to understand that the map f from (13.3.6) is a universal two-sheeted
covering of the group SO(3) by the group SU (2) and confirm for this case the result

concerning the relation between the Lie algebras of the original and the covering groups

from (13.3.1)

SO(3) = SU (2)/Z2 but so(3) = su(2)

Hint: (13.2.12) for f from (13.3.6); SU (2) ∼ S3 is connected as well as simply connected;

Lie algebras:

f : e− 1
2

iαn·σ �→ eαn·l ⇒ f ′ : − i

2
αn · σ �→ αn · l

(12.1.5). �

13.3.8 Also confirm for this case the second result (concerning the relation between rep-

resentations) from (13.3.1). Namely prove that the simplest representation of the covering

group SU (2), the representation ρ = id (A �→ ρ(A) = A), is not a lift of any representation

ρ̃ of the group SO(3).

Hint: if it were a lift, there would hold id ≡ ρ = ρ̃ ◦ f , i.e. A ≡ ρ(A) = ρ̃( f (A)) ≡ ρ̃(R);

for the matrix of the rotation by α around the z-axis this means

ρ̃ : Rz(α) �→ diag
(
e−iα/2, eiα/2

)

This gives, however, Rz(2π ) �→ diag(−1, −1) ≡ −I, which is bad, since the element with

α = 2π in SO(3) is the identity element of the group and it is necessarily mapped into the

(plus) identity operator (in each representation; ⇒ ρ̃ does not exist). �
229 So that Ax̃ A+ = xb Aσb A+ = (Rab xb)σa ≡ ( f (A)x)aσa .
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• This shows that there are more representations of the group SU (2) than of SO(3).

The analysis of the situation230 leads to the result that the finite-dimensional complex

irreducible representations of SU (2) are labelled by a single non-negative integer or half-

integer j = 0, 1
2
, 1, 3

2
, . . . (in quantum mechanics it is related to the angular momentum of

the object, in particular to its spin). It turns out that the representations labelled by integers

j are lifted from SO(3), whereas the half-integer representations are specific for SU (2), i.e.

one cannot obtain them by means of the lift from SO(3). For example, the representation

ρ = id has spin j = 1
2
, so that it is not a lift (in accordance with the result of problem

(13.3.8)). It is called the spinor representation of the group SU (2) and the objects (the two-

component complex columns), transforming according to this representation are known

as (“non-relativistic”) spinors. Spinors in a general context are treated in more detail in

Chapter 22 (in particular, see (22.3.7)).

It is of practical importance to know that the covering f : SU (2) → SO(3) is a part of the

covering of larger groups, namely the (two-sheeted) covering f : SL(2, C) → L↑
+, where

L↑
+, the proper orthochronous Lorentz group, is a subgroup of SO(1, 3).

13.3.9 Show that

(i) the Lorentz group L ≡ O(1, 3) has (at least) four connected components

L = L↑
+ ∪ L↑

− ∪ L↓
+ ∪ L↓

− L↑ ∩ L↓ = ∅ = L+ ∩ L−

(ii) the multiplication by the matrices

T := diag (−1, I3) ∈ L↓
−

P := diag (1, −I3) ∈ L↑
−

PT := diag (−1, −I3) ∈ L↓
+

realizes diffeomorphisms between them; the four connected components thus happen to be “topo-

logically equal.” One can prove that the connected component of the identity element, i.e. the

subgroup L↑
+, is already connected,231 so that O(1, 3) has just four connected components.

Hint: ± because of det � = ±1, ↑↓ because of �0
0 ≥ 1 or ≤ −1 (resulting from the ( )00

component of the defining equations of O(1, 3): according to (10.1.5) we have (�Tη�)00 ≡
(�0

0)2 − �
j
0�

j
0

!= η00 ⇒ (�0
0)2 ≥ 1). �

• The condition �0
0 ≥ 1 says (through x ′0 = �0

0x0 + · · ·) that the transformation does

not invert the direction of time (the primed time thus flows “correctly,” hence the word

“orthochronous”) and together with the condition on the determinant being +1 we get that

� does not contain the space reflections; we thus study the Lorentz transformations which

can be realized by a transition to the frame of reference which is (only) rotated and it moves

230 This will not be performed in this book (the representations of the Lie algebra su(2) used to be studied in textbooks on quantum
mechanics, in the chapters devoted to rotations and angular momentum).

231 Namely in problem (20.1.6) we learn that L↑
+ ∼ R

3 × SO(3) (being at the same time R
3 × RP3). But R

3 as well as SO(3)
are connected (SO(3) is exponential, see the text after (11.7.18)).



13.3 Covering homomorphism, coverings SU (2) → SO(3) and SL(2, C) → L↑
+ 305

uniformly along a straight line (with respect to a fiducial one). It is clear that such “proper”

Lorentz transformations form a subgroup.

13.3.10 Denote by H (2, C) the 2 × 2 Hermitian matrices (we do not require tracelessness

in comparison with (13.3.3)). Show that

(i) it is a four-dimensional (real) vector space with a basis σμ ≡ (I2,σ) or alternatively σ̄μ ≡
(I2, −σ) (μ = 0, 1, 2, 3; in both cases one defines the zeroth matrix to be the identity 2 × 2

matrix) and that the prescriptions

ψ : R
4 → H (2, C) x �→ ψ(x) ≡ x

˜
= xμσμ

χ : R
4 → H (2, C) x �→ χ (x) ≡ x̃ = xμσ̄μ

are linear isomorphisms

(ii) the standard pseudo-Euclidean structure is in H (2, C) incorporated by

det x̃ = det x
˜

= (x, x) ≡ ημν xμxν x
˜

x̃ = x̃ x
˜

= (x, x) I2

and that this results in the following identities:

σμσ̄ν + σνσ̄μ = 2ημν I2

σ̄μσν + σ̄νσμ = 2ημν I2

Tr (σ̄μσν) = Tr (σμσ̄ν) = 2ημν

(iii) the prescription

x
˜

�→ L Ax
˜

:= Ax
˜

A+

is a left linear action (i.e. a representation) of SL(2, C) in H (2, C), which moreover preserves

the pseudo-Euclidean norm ||x ||2; thus it is a representation by means of pseudo-orthogonal
operators and we get the map (homomorphism) f : SL(2, C) → O(1, 3) being sought (so far

we (only) see that it is to O(1, 3); as a matter of fact it will be clear in a moment that its image

is in L↑
+)

(iv) on the basis σν this gives the matrix elements of the pseudo-orthogonal operator

σν �→ Aσν A+ =: �μ
ν σμ �μ

ν = ημα 1

2
Tr (σ̄α Aσν A+)

so that effectively in coordinates

xμ �→ �μ
ν xν

Hint: (iii) det(L Ax
˜
) = det x

˜
= (x, x). �

• Now we would like to see again which Lorentz transformation is the f -image of a given

matrix A (an analog of (13.3.5)). In order to do this we need to find a suitable parametrization

of the matrices from SL(2, C) and this is, in turn, conveniently done making use of the polar
decomposition.
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13.3.11 Show that any matrix A ∈ SL(2, C) may be written in the form of the product of

a special unitary matrix and a Hermitian unimodular matrix

A = U H U ∈ SU (2) H+ = H det H = 1

Hint: A+ A is a positive definite Hermitian matrix (〈v, A+ Av〉 = 〈Av, Av〉 ≥ 0), so that

it has a (positive definite Hermitian) square root H := √
A+ A; one checks that det H =

1; then we get for U the result U = AH−1 – check that it is unitary and realize that

det U = 1. �

• Since f is a homomorphism, we have f (A) = f (U H ) = f (U ) f (H ) and so the image

of an arbitrary matrix A is a composition of two Lorentz transformations, the first being the

image of U and the second being the image of H . Thus, it is enough to find out how these

special types of matrices are mapped.

13.3.12 Check that for these special types of matrices U and H we get:

(i) they may be parametrized in the form

U = e− 1
2 iαn·σ H = ±cosh

α

2
I2 + (n · σ)sinh

α

2
= ±e± 1

2 αn·σ α ∈ R ||n|| = 1

(ii) for U parametrized in this way we get from (13.3.10) as � ≡ f (U ) explicitly

�0
0 = 1 �0

i = 0 = �i
0 �i

j = cos αδi j + (1 − cos α)ni n j − sin αεi jknk

and so xμ �→ x ′μ ≡ �μ
ν xν reads

x ′0 = x0

r′ = r cos α + (n · r)n(1 − cos α) + (n × r) sin α

which is by (11.7.13) the most general rotation (by α around n)

(iii) for H parametrized in this way we get from (13.3.10) as � ≡ f (H ) explicitly

�0
0 = cosh α �i

0 = �0
i = ±ni sinh α �i

j = δi
j + (cosh α − 1)ni n j

and so xμ �→ x ′μ ≡ �μ
ν xν reads

x ′0 = x0 cosh α ± (n · r) sinh α

x ′i = ±ni sinh αx0 + xi + (cosh α − 1)(r · n)ni

If r is decomposed into its longitudinal and transversal parts (with respect to n)

r = r� + r⊥ r� = (n · r)n ≡ r�n

r⊥ = r − (n · r)n

then

x ′0 = x0cosh α ± r�sinh α

r ′
�

= ±x0sinh α + r�cosh α

r′
⊥ = r⊥



13.3 Covering homomorphism, coverings SU (2) → SO(3) and SL(2, C) → L↑
+ 307

which is just a general boost (in the direction of n). The image of the whole group SL(2, C) is

thus the composition of the most general rotation and the most general boost, i.e. it is the most

general element of the group L↑
+. �

13.3.13 Prove that the map under consideration

f : SL(2, C) → L↑
+

given explicitly by the prescription232

( f (A)x)∼ := A x
˜

A+ i.e. f (A) = ψ−1 ◦ L A ◦ ψ

is a surjective homomorphism with the kernel

Ker f = (I2, −I2) ≡ Z2 ⊂ SL(2, C)

so that each (proper and orthochronous) Lorentz matrix � ≡ f (A) has just two preimages,

A and −A.

Hint: surjectivity from (13.3.12), the kernel as in (13.3.6). �

13.3.14 Check that the map f from (13.3.13) is a universal two-sheeted covering of the

group L↑
+ by the group SL(2, C), a part being the covering of SO(3) by the group SU (2)

from (13.3.7). Confirm also here the result concerning the relation between the Lie algebras

of an initial and a covering group from (13.3.1)

L↑
+ = SL(2, C)/Z2 but so(1, 3) = sl(2, C)

Hint: (13.2.12) for f from (13.3.13); S3 (and consequently also SL(2, C) ∼ R
3 × S3, see

(20.1.5)) is connected as well as simply connected; restriction of L A from (13.3.10) to the

subgroup SU (2) preserves the subspace H0(2, C) ⊂ H (2, C) and coincides on it with L A

from (13.3.3), so that the restriction of f to the subgroup SU (2) coincides with f from

(13.3.6); the isomorphism of Lie algebras explicitly reads as
(

0 0

0 l j

)

↔ − i

2
σ j

(
0 n j

n j 03

)

↔ 1

2
σ j

(l j )km ≡ −ε jkm (n j )m ≡ δ jm �

13.3.15 Confirm also for this case the second result (concerning the relation between

representations) from (13.3.1). Namely, prove that here the simplest representation of the

covering group SL(2, C), the representation ρ = id (A �→ ρ(A) = A), is not a lift of any

representation ρ̃ of the group L↑
+.

Hint: if it were a lift, it would be so for its restriction to the subgroup SU (2) as well; we

already learned in (13.3.8) that this is not the case. �

232 So that A x
˜

A+ = xν
Aσν A+ = (�

μ
ν xμ)σν ≡ ( f (A)x)νσν .
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• This shows that there are more representations of the group SL(2, C) than those of

L↑
+. An analysis of the situation233 leads to the result that the finite-dimensional complex

irreducible representations of SL(2, C) are labeled by a pair of non-negative integers or

half-integers ( j, j ′) = 0, 1
2
, 1, 3

2
, . . . . It turns out that the representations with integer sum

j + j ′ are lifted from those of L↑
+, whereas the half-integer sum j + j ′ corresponds to the

representations which are specific for SL(2, C), i.e. one cannot obtain them by means of

the lift from L↑
+.

For example, the representation ρ = id has ( j, j ′) = ( 1
2
, 0), so that it is not a lift (as we

already learned in (13.3.15)). It is one of its two spinor representations, the second one

being ( j, j ′) = (0, 1
2
) and it turns out to be complex conjugate to ( 1

2
, 0) so that it is also

two-dimensional. One can show that these two representations are inequivalent (12.2.5)

and that by tensor products and restrictions to invariant subspaces all the finite-dimensional

complex irreducible representations of SL(2, C) may be obtained; this is the reason why

they are called the fundamental representations.

Since the two fundamental representations are inequivalent, in the component approach

we need to use different types of indices in order to distinguish them. A standard convention

is to use dotted indices for ( j, j ′) = (0, 1
2
) and undotted indices for ( j, j ′) = ( 1

2
, 0) (so that,

for example, ua �→ Aa
bub and wȧ �→ (A∗)ȧ

ḃ
w ḃ). The translation of the properties mentioned

above to the language of indices is that a general representation occurs on tensors carrying

several dotted and several undotted indices (on such tensors the tensor products of the

fundamental representations act) with a particular type of symmetry (in this way the invariant

subspaces are singled out). It turns out in more detail that the representation of the type

( j, j ′) takes place on tensors with 2 j undotted and 2 j ′ dotted indices, which are completely
symmetric with respect to both types of indices separately (for example, on t (ab)(ċḋ ė) the

representation ( j, j ′) = (1, 3
2
) is realized).

For SU (2) there is only a single fundamental representation, namely j = 1
2

(or ρ = id;

according to (12.2.4), the complex conjugate representation is equivalent to ρ). A general

representation of type j is realized on completely symmetric tensors with 2 j indices and

its dimension is 2 j + 1.

We know from problem (13.3.1) that any representation of the “covered” group “is”

automatically also a representation of the covering group, but the opposite is not true

in general. In order to soften the mental trauma which this unpleasant result causes to

the covered234 groups G̃, modern mental hygiene introduced the concept of multi-valued
representations. How does it work?

As already mentioned in the hint to (13.3.1), the reason why the converse assignment

ρ �→ ρ̃ is problematic is that the map f cannot be inverted, since it is not injective. Nor does

the canonical choice of one of the preimages, in general, exist. If there is no distinguished

choice of a preimage, the most fair decision is to take all the preimages. (The other equally

233 This analysis will not be performed in this book (the representations of the Lie algebra so(1, 3) = sl(2, C) used to be studied
in textbooks of relativistic quantum mechanics (or the quantum field theory)).

234 According to (13.3.1) the groups G̃ readily and voluntarily lend all of their representations to their covering groups G. Fairly
often, however, there are serious problems with the reciprocity.
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fair decision is to accept no preimage, i.e. to take a conservative stand that there is (“we

are sorry”) no representation, there’s an end to it.) This means that we first assign to the

group element g̃ ∈ G̃ all the preimages (g1, g2, . . .), then we represent them (by means

of ρ) and finally we declare all the resulting operators (ρ(g1), ρ(g2), . . .) (their order not

being important) to constitute the image of the element g̃ with respect to a multi-valued

representation

g̃ �→ (ρ(g1), ρ(g2), . . .)

As an example, for the two-sheeted covering f : SU (2) → SO(3), each rotational matrix

R ∈ SO(3) has just two preimages (A, −A), so that we get a two-valued representation of

the group SO(3) in this way

R �→ (ρ(A), ρ(−A))

Such unordered n-tuples (for the n-sheeted covering) may be multiplied correctly (each

operator from the first n-tuple is multiplied by each operator from the second one and then

we throw away those results which are already there) and this multiplication235 “copies”

the multiplication in the group G̃, i.e. these n-tuples of operators in this sense indeed

represent236 the group G̃.

13.3.16 Consider the two-sheeted covering f : SU (2) → SO(3) and the representation

A → ρ(A) = A of the group SU (2) (according to the result (13.3.8) this is one of the

representations not shared by the covering group SU (2) with the group SO(3)). Contemplate

how the two-valued representation works in this particular case (i.e. how the group SO(3)

can use it as at least a two-valued representation).

Hint: if f (A) = f (−A) = R ∈ SO(3), we have the assignment R �→ (A, −A) in the two-

valued assignment, the order being irrelevant. The multiplication of pairs reads

(A1, −A1) ◦ (A2, −A2) = (A1 A2, −A1 A2)

We get as many as four operators as the result of the multiplication

A1 A2, A1(−A2), (−A1)A2, (−A1)(−A2)

but then we throw away those which are already there once and we end with a pair

A1 A2, −A1 A2

just copying the multiplication of the orthogonal matrices,

R1 R2 ↔ (A1, −A1) ◦ (A2, −A2) �

235 What is left behind is actually the multiplication of the cosets (g1 H )(g2 H ) = (g1g2)H , which is well defined, since H is a
(discrete) normal subgroup (13.2.10).

236 Note, however, that the concept of multi-valued representation is not a special case of a representation, but rather an extension
of the concept of a representation. The multi-valued representation is thus not a representation as understood so far.
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Although there is no canonical choice of one of the preimages of g̃ in general, there is
such a choice in a (sufficiently small) neighborhood of the identity element ẽ ∈ G̃. Namely,

we choose the preimage which is also from the neighborhood of the identity element e ∈
G (in particular, we take e to be the preimage of ẽ). This means that each multi-valued

representation of G̃ induces an “ordinary” representation of the “local group” (a small

neighborhood of the group in which the multiplication is defined (only) for those pairs of

elements for which the result once again belongs to the neighborhood). This shows that

the derived representation of the multi-valued representation of the group is well defined,

too, being an “ordinary” representation of the Lie algebra G̃. Put another way, there is no

asymmetry at the level of the derived representations (recall that the Lie algebras themselves

are isomorphic!), all representations ρ ′ of Lie algebra G of the covering group G may be

used as (“ordinary”) representations ρ̃ ′ of the Lie algebra G̃ of the “covered” group G̃. So,

for example, the Lie algebras su(2) = so(3) share the same set of representations in spite

of the fact that this is more complicated at the level of the representations of the groups

SU (2) and SO(3).

13.4 Representations of G and G in the space of functions on a G-space,
fundamental fields

• Consider a manifold M which is a right G-space of a Lie group G. Thus by definition

there exists the right action Rg of the group G on M . Since M need not be a linear space,

the action need not be in general a representation. A closer inspection reveals, however, that

the input data which are available nevertheless enable one to easily construct a linear space
in which G acts linearly, i.e. to obtain a representation of the group G. The linear space is

F(M), the space of (smooth) functions237 on M and the representation is provided by the

action on arguments of the functions.

13.4.1 Let Rg be the right action of G on a manifold M . Check that

(i) the prescription

ψ �→ ρ(g)ψ := ψ ◦ Rg i.e. (ρ(g)ψ)(m) := ψ(Rgm) ≡ ψ(mg)

defines a (∞-dimensional) representation of G in F(M)

(ii) the right action on arguments (i.e. on M) results in the left action on functions and vice versa

(this is the reason why the representation needs the right action on arguments)

(iii) this representation may also be expressed in terms of the pull-back of the action Rg as

ψ �→ ρ(g)ψ := R∗
gψ i.e ρ(g) = R∗

g

(iv) this ρ(g) is actually more than a representation, since it also respects the structure of an algebra
on F(M): in an effort to win customers it offers a “freebie” property, it preserves the product

ρ(g)(ψφ) = (ρ(g)ψ)(ρ(g)φ)

237 This is the simplest version of the construction. We will also study its (still simple) far-reaching generalizations.
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This may be expressed as the fact that it is a representation of G by automorphisms of the algebra

F(M) (compare with the situation in (12.3.2)).

Hint: (i) a straightforward check that ρ(g) is a left linear action; (iv) similarly, or recall the

general properties of the pull-back f ∗. �

13.4.2 If we take in particular in (13.4.1) the group G itself as M and the right translation
on G as Rg , we get the right regular representation of the group G. Thus it is a representation

on functions on the group itself, which is realized by the right238 translation of the argument:

(Reg (g)ψ)(k) := ψ(kg)

Check that each finite-dimensional irreducible representation ρ : G → Aut V is equivalent

to some subrepresentation of the right regular representation. In other words, for an arbitrary

given irreducible representation ρ in V there exists in F(G) (the representation space of

the regular representation) an invariant subspace such that the restriction of the regular

representation to the subspace is equivalent to the given representation.

Hint: on the basis Eb ∈ V ,

ρ(g)Eb = rc
b (g)Ec

For the functions on the group

ψb : G → R ψb(g) := ra
b (g) a fixed (ath row of the matrix ra

b )

we have

(Reg (g)ψb)(k) = ψb(kg) = ra
b (kg) = ra

c (k)rc
b (g) = rc

b (g)ψc(k)

⇒ in the subspace spanned239 by (ψ1, . . . , ψdimV ) the right regular representation gives the

subrepresentation which is equivalent to the representation ρ in V (the bases Ea ↔ ψa are

transformed by the same matrices ra
b (g), see (12.2.3)).

Note: Each row of the matrix ra
b thus yields an invariant subspace with respect to the right

regular representation ⇒ (each irreducible) representation ρ is “hidden” in the representa-

tion Reg exactly n = dim V times (we have n rows). An analogous result is easily verified

for the columns for the left regular representation. �

• One of the lessons from this problem is that the construction of representations by

means of (13.4.1) might also be useful if we are interested in the finite-dimensional rep-

resentations: although the whole representation in the space F(M) of functions on M is

infinite-dimensional, it is in general reducible, containing finite-dimensional invariant sub-

spaces (spanned by several functions on M , which transform only within themselves under

the action on the arguments) and on these functions we obtain finite-dimensional irreducible

238 In full analogy the other right action k �→ g−1k yields the left regular representation.
239 If the representation in V is not irreducible, the correspondence Ea ↔ ψa would not be an isomorphism, since for an appropriate

choice of the basis Ea (if it is adapted to the invariant subspace) some functions ψa would vanish.
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representations of G. Since the whole representation ρ is given by a simple and universal

formula (ρ(g)ψ)(m) := ψ(mg), all we need for particular situations is to be able to find the

invariant subspaces mentioned above. If we know the explicit expressions for the generators

Ei := ρ ′(Ei ) of the derived representation, we might use the Casimir operators mentioned

before problem (12.3.13).

Let us return to the general case of ρ from (13.4.1) and focus our attention to its derived

representation. The representation of G under consideration is a homomorphism of G to

the group AutF(M), the group of automorphisms of the associative algebra F(M). Its Lie

algebra (see Appendix A.2) is the (Lie) algebra DerF(M) of derivations of the (associative)

algebra F(M); according to (2.2.8), this is the Lie algebra of vector fields X(M) with the

standard operation of the commutator. Then the derived representation ρ ′ is now to be a

homomorphism

G → X(M) X �→ ξX = a vector field on M

Let us have a look at the construction and the general properties of such vector fields.

If we fix a point m on M and apply the one-parameter subgroup g(t) = exp t X to this point

(by means of the action Rg), the curve γ (t) := Rexp t X m ≡ met X arises on M which starts

at γ (0) = m. Since the one-parameter group is completely given by the element X ∈ G, we

may denote the tangent vector at zero to this curve by ξX (m). Repeating the same procedure

at all points on M we get a vector field on M , called the fundamental field of the action Rg . It

is clear from the construction of the fundamental field that it provides an aid for visualizing

the action itself: it displays the directions of the possible motions at a given point by means

of the action of the group (this may be used, for example, to determine the form of the orbit

in the vicinity of m).

13.4.3 Define the fundamental field of the action Rg on M (known also as the generator
of the action) by the formula

ξX (m) := d

dt

∣
∣
∣
∣
0

Rexp t X m i.e. ξX (m) = γ̇ (0) for γ (t) := met X

and, in particular, for the basis elements Ei ∈ G we will sometimes use the condensed

notation ξi ≡ ξEi (note that this is the field itself, not a component). Show that

(i) ξX behaves with respect to the action Rg as follows:

R∗
gξX = ξAdg X and, in particular, on the basis R∗

gξi = (Adg)
j
i ξ j

so that the fields ξi are linearly combined with one another by the matrices of the adjoint
representation

(ii) the infinitesimal version of this transformation law reads

[ξX , ξY ] = ξ[X,Y ] and, in particular, on the basis [ξi , ξ j ] = ck
i jξk

(iii) the prescription

X �→ ρ ′(X ) ≡ ξX
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is a representation of the Lie algebra G in F(M), being just the derived representation ρ ′ of the

representation of the group considered in (13.4.1), so that

ξX+λY = ξX + λξY

ξ[X,Y ] = [ξX , ξY ]

Hint: (i) making use of (3.1.2) and (12.3.1) we get

Rg∗ξX (m) := Rg∗
d

dt

∣
∣
∣
∣
0

Rexp t X m = d

dt

∣
∣
∣
∣
0

Rg Rexp t X m

= d

dt

∣
∣
∣
∣
0

mg(g−1et X g) = d

dt

∣
∣
∣
∣
0

(mg)etAdg−1 X ≡ ξAdg−1 X (mg)

(ii) set g = etY in (i) and differentiate in t = 0; realize that Rexp tY is a flow on M , generated

by the field ξY , that LξY ξX = [ξY , ξX ] and that Ad′ = ad; (iii) compare the definition of ξX

with the formula for ρ ′(X ) in (12.1.6). �

• Before we proceed further let us learn which modifications result from considering the

left actions on M instead of right actions.

13.4.4 Let Lg be a left action on M . Its generator is defined by (compare with (13.4.3))

ξ̂X (m) := d

dt

∣
∣
∣
∣
0

Lexp t X m i.e. ξ̂X (m) = γ̇ (0) for γ (t) := et X m

and, in particular, for the basis elements Ei ∈ G we use the condensed notation ξ̂i ≡ ξ̂Ei .

Check that

(i) ξ̂X behaves with respect to the action Lg as follows:

L∗
g ξ̂X = ξ̂Adg−1 X and, in particular, on the basis L∗

g ξ̂i = (Adg−1 )
j
i ξ̂ j

(ii) the infinitesimal version of this transformation law reads

[ξ̂X , ξ̂Y ] = −ξ̂[X,Y ] and, in particular, on the basis [ξ̂i , ξ̂ j ] = −ck
i j ξ̂k

(note the change of sign; this is the main difference compared to the generators of the right action)

(iii) the prescription

X �→ ξ̂X

is an antirepresentation of the Lie algebra G in F(M) (i.e. the commutator has the opposite sign
compared to a representation).

Hint: just like in (13.4.3): Lg∗ξ̂X (m) := Lg∗ d
dt

∣
∣
0

Lexp t X m = · · · . �

• Let us now compute some concrete simple fundamental fields which will come in handy

later, being interesting, however, also in their own right. In the first problem we realize that

we have already encountered particular cases of the fundamental fields before.

13.4.5 Let Rg be the right translation on a group. Since it is a right action (13.1.3), there

should be some generators. Check that
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(i) there holds

ξX = L X

so that the generators (fundamental fields) of the right translations on G coincide with our good

old left-invariant fields on G
(ii) the vector fields

VC = xi
kCk

j ∂
j

i ≡ Tr (xC∂)

from (11.1.10) are just the fundamental fields of the right translation on GL(n, R)

(iii) the generators of the left translation Lg on the group are the right-invariant fields

ξ̂X = RX

Hint: see (11.4.6) and (11.1.10). �

13.4.6 Consider the standard (right) action r �→ A−1r ≡ RAr of the group SO(3) in R
3.

Show that

(i) the fundamental fields ξl j corresponding to the basis l j ∈ so(3) explicitly read

ξl j = −ε jkm xk∂m ≡ (−r × ∇) j

and thus confirm the folklore knowledge that the operators of the orbital angular momentum in

quantum mechanics are given (up to a constant multiple) by the generators of the rotations in R
3

L̂ j = i�ξl j

(ii) if expressed in the spherical polar coordinates in (part of) R
3, they read

ξl1 = − sin ϕ∂ϑ − cot ϑ cos ϕ∂ϕ

ξl2 = cos ϕ∂ϑ − cot ϑ sin ϕ∂ϕ

ξl3 = ∂ϕ

explain their independence of the “radial” coordinate r
(iii) this action may be restricted to the unit sphere centered at the origin of R

3, n �→ A−1n ≡ RAn
and that the generators of this action look equally as they come out in item (ii)

(iv) the fields ξl j are particular cases (part of a basis) of the Killing vectors of the (pseudo-)Euclidean

space Mi j ≡ −M ji ≡ xi∂ j − x j∂i from (4.6.10) and their restrictions to the sphere coincide with

our good old Killing vectors on the sphere from (4.6.11).

Hint: (i) for A(ε) ≡ eεli we have A−1(ε)
.= 1 − εli ⇒

x j �→ (RAx) j
.= x j − ε(li x) j = x j + εεi jm xm ≡ x j (ε).

Then,

ξl j = ẋm(0)∂m = −ε jkm xk∂m ≡ (−r × ∇) j ≡
(

− i

�

→̂
r × →̂

p
)

j

≡ − i

�
L̂ j
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(ii) the orbits are spheres (therefore ∂r is absent) and the action rotates all the points on a

“ray” emanating from the origin by the same angle (therefore r in components is absent);

(iv) ξ j = 1
2

ε jkl Mkl ; the action respects the ordinary metric tensor in R
3 and consequently

also its restriction to the orbit (i.e. the sphere). �

13.4.7 Find the fundamental field ξX for the natural (right) action in R
n for

(i) the group GL(n, R) (linear transformations)

R
n � x �→ A−1x ≡ RAx A ∈ GL(n, R)

(ii) the group G A(n, R) (affine transformations)

R
n � x �→ (A, a)−1x ≡ R(A,a)x (A, a)x := Ax + a

(iii) obtain from this as a special case again the solution of (13.4.6)

(iv) obtain from this as a special case again the generators of the Euclidean transformations in En

(translations and rotations).

Hint: (i) for A(t) = etC we have x �→ A(−t)x = x − tCx + · · · ≡ x(t); then,

ξC ≡ ẋ j (0)∂ j = −xkC j
k ∂ j

One verifies easily that C �→ ξC is indeed a representation: for the “linear” vector fields of

the form VA := x j A ji∂i there holds [VA, VB] = V[A,B]; here this then reduces to checking

whether C �→ −CT is a representation, see (12.1.9); (ii) a convenient form of the (so far

left) action reads

(
x
1

)

�→
(

A a
0 1

) (
x
1

)

⇒ for

(
A a
0 1

)−1

=
(

1 0

0 1

)

− ε

(
C c
0 0

)

we get x(ε) = x − ε(Cx + c) so that ξ(C,c) ≡ ẋ i (0)∂i = −x j Ci
j∂i − ci∂i ; (iii) plug the ma-

trix l j ∈ so(3) for C ; (iv) restrict C to the antisymmetric matrices (since A are orthogonal).

�

13.4.8 Let ρ be a representation of G in V , ρ̌ the contragredient representation in V ∗.

Then Rg = ρ(g−1) and Řg = ρ̌(g−1) are right actions on the manifolds V and V ∗. Introduce

canonical coordinates xa and ya on these manifolds by v = xa Ea ∈ V , α = ya Ea ∈ V ∗.

Check that the fundamental fields of the right actions read

ξi = −xbρa
bi∂a and ξ̌i = ybρ

b
ai∂

a ∂a ≡ ∂

∂xa
∂a ≡ ∂

∂ya

Hint: if v = xa Ea ∈ V then,

Rexp εEi v = xaρ(exp(−εEi ))Ea = xa Ea − εxaρb
ai Eb ≡ xa(ε)Ea ⇒

ξi ≡ ẋ a(0)∂a = −xbρa
bi∂a
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and similarly Řexp εEi α = · · · (or use the relation between ρ̌a
bi and ρa

bi from (12.1.9)); note

that we get the “linear vector fields” mentioned in the particular case of (13.4.7). �

13.4.9 Find the fundamental fields for the adjoint as well as coadjoint actions (both re-

garded as right actions in the sense of (13.4.8)).

Hint: let x = xi Ei ∈ G, y = yi Ei ∈ G∗; (12.3.19) and (13.4.8) yield: for Ad we have ρ
j
ki =

−c j
ki and for Ad∗ ρ̌

j
ki = +c j

ki so that

ξi = xkc j
ki∂ j and ξ̌i = −ykck

ji∂
j ∂k ≡ ∂

∂xk
, ∂k ≡ ∂

∂yk
�

13.4.10 Find the fundamental fields of the adjoint and the coadjoint actions for the group

G A(1, R) and use them to determine the orbits of the actions. Confirm that all orbits of

the coadjoint action are even-dimensional (as the general theory of such orbits asserts, see

(14.6.4)), whereas for the adjoint action here we also have odd-dimensional orbits (which

shows clearly at the same time that the representations Ad and Ad∗ are inequivalent for this

group, which is consistent with the degeneracy of the Killing–Cartan metric, (12.2.3) and

(12.3.10)).

Hint: from (13.4.9) and (11.2.4) one should obtain

Ad : ξ1 = −x2∂2 Ad∗ : ξ1 = y2∂
2

ξ2 = x1∂2 ξ2 = −y2∂
1

Visualize these vectors in all the possible points of the (x1, x2) and (y1, y2) planes and infer

that the orbits in the (x1, x2) plane (i.e. those of the Ad-action) are: (i) the point (0, 0),

(ii) the remaining parts of the x2 axis and (iii) all lines parallel to the x2 axis (so there are

zero- and one-dimensional orbits), whereas in the (y1, y2) plane we have: (i) each point

on the y1 axis and (ii) the upper as well as the lower half-planes (so there are zero- and

two-dimensional orbits). �

• Let us now have a look at how we can significantly (albeit surprisingly simply) generalize

our construction of the representations on F(M). The first generalization stems from the

observation that the “ordinary” R-valued functions may be replaced by the functions on

M with values in an arbitrary linear space (V, ρ̂), which carries some representation ρ̂ of

the group G. The second direction of the generalization consists in replacing functions on

M by arbitrary tensor fields (in particular, differential forms) on M . Combining these two

ideas we eventually come to a fairly general and useful concept of the representation of G
on the (V, ρ̂)-valued tensor fields on M .

13.4.11 Let a manifold M be a right G-space and let ρ̂ be a representation of G in V .

Denote by F(M, V ) the space of V -valued functions on M .240 Check that

240 The elements of F(M, V ) are nothing but the several-component fields frequently used in physics. Recall (see Section 6.4, the
functions being particular forms) that introducing a basis Ea into V enables one to write uniquely each ψ ∈ F(M, V ) in the
form ψ = ψa Ea , where ψa are the component functions with respect to the basis Ea and that they may, in turn, be written as
an n-component column, n ≡ dim V .
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(i) it is a linear space

(ii) the prescription ψ ≡ ψa Ea �→ ρ(g)ψ , where

ρ(g)ψ := ρ̂(g) ◦ ψ ◦ Rg ≡ (ρ̂(g) ◦ R∗
g)ψ ≡ (R∗

gψ
a)(ρ̂(g)Ea)

(ρ(g)ψ)(m) := ρ̂(g)ψ(mg) ≡ ψa(mg)(ρ̂(g)Ea)

defines a representation of G in F(M, V )

(iii) it is a particular case of (13.1.13), where the action on the maps between two G-spaces is treated

(iv) the representation from (13.4.1) is a special case.

Hint: (ii) ρ̂(gh) ◦ ψ ◦ Rgh = ρ̂(g) ◦ (ρ̂(h) ◦ ψ ◦ Rh) ◦ Rg = ρ(g)(ρ̂(h) ◦ ψ ◦ Rh) = ρ(g)

ρ(h)ψ ; (iii) for N = V, R̂g = ρ̂(g−1); (iv) for V = R, ρ̂ = the trivial representation. �

13.4.12 Let ρ be the representation of G in F(M, V ) introduced in (13.4.11), Ea be a

basis in V and ψ ≡ ψa Ea ∈ F(M, V ). Check that

(i) the derived representation ρ ′ reads

ρ ′(X ) = ξX + ρ̂ ′(X ) i.e. ρ ′(X )(ψa Ea) = (ξXψa)Ea + ψa(ρ̂ ′(X )Ea)

(ii) for the generators Ei ≡ ρ ′(Ei ) we get

(ρ ′(Ei )ψ)a = ξiψ
a + ρa

biψ
b

so that the generator is a sum of two parts: the first one only differentiates the component

functions ψa whereas the second one, in contrast, only “scrambles” the components (but does

not differentiate them; at the level of the component functions, thus the whole operator is a sum

of a differential operator and a matrix).

Hint: (i) for g(ε) = eεX we have

ρ(g(ε))ψ
1= ρ̂(g(ε))R∗

g(ε)ψ = (1 + ερ̂ ′(X ))(1 + εLξX )ψ = · · ·
2= (1 + ερ ′(X ))ψ �

13.4.13 Consider a wave function of a single particle with spin s in quantum mechanics. In

this theory it is explained that a C
n-valued (“wave”) function on R

3 (being the configuration

space of a classical particle) corresponds to such a particle, where n = 2s + 1, i.e. an element

ψ from F(R3, C
n). The group of rotations SO(3) is represented on these functions in a way

described in (13.4.11)

ψ(r) �→ ψA(r) ≡ (ρ(A)ψ)(r) = ρ̂(A)ψ(A−1r)

i.e. there is a simultaneous rotation of the argument r and “mixing” of the components

by a 2s + 1 ≡ n-dimensional complex representation ρ̂ of the group SO(3). In physical

terms this corresponds to the transition to the rotated state ψ �→ ρ(A)ψ ≡ ψA (an “active”

interpretation of the rotation).241 Show that if we identify (up to a factor of i�) the operators

241 A “passive” rotation corresponds to the transition to the rotated observer (reference frame), giving the same formulas up to
the replacement A �→ A−1 (the observer rotated by A sees the world as if being rotated by A−1), thus resulting in the right
linear action of the group and consequently in a change of the sign of the generator (13.4.4).
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of the total angular momentum Ji with the generators of the rotations, we get the good old

expression

J = L + s i.e. Jj = L j + s j

where L j are the (genuinely differential) operators of the orbital (part of the) angular

momentum and s j , known as the operators of spin, are, in contrast, genuinely matrix

operators (they only “mix” the components).

Hint: see (13.4.12). �

• Let us mention now two particular types of action of groups, namely free and effec-

tive actions, as well as the reflection of these properties of the action in the generators

(fundamental fields).

13.4.14 An action of a group on M is called a free action if the stabilizer of each point

happens to be trivial, Gx = e for all x ∈ M , and an effective action if the stabilizer is

trivial at least somewhere. The visual meaning of the freedom is that each point x ∈ M
“indeed moves away” from its original place after the action of any (non-identity) element

of the group (so that all the non-identity group elements really work everywhere) and the

effectiveness means that at least a single point x ∈ M “indeed moves away,” so that there

are no elements in the group (except the identity) which “do nothing anywhere” (misusing

the social system in this way). Be sure that you understand that

(i) a free action is necessarily effective

(ii) the action of GL(n, R) on the bases in L (see problems (5.7.2) and (13.2.7)) is free; in general,

G acts freely on the principal homogeneous space

(iii) the fundamental fields ξX of a free action are everywhere non-zero and for an effective action

they are non-zero at least somewhere (for each 0 �= X ∈ G).

• To close the section let us make clear the relation between the generators of the left

translation on a group G and the generators of the “projected” left action of G on the

homogeneous space G/H .

13.4.15
∗

Consider a Lie group G and the homo-

geneous space G/H . On G we consider242 the right

action Rh of the subgroup H along the coset gH
(the right translation g �→ gh) as well as the left

translation Lg , g ∈ G. We know that the projec-

tion of the left translation Lg on the group G yields

the canonical left action Lg of the group G on

the homogeneous space G/H (13.2.5), i.e. there

holds

π ◦ Lg = Lg ◦ π π ◦ Rh = π

242 A useful view of the same situation is (in the language of “fiber bundles”) presented in (20.1.2).
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Show that

(i) the generators ξX of the action Lg happen to be the π∗-images of the generators of the left

translation Lg , i.e. the π∗-images of the right-invariant fields RX on the group G

ξX = π∗ RX

(ii) they obey the commutation relations

[ξX , ξX ′ ] = −ξ[X,X ′]

(iii) the generators of the right action Rh of the subgroup H along the coset gH are the left-invariant

fields LY , Y ∈ H.

Hint: (i) in π ◦ Lg = Lg ◦ π set g equal to the one-parameter subgroup g(t) = exp(t X );

the flow Lg(t) is generated by the field ξX on G/H we are looking for; recall that the flow

Lg(t) is generated by the right-invariant field RX (13.4.5); then differentiation in t = 0 gives

immediately π∗ RX = ξX ; (ii) see (13.4.4); (iii) the action is g �→ getY ∈ gH , (11.4.6). �

13.5 Representations of G and G in the space of tensor fields of type ρ̂

• We mentioned in the text before problem (13.4.11) that the second direction of the

generalization of the construction of representations on functions on G-space consists in

replacing functions on M by arbitrary tensor fields (in particular, differential forms) on M .

We investigate this possibility more closely in this section.

According to the results of problem (13.4.1) we know that the representation studied

there may be succinctly written as

g �→ R∗
g : F(M) → F(M)

However, the pull-back map R∗
g is defined not only on functions but also on arbitrary tensor

fields (recall that Rg is a diffeomorphism). One may check easily that by this simple rule we

indeed obtain a representation of G in the space T r
s (M) of tensor fields of arbitrary rank

on a manifold (G-space) M .

13.5.1 Let A ∈ T r
s (M) be a tensor field on a right G-space M . Check that the prescriptions

A �→ ρ(g)A := R∗
g A A �→ ρ ′(X )A := LξX A

(where ξX is the fundamental field of the action and LξX is the Lie derivative along this

field) define a representation of the group G in T r
s (M) and the corresponding derived

representation of its Lie algebra G (the situation treated in (13.4.1) is just a particular case).

Hint: R∗
gh = (Rh ◦ Rg)∗ = R∗

g R∗
h ; the flow �t := Rexp t X is (by definition, see (13.4.3))

generated by the fundamental field ξX and the required “time” derivative in zero just gives

(by definition, see Section 4.2) the Lie derivative. �

• In the text after problem (13.4.2) we already mentioned that although we obtain an

∞-dimensional representation in the space F(M), it is highly reducible and by restriction
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to appropriate finite-dimensional invariant subspaces we get finite-dimensional subrepre-

sentations. All this is still true. Imagine there is an N -dimensional G-invariant subspace

in T r
s (M), i.e. we have a set of tensor fields Aa , a = 1, . . . , N (each Aa being a whole

tensor field, not a component of the latter), such that they are “scrambled” only within the

set under the action R∗
g of the group. Then for each g we have the matrix ra

b (g) given by

R∗
g Aa = ra

b (g)Ab.

13.5.2 Check that

(i) the prescription

g �→ ra
b (g)

is an antirepresentation (right linear action) of the group G
(ii) the following statement holds:

if ρ̂a
b (g) := ra

b (g−1) i.e. R∗
g Aa = ρ̂a

b (g−1)Ab

then g �→ ρ̂a
b (g) is a representation

(iii) if we regard the matrices ρ̂a
b (g) as corresponding to an abstract (finite-dimensional) representation

ρ̂ in a space V with respect to a basis Ea , i.e. as given by the standard relations

ρ̂(g)Ea = ρ̂b
a (g)Eb

and if we regard the tensor fields Aa as the component fields of a V -valued tensor field (in the

sense243 of Section 6.4), then the component expression from item (ii) corresponds to the formula

R∗
g A = ρ̂(g−1)A

i.e. (R∗
g Aa)Ea = Aa(ρ̂(g−1)Ea) ↔ R∗

g Aa = ρ̂a
b (g−1)Ab

Hint: (i) hint to (13.5.1); (ii) see (13.1.1). �

• The finite-dimensional subrepresentations hidden in the representation g �→ R∗
g on ten-

sor fields bring us naturally to particular kinds of tensor fields, namely to those (V, ρ̂)-valued

tensor fields which respond to the action of the group according to the rule

R∗
g A = ρ̂(g−1)A

We will call them tensor fields of type ρ̂ and, in particular, differential forms of type ρ̂. Such

fields are fairly frequent in geometry; they provide a useful tool in all those situations when

tensor fields (in particular, forms) are treated on manifolds on which group G acts.

(Up to now, we have been considering tensor fields of type
(

r
s

)
as those belonging to

T r
s (M); no role of a group G acting on M was mentioned. The “type” introduced here is

clearly something completely different; it says that some set of tensors (all of them being

of “type
(

r
s

)
” as understood up to now) transforms only within the set under the action of

the group G on M , namely that it is “mixed” by the representation ρ̂. A potential confusion

243 Although we treated only V -valued forms explicitly there, the reader is undoubtedly able to extend the idea to arbitrary
V -valued tensors as well.
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from these two concepts is fortunately excluded in the most important case of interest, for

the differential forms: if we say “a 2-form of type Ad,” it is clear that the “standard” type is(
0
2

)
now (plus the antisymmetry), so that the “type Ad” necessarily means the “new” one –

we speak about a Lie algebra valued 2-form (since this is the space where the representation

Ad operates) satisfying moreover R∗
gα = Adg−1α).

13.5.3 Consider a generalization of the representation of G on (V, ρ̂)-valued functions

on M (13.4.11), which consists in replacing functions by general tensor fields. This means

that the representation space is T r
s (M, V ), the space of V -valued tensor fields on M , and

we define a representation ρ on it by the prescription

ρ(g) := ρ̂(g) ◦ R∗
g i.e. ρ(g)(Aa Ea) := (R∗

g Aa)(ρ̂(g)Ea)

Check that

(i) it is a representation of G, which is moreover equivalent to the tensor product R∗
g ⊗ ρ̂(g)

(ii) (13.4.11) is its special case

(iii) the tensor fields A, which happen to be invariant with respect to this representation, are nothing

but the tensor fields of type ρ̂ introduced above

ρ(g)A = A ⇔ R∗
g A = ρ̂(g−1)A ⇔ the fields of type ρ̂

Hint: (i) if A ≡ Aa Ea ↔ Aa ⊗ Ea , then the fact that ρ(g)(Aa Ea) := (R∗
g Aa)(ρ̂(g)Ea)

corresponds just to the tensor product (12.4.11):

(R∗
g Aa) ⊗ (ρ̂(g)Ea) =: (R∗

g ⊗ ρ̂(g))(Aa ⊗ Ea)

(ii) r = s = 0. �

13.5.4 Consider the representation ρ(g) on T r
s (M, V ) from problem (13.5.3). Check that

(i) the derived representation ρ ′ reads

ρ ′(X ) = LξX + ρ̂ ′(X ) i.e. ρ ′(X )(Aa Ea) = (LξX Aa)Ea + Aa(ρ̂ ′(X )Ea)

(ii) we get for the generators Ei ≡ ρ ′(Ei )

(ρ ′(Ei )A)a = Lξi Aa + ρa
bi Ab

so that the generator is a sum of two parts, the first of them containing only the (Lie) differentiation
(but not a “scrambling”) of the component tensor fields Aa , whereas the second of them (in

contrast) only “scrambles” the components (but it does not differentiate them; at the level of

the component tensor fields the whole is the sum of a “differential” operator (the Lie derivative

operator) and a matrix)

(iii) the condition expressing the fact that A ≡ Aa Ea is of type ρ̂ may be rewritten in the infinitesimal
version as

LξX A = −ρ̂X A or in components Lξi Aa = −ρa
bi Ab

Hint: see (13.4.12), (13.5.1) and (13.5.3). �
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• This construction combines the two directions of generalization of the representation on

F(M) (mentioned before (13.4.11)). We came toT r
s (M, V ), so that we generalized functions

to arbitrary tensor fields and at the same time the R-valued objects to the V -valued ones.

Let us mention two simple examples illustrating the objects introduced above. We will

see from them that actually the tensor fields of type ρ̂ are by no means rare and dangerous

beasts living in virgin forests far from here, but rather they are fairly frequent, useful and

good-natured pets living in our immediate environment.

13.5.5 Consider M to be the circle S1 together with a standard action (by rotations) of the

group G = U (1) = SO(2)

eiα : ϕ �→ ϕ + α

(ϕ being the common polar angle). Check that

(i) the fundamental field ξ ≡ ξE1
of the action, corresponding to the basis element X ≡ E1 = i ∈

u(1), is

ξ = ∂ϕ

(ii) if we consider ρ̂ to be the irreducible representation ρ̂n from problem (12.2.10), then the (in-

finitesimal) condition which singles out a function of type ρ̂n reads

∂ϕ�n(ϕ) = −in�n(ϕ) ⇒ �n(ϕ) = �n(0)e−inϕ

(iii) the Fourier expansion of a function on the circle (the expansion to the series with respect to the

basis functions ∼ e−inϕ) may be regarded as an expansion with respect to the functions of type ρ̂

for all the possible irreducible representations of the group U (1)

(iv) the differentials d�n of the functions �n are 1-forms of type ρ̂n on the circle:

Lξ (d�n) = −in(d�n)

Hint: (iv) (6.2.10). �

13.5.6 Consider M to be the sphere S2 together with a standard (right) action of the group

G = SO(3)

n �→ A−1n ≡ RAn

(rotations from (13.4.6)). From a course on quantum mechanics we know244 the spherical
harmonics Y l

m(n). They may be regarded as (complex-valued) functions on the sphere,

Y l
m : S2 → C. In connection with the theory of angular momentum in quantum mechanics

their important property – the behavior under the rotation of the argument – is mentioned

Y l
m(A−1n) =

l∑

m ′=−l

Dl
m ′m(A) Y l

m ′ (n)

244 Everybody who has seen the standard solution of the Schrödinger equation for the hydrogen atom has to be familiar with
them. These functions are also widely used for more advanced computations in various branches of classical physics, such as
in electromagnetism, etc.
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The functions Dl
m ′m(A) on the group SO(3) are called the rotational matrices or alternatively

the Wigner rotational functions (l fixed, the matrix indices being m, m ′). Check that

(i) the rotational matrices satisfy the condition

Dl
m′m(AB) =

l∑

m′′=−l

Dl
m′m′′ (A)Dl

m′′m(B) i.e. Dl (AB) = Dl (A)Dl (B)

so that they provide a representation245 of the group SO(3)

(ii) also the prescription

A �→ ρ̂l (A) := (Dl )T(A−1)

provides a representation

(iii) the behavior of the functions Y l
m with respect to the rotation of the argument may also be

understood so that they constitute the component functions of a single C
2l+1-valued function,

which is in turn of type ρ̂: if a natural basis Em is introduced in C
2l+1 (the columns with all entries

vanishing except for the mth place, being 1) then the function Y l := Y l
m Em (to be summed over

m) obeys

R∗
AY l = ρ̂l (A−1)Y l Y l : S2 → C

2l+1

(iv) the expansion of a function on the sphere into the series

f (n) =
∞∑

l=0

l∑

m=−l

cm
l Y l

m(n)

may be thus again interpreted as the expansion with respect to the functions of type ρ̂ for all the
possible irreducible representations of the group SO(3).

Hint: (i) Y l
m((AB)−1n) = Y l

m(B−1(A−1n)). �

13.5.7 Consider again M to be the sphere (S2, g) with the natural action of G = SO(3)

and, moreover, endowed with the standard “round” metric tensor g. As we have already

learned in (13.5.6), the functions Y l
m may be regarded as the component functions of a

single function Y l : S2 → C
2l+1 of type ρ̂l . From this function, however, we can easily

obtain (making use of the standard operations on forms) two 1-forms of type ρ̂l as well as

two vector fields of type ρ̂l (and in principle, combining them appropriately, also “higher”

tensor fields, if needed). Namely, let ψ l
m represent any of the following fields on the sphere:

functions on S2: Y l
m

one-forms on S2: dY l
m and ∗ dY l

m

vector fields on S2: �dY l
m and � ∗ dY l

m

245 The representation is (2l + 1)-dimensional, complex and (as one can also show) irreducible. These representations are studied
in detail in textbooks of quantum mechanics. In the sense of the remark in the text after (13.3.8), they correspond to integer
j = l. A closer analysis shows that these representations (for all l = 0, 1, 2, . . .) actually exhaust all irreducible (unitary,
finite-dimensional) representations of the group SO(3).
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and introduce (for each particular object) the corresponding C
n-valued quantity

ψ l :=
l∑

m=−l

ψ l
m Em

Then check that

(i) each ψ l is indeed of type ρ = ρ̂l

R∗
Aψ l

m =
l∑

m′=−l

Dl
m′m(A) ψ l

m′ i.e. R∗
Aψ l = ρ̂l (A−1)ψ l

(ii) each ψ l
m happens to represent the simultaneous eigenstate of the operators J2 and J3, the operator

of the square of the angular momentum246 (12.3.13) and the third component of the angular

momentum

J2ψ l
m = �

2l(l + 1)ψ l
m J3ψ

l
m = mψ l

m

where247

J2 ≡ J · J ≡ J1 J1 + J2 J2 + J3 J3 Jj ≡ −i�E j ≡ −i�ρ ′(E j ) ≡ −i�LξE j

Hint: for the function Y l
m (where LξE j

Y l
m simplifies to ξE j Y

l
m) both statements are assumed

to be known (from, say, a course on quantum mechanics). For higher rank fields recall that

RA is an isometry, and consequently all generators ξE j are Killing fields. Then it is enough

to realize that R∗
A commutes with d, ∗g and �g (see (6.2.11) and (8.3.8)), and the same is

then also true for the Lie derivative along the Killing fields ξE j (8.3.14). �

• Note that we actually also met a form of type ρ̂ = Ad in (12.3.4) (the canonical 1-form

on a Lie group) and that such forms will play a prominent role in connection theory (in

Chapter 19 and beyond).

To close the section let us have a look at two simple properties of forms of type ρ̂.

13.5.8
∗

Let (V1, ρ1) and (V2, ρ2) be two representations of the group G, Ei be a basis in

V1, Ea a basis in V2, α ≡ αi Ei be a form of type ρ1, β ≡ βa Ea a form of type ρ2 and let A
be an intertwining operator between (V1, ρ1) and (V2, ρ2)

A : V1 → V2 ρ2(g) ◦ A = A ◦ ρ1(g)

Show that then

(i) the form A ◦ α

A ◦ α := αi A(Ei ) ≡ (
Aa

i α
i
)

Ea

is already a form of type ρ2

R∗
gα = ρ1(g−1)α ⇒ R∗

g(A ◦ α) = ρ2(g−1)(A ◦ α)

246 It turns out that this operator coincides with (a multiple of) the Laplace–deRham operator on the sphere, J2 = −�
2�g .

247 Such states (normalized to unity) are denoted by |l, m〉 in quantum-mechanical treatments of rotations and the angular
momentum.
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so that if αi deserves the index ( )i , then Aa
i α

i indeed deserves the index ( )a , as indicated by the

summation over i ; the matrix Aa
i of an intertwining operator is thus able to “transmute” an index

of type “i” into an index of type “a” (see also Section 12.5)

(ii) the form α
⊗∧ β

α
⊗∧ β := (αi ∧ βa)Ei ⊗ Ea

is already a form of type ρ1 ⊗ ρ2

R∗
gα = ρ1(g−1)α

R∗
gβ = ρ2(g−1)β ⇒ R∗

g(α
⊗∧ β) = (ρ1 ⊗ ρ2)(g−1)α

⊗∧ β

Solution: (i)

R∗
g(A ◦ α) = R∗

g

(
Aa

i α
i
)
Ea = Aa

i (R∗
gα

i )Ea = Aa
i (ρ1(g−1))i

jα
j Ea

= (Aρ1(g−1))a
jα

j Ea = (ρ2(g−1)A)a
jα

j Ea = (ρ2(g−1))a
b(A ◦ α)b Ea

≡ ρ2(g−1)(A ◦ α)

(ii) R∗
g(α

⊗∧ β) = R∗
g(αi ∧ βa)Ei ⊗ Ea = (R∗

gα
i ∧ R∗

gβ
a)Ei ⊗ Ea = · · · �

Summary of Chapter 13

From the point of view of differential geometry, the most interesting actions of groups

are their smooth actions on manifolds. As a rule, there is some additional structure on the

manifold and the action preserves this structure (e.g. actions via isometries on Riemannian

manifolds or symplectic actions on symplectic manifolds). An action of a Lie group induces

at the infinitesimal level an action of its Lie algebra, generated by the fundamental (vector)

fields (the generators). An action on points of a manifold results (using the tools of Sec-

tion 3.1) in an action on functions on the manifold (and more generally on tensor fields on the

latter). By this simple method we obtain a construction of (∞-dimensional) representations

of groups and their algebras (tensor fields, in particular functions, are naturally endowed

with a linear space structure). Upon restriction to invariant subspaces finite-dimensional

representations are also obtained by this method. Restriction to a G-invariant subspace of

functions (tensor fields) is a standard useful way to solve complicated differential equations

(an ansatz with some symmetry properties).

Lgh = Lg ◦ Lh, Rgh = Rh ◦ Rg Left action, right action of G on M Sec. 13.1

Lĝ[g] := [ĝg] Left action of G on the homogeneous space G/H (13.2.5)

[g][g̃] := [gg̃] Multiplication in the factor group G/H (13.2.10)

gHg−1 = H H is a normal (invariant) subgroup of G (13.2.10)

G/Ker f = Im f Homomorphism theorem (13.2.12)

e− 1
2 iαn·σ �→ eαn·l Universal 2-sheet covering of SO(3) by SU (2) (13.3.6)

ρ(g)ψ := ψ ◦ Rg ≡ R∗
gψ Representation of G in F(M) (13.4.1)

ξX (m) := (d/dt)|0 Rexp t X m Fundamental field (generator) of the action Rg (13.4.3)
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ρ ′(X ) = ξX Derived representation in F(M) (13.4.3)

ξ j = −ε jkm xk∂m ≡ (−r × ∇) j Generators of the rotations in R
3 (13.4.6)

ρ(g)ψ := ρ̂(g) ◦ ψ ◦ Rg Representation of G in F(M, V ) (13.4.11)

ρ ′(X ) = ξX + ρ̂ ′(X ) Derived representation in F(M, V ) (13.4.12)

R∗
g A = ρ̂(g−1)A A is a tensor field of type ρ̂ (13.5.2)

ρ(g) := ρ̂(g) ◦ R∗
g Representation of G in T r

s (M, V ) (13.5.3)
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Hamiltonian mechanics and symplectic manifolds

• Analysis of the dynamics governed by the Hamiltonian equations reveals that classical

Hamiltonian mechanics has an elegant geometric interpretation in terms of the symplectic
structure on a manifold. This structure allows one to gain a deeper insight into the essential

properties of the solutions of the equations. In the course of the whole chapter we will

assume that the Hamiltonian does not depend explicitly on time (so that the system of

equations is autonomous); otherwise the formalism requires a modification, which will be

mentioned in Section 18.5.

14.1 Poisson and symplectic structure on a manifold

• As early as in problem (2.3.7), being true beginners in the field, we learned that the

Hamilton equations

q̇a = ∂ H

∂pa
ṗa = − ∂ H

∂qa
a = 1, . . . , n

may be regarded as the equations for the integral curves of a certain vector field on

R
2n[qa, pa], namely the field

ζH = ∂ H

∂pa

∂

∂qa
− ∂ H

∂qa

∂

∂pa

(The indices on the coordinates pa indeed are to be written as subscripts. There is a natural

motivation for this, a somewhat unusual convention in the treatment of Hamiltonian mechan-

ics on the cotangent bundle T ∗M (to be discussed in Chapter 17 and beyond; although these

words might raise fears, actually this is the most common situation where everybody uses

the Hamilton equations, namely the phase space of a configuration space M). One should

realize that this interchange of subscripts and superscripts on (some) coordinates results in

the corresponding interchange of the position of indices on the (corresponding) components

of tensors (for example, the corresponding components of vectors carry lower indices, etc.).

The purpose of this chapter, however, is to introduce a coordinate-free formalism, after all,

thus escaping from “problems” of this sort completely.)

327
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Now, after learning in numerous examples that progress often starts when we are able

to write down equations in a coordinate-free way, we try to see some structure behind the

Hamilton equations (or the vector field ζH ). We will come quickly to the conclusion that

an antisymmetric tensor field of type
(

2
0

)
waits for us restlessly there.

14.1.1 In the 2n-dimensional phase space R
2n[q, p] rename the coordinates as follows:

zi ≡ (z1, . . . , zn, zn+1, . . . , z2n) := (q1, . . . , qn, p1, . . . , pn) i = 1, . . . , n, . . . , 2n

≡ (qa, pa) a = 1, . . . , n

Check that

(i) the Hamilton equations may be written in these coordinates in the form

żi = ζ i
H (z) =: (∂ j H )P j i ≡ (d H ) jP j i

i.e. when retold in the coordinate-free language, as the equations for integral curves γ (t) of the

vector field ζH , given in terms of a bivector field P (i.e. an antisymmetric tensor field of type
(

2

0

)
) and the gradient of a function H

γ̇ = ζH ζH = P(d H, · )

In the coordinates z we have explicitly

P i j (z) =
(

0n −In

In 0n

)

= −P j i (z)

P = P i j (z)∂i ⊗ ∂ j = 1

2
P i j (z)∂i ∧ ∂ j = ∂

∂pa
∧ ∂

∂qa

(ii) the matrix P i j is non-singular (namely detP i j = 1)

(iii) the standard Poisson bracket of two functions f (z), g(z) may be succinctly written in terms of

the field P as

{ f, g} ≡ ∂ f

∂pa

∂g

∂qa
− ∂ f

∂qa

∂g

∂pa
= P i j (d f )i (dg) j ≡ P(d f, dg) �

• The bivector fieldP , which emerged from the Hamilton equations, satisfies a differential

identity, which guarantees the validity of the Jacobi identity for the Poisson bracket. We

postpone its derivation until later (see (14.1.8)), since the direct computation here would be

unnecessarily tedious and it will also be more instructive later.

We obtained a new field on a particular manifold R
2n and in particular coordinates

on it. It turns out to be convenient to introduce this field in a general setting as a new

useful geometrical structure. Namely, an arbitrary bivector field P on a manifold M , which

happens to satisfy the identity mentioned above, is called a Poisson tensor and a manifold

(M,P) endowed with such a tensor is a Poisson manifold. The vector field of the form

ζ f := P(d f, · ) is known as the Hamiltonian field generated by the function f .

Note that we did not include the requirement of non-degeneracy (i.e. vanishing of the

kernel of the map α �→ P(α, · ) or non-singularity of the matrix P i j ) into the general
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definition of P (although “our” tensor P was non-degenerate). The reason is that there are

interesting and non-trivial applications of Poisson manifolds with a singular matrix P i j . In

what follows we restrict, however, to the most important special case248 where detP i j �= 0.

Then the situation may be studied by means of its “mirror image,” the whole story may be

retold in the language of differential forms, which greatly simplifies the matter.

From now on we will thus automatically understand the non-degenerate case when

speaking about the Poisson tensor.

Our coordinate-free way of expressing the Hamilton equations in the sense of problem

(14.1.1) was based on the particular coordinate presentation of the Poisson tensor in the

form P = ∂
∂pa

∧ ∂
∂qa . In Section 14.2 we will learn, however, that the defining properties

of the tensor (non-degenerate bivector field, which satisfies the differential identity from

(14.1.8)) already guarantee the possibility of just this local presentation (it is a “canonical

form” of a non-degenerate Poisson tensor). This means that the study of the dynamics given

locally by the system of the Hamilton equations

q̇a = ∂ H

∂pa
ṗa = − ∂ H

∂qa
a = 1, . . . , n

is the same thing as the study of the dynamics given in a global and coordinate-free form

by

γ̇ = ζH ≡ P(d H, · )

where P is a non-degenerate Poisson tensor on a manifold M and H is a distinguished

function on this manifold, the Hamiltonian.

Now let us have a look at how we can pass to the “mirror image” of the (non-degenerate)

Poisson dynamics, which is the symplectic dynamics.

14.1.2 Define on the phase space R
2n[qa, pa] ≡ R

2n[zi ] the tensor field ω of type
(

0
2

)
,

whose matrix is (up to the sign) inverse to the matrix P i j

P ◦ ω = −1̂ i.e. P ikωk j := −δi
j

⇒ ωi j (z) =
(

0n −In

In 0n

)

= −ω j i (z)

Check that

(i) this matrix happens to be antisymmetric, ωi j = −ω j i , so that actually ω is a 2-form
(ii) in the coordinates zi and (qa, pa) it reads

ω = 1

2
ωi j dzi ∧ dz j = dpa ∧ dqa

(iii) the form ω is closed (dω = 0), even exact (ω = dθ ).

Hint: (iii) ω ≡ dpa ∧ dqa = d(padqa). �

248 The general case contains in a sense a family of these special situations. We will see an illustration of a degenerate P in
problem (14.6.8).
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14.1.3 Define (see also (5.8.15)) the concepts of the rank of a 2-form α ∈ 	2L∗ and the

rank of a bivector b ∈ 	2L to be the ranks of the linear maps

α̂ : L → L∗ v �→ α(v, · ) ≡ ivα i.e. vi �→ v jα j i

b̂ : L∗ → L β �→ b(β, · ) i.e. βi �→ β j b ji

Check that the bivector P from (14.1.1) as well as the 2-form ω from (14.1.2) happen to be

non-degenerate, i.e. they have (at each point) maximum rank (= 2n).

Hint: the matrices of their components are (at each point) non-singular; see (2.4.17) and

(5.8.14). �

• An arbitrary closed and non-degenerate 2-form ω on a manifold M is called a symplectic
form and the pair (M, ω) is a symplectic manifold. If ω is exact, it is called an exact symplectic
form. In this book we will study in more detail two inexhaustible reservoirs of symplectic

manifolds. The first of them is provided by cotangent bundles T ∗M of arbitrary manifolds

M (see (17.6.7); we mentioned this already at the beginning of this section). The second

class is given by coadjoint orbits of an arbitrary Lie group G, see (14.6.3).

In many respects the symplectic form ω resembles a metric tensor g on M . Both of

them are non-degenerate tensors of type
(

0
2

)
. They differ, however, in that ω satisfies the

differential identity dω = 0 as well as in the symmetry properties: the metric tensor is

symmetric (gi j = g ji ), whereas the symplectic form is antisymmetric (ωi j = −ω j i ). These

differences result in a considerable dissimilarity of some properties of these structures. As

a trivial example let us mention the following simple observation.

14.1.4 A symplectic form may live only on an even-dimensional manifold.

Hint: the fact from linear algebra: non-singular antisymmetric matrices exist only in even-

dimensional space (for n × n matrices AT = −A ⇒ det AT ≡ det A = (−1)n det A). �

• On the other hand, there are also properties of the structures under consideration where

the symmetry/antisymmetry of the corresponding tensors does not matter. For example, the

non-degeneracy alone (shared by both ω and P) is enough (see the text before (2.4.15)) for

introducing the operations of lowering and raising of indices �ω and �P just as was done

with the help of the metric tensor.

14.1.5 Let (M, ω) be a symplectic manifold and P the corresponding (non-degenerate)

Poisson tensor (so that P ◦ ω = −1̂, i.e. P ikωk j = −δi
j ). Define the maps (the lowering and

raising of indices)

�ω : X(M) → 
1(M) V �→ ω( · , V ) i.e. V i �→ ωi j V j

�P : 
1(M) → X(M) α �→ P(α, · ) i.e. αi �→ α jP j i

Check that

(i) they are canonical isomorphisms, inverse to each other (they enable the canonical identification

of vector and covector fields)
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(ii) the lowering of an index by ω may also be expressed in terms of the interior product as

�ωV = −iV ω �

• An especially important position in the geometry on symplectic manifolds is occupied

by the vector fields, which we obtain by raising the index249 on the gradient d f of a function

f . It turns out that by this construction we get just the Hamiltonian fields ζ f generated by

the function f which we already defined in terms of the Poisson tensor (recall that the

dynamics behind the Hamilton equations is generated by the flow of the Hamiltonian field

ζH ); the collection of all Hamiltonian fields on M will be denoted by Ham (M). Let us

study in more detail some of the most important general properties shared by all of these

remarkable vector fields.

14.1.6 Let ζ f ∈ Ham (M), so that it is a Hamiltonian field generated by the function f .

Check that

(i) the following definitions turn out to be equivalent:

iζ f ω = −d f ⇔ ζ f = P(d f, · ) ≡ �P d f

(ii) there holds

ζ( f +const) = ζ f

(iii) Hamiltonian fields may also be regarded as analogues of the Killing vectors from Riemannian

geometry, since they preserve ω in just the same way as Killing vectors preserve g

Lζ f ω = 0

(iv) the collection of all Hamiltonian fields is closed with respect to linear combinations (over R) as

well as the commutator; namely,

ζ f + λζg = ζ f +λg [ζ f , ζg] = ζ{ f,g}

so that they constitute an (∞-dimensional) Lie algebra Ham (M) ⊂ X(M).

Hint: (iii) (6.2.8); (iv) making use of (6.2.9) and the preceding items here we find

i[ζ f ,ζg]ω = Lζ f iζg ω − iζgLζ f ω = d(iζ f iζg ω) = . . . (14.1.8) . . . = −d{ f, g} �

• We learned that Hamiltonian fields preserve the symplectic structure in the sense of

Lζ f ω = 0. The vector fields with this property will be called symplectic fields and denoted

by Symp (M)

W ∈ Symp (M) ⇔ LW ω = 0

249 It may thus be regarded as a “symplectic” counterpart of the standard (see Section 2.6) “metric” object, the vector field
grad f ≡ ∇ f := �g d f .
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14.1.7 Check that

(i) Symp (M) is a Lie algebra and

Ham (M) ⊂ Symp (M) ⊂ X(M)

where ⊂ means to be a Lie subalgebra, here

(ii) locally Ham (U) = Symp (U), so that the difference (if any) may occur only at the global level

(symplectic = at least locally Hamiltonian)

(iii) there holds

[Symp (M), Symp (M)] ⊂ Ham (M)

i.e. the commutator of two (possibly only) symplectic fields is already a Hamiltonian field (⇒
Ham (M) is an ideal in Symp (M)).

Hint: (i) (4.3.8); (ii)LW ω = d(iW ω); (iii) let V, W ∈ Symp (M), then i[V,W ]ω = . . . (6.2.9),

(6.2.8) · · · = −d(ω(V, W )) so that [V, W ] = ζω(V,W ) ∈ Ham (M). �

• Now we turn our attention to the Poisson bracket and its relation to the Poisson tensor

P and the symplectic form ω.

14.1.8 Check that

(i) all the following coordinate-free definitions of the Poisson bracket of the functions f, g are

equivalent to each other

{ f, g} 1= ω(ζ f , ζg)
2=P(d f, dg)

3= ζ f g = −ζg f

ωn{ f, g} 4= nω(n−1) ∧ d f ∧ dg

(the kth power of a form is its k-fold exterior product, see (5.6.9))

(ii) when expressed in the language of the symplectic form ω, the Jacobi identity turns out to be

equivalent to its closedness

{ f, {g, h}} + {h, { f, g}} + {g, {h, f }} = 0 ⇔ dω = 0

(iii) when expressed in the language of the Poisson tensor P , the Jacobi identity turns out to be

equivalent to its invariance with respect to an arbitrary Hamiltonian field250

{ f, {g, h}} + {h, { f, g}} + {g, {h, f }} = 0 ⇔ LζψP = 0, ψ ∈ F(M)

and in components this gives the differential identity

Lζ f P = 0 for all f ∈ F(M) ⇔ Pr [iP jk]
,r = 0

So this is the identity (mentioned above) which each Poisson tensor is to satisfy.

Hint: (i) { f, g}ωn = (iζg iζ f ω) ∧ ωn = . . . , (5.4.2); (ii) write down explicitly the expression

dω(ζ f , ζg, ζh) by means of the Cartan formula (6.2.13) and show that

dω(ζ f , ζg, ζh) = 2({ f, {g, h}} + {h, { f, g}} + {g, {h, f }})
250 See also (14.1.10).
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Explain then that vanishing of the form on arbitrary Hamiltonian fields already implies

its vanishing as such (as a form); (iii) 0 = Lζψ
(P ◦ ω) = (Lζψ

P) ◦ ω + P ◦ (Lζψ
ω) =

(Lζψ
P) ◦ ω + P ◦ (iζψ

dω + diζψ
ω) = (Lζψ

P) ◦ ω + P ◦ (iζψ
dω) so that (Lζψ

P) ◦ ω =
−P ◦ (iζψ

dω); because of the non-degeneracy of P and ω we then get

Lζψ
P = 0 ⇔ iζψ

dω = 0 ⇔ dω = 0 �

• The Poisson bracket adds an extra structure to the (associative) algebra of functions

F(M) on a symplectic manifold, namely the structure of a Lie algebra. We get a combined

algebra of observables of the classical mechanics A(M) (the manifold M serves as a phase
space of the classical mechanics). Its elements, the observables, are the functions f ∈ F(M)

on the phase space; one can form their linear combinations as well as pointwise products

(⇒ so far it is an associative algebra), but also their Poisson brackets (⇒ a Lie algebra).

The name “observable” for a function on a phase space corresponds to the interpreta-

tion that these functions represent (in classical mechanics) the objects of the theory, which

correspond to measurable quantities and enable a comparison with the results of real mea-

surements. The measurements are performed on the “states,” which are in turn represented

by the points of the phase space M in the theory. The prediction of the theory is that if an

observable f is measured in the state p ∈ M , the result of the measurement will be the

number f (p), the value of f at the point p.

As an example, consider as a physical system a single point mass moving in the space

R
3. Then we associate with it the phase space M = R

6[r, p]. A possible state is (say)

the point (r, p) = (0, 0) (the point stands still at the origin). If we intend to measure (say) the

z-component of the angular momentum in this state, we should first introduce an observable

f = Lz = xpy − ypx (being a function on the phase space) for this quantity and then

evaluate f at the point (r, p) = (0, 0). We obtain Lz(0, 0) = 0. According to the theory we

will measure the number 0.

Let us remark that the points of the phase space actually correspond to so-called pure
states. In (classical) statistical mechanics it is convenient to consider more general states,

known as mixed states. These states are represented by the “probabilistic measures” on M
(we know the positions and momenta only with some probabilities) and the prediction of

the theory is that the result of the measurement of the quantity represented by f will be the

integral of f in the sense of the measure which corresponds to the state. The pure states are

the special cases for which the measure is “concentrated at the point p” – then the integral

reduces just to the evaluation of f in p.

14.1.9 Consider the algebra of observables of the classical mechanics A(M). Check that

(i) the two “products” A(M) × A(M) → A(M) involved are interconnected by the identity

{ f, gh} = { f, g}h + g{ f, h}
(ii) the prescription

ζ : A(M) → Ham (M) f �→ ζ f

is a homomorphism of Lie algebras, its kernel being constituted by the constant functions on M .
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Hint: (i) { f, · } = ζ f ( · ) ⇒ it is a vector field, i.e. a derivation of the (associative) algebra

F(M); (ii) see (14.1.6). �

14.1.10 LetA(M) be the algebra of observables of classical mechanics. Since its elements

(observables) are the functions on the phase space M , there is a natural action of the group

of diffeomorphisms on the algebra ( f �→ �∗ f ). Check that

(i) the structure of the algebra is preserved just by the symplectomorphisms of (M, ω), i.e. by such

diffeomorphisms of M to itself, which preserve the symplectic form ω (or equivalently the

Poisson tensor P)

�∗ω = ω

(ii) the flows of such transformations are generated by the symplectic (in particular, by the

Hamiltonian) fields

(iii) the action of the flow of a Hamiltonian field on the algebra A(M)

U f
t : A(M) → A(M) U f

t :=
(
�

f
t

)∗
�

f
t ↔ ζ f , f ∈ A(M)

can also be expressed in the form of the series

U f
t g = g + t{ f, g} + t2

2!
{ f, { f, g}} + t3

3!
{ f, { f, { f, g}}} + · · ·

(iv) the Jacobi identity for the Poisson bracket is just the infinitesimal version of the condition that the

Poisson bracket (of two arbitrary functions) is preserved by the flow of an arbitrary Hamiltonian

field, i.e. of the condition

U f
t {g, h} =

{
U f

t g, U f
t h

}
f, g, h ∈ A(M)

(v) the map

U f
t : A(M) → A(M)

is for each t an automorphism of the algebra of observablesA(M) (it preserves its linear structure

as well as both products) and the prescription t �→ U f
t is the one-parameter group of such

automorphisms.

Hint: (i) �∗{ f, g} ≡ �∗(P(d f, dg)) = (�∗P)(d�∗ f, d�∗g)
!=P(d�∗ f, d�∗g) so that

�∗P !=P and consequently �∗ω != ω; (ii) in the standard way �∗
t ω

!= ω ⇒ LW ω = 0;

(iii) by definition d
dt

∣
∣
0

U f
t = Lζ f , (4.4.2) and Lζ f g ≡ ζ f g = { f, g}; (iv) the differentia-

tion of U f
t {g, h} = {U f

t g, U f
t h} with respect to t in t = 0 gives Lζ f {g, h} = {Lζ f g, h} +

{g,Lζ f h}; (v) preserving the pointwise product and linear combinations is trivial (this holds

for each �∗), preserving of the Poisson bracket solves item (iv). �

• From this new point of view (and using a new terminology) the situation connected

with the dynamics may be summarized as follows. Behind the Hamilton equations there is

a vector field of a very special structure on a very special manifold, namely the Hamiltonian

field ζH generated by a Hamiltonian (function) H on a symplectic manifold (M, ω). The

flow �H
t corresponding to the field (called the phase flow or also the Hamiltonian flow)
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moves the points of M , which is interpreted as the time development of the states of the

classical mechanics, p �→ �H
t (p). This flow also induces the one-parameter group of maps

U H
t ≡ (�H

t )∗, which acts on the observables and may be interpreted as the time development
of the observables, f �→ U H

t f .

Now, there are two main approaches to the issue of time development. Within the most

common one, which corresponds to the Schrödinger picture in quantum mechanics, the

states undergo a time development whereas the observables do not, (p, f ) �→ (�H
t (p), f ).

There is also a “dual” point of view (which, in turn, corresponds in quantum mechanics to

the Heisenberg picture), in which states remain still whereas the observables undergo a time

development, (p, f ) �→ (p, U H
t f ). From the definition of the pull-back of functions it is

clear that both approaches yield equal predictions concerning the results of measurements,

since f (�H
t (p)) = (U H

t f )(p).

A more general concept than the symplectomorphism is the symplectic map between two

symplectic manifolds. It is a map f , which is compatible with the symplectic structures

involved, i.e. such that

f : (M, ωM ) → (N , ωN ) f ∗ωN = ωM

(As a special case we have transformations of a single manifold

f : (M, ω) → (M, ω) f ∗ω = ω

and thus we come back to a symplectomorphism.) They are clearly the analogs of the

Riemannian concept of isometry, where in general we have f : (M, g) → (N , h) such that

f ∗h = g and, in particular, for a single manifold this reduces to f : (M, g) → (M, g) such

that f ∗g = g. As we already mentioned in (14.1.6), the analogs of Killing vectors from

Riemannian geometry (the generators of isometries) are the Hamiltonian fields (the gen-

erators of symplectomorphisms). Both types of fields (Killing as well as Hamiltonian)

constitute Lie algebras. In Section 4.6 we mentioned that the Lie algebra of Killing

fields is always finite-dimensional. In the symplectic case it is just the opposite – the Lie

algebra of Hamiltonian fields is always ∞-dimensional.

14.1.11 Check that the Hamiltonian fields indeed constitute an ∞-dimensional Lie

algebra.

Hint: according to (14.1.9) they are given as the homomorphic image of the (∞-dimensional)

Lie algebra (F(M), { · , · }), the kernel being given (only) by constant functions. Check

that

c1ζ f + c2ζg = 0 ⇒ c1 f + c2g = constant ⇒ f, g, 1 are linearly dependent

so that we can construct an arbitrary number of linearly independent Hamiltonian fields (or

�ω gives a bijection ζ f ↔ d f , so that there are “just so many” independent Hamiltonian

fields as we have independent differentials d f ). �
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• We close the section by showing a useful way in which the Poisson bracket of arbitrary

functions may be written in terms of the Poisson bracket of coordinates on M .

14.1.12 Let P be a Poisson tensor and { · , · } the corresponding Poisson bracket. Check

that

(i) in arbitrary coordinates we have

P i j = {xi , x j } { f, g} = (∂i f ){xi , x j }(∂ j g)

(ii) in particular, in canonical coordinates it gives the well-known expressions

{qa, qb} = 0 = {pa, pb} {pa, qb} = δb
a { f, g} = ∂ f

∂pa

∂g

∂qa
− ∂ f

∂qa

∂g

∂pa

Hint: { f, g} = P(d f, dg). �

14.2 Darboux theorem, canonical transformations and symplectomorphisms

• Often it is convenient to use the coordinates tailored to the structure under considera-

tion, since some facts, which are obscure in general coordinates, may become evident in

these adapted coordinates.251 It is fairly instructive to compare from this point of view the

possibilities of the optimal choice of coordinates for a metric tensor and a symplectic form.

By an appropriate choice of the frame field (possibly not coordinate) one can transform an

arbitrary metric tensor in some domain (say, in a finite neighborhood of each point) to the

canonical form

g(ea, eb) = ηab ≡ diag (1, . . . , 1, −1, . . . ,−1)

(the non-trivial part of the statement being a well-known result from linear algebra). One

can see easily, however, that it is not possible to reach this form in a coordinate frame field

in general: there are (only) n levers (the choices of new coordinates as functions of the old

ones) to satisfy (as many as) n(n + 1)/2 conditions (the values of independent components

gi j (x) ≡ g(∂i , ∂ j )(x) = ±1 or 0).

However, the situation with the symplectic form is different. It is closed, so that it is

locally exact and this is the reason it is actually enough to optimize an object with fewer

degrees of freedom – a potential θ (locally ω = dθ ), being only a 1-form, which has (only)

n components, i.e. the same number as the number of levers mentioned above. It should

not be surprising, then, that the component matrix of the symplectic form can always be

brought in coordinates (in a finite domain – a finite neighborhood of an arbitrary point) to

the canonical form, which is (as we again know from linear algebra, see also (5.6.8)) the

form from problem (14.1.2).

All these are of course only estimations obtained by a “rule of thumb,” but they are

actually confirmed by the following important theorem.

251 For example, in the Cartesian coordinates in En the translational invariance of the metric tensor is evident.
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14.2.1 The canonical form of a closed 2-form is described by the Darboux theorem.252 It

claims that if a closed 2-form β on an n-dimensional manifold M has constant rank in a

neighborhood of a point P , then there are local coordinates x1, . . . , xn such that β looks

like

β = dx1 ∧ dx2 + · · · + dx2k−1 ∧ dx2k ≡ d(x1dx2 + · · · + x2k−1dx2k) 2k ≤ n

Check that

(i) the rank of this form is 2k (thus always even)

(ii) if 2k < n, β is degenerate.

Hint: (i) find the images of the linear map v �→ ivβ for v = ∂i , i = 1, . . . , n; (ii) the vectors

∂i for i > 2k map to zero ⇒ the last n − 2k rows of the matrix βi j vanish. �

• For us the most important consequence of the Darboux theorem is the canonical coor-

dinate presentation of the symplectic form.

14.2.2 Let (M, ω) be an n = 2m-dimensional symplectic manifold. Check that

(i) in appropriate local coordinates xi the symplectic form ω may be written as

ω ≡ 1

2
ωi j dxi ∧ dx j = dx1 ∧ dx2 + · · · + dx2m−1 ∧ dx2m

≡ d(x1 dx2 + · · · + x2m−1 dx2m)

(ii) the matrix ωi j then looks like

ωi j = diag (ε, . . . , ε) ε =
(

0 1

−1 0

)

(so that it is a block-diagonal matrix with 2 × 2 blocks ε)

(iii) in other appropriate local coordinates (pa, qa), a = 1, . . . , m, ω may be written as in (14.1.2),

i.e.

ω = dpa ∧ dqa

The coordinates (qa, pa), in which the symplectic form ω looks like this and whose existence is

guaranteed by the Darboux theorem, are called the canonical coordinates253

(iv) in canonical coordinates the corresponding Poisson tensor is

P ≡ −ω−1 = ∂

∂pa
∧ ∂

∂qa
:= ∂

∂pa
⊗ ∂

∂qa
− ∂

∂qa
⊗ ∂

∂pa

(v) in canonical coordinates the Hamiltonian field is

ζ f = (∂ j f )P j i∂i ≡ ∂ f

∂pa

∂

∂qa
− ∂ f

∂qa

∂

∂pa

252 Its proof may be based, for example, on Frobenius’ theorem concerning integrable distributions, which we encounter in the
treatment of connection theory (19.3.6).

253 Our route to the revelation of the symplectic structure led just through the canonical coordinates (14.1.2), which were, however,
global in the space under consideration, thus making the situation rather specific. Here it is asserted that locally such coordinates
may be used even in the general case.
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(vi) in canonical coordinates the equations for the integral curve of a Hamiltonian field ζ f are

γ̇ = ζ f ⇔ q̇a = ∂ f

∂pa
ṗa = − ∂ f

∂qa

(vii) Hamilton’s equations may be presented geometrically as

γ̇ = ζH iζH ω = −d H

Hint: (i) see (14.2.1), ω is non-degenerate; (iii) just rename the coordinates x2a−1 =
pa, x2a = qa, a = 1, . . . , m; (vii) see (14.1.1) and (14.1.6). �

14.2.3 The sphere (S2, ω) along with a common (metric) volume form (6.3.9) is a sym-
plectic manifold (check). Find out

(i) whether it is also exact symplectic and whether the coordinates ϑ, ϕ are canonical

(ii) what the Hamilton equations for a general Hamiltonian H (ϑ, ϕ) in the variables ϑ, ϕ look like

(iii) what the Hamiltonian H (ϑ, ϕ) looks like, which generates as the time development the uniform

circulation along the parallel line directed eastwards

ϕ(t) = ϕ0 + t ϑ(t) = ϑ0

Hint: (i) see (9.1.1); you might be confused by the coordinate result (6.3.10) ω =
sin ϑdϑ ∧ dϕ = d(− cos ϑdϕ); remember, however, that this does not work globally (!); is

ω = ±dϑ ∧ dϕ?; check that p = − cos ϑ, q = ϕ are canonical; (ii) either solve in canoni-

cal coordinates and then rewrite the result in the coordinates demanded here, or (better): for

a general H (ϑ, ϕ) find the field iζH from the equation iζH ω = −d H and write down the equa-

tions for its integral curves, i.e. express in coordinates ϑ, ϕ the equations from the last item

in (14.2.2); (iii) we need ζH = ∂ϕ ; plug this into iζH ω = −d H and find H . ((ii) ϑ̇ sin ϑ =
−∂ϕ H, ϕ̇ sin ϑ = ∂ϑ H ; (iii) H (ϑ, ϕ) = − cos ϑ .) �

• We see that in order to formulate the Hamiltonian dynamics we need just two things:

1. a phase space, which is a symplectic manifold M
2. an exact 1-form d H on M .

A triple (M, ω, d H ) is therefore called a Hamiltonian system and it enables one to intro-

duce the standard time development x �→ x(t) := �H
t (x), where �H

t is the flow generated

by the field ζH . It turns out that the time development given just by the Hamiltonian field

has some remarkable special properties (if compared with a general field), which hold

universally, being independent of the particular choice of Hamiltonian.

Recall that the Hamilton equations have their well-known (“canonical”) form

q̇a = ∂ H

∂pa
ṗa = − ∂ H

∂qa
a = 1, . . . , n

only in canonical coordinates; in general coordinates they look like

ẋ i = (∂ j H (x))P j i (x)
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where the matrix P i j (x) does not have the simple structure from (14.1.2) (depending non-

trivially on x in general). On the other hand, the canonical coordinates are far from being

unique and in the textbooks of classical mechanics coordinate transformations are studied

in which we pass from one system of canonical coordinates to another such system – the

canonical transformations. Such transformations may thus be characterized either as the

coordinate transformations

f : (qa, pa) �→ (Qa(q, p), Pa(q, p))

preserving the canonical form of the Hamilton equations,

q̇a = ∂ H

∂pa
ṗa = − ∂ H

∂qa
⇒ Q̇a = ∂H

∂ Pa
Ṗa = − ∂H

∂ Qa

where H (q, p) = H(Q(q, p), P(q, p)) (i.e. H = f ∗H), or equivalently (and more simply)

as the coordinate transformations preserving the canonical form of the symplectic form:

f : (qa, pa) �→ (Qa(q, p), Pa(q, p)) ω = dpa ∧ dqa = f ∗(d Pa ∧ d Qa)

Usually the pull-back f ∗ is omitted so that the condition looks simply like

dpa ∧ dqa != d Pa ∧ d Qa

There are two standard techniques of finding and describing the canonical transforma-

tions. The first one operates with the concept of a generating function of the transformation,

the second one is based on the concept of the generator of the transformation.

14.2.4 Let (qa, pa) as well as (Qa, Pa) be canonical coordinates in a domain U . From

the requirement that the transformation of coordinates (qa, pa) �→ (Qa(q, p), Pa(q, p)) is

canonical

dpa ∧ dqa != d Pa ∧ d Qa ≡ d Pa(q, p) ∧ d Qa(q, p)

there follows

d(padqa − Pad Qa) ≡ dσ = 0 ⇒ σ = d� � ∈ F(U)

The function � on U (which is given up to an additive constant) fully characterizes the

canonical transformation and it is called its generating function. Check that

(i) if it is possible to choose as independent coordinates on U the set (qa, Qa),254 then the formulas

describing the transformation are (implicitly) given by

pa = ∂�

∂qa
Pa = − ∂�

∂ Qa

254 Which set of 2n functions is independent (so that we may choose them as coordinates) depends on the transformation itself.
For example, if we take the identity transformation, the set mentioned above is evidently not suitable.
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(ii) if it is possible to choose as independent coordinates on U the set (qa, Pa), the corresponding

relations are

pa = ∂�̂

∂qa
Qa = ∂�̂

∂ Pa
�̂ := � + Pa Qa

(iii) the change of coordinates

(qa, pa) �→ (Qa(q, p), Pa(q, p)) = (pa, −qa)

is canonical; find its generating function

(iv) the identity transformation

(qa, pa) �→ (Qa(q, p), Pa(q, p)) = (qa, pa)

is canonical; find its generating function.

Hint: (i) write down d� in these coordinates; (ii) pa dqa − Pa d Qa = pa dqa − d(Pa Qa) +
Qa d Pa ; (iii) �(qa, Qa) = qa Qa ; (iv) �̂(qa, Pa) = qa Pa . �

• The second approach to canonical transformations may be regarded as a “symplectic

version” of the result (4.6.26) from Riemannian geometry. Recall that if there is a flow

�t of isometries of (M, g), we can introduce new coordinates xi
t := �∗

t x i in which the

functional expression of the components of the metric tensor will be the same as it was in

the initial coordinates. If, in particular, the initial coordinates were in some sense canonical
(tailored to the metric, like the Cartesian coordinates are for the Euclidean metric), the new

coordinates will be canonical as well.

The same technique may also be repeated here. If we have a flow �t which preserves the

symplectic form, the transformation to the coordinates xi
t := �∗

t x i preserves the functional

form of its components and, in particular, also its canonical form. This means that xi �→
xi

t := �∗
t x i is a canonical transformation in the sense understood here. Now realize that it is

extremely simple to find such a flow �t , for we learned in (14.1.6) that the symplectic form is

preserved by the flow generated by an arbitrary Hamiltonian field ζ f . Put another way, each
function on the phase space induces a one-parameter class of canonical transformations.

14.2.5 Let ζ f be a Hamiltonian field, �t ↔ ζ f its flow and let (qa, pa) be canonical

coordinates. Check that if the coordinate presentation of the flow is

(qa, pa) �→ (qa(t), pa(t))

i.e. if (qa(t), pa(t)) are the solutions of the Hamilton equations with the initial conditions

(qa(0), pa(0)) = (qa, pa) and the Hamiltonian f , then the change of coordinates

(qa, pa) �→ (Qa(q, p; t) := qa(t), Pa(q, p; t) := pa(t))

(t being fixed, but arbitrary) is a canonical transformation, so that we get a one-parameter
class of canonical transformations, starting with the identity (for t = 0) and little by little

(as t grows) differing increasingly from it.
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Hint: we have (qa(t), pa(t)) = (qa ◦ �t , pa ◦ �t ) ≡ (�∗
t qa, �∗

t pa), so that

dpa ∧ dqa = �∗
t (dpa ∧ dqa) = d(�∗

t pa) ∧ d(�∗
t qa) = dpa(t) ∧ dqa(t) ≡ d Pa ∧ d Qa

⇒ Qa, Pa indeed are the canonical coordinates. �

14.2.6 Consider the (simplest possible) phase space R
2[q, p] and choose the function

f (q, p) as f (q, p) = qp.

(i) Find the Hamiltonian field ζ f and its flow �t

(ii) check explicitly that (q, p) ≡ (q(0), p(0)) �→ (Q, P) ≡ (q(t), p(t)) (for any fixed t) is indeed a

canonical transformation

(iii) find the generating function of this canonical transformation.

Hint: (Q(q, p; t), P(q, p; t) = · · · = (et q, e−t p) ⇒ d P ∧ d Q = (e−t dp) ∧ (et dq) =
(e−t et )dp ∧ dq = dp ∧ dq; (iii) �̂(q, P) = et q P . �

• So we see that any function f on a phase space (M, ω) induces a one-parameter class

of canonical transformations. It is given by the flow �t of the Hamiltonian field ζ f corre-

sponding to the function f .

14.2.7 Check that the time dependence of the coordinates resulting from the solution of the

Hamilton equations may be regarded as a sequence (one-parameter family, the parameter

being the time) of canonical transformations.

Hint: see (14.1.12) and (14.2.5), f = H . �

14.3 Poincaré–Cartan integral invariants and Liouville’s theorem

• The geometrical formulation (14.2.2) of the Hamilton equations enables one to handle

in an elegant and simple way some issues which turn out to be much more complicated

without geometry. The Poincaré–Cartan integral invariants may serve as a nice example.

As the nomenclature indicates, they describe some integrals which are preserved under

some transformations. Since both the concepts (the integral as well as the invariance) are

standardly and successfully treated by geometry, we should not be surprised to learn that

this stuff is indeed mastered effectively and easily by geometrical methods.

Let us first introduce some important concepts. Recall (see Section 4.2) that a tensor field

T is said to be invariant (or Lie constant) with respect to a vector field W (and its flow

�t ↔ W ) if

LW T = 0 ↔ �∗
t T = T

This is clearly true also in the particular case of forms: an invariant form (with respect to

W or �t ) is a form for which

LW α = 0 ↔ �∗
t α = α
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In the case of forms we automatically get, however, some further consequences.

14.3.1 Let the forms α, β be invariant with respect to the field W (i.e. LW α = 0 = LW β).

Check that then the forms

dα α ∧ β iW α

are also invariant. This means that the space of invariant forms (with respect to W ) is closed

with respect to some important operations on forms, namely d, ∧ and iW .

Hint: iW α from (6.2.9) for W = V . �

• A slightly weaker concept is the relative invariance of forms: a form τ is said to be

relative invariant (with respect to W ) if dτ (rather then τ itself) is invariant (LW (dτ ) ≡
d(LW τ ) = 0).

14.3.2 Check that there holds

{invariant forms} ⊂ {relative invariant forms}
Hint: see (14.3.1). �

14.3.3 Check that

(i) the symplectic form ω is invariant with respect to an arbitrary Hamiltonian field ζ f

(ii) any “exterior power” (i.e. a 2k-form ωk := ω ∧ · · · ∧ ω︸ ︷︷ ︸
k entries

) of the symplectic form ω is invariant

with respect to an arbitrary Hamiltonian field ζ f

(iii) if the symplectic form ω happens to be exact and ω = dθ , then θ is relative invariant with respect

to an arbitrary Hamiltonian field ζ f .

Hint: see (14.1.10) and (14.3.1). �

• Since forms may be regarded as expressions under the integral sign (see Section 7.1),

these properties together with the behavior of integrals with respect to maps of manifolds

(see Section 7.8) immediately lead to certain “integral” consequences – integral invariants

arise.

14.3.4 Let D ⊂ M be a 2k-dimensional domain on (M, ω), ζ f a Hamiltonian field, �t

its flow and �t (D) the image of D with respect to the flow. Define the expressions (the

Poincaré–Cartan integral invariants)

I k ≡ I k[D] :=
∫

D

ω ∧ · · · ∧ ω︸ ︷︷ ︸
k entries

Prove that they indeed deserve their name; in particular255 prove that

I k[�t (D)] = I k[D]

255 For the proof of the “Poincaré–Cartan” part use an appropriate source on the history of mathematics; the term “integral” is
clear; here we only concentrate on the word “invariant,” namely invariant with respect to the flow �t .
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Hint: according to (7.8.1) and (14.3.3)
∫

�t (D)

ω ∧ · · · ∧ ω =
∫

D

�∗
t (ω ∧ · · · ∧ ω) =

∫

D

�∗
t ω ∧ · · · ∧ �∗

t ω =
∫

D

ω ∧ · · · ∧ ω.

�

14.3.5 Show that the statement about the invariance of the expressions I k is true, in

particular, for the time development in the Hamiltonian system (M, ω, H ), i.e. that these

integrals do not depend on time t .

Hint: according to (14.2.2) for f = H the map �t is just the time development of the phase

points (pure states of the system); then �t (D) is the domain D time developed by t and the

result (14.3.4) in this particular case says that the integral of the form ωk over a (arbitrary)

2k-dimensional domain D gives the same result, as given by the integral over the domain

which results from the time development of all the points from D by t (according to the

Hamilton equations). �

• The best known as well as the most important is the last of the invariants, i.e. the case

where k = n; the corresponding statement is known as Liouville’s theorem.

14.3.6 Let (M, ω) be a symplectic manifold, dim M = 2n. Check that

(i) the n-fold product of the form ω (as well as its arbitrary non-zero multiple) defines on M the

volume form
(ii) in general coordinates z1, . . . , z2n there holds


̃ω ≡ 
̃ := ω ∧ · · · ∧ ω︸ ︷︷ ︸
n entries

= n! Pf(ωi j ) dz1 ∧ · · · ∧ dz2n

= ±n!
√| det ωi j | dz1 ∧ · · · ∧ dz2n

(iii) in particular, in canonical coordinates (qa, pa) it gives

ωi j ↔
(

0 −I

I 0

)

Pf(ωi j ) = (−1)n(n+1)/2

(the blocks being n × n) so that the form 
̃ reads


̃ = (−1)n(n+1)/2n! dq1 ∧ · · · ∧ dqn ∧ dp1 ∧ · · · ∧ dpn ≡ (−1)n(n+1)/2n! dq dp

Therefore one usually adopts its appropriate constant multiple, the Liouville form


ω ≡ 
 := (−1)n(n+1)/2 1

n!

̃ = dq dp

as the volume form on a symplectic manifold and as the phase volume of the domain D ⊂ M we

mean the expression
∫
D 
 (i.e. the volume of the domain D in the sense of the Liouville volume

form).
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(iv) Liouville’s theorem holds: the phase volume of an arbitrary (2n-dimensional) domain D is pre-

served under the time development �t of the phase points (more generally under the flow of an

arbitrary Hamiltonian field ζ f )256

�t ↔ ζH ⇒
∫

�t (D)


 =
∫

D




(v) any symplectic manifold is orientable.

Hint: (i) the fact that ω ∧ · · · ∧ ω is everywhere non-zero is clear from its coordinate

presentation; (ii) see (5.6.8); (iv) see (14.3.4); (v) see (6.3.5). �

• Liouville’s theorem about preserving the phase volume may be contemplated also in the

broader setting of preserving volumes in general, where we naturally encounter the concept

of 
-divergence.

14.3.7 Consider a manifold M endowed with a

distinguished volume form 
 and define the 
-

divergence of a vector field V by

LV 
 = (div
V )


Check that

(i) 
 is invariant with respect to the flow �t ↔ V
if and only if the 
-divergence of the field V vanishes, i.e.

�∗
t 
 = 
 ⇔ div
V = 0

(ii) for the flows generated by vector fields with vanishing 
-divergence “Liouville’s theorem” holds

(what is the difference between the figure presented here and that in problem (8.2.2)?)

div
V = 0 ⇒ the volume of D = the volume of �t D vol D :=
∫

D



(iii) if 
 locally looks like 
 = f dx1 ∧ · · · ∧ dxn , then

div
V = 1

f
( f V i ),i

(iv) an arbitrary Hamiltonian field has vanishing 
-divergence for the Liouville volume form 
 =
constant ωn (and “that’s why” Liouville’s theorem holds)

(v) for the metric volume form 
 ≡ ωg the ωg-divergence coincides with the “ordinary” divergence

(i.e. with ∗−1
g d ∗g �g V ) as well as with the “covariant” divergence (see (8.2.1) and (15.6.18))

(vi) if σ is a (non-zero) function, then

divσ
V = 1

σ
div
(σ V )

(vii) let M be a symplectic manifold, (qa, pa) the canonical local coordinates,

V = Aa(q, p)∂/∂qa + Ba(q, p)∂/∂pa

256 If we regard the flow �t as the flow of a fluid, then the result says that the fluid is incompressible.
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Write down the component expression for div
V (
 as in item (iv)) and convince yourself once

again that

V is a Hamiltonian field ⇒ div
V = 0

and locally also the converse is true.

Hint: (i) see (4.4.2); (ii) see (8.2.3); (iii)

LV ( f dx1 ∧ · · · ∧ dxn) = (V f ) dx1 ∧ · · · ∧ dxn + f d(V x1) ∧ · · · ∧ dxn + · · ·
+ f dx1 ∧ · · · ∧ d(V xn) = · · · ;

(iv) see (14.3.3); (v) see (8.2.1); (vi) see (6.2.14). �

14.3.8 The simplest manifestation of Liouville’s

theorem is provided by the dynamics in two-
dimensional phase spaces. Consider three simple sys-

tems with a single degree of freedom x (consequently

with two-dimensional phase spaces xp), namely the

free particle, the linear harmonic oscillator and a par-

ticle on which a constant force is applied. Check that

(i) the Liouville volume form 
ω reduces here to the expression dx ∧ dp (which coincides up to

a sign with the symplectic form ω itself), so that the phase volume of a domain is simply its

ordinary area in the xp-plane

(ii) the phase flows �t given by these dynamics explicitly read

free motion H (x, p) = p2/2 (x, p) �→ (x + pt, p)

harmonic oscillator H (x, p) = (p2 + x2)/2 (x, p) �→ (x cos t+ p sin t, −x sin t+ p cos t)
constant force H (x, p) = p2/2 − x (x, p) �→ (x + pt + t2/2, p + t)

(iii) for the case of free motion the system of unit squares in the phase space maps after 1 and 2

seconds as displayed on the figure (what do the corresponding figures look like for the remaining

two cases as well as for the Hamiltonian H (x, p) = xp from problem (14.2.6)?)

(iv) it is clear from the figure that the flow under consideration preserves the areas, i.e. that Liouville’s

theorem holds here (and the same is true for the remaining figures worked out a moment ago).

Hint: (iii) the formulas for the flows determine the motion of all points, in particular (for

example) also the vertices of the squares. �

• If we indeed draw the pictures for at least the four two-dimensional dynamics considered

above, we see clearly that to preserve only the areas (phase volumes) is a considerably

weaker requirement than to preserve both the shapes and dimensions; the given figures

may be deformed in various ways (the “distances” of individual points may be changed),

but always only to the extent that their area after the deformation is the same as it was

before it.
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14.4 Symmetries and conservation laws

• The useful physics folklore also contains a clever exploitation of the close relation

between the symmetries and the conservation laws. In this section we learn how this works

in the context of the Hamiltonian system (M, ω, H ). (An illuminating point of view to see

the same ideas is also provided by Noether’s theorem, see (21.6.7) and (21.6.8).)

The Hamiltonian system (M, ω, H ) consists, as we see, of three parts and its auto-

morphisms (i.e. symmetries) should preserve according to standard rules all three parts.

Preservation of M gives a diffeomorphism (10.1.2) and preservation of (ω, H ) means the

restriction to such diffeomorphisms whose pull-back does not alter (ω, H ).257 In quite the

same manner as we descended to the infinitesimal level when studying isometries and we

came to the notion of Killing vectors as generators of one-parameter groups of isome-

tries, also here we introduce the vector fields which generate the one-parameter groups of

automorphisms of the Hamiltonian system. Such a field258 is called a Cartan symmetry
(hereafter in this section CS) of the Hamiltonian system (M, ω, H ). Thus it is a vector field

V on M such that the corresponding flow �t ↔ V preserves both the 2-form ω and the

0-form H

�∗
t ω = ω �∗

t H ≡ H ◦ �t = H

or infinitesimally

LV ω = 0 LV H ≡ V H = 0

14.4.1 Check that

(i) for V ∈ CS the 1-form iV ω happens to be closed

(ii) if V, W are CS then their linear combinations (over R) as well as the commutator are CS, too,

i.e. Cartan symmetries constitute a Lie algebra (subalgebra of the algebra of all vector fields on

M)

(iii) the corresponding maps M → M constitute a group (a subgroup of the group of all diffeomor-

phisms of M).

Hint: (i) see (6.2.8); (ii) see (4.3.8). �

• The conservation laws are directly related to a particular subclass of Cartan symmetries,

called the exact Cartan symmetries (hereinafter in this section ECS). They are characterized

by the condition that the 1-form iV ω is not only closed, but is exact.259

14.4.2 Consider exact Cartan symmetries (ECS). Check that

(i) they are just those Hamiltonian fields, with respect to which the Hamiltonian is moreover invariant

(ii) they constitute a Lie algebra which is a subalgebra of the algebra of all Cartan symmetries (ECS

⊂ CS), moreover it is an ideal in this algebra (so that [ECS,CS] ⊂ ECS).

257 Compare with the isometries (i.e. automorphisms of (M, g)) – see the text before (4.6.2).
258 Maybe it would be more natural to call the map �t itself a “symmetry” (rather than its generator V ).
259 As we learned in Chapter 9, locally these concepts coincide.
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Hint: (i) if iV ω = d(−FV ) (the function −FV being a potential), then according to the

definition in (14.1.6) V = ζFV ; (ii) see (6.2.9). �

• Now we explain what it means when one speaks about a conserved quantity of the

Hamiltonian system (M, ω, H ). Let γ (t) be an arbitrary integral curve of the generator of

the time development, the Hamiltonian field ζH (a motion along γ (t) thus corresponds to the

time development of the phase point γ (0) ∈ M , or in coordinates a solution of the Hamilton

equations). A function F on M is said to be a conserved quantity, if it is constant on γ (t)
(the function F(γ (t)) does not depend on t , or equivalently F ◦ �t ≡ �∗

t F = F).260

14.4.3 Check that

(i) for the conserved quantity F there holds

ζH F ≡ {H, F} = 0

(so that F is in involution261 with the Hamiltonian H )

(ii) conserved quantities are closed with respect to the operations in the algebra of the observables

A(M), thus constituting a subalgebra of this (combined, see (14.1.7)) algebra

(iii) if F is a conserved quantity, then so is F + constant.

Hint: (i) (14.1.6); (ii) Jacobi identity. �

• We learned that each exact Cartan symmetry V is necessarily a Hamiltonian field, being

thus related to a function FV (its generator), which is given up to an additive constant. It

turns out that it is just this function, which is the conserved quantity corresponding to the

symmetry V . Conversely, if F is a conserved quantity, then the resulting Hamiltonian field

ζF happens to be an exact Cartan symmetry.

14.4.4 Show that there is a one-to-one correspondence between the exact Cartan symme-
tries and the conserved quantities. In particular, that

(i) if V is ECS, then FV (defined by iV ω = −d FV ) is a conserved quantity

(ii) if F is a conserved quantity, then ζF is ECS.

Hint: (i) ḞV ≡ ζH FV = 〈d FV , ζH 〉 = −ω(V, ζH ) = −V H = 0; (ii) iζF ω is exact due to ζF

being Hamiltonian, ζF H = −{H, F} = −ζH F = 0 due to the conservation of F . �

14.4.5 Check that

(i) the generator of the time development ζH is ECS (so that the “shift in time” is a symmetry of

each Hamiltonian system), the corresponding conserved quantity being the Hamiltonian H
(ii) the Hamiltonian field ζ f is ECS if and only if { f, H} = 0 (when f is in involution with the

Hamiltonian H ). �

260 On a pragmatic coordinate level it is such a combination of the variables qa , pa that does not depend on t in spite of the fact
that the “components” from which it is “put together” do: F(t) := F(qa (t), pa (t)) = constant.

261 We say that two functions f, g on (M, ω) are in involution if they happen to “commute” in the sense of Poisson brackets, i.e.
if { f, g} = 0.
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• Symmetries may be used for a construction of the new solutions of the equations of

motion from given (“old”) solutions. If, for example, a physical situation happens to be

translationally invariant, our intuition suggests that if we are given a solution of the equations

of motion (i.e. a possible motion), we can obtain a new solution (another possible motion)

by applying a translation to the known solution. In general, this construction looks for the

Hamiltonian systems as follows.

14.4.6 Let V be a Cartan symmetry of a Hamiltonian system (M, ω, H ). Check that

(i) the field V commutes with the field ζH (generating the time development)

[V, ζH ] = 0

(ii) the flow �V
t commutes with the time development

(i.e. with the flow �t ↔ ζH )

�V
s ◦ �t = �t ◦ �V

s

(iii) if γ (t) is a possible motion of the system (i.e. the

coordinate presentation of γ (t) is a solution of the

Hamilton equations of motion) and if we denote

by γs(t) := �V
s (γ (t)) the image of the solution

with respect to the flow of the symmetry �V
s , then the curve γs(t) also happens to be a pos-

sible motion of the system (for each s), so that we are able to generate from a single solution

γ (t) by means of the symmetry V the whole one-parameter class of new solutions γs(t)
(iv) if V = ζF is an exact Cartan symmetry corresponding to the conserved quantity F , then the value

of F for the initial motion coincides with the value of F on the new (class of) solutions262

F(γs(t)) = F(γ (t)) = constant

F(γs(t)) depends neither on t (since F is conserved on all γs) nor on s (since the value of the

conserved quantity happens to be the same on all γs); F is thus constant on the two-dimensional

sheet γs(t) ⊂ M).

Hint: (i) by definition iζH ω = −d H ; if we apply LV on both sides of the equation (and

use (6.2.9) and V H = 0), we get i[V,ζH ]ω = 0; non-degeneracy of ω then immediately

yields the result; (ii) (4.5.8); (iii) if x := γ (0) is the initial value of the solution γ (t), then

γ (t) = �t (x); but γs(t) := �V
s (γ (t)) = �V

s ◦ �t (x) = �t (�
V
s (x)) ≡ �t (y), so this is the

solution with the initial value y := �V
s (γ (0)); (iv) ζF F ≡ {F, F} = 0 (= ζH F ≡ {H, F}

by (14.4.3)). �

14.4.7 Check that for V = ζH we get as the new solutions γs(t) = γ (t + s) (the same

motion which takes place sooner by s; this class of the “new solutions” has the same

energy, since F = H now).

Hint: (14.4.5) and (14.4.6). �

262 This means, for example (as will be clear after reading (18.4.3)), that if the new solution is obtained by a translation, it has the
same momentum as before and the new solution obtained by a rotation has the same angular momentum.
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• We will elaborate on various more involved aspects of this in the remaining three

sections of this chapter; we then return to this important topic in Section 18.4. There we

will make more explicit the results obtained here for the case where the manifold carrying

the Hamiltonian system is realized as the (co)tangent bundle of a configuration space (being

the standard phase space of analytic mechanics).

14.5∗ Moment map

• The moment map plays an important role in various contexts in modern mathematical

physics. It appears wherever a Lie group acts on a symplectic manifold so that it preserves

the symplectic structure. It thus puts in an appearance, for example, in the context of

the symmetries of Hamiltonian systems treated in the last section (where, however, the

preservation of H was demanded in addition). Since its occurrence is not restricted, however,

to Hamiltonian systems alone, its field of applications being broader, it might be useful to

devote slightly more time to grasping this topic than its applications to the conservation

laws in Hamiltonian systems alone would need.

Let (M, ω, Rg) be a symplectic manifold along with a right action Rg of a Lie group

G and suppose that the action is compatible with the symplectic structure; this means that

each map Rg is a symplectomorphism

Rg : M → M R∗
gω = ω

It turns out that each such symplectic action automatically gives rise to a closed 1-form.

14.5.1 Check that

(i) the generators (fundamental fields) ξX of the action Rg are symplectic fields

LξX ω = 0 (⇒ ξX ∈ Symp (M))

(ii) the 1-forms αX , which are obtained from the generators ξX by the lowering of the index with the

help of the form ω, are closed

αX := �ωξX i.e. iξX ω =: −αX ⇒ dαX = 0

(iii) the 1-form αX depends on X ∈ G linearly

αX+λY = αX + λαY λ ∈ R

so that if Ei is a basis in G and X = Xi Ei , then

αX = Xiαi αi := αEi

(iv) under the action Rg the form αX behaves as follows:

R∗
gαX = αAdg X i.e. R∗

gαi = (Adg)
j
i α j

so that the 1-forms αi , i = 1, . . . , dim G are “scrambled” by the Ad-representation of the group

G
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(v) the infinitesimal version of the transformation of αX with respect to Rg looks like

LξX αY = α[X,Y ] or also Lξi α j = ck
i jαk ξi := ξEi

Hint: (i) see Section 4.2; (ii) (6.2.8); (iii) (13.4.3); (iv) (13.4.3); (v) set g = et X and differ-

entiate in t = 0. �

• So the forms αX ≡ �ωξX inherited some user-friendly properties from the generators

ξX , like the linearity with respect to X and “scrambling” by the Ad-representation (these

properties are preserved by the isomorphism �ω). They also have, however, a new specific

property (not being directly inherited from ξX ), namely the closedness (which may be traced

back to being partly due to the closedness of the form ω). The most interesting case occurs

when the form αX actually happens to be exact (rather than only closed), so when there

exists a global potential, a function PX ∈ F(M) such that αX = d PX .263 Then we speak

about a globally Hamiltonian action, since the field ξX is then a Hamiltonian field generated

by the function PX

iξX ω = −d PX so that ξX = ζPX or also ξX f = {PX , f }
Assume that the potential exists. A natural question then arises as to whether the properties

mentioned above are passed on from the 1-form αX also to the potential (function) PX .

It turns out that the general answer is “not straightforwardly.” Namely, the linearity may

always be achieved by a simple trick, but the Ad-behavior with respect to the action of G
may sometimes turn out to be beyond one’s reach.

Let us take the linearity first. As always happens with potentials, the function PX is

not fixed uniquely by the defining equation αX = d PX , but rather only up to an additive
constant (function). One has to realize, however, that we are actually speaking about an

infinite number of 1-forms αX and of potentials PX (one for each X ∈ G) and one thus has

to make a choice of a potential PX for each X ∈ G. Then it is clear that if the choice is made

“at random,” the linearity in X will hardly be valid.264 Linearity may be easily achieved,

however, by a coordinated choice of the additive constants.

14.5.2 Let Ei be a basis of the Lie algebraG. Fix the functions PX for the basis elements265

Ei and then define PX for an arbitrary element X ≡ Xi Ei by

PX := Xi Pi Pi ≡ PEi

Check that

(i) the functions defined in this way indeed depend on X linearly

PX+λY = PX + λPY

263 This is locally always true, as we know. Globally it occurs, for example, if the first cohomology group of the manifold M is
trivial (i.e. H 1(M, R) = 0), but this is not necessary, however, since in spite of H 1(M, R) �= 0, the particular 1-form αX may
represent the trivial class (it depends on the action) even if there are also non-trivial classes on M .

264 If the potentials PX , PY and PX+Y are fixed randomly, there will hardly hold PX + PY = PX+Y , to say nothing of this for each
X, Y .

265 Since the potentials are functions (0-forms), the freedom is fixed by assigning values of the functions at an arbitrary point, i.e.
in the same way as standardly done with the scalar potential in electrostatics, the only difference being in that we have to fix
n ≡ dimG such potentials Pi here.



14.5 Moment map 351

This may also be regarded as the fact that the map

P̃ : G → A(M) X �→ PX

is linear. The preservation of the commutator (both spaces actually being Lie algebras) turns out,

however, to be a much more delicate issue; see (14.5.4))

(ii) the freedom in the fixation on the basis Ei may also be rephrased as the freedom

Pi �→ P̂i := Pi + pi pi ∈ R ⇔ PX �→ P̂X := PX + 〈p, X〉 p ∈ G∗

where G∗ denotes the linear space which is dual to G. �

• The linearity of the function PX with respect to X ∈ G enables one to encode the

information carried by PX in an equivalent object, namely a map P : M → G∗.

14.5.3 Define the map P by the formula

P : M → G∗ 〈P(x), X〉 := PX (x), x ∈ M

It may also be regarded as a G∗-valued 0-form on M , i.e. as P ∈ 
0(M,G∗). Check that

(i) the freedom in PX from problem (14.5.2) is reflected on P as the freedom

P �→ P̂ := P + p p ∈ G∗

so that P̂ differs from P by a constant shift by p in the target space G∗ (this enables one to

prescribe to the point x an arbitrary value in G∗)

(ii) if Ei is the basis in G∗ (which is dual to Ei in G), then

P = Pi Ei

so that the functions Pi from problem (14.5.2) are just the component forms (actually functions,

here) of the form P .

Hint: (i) P̂X (x) = PX (x) + 〈p, X〉 = 〈P(x), X〉 + 〈p, X〉 ≡ 〈P(x) + p, X〉. �

• The map P interconnects two manifolds, on which the right action of the group

G is defined – on M it is (by assumption) Rg , whereas in G∗ it is the coadjoint ac-
tion Ad∗

g (as we learned in (12.3.18)). Therefore it is natural to address the question of

whether P is equivariant with respect to these actions. It turns out that in general it is

not. But the issue is more subtle (and interesting) than this plain answer might indicate.

Namely, the analysis shows that sometimes the equivariance can be achieved (making

use of the freedom available), but there are situations when this is simply not possi-

ble. We will see that the answer may be most conveniently expressed in cohomological
terms, meaning here, however, the Lie algebra cohomologies introduced in Section 12.8

rather than deRham cohomologies of differential forms. Moreover we will see that the

reformulation of the question in the language of the function PX turns out to be just

the issue of preserving the commutator by the map X �→ PX , which we mentioned in

problem (14.5.2).
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14.5.4 Check that

(i) the simple behavior of αX under the action of the group G from (14.5.1) gets more involved at

the level of the potential PX , namely

R∗
g PX = PAdg X + k(g, X ) k(g, X ) ∈ R

(ii) the infinitesimal version of the same behavior reads

ξX PY = P[X,Y ] + β(X, Y ) or equivalently {PX , PY } = P[X,Y ] + β(X, Y )

The term β(X, Y ) thus measures the deviation from a homomorphism for the map X �→ PX from

(14.5.2) (actually of the commutator alone; the linearity is all right).

Hint: (i) if αX = d PX , then R∗
gαX = αAdg X from (14.5.1) gives d(R∗

g PX − PAdg X ) = 0;

(ii) LξX αY = α[X,Y ] similarly leads to d(ξX PY − P[X,Y ]) = 0. �

14.5.5 Check that

(i) the map

β : G × G → R

defined by the relation (see (14.5.4))

β(X, Y ) := {PX , PY } − P[X,Y ]

is bilinear and antisymmetric, so that it is a 2-form on G266

(ii) the 2-form β ∈ 	2G∗ happens to be closed (a 2-cocycle)

d̂β = 0 i.e. β(X, [Y, Z ]) + cycl. = 0

(iii) the change of PX (caused by the freedom of choice of PX on a basis) results in the following

change of the 2-form β:

PX �→ P̂X := PX + 〈p, X〉 ⇒ β �→ β̂ := β + d̂ p p ∈ G∗ ≡ 	1G∗

(iv)

[β] = 0 ⇔ one can obtain {P̂X , P̂Y } = P̂[X,Y ]

so that the (undesirable) additive constant β(X, Y ) in (14.5.4) may be eliminated, making use of

the freedom if and only if β represents the trivial cohomological class, i.e. if it is a coboundary.

This is clearly guaranteed when there are no other classes except the trivial one, i.e. when

H 2(G∗, R) = 0, which is fulfilled, as we mentioned in (11.8), by the important class of semi-
simple Lie algebras

(v)

β(X, Y ) = 0 ⇔ k(g, X ) = 0

266 Actually β(X, Y ) is the constant function on M , so, strictly speaking, β ∈ 
0(M, 	2G∗); since it is, however, a constant, there
is the same element from 	2G∗ at each point, which may be regarded simply as an element β ∈ 	2G∗.
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so that the elimination of the first unpleasant term also results in the elimination of the second

one.

Hint: (ii) (12.6.3), the Jacobi identity for {· , · } and [· , · ]; (iv) β ≡ d̂τ �→ d̂τ + d̂ p ⇒
one should choose a new PX so that p = −τ , i.e. P̂ = P − τ ; (v) if g(t) = et X is a one-

parameter subgroup, then

ξX PY = P[X,Y ] ⇒ LξX PY = PadX Y

⇒ etLξX PY = Pexp(t adX )Y ≡ PAdg(t)Y

⇒ R∗
g(t) PY = PAdg(t)Y

so that the equality holds for arbitrary elements of the form g = eX . �

• A reformulation of these properties of the function PX in the language of the map P :

M → G∗ answers the question of under what conditions does P happen to be equivariant.

14.5.6 Check that the equivariance of P , i.e. the validity of the commutative diagram

M
P−−−−→ G∗

Rg

⏐
⏐
⏐
�

⏐
⏐
⏐
�

Ad∗
g

P −−−−→
P

G∗

is equivalent to

(i) the condition

R∗
g PX = PAdg X (or alternatively k(g, X ) = 0)

so that there holds

P can be improved to become equivariant ⇔ [β] = 0

(ii) the fact that the (already improved) map P̃ : G → A(M), X �→ PX from (14.5.2) is a homomor-

phism of Lie algebras. We may then summarize it as follows:

P “is” equivariant ⇔ [β] = 0 ⇔ P̃ is a homomorphism of Lie algebras

(“is” = “can be improved to become”; by P̃ an already improved P is meant).

Hint:

〈(P ◦ Rg)(x), X〉 = PX (Rgx) = PAdg X (x) = 〈P(x), Adg X〉 = 〈(Ad∗
g ◦ P)(x), X〉

�

• The map P : M → G∗, which happens to be equivariant (so that it has β = 0), is called

the moment map corresponding to the action of G on (M, ω) and such a special Hamiltonian
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action Rg is then in turn called a Poisson action.267 In terms of the function PX then the map

P̃ : G → A(M), X �→ PX , is a Lie algebra homomorphism and it is called the comoment
map. Recall that both maps carry exactly the same information, being related by

〈P(x), X〉 = P̃(X )(x) ≡ PX (x)

14.5.7 Consider now the situation which is most interesting for us, namely when the

globally Hamiltonian action of the Lie group G also preserves the Hamiltonian H (so that

we have a symmetry of the whole Hamiltonian system (M, ω, H )). Check that

(i) then the function PX is for each X ∈ G a conserved quantity of the Hamiltonian system

(ii) if Ei is a basis of G, then all the functions Pi (x) = PEi (x) are conserved, so that the number of

conserved quantities resulting from the symmetry group G coincides with the dimension of the

group G (and consequently of the Lie algebra G)

(iii) an equivalent way of expressing this result is to say that “the moment map is conserved,” meaning

Ṗ ≡ Ṗi Ei = 0, where P is the moment map.

Hint: the fundamental fields ξX ≡ ζPX are then exact Cartan symmetries, see (14.4.4). �

14.6∗ Orbits of the coadjoint action

• The orbits of the coadjoint action Ad∗ play an important role in various questions related

to the actions of Lie groups and symplectic geometry. It turns out that they carry a canonical

symplectic structure.

Recall from (12.3.18) that the coadjoint action Ad∗
g of a Lie group G takes place on

the linear space G∗ dual to the Lie algebra G of the group G and it is defined268 by the

prescription

〈Ad∗
g X∗, Y 〉 := 〈X∗, AdgY 〉 X∗ ∈ G∗, Y ∈ G

So it is the contragredient (anti)representation269 to the adjoint representation Ad.

Denote by ξX its fundamental fields; for an arbitrary function � on G∗ we have by

definition

ξX (Y ∗)� = d

dt

∣
∣
∣
∣
0

�(Ad∗
exp t X Y ∗)

14.6.1 On a manifold L , which is at the same time a linear space, we may define linear
functions, i.e. the functions obeying �(v + λw) = �(v) + λ�(w). Be sure to understand

that

267 It arises, for example, when an arbitrary action is lifted from the base to the total space of the (co)tangent bundle (see (18.4.1))
or in the case of the coadjoint action Ad∗

g on G∗ (see (12.3.19) and (14.6.5)).
268 We will denote by X, Y, . . . the elements of G and by X∗, Y ∗, . . . the elements of G∗. Thus the star on X∗ does not denote the

result of some operation performed on the element X .
269 This is a right action. The representation is given by Ad∗

g−1 .
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(i) these functions are nothing but the covectors on L , i.e. the elements of the dual space L∗

�w∗ (v) = 〈w∗, v〉

(ii) if we know how a vector field W acts on these particular functions, we already know everything
about W .

Hint: (ii) if ei is a basis in L and ei the dual basis in L∗, then �w∗ (x) = wi x i and, in

particular, �ei (x) = xi ; then for W = W i∂i we get (W�ei )(x) = W i (x), so that from the

action on linear functions we get the components of the field W . �

14.6.2 The linear functions on the manifold G∗ are thus uniquely parametrized by the

elements of the Lie algebra G

�X (Y ∗) = 〈Y ∗, X〉
Check that

(i) the action of the group G on these functions (by pull-back) gives

R∗
g�X = �Adg X Rg ≡ Ad∗

g

(ii) the infinitesimal version of this action reads

ξX�Y = �[X,Y ]

Hint: (i) (R∗
g�X )(Y ∗) = �X (Ad∗

gY ∗) = 〈Ad∗
gY ∗, X〉 = 〈Y ∗, Adg X〉 = �Adg X (Y ∗); (ii) set

g = exp t Z and differentiate in t = 0; you get ξZ�X = �adZ X = �[Z ,X ]. �

14.6.3 Consider now the orbit OZ∗ generated by a point Z∗ ∈ G∗. The tangent space to
the orbit in the point Z∗ is spanned (as is always the case for orbits) by the values of the

fundamental fields at this point. Therefore, if we

want to define a differential form on the orbit, it is

enough to specify its values on the fundamental

fields. Define in the tangent space TZ∗OZ∗ to the
orbit in the point Z∗ the 2-form ωZ∗ by the formula

ωZ∗ (ξX , ξY ) := 〈Z∗, [X, Y ]〉 ≡ �[X,Y ](Z∗)

In this way (by the pointwise construction) we get a smooth differential 2-form ω on the

manifold (the orbit) OZ∗ . Check that ω happens to be a symplectic form.

Solution: the closedness: in an arbitrary point on the orbit the Cartan formula (6.2.13) yields

dω(ξX , ξY , ξZ ) = (ξXω(ξY , ξZ ) − ω([ξX , ξY ], ξZ )) + cycl. Cartan formula

= (ξX�[Y,Z ] − �[[X,Y ],Z ]) + cycl. the definition ω

= 2�[[X,Y ],Z ]+ cycl. (14.6.2)

= 2�0 = 0 Jacobi identity
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the non-degeneracy: we have ωZ∗ (ξX , ξY ) := �[X,Y ](Z∗) = ξX (Z∗)�Y ; so if ωZ∗ (ξX , ξY ) =
0 for all ξY , the vector ξX (Z∗) yields zero by the action on all linear functions, but then also

(14.6.2) necessarily on all functions, so that the vector ξX itself vanishes at the point Z∗.

�

14.6.4 Show that each orbit of the coadjoint action is an even-dimensional manifold.

Hint: this belongs to the life-style of symplectic manifolds, see (14.1.4). �

• So we learned that a rich source of symplectic manifolds is available, namely all the

orbits270 of the coadjoint action. The input data consist of (only) a Lie group G and a point

in the dual space G∗ to the Lie algebra G.

We already met a particular example of such orbits in problem (13.4.10), where we found

all orbits of the actions Ad and Ad∗ for the group G A(1, R). This case is fairly instructive,

since it shows that the orbit structure may be substantially different for these two actions

(recall that in this particular case Ad∗ has, as is proper, only zero- and two-dimensional

orbits, whereas Ad has also one-dimensional orbits), so that the star on Ad∗ or G∗ is in

general271 to be taken seriously.

14.6.5 The orbits of the action Ad∗ are canonical symplectic manifolds. At the same time

there is, however, a transitive action of a Lie group G on them. This means that they actually

represent a fairly interesting “combined” geometrical object, the homogeneous symplectic
spaces of the group G. The natural question arises as to whether these two structures are

compatible. Considering the naturalness of both the structures involved one should expect

that the action Ad∗ respects the symplectic structure ω. Verify that this is indeed the case.

Namely check that

(i) the fundamental fields ξX of the action Ad∗ happen to be Hamiltonian fields, their generators

(“Hamiltonians”) being just the linear functions on G∗ (or more precisely their restrictions to the

orbit)

iξX ω = −d�X

(ii) the action Ad∗ is globally Hamiltonian, where in particular PX = �X

(iii) the action Ad∗ even happens to be a Poisson action
(iv) the moment and comoment maps for Ad∗ explicitly read

P : O → G∗ X∗ �→ X∗

P̃ : G → A(O) X �→ �X

so that the moment map is, in fact, the identity map (more precisely it is the canonical embedding

of the orbit O into G∗) and the comoment map assigns to the element X its linear function

(v) the action Ad∗ preserves the symplectic structure ω.

270 Except for zero-dimensional ones, the isolated points. All orbits which are more than zero-dimensional are already interesting
(being two-, four-, . . . dimensional).

271 Sometimes, however, it is not relevant; for example, on semi-simple Lie algebras the Killing form provides an equivariant
isomorphism between G and G∗ and the orbits then look equal.
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Hint: (i) 〈iξX ω, ξY 〉 ≡ ω(ξX , ξY ) = �[X,Y ] = −�[Y,X ] = −ξY �X = 〈−d�X , ξY 〉; (ii) the re-

sult of item (i) plus the definition in Section 14.5; (iii) {PX , PY } ≡ {�X , �Y } = ω(ξX , ξY ) =
�[X,Y ] ≡ P[X,Y ] so that β(X, Y ) = 0; (iv) PX (Z∗) = �X (Z∗) = 〈Z∗, X〉 !=〈P(Z∗), X〉; (v)

the flows of Hamiltonian fields do preserve ω. �

14.6.6 Find an explicit expression of the form ω for the case G = G A(1, R) and check

its Ad∗-invariance.

Hint: (13.4.10); if a general element from ga(1, R)∗ is Z∗ = x E1 + yE2, then ξE1
=

y∂y , ξE2
= −y∂x . The 2-form which is to be found is a(x, y) dx ∧ dy, the condition

ω(ξE1
, ξE2

) ≡ y2a(x, y)
!= 〈x E1 + yE2, [E1, E2]〉 ≡ y gives a(x, y) = 1/y. The coad-

joint action reads Ad∗
(a,b)(x, y) = (x − by, ay) and (1/ay) d(x − by) ∧ d(ay) = (1/y)

dx ∧ dy. �

14.6.7 Check that the Ad∗-action may be identified for SU (2) as well as for SO(3) with the

ordinary rotations in E3, so that the orbits reduce to ordinary spheres centered at the origin

and the form ω coincides (up to a constant multiple) with the ordinary “round” (rotationally

invariant) volume form on the sphere.

Hint: for A = I + εn j l j the Ad action gives AdA(xi li ) = A(xi li )A−1 = · · · = (xi +
εεi jkn j xk)li , i.e. r �→ r + εn × r, so that the Ad action indeed reduces to rotations; since the

Killing form is ∼ δi j , the same is true also for Ad∗; the (constant multiple of the) ordinary

“round” volume form (6.3.10) is the only volume form which is rotationally invariant. �

• On the orbits of the coadjoint action in G∗ we found the canonical symplectic structure.

This means that the orbits may also be regarded as non-degenerate Poisson manifolds (see

Section 14.1). It turns out, however, that the Poisson tensor actually exists canonically on
the whole manifold G∗. Why then have we bothered about some orbits instead of taking

simply G∗ itself? The reason is that the Poisson tensor happens to be degenerate, when

regarded on the whole G∗ and we are forced to restrict it to the orbits in order to obtain a

non-degenerate tensor (and to “invert” it then to obtain a symplectic form).

Consider the manifold G∗ along with the Cartesian coordinates xi given by the decompo-

sition272 of X∗ with respect to an arbitrary basis X∗ = xi Ei . Recall that the linear functions
on G∗ have the form �Y (X∗) = 〈X∗, Y 〉 ≡ yi xi ; in particular, the functions �i ≡ �Ei = xi

turn out to be directly the coordinates xi . This means (see (14.1.12)) that it is enough to

specify the Poisson bracket on linear functions.

14.6.8 Define the Poisson bracket of two linear functions on a manifold G∗ by the formula

{�Y , �Z } := �[Y,Z ] ≡ ξY �Z

i.e.

{�Y , �Z }(X∗) := �[Y,Z ](X∗) ≡ 〈X∗, [Y, Z ]〉 ≡ (P(d�Y , d�Z ))(X∗)

272 There are natural lower indices on the coordinates, so that the whole index machinery gets “inverted”: for example, the Poisson
tensor also has lower indices Pi j (x), etc.
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Check that

(i) it satisfies all the requirements imposed in general on a Poisson bracket

(ii) for the coordinates xi themselves we get, in particular,

{xi , x j } = ck
i j xk

(ck
i j being the structure constants of the Lie algebra G with respect to the basis Ei ) so that the

formula for arbitrary functions f, g reads

{ f, g} = (∂ i f )xkck
i j (∂

j g)

(iii) the Poisson bracket is related to the symplectic form on the orbit OX∗ by

{�Y , �Z } = ω(ξY , ξZ )

(iv) for an arbitrary function f on G∗ there holds

{�Y , f } = ξY f

so that this bracket (i.e. the corresponding Poisson tensor) is degenerate.

Hint: (i) the Jacobi identity for {· , · } is a direct consequence of the Jacobi identity for

[· , · ] in G, since {{�Y , �Z }, �W } = �[[Y,Z ],W ]; (iii) both expressions in the point X∗ yield

〈X∗, [Y, Z ]〉; (iv) it vanishes for all functions f which are constant on orbits. �

• Let us compute this bracket explicitly on G∗ = (so(3))∗ and ga(1, R).

14.6.9 Check that

(i) if we identify (so(3))∗ with an ordinary three-dimensional Euclidean space and adopt the usual

vector notation, then

{ f, g} = r · (∇ f × ∇g) ≡ ((r × ∇ f ) · ∇)g ≡ ζ f g

(ii) the Poisson bracket vanishes for the functions which depend on r alone (i.e. constant on the

spheres centered at the origin, i.e. on the orbits of the action)

(iii) on G∗ = (ga(1, R))∗ we get in the coordinates (x, y) from (14.6.6)

{x, y} = y i.e. { f, g} = y(∂x f ∂y g − ∂y f ∂x g)

Hint: (i) (14.6.8) for ck
i j = εki j ; (ii) ∇ f (r ) ∼ r, (14.6.7). �

14.6.10 The Lie algebra so(3) along with the Killing metric may be regarded as an ordinary

Euclidean space E3 and consequently the same is true for its dual space (so(3))∗. We will

denote as xi the coordinates with respect to some orthonormal basis in this E3 ≡ (so(3))∗

(as is possible and common in E3, we need not distinguish the upper/lower indices; we will

write all of them as lower). The orbits of the coadjoint action are the spheres of all possible

radii centered at the origin. On this dual space we have according to (14.6.9) now also the



14.6 Orbits of the coadjoint action 359

Poisson tensor P , hidden in the Poisson bracket

{xi , x j } ≡ Pi j = εi jk xk i.e. { f, g} = r · (∇ f × ∇g) = ζ f g
where ζ f ≡ (r × ∇ f ) · ∇

Check that

(i) the restriction of P to the unit sphere xi xi ≡ |r|2 = 1 (one of the coadjoint orbits) is already non-

degenerate and the corresponding symplectic form is just the ordinary (“round” = rotationally

invariant) volume form on the sphere,273 mentioned in (14.2.3) and (14.6.7)

(ii) the Poisson dynamics in E3 generated by a general Hamiltonian field ζH reads

ṙ = Ω × r Ω(r) := −∇H (r)

i.e. the point r rotates with angular velocity Ω, which in turn depends on r, so that (in general)

the whole space does not rotate as a rigid body (and neither does the fixed orbit)

(iii) for a Hamiltonian which is linear in r, the angular velocity Ω happens to be constant, so that

the time development reduces to a uniform rotation of the points in E3 around Ω with angular

velocity |Ω|,
H (r) = −Ω · r ⇒ ṙ = Ω × r Ω = constant

Hint: (i) if r ≡ n is a point on the unit sphere, then the value of the symplectic form ω

in the point n on a pair of vectors a, b is ωn(a, b) = ωi j (n)ai b j = εi jknkai b j = n · (a ×
b) ⇒ on an arbitrary right-handed orthonormal basis in n ∈ S2 there holds ωn(e1, e2) =
n · (e1 × e2) = 1, so that ω is just the metric volume form on the sphere; (ii) ẋi = {H, xi } =
ε jkl xl(∂ j H )(∂k xi ). �

14.6.11 Recall that the state of a quantum-mechanical system is in general given by the

density operator ρ̂, which is a positive Hermitian operator with unit trace. For a two-level
system (like the spin 1

2
) it is an operator in the Hilbert space C

2; to summarize,

ρ̂+ = ρ̂ Tr ρ̂ = 1 ξ+ρ̂ξ ≥ 0, ξ ∈ C
2

Its dynamics is governed by the Liouville equation

i� ˙̂ρ = [Ĥ , ρ̂]

where Ĥ is the (quantum-mechanical) Hamiltonian, being in general a Hermitian operator

(in C
2, here). Check that

(i) the most general density operator and the Hamiltonian may be parametrized as

ρ̂ = 1

2
(I + P · σ)

Ĥ = �

2
B · σ B, P = constant, |P| ≤ 1

273 Also the restriction of P to the other orbits (the spheres with different radii) gives the symplectic forms proportional to the
round volume forms on the orbits.
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The vector P, which (as we see) fully characterizes the state of the (two-level) system, is called

the polarization vector. If |P| = 1, we actually have a pure state (the vector P ≡ n is then called

the vector of spin); for |P| < 1 we speak about the mixed state
(ii) when expressed in the language of the vectors P and B, the dynamics governed by the Liouville

equation manifests itself through the equation of motion

Ṗ = B × P

(iii) this equation corresponds to a (“classical”!) Poisson dynamics with the linear Hamiltonian

P = 1

2
Pkεki j

∂

∂ Pi
∧ ∂

∂ Pj
H (P) = −B · P

and thus the solution is a uniform rotation of the vector P around the vector B
(iv) in particular, the dynamics of the pure states is Hamiltonian dynamics on the unit sphere, the

symplectic form being the ordinary metric (round) volume form and the Hamiltonian being linear

in n

ṅ = B × n n(ϑ, ϕ) ≡ (sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ)

ω = ωg = sin ϑ dϑ ∧ dϕ H (ϑ, ϕ) = −B · n(ϑ, ϕ)

(v) this result is consistent with (14.2.3).

Hint: (i) the hermiticity gives ρ̂ = aI + b · σ (a, b real), the unit trace ρ̂ = 1
2
I + b · σ;

we have (λξ )+ρ̂(λξ ) = |λ|2ξ+ρ̂ξ , so that the positivity suffices for normalized ξ ; then

ξ+ρ̂ξ = 1
2
(1 + 2b · c), where c := ξ+σξ ; since |c| = 1 for normalized ξ , the condition

2b · c ≥ −1 needs 2|b| ≤ 1; the term of the form aI is irrelevant in the Hamiltonian (it

commutes with all operators, thus having no influence on the time development of the density

operator); (ii) i� ˙̂ρ = i�/2(Ṗ · σ), [Ĥ , ρ̂] = �/4[B · σ, P · σ] = i�/2(B × P) · σ; (iii) then

the Hamiltonian field is ζH = P(d H, · ) = (B × P)i∂/∂ Pi as needed; (v) B = (0, 0, 1). �

14.7∗ Symplectic reduction

• One of the valuable lessons from elementary mechanics is that the analysis of numerous

situations is greatly simplified by passing to the center of mass system, since this procedure

eliminates the irrelevant degrees of freedom connected with the motion of the center of

mass and the remaining contemplation concerns then only the relevant degrees of freedom;

namely, those of the relative motion with respect to the center of mass.

To illustrate, we may take the two-body problem. At the beginning we have the variables

describing the initial point masses, (m1, r1) and (m2, r2). At the first step we pass to the

variables describing two other (fictitious) point masses, (M, R) and (μ, r) (M being situated

at the center of mass, μ is connected with the relative vector r). At the second step we notice

that the dynamics of the part (M, R) is separated out (and moreover it turns out to be trivial).

Therefore it is ignored at the third step and we focus on the problem concerning the part

(μ, r) alone, the latter then being finalized with some effort. It is important for us to notice

that we started with a 12-dimensional phase space R
12[r1, r2, p1, p2] and a Hamiltonian

system in this large space, but after the third step we ultimately work only in a “reduced”



14.7 Symplectic reduction 361

six-dimensional phase space R
6[r, p] and in this reduced phase space we analyze a new

(less dimensional, but still) Hamiltonian dynamics. It is well known that the grey eminence

behind the possibility of the elimination of the (irrelevant) motion of the center of mass is

the translational invariance of the initial problem.274

The procedure of reduction may be described in a fairly general setting, when a

Hamiltonian system (M, ω, H ) has a symmetry G. It turns out that the most interesting

part of the dynamics corresponds in this situation effectively to a smaller Hamiltonian sys-

tem (M̂, ω̂, Ĥ ). In this section we first show how all this happens for the symplectic part of

the problem alone (thus ignoring temporarily the Hamiltonian), i.e. we will be concerned

with the construction of a smaller (reduced) symplectic manifold (M̂, ω̂) from the initial

bigger one (M, ω), making use of the symmetry available. (This procedure turns out to be

interesting enough in its own right in recent mathematical physics.) Then we focus on the

dynamics and show how the new Hamiltonian may be obtained (H �→ Ĥ ) on the new phase

space, thus completing the reduction of the whole Hamiltonian system.

Consider a 2n-dimensional symplectic manifold (M, ω) along with a free and Poisson
action Rg of a Lie group G. Then there is the corresponding equivariant moment map

P : M → G∗ (14.5.6). Recall that if G also hap-

pens to be the symmetry of the Hamiltonian (i.e.

it is a symmetry of the whole Hamiltonian sys-

tem (M, ω, H )), then the components Pi of the

moment map P are conserved (14.5.7), so that

the whole trajectory necessarily lies in a subset
of the phase space M , namely in the part which

P maps into a single point p ∈ G∗. We therefore

fix a point p ∈ G∗ and denote by Mp the preimage of p with respect to P

Mp := {x ∈ M | P(x) = p}
(in the figure it is represented by the front face of the cuboid M). It is a submanifold of

dimension 2n−dim G, which is defined implicitly by the equations

Pi (x) = pi ≡ constant, i = 1, . . . , dim G

14.7.1 Let x be an arbitrary point in Mp and let Gx be its orbit with respect to the action of

G (the dotted plane on the figure). In the tangent space at the point x two natural subspaces

then arise: the subspace tangent to the orbit (spanned by the generators of the action ξX ) and

that tangent to the submanifold Mp. Check that the two subspaces happen to be symplectic
orthogonal complements to each other, meaning that if some vector has vanishing “scalar

product” in the sense of ω with all vectors from one of them, then it is from the complement.

Hint: first check that (for a non-degenerate bilinear form) the complement of the complement

turns out to be the initial subspace once again, so that it is enough to prove the statement

274 The homogeneity of the empty space. Note that the decisive factor in the finalization of the remaining problem for (μ, r) is
again a symmetry, this time the rotational symmetry (the isotropy of the space). The general technique which is described in
this section is illustrated on the two-body problem at the end of Section 18.4.
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in one direction (preferably the easier one, then). The generators of the action Rg are at the

same time also Hamiltonian fields generated by the functions PX (i.e. ξX = ζPX , see the text

after (14.5.1)), so that

ω(u, ξX ) = (−iξX ω)(u) = 〈d PX , u〉 = u PX

Thus vanishing of the “scalar product” ω(u, ξX ) for all ξX means that the vector u annihilates

all the functions Pi and, consequently, that it is tangent to Mp. We see that the subspace

tangent to Mp is just the complement of the subspace tangent to the orbit. �

14.7.2 Check that

(i) the sets Mp are transformed (“permuted”) by the action Rg according to the formula

Rg Mp = MAd∗
g p

(ii) if G p ⊂ G is the stabilizer of the point p (with respect to the coadjoint action Ad∗ on G∗), then

the restriction of the action Rg to G p already leaves Mp fixed (as a set; the points inside the set

may move)

Rg Mp = Mp g ∈ G p

(iii) the group G p acts on Mp freely.

Hint: (iii) Rg is free for the whole G and, a fortiori, for the subgroup G p. �

14.7.3 The manifold Mp decomposes under the action of the group G p into orbits275 Ox

and a natural projection onto the factor manifold Mp/G p =: M̂p (the space of orbits) arises,

π : Mp → M̂p (x �→ x̂ ≡ [x]). Check that

(i) the action of the group G p on Mp is vertical, mean-

ing that

π ◦ Rg = π

so that it moves the points in the figure only in the

vertical direction

(ii) the generators (fundamental fields) ξX of the action

are vertical

π∗ξX = 0

so that one should draw ξX on the figure as a vertical arrow (tangent to the orbit Ox of the group

G p)

(iii) each vertical vector may be uniquely written as ξX for an appropriate element X from the Lie

algebra of the group G p

π∗w = 0 ⇒ w = ξX

275 The orbit of the whole group G is denoted by Gx in the figure before problem (14.7.1), the orbit of the subgroup G p by Ox

here. There holds Ox = Gx ∩ Mp .



14.7 Symplectic reduction 363

Hint: (i) we factorize just by means of this action; (iii) π∗w = 0 means that it is tangent to

the orbit; by definition the whole orbit is, however, generated by the action of the group; the

uniqueness stems from the freedom of the action. �

• Take a step forward, now, and pay attention to the symplectic form ω. This form lives

on the initial manifold M . We may consider its restriction ω|Mp
to the submanifold Mp; it

will be denoted by ω̃. This 2-form on Mp has some remarkable properties, which enable

one to use it for the construction of a symplectic form on M̂p.

14.7.4 Let ω̃ ≡ ω|Mp
be the restriction of the symplectic form ω to the submanifold Mp.

Check that

(i) the form ω̃ is G p-invariant, i.e.

R∗
gω̃ = ω̃ g ∈ G p

(ii) the form ω̃ is horizontal, i.e. it is annihilated by (even a single) vertical argument

ω̃(w, · ) = 0 for any vertical vector w

Hint: (i) if j : Mp → M is the canonical embedding, then ω̃ = j∗ω, so that R∗
gω̃ =

j∗ R∗
gω = ω̃ due to the invariance of ω; (ii) for w = ξX ≡ ζPX we get ω|Mp

(w, · ) =
(iξX ω)|Mp = − (d PX )|Mp

= 0, since PX is constant on Mp. �

• It turns out, however, that whenever a form on Mp happens to be horizontal and at the

same time G p-invariant, it corresponds to a unique form on M̂p. This enables us to assign a

unique form ω̂ on M̂P to ω̃ and a simple check then reveals that actually a symplectic form

is obtained by this construction.

14.7.5 Check that forms on M̂p are in one-to-

one correspondence with G p-invariant horizontal

forms on Mp; namely, that each G p-invariant hor-

izontal form α on Mp may be regarded as the pull-
back of a unique form α̂ on M̂p

R∗
gα = α iξX α = 0 ⇒ α = π∗α̂

Hint: for a given α̂ on M̂p the form π∗α̂ is hori-

zontal as well as G p-invariant; now let α be a hor-

izontal and G p-invariant form on Mp; we assign to it the form α̂, which is defined in x̂ by

the prescription

α̂(π∗v, . . .) := α(v, . . .) (⇒ α = π∗α̂)

All the vectors in x̂ are of the form π∗v, where v is a vector at a point over x̂ , for example in

x or xg (the vectors v and v′ project to the same image). Since Rg∗ is a linear isomorphism

and π ◦ Rg = π , we may write v′ = Rg∗v + w for some vertical vector w in the point xg.
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Then due to G p-invariance of α we get

αxg(v′, . . .) = αxg(Rg∗v + w, . . .) = αxg(Rg∗v, . . .)

= (R∗
gα)x (v, . . .) = αx (v, . . .)

so that α̂ is well defined (it does not depend on arbitrary choices). �

• Now we apply this result to the form ω̃. This form, being invariant as well as horizontal,

can be uniquely “projected” on M̂p. Moreover it is also closed and we will see that this is

transferred to the form ω̂ on M̂p, too. Finally, one checks that ω̂ is also non-degenerate, so

that a symplectic form on M̂p is actually obtained by this construction.

14.7.6 Let ω̃ ≡ ω|Mp
be the restriction of the symplectic form ω to the submanifold Mp.

Since it is G p-invariant and horizontal, a unique form ω̂ may be assigned to it on M̂p. Check

that the 2-form ω̂ is a symplectic form, i.e. verify that it is closed and non-degenerate.

Hint: closedness: if j : Mp → M is the canonical embedding, then

ω̃ = j∗ω = π∗ω̂ so that 0 = j∗dω = π∗(dω̂) ⇒ dω̂ = 0

(π∗ is injective on forms); non-degeneracy: let ω̂(π∗u, π∗v) = 0 for arbitrary π∗v, i.e.

ω̃(u, v) = 0 for arbitrary v, which is tangent to Mp. The vector u is thus “symplectic

orthogonal” to an arbitrary vector, which is tangent to Mp; then, due to (14.7.1), it is

tangent to the orbit Gx and since it moreover lives on Mp, it is vertical, i.e. of the form

u = ξX for some X from the Lie algebra of the group G p. Such u projects, however, to

zero, π∗u = 0. �

• So far we treated the “symplectic part” of the Hamiltonian system alone and we came to

the end of this story – after a series of steps we obtained from the initial symplectic manifold

(M, ω) a new (smaller) symplectic manifold (M̂p, ω̂). It is called the reduced symplectic
manifold and within the mechanical context also the reduced phase space. One also says

that (M̂p, ω̂) results from (M, ω) by reduction by the group G.

And what about the rest of the Hamiltonian system, the Hamiltonian H and, after all, the

Hamiltonian (dynamical) field ζH ? Is it also reduced somehow by the symmetry? We may

check easily that this indeed is the case.

The G-invariance of ω and H immediately yields the G-invariance of the Hamiltonian

field ζH on M . This field is tangent to the submanifold Mp (the motion along the field =
the time development and the latter preserves, according to (14.5.7), all Pi s) so that we may

consider its restriction to this submanifold as well as to the subgroup which acts on Mp; we

thus get on Mp a G p-invariant vector field. Such fields, however, “project” uniquely onto

vector fields on M̂p; we declare our vector field obtained in this way to be the dynamical

field on M̂p (the time development := motion along its integral curves), call it the reduced
field and denote it by ζ̂H .

14.7.7 Check that the dynamical field ζ̂H is actually a Hamiltonian field, its Hamiltonian

Ĥ being the “restriction” of the original Hamiltonian H to M̂p.
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Hint: the question is whether ω̂(ζ̂H , Ŵ )
?= 〈−d Ĥ , Ŵ 〉 ≡ −Ŵ Ĥ for each vector field Ŵ on

M̂p. All vector fields on M̂p may be regarded as projections of some G p-invariant fields on

Mp; let Ŵ stem from W (i.e. π∗W = Ŵ ). Then the question is ω̃(ζH , W )
?= −W H , which

is true, since on the whole manifold M there holds ω(ζH , W ) = −W H for each W . �

• So we finally verified that the procedure of the reduction by the group G results in

a new (and smaller) reduced Hamiltonian system (M̂p, ω̂, Ĥ ) starting from the original

system (M, ω, H ). This procedure is illustrated in detail on concrete examples in problems

(18.4.11)–(18.4.17) (for the particular symmetries “lifted from the configuration space”).

As we learned in Section 14.1, any symplectic form corresponds to a unique non-

degenerate Poisson tensor and eventually to the Poisson bracket. This means that the

symplectic reduction treated above should have an equivalent counterpart in terms of the

Poisson bracket

(M, ω) �→ (M̂p, ω̂) ⇒ (M,P) �→ (M̂p, P̂)

(where P̂ is “inverse” to ω̂) or, alternatively, in terms of the algebra of observables

(M, ω) �→ (M̂p, ω̂) ⇒ A ≡ (F(M), {· , · }) �→ (F(M̂p), {· , · }ˆ) ≡ Âp

The reduced algebra of observables (i.e. effectively the whole procedure of reduction) may

be equivalently described also in terms of the initial algebra of observables. We concentrate

first on the construction of an algebra which is isomorphic to the algebra of functions
F(M̂p) (ignoring thus temporarily the new Poisson bracket {· , · }ˆ and focusing attention

on an algebraic description of the transition to the resulting manifold M �→ Mp alone). For

the sake of simplicity, we restrict in what follows to a one-dimensional symmetry group

(so that the reduced phase space has two dimensions fewer than the initial space).

The manifold M̂p arises in two steps from M , M �→ Mp �→ M̂p. The first step, M �→ Mp,

consists in restriction to a subset and the second step, Mp �→ M̂p, is based on a factorization.

It turns out that both of these procedures have a parallel at the level of the algebra of

functions, being reversed, however: the algebra of functions on a submanifold may be

obtained naturally by a factorization of the original algebra of functions on the whole

manifold, whereas the algebra of functions on a factorized manifold is realized as a subset
of the original algebra.

14.7.8 Let N be a submanifold of a manifold M , F(M) and F(N ) denote their algebras

of functions and let IN ⊂ F(M) be the set of functions on M vanishing on N

IN := { f ∈ F(M) | f (x) = 0, x ∈ N ⊂ M}

Check that

(i) the set IN is an ideal in the algebra F(M) (see Appendix A.2)
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(ii) the factorization of the algebraF(M) with respect to IN results in an algebra which is isomorphic

to the algebra F(N )

F(M)/IN ≈ F(N )

(iii) if the submanifold N is singled out by the equations �α(x) = 0 (the differentials d�α being

independent throughout the set �α(x) = 0) then for the differentials of the elements of the ideal

IN there holds

di(x) = uα(x) d�α(x)

Hint: (ii) introduce in F(M) the equivalence f ∼ g ⇔ f and g coincide on N (thus f, g
are equivalent if they may be regarded as smooth extensions of a single function from N to

the whole of M). It is clear that there is a bijection between equivalence classes and functions

on N . The equivalence classes may be regarded at the same time as the elements of the

factor-algebra mentioned above: note that f − g vanishes on N , thus being from the ideal

IN , or f = g + i , i ∈ IN ; (iii) in the tangent space Tx M there is a subspace Tx N ⊂ Tx M of

vectors which are tangent to N ; the subspace induces a subspace W ⊂ T ∗
x M in the cotangent

space (the annihilator of Tx N ; it consists of the covectors which annihilate the vectors from

Tx N , see (2.4.19)), spanned by a basis d�α (�α vanish (i.e. are constant) on N ); since the

function i(x) is constant (vanishes) on N , its differential is from W and therefore it may be
decomposed with respect to the basis d�α . �

• Let us apply all this to the case of our interest, where the manifold Mp is singled out by

the equation

P − p = 0 p ∈ G∗ ∼= R

This means that the algebra of functions on Mp is isomorphic to the factor-algebra of the

algebra of functions on M with respect to the ideal I of functions ψ(x) vanishing in the

points x such that P(x) = p; for the differentials of these functions there holds

dψ(x) = u(x) d P(x)

and so at the level of differentials we have an equivalence276

d f ∼ d f + u(x) d P(x)

Let us turn our attention now to the case of the factorization of manifolds.

14.7.9 Let π : M → N be a projection of M onto the factor manifold N ≡ M/ ∼ (where

∼ denotes equivalence, with respect to which the manifold is factorized; if it arises, for

example, by the action of a group on M , then N is the manifold of orbits). Denote by

Fπ (M) ⊂ F(M) the set of functions on M which are constant on the preimages of the map

π , i.e.

Fπ (M) := { f ∈ F(M) | π (x) = π (x ′) ⇒ f (x) = f (x ′)}
276 This particular equivalence will come in handy in a moment in (14.7.11) where the Poisson bracket will be examined.
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Check that Fπ (M) is an algebra (a subalgebra of F(M)), which is isomorphic to the algebra

F(N )

Fπ (M) ≈ F(N )

Hint: f̂ ↔ f for f̂ (π (x)) = f (x). �

• In the case of our interest this yields the requirement of constancy on the orbits Ox .

This condition may also be written in terms of Poisson brackets.

14.7.10 Check that the functions which are constant on the orbits coincide with the func-

tions which are in involution with the moment map277 P

f is constant on orbits ⇔ { f, P} = 0

Hint: we consider the Poisson action (its generator is the Hamiltonian field generated by

P(x)). �

14.7.11 Let A be the algebra of observables on the original symplectic manifold (M, ω).

Denote by Â the algebra which results from F(M) by the combination of both procedures

mentioned above, i.e.

1. we consider only those functions which satisfy

{ f, P} = 0

2. we introduce the equivalence among them

f (x) ∼ f (x) + ψ(x) ψ(x) = 0, x ∈ Mp

The algebra Â is isomorphic (regarded as an associative algebra) to the algebra F(M̂p) of

functions on the manifold M̂p. Check that by the prescription

{[ f ], [g]} := [{ f, g}]
(i.e. by means of representatives) also the Poisson bracket is correctly inherited from A
onto Â, so that Â is isomorphic to the (already combined, both associative and Lie) algebra
of observables corresponding to the reduced phase space (M̂p, ω̂).

Hint: for the representatives f + ψ and g + χ (where ψ and χ vanish on Mp, thus being

from the ideal) we get (making use of { f, P} = 0 = {g, P})
{ f + ψ, g + χ} = P(d f + dψ, dg + dχ ) = P(d f + u d P, dg + v d P)

= { f, g} + vP(d f, d P) + uP(d P, dg) + uvP(d P, d P)

= { f, g} + v{ f, P} + u{P, g} + uv{P, P}
= { f, g} �

277 The moment map, being in general G∗-valued, reduces now to an “ordinary function,” since we consider a one-dimensional
Lie algebra G, which may be identified with R.
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Summary of Chapter 14

An appropriate relabeling of coordinates reveals that there is an elegant geometrical structure

hidden behind the Hamilton canonical equations. Its essential part is a closed non-degenerate

2-form ω on the phase space of the system, the symplectic form. It enables us to raise and

lower the indices in a similar manner as we did before with the metric tensor. The vector

field which is the counterpart of the gradient field in the Riemannian case (i.e. which is

obtained by raising an index on the gradient of a function f understood as a covector field)

is called the Hamiltonian field generated by the function f . The Hamilton equations turn

out to be simply the equations for the integral curves of the Hamiltonian field generated by

a distinguished function H , the Hamiltonian of the system. Thus we come to the notion

of the Hamiltonian system (M, ω, H ). The vector fields which generate automorphisms of

a Hamiltonian system (they preserve the symplectic form as well as the Hamiltonian) are

called Cartan symmetries and, those obeying a specific additional property, exact Cartan

symmetries. There is a one-to-one correspondence between the exact Cartan symmetries

and the conserved quantities of the system. More details can be found in sections devoted to

the moment map and symplectic reduction. The orbits of the coadjoint action (which is an

action of the group G on the dual space G∗ of its own Lie algebra G) provide a rich source

of interesting (G-invariant) symplectic manifolds (there is a canonical symplectic structure

on them).

ζ f = P(d f, · ) Hamiltonian field in terms of P (14.1.1)

{ f, g} = P(d f, dg) Poisson bracket in terms of the Poisson tensor P (14.1.1)

γ̇ = ζH Hamilton equations – coordinate-free version (14.1.1)

iζ f ω = −d f Hamiltonian field in terms of symplectic form ω (14.1.6)

ω = dpa ∧ dqa Symplectic form in canonical (Darboux) coordinates (14.2.2)


ω := constant ω ∧ · · · ∧ ω Liouville volume form on (M, ω) (14.3.6)∫

�t (D)


ω =
∫

D

ω Liouville’s theorem (14.3.6)

iV ω = −d F, V H = 0 V is exact Cartan symmetry of (M, ω, H ) (14.4.2)

γs(t) := �V
s (γ (t)) A new solution generated by a symmetry flow (14.4.6)

〈P(x), X〉 := PX (x) Moment map corresponding to the Poisson action (14.5.3)

ωZ∗ (ξX , ξY ) := 〈Z∗, [X, Y ]〉 Canonical symplectic form on coadjoint orbits (14.6.3)
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Parallel transport and linear connection on M

• In Chapter 4 we already encountered the possibility of transporting vectors, namely Lie
transport and the related Lie derivative. Here we introduce another type of transport, the
so-called parallel transport. The corresponding derivative is called the covariant derivative.
Although the two transports share some common features, in many respects their geometrical
meaning differs and one should understand which one is appropriate for use in a concrete
application.

15.1 Acceleration and parallel transport

• Recall (see Section 2.2) that it makes no direct sense to perform a linear combination
of a vector at point x with a vector at point y since the tangent spaces at different points
x, y ∈ M are vector spaces which are not at all related (except for the dimension).

15.1.1 Let B : W → V be an isomorphism of linear spaces V and W . Check that the rule

v + λw := v + λB(w) v ∈ V, w ∈ W

gives a sense to the linear combination of two vectors from different spaces.

Hint: B enables one to identify V with W . �

• So if a distinguished (canonical, independent of arbitrary choices) isomorphism B :
Ty M → Tx M existed, we might define the combination by the trick v + λw := v + λB(w),
v ∈ Tx M, w ∈ Ty M . However, already in Section 2.2 we warned that although on a “bare”
manifold the spaces Tx M and Ty M are isomorphic, the isomorphism is not canonical.

After these general considerations let us have a
look at how it is related to the definition of the con-
cept of acceleration of a point mass in elementary
mechanics. Given r(t), the trajectory of the point, its
(instantaneous) velocity is v(t) := ṙ(t) and the (in-
stantaneous) acceleration is a(t) := v̇(t). The con-
ception of the velocity of the point mass helped us to

introduce the key concept of a vector on a manifold as early as in Chapter 2. The acceleration

369
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turns out to be equally inspiring (although it had to wait patiently for its chance until Chap-
ter 15) – it brings us to the concept of the parallel transport of the vector as well as the
covariant derivative.

In order to compute a(t) at the point r(t) one has by definition to perform the difference
(i.e. a linear combination) of the vectors v(t + ε) and v(t), i.e. just the procedure which
makes no sense officially. It is clear, however, what is meant by this (and often even explicitly
stated) in mechanics: the “obvious” fact is used that in E3 the vectors may be shifted (not
altering either their length or direction) around and then used at the point where we need
them to sit.278 In the case of acceleration one is namely to shift the vector v(t + ε) from
the point r(t + ε) back to the point r(t) (thus obtaining v‖(t)) and only this vector may be
compared with the vector v(t). So it is nothing but the trick from (15.1.1), the role of the
isomorphism B being played by an appropriate shift. Everything is so clear here that one
might even be abashed at why an issue should be made of all this.279

Nevertheless, there is a tiny cloudlet in the blue sky, namely a slightly conspicuous
significance of the Cartesian coordinates in the technical realization of the shifts (on a
general manifold all the local coordinates should be equivalent; the fact that this is not the
case here indicates that E3 is exceptional from this point of view).

15.1.2 Verify that the operation of the shift of a vector in the Euclidean space E3 (or,
even simpler, in E2) happens to be technically trivial in Cartesian coordinates alone (if we
accept as Cartesian coordinates also those with a shifted origin and a modified direction
of axes, so that they are related through an affine transformation to some “true” Cartesian
coordinates).

Hint: in Cartesian coordinates the components of the shifted vector remain the same; trans-
form this explicitly to polar, spherical polar, cylindrical, etc. coordinates and check that it
becomes complicated. �

• The particular trajectories with vanishing acceleration are closely related to the concept
of acceleration. They correspond to uniform straight-line motion of the point mass. By

definition, vanishing of the acceleration means that
on this trajectory the velocity v(t + ε) is equal to the
velocity v(t). Or, more precisely (since they sit at
different points), the velocity vector v(t + ε) arises
by a shift alone (not changing either its length or
direction) of the vector v(t) from the point r(t) to the
point r(t + ε) (so that we set v(t + ε) = v‖(t + ε)).

By an iteration of such infinitesimal shifts of the velocity vector the resulting straight line
arises, being the trajectory of the point mass (the uniform straight-line motion).

278 One speaks about free and bounded vectors there.
279 Mathematical physics is sometimes blamed for “making an issue” of quite “simple” things. There is a perfect consensus in

that this blame is indeed legitimate in p percent of concrete cases, a bit less concord takes place in the numerical value of the
number p. Extensive research (based on elaborate questionnaires) revealed that the distribution of p over the world population
is actually uniform, bounded by the values p = 0 and p = 100.
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Now, let us try to repeat the same procedure on a different manifold, for example on
the sphere S2. Imagine that an ambitious technocratic ideal was accomplished at last –
throughout the Earth, first all the irregularities were straightened out by bulldozers (they
were, one should admit, both impractical and unaesthetic) and then the whole surface of
the Earth was nicely covered by a neat asphalt. If we now roll a ball along such a smooth
surface,280 it has to roll, according to the laws of mechanics, uniformly along a straight line,
since the only force available is the gravitational force, directed everywhere downwards.
This force constrains the ball to remain on the two-dimensional surface of the Earth (it
keeps the ball from flying away along a “truly” straight-line trajectory and escaping into
space); the ball gets accustomed to this status quo and it does not regard it as a restriction.281

It considers pragmatically the sphere S2 to be its living space and it does not care whether
the sphere actually is or is not a subset of any larger ambient space. Since the projection of
the gravitational force on to the plane which is tangent to the sphere always vanishes, the
ball feels282 no force acting on it and it thus has no reason to change its velocity (neither
length nor direction); it therefore moves with vanishing acceleration along a straight line.
Note, however, that from the point of view of the ambient space E3 this is by no means
an ordinary straight line, but rather it is a circle (with maximum possible radius), which
encircles the whole Earth. The uniform motion along this circle which arises by the iteration
of the (infinitesimal) shifts of the velocity vector is the straightest possible motion on the
sphere. The shift of the velocity vector keeping its length as well as direction unaltered in
the sense of the sphere is, as we see from the resulting trajectory, something considerably
different from the same procedure performed in the sense of E3 – from the point of view
of E3, in the course of the shifts the vector also continually rotates a bit in order to remain
tangent to the sphere.

The lesson from this as well as numerous similar particular cases resulted in the following
picture: the definition of the concept of acceleration as well as uniform straight-line motion
(i.e. motion with zero acceleration) which is based on it requires the ability to transport the
velocity vector (at least by infinitesimal distances) along a given trajectory. In the space E3

there is a natural rule of transport and this rule is indeed used in elementary mechanics in
E3. However, in general the matter may not be so simple. It turns out that the most fruitful
point of view is to regard the rule of transporting vectors on a manifold as an independent
structure, which is a priori not available on a general manifold, although in particular cases
(like in E3) there may exist most natural realizations.

If such a rule (satisfying some requirements) is introduced on a manifold, we say that a
parallel transport (or an associated concept – linear connection) is defined on M , denoted
by (M, ∇). For example, the natural parallel transport of vectors in E3 is realized as an
ordinary shift, but if we introduced another connection into E3 (which is perfectly possible),
the parallel transport would be performed in a different way. The straight lines which result

280 We also ensure zero air resistance and a couple of similar technical details.
281 This is confidential information from one such ball; for reasons of protection of privacy it has no wish to make either its center

or radius public.
282 See the previous footnote.
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from the iteration of the infinitesimal parallel transport of the velocity vector (the trajectories
with zero acceleration) are called the (affinely parametrized) geodesics on (M, ∇).

The concept of a linear connection is very important in physics, although its presence is
fairly obscure in many applications (like in acceleration in elementary mechanics).

15.1.3 Estimate (or evaluate exactly) the fraction

f = lc/a

where a denotes the number of people on Earth who understand what the acceleration is
(including the formula which enables one to compute it) and lc denotes the number of
people on Earth who are aware that the linear connection is used in this formula.

Hint: ask all of them and then divide the two numbers; (1.1.1)–(22.5.12). �

• However, there are also disciplines like the general theory of relativity, in which the
linear connection lies at the very heart of the mathematical formulation, being explicitly
present in the fundamental equations of the theory.

15.1.4 Estimate (or evaluate exactly) the fraction

f = lc/gr

where gr denotes the number of people on Earth who understand elements of general
relativity (including the basic formulas) and lc denotes the number of people on Earth who
are aware that the linear connection is used in these formulas.

Hint: see the hint in (15.1.3). �

• The far-reaching generalization of the linear connection, to be explained in more detail
in Chapter 20 and beyond, is the basis of the formalism of modern gauge field theories.

15.2 Parallel transport and covariant derivative

• We convinced ourselves that the introduction of the concept of acceleration requires
the ability to transport velocity vectors along curves (the trajectories of a point mass). A
similar requirement also occurs in numerous other contexts. We say that a rule of parallel
transport is given on a manifold M , if, for an arbitrary curve γ on M and two points x, y
on the curve, there is a prescription which assigns uniquely to vectors in x vectors in y, i.e.
a map

τ γ
y,x : Tx M → Ty M v �→ τ γ

y,xv

Clearly, one can think out lots of such rules, but if they are to be useful in the contexts
from which the motivation for their introduction came, they should satisfy some restrictive
conditions. For the moment we mention the two most important of them.

First, it is natural to ask that the transport of a sum of vectors or a multiple of a vector by
a constant should yield the sum of the results of the transport of the individual vectors or
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the multiple of the transported vector, i.e. to ask for the linearity of the map τ
γ
y,x . Secondly,

if there are three points x, y, z on a curve γ , we expect the parallel transport from x to y
followed by the transport (of the vector just brought to y) from y to z to yield the same
result as the direct transport (without a moment’s rest in y) from x to z would yield. This
may be written as the composition property of the maps τ

γ
y,x

τ γ
z,y ◦ τ γ

y,x = τ γ
z,x x, y, z on the curve γ (otherwise arbitrary)

and, in particular,

τ γ
x,x = identity

(
τ γ

y,x

)−1 = τ γ
x,y

Note that the rule of parallel transport needs as an input not only the edge points x, y, but
also a path connecting them.283 So if we are given at the point x a vector v and a path
from x to y, we are able to transport v uniquely to the point y; given another path, the
transport is unique as well, but the resulting transported vector may be different in general.
We will see that the path dependence of the parallel transport is an important and typical
phenomenon in the situations where the connection is applied and it enables one to speak
about the curvature of the manifold (M, ∇).284

Suppose we have some particular fixed rule of a parallel transport of vectors. This rule
then enables one to introduce a derivative, which is based on it. Namely, let γ (t) be a curve
and let V (t) ≡ Vγ (t) be a vector field defined on the curve.285 If we intend to differentiate
the vector field V along the curve γ , in order to find out whether (and how much) it varies
in this direction), we are to compare the vectors V (t + ε) and V (t). However, these two
vectors sit at different points and it means that their difference has no direct meaning. Still,
the difference of the vectors may be legalized by making use of the rule of parallel transport.
Namely, we first transport the vector V (t + ε) along the curve γ from the point γ (t + ε)
backwards to the point γ (t) and then we compare (subtract) the vector transported back
with the initial vector V (t).

Denote the vector transported backwards by V ‖
ε (t). Then the corresponding derivative,

which is called the absolute derivative of the vector field V along the curve γ , is defined as

DV (t)

Dt
:= lim

ε→0

V ‖
ε (t) − V (t)

ε

Let us contemplate some immediate consequences of the definition. First, it is clear that the
derivative depends on the particular rule of parallel transport.

Next, note that it uses only the behavior of the objects on the curve γ – the field V may
(but need not) be defined also outside the curve, but nothing from outside the curve has any

283 We mentioned a curve a minute ago, here we speak about (only) a path, i.e. a non-parametrized curve. The transport to be
studied here actually depends only on the path alone (see (15.2.6) and (15.2.12)).

284 This does not mean that the parallel transport always indeed depends on a path, but rather that in general it may depend on it.
For example, the ordinary shifts of vectors in E3 are evidently path-independent, whereas the transport of the vectors on the
sphere, which we discussed in Section 15.1 really depends on a path (15.3.9).

285 The vector V (t) is an element of the tangent space Tγ (t) M and it may not be directed along the curve; i.e. we contemplate
n-dimensional vectors which need not exist at each point of an n-dimensional domain, as is the case when we treat vector
fields on a domain, but they are instead defined only on a one-dimensional domain, at the points of the curve γ .
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influence on the value of the derivative along the curve. This differs essentially from the Lie
derivative. If the curve γ were the integral curve of a vector field W and if both the fields,
W and V , were defined in some neighborhood of the curve γ , then the Lie derivative of the
field V along W (which corresponds to the derivative of V along the curve γ ) would also
depend on the values of the field W outside the curve γ (15.2.4), so that the transport of
the field V along the curve γ actually depends on the structure of additional curves aside
from the curve γ (the neighboring integral curves of the field W ; note that they are indeed
necessary since the Lie derivative may be performed only on the fields defined (at least) in
a domain).

Realize finally that the vanishing of the absolute derivative on some (part of a) curve
means that the field V (t) may then be regarded as that its values everywhere on γ arose by
(only) a parallel transport of its value at a single fixed point into all the points of the (above
mentioned part of the) curve. Such a field on a curve (one might say that it is constant on
the curve) is called an autoparallel field. Thus the absolute derivative informs us exactly
about the deviation from being autoparallel.

The relation between the absolute derivative of a vector field and the rule of the parallel
transport may be used to reverse the roles of what is a “primary” concept and what is a
“secondary” one: if we were technically able to perform the derivative, it would allow us in
turn to reconstruct the rule of parallel transport. Namely, the rule says: do the transport so
as to make the derivative vanish. This is exactly the way one usually introduces the concept
of the linear connection on a manifold. Instead of specifying in detail the requirements
which the parallel transport should satisfy, one postulates, on the contrary, the properties
of the derivative and the parallel transport is then in turn defined by the simple equation
“the derivative should vanish.” The corresponding defining properties of the derivative are
to be chosen so as to be clear and brief and so as not to contradict any particular case of
the transport, which served as the source of inspiration for the general theory (like E3, the
sphere, etc.; i.e. so as to guarantee that all the useful known cases might be regarded as
“particular cases of a general theory”).

Before we write down the resulting requirements regarding the derivative, we realize that
we also have to contemplate the issue of the parallel transport (as well as the derivative)
of general tensors (just like we did for the Lie derivative).286 For the Lie stuff, where the
“primary” concept was the (Lie) transport (being realized technically as the pull-back �∗

t

of the flow �t ↔ W ), this issue was simply computed and it turned out that the transport
preserves the degree and commutes with the tensor product and the contraction, so that the
(Lie) derivative turned out to be the derivation of the tensor algebra, which preserves the
degree and commutes with contraction.

Here it is necessary to postulate the properties either at the level of the (parallel) transport,
or at the level of the (covariant) derivative. The standard definition says that in this respect
we simply copy the properties in the Lie case: one postulates that the (parallel) transport

286 Note that there are the same problems with the linear combinations of tensors of type
(p

q
)

at different points x, y, as with vectors
(being the special case p = 1, q = 0), except for the case of scalars (p = q = 0): the numbers in x and in y are “canonically”
combined without any problems.
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preserves the degree and commutes with the tensor product and contraction.287 The (covari-
ant) derivative, which corresponds to the (parallel) transport, is then necessarily a derivation
of the tensor algebra, which preserves the degree and commutes with contractions.

So at last we now state the official definition of the concept of linear connection on a
manifold M . It says that with each vector field W on M one may associate an operator ∇W ,
the covariant derivative along the field W , enjoying the following properties:

1. it is a linear operator on the tensor algebra, which preserves the degree

∇W : T p
q (M) → T p

q (M)

∇W (A + λB) = ∇W A + λ∇W B A, B ∈ T p
q (M), λ ∈ R

2. on a tensor product it behaves according to the Leibniz rule

∇W (A ⊗ B) = (∇W A) ⊗ B + A ⊗ (∇W B) A ∈ T p
q (M), B ∈ T p′

q ′ (M)

3. in degree
(

0
0

)
(i.e. the functions) it gives

∇W ψ = Wψ ≡ LW ψ ψ ∈ F(M) ≡ T 0
0 (M)

4. it commutes with contractions

∇W ◦ C = C ◦ ∇W C = (any) contraction

5. it is F-linear with respect to W , i.e.288

∇V + f W = ∇V + f ∇W V, W ∈ X(M), f ∈ F(M)

Now, let us have a look at how such a connection may be technically determined.

15.2.1 Show that the covariant derivative is uniquely specified by the coefficients of linear
connection 	a

bc(x) with respect to a frame field ea , which are the functions defined by

∇aeb =: 	c
baec ∇a := ∇ea

Solution:289 we have (the numbers indicate the property used)

∇W
(

Aa...b
c...d ec ⊗ · · · ⊗ eb

) = making use of 1, 2, 3

= (
W Aa...b

c...d

)
ec ⊗ · · · ⊗ eb + Aa...b

c...d (∇W ec) ⊗ · · · ⊗ eb + · · · + Aa...b
c...d ec ⊗ · · · ⊗ (∇W eb)

Thus, one needs to be able to compute ∇W ea and ∇W eb. If W = W beb then

∇W ea ≡ ∇(W beb)ea
5= W b∇bea ≡ (

	c
abW b

)
ec

287 Preserving of a degree is clear, commuting with the contraction in plain English says that the transported tensor yields the
same number on the transported arguments as the original tensor did on the original arguments.

288 This is the only property in which the operator of the covariant derivative ∇W differs from the operator of the Lie derivative
LW (LW happens to be only R-linear with respect to W ); it turns out that it reflects the requirement mentioned above, so as
the parallel transport does not depend (in contrast with the Lie transport) on objects outside the curve.

289 It may be briefly summarized as follows: ∇W is a derivation of the tensor algebra ⇒ one comes to
(

0
0

)
and the bases of

(
1
0

)
and

(
0
1

)
. The case of

(
0
0

)
is handled by property 3, the commuting with contractions enables one to reduce

(
0
1

)
to

(
1
0

)
.
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and since

0
3= ∇W δa

b = ∇W 〈ea, eb〉 = ∇W (C(ea ⊗ eb))
4,2= C((∇W ea) ⊗ eb + ea ⊗ (∇W eb)) = 〈∇W ea, eb〉 + 〈ea, ∇W eb〉
= 〈∇W ea, eb〉 + 〈

ea, 	d
bcW ced

〉 = (∇W ea)b + 	a
bcW c

we obtain

∇W ea = −(
	a

bcW c
)
eb and in particular ∇bea = −	a

cbec

The knowledge of the coefficients of linear connection 	c
ab(x) with respect to a frame field

ea(x) thus indeed enables one to compute ∇W A for arbitrary W and A, i.e. there is complete
information about the connection in them. �

• The coefficients of the linear connection have one upper index and two lower indices.
One might anticipate from this that they form the components of a tensor field of type

(
1
2

)
.

A computation yields something different, however.

15.2.2 Let ea �→ e′
a = Ab

a(x)eb be a change of a frame field. Check that the primed coef-
ficients of linear connection (given by the prescription ∇e′

a
e′

b =: 	′c
bae′

c) are related to the
unprimed coefficients by

	′c
ab = 	d

e f (A−1)c
d Ae

a A f
b + (A−1)c

d A f
b

(
e f Ad

a

)

so that in addition to the first term, corresponding (if it were alone) to a tensor of type(
1
2

)
, there is also the “non-tensorial” second term (which does not contain the unprimed

coefficients 	 at all; one speaks about an inhomogeneous transformation rule).

Hint: ∇e′
a
e′

b = Ac
a∇ec (Ad

bed ) = . . . ; use the properties of the covariant derivative and the
definition of the initial coefficients themselves. �

15.2.3 The coefficients of linear connection 	k
i j (x) with respect to the coordinate frame

field ei = ∂i are called the Christoffel symbols of the second kind. Thus, they are defined
by

∇ j∂i =: 	k
i j∂k ∇i := ∇∂i

Check that under the change of coordinates xi �→ x ′i (x) the following transformation rule
holds:

	′i
jk = ∂x ′i

∂xr

∂xs

∂x ′ j

∂xm

∂x ′k 	r
sm + ∂x ′i

∂xr

∂2xr

∂x ′ j∂x ′k

Hint: (15.2.2), Ai
j = (J−1)i

j = ∂xi/∂x ′ j , A f
b (e f Ad

a ) = (e′
b Ad

a ). �

• Since the connection is a global structure on a manifold, this fairly complicated trans-
formation rule for the Christoffel symbols should necessarily have the correct composition
properties on a triple overlap of charts (see Section 2.5). This may be verified “by brute
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force” here, but one can do this more easily after learning how to encode the coefficients of
linear connection into so-called connection 1-forms (15.6.2).

Making use of the covariant derivative we are now in a position to realize the program
outlined at the beginning of the section: to express the absolute derivative and then to
describe the parallel transport.

15.2.4 Let (M, ∇) be a manifold endowed with a connection, ∇W the corresponding
covariant derivative operator, γ (t) a curve and V a vector field. The absolute derivative of
the field V along γ is defined as290

DV (t)

Dt
:= ∇γ̇ V

Assume that the curve γ happens to be the integral curve of the field W (i.e. γ̇ = W on γ )
and that both fields V , W as well as the curve γ are given in a coordinate patch. Check that

(i) in local coordinates we get on the curve γ

∇W V = (
V̇ i + 	i

jk ẋ k V j
)
∂i

LW V = (
V̇ i − V j W i

, j

)
∂i

where V i (t) := V i (γ (t)) are the components of the field V , regarded as the functions on the curve
alone

(ii) from the expression of the covariant derivative we can infer that no knowledge of the field W
outside the curve is necessary for its computation and thus the formula ∇γ̇ := ∇W is indeed correct
(recall that the connection officially defines only the notion of the covariant derivative along the
vector field W ) and, consequently, also the definition of the absolute derivative is all right; the
expression of the Lie derivative, on the contrary, shows that the behavior of W in a neighborhood
of the curve has an influence on this object.

Hint: (i) ∇W V = (∇W V i )∂i + V i W j∇ j∂i = (γ̇ V i )∂i + 	k
i j ẋ

j V i∂k ; here 	k
i j ẋ

j ≡ 	k
i j

(γ (t))ẋ j (t) is a known function of t on the curve; (ii) LW V = (W V i − V W i )∂i ≡
(V̇ i − V j W i

, j )∂i ; to compute V W i ≡ V j W i
, j we also need to know W in a neighborhood

of γ . �

15.2.5 A vector field V on γ will be called autoparallel if its absolute derivative along γ

vanishes, i.e. if

DV (t)

Dt
≡ ∇γ̇ V = 0

Check that

(i) the components V i (t) := V i (γ (t)) then satisfy the equations

V̇ i + 	i
jk ẋ k V j = 0

290 The absolute derivative was defined before in terms of the parallel transport (assumed to be known), here it is defined from
the opposite point of view, namely in terms of the (known) covariant derivative.
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(ii) these equations may be written in the form

V̇ i (t) = Si
j (t)V

j (t) Si
j (t) known functions of t

so that they form an autonomous system of n = dim M ordinary first-order linear differential
equations with non-constant coefficients.

Hint: (i) (15.2.4); (ii) Si
j (t) = −	i

jk(γ (t))ẋ k(t), which is a known function, provided that
the connection (represented by 	i

jk(x)) and the curve (in the form of xi (t)) are given. �

15.2.6 In terms of the covariant derivative we may
now introduce the operation of the parallel trans-
port of a vector along a curve as follows: if there is
a vector v at a point x on a curve γ and we want to
transport the vector to a point y, then we first con-
struct the autoparallel field generated by the vector

v and then take its value at the point y; this value w will be regarded as the result of the
parallel transport of the vector, w = τ

γ
y,xv. Show that

(i) if v has the components (with respect to a coordinate basis in x) vi ∈ R, then the components
wi ∈ R of the transported vector w (with respect to the coordinate basis in y) are obtained by
solving the equations of parallel transport

V̇ i + 	i
jk ẋ k V j = 0 i.e. V̇ i (t) = Si

j (t)V
j (t)

(for Si
j (t) = −	i

jk(γ (t))ẋ k(t)) with the initial condition V i (t1) = vi (if x = γ (t1)); then wi are
obtained as the value of the solution for t = t2 (if y = γ (t2)); so in brief

V̇ i (t) = Si
j (t)V

j (t) V i (t1) = vi wi := V i (t2)

(ii) if the assignment v �→ w is interpreted as a map τ γ
y,x : Tx M → Ty M , then the map (the operator

of the parallel transport) is linear and it satisfies the requirement

τ γ
z,y ◦ τ γ

y,x = τ γ
z,x x, y, z on the curve γ (otherwise arbitrary)

(iii) the parallel transport does not feel the parametrization of the curve, i.e. it depends on the path
rather than on the curve.

Hint: (i) according to (15.2.5) the equations V̇ i + 	i
jk ẋ j V k = 0 along with the initial con-

dition V i (t1) = vi yield the unique autoparallel field V (t) generated by the vector v; (ii) the
composition property of the operator τ

γ
y,x results immediately from the fact that the solution

of the equations is unique – its linearity stems from the linearity of the equations (a solution
linearly depends on the initial conditions); (iii) from the form of the equations of parallel
transport

dV i

dt
+ 	i

jk

dxk

dt
V j = 0
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we see the reparametrization invariance of the latter (there is the relation δV i = −	i
jk V kδx j

between the infinitesimal increments irrespective of a parametrization of xi (t), or alterna-
tively if V i (t) is a solution for xi (t), then the solution for xi (σ (t)) reads V i (σ (t))).

�

• Before we embark on developing a technique of transporting general tensor fields, we
need to derive the coordinate component formulas for the computation of the covariant
derivatives of an arbitrary tensor field, i.e. to finalize the computation from (15.2.1).

15.2.7 Check that

(i) for the covariant derivative of the coordinate frame and coframe fields there holds

∇ j∂i = +	k
i j∂k ∇W ∂i = +	k

i j W
j∂k

∇ j dxi = −	i
k j dxk ∇W dxi = −	i

k j W
j dxk

(ii) the component formula for the covariant derivative of a general tensor field reads

(∇W A)i ... j
k...l = W m Ai ... j

k...l,m − 	n
km W m Ai ... j

n...l − · · · + 	 j
nm W m Ai ...n

k...l

(iii) this result may be concisely summarized in the form of a table – a recipe for cooking the house
speciality (∇W A)i ... j

k...l (the recipe for the Lie derivative is also repeated for the convenience of
gourmets)

− − − − − − − − − − − − − − − − − − − −
| for preparation of ∇W A | for LW A |

− − − − − − − − − − −− | − − − − − − − − − − − | − − − − − − − − − |
| put on the bottom of a pan | W A...

... ≡ W m A...
...,m | W A...

... ≡ W m A...
...,m |

| plus for each A...i ... add | +W m	i
nm A...n... | −W i

,m A...m... |
| plus for each A...i ... add | −W m	n

im A...n... | +W m
,i A...m... |

− − − − − − − − − − −− − − − − − − − − − − − − − − − − − − − −
Hint: (15.2.1) and (15.2.3); compare with (4.3.4). �

15.2.8 Compute the components of the tensor ∇W g, the covariant derivative of the metric
tensor along the vector field W .

Hint: the table yields (there is the lump part plus two terms for two lower indices) (∇W g)i j =
W m gi j,m − W m	n

im gnj − W m	n
jm gin ≡ W m(gi j,m − 	n

im gnj − 	n
jm gin). �

15.2.9 The F-linearity of the operator ∇W with respect to W enables one to introduce the
operation of the covariant gradient by

∇ : T p
q (M) → T p

q+1(M) (∇ A)(V, . . . , W ; α, . . .) := (∇W A)(V, . . . ; α . . .)

Check that

(i) ∇ A is indeed a tensor field of the type stated above, so that ∇ is a tensor operation
(ii) in components (with respect to the coordinate basis) it gives

(∇ A)i ... j
k...lm = (∇m A)i ... j

k...l =: Ai ... j
k...l;m
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where

Ai ... j
k...l;m := Ai ... j

k...l,m − 	n
km Ai ... j

n...l − · · · + 	 j
nm Ai ...n

k...l

(iii) the computation of Ai ... j
k...l;m is performed according to the recipe

− − − − − − − − − − −
| for preparation of A...

...;m |
− − − − − − − − − − − − −− | − − − − − − − − − − − |

| first put on the bottom of a pan | ∂m A...
... ≡ A...

...,m |
| plus for each A...i ... add | +	i

nm A...n... |
| plus for each A...i ... add | −	n

im A...n... |
− − − − − − − − − − − − −− − − − − − − − − − − −

(iv) for a general (possibly non-coordinate) frame field we have

(∇ A)a...b
c...d f ≡ (∇ f A)a...b

c...d =: Aa...b
c...d; f

where

Aa...b
c...d; f := e f Aa...b

c...d − 	n
c f Aa...b

n...d − · · · + 	b
n f Aa...n

c...d

(v) for p = q = 0 (on functions) the covariant gradient coincides with the “ordinary” gradient
(regarded as a covector field)

∇ f = d f f ∈ F(M)

(vi) the covariant derivative along W may be written in terms of the covariant gradient as

(∇W A)i ... j
k...l = W m Ai ... j

k...l;m

Hint: (15.2.7). �

• So it holds that “semicolon” = comma plus a term containing the Christoffel sym-
bols added for each index; the expression Ai ... j

k...l;m is usually called in short the “covariant

derivative of Ai ... j
k...l by m” and it consists of the partial derivative by m plus the terms with

Christoffel symbols.
The covariant gradient may be regarded as a “derivative in an unspecified direction”;

if then one intends to compute the (covariant) derivative along a particular vector W , a
“scalar product” of the vector is to be performed with the “semi-finished product” ∇ A (this
immediately results from the F-linearity: ∇W A = W m∇m A). If the covariant gradient of a
tensor field happens to vanish in some domain, the field is said to be covariantly constant.
Then the covariant derivative of the field along any direction vanishes and so the field may
be regarded as being transported into all the points within the domain from its value at a
single point (just like the value of a constant function in an arbitrary point is known as long
as its value at a single point is known).

15.2.10 Evaluate the components of the tensor ∇g, the covariant gradient of the metric
tensor.

Hint: the table yields (there is the lump part plus two terms for two lower indices) (∇g)i jk ≡
gi j ;k = gi j,k − 	l

ik gl j − 	l
jk gil . �
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• Now we may return to the parallel transport of tensors. The concepts of the absolute
derivative, the autoparallel field and parallel transport may be extended in a straightforward
way from vector fields to arbitrary tensor fields.

15.2.11 The absolute derivative of a tensor field A along γ is defined as

DA(t)

Dt
:= ∇γ̇ A

and the field A on γ is called autoparallel if its absolute derivative along γ vanishes. Check
that

(i) the concept of the absolute derivative is well defined (if on γ there holds γ̇ = W , then the
derivative does not depend on W outside γ )

(ii) in local coordinates the condition for Ai ... j
k...l (t) := Ai ... j

k...l (γ (t)) being autoparallel reads

Ȧi ... j
k...l + ẋm

(
	i

nm An... j
k...l + · · · − 	n

lm Ai ... j
k...n

)
= 0

(iii) this equation may also be written as

Ȧi ... j
k...l (t) = Si ... jc...d

k...la...b (t)Aa...b
c...d (t) Si ... jc...d

k...la...b (t) known functions of t

so that (if n = dim M) they form an autonomous system of n p+q ordinary first-order linear
differential equations with non-constant coefficients.

Hint: (15.2.4), (15.2.5) and (15.2.7). �

15.2.12 The operation of parallel transport of a tensor field A along γ is introduced as
follows: if there is a tensor â at a point x on a curve γ and we want to transport the tensor
to a point y, then we first construct the autoparallel field generated by the tensor â and
then take its value at the point y; this value b̂ will be regarded as the result of the parallel
transport of the tensor, b̂ = τ

γ
y,x â. Show that

(i) the components b̂i ... j
k...l ∈ R of the transported tensor b̂ (with respect to the coordinate basis in y)

are obtained by solving the equations of parallel transport

Ȧi ... j
k...l + ẋm

(
	i

nm An... j
k...l + · · · − 	n

lm Ai ... j
k...n

)
= 0

with the initial condition Ai ... j
k...l (t1) = âi ... j

k...l and b̂i ... j
k...l are obtained as the value of the solution for

t = t2; so in brief

Ȧi ... j
k...l (t) = Si ... jc...d

k...la...b (t)Aa...b
c...d (t) Ai ... j

k...l (t1) = âi ... j
k...l b̂i ... j

k...l := Ai ... j
k...l (t2)

(ii) if the assignment â �→ b̂ is interpreted as a map τ γ
y,x : T p

qx M → T p
qy M , then the map (the operator

of parallel transport) is linear and it satisfies the requirement

τ γ
z,y ◦ τ γ

y,x = τ γ
z,x x, y, z on the curve γ (otherwise arbitrary)

(iii) the parallel transport depends on the path rather than on the curve.

Hint: just like in (15.2.6). �
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• In Section 4.4 we learned that the operator of Lie transport �∗
t may be expressed in

the form of the exponent of the Lie derivative, �∗
t = etLW . There is a similar possibility

also for the parallel transport and the covariant derivative, since the formula stems from the
composition property of the transport, being valid in both cases under consideration.

15.2.13 Let γ (t) be the integral curve of a field W . Denote by τ
γ
t the operator of parallel

transport backwards along γ by the parametric distance t , i.e.

τ
γ
t := τ

γ

γ (s),γ (s+t)

for any s. Show that

(i) τ
γ
t has the composition property

τ
γ
t+s = τ

γ
t ◦ τ γ

s

(ii) the covariant derivative may be expressed as

∇W A = d

ds

∣
∣
∣
∣
0

τ γ
s A

(iii) for the derivative of τ
γ
t with respect to t there holds

d

dt
τ

γ
t = τ

γ
t ◦ ∇W

(iv) for Cω tensor fields we may write

τ
γ
t = et∇W ≡ 1 + t∇W + t2

2!
∇W ∇W + · · ·

(v) the ordinary Taylor expansion of a function

ψ(x + t) = ψ(x) + tψ ′(x) + t2

2!
ψ ′′(x) + · · ·

may be regarded as a special case for (M, ∇) = (R[x], arbitrary connection on R), W = ∂x .

Hint: (i) (15.2.6) and (15.2.12); (iii) d
dt τ

γ
t = d

ds

∣
∣
s=0

τ
γ
t+s ; (iv) ( d

dt )
n
τ

γ
t = · · · = τ

γ
t (∇W )n ,

(4.4.2); (v) (4.4.1). �

• This expression enables one, just like in the case of the Lie derivative, to perform
a systematic expansion of the operator of infinitesimal parallel transport τ

γ
ε in terms of

powers of ε; for example, to within second-order accuracy in ε we have τ
γ
ε = eε∇W ≡

1 + ε∇W + ε2

2! ∇W ∇W . This will be used for the study of the relation between the curvature
and the dependence of the parallel transport on a path in Section 15.5.

15.3 Compatibility with metric, RLC connection

• All the particular examples of parallel transport which we mentioned in Section 15.1,
namely in E2 and E3 as well as on the sphere S2, shared a common property: the vectors
preserve the length under the transport. This means, however, that we actually treat the
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manifolds (M, g, ∇) endowed with a pair of structures, the metric tensor g, which enables
us to measure the lengths of the vectors and the linear connection ∇, which enables us
to transport the vectors along paths. The invariance of the length of vectors under parallel
transport means that the connection is compatible with the metric, or in short that we treat
the metric connection. In the component language this may also be stated as that for some
particular Christoffel symbols 	i

jk(x), being dependent on given gi j (x), a computation of
the change of the length of an arbitrary vector under parallel transport yields zero. Let us
focus our attention on this fact in more detail, now.

15.3.1 Consider a vector v at a point x on a curve γ . Starting from v, generate an autopar-
allel field V (∇γ̇ V = 0). Check that

(i) the requirement of preservation of the length of v by parallel transport may be stated as

∇γ̇ (g(V, V )) = 0 if ∇γ̇ V = 0

(ii) if this is to be true for an arbitrary curve γ and an arbitrary initial vector v, then for any two
vector fields W, V one should demand

∇W (g(V, V )) = 0 if ∇W V = 0

(iii) if this is to be true for any two equal arguments V, V , it should also be true for any two (possibly
different) arguments,291 i.e. for any three vector fields W, V, U the covariant derivative should
obey

∇W (g(V, U )) = 0 if ∇W V = 0 = ∇W U

(iv) this condition is equivalent to the requirement

∇g = 0 or in local coordinates gi j ;k = 0

A connection ∇ which satisfies this equation is called the metric connection.

Hint: (i) the expression f (t) := g(V (t), V (t)) is a function on the curve and ḟ = γ̇ f =
∇γ̇ f ; (iii) g(U + V, U + V ) = g(U, U ) + g(V, V ) + 2g(U, V ); (iv) (∇g)(V, U, W ) =
(∇W g)(V, U ) and g(V, U ) = CC(g ⊗ V ⊗ U ) ⇒ ∇W (g(V, U )) = (∇W g)(V, U ) +
g(∇W V, U ) + g(V, ∇W U ). �

15.3.2 Check that the requirement

gi j ;k = 0

represents n2(n + 1)/2 constraints imposed on n3 functions (the Christoffel symbols
	i

jk(x)), so that it is very promising; it even seems that one could satisfy an additional
n2(n − 1)/2 constraints.

Hint: gi j = g ji . �

291 Preserving of all lengths under the parallel transport thus also automatically leads to the preserving of all angles between the
vectors.
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• It turns out that this naive counting of the “degrees of freedom” indeed leads to a true
conclusion. A metric indeed induces a lot of compatible linear connections. Moreover, if
one adds one more condition, the vanishing torsion of the connection, the solution is even
unique. So let us first explain what exactly the torsion is and then prove the main result
indicated above.

15.3.3 Let (M, ∇) be a manifold with a linear connection. Check that

(i) the map

T : X(M) × X(M) → X(M) T (U, V ) := ∇U V − ∇V U − [U, V ]

is F(M)-linear in both arguments, so that actually a tensor field of type
(

1
2

)
, which is associated

with the connection ∇, is defined by this rule; it is called the torsion tensor292 (or briefly the
torsion) connection ∇

(ii) the tensor is antisymmetric (in the lower indices)

T (U, V ) = −T (V, U ) i.e. T i
jk = −T i

k j

and so it has n2(n − 1)/2 independent components
(iii) for its (coordinate) components one obtains the expression

〈dxi , T (∂ j , ∂k)〉 ≡ T i
jk = 	i

k j − 	i
jk ≡ −2	i

[ jk] i.e. 	i
jk = 	i

( jk) − 1

2
T i

jk

(iv) if the torsion of the connection vanishes, i.e. if

∇U V − ∇V U = [U, V ]

then the Christoffel symbols are symmetric in the lower indices

	i
jk = 	i

k j

this is the motivation to call it the symmetric connection
(v) the coefficients of a symmetric connection 	a

bc with respect to a non-holonomic basis ea are not
symmetric in the lower indices.293

Hint: (v) (non-vanishing) coefficients of anholonomy (see (9.2.10)) enter the formula. �

• Each linear connection is thus characterized (also) by its torsion and, in particular, the
torsion of the symmetric connection (by definition) vanishes (the connection is then said to
be torsion-free). If the connection is required to be at the same time metric and symmetric,
it imposes altogether n3 constraints on n3 functions 	i

jk . This “rule of thumb” calculation
indicates that the connection with this property might be unique.

15.3.4 Show that there is a unique connection which is simultaneously metric and sym-
metric. In order to do this check step by step that

292 Geometrical meaning of the torsion is studied in (15.8.1).
293 Since the coefficients of a connection do not constitute the components of a tensor, it may happen that they are symmetric

with respect to one basis, but they are not symmetric in another one. It may even happen, just as is true for the anholonomy
coefficients, that they vanish in one basis, but they do not vanish in another one; see, for example, (15.3.5).
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(i) the Christoffel symbols of the first kind294

	i jk := gil	
l
jk

of the connection which is metric and symmetric satisfy

	i jk + 	 j ik = gi j,k since it is metric
	i jk − 	ik j = 0 since it is symmetric

(ii) the two relations result in

gi j,k + gik, j − g jk,i = 2	i jk

and eventually

	i
jk = 1

2
gil (gl j,k + glk, j − g jk,l )

so that the requirement of being metric and symmetric indeed leads to the unique result for the
Christoffel symbols of the connection.295 This distinguished linear connection on a Riemannian
manifold is usually called the Riemann connection or the Levi-Civita connection; we will therefore
use the abbreviation RLC connection296

(iii) the non-coordinate definition of the RLC connection reads

g(∇U V, W ) := 1

2
{Ug(V, W ) + V g(U, W ) − Wg(U, V )

+ g([U, V ], W ) − g([U, W ], V ) − g(U, [V, W ])}
which is to be regarded as a definition of the expression ∇U V in terms of the right-hand side,
where no covariant derivative occurs.

Hint: (i) (15.3.1), (15.2.10) and (15.3.3); (iii) check the F-linearity of the right-hand side
and set the coordinate basis as U, V, W . �

• Since we already created a stockpile of the manifolds endowed with the metric, the
formulas obtained in this problem enable us to examine everything concerning connections
on real examples.

15.3.5 Compute the Christoffel symbols of the RLC connection in En directly from the
formula in (15.3.4) and check that

(i) for arbitrary n we obtain in Cartesian coordinates 	i
jk = 0

(ii) for n = 2 in polar coordinates the only non-vanishing gammas read297

	r
ϕϕ = −r 	ϕ

rϕ = 1/r

(iii) the same result for polar coordinates may be also obtained by transforming the Cartesian Christof-
fel symbols (which are zero according to item (i)) to the polar coordinates by means of (15.2.3)

294 Since 	i
jk (x) do not constitute the components of a tensor, this is not the operation of the lowering of the index; it is indeed a

definition.
295 One may check that the transformational properties of gi j (x) under the change of coordinates yield the proper (15.2.3)

transformational properties of 	i
jk (x).

296 Its role in the analysis of RLC circuits in electronics still remains obscure.
297 Due to the symmetry we do not list 	i

k j explicitly, if 	i
jk is already there.
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(iv) for n = 3 in spherical polar coordinates the only non-vanishing gammas are

	r
ϑϑ = −r 	ϑ

rϑ = 1/r 	ϕ
rϕ = 1/r

	r
ϕϕ = −r sin2 ϑ 	ϑ

ϕϕ = − sin ϑ cos ϑ 	
ϕ

ϑϕ = cot ϑ

and in cylindrical coordinates one gets (just like in polar coordinates in the plane)

	r
ϕϕ = −r 	ϕ

rϕ = 1/r.

�

15.3.6 Check that these expressions for Christoffel symbols in En result in a common
concept of the parallel transport rule of vectors in the Euclidean space En (the vectors are
just shifted with no change either of length or direction).

Hint: according to (15.2.6) and (15.3.5) the equations of parallel transport along any curve
read in Cartesian coordinates V̇ i = 0, whence V i (t) = constant. �

15.3.7 Use the formula obtained in (15.3.4) to compute the Christoffel symbols of the
RLC connection on the sphere S2 with the standard metric; check that in coordinates ϑ, ϕ

the only non-vanishing symbols are

	ϑ
ϕϕ = − sin ϑ cos ϑ 	

ϕ
ϑϕ = cos ϑ

sin ϑ

Hint: see (3.2.4). �

15.3.8 Check that on the sphere S2 with the standard metric the equations of parallel
transport of a vector V read as follows:

(i) along a general curve ϑ(t), ϕ(t)

V̇ ϑ − ϕ̇ sin ϑ cos ϑ V ϕ = 0 V̇ ϕ + cos ϑ

sin ϑ
(ϑ̇V ϕ + ϕ̇V ϑ ) = 0

(ii) along a parallel (of latitude) parametrized as ϑ(t) = ϑ0, ϕ(t) = t

V̇ ϑ − sin ϑ0 cos ϑ0 V ϕ = 0 V̇ ϕ + cos ϑ0

sin ϑ0
V ϑ = 0

and, in particular, along the equator

V̇ ϑ = 0 V̇ ϕ = 0

(iii) along a meridian parametrized as ϑ(t) = t, ϕ(t) = ϕ0

V̇ ϑ = 0 V̇ ϕ + cos t

sin t
V ϕ = 0

Hint: (i) see (15.2.6). �

15.3.9 Let us test the equations from (15.3.8) and check the result, which is well known
from the pictures in popular books trying to illustrate the subtleties of parallel transport in
“curved spaces.” Namely, the parallel transport of a vector around a right spherical triangle.
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So let ABC be a right triangle on the sphere S2 with the
vertices being the north pole (= C) and two points at
the equator, the point B lying a quarter of the equator’s
perimeter eastwards from A. Check that if we transport
(in the sense of the RLC connection on the sphere)
along the route C → A → B → C a vector which is
directed to the point A at the beginning, the transported

vector is rotated by π/2 counterclockwise with respect to the initial one (so that it has the
same length and is directed to the point B) and if we traversed the same route in the opposite
direction (along C → B → A → C), then it is rotated by the same angle clockwise.

Hint: the result itself is clear immediately without any computation from the metric com-
patibility of the RLC connection: the transported vector must not change its length as well
as the angle it makes with the line along which it is transported. Concerning the equations,
the “singularity” in a neighborhood of the point C (the coordinates happen to be defective
there) may be “healed” by a substitution of the edge of the triangle by an infinitesimal
quarter-circle ϑ = ε. The three “long” parts are computed trivially, on this short one the
equations linearize (due to ε � 1) to V̇ ϑ = −εV ϕ , V̇ ϕ = (1/ε)V ϑ and they are easily
solved; altogether one obtains that k∂ϑ �→ k

ε
∂ϕ , which is just what is needed. �

15.3.10 Check that if a vector is transported around the parallel line ϑ(t) = ϑ0 on the
sphere298 S2, it ends up rotated by the angle β‖ = 2π cos ϑ0 with respect to its initial
direction. Around this parallel of the fictitious non-rotating globe an arbitrary object passes
in just one day, which is at rest on the real rotating globe. In particular, this also holds for
a Foucault pendulum that is observed somewhere on the Earth. Check that the angle βFouc

of the rotation of the plane in which it swings coincides with β‖

β‖ = βFouc = 2π cos ϑ0

(and also in detail the angle of the rotation of the Foucault pendulum due to the shift along
the parallel line by a small angle δϕ is δϕ cos ϑ0, coinciding with the angle of the rotation
of a vector due to the parallel transport along the same trajectory). What does this result say
about the Foucault pendulum?

Hint: see (15.3.8); (a vector in the direction of the swinging undergoes parallel299 transport).
�

15.3.11 Let (M, ω, ∇) be an n-dimensional manifold endowed with a volume form and
a linear connection. Given n vectors v, . . . , w at a point, the volume of the parallelepiped
spanned by them is ω(v, . . . , w). A parallel transport of the vectors results in n new vectors
v̂, . . . , ŵ (at a different point) and the corresponding new volume ω(v̂, . . . , ŵ). The two

298 The angle is measured from the z-axis, the standard latitude α is measured from the equator; therefore sin α = cos ϑ0.
299 “The vector of swinging” tries to remain parallel in the “ambient” space E3, but the situation continually forces it to “project”

into the tangent plane to the sphere ≡ the Earth; one can prove that this is exactly the way in which the RLC connection works
with respect to the induced metric.
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structures are said to be compatible if an arbitrary parallel transport preserves the volume
of each such parallelepiped. Show that

(i) the condition of compatibility of the structures may
be expressed in the form

∇ω = 0 and in local coordinates ωi ... j ;k = 0

(ii) if in local coordinates ω = f dx1 ∧ · · · ∧ dxn (i.e.
ωi ... j = f εi ... j ), then the condition from item (i) relates f and 	i

jk by

f,k = f 	i
ik i.e. (ln f ),k = 	i

ik

(iii) the RLC connection is compatible with the metric volume form ωg , i.e. the RLC Christoffel
symbols obey300

(ln
√

|g|),k = 	i
ik

Hint: (i) like in (15.3.1); (ii) write down explicitly ωi ... j ;k = 0 and use (5.6.4); (iii)
according to (5.6.7) we have ∂g/∂gi j = gg ji (g ≡ det g); it is convenient to use the
machinery of connection forms (see Section 15.6) and to write in an orthonormal
basis ∇V ωg = ∇V (e1 ∧ · · · ∧ en) = (∇V e1) ∧ · · · ∧ en + · · · + e1 ∧ · · · ∧ (∇V en) = · · · =
−ωa

a (V )(e1 ∧ · · · ∧ en) = 0 due to ωab = −ωba (15.6.6).

• Let us have a look at some practical manipulations with the coordinate expressions
containing covariant derivatives.301

15.3.12 Check that

(i) the “semicolon” operation (just like the “colon” operation, the ordinary partial derivative) is
linear and on a product it behaves according to the Leibniz rule; so, for example,

(
Ai

jk + λBi
jk

)
;l

= Ai
jk;l + λBi

jk;l

(
Ai

j Bk
lm

)
;n

= Ai
j ;n Bk

lm + Ai
j Bk

lm;n

(ii) also the inverse metric tensor gi j is covariantly constant with respect to the metric connection,
i.e.

gi j ;k = 0 ⇒ gi j
;k = 0

(iii) the semicolon operation in the sense of the metric connection (in particular, RLC) commutes
with the raising and lowering of indices; e.g.

(gi j A jl );k = gi j A jl;k

Hint: (i) this is the behavior of ∇i , see (15.2.9); (ii) ∇1̂ = 0 (commuting with contractions),
i.e. δi

j ;k = 0; (iii) both �g and �g are combinations of the tensor product with the (covariantly

300 It is clear intuitively that if parallel transport preserves the scalar products (consequently, also the unit cube) then it also
preserves the volume, since the volume form ωg is just “tuned” to the unit cube (see Section 5.7). The compatibility of the
pairs metric ↔ volume form and metric ↔ connection thus results automatically in the compatibility of the pair volume form
↔ connection.

301 This may be regarded as a continuation of the exercises of the index gymnastics from (2.4.14) and (5.2.6) (see footnote 50),
which is made possible by the addition of a further popular gymnastic apparatus, the semicolon.
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constant) tensors g or g−1 and contractions; e.g. ∇W (�gV ) = ∇W (C(g ⊗ V )) = C((∇W g) ⊗
V ) + C(g ⊗ ∇W V ) = �g(∇W V ). �

• For the computations of the covariant derivatives of forms it is sometimes fairly useful
to realize how the operator ∇V behaves with respect to the Hodge star ∗g . For the metric
connection the simplest possible behavior takes place.

15.3.13 Check that the operator of the covariant derivative ∇V with respect to the metric
connection ∇ commutes with the operator of dualization ∗g

[∇V , ∗g] = 0

Hint: realize that ∗g is composed from the operations of the raising of indices, contractions
and the tensor product with the (covariantly constant, ∇V ωg = 0) volume form: ∇V ∗g α ∼
∇V {C . . . C((�g . . . �gα) ⊗ ωg)} = C . . . C((�g . . . �g∇V α) ⊗ ωg) ∼ ∗g∇V α. �

15.3.14
∗

Consider a connection which is metric, yet not necessarily symmetric. Generalize
the results of problem (15.3.4) for this case. In particular, check that

(i) the Christoffel symbols of the first kind of the connection with a given torsion satisfy

	i jk + 	 j ik = gi j,k since it is metric
	i jk − 	ik j = −Ti jk from the definition of the torsion

(ii) the two relations yield

gi j,k + gik, j − g jk,i = 2	i( jk) + (Tjki + Tkji )

from where

	i( jk) = 1

2
(gi j,k + gik, j − g jk,i ) − 1

2
(Tjki + Tkji )

and eventually

	i
jk = 	i

( jk) − 1

2
T i

jk = 1

2
gil (gl j,k + glk, j − g jk,l ) − 1

2

(
T i

jk + T i
k j + T i

jk

)

The metricity plus the prescribed torsion thus result in a unique expression for the Christoffel
symbols of the sought connection.302 (The torsion being zero, we return to the RLC connection.)

Hint: (i) (15.3.1), (15.2.10) and (15.3.3); (iii) set the coordinate basis for U, V, W . �

15.4 Geodesics

• Now, having been equipped with the machinery of the linear connection, we may return
to the concept which opened the chapter, the concept of acceleration. If we realize what
is actually performed with the velocity field defined on a curve in order to compute the
acceleration, we can immediately conclude that the acceleration at a given point on the

302 Note that the symmetric part of the Christoffel symbols is not given by the expression for the RLC connection alone, but rather
it contains in addition a part composed of (the tensor) −T i

( jk).
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curve is nothing but the absolute derivative of the velocity field γ̇ along the curve, or in
terms of (15.2.4) the covariant derivative of the velocity along the velocity itself303

a = ∇γ̇ γ̇ = ∇vv v := γ̇ = the velocity vector

A case of particular interest arises when the acceleration vanishes. This is good old uniform
straight-line motion. The corresponding curve on (M, ∇) is thus characterized by the equa-
tion ∇γ̇ γ̇ = 0; it is called an (affinely parametrized) geodesic and it represents the most
reasonable realization of the concept of a “straight line” (together with a particular “speed”
of the motion along the line) on a general manifold with a linear connection.

15.4.1 Let γ be an affinely parametrized geodesic on (M, ∇). Show that

(i) in local coordinates we have

∇γ̇ γ̇ = 0 ↔ ẍ i + 	i
jk ẋ j ẋ k = 0 the geodesic equation

so that we get a system of n ordinary quasi-linear second-order differential equations for the
unknown functions xi (t)

(ii) the geodesic feels only the symmetric part of the Christoffel symbols304

(iii) the geodesics in En , when expressed in Cartesian coordinates, are just the curves

xi (t) = xi
0 + vi t vi ≡ ẋ i (0), xi

0 ≡ xi (0)

(iv) in the general case the first two terms of the expansion in t of the coordinate presentation of a
geodesic read

xi (t) = xi
0 + vi t − 1

2
	i

jkv
jvk t2 + · · ·

vi ≡ ẋ i (0), xi
0 ≡ xi (0), 	i

jk ≡ 	i
jk

(
xi

0

)

Hint: (i) see (15.2.5) for V = γ̇ ; (iii) see (15.3.5); (iv) xi (t) = xi (0) + ẋ i (0)t +
1
2 ẍ i (0)t2 + · · · . �

15.4.2 Let (M, ∇) = (S2, ∇RLC). Check that

(i) the acceleration corresponding to the uniform motion along a meridian is zero
(ii) the acceleration corresponding to the uniform motion along a parallel is not zero (even a ∦ v),

except for the longest parallel = the equator (and trivially also for the opposite extreme “parallel,”
staying still at any pole)

(iii) all the meridians are geodesics, the only parallel which happens to be a geodesic is the equator;
in general the only geodesics on the sphere are the great circles (the circles with the maximum
possible radius; trivially also the curve which represents standing still at any point).

Hint: according to the results from (15.3.7) we get: (i) a ∼ ∇ϑ∂ϑ = 0; (ii) a ∼ ∇ϕ∂ϕ =
− sin ϑ cos ϑ ∂ϑ . �

303 So the dot in the expression a = v̇, corresponding to the rate of change of the vector v, implicitly contains its parallel transport;
thus it is actually the covariant derivative.

304 If the torsion of the connection does not vanish, it contributes to the symmetric part (15.3.14). Then if there are two connections,
both of them being metric (with respect to the same g), differing, however, in the torsion, they will generate in general different
families of geodesics – see an example in (15.8.3).



15.4 Geodesics 391

• Now let us concentrate on the issue of the parametrization. One may also traverse the
path which corresponds to the uniform straight-line motion non-uniformly. Although the
acceleration does not vanish in this case, it is rather specific, being at each point tangent
to the curve, i.e. proportional to the velocity ∇γ̇ γ̇ ∼ γ̇ . From the opposite point of view, a
curve which satisfies the equation ∇γ̇ γ̇ = f (t)γ̇ is also straight if regarded as a path, only
the motion along this path fails to be uniform. Therefore such curves are called geodesics
as well, being, however, not affinely parametrized.

15.4.3 Let γ be an affinely parametrized geodesic and let γ̂ := γ ◦ σ be a reparametrized
curve, γ̂ (t) := γ (σ (t)), σ ′(t) > 0. Check that

(i)

∇ ˙̂γ
˙̂γ = σ ′′ ˙̂γ

(ii) the affine reparametrization σ (t) = at + b (and no other one) does not spoil the affine
parametrization of a geodesic

(iii) by means of a unique affine reparametrization one can “tune” a given geodesic to two given
points P, Q on it (not too far from each other) so as to satisfy P = γ (0) and Q = γ (1); now the
points P, Q are at a parametric distance = 1 from each other and the point P is its “origin”

(iv) if a geodesic γ (t) turns out to be “badly” (non-affinely) parametrized, one can always make a
reparametrization such that the new geodesic γ̄ is already affinely parametrized.

Hint: (i) (2.3.5) ⇒ ∇ ˙̂γ
˙̂γ = σ ′(σ ′′γ̇ + σ ′∇γ̇ γ̇ ); (ii) we need σ ′′ = 0; (iii) we need to map

(t1, t2) �→ (0, 1) by means of t �→ at + b; (iv) if ∇γ̇ γ̇ = f (t)γ̇ , then for γ := γ̄ ◦ s (s =
s(t) ⇒ γ̇ = s ′ ˙̄γ ) we get ∇γ̇ γ̇ = s ′′ ˙̄γ + (s ′)2∇ ˙̄γ ˙̄γ = f s ′ ˙̄γ so that to reach ∇ ˙̄γ ˙̄γ = 0 it is
enough to solve s ′′ = s ′ f (to find s(t) for given f (t)), which is easy. �

• So we see that the parametrization which is optimal from the point of view of the
simplicity of the equations (the affine one) can always be achieved. Therefore we will
automatically understand an affinely parametrized geodesic when speaking about a geodesic
from now on and we will specially point out if this will not be the case.

The procedure of finding geodesics of the RLC connection as we learned up to now is
fairly lengthy and laborious. Fortunately, there is a convenient alternative way, which is
based on the Lagrange equations from analytical mechanics. The steps performed in both
approaches may be summarized as follows:

g �→ 	 �→ ẍ + 	 ẋ ẋ = 0 �→ x(t) straightforward approach

g �→ L �→ E �→ x(t) Lagrangian approach

(see the problem). For a given g, the Lagrangian approach actually turns out to be the easiest
and quickest way for

1. finding the explicit form of the equations for geodesics
2. finding the solutions of the equations
3. finding the explicit expressions for the Christoffel symbols themselves
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(the main source of the power of the new approach concerning item 2 lies in making
use of well-known tricks from the Lagrangian machinery – a relation between the cyclic
coordinates and the conservation laws, see (18.4.2)).

15.4.4 Let (M, g) be a Riemannian manifold, γ a curve on M and ∇ = ∇RLC the RLC
connection corresponding to g. Then the functional

S[γ ] := 1

2

∫

g(γ̇ , γ̇ ) dt ≡
∫

L dt L(x, ẋ) = 1

2
gi j (x)ẋ i ẋ j

may be regarded as an action integral for the free motion γ (t), since the Lagrangian L
contains the kinetic energy alone (L = T ). Check that

(i) the Euler–Lagrange expression Ei corresponding to this Lagrangian is305

Ei (x, ẋ) ≡ ∂L

∂xi
− d

dt

∂L

∂ ẋ i
= −gi j

(
ẍ j + 	

j
kl ẋ

k ẋ l
)

≡ −gi j (∇γ̇ γ̇ ) j

(ii) the Lagrange equations are equivalent to the geodesic equations

Ei (x, ẋ) = 0 ⇔ ∇γ̇ γ̇ = 0

(iii) the explicit form of the Lagrange equations for this Lagrangian enables one to immediately read
off the Christoffel symbols 	i

jk .

Hint: (i) see (15.3.4); (ii) gi j is non-singular; (iii) the antisymmetric part of 	i
jk vanishes

for the RLC connection and the symmetric part may be read off from 	
j
kl ẋ

k ẋ l . �

15.4.5 Let (T 2, g) be the torus in E3 with the induced metric. Check by plugging into
the equations that the following curves happen to be geodesics and draw the corresponding
pictures:

(i) ψ(t) = kt, ϕ(t) = ϕ0

(ii) ψ(t) = ψ0, ϕ(t) = kt for particular values of ψ0 (which ones?).

Hint: see (3.2.2), L = 1
2 [(a + b sin ψ)2ϕ̇2 + b2ψ̇2]. �

• Consider now a more general Lagrangian, also containing the potential energy, L =
T − U . The motion deviates from a “straight line” due to the force corresponding to U .

15.4.6 Let the action integral be

S[γ ] :=
∫

L dt L(x, ẋ) = 1

2
gi j (x)ẋ i ẋ j − U (x) ≡ T (x, ẋ) − U (x)

Check that

(i) the Euler–Lagrange expression, corresponding to this Lagrangian, comes out as

Ei (x, ẋ) ≡ ∂L

∂xi
− d

dt

∂L

∂ ẋ i
= −gi j (∇γ̇ γ̇ ) j − U,i

305 For a coordinate-free derivation see (15.4.16).
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(ii) the Lagrange equations are equivalent to

Ei (x, ẋ) = 0 ⇔ ∇γ̇ γ̇ = −�gdU

so that the motion is no longer along a geodesic in general, but rather it has an acceleration of
−grad U .

Hint: see (15.4.4). �

15.4.7 We know from analytical mechanics that the Lagrange equations (of the second
kind) in general (even if there does not exist any potential energy) read

d

dt

∂T

∂ ẋ i
− ∂T

∂xi
= Qi T = 1

2
gi j (x)ẋ i ẋ j

where Qi is the i th generalized force and T is the kinetic energy of a system.

(i) Check that their coordinate-free version is

a ≡ ∇γ̇ γ̇ = Q

with Q being a force (vector) field Q = Qi∂i , Qi = gi j Q j , so that actually they represent the
“Newton” equation306

“acceleration = force”

on a configuration manifold (M, g, ∇RLC)
(ii) according to textbooks of analytical mechanics the generalized force is computed by the formula

Qi :=
N∑

k=1

Fk · ∂rk

∂xi

where rk(x1, . . . xn) represent the parametrization of the positions of individual point masses in
terms of the generalized coordinates xi and Fk is the force acting on the kth point mass. Check
that if this parametrization is regarded as a map f : M → R

3N , then the expression for Qi is
nothing but a component expression of the pull-back of the force (as a covector field) from R

3N

to the configuration space M (see also (3.2.9)). �

• Our lifelong experience results in a clear feeling that the shortest path connecting two
points is the straight path. This experience stems from the particular spaces E3 or E2. Now
we are in a position, however, to investigate the relation between the straight and the shortest
lines on an arbitrary Riemannian manifold. Since Section 2.6 we can compute the lengths
of curves and now we have learned that the straight lines are the geodesics. So the question
is whether geodesics (regarded as straight lines) happen to also be at the same time the
shortest paths.

Right at the beginning we should realize that the length of a curve does not depend
on the parametrization (2.6.9), so that the shortest path is indeed only a path (without

306 With unit mass; recall that if a system of particles with various masses is under consideration, it is formally described as the
motion of a single particle in a many-dimensional Riemannian (configuration) space, the masses being hidden in the metric
tensor g; see (2.6.7) and (3.2.9).
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parametrization). This means that even if we find that the shortest path turns out to be a
geodesic, the result certainly may not come out as the affinely parametrized geodesic.

15.4.8 The functional of the length of a curve (see (2.6.9) and (4.6.1)) may be regarded
as an action integral with the Lagrangian307

L(x, ẋ) :=
√

gi j (x) ẋ i ẋ j

Check that

(i) the Lagrange equations for this Lagrangian are

ẍ i + 	i
jk ẋ j ẋ k = L̇

L
ẋ i i.e. in a coordinate-free form ∇γ̇ γ̇ = χγ̇

where L̇ is the “total” time derivative308 of the Lagrangian L , 	i
jk correspond to the RLC con-

nection and χ ≡ L̇/L
(ii) the shortest path is a geodesic

(iii) the affine parametrization of this geodesic is achieved in the natural parameter s, being a param-
eter such that its increment coincides with the increment of the actual length of the curve (i.e.
the length of the path between the points γ (s1) and γ (s2) is simply s2 − s1)

(iv) if ψ is a non-zero function, then

∇γ̇ γ̇ = ψ̇

ψ
γ̇ ⇔ ∇γ̇

( γ̇

ψ

)
= 0

so that the equation for the shortest path may also be written in the form

∇γ̇

(
γ̇

L

)

≡ ∇γ̇

(
γ̇

√
gi j (x) ẋ i ẋ j

)

≡ ∇γ̇

(
γ̇

||γ̇ ||
)

= 0

(in the natural parameter we have L ≡ √
gi j (x) ẋ i ẋ j ≡ ||γ̇ || = 1, so that ∇γ̇ γ̇ = 0 then).

Hint: (i) see (15.3.4); (ii) see (15.4.3); (iii) if ∇γ̇ γ̇ = (L̇/L)γ̇ , then the improving procedure
from (15.4.3) yields the equation s ′′ = s ′L ′/L with a solution L = s ′, or ds = L dt ; hence
s2 − s1 = ∫ t2

t1
L dt = the length of the curve. �

• By variation of the functional of the length of the curve we investigate in principle
only its stationary points (local extrema or saddle points). In numerous simple particular
cases it is intuitively clear what the situation looks like “globally.” For example, consider
two points A, B on a sphere, which do not happen to be opposite one another. If we join
them by the shorter part of a great circle, we get the path with minimal length, whereas
the complementary longer part of the great circle turns out to be only a saddle point of the
functional of length, since any warp evidently results in its prolongation and its “rotation”
along the sphere (with a view to deforming it step by step to the shorter part) makes it shorter

307 Note that this (reparametrization invariant) Lagrangian is (up to a factor of 2) a square root of the Lagrangian from problem
(15.4.4), which was not reparametrization invariant and therefore it could yield as extremals the curves with a particular
parametrization; see also (15.4.16).

308 The derivative of the function L(x(t), ẋ(t)) with respect to time, which takes into account the fact that the time enters through
both x(t) and ẋ(t); it may be written in detail as L̇ = ∂L

∂xi ẋ i + ∂L
∂ ẋ i ẍ i , but here it is more convenient to leave it as it is.
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(as our intuition signals and an elementary computation confirms). In general, however, the
issue of the global properties of the critical points of the length functional may be fairly
complicated and they are beyond the scope of this book.

Additional complication refers to certain particular pairs of points (they are called con-
jugate points). If we were to choose, for example, the north and south poles as A, B on
the sphere, there would be an infinite number of (globally) shortest paths (each meridian).
This occurs only for certain exceptional pairs of points, being always “very far” to each
other. It turns out that for each point x ∈ M there is a neighborhood O (called the geodesic
neighborhood), in which there is just one309 shortest path leading to each y ∈ O from x (it
is clearly a geodesic).

In this neighborhood one can introduce extremely useful coordinates, tailored to the linear
connection; they are known as the normal coordinates. For their construction recall that a
geodesic may be uniquely fixed either by a point where it is in some “time” and a tangent
vector at that point (the position and the velocity at a single time) or by the positions at two
instants of time.310

15.4.9 Denote by γv(t) the geodesic starting at time zero from the point P with velocity
v,

γv(0) = P ∈ M γ̇v(0) = v ∈ TP M

Check that a simple relation holds

γv(bt) = γbv(t) b ∈ R

or, put another way, a b-fold increase of the initial velocity results in a b-fold increase of
the velocity along the whole trajectory (the motion takes place along the same path).

Hint: the curve γ̂ (t) := γv(bt) is a geodesic ( ˙̂γ = bγ̇v ⇒ ∇ ˙̂γ
˙̂γ = · · · = 0) which satisfies

γ̂ (0) = P , ˙̂γ (0) = bv ⇒ due to the uniqueness it necessarily coincides with γbv(t); or
alternatively: the operator of the parallel transport (of the velocity vector along the geodesic)
is linear. �

15.4.10 On a manifold with connection (M, ∇)
define the exponential map (centered at P ∈ M)

exp : TP M → M v �→ exp v := γv(1)

where γv(t) is the geodesic from problem (15.4.9).
So one assigns to a vector v the point from M to

which we arrive at t = 1, if at time t = 0 we start from the point P with initial velocity v

and all the while the motion is uniform and straight-line (i.e. along a geodesic). Check that

309 This may be obtained as a result of an analysis of differential equations governing a geodesic. It is a second-order equation
and a contemplation of additional conditions leading to a unique solution yields the conclusion mentioned above.

310 Each of these input data evidently fixes the uniform straight-line motion; from a formal point of view a second-order system
ẍ + 	 ẋ ẋ = 0 needs either x(t0) and ẋ(t0), or x(t0) and x(t1), the second possibility being trouble-free only in the geodesic
neighborhood of the point γ (t0).
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(i)

exp (v = 0) = P

(ii) the coordinate presentation of the exponential map reads

exp : vi �→ xi (v1, . . . , vn) ≡ xi (P) + vi − 1

2
	i

jk(P)v jvk + · · ·

(iii) exp∗0 is a non-degenerate (i.e. its kernel vanishes) linear map, so that exp maps bijectively
(diffeomorphically) some neighborhood of zero in TP M to some neighborhood of the point P

(iv) the uniform straight-line motion in the tangent space is mapped to the uniform straight-line
motion on a manifold (i.e. along a geodesic)

exp (vt) = γv(t)

Hint: (ii) t = 1 in the expression of a geodesic (15.4.1); (iii) the Jacobian matrix at zero is
J i

j (0) = δi
j (for small vi it reduces to a translation vi �→ xi

0 + vi ); (iv) see (15.4.9). �

• The fact that a neighborhood of a point P may be diffeomorphically mapped on a
neighborhood of the zero in a linear space TP M means in practice that we obtain local
coordinates in the neighborhood of the point P . The most important property of the coor-
dinates constructed in this particular way is the vanishing of all Christoffel symbols in the
point P . This fact greatly simplifies numerous computations and proofs (actually all that is
needed in doing so is only to be aware of their existence, there is no need to construct them
explicitly).311

15.4.11 Let exp be the exponential map centered at P ∈ M . If in TP M an (arbitrary) basis
ei is fixed, we may introduce in a neighborhood of the point P Riemann normal coordinates
by the prescription

xi ↔ Q ⇔ Q = exp(v) ≡ exp(xi ei )

So a geodesic is constructed starting (t = 0) in P and passing at t = 1 through the point
Q, which is to be assigned coordinates. The geodesic has the unique initial velocity v and
this velocity in turn has components with respect to ei ; these components are declared (by
definition) as the coordinates xi . Check that in these coordinates

(i) the geodesic γv(t) reads

xi (t) = vi t if v = vi ei

(ii) for any symmetric connection (in particular, also RLC)

	i
jk(P) = 0

(iii) in these coordinates there holds

gi j,k(P) = 0 so that in a neighborhood of P gi j (x) =̇ gi j (P) + 1

2
gi j,kl (P)xk xl

311 Let us mention also that in general relativity these coordinates have a direct physical meaning as the coordinates with respect
to a frame of reference which freely falls in a gravitational field (locally inertial frame), so that the action of the force due to
the gravitational field (locally) vanishes.
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(i.e. a linear term is missing in the expansion) and, in particular, for an orthonormal basis ei the
coordinate expression of the metric tensor in a neighborhood of the point P is

gi j (x) = ηi j + Ki jkl x
k xl + · · · Ki jkl = K(i j)(kl) = constant

Hint: (i) according to (15.4.10) we have exp((vi t)ei ) = γv(t); (ii) the general equation for
a geodesic ẍ i + 	i

jk ẋ j ẋ k = 0 and the fact that here xi (t) = vi t yields 	i
jk(x(t))v jvk = 0

on the whole geodesic x(t); for t = 0 this gives 	i
jk(P)v jvk = 0 for all vi ⇒ 	i

( jk)(P) = 0
(for t �= 0 	i

jk(x(t)) depends on vi via x(t) so that on different vi actually different quadratic
forms vanish, which does not allow one to deduce the vanishing of the forms); (iii) for an
RLC connection it yields item (ii) and (15.3.4):

	i jk + 	 j ik = gi j,k metric connection (holds in arbitrary coordinates)

	i jk − 	ik j = 0 symmetric connection (holds in arbitrary coordinates)

	i jk(P) + 	ik j (P) = 0 holds in normal coordinates centered at P

so that all 	 j ik(P) = 0 and then also gi j,k(P) = 0. �

• As a simple illustration (see also (15.5.8)) of the use of these coordinates let us mention
the following useful technicality, which holds for the coordinate computation of Lie and
exterior derivatives.

15.4.12 Let α be a 1-form and V a vector field. Then in (arbitrary) coordinates we have

(LV α)i = αi, j V
j + V j

,iα j (dα)i j = −2α[i, j]

Check by a direct computation that

(i) if we substitute in these expressions each comma by a semicolon (the partial derivative by the co-
variant) in the sense of an arbitrary symmetric connection (in particular, also RLC), the expression
actually does not change (the new terms pairwise cancel)

(ii) the same rule holds in general when the Lie derivative of an arbitrary tensor field as well as the
exterior derivative of an arbitrary form are computed.

Hint: see (5.2.6), (6.2.5), (4.3.4), (15.2.9) and the symmetry 	i
jk = 	i

k j (15.3.3). �

15.4.13 Check the validity of the general statement from (15.4.12) making use of the
normal coordinates.

Hint: both expressions to be compared (with commas versus semicolons) are (a priori
different) tensor fields,312 the expression with semicolons containing additional terms with
Christoffel symbols; in normal coordinates centered at P ∈ M they coincide at the point P
for any symmetric connection (15.4.11), so that at this point (being arbitrary) and in these
particular coordinates the two tensors are indeed equal; the equality of two tensors does
not, however, depend on the choice of the coordinates. �

312 Consider, for example, αi, j V j + V j
,i α j . This is a tensor field, since it is (LV α)i (although neither of the two terms by itself is

a tensor). After replacing commas by semicolons both terms become tensor fields even by themselves (αi ; j V j = (∇V α)i and

V j
;i α j = (∇V (α))i ) so that also their sum is all right.



398 Parallel transport and linear connection on M

15.4.14 Show that the Killing equations may also be written in terms of covariant deriva-
tives in the sense of RLC connection and then take a form

ξi ; j + ξ j ;i = 0 ξi := gi jξ
j

Hint: see (4.6.6), (15.3.1) and (15.4.13). �

• Recall that we have already encountered the exponential map when speaking about Lie
groups; namely in Section 11.4 we studied the map

exp : TeG ≡ G → G X �→ exp X := γ X (1)

We see that this definition coincides with the definition introduced here (15.4.10), provided
that M = G, P = e (so that it is centered at the unit element of the group), v = X and if the
one-parameter subgroup γ X (t) were a geodesic on the group G in the sense of some linear
connection on G. It turns out that such a connection may indeed be easily constructed so
that the “group” exponential map actually reduces to be a particular case of the “geodesic”
one.

15.4.15
∗

Define on a Lie group the parallel trans-
port of vectors by means of the left translation, i.e.
declare the operator

τh,g := Lhg−1∗ : TgG → ThG g, h ∈ G

to be the operator of parallel transport (it does not
depend on the path between the points). Check that

(i) it is linear and satisfies

τh,k ◦ τk,g = τh,g h, k, g ∈ G

(it may indeed serve as a parallel transport operator)
(ii) the covariant derivative corresponding to this parallel transport is defined by

∇V W = 0

for any left-invariant field W (and arbitrary V )
(iii) the coefficients of the connection 	a

bc with respect to the left-invariant frame field ea vanish
(iv) the tensor of the torsion reads (in the left-invariant basis)

T (ea, eb) = −[ea, eb] ≡ −cc
abec i.e. T a

bc = −ca
bc

so that this (simple) connection has (for non-Abelian groups) non-vanishing torsion
(v) the geodesics emanating from the unit element of the group happen to coincide with one-

parameter subgroups.

Hint: (ii) the covariant derivative measures a deviation from the parallel transport and the
field W , being left-invariant, satisfies τh,gW (g) = W (h), so that it is invariant with respect
to the parallel transport along any curve; (iv) ∇aeb = 0; (v) see (11.3.3). �
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• Now, let us have a look at how the equation of the geodesics of the RLC connection
may be derived from the functional (15.4.4) in a coordinate-free way.

15.4.16
∗

Let (M, g) be a Riemannian manifold, γ a curve on M and ∇ the RLC connection
corresponding to g. Perform an infinitesimal variation of the curve γ by means of the flow
of a “deforming” vector field W , i.e. pass to the curve γε(t) ≡ �ε ◦ γ (t), where �s is the
flow generated by the field W (the field W should vanish at the points γ (t1) and γ (t2) since
the endpoints of the curve are to be kept fixed in the course of the variation). Check that

(i) the functional S[γ ] from (15.4.4) responds to the change of argument as follows:

S[γ ] := 1

2

∫

g(γ̇ , γ̇ ) dt �→ S[γε] = S[γ ] + ε

∫

〈E, W 〉 dt + · · ·

where the Euler–Lagrange 1-form E reads

E := −g(· , ∇γ̇ γ̇ ) ≡ −�g∇γ̇ γ̇

so that the critical points of the functional S[γ ] coincide with the (affinely parametrized) geodesics
(∇γ̇ γ̇ = 0)

(ii) if a potential energy is added to the action (15.4.6), i.e. we add the term − ∫
U (γ (t)) dt , the

Euler–Lagrange 1-form undergoes a change to

E = −�g∇γ̇ γ̇ − dU

so that the critical points of the functional S[γ ] turn out to be the solutions of the (actually
“Newton”) equation (see (15.4.7))

∇γ̇ γ̇ = −�gdU ≡ −grad U

⇒ we no longer move along the geodesics, but there is the non-vanishing acceleration −grad U
(iii) for the “square root” action Ŝ[γ ] := ∫ √

g(γ̇ , γ̇ ) dt (the reparametrization invariant functional
of the length) we similarly get313

Ê := −�g∇γ̇

(
γ̇√

g(γ̇ , γ̇ )

)

≡ −�g∇γ̇

(
γ̇

||γ̇ ||
)

so that the critical points of the functional Ŝ[γ ] again turn out to be the geodesics (this time
parametrized arbitrarily, ∇γ̇ (γ̇ /||γ̇ ||) = 0).

Hint: (i) γ �→ �ε ◦ γ ⇒ γ̇ �→ �ε∗γ̇ . Then,

S[�ε ◦ γ ] = 1

2

∫

g(�ε∗γ̇ , �ε∗γ̇ ) dt = 1

2

∫

(�∗
ε g)(γ̇ , γ̇ ) dt

= S[γ ] + ε
1

2

∫

(LW g)(γ̇ , γ̇ ) dt + · · ·

Disentangling LW {g(U, V )} = ∇W {g(U, V )} for the RLC connection gives

(LW g)(U, V ) = g(∇V W, U ) + g(∇U W, V )

313 This reduces to E after the choice of the “natural parameter,” in which g(γ̇ , γ̇ ) = 1.
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(in coordinates it is the identity (LW g)i j = Wi ; j + W j ;i from (15.4.14)), from where

(LW g)(γ̇ , γ̇ ) = 2g(∇γ̇ W, γ̇ ) = 2γ̇ g(W, γ̇ ) − 2g(W, ∇γ̇ γ̇ )

Since γ̇ in the first term is actually the derivative with respect to t of the function standing
on the right, under the integral sign it may be omitted (we get g(W, γ̇ ) evaluated at the
boundary of the interval 〈t1, t2〉, which is zero since there W = 0). One is left with

S[�ε ◦ γ ] = S[γ ] − ε

∫

g(W, ∇γ̇ γ̇ ) dt + · · · ≡ S[γ ] + ε

∫

〈E, W 〉 dt + · · ·

from where we immediately get (W is arbitrary, g is non-degenerate) the equation ∇γ̇ γ̇ =
0. (ii)

∫
(U ◦ γ ) dt �→ ∫

(U ◦ �ε ◦ γ ) dt = ∫
(�∗

εU ◦ γ ) dt = ∫
(U ◦ γ ) dt + ε

∫
(WU ◦

γ ) dt + · · · = ∫
(U ◦ γ ) dt + ε

∫
(〈dU, W 〉 ◦ γ ) dt + · · · ; (iii) δ

√
2u = (2u)−1/2δu and

(15.4.8). �

15.4.17 Consider two highways, both of them starting from Bratislava (or any other town
of your choice) going in a westward direction. The first highway proceeds all the time
straight forward (i.e. it is a geodesic) and the second one is always directed westward (i.e.
it keeps track along a parallel line). Find out the (approximate) distance between the two
highways after 1, 10 and 100 km from the starting point.

Hint: for the geodesic highway there holds a = ∇vv = 0 (where v ≡ γ̇ is the velocity of
the motion and a is its acceleration); for the “parallel line” highway choose v = −eϕ (eϑ , eϕ

being the standard orthonormal frame field on the sphere, i.e. the Earth), so that we run like
mad at constant unit speed ||v|| = 1 westwards; the acceleration is

a = ∇vv = ∇(−eϕ )(−eϕ) = · · · = − 1

R

cos ϑ

sin ϑ
eϑ ≡ −||a||eϑ

The motion with unit speed along the parallel line highway thus has an acceleration directed
to the north (perpendicular to the driving direction) with magnitude ||a||. The same acceler-
ation corresponds to the motion along a bend with radius r = 1/||a|| (recall that for motion
on a circle ||a|| = ||v||2/r holds, here we have ||v|| = 1). The geodesic highway is thus
regarded by the driver as being straight and the one running along parallel in turn as a right-
hand bend of radius r ≡ R tan ϑ .314 One can easily check that if we perform a motion by ε

along the tangent to a circle of radius r , we move off the circle by �l ≡ ε2/2r . In our case
the distance between the highways is thus �l ≡ ε2/2R tan ϑ . Since in Bratislava ϑ ∼ 42◦

(and the radius of the Earth R ∼ 6378 km), we get approximately �l = 10−4 km−1ε2,
so that for ε = 1, 10 and 100 km we get the distances around 10 cm, 10 m and 1 km
respectively. �

314 This fact (and thus the result of the whole problem as well) may be also seen by an elementary consideration: r̂ ≡ R sin ϑ

is the radius of the parallel (its center lying on the Earth’s axis); the motion along this circle has an acceleration v2/r̂ . From
the acceleration, however, the driver feels as the acceleration “due to the bend” only its projection onto the plane of the
road (the remaining part raises the car up), producing a factor of cos ϑ and this may be reformulated as an effective radius
r = r̂/ cos ϑ ≡ R tan ϑ .
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15.5 The curvature tensor

• The parallel transport of a vector (as well as an arbitrary tensor) in general depends on
the (oriented) path along which it is performed. An alternative formulation of the same fact
is that if the tensor is transported along a closed path (a loop), the resulting tensor may differ
from the initial one. We already convinced ourselves that this phenomenon is indeed real
in the case of the transport of a vector around a particular spherical triangle (15.3.9), where
the change consisted in a rotation by π/2. The fact that the resulting vector had the same
length as the initial one (so that the net change consisted only in the rotation) is a particular
feature of the RLC connection (actually its metricity). In general, only the linearity of the
operator of the parallel transport along the closed path is guaranteed.

It turns out that an immensely important piece of information about the local dependence
of the parallel transport on the path is stored in the further tensor field characterizing
the connection, the curvature tensor. In order to motivate its formal definition, let us first
compute what the operator of the parallel transport along a particular infinitesimal loop looks
like, namely the loop we already encountered in Chapter 4, when studying the geometrical
meaning of the commutator of vector fields.

15.5.1 Consider two vector fields U, V . We saw
in problem (4.5.3) how an infinitesimal loop

A
�U

ε→ B
�V

ε→ C
�U

−ε→ D
�V

−ε→ E
�

[U,V ]
−ε2→ A

is generated by the fields composed of four pieces
of parametric length ε and the fifth “closing” piece
of parametric length ε2 (E �→ A). Check that the
operator τA,A ≡ τA �→B �→C �→D �→E �→A of the parallel
transport of an arbitrary tensor along this loop may

be expressed within second-order accuracy in ε as

τA,A = 1̂ − ε2 R(U, V ) + · · ·

where the curvature operator R(U, V ) is the expression

R(U, V ) := ∇U ∇V − ∇V ∇U − ∇[U,V ] ≡ [∇U , ∇V ] − ∇[U,V ]

Hint: according to (15.2.13) the transport from A to B is performed by the operator τB,A =
e−ε∇U = 1̂ − ε∇U + 1

2ε2∇2
U + · · ·; so one should multiply out the product

τA,A = eε2∇[U,V ] eε∇V eε∇U e−ε∇V e−ε∇U = · · ·

up to order ε2 �

• The curvature operator R(U, V ), which we obtained in this way, has some fairly re-
markable properties.
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15.5.2 Show that for the curvature operator R(U, V ) there holds

(i) it is a derivation of the tensor algebra T (M), which commutes with contractions
(ii) it vanishes on degree

(
0
0

)
, i.e. on F(M)

R(U, V ) f = 0 f ∈ F(M)

(iii) it depends F(M)-linearly on both U and V .

Hint: (i) it has the structure [D1, D2] + D3, where D1, D2, D3 are such according to
the definition of ∇W and (4.3.7); or alternatively: (each) operator of parallel trans-
port should have certain properties and the operator treated here has the form τA,A =
1̂ − ε2 R(U, V ), resulting in some properties of R(U, V ); (iii) the properties of the covariant
derivative. �

• The derivations of the tensor algebra which commute with contractions and vanish on
F(M) turn out to have a fairly simple structure – they are completely given by a certain
tensor (field) of type

(
1
1

)
. Let us investigate this useful fact from a slightly more general

perspective.

15.5.3 Show that each derivation D of the tensor algebra T (M) which preserves degree
and commutes with contractions has the form

D = LV + A V ∈ X(M), A ∈ T 1
1 (M)

i.e. it is parametrized by a vector field V and a tensor field A of type
(

1
1

)
.

Solution: on F(M), each derivation is given by a vector field (see Section 2.2) so that

D f = V f ≡ LV f for some V ∈ X(M)

Set D̂ := D − LV . According to (4.3.7) it is a derivation of T (M) commuting with con-
tractions, moreover it is by construction zero on F(M). Then it is enough (see (4.3.1) and
the text after the problem) to specify it on vector fields. There we have W �→ D̂(W ) = a
vector field again (due to preserving of degree) and

D̂( f W ) ≡ D̂( f ⊗ W ) = (D̂ f )W + f D̂(W ) = f D̂(W ) f ∈ F(M)

so that W �→ D̂(W ) is F(M)-linear ⇒ it is a tensor field D̂ = A of type
(

1
1

)
, namely

A(W, α) := 〈α, D̂(W )〉. �

15.5.4 Let us see in more detail how the operator A (regarded as a part of a general
derivation D from (15.5.3) corresponding to a tensor of type

(
1
1

)
) acts on tensors. Check

that
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(i) the action of the operator A on a type-
(

1
1

)
tensor B, on a volume form ω and on a general315 tensor

T of type
(

p
q

)
looks in components as follows:

Ba
b �→ Bc

b Aa
c − Ba

c Ac
b ≡ [A, B]a

b

ω �→ (−Tr A) ω

T a...b
c...d �→ T e...b

c...d Aa
e + · · · − T a...b

c...e Ae
d

(ii) in particular, for the covariant derivative D = ∇V we have A = ∇V so that

∇V = LV + (∇V )

Hint: (i) if Aea = Ab
aeb, then Aea = −Aa

beb (since 0 = A〈ea, eb〉 = A(C(ea ⊗ eb)〉 = · · ·);
then

A
(
Bb

a ea ⊗ eb
) = (

ABb
a

)
ea ⊗ eb + Bb

a (Aea) ⊗ eb + Bb
a ea ⊗ (Aeb) = · · ·

A( f e1 ∧ · · · ∧ en) = (A f )e1 ∧ · · · ∧ en + f (Ae1) ∧ · · · ∧ en + · · · + f e1 ∧ · · · ∧ (Aen)

= f
( − A1

1e1) ∧ · · · ∧ en + · · · + f e1 ∧ · · · ∧ ( − An
nen

)

= ( − Aa
a

)
f e1 ∧ · · · ∧ en ≡ (−Tr A) ω

�

• The operator R(U, V ) thus has the form (15.5.3) with the missing partLW , so that all the
information about the operator is stored in its action (as a tensor field of type

(
1
1

)
) on vector

fields, i.e. in the expression R(U, V )W (a vector field) or, alternatively, in the expression
〈α, R(U, V )W 〉 (a function).

15.5.5 Check that

(i) the expression

R(W, U, V ; α) := 〈α, R(U, V )W 〉 ≡ 〈α, ([∇U , ∇V ] − ∇[U,V ])W 〉
is F(M)-linear in all four arguments U, V, W ∈ X(M), α ∈ �1(M) so that a tensor field of type
(

1
3

)
is defined by this formula; this important tensor field is called the curvature tensor, or also

the Riemann tensor; in components

Ra
bcd = 〈ea, R(ec, ed )eb〉 = 〈ea, (∇c∇d − ∇d∇c − ∇[ec ,ed ])eb〉

(ii) from the definition we have

R(U, V )W = (
Ra

bcdU cV d W b
)

ea

so that the value of the expression at the point P ∈ M depends only on the values of the quantities
at the point P (in spite of the fact that there are derivatives in the detailed expression of R(U, V )W
and therefore one could expect that the values of the objects in some infinitesimal neighborhood
of the point might be necessary)

315 The first two objects are clearly particular cases of the general one, but on B one sees most easily how it works and ω illustrates
specificity of forms (it comes in handy in (15.6.18)).
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(iii) the curvature tensor is antisymmetric in the last pair of indices

Ra
bcd = −Ra

bdc

(iv) in the coordinate basis it may be expressed in terms of the Christoffel symbols by the formula

Ri
jkl = 	i

jl,k − 	i
jk,l + 	m

jl	
i
mk − 	m

jk	
i
ml

Hint: (i) see (15.5.2); (iv) Ri
jkl = 〈ei , R(ek, el)e j 〉 = 〈dxi , (∇k∇l − ∇l∇k)∂ j 〉 = · · · . �

• If we take the coordinate basis vectors ∂i , ∂ j as the fields U, V in (15.5.1), the loop con-
tains only four steps of parametric length ε along the coordinate curves (the commutator term
is not needed for its closure) and it lies completely on the i j th coordinate two-dimensional
surface (the remaining coordinates being constant there).

15.5.6 Check that

(i) for U = ∂i , V = ∂ j the curvature operator reduces to the commutator of the covariant derivatives
in the i th and j th coordinate directions

R(∂i , ∂ j ) = ∇i∇ j − ∇ j∇i ≡ [∇i , ∇ j ]

so that the components of the Riemann tensor enter the result of the computation of the commutator
of the “coordinate” covariant derivatives on the coordinate basis as follows:

[∇i , ∇ j ]∂k = Rl
ki j∂l [∇i , ∇ j ] dxk = −Rk

li j dxl

(ii) for an arbitrary tensor field there holds

Ak...l
r ...s;i ; j − Ak...l

r ...s; j ;i = Am...l
r ...s Rk

mji + · · · + Ak...m
r ...s Rl

mji − Ak...l
m...s Rm

r ji − · · · − Ak...l
r ...m Rm

sji

Hint: (i) see (15.5.5) and 0 = R(U, V )〈α, W 〉 = 〈R(U, V )α, W 〉 + 〈α, R(U, V )W 〉; (ii)

Ak...l
r ...s;i ; j − Ak...l

r ...s; j ;i = {[∇ j , ∇i ]A}k...l
r ...s = {R(∂ j , ∂i )A}k...l

r ...s

R(∂ j , ∂i )A = R(∂ j , ∂i )
{

Ak...l
r ...sdxr ⊗ · · · ⊗ ∂l

} = · · ·
�

• The curvature tensor admits (as a
(

1
3

)
-type tensor) three contractions

Rc
cab Rc

acb Rc
abc

all the resulting tensors being of type
(

0
2

)
. It follows from the antisymmetry in the last pair

of indices that the second contraction differs from the third one only in a sign and it turns
out that the first one vanishes for the RLC connection, so that it is usually ignored. In the
case of a Riemannian manifold a further contraction is possible (a tool for raising the index
on the tensor of type

(
0
2

)
is available) and one can define a further tensor field (being already

of type
(

0
0

)
, a function). The definitions read

Rab := Rc
acb Ricci tensor

R := Ra
a ≡ gab Rba ≡ Rab

ab scalar curvature
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Clearly these tensors carry less information in general then the whole Riemann tensor; this
may not be true, however, for manifolds with very low dimensions (for example, we will
see in (15.6.11) and (15.6.12) that on two-dimensional manifolds the whole Riemann tensor
of the RLC connection may be reconstructed from the scalar curvature). A highly effective
way of computing the curvature tensor consists in using the machinery of differential forms
to be discussed in the next section. We will also mention some of its further properties there.

15.5.7 Consider two Riemannian manifolds. Show that if the scalar curvature of the first
manifold vanishes and this is not the case for the second one then the two manifolds cannot
be isometric to each other. Infer from this that the sphere S2 is not (locally) isometric to
the Euclidean plane (we have already proved the same result before, referring to different
Killing algebras, see (4.6.13)).

Hint: let f : (M, g) → (N , h) be an isometry; if ya are the coordinates on N and h =
hab dya ⊗ dyb, then in coordinates xa := f ∗ya on M we get g ≡ f ∗h = hab(x) dxa ⊗ dxb

(with the same functions hab); then according to (15.3.4) also 	a
bc, . . . , R, will be the same,

i.e. the scalar curvature on M arises by the substitution y �→ x ≡ f ∗y in the expression of
the scalar curvature on N (being a pull-back, RM = f ∗ RN ). �

15.5.8 In a neighborhood of a point P consider Riemann normal coordinates centered at
P , corresponding to an orthonormal basis ei in P (15.4.11). Check that

(i) the components of the Riemann tensor of the RLC connection in the point P in these coordinates
read

Rns
i jkl = −(gi[k,l] j − g j[k,l]i ) at the point P

(ii) the tensor has the symmetries (being already valid in arbitrary coordinates)

Ri jkl = −R jikl = −Ri jlk

Hint: (i) according to (15.5.5) and (15.4.11) we have Ri
jkl(P) = 	i

jl,k(P) − 	i
jk,l(P); using

(15.3.4) 2	i
jl,k(P) = · · · = ηir (gr j,lk + grl, jk − g jl,rk)(P), so that

Ri
jkl(P) = 	i

jl,k(P) − 	i
jk,l(P) ≡ 2	i

j[l,k](P) = −ηir (gr [k,l] j − g j[k,l]r )(P)

(ii) they are explicit in these particular coordinates; the symmetries, however, do not depend
on the choice of coordinates. �

• We close the section with a few words about an important concept, which is based on
the path dependence of the parallel transport.

On a manifold (M, ∇) with a connection consider a point x and a loop c, which starts and
ends at the point x . If we take a vector in x and perform the parallel transport along the loop,
in general we arrive (according to the result of (15.5.1)) at a different vector. However, since
the operator of parallel transport is always a linear isomorphism, the transported vector
may be obtained from the initial one by the action of a certain linear invertible operator
Tx M → Tx M , i.e. an element of the group G ≡ GL(Tx M) ∼= GL(n, R).
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Contemplate now all the possible loops emanating from the same point x . To each of
them a group element may be assigned, so eventually we get a map “loop �→ element of the
group.” This group element is said to be the holonomy (corresponding to the pair (x, c)) and
the group itself in which the group elements lie the holonomy group. For a linear connection
this is not necessarily the whole group GL(n, R), but rather it may be only a subgroup. This
happens when the parallel transport “preserves something”; the preserving of something is
thus reflected in a restriction of the resulting group (the automorphism group of a stronger
structure is smaller, see the concrete results in Section 10.1). For example, the connection,
which is metric, assigns to each loop some rotation,316 so that here the holonomy group is
at best the rotation group; in reality it may be even smaller sometimes, as the example of
the “ordinary” connection in E3 shows, where the parallel transport does not depend on the
path and each loop gives the identity map (the holonomy group being trivial, containing a
single element).317

15.6 Connection forms and Cartan structure equations

• The formalism of differential forms is also very efficient in the theory of linear connec-
tions. Let us have a look, first, at how information about the connection may be encoded
into appropriate 1-forms.

15.6.1 Let ea be a frame field on O ⊂ (M, ∇). Check that

(i) the relations

∇V ea = ωb
a(V )eb ωb

a ∈ �1(O)

define a set of 1-forms ωb
a on O; they are known as connection forms with respect to ea

(ii) these forms are related to the coefficients of the connection via

ωa
b = 	a

bcec

and, in particular, for the coordinate frame ei = ∂i they can be written in terms of Christoffel
symbols of the second kind as

ωi
j = 	i

jk dxk

(iii) a different choice of frame field ea �→ Ab
a(x)eb, where Ab

a(x) ∈ GL(n, R), results in a transfor-
mation of connection forms according to the rule

ω′a
b = (A−1)

a
cω

c
d Ad

b + (A−1)
a
c d Ac

b

(iv) this general rule contains (as a special case) the correct transformation law for Christoffel symbols
(v) for a coframe field one has

∇V ea = −ωa
b (V )eb

316 We learned in problems (15.3.9) and (15.3.10) that to the loop = the spherical right triangle, the group element = the rotation
by π/2 is assigned and similarly to the loop = the parallel line, the group element = the rotation by the Foucault angle βFouc
is assigned.

317 The structure behind this is complete parallelism (see Section 15.8).
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Hint: (i) according to the axioms of the covariant derivative, ∇V ea is a vector (field)
which depends in an F(M)-linear way on V ; (ii) see (15.2.1); (iv) see (15.2.3); (v)
0 = ∇V 〈ea, eb〉 = · · · . �

15.6.2 It is convenient to interpret the 1-forms ωa
b as well as the functions (0-forms) Aa

b

as component forms of matrix algebra-valued forms ω and A (in the sense of Section 6.4);
if Eb

a is the usual Weyl basis in the matrix algebra Mn(R), then

ω = ωa
b Eb

a ∈ �1(O, Mn(R)) A = Aa
b Eb

a ∈ �0(O, Mn(R))

Show that

(i) the results of (15.6.1) may be written as

e′ = eA ⇒ ω′ = A−1ωA + A−1 d A

where the operations of multiplication and exterior derivative of forms are to be understood in
the sense of (6.4.2) and (6.4.4)

(ii) this result is consistent on a triple overlap,

e �→ e′ = eA �→ e′′ = e′ B

≡ e(AB)

⇒
ω �→ ω′ = A−1ωA + A−1 d A �→ ω′′ = B−1ω′ B + B−1 d B

= (AB)−1ω(AB) + (AB)−1d(AB)

which says (cf. the end of Section 2.5) that a global structure on a manifold (linear connection
∇) is actually defined by means of local quantities (the forms ω on domains O, where the frame
fields ea dwell). �

• If one also encodes tensors related to the connection, namely the curvature and torsion
tensor, into suitable forms, their definitions result, after translation into the language of
forms, in Cartan structure equations.

15.6.3 On a domain O with a frame field ea , let us define torsion forms T a and curvature
forms �a

b (both of them being 2-forms) with respect to this frame by

T a(U, V ) := 〈ea, T (U, V )〉 ≡ 〈ea, ∇U V − ∇V U − [U, V ]〉 or T a = 1

2
T a

bceb ∧ ec

�a
b(U, V ) := 〈ea, R(U, V )eb〉 ≡ 〈ea, ([∇U , ∇V ] − ∇[U,V ])eb〉 or �a

b = 1

2
Ra

bcdec ∧ ed

where T a
bc and Ra

bcd are the components of the tensors of torsion and curvature with respect
to ea . Check that

(i) they are indeed 2-forms
(ii) under the transformation ea �→ e′

a = Ab
a(x)eb of the frame field the forms transform as follows:

�a
b �→ �′a

b = (A−1)
a
c�

c
d Ad

b T a �→ T ′a = (A−1)
a
b T b
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(iii) the encoding described above is bijective.

Hint: (ii) ea �→ Ab
aeb, ea �→ (A−1)a

beb; R(U, V ) acts as a derivation which vanishes on
functions so that we have R(U, V )(Ac

bec) = Ac
b R(U, V )ec. �

15.6.4 One may also interpret the 2-forms �a
b as component forms of a single Mn(R)-

valued 2-form � and similarly T a as component forms of a single R
n-valued 2-form T .318

Check that the transformation rules for � and T under the change e �→ eA(x) of a frame
field then read

� �→ �′ = A−1�A T �→ T ′ = A−1T

Hint: see (15.6.3). �

• Let us now have a look at the geometrical meaning of the connection and curvature
forms introduced above. It should not be too surprising to hear that ωa

b carries information
about parallel transport of a frame field ea in an arbitrary direction and �a

b informs us about
the result of such transport along an infinitesimal loop. A more detailed discussion of these
topics is in order, however, since it may help the reader to develop some intuition for the
work with both forms and, moreover, it paves the way for the theory of general connections
and gauge fields, to be developed in Chapter 21.

15.6.5 Let ωa
b be connection 1-forms on (O, ea) and �a

b the corresponding curvature
2-forms. Verify that a parallel transport of the frame ea by ε along V and around the
pentagon-shaped ε-loop spanned by the vectors V, W (see (15.5.1)), respectively, results in

translation along V ea �→ ea − εωb
a(V )eb

translation around a loop based on V, W ea �→ ea − ε2�b
a(V, W )eb

or in an index-free version

e �→ (1̂ − εω(V ))e e �→ (1̂ − ε2�(V, W ))e

Hint: according to the definition of the covariant derivative

∇V ea = e‖
a − ea

ε
so that e‖

a = ea + ε∇V ea ≡ (
δb

a + εωb
a(V )

)
eb

where e‖
a is the vector ea parallel transported against the direction of V by a parameter

ε; then the translation along V (against the vector −V ) gives an additional minus sign.
Curvature: the role of the curvature operator R(U, V ) within the context of translation
along a loop (15.5.1). �

• The situation can be described as follows: if on a domain O one has a frame field e,
one has also, in particular, the frames e(x) and e(x + εV ) at the points x and “x + εV ”319

318
R

n serves as an Mn (R)-module here: columns = elements of R
n can be multiplied by matrices = elements of Mn (R) (the

result being again a column, cf. Appendix A.4). According to Section 6.4 we can then introduce the exterior product of two
Mn (R)-valued forms as well as the product of an Mn (R)-valued form with an R

n -valued one.
319 “x + εV ” denotes in a compact way the point at which we arrive when moving by a parameter ε from the point x along any

curve of the equivalence class defining V .
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(the values of the field e at the two points). The result of a parallel transport of a frame e(x)
by ε along the vector V is some particular frame at the point x + εV ; each frame there can
be, however, obtained by an appropriate “mixing” of the elements of the frame e(x + εV ).
We see from the result of (15.6.5) that, as a matter of fact, mixing by the matrix 1̂ − εω(V )
takes place. This matrix is non-singular and infinitesimally close to the identity matrix.
Thus, we see that it is natural to treat the matrix X := ω(V ) as an element of the Lie algebra
gl(n, R) and the frame is then mixed by the element of the Lie group GL(n, R) of the form
1̂ + εX ≡ eεX . This point of view reveals with no computation at all, as an example, that for
the metric connection the matrix of the connection 1-forms with respect to an orthonormal
frame field has to be (pseudo-)antisymmetric. In order for the parallel transport not to
spoil orthonormality of a frame, the group element has to belong to a (pseudo-)orthogonal
subgroup and, consequently, the element of the Lie algebra X ≡ ω(V ) has to belong to
a (pseudo-)orthogonal subalgebra which is, according to (11.7.6), just the algebra of all
(pseudo-)antisymmetric matrices. This should be valid for all V , hence the matrix ω itself
must be (pseudo-)antisymmetric. The same reasoning is valid for the curvature forms as
well; since the matrix Y ≡ �(V, W ) has to be (pseudo-)antisymmetric for all V, W , the
matrix 2-form � must be (pseudo-)antisymmetric, too.

15.6.6 Verify these statements by formal computation; namely check that

(i) for the matrices of connection 1-forms and curvature 2-forms of a metric connection with respect
to a general (that means, including coordinate) frame field there holds

dgi j = ωi j + ω j i ωi j := gikω
k
j

0 = �i j + � j i �i j := gik�
k
j

(ii) this results in (anti)symmetry of the Riemann tensor

Ri jkl = −R jikl Ri jkl := gim Rm
jkl

(iii) for an orthonormal frame field the matrices of these forms are (pseudo-)antisymmetric:

ωab + ωba = 0 ωab := ηacω
c
b

�ab + �ba = 0 �ab := ηac�
c
b

In matrix notation thus (ηω)T = −ηω, which means, according to (11.7.6), that ω ∈ so(r, s).

Hint: (i) for a general frame field and arbitrary connection there holds

V gi j = ∇V (g(ei , e j )) = (∇V g)(ei , e j ) + g(∇V ei , e j ) + g(ei , ∇V e j )

so that for the metric connection V gi j = g(∇V ei , e j ) + g(ei , ∇V e j ), which gives just dgi j =
ωi j + ω j i ; for the curvature forms, replace ∇V �→ R(V, W ) and use the fact that for the
metric connection R(V, W )g = 0; (ii) use the relation between �i

j and Ri
jkl (15.6.3). �

• The forms ω, � and T are not independent. Full information about a connection for a
given (co)frame field e is encoded in ω. Since the connection determines the torsion and
curvature tensors, it determines the forms � and T as well. Consequently, there should exist
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equations relating these forms. This is the way in which the Cartan structure equations are
obtained.

15.6.7 Let ωa
b be connection 1-forms on (O, ea), �a

b and T a the corresponding curvature
and torsion 2-forms. Check the validity of the Cartan structure equations

dea + ωa
b ∧ eb = T a

dωa
b + ωa

c ∧ ωc
b = �a

b

or in index-free version (i.e. if one regards e, ω, �, T as the forms with values in the algebra
Mn(R) or the Mn(R)-module R

n respectively)

de + ω ∧ e = T

dω + ω ∧ ω = �

Hint: a straightforward computation using general arguments, definitions of objects and
Cartan formulas (6.2.13) for the exterior derivative, e.g.

dea(U, V ) = U 〈ea, V 〉 − V 〈ea, U 〉 − 〈ea, [U, V ]〉
= 〈∇U ea, V 〉 + 〈ea, ∇U V 〉 − 〈∇V ea, U 〉 − 〈ea, ∇V U 〉 − 〈ea, [U, V ]〉
= . . . (15.6.1)

= 〈ea, T (U, V )〉 − (
ωa

b ∧ eb
)
(U, V )

= (
T a − ωa

b ∧ eb
)
(U, V )

The second relation in full analogy: start with dωa
b (U, V ) = · · · . �

• As we know, an important role among linear connections is played by the RLC con-
nection (see Section 15.3). Let us have a look at the modifications of the Cartan structure
equations in this particular case.

15.6.8 Let ωa
b be RLC connection 1-forms with respect to an orthonormal frame field

ea , �a
b and T a the corresponding curvature and torsion 2-forms. Check that the structure

equations in this case read

ωab + ωba = 0 ωab := ηacω
c
b

dea + ωa
b ∧ eb = 0

dωa
b + ωa

c ∧ ωc
b = �a

b

or in index-free notation

(ηω)T + ηω = 0

de + ω ∧ e = 0

dω + ω ∧ ω = �

Hint: see (15.6.7). Also consider vanishing of the torsion and ω being a (pseudo-)
antisymmetric matrix due to the metricity of the connection (15.6.6). �
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• For a given metric tensor g, the application of these equations consists of the following
three-step procedure:

1. one finds an orthonormal coframe field ea (so that g = ηabea ⊗ eb)
2. the first two equations from (15.6.8) are written down and solved, i.e. one looks for a set of 1-forms

ωa
b such that they satisfy the second equation and at the same time the matrix ωab ≡ ηacω

c
b is

antisymmetric (due to this condition there exist only n(n − 1)/2 unknown 1-forms instead of n2)
3. if we already do have connection 1-forms ωa

b , we plug them into the third equation and find
curvature 2-forms �a

b and maybe, depending on what we actually need, also the components of
the curvature tensor, Ricci tensor and scalar curvature from the relations

�a
b = 1

2
Ra

bcd ec ∧ ed Rab = Rc
acb R = Ra

a ≡ ηab Rab

Recall (15.3.4) that the computation of Christoffel symbols (and components of all re-
maining objects then) for the RLC connection is not a creative procedure, one has simply
to plug gi j into the corresponding formulas (and to make no mistake in the course of the
computation of all the necessary partial derivatives, the number of which increases rapidly
with the dimension of this manifold). That is why the solution of Cartan structure equations
should not be a creative procedure either. Step 1 amounts to the diagonalization of the matrix
of the metric tensor; in real life situations, however, one often obtains the required frame
field without the formal procedure of diagonalization. For step 2, there should exist some
formulas expressing ωa

b in terms of the (already known) 1-forms ea .

15.6.9 Let ea be an orthonormal frame field, ca
bc its coefficients of anholonomy and let ωa

b

be the RLC connection 1-forms. Check that

(i) the following relations are valid (it is useful to compare them with their coordinate counterparts
displayed in (15.3.4)):

ωab(ec) + ωba(ec) ≡ 	abc + 	bac = 0 metric connection

ωab(ec) − ωac(eb) ≡ 	abc − 	acb = −cabc symmetric connection

(ii) the RLC connection 1-forms may be expressed explicitly as

ωa
b = ηacωcb = ηac	cbd ed ≡ 1

2
ηac(cdcb + cbcd − ccbd )ed

Hint: (i) see (9.2.10), 0 = T (ea, eb) = ∇aeb − ∇bea − [ea, eb]. �

• One often obtains, however, the solution by plugging an appropriate ansatz into the
structure equations and solving the rest by “trial and error.” This is illustrated most easily
on two-dimensional manifolds.

15.6.10 From (15.6.6) it follows that if we are given an orthonormal frame field on a
two-dimensional manifold (a surface) (M, g), there is only a single independent connection
1-form; we will denote it by α ≡ ω12 = −ω21. By the same reasoning, there is only a single
independent curvature form; let us denote it by β ≡ �12 = −�21. This form (as is the case
for any 2-form) is necessarily a scalar multiple of the metric volume form e1 ∧ e2; then we
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can write

ωab = εabα �ab = εabβ ≡ εab K e1 ∧ e2

The function K (x) is called the Gaussian curvature of the surface. Show that

(i) the symmetries of the Riemann tensor lead to the conclusion that the complete Riemann (curvature)
tensor may be reconstructed from the scalar curvature R alone (and the same then clearly holds
for the Ricci tensor), the latter being simply twice the Gaussian curvature; in the case of signature
(+, +) (the other ones need minor modifications here and there) we may namely write

Rabcd = K (x)εabεcd Rab = K (x)δab K = R/2

(ii) the structure equations for the RLC connection (15.6.8) reduce to the simple system

de1 + α ∧ e2 = 0

de2 − α ∧ e1 = 0

dα = β ≡ K e1 ∧ e2

The computation of all relevant quantities thus consists in the solution of the first two (very
simple) equations for the unknown 1-form α. Differentiation of α then results in β, the latter
being necessarily of the form K e1 ∧ e2; eventually K doubled gives R.

Hint: (i) Rabcd = −Rbacd = −Rabdc; (ii) ω1
a ∧ ωa

2 = 0 ∧ 0 + α ∧ (−α) = 0. �

15.6.11 Solve the system (15.6.10) for (S2
ρ, g) = the two-dimensional sphere of radius ρ

endowed with the standard “round” metric (3.2.4). Compute the Gaussian curvature (show
that it is constant ·K (x) = 1/ρ2), Ricci tensor and the scalar curvature and check that

Rabcd = 1

ρ2
εabεcd Rab = 1

ρ2
δab R(x) = 2

ρ2
≡ 2K (x)

so that the scalar curvature is constant, inversely proportional to the square of the radius of
the sphere (which matches the intuitive notion of the curvature of the sphere: it is everywhere
the same and the bigger the sphere the less it is “curved”).

Solution: for e1 = ρ dϑ, e2 = ρ sin ϑ dϕ we have the equations α ∧ e2 = 0, ρ cos ϑ dϑ ∧
dϕ − α ∧ e1 = 0 from which one easily gets α = − cos ϑ dϕ, so that β = sin ϑdϑ ∧ dϕ ≡
ρ−2e1 ∧ e2. �

15.6.12 Solve the system (15.6.10) for (T 2, g) = the two-dimensional torus with the
metric induced from the embedding into E3 (3.2.2). Compute its Gaussian curvature, Ricci
tensor and the scalar curvature and check that

Rabcd = sin ψ

b(a + b sin ψ)
εabεcd Rab = sin ψ

b(a + b sin ψ)
δab

R(x) = 2 sin ψ

b(a + b sin ψ)
≡ 2K (x)
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so that the scalar curvature is no longer constant, rather it depends on the coordinate ψ (in
particular, it vanishes on the two circles, where the torus touches the slices of bread when
eaten for lunch, it is positive on the part seen by the consumer from outside and negative
on the part which is not visible).

Hint: following the lines of (15.6.11) for e1 = (a + b sin ψ) dϕ, e2 = b dψ one quickly
gets α = cos ψ dϕ and β = − sin ψ dψ ∧ dϕ ≡ (R/2)e1 ∧ e2. �

15.6.13 We mention without proof a quick method of obtaining the scalar curvature of
two-dimensional surfaces (like a sphere or a torus). At any given point, imagine two mutually
perpendicular circles of appropriate radii such that they match optimally the surface in the
neighborhood of the point. Let their radii be r1, r2. Then let the Gaussian curvature be the
product of the inverse values of the radii, K = (r1r2)−1. If the circles lie on the opposite
sides of the tangent plane at the given point (so that there is a “saddle” in the neighborhood
of this point), the curvature is negative. Verify that this algorithm is consistent with the
results we obtained for the sphere and the torus.

Hint: the sphere: the radii of the circles coincide, being r1 = r2 = ρ; the torus: on the outer
perimeter (say) there holds r1 = a + b, r2 = b, on the inner perimeter r1 = a − b, r2 = b
(and with a saddle point there) and on the upper as well as the bottom circle one has
r1 = ∞, r2 = b. �

• Important examples320 of working with the Cartan structure equations on higher than
two-dimensional manifolds are provided by ordinary three-dimensional Euclidean space
E3 and four-dimensional Minkowski space E1,3, when non-Cartesian frame fields are used;
in particular, for orthonormal frame fields generated by the cylindrical and spherical polar
coordinates.

15.6.14 Consider the three-dimensional Euclidean space E3 endowed with the cylindrical
and spherical polar orthonormal (co)frame fields (2.6.4),

e1 = dr e2 = r dϕ e3 = dz cylindrical
e1 = dr e2 = r dϑ e3 = r sin ϑ dϕ spherical polar

Check that the Cartan structure equations for the RLC connection lead in these two cases

(i) to the following connection forms:321

rω12 = −e2 ω13 = 0 ω23 = 0 cylindrical
rω12 = −e2 rω13 = −e3 rω23 = −(cot ϑ) e3 spherical polar

and that these forms are consistent with the Christoffel symbols obtained in (15.3.5)
(ii) to vanishing curvature forms (as should be the case in Euclidean space).

320 Moreover, their results will turn out to be useful later.
321 The forms, obtained trivially from the antisymmetry ωab = −ωba are omitted. Recall that gab = δab so that ωab = ωa

b .
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Hint: (i) for example, for the spherical polar case one obtains in notation σ a
b ≡ rωa

b the
equations

σ 1
2 ∧ e2 + σ 1

3 ∧ e3 = 0

σ 1
2 ∧ e1 − σ 2

3 ∧ e3 = e1 ∧ e2

σ 1
3 ∧ e1 + σ 2

3 ∧ e2 = e1 ∧ e3 + (cot ϑ) e2 ∧ e3

Since we know that the solution is unique, we try to find the simplest possible forms
satisfying all the equations: e.g. the second equation suggests that (maybe) σ 2

3 ∼ e3 (e3 is
missing on the right-hand side) and σ 1

2 = −e2 (there might be a term ∼ e1 there, but we try
the simplest ansatz first322); the result ω1

2 = −dϑ gives ∇e2 e2 = ω1
2(e2)e1 = −(1/r )∂r , at

the same time it should be (1/r2)	i
ϑϑ∂i , from where we get 	r

ϑϑ = −r and (the remaining)
	i

ϑϑ = 0, which is in agreement with (15.3.5). �

15.6.15 Consider the four-dimensional Minkowski space E1,3 endowed with the orthonor-
mal (co)frame fields of the form ea ≡ (e0, e j ), where e0 = dt and e j , j = 1, 2, 3, are the
cylindrical and spherical polar frames treated in (15.6.14). Check that the Cartan structure
equations for the RLC connection lead in these two cases to

(i) the common result

ω0
j = 0 ωi

j = as in E3

i.e.

ω0 j = 0 ωi j = − as in E3

(ii) vanishing curvature forms (as should be the case in Minkowski space).

Hint: (i) in detail the equations take the form

de0 + ω0
j ∧ e j = 0

de j + ω
j
0 ∧ e0 + ω

j
k ∧ ek = 0

with the evident solution (recall that it is unique)

ω0
j = 0 ω

j
k = the solutions of the system de j + ω

j
k ∧ ek = 0

This system coincides, however, with the system met in the case of E3. Since now gab = ηab,
we have ω0 j = η00ω

0
j = ω0

j and (no summation) ωi j = ηi iω
i
j = −ωi

j . �

• Let us now return to general manifolds with the connection (M, ∇). The curvature and
torsion tensors enter important identities (Bianchi and Ricci), which are most easily derived,
and even formulated, in the language of forms.

322 Recall the “Ockham’s razor” (law of parsimony) principle, which advises us: “Pluralitas non est ponenda sine necessitate,”
i.e. plurality should not be posited without necessity. Fortunately, there is no “necessity” for “positing plurality,” here.



15.6 Connection forms and Cartan structure equations 415

15.6.16 Let ωa
b be connection 1-forms on (O, ea), �a

b and T a the corresponding curvature
and torsion 2-forms. Check that

(i) the following identities hold323

d� + ω ∧ � − � ∧ ω = 0 Bianchi identity
dT + ω ∧ T = � ∧ e Ricci identity

(ii) they are equivalent to

{(∇U R)(V, W ) − R(U, T (V, W )} + cycl. = 0 Bianchi
(∇U T )(V, W ) + T (T (U, V ), W ) + cycl. = R(U, V )W + cycl. Ricci

(iii) and in components also to

Ri
j[kl;m] + Ri

jr [m T r
kl] = 0 Bianchi

T i
[ jk;l] + T i

m[ j T
m

kl] = Ri
[ jkl] Ricci

(iv) in particular, for the RLC connection the identities simplify (in the three different versions
mentioned above) to

d� + ω ∧ � − � ∧ ω = 0 (∇U R)(V, W ) + cycl. = 0 Ri
j[kl;m] = 0 Bianchi identity

� ∧ e = 0 R(U, V )W + cycl. = 0 Ri
[ jkl] = 0 Ricci identity

Hint: (i) apply d on the Cartan structure equations (15.6.7); (ii) insert arguments U, V, W
and use Cartan formulas (6.2.13) (for p = 2 in the form with “+ cycl.”); (iii) replace the
(general) fields U, V, W by the coordinate basis fields. �

• Let us have a look, next, at how the basic differential operators on forms, the exterior
derivative (“differential”) d and the codifferential δ, may be expressed in terms of the
covariant derivatives.

15.6.17
∗

Let ia, j a ≡ gab jb be the operators on forms introduced in (5.8.6), (5.8.10) (the
fields ea, ea are supposed to be dual to each other, but they need not be orthonormal) and
T a the torsion forms. Check that

(i) the exterior derivative of forms may be expressed in terms of covariant derivatives ∇a ≡ ∇ea as

d = j a∇a + T aia i.e. dα = ea ∧ ∇aα + T a ∧ iaα

(ii) in particular, for the RLC connection this simplifies to

d = j a∇a i.e. dα = ea ∧ ∇aα

and for the components of the exterior derivative of p-forms in a coordinate basis one obtains

(dα)i ... jk = (−1)p(p + 1)α[i ... j ;k]

(iii) relate the result of (ii) to (6.2.5)

323 We will also encounter these identities later in a more general context of connections on principal bundles, see (20.4.4)–(20.4.8).
With the help of the exterior covariant derivative D which will be introduced there, they even simplify to D� ≡ DDω = 0
and DT ≡ DDe = � ∧ e (the Cartan structure equations themselves read De = T and Dω = �, see (21.7.4)).
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(iv) for the RLC connection, the codifferential may be expressed in terms of covariant derivatives as

δgα = −i a∇aα

(v) coordinate expression of the codifferential then reads (compare with (8.3.5))

(δα)i ... j = −α k
ki ... j ; i.e. (δα)i ... j = −α

ki ... j
;k

(vi) and, in particular, the Laplace–Beltrami operator reads

� f ≡ −δd f = f ;k
;k

Hint: (i) according to (6.1.7) and (6.1.8), the right-hand side is a degree +1 derivation
of �(M), so that it is enough to check this on �0(M) (trivial) and on ea ∈ �1(M) (the
first Cartan equation); (ii) (dα)i ... jk = (dxr ∧ ∇rα)i ... jk = · · · (iii) see (15.4.12); (iv) using
(5.8.9) and (15.3.13) we get ∗−1d ∗ η̂ = ∗−1 j a∇a ∗ η̂ = ∗−1 j a ∗ η̂∇a = − ∗−1 ∗i a η̂η̂∇a ≡
−i a∇a ; (v) (δgα)i ... j = −(i k∇kα)i ... j = −gkr (∇kα)ri ... j = −gkrαri ... j ;k = −α k

ki ... j ; . �

15.6.18
∗

Check that for the RLC connection the two apparently different definitions of
the divergence (the first one, based on the metric volume form (8.2.1), and the covariant
divergence, which is defined to be the trace of the covariant gradient of the field V )

LV ωg = (div(1)V )ωg div(2)V = Tr (∇V ) ≡ V i
; i

actually lead to the same result.

Hint: according to (15.5.4) there holds

LV ωg = ∇V ωg − (∇V ) · ωg

where the action of the tensor ∇V ≡ A of type
(

1
1

)
on the volume form ωg is

(∇V ) · ωg ≡ A · ωg = (−Tr A) ωg ≡ (−div(2)V )ωg

Since according to (15.3.11) for the RLC connection ∇V ωg = 0, we can finally conclude
that div(1)V = div(2)V . �

• In the following exercises we will be concerned with several simple facts one usually en-
counters when studying spinor fields on Riemannian manifolds (M, g) (in “curved spaces”;
the spinor fields are treated in more detail in Chapter 22).

15.6.19
∗

Let ωa
b ≡ ωa

bμ dxμ be connection 1-forms with respect to a (co)frame field ea ≡
ea
μ dxμ and let 	μ

νρ be the Christoffel symbols of the same (!) connection ∇ with respect to
local coordinates xμ. Verify that

(i) ωa
bμ and 	μ

νρ are related as follows:

∂μea
ν − 	ρ

μνea
ρ + ωa

bμeb
ν = 0

(ii) if this is regarded as the prescription for finding ωa
bμ in terms of given 	ρ

μν and ea
μ, we may rewrite

it as

ωa
bμ = ea

ρeν
b	

ρ
μν + ea

ρ∂μeρ

b



15.6 Connection forms and Cartan structure equations 417

If the (co)frame field happens to be orthonormal and the connection ∇ is metric (possibly not
symmetric, however), then the fields324 ωa

bμ(x) are known as the spin connection. (They enter
the formulas for the covariant derivative of spinor fields, cf. (22.4.8) and (22.5.1), as well as the
explicit expression of the Dirac operator (22.5.4). The formula obtained above may sometimes be
found in the literature on spinors in general relativity under the noble name of the tetrad postulate.
The fields ea

μ and eμ
a are usually called vielbein fields (in the four-dimensional case tetrad fields,

see Section 4.5).)

Hint: the particular case of (15.6.1) for the change of a frame field ea �→ ∂μ ≡ ea
μea (so that

A ↔ ea
μ, A−1 ↔ eμ

a , see (4.5.3)). �

15.6.20
∗

Let ea be an orthonormal frame field. In the general theory of relativity the
following objects are often introduced when working within the tetrad formalism:

γabc := eμ
a ebμ;νeν

c Ricci coefficients of rotation

(in particular, for computations with spinors, cf. (22.5.4)). Verify that

(i) they may be expressed as follows:

γabc = (∇cg)ab + g(ea, ∇ceb)

≡ gab;c + 	abc 	abc := ηad	
d
bc

(where 	a
bc are the coefficients of the connection (15.6.1) with respect to ea), so that for the metric

connection (the case notably interesting for the general theory of relativity and spinors) we get
that the Ricci coefficients of rotation simply coincide with the coefficients of connection (with
respect to an orthonormal frame) with a “lowered index”

γabc = 	abc = 〈ωab, ec〉 i.e. ωab = 	abcec = γabcec

(ii) they are antisymmetric with respect to the first pair of indices

γabc = −γbac

(iii) one can also express these coefficients in terms of coefficients of anholonomy (9.2.10) of the
frame field ea and this gives (for the metric connection)

γabc = 1

2
(ccab + cbac − cabc)

Hint: (i)

eμ
a ebμ;νeν

c = eμ
a eν

c

(
gμσ eσ

b

)
;ν = eμ

a eν
c

(
gμσ ;νeσ

b + gμσ eσ
b;ν

)

= eμ
a eν

c

{
(∇νg)μσ eσ

b + gμσ (∇νeb)σ
} = (∇cg)ab + g(ea, ∇ceb)

(ii) ωab = −ωba because of metricity; (iii) see (15.6.9). �

• Let us have a look at how one can write down the parallel transport equations in terms
of connection forms.

324 That is, the coordinate components of the metric connection 1-forms with respect to an orthonormal frame field.
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15.6.21 Let ωa
b be the connection forms with respect to a frame field ea , V = V a(t)ea a

vector field defined on a curve γ (t) and A = Aa...b
c...d (t)ec ⊗ · · · ⊗ eb a tensor field of type

(r, s) at the same curve. Check that

(i) the parallel transport equations of the vector V and the tensor A take the form

V̇ a = Sa
b (t)V b Sa

b (t) := −ωa
b (γ̇ (t))

Ȧa...b
c...d = Sa

f (t)A f ...b
c...d + · · · − · · · − S f

d (t)Aa...b
c... f

(ii) the equations from (15.2.6) and (15.2.12) are the special cases for the coordinate frame field
(iii) for an orthonormal frame field the matrix Sa

b is (pseudo-)antisymmetric
(iv) if Sa

b does not depend on time, the explicit solution (for the vector) may be written in the form

V a(t) = (et S)a
b V b(0) ≡ V a(0) + t Sa

b V b(0) + t2

2
Sa

c Sc
b V b(0) + · · ·

and the matrix (et S)a
b is (pseudo-)orthogonal.

Hint: (i) 0 = ∇γ̇ (V aea) = · · ·; (ii) ωi
j = 	i

jk dxk (15.6.1). �

15.6.22 Check that for the case of the two-dimensional sphere from problem (15.6.11)
the result of (15.6.21) gives

Sa
b (t) = εabϕ̇ cos ϑ

and, in particular, for the motion along a parallel ϑ = ϑ0, ϕ = t we get

Sa
b (t) = Sa

b = εab cos ϑ0 i.e. et S ≡ eϕS =
(

cos(ϕ cos ϑ0) sin(ϕ cos ϑ0)
− sin(ϕ cos ϑ0) cos(ϕ cos ϑ0)

)

This means that the motion along the parallel with ϑ = ϑ0 results in a (clockwise) uniform
rotation of the vector which is parallel transported. The net effect of the transport by
the angle ϕ (directed toward the east) consists in the rotation of the vector by the angle
ϕ cos ϑ0; in particular the transport around the entire parallel gives just the Foucault angle
2π cos ϑ0 ≡ 2π sin α from (15.3.10).

Hint: ωa
b = εabα = −εab cos ϑ dϕ. �

15.7 Geodesic deviation equation (Jacobi’s equation)

• Imagine two boats sailing across a lake, their motion being uniform and along a straight
line. We may write down their trajectories as

r1(t) = r1(0) + v1t

r2(t) = r2(0) + v2t

and they represent (affinely parametrized) geodesics in E2. For their relative position vector,
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relative velocity and relative acceleration we get

r(t) ≡ r2(t) − r1(t) = (r2(0) − r1(0)) + (v2 − v1)t ≡ r(0) + vt

ṙ(t) = v

r̈(t) = 0

These equations say that also from the point of view of a man sitting in the first boat the
motion of the second boat is uniform and along a straight line. This fact is so evident
(we knew it in advance and no computation was needed for it) that the reader might be
astonished as to why this trivial stuff should enter Section 15.7 of the chapter devoted to
linear connection.

Let’s try to have a look at what happens when our freshwater beginners are substituted
by fearless sea wolves, moving at the scale of the whole globe. Imagine they start their sails
simultaneously, being (say) 100 m from one another (the second one eastwards from the
first one). Both of them move uniformly along a straight line again (with the same speed)
to the south, each one along their meridian. Their trajectories thus also represent (affinely
parametrized) geodesics, but this time with geodesics on the sphere S2. The behavior of a
“relative vector,” however, essentially differs in this case: the trajectories of the boats first
diverge from one another and then (after passing the equator) they start to converge! From
this “oscillation” it is clear that their “relative motion” is no longer “uniform,” even though
the motion of either of the boats is uniform and along a straight line.

Now we will try to discuss all of this in a more general setting, on a manifold with a
connection (M, ∇). It turns out that the phenomenon already occurs at the local level and
it is a manifestation of the behavior of nearby geodesics.

Contemplate a geodesic γ (t). We may construct the whole one-parameter class of
geodesics from the single geodesic γ (t) as follows: at the point P = γ (0) we consider

a vector ξ (which is not directed along γ̇ ) and we
construct an arbitrary curve σ (s) such that it is tan-
gent to ξ at the point P , so that

P = σ (0) = γ (0) σ̇ (0) = ξ

Now consider any vector field U (s) on (a small piece
of) the curve σ (s) such that it is smooth and that for
s = 0, i.e. at P , it coincides with the velocity vector
γ̇ (0) of the initial geodesic. The points of the curve
σ (s) plus the vectors U (s) at these points induce

unique325 geodesics (see the text before (15.4.9)) γs(t): there holds

γs(t = 0) = σ (s) γ̇s(t = 0) = U (s)

325 What this construction (for s = ε � 1) actually does is a small variation of the initial conditions of the original geodesic: we
perform the “variation” of the initial point P ≡ σ (0) to σ (ε) and the variation of the initial velocity γ̇ (P) ≡ U (0) to U (ε) at
the point σ (ε). The aim is then to learn what effect the small variation of the initial conditions has on the future course of the
geodesic. Put another way, what is the variation of the rest of the geodesic for a given variation of its initial conditions?
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The curve σ (s) by construction binds the initial points (the points γs(0)) of the one-
parameter class of the geodesics γs . Now define a similar curve σt (s) for each t , i.e.
so that the curve σt (s) ≡ σ (t, s) with fixed t binds the points on the geodesics γs which
share the same value of the parameter t . Thus, there holds

σ (t, 0) = γ (t) ≡ γs=0(t) σ (0, s) = σ (s) ≡ σt=0(s) σ (t, s) = γs(t) = σt (s)

The parameter s thus “labels” the geodesics whereas the parameter t “runs in” them. It is
intuitively clear that this one-parameter class of geodesics forms a two-dimensional surface
S (which is parametrized by σ (t, s)). There are two natural vector fields on the surface (it
is enough to consider the fields in an infinitesimal neighborhood of the initial geodesic):
the velocity field U of the motion along the individual geodesics (it may be regarded as
an extension to the surface S of its values U (s) on the curve σ (s)) and the field ξ which
“links the individual neighboring geodesics” or, more exactly, whose integral curves are
(by definition) the curves which bind the points with the same value of “the time” t , i.e. the
curves σt (s) ≡ σ (t, s) with fixed t (for its flow �

ξ
s we may write �

ξ
s γ (t) = γs(t)).

15.7.1 Check that the vector fields U and ξ on S commute

[U, ξ ] = 0

Hint: they generate the flows (t, s) �→ (t + λ, s) and (t, s) �→ (t, s + λ), see (4.5.8). �

• Let us now have a look at how objects in this construction correspond to objects in the
situation with the boats. The relative velocity of the boats v ≡ v2 − v1 is the difference of
two vectors sitting at two distinct points. In order to make the comparison we need first to
(parallel) transport one of the vectors along the line joining the two points – the relative
velocity of nearby geodesics is thus the covariant derivative of the velocity vector along the
joining line, ∇ξU . This object is still not the most interesting one since we can control it by
means of the choice of its value at the time zero.326 The truly interesting object measures
the rate of the relative velocity (i.e. the change of the relative velocity along a trajectory),
i.e. we are to study the (covariant, parallel transport is again implicit) derivative of the
relative velocity along the (ordinary) velocity, ∇U (∇ξU ). It is natural to call this quantity
the relative acceleration of “neighboring” geodesics

relative velocity ↔ ∇ξU

relative acceleration ↔ ∇U (∇ξU )

This object, the relative acceleration, is already out of our control (by means of any choices
in time t = 0) and as Jacobi’s equation (to be introduced in a while) shows, the relative
acceleration feels the curvature of a manifold (M, ∇) where the geodesics are studied.

326 When we had chosen arbitrarily U (s) on σ (s) and also we have already fixed implicitly ∇σ̇ U ≡ ∇ξ U . In particular, if we
had chosen as U (s) on σ (s) the autoparallel field given by the vector γ̇ (0), it should mean that we perform the variation of
the position alone leaving the initial value of the velocity “the same” or, put another way, that we study a free motion of two
objects which start from neighboring points with the same speed, their initial velocities being directed parallel to each other.
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15.7.2 Let U and ξ be the fields introduced above and let the connection ∇ be torsion-free.
Show that

(i) the relative acceleration may also be expressed as ∇2
U ξ , since

∇U ξ = ∇ξU

(ii) there holds the identity

∇2
U ξ = R(U, ξ )U

(iii) for the field ξ on the initial geodesic γ this results in Jacobi’s equation for geodesic deviation

D2ξ

Dt2
≡ ∇2

γ̇ ξ = R(γ̇ , ξ )γ̇ or briefly ξ̈ = R(γ̇ , ξ )γ̇

Notice that in Jacobi’s equation the only quantities that occur are (i.e. it is enough if they are)
defined on the geodesic γ alone (for ∇ξU we need the field U also in a neighborhood of γ ,
whereas for ∇U ξ = ∇γ̇ ξ we make do with ξ on the curve γ itself).

Hint: (i) in general, ∇U ξ − ∇ξU − [U, ξ ] = T (U, ξ ); (ii) since U is a “geodesic field,” we
have ∇U U = 0; then ∇U ∇U ξ = ∇U ∇ξU = ∇U ∇ξU − ∇ξ∇U U − ∇[U,ξ ]U ≡ R(U, ξ )U .

�

15.7.3 Be sure to understand that on the right-hand side of Jacobi’s equation there is a
linear operator (depending quadratically on γ̇ ) applied on the vector ξ

ξ �→ B(ξ ) ≡ R(γ̇ , ξ )γ̇ ξ i �→ Bi
l ξ

l Bi
l := Ri

jkl ẋ
j ẋ k

so that in components the equation reads

∇γ̇ ∇γ̇ ξ = (
Ri

jkl ẋ
j ẋ kξ l

)
∂i i.e. (∇γ̇ ∇γ̇ ξ )i = Ri

jkl ẋ
j ẋ kξ l

Hint: R(U, V )W is F-linear in all arguments (15.5.5). �

15.7.4 Let us examine how this equation works on the ordinary sphere S2. Here we may
consider meridians as a one-parameter class of geodesics (15.4.2). Then we take as the
fields U and ξ simply the coordinate basis fields ∂ϑ and ∂ϕ respectively. Check that

(i) a direct computation of the left-hand side of Jacobi’s equation gives

∇2
∂ϑ

∂ϕ = · · · = −∂ϕ

(ii) by comparison with what the right-hand side of the equation should give we obtain

−∂ϕ
!= R(∂ϑ , ∂ϕ)∂ϑ ≡ Rϑ

ϑϑϕ∂ϑ + Rϕ

ϑϑϕ∂ϕ

(iii) from there we can read the values of the components of the Riemann curvature tensor

Rϑ
ϑϑϕ = 0 Rϕ

ϑϑϕ = −1
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(iv) these results coincide with those obtained by a direct computation from the formula for com-
ponents of the curvature tensor in terms of Christoffel symbols (15.5.5) or by expressing the
result from (15.6.11) (“orthonormal” components obtained from the Cartan structure equations)
in coordinate components.

Hint: see (15.3.7). �

15.8∗ Torsion, complete parallelism and flat connection

• We encountered the concept of (the tensor of) torsion in the section devoted to the
RLC connection (15.3.3), where we learned that the requirement of vanishing torsion leads
in combination with metricity to a unique (i.e. RLC) connection. So in this particular
connection the torsion is by definition completely “disabled.” On the other hand, exactly
this particular connection is by far the most frequent linear connection met by most people
(say, in general relativity). This results in the torsion mostly remaining hidden in the shadow
of its much more popular sibling, the curvature.327

The torsion must appreciate then (even be touched to the heart) knowing that we did
not forget about it. In this section we will learn in which geometrical situation the (non-
vanishing) torsion manifests its presence. Namely it turns out that it causes “disclosure of
a geodesic parallelogram.”

15.8.1 At a point P consider two vectors u, v. The
point P and the vector u define a unique (affinely
parametrized) geodesic γu(t). We parallel transport
v to the point Q1 ≡ γu(ε) along the geodesic; this
results in v‖ in Q1. The point Q1 and the vector v‖
define in turn a geodesic γv‖ (t). The point γv‖ (ε) will
be labeled R1. Now we perform the same steps with
the vectors u ↔ v being interchanged. In this way
we obtain the points Q2 and R2. It is clear that in
the ordinary plane we should draw a parallelogram

with vertices P, Q1, R1 ≡ R2, Q2. It turns out, however, that on a general manifold with
connection (M, ∇) there holds R1 �= R2, and the step by which we get from R1 to R2 up
to second-order accuracy in ε is realized by the vector T (u, v), where T is the torsion of
the connection ∇. One may then say that the vector T (u, v) encloses within order ε2 the
infinitesimal geodesic parallelogram given by the vectors u and v. Check this statement by
a computation.

Hint: for example, in coordinates: according to (15.4.1) the point Q1 has the coordinates
xi (Q1) = xi (P) + uiε − 1

2	i
jku j ukε2 + · · · . Components of the transported vector v are

327 As scientists recently discovered (under microscopes, I expect) this spectacular astronomical phenomenon was already pretty
well known to Mayan civilization. Mayan astronomers compiled precise tables of positions for the Moon, Venus, Curvature
and Torsion and were able to predict with astonishing accuracy torsion eclipses (caused by the curvature; their prediction
namely stated that it always happens).
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by (15.2.6) vi
‖ = vi − ε	i

jkukv j + · · · (since ẋ k = uk). Within order ε2 then the coordinates
of the point R1 are

xi (R1) = xi (Q1) + vi
‖ε − 1

2
	i

jkv
j
‖v

k
‖ε

2

≡ xi (P) + ε(ui + vi ) + 1

2
ε2	i

jk(−u j uk − v jvk − 2v j uk)

The corresponding result for xi (R2) is obtained by u ↔ v so that

xi (R2) − xi (R1) = 1

2
ε2	i

jk2(v j uk − vku j ) = ε2( − 2	i
[ jk]

)
u jvk ≡ ε2T i

jku jvk

≡ (ε2T (u, v))i

�

• These results probably reminded the reader of a similar computation in Chapter 4
where the geometrical meaning of the commutator [U, V ] of two vector fields U and V was
discussed (4.5.3). In what way do these constructions actually differ?

In Chapter 4 we managed without any connection, here we definitely need it. In particular,
there we moved along integral curves of the vector fields involved, whereas here we move
along geodesics. There we needed the fields U, V also in a neighborhood of the point P ,
whereas here we make do with the vectors u, v at the point P alone.

In both cases unclosed parallelograms arose; then due to non-vanishing [U, V ], now due
to non-vanishing T (U, V ). As an enclosing piece (up to order ε2) one had to add then
−ε2[U, V ], now it is +ε2T (U, V ).

There is also an equivalent way of expressing the effect of torsion. Contemplate vectors
u, v at the point P . Extend them to vector fields U, V in a small neighborhood of the point
P as follows: if Q is a point in the neighborhood, we construct a geodesic from P to Q and
parallel transport the vectors u, v to Q along the geodesic (recall that a parametrization of the
geodesic does not matter). All the transported vectors then constitute the vector fields U, V .
By construction their covariant derivative in any direction vanishes at the point P so that
we get for the tensor of torsion at that point TP (U, V ) = (∇U V )P − (∇V U )P − [U, V ]P =
−[U, V ]P . The effect of torsion thus happens to coincide with the effect of (minus) the
commutator of these vector fields. The latter manifests itself when traveling along their
integral curves, coinciding here in turn just with geodesics (a geodesic given by a vector
v arises by the parallel transport of v “along itself”; that is, however, exactly the way in
which the values of the field V arise), so that the above-mentioned “geodesic” construction
actually matches the construction in terms of the integral curves used here.

Recall also that Section 15.5, describing curvature, starred yet another important “non-
closure phenomenon” which is related to connections (this time, however, not at the level of
the points along which we travel, but rather at the level of tensors being transported; a tensor
suffers a change due to the parallel transport along a loop). Let us illustrate non-vanishing
torsion with the example of a simple connection where the effect of the torsion may be
easily grasped visually.
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Consider as a manifold the two-dimensional sphere S2 with both the north and south poles
removed, endowed with the common “round” metric tensor. If it is as big as the surface of
the Earth, it may easily happen we actually do not recognize it is a sphere (it took some
time for mankind, too) and we believe we walk on a Euclidean plane. Then it is natural to
perform the parallel transport of vectors as follows.

First, we measure the length of the vector to be transported and arrange the length to be
the same after the transport. Then the only issue which remains is its direction. In order to fix
the direction we use a compass and measure the azimuth of the initial vector (i.e. the angle
clockwise from due north; this does not work at the poles, but recall they were removed from
the manifold at the very beginning with wondrous foresight). We then prescribe the same
azimuth to the transported vector. If we believe we walk on a Euclidean plane (endowed
with a distinguished “north” direction) we have a clear conscience that we did our best to
realize parallel transport in the most common intuitive sense.328

15.8.2 Check that the connection on the sphere with removed poles which was introduced
above is metric, it has vanishing curvature and non-vanishing torsion.

Hint: by construction it is evident that the scalar product of vectors is preserved (so that it
is metric) and that parallel transport does not depend on the path (⇒ vanishing curvature).
We also see that the standard orthonormal frame field (eϑ , eϕ) on the sphere is parallel, i.e.
that for any V there holds ∇V eϑ = 0 = ∇V eϕ (it is enough to realize how parallel transport
of these vectors to another point turns out). Then (on the sphere with unit radius),

T (eϑ , eϕ) ≡ ∇eϑ
eϕ − ∇eϕ

eϑ − [eϑ , eϕ] = −[eϑ , eϕ] = −
[

∂ϑ,
1

sin ϑ
∂ϕ

]

= cos ϑ

sin2 ϑ
∂ϕ ≡ cos ϑ

sin ϑ
eϕ �= 0

�

15.8.3 Check that all meridians as well (in contrast to RLC) as parallel lines (and even in
general all loxodromes) turn out to be geodesics of this connection.

Hint: ∇U eϑ = 0 = ∇U eϕ (for arbitrary U ) results in ∇V V = 0 for V = k1eϑ + k2eϕ ; in
particular, ∇eϕ

eϕ = 0 says that integral curves of the field eϕ (parallel lines) are geodesics;
for general k1, k2 the integral curves happen to coincide with loxodromes (3.2.8). �

• The fact that in this particular case there holds T (eϑ , eϕ) = −[eϑ , eϕ] �= 0 means that
the vector which encloses a geodesic parallelogram coincides with the vector enclosing
the parallelogram made from integral curves. This is not an accident. Both procedures of
construction of the parallelograms eventually lead to the same result: if we take eϑ , eϕ as
U, V , a motion along integral curves is the same as the motion along geodesics (the first
halves of the construction thus coincide), the parallel transport of the second vector along

328 This technique can be safely used at the scale of a town, say; as a preparation the reader is invited to use it at a copy-book
scale.
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the geodesic given by the first one results in the value of the second field at a new place so
that also the second halves of the construction give the same result. The effect of torsion
thus coincides here with the effect of non-commutativity of the fields eϑ and eϕ . However,
here the latter is very clear visually.

15.8.4 Be sure you understand that the effect of
non-commutativity of the fields eϕ and eϑ (and con-
sequently also of the non-vanishing torsion of the
connection under consideration) consists of the ele-
mentary fact that if we move a small distance east-
wards and then the same distance southwards, we
do not reach (exactly) the same point as if we did

the same steps in the opposite order. Try to obtain (by an elementary computation) the
difference and check that you get the same result as you get by “scientific” consideration,
i.e. by the computation of the term ε2T (eϕ, eϑ ) ≡ −ε2[eϕ, eϑ ].

Hint: the distance between meridians gets shorter when we start to move in a direction
toward the poles. �

• In the example discussed above an important class of connections has been illustrated,
called a complete parallelism. This comes into being when in a domain on a manifold
there is a covariantly constant frame field ea (alternatively it is known as a parallel frame
field), i.e. a frame field for which the covariant derivative in an arbitrary direction vanishes,
∇V ea = 0 for each V , so that also

∇ea = 0 or ea;μ = 0

Such a field may in general be non-holonomic. If it happens to be holonomic (i.e. coordinate),
we speak about a flat connection.

Yet another name used for a complete parallelism is teleparallelism, i.e. parallelism “at
a distance.” The origin of this terminology will be clear from the next problem.

15.8.5 Let ea be a covariantly constant frame field
in a domain U . Be sure to understand that parallel
transport in this domain does not depend on the path,
so that there exists a natural identification of any two
tangent spaces in U . Consequently a comparison of
vectors sitting in different (possibly fairly remote)
points in U now makes “absolute” sense (see the
motivation of the concept of a connection at the very
beginning of the chapter).

Hint: covariant constancy of the frame field gives the
following equation of the parallel transport of (say) a vector field: 0 = ∇γ̇ (Aaea) = Ȧaea ,
i.e. Aa(t) = ka ≡ constant, regardless of the path along which the vector is transported ⇒
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the transport (within the domain where the frame field ea operates) from a point P to any
point Q looks like kaea(P) �→ kaea(Q) (the transport thus consists in decomposing the
vector at the point P with respect to the basis ea and thereafter in composing it back with
the same coefficients at the final point Q; so it works as if we made an “immediate leap”
to Q (i.e. transport “at a distance”)). Two vectors at different points are regarded as being
“equal” if they have equal coefficients with respect to ea at these two points. �

15.8.6 Check that

(i) for a complete parallelism the connection forms vanish at an appropriate basis, ωa
b = 0, for a flat

connection the Christoffel symbols vanish at appropriate coordinates, 	i
jk = 0

(ii) for a complete parallelism the curvature vanishes and for a flat connection both the curvature and
torsion vanish

∇ea eb = 0 (complete parallelism) ⇒ Ra
bcd = 0

∇∂a ∂b = 0 (flat connection) ⇒ Ra
bcd = 0 = T a

bc

Hint: (i) for a covariantly constant frame we have ∇V ea = ωb
a(V )eb = 0 or ∇∂a ∂b =

	c
ba∂c = 0; (ii) from the Cartan structure equations (15.6.7); or since ∇ea eb = 0,

we have R(ea, eb)ec ≡ (∇ea ∇eb − ∇eb∇ea − ∇[ea ,eb])ec = 0; T (ea, eb) ≡ ∇ea eb − ∇eb ea −
[ea, eb] = −[ea, eb], which vanishes exactly for ea = ∂a . �

• Note that both statements in problem (15.8.6) had the form of a one-way implication.
The opposite implication

Ra
bcd = 0

?⇒ ∃ea : ∇ea eb = 0 (complete parallelism)

Ra
bcd = 0 = T a

bc
?⇒ ∃xa : ∇∂a ∂b = 0 (flat connection)

is a priori not clear and the issue needs a special analysis. One line of thought might be based
on the way in which the curvature tensor occurred: its vanishing guarantees the triviality
of parallel transport around particular infinitesimal loops. This can also be extended to
bigger (finite) loops and one may infer from that the possibility of transport of a frame from
the point P to its neighborhood independent of path, which implies the existence of the
covariantly constant frame field being sought.

A different line of thought goes as follows: vanishing curvature means that for each
frame field we have 0 = � ≡ dω + ω ∧ ω. This does not necessarily also mean ω = 0
(covariantly constant ea). A general change of frame field by a matrix A results in ω �→
ω̂ = A−1(ωA + d A), so that the question of whether there exists a frame field êa such
that ω̂ = 0 leads to the formulation of the problem of whether there exists a non-singular
matrix field A(x) which obeys a system of (partial differential) equations ωA + d A = 0.
The problem may be solved and the answer is yes.

The third possibility (which will be adopted here) is to postpone the discussion until
Chapter 20, see (20.4.11), to the general context of connection theory. In this theory the
notion of a covariantly constant frame field takes an interesting geometrical interpretation in
terms of “integrable distributions”; by referring to the “Frobenius integrability condition”
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we learn that vanishing curvature is indeed also a sufficient condition for the existence
of a covariantly constant frame field329 (so the first implication holds), from which then
already the validity of the second implication follows immediately.330 Vanishing of both the
curvature and torsion tensors thus means that the connection is flat.

15.8.7 Check that

(i) the ordinary RLC connection in (pseudo-)Euclidean space Er,s is flat
(ii) the connection on a Lie group G which we mentioned in problem (15.4.15) (parallel transport

being given by left translation) is a complete parallelism, but in general it is not flat.

Hint: (i) ea = ∂a = Cartesian frame field; (ii) ea = left-invariant basis; the latter fails to be
holonomic for non-Abelian groups. �

15.8.8 * Define a connection on a Lie group G by the formula

∇L X LY := λ[L X , LY ] ≡ λL [X,Y ] L X , LY left-invariant fields

(λ being a real parameter to be specified later). Check that the explicit expressions for the
curvature and torsion of this connection read

R(L X , LY )L Z = λ(λ − 1)L [[X,Y ],Z ] i.e. Ra
bcd = λ(λ − 1)ca

f bc f
cd

T (L X , LY ) = (2λ − 1)L [X,Y ] i.e. T a
bc = (2λ − 1)ca

bc

(ea is a left-invariant frame field) and we may identify the following special cases:

λ = 1

2
Ra

bcd �= 0 T a
bc = 0 RLC connection for Killing metric K on G

λ = 0 Ra
bcd = 0 T a

bc �= 0 parallel transport is left translation (15.4.15)
λ = 1 Ra

bcd = 0 T a
bc �= 0 parallel transport is right translation

This connection is not flat, but for λ = 0 as well as λ = 1 we have complete parallelism.

Hint: computation of R and T right from the definitions; for any λ the connection turns out
to be metric with respect to the Killing metric:

∇L Z {K(L X , LY )} 1= L Z K (X, Y ) = 0
2= (∇L ZK)(L X , LY ) + K(∇L Z L X , LY ) + K(L X , ∇L Z LY )

= (∇L ZK)(L X , LY ) + λ{K ([Z , X ], Y ) + K (X, [Z , Y ])}
= (∇L ZK)(L X , LY ) due to (12.3.9)

Then (15.8.7) and (15.4.15). �

329 The notion of curvature itself leans heavily on the integrability condition mentioned above. Namely the curvature is introduced
so that integrability would (by definition) mean vanishing curvature. It turns out that a covariantly constant frame field
corresponds to a “horizontal section” and that the latter exists if and only if a horizontal distribution happens to be integrable.

330 If Ra
bcd = 0 gives ∇ea eb = 0, then with respect to this frame field we have 0 = T a

bc = · · · = −〈ea , [eb, ec]〉 ⇒ [eb, ec] = 0,
i.e. ea = ∂a .
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Summary of Chapter 15

In many applications (e.g. in the computation of acceleration of a point mass in elementary
mechanics) one performs linear combinations (in particular, the difference in the case of
acceleration) of vectors (or more generally tensors) sitting at different points of a man-
ifold. This is not possible on a “bare” manifold. The structure which makes it legal is
a (linear) connection ∇ on M . The connection enables one to transport vectors along a
given path (the transport being path-dependent in general) and consequently to perform the
above-mentioned comparison (vector in x is compared with the one being transported to
x from y). This transport is by definition called parallel (in the sense of the connection
∇). A connection is frequently defined by postulating the properties of a derived object,
the covariant derivative. One can introduce the concept of a straight line (geodesic) on
(M, ∇). Two tensor fields are associated with a linear connection, the curvature and torsion
tensors. It is shown that the requirements of compatibility of a connection with the metric
(conservation of any scalar product upon any parallel transport) together with vanishing of
its torsion result in a unique connection, the Riemannian or Levi-Civita (RLC) connection.
The curvature tensor encodes the local information of “how much” (if ever) the parallel
transport (along infinitesimal paths) is path-dependent; it also displays itself in the behavior
of nearby geodesics, causing their deviation (Jacobi’s equation). A non-zero torsion implies
non-closure of a geodesic parallelogram. An efficient tool for working with a connection is
provided by the machinery of differential forms. Basic objects are encoded into forms and
relations between them are given by the Cartan structure equations. A connection is called
a complete parallelism if there exists a covariantly constant frame field. Then the curvature
tensor turns out to vanish and moreover a comparison of vectors (as well as tensors) in
different (possibly remote) points makes sense. A connection is said to be flat if the covari-
antly constant frame field happens to be holonomic (coordinate). Then both the curvature
and torsion tensors turn out to vanish.

∇aeb =: 	c
baec Coefficients of connection with respect to ea (15.2.1)

∇ j∂i =: 	k
i j∂k Christoffel symbols of the second kind (15.2.3)

V̇ i + 	i
jk ẋ k V j = 0 Equations of parallel transport of vector (15.2.6)

∇g = 0 (gi j ;k = 0) Connection ∇ is metric (15.3.1)
T (U, V ) := ∇U V − ∇V U − [U, V ] Torsion tensor induced by ∇ (15.3.3)
	i

jk = 1
2 gil (gl j,k + glk, j − g jk,l ) Riemann/Levi-Civita connection (RLC) (15.3.4)

∇γ̇ γ̇ = 0
(
ẍ i + 	i

jk ẋ j ẋ k = 0
)

Geodesic equation (15.4.1)
exp v := γv(1), γ̇v(0) = v ∈ TP M Exponential map centered at P ∈ M (15.4.10)
〈α, ([∇U , ∇V ] − ∇[U,V ])W 〉 Riemann curvature tensor (15.5.5)
Rab := Rc

acb, R := Ra
a ≡ Rab

ab Ricci tensor and scalar curvature Sec. 15.5
∇V ea = ωb

a(V )eb

(
ωa

b = 	a
bcec

)
Connection forms ωb

a with respect to ea (15.6.1)
ω′ = A−1ωA + A−1d A Transformation law for ω under e′ = eA (15.6.2)
de + ω ∧ e = T, dω + ω ∧ ω = � Cartan structure equations (15.6.7)
d� + ω ∧ � − � ∧ ω = 0, � ∧ e = 0 Bianchi and Ricci identities (for RLC) (15.6.16)
∇2

γ̇ ξ = R(γ̇ , ξ )γ̇ Jacobi’s equation for geodesic deviation (15.7.2)
Ra

bcd = 0 = T a
bc Flat connection (15.8.6)
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Field theory and the language of forms

• A standard machinery developed in courses on the special theory of relativity consists

of a mathematics of 4-vectors and 4-tensors in Minkowski space. In this language one

achieves explicit Lorentz covariance of all equations. It turns out, for example, that from

a four-dimensional perspective the electric and magnetic fields turn out to be parts of a

single object, the tensor of the electromagnetic field with components Fμν . This tensor is,

however, not “general,” but rather, antisymmetric

Fμν = −Fνμ

This fact is a clear signal for us “to switch over to another channel” in contemplation on

these ideas, the new “channel” being the language of differential forms. And if we call to

mind that in the 4-tensor formalism Maxwell’s equations look like

Fμν
,ν = jμ F[μν,ρ] = 0

then our experienced eye331 readily reports that it noticed the component expression of

codifferential and differential of a 2-form F on the left-hand sides of the equations. Thus, the

fundamental equations of the electromagnetic theory may be written in terms of fundamental

objects and operations of the theory of differential forms.

In this chapter we derive the four-dimensional expressions of field theory equations in

the language of differential forms and we outline several advantages of this approach. In the

first section we investigate thoroughly a structure of differential forms in Minkowski space

along with their expression in a (“(1+3)-decomposed”) form which facilitates immediate

contact with the three-dimensional expressions typically encountered in the usual vector

analysis approach. We also compute the results of all standard operations on such forms.

By doing this we reveal that some of them contain just those combinations of terms we

need for Maxwell’s equations.332 This enables us eventually to write down the equations in

terms of forms on a four-dimensional space-time and to admire their amazingly simple and

lucid structure.

331 The left eye for right-handers and the right eye for left-handers (recall the well-known crossing of neural pathways).
332 The reader is expected to be familiar with the standard three-dimensional vector analysis form of Maxwell’s equations

(div E = ρ, etc.).
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16.1 Differential forms in the Minkowski space E1,3

• Minkowski space (2.6.6) results from a “symbiosis” of the time axis E1[t] with ordinary

three-dimensional space E3[r] into a single entity, a four-dimensional space-time of the spe-

cial theory of relativity. So first there is a Cartesian product of manifolds R
1 × R

3 ∼ R
4,

in the second step it is endowed with a metric tensor333 η with signature (1, 3). Recall that

splitting of space-time into a “time” and a “space” does not have an absolute character

in the theory of relativity, but rather it is observer-dependent: another observer may re-

gard another direction334 (one-dimensional subspace) in the (“absolute”) tangent space at

a given point as a “time” direction and consequently also another three-dimensional sub-

space interpreted as a “genuine space” (since the latter should be perpendicular to the “time”

dimension).

So in Minkowski space there is an important inherent structure of (1 + 3)-decomposition
in each tangent space which is usually realized by a choice of particular Cartesian coordinates

(t, r). If the choice is made, each vector may be

unambiguously written as a sum of its “time” and

“space” parts. Since vectors serve as arguments for

forms, it should not surprise us too much that the

decomposition of vectors has a direct influence on

forms on the manifold E1,3. We will see that forms

on E1,3 may also be uniquely written in a decom-

posed way. The decomposition incorporates two forms, which are as if they live only in E3;

on such forms one can apply the standard operations of three-dimensional vector analysis
which we discussed in detail in Section 8.5. The possibility of decomposition of vectors

thus has an important implication for the formalism of forms in Minkowski space: the same

statement may be made either “objectively,” in a language of genuinely four-dimensional

forms, or “subjectively,” in a language of three-dimensional observer-dependent forms.

Both languages are very important: the four-dimensional language of a “noble science”

often reveals an extremely simple formal expression of a physical law (however, at the

expense of passing to higher-dimensional space, which is not “directly visible” by us, mere

mortals), the three-dimensional “language of common people” is a language of “directly

visible” quantities (vector of the electric field, etc.). Therefore it is worth putting in the

time and effort to develop such a version of the machinery of forms in Minkowski space

which offers a simple transition between the two languages. Note that in both languages

the calculus of differential forms plays a central role, thus providing an excellent example

of its remarkable power combined with amazing simplicity.

333 This text by no means has the ambition to replace textbooks on relativity, where one finds a physical motivation for the choice
of just this metric tensor on the resulting manifold R

4, i.e. why we do not combine E1 and E3 to, say, E4, but instead E1,3;
a word of caution is in order: roughly equally frequently the opposite convention is adopted, in which η has the signature
(3, 1).

334 A time direction corresponds to the choice of the vector e0, which obeys η(e0, e0) = +1. This vector is not unique, any other
possibility looks like e′

0 = �a
0ea ≡ �0

0e0 + �i
0ei with a Lorentzian matrix �. This produces a “mixture” of the previous time

and space.
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16.1.1 Consider Minkowski space E1,3 with global Cartesian coordinates xμ ≡ (x0, xi ) ≡
(t, xi ). By definition in these coordinates the metric tensor takes the form (2.6.6)

η = dt ⊗ dt − h ≡ dt ⊗ dt − (dx ⊗ dx + dy ⊗ dy + dz ⊗ dz) ≡ g(1) ⊕ (−g(3))

and an orientation is introduced (in a standard way, see the end of Section 5.5) so that the

coordinate frame field ∂μ ≡ (∂0, ∂1, ∂2, ∂3) ≡ (∂t , ∂x , ∂y, ∂z) is declared to be right-handed.

Check that

(i) each differential form on E1,3 may be uniquely written in the form

α = dt ∧ ŝ + r̂

where the forms ŝ, r̂ already do not contain the differential dt ; they decompose with respect to a

“spatial” part dxi alone of the coordinate coframe field dxμ ≡ (dt, dxi ) ≡ (dt, dx, dy, dz); we

will call such forms spatial forms
(ii) if α is a p-form, then ŝ is a (p − 1)-form and r̂ is a p-form

(iii) α = 0 is equivalent to ŝ = 0, r̂ = 0

(iv) a form α is spatial if and only if i∂t α = 0

(v) explicit expressions of the forms ŝ, r̂ read

α = 1

p!
αμ...ν dxμ ∧ · · · ∧ dxν ⇒ ŝ = 1

(p − 1)!
α0i ... j dxi ∧ · · · ∧ dx j

r̂ = 1

p!
αi ... j dxi ∧ · · · ∧ dx j

so that

ŝi ... j (t, r) = α0i ... j (t, r) r̂i ... j (t, r) = αi ... j (t, r)

Hint: (i) trivial: according to the rules for manipulating forms, in each term the differential

dt may occur at most once, i.e. once or not at all; ŝ is obtained by collecting all terms in

which dt occurs once, r̂ collects all terms in which dt is absent; (iii) the two terms are

linearly independent; (iv) i∂t α = ŝ; (v) a sum over μ = a sum over 0 (one term) + a sum

over i (three terms); for example, for a 2-form

α = 1

2
αμν dxμ ∧ dxν

= 1

2
α00 dx0 ∧ dx0 + 1

2
α0i dx0 ∧ dxi + 1

2
αi0 dxi ∧ dx0 + 1

2
αi j dxi ∧ dx j

= dt ∧ (α0i dxi ) + 1

2
αi j dxi ∧ dx j

= dt ∧ (ŝi dxi ) + 1

2
r̂i j dxi ∧ dx j ≡ dt ∧ ŝ + r̂

�

16.1.2 Check that a general decomposition of differential forms in Minkowski space α =
dt ∧ ŝ + r̂ gives for the concrete relevant degrees the following explicit “parametrizations”
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in the language of three-dimensional vector analysis:

0-forms: α = f i.e. (ŝ, r̂ ) = (0, f )

1-forms: α = f dt + a · dr i.e. (ŝ, r̂ ) = ( f, a · dr)

2-forms: α = dt ∧ a · dr + b · dS i.e. (ŝ, r̂ ) = (a · dr, b · dS)

3-forms: α = dt ∧ a · dS + f dV i.e. (ŝ, r̂ ) = (a · dS, f dV )

4-forms: α = dt ∧ f dV i.e. (ŝ, r̂ ) = ( f dV, 0)

where the basis spatial forms dr, dS, dV are given by the expressions introduced in (8.5.2).

Hint: see (16.1.1) and (8.5.2). �

• Although the spatial forms f, a · dr, a · dS or f dV are at first sight indistinguishable

from the true forms on E3, a closer look reveals an important difference, namely the time

dependence of their components.335 This results in an additional term in the expression of

their exterior derivative.

16.1.3 Check that

(i) for the exterior derivative of spatial forms we have the following general expression:

dr̂ = dt ∧ ∂t r̂ + d̂r̂ ∂t r̂ ≡ L∂t r̂

i.e. we may write an operator identity

d = dt ∧ L∂t + d̂

where d̂ stands for a spatial exterior derivative, which is performed as if the spatial form under

consideration indeed lived only in E3 (its components did not depend on t), i.e. according to the

results discussed in the section on vector analysis (8.5.4)

(ii) this explicitly gives for particular degrees

0-forms: d f = (∂t f )dt + grad f · dr
1-forms: d(a · dr) = dt ∧ (∂t a) · dr + (curl a) · dS
2-forms: d(a · dS) = dt ∧ (∂t a) · dS + (div a)dV
3-forms: d( f dV ) = dt ∧ (∂t f )dV

Hint: (i) for a 1-form, say, we have

d(r̂i (t, r) dxi ) = dr̂i ∧ dxi = ((∂t r̂i ) dt + r̂i, j dx j ) ∧ dxi

= dt ∧ L∂t (r̂i dxi ) + 1

2
(−2r̂[i, j])dxi ∧ dx j ≡ dt ∧ ∂t r̂ + d̂r̂

(ii) see (8.5.4); for d̂ here the formulas for d there are valid. �

• Now it is already a simple matter to write down the action of an exterior derivative on

arbitrary (not only spatial) forms.

335 One should keep in mind that these forms live in E1,3 rather than in E3, so that we may write in detail, for example,
r̂ = r̂i (t, r) dxi .
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16.1.4 Check that

(i) for the exterior derivative of a general form in E1,3 we have the following formula:

dα ≡ d(dt ∧ ŝ + r̂ ) = dt ∧ (∂t r̂ − d̂ ŝ) + d̂r̂

(ii) this gives explicitly for particular degrees

0-forms: d f = (∂t f )dt + grad f · dr

1-forms: d( f dt + a · dr) = dt ∧ (∂t a − grad f ) · dr + (curl a) · dS

2-forms: d(dt ∧ a · dr + b · dS) = dt ∧ (∂t b − curl a) · dS + (div b)dV

3-forms: d(dt ∧ a · dS + f dV ) = dt ∧ (∂t f − div a)dV

Hint: see (16.1.3). �

• The second important operator on forms to be tackled is the Hodge star operator ∗.

Just as the concept of the spatial exterior derivative d̂ (which acts only on spatial forms)

appears naturally in the course of the computation of d, it is convenient to introduce the

spatial Hodge operator ∗̂, which also acts only on spatial forms. This operator is defined

in a standard way with respect to the (positive definite!) metric tensor g(3) and standard

orientation ô in E3 (the basis (∂x , ∂y, ∂z) is declared to be right-handed), i.e. using the

notation from (5.8.1)

∗̂ := ∗g(3),ô ∗ := ∗η,o

(i.e. ∗̂ is an ordinary star operator for the subspace corresponding to E3, endowed with its

“original” positive definite336 metric g(3)). It turns out that if we apply the (“total”) operator

∗ on a decomposed form, the result may be written (again in a decomposed form) in terms

of the spatial operator ∗̂.

16.1.5 Check that

(i) the Hodge operator of dualization gives on a general form in E1,3

∗α ≡ ∗(dt ∧ ŝ + r̂ ) = dt ∧ (∗̂r̂ ) + ∗̂η̂ŝ

(ii) for particular degrees this explicitly reads

0-forms: ∗ f = dt ∧ f dV

1-forms: ∗( f dt + a · dr) = dt ∧ a · dS + f dV

2-forms: ∗(dt ∧ a · dr + b · dS) = dt ∧ b · dr − a · dS

3-forms: ∗(dt ∧ a · dS + f dV ) = f dt + a · dr

4-forms: ∗(dt ∧ f dV ) = − f

(iii) these formulas are consistent with the result ∗∗ = −η̂, which we obtain for the case E1,3 from

(5.8.2)

(iv) the operator η̂ (the main automorphism) acts as follows:

η̂(dt ∧ ŝ + r̂ ) = dt ∧ (−η̂ŝ) + η̂r̂

336 This choice of a sign then enables one to express hatted quantities in the language of vector analysis, i.e. the hatted quantities
then behave exactly as the objects treated in Section 8.5.
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Hint: (i) with the help of (5.8.1) straightforwardly check that on a “mixed” and a genuine

spatial basis p-form there holds (e0 ≡ dt, ei ≡ dxi )

∗(e0 ∧ ei ∧ · · · ∧ e j ) = ∗̂η̂(ei ∧ · · · ∧ e j )

∗(ek ∧ · · · ∧ el) = e0 ∧ ∗̂(ek ∧ · · · ∧ el)

(ii) see (8.5.3); (iii) see (5.3.3). �

• Finally, let us have a look at the last two operators needed, the codifferential δ and the

Laplace–deRham operator 	. Since they are only composed from operators which we have

already mastered, the only thing we are to do is to bring the parts together. As is commonly

done, we will denote the Laplace–deRham operator for the case E1,3 by � rather than 	

(one should keep in mind, however, that this operator in general acts on forms, not only on

functions; in particular, on functions it is also called the d’Alembert operator or the wave
operator).337

16.1.6 Check that

(i) the codifferential δ ≡ ∗−1d ∗ η̂ (on E1,3 this comes out as ∗d∗) and the Laplace–deRham operator

� = −(δd + dδ) act on a general form on E1,3 as follows:

δα ≡ δ(dt ∧ ŝ + r̂ ) = dt ∧ (δ̂ŝ) + (−∂t ŝ − δ̂r̂ )

�α ≡ �(dt ∧ ŝ + r̂ ) = dt ∧ [(
∂2

t − 	̂
)

ŝ
] + [(

∂2
t − 	̂

)
r̂
]

where we introduced the spatial codifferential

δ̂ := ∗̂−1d̂∗̂η̂ (on E3 this is ∗̂d̂∗̂η̂)

and spatial Laplace–deRham operator

	̂ = −(δ̂d̂ + d̂ δ̂)

(ii) for particular degrees this explicitly yields

0-forms: δ f = 0

� f = (
∂2

t − 	̂
)

f

1-forms: δ( f dt + a · dr) = −∂t f + div a

�( f dt + a · dr) = (
∂2

t − 	̂
)

f dt + (
∂2

t − 	̂
)

a · dr

2-forms: δ(dt ∧ a · dr + b · dS) = (−div a)dt + (−∂t a − curl b) · dr

�(dt ∧ a · dr + b · dS) = dt ∧ (
∂2

t − 	̂
)

a · dr + (
∂2

t − 	̂
)

b · dS

3-forms: δ(dt ∧ a · dS + f dV ) = dt ∧ (curl a · dr) + (−∂t a + grad f ) · dS

�(dt ∧ a · dS + f dV ) = dt ∧ (
∂2

t − 	̂
)

a · dS + (
∂2

t − 	̂
)

f dV

4-forms: δ(dt ∧ f dV ) = dt ∧ (−grad f · dS) + (−∂t f )dV

�(dt ∧ f dV ) = dt ∧ (
∂2

t − 	̂
)

f dV

Hint: this is a bit easier with the help of (16.1.7). �

337 Exceptional foresight was definitely not the strong point of the people who introduced this notation long ago; they seem to
have missed the elementary fact that, in this book, the same symbol denotes the end of problems.
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• One can manipulate such combinations of operators more simply using the following

matrix formalism: assign a column with components ŝ and r̂ to a form α = dt ∧ ŝ + r̂ .

According to (16.1.4) then the action of the operator d (to give an example) gives
(

ŝ
r̂

)
d
→

(
∂t r̂ − d̂ ŝ

d̂r̂

)

≡
(−d̂ ∂t

0 d̂

) (
ŝ
r̂

)

⇒ d ↔
(−d̂ ∂t

0 d̂

)

All the other operators which we have encountered may also be written in this way, reducing

the calculation of their combinations to a mechanical matrix multiplication.

16.1.7 Check that the following matrix operators are to be assigned to the operators

discussed so far:

d ↔
(−d̂ ∂t

0 d̂

)

∗ ↔
(

0 ∗̂
∗̂η̂ 0

)

∗−1 ↔
(

0 −∗̂η̂

∗̂ 0

)

η̂ ↔
(−η̂ 0

0 η̂

)

δ ↔
(

δ̂ 0

−∂t −δ̂

)

� ↔
(

∂2
t − 	̂ 0

0 ∂2
t − 	̂

)

Hint: see (16.1.4), (16.1.5), (5.8.2) and (16.1.6). �

• Also Stokes’ theorem takes a specific form if it concerns strictly spatial domains. By

a spatial domain we mean a domain D̂ in Minkowski space such that if γ is an arbitrary

curve lying in D̂ then the tangent vector γ̇ is strictly spatial (i.e. perpendicular to the vector

∂t at this point). Put another way, its parametrization has a form

(u, . . . , v) 
→ (t, xi ) ≡ (t0 = constant, xi (u, . . . , v))

(for example, a ball in E3 at time t = t0 is a three-dimensional spatial domain; such domains

exist with one, two and three dimensions).

16.1.8 Let D̂ be a spatial domain of dimension p = 1, 2 or 3 in Minkowski space E1,3

and let r̂ be any spatial (p − 1)-form. Show that the spatial Stokes’ theorem holds:
∫

D̂
d̂r̂ =

∫

∂ D̂
r̂

i.e. we may substitute d in this case by d̂ if we wish (reducing then to grad, curl or

div; thus, for both spatial forms and domains, Stokes’ theorem presented here is at first

sight indistinguishable from one of three integral theorems discussed in vector analysis

(8.5.6)).

Hint: according to (16.1.3) we have dr̂ = dt ∧ (· · ·) + d̂r̂ ; the part which contains dt drops

out upon restriction on the spatial domain. �

• Let us sum up for later convenience all the general relations we have encountered in

this section. We learned that any differential form on Minkowski space E1,3 may be written

as

α = dt ∧ ŝ + r̂
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and that the basic operations performed on forms which are decomposed in this way are

given by the formulas

dα ≡ d(dt ∧ ŝ + r̂ ) = dt ∧ (∂t r̂ − d̂ ŝ) + d̂r̂

∗α ≡ ∗(dt ∧ ŝ + r̂ ) = dt ∧ (∗̂r̂ ) + ∗̂η̂ŝ

η̂α ≡ η̂(dt ∧ ŝ + r̂ ) = dt ∧ (−η̂ŝ) + η̂r̂

δα ≡ δ(dt ∧ ŝ + r̂ ) = dt ∧ (δ̂ŝ) + (−∂t ŝ − δ̂r̂ )

�α ≡ �(dt ∧ ŝ + r̂ ) = dt ∧ (
∂2

t − 	̂
)
ŝ + (

∂2
t − 	̂

)
r̂

One should think of typical expressions from vector analysis f, a · dr, b · dS, h dV (de-

pending on degree) representing the spatial forms and standard operators grad, curl and div

(depending again on degree) representing the spatial differential and codifferential d̂, δ̂.

A spatial Stokes’ theorem holds in which formally only the spatial exterior derivative

takes part.

16.2 Maxwell’s equations in terms of differential forms

• Write down the result of an exterior derivative of a general 2-form in Minkowski space

d(dt ∧ a · dr + b · dS) = dt ∧ (∂t b − curl a) · dS + (div b)dV

and compare it with a standard three-dimensional version of the second series of Maxwell’s

equations in vacuum (i.e. the homogeneous part of the equations)

curl E + ∂t B = 0 div B = 0

An overwhelming majority of readers would probably agree that there are some common

features detectable between the expression above and the last two equations.

16.2.1 Check that

(i) the second series (homogeneous half) of Maxwell’s equations may be written in the form

d F = 0 where F := dt ∧ E · dr − B · dS

is a 2-form of the electromagnetic field
(ii) an explicit expression of its (Cartesian) components in terms of (Cartesian) components of vectors

of electric and magnetic field reads

F0i = Ei

Fi j = −εi jk Bk i.e. Fμν =

⎛

⎜
⎜
⎜
⎝

0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0

⎞

⎟
⎟
⎟
⎠

(iii) a transition to the dual form may be expressed in terms of the fields E, B as

F 
→ ∗F ⇔ (E, B) 
→ (−B, E)

Hint: see (16.1.4). �



16.2 Maxwell’s equations in terms of differential forms 437

• So we see that a remarkably convenient way of encoding complete information

about electric and magnetic fields consists in building them into a particular 2-form F
in Minkowski space. Then the homogeneous half of Maxwell’s equations reduces to an

amazingly simple statement saying that the form is closed.

Now, let’s talk about the first series (inhomogeneous half) of Maxwell’s equations. They

are first-order partial differential equations for the fields E, B as well, so we expect some

first-order differential operator on forms in Minkowski space to act on F . Since d was

already used, the only remaining (known) candidate is the codifferential δ. Now when we

write down the result of the action of δ or d∗ on the form F (using the general formulas

derived in the preceding section)

δ(dt ∧ E · dr − B · dS) = (−div E)dt + (−∂t E + curl B) · dr

d ∗ (dt ∧ E · dr − B · dS) = dt ∧ (−∂t E + curl B) · dS − (div E)dV

and confront it with the first series338

div E = ρ curl B − ∂t E = j

we see that we were lucky again – just the right combinations occur.

16.2.2 Check that

the first series (inhomogeneous half) of Maxwell’s equations may be written in the form

δF = − j or equivalently d ∗ F = −J ≡ − ∗ j

where the three-dimensional quantities ρ (electric charge density) and j (electric current density)

are built into a single object living in Minkowski space, the 1-form of current or alternatively its

dual 3-form of current

j = ρ dt − j · dr ≡ jμ dxμ

J = dt ∧ (−j · dS) + ρ dV ≡ jμ d�μ ≡ ∗ j

Hint: see (16.1.5) and (16.1.6). �

16.2.3 Check that the total electric charge in a spatial domain D̂3 is given by the

integral

Q =
∫

D̂3

J ≡
∫

D̂3

∗ j

Hint: according to (16.2.2) we have J = dt ∧ (−j · dS) + ρ dV and the first term does not

contribute to the integral over D̂3 due to the factor of dt . �

338 This holds in Heaviside’s system of units and setting c = 1; otherwise various constants may enter the equations which are,
however, irrelevant for us.
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16.2.4 Check that

(i) the system of Maxwell’s equations

δF = − j

d F = 0

is consistent only for forms of the current j that obey the continuity equation, i.e. any of the

following (equivalent) conditions:

δ j = 0 d J = 0 jμ
;μ = 0 ∂tρ + div j = 0

(ii) this condition is a local formulation of electric charge conservation
(iii) the conservation of electric charge, in contrast, necessarily needs the existence of a 2-form F

which obeys the inhomogeneous part of Maxwell’s equations, i.e. the equation

δF = − j

Put another way, the conserved charge turns out to be the source of a field of type F (a 2-form

field or, in 1 + 3 language, of the fields E, B); the homogeneous half of Maxwell’s equations is

not fixed, however, by the conserved charge.

Solution: (i) according to (8.3.12) δδ = 0; by (16.1.6) and (16.2.2) δ j = −(∂tρ + div j); (ii)

if D4 is a four-dimensional domain, then

0 =
∫

D4

d J =
∫

∂D4

J =
∫

∂D4

ρ dV −
∫

∂D4

dt ∧ j · dS i.e.

∫

∂D4

ρ dV =
∫

∂D4

dt ∧ j · dS

For D4 of the form of an infinitesimal cylinder over a spatial domain D̂3, i.e. D4 = I × D̂3,

I = 〈t0, t0 + ε〉 we have ∂D4 = ∂ I × D̂3 − I ×
∂D̂3 = {t0 + ε} × D̂3 − {t0} × D̂3 − I × ∂D̂3 so

that we get
∫

D̂3

ρ(t0+ε, r) dV −
∫

D̂3

ρ(t0, r) dV =−
∫

I×∂D̂3

dt∧j · dS

= −
t0+ε∫

t0

dt
∫

∂D̂3

j(t, r) · dS = − ε

∮

∂D̂3

j(t0, r)·dS

leading to

d

dt
Q(t) = −

∮

∂D̂3

j(t, r) · dS Q(t) :=
∫

D̂3

ρ(t, r) dV

so that the increase of the total charge Q(t) in a spatial domain D̂3 is (only) given by

the negative flux of the current density for the boundary of the domain; this is, however,

exactly a conservation law (charge is neither produced nor destroyed, it is only transferred
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from place to place); (iii) co-version of the Poincaré lemma (9.2.12): δ j = 0 ⇒ locally

j = δ(−F).

• Maxwell’s equations represent a local (differential) formulation of the laws of elec-

tromagnetism. By means of an appropriate integration one obtains their integral versions,

which express the laws in terms of directly measurable quantities. For example, although

an object which enters the local Maxwell’s equations is the charge density ρ, it is only the

integral Q = ∫
D̂3

ρ dV of the density ρ over a spatial domain D̂3 rather than the density

itself, which is a measurable quantity. Since we learned in Chapter 7 that the quantities

under the integral sign are differential forms, it is clear that from the point of view of the

relation between differential and integral formulations of a physical law the most convenient

differential formulation is that directly in terms of differential forms.

16.2.5 Check that the following integral laws are represented by the local equation

d F = 0.

d

dt

∫

D̂2

B · dS = −
∮

∂D̂2

E · dr Faraday’s law of induction

∮

∂D̂3

B · dS = 0 there are no isolated magnetic poles (monopoles)

Hint: for an arbitrary three-dimensional domain there holds

0 =
∫

D3

d F =
∫

∂D3

F =
∫

∂D3

(dt ∧ E · dr − B · dS)

i.e.

∫

∂D3

dt ∧ E · dr =
∫

∂D3

B · dS

For a spatial domain D3 = D̂3 the integral containing dt vanishes and we get the second

statement; for a domain of the form of an infinitesimal cylinder over a two-dimensional

spatial domain, i.e. for D3 = I × D̂2, I = 〈t0, t0 + ε〉 we proceed in analogy with (16.2.4)

and get the first statement. �

16.2.6 Check that the following integral laws are represented by the local equation

d ∗ F = −J :
∮

∂D̂3

E · dS = Q ≡
∫

D̂3

ρ dV Gauss’ law

∮

∂D̂2

B · dr =
∫

D̂2

(j + ∂t E) · dS Ampère’s law plus Maxwell’s displacement current

Hint: for an arbitrary three-dimensional domain there holds
∫

D3

d ∗ F =
∫

∂D3

∗F = −
∫

D3

J

i.e.

∫

∂D3

(dt ∧ + B · dr + E · dS) =
∫

D3

(ρ dV − dt ∧ j · dS)
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For a spatial domain D3 = D̂3 we get the first statement; for D3 = I × D̂2, I = 〈t0, t0 + ε〉
we proceed in analogy with (16.2.4), (16.2.5) and get

∮

∂D̂2

B · dr =
∫

D̂2

j · dS + d

dt

∫

D̂2

E(t, r) · dS ≡
∫

D̂2

(j + ∂t E) · dS

�

• The theory of the electromagnetic field historically arose from the uniting of two

“statics,” electrostatics and magnetostatics. The two parts are still inherent in the theory

as particular cases in which ∂t (of anything) = 0 (i.e. for static sources and fields). Then

Maxwell’s equations decouple into two subsystems:

electrostatics magnetostatics
div E = ρ curl B = j
curl E = 0 div B = 0

Each statics is thus governed by a pair of equations. One of them is inhomogeneous, where

the sources of the fields stand on the right-hand side, and the other is homogeneous, where

no sources occur. Yet the two equations themselves differ a bit at first sight. It turns out,

however, that they become as similar as two peas in a pod,339 when written in terms of

differential forms.

16.2.7 Let us assemble the vector fields E, B and j into appropriate spatial forms

Ê = E · dr B̂ = B · dS ĵ = j · dr

so that

F = dt ∧ Ê − B̂ j = ρ dt − ĵ

Check that

(i) in terms of these quantities Maxwell’s equations are as follows

inhomogeneous half homogeneous half

δ̂ Ê = −ρ ∂t B̂ + d̂ Ê = 0

−∂t Ê+ δ̂ B̂ = ĵ d̂ B̂ = 0

(ii) in the static case the system of equations decouples into independent electrostatics and magne-

tostatics halves; their equations read

electrostatics magnetostatics electromagnetism

δ̂ Ê = −ρ δ̂ B̂ = ĵ δF = − j
d̂ Ê = 0 d̂ B̂ = 0 d F = 0

(for convenience, Maxwell’s electrodynamic equations are also displayed).

Hint: (ii) ∂t (· · ·) 
→ 0. �

339 Recently scientists found that actually the equations are as similar as one oak leaf to another.
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• We see that the structure of equations of both the subsystems (electrostatics and magne-

tostatics) is exactly the same and it even coincides with that of the complete electrodynamics.

One equation relates a source to the codifferential of a form being sought and the other one

expresses its closedness (vanishing of its differential). Put another way, if we look for fields

generated by given sources, we are to find in all three cases a closed form with a prescribed

value of the codifferential.

Of course, there are also differences: in electrostatics a 1-form is sought whereas in

magnetostatics as well as electrodynamics it is a 2-form. Notice also that Ê and B̂ may

be regarded as forms in (only) three-dimensional Euclidean space E3 (they are spatial and

neither of their components depend on time), whereas F is necessarily a form in four-

dimensional Minkowski space E1,3.

16.3 Gauge transformations, action integral

• Maxwell’s equation d F = 0 says that the 2-form F is closed. Due to the Poincaré

lemma it is then (at least locally) also exact.

16.3.1 Check that

(i) the structure of Maxwell’s equations immediately leads (at least locally) to the existence of a
potential340 A of the form F

F = d A i.e. Fμν = ∂μ Aν − ∂ν Aμ

(ii) in three-dimensional language it reads

A = φ dt − a · dr

E = −grad φ − ∂t A

B = curl A

where φ, A are three-dimensional quantities known as the scalar potential and vector potential
respectively

(iii) the potential A is not uniquely fixed by F , but rather there is a freedom given by gauge trans-
formations

A 
→ A′ = A + dχ or in three-dimensional language φ 
→ φ′ = φ + ∂tχ

Aμ 
→ A′
μ = Aμ + ∂μχ A 
→ A′ = A − grad χ

Hint: (i) see (9.2.4); (ii) we should have dt ∧ E · dr − B · dS = d(φ dt − a · dr), (16.1.4);

(iii) F ′ ≡ d A′ = d A + ddχ = F , so that also E and B remain unchanged. �

• These transformations represent the simplest special case of a far-reaching general-

ization, which is realized in gauge theories; we will discuss this stuff in more detail in

Chapter 21.

It is a folklore piece of knowledge in theoretical physics that various technical advantages

result from the possibility of deriving a differential equation under consideration from a

340 In physics, the components Aμ of the 1-form A are called the 4-potential (since it is a (co)vector field in four-dimensional
space), in order to distinguish it from the (vector) potential Ai in three-dimensional space.
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variational principle (see, for example, (15.4.4) or Sections 16.4 and 21.6). Therefore we

turn our attention now to the issue of finding an appropriate action integral for Maxwell’s

equations (which will be further generalized to an action for more involved gauge theories

in Section 21.5). We will see that the machinery of differential forms offers both a simple

expression for the action itself and an equally simple way of performing the variational

procedure needed for the derivation of the equations of motion (Maxwell’s equations in this

particular case).

It turns out that the action, being a (4-)volume integral, is to be regarded as a functional

of the 1-form of the potential A (rather than the 2-form of the electromagnetic field F ,

which is unknown in Maxwell’s equations). Put another way, the potential A serves as an

independent variable of the action and a variation is to be performed with respect to this

very quantity in order to derive Maxwell’s equations.

16.3.2 In Minkowski space E1,3 consider a four-dimensional domain D, in which A is a

potential for the field F . By a variation of the potential we mean a replacement

A 
→ A + εα

where α is an arbitrary 1-form which vanishes on the boundary ∂D of D; the potential is

thus altered arbitrarily (though infinitesimally) inside the domain D, being, however, kept

fixed on the boundary. Check that

(i) the condition for the functional

S0[A] := −1

2
〈d A, d A〉 ≡ −1

2
〈F, F〉 ≡ −1

2

∫

D
F ∧ ∗F

to be stationary is the equation

δd A ≡ δF = 0

i.e. the source-free Maxwell’s equation

(ii) if j is a fixed 1-form, then the condition for the functional

S[A] := −1

2
〈d A, d A〉 − 〈A, j〉 ≡ −

∫

D

(
1

2
d A ∧ ∗d A + A ∧ ∗ j

)

to be stationary is already the fully fledged Maxwell’s equation

δF = − j

The first term (containing derivatives of A) is called the kinetic term and the second one is the

interaction term of the field with a given source j
(iii) the action integral may also be written in terms of a Lagrangian density L(A, d A),

S[A] =
∫

D
L ωη L(A, d A) ≡ −1

2
(F, F) − (A, j) ≡ −1

4
Fμν Fμν − Aμ jμ

with ωη ≡ dt ∧ dV being the metric volume form in E1,3.

Hint: (i) if A 
→ A + εα, then F 
→ F + ε dα and so 〈F, F〉 
→ 〈F, F〉 + 2ε〈F, dα〉 so that

an extremum requires 〈F, dα〉 = 0 for arbitrary α. According to (8.3.2) this is equivalent
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to 〈δF, α〉 = 0 and since the bilinear form (8.3.1) is non-degenerate (and α is arbitrary),

we get δF = 0; (ii) S[A + εα] = S[A] − ε〈δF + j, α〉; (iii) see (8.3.1). �

• In this context it might be useful to mention a concept which is often referred to,

the variational derivative of an action functional with respect to its argument (if there

are more arguments the derivative exists for each of them). The meaning of this concept

for functionals is the same as that of an ordinary derivative for functions (or the partial
derivative of a function, if there are more arguments), i.e. it informs us about the sensitivity

of a functional with respect to small changes of an argument.341 When the variation of an

action functional is performed, its linear increment (the first variation) has the structure of

a volume integral, in which the expression under the integral sign depends linearly on the

varied argument; the factor standing by this variation is (by definition) just the variational

derivative. For example, the result342

S[A + εα] = S[A] − 〈δF + j, εα〉 + · · · ≡ S[A] − ε

∫

D
αμ(δF + j)μ d4x

is rewritten as

δS[A]

δAμ(x)
= −(δF + j)μ(x)

16.3.3 It is already an open secret that the salary which letters receive for their performance

in mathematics and physics are scandalously poor indeed. We should not be surprised then

to hear that many of them try to earn a little extra so that they put a signature to a contract for

more than a single role (⇒ more salaries). Neither are they discouraged enough in awkward

situations when they have to perform two roles in a single equation! Find out where in this

equation δ performs the role of a variation and where it denotes343 the codifferential. �

• From the point of view of deriving Maxwell’s equations from a variational principle

we see that one equation (d F = 0) is a trivial consequence of the choice of an independent

variable in the action functional (the potential A is independent, the field F is defined by

the equation F := d A and so d F = 0 holds trivially), the other equation (δF = − j) is a

truly variational (Euler–Lagrange) equation, expressing the condition for extremizing the

particular functional S[A].

16.3.4 Check that the action functional S[A] (with a conserved current j) is gauge in-
variant. Be sure to understand that one can deduce from this that also the equations derived

from the action are necessarily gauge invariant. Also verify this result straightforwardly.

Hint: F is gauge invariant so that 〈F, F〉 is all right; 〈A, j〉 
→ 〈A, j〉 + 〈dχ, j〉 = 〈A, j〉 +
〈χ, δ j〉; the equations contain (invariant) F alone. �
341 Here we have already entered a realm where another large mathematical discipline reigns with an iron hand, functional analysis.

Our approach here is from this point of view only “formal,” making use of the geometric machinery we learned. (This is,
however, fairly standard in ordinary theoretical physics.)

342 In books on physics the quantity εα is often written as δA (increment = variation of A), so that S[A + δA] = S[A] −∫
D δAμ(δF + j)μ d4x .

343 Note that it is even a juvenile δ. Evidently the problem has already developed insomuch that although the adult 	 by no means
idles and denotes everything possible, it is still not enough to reasonably support a family.
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16.3.5 Check that the three-dimensional version of the action S[A] ≡ S[φ, A] reads as

S[φ, A] =
∫

D
L(φ, A) dt ∧ dV L(φ, A) = 1

2
(E2 − B2) − (ρφ − j · A)

where E(φ, A) and B(φ, A) are given by their expressions from (16.3.1). �

16.3.6 Let α ≡ dt ∧ ŝ + r̂ and β ≡ dt ∧ Ŝ + R̂ be two p-forms in Minkowski space.

Check that

(i) their scalar product 〈α, β〉 may be written in terms of spatial forms as

〈α, β〉 ≡
∫

D
α ∧ ∗β ≡

∫

D
(α, β) dt ∧ dV =

∫

D
[(η̂ŝ, Ŝ) + (η̂r̂ , R̂)] dt ∧ dV

i.e. that there holds

(α, β)E1,3 = (η̂ŝ, Ŝ)E3 + (η̂r̂ , R̂)E3

where the indices on the parentheses mean “in the sense of E1,3” or “in the sense of E3”

(ii) in particular, for α = β we have a difference of “squares” (positive definite expressions) in the

square bracket

(iii) for concrete parametrizations we get explicitly for various degrees

0-forms: α = f (α, α)E1,3 = f 2

1-forms: α = f dt + a · dr (α, α)E1,3 = f 2 − a2

2-forms: α = dt ∧ a · dr + b · dS (α, α)E1,3 = b2 − a2

3-forms: α = dt ∧ a · dS + f dV (α, α)E1,3 = a2 − f 2

4-forms: α = dt ∧ f dV (α, α)E1,3 = − f 2

(iv) (16.3.5) is a special case and the results mentioned there and here are consistent.

Hint: (i) using formulas from Section 16.1 and (8.3.1) the relevant product gives

(dt ∧ ŝ + r̂ ) ∧ ∗(dt ∧ Ŝ + R̂) = · · · = dt ∧ [(η̂ŝ) ∧ ∗̂Ŝ + (η̂r̂ ) ∧ ∗̂R̂]

≡ dt ∧ [(η̂ŝ, Ŝ)E3 + (η̂r̂ , R̂)E3 ]dV

(ii) the forms ŝ and r̂ have neighboring degrees and expressions of the type (r̂ , r̂ )E3 are

positive definite; (iii) see (8.5.8) and (16.1.2). �

• It turns out that the electromagnetic field shares a general structure
∫

α ∧ ∗β of the

action with some other physical fields (one may even say that this structure is typical). Here

we will discuss, for example, the scalar and (co)vector fields and we will also encounter

such actions in Chapter 21, when speaking about gauge fields.

A scalar field in Minkowski space is simply a (real-valued) function φ in E1,3 (complex-

valued scalar fields also occur frequently in physics).
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16.3.7 The action of a (free) scalar field φ is defined by the expression

S[φ] := 1

2
〈dφ, dφ〉 − m2

2
〈φ, φ〉

≡
∫

D

1

2
dφ ∧ ∗dφ − m2

2

∫

D
φ ∧ ∗φ ≡

∫

D
L(φ, dφ) dt ∧ dV

i.e. the Lagrangian density reads

L(φ, dφ) = 1

2
(dφ, dφ) − m2

2
(φ, φ) ≡ 1

2
(∂μφ)(∂μφ) − m2

2
φ2

The first term (containing derivatives) is called the kinetic term, the second term (with no

derivatives, containing the mass m) is the mass term. Check that

(i) the equation of motion (condition for an extremum of the action functional) is the Klein–Gordon
equation

(−δd + m2)φ ≡ (� + m2)φ = 0

(ii) in Cartesian coordinates in E1,3 this equation reads

(∂μ∂μ + m2)φ = 0

(iii) in 1 + 3 perspective the action and the equation are

S[φ] = 1

2

∫

D
[(∂tφ)2 − (grad φ)2 − m2φ2] dt ∧ dV

(
∂2

t − �̂ + m2
)
φ = 0

Hint: (i) φ 
→ φ + εχ ⇒ · · · like in (16.3.2); (ii) � f ≡ −δd f = ∂μ∂μ f according to

(8.3.5) and (16.1.6). �

16.3.8 The action of a (free co)vector field W is defined by the expression

S[W ] := −1

2
〈dW, dW 〉 + m2

2
〈W, W 〉

≡ −1

2
〈F, F〉 + m2

2
〈W, W 〉 ≡ −1

2

∫

D
(F ∧ ∗F − m2W ∧ ∗W )

(where F := dW , Fμν = ∂μWν − ∂νWμ), i.e. the Lagrangian density is

L(W, dW ) = −1

2
(F, F) + m2

2
(W, W ) ≡ −1

4
Fμν Fμν + m2

2
WμW μ

The first term (containing derivatives) is called the kinetic term and the second344 term (with

no derivatives, containing the mass m) is the mass term. Check that

(i) the equation of motion (condition of an extremum of the action functional) is the Proca equation

(−δd + m2)W ≡ −δF + m2W = 0

344 We see that the action for the case m = 0 reduces to that for the electromagnetic field.
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(ii) the Lorentz gauge condition

δW = 0

turns out to be a direct consequence345 of the equation (for m �= 0) so that the equations of motion

may, in turn, also be written in the form

(� + m2)W = 0 δW = 0 � ≡ −(δd + dδ)

(iii) in Cartesian coordinates in E1,3 this leads to the system

(∂μ∂μ + m2)Wν = 0 ∂μWμ = 0

(iv) the action (for m �= 0) lacks the usual electromagnetic gauge symmetry (freedom) W 
→
W + dχ .

Hint: (i) W 
→ W + εw ⇒ · · · like in (16.3.2); (ii) δδ = 0; (iii) see (8.3.5); (iv) the sym-

metry is brought just by the mass term (for m = 0 we return back to a free electromagnetic

field and the gauge freedom is once more recovered). �
• Now let us turn our attention to the action and equations of motion of a point charge

(e, m), which moves in a given external electromagnetic field with a potential A.

Consider a Lorentzian manifold (space-time) (M, g) and time-like curves (world lines of

the charge) γ (τ ), so that g(γ̇ , γ̇ ) > 0. Recall (15.4.8) that the variation of the action (a func-

tional of the length)
∫ τ2

τ1
dτ

√
g(γ̇ , γ̇ ) leads to the equation of (an arbitrarily parametrized)

geodesic and also that an affine parametrization is achieved by the choice of a natural pa-
rameter, where the increment of the parameter equals the corresponding length moved. In

the context of world lines such a parameter is called the proper time and it will be denoted

by s (it is the time displayed by a clock of the observer for which γ is the world line);

there holds g(γ̇ , γ̇ ) = 1 (if the dot corresponds to the derivative with respect to s) and thus√
g(γ̇ , γ̇ ) dτ = ds.

16.3.9 An interaction with the electromagnetic field given by a potential A is arranged by

addition of an interaction term Sint[γ ; A] to the action, being proportional to the integral of

A along γ ; namely the resulting complete action346 takes the form

S[γ ; A] := −m
∫ s2

s1

ds − e
∫

γ

A ≡ −m
∫ τ2

τ1

√
g(γ̇ , γ̇ ) dτ + Sint[γ ; A]

≡ −m
∫ τ2

τ1

√
g(γ̇ , γ̇ ) dτ − e

∫ τ2

τ1

〈A, γ̇ 〉dτ

Check that the variation of this (reparametrization invariant) action reads (γε ≡ �ε(γ ) and

�ε ↔ W )

S[γ ; A] 
→ S[γε ; A] = S[γ ] + ε

∫

〈E, W 〉 dτ + · · ·
345 For the massless case (m = 0, e.g. in electromagnetism) the Lorentz gauge condition is no longer a consequence of the

equations of motion. Still it is often used as a convenient condition reducing the gauge freedom of the theory.
346 This action is regarded as a functional of the curve γ (alone), keeping the field A fixed (it is an “external,” i.e. prescribed field;

it would acquire its own dynamics if we also added its kinetic term ∼ 〈d A, d A〉 (16.3.2) and we performed a variation with
respect to A as well). Note that the interaction term has just the structure −〈A, j〉 of the interaction term from (16.3.2). One
should realize, however, that now j does not vanish only along the world line and is proportional there to eγ̇ (so that j is not
a smooth 1-form on M , it may be (as a distribution) explicitly expressed in terms of the “Dirac δ-function”).
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where the Euler–Lagrange 1-form E turns out to be

E := m�g∇γ̇

(
γ̇

||γ̇ ||
)

+ eiγ̇ F ||γ̇ || ≡
√

g(γ̇ , γ̇ )

so that the equation of motion resulting from the variation of this action is (in arbitrary

parametrization of γ (τ ))

m∇γ̇

(
γ̇

||γ̇ ||
)

= −e�giγ̇ F

or in the proper time parametrization (where τ = s)

ma = f a := ∇γ̇ γ̇ = (4-)acceleration

where the Lorentz (4-)force by which the electromagnetic field acts on the point charge is

f = �g f̃ f̃ := −eiγ̇ F ≡ −eF(γ̇ , ·) ≡ +eF( · , γ̇ )

f̃μ = eFμν ẋν

Hint: the variation of the first term was computed in (15.4.16); the second term gives

Sint[γ ; A] 
→ Sint[�ε∗γ ; A] = Sint[γ ; �∗
ε A] = Sint[γ ; A + εLW A]

= Sint[γ ; A + ε(iW d + diW )A]

= Sint[γ ; A] − εe
∫

F(W, γ̇ ) dτ − εe
∫

γ

d〈A, W 〉

= Sint[γ ; A] + ε

∫

〈eiγ̇ F, W 〉 dτ − εe[〈A, W 〉]τ2
τ1

The last term vanishes since we do not vary the curve at the ends (W (τ1) = W (τ2) = 0). �

16.3.10 Check that if a world line γ (τ ) in Minkowski space is parametrized by an

“ordinary” coordinate time τ = t = x0, then the (1+3)-version of the Lorentz 4-force

reads

f̃ ≡ −eiγ̇ F = e(E · v) dt − e(E + v × B) · dr

where347 the “ordinary” Lorentz force fLor = e(E + v × B) may be recognized.

Hint: in the parametrization τ = t we have γ (t) ↔ xμ(t) = (t, xi (t)), so that γ̇ = ∂t + vi∂i ,

vi = ẋ i ≡ dxi/dt ; then (16.2.1) and (8.5.8) yield

iγ̇ F = i(∂t +vi ∂i )(dt ∧ E · dr − B · dS) = · · · = (E + v × B) · dr − (E · v)dt

�

• Maxwell’s equations may also be derived from the following, less standard, action.

347 The term eE · v corresponds to the power of the electric field (the work produced by Lorentz force in unit time (fLor · dr)/dt ;
the magnetic field does not perform work, so its power vanishes).
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16.3.11
∗

Consider the action S[A, F], where the fields A, F are regarded as being inde-
pendent and which has the form

S[A, F] := 1

2
〈F, F〉 − 〈F, d A〉 − 〈A, j〉

Check that

(i) conditions for the functional to be stationary with respect to F and A are

F = d A δF = − j

i.e. first the “correct” relation F(A) = d A between F and A (with the consequence d F = 0,

the homogeneous part of Maxwell’s equations) and then the inhomogeneous part of Maxwell’s

equations δF = − j
(ii) if we plug the extremal F(A) = d A as F into the action, we return to the standard action from

(16.3.2)

S[A, F(A)] = −1

2
〈F(A), F(A)〉 − 〈A, j〉 = −1

2
〈d A, d A〉 − 〈A, j〉 ≡ S[A] from (16.3.2)

We thus see that a variation of an appropriate action within a wider class of fields (F, A indepen-

dent) results eventually in the same system of equations

d F = 0 δF = − j F = d A

as a variation (of a different action) within a narrower class of fields (F is no longer independent

of A, but rather it is expressed in terms of a single independent field A). �

16.4 Energy–momentum tensor, space-time symmetries and
the conservation laws due to them

• The energy–momentum tensor is a concept of the highest importance in physics. It

encodes, as follows from the nomenclature, the energy and momentum of a physical object

under consideration, but there is also information about “transfers” of these quantities in

space. Here we will first define the tensor in terms of the variation of an action with respect

to the metric tensor (this is not the only possibility for defining it) and we show how its key

property, vanishing of the “covariant divergence,” follows from the definition. This property

then enables us to construct conserved quantities, which correspond to Killing vectors (i.e.

to space-time symmetries; see also Section 21.6 about Noether’s theorem). We will also

learn how to compute it in practice for a certain (important) class of action integrals and,

in particular, we will compute the tensor explicitly for electromagnetic, scalar and vector

fields.

16.4.1 Consider a field theory on (M, g) with an action which is natural with respect to
diffeomorphisms in the following sense (see also (8.3.6), (8.3.7), etc.): it is the (4-)volume

integral of a 4-form �, which depends on some tensor fields ψ as well as the metric
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tensor g

S[ψ, g] :=
∫

D
�[ψ, g] ≡

∫

D
L(ψ, g)ωg

(ωg being the metric volume form) and for any diffeomorphism f : M → M it satisfies

f ∗(�[ψ, g]) = �[ f ∗ψ, f ∗g]

Now in the domain D consider an arbitrary vector field V such that it vanishes on the

boundary ∂D; consequently its flow �t is “arbitrary” inside D, but it does not move the

points on the boundary. Check that then the energy–momentum tensor of the system, defined

as348 (minus) variational derivative of action S[ψ, g] with respect to the metric tensor g

T μν(x) := −δS[ψ, g]

δgμν(x)
i.e. S[ψ, g + εh] =: S[ψ, g] − ε

∫

D

1

2
hμνT μνωg

has vanishing covariant divergence

T μν
;ν = 0

when computed for the fields ψ which obey the equations of motion.

Solution: since V vanishes on ∂D, we have �ε(D) = D; then,

S[ψ, g] =
∫

�ε (D)

�[ψ, g] =
∫

D
�∗

ε�[ψ, g] =
∫

D
�[�∗

εψ, �∗
ε g]

=
∫

D
�[ψ + εLV ψ, g + εLV g] =

∫

D
�[ψ, g + εLV g]

where for the last equality we used the fact that ψ extremizes S (obeys the equations of

motion). Then, by the definition of T μν we have

S[ψ, g] = S[ψ, g] − ε

∫

D

1

2
(LV g)μνT μνωg ⇒ 1

2

∫

D
(LV g)μνT μνωg = 0

for arbitrary V (which vanishes on the boundary). If we use the expression (LV g)μν =
Vμ;ν + Vν;μ from (15.4.14), we get

1

2
(LV g)μνT μν = Vμ;νT μν = (VμT μν);ν − Vμ

(
T μν

;ν

)

= W ν
;ν − Vμ

(
T μν

;ν

)
W ν := VμT μν

The first term (divergence) drops out via Gauss’ theorem (8.2.8), vanishing of the second

term for V which is arbitrary in D yields the result being sought. �

348 Actually this definition fixes its symmetric part alone; according to a standard choice the tensor is symmetric, T μν = T νμ.
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• Now we will show that the energy–momentum tensor may be used for obtaining

conserved quantities corresponding to space-time symmetries. By these symmetries we

mean symmetries of the manifold (M, g) regarded as a (pseudo-)Riemannian manifold, i.e.

its isometries, or in some specific cases (as it turns out) also conformal transformations.

16.4.2 Let ξ be a Killing vector of the manifold (M, g) and let Tμν be the energy–

momentum tensor introduced in (16.4.1). Denote by J̃ the 1-form

J̃ := T (ξ, ·) i.e. J̃μ := ξνTνμ

and by J the corresponding vector field (obtained by raising of indices by means of g).

Check that

(i) the vector field J has vanishing (covariant) divergence or, equivalently, that the form J̃ is

coclosed

J μ
;μ ≡ (ξν T νμ);μ = 0 i.e. δJ̃ = 0

(ii) this may be reformulated as the closedness of the 3-form ∗J̃
∗J̃ ≡ ∗(ξν Tνμ dxμ) ≡ ξν T νμ d�μ ≡ J μ d�μ ⇒ d ∗ J̃ = 0

(iii) for Minkowski space the integral of the 3-form ∗J̃ over the whole three-dimensional space V
does not depend on time; so it represents a conserved quantity, which may be assigned to the

Killing vector ξ ,

Q(t) :=
∫

V
∗J̃

≡
∫

V
J μ d�μ ≡

∫

V
ξν T ν0 d�0 ≡

∫

V
ξν T ν0 dV ⇒ d

dt
Q(t) = 0

(the integral is over the whole 3-space V in time t).

Hint: (i) (ξνT νμ);μ = ξν;μT νμ + ξνT νμ
;μ = 1

2
(Lξ g)μνT νμ + ξνT νμ

;μ = 0; (ii) according to

(8.2.1) and (14.3.7) we have (J μ
;μ)ωg = (divJ )ωg = d(iJ ωg) = d(∗J̃ ); (iii) 0 = ∫

D4
d ∗

J̃ = ∫
∂D4

∗J̃ ; if we take as D4 a four-dimensional domain 〈t1, t2〉 × V and we use the

fact that the fields (and consequently also T μν) vanish in (spatial) infinity ∂V , we get

Q(t2) − Q(t1) = 0. �

• A conservation law itself is thus hidden in the existence of a closed 3-form and exactly

such a closed 3-form349 may be obtained from the energy–momentum tensor Tμν and a

Killing vector ξ . (An instructive point of view in terms of symmetries of the action and

Noether’s theorem is presented in problem (21.6.6).)

16.4.3 Take, in particular, Minkowski space E1,3. In (4.6.10) we already found all inde-

pendent Killing vectors for this space and we learned that a general Killing vector may be

written in the form (in Cartesian coordinates)

ξ(A,a) = ξ
μ

(A,a)∂μ ξ
μ

(A,a) = (Aη)μνxν + aμ (Aη) + (Aη)T = 0

349 In (1 + d)-dimensional space it is a closed d-form ∗J ≡ J μ d�μ.



16.4 Energy–momentum tensor, space-time symmetries and conservation laws 451

It is thus parametrized in terms of a (pseudo-)antisymmetric matrix A and a column vector

a. Check that

(i) then the conserved quantity Q is also parametrized in terms of a pair (A, a) and it has the form

Q(A,a) = (ηA)μν Mμν + aμ Pμ

where

Pμ =
∫

V
T μ0 dV Mμν =

∫

V
x [μT ν]0 dV

(ii) in particular, due to the invariance with respect to time and space translations as well as rotations

in the (spatial) plane (i j) the conserved quantities turn out to be the total energy of the field, total

momentum of the field and the total angular momentum of the field (all of them computed for the

whole 3-volume V )

E =
∫

V
T 00 dV ≡ P0 Pi =

∫

V
T i0 dV Mi j =

∫

V
x [i T j]0 dV

Hint: (i) according to (16.4.3) we have Q = ∫
V ξνT ν0 dV . �

• Let us look more closely at the balance of the energy and momentum in a finite 3-volume
D̂3. Conservation laws for the quantities in question then admit a visual interpretation

of the type “the amount a quantity increased, since it came across the boundary (rather

than being created inside the volume) or decreased, since it escaped across the boundary

(rather than being destroyed inside the volume).” This enables us at the same time to

clarify in more detail the meaning of particular components of the energy–momentum

tensor.

16.4.4 Consider Minkowski space E1,3 and the Killing vector ξ , which corresponds to

space-time translations, i.e. ξ = ∂0 (translation in time) or ξ = ∂ j (translation along the j th

spatial axis). Check that

(i) the closed 3-form ∗J ≡ ξμT μν d�ν then looks like

∗J = T 00 dV − dt ∧ T 0i d Si for ξ = ∂0

∗J = T j0 dV − dt ∧ T ji d Si for ξ = ∂ j

(ii) if we integrate the (vanishing) 4-form d ∗ J over a four-dimensional domain D4 given as an

infinitesimal cylinder over a spatial domain D̂3, i.e. over D4 = I × D̂3, I = 〈t0, t0 + ε〉, we get

for the two cases the equations

Ė = −
∮

∂D̂3

T 0i d Si Ṗ j = −
∮

∂D̂3

T ji d Si

where

E(t) :=
∫

D̂3

T 00 dV Pi (t) :=
∫

D̂3

T i0 dV

represent the total energy and the i th component of the momentum contained in the domain D̂3
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(iii) we can deduce from this that there is the following information in the particular components of

the energy–momentum tensor:

T 00 dV = energy contained in volume element dV

T i0 dV = i th component of momentum contained in volume dV

T 0i d Si = energy which flows out per unit time across the surface element dS

T i j d Sj = i th component of momentum which flows out per unit time across dS

(iv) so that the components T μν themselves we identify as

T 00 = energy density

T i0 = density of the i th component of momentum

T 0i = i th component of the density of the current of energy

T i j = j th component of the density of the current of the i th component of momentum.

�

• How can one compute the energy–momentum tensor effectively for an important class

of action integrals? Consider, as an example, the expression under the integral sign in the

action functional for the electromagnetic field

−1

2
F ∧ ∗F − A ∧ ∗ j

We are to compute the variational derivative of (an integral of) this expression with respect

to the metric tensor g. So we embark on seeking where g actually is. What we find out is

that the only place where g occurs is in the Hodge operator ∗ = ∗g . So we are to determine

how exactly the expression of the structure

α ∧ ∗gβ

responds to a small change of metric tensor g 
→ g + εh, where h is an arbitrary symmetric

tensor of type
(

0
2

)
.

16.4.5 Consider the form

�(α, β, g) := α ∧ ∗gβ ≡ (α, β)gωg

Compute a variation of � with respect to g; namely check that

�(α, β, g + εh) = �(α, β, g) − ε
1

2
habtabωg

where

tabωg := 2�(iaα, ibβ, g) − gab�(α, β, g) ≡ {2(iaα, ibβ)g − gab(α, β)g}ωg

i.e.

tab = 2(iaα, ibβ)g − gab(α, β)g
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Solution: (i) if ea is an arbitrary basis and hab := gacgbd hcd , then

gab 
→ ĝab ≡ gab + εhab ⇒ gab 
→ ĝab ≡ gab − εhab

Then if ia ≡ iea , we get

(α, β)g+εh = 1

p!
αa...b(gai − εhai ) . . . (gbj − εhbj )βi ... j

= (α, β)g − ε
1

p!
αa...b

(
ha

i β
i ...b + · · · + hb

jβ
a... j

)

︸ ︷︷ ︸
pαa...bha

i β i ...b

= (α, β)g − ε
1

(p − 1)!
αar ...bhacβ r ...b

c

︸ ︷︷ ︸
hac(iaα,icβ)

= (α, β)g − εhab(iaα, ibβ)

According to (5.7.3) in an arbitrary right-handed basis ωg = √| det gab| e1 ∧ · · · ∧ en ≡√|g| e1 ∧ · · · ∧ en; then,

|g + εh| = |g| |1 + εg−1h|
︸ ︷︷ ︸

1+εTr g−1h

= |g|(1 + εgabhba) = |g|(1 + εha
a

)

⇒ ωg+εh = ωg + 1

2
εhabgabωg

and finally

α ∧ ∗g+εhβ = (α, β)g+εhωg+εh = {(α, β)g − εhab(iaα, ibβ)g}
{

ωg + 1

2
εhabgabωg

}

= α ∧ ∗gβ − 1

2
εhab(2(iaα, ibβ)ωg − gab(α, β)gωg

︸ ︷︷ ︸
tabωg

)

Note: since hab = hba , we see that tab is not determined uniquely – its symmetric part alone

is fixed (cf. also (16.4.1))

t(ab) = {(iaα, ibβ) + (ibα, iaβ)} − gab(α, β)g

�

• This result shows that the computation of the energy–momentum tensor for action

integrals which are sums of terms of the structure 〈α, α〉 ≡ ∫
(α, α)ωg turns out to be very

simple.

16.4.6 Check that if an action consists of terms of the form

S = 〈α, α〉 ≡
∫

(α, α)ωg



454 Field theory and the language of forms

then the energy–momentum tensor is, in turn, the sum of terms

Tab = 2(iaα, ibα) − gab(α, α)

(for each term in the action one gets a corresponding term Tab).

Hint: (16.4.1) and (16.4.5). �

16.4.7 Compute explicitly the energy–momentum tensors for the electromagnetic,

(massive) vector as well as scalar fields. In particular, check that

(i) from the action integrals (16.3.2), (16.3.7) and (16.3.8) we get (in Cartesian coordinates) the

expressions

Tμν = 1

4
ημν Fρσ Fρσ − Fμρ F ρ

ν electromagnetic field

Tμν = 1

4
ημν Fρσ Fρσ − Fμρ F ρ

ν + m2

(

WμWν − 1

2
ημν W ρ Wρ

)

massive vector field

Tμν = (∂μφ)(∂νφ) − 1

2
ημν(∂ρφ∂ρφ) + m2

2
ημνφ

2 scalar field

(ii) the energy and momentum of an electromagnetic field turn out to be

E = 1

2

∫

V
(E2 + B2) dV P =

∫

V
(E × B) dV

(iii) the energy and momentum of a massive vector field are

E = 1

2

∫

V

[
E2 + B2 + m2

(
W 2

0 + W2
)]

dV P =
∫

V
(E × B + m2W 0W) dV

(iv) the energy and momentum of a scalar field are

E =
∫

V
[(∂tφ)2 + (∇φ)2 + m2φ2] dV P = −

∫

V
(∂tφ)(∇φ) dV

Hint: (16.4.3), (16.4.5) and (16.4.6). �

• As we have already mentioned before problem (16.4.2), sometimes a conformal Killing

vector is enough for construction of a conserved quantity. This happens for actions leading

to traceless energy–momentum tensors, T μ
μ ≡ gμνTμν = 0. It turns out that the vanishing

trace in turn occurs for actions which happen to be invariant with respect to conformal
rescaling of the metric (5.8.3); an important example is provided by the electromagnetic

field.

16.4.8 Let ξ be a conformal Killing vector of a manifold (M, g) and let Tμν be the traceless
energy–momentum tensor. Check that the quantity Q which is constructed in the same way

as we did for a Killing vector in (16.4.2) is still conserved.

Hint: like in (16.4.2), but now (Lξ g)μν = f gμν , so that (Lξ g)μνT νμ = f T μ
μ , which still

vanishes, so that everything proceeds as before. �
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16.4.9 Consider an infinitesimal conformal rescaling of the metric

gμν(x) 
→ gμν(x) + εσ (x)gμν(x)

Check that the invariance of action with respect to arbitrary transformations of this type

(i.e. with an arbitrary function σ (x)) is equivalent to tracelessness of the energy–momentum

tensor.

Hint: from the definition in (16.4.1) we have S[ψ, g + εσg] =: S[ψ, g] − ε
∫
D

1
2
σ (x)T μ

μ ωg .

�

16.4.10 Let α be a p-form on a manifold (M, g) of dimension n and consider a term in

the action

S = 〈α, α〉 ≡
∫

(α, α)ωg

Check that

(i) the trace of the energy–momentum tensor corresponding to this particular term in the action is

T a
a = (2p − n)(α, α)

so whenever n = 2p, the trace vanishes
(ii) this occurs exactly for a pure electromagnetic field (in four-dimensional space-time)

(iii) we get the vanishing trace in electromagnetism also directly from (16.4.7)

(iv) also, the tensor which corresponds to the kinetic term of a scalar field in two-dimensional space-

time350 is traceless.

Hint: (i) according to (5.8.6) and (5.8.11) we have

T a
a = 2(i aα, iaα) − ga

a (α, α) = 2(α, j aiaα) − ga
a (α, α) = 2(α, pα) − ga

a (α, α)

= (2p − n)(α, α)

(ii) 2p − n = 2.2 − 4; (iv) 2p − n = 2.1 − 2. �

• A technical issue to be answered in the early history of general relativity was to settle

on a rule by which physical laws should be generalized so that they were also valid in a

“curved space-time” (M, g).

(The new theory of gravitation has replaced Minkowski flat space-time E1,3 by a more

general space-time, a Lorentzian manifold (M, g), i.e. a four-dimensional manifold M en-

dowed with a metric tensor g with signature (+ − − −); the effects of the gravitational field

are explained in the theory in terms of curving of the space-time (the reader is recommended

to study the specialized literature in order to learn more).)

It turns out that the standard rule for the generalization reads: replace all commas by
semicolons, i.e. if there is a partial derivative in a physical equation (written in Cartesian

350 As well as the mass term of a vector field in two-dimensional space-time; notice, however, that the tracelessness is spoiled by
the kinetic term in this case.
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coordinates in Minkowski space), it is to be replaced by the covariant derivative in the sense
of the RLC connection.

(This is closely related to the equivalence principle, which demands that physics in a

“falling lift,” i.e. in a reference frame freely falling in a gravitational field, should be the

same as it is with no gravitational field (the gravitational field may be locally transformed

away by the free fall); the details should again be found in the specialized literature.)

For Maxwell’s equations there is, however, another natural possibility for how to general-

ize them to a “curved” space-time. Namely, if we write them in terms of forms in Minkowski

space(-time), the only place from which we know we are in Minkowski space is the metric

tensor η on the codifferential (or, equivalently, on the Hodge star operator). The most natural

generalization to a Lorentzian manifold is then clearly a formal replacement η 
→ g on the

codifferential:351

δη F = − j d F = 0 
→ δg F = − j d F = 0

So we have as many as two natural ways for how to pass to (M, g). Which is then to be

preferred? Fortunately, it turns out that it is actually not a hard choice since both ways

eventually yield the same result.

16.4.11 Let (M, g) be a Lorentzian manifold. Check that the two prescriptions indeed

yield the same result, i.e. that

δg F = − j d F = 0 ⇔ Fμν
;ν = jμ F[μν;ρ] = 0

Hint: see (8.3.5), (15.2.9), (15.4.12) and (15.6.17). �

• The machinery of forms enables us to express particularly clearly transformations of

fields under symmetries. From a purely technical point of view this is due to the naturalness

of the operators d and δ.

16.4.12 Let f : M → M be an isometry of a Lorentzian manifold (M, g), i.e. f ∗g = g.

Check that if a pair (F ≡ d A, j) satisfies Maxwell’s equations (i.e. the current j generates

the field F ≡ d A), then they are also satisfied by the pair ( f ∗F ≡ d f ∗ A, f ∗ j) (so that the

current f ∗ j then generates the field f ∗F , given by352 the potential f ∗ A):

f is an isometry of (M, g)

⇒ {( j generates F ↔ A) ⇒ ( f ∗ j generates f ∗F ↔ f ∗ A)}
Hint: apply f ∗ to the equations δg F = − j , d F = 0 and use the naturalness of the differential

and codifferential ( f ∗d = d f ∗, f ∗δg = δ f ∗g f ∗, (6.2.11) and (8.3.8)).

16.4.13 Consider Minkowski space E1,3 and an isometry given by an element of the

Poincaré group

f : xμ 
→ �μ
ν xν + aμ

351 Note also that there is nothing at all to be generalized in the homogeneous part of Maxwell’s equations. The homogeneous
equations do not depend on any particular characteristic of a manifold, so that everywhere it is the same (this is sometimes
expressed as it being “purely geometrical”).

352 Of course, the potential f ∗ A still has its usual gauge freedom, so that f ∗ A itself represents only a possible choice.
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Be sure to understand that F 
→ f ∗F , A 
→ f ∗ A and j 
→ f ∗ j yields here (the well-known

“4-tensor”) component relations

Fμν(x) 
→ �ρ
μ�σ

ν Fρσ (�x + a)

Aμ(x) 
→ �ρ
μ Aρ(�x + a)

jμ(x) 
→ �ρ
μ jρ(�x + a)

Hint: a standard form computation; e.g. f ∗( jρ(x) dxρ)= jρ(�x + a) d(�ρ
μxμ + aμ) = · · · .

�

• This enables one, as we know from a course on electrodynamics, to obtain (say) the field

of a charge which moves uniformly along a straight line from a (simpler) field of a charge

being at rest (by mere transformation, without repeated solution of differential equations

with a new source), since passing to a reference frame which moves uniformly along a line

is an isometry of Minkowski space.

Also time and space inversions happen to be isometries of Minkowski space.353 Both of

them reverse the orientation of Minkowski space, which manifests itself in a subtlety in

using the rule (F, j) 
→ ( f ∗F, f ∗ j) for computation of new sources and fields. Consider

the result of the procedure j 
→ f ∗ j for time inversion fT : (t, r) 
→ (−t, r). We get

j ≡ ρ(t, r) dt − j(t, r) · dr 
→ f ∗
T j ≡ −ρ(−t, r) dt − j(−t, r) · dr

so that

(ρ, j)(t, r) 
→ (−ρ, j)(−t, r)

However, this transformation corresponds physically not only to “T-inversion,” but rather

to a combined “CT-inversion” (also a change of sign of the charge occurs).354 Then if we

indeed want to realize only T-inversion, the transformation j 
→ jT ≡ − f ∗
T j of the source

is needed (or, as one checks easily, J 
→ JT ≡ f ∗
T J , where J ≡ ∗ j is the 3-form of a

current).355 Then according to the result of problem (16.4.12) (which still holds, since δg

does not feel orientation) the corresponding field will be FT ≡ − f ∗
T F . The cases of P and

C transformations are similar.

16.4.14 Summarize the behavior of the quantities occurring in the theory of the electro-

magnetic field, (F, A, j) and (E, B, φ, A, ρ, j), under the time, space and charge inversions.

In particular, check that if fT : (t, r) 
→ (−t, r) and fP : (t, r) 
→ (t, −r), then

(F, A, j)T = (− f ∗
T F, − f ∗

T A, − f ∗
T j)

(F, A, j)P = ( f ∗
P F, f ∗

P A, f ∗
P j)

(F, A, j)C = (−F, −A, − j)

353 The result of time inversion may be seen when a film is played backwards (mistakenly or just for fun; in a popular sequence
slivers of glass lying on the floor suddenly start to recombine and in a moment they form a jar standing on a table). The result
of space inversion may be seen by an appropriate combination of a rotation and viewing the object in a mirror, e.g. by first
turning it by 180◦ and then viewing it in a mirror whose plane is perpendicular to the axis of rotation.

354 Standard notation for the three inversions in physics is C (Q 
→ −Q), P (r 
→ −r) and T (t 
→ −t).
355 If an isometry reverses orientation, it also reverses the sign of the Hodge operator: f ∗∗g,o = ∗g,−o f ∗ = − ∗g,o f ∗.
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or in three-dimensional notation

(E, B, φ, A, ρ, j)T (t, r) = (E, −B, φ, −A, ρ, −j)(−t, r)

(E, B, φ, A, ρ, j)P (t, r) = (−E, B, φ, −A, ρ, −j)(t, −r)

(E, B, φ, A, ρ, j)C(t, r) = (−E, −B, −φ, −A, −ρ, −j)(t, r)

Hint: see (16.4.12). �

• The differential d commutes with all diffeomorphisms. What then constrains the pos-

sibilities of transformations of fields is the codifferential in Maxwell’s equations. This

operator depends on g and restricts diffeomorphisms to those which behave nicely with

respect to g. The nicest possible behavior, isometry, was already discussed. The second

nicest behavior is conformal transformation and it turns out that also here some result may

be obtained.

16.4.15
∗

Let f : M → M be a conformal transformation of a four-dimensional Lorentzian

manifold (M, g) and let f ∗g = σ 2(x)g, σ 2(x) > 0. Check that if a pair (F = d A, j) satisfies

Maxwell’s equations (i.e. the current j generates the field F = d A), then they are also

satisfied by the pair ( f ∗F, f ∗ A, σ 2 f ∗ j) (so that the current σ 2 f ∗ j then generates the field

f ∗F , given by the potential f ∗ A):

f is a conformal transformation of (M, g)

⇒ {( j generates F ↔ A) ⇒ (σ 2 f ∗ j generates f ∗F ↔ f ∗ A)}
(In particular, the sourceless theory ( j = 0) is conformally invariant: if F is a solution, then

also f ∗F is a solution.)

Hint: like in (16.4.12): f ∗(d ∗g F) = f ∗(− ∗g j), but now (5.8.3) f ∗∗g = ∗σ 2g f ∗ =
σ 4−2p ∗g f ∗. �

16.5∗ Einstein gravitational field equations, Hilbert and Cartan action

• As we learned in Section 15.5, given a curvature tensor Ra
bcd we can obtain by contrac-

tions two simpler objects, the Ricci tensor Rab and (if a metric tensor gab is also available)

the scalar curvature R. Combining these tensors one gets another important tensor which

plays a prominent role in the general theory of relativity entering the equations of the

gravitational field356

Gab ≡ Rab − 1

2
Rgab Einstein tensor

Gab = 8πTab Einstein equations

(nothing less than space-time (M, g) itself is “computed from them”; Tab denotes the energy–
momentum tensor (16.4.1) of the matter which generates the gravitational field). The reason

why the field equations look exactly like this and, as a matter of fact, how the gravitational

356 This holds in a system of units where c = 1 = G; otherwise there is a constant 8πG/c4.
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field itself is actually encoded into the metric tensor gab, is discussed at length in textbooks

on the general theory of relativity.357

Here we only bring to the reader’s notice some technical facts which may be seen very

quickly and which might turn out to be fairly useful in the course of study of the theory

(like what exactly is interesting in just this combination of Rab, gab and R and so on).

16.5.1 Let Rab be the Ricci tensor. Check that

(i) the tensor may also be encoded into Ricci forms Ra and that these forms are simply related to the

curvature forms �a
b and the scalar curvature R

Ra := Rabeb Ra = ib�
b
a ia Ra ≡ i aib�

b
a = R

(ii) for the RLC connection the Ricci (and then also Einstein) tensor is symmetric

RLC connection ⇒ Rab = Rba Gab = Gba

Hint: (i) ib�
b
a = 1

2
Rb

acd ib(ec ∧ ed ) = Rb
abded = Raded = Ra ; (ii) for the RLC connection

the Ricci identity (15.6.16) gives � ∧ e = 0; then 0 = ib(�b
a ∧ ea) = (ib�

b
a) ∧ ea + �b

a ∧
(ibea) = Racec ∧ ea + �a

a ; in an orthonormal basis �a
a = 0, so that Rac is symmetric; this

fact, however, does not depend on a choice of basis. �

16.5.2 Consider the RLC connection on (M, g) and let Ga
b ≡ Ra

b − 1
2

Rδa
b be the Einstein

tensor. Check that this tensor

(i) can be obtained from the curvature tensor by contraction with 3-delta

Ga
b = −3

2
δars

bcd Rcd
rs δars

bcd ≡ δa
[bδ

r
cδ

s
d]

(ii) has vanishing covariant divergence

Gab
;b = 0

Hint: (i) (5.6.2), straightforward check; (ii) generalized Kronecker symbols are covariantly

constant (being combined from “ordinary” Kronecker symbols which are constant due to

commuting of ∇V with contractions), so that

Ga
b;a = −3

2
δars

bcd;a Rcd
rs − 3

2
δars

bcd Rcd
rs;a = −3

2
δars

bcd Rcd
rs;a = −3

2
Rcd

[cd;b] = 0

The last equality is due to the Bianchi identity (15.6.16). �

• From problem (16.4.1) we know that the energy–momentum tensor also has vanishing

covariant divergence, so that vanishing of the divergence of the Einstein tensor turns out to

be its key property which guarantees consistency358 of the field equations Gab ∼ Tab.

In the same problem (16.4.1) we also learned that the energy–momentum tensor may be

computed by means of variation of the action integral with respect to the metric tensor g.

357 And we will not walk in their shoes.
358 This consistency is similar to vanishing of the codifferential of both sides of Maxwell’s equations δF = − j (16.2.4).
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Here we will see that also the Einstein tensor may be obtained by means of variation of an

appropriate action with respect to the metric tensor. The action turns out to be the volume

integral of the scalar curvature.

16.5.3 The Hilbert action of a gravitational field is (up to a conventional factor (−1/16π ))

the volume integral of the scalar curvature, regarded as a functional of the metric tensor

SH ≡ SH [g] := − 1

16π

∫

Rgωg

where Rg ≡ R is the scalar curvature of the RLC connection on (M, g) and ωg is the metric

volume form. Check that

(i) it may be rewritten in the form

SH = − 1

16π

∫

�ab ∧ ∗g(ea ∧ eb)

with ea being an arbitrary (co)frame field; �ab then denotes curvature forms with respect to ea

(ii) in two-dimensional space-time the form under the integral sign turns out to be exact (so that the

action may then be rewritten (due to Stokes’ theorem) as an integral over the boundary of the

space-time volume under consideration and it is completely insensitive to variations of g inside
the volume ⇒ it gives no equations of motion).

Hint: (i) according to (16.5.1), (5.8.4), (5.8.9) and (5.8.10) we have

Rgωg = (
i aib�

b
a

)
ωg = (

i aib�
b
a, 1

)
gωg = (�ba, j b ja1)gωg

= (�ba, eb ∧ ea)gωg = �ba ∧ ∗g(eb ∧ ea)

(ii) according to (15.6.10) we then have with respect to an orthonormal frame field �ab =
εab dα, ∗(ea ∧ eb) = ±εab so that �ab ∧ ∗g(ea ∧ eb) = ±2dα. �

• It turns out that the variational derivative of this functional is just the Einstein tensor Gab,

so that this very part of the action gives as “equations of motion” just Gab = 0 (“vacuum”

or “sourceless” Einstein equations). In the following problem we confirm this statement by

a computation (postponing part of the proof until later, when we learn more appropriate

machinery (see Section 21.7)).

16.5.4 The metric tensor gab, with respect to which we would like to perform variation of

the functional SH [g] occurs at three places in the form under the integral sign:

SH [g] = − 1

16π

∫

gac�
c
b(g) ∧ ∗g(ea ∧ eb)

A contribution to the form under the integral sign from a variation g 
→ g + εh in the

curvature forms �c
b(g) happens to be an exact form, so that this term is of no interest for

the computation of the variational derivative.359 Compute the change of the form under the

359 In (21.7.8) we will see that to within first-order accuracy in ε there holds gac�
c
b(g + εh) ∧ ∗g(ea ∧ eb) = gac�

c
b(g) ∧ ∗g(ea ∧

eb) + εd(something), so that upon integration over a domain U Stokes’ theorem gives an integral over the boundary ∂U which
vanishes, since h = 0 there.
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integral sign due to a change g 
→ g + εh in the remaining two places; convince yourself

that it is (within order ε)

(gac + εhac)�c
b(g) ∧ ∗g+εh(ea ∧ eb) = gac�

c
b(g) ∧ ∗g(ea ∧ eb) − εhabGabωg

so that in combination with the comment about the (sad) fate of the variation �c
b(g + εh)

we indeed obtain as a total result

SH [g + εh] = SH [g] + ε

∫

hab

(
1

16π
Gab

)

ωg + · · · hab := gacgbd hcd

Solution: in order to get an increment due to a change of gab in the first place one has, just

as in problem (16.5.3), to compute that

hac�
c
b ∧ ∗g(ea ∧ eb) = hac

(
�c

b, ea ∧ eb
)
ωg = hac

(
�c

b, j a j b1
)
ωg = hac

(
i bia�c

b

)
ωg

= hac(ia Rc)ωg = hab Rabωg

The change of the star operator due to a variation of gab is discussed in problem (16.4.5);

here it gives

gac�
c
b ∧ ∗g+εh(ea ∧ eb)

= �ab ∧ ∗g(ea ∧ eb) + εhrs

{
1

2
grs(�ab, ea ∧ eb) − (ir�ab, is(ea ∧ eb))

}

ωg

= �ab ∧ ∗g(ea ∧ eb) + · · ·
= �ab ∧ ∗g(ea ∧ eb) + εhab

{
1

2
gab R − 2Rab

}

ωg

These two terms thus indeed add up to

(gac + εhac)�c
b ∧ ∗g+εh(ea ∧ eb) = �ab ∧ ∗g(ea ∧ eb) + εhab

{

Rab + 1

2
gab R − 2Rab

}

ωg

= �ab ∧ ∗g(ea ∧ eb) + εhab(−Gab)ωg

�

• Now everything is already prepared for the derivation of Einstein’s field equations from

an action principle. We are virtually finished with the equations for the gravitational field

“in vacuum,” i.e. equations which are valid in regions of space-time where there is nothing

else except for a gravitational field. Then one takes the action to be SH [g] alone.

16.5.5 Check that

(i) from the Hilbert action

SH ≡ SH [g] := − 1

16π

∫

Rgωg

the following equations of motion result:

Gab = 0 Einstein’s vacuum equations
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(ii) these equations are equivalent to the condition for a space-time to be Ricci-flat, i.e. the condition

of vanishing Ricci tensor itself

Gab = 0 ⇔ Rab = 0

Hint: (i) (16.5.4); (ii) contraction of the equation Rab − 1
2

Rgab = 0 by the tensor gab gives

in n-dimensional space-time (2 − n)R = 0, whence360 R = 0 and consequently 0 = Gab =
Rab. �

• Now, if we found a term in the action which would yield as a variational derivative with

respect to gab just the energy–momentum tensor of the “matter” generating the gravitational

field, we would be able to derive from the variational principle the complete Einstein

equations (including the sources = their right-hand side).

This is, however, very easy since the energy–momentum tensor was defined in (16.4.1)

just in the way we need: for a field ψ with action S[ψ, g] it was introduced by the relation

S[ψ, g + εh] =: S[ψ, g] − ε

∫

D

1

2
habTabωg

i.e. exactly as the variational derivative of the action of the field ψ with respect to the metric

tensor g. So if we represent the “matter” by such a field and the action integral of the field

is denoted by Smatter, then the sum of the Hilbert action and the action of the “matter” will

necessarily lead to the complete Einstein equations.

16.5.6 Consider an action which is a combination of the Hilbert action for the gravitational

field and an action of (non-gravitational) “matter” represented by a field ψ

S[g, ψ] := SH [g] + Smatter[ψ, g] ≡ − 1

16π

∫

D
Rgωg +

∫

D
L(ψ, g)ωg

Check that its variation with respect to g gives (within order ε)

S[g + εh, ψ] = S[g, ψ] + ε

∫

D

1

2
hab

(
1

8π
Gab − Tab

)

ωg

so that the equations of motion resulting from this action coincide with Einstein’s equations

Gab = 8πTab

Hint: see (16.4.1) and (16.5.4). �

• One can also arrive at Einstein’s equations from another action, in a way proposed by

Cartan. This modification of the original Einstein theory of gravitation is usually called

Einstein–Cartan theory. In general it is indeed a modification, i.e. the theory is in general

inequivalent to the theory based on the Hilbert action, which we discussed until now. Namely,

sometimes the torsion of the connection occurs here (it is generated by spinor fields), which

360 For n �= 2; recall that a “two-dimensional gravitation” needs a completely different action since then the Hilbert action “does
not work,” see (16.5.3).
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was clearly impossible in the approach based a priori on the RLC connection, induced361 by

the metric tensor g. Again, we will mention only some simple ideas of Cartan’s approach,

leaving the details to more specialized texts.

In a domain O one considers as basic independent variables

1. a coframe field ea (or vielbein fields ea
μ given by a decomposition ea = ea

μ dxμ)

2. 1-forms ωab = −ωba

(Recall that the vielbein field is usually called the tetrad field in four dimensions.) These two basic

objects then secondarily induce in domain O further (already derived) important quantities:

3. metric tensor

g := ηabea ⊗ eb ≡ g(e)

i.e. g ≡ g(e) is (uniquely) defined so as the field ea were orthonormal
4. linear connection ∇; it is defined as follows:

∇V ea := −ωa
b (V )eb ωa

b := ηacωcb

i.e. so that the forms ωab were (after due modification of the position of the index) connection

forms of the connection362 with respect to the (already orthonormal) basis ea .

5. volume form and orientation

ωabcd := εabcd or equivalently ω := e0 ∧ e1 ∧ e2 ∧ e3

i.e. the orientation is (uniquely) defined so that the frame field ea is right-handed and the volume

form is then a standard form compatible with the metric and orientation ωg(e),o(e).

16.5.7 Be sure to understand that

(i) if a particular (co)frame field is declared to be orthonormal, the metric tensor is indeed uniquely

defined by this

(ii) a linear connection is indeed defined by the prescription given above; the connection is moreover

metric with respect to g(e) from item 3 (its torsion being not restricted by the prescription,

however; it may turn out to be non-vanishing)

(iii) the curvature forms �ab depend on the forms ωab alone, �(ω).

Solution: (ii)

0 = V ηab = ∇V {g(ea, eb)} = (∇V g)(ea, eb) + g(∇V ea, eb) + g(ea, ∇V eb)

= (∇V g)(ea, eb) + (ωab + ωba)(V ) = (∇V g)(ea, eb)

⇒ ∇g = 0

(iii) standard relations �ab = dωab + ωac ∧ ωc
b. �

361 In physical parlance the fact of vanishing torsion was put in “by hand.”
362 Notice that the “objective” connection ∇ depends on the choice of both primary objects, ea as well as ωb

a (a connection is
given by forms ω with respect to the (co)frame field e), whereas the metric tensor depends on the choice of ea alone.
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• Let us now have a look at what the action looks like. At first glance the new (Cartan)

action for the gravitational field coincides with the old (Hilbert) one – it is a (−1/16π )-

multiple of an integral of the form

τ = �ab ∧ ∗(ea ∧ eb)

However, the action is to be regarded differently (for the purpose of performing the vari-

ation), since the basic independent variables have changed.363 The Hodge star operator is

implicitly understood to be defined with respect to g ≡ g(e) and o(e), so that (ea being by
definition right-handed and orthonormal) it actually gives

∗(ea ∧ eb) = 1

2
ωab

cdec ∧ ed = 1

2
ηarηbsεrscdec ∧ ed

(ωab
cd := ηarηbsωrscd ), so the explicit dependence of ∗ on g drops out and one obtains

1

2
�ab ∧ ηarηbsεrscdec ∧ ed ≡ 1

2
�ab(ω) ∧ εabcdec ∧ ed

Then �ab depends on ωab (alone), the rest depends on the frame field ea (alone) and one

is to perform variations of the 4-form under the integral sign with respect to these two
independent objects

τ [e, ω] = 1

2
εabcd�

ab(ω) ∧ ec ∧ ed

16.5.8 The Cartan action of the gravitational field is the integral

SC ≡ SC[e, ω] := − 1

16π

∫

D
τ [e, ω] ≡ − 1

32π

∫

D
εabcd�

ab(ω) ∧ ec ∧ ed

regarded as a functional of the frame field e and 1-forms ω. Check that an infinitesimal

change of the frame field ea 
→ ea + ε f a ( f a being arbitrary 1-forms) results in a variation

of the functional

SC[e + ε f, ω] = SC[e, ω] + ε

∫

D
f a ∧

(
1

8π
∗ Ga

)

where we introduced

Ga := Gbaeb Einstein 1-forms

Solution:

τ [e + ε f, ω] = 1

2
εabcd�

ab(ω) ∧ (ec + ε f c) ∧ (ed + ε f d )

= τ [e, ω] + ε f c ∧ {εabcd�
ab(ω) ∧ ed}

=: τ [e, ω] + ε f c ∧ σc

363 It resembles a situation in mechanics where we consider the action S[q] = ∫
L(q, q̇) dt as well as S[q, p] = ∫

(pq̇ −
H (q, p)) dt (see (18.5.5) and (18.5.6)): since H and L are related by H = pq̇ − L , at first sight “the same” object is under
the integral sign in both cases. The actions nevertheless differ, since the variations are performed with respect to curves in
different spaces (the first one in configuration space, whereas the second one in a broader phase space).
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But

σc ≡ εabcd�
ab ∧ ed = 1

2
εabcd Rab

αβeα ∧ eβ ∧ ed = 1

2
εabcd Rab

αβωαβdρηρκ ∗ eκ

= 1

2
εdabcε

dαβρ Rab
αβηρκ ∗ eκ = 3δ

αβρ

abc Rab
αβηρκ ∗ eκ = −2Gρ

c ηρκ ∗ eκ

= −2Gbc ∗ eb = −2 ∗ Gbceb ≡ −2 ∗ Gc

(since ea ∧ eb ∧ ec = ωabc
d ∗ ed and ωabcd = (det η)εabcd = −εabcd ≡ −εabcd ). �

• Let us now have a look at the variation with respect to the forms ωab. We need to

know how the form τ [e, ω] under the integral sign responds to an infinitesimal change of

connection forms

ωab 
→ ωab + εσab σab = −σba

Also here we prefer to postpone the computation itself to Section 19.6 (as we already did

in (16.5.4)), where we will learn how to use the exterior covariant derivative D. The result

of the computation reads

τ [e, ω + εσ ] = τ [e, ω] + d{· · ·} − εσ ab ∧ εabcd T c ∧ ed

16.5.9 Be sure to understand that our knowledge concerning the variation of the Cartan

action may be summarized as follows:

SC[e + ε1 f, ω + ε2σ ] = SC[e, ω] + ε1

∫

D
f a ∧

(
1

8π
∗ Ga

)

+ ε2

∫

D
σ ab ∧

(
1

16π
εabcd T c ∧ ed

)

Conditions for the functional to be stationary with respect to e and ω thus read

Ga = 0 εabcd T c ∧ ed = 0

Check that they happen to be equivalent to

Gab = 0 Einstein vacuum (sourceless) equations

T a = 0 connection is symmetric

so that we get just the same as the Einstein–Hilbert approach gives: we have vanishing

torsion364 and the Einstein vacuum equations hold.

Solution: variations according to (16.5.8), (21.7.8) and (21.7.9); vanishing torsion:

εabcd T c ∧ ed = 0 ⇒ εabcd T b ∧ ec ∧ ed = 0 ⇒ Tb ∧ ∗(ea ∧ eb)= 0 ⇒ (Tb, j a j b1)= 0

⇒ (i bia Tb, 1)= 0 ⇒ i a(i bTb) ≡ i a T̂ = 0 ⇒ T̂ ≡ i bTb = 0

364 Also, from the very beginning, we have metricity imposed “by hand” ⇒ RLC connection altogether.
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and then

εabcd T c ∧ ed = 0 ⇒ T b∧ ec = T c ∧ eb ⇒ j a T b = j bT a ⇒ ia j a T b = ia j bT a

⇒ (δb
a − j bia)T a = 2T b ⇒ 2T b = T b − j bia T a ⇒ T b = − j b T̂ = j b0 ⇒ T b = 0

�

• In order to derive the complete Einstein equations (including sources = their right-

hand side), we again need to add to the action a term Smatter representing “non-gravitational

matter.”

Inspection of the concrete actions for fields which we have encountered (electromagnetic,

scalar, vector) shows that they have the structure Smatter[ψ, g]. Thus in addition to the fields

themselves they depend on the metric tensor g, its only place of occurrence being the

Hodge operator ∗g (16.4.5). Now we are to express the action integrals of non-gravitational

matter in terms of new variables, namely Smatter[ψ, e, ω]. We see that for the fields under

consideration it is enough to express g in terms of e and set

Smatter[ψ, e, ω] := Smatter[ψ, g(e)]

This has two consequences. First, variation with respect to e effectively reduces to variation

with respect to g, leading again to the energy–momentum tensor (and thus to the complete

Einstein equations).

Secondly, these actions do not depend at all on ω, so that variation of the complete action

(sum of the terms corresponding to the gravitational field and to non-gravitational matter)

will eventually be the same as the variation of the gravitational field part alone. This means

that we again obtain the condition of vanishing torsion. Put another way, we end up with

exactly the same results as we obtained before from the original (Hilbert) action in terms

of g rather than e, ω. Let us have a look at these two points in more detail.

16.5.10 Parametrize the variation of the coframe field by a symmetric matrix Sab(x) and

an antisymmetric matrix Aab(x)

ea 
→ ea + ε f a = ea + εBa
b(x)eb = ea + εηab

(
B(bc) + B[bc]

)
ec

≡ ea + εηab(Sbc(x) + Abc(x))ec

Check that

(i) the resulting change of the metric tensor g(e) reads

g 
→ g + εh hab = 2Sab

so that the antisymmetric part Aab(x) of the general matrix B(x) only generates transitions to

other orthonormal coframe fields365 (so that g = g(e) does not change; these transformations

are called local Lorentz transformations) and the symmetric part Sab(x) generates the variations

which indeed alter g

365 They are orthonormal in the sense of the initial metric g ≡ g(e). Recall that any new coframe field e + ε f is by definition
regarded as orthonormal in the sense of the new metric. Any antisymmetric matrix Aab generates fields ea + ε f a , which remain
orthonormal with no change of g.
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(ii) for actions of the type discussed above there holds

Smatter[ψ, e + ε f, ω] = Smatter[ψ, e, ω] + ε

∫

D
f a ∧ (− ∗ τa) τa := Tbaeb

where Tab is the energy–momentum tensor

(iii) for the total action

S[e, ω, ψ] = SC[e, ω] + Smatter[ψ, e, ω]

we then have

S[e + ε f, ω, ψ] = S[e, ω, ψ] + ε

∫

D
f a ∧ ∗

(
1

8π
Ga − τa

)

so that the extremum yields the equation of motion

Ga = 8πτa i.e. Gab = 8πTab

Hint: (i) g 
→ ηab(ea +ε f a) ⊗ (eb+ε f b) = · · · = g + ε(Bab + Bba)ea ⊗ eb != g + εh (this

is clear also without any computation since we know that the matrices (1 + εB) for anti-

symmetric (ηB) turn out to be (pseudo-)orthogonal, so that only the symmetric part of (ηB)

is able to alter g);

(ii) Smatter[ψ, e + ε f, ω] = Smatter[ψ, g(e + ε f )] = Smatter[ψ, g + ε2S]

= Smatter[ψ, g] − ε

∫

D

1

2
2SabTabωg(e)

At the same time f a ∧ ∗τa = Ba
beb ∧ Tca ∗ ec = Ba

bTcaeb ∧ ∗ec = Ba
bTcaη

bcωg =
BabTbaωg = SabTabωg . �

There are also fields, however, for which this comes out differently. Namely, for spinor
fields the action contains explicitly366 the connection formsω, thus contributing non-trivially

to the variation with respect to ω; this results in non-vanishing torsion T a �= 0 (Einstein–

Cartan theory then indeed differs from the Einstein–Hilbert theory). Things become more

complicated: Einstein as well as energy–momentum tensors turn out to be neither symmetric

nor “conserved” (they have non-vanishing covariant divergence), etc.

16.6∗ Non-linear sigma models and harmonic maps

• In mathematical physics a non-linear sigma model denotes a field theory in which it is

a “non-linear field” that is the subject of a dynamics. This is simply a map

f : M → N

between two manifolds, where the “target manifold” N fails to be a linear space. Such

maps, unlike the majority of common fields in physics (most often tensor fields, possibly

with values in linear spaces), do not constitute a linear space.

366 Its kinetic term turns out to be proportional to (ψ̄γ a iea Dψ)ωg(e) ≡ (ψ̄γaDψ) ∧ ∗g(e)ea and in Dψ ≡ dψ + ρ ′(ω)ψ = · · · is
hidden ω. An explicit expression for Dψ will be derived in (22.5.1).
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The dynamics of a field f is introduced by postulating an appropriate action integral.

A valuable hint for the possible structure of the action may be provided by convenient

rewriting of two particular actions we have already encountered previously. The first one

is the kinetic term of the action of an ordinary (linear) scalar field (16.3.7) and the second

source of inspiration is the action for a free motion367 (U = 0) in Lagrangian mechanics
with a finite number of degrees of freedom (3.2.9).

16.6.1 Consider the kinetic term of the action of a (real) scalar field (16.3.7) on a

Riemannian manifold (M, g),

S[φ; g] := 1

2

∫

U
(∂μφ)(∂μφ)ωg ≡

∫

U
gμν(∂μφ)(∂νφ)ωg

Check that

(i) if φ is regarded as a (global Cartesian) coordinate (function) on a “target” space R[φ] and the

scalar field as a map f : M[xμ] → R[φ], then φ(x) is the coordinate presentation of the map

(and at the same time the pull-back f ∗φ of the coordinate function φ on M)

(ii) the expression

∂μφ ≡ J 1
μ

is actually the Jacobian matrix of the map f , so that the action may also be written as

S[ f ; g] := 1

2

∫

U
gμν J 1

μ J 1
ν ωg

(iii) if we introduce the ordinary Euclidean metric on the target R[φ]

h := dφ ⊗ dφ i.e. h11(φ) := 1

the action takes the form

S[ f ; g, h] := 1

2

∫

U
gμν( f ∗h)μνωg

Hint: (iii) gμν J 1
μ J 1

ν = gμν J 1
μ J 1

ν h11 = gμν( f ∗h)μν . �

• Under the integral sign the expression of the structure Aμν Bμν occurred which reminds

us of the scalar product of forms α ∧ ∗gβ ∼ αμ...νβμ...νωg introduced in (5.8.4) and (8.3.1).

The (only) difference consists in the fact that our tensors happen to be symmetric, so that

the expression under the integral sign containing their scalar product

A · B ≡ (A, B)g := 1

2
Aμν Bμν ≡ 1

2
gμαgνβ Aαβ Bμν

cannot be written in terms of the exterior product and the star operator, but only in terms of

components of the tensors.

16.6.2 Check that the kinetic term in the action of a real scalar field

f : (M, g) → (R1, h)

367 This functional corresponds at the same time (as we know from (15.4.4)) to geodesics of the RLC connection.
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may be written in terms of the scalar product of tensors in a simple and transparent form

S[ f ; g, h] :=
∫

U
(g, f ∗h)gωg

�

• We see that the action simply represents a volume integral (over a domain on a manifold

M) of the scalar product of an initial metric tensor g on M with the pull-back f ∗h of the

metric tensor h from R to M . Now, let us have a look at the second particular action integral

mentioned above.

16.6.3 Consider the standard kinetic term of the action integral of a mechanical system

with a finite number of degrees of freedom (3.2.9)

S[γ ; h] := 1

2

∫ t2

t1

h(γ̇ , γ̇ ) dt ≡ 1

2

∫ t2

t1

habq̇aq̇bdt

Check that

(i) if the curve γ is regarded (in accordance with an official definition) as a map γ : R[t] → M[qa],

then q̇a ≡ J a
1 is actually the Jacobian matrix of the map γ , so that the action may also be written

as

S[γ ; h] := 1

2

∫ t2

t1

J a
1 J b

1 hab dt

(ii) if we introduce the ordinary Euclidean metric on the “parameter” real axis R[t]

g := dt ⊗ dt i.e. g11(t) := 1

then the action takes the form

S[γ ; g, h] := 1

2

∫

U
gμν( f ∗h)μνωg ≡

∫

U
(g, f ∗h)gωg U = 〈t1, t2〉

so that the action considered here and that of the scalar field from (16.6.2) happen to be precisely

alike, not merely having a close resemblance as would two peas in a pod. �

• Compare the results we obtained so far:

scalar field: f : (M, g) → (R1, h) S[ f ; g, h] =
∫

U
(g, f ∗h)gωg h ≡ dφ ⊗ dφ

mechanics: γ : (R1, g) → (N , h) S[γ ; g, h] =
∫

U
(g, f ∗h)gωg g ≡ dt ⊗ dt

The form of the action, shared by the two systems under consideration, strongly suggests

a way that we might easily generalize the concept to maps between arbitrary Riemannian
manifolds

f : (M, g) → (N , h)
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It suffices to replace the particular manifold R by a general Riemannian manifold and leave
the form of the action derived in (16.6.2) and (16.6.3) unchanged.

16.6.4 Consider a map f between two Riemannian manifolds

f : (M, g) → (N , h)

and introduce as an action integral the expression368

S[ f ; g, h] :=
∫

U
(g, f ∗h)gωg

Check that

(i) if xμ, ya are coordinates on M and N respectively, then the coordinate presentation of the action

reads

S[ f ; g, h] ↔ S[ya(x), ya
,μ(x), x] = 1

2

∫

U
gμν ∂ya

∂xμ

∂yb

∂xν
hab

√
|g| dm x ≡ 1

2

∫

U
gμν ya

,μ yb
,νhabωg

(ii) this action may also be rewritten in terms of differential forms and the standard scalar product

of forms

S[ f ; g, h] ↔ S[ya, dya, x] = 1

2

∫

U
dya ∧ ∗ghab dyb ≡ 1

2
〈dya, hab dyb〉

Note that in this expression only the coordinates ya on N take part, whereas it is “coordinate-free”

with respect to M369

(iii) the condition for the extremum of this action with respect to f ↔ ya(x) gives the equations of

motion

	g ya + (dyb, dyc)g�
a
bc = 0

where �a
bc are the Christoffel symbols of the RLC connection corresponding to h

(iv) so that if the RLC connection for the manifold (N , h) happens to be flat, the fields ya(x) (for a

suitable choice370 of ya on N ) turn out to be harmonic functions on M
(v) in two particular cases which served as sources of inspiration concerning the form of the action

this general equation of motion indeed reduces to the equations to be expected, i.e. the massless

Klein–Gordon equation (16.3.7) and the equation of a geodesic (15.4.1)

�gφ = 0 and ÿa + �a
bc ẏa ẏb = 0

Hint: (iii) if ya(x) 
→ ya(x) + εza(x) (za being arbitrary, vanishing on the boundary ∂U ),

then

S[y] 
→ S[y + εz] ≡ 1

2
〈d(ya + εza), hab(y + εz)d(yb + εza)〉 = S[y] + εα

368 It is interpreted as a functional of f ; the metric tensors g, h are given, so that they may be regarded as “parameters.”
369 Coordinates ya may be regarded in this context as a “multiplet” of scalar fields on M . Actually they are, as we have already

mentioned, pull-backs ya (x) ≡ f ∗ ya of the coordinate functions on M , i.e. functions on M . In the same way (as pull-back)
one should also understand hab – it depends on x through y, hab(y(x)).

370 Namely for (“Cartesian”) coordinates adapted to the flat connection, i.e. such that �a
bc = 0.
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where

α = 〈dza, hab dyb〉 + 1

2
〈dya, hab,czc dyb〉

= 〈za, δg(hab dyb)〉 + 1

2
〈za, (dyb, dyc)ghbc,a〉 ≡ 〈za, δg(hab dyb) + 1

2
(dyb, dyc)ghbc,a〉

Vanishing of the first variation (that means α
!= 0 for arbitrary za) thus amounts to the

condition δg(hab dyb) + 1
2
(dyb, dyc)ghbc,a = 0. Since the codifferential leads to

δg(hab dyb) ≡ ∗−1 d ∗ η̂(hab dyb) = − ∗−1 d(hab ∗ dyb) = · · ·
= −hab,c(dyb, dyc) − hab	yb

we may eventually write

0 = (dyb, dyc)

(
1

2
hbc,a − ha(b,c)

)

− hab	yb ≡ −hab
(
	yb + �b

cd (dyc, dyd )
)

�

• Maps of Riemannian manifolds f : (M, g) → (N , h) which extremize the action pre-

sented above (i.e. which satisfy local differential equations 	ya + �a
bc(dya, dyb) = 0) are

called in the mathematically oriented literature harmonic maps and they have numerous

applications. We saw, for example, that a (real massless) scalar field (obeying equations of

motion) as well as a curve describing the uniform motion along a straight line on (N , h) (a

geodesic) realize particular harmonic maps (some further examples will be mentioned later

on).

Now contemplate symmetries of the action. Since two Riemannian manifolds are in-

volved, we may expect that groups of automorphisms of the Riemannian structures might

be relevant, i.e. groups of isometries of the manifolds. Then we should not be overly sur-

prised to hear that the action actually has the symmetry G1 × G2 (with G1 and G2 being

the isometry groups of (M, g) and (N , h) respectively).

16.6.5 Let f : M → N be a non-linear field and let ψ : M → M and χ : N → N be

diffeomorphisms. By composition we get a new non-linear field (map M → N )

M
ψ→ M

f→ N
χ→ N

In particular, by composition with isometries of the corresponding Riemannian manifolds

we get a right action of the direct product G1 × G2 of the groups of isometries on the space

of fields

f 
→ R(k1,k2) f ≡ Rk2
◦ f ◦ R−1

k1
(k1, k2) ∈ G1 × G2

Check that

(i) the following identity holds:

ψ∗((A, B)gωg) = (ψ∗ A, ψ∗ B)ψ∗gωψ∗g
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(ii) for the action integral under consideration

S[ f ] ≡ S[ f ; g, h,U] :=
∫

U
(g, f ∗h)gωg

we may write

S[χ ◦ f ◦ ψ ; g, h,U] = S[ f ; (ψ−1)∗g, χ∗h, ψ(U)]

(iii) in particular, the action integral remains invariant with respect to the action of the group G1 × G2

S[R(k1,k2) f ; g, h, M] = S[ f ; g, h, M)]

Hint: (i) (A, B)g = CC�g�g A ⊗ B, ωg = ∗g1, see (3.1.7) and (8.3.8). �

• Up to now, we have been considering both metric tensors in the action as given (i.e. as

“parameters”). Now we look at a variation procedure with respect to the metric tensor g on

M (so that we regard g as an additional “variable”). In doing so we generalize the action

a bit (the reason becomes clear at the end of the computations) by adding a “cosmological

term” ∼ constant
∫

ωg: so let us consider from now on the action integral

S[ f ; g, h, λ] :=
∫

U

{(g, f ∗h)g + λ/2}ωg ≡ 1

2

∫

U

{gμν( f ∗h)μν + λ}ωg ≡
∫

U

L(g, Ĝ, λ)ωg

where the notation Ĝ ≡ f ∗h was introduced and λ ∈ R is so far arbitrary.

16.6.6 Consider a variation gμν 
→ gμν + εσμν , σμν = σνμ in the action integral

S[g, Ĝ, λ] :=
∫

U
L(g, Ĝ, λ)ωg L(g, Ĝ, λ) ≡ 1

2
{gμν Ĝμν + λ} Ĝ ≡ f ∗h

Check that

(i) under the variation of g the variation of the form under the integral sign reads

L(g + εσ, Ĝ, λ)ωg+εσ = L(g, Ĝ, λ)ωg + 2ε(σ, Lg − Ĝ)gωg

so that the critical g = ĝ is given by the condition

L̂ ĝ = Ĝ i.e. L̂ ĝμν = Ĝμν L̂ ≡ L(ĝ, Ĝ, λ)

Note that this is an algebraic equation (a “constraint” rather than a differential equation) for ĝ
(ii) a necessary condition for obeying this relation is non-degeneracy of Ĝ and consequently also

dim M ≤ dim N
(iii) the equation L̂ ĝ = Ĝ leads to the condition

(2 − m)L̂ = λ m ≡ dim M

Thus the requirement of existence of critical g = ĝ selects for m = 2 the action with λ = 0 and

for m �= 2 in turn λ �= 0

(iv) for m = 2 the solution of the equation L̂ ĝ = Ĝ consists of exactly the whole conformal class
given by the representative Ĝ, i.e. it contains all metric tensors of the form ĝ = χ Ĝ, where χ is
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an arbitrary nowhere vanishing function; for m �= 2 we have the solution

ĝ = L̂−1Ĝ ≡ λ

2 − m
Ĝ

and, in particular, for the choice λ = 2 − m we have the simplest solution371 ĝ = Ĝ.

Hint: (i) gμν 
→ gμν − εσμν (where σμν = gμαgνβσαβ), ωg 
→ (1 + ε 1
2
σμ

μ )ωg; (ii) ĝ is a

metric tensor, so that it is non-degenerate; (iii) multiply by gμν the equation L̂ ĝμν = Ĝμν.

�

• Now let us investigate what we obtain if the critical ĝ is inserted back into the action

from which it was obtained (the action then becomes a functional of a “single variable,” the

map f , as it was before). We already set the parameter λ to be λ = 2 − m (since this turned

out to be the most convenient choice).

16.6.7 Let Ĝ be non-degenerate (i.e. it is also a metric tensor on M). Consider the action

from (16.6.6) for λ = 2 − m, i.e.

S[g, Ĝ] ≡ S[g, Ĝ, 2 − m] ≡
∫

U
L(g, Ĝ, 2 − m)ωg ≡ 1

2

∫

U
{gμν Ĝμν + (2 − m)}ωg

where m ≡ dim M = 1, 2, . . . . Check that if we replace g with the critical372 value g = ĝ,

we get the action373

S[ f ; h] ≡ S[ĝ, Ĝ] ≡
∫

U
L̂ωĝ =

∫

U
ωĜ

i.e.

S[ f ; h] =
∫

U
ω f ∗h

Hint: according to (16.6.6) for m �= 2 we have L̂ = 1 and ĝ = Ĝ; for m = 2 with the help

of (5.8.3) we have

L̂ωĝ = (χ Ĝ, Ĝ)χ Ĝωχ Ĝ = 1

2
χ−1Ĝμν ĜμνχωĜ = 1

2
χ−1δμ

μχωĜ = ωĜ

so in both cases there holds L̂ωĝ = ωĜ . �

• However, the functional given by the last integral already has a clear geometrical

meaning: it represents the volume of the domain U in the sense of the metric tensor f ∗h
induced on M from (N , h) or, alternatively374 the volume of the image f (U) in the manifold

N with respect to the metric tensor h (restricted to f (U)). So we end up with the good old

371 Note that ĝ = Ĝ is also a solution for the choice λ = 2 − m in the case m = 2.
372 For m = 2 we are free to choose any representative of the conformal class given by the tensor Ĝ.
373 This action is to be regarded as a functional of a map f alone, keeping the metric tensor h on the target manifold N fixed.
374 For injective f .
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functionals of length, area, etc., expressed technically by “square root” Lagrangians (7.7.5),

length of γ =
∫ √

hab ẏa ẏb dt ≡
∫ √

h(γ̇ , γ̇ ) dt

area of S =
∫ √

det
(
hab ya

,μyb
,ν

)
dx1 ∧ dx2 ya

,μ ≡ ∂ya

∂xμ

etc.

which are used for finding the shortest paths, minimal surfaces, etc. What is then the

point of the result of problem (16.6.7)? What did we actually learn from it? The problem

showed that the functionals for finding the shortest paths, minimal surfaces, etc. may also

be written in a different way than we knew up to now. Namely, instead of S[ f ; h] one

takes the functional S[ f ; g, h], which corresponds to a non-linear sigma model and which

contains an “auxiliary” metric tensor g on M . If we now regard S[ f ; g, h] as a functional

of “two variables” f, g and if we, in addition to f (as we intended to do for S[ f ; h]),

vary it also with respect to g, we achieve by means of both variations the same effect

as we would achieve by means of a variation of the initial action S[ f ; h] with respect to

f alone.

Well, and what might then be the use of such an “extension” of the problem (which looks

more like a complication than a simplification)? The reason is that this is a cheap way (with

a minimum grant-in-aid) of how to get rid of the square root under the integral sign in the

action.375 Let us have a look explicitly at the particular cases dim M = 1 (minimal curves)

and dim M = 2 (minimal surfaces).

16.6.8 Be sure to understand that the particular case dim M = 1 of the scheme mentioned

above enables one to get rid of the square root in the action (16.3.9) corresponding to a

charged particle376 (m, e) which moves in a space-time (N , h) in an external electromagnetic

field given by a potential A; in particular, check that

(i) if we consider the (quadratic) action

S[γ, β; A] := −m

2

∫ τ2

τ1

(
h(γ̇ , γ̇ )

β
+ β

)

dτ + Sint[γ ; A]

≡ −m

2

∫ τ2

τ1

(
hab ẏa ẏb

β
+ β

)

dτ − e
∫ τ2

τ1

〈A, γ̇ 〉 dτ

then its variation with respect to an “auxiliary function” β(τ ) plus inserting the critical value β̂(τ )

back leads to the original (square root) action (16.3.9)

S[γ ; A] := −m
∫ τ2

τ1

√
h(γ̇ , γ̇ ) dτ + Sint[γ ; A] ≡ −m

∫ τ2

τ1

√
hab ẏa ẏb dτ − e

∫ τ2

τ1

〈A, γ̇ 〉 dτ

375 This turns out to be very desirable for a quantization of the theory (one obtains a nice quadratic action by this trick); we will
not pursue this topic at all in this book.

376 Here m does not denote the dimension of the manifold M , but rather the mass of the charged particle.
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(ii) the new action is also reparametrization invariant: namely β transforms under reparametrization

according to the prescription

τ 
→ τ ′(τ ) ⇒ β 
→ β ′ = dτ

dτ ′ β

Hint: (i) if g = β(τ ) dτ ⊗ β(τ ) dτ ≡ e1 ⊗ e1, then ωg = e1 and ((g, f ∗h)g + 1
2
)ωg reduces

to 1
2
(hab ẏa ẏb/β + β) dτ ; (ii) the “function” β(τ ) is actually a component of a 1-form377 e1

with respect to the coordinate basis dτ ; then the transformation rule under a change of the

coordinate follows immediately (β dτ
!= β ′ dτ ′ should hold). �

• The case of a two-dimensional manifold M (two-dimensional minimal surfaces in

(N , h)) turns out to be of particular interest for two groups of the civilian population.

The first group is represented by small children, who are fascinated by soap bubbles while

playing in a bathtub. The surface tension forces the bubble to take a form with minimum area

under the given additional conditions; these conditions may be realized, say, by a wire rim,

to which the boundary of the bubble should be attached or by the pressure of the air enclosed

by the bubble (if it is attached to nothing and hovers in the form of S2 featherlight in the air).

Some children continue with this fascination until adulthood, they write complicated papers

and (complicated) monographs, in which they do not hesitate to attack the (complicated)

problems of the theory of soap bubbles using “heavy artillery” of differential geometry and

algebraic topology.

16.6.9 Consider a soap bubble whose shape may be expressed in terms of a function

u(x, y) in a domain U in the xy-plane. Check that the requirement of minimality of area of

the bubble leads to a (non-linear) second-order partial differential equation for u
(
1 + u2

,y

)
u,xx + (

1 + u2
,x

)
u,yy − 2u,x u,yu,xy = 0 (x, y) ∈ D

u|∂D = �

The function �, which is defined on the boundary ∂D (and serves as a boundary condition

for the differential equation), carries information about the form of the wire rim on which

the bubble was formed.

Hint: if we induce a metric tensor on D from E3 ≡ (R3, h) by means of the map

f : D → E3 (x, y) 
→ (x, y, z = u(x, y))

we get

f ∗h = (1 + u2
,x ) dx ⊗ dx + (

1 + u2
,y

)
dy ⊗ dy + u,x u,y(dx ⊗ dy + dy ⊗ dx)

ω f ∗h =
√

1 + u2
,x + u2

,y dx ∧ dy

377 According to the general definition ea = ea
μ dxμ the function β is often called the vielbein field (e1 = e1

τ (τ ) dτ ≡ β dτ ),
although a defence of the word viel (many) in this (one-dimensional) case might be hard work even for an experienced
lawyer.
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so that we are to write down the Euler–Lagrange equation

∂x
∂L

∂u,x
+ ∂y

∂L

∂u,y
= ∂L

∂u
L =

√
1 + u2

,x + u2
,y

An alternative way is to use the “quadratic” technique instead of the “square root” formalism,

i.e. to use the equation 	g ya + �a
bc(dya, dyb)g = 0 from (16.6.4): we set �a

bc = 0, g = ĝ ≡
f ∗h and write down the Laplace equation 	 f ∗hu(x, y) = 0 (we are to compute d ∗ du =
0; it is a bit laborious, since although we are in the ordinary xy-plane, we have there a

non-standard metric tensor f ∗h); we check (inserting u 
→ x, u 
→ y) that the equations

	 f ∗h x = 0 and 	 f ∗h y = 0 are satisfied as well. �

• Other children continuously diffuse in full age from being fascinated by soap bubbles

to being (even more) fascinated by string theory; this theory tries to reach the ambitious

goal of explaining all the physics in the universe from a minimal number of first principles.

Instead of considering a world-line ya(τ ) of a point particle it introduces a world-sheet
ya(τ, σ ) of a (one-dimensional) string. The action of the string378 is introduced by a natural

modification of the action of a point particle. Instead of the extremal length of a world-line

(in the sense of the space-time (N , h)) Nambu and Goto proposed a principle of least action

for the string, which requires extremal area of the world-sheet. The square root present in

the action causes, as we have already mentioned before, technical problems; making use of

the trick (16.6.7) based on an auxiliary metric g on M it was then rewritten in a “quadratic”

form by Polyakov; the two actions are then proportional to the integrals
∫

U

√
det

(
hab ya

,μyb
,ν

)
dτ ∧ dσ Nambu, Goto

1

2

∫

U
gμν ya

,μyb
,νhab

√
|g| dτ ∧ dσ Polyakov

((x1, x2) ≡ (τ, σ )). The reader anxious to learn more about strings is recommended to read,

just to start somewhere (best this very day!), several thousands of papers, waiting patiently

in the electronic preprint library at the site http://arxiv.org/.

Summary of Chapter 16

The (4-)tensor version of Maxwell’s equations in Minkowski space(-time) reveals that the

tensors involved are rather special – they may actually be regarded as differential forms. That

is why the most natural way of formulating four-dimensional electrodynamics is provided by

the language of differential forms. Forms in Minkowski space exhibit additional particular

structure (as a consequence of the splitting of the space-time into “time” and “space”):

one can express any form (in an observer-dependent way) in terms of a pair of spatial
forms. Such an expression of forms (as well as of operations on them) offers a convenient

378 Actually the actions discussed here correspond (only) to the “bosonic” string; for a “superstring” one considers on the world-
sheet additional odd (“anticommuting”) variables (in the sense of Z2-grading of supermathematics, see the end of Section 5.3)
and the action has a “local supersymmetry,” i.e. a local symmetry mixing even and odd variables.
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bridge between a four-dimensional and the (original) three-dimensional formulation of

electrodynamics. Forms are not only useful in electrodynamics, but rather in field theory

in general. The action integrals are simply expressed (since the objects under the integral

sign are always forms) and their extrema, providing the equations of motion, are simply

computed, too (the codifferential appears naturally). There is a deep link between the space-

time symmetries and the energy–momentum tensor of the field, which may be defined via

variation of the action functional with respect to the metric tensor. The energy–momentum

tensor of matter occurs (as a source) in the Einstein equations of the gravitational field, too.

Both the Hilbert and Cartan approaches to the derivation of the Einstein equations from

a variational principle are discussed. In the former approach, the metric tensor is the key

independent field variable (with respect to which small variations are to be performed); the

latter approach makes use of (co)frame (tetrad) fields and connection forms. In non-linear

sigma models mappings of two Riemannian manifolds are regarded as field variables. There

is a natural action integral for such mappings. Harmonic maps are extremals of this action.

They correspond to “minimal surfaces,” representing, for example, soap bubbles, but also

the world-sheets in string theory. There is a technical trick enabling one to get rid of a

“square root” action by means of a variation of the “quadratic” one with respect to one of

two metric tensors (then called “auxiliary”).

α = dt ∧ ŝ + r̂ Decomposition of forms in Minkowski space (16.1.1)

dα = dt ∧ (∂t r̂ − d̂ ŝ) + d̂r̂ Action of d on a decomposed form (16.1.4)

∗α = dt ∧ (∗̂r̂ ) + ∗̂η̂ŝ Action of the Hodge star ∗ on a decomposed form (16.1.5)

δα = dt ∧ (δ̂ŝ) + (−∂t ŝ − δ̂r̂ ) Action of the codifferential δ on a decomposed form (16.1.6)

F := dt ∧ E · dr − B · dS 2-form of the electromagnetic field (16.2.1)

j = ρdt − j · dr ≡ jμ dxμ 1-form of current (16.2.2)

δF = − j, d F = 0 Maxwell’s equations (16.2.1, 2)

F = d A A is a potential for F (16.3.1)

− 1
2
〈d A, d A〉 − 〈A, j〉 Action integral S[A] for an electromagnetic field (16.3.2)

1
2
〈dφ, dφ〉 − (m2/2)〈φ, φ〉 Action integral S[φ] for a free scalar field (16.3.7)

T μν
;ν = 0 Energy–momentum tensor is divergence-free (16.4.1)

Rab − 1
2

Rgab = 8πTab Einstein equations Sec. 16.5
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Differential geometry on T M and T ∗M

• In this chapter we begin the part of the book in which the concept of the fiber bundle enters

the story. Bundles play a significant role in modern geometry and their language as well as

techniques are widely used in modern theoretical and mathematical physics. That is why the

strategy of ignoring them, although in principle possible, would be fairly short-sighted. In

the forthcoming two chapters we will look in some detail at two particular bundles closely

associated with Lagrangian and Hamiltonian mechanics, the tangent and cotangent bundle.

These (as well as numerous further) bundles may be canonically constructed for an arbitrary

manifold M and one can find a fairly rich geometry on them, resulting “free of charge”

directly from the way they are defined. Moreover, this additional geometrical structure

turns out to be just what is needed for the formulation of the two versions (Lagrangian

and Hamiltonian) of classical mechanics. Later on (in Chapter 19) another bundle will

be introduced, which may be canonically assigned to an arbitrary manifold M , the frame
bundle. It provides a novel view of a linear connection on M . Generalizing the three bundles

we will then introduce the concepts of the principal G-bundle and the associated bundle,

which turn out to be the essential ingredients needed for the development of the theory of

connections and gauge fields.

From a didactic point of view it is convenient to begin to study some particular bundle and

to notice its relevant features, which then enter the official abstract definition of the concept

of a bundle. The two particular bundles which suit our purpose well are the tangent and

cotangent bundles. Their points have a simple visual meaning and they are closely related

to analytical mechanics.

17.1 Tangent bundle T M and cotangent bundle T ∗M

• Let M be a smooth manifold and let Tx M be the tangent space at a point x ∈ M . Define

(for the moment only) the set T M as the collection (union) of all tangent spaces at all points

of M

T M :=
⋃

x∈M

Tx M

478
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i.e. all vectors at all points x ∈ M are regarded as

points of a new set T M . If we assign to a vector

v ∈ Tx M its point of tangency x , we get a surjective

map called the canonical projection

π : T M → M Tx M � v �→ x

It turns out that the set T M has the natural structure

of a smooth manifold. A convenient atlas on T M
may be introduced making use of the atlas on the

manifold M . Let xa be local coordinates in a neighborhood O of a point x , i.e. let

ψ : O → R
n[x1, . . . , xn]

be a chart. Consider the domain

Ô := π−1(O) ⊂ T M

Then one can introduce on Ô canonical coordinates as follows: if v ∈ Ô ⇒ v ∈ Tx M for

some x ∈ O then

v = va ∂

∂xa

∣
∣
∣
∣
x

(v1, . . . , vn) ∈ R
n

Then it is clear that the 2n-tuple of numbers (x1, . . . , xn, v1, . . . , vn) uniquely corresponds

to a point v ∈ Ô ((x1, . . . , xn) shows where the vector v resides and (v1, . . . , vn) provides

its decomposition with respect to a coordinate basis in Tx M). Put another way,

ψ̂ : Ô → R
2n[x1, . . . , xn, v1, . . . , vn]

is a chart on Ô ⊂ T M , which is induced by the chart ψ on O ⊂ T M . If {Oα, ψα} is an

atlas on M , {Ôα, ψ̂α} is an atlas on T M .

17.1.1 Check that a change of coordinates on M

xa �→ x ′a(x)

induces the change of (canonical) coordinates

(xa, va) �→ (x ′a(x), J a
b (x)vb) J a

b ≡ ∂x ′a

∂xb

on T M , i.e.

x ′a(x, v) = x ′a(x)

v′a(x, v) = J a
b (x)vb

Hint: v = va∂a = v′a∂ ′
a . �
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17.1.2 Check that {Ôα, ψ̂α} is a smooth atlas on T M .

Hint: if (xa, va) operates on Ôα and (x ′a, v′a) in turn operates on Ôβ , then on the overlap

(17.1.1) holds. Justify the smoothness of these relations. �

17.1.3 Prove that T M is always an orientable manifold (regardless of the orientability

of M).

Hint: show that the Jacobian of a coordinate change from (17.1.1) turns out to be always

positive

Ĵ = ∂(x ′, v′)
∂(x, v)

= · · · = J 2 > 0

so that (Ôα, ψ̂α) is an oriented atlas regardless of whether (Oα, ψα) was oriented. �

• In a very similar way another important mani-

fold, denoted by T ∗M , is introduced. As a set it is

the collection (union) of all cotangent spaces at all

points of M

T ∗M :=
⋃

x∈M

T ∗
x M

i.e. all covectors at all points x ∈ M are regarded

as points of the set T ∗M . In this case we will

denote the corresponding canonical projection by

the letter τ

τ : T ∗M → M T ∗
x M � p �→ x

An atlas on M naturally induces an atlas on T ∗M . If p ∈ T ∗
x M and if its decomposition

with respect to the coordinate basis reads

p = pa dxa|x (p1, . . . , pn) ∈ R
n

then the 2n-tuple (x1, . . . , xn, p1, . . . , pn) uniquely corresponds to a point p ∈ Ô ≡
τ−1(O), so that

ψ̂ : Ô → R
2n[x1, . . . , xn, p1, . . . , pn]

is a chart on Ô ⊂ T ∗M induced by the chart ψ onO ⊂ M (canonical coordinates on T ∗M).

17.1.4 Check that a change of coordinates on M

xa �→ x ′a(x)

induces the change of (canonical) coordinates on T ∗M ,

(xa, pa) �→ (
x ′a(x), (J−1)b

a(x)pb
)

i.e. x ′a(x, p) = x ′a(x)

p′
a(x, p) = (J−1)b

a(x)pb

Hint: p = pa dxa = p′
a dx ′a . �
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17.1.5 Check that {Ôα, ψ̂α} represents a smooth atlas on T ∗M .

Hint: see (17.1.2) and (17.1.4). �

17.1.6 Prove that T ∗M is always an orientable manifold (regardless of the orientability

of M).

Hint: see (17.1.3). �

17.1.7 Check that for the projections π and τ the following formulas hold:

(i)

π : (xa, va) �→ xa τ : (xa, pa) �→ xa

(ii)

π∗(∂/∂xa) = ∂/∂xa π∗(∂/∂va) = 0

(iii)

τ∗(∂/∂xa) = ∂/∂xa τ∗(∂/∂pa) = 0

Note: realize that actually there are three sorts of vectors ∂/∂xa in these formulas: those on

T M , T ∗M and M . �

17.1.8 Show that the map χ defined below is a diffeomorphism

χ : π−1(O) → O × R
n[v1, . . . , vn] v �→ (π (v), (v1, . . . , vn))

and that it moreover satisfies

π1 ◦ χ = π

�

17.1.9 Let M be a part of the plane R
2, in which both Cartesian coordinates (x, y) and

polar coordinates (r, ϕ) operate. Then on T M two sets of canonical coordinates emerge,

(x, y, px , py) and (r, ϕ, pr , pϕ). Check that they are then related by379

x = r cos ϕ px = pr cos ϕ − pϕ

sin ϕ

r
r =

√
x2 + y2 r pr = xpx + ypy

y = r sin ϕ py = pr sin ϕ + pϕ

cos ϕ

r
ϕ = arctan y

x pϕ = xpy − ypx

Hint: according to (17.1.4) px dx + py dy = pr dr + pϕ dϕ. �

• The manifolds T M and T ∗M which we introduced in this section represent part (total

spaces) of structures called the tangent bundle and the cotangent bundle. A motivation for

this terminology should be clear in the following section (see (17.2.5)), where we explain

what is a bundle in general.

379 From the future development of these ideas we will see that these formulas may be regarded as transformational relations
between canonical momenta in phase space corresponding to the transformations of coordinates in configuration space (they
are called point transformations in textbooks on analytical mechanics).
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17.2 Concept of a fiber bundle

• The manifolds T M and T ∗M provide paradigmatic examples of a useful object in

modern differential geometry, a so-called fiber bundle. Note that in both cases (T M as well

as T ∗M) we have at each point x of the manifold M quasi-hidden another manifold, namely

the vector space Tx M or T ∗
x M , so that both “hidden” manifolds are diffeomorphic to R

n . A

natural generalization then would be to study a sit-

uation in which we “paste” at each point x ∈ M a

manifold Fx , all of the manifolds being diffeomor-

phic to a common manifold F (i.e. if x, x ′ ∈ M , then

Fx ∼ Fx ′ ∼ F). The manifold F is called a typical
fiber, Fx is the fiber over a point x , M is the base
and

B :=
⋃

x∈M

Fx

is the total space. All of these elements, when taken

together, constitute a structure called a fiber bundle (also a fibered manifold or a bundle). The

concept of a fiber bundle actually is comprised of two manifolds B and M and a surjective
map

π : B → M

(called the canonical projection). All the preimages Fx ≡ π−1(x) are required to be diffeo-

morphic to a common manifold F and in addition each Fx is to be a submanifold in B (so

it is to be “nicely placed” in B). The last item of the definition is the requirement of local
product structure: there exists a coveringOα of the base M and a system of diffeomorphisms

ψα : π−1(Oα) → Oα × F

(the map ψα is called a local trivialization) such that

π1 ◦ ψα = π

(see problem (17.1.8)). An alternative notation for a fiber bundle π : B → M , fairly often

used in the literature, is (B, M, π, F).

The simplest fiber bundle is a product bundle, where the total space is simply the Cartesian

product of the base and the fiber and the projection is realized as the projection onto the

first factor of the product.

17.2.1 Check that

π1 : M × F → M

is indeed a fiber bundle. �

• Fiber bundles are often mapped to one another. Clearly those maps of total spaces

which preserve the structure of fibers (if b1, b2 are in the same fiber, the same is true for

their images) are distinguished. They are formalized in the concept of a bundle map (or a
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fibered map): let

π : B → M π ′ : B′ → M ′

be two bundles. Then a bundle map is actually a pair of maps f, f̂ , for which the following

diagram commutes:

B
f−−−−→ B′

π

⏐
⏐
⏐
�

⏐
⏐
⏐
�

π ′
i.e. for which π ′ ◦ f = f̂ ◦ π

M −−−−→
f̂

M ′

For equivalent bundles f should be a diffeomorphism and f̂ the identity map. Finally, a

trivial bundle is equivalent to a product bundle: a diffeomorphism

f : B → M × F

exists which obeys

π1 ◦ f = π

Such a map f is called a global trivialization.

In terms of these concepts one can say something about the structure of a general bundle.

We see from the definition that on sufficiently small pieces (on Oα) any bundle is trivial:
the restriction to

π : π−1(Oα) → Oα

is (for each α) trivial (ψα is a “global trivialization” of this piece), but the pieces are glued

together in such a way that the bundle itself

π : B → M

need not be trivial. One usually says that fiber bundles are in general only locally trivial. This

means that the knowledge of a base M and a typical fiber F is not enough to reproduce the

global structure of a bundle; in general, there may exist several essentially (i.e. topologically)

different ways of gluing the pieces Oα × F into a single whole B.

17.2.2 The surface of a cylinder may be regarded as B ≡ S1 × I, I = 〈a, b〉, i.e. as the

total space of the product bundle π : S1 × I → S1. Check that even though the Möbius

band M2 (6.3.2) shares the base (a circle) and the typical fiber (a line) with the surface of

the cylinder, the whole B′ ≡ M2 is glued differently and a global trivialization evidently

cannot exist. �

• The concept of a fiber bundle thus may be regarded as a generalization of the concept of

a Cartesian product. It turns out that the generalization is highly non-trivial, with numerous

important applications in various branches of mathematics and mathematical physics. In

this book, however, we will restrict ourselves to differential geometry on (some particular)

fibered manifolds and we will not discuss topological aspects of these manifolds.
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The next important concept is that of a local section
of a bundle π : B → M . It is a smooth map

σ : O → B O ⊂ M

such that

π ◦ σ = idO

If O = the whole M , the section is said to be global.

17.2.3 Check that a section maps a point from M to “its own” fiber (so that x is mapped

to the fiber π−1(x)). �

17.2.4 Be sure to understand that sections of a product bundle π : M × F → M are in

one-to-one correspondence with maps from M to F .

Hint: see (1.4.12). �

• What is the point in distinguishing between local and global sections (in making life

difficult for considering local sections)? Well, it turns out that whereas local sections always

exist (for sufficiently small domains on the base), a global section may sometimes not exist

at all (for example, in the case of principal bundles, playing a key role in connection theory,

the existence of a global section turns out to be equivalent to triviality of the bundle, see

(20.1.3)).

Bundles we encounter in real-life situations are mostly endowed with an additional

structure in fibers, like that of a linear or homogeneous space. A vector bundle is a fibered

manifold which has the structure of a linear space in each fiber, i.e. for each x ∈ M a linear

combination

b1(x) + λb2(x) b1(x), b2 ∈ π−1(x), λ ∈ R

is defined.

17.2.5 Check that both of the objects we introduced in Section 17.1,

π : T M → M tangent bundle

τ : T ∗M → M cotangent bundle

are vector bundles with base M and standard fiber F = R
n .

Hint: see (1.4.12). �

17.2.6 Be sure to understand that local sections

σ : O → T M and σ̃ : O → T ∗M

are in one-to-one correspondence with vector and covector fields on O ⊂ M respectively.

�
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17.2.7 Given local coordinates xi on O ⊂ M , consider a vector field V and a covector

field α on O

V = V i (x)∂i and α = αi (x) dxi

Check that the coordinate presentation of the corresponding sections (in the sense of

(17.2.6)) reads

σ : xi �→ (xi (x), vi (x)) = (xi , V i (x)) σ̃ : xi �→ (xi (x), pi (x)) = (xi , αi (x))

�

17.2.8 Consider a vector bundle π : B → M . Check that local sections over a domain U
constitute anF(U)-module, i.e. one can perform linear combinations with coefficients being

smooth functions on U (if σ1, σ2 are sections and f is a smooth function, then σ1 + f σ2 is

a section as well). Which fact (known since long ago) gives this for T M and T ∗M?

Hint: see (2.2.12). �

17.3 The maps T f and T ∗ f

• Let

f : M → N

be a (smooth) map of manifolds and let

πM : T M → M πN : T N → N

be the corresponding tangent bundles of M and N respectively. We learned in Section 3.1

that the map f induces a map of vectors

f∗ : Tx M → T f (x) N

Vectors on M may be, however, regarded as points on T M . Consequently a further map380

T f : T M → T N

is induced, given by the prescription

(T f )(v) := f∗v

Here, v on the left is to be interpreted as a point on T M whereas on the right as the

corresponding vector in the point x ∈ M . The map T f may therefore be regarded as the

collection of all f∗ maps (for all x ∈ M).

380 It is a kind of lift of the map f from the base M to the total space T M in the sense of Section 17.5.
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17.3.1 Check that T f “closes” the commutative diagram

T M
T f−−−→ T N

πM

⏐
⏐
⏐
�

⏐
⏐
⏐
�

πN i.e. that f ◦ πM = πN ◦ T f

M −−−→
f

N

�

17.3.2 Check that for the composition of maps one has the simple formula

T ( f ◦ g) = T f ◦ T g

Hint: see (3.1.2). �

17.3.3 Check that the map T f is a morphism of vector bundles, i.e. it preserves fibers and

is linear on them. �

• These properties of T f say that T itself may be regarded as a covariant functor (see

Appendix A.6) from the category of smooth manifolds (the objects being smooth manifolds,

morphisms smooth maps between them) to the category of vector bundles (where objects

are vector bundles and morphisms are those bundle maps which are linear on fibers). The

tangent functor T thus assigns to a manifold M the vector bundle T M (“its” tangent bundle)

and to a map f : M → N the map T f : T M → T N (the lift of f to the tangent bundle).

In full analogy a similar map is also defined for T ∗M : if

τM : T ∗M → M τN : T ∗N → N

are cotangent bundles and f : M → N is an injective map, we define a map

T ∗ f : T ∗N → T ∗M

by

(T ∗ f )(α) = f ∗α

f ∗ being the pull-back381 of the covector α.

17.3.4 Check the validity of the commutative diagram

T ∗M
T ∗ f←−−−− T ∗N

τM

⏐
⏐
⏐
�

⏐
⏐
⏐
�

τN i.e. f ◦ τM ◦ T ∗ f = τN

M −−−−→
f

N

�
381 On the left α is a point from T ∗ N , on the right it is the corresponding covector in f (x) ∈ N . If f fails to be surjective, T ∗ f

is only a map from T ∗( f (M)) ⊂ T ∗ N ; if f failed to be injective, T ∗ f would not be a map at all (a single point would be
“mapped” to several images).
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17.3.5 Check that for a composition of maps one has a simple formula

T ∗( f ◦ g) = T ∗g ◦ T ∗ f

Hint: see (3.1.4). �

17.3.6 Check that T ∗ f is a morphism of vector bundles.

Hint: see (17.3.3). �

17.3.7 Let (xi , vi ) and (ya, wa) be canonical coordinates on T M and T N , (xi , pi ) and

(ya, qa) canonical coordinates on T ∗M and T ∗N and consider a map f with a coordinate

presentation

f : M → N xi �→ ya(x1, . . . , xm) i = 1, . . . , m a = 1, . . . , n

Check that then the coordinate presentations of T f and T ∗ f respectively read

T f : T M → T N (xi , vi ) �→ (ya(x, v), wa(x, v)) = (
ya(x), J a

i (x)vi
)

T ∗ f : T ∗N → T ∗M (ya(x), qa) �→ (xi (y, q), pi (y, q)) = (
xi , J a

i (x)qa
)

and if f happens to be a diffeomorphism (⇒ there exists f −1 and then also T ∗ f −1)

T ∗ f −1 : T ∗M → T ∗N (xi , pi ) �→ (ya(x, p), qa(x, p)) = (
ya(x), (J−1)i

a pi
)

Note: we actually used these formulas in the particular case of M = N = Oα ∩ Oβ and

f = a change of coordinates. �

17.4 Vertical subspace, vertical vectors

• Let π : B → M be a fiber bundle. The very existence of the projection π singles out in

the tangent space of any point b ∈ B a vertical subspace

Ver bB ≤ TbB Ver b := Ker π∗b

A vector w ∈ TbB is thus said to be vertical if it projects (via π∗) to zero. Visually this

means that w is tangent to a fiber, i.e. an arbitrary curve γ which represents the vector w

([γ ] ≡ W ) goes from b along the fiber in which b resides.

Since the canonical coordinates (xi , vi ) and (xi , pi ) on T M and T ∗M respectively are

adapted to the structure of the fibration, one should not be too surprised that vertical vectors

may be easily identified in these coordinates.

17.4.1 Check that the most general vertical vector fields on T M and T ∗M respectively

read

V = V i (x, v)
∂

∂vi
and W = Wi (x, p)

∂

∂pi

Hint: see (17.1.7). �
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• Problems (17.1.7) and (17.4.1) show that vertical subspaces on T M and T ∗M respec-

tively span the vectors ( ∂
∂v1 , . . . ,

∂
∂vn ) or ( ∂

∂p1
, . . . , ∂

∂pn
). It might seem from these com-

putations that in a similar way we can define a “horizontal” subspace to be the span of

( ∂
∂x1 , . . . ,

∂
∂xn ). A computation shows, however, that this is only an illusion.

17.4.2 Check that the “horizontal” subspace discussed above is (contrary to the vertical

one) non-canonical, i.e. it depends on the choice of coordinates xi .

Hint: Check that if xi �→ x ′i (x), then the vectors ∂

∂x ′ i also contain terms ∂
∂vi , whereas ∂

∂v′ i

do not contain ∂
∂xi . �

• This makes the (canonical) decomposition of a vector w ∈ TvT M into vertical and

horizontal parts impossible (i.e. one cannot even separate in a coordinate-independent way

the vertical part of the vector; only the statement that the complete vector is vertical makes

sense).382

17.4.3 Imitating T M ≡ T 1
0 M and T ∗M ≡ T 0

1 M related to vectors and covectors on M ,

describe the bundle T 1
1 M which is related to tensors of type

(
1
1

)
on M . Construct a smooth

atlas (induced by an atlas on M), find a typical fiber F as well as the dimension of the total

space, write down explicitly (in canonical coordinates) the projection and a general vertical
vector field. �

17.5 Lifts on TM and T ∗M

• Within the context of fibre bundles a lift is in general a procedure which assigns to a

geometrical object on the base M a geometrical object (possibly of another type) on the

total space B of the bundle π : B → M . In this section we will introduce some lifts from

M to T M as well as to T ∗M which will prove to be useful later.

We begin with a lift of curves from M to T M . Let

γ : R → M t �→ γ (t)

be a curve on M . Then the curve

γ̂ : R → T M t �→ γ̇ (t)

is called the natural lift of the curve γ from M to T M .

17.5.1 Check that

(i) the lifted curve γ̂ is always exactly “over” the curve γ

π ◦ γ̂ = γ

382 The above-mentioned decomposition is possible provided a linear connection is given on M (the ambitious reader is invited
to find a way in which this may then be achieved); here we study T M for a “bare” manifold M .
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(ii) if xa(t) is the coordinate presentation of the curve γ , then the coordinate presentation of the lifted

curve is (xa(t), ẋ a(t))

γ (t) ↔ xa(t)

γ̂ (t) ↔ (xa(t), va(t)) = (xa(t), ẋ a(t))

• The Lagrangian function in analytical mechanics is introduced as a function

L(qi (t), q̇ i (t)), i.e. a function of generalized coordinates qi and generalized velocities q̇ i (t).
From the perspective of T M , the most natural geometrical interpretation is as follows: there

is a Lagrangian L as a function on T M

L : T M → R

and this function is, in turn, evaluated on the natural lift γ̂ of the trajectory γ in the

configuration space M :

L(t) := L(γ̂ (t))

Now consider a vector u on M , u ∈ Tx M ≡ π−1(x). We may associate a curve in the

fiber π−1(x) over x with this vector

σ (t) := v + tu v ∈ π−1(x)

The tangent vector at zero of the curve is a vector at the point v ∈ T M

u↑ := σ̇ (0) ≡ d

dt

∣
∣
∣
∣
0

(v + tu)

This vector is called a vertical lift of the vector u to the point v ∈ T M .

17.5.2 Check that

(i) the coordinate presentation of the curve σ (t) reads

xa(t) = xa va(t) = va + tua

(ii) the resulting vector u↑ is vertical

u↑ ≡ σ̇ (0) ∈ VervT M ≤ TvT M

(iii) the coordinate expression of the resulting vector is

u = ua ∂

∂xa
, v = va ∂

∂xa
⇒ u↑ = ua ∂

∂va

Hint: (iii) (u↑φ)(xa, va) := d
dt

∣
∣
0
φ(xa(t), va(t)) = · · · . �

• Note that a single vector u may be lifted in this way to each point in the fiber π−1 over x ,

giving rise to a (vertical) vector field defined on the fiber. If there is a vector field u = ua(x)∂a

available on M , the vertical lift (to each point of π−1(x), for all x ∈ M) generates a vector

field on T M , which is called the vertical lift of the field u.
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17.5.3 Check that

(i) in coordinates the operation of the vertical lift consists in

u = ua(x)
∂

∂xa
⇒ u↑ = ua(x)

∂

∂va

(ii) the operation of the vertical lift of fields

( )↑ : X(M) → X(T M)

is an F(M)-linear map ⇒ it is enough to know it on basis vector fields

(iii) on a coordinate basis field the map reads

∂

∂xa
�→

(
∂

∂xa

)↑
= ∂

∂va

(iv) a general vector field on T M

W ≡ Aa(x, v)
∂

∂xa
+ Ba(x, v)

∂

∂va

may be regarded as the result of a vertical lift W = V ↑ if and only if

Aa(x, v) = 0 Ba(x, v) = Ba(x)

• Consider next a
(

1
p

)
-type tensor A at x ∈ M . We may assign to A a vertical lift A↑,

which is a
(

1
p

)
-type tensor in v ∈ Tx M :

A↑(U, . . . , V ) := (A(π∗U, . . . , π∗V ))↑ U, . . . , V ∈ TvT M

(A↑ is indeed a tensor since it is in each argument the composition of three linear mappings,

π∗, A, ( )↑.) If there is a
(

1
p

)
-type tensor field available on M , the vertical lift (to each point

of π−1(x), for all x ∈ M) generates a
(

1
p

)
-type tensor field A↑ on T M , giving rise to a

map383

( )↑ : T 1
p (M) → T 1

p (T M)

17.5.4 Check that

(i) this map is F(M)-linear in the sense of (A + f B)↑ = A↑ + (π∗ f )B↑ (⇒ it is enough to know

it on basis tensor fields)

(ii) in coordinates the map reads

A ≡ Aa
b···c(x)dxb ⊗ · · · ⊗ dxc ⊗ ∂

∂xa
�→ A↑ = Aa

b···c(x) dxb ⊗ · · · ⊗ dxc ⊗ ∂

∂va

(iii) the tensor A↑ is horizontal, i.e. it is annihilated by (even a single) vertical argument.

Hint: (i) evaluate both sides on (the same) arguments. �

383 We will actually use this lift only for the case where p = 1 (see (17.6.4)).
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• The definitions of the lifts of fields treated up to now were pointwise, i.e. we first defined

a lift of an individual object sitting at the point and then “adding” of these lifts produced

the lift of the corresponding field. The following (important) example shows that it need

not always be so.

Consider a vector field V on M . This field induces an (at least local) flow

�t : M → M

It turns out that the flow (⇒ also its generator V ) may be lifted to a flow on T M , making

use of the tangent functor T (see the text after (17.3.3)):

T M
T �t−−−−→ T M

πM

⏐
⏐
�

⏐
⏐
�πM

M −−−−→
�t

M

17.5.5 Check that T �t is indeed an (at least local) flow on T M and that it is “exactly

over” the flow �t , i.e. that it obeys

π ◦ T �t = �t ◦ π

Hint: apply T to �t+s = �t ◦ �s , (17.3.2). �

• Since T �t is a flow, it is necessarily generated by some vector field Ṽ on T M ; the field

Ṽ is called a complete lift of the field V .

17.5.6 Consider a flow on M

�t : M → M

which is generated by a vector field V ≡ V a(x)∂a . Check that the coordinate presentation

of the infinitesimal flows �ε and T �ε reads

�ε : xa �→ xa(ε) = xa + εV a(x)

T �ε : (xa, va) �→ (xa(ε), va(ε)) = (xa + εV a(x), va + εV a,b(x)vb)

Hint: see (17.3.7). �

17.5.7 Check that the coordinate expression of the lifted field Ṽ is

V = V a(x)
∂

∂xa
⇒ Ṽ = V a(x)

∂

∂xa
+ V a

,b(x)vb ∂

∂va

Hint: (Ṽ �)(x, v) = d
dε

∣
∣
0
�(x(ε), v(ε)) = · · · ; (17.5.6). �

17.5.8 Check that the complete lift, when regarded as a map

(̃ ) : X(M) → X(T M) V �→ Ṽ

is R-linear, but fails to be F(M)-linear.384 �

384 This is a consequence of the fact that the construction is not pointwise (see the discussion in Section 2.5) – there is no complete
lift of an individual vector.
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• On T ∗M we will discuss two lifts, the vertical lift of a covector and the complete lift of

a vector field.

Consider a covector α residing in a point x on M . We may assign to this covector a curve

in the fiber τ−1(x) over x

σ (t) := p + tα p ∈ τ−1(x)

The tangent vector at zero of the curve is a vector in the point p ∈ T ∗M

α↑ := σ̇ (0) ≡ d

dt

∣
∣
∣
∣
0

(p + tα) ∈ TpT ∗M

This vector is called the vertical lift of the covector of the covector α to the point p ∈ T ∗M
(the lift of a covector is thus a vector).

17.5.9 Check that

(i) the coordinate presentation of the curve σ (t) is

xa(t) = xa

pa(t) = pa + tαa

(ii) the resulting vector α↑ is vertical

α↑ ≡ σ̇ (0) ∈ VerpT ∗ M ≤ TpT ∗ M

(iii) in coordinates the lift reads

α = αa dxa ⇒ α↑ = αa
∂

∂pa

Hint: (iii) (α↑�)(x, p) := d
dt

∣
∣
0
�(xa(t), pa(t)) = · · · . �

• If there is a covector field α = αa(x) dxa available on M , the vertical lift (to each point

of τ−1(x), for all x ∈ M) generates a vector field on T ∗M , which is called the vertical lift
of the field α.

17.5.10 Check that

(i) the coordinate formula for lifting a field α is

α = αa(x) dxa ⇒ α↑ = αa(x)
∂

∂pa

(ii) the operation of vertical lift on fields

( )↑ : T 0
1 (M) → T 1

0 (T ∗ M) α �→ α↑

is an F(M)-linear map ⇒ it is enough to know it on basis fields

(iii) on a coordinate basis we have

dxa �→ (dxa)↑ = ∂

∂pa



17.5 Lifts on TM and T ∗M 493

(iv) a general vector field W on T ∗ M

W ≡ Aa(x, p)
∂

∂xa
+ Ba(x, p)

∂

∂pa

may be regarded as the result of the vertical lift W = α↑ if and only if

Aa(x, p) = 0 Ba(x, p) = Ba(x)

• The procedure of complete lift of a vector field on M to T M may also be repeated with

minor modification on T ∗M . The difference stems from the fact that T ∗ is a contravariant
functor (it reverses arrows). Consequently, we have to use the inverse map when lifting the

flow: the lift of �t on M is actually T ∗(�−1
t ) ≡ T ∗�−t , i.e. the following commutative

diagram is used:

T ∗M
T ∗�−t−−→ T ∗M

τ

⏐
⏐
�

⏐
⏐
�τ

M −−→
�t

M

17.5.11 Check that T ∗�−t is indeed an (at least local) flow on T ∗M and that it is “exactly

over” the flow �t (i.e. it obeys τ ◦ T ∗�−t = �t ◦ τ ).

Hint: apply T ∗ to �−(t+s) = �−t ◦ �−s , (17.3.5) and (17.5.5). �

• Since T ∗�−t is a flow, it is necessarily generated by some vector field Ṽ on T ∗M ; the

field Ṽ is called the complete lift of the field V .

17.5.12 Consider a flow on M

�t : M → M

which is generated by a vector field V ≡ V a(x)∂a . Check that the coordinate presentation

of the infinitesimal flow T ∗�−ε reads

T ∗�−ε : (xa, pa) �→ (xa(ε), pa(ε)) = (xa + εV a(x), pa − εV b,a(x)pb)

Hint: see (17.3.7) and (17.5.6). �

17.5.13 Check that the coordinate expression of the lifted field Ṽ is

V = V a(x)
∂

∂xa
⇒ Ṽ = V a(x)

∂

∂xa
− V b,a(x)pb

∂

∂pa

Hint: see (17.5.7) and (17.5.12). �

17.5.14 Check that the complete lift to T ∗M , when regarded as a map

(̃ ) : X(M) → X(T ∗M) V �→ Ṽ

is R-linear, but fails to be F(M)-linear.

Hint: see (17.5.8). �
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17.6 Canonical tensor fields on T M and T ∗M

• Specific features of total spaces of T M and T ∗M (fibration, linearity in fibers and a

close relation of the points of the total spaces with the geometry of the base) result in the

existence of important canonical tensor fields on these manifolds, i.e. fields which may

be introduced “objectively” ≡ with no arbitrary choices. In particular, on T M we will

encounter a vector field � (the Liouville field or dilation field) and a
(

1
1

)
-type tensor field

S (vertical endomorphism) and on T ∗M it will be (once again) the Liouville field �, the

canonical 1-form θ and the canonical exact symplectic form ω = dθ .

17.6.1 Check that

(i) by means of the formulas

�t : v �→ etv and p �→ et p

(canonical) flows on T M and T ∗ M respectively are introduced

(ii) their coordinate presentations read

(xa(t), va(t)) = (xa, etva) and (xa(t), pa(t)) = (xa, et pa)

(iii) their generators � ∈ X(T M) and � ∈ X(T ∗ M) are given by coordinate formulas

� = va ∂

∂va
and � = pa

∂

∂pa

(iv) the fields � are (in both cases) vertical

(v) check the fact that � is a canonical field in (canonical) coordinates: if xa �→ x ′a(⇒ va �→
v′a = · · ·), then

va ∂

∂va
= v′a ∂

∂v′a p′
a

∂

∂ p′
a

= pa
∂

∂pa

�

17.6.2 Consider a tensor field A on T M (or on T ∗M) which is homogeneous of degree k in

fiber coordinates. This means that if we express the field in terms of canonical coordinates

and then substitute (xa, va) �→ (xa, λva) or (xa, pa) �→ (xa, λpa), we get

A �→ λk A

As an example, the fields

Ṽ = V a(x)
∂

∂xa
+ V a

,b(x)vb ∂

∂va
α↑ = αa(x)

∂

∂pa
ĝ = gab(x)vavb

are homogeneous of degree 0, −1 and 2 respectively. Check that A then satisfies385

L� A = k A

385 This means that the operators L� for � = va∂va or � = pa∂pa may serve as measuring instruments of degree of homogeneity
in fiber coordinates.
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In particular, for A = V = a vector field and A = f = a function we get

[�, V ] = kV and � f = k f

Hint: first note that ψ∗ A = λk A for ψ : (xa, va) �→ (xa, λva) or (xa, pa) �→ (xa, λpa); then

set λ = et and differentiate the equation

�∗
t A = ekt A �t ↔ �

with respect to t in t = 0. �

17.6.3 Let Ṽ be the complete lift of a field V from M to T M or T ∗M respectively, V ↑ its

vertical lift to T M and α↑ denote the vertical lift of a 1-form α to T ∗M . Check the relations

[�, Ṽ ] = 0 [�, V ↑] = − V ↑ [�, α↑] = −α↑

Hint: see (17.5.3), (17.5.7), (17.5.10), (17.5.13) and (17.6.2). �

• The next canonical field on T M which we will introduce is a
(

1
1

)
-type tensor field which

is called a386 vertical endomorphism S ∈ T 1
1 (T M). It is defined as

S := 1↑

where 1 is the identity tensor (of type
(

1
1

)
) on M and ( )↑ denotes the operation of vertical

lift from (17.5.4).

17.6.4 Check that

(i) in canonical coordinates the tensor field S reads

S = dxa ⊗ ∂

∂va

(ii) if S is regarded as a prescription vector �→ vector or covector �→ covector, then

S

(
∂

∂xa

)

= ∂

∂va
S ( dxa) = 0

S

(
∂

∂va

)

= 0 S(dva) = dxa

(iii) both the kernel and the image of Sv coincide with the vertical subspace

Ker Sv = Im Sv = Verv T M

(iv) this results in nilpotence of Sv

Sv ◦ Sv = 0

(v) if Ṽ and V ↑ are the complete and vertical lift of a field V ∈ X(M) respectively, then

S(Ṽ ) = V ↑

386 “Endomorphism” expresses the fact that Sv is a linear map Sv : Tv T M → Tv T M , “vertical” in turn means that its image is
(only) the vertical subspace (see item (iii) in problem (17.6.4)).
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(vi)

L�S = −S

Hint: (v) canonical coordinates, (vi) (17.6.2). �

• The most important canonical object on T ∗M is the canonical 1-form θ (and its exterior

derivative, the canonical (exact) symplectic form ω = dθ ). Its pointwise definition reads:

let p ∈ T ∗M, W ∈ TpT ∗M . Then,

〈θ, W 〉 := 〈p, τ∗W 〉
We thus first project the vector W to x ≡ τ (p) ∈ M and then insert it into the 1-form

p ∈ T ∗
x M ≡ τ−1(x), which corresponds to the point p ∈ T ∗M .

17.6.5 Check that

(i) θp is indeed a 1-form in the point p ∈ T ∗ M , i.e. a linear map TpT ∗ M → R

(ii) in canonical coordinates on T ∗ M it is

θ = pa dxa

�

Hint: (ii) let W = Aa∂/∂xa + Ba∂/∂pa and θ = Ca dxa + Dadpa . Then,

τ∗W = Aa ∂

∂xa
⇒ 〈p, τ∗W 〉 =

〈

pa dxa, Ab ∂

∂xb

〉

= · · · != 〈θ, W 〉

17.6.6 It turns out that the canonical 1-form θ on T ∗M may be regarded as the “Platonic

eternal Idea” of a differential form on M in the following sense: let α be a 1-form onO ⊂ M
and let σ : O → T ∗M be the corresponding section of the cotangent bundle τ : T ∗M → M
(17.2.6). Check that

σ ∗θ = α

so that any differential form on M may be viewed as the result of an appropriate pull-back

of “the 1-form θ” on T ∗M . The 1-form θ , living in the “real world of eternal Ideas” T ∗M ,

is then “the Platonic Idea of a differential form” whereas α, living in the “apparent world

of material objects” M is its “immersion in the material world.” �

17.6.7 Consider the 2-form ω = dθ . Check that

(i) in canonical coordinates (xa, pa) it has automatically the canonical (Darboux) form387

ω = dpa ∧ dxa

(ii) ω turns out to be an exact symplectic form on T ∗ M (so that T ∗ M is always a symplectic manifold).

Hint: (i) (17.6.5); (ii) non-degeneracy (14.1.2) and (14.3.6). �

387 Canonical coordinates (xa , pa ) were tailored to the structure of T ∗ M itself (not knowing anything about ω then). It turns out
that they are free of charge also tailored to the structure of the form ω, i.e. that they happen to be “canonical” in the sense of
Darboux’s theorem (14.2.1).
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17.6.8 Let f : M → M be a diffeomorphism of M ; then T ∗ f is a diffeomorphism of

T ∗M . Check that the canonical 1-form θ (hence also the symplectic form ω) is invariant
with respect to each T ∗ f (for arbitrary f )

(T ∗ f )∗θ = θ (⇒ also (T ∗ f )∗ω = ω)

Solution:

〈((T ∗ f )∗θ )p, w〉 = 〈θ f ∗ p, (T ∗ f )∗w〉
= 〈 f ∗ p, τ∗(T ∗ f )∗w〉
= 〈p, f∗τ∗(T ∗ f )∗w〉
= . . . (17.3.4) . . .

= 〈p, τ∗w〉
≡ 〈θp, w〉

�

17.7 Identities between the tensor fields introduced here

• The objects lifted (in various ways) from M to T M or T ∗M as well as the canonical

tensor fields on T M (T ∗M) are related by numerous useful identities. Let us mention

explicitly at least the following ones:

17.7.1 Prove the following identities on T M and T ∗M :

T M T ∗M
[V ↑, W ↑] = 0 [α↑, β↑] = 0

[Ṽ , W̃ ] = [̃V, W ] [Ṽ , W̃ ] = [̃V, W ]

[Ṽ , W ↑] = [V, W ]↑ [Ṽ , α↑] = (LV α)↑

[�, V ↑] = −V ↑ [�, α↑] = −α↑

[�, Ṽ ] = 0 [�, Ṽ ] = 0

LW ↑ S = 0 Lα↑θ = τ ∗α ⇒ Lα↑ω = τ ∗d α

LW̃ S = 0 LW̃ θ = 0 ⇒ LW̃ ω = 0

L�S = −S L�θ = θ ⇒ L�ω = ω

Hint: (for example) canonical coordinates; we have already mentioned some of them (those

in which � appears) in (17.6.3) and (17.6.4).

Summary of Chapter 17

In this chapter the concept of a fiber bundle is introduced. Rather than develop a general

theory at the very beginning, instead we begin with a fairly detailed treatment of two

paradigmatic examples of fiber bundles, in order to motivate the definition. Namely, we show
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that with each manifold M two other manifolds of double the dimension, T M and T ∗M ,

may be canonically associated. Both of them are endowed with a remarkable geometrical

structure even if M happens to be just a “bare” smooth manifold. For example, they turn

out to represent the total spaces of vector bundles over M and carry various canonical

tensor fields (in particular, T ∗M always carries a symplectic structure), several objects

may be lifted from M to the total spaces, etc. In analytical mechanics they serve as the

playing fields for Lagrangian and Hamiltonian formulation of the dynamics respectively;

this will be discussed in more detail in the following chapter, this one provides the necessary

preliminaries.

π : (xa, va) �→ xa, τ : (xa, pa) �→ xa Canonical projections on T M and T ∗ M (17.1.7)

T ( f ◦ g) = T f ◦ T g A property of the tangent map T f (17.3.2)

γ (t) �→ γ̇ (t) Natural lift of a curve from M to T M (17.5.1)

�t �→ T �t Lift of a flow from M to T M (17.5.5)

� = va∂/∂va (� = pa∂/∂pa) Liouville dilation field on T M (T ∗ M) (17.6.1)

S := 1↑ = dxa ⊗ ∂/∂va Vertical endomorphism on T M (17.6.4)

〈θp, W 〉 := 〈p, τ∗W 〉 Canonical 1-form θ = pa dxa on T ∗ M (17.6.5)

ω = dθ = dpa ∧ dxa Canonical symplectic form on T ∗ M (17.6.7)
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Hamiltonian and Lagrangian equations

• Now that we already know the ropes concerning T M and T ∗M and we are also aware

of the essential canonical geometrical objects living on these manifolds, we embark on an

examination of how they are related to analytical mechanics. We will learn that Lagrangian
mechanics may be naturally formulated on T M whereas the Hamiltonian formulation turns

out to be natural on T ∗M . In the case of a regular Lagrangian (or Hamiltonian) a standard

relation between the two formulations will be discussed. This is usually based on the

Legendre transformation in analytical mechanics, here it will be presented as the Legendre

map between the two manifolds under consideration.

18.1 Second-order differential equation fields

• Consider a system of ordinary second-order quasi-linear (≡ linear in the highest deriva-

tive) autonomous differential equations, which is already solved with respect to terms

containing second derivatives, i.e. a system

ẍ a = �a(x, ẋ) a = 1, . . . , n

By introducing a new variable

va(t) := ẋ a(t)

this may be standardly rewritten as a system of 2n first-order equations

ẋ a = va v̇a = �a(x, v)

We may regard them as the equations for integral curves of the vector field

� = va ∂

∂xa
+ �a(x, v)

∂

∂va

Note that if xa are treated as (local) coordinates on a manifold M , then it is natural to treat

the vector field � as living on T M . We begin to understand that also second-order equations

are closely related to vector fields, albeit the fields do not live on the same manifold M
where the equations do, but rather on the tangent bundle T M of the manifold M . Not all

fields on T M are, however, relevant in this context.

499
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18.1.1 Check that

(i) if

W ≡ Aa(x, v)
∂

∂xa
+ Ba(x, v)

∂

∂va

is a general vector field on T M , then the constraints on its components imposed by demanding

it to be a field of type � read

Aa(x, v) = va Ba(x, v) = �a(x, v)

i.e. it restricts the form of the components Aa(x, v) (alone)

(ii) these restrictions may be succinctly characterized by the (coordinate-free) equation

S(�) = �

(S = the vertical endomorphism, � = the Liouville field).

Hint: see (17.6.1) and (17.6.4). �

18.1.2 Consider a vector field � on T M which satisfies the equation S(�) = �. Check

that

(i) each integral curve of the field � is the natural lift γ̂ of a curve γ on M
(ii) the coordinate presentation xa(t) of the curve γ on M satisfies the system of second-order

equations

ẍ a = �a(x, ẋ) �

• Second-order differential equations on M are in one-to-one correspondence with a class

of vector fields on T M , namely with fields which satisfy the equation

S(�) = �
Such fields are therefore called second-order differential equation fields.

18.1.3 Write down � explicitly for the equation of motion of the linear harmonic oscil-

lator and sketch the corresponding integral curves. Be sure to recognize that your drawing

basically coincides with a phase portrait of the oscillator. �

18.2 Euler–Lagrange field

• A particular class of second-order equations under consideration is given by Lagrange’s

equations (“of the second kind”)

d

dt

∂L

∂ ẋ a
− ∂L

∂xa
= 0 Lagrange’s equations
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It is known that not all second-order equations may be written in this form; necessary

and sufficient conditions for the existence of a Lagrangian were already found by (Hermann

Ludwig Ferdinand von) Helmholtz.

18.2.1 Find out when (Hermann Ludwig Ferdinand von) Helmholtz lived and estimate

then how long the Helmholtz criterion388 of the existence of a Lagrangian for a given

second-order ordinary differential equations has been known.

Hint: see Appendix B or Google. �

18.2.2 Check that if L(x, ẋ) is a Lagrangian and if

Aab(x, ẋ) := ∂2L

∂ ẋ a∂ ẋ b
Bab(x, ẋ) := ∂2L

∂ ẋ a∂xb
Ca(x, ẋ) := ∂L

∂xa

then Lagrange’s equations read

ẍ a = �a(x, ẋ) �a = −(A−1)ab Bbc ẋc + (A−1)abCb

(provided that A−1 exists; if it does not, what do they look like?) �

• Now we show that if on T M an appropriate function L is available, one can introduce a

symplectic structure there and consequently also Hamiltonian fields and the corresponding

dynamics. For an appropriate Hamiltonian the dynamics turns out to coincide with that

given by Lagrange’s equations on M .

18.2.3 Consider a function L on T M and define Cartan forms by

θL := S(d L) Cartan 1-form

ωL := dθL Cartan 2-form

where S denotes the vertical endomorphism from (17.6.4), regarded as a linear map, which

sends 1-forms to 1-forms, α �→ S( · , α). Check that

(i) in canonical coordinates we get

θL = ∂L

∂va
dxa ωL = − ∂2 L

∂va∂vb
dxa ∧ dvb + ∂2 L

∂xa∂vb
dxa ∧ dxb

(ii) the form ωL is closed

dωL = 0

(iii) we may characterize Lagrangians leading to non-degenerate ωL by

ωL is non-degenerate ⇔ det

(
∂2 L

∂va∂vb

)

	= 0

(iv) the condition on the Lagrangian from (iii) does not depend on the choice of coordinates xa on

M (it is an intrinsic property of the function L).

388 For the sake of incompleteness we do not mention an explicit form of the criterion here.
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Hint: (iii) recall that non-degeneracy of ωL is equivalent to

n items
︷ ︸︸ ︷
ωL ∧ · · · ∧ ωL 	= 0 (5.6.8). Show

that

ωL ∧ · · · ∧ ωL︸ ︷︷ ︸
n items

∝ det

(
∂2L

∂va∂vb

)

dx1 ∧ · · · ∧ dxn ∧ dv1 ∧ · · · ∧ dvn
︸ ︷︷ ︸

	=0

�

• A Lagrangian which satisfies the condition from item (iii) is called non-singular
(≡ non-degenerate ≡ regular).

18.2.4 Check that

L is non-singular ⇔ ωL is a symplectic form

Hint: see (18.2.3). �

• Thus any regular Lagrangian L makes a symplectic manifold (T M, ωL ) from T M .

Contrary to T ∗M , which is a symplectic manifold by itself (needing no structure to be

added), T M becomes a symplectic manifold only in combination with the appropriate

Lagrangian L .

18.2.5 Check that a standard Lagrangian encountered in analytical mechanics

L = T − U ≡ 1

2
gab(x)vavb − U(x, v) U(x, v) = φ(x) + Aa(x)va

i.e. the difference of the kinetic and (possibly generalized) potential energy, is regular (see

also (18.4.9)).

Hint: here the relevant matrix from (18.2.3) turns out to be gab; this in turn defines a metric
tensor on M , since the kinetic energy is positive for any true motion (i.e. gab is positive

definite). �

• Now, when T M became a symplectic manifold (T M, ωL ), we may already proceed

to perform standard steps: introduce a Hamiltonian field ζ f corresponding to an arbitrary

generator f ∈ F(T M) by

iζ f ωL = −d f

and consequently a Hamiltonian system as a triple (T M, ωL ,H) by the choice of a distin-

guished function f ≡ H (Hamiltonian). The motion along integral curves γ (t) of the field

ζH is then regarded as the dynamics (= time development) of the system:

γ̇ = ζH i.e. x ≡ γ (0) �→ 
t (x) ≡ γ (t) 
t ↔ ζH

It turns out, finally, that for the appropriate choice of the Hamiltonian H, namely for

H = EL := �L − L
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(EL being the energy corresponding to the Lagrangian L), the dynamics of the Hamiltonian

system (T M, ωL , EL ) just coincides with a standard dynamics generated by Lagrange’s

equations (of the second kind). Put another way, for a non-degenerate Lagrangian the

content of the system

γ̇ = ζEL iζEL
ωL = −d EL

is the same as that of the standard Lagrange equations.

18.2.6 Check this statement by expressing explicitly the defining equation for the Euler–
Lagrange field �

i�ωL = −d EL i.e. � ≡ ζEL

in canonical coordinates.

Hint: sufficiently large piece of paper, (18.2.2) and (18.2.3). �

• For an alternative coordinate-free expression of Lagrange’s equations, we first verify

in (18.2.7)–(18.2.9) that � is indeed a second-order differential equation field (fortunately,

it turns out well) and then in (18.2.11) we will see at last that the equations derived there

indeed happen to coincide with Lagrange’s equations.

18.2.7 ∗ For an arbitrary
(

1
1

)
-type tensor field A on M define a

(
1
2

)
-type tensor field NA

on M by the prescription

NA(V, W ) := A2([V, W ]) + [A(V ), A(W )] − A([A(V ), W ]) − A([V, A(W )])

The field NA is called the Nijenhuis tensor associated with A. Check that

(i) NA is indeed a
(

1

2

)
-type tensor field (i.e. F(M)-linearity)

(ii) in particular, for A = S on M = T M (S being the vertical endomorphism) the corresponding

Nijenhuis tensor vanishes, NS = 0. �

18.2.8 ∗ Prove the identity

ωL (S(V ), W ) = − ωL (V, S(W )) V, W arbitrary

(i.e. the operator S is “antisymmetric with respect to ωL”).

Hint: ωL (S(V ), W ) = dθL (S(V ), W ) = · · · ; then use the Cartan formulas (6.2.13) for

computation of d, definitions of the quantities involved and the result of (18.2.7). �

18.2.9 ∗ Show that

i�ωL = −d EL ⇒ S(�) = �
i.e. that the Euler–Lagrange field is a second-order differential equation field.

Hint: set � = V in (18.2.8) and climb step by step to the equation

ωL (S(�), W ) = · · · = ωL (�, W ) for arbitrary W
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juggling with definitions and relevant identities from Section 17.7. Furthermore, consider

non-degeneracy of ωL . �

18.2.10 ∗ Define a map

E L : (V, �) �→ �(V ↑L) − Ṽ L

where V ↑ and Ṽ denote the vertical and complete lift of a field V on M respectively, L is

a Lagrangian and � is a second-order differential equation field. Check that

(i) the map is F(M)-linear with respect to V , so that

E L (V, �) = V a(x)E L
a (x, v) E L

a ≡ E L (∂a, �)

(ii) for Euler–Lagrange expression E L
a we get in canonical coordinates

E L
a (x, v) = �

∂L

∂va
− ∂L

∂xa

(iii) the function E L
a , when evaluated on an integral curve of the field � (= on the natural lift γ̂ of a

curve γ on M), gives

E L
a (γ̂ ) = d

dt

∂L

∂ ẋ a
− ∂L

∂xa

Hint: a direct computation in canonical coordinates. Just like in (18.2.9) use va = ẋ a . �

18.2.11
∗

Show that the map E L from (18.2.10) vanishes just for a particular second-order

differential equation field, namely for the Euler–Lagrange field, i.e. then

�(V ↑L) − Ṽ L = 0 for arbitrary V

This may then be regarded as a coordinate-free version of Lagrange’s equations. Put another

way

i�ωL = −d EL ⇒ E L
a (γ̂ ) = 0

so that a curve γ on M , whose natural lift γ̂ to T M happens to be an integral curve of the

dynamical Hamiltonian field �, satisfies the standard Lagrange equations.

Hint: evaluate (18.2.6) on the complete lift Ṽ of an arbitrary field V on M ; i.e.

0 = 〈i�ωL + d EL , Ṽ 〉 = ωL (�, Ṽ ) + Ṽ EL = (dθL )(�, Ṽ ) + Ṽ �L − Ṽ L = · · ·
= �(V ↑L) − Ṽ L

The process denoted by = · · · = uses definitions, Cartan formulas (6.2.13), identities from

(17.7.1) and the property (18.2.9) of the field �. �
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18.3 Connection between Lagrangian and Hamiltonian mechanics, Legendre map

• Up to now, we have learned that if a regular Lagrangian L : T M → R is available on

T M , we get naturally a Hamiltonian dynamics there. Namely, we first construct a symplectic

form ωL from L and then a dynamical vector field �L ∈ X(T M) defined by

i�L ωL = −d EL

i.e. as the Hamiltonian field generated by the function EL . Eventually the time development

is identified with a motion along �L .

All this is even simpler on T ∗M . There is a canonical symplectic form ω there and if we fix

a Hamiltonian H : T ∗M → R, we immediately get a dynamical vector field � ∈ X(T ∗M)

defined by the similar relation

i�H ω = −d H

i.e. as the Hamiltonian field generated by the function H .

This means that we now have two Hamiltonian systems, (T M, ωL , EL ) and (T ∗M, ω, H ).

We will see in what follows that provided some conditions are satisfied (a proper relation be-

tween L and H ), there exists a diffeomorphism T M ↔ T ∗M , which realizes an equivalence

of the two Hamiltonian systems under consideration. The corresponding diffeomorphism

represents a global version of the Legendre transformation, well known from ordinary an-

alytical mechanics. Let us start by a description of the diffeomorphism in the direction

T M → T ∗M .

Let

L : T M → R

be a Lagrangian on T M . Define the Legendre map

L̂ : T M → T ∗M

by the relations

τ ◦ L̂ = π 〈L̂(v), w〉 := w↑
v L ≡ d

dt

∣
∣
∣
∣
0

L(v + tw)

where v, w ∈ π−1(x) and w↑
v is the vertical lift to v.

18.3.1 Check that

(i) the first condition simply says that a vector sitting at x ∈ M is mapped to a covector sitting at
the same point x ∈ M

(ii) the second condition indeed defines a covector at x (i.e. the linearity with respect to w)

(iii) in canonical coordinates on T M and T ∗ M the map reads

L̂ : (xa, va) �→ (xa(x, v), pa(x, v)) ≡
(

xa,
∂L

∂va

)

i.e. it coincides with standard formulas for the Legendre transformation
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(iv) L̂ is a (local) diffeomorphism ⇔ L is regular.

Hint: (iii) 〈L̂(v), w〉 = L̂(v)aw
a != w↑L , (17.5.2); (iv) the relevant Jacobian is

∂(x, p)

∂(x, v)
= det

(
∂pa

∂vb

)

= det

(
∂2L

∂va∂vb

)

see the definition of regularity in (18.2.3). �

• Lessons:

(i) regularity of L is not only important for non-degeneracy of ωL , but also for local invertibility of

the map L̂
(ii) what in analytical mechanics is regarded as a change of coordinates is interpreted here as a

coordinate presentation of a map between two different manifolds.

Now we will investigate how various important tensor fields are mapped under L̂ and

eventually how the complete dynamics is related.

18.3.2 Check that

θL ≡ S(d L) = L̂∗θ

Hint: 〈(L̂∗θ )v, w〉 = 〈θL̂(v), L̂∗w〉 = · · · definition · · · = 〈θL , w〉. �

18.3.3 Check that

ωL = L̂∗ω

Hint: see (18.3.2). �

• This means that the symplectic structure on T M may also be regarded as the L̂∗-image

of the canonical symplectic structure on T ∗M (recall that ωL was introduced in (18.2.3)

independently of T ∗M).

Now if we compare the defining equations for dynamical fields �L on T M and �H on

T ∗M and take into account (18.3.3), we get

i�L (L̂∗ω) = −d EL i�H ω = −d H

Since the interior product iV is natural with respect to diffeomorphisms f ∗ (8.3.6) one can

see that a proper correspondence between the Lagrangian L and the Hamiltonian H results

in equivalence of the two dynamics involved.

18.3.4 Check that if L and H are related by

L̂∗ H = EL i.e. H = (L̂−1)∗EL ≡ EL ◦ L̂−1

then

(i) also the dynamical fields are related

�H = L̂∗�L
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(ii) if


L
t ↔ �L and 
H

t ↔ �H

denote the flows corresponding to the time development in (T M, ωL , EL ) and (T ∗ M, ω, H ), then

the flows are related by

L̂ ◦ 
L
t = 
H

t

Hint: (i) application of L̂∗ to i�H ω = −d H gives (6.2.11)

i L̂∗�H
ωL = −d(L̂∗ H )

⇒ for L̂∗ H = EL we necessarily have L̂∗�H = �L (due to non-degeneracy of ωL ). �

18.3.5 Check that the relation H = (L̂−1)
∗
EL we just obtained is nothing but the good

old formula which we know from analytical mechanics, where it is usually written in the

form

H (x, p) = ẋ a ∂L

∂ ẋ a
− L for pa(x, ẋ) = ∂L(x, ẋ)

∂ ẋ a

Hint: H = EL ◦ L̂−1 ⇒ it is actually the function EL = va ∂L
∂va − L , expressed in terms of

the variables (x, p) according to (18.3.1). �

• The Legendre map may be also defined in the opposite direction and expressed in terms

of the Hamiltonian. Let

Ĥ : T ∗M → T M

be defined by the relations

π ◦ Ĥ = τ 〈α, Ĥ (p)〉 := α↑
p H ≡ d

dt

∣
∣
∣
∣
0

H (p + tα)

where α, p ∈ τ−1(x) and α↑ is the vertical lift to p.

18.3.6 Check that

(i) in canonical coordinates

Ĥ : (xa, pa) → (xa(x, p), va(x, p)) ≡
(

xa,
∂ H (x, p)

∂pa

)

(ii) Ĥ is a (local) diffeomorphism ↔ H is regular (i.e. det
(

∂2 H (x,p)

∂pa∂pb

)
	= 0)

(iii) if L and H match in the sense of (18.3.4), then

L̂ ◦ Ĥ = idT ∗ M Ĥ ◦ L̂ = idT M i.e. Ĥ = L̂−1

�
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18.4 Symmetries lifted from the base manifold (configuration space)

In Section 14.4 we learned that there is a one-to-one correspondence between conserved

quantities of a Hamiltonian system (M, ω, H ) and exact Cartan symmetries, i.e. vector

fields V on M which satisfy iV ω = d(−FV ) for some function FV (so that they are actually

Hamiltonian fields V = ζFV ) and V H = 0.

Here we will look more closely at an important particular case, where

1. we take as symplectic manifolds the total spaces of the (co)tangent bundle, (T M, dθL ) or (T ∗ M, dθ )

2. Cartan symmetries happen to be complete lifts of vector fields from the base M .

In physical terms this corresponds to a situation in which there is a symmetry of a

mechanical system already present in the configuration space (= the base M ; this symmetry

may thus be “directly seen”) and it is only lifted to the phase space T ∗M (or T M). Both

the motion and the symmetry thus “actually” occur on M , transition to the space of double

dimension, however, brings technical advantages – it opens the possibility of using the full

strength of symplectic machinery.

Let us find out, first, what the moment map from Section 14.5 looks like in this specific

case.

18.4.1 Let Rg be a right action of a Lie group G on M and denote by ξX fundamental

fields of the action. Check that

(i) then also the maps T Rg and T ∗ Rg−1 provide actions of G;

Rg is an action of G on M ⇒ T Rg is an action of G on T M

T ∗ Rg−1 is an action of G on T ∗ M

They are called lifts of the action of the group G from M to T M and T ∗ M respectively

(ii) the generators of the lifted actions turn out to be just the complete lifts of the generators of the

initial action

ξX generates Rg on M ⇒ ξ̃X generates T Rg on T M

ξ̃X generates T ∗ Rg−1 on T ∗ M

(iii) the lifted actions are globally Hamiltonian (see Section 14.5), their “Hamiltonians” PX being

given by simple formulas389

PX = 〈θL , ξ̃X 〉 on T M and PX = 〈θ, ξ̃X 〉 on T ∗ M

as well as Poisson, so that

{PX , PY } = P[X,Y ]

(on the right a potentially possible non-trivial 2-cocycle β(X, Y ) from (14.5.4) does not appear)

(iv) if ξX = Xiξ a
i (x)∂a , the function PX explicitly reads as

PX ≡ Xi Pi = Xi ∂L

∂va
ξ a

i (x) on T M

and PX ≡ Xi Pi = Xi paξ
a
i (x) on T ∗ M

389 We assume that a G-invariant Lagrangian is given on T M , i.e. such that L ◦ T Rg = L , or consequently ξ̃X L = 0.



18.4 Symmetries lifted from the base manifold (configuration space) 509

(Recall (14.5.7) that if G is a symmetry of the complete Hamiltonian system, the functions Pi

are conserved.)

Hint: (i) (17.3.2), (17.3.5); (ii) (17.5.6), (17.5.12); (iii) for example, on T ∗M (on T M in

full analogy)

iξ̃X
dθ = Lξ̃X

θ − diξ̃X
θ = −d〈θ, ξ̃X 〉 ≡ −d PX

{PX , PY } = ξ̃X PY = Lξ̃X
〈θ, ξ̃Y 〉 = 〈Lξ̃X

θ, ξ̃Y 〉 + 〈θ,Lξ̃X
ξ̃Y 〉 = 〈θ, [ξ̃X , ξ̃Y ]〉 = 〈θ, ξ̃[X,Y ]〉

≡ P[X,Y ]

where we used LṼ θ = 0 from (17.7.1); (iv) (17.5.7), (17.5.13), (17.6.5) and (18.2.3). �

18.4.2 Consider a Lagrangian L(x, v). In analytical mechanics a particular coordinate xa

is called a cyclic coordinate if it does not actually enter L (where it might be in principle) and

the same nomenclature will be used for a Hamiltonian H (x, p). Show how standard (and

useful) results about cyclic coordinates follow390 from the result of the preceding problem:

Lagrangian mechanics: xa is cyclic ⇒ conserved quantity is pa(x, v) := ∂L(x, v)

∂va

Hamiltonian mechanics: xa is cyclic ⇒ conserved quantity is pa

The function pa(x, v) on T M is called the ath canonical momentum corresponding to the ath

coordinate xa . (The reader can easily check that for regular Lagrangian L the 2n coordinates

(xa, pa(x, v)) are indeed canonical in the sense of the Darboux theorem (14.2.2). Note also

that the ath canonical momentum may alternatively be regarded as the pull-back of the

canonical coordinate pa on T ∗M to T M with respect to the Legendre map (18.3.1).) In the

Hamiltonian case the conserved quantity is just pa = the ath “fiber” canonical coordinate

on T ∗M .

Hint: if xa is cyclic, the dynamics has a symmetry lifted from M , which is generated on

M by the field ∂a ⇒ according to (iv) in (18.4.1) we get PX = ∂L/∂va in the Lagrangian

formalism and pa in the Hamiltonian one. From (18.2.3) we know that θL = pa(x, v) dxa

so that ωL = dpa(x, v) ∧ dxa . �

18.4.3 Consider the standard (left) action of the Euclidean group E(3) in the configuration

space M = E3 of a single point mass

r �→ L (A,a)r ≡ Ar + a (A, a) ∈ E(3)

Check that

(i) if E j and l j is the standard basis of the Lie algebra e(3) corresponding to translations and rotations

respectively, then the fundamental fields ξX (of the right action L (A,a)−1 ) on M are

ξE j = −∂ j ξl j = −ε j ik xi∂k

390 Both conservation laws are easily seen directly from Lagrange’s and Hamilton’s equations. This way of revealing the conserved
quantities is, however, strongly dependent on a “lucky” choice of coordinates in configuration space (leading to an extremely
simple form of ξ a

i (x) in PX ), whereas (18.4.1) works for any coordinates.
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(ii) their (complete) lifts to the phase space T ∗ M[r, p] read

ξ̃E j = −∂ j ξ̃l j = −ε j ik

(

xi
∂

∂xk
+ pi

∂

∂pk

)

(iii) the functions PX = 〈θ, ξ̃X 〉 for X = E j and l j come out as

PE j (r, p) = −p j Pl j (r, p) = −ε jkl xk pl ≡ −(r × p) j ≡ −L j

(iv) the property {PX , PY } = P[X,Y ] is realized here as the validity of the well-known Poisson brackets

between the observables p, L

{pi , p j } = 0 {Li , L j } = −εi jk Lk {Li , p j } = −εi jk pk

Hint: (13.4.6), (13.4.7), θ = pi dxi ≡ p · dr. �

• Now we restrict to the most important class of Lagrangians (and corresponding

Hamiltonians), containing kinetic and potential energy. We are speaking about ordinary

Lagrangians (and Hamiltonians) encountered in analytical mechanics, with the structure

L = T − U and H = T + U . First we develop a convenient formalism for treating such

objects.

18.4.4 Let B be a
(

0
k

)
-type (“strictly covariant”) tensor field on M . We may associate a

function
◦
B on T M with B as follows:

◦
B(v) := Bx (v, . . . , v)

Here, v on the left denotes a point on T M whereas v on the right is the (corresponding)

vector at the point x ≡ π (v). In particular, for a function (k = 0) this is to be understood

as
◦
B(v) := B(π (v)) ≡ (π∗ B)(v), i.e.

◦
B := π∗ B. Check that

(i) in canonical coordinates this gives

B ≡ Ba...b(x) dxa ⊗ · · · ⊗ dxb ⇒ ◦
B(x, v) = Ba...b(x)va . . . vb

(ii) in full analogy we may associate a function
◦
B on T ∗ M with a

( k
0

)
-type (“strictly contravariant”)

tensor field B on M (the same notation is used for both cases under consideration) by

◦
B(p) := Bx (p, . . . , p)

where p on the left denotes a point on T ∗ M whereas p on the right is the (corresponding) covector

at the point x ≡ τ (p) (again for a function we set
◦
B := π∗ B) and in canonical coordinates we

get

B ≡ Ba...b(x)∂a ⊗ · · · ⊗ ∂b ⇒ ◦
B(x, p) = Ba...b(x)pa . . . pb

(iii) the maps

f : T 0
k (M) → F(T M) B �→ ◦

B

f : T k
0 (M) → F(T ∗ M) B �→ ◦

B

are injective (no information is lost) when restricted to fully symmetric tensor fields on M
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(iv) in both cases (T M as well as T ∗ M) the following statements hold:

LṼ

◦
B ≡ Ṽ

◦
B =

◦
(LV B) i.e. LṼ ◦ f = f ◦ LV

� ◦
B = k

◦
B i.e.

◦
B is homogeneous of degree k in fiber coordinates

where Ṽ is the complete lift of a field V and � is the Liouville field from (17.6.1).

Hint: (iv) for example, on T M we get for 
t ↔ V

(Ṽ
◦
B)(v) = d

dt

∣
∣
∣
∣
0

◦
B(T 
t (v)) = d

dt

∣
∣
∣
∣
0

B(
t∗v, . . .) = d

dt

∣
∣
∣
∣
0

(
∗
t B)(v, . . .) = (LV B)(v, . . .)

=
◦

(LV B)(v)

�

18.4.5 Test the computation of the Lie derivative by this unusual method on the example

of a vector field and a metric tensor.

Solution: if W = W a∂a and g = gab dxa ⊗ dxb, then
◦

W = W a pa and
◦
g = gabv

avb.

According to (17.5.7) and (17.5.13) we then get for V = V a∂a

Ṽ
◦

W =
(

V a(x)
∂

∂xa
− V b,a(x)pb

∂

∂pa

)

(W c pc) = · · · = (V W a − W V a)pa

Ṽ
◦
g =

(

V a(x)
∂

∂xa
+ V a

,b(x)vb ∂

∂va

)

(gcdv
cvd ) = · · · = (V gab + V c

,agcb+V c
,bgac)vavb

The terms gathered in the last brackets indeed coincide with the component expressions of

the Lie derivatives LV W and LV g (4.3.4). �

• Now recall that the standard Lagrangians we usually encounter in analytical mechanics

contain two parts, the kinetic energy T , which is a quadratic function of (generalized)

velocities and the potential energy U , which depends on coordinates alone:

L(q, q̇) = T (q, q̇) − U (q) ≡ 1

2
Tab(q)q̇aq̇b − U (q)

Notice that both of them are just expressions of the type under consideration. A function L
of this structure is called a natural Lagrangian.

18.4.6 Check that

(i) a natural Lagrangian may be written in a simple form

L = 1

2

◦
g −

◦
φ

where g represents a metric tensor on M and φ is a function on M
(ii) the Legendre map for such L explicitly reads

L̂ : (xa, va) �→ (xa(x, v), pa(x, v)) = (xa, gabv
b)
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(iii) a Hamiltonian which corresponds to this Lagrangian via the Legendre map is

H = 1

2

◦
g −1 +

◦
φ or in detail H (x, p) = 1

2
gab(x)pa pb + φ(x)

Hint: (i) see (2.6.7) and (3.2.9); (ii) EL = �L − L = �(
1
2

◦
g −

◦
φ

) − (
1
2

◦
g −

◦
φ

) = 1
2

◦
g +

◦
φ

(due to 18.4.4)); see (18.3.4). �

• In what follows we are going to characterize all exact Cartan symmetries which are

lifted from the base for this type of Lagrangian (there still may be additional “hidden”

symmetries involved, which are not lifted from the base).

18.4.7 Consider a natural Lagrangian L = 1
2

◦
g −

◦
φ. Check that

(i) for exact Cartan symmetries of the form of the complete lift there holds

Ṽ = exact Cartan symmetry ⇔ LV g = 0

V φ ≡ LV φ = 0

i.e. the complete lift Ṽ of a field V is the exact Cartan symmetry if and only if the field V itself

happens to be the Killing vector of the metric tensor (associated with the kinetic energy) and

moreover if the potential energy is invariant with respect to V
(ii) the corresponding conserved quantity turns out to be

FṼ ≡ F = g(v, V ) ≡ v · V ≡ gab(x)va V b(x) = pa V a

The quantity g(γ̇ , V ) ≡ γ̇ · V , the scalar product of the instantaneous velocity and the Killing

vector V , thus remains unchanged in the course of the motion

(iii) if a coordinate xa does not enter any component of the metric tensor and also does not enter the

function φ, we may take ∂a to be the field V and F then becomes just pa .

Hint: our Hamiltonian system is (T M, dθL , EL ≡ 1
2

◦
g +

◦
φ); from (18.4.1) we know that Ṽ

is a Hamiltonian field on (T M, dθL ), its Hamiltonian being FṼ = 〈θL , Ṽ 〉 = · · · = g(v, V ).

Moreover, Ṽ EL = 1
2
Ṽ

◦
g +Ṽ

◦
φ = 1

2

◦
(LV g) +

◦
(V φ). �

18.4.8 Let V be a Killing vector on (M, g). We already know from problem (15.4.4) that

if we consider the Lagrangian

L = 1

2

◦
g ≡ 1

2
gab(x)vavb

(containing the kinetic energy alone), then the solutions of Lagrange’s equations coincide

with geodesics of RLC connection on (M, g). Be sure to understand that

(i) in the course of motion along a geodesic γ the quantity F = γ̇ · V ≡ g(γ̇ , V ) remains constant391

(if we choose an affine parameter so that the velocity is normed to unity, this becomes just a

projection of the Killing vector onto the direction of motion); also prove this fact with no use of

our symplectic tools at all (use covariant derivatives instead)

391 This is useful in general relativity, where free test particles move along geodesics of the space-time.
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(ii) the result from (18.4.7) generalizes the fact of the conservation of this quantity also to motion

with non-vanishing acceleration; then it is, however, restricted to the case where the force field

obeys V φ = 0; put another way, the vector field V is required to be a symmetry of the (potential)

force field as well.

Hint: (i) Ḟ = γ̇ F = ∇γ̇ g(γ̇ , V ) = (∇γ̇ g)(γ̇ , V )+g(∇γ̇ γ̇ , V )+g(γ̇ , ∇γ̇ V ) = g(γ̇ , ∇γ̇ V ) =
Vi ; j ẋ i ẋ j = 0, since due to (15.4.14) V(i ; j) = 0. �

• Recall that in analytical mechanics one also introduces the concept of generalized
potential energy, which depends (linearly) on velocities as well. In order to incorporate

this case in our formalism, we add still another term to L . The class of Lagrangians under

consideration is namely extended to

L = 1

2

◦
g −(

◦
φ + ◦

A)

where A is a covector field on M . A complete Lagrangian is thus given (parametrized) by

three independent objects living on M , namely g, A, φ. Let us study in more detail how

each of the three terms in L manifests itself on equations of motion.

18.4.9 Consider a Lagrangian of the form

L = 1

2

◦
g −(

◦
φ + ◦

A) ≡ Lg + Lφ + L A

Since the relevant elements of the equation i�ωL = −d EL depend on L additively, each of

them may be written as a sum of three terms, which correspond to the individual terms of

L . Check that

(i) explicitly it looks as follows:

θL = θLg + θLφ
+ θL A = θLg − π∗ A

ωL = ωLg + ωLφ
+ ωL A = ωLg − π∗d A

EL = ELg + ELφ
+ EL A = ELg + π∗φ

(ii) the complete equation for the dynamical field � ≡ ζEL has the form

i�(ωLg − π∗d A) = −d(ELg + π∗φ)

(iii) this may be interpreted as the fact that the dynamics with the Lagrangian containing all three

terms differs from the free motion (with the Lagrangian given by the kinetic energy alone) as

follows:

the term
◦
A modifies the symplectic form ωLg �→ ωLg − π∗d A

the term
◦
φ modifies the energy ELg �→ ELg + π∗φ

(iv) the equation of motion (and consequently, also the motion itself) feels the presence of A and

φ through their (exterior) derivatives d A and dφ alone; this means that the motion remains the
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same, if the substitution392

A �→ A + dχ φ �→ φ + constant

is performed in the original Lagrangian L .

Hint: see (18.2.3) and (18.2.6). �

• Let us examine next what is the characterization of all exact Cartan symmetries lifted

from the base for the Lagrangian L = Lg + Lφ + L A (i.e. how the result of (18.4.7) is to

be modified, if we add the term
◦
A).

18.4.10 Consider the Lagrangian of the form

L = 1

2

◦
g −(

◦
φ + ◦

A)

where A is a covector field on M . Check that

(i) for exact Cartan symmetries of the form of the complete lift there holds

Ṽ = exact Cartan symmetry ⇔ LV g = 0

V φ ≡ LV φ = 0

LV A = dχ

i.e. except for the requirements on V that it should be a Killing vector of the metric tensor

associated with the kinetic energy and that the function φ should be invariant with respect to this

field, we are to add a new requirement: the Lie derivative of a “vector potential” A should be

exact, LV A = dχ for some function χ

(ii) the corresponding conserved quantity is

FṼ = 〈g(v, ·) − A, V 〉 + χ ≡ V a(x)(gab(x)vb − Aa(x)) + χ (x)

≡ V a(x)pa(x, v) + χ (x)

where pa(x, v) is the canonical momentum introduced in (18.4.2)

(iii) this expression is “gauge invariant” (with respect to the freedom A �→ A + d f from (18.4.9)).

Hint: the energy function turns out to be the same as in (18.4.7), EL ≡ 1
2

◦
g +

◦
φ, so that the

condition Ṽ EL
!= 0 again yields LV g = 0 and V φ = 0. A computation then gives iṼ dθL =

−d(g(v, V )) − π∗(iV d A)
!= −d(conserved quantity); if A �→ A + d f , then χ �→ χ + V f

and the combination 〈A, V 〉 − χ remains unchanged. �

• In Section 14.7 we studied a symplectic reduction of a Hamiltonian system by a symme-

try G, i.e. a separation of the less interesting part of the dynamics, which was made possible

by the symplectic action of a symmetry group. As a motivating example we mentioned there

a standard separation of a (trivial) motion of the center of mass in the two-body problem.

This separation is due to translational symmetry of the space, so that the corresponding

392 In electromagnetic interpretation this is a gauge transformation of (static) potentials; d A corresponds to the magnetic field and
dφ to the electric field.
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symmetry in phase space is just a lift of the symmetry from the base, which we study in this

section. Now we will show explicitly what the individual steps of the reduction procedure

look like in this simple case.

18.4.11 Consider a motion of two point masses in E3. Their dynamics is described by the

Hamiltonian

H (r1, r2, p1, p2) = p2
1

2m1

+ p2
2

2m2

+ U (|r1 − r2|)

which we regard as a function in the phase space R
12[r1, r2, p1, p2] ≡ T ∗

R
6[r1, r2], i.e.

on the total space of the cotangent bundle of the configuration space R
6[r1, r2]. In the

configuration space there is a standard action of the (three-dimensional) translational group

R
3[a] given by the prescription

R̂a : (r1, r2) �→ (r1 + a, r2 + a)

Check that

(i) the lift Ra := T ∗ R̂−a of this action to T ∗
R

6[r1, r2] reads

Ra : (r1, r2, p1, p2) �→ (r1 + a, r2 + a, p1, p2)

(ii) if we pass in the configuration space to the coordinates of the center of mass R and the relative

vector r instead of (r1, r2), the complete (induced) change of coordinates in the phase space is

(r1, r2, p1, p2) �→ (R, r, P, p)

where

R = m1r1 + m2r2

m1 + m2

P = p1 + p2

r = r1 − r2 p = m2

m1 + m2

p1 − m1

m1 + m2

p2

and moreover the change turns out to be canonical393

ω = dp1. ∧ dr1 + dp2. ∧ dr2 = dP. ∧ dR + dp. ∧ dr

(iii) the action Ra in the phase space looks even simpler when expressed in these coordinates, since

now the action concerns the center of mass coordinates alone; it is

Ra : (R, r, P, p) �→ (R + a, r, P, p)

it is free and the symplectic form ω is invariant with respect to it

(iv) in new coordinates the Hamiltonian reads

H (R, r, P, p) = P2

2M
+ p2

2μ
+ U (|r|) M ≡ m1 + m2 μ ≡ m1m2

m1 + m2

and it is invariant with respect to the action of R
3 under consideration.

393 dp. ∧ dr is a shortcut notation for dpx ∧ dx + dpy ∧ dy + dpz ∧ dz.
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Hint: (ii) (17.1.4); a change of coordinates induced in this way is always canonical (ω

on T ∗M is invariant with respect to T ∗ f (17.6.8) for an arbitrary diffeomorphism f :

M → M ; or in coordinates d p′
a(x, p) ∧ dx ′a(x, p) = d{(J−1)b

a(x)pb} ∧ dx ′a(x) = · · · =
dpa ∧ dxa ; (iii) the argument (17.6.8) again, or explicitly d(P + a). ∧ dR + dp. ∧ dr =
dP. ∧ dR + dp. ∧ dr. �

18.4.12 Check that the moment map for the action under consideration of the translational

group may be written as

P : (R, r, P, p) �→ P

so that the manifold Mp (the level surface of the moment for the value p) from the general

construction (14.7.1) corresponds here to a part of the phase space with a fixed value of the

total momentum P; we may thus identify it with R
9[R, r, p].

Hint: see (18.4.1), the canonical 1-form is θ = P · dR + p · dr, generators of the (already

lifted) action of the translational group are due to (18.4.11) ∂R. �

18.4.13 Check that the group G p from the general formalism turns out to be the whole
translational group R

3[a], so that the resulting manifold M̂p may be identified here with

R
6[r, p].

Hint: the Ad-representation is trivial for any commutative group (and the same consequently

holds for the Ad∗-action) ⇒ the condition Rg Mp = Mp (14.7.2) then gives G p = G; the

factorization is to be performed in the sense of the equivalence (R, r, p) ∼ (R + a, r, p).

�

18.4.14 Check that

(i) restriction of the symplectic form ω to the submanifold Mp (the form ω̃ from (14.7.4)) reads

ω̃ = dp. ∧ dr (it lives on R
9[R, r, p])

(ii) this 2-form is indeed horizontal and R
3[a]-invariant

(iii) the “reduced” symplectic form ω̂ is the form ω̂ = dp. ∧ dr (it looks exactly like ω̃, but it already

lives only on R
6[r, p]).

Hint: (ii) vertical fields span the generators of translations, i.e. ∂R; (iii) the projection

π : Mp → M̂p is (R, r, p) �→ (r, p). �

• The translational symmetry of the original two-body problem thus brought us (by means

of symplectic reduction) to a simpler problem concerning a single body. The reduced phase

space is already only R
6[r, p] (the phase space of a fictitious point with a “position vector”

r) endowed with a symplectic form ω̂ = dp. ∧ dr. In this phase space the dynamics is

generated by the Hamiltonian

Ĥ = Ĥ (r, p) = p2

2μ
+ U (r )
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In order to obtain Ĥ from the complete H (R, r, P, p), one sets P = constant (due to the

restriction to Mp; an irrelevant additive constant in H may be ignored); it does not actually

depend on R (due to the invariance) and so passing to M̂p (ignoring of R) formally manifests

itself in no way.

The (“single-body”) problem which remains may be, however, reduced further, since it

still has rotational symmetry.

18.4.15 On the configuration space R
3[r] there is a natural action of the rotational group.

Check that the lift of the action to the phase space R
6[r, p] is a symmetry of the Hamiltonian

system under consideration.

Hint: it is a symmetry of (M, ω) due to a mere fact of the lift (17.6.8); since the action is

(r, p) �→ (A−1r, A−1p), the symmetry of H (r, p) = p2/2μ + U (r ) is evident. �

18.4.16 Check that the symplectic reduction by the rotation group leads for the problem

of a motion in the central field U (r ) to the dynamics of the “radial” degree of freedom r , i.e.

the dynamics in the phase space with coordinates (r, pr ), the symplectic form ω̂ = dpr ∧ dr
and the Hamiltonian

Ĥ (r, pr ) = p2
r

2μ
+ Ueff(r ) Ueff(r ) := U (r ) + L2

2μr2
≡ effective potential energy

Hint: according to (18.4.3), the moment map reads (r, p) �→ −L(r, p) ≡ −r × p, so that

the level surface Mp of the moment is the submanifold ML ⊂ R
6[r, p] of the points with a

fixed value of the angular momentum vector L ≡ r × p = constant. Scalar multiplication

by the vectors r and p gives L · r = 0 = L · p, so if we choose the z-axis directed along L,

both the vectors r and p will be situated in the “xy-plane.” Using polar coordinates in these

planes we thus have so far the coordinates (r, ϕ, pr , pϕ) (being coordinates on the total

space of T ∗
R

2[r, ϕ]). A condition fixing the length of the vector L gives in addition (due

to (17.1.9)) Lz = xpy − ypx = pϕ = L = constant, so that in coordinates what remains

for ML is only R
3(r, ϕ, pr ). The role of G p is played by rotations, which preserve L, i.e.

rotations about the z-axis alone (SO(2) ⊂ SO(3)). The equivalence on orbits of the action

is (r, ϕ, pr ) ∼ (r, ϕ + a, pr ) so that the factorization gives M̂p ≡ M̂L
∼= R

2(r, pr ). The

symplectic form in the initial R6 was ω = dpr ∧ dr + dpϑ ∧ dϑ + dpϕ ∧ dϕ; its restriction

to ML is then ω̃ = dpr ∧ dr , being invariant as well as horizontal with respect to the

generator ∂ϕ of the group SO(2); on M̂L we have at last ω̂ = dpr ∧ dr . Finally, the restriction

of the Hamiltonian is (pϑ �→ 0, pϕ �→ L ≡ constant)

H (r, p) = p2

2μ
+ U (r ) ≡ p2

r

2μ
+ p2

ϑ

2μr2 sin2 ϑ
+ p2

ϕ

2μr2
+ U (r ) �→ p2

r

2μ
+ L2

2μr2
+ U (r )

�

18.4.17 Consider a Hamiltonian system given by the phase space R
6[r, p] (a single point

with a “position vector” r) with the symplectic form ω = dp. ∧ dr and the Hamiltonian
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H (r, p) = p2/2m + mgz (so we are speaking about a motion of a point mass in a homoge-

neous gravitational field). Check that

(i) the translations in horizontal directions turn out to be symmetries of the system

(ii) the reduced Hamiltonian system (with respect to this symmetry) is R
2[z, p] with the symplectic

form ω̂ = dp ∧ dz and the Hamiltonian H (z, p) = p2/2m + mgz; so this is a motion of a point

mass in the homogeneous gravitational field, where the (irrelevant = horizontal) degrees of
freedom (x, y) are ignored and only the relevant (= vertical) part of the problem survives.

Hint: the lifted action and the moment map read:

lifted action (x, y, z, px , py, pz) �→ (x + ax , y + ay, z, px , py, pz)

moment map (x, y, z, px , py, pz) �→ (px , py) ∈ R
2 ∼ G∗

so that Mp ∼ R
4[x, y, z, pz]. The group is commutative, consequently G p is the whole

group G = R
2[a] and the factorization is performed according to the equivalence given by

(x, y, z, pz) ∼ (x + ax , y + ay, z, pz); what remains is M̂p ∼ R
2[z, pz]. Restriction of ω

to Mp ∼ R
4[x, y, z, pz] is ω̃ = dpz ∧ dz and it gives ω̂ = dpz ∧ dz. Finally, the restriction

of H leads to Ĥ (z, pz) = p2
z /2m + mgz. �

18.5 Time-dependent Hamiltonian, action integral

• The whole time we treated Hamiltonian dynamics (in Chapters 14, 17 and 18) we tacitly

assumed that the Hamiltonian (the generator of a dynamical field) does not depend on time.

It was namely a function on a symplectic manifold, or in canonical coordinates a function

of the variables (q, p) and not of t . From a course on analytical mechanics we know,

however, that in Hamilton’s (as well as Lagrange’s) equations one does not assume a priori

that a Hamiltonian (Lagrangian) does not depend on time; in general Hamilton’s equations

read

q̇a = ∂ H (q, p, t)

∂pa
ṗa = −∂ H (q, p, t)

∂qa
a = 1, . . . n

and similarly Lagrange’s equations

d

dt

∂L(q, q̇, t)

∂q̇a
− ∂L(q, q̇, t)

∂qa
= 0 a = 1, . . . n

are not attempting at all to hide a possible dependence of L(q, q̇, t) on time. Then how

should this possibility be incorporated into our geometrical contemplations?

First of all, we need to say on which manifold the Hamiltonian actually is defined, if

its coordinate presentation is H (q, p, t). A minimal modification of the approach adopted

up to now consists in an assumption394 that a mere extension of the original symplectic

manifold by the time axis takes place, i.e. that we consider as an extended phase space the

Cartesian product of manifolds T ∗M × R[t]; the needed set (qa, pa, t) then clearly may be

used as local coordinates on such a direct product.

394 There is also an alternative approach based on so-called jet manifolds.
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18.5.1 According to (2.2.14), each vector field on T ∗M × R may be regarded as a sum of

two particular vector fields, a field “along T ∗M” and a field “along R”; since our local co-

ordinates (qa, pa, t) happen to be adapted to the product structure of the resulting manifold,

the decomposition in coordinates reads

W = Aa(q, p, t)
∂

∂xa
+ Ba(q, p, t)

∂

∂pa
+ C(q, p, t)

∂

∂t
≡ W0 + C(q, p, t)∂t

Be sure to understand that if we are now interested in a dynamical vector field � whose

integral curves are of the form t �→ (qa(t), pa(t), t),
where in addition

q̇a = ∂ H (q, p, t)

∂pa
ṗa = −∂ H (q, p, t)

∂qa

holds, i.e. they are curves which are parametrized

by the time t (being one of the coordinates) and

qa(t), pa(t) satisfy Hamilton’s equations, then the

field � is

� = ∂ H (q, p, t)

∂pa

∂

∂xa
− ∂ H (q, p, t)

∂qa

∂

∂pa
+ ∂t ≡ �0 + ∂t

so that the first part, denoted by �0, looks like a Hamiltonian field generated by the function

H (its components depending, however, on time) plus there is a simple term ∂t added.

Hint: in general, the parameter of an integral curve of W is some s and we have (among

others) the equation ṫ = C (where the dot denotes a derivative with respect to the parameter,

i.e. s); since we now have s = t , the equation is ṫ = dt/dt = 1 and C = 1 (note that this

may also be written as i� dt = 0).

18.5.2 Denote by π1 : T ∗M × R → T ∗M projection to the first factor of the product

and by ω̂ ≡ d θ̂ := π∗
1 ω ≡ dπ∗

1 θ the pull-back of the canonical symplectic form ω to the

extended phase space T ∗M × R. Check that

(i) the form ω̂ has a coordinate expression

ω̂ = dpa ∧ dqa i.e. formally the same as ω has on T ∗ M

(ii) the projection �0 of the vector field � satisfies the equation for the “Hamiltonian” field generated

by the function H

i�0
ω̂ = −d0 H

where d0 is a part of the exterior derivative d which “does not see the coordinate t” (as if d were

performed on the factor T ∗ M alone), so that the full d H is given as d H ≡ d0 H + (∂t H ) dt ; d0

is a counterpart of the spatial exterior derivative d̂ in Minkowski space (16.1.3).

Hint: coordinates. �
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• So we know already more or less what a geometrical expression of Hamilton’s equations

might look like; all that is needed is just to rewrite it in terms of “complete” objects �, d
instead of �0, d0.

18.5.3 Check that integral curves of the dynamical field � ≡ �0 + ∂t correspond to solu-

tions of Hamilton’s equations if and only if � satisfies the equation

i�(ω̂ − d H ∧ dt) ≡ i�d(θ̂ − H dt) = 0

so that we may finally write the geometrical version of Hamilton’s equations (for the

Hamiltonian possibly depending on time) in the form

γ̇ = � i�(ω̂ − d H ∧ dt) ≡ i�d(θ̂ − H dt) = 0 i�dt = 1

Hint: 0 = i�(ω̂ − d H ∧ dt) = i�0
ω̂ − (�H ) dt + d H = i�0

ω̂ + d0 H − (�0 H ) dt ; two
equations result from this: i�0

ω̂ = −d0 H (exactly what we need) and �0 H = 0, being,

however, just a consequence of the first one (apply i�0
on the first equation). �

• We see that from behind Hamilton’s equations on extended phase space T ∗M × R all

of a sudden the (apparently important) 1-form

θ̂ − H dt ≡ pa dqa − H (q, p, t) dt ≡ “p dq − H dt”

unexpectedly arose.

18.5.4 Check that the exterior derivative of the 1-form θ̂ − H dt has maximum rank

(namely 2n).

Hint: for example, write it down in components and examine how the coordinate basis is

mapped. �

• A 1-form in odd-dimensional space (dim = 2n + 1), whose exterior derivative has max-

imum rank (2n) is called a contact form and it defines a contact structure on a manifold.

This turns out to be an important structure with numerous applications. We will, however,

no longer encounter it in this book and it is mentioned just for completeness.395

There is yet another reason for being interested in the 1-form p dq − H dt . Imagine we

would like to derive Hamilton’s (or Lagrange’s) equations from a variational principle. An

action integral should be a line integral (an extremal curve is to be found), consequently

some (yet unknown) distinguished 1-form, closely related to the resulting equations, has

to be under the integral sign. The form (18.5.3) of the equations offers, however, just a
single 1-form, namely p dq − H dt . So the idea that it is just p dq − H dt which is to be

integrated along γ in order to obtain an action integral for the Hamilton equations looks

fairly promising. Come on, let’s have a look.

18.5.5 Define a functional on curves on the extended phase space

S[γ ] =
∫

γ

(θ̂ − H dt) ≡
∫

γ

(p dq − H dt) ≡
t2∫

t1

{pa(t)q̇a(t) − H (q(t), p(t), t)} dt

395 Arnold’s book is highly recommended for learning more.
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Check that appropriate extremals of this functional indeed coincide with solutions of

Hamilton’s equations and find out what exactly should be kept fixed in order make the

statement true.

Solution: a standard procedure in analytical mechanics looks as follows:

δ

∫ t2

t1

(paq̇a − H ) dt =
∫ t2

t1

(δpaq̇a + paδq̇a − δH ) dt

=
∫ t2

t1

{

δpa

(

q̇a − ∂ H

∂pa

)

+ δqa

(

− ṗa − ∂ H

∂qa

)}

dt + [paδqa]t2
t1

so if qa in times t1 and t2 are fixed in the course of variation (note that nothing special is

required though from pa), the condition of extremum results in the validity of Hamilton’s

equations; geometrically a procedure of variation might look (for injective γ ) as follows:396

a new curve is produced by an infinitesimal shift realized by means of a flow of a vector
field ξ : γ �→ γε ≡ 
ε ◦ γ . The field ξ should be everywhere tangent to T ∗M (it is to

produce changes of q, p at a given time instant, so that ξ = ξ a(q, p)∂a + ξ̂a(q, p)∂a + 0∂t ).

Then,

S[γε] =
∫


ε◦γ

(θ̂ − H dt) =
∫

γ


∗
ε (θ̂ − H dt)

= S[γ ] + ε

∫

γ

Lξ (θ̂ − H dt) = S[γ ] + ε

∫

γ

(iξ d + diξ )(θ̂ − H dt)

= S[γ ] + ε

∫

γ

iξ (ω̂ − d H ∧ dt) +
∫

∂γ

iξ θ̂

= S[γ ] + ε

∫

γ

iξ (ω̂ − d H ∧ dt) + ε[paξ
a(q, p)]t2

t1

Now if we ensure ξ a(q, p)|t1 = ξ a(q, p)|t2 = 0 (so that qa are not varied at the ends) and

we require vanishing of the first-order contribution, we get iγ̇ iξ (ω̂ − d H ∧ dt) = 0 for each

ξ ⇒ iγ̇ (ω̂ − d H ∧ dt) = 0, which are already Hamilton equations due to (18.5.3). �

• Now let us have a look at how the corresponding action might work in the Lagrangian

case.

18.5.6 Consider a curve γ (t) in configuration space M . Let γ̂ (t) be its natural lift to T M
(17.5.1) and denote by the same letter also its lift to the extended “phase” space T M × R,

i.e. t �→ (γ̂ (t), t) ≡ γ̂ (t). Denote further by hats pull-backs of θL and EL with respect to

the natural projection π1 : T M × R → T M and finally define a functional on curves γ in

the configuration space as

S[γ ] :=
∫

γ̂

(θ̂L − ÊL dt)

396 Notice that no particular technical simplification occurs in the geometrical version here. This method of reasoning is, however,
often useful for variations of more complicated functionals.



522 Hamiltonian and Lagrangian equations

Put another way, we use the well-established model for the “Hamiltonian” action (18.5.4),

but we consider this action only for those curves which are lifts397 from M . Check that

if we work out the action in more detail, we get the standard expression for the action in

Lagrangian mechanics

S[γ ] ≡
∫

γ̂

(θ̂L − ÊL dt) =
∫ t2

t1

L(q(t), q̇(t), t) dt

Solution: the hatted objects have the same coordinate expressions as they had on T M ; then

S[γ ] =
∫

γ̂

{
∂L

∂va
dxa −

(

va ∂L

∂va
− L

)

dt

}

=
∫

γ̂

∂L

∂va
(dxa − vadt) +

∫

γ̂

Ldt

=
∫

γ̂

L dt ≡
∫ t2

t1

L(q(t), q̇(t), t) dt

since the 1-form (dxa − vadt) vanishes on any natural lift. �

Summary of Chapter 18

It is shown how classical mechanics may be formulated on T M and T ∗M . In the non-

degenerate case, both dynamics turn out to be completely equivalent geometrically: they

realize a standard “symplectic” dynamics we studied in Chapter 14, i.e. a motion along

integral curves of the Hamiltonian field. On T ∗M the canonical symplectic structure is

available from the outset so that the choice of a function H is the only step to be made.

On T M the situation is a bit more complicated; rather than a symplectic form there is a

canonical
(

1
1

)
-type tensor field available and the required symplectic structure is given only

after the latter is combined with the (non-degenerate) Lagrangian, regarded as a function on

T M . The standard Lagrange equations result by the projection of the symplectic dynamics

onto the base M . The projection adds one order, so that the final equations are second-order

differential equations on M . Hamilton’s equations live directly on the total space T ∗M and

that is why they are (as is always the case for equations for integral curves) only first-order

differential equations. Making use of the Lagrangian L one may construct the Legendre map

T M → T ∗M , which serves as a bridge between the two dynamics. If the Hamiltonian (or

Lagrangian) depends explicitly on time, a modification of the formalism is needed since the

carrier manifold is now odd-dimensional. The distinguished 1-form p dq − H dt enters

the equations and it turns out that this form also plays a decisive role in a construction of

the action functional.

θL := S(d L), ωL := dθL Cartan 1-form, Cartan 2-form (18.2.3)

EL := �L − L Energy corresponding to the Lagrangian L Sec. 18.2

γ̇ = ζEL , iζEL
ωL = −d EL Lagrange’s equations (on T M yet) (18.2.6)

397 This was not possible in T ∗ M since there is no natural way to lift curves from M to T ∗ M .
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〈L̂(v), w〉 := (d/dt)|0 L(v + tw) Legendre map L̂ : T M → T ∗ M (18.3.1)

L̂ ◦ 
L
t = 
H

t Lagrangian and Hamiltonian flows related (18.3.4)

T Rg, T ∗ Rg−1 Lifts of action Rg on M to T M and T ∗ M (18.4.1)

ξ̃X Generators of the lifted actions (18.4.1)

PX = 〈θL , ξ̃X 〉, PX = 〈θ, ξ̃X 〉 “Hamiltonians” of the lifted actions (18.4.1)

L = 1

2

◦
g −

◦
φ Natural Lagrangian on T M (18.4.6)

∫

γ

(θ̂ − H dt) ≡
∫

γ

(p dq − H dt) Action integral for the Hamiltonian dynamics (18.5.6)

∫

γ̂

(θ̂L − ÊL dt) ≡
∫ t2

t1

L(γ̂ (t)) dt Action integral for the Lagrangian dynamics (18.5.6)
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Linear connection and the frame bundle

• In this chapter we begin with a systematic study of connections in principal bundles,

which have numerous important applications in modern theoretical physics (gauge field
theory representing the most prominent application). This theory deals with concepts

which are fairly simple, yet not sufficiently motivated for a beginner in the field. There-

fore in our presentation a whole chapter is devoted first to one particular case – the linear
connection. Although this topic is already well known from Chapter 15, here we adopt

a brand new approach. It turns out that the novel point of view on the good old lin-

ear connection clearly indicates a direction towards a straightforward, albeit far-reaching

generalization. This results in an elegant and powerful conceptual framework unifying

such seemingly different structures as those represented by linear connection and gauge

fields.

19.1 Frame bundle π : L M → M

• A novel point of view on the good old linear connection on (M, ∇) consists in expressing

the fundamental concepts of the theory in terms of a larger manifold, which is denoted

by L M and which may be canonically associated with any manifold M . This manifold

is automatically endowed with some structure (due to the way it is constructed; recall a

similar situation for T M and T ∗M). If there is a connection on M , however, the structure

becomes even richer and it affords the opportunity of the complete reformulation of the

concept of connection on M in terms of the new structure on L M . (This reformulation turns

out to be particularly convenient from the perspective of a generalization.) We will see that

contrary to the description of a connection on M , where we are forced to describe it locally

(on appropriate pieces and set the rules for how to glue the pieces on overlaps), on L M
connections may be described explicitly globally, in terms of a (single global) connection

form.

So the first step to be done is to introduce the concept of a frame bundle π : L M → M
and to learn the structures which are available there already prior to adding a connection

on M .

524
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19.1.1 Consider (so far only) the set L M of all frames e(x) at all points x of a manifold

M

L M :=
⋃

x∈M,e

e(x) e(x) ↔ ea(x) − a frame in Tx M

Show that this set may be naturally endowed with the structure of a smooth manifold of

dimension n + n2 (provided that M has dimension n). This manifold will be called the

manifold of frames and denoted by L M .

Hint: let xi be local coordinates on O ⊂ M and e(x) a frame field defined on the same O.

Then for an arbitrary frame E in x we may write

E = e(x)y i.e. Ea = eb(x)yb
a

for a unique non-singular matrix y ∈ GL(n, R) ⇒ (xi , ya
b ) may serve as coordinates in

the domain Ô := ⋃
x∈O,e e(x) ≡ LO. If in O′ ⊂ M we have local coordinates x ′i and a

frame field e′(x), such that on the overlap O ∩ O′ there holds x ′ = x ′(x) and e′ = eA (i.e.

e′
a(x) = Ab

a(x)eb(x)), then

E = ey = e′y′ ⇒ (x, y) �→ (x ′(x), y′(x, y) ≡ A−1(x)y)

⇒ we have smooth relations. Check the non-vanishing Jacobian ∂(x ′, y′)/∂(x, y); it is

useful to compare all of this with problems (17.1.2) and (17.1.5), where T M and T ∗M
were constructed. �

• We thus see that in our list of larger manifolds which may be canonically assigned to

a manifold M , we may add to T M and T ∗M from Chapter 17 our largest trophy up to

now, the (n + n2)-dimensional manifold L M . And in like manner as we revealed additional

structure on T M and T ∗M , we will find it here, too.

19.1.2 Define a map

π : L M → M e(x) �→ x

i.e. we assign to a frame e(x) in (the tangent space of) a point x just the point x itself. Check

that

(i) it is a smooth map with a coordinate presentation398

π :
(
xi , ya

b

) �→ xi

(ii) for arbitrary x the preimage π−1(x) is diffeomorphic to GL(n, R) (so that for any two points

x, x ′ ∈ M , π−1(x) and π−1(x ′) are diffeomorphic to each other).

398 Recall that a single symbol xi actually denotes as many as two distinct objects, local coordinates on M as well as (a part of)
the coordinates on L M ; thus the functions xi on the right differ from those on the left in this expression.
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We see that we have obtained a fiber bundle (see Section 17.2) with total space L M , base

M , canonical projection π and typical fiber GL(n, R). The bundle π : L M → M is called

the frame bundle.

Hint: (ii) a diffeomorphism is (xi , ya
b ) ↔ ya

b (with fixed xi ). �

• A part of the structure on L M thus simply consists in the bundle structure. There is,

however, more structure than this. Namely there is a natural action of the group GL(n, R).

19.1.3 Let π : L M → M be the frame bundle.

Show that on the manifold L M there is a natural

structure of a right GL(n, R)-space which is more-

over compatible with the fibration, i.e. in more detail

that

(i) if A ∈ GL(n, R), then the map

RA : L M → L M e �→ RAe = eA

is a right action of GL(n, R) on L M
(ii) in coordinates (xi , ya

b ) it reads

RA :
(
xi , ya

b

) �→
(

x ′i , y′a
b

)
≡ (

xi , ya
c Ac

b

)

i.e.
(
x ′, y′) = (x, y A)

(iii) the action is free ((13.4.14), all stationary subgroups happen to be trivial) and transitive in a fiber
(iv) the action is vertical,

π ◦ RA = π

i.e. it always transforms the points of L M within their own fiber (in the picture this is the vertical

dashed line). �

• A fiber bundle whose total space is a right G-space, fibers are diffeomorphic to a

group G, the action is vertical, free and in a fiber transitive (so that each fiber represents a

principal homogeneous space of the group G, see (13.2.7)), is called a principal G-bundle
or a principal fibered manifold with a group G. The frame bundle is a paradigmatic example

of a principal GL(n, R)-bundle.

In the total space of an arbitrary fiber bundle the natural concept of vertical vectors and a

vertical subspace in each tangent space arises. Recall (see Section 17.4) that a vector is said

to be vertical if it is projected to the zero vector (the vertical subspace thus coincides with

the kernel of the linear map π∗). This concept has some specific features on L M (as well

as on an arbitrary principal G-bundle, see (20.2.2)) resulting from a relation to the action

of the group.

19.1.4 Denote by ξC the fundamental field of the action RA, which corresponds to an

element C ∈ gl(n, R). Check that
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(i) in coordinates (xi , ya
b ) it explicitly reads

ξC = (yC)a
b∂

b
a ≡ Ca

b ξEb
a

ξEa
b

= yc
b∂

a
c ∂a

c ≡ ∂

∂yc
a

and that the map C �→ ξC is indeed a representation of the Lie algebra gl(n, R), i.e. that

ξC+λD = ξC + λξD ξ[C,D] = [ξC , ξD]

(ii) there holds

π∗∂i = ∂i π∗∂a
b = 0

(in the first equation ∂i on the left are vectors on L M and on the right on M)

(iii) at each point e ∈ L M the fundamental fields ξEa
b

constitute a basis of the vertical subspace

Ver e L M := Ker π∗

(iv) an arbitrary vertical vector in e ∈ L M may be written in the form ξC for an appropriate unique
C ∈ gl(n, R).

Hint: (iii) we have ∂a
b = (y−1)c

bξEa
c

and ∂a
b is (according to (ii)) a basis (⇒ the number of

vectors ξEa
c

is sufficient); (iv) a consequence of items (i) and (iii). �

19.2 Connection form on L M

• Recall deep into the past how we described a linear connection on M . If a frame field

e(x) was available in a domain O ⊂ M , we characterized the connection in this domain

by a set of connection 1-forms399 ω̂a
b with respect to the field ea(x) (15.6.1). In order to

describe a global connection on the manifold M we thus need a covering of the manifold by

open domains Oα along with locally defined connection 1-forms; on each overlap O ∩ O′

the compatibility of the system is ensured by the relations (15.6.2)

e′ = eA ⇒ ω̂′ = A−1ω̂A + A−1 d A

So the geometrical object under consideration, a linear connection ∇ on M , is global, but

its description turns out to be local (on patches and gluing rules). Here we will learn how

by passing to a larger space, to a manifold L M , we can describe a connection in terms of a
single global 1-form.

19.2.1 Let ω̂ be connection forms of a connection ∇ with respect to a frame field e(x)

living in a domain O and let (xi , ya
b ) be local coordinates in Ô ≡ π−1(O) which are tai-

lored to the frame field e(x) (19.1.1). In Ô define a square matrix with 1-form entries as

follows:

ωO ≡ ω := y−1(π∗ω̂)y + y−1 dy

or in detail ωa
b := (y−1)a

c

(
π∗ω̂c

d

)
yd

b + (y−1)a
c dyc

b

399 Connection forms ωa
b (on M) introduced in Chapter 15 will be denoted by ω̂a

b here, whereas the hats will be omitted on
corresponding forms on L M (to be introduced in a while, see (19.2.1)).
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Check that

(i) if the same is repeated in a domain O′ with a frame field e′ and coordinates (x ′i , y′a
b) tailored

to the primed frame field, then on the overlap Ô ∩ Ô′ we have (assuming that e′ = eA(x) holds

there)

ωO = ωO′

(ii) this result actually says that there is a global matrix400 1-form on L M

ω ≡ ωa
b Eb

a ∈ �1(L M, gl(n, R))

We will call this global gl(n, R)-valued 1-form ω on L M the connection form.

Hint: (i) making use of (19.1.3) and (15.6.2) we get

ωO′ := y′−1
(π∗ω̂′)y′ + y′−1dy′

= (A−1 y)−1(π∗(A−1ω̂A + A−1d A))A−1 y + (A−1 y)−1d(A−1 y) = · · ·
= ωO

(notice that the coordinate expressions of π∗ω̂ and π∗ A coincide with ω̂ and A respectively);

(ii) in each particular domain Ôwe have ω := ωO; a computation confirms that the definition

does not depend on the choice of coordinates and a frame field on O. �

• Making use of (in general several) local 1-forms ω̂O on (parts of) M we succeeded in

constructing a single global 1-form ω on (the whole) L M . It is moreover always possible

to pass (in both directions) between the two descriptions of connection in case of need. We

will see now how the forms ω̂O may be reobtained, if ω is available. The concept of a local
section introduced in Section 17.2 proves to be useful for this purpose.

19.2.2 Check that

(i) local sections

σ : O → L M

of the frame bundle π : L M → M are in one-to-one correspondence with frame fields onO ⊂ M
(ii) if σ ↔ e(x) ↔ (xi , ya

b ), then the coordinate presentation of the section itself is

xi �→ (
xi , ya

b = δa
b

)
i.e. xi (x) = xi ya

b (x) = δa
b

Hint: (i) e(x) = σ (x); see (17.3.8); (ii) the definition of coordinates (xi , ya
b ) and the concept

of a section. �

19.2.3 Let σ : O → L M be a local section, e(x) the corresponding frame field on O,

ω̂ a connection form (on O ⊂ M) with respect to e(x) and ω ∈ �1(L M, gl(n, R)) the

400 We see from the notation �1(L M, gl(n, R)) that the space of n × n matrices, in which the form has values (and in which also
the form ω̂ onO has its values), is regarded as the Lie algebra of such matrices. Although nothing forces us to this interpretation
so far, it will prove to be convenient later on.
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connection form on L M . Check that

ω̂ = σ ∗ω

Hint: in π−1(O) we have ω = y−1(π∗ω̂)y + y−1 dy and the section reads in coordinates

(19.2.2) σ : xi �→ (xi , ya
b = δa

b ); hence σ ∗ω = σ ∗π∗ω̂ = (π ◦ σ )∗ω̂ ≡ ω̂. �

• So we see that the information content in a single (matrix-valued) form ω on L M is the

same as it is in the totality of all local (matrix-valued) forms ω̂ on M . The “translation”

in the “upward” direction (from M to L M) may be performed according to (19.2.1), the

“downward” direction (from L M to M) is performed via pull-back with respect to a local

section according to (19.2.3).

Now let us have a look at two important properties of a connection form ω.

19.2.4 Check that a connection form ω

(i) is of type Ad, i.e. it behaves with respect to the action RA of the group GL(n, R) on L M as

follows:

R∗
Aω = AdA−1ω ≡ A−1ωA

or in more detail

(
R∗

Aωa
b

)
Eb

a = ωa
b

(
A−1 Eb

a A
)

so that R∗
Aωa

b = (A−1)a
cω

c
d Ad

b

(ii) satisfies the identity

〈ω, ξC 〉 = C

where ξC is the fundamental field of the action RA corresponding to the element C ∈ gl(n, R)

(iii) also satisfies the derived identities

LξC ω = −adCω ≡ − [C, ω] iξC ω = C

iξC dω = −[C, ω]

Hint: (i), (ii) a direct computation in coordinates, (19.1.3), (19.1.4) and (19.2.1); (iii) the

first is an infinitesimal version of item (i) (set A(t) = exp(tC) and differentiate at zero) and

the third is a combination of the first two (6.2.8). �

• So far we have learned that a connection on a manifold M induces on L M a global

gl(n, R)-valued 1-form ω. As we will see shortly this form may be interpreted visually in

terms of a “horizontal distribution” on L M . The concept of a distribution itself (along with

its integrability) may be ranked among the most important geometrical notions, being an

extremely useful instrument in numerous contexts (curvature of a connection, integrability

conditions for systems of differential equations, various kinds of adapted coordinates, ther-

modynamics, etc.). The next section may be regarded as a short digression worked into the

main narrative, in which basic notions of the theory of smooth distributions401 on manifolds

will be presented.

401 Caution: the distributions treated here are something completely different from the distributions also known as generalized
functions (such as the Dirac δ-function).
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19.3 k-dimensional distribution D on a manifold M
• Consider an n-dimensional manifold M. At each point there is an n-dimensional linear

space Tx M , the tangent space at x . Imagine we fix a k-dimensional subspace in each of

these spaces (k being the same for all the points of the manifold)

Dx ⊂ Tx M dimDx = k

If these subspaces depend smoothly on x (we will see in a moment what this means pre-

cisely), we say that a k-dimensional smooth distribution was defined on M .

For example, this occurs when the manifold is “stratified” into k-dimensional subman-

ifolds: we may then take as Dx the space of those vectors in x which are tangent to the

submanifold (they are represented by curves along

the submanifold). If, say, the air in a room is strati-

fied into two-dimensional surfaces of constant tem-

perature, at each point x in the room we get a two-

dimensional subspace of vectors which are tangent

to the surface passing through x ; we thus obtain a

two-dimensional distribution in a three-dimensional

domain. For applications (in particular, in the the-

ory of connections), however, the opposite situa-

tion turns out to be much more interesting: a k-

dimensional distribution on M is given and we look

for such a stratification of M to k-dimensional submanifolds (exactly one submanifold Sx

is to pass through each point x ∈ M), which “interlock” (integrate) neighboring subspaces

into a single whole (called an integral submanifold). If the distribution happens to be smooth

(the choice of a subspace smoothly depends on the point), one might expect that integral

submanifolds should necessarily exist. It turns out, however, that life is not so easy (and

boring). There are two classes of distributions, integrable (when the integral submanifolds

do exist) and non-integrable (when they do not exist) and a simple (Frobenius) criterion

exists, which enables us to test the integrability of each particular distribution. In order to

formulate the criterion we have first to learn two basic approaches for the description of

distributions themselves.

We begin with a discussion of subspaces in a given n-dimensional linear space L . Imag-

ine we want to characterize technically a k-dimensional subspace W ⊂ L . The first idea

might be to fix a basis in the subspace, i.e. to choose k linearly independent vectors in W .

There is, however, also another possibility, in which (linearly independent) covectors are

used. A subspace W may be namely thought of as consisting of those vectors in L which

annihilate all the covectors under consideration, i.e. which vanish when inserted into the

covectors.

19.3.1 Let L be an n-dimensional linear space and α ∈ L∗ be a covector (1-form). Check

that
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(i) the set W̃ of vectors which annihilate the covector α, i.e.

W̃ := {w ∈ L | 〈α, w〉 = 0}
is actually an (n − 1)-dimensional subspace of the space L; the covector α is then called a

constraint 1-form for W̃
(ii) if β is another covector in L which is linearly independent of α, then the set Ŵ of vectors which

annihilate both the covectors is actually an (n − 2)-dimensional subspace of L and moreover

Ŵ ⊂ W̃ ⊂ L

(iii) if there are q linearly independent covectors in L , then their annihilator (the set of vectors which

annihilate all of these covectors) turns out to be an (n − q)-dimensional subspace in L .

Hint: (i) set α = e1 and complete arbitrarily to a basis in L∗; if ea is the dual basis in L , then

W̃ consists of exactly those vectors w = waea for which w1 = 0; (ii) set α = e1, β = e2,

etc. and complete arbitrarily; vectors from Ŵ then have w1 = w2 = 0; (iii) we call them

e1, . . . , eq , etc. �

19.3.2 Consider an n-dimensional linear space L with a k-dimensional subspace W ⊂ L .

Let ea = (eα, ei ) be a basis in L which is adapted to the subspace W , i.e. eα ∈ W , α =
1, . . . , k. Check that

(i) if (eα, ei ) is the dual basis, then the covectors ei (i = k + 1, . . . , n) define (as constraint 1-forms)

the same subspace W
(ii) the subspace W is not changed if we scramble the vectors eα by an arbitrary non-singular k × k-

matrix Aα
β or the covectors ei by an arbitrary non-singular (n − k) × (n − k)-matrix Bi

j .

Hint: (i) from the definition of the dual basis 〈ei , eα〉 = 0; (ii) the subspace spanned by

e′
α ≡ Aβ

αeβ coincides with the original subspace W , the covectors e′i ≡ Bi
j e

j annihilate

just linear combinations of the vectors eα . �

• We see that there is a considerable freedom (given by a matrix A ∈ GL(k, R) or

B ∈ GL(n − k, R)) in fixing a subspace using either the system of k vectors or (n − k)

covectors. The freedom may be greatly reduced if a single special (decomposable) (n − k)-

form (related to the exterior product of the initial 1-forms) is used instead of (n − k) 1-forms.

We will not, however, pursue this possibility in more detail, since we will not need it in the

future work with distributions.

Now it is already clear how a k-dimensional distribution D on a domain O on a manifold
M might be described. In the first approach one should fix k linearly independent vectors

at each point of the domain, i.e. specify k vector fields eα , α = 1, . . . , k in O, such that their

values are linearly independent at each point. Provided that the fields moreover happen to

be smooth, we speak about a smooth distribution in a domain O. The other possibility is to

specify (n − k) constraint 1-forms θ i , i = k + 1, . . . , n; again, they should be smooth and

at each point linearly independent. We say that a vector field V belongs to the distribution
D (and write V ∈ D), if at each point of the domain O the value Vx of the field belongs to

the subspace Dx , given by the distribution.
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19.3.3 Let a k-dimensional distribution D in a domain O be given by vector fields eα or,

alternatively, by constraint 1-forms θ i . Be sure to understand that then 〈θ i , eα〉 = 0 and

V ∈ D ⇔ V = V α(x)eα ⇔ 〈θ i , V 〉 = 0 �

19.3.4 Consider a two-dimensional smooth distribution D in R
3 given by the constraint

1-form

θ3 ≡ θ := dz + x dy − y dx ≡ dz + r2 dϕ

(the expression in cylindrical coordinates (r, ϕ, z) holds, of course, only at their points of

applicability). Check that

(i) if a, b, c ∈ F(R3) and V ≡ a∂x + b∂y + c∂z , then

V ∈ D ⇔ c = ya − xb ⇔ V = a(∂x + y∂z) + b(∂y − x∂z)

(ii) we may choose as eα the fields

e1 = ∂x + y∂z e2 = ∂y − x∂z

Hint: (i) solve 〈dz + x dy − y dx, a∂x + b∂y + c∂z〉 = 0. �

• It turns out that this distribution is actually more interesting than we might expect at

first sight; it is namely non-integrable. In the following problem we will first check this fact

in a direct way; after introducing a formal Frobenius criterion we will confirm this result

once again.

19.3.5 Consider the two-dimensional distribution D from problem (19.3.4). Verify that

this distribution is not integrable. In order to do this check that

(i) the subspaces Dx are nowhere “vertical,” so that any potential integral submanifold S would be

necessarily a two-dimensional surface which may be expressed in the form z = f (x, y)

(ii) if we contemplate a curve γ (t), which lies in such a surface and whose projection to the (x, y)-

plane happens to be a loop (closed curve) γ̂ (t), then we can deduce that also the curve γ (t) itself
is a loop

(iii) if π : (x, y, z) �→ (x, y) is the projection of R
3 to the (x, y)-plane, then the curve γ may be

reconstructed from the projection γ̂ by the requirements

π ◦ γ = γ̂ 〈θ, γ̇ 〉 = 0 z(t0) = z0

(iv) if we reconstruct in this way the curve γ (t), whose projection is the circle (i.e. a loop)

x(t) = R cos t y(t) = R sin t

we get the helix (�= a loop)

x(t) = R cos t y(t) = R sin t z(t) = z(0) − R2t

(v) this shows (by contradiction) that there is actually no integral submanifold S of D ⇒ D is

non-integrable.
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Hint: (i) ∂z /∈ D; (ii) trivial; (iii) the definition of an integral submanifold and constraint

forms. �

• Now we will learn (omitting the proof), what Frobenius’ theorem (criterion) says about

the integrability of a smooth distribution. The theorem exists in two equivalent versions,

reflecting the two ways of specifying distributions. In terms of vector fields it says that a

distribution D is integrable if and only if the commutator of arbitrary vector fields from D
also belongs to D:

D is integrable ⇔ {U, V ∈ D ⇒ [U, V ] ∈ D}
19.3.6 Check that if D is given by vector fields eα , α = 1, . . . , k, then we also have

D is integrable ⇔ [eα, eβ] = cρ
αβ(x)eρ α, β, ρ = 1, . . . , k

i.e. if and only if each commutator of the fields eα may also be expressed in terms of the

fields themselves.

Hint: each commutator [eα, eβ] should belong to D; see (19.3.3). �

19.3.7 Check that (also) according to Frobenius’ integrability theorem the distribution D
from (19.3.4) and (19.3.5) turns out to be non-integrable.

Hint: [e1, e2] = −2∂z �= ae1 + be2. �

• In terms of constraint 1-forms θ i Frobenius’ theorem says that a distribution D is

integrable if and only if for arbitrary vectors U, V ∈ D there holds dθ i (U, V ) = 0, i.e. if

the restriction of all the 2-forms dθ i to the distribution D vanish:

D is integrable ⇔ {θ i |D = 0 ⇒ dθ i |D = 0} i.e. {U, V ∈ D ⇒ dθ i (U, V ) = 0}
19.3.8 Check that this formulation of Frobenius’ theorem is equivalent to the formulation

in terms of vector fields given above.

Hint: according to Cartan’s formulas (6.2.13) we have

dθ i (U, V ) = U 〈θ i , V 〉 − V 〈θ i , U 〉 − 〈θ i , [U, V ]〉
so, in particular, for U, V ∈ D this yields dθ i (U, V ) = −〈θ i , [U, V ]〉. �

19.3.9 Check that (also) according to this version of Frobenius’ integrability theorem the

distribution D from (19.3.4) is non-integrable.

Hint: dθ (e1, e2) = 2 (�= 0). �

• We also mention that the form version of Frobenius’ theorem may also be found as an

(equivalent) statement that D is integrable if and only if there are (n − k)2 1-forms σ i
j such

that dθ i = σ i
j ∧ θ j

D is integrable ⇔ {∃σ i
j : dθ i = σ i

j ∧ θ j
}
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19.3.10 Check that (also) according to this version of Frobenius’ integrability theorem

the distribution D from (19.3.4) is non-integrable.

Hint: dθ = 2dx ∧ dy �= σ ∧ θ for any 1-form σ (try σ = a dx + b dy + c dz and get a

contradiction). �

• We may illustrate Frobenius’ theorem by applying it to a derivation of the integrability

conditions of a system of first-order partial differential equations of the form

∂α yi = f i
α(x, y) i = 1, . . . , m; α = 1, . . . , n

for m unknown functions yi ≡ y1, . . . , ym , depending on n coordinates xα ≡ x1, . . . , xn;

the functions f i
α on the right-hand side are regarded as being given and they may depend

on all xα as well as yi . Since we have altogether mn equations for m unknown functions,

the system is overdetermined (for n ≥ 2, i.e. if we indeed contemplate partial differential

equations) and it may possess no solution at all (the equations may turn out to be contra-

dictory). The exact form of consistency conditions for such a system may be obtained by

first expressing it in terms of distributions (we reformulate the problem as an integrabil-

ity problem for an appropriate distribution) and then solve it with the help of Frobenius’

theorem.

19.3.11
∗

Consider maps �̂ : A → B, whereA and

B are open domains in R
n[xα] and R

m[yi ] respec-

tively. In coordinates they are given by functions

yi (xα), which are just unknowns in the equations

under consideration. Next, define the map

� : A → A × B x �→ (x, �̂(x))

i.e. xα �→ (xα, yi (xα))

The graph of the map �̂, i.e. the image �(A), is ac-

cording to (1.4.10) a submanifold in A × B. Notice

also that actually we are dealing with a product bundle π : A × B → A (17.2.1), the map

� being its section (17.2.4) and the submanifold �(A) being the image (with respect to the

section) of the base in the total space of the bundle. Finally define the key element of the

construction, a distribution D on A × B, given by constraint 1-forms

θ i := dyi − f i
αdxα f i

α(x, y) being the right-hand sides of the system of equations

Check that

(i) the tangent space in an arbitrary point of the submanifold �(A) is spanned by a basis which is

constituted by the vectors

�∗∂α = ∂α + yi
,α∂i

(ii) the tangent space coincides with a subspace given by the distribution D if and only if

the functions yi (xα) happen to be solutions of the system of differential equations under
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consideration, yi
,α = f i

α

�∗TxA = D�(x) ⇔ yi (xα) are solutions of yi
,α = f i

α

(iii) to find a solution of the system is thus the same thing as to construct an integral submanifold S
of the distribution D (then �(A) = S)

(iv) the system of equations has a solution if and only if the distribution D is integrable.

Hint: (i) the definition of �∗ and �(A); (ii) check that 〈θ i , �∗∂α〉 = yi
,α − f i

α(x, y). �

• The question of whether there is a solution of the system of equations yi
,α = f i

α is thus

replaced by an equivalent question concerning the integrability of the distribution D. The

latter question may be, however, answered with the help of Frobenius’ theorem.

19.3.12
∗

Check that

(i) the distribution D from (19.3.11) is integrable (so that the system of differential equations

yi
,α = f i

α has a unique solution) if and only if the functions f i
α(x, y) satisfy the integrability

condition

f i
[α,β] = f j

[α f i
β], j

(ii) for n = 1 (for ordinary differential equations) the condition is automatically satisfied (so that

individual equations of the system of ordinary differential equations cannot be contradictory to

each other)

(iii) the system of two equations

∂ f

∂x
= f sin y

∂ f

∂y
= λ f x cos y λ ∈ R

for the unknown function f (x, y) has a solution only for λ = 1.

Hint: (i) a straightforward computation gives

dθ i = (
f i
α,β + f j

β f i
α, j

)
dxα ∧ dxβ + f i

α, j dxα ∧ θ j

which should be equal, according to Frobenius’ theorem, to σ i
j ∧ θ j ; since the forms dxα

and θ i constitute a basis, the decomposition of σ i
j with respect to this basis and a comparison

gives the needed result (plus an explicit form σ i
j = f i

α, j dxα); (ii) indices of the type α, β

take only a single value (so that the antisymmetrization trivially gives zero on both sides);

(iii) use the criterion from item (i).402 �

• In a particular case of a two-dimensional distribution in ordinary three-dimensional

Euclidean space E3 the integrability conditions may be expressed in the notation of vector

analysis.

19.3.13 A constraint 1-form θ of a two-dimensional distribution in ordinary three-

dimensional Euclidean space E3 has the form (as is the case for each 1-form in E3)

θ = A · dr,

402 An elementary method: the system may be written as F,x = sin y, F,y = λx cos y for F = ln f ; clearly F,xy = F,yx holds.
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so that it may be parametrized by a vector field A. Check that

(i) the distribution D given by this 1-form consists in each point of vectors which are perpendicular
to A

(ii) Frobenius’ integrability condition for D may be written, using the standard vector analysis nota-

tions, in the form

A · curl A = 0

Hint: (i) according to (8.5.8) there holds iB(A · dr) = B · A; (ii) according to the text after

(19.3.9) integrability is equivalent to the existence of a 1-form σ such that dθ = σ ∧ θ ; if

σ = C · dr, then due to (8.5.4) and (8.5.8) we obtain

curl A · dS = (C × A) · dS whence curl A = C × A

Justify that A · G = 0 is equivalent to G = C × A for some (not unique) C. �

• We can see from the examples (19.3.4) and (19.3.13) that on three-dimensional mani-

folds a two-dimensional distribution may not be integrable. One easily finds that the lowest

dimension of a manifold for which there is a chance for non-integrability is three and that

moreover at least the two-dimensional distribution is needed for that.

19.3.14 Be sure to understand that

(i) any one-dimensional distribution is necessarily integrable

(ii) on a two-dimensional manifold any distribution is necessarily integrable.

Hint: (i) restriction of dθ i to D vanishes by virtue of the dimension (restriction of a 2-

form to the one-dimensional space); (ii) potentially interesting are only one-dimensional

distributions. �

• An important application of integrable distributions is also encountered in thermody-
namics. Recall that the state of a thermodynamic system is characterized by several “gener-

alized coordinates” (x1, . . . , xn) and the temperature T (also serving as a coordinate xn+1).

Various processes may be regarded as curves in the space with coordinates (x1, . . . , xn, T ).

In the processes the heat Q may be absorbed and work A may be done. A computation

of these two quantities consists in performing line integrals of appropriate 1-forms along

the curves, which correspond to the processes, namely a heat 1-form d Q and a work
1-form d A,

Q =
∫

γ

d Q A =
∫

γ

d A d A = Xi dxi

(Xi are called “generalized forces” corresponding to generalized coordinates xi ). For ex-

ample, for an ideal gas we have n = 1 (such systems are called simple), the coordinate is

the volume V and the force is the pressure p, so that the work is given by the line integral

A ≡
∫

γ

d A =
∫

γ

p dV
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A small bar on d on 1-forms of heat and work indicates the important fact that the forms

are not exact – there are no state quantities (i.e. functions on a manifold with the above-

mentioned coordinates), which correspond to heat or work – both the heat and work corre-

spond to processes rather than states.

(For historical reasons, 1-forms are often called Pfaffian forms (or linear differential

forms) in thermodynamics and, in particular, exact 1-forms d f are called “exact differen-

tials” ( f being then a state quantity); the symbol d present in d Q and d A is related to the

infinitesimal nature of corresponding quantities (just as was the case with surface elements

d Si in integration theory) rather than with the action of the exterior derivative (gradient) d
(by means of integration of these 1-forms along infinitesimal curves we get infinitesimal

amounts of heat and work).)

According to the first law of thermodynamics, the 1-forms under consideration are related

by

d Q = d E +d A

(where E is a state quantity called the “internal energy”), i.e. upon integrating along a curve

γ which corresponds to the process, we get a condition expressing the balance of heat, work

and energy in the process

Q = E(γ (1)) − E(γ (0)) + A

(the heat absorbed in the process is used to change the internal energy and for performing

work).

A process in which no heat is absorbed is called an adiabatic process. Curves which

correspond to such processes (i.e. an adiabatic curve) thus have the property

iγ̇ d Q = 0

i.e. tangent vectors to the curves annihilate the heat 1-form. The subspaces of such vectors

constitute an n-dimensional distribution D on an (n + 1)-dimensional manifold, where

the life of the thermodynamic system under consideration is enacted. Integrability of the

distribution turns out to be an important issue. Namely, one of the formulations of the second
law of thermodynamics (originated by Carathéodory) says that this distribution is integrable.

Put another way, an arbitrarily small neighborhood of a point (i.e. state) contains points

which cannot be reached by an adiabatic process – the process namely “runs” (by definition)

within a single integral submanifold of the distribution, so that the (nearby) points which

do not reside in the same integral submanifold cannot be reached in this way. In order to

reach points on different integral submanifolds a process is needed in which a non-vanishing

amount of heat is absorbed (or released). One can show403 that from integrability of the

“adiabatic” distribution, i.e. from validity of Frobenius’ condition

d(d Q) = σ ∧d Q

403 The statement is that if a 1-form α satisfies the condition dα = σ ∧ α (i.e. the distribution defined by α is integrable), then
(locally) functions f, g exist such that α = f dg (in particular, for f = constant the form α is exact). Integral submanifolds
then evidently coincide with the surfaces g = constant.
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the possibility of introducing a function (state quantity) S follows (called entropy), such

that the heat 1-form d Q may be written as

d Q = T d S

so that integral submanifolds are given by the “level surfaces” of the function S – they are

just submanifolds of constant entropy

S(x, T ) = constant

Two nearby points cannot be reached by an adiabatic (i.e. isoentropic) process, if the value

of the entropy at the two points turns out to be different. In this approach the existence

of the entropy is a mathematical consequence of a physical postulate – (the Carathéodory

formulation of) the second law of thermodynamics.

19.3.15 Be sure to understand that for simple systems this postulate is not needed for the

existence of S.

Hint: the thermodynamics takes place on a two-dimensional manifold, so that the “adiabatic”

distribution is one-dimensional; see (19.3.14). �

19.4 Geometrical interpretation of a connection form:
horizontal distribution on LM

• Once we become world-acclaimed authorities in the theory and applications of distri-

butions and their integrability, we immediately embark on searching for them on L M (from

where we just made a short digression). What we are looking for is a distinguished subspace

De ⊂ Te L M in each tangent space of the manifold. We will actually find two interesting

subspaces in Te L M : the first (vertical) subspace is always available (it follows from the

mere existence of fibers, thus being available already for the “bare” manifold M), the second

one (horizontal) enters into play only for manifolds endowed with connection (M, ∇).

Let us start with the ubiquitous vertical distribution. We already encountered the concept

of a vertical subspace in Section 17.4 in the context of the tangent and cotangent bundles

T M and T ∗M and on L M it was mentioned at the end of Section 19.1.

19.4.1 A vertical distribution Dv may be defined on L M so that the vertical subspace
Vere L M is declared to be the subspace which the distribution singles out in each tangent

space

Dv
e := Vere L M ≡ Ker π∗ ⊂ Te L M so that W ∈ Dv

e ⇔ π∗W = 0

Check that the distribution

(i) is at each point spanned by a basis of the fundamental fields ξEa
b

of the action RA, so that a general

vertical vector field has the form

W = W b
a (x, y)ξEa

b
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(ii) has dimension n2

(iii) is integrable (its integral submanifold through the point e over x being just the fiber π−1(x) over

x)

(iv) is also integrable according to the formal Frobenius criterion.

Hint: (i) see (19.1.4); (iii) the reason is mentioned in the bracket; (iv) the property [ξX , ξY ] =
ξ[X,Y ] (13.4.3) of fundamental fields ξX and the Frobenius’ criterion (the version from

(19.3.6)). �

• If there is an action of a group G on a manifold M, an action on distributions on the

manifold is naturally induced: if Rg shifts points, then Rg∗ shifts vectors and, consequently,

also subspaces

Dx �→ Rg∗Dx =: (RgD)xg

It may happen, in particular, that a distribution is G-invariant (RgD = D), i.e. the shifted

subspace always happens to coincide with the subspace residing originally at the shifted

point. If the distribution is moreover integrable, it results in G-invariance of integral sub-

manifolds. All of this is true for the vertical distribution on L M .

19.4.2 Check that the vertical distribution Dv on L M is GL(n, R)-invariant, i.e. that for

each element A ∈ GL(n, R) there holds

RADv = Dv or in more detail RA∗
(
Dv

e

) = Dv
eA

Hint: verticality (19.1.3) of the action yields π∗ RA∗ = π∗, whence we get

w ∈ Ver e L M ⇒ RA∗w ∈ Ver eA L M

Alternatively making use of the property

R∗
gξX = ξAdg X

(13.4.3) of the fundamental fields ξX . �

• We see that the construction of the vertical distribution indeed needs no connection;

actually all that is needed is the fiber structure of the total space.

Just the opposite is true, however, for the horizontal distribution (to be defined presently).

Its construction is inconceivable without the connection; actually it may even be regarded

as a convenient (alternative) way of expressing what exactly the connection itself is.

A connection form ω on L M is a 1-form with values in an n2-dimensional linear space

gl(n, R). Then it may be regarded as a collection of n2 “ordinary” (component) 1-forms ωa
b

(see Section 6.4). If these 1-forms were linearly independent at each point, they would define

(according to (19.3.1) and (19.3.3)) a smooth n-dimensional distribution on the manifold

L M . We will check that this is indeed the case.

19.4.3 Let ω ≡ ωa
b Eb

a be a connection form from problem (19.2.1). Check that

(i) its component 1-forms ωa
b are linearly independent at each point
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(ii) by the condition

V ∈ Dh ⇔ 〈ω, V 〉 = 0

a smooth n-dimensional distribution Dh on L M is defined; it is called the horizontal distribution,

the subspace singled out (at each point e ∈ L M) by the distribution is called the horizontal
subspace

Hor e L M ≡ Dh
e ⊂ Te L M

and vectors which belong to the subspace (V ∈ Dh) are horizontal vectors.

Hint: (i) let ka
bωb

a = 0; then, according to (19.2.4), for arbitrary C ∈ gl(n, R) we have

0 = 〈
ka

bωb
a, ξC

〉 = ka
b Cb

a

so that ka
b = 0 �

19.4.4 Let Dh be the horizontal distribution on

L M , given by a connection form ω. Check that

(i) if v ∈ Tx M is an arbitrary vector at the point x ∈ M ,

then at each point e ∈ π−1(x) there exists its hori-
zontal lift, i.e. a unique vector vh ∈ Te L M such that

π∗vh = v (it projects to v)

vh ∈ Hore L M (it is horizontal)

(ii) the distribution Dh is spanned by (a basis consisting

of) vector fields

Hi ≡ ∂h
i := ∂i − 〈

ωa
b , ∂i

〉
yb

c ∂c
a ≡ ∂i − 〈

ωa
b , ∂i

〉
ξEb

a

where ξEb
a

are the fundamental fields of the action RA on L M ; moreover the fields Hi ≡ ∂h
i are

horizontal lifts of the coordinate404 basis ∂i on M
(iii) a general horizontal vector field V on L M may be written in the form

V ∈ Dh ⇔ V = V i (x, y)Hi ≡ V i (x, y)∂h
i

(iv) the operation of the horizontal lift v �→ vh is a linear isomorphism of the (whole) tangent space

in x and the horizontal subspace in e.

Hint: (i), (iii): ansatz vh = vi∂i + va
b∂b

a , the explicit expression of ωa
b from (19.2.1) and the

horizontality condition 〈ωa
b , v

h〉 = 0; (ii) see (19.3.3); (iv) vi∂i ↔ vi Hi . �

• The nomenclature “vertical distribution” is fairly clear from the conventions concerning

drawing of pictures of the type (19.4.4): fibers used to be drawn vertically. Now why is the

distribution given by the connection called horizontal? If we took an opinion poll about what

404 Recall that ∂i actually denotes two fields, namely on M as well as on L M ; it should always be clear from a context which one
is relevant.
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precise meaning people actually associate with the word horizontal, we would probably

learn sort of “flat,” “level” or maybe “contrary (perhaps perpendicular?) to vertical.” In

more official sources we read405 horizontal = “flat or level; parallel to the ground or to

the bottom or top edge of something” or406 we first learn that horizon is the “line at which

the earth or sea and sky seem to meet” and then horizontal = “parallel to the horizon; flat

or level” and finally407 “parallel to, in the plane of, or operating in a plane parallel to the

horizon or to a base line.” And, by the way, horizon = “the apparent junction of earth and

sky,” level = “having no part higher than another: conforming to the curvature of the liquid

parts of the earth’s surface.”

What part of this piece of wisdom concerns our notion of horizontality? If we look at

the figure in problem (19.4.4), we can see that the horizontal vector vh is (on purpose)

not displayed as being horizontal in the sense of “liquid parts of the earth’s surface,” since

those “parts” (say, the surface of a lake) used to be perpendicular to the truly “vertical”

direction (given by, say, a plumbline at rest). If we, however, adopt the definition which

refers to a “line at which the earth . . . and sky seem to meet” and by “earth” we understand

the beautiful scenery of a national park with a marvellous chain of mountains afar, then

the horizon need not be necessarily “flat” or “level” and the vector vh actually may be

tangent to the horizon. So in this broader sense “horizontality” need not necessarily mean

orthogonality with respect to the vertical direction (not all of us happen to be mariners),

but rather complementarity to the latter. By this we mean that the vertical plus horizontal is

already enough to produce any direction whatsoever. (Actually any direction, which is not
vertical, may be declared to be horizontal – it suffices to find a place on the mountains afar

with a slope just steep enough).

Returning to connections, we will check that the concept of horizontality is indeed based

on complementarity rather than on orthogonality (actually no metric tensor on L M was even

mentioned to express orthogonality). The fact that the horizontal subspace is complementary

to the vertical one is vital for the possibility of a unique decomposition of vectors into

horizontal and vertical parts with all the consequences of this decomposition (see (19.4.5),

Section 20.2, etc.).

19.4.5 At a point e ∈ L M , consider the vertical and horizontal subspaces. Check that

(i) if a vector turns out to be at the same time horizontal and vertical, it is necessarily zero; we may

write

Hor e L M ∩ Ver e L M = 0

(ii) the (direct) sum of the two subspaces already gives the whole tangent space

Te L M = Ver e L M ⊕ Hor e L M

so that the horizontal subspace is indeed complementary with respect to the vertical one

405 Cambridge Advanced Learner’s Dictionary, Cambridge University Press, 2003.
406 A. S. Hornby, Oxford Advanced Learner’s Dictionary of Current English, Oxford University Press, 1974.
407 Merriam-Webster’s Collegiate Dictionary.
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(iii) a decomposition of a general vector into its vertical and horizontal parts may be written in the

form

v = ver v + hor v ≡ ξC + vi Hi

i.e. the vertical part may be parametrized in terms of a matrix C ∈ gl(n, R) and the horizontal part

by an n-tuple of numbers vi (the coefficients with respect to the horizontal lift of the coordinate

basis, i.e. with respect to Hi ≡ ∂h
i ).

Hint: (i) according to (19.1.4) the vertical part is of the form ξC , (19.2.4) adds 〈ω, ξC 〉 = C ,

and by (19.4.3) this should be 0; (ii) the dimensions of the subspaces are n2 and n respectively

and the dimension of the whole space Te L M is just n2 + n (19.1.1). �

• Behavior of the horizontal distribution Dh with respect to the action of the group

GL(n, R) turns out to be, like it was in the case of the vertical one Dv , the simplest

possible: it is invariant with respect to the action.

19.4.6 Check that the horizontal distribution Dh on L M is GL(n, R)-invariant, i.e. that

for each element A ∈ GL(n, R) there holds

RADh = Dh or in more detail RA∗
(
Dh

e

) = Dh
eA

Hint: the property R∗
Aω = AdA−1ω ≡ A−1ωA (19.2.4) of connection form ω is behind:

if v ∈ Dh
e ≡ Hore L M , i.e. 〈ω, v〉 = 0, then 〈ω, RA∗v〉 = 〈R∗

Aω, v〉 = A−1〈ω, v〉A = 0, so

that RA∗v ∈ Dh
eA ≡ HoreA L M (it is also horizontal). �

• Let’s summarize. There are two relevant distributions on L M : vertical, which is always

available and horizontal, for which a connection is needed on M . Both of them are invariant

with respect to the action of the group GL(n, R) and they are complementary to each other

(a direct sum of the vertical and the horizontal subspaces at each point equals the whole

tangent space). The vertical distribution is integrable. In the next section we will show that

the horizontal distribution provides a brand new view on the procedure of parallel transport.

The fact that in general the horizontal distribution fails to be integrable turns out to be

closely related to path dependence of parallel transport; this stuff will only be discussed,

however, in the context of general connections in Chapter 20 (in Section 20.4).

19.4.7 Consider once more the situation from (19.4.4). Check that

(i) if a vector v is horizontally lifted to all points in the fiber over x , we get a vector field vh in the

fiber, which is (right, horizontal, but also) GL(n, R)-invariant: RA∗vh = vh

(ii) if a vector field V on M is lifted in this pointwise way, we get on L M a vector field V h , which

is (sure, horizontal, but also) GL(n, R)-invariant:408

RA∗V h = V h 〈ω, V h〉 = 0

(iii) conversely, each GL(n, R)-invariant and horizontal vector field W on L M may be regarded as

the horizontal lift W = V h of a field V on M .

408 The fields Hi ≡ ∂h
i from (19.4.4) represent particular cases.



19.5 Horizontal distribution on L M and parallel transport on M 543

Hint: (i) RA∗vh
e satisfies both requirements (19.4.4) on vh

eA (because of π ◦ RA = π and

GL(n, R)-invariance of the horizontal distribution (19.4.6)), consequently this is nothing

but vh
eA. �

We end this section with a remarkable basis of horizontal vector fields on L M . Contrary

to Hi ≡ ∂h
i from (19.4.4), which exist only locally (in π−1(O) over a coordinate patch O),

depend on the choice of coordinates xi in O and are invariant with respect to RA, the fields

to be discussed here are global, canonical and they transform non-trivially under the action

RA.

19.4.8
∗

Consider vector fields Êa , a = 1, . . . , n ≡ dim M on L M , defined as follows: a

point e ∈ L M corresponds to the frame ea in x ≡ π (e); each vector of the frame may be

horizontally lifted to e; by definition, the lifts provide the values of the fields Êa at the point e

Êa(e) := eh
a (e) (the lift is to the point e)

Check that the fields Êa (known as the standard horizontal fields)

(i) constitute at each point a basis of the horizontal subspace

(ii) are canonically associated with each manifold with linear connection (M, ∇)

(iii) are transformed under the action RA of the group GL(n, R) on L M409 according to the rule

R∗
AÊa = Ab

a Êb

(so they are scrambled by the matrix A).

Hint: (i) according to (19.4.4) the lift is an isomorphism; (ii) the lift depends on the con-

nection; (iii) Êa(eA) = (eA)h
a(eA) = Ab

aeh
b (eA) = Ab

a RA∗eh
b (e) (the last equality because of

the GL(n, R)-invariance of eh
a ), so that R∗

AÊa(eA) = Ab
aeh

b (e), i.e. R∗
AÊa = Ab

a Êb. �

19.4.9
∗

Be sure to understand that the standard horizontal vector fields Êa along with

the fundamental fields ξEa
b

of the action RA are global vector fields on L M , whose values

at each point constitute a basis of the tangent space; it then follows that L M is always

parallelizable, and consequently also an orientable manifold (even if M itself were not).

Hint: see (19.4.1) and (19.4.8); parallelizable by definition of the concept, orientable: the

exterior product of the dual basis provides a global volume form (see also (21.7.3)). �

19.5 Horizontal distribution on L M and parallel transport on M

• Imagine we have a curve γ (t) on M and a field of frames e(t) on the curve (that is to

say a frame field ea(γ (t)) defined at the points of the curve alone). Such a field of frames

then induces naturally a curve γ̂ on L M : one assigns a frame ea(γ (t)) to the parameter t ,
interpreted now, however, as a point on L M . This curve clearly projects onto the original

curve γ via π , i.e. π ◦ γ̂ = γ .

409 Contrary to ∂h
i , which are invariant with respect to RA (as is each horizontal lift, (19.4.7)).
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Now fix a frame E at a point of the curveγ . Making use of the connection, we may generate

an autoparallel frame field e‖(t) on γ (each vector Ea generates the autoparallel field e‖
a on

γ ; since the parallel transport operator is a linear isomorphism, the linear independence of

the vectors e‖
a is guaranteed at each point of γ ). This particular frame field also induces on

L M the corresponding curve γ̂ . However, since we have associated it with a very special

frame field, we expect it should exhibit some very special features (in addition to the fact

that it projects onto γ , which always holds). A computation reveals that the special property

of this particular curve is horizontality, i.e. the fact that its tangent vector is horizontal at

each point.

19.5.1 Verify that an autoparallel frame field e‖ on a curve γ (t) on M induces the hori-
zontal curve γ̂ (t) on L M

〈ω, ˙̂γ 〉 = 0

Hint: let γ̂ (t) be represented by (xi (t), ya
b (t)), with (xi , ya

b ) being coordinates with respect

to an arbitrary frame field e(x) in a domain O (19.1.1); then e‖
a = yb

a eb. From the condition

that e‖ is autoparallel we get

0 = ∇γ̇ e‖
a = ∇γ̇

(
yb

a eb
) = ẏb

a eb + yb
a∇γ̇ eb = ẏb

a eb + yb
a

〈
ω̂c

b, γ̇
〉
ec = (

ẏb
a + yc

a

〈
ω̂b

c , γ̇
〉)

eb

so that (for γ̇ = ẋ i∂i )

˙̂γ ≡ ẋ i∂i + ẏb
a∂a

b = ẋ i
(
∂i − 〈

ω̂b
c , ∂i

〉
yc

a∂
a
b

) = ẋ i Hi ≡ ẋ i (∂i )
h = (γ̇ )h

Thus the tangent vector ˙̂γ to the curve γ̂ is the horizontal lift of the tangent vector γ̇ to the

curve γ . �

19.5.2 Let γ be a curve on M and e an arbitrary point in the fiber over γ (0). Check that

(i) there is a unique curve γ h on L M , specified by the conditions

π ◦ γ h = γ γ h(0) = e 〈ω, ˙(γ h)〉 = 0

i.e. γ h is everywhere “exactly over” γ (it projects onto γ ), it passes through a prescribed point e
and its tangent vector is horizontal at each point. The curve γ h is called the horizontal lift of the
curve γ

(ii) tangent vectors to the curve γ h are horizontal lifts of tangent vectors to the original curve γ

˙(γ h) = (γ̇ )h

(iii) the curve γ h coincides with the curve γ̂ discussed in (19.5.1).

Hint: (i) if γ ↔ xi (t), the first condition gives γ h ↔ (xi (t), ya
b (t)) (with xi (t) being the

same functions as xi (t) ↔ γ and ya
b (t) are so far arbitrary); the horizontality condition

leads (in analogy with (19.5.1)) to a first-order differential equation for ya
b (t) ⇒ together

with the initial condition for ya
b (0) (from γ h(0) = e) we have a unique solution ya

b (t); (ii)

see (19.4.4). �
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• The lesson from exercises (19.5.1) and (19.5.2) is that the horizontal lift γ h of a curve

γ carries exactly the same information as the autoparallel frame field on γ , so that if we

are able to construct the horizontal lift of a curve, we are then also able to perform the

parallel transport of a frame and vice versa. This simple observation enables us to express

the operation of parallel transport on M (so far only of frames410 alone) entirely in terms of

an appropriate construction on L M , based on the concept of the horizontal distribution Dh

on this manifold. A complementary point of view is, however, of vital importance for the

prospect of development of a general concept of a connection: the distribution Dh carries

the full information needed for the procedure of parallel transport on M .

19.6 Tensors on M in the language of L M and their parallel transport

• As we have already noticed in the previous section, the formalism using the manifold

L M is tailored to treat frames but the description of more elementary objects (vectors, say)

remains obscure. Let us first have a look at this problem within the simpler context of linear

algebra.

Suppose we have a (finite-dimensional) linear space L and let E(L) denote the set of all

frames in L . If e ≡ ea is a fixed frame, then an arbitrary vector v ∈ L may be written as

v = v̂aea , and an ordered pair (e, v̂) ∈ E(L) × R
n may be assigned to this decomposition

(v̂ ≡ v̂a). For our purposes the following point of view will be most useful: for each vector

v ∈ L consider a map �v : E(L) → R
n , which assigns to a frame e the components of

the vector v with respect to this particular frame, e �→ �v(e) ≡ v̂. Then there holds v ↔
(e, v̂) = (e, �v(e)). A choice of a pair “frame + components” is, however, far from unique:

infinitely many pairs (ẽ, ˜̂v) ∈ E(L) × R
n may be assigned to the same vector, corresponding

to decompositions of the vector with respect to all possible frames in L . This results in a

severe restriction on the map �v .

19.6.1 Consider a map �v : E(L) → R
n , which assigns to a frame e the components of

a (fixed) vector v with respect to this frame

�v : E(L) → R
n e �→ �v(e) ≡ v̂

Check that

(i) the transition to another frame e �→ eA ≡ R1(A)e is a right action of GL(n, R) on E(L)

(ii) the transition to corresponding new components of the vector v̂ �→ R2(A)v̂ ≡ A−1v̂ (with respect

to a frame eA instead of e) is, in turn, a right action of GL(n, R) on R
n

(iii) �v is an equivariant map between two (right) GL(n, R)-spaces, i.e.

�v : E(L) → R
n �v(eA) = A−1�v(e)

410 Frames on M are described naturally in the language of the manifold L M (it was after all invented for this very reason), but
we realized just now that we do not see any possibility to incorporate vectors themselves into this scheme (let alone tensors).
Points on L M are already n-tuples of vectors and the idea to identify one vector with some part of a point (the nth part) does
not raise too much hope. The problem has an amazingly simple and elegant solution, which is described in Section 19.6. The
solution even survives the generalization of the whole context and we will return to this issue in Section 20.3.
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and it is completely given by its value at a single (arbitrary) point e ∈ E(L) (it is then extended

to all other points by the equivariance property)

(iv) the linear space of all such equivariant maps is (canonically) isomorphic to the space L itself

(and can thus fully replace L as an equivalent alternative); there holds

�v+λw = �v + λ�w

Hint: (i) see (5.7.2); (ii) see (13.1.4); (iii) v ↔ (e, v̂) ↔ (eA, A−1v̂); since R1 is transitive

and free, it is enough to specify the value of �v at a single point; (iv) v ↔ �v . �

• In complete analogy the dual space L∗ may also be replaced by an appropriate map

space. Namely, one should decompose a covector α with respect to the dual frame as

α = α̂aea and then associate an ordered pair (e, α̂) ∈ E(L) × R
n (α̂ ≡ α̂a) as well as a map

�α : E(L) → R
n e �→ �α(e) ≡ α̂

with this decomposition. Note that the resulting space of pairs actually coincides as a set
with that constructed for vectors (since both vector and covector components are elements

of R
n); there is a difference, however, in the action of the group GL(n, R) in the R

n-part

of it.

19.6.2 Consider a map �α : E(L) → R
n which assigns to a frame e the components of a

(fixed) covector α with respect to this particular frame

�α : E(L) → R
n e �→ �α(e) ≡ α̂

Check that

(i) the transition to new components of the covector (with respect to the frame eA instead of e),

namely α̂ �→ R2(A)α̂ ≡ ATα̂, is a right action of GL(n, R) on R
n

(ii) �α is an equivariant map between two (right) GL(n, R)-spaces, i.e.

�α : E(L) → R
n �α(eA) = AT�α(e)

(iii) the linear space of all such equivariant maps is (canonically) isomorphic to the space L∗; there

holds

�α+λβ = �α + λ�β 〈�α, �
v〉 := 〈�α(e), �v(e)〉 ≡ α̂a v̂

a e ∈ E(L)

Hint: see (19.6.1); the pairing does not depend on the choice of e. �

• Note that in both cases (for vectors as well as covectors) the following general scheme

was applied:

(i) one creates a space of pairs (frame, components)

(ii) there is an action of the group GL(n, R) both on the first and the second part of the pair

(iii) the action on the first element is always the same; on the second element GL(n, R) acts by means

of different representations
(iv) the type of the resulting object is given by the action (representation, here) on the second part of

a pair
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(v) elements of the spaces L and L∗ may be identified with equivariant maps from the set of frames

to the set of components.

It is easily seen that this scheme can also be extended in a straightforward way from

vectors and covectors to arbitrary tensors on L . The only thing to do is to substitute the

“one-index” real numbers (the space R
n) by the multi-index ones B̂ ≡ B̂a...b

c...d , and the repre-

sentations A �→ ρ1
0 (A) = A (for vectors) and A �→ ρ0

1 (A) = (A−1)T (for covectors)411 by

the corresponding tensor representations A �→ ρr
s (A), i.e. by tensor products of r vector

and s covector representations, in order to obtain tensors of type
( r

s

)
; the resulting repre-

sentation space (module) will be denoted by (V, ρr
s )). The corresponding equivariant map,

which encodes a tensor B of type
( r

s

)
in L , will be

�B : E(L) → (
V, ρr

s

)
�B(eA) = ρr

s (A−1)�B(e)

As an example, let us see how this works for tensors of type
(

0
2

)
.

19.6.3 Consider a representation ρ0
2 = ρ0

1 ⊗ ρ0
1 , where ρ0

1 is the “covector” representation

A �→ ρ0
1 (A) = (A−1)T. It acts on V ≡ R

n ⊗ R
n as

B̂ �→ ρ0
2 (A)B̂ B̂ab �→ ((

ρ0
1 ⊗ ρ0

1

)
(A)B̂

)
ab := (A−1)c

a(A−1)d
b B̂cd

Check that the scheme explained above results here in equivariant maps which may be

identified with tensors of type
(

0
2

)
on L , i.e.

T 0
2 (L) ≈ (E(L) × V )/GL(n, R) V = (

R
n ⊗ R

n, ρ0
1 ⊗ ρ0

1

)

Hint: B ≡ B̂abea ⊗ eb ↔ �B, e �→ �B(e) = B̂; (�B(eA))ab = Ac
a Ad

b (�B(e))cd . �

• Note that within this approach we succeeded in describing the tensors on L (and,

in particular, also the space L itself) in terms of the set of frames in the space L and

“component” spaces (V, ρ); the tensor is identified with an equivariant map � from the

space of frames to the space of components (it is reconstructed from a frame and its image

with respect to �; equivariance of � guarantees that proper pairs are combined). The type

of tensor,
( r

s

)
, is completely given by the choice of a representation ρr

s in the space of

components V . In this language it is quite natural to introduce a general notion of a quantity
of type ρ (in a linear space L) as an equivariant map

� : E(L) → (V, ρ) � ◦ RA = ρ(A−1) ◦ �

where RA is the standard right action (e �→ eA) of GL(n, R) in the space of frames E(L)

from (5.7.2) and (19.6.1). All tensors in L provide basic examples of such quantities (for

ρ = ρr
s ), but there are actually more of them, e.g. tensor densities of weight λ for the repre-

sentation ρ(A) = (det A)λρr
s (A), in particular ρ(A) = det A for the ordinary scalar density

(of weight 1; see also (21.7.10)). The notion of a quantity of type ρ can be straightforwardly

411 One should realize that the rules v̂ �→ A−1v̂ and α̂ �→ ATα̂ in the examples mentioned above are right actions, so if we need
to express them in terms of representations (which are left actions), the trick A �→ A−1 from (13.1.1) is to be used.
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generalized from the group GL(n, R) to a general Lie group G (we will do this later, in

Section 20.3).

Now the situation is clear at the level of linear algebra and we can repeat the idea on a

manifold. The role of the space E(L) will be played by a fiber π−1(x) over x on a manifold

L M , a set of all frames at the point x ∈ M . A vectorv

in x may be identified with the map �v
x : π−1(x) →

R
n satisfying the equivariance condition �v

x ◦ RA =
ρ1

0 (A−1) ◦ �v
x , a tensor of type ρr

s at the point x is

obtained by a substitution of the representationρ1
0 by

ρr
s , a tensor field of type

( r
s

)
on M may be identified

with an equivariant map

� : L M → (
V, ρr

s

)
� ◦ RA = ρr

s (A−1) ◦ �

and finally a general field of type ρ on M may be

identified with an equivariant map

� : L M → (V, ρ) � ◦ RA = ρ(A−1) ◦ �

where RA is the canonical action of GL(n, R) on L M (19.1.3) and (V, ρ) is an arbitrary

representation module of the group GL(n, R).

We see that the frame bundle L M enables us to introduce a novel global, unified and

surprisingly simple formal treatment of a wide class of geometrical objects on a base

manifold M : each object is identified with an equivariant V -valued function412 on L M ,

various types of objects only differing by the choice of a particular module (V, ρ) (e.g. the

choice (Rn, ρ1
0 ) corresponds to vector fields).

Let us now discuss the procedure of parallel transport of quantities of type ρ. First,

observe an elementary fact concerning the parallel transport of tensors in the good old

language of Chapter 15.

19.6.4 Let B = B̂a...b
c...d ec ⊗ · · · ⊗ eb be the expression of a tensor field B on (M, ∇) with

respect to a frame field e, and suppose that e is autoparallel on a curve γ . Check that

(i) the covariant derivative ∇γ̇ B along γ (t) actually reduces to the ordinary derivative of the com-
ponents of the tensor field

(ii) B is autoparallel on γ if and only if it has constant components413 (with respect to e) on the

curve γ

Solution: since (by assumption) ∇γ̇ ea = 0 = ∇γ̇ ea , we have

∇γ̇ B ≡ ∇γ̇

(
B̂a...b

c...d ec ⊗ · · · ⊗ eb
) = · · · = ˙̂B

a...b

c...d ec ⊗ · · · ⊗ eb

so that ∇γ̇ B = 0 ⇔ ˙̂B
a...b

c...d = 0. �

412 (V, ρ) is a representation module of GL(n, R).
413 Recall that a similar fact holds on Lie groups: the components of left-invariant fields with respect to the left-invariant frame

field are constant (11.1.6).
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• As a result, any autoparallel tensor field has constant components with respect to an

autoparallel field of frames. This fact might serve as a motivation for the definition of basic

concepts related to the parallel transport in the language of the manifold L M .

In this formalism a tensor at a point x is given by a pair which consists of a frame in x
plus components (an element of a module (V, ρ)). If we want to move along a curve γ and

parallel transport the tensor along it, at each point of the curve such a pair is needed. We

also know that the pairs are not unique (there is a freedom given by the action of GL(n, R)),

and actually any particular representative is sufficient. There is a preferred frame field on

the curve, given by the parallel transport of the frame at the starting point; this frame field

corresponds (as we learned in (19.5.2)) to the horizontal lift γ h of the curve γ on M . Now,

what components should be combined with these particular frames γ h(t) in order to obtain

the autoparallel tensor field? The result of exercise (19.6.4) offers a clear hint: take the

constant element of (V, ρ). Thus if we want to construct the autoparallel tensor field B(t)
on a curve γ (t), we should combine the pairs (γ h(t), B̂ ≡ constant). In the language of an

equivariant function � this means that all the points of γ h(t) (lying in the fibers over γ (t))
should be mapped into a single element B̂ ∈ V (independent of t). (This in turn fixes the

function � completely at all points of all fibers which γ h(t) intersects, see (19.6.1).)

19.6.5 Consider an equivariant function � which is defined on the fibers over the curve

γ (t) and which moreover corresponds to the autoparallel field of quantities of type ρ (e.g.

an autoparallel tensor field B) on γ . Be sure to understand that the function is constant on

a horizontal lift, i.e. that

�(γ h(t)) = constant i.e. (γ̇ )h� = 0

Hint: according to (19.5.1) γ̇ h = (γ̇ )h ; here we have d
dt �(γ h(t)) ≡ γ̇ h� = 0 and therefore

also (γ̇ )h� = 0. �

• If the derivative of the function � along the horizontal lift of a curve γ (t) does not
vanish, it means that the components B̂ with respect to the autoparallel frame field are not
constant and consequently this field is not autoparallel on γ (t). What piece of information

is then carried by the derivative? Clearly, it informs us about the covariant derivative of the

corresponding tensor field B along the curve γ .

19.6.6 Consider an equivariant function � which is defined on the fibers over the curve

γ (t) and which corresponds to a field of quantities of type ρ (e.g. a tensor field B) on γ .

Check that its derivative along the horizontal lift γ h of the curve γ corresponds (just in the

sense that � corresponds to B) to the covariant derivative ∇γ̇ B of the field B

� ↔ B ⇒ (γ̇ )h� ↔ ∇γ̇ B

Hint: see (19.6.4). �

• We can see that the extension of a manifold M to L M leads to a notable simplification of

the description of various objects. Frames on M become points of L M , tensor fields on M
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become functions on L M and covariant derivatives of tensor fields on M become ordinary
directional derivatives of these functions.

Summary of Chapter 19

In order to pave the way for a possible generalization of the theory of linear connection

well known from Chapter 15 (to be done in the next chapter) we reformulate it in a new

language. The new description takes place on a new playing field, a manifold L M which

may be canonically assigned to any manifold M . The points of L M are all frames at all

points of M . There is a fairly rich structure on L M even prior to introducing the connection

on M : the manifold L M namely turns out to be a total space of a principal GL(n, R)-bundle

over M . A connection on M adds more structure on L M , a GL(n, R)-invariant horizontal

distribution. We may reformulate the procedure of parallel transport of a frame along a

curve γ on M in terms of the horizontal lift γ h of the curve γ . There is also an interesting

possibility of treating a wide class of geometrical objects on M (in particular tensor fields

and more generally fields of type ρ) in terms of equivariant functions � on L M . Their

parallel transport is discussed and it is shown that an appropriate directional derivative of

� corresponds to the covariant derivative on M of the geometrical object described by �.

ω ≡ ωa
b Eb

a Connection form on the frame bundle L M (19.2.1)

R∗
Aω = A−1ωA, 〈ω, ξC 〉 = C Crucial properties of the connection form (19.2.4)

U, V ∈ D ⇒ [U, V ] ∈ D D is integrable (Frobenius’ criterion) Sec. 19.3

θ i |D = 0 ⇒ dθ i |D = 0 Alternative formulation of the criterion Sec. 19.3

V ∈ Dh ⇔ 〈ω, V 〉 = 0 Horizontal distribution on L M (19.4.3)

Te L M = Ver e L M ⊕ Hor e L M Decomposition induced by a connection (19.4.5)

〈ω, ˙̂γ 〉 = 0 γ̂ corresponds to autoparallel frame field (19.5.1)

� ◦ RA = ρ(A−1) ◦ � � is a quantity of type ρ Sec. 19.6

�(γ h(t)) = constant Autoparallel field of quantities of type ρ (19.6.5)



20

Connection on a principal G-bundle

• In the previous chapter we learned that the concept of a linear connection on M may be

encoded into a horizontal distribution Dh on a manifold L M . Here we accomplish a simple,

albeit far-reaching generalization. The novelty may be briefly described as an acceptance

of a more general stage where, however, an old dramatic piece is performed. Clearly, there

are some restrictions on possible new stages (in order that the old piece can be performed

on it in principle). From a variety of coulisses and properties we only insist on retaining

truly unthinkable elements; all others, in truth not essential for the drama, may be altered

by a director and replaced by anything else, more congenial to his taste and artistic intent.

20.1 Principal G-bundles

• In Section 19.1 we learned that the stage used for the linear connection, the manifold

L M , is the total space of a principal GL(n, R)-bundle. A natural step therefore consists

in considering a general principal G-bundle over M instead of just a particular case π :

L M → M . The change thus consists in a replacement of the group GL(n, R) by a general

Lie group G. This is, however, not all.

The bundle π : L M → M actually turns out to be a very specific principal GL(n, R)-

bundle, which may be canonically associated with an arbitrary manifold M . Points of the

total space (of the manifold L M) are namely closely

related414 to certain objects (i.e. frames) on the base

manifold M (this is analogous to T M and T ∗M ,

where points of the total spaces are vectors and cov-

ectors on the base M). For a general principal G-

bundle

π : P → M

however, no such relation of points of the total space

and whatever objects on the base M is required. The

points of the manifold P may have nothing to do

with the manifold M .

414 The relation is known as soldering. The fact that the total space is “soldered” to the base results in the existence of various
canonical geometrical objects on L M , T M and T ∗ M , see Sections 17.6 and 21.7.

551
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Recall then what is, in contrast, required from a principal G-bundle (see Section 17.2

and the text after (19.1.3)). First, it is to be a bundle; so two manifolds P and M are to be

given along with a smooth surjective map π : P → M (projection), all preimages being

submanifolds of P diffeomorphic to each other. Moreover, since we speak of a principal
bundle, a right vertical action of a Lie group G in the total space P is to be added

Rg : P → P Rgh = Rh ◦ Rg π ◦ Rg = π

The action is free (i.e. all stabilizers trivial) and transitive in fibers (any two points in a

single fiber can be joined by the action; the fiber thus becomes a principal homogeneous
space of the group G). The local product structure also takes a specific character; namely,

local trivializations are to be maps

ψα : π−1(Oα) → Oα × G

which in addition to the general requirement

π1 ◦ ψα = π

should also satisfy

ψα : p �→ (m, h) ⇒ pg �→ (m, hg)

(h �→ hg ≡ Rgh is the right translation on G); the trivialization thus transforms (on suffi-

ciently small pieces) a principal bundle to a product principal bundle

π : M × G → M π : (m, g) �→ m Rg̃ : (m, g) �→ (m, gg̃)

20.1.1 Check that for any two points p, p′ residing in a common fiber (π (p) = π (p′))
there is a unique group element g ∈ G, which links the points in the sense that p′ = pg.

Hint: in general they are linked by the set HgH ′, where H, H ′ are stabilizers of the points

p and p′ respectively; both of them are, however, trivial (the group acts freely). �

• In Section 13.2 we examined the object G/H as a homogeneous space, or perhaps as

a group (provided that H happens to be a normal subgroup). Now we realize that by the

same construction a principal H -bundle is also obtained.

20.1.2 Let G be a Lie group, H a (closed) Lie

subgroup. It then turns out that each homogeneous

space M ∼ G/H is the base of a principal H -bundle

π : G → M ∼ G/H . A specific feature of exactly

this principal bundle is that the total space is a group
and the base is a homogeneous space of the group.

Let us see how this works in more detail. Check that

(i)

π : G → G/H g �→ [g]

is indeed a principal H -bundle
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(ii) apart from “compulsory figures,” there is an important additional structure on H -bundles of this

type, namely a fiber-preserving action Lg of a larger group G on the total space, as well as its

projection Lg , being a left action of G on the base M (and satisfying π ◦ Lg = Lg ◦ π )

(iii) the generators of the action of H along fibers are the left-invariant fields LY on G, corresponding

to elements Y which belong to the subalgebra H ⊂ G
(iv) the generators of the actionLg in the total space G are (all) right-invariant fields RX on G, X ∈ G.

Hint: (i) the fiber over [g] is gH and the action is Rh g := gh; check its verticality, freedom

and transitivity in fibers; (ii) it preserves fibers, since it commutes with the right action of

H (left translations commute with right ones), see (13.2.5); (iii) and (iv) see (13.4.15). �

• In Section 17.2 we introduced the concepts of equivalent bundles and a trivial bundle
(as one which is equivalent to the product bundle). For principal bundles we have to add

certain requirements of equivariance (they relate to the action of the group): we say that

two principal G-bundles over the same base, π : P → M and π̃ : P̃ → M , are equivalent,

if there exists an equivariant diffeomorphism of total spaces which preserves fibers, i.e.

ψ : P → P̃ R̃g ◦ ψ = ψ ◦ Rg π̃ ◦ ψ = π

A principal bundle is called trivial if it is equivalent (already in the new sense) to a product

one; then the map ψ : P → M × G is called a global trivialization.

20.1.3 There is a simple and useful criterion for triviality of a principal bundle. Namely,

check that

π : P → M is trivial ⇔ there exists its global section

(Put another way, a global trivialization exists if and only if a global section does.)

Hint: → : a global trivialization ψ : P → M × G exists; a section is σ : m �→ ψ−1(m, e);

← : if a section σ exists, in each fiber we get a distinguished point415 (σ (m) over m). All

the points in the fiber may be now related to σ (m): they are associated with a unique group

element g such that p = Rgσ (m) ≡ σ (m)g; a global trivialization is p �→ (m ≡ π (p), g).

�

20.1.4 Check that a vector bundle always has a (global) section, so that the criterion for

triviality from (20.1.3) may not hold for bundles, which are not principal (a vector bundle

is not principal).

Hint: for example, the zero section m �→ 0 ∈ π−1(m); zero is the only distinguished point

in a linear space; notice that the (infinite) Möbius band is the total space of a non-trivial
vector bundle π : M2 → S1, since M2 �= S1 × R. �

• Let us look at a concrete example of a principal H -bundle, the triviality of which is not

immediately evident, but may be revealed by an explicit construction of a global section.

415 We already feel that we have won: Archimedes (would) have moved the Earth, as soon he (would) have been given a fixed
point, we (indeed) move forward with the proof, since we do (indeed) have a distinguished point.
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20.1.5 The group G ≡ SL(2, C) acts naturally from the left in C
2. Let H be the stabilizer

of the point
(

1
0

) ∈ C
2. Check that

(i) H ∼ (C, +)

(ii) the orbit of the point
(

1
0

)
is a homogeneous space M ≡ C

2 \ (
0
0

) ∼ G/H
(iii) the principal H -bundle π : G → G/H ∼ M turns out to be trivial in this case

(iv) the Lie group SL(2, C) is diffeomorphic as a manifold to R
3 × S3.

Hint: (i) if g =
(

a b
c d

)

∈ SL(2, C), then H � h =
(

1 b
0 1

)

; (ii)

(
a b
c d

) (
1

0

)

=
(

a
c

)

�=
(

0

0

)

(otherwise det = 0); accessibility of all non-vanishing points is clear from the form of a

section (see below); M ∼ G/H from general considerations in Section 13.2; (iii) the bundle

has a global section
(

a
c

)

�→
(

a −c/κ
c a/κ

)

κ ≡ |a|2 + |c|2 �= 0

(iv) M ≡ C
2 \ (

0
0

) ∼ R
4 \ {0} ∼ R × S3 (r ≡ rn ↔ (r, n), n2 = 1); the triviality of the bun-

dle gives

P ≡ SL(2, C) ∼ M × H = (R × S3) × (C ∼ R
2) ∼ R

3 × S3

�

• A further useful criterion for triviality of any (not only principal) bundle reads (we

mention it without proof)

contractible base ⇒ trivial bundle

Notice that, contrary to (20.1.3), the criterion does not provide us with a constructive recipe

saying how a global trivialization is to be found; it just asserts that the latter certainly exists.

Any non-trivial bundle thus needs to have a non-contractible base. On the other hand, the

non-contractibility is not enough for non-triviality, as an example of a product bundle with

a non-contractible base shows. Let us see how this works for a more interesting example.

20.1.6 The proper orthochronous Lorentz group G ≡ L↑
+ (all � ∈ SO(1, 3) obeying

�0
0 ≥ 1, so that they do not reverse the direction of time) naturally acts on the left on

columns x ≡ (x0, x1, x2, x3) ≡ (x0, x) from E1,3 (points of Minkowski space)

x �→ �x

Let H be the stabilizer of the point x̂ ≡ (1, 0, 0, 0). Check that

(i) the orbit of the point x̂ is (a homogeneous space)

M = the upper hyperboloid = {x ∈ E
1,3 | η(x, x) = 1, x0 > 0}
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(ii) as a manifold, M ∼ R
3

(iii) the group H is isomorphic to SO(3)

(iv)

π : L↑
+ → M

is a trivial principal SO(3)-bundle, so that (as a manifold)

L↑
+ ∼ R

3 × SO(3)

Hint: (i) see (11.1.5) and (11.1.8); (ii) (x0, x) �→ x; (iii) see (13.1.11); (iv) M ∼ R
3 is

contractible. �

• Yet another interesting principal bundle is the Hopf bundle π : S3 → S2. It appears in

various realizations, which seem fairly different at first sight. For example, a description

presented in (20.1.8) is related to a quantum-mechanical equation (n · σ)ζ = ζ for a “spin
1
2

along n,” another one (20.1.9) places emphasis on the fact that it is a bundle of the type

π : G → G/H (20.1.2) for G = SU (2) and H = U (1) and yet another one (20.1.11) uses

the idea of a projective space.

20.1.7
∗

Consider the space C
2 with elements χ (two-component complex unnormalized

columns) and the space R
3 with elements r ↔ xa (three-component real unnormalized

columns). There is a natural action of the group SU (2) on both of these manifolds: on C
2

it acts directly (χ �→ Aχ ≡ L Aχ ), on R
3 through the (two-sheeted covering) homomor-

phism f : SU (2) → SO(3) introduced in problem (13.3.6) (r �→ Rr ≡ f (A)r ≡ L̂ f (A)r).

Columns normalized to unity, which we will denote by ζ and n ↔ na (there holds

ζ+ζ = 1 = n2) may be regarded as points on the unit spheres S3 ⊂ C
2 and S2 ⊂ R

3 re-

spectively (they are orbits of the actions mentioned above). Next, we define a (non-linear)

map

π : C
2 → R

3 χ �→ r r := χ+σχ

Check that

(i) for an arbitrary χ ∈ C
2 the 2 × 2 (Hermitian) matrix χχ+ may be parametrized in the form

χχ+ = 1

2
(rI2 + r · σ) where r := χ+χ

(ii) restriction of π to the 3-sphere of radius
√

r in C
2 (i.e. to columns χ which satisfy χ+χ = r ) has

as the image the 2-sphere of the radius r in R
3 (so that r and r in the parametrization mentioned

above are related by r = |r|); for r = 1 we thus also have a map π : S3 → S2, ζ �→ n (we will

denote it by the same letter as the original map π ) and the parametrization

ζ ζ+ = 1

2
(I2 + n · σ) where n := ζ+σζ, |n| = 1

(iii) the map π is SU (2)-equivariant in the sense that

π ◦ L A = L̂ f (A) ◦ π i.e. {ζ �→ Aζ } ⇒ {n �→ Rn}
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(iv) the map π is surjective (each vector n has a preimage ζ )

(v) if ζ happens to be a preimage of n, then eiαζ is also a preimage for all eiα ∈ U (1)

ζ �→ n ⇒ eiαζ �→ n

(vi) if the map π is expressed in coordinates (ϑ, ϕ, ψ) from problem (11.7.23) on SU (2) = S3 (Euler

angles) and the standard “spherical” angles (ϑ, ϕ) on S2 (spherical coordinates in R
3 for r = 1),

it reads

π : (ϑ, ϕ, ψ) �→ (ϑ, ϕ)

Hint: (i) Pauli matrices plus the identity matrix constitute a basis of 2 × 2 Hermitian matrices

(13.3.10), coefficients with respect to them using (13.3.4); (ii) if χ+χ = r (the sphere of

radius
√

r ), then the parametrization mentioned above (as well as the identity σaσb =
δabI + iεabcσc) gives

|r|2 ≡ xa xa = (χ+σa)(χχ+)(σaχ ) = 1

2
(χ+σa)(rI2 + r · σ)(σaχ ) = · · ·

= 3

2
r2 − 1

2
|r|2 ⇒ xa xa = r2

(⇒ the sphere of radius r ); (iii) if χ �→ Aχ , then according to (13.3.3)

xa �→ (Aχ )+σa(Aχ ) = χ+(A−1σa(A−1)+)χ = χ+(R−1
ba σb)χ = χ+(Rabσb)χ = Rabxb

and after the restriction na �→ Rabnb; (iv) a consequence of equivariance of π and transitivity

of the action SU (2) on S3 (π connects two orbits); (v) and (vi) a direct calculation. �

20.1.8
∗

Consider the situation from problem

(20.1.7). Let π map a normalized column ζ to n,

i.e. ζ+σζ = n (since according to (20.1.7) π is sur-

jective, so, certainly, some ζ for a given n exists).

Check that

(i) the column ζ is a (normalized) solution of the equa-

tion

(n · σ)ζ = ζ

(ii) all normalized solutions ζ̂ of the equation just coincide with all preimages of n with respect to

π and at the same time with the columns ζ̂ = eiαζ for all possible eiα ∈ U (1)

{(n · σ)ζ̂ = ζ̂ and ζ̂+ζ̂ = 1} ⇔ π (ζ̂ ) = n ⇔ ζ̂ = eiαζ

(iii) a preimage with respect to π for a given point n ∈ S2 is a circle S1 ⊂ S3 ⊂ C
2; the three-

dimensional sphere may thus be regarded as a union of one-dimensional spheres (i.e. circles)416

416 The ambitious reader may check that all the circles have the same length (which is a bit different from the two-dimensional
sphere being regarded as a union of circles (say, parallel lines).
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(iv) the map π is the projection of a non-trivial principal U (1)-bundle

π : S3 → S2 Hopf bundle

The corresponding action of U (1) on S3 reads

ζ �→ eiαζ

Hint: (i) according to (20.1.7) we have (n · σ)ζ = (2ζ ζ+ − I2)ζ = 2ζ (ζ+ζ ) − ζ = ζ ;

(ii) let ζ be mapped to n, we look for all preimages of n; since SU (2) transitively acts

on normalized columns, we may parametrize them in the form ζ̂ = Bζ for B ∈ SU (2).

But Bζ maps to R̂n (where B covers R̂ ≡ f (B)), so that R̂ may be at most a rotation

(by an arbitrary angle) about n, corresponding (13.3.6) to the one-parameter subgroup

B(t) = exp(− i
2
t(n · σ)) ∈ SU (2), which is isomorphic to U (1); the whole preimage of n

is then its orbit B(t)ζ ∼ S1; from the expression for ζ ζ+ we obtain that the action of U (1)

on the fiber over n is

ζ �→ B(t)ζ = exp

(

− i

2
t(n · σ)

)

ζ =
(

cos
t

2
I2 − i sin

t

2
(n · σ)

)

ζ

=
(

cos
t

2
− i sin

t

2

)

ζ = e− i
2

tζ ≡ eiαζ

So all preimages of n are given just by the columns eiαζ for all possible α; (iv) a trivial

bundle should have the total space diffeomorphic to S2 × S1, which is not simply connected

(a loop “around S1” is not contractible), whereas S3 is simply connected. �

• In this approach, a fiber of the Hopf bundle emerges as a set of all normalized solutions

of the equation (n · σ)ζ = ζ . In textbooks on quantum mechanics we may read that if n is

an arbitrary unit vector, then on solving this equation we get a (normalized) spinor ζ (an

element of C
2), which corresponds to a particle with “spin 1

2
along n.” All “directions” (unit

vectors n) form the sphere S2 (base of the bundle), normalized “spinors” ζ in turn constitute

the sphere S3 (the total space of the bundle) and the fiber over n is the “sphere” S1, since

we learned that the only freedom in the solutions of the equation mentioned above (for a

given n) is ζ �→ eiαζ .

Let us look at the realization of the bundle as a bundle of type G → G/H .

20.1.9
∗

Recall that the group SU (2), when regarded as a manifold, is the three-dimensional

sphere S3. Its embedding into C
2 is given by

A(ζ ) ≡
(

z −w̄

w z̄

)

↔ ζ ≡
( z

w

)
∈ C

2 ζ+ζ ≡ |z|2 + |w|2 = 1 (z, w ∈ C)

Check that

(i) the right translation of the subgroup U (1) ⊂ SU (2), generated by the basis element E3 ≡ − i
2
σ3 ∈

su(2) (i.e. of the subgroup of matrices eαE3 = diag (e− i
2 α, e

i
2 α)), on SU (2) explicitly reads

A �→ AeαE3 ⇔ ζ �→ e− i
2 αζ ⇔ (ϑ, ϕ, ψ) �→ (ϑ, ϕ, ψ + α)
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(ii) a standard construction of principal H -bundle π : G → G/H from (20.1.2) gives for this partic-

ular case (G = SU (2), eαE3 ∈ H = U (1)) just the Hopf bundle from problem (20.1.8).

Hint: (i) see (11.7.12) and the parametrization from (11.7.23); we have

A(ζ ) ≡
(

z −w̄

w z̄

)

�→
(

z −w̄

w z̄

) (
e− i

2
α 0

0 e
i
2
α

)

= · · · = A
(
e− i

2
αζ

)

so that the right coset gH for g = ζ contains just elements e− i
2
αζ ; (ii) according to

(20.1.8), exactly the whole coset is mapped to n ∈ S2, so that we have a bijection

gH ↔ [g] ↔ n; this means that an abstract scheme π : SU (2) → SU (2)/U (1) may be

here equivalently replaced by (identified with) the concrete bundle π : S3 → S2 discussed

in (20.1.8). �

20.1.10
∗

In problem (13.4.15) we studied genera-

tors of the left action of G on a homogeneous space

G/H (we learned there that they may be obtained by

the projection of the right-invariant fields RX on the

group). Here, we will treat the special case where

G = SU (2), H = U (1) generated by the element

E3 = − i
2
σ3 ∈ su(2) and we get as G/H (20.1.9)

ordinary sphere S2. Check that

(i) the canonical projection π in G/H in coordinates

reads

π : (ϑ, ϕ, ψ) �→ (ϑ, ϕ)

(ii) generators of rotations ξla on the sphere S2 from (13.4.6) may be obtained in this way by the

projection of the right-invariant basis fa on SU (2) from (11.7.23)

ξla = π∗ fa a = 1, 2, 3

(iii) because of that they satisfy “equal commutation relations”

[ fa, fb] = −εabc fc [ξla , ξlb ] = −εabcξlc a = 1, 2, 3

(iv) the generator of the right action Rh of the subgroup U (1) along cosets is the left-invariant field

e3 = ∂ψ .

Hint: (i) see (20.1.7) and the identification of projections π from the hint to (20.1.9); (ii) use

π ◦ L A = L̂ f (A) ◦ π (20.1.7) in a similar way as π ◦ Lg = Lg ◦ π was used in (13.4.15);

the difference lies in that here we have an additional homomorphism (covering) f , which

results in a general relation ξ f ′(X ) = π∗ RX , X ∈ su(2) (instead of ξX = π∗ RX in (13.4.15));

for the basis Ea = − i
2
σa we have f ′(Ea) = la ∈ so(3) (13.3.7) and (12.1.5), so that,

in particular, ξ f ′(Ea ) = ξla = π∗ REa = π∗ fa ; in coordinates π∗(∂ϑ, ∂ϕ, ∂ψ ) �→ (∂ϑ, ∂ϕ, 0)
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and so

π∗
(
−sin ϕ∂ϑ − cot ϑ cos ϕ∂ϕ + cos ϕ

sin ϑ
∂ψ

)
= −sin ϕ∂ϑ − cot ϑ cos ϕ∂ϕ

π∗

(

cos ϕ∂ϑ − cot ϑ sin ϕ∂ϕ + sin ϕ

sin ϑ
∂ψ

)

= cos ϕ∂ϑ − cot ϑ sin ϕ∂ϕ

π∗∂ϕ = ∂ϕ

(iii) and (iv) see (13.4.4) and (13.4.15). �

• Yet another way of looking at the Hopf bundle is provided by the language of projective

spaces.

20.1.11
∗

Consider the complex space C
n+1 with points χ and the corresponding projective

space CPn (1.3.2) with points [χ ]. On each ray in C
n+1 the group GL(1, C) acts naturally

(χ �→ λχ ; the points of CPn may be identified just with orbits of the action). Check that

(i) a ray may also be characterized by a normalized representative ζ (such that ζ+ζ = 1 holds)

(ii) the normalized representative is still not unique, the freedom being ζ �→ eiαζ , so that on

normalized vectors (i.e. on the sphere S2n+1) the group U (1) acts

(iii) in this way a principal U (1)-bundle arises

π : S2n+1 → CPn

(iv) the case n = 1 just corresponds to the Hopf bundle discussed in (20.1.8) and (20.1.9)

(v) at the same time this corresponds, for n = 1, to the map described in (1.4.6).

Hint: (i) the norm of a vector changes as χ+χ �→ |λ|2χ+χ ; (ii) |λ|2 = 1; (iii) the orbit space

is (by definition) just CPn; (iv) CP1 = S2; (v) see (1.4.6). �

20.2 Connection form ω ∈ �1(P, Ad)

• In Chapter 19 we learned that the linear connection on M may be encoded into a

horizontal GL(n, R)-invariant distribution Dh on L M . Here, we will promote this result

to a starting point for our discussion on connections on arbitrary principal bundles, i.e. we

define a connection in terms of the distribution itself:

Definition A connection on a principal G-bundle π : P → M is a(n arbitrary) horizontal

G-invariant distribution Dh on the total space P (or anything which is equivalent to this

object).417

This means that in each tangent space Tp P of the manifold P we have, in addition to the

canonical vertical subspace (whose existence reflects the fiber structure on the manifold P),

also a distinguished complementary subspace, which is called a horizontal subspace; each

417 The bracket is a loophole for the future, where we will see that a connection in this sense may also be encoded differently,
say, into the connection form, and it would be inconvenient to prevent such alternative methods of description from having a
chance to serve as a definition (we already encountered a similar situation with the definition of the concept of a vector on a
manifold in Section 2.2).
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vector v on the manifold P may thus be uniquely decomposed into the sum of its vertical

and horizontal parts

Tp P = Ver p P ⊕ Hor p P v = ver v + hor v

ver v ∈ Ver p P, hor v ∈ Hor p P

20.2.1 Be sure to understand that

(i) all horizontal subspaces within a single fiber may be linked to each other by the action of the

group G and the same is also true for vertical subspaces

Rg∗Hor p P = Hor pg P Rg∗Ver p P = Ver pg P

(ii) the decomposition of a vector into its horizontal and vertical parts commutes with the action of

the group

hor Rg∗v = Rg∗hor v ver Rg∗v = Rg∗ver v

(iii) in order to specify a horizontal distribution it is enough to (smoothly) fix the horizontal subspace

at a single (arbitrary) point in each fiber.

Hint: (i) horizontal: the definition of the concept G-invariance of Dh , i.e. R∗
gDh = Dh ;

vertical: verticality of the action; (ii) and (iii) a direct consequence of (i). �

• We saw in (19.2.1) that a horizontal distribution on L M (i.e. for a linear connection) may

be concisely specified in terms of a connection form, which is a matrix-valued 1-form on

L M ; its component forms served as constraint forms of the distribution. Here we will learn

that also in the general case of a connection in π : P → M , the horizontal distribution may

be conveniently expressed in terms of an appropriate 1-form. It turns out that it is natural to

regard the values of the form to lie in the Lie algebra G of the group G. For the construction

of the form it is useful first to formalize a well-known property of fundamental fields by

introducing a map �p.

20.2.2 Given X ∈ G, consider the fundamental field ξX of the action Rg on P . Define a

map

�p : G → Ver p P X �→ ξX (p)

Check that

(i) �p is a linear isomorphism

(ii) an arbitrary vertical vector at the point p ∈ P may be uniquely written as a certain fundamental

field in the point, i.e. in the form of v ≡ ver v = ξX (p) for a unique element X .

Hint: (i) X �→ ξX is a representation of the Lie algebra G (13.4.3) ⇒ it is linear. The

bijectivity is still needed. Injectivity is due to the freedom of the action (if ξX (p) = ξY (p),

then ξX−Y (p) = 0, so that X − Y is (4.1.6) from the Lie subalgebra corresponding to the

stabilizer; the latter is, however, trivial), surjectivity is due to the transitivity in a fiber (there

is no direction which cannot be produced by the action); (ii) X = �−1
p (v). �
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20.2.3 Check the following behavior of the map �p from (20.2.2) with respect to the

action of the group

Rg∗ ◦ �p = �pg ◦ Adg−1

( ⇒ also �−1
pg ◦ Rg∗ = Adg−1 ◦ �−1

p

)

Hint: see (13.4.3); the second one by applying ( )−1 to the first one plus the replacements

p �→ pg, g �→ g−1. �

• Now we are prepared to introduce a connection form and to learn its essential properties.

20.2.4 Define at the point p ∈ P a 1-form ωp with values in the Lie algebra G by the

prescription: if vp is an arbitrary vector in the point p, then

〈ωp, vp〉 := �−1
p (ver vp) i.e. ωp = �−1

p ◦ ver : Tp P → G

So, we first project out the vertical part418 of the vector vp and express it, in the sense of

(20.2.2), as a fundamental field ξX at the point p. The fundamental field is parametrized by

a unique element X from the Lie algebra G. This X is declared to be the image of the vector

vp with respect to the map ωp. Check that

(i) it is indeed a (G-valued) 1-form

(ii) horizontal vectors are just those vectors which are annihilated by the form ω

vp ∈ Horp P ⇔ 〈ωp, vp〉 = 0 i.e. Horp P = Ker ωp

(iii) if Ei is an arbitrary basis of the Lie algebra G, then

ωp = ωi
p Ei

and (ordinary, i.e. R-valued) component 1-forms ωi
p may serve as constraint 1-forms of the

horizontal subspace Horp P ⊂ Tp P .

Hint: (i) it is a composition of two linear maps; (ii) the vertical part of horizontal vectors

vanishes; (iii) see (6.4.1) and (19.3.1). �

• If we define a form ωp for each p ∈ P (so that it varies smoothly with p), we get a

connection 1-form ω ∈ �1(P,G), i.e. already a 1-form on a manifold P with values in

the Lie algebra G. In this simple object, a (global) Lie algebra valued 1-form, there is (by

construction) encoded full information concerning the horizontal distribution Dh on P , i.e.

concerning connection in the principal G-bundle π : P → M .

In particular, the fact that the distribution Dh is G-invariant (in the sense that Rg∗Dh =
Dh) should be somehow reflected in properties of ω. In order to see this in detail, recall that

the concept of differential forms of type ρ was introduced in Section 13.5. In our situation

418 Note that the vertical part of a vector depends on how the horizontal (complementary) subspace is defined, i.e. on a connection;
consider, for example, a basis e1, e2 in a two-dimensional space and let v = ae1 + be2. The projection onto the subspace
spanned by e1 (if the complementary subspace is spanned on e2) is ae1. If, however, we chose the complementary subspace
to be spanned on ẽ2 ≡ e1 + e2, then we would write v = ãe1 + b̃ẽ2 ≡ (a − b)e1 + bẽ2 and the projection on e1 would be
ãe1 = (a − b)e1 �= ae1. A change of e2 thus results in a change of the projection onto e1.
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(when we have an action Rg on a manifold P) a p-form α on P with values in (V, ρ) is

called a form of type ρ (we write α ∈ �p(P, ρ)), if it satisfies

R∗
gα = ρ(g−1)α

Alternatively, introducing component forms by

α = αa Ea Ea − a basis in V

there holds

(R∗
gα

a)Ea = αaρ(g−1)Ea or R∗
gα

a = (ρ(g−1))a
bα

b

20.2.5 Check that a connection form ω has the following two important properties:

R∗
gω = Adg−1ω i.e. ω ∈ �1(P, Ad) (it is of type Ad)

〈ω, ξX 〉 = X

Solution: using (20.2.1) and (20.2.3) we get

〈R∗
gωpg, vp〉 = 〈ωpg, Rg∗vp〉 = �−1

pg (ver Rg∗vp) = �−1
pg ◦ Rg∗ ◦ ver vp

= Adg−1 ◦ �−1
p ◦ ver vp = Adg−1〈ωp, vp〉

〈ωp, ξX 〉 = �−1
p ver ξX (p) = �−1

p ξX (p) = X

�

20.2.6 Check that if, on the contrary, there is a G-valued 1-form ω on P , which has the

two properties from problem (20.2.5), then the prescription

Hor p P := Ker ωp

defines on P a G-invariant distribution Dh , which is complementary to the vertical distri-

bution Dv , i.e. a connection in the G-bundle π : P → M . (This gives the possibility of an

alternative (equivalent) definition of connection simply as such a 1-form.)

Hint: 〈ωpg, Rg∗vp〉 = 〈R∗
gωpg, vp〉 = . . . (20.2.5) = . . . Adg−1〈ωp, vp〉, so that Rg∗Hor p =

Hor pg (the horizontal distribution is G-invariant). The second equation says that the funda-

mental fields are not horizontal and guarantees that component 1-forms ωi are at each point

linearly independent (if ciω
i
p = 0, then evaluation of both sides on the vectors ξE j yields

c j = 0), so that the dimension of the horizontal distribution is just complementary to the

dimension of the vertical one (the dimension of the manifold P is a sum of the dimensions

of a base and a group, and the vertical distribution has the dimension of the group, so that

the horizontal one has the dimension of the base). �

20.2.7 Check that by passing to an infinitesimal version of (20.2.5) we get the identities

LξX ω = −adXω ≡ −[X, ω]

iξX ω = X
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and, combining them, also

iξX dω = −[X, ω]

Hint: see (19.4.2); diξX ω = d X = 0, since X is a constant (function) on P . �

20.3 Parallel transport and the exterior covariant derivative D

• In Section 19.5 we learned that the procedure of parallel transport of a frame along a

curve γ on the base M may be equivalently described as a construction of the curve γ h in

the total space L M , the horizontal lift of the original curve γ . The lift is specified by two

conditions:

1. it projects to the original curve γ on M
2. it is horizontal at each point.

If, in the original approach discussed in Chapter 15, we performed the transport of a

frame e(x) from a point x to a point y (along the curve γ ), in the novel approach the lift

begins at the point e(x) in the fiber over x and we then declare the point on γ h in the fiber

over y to be the parallel transported frame.

In Section 19.6 we then learned that, surprisingly, in the formalism based on the mani-

fold of frames L M also tensor fields on M may be treated remarkably simply, namely as

equivariant functions on L M . We also learned how parallel transport of tensor fields may

be performed in this approach as well as a computation of their covariant derivatives.

Here we will show how all of these concepts and procedures may be easily extended to

the case of a general principal bundle.

Recall that points p of the total space of a general principal bundle π : P → M have no

interpretation in terms of the base (there is no counterpart of the fact that a point of L M
corresponds to a frame on M). So if we intend somehow to define their parallel transport, we

cannot base the method (contrary to Chapter 19) upon our knowledge of how it is done on the

base manifold M . A natural possibility suggests itself, however, to repeat almost verbatim

the idea used in the special case of a principal bundle, the frame bundle π : L M → M . A

point p of the total space P of a general principal bundle may be regarded in this context

as a generalization of a frame. We learned that the parallel transport of a frame could be

interpreted there as a construction of horizontal lift and that (only) the horizontal distribution

is needed for that. However, just this structure is available on a general principal bundle, too

(this is namely a connection), so that the horizontal lift of a curve can also be constructed

in the general setting.

20.3.1 Let Dh be a horizontal distribution on P , given by a connection form ω. Check

that
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(i) if v ∈ Tx M is an arbitrary vector at a point x ∈ M ,

then at each point p ∈ π−1(x) in the fiber over x
there exists the unique horizontal lift, i.e. a vector

vh ∈ Tp P such that

π∗vh = v (it projects onto v )

vh ∈ Hor p P (it is horizontal)

(ii) the operation of the horizontal lift v �→ vh is a linear
isomorphism of the (whole) tangent space in x and

the horizontal subspace in p
(iii) if we lift v in this way to all points of the fiber over x , we get a vector field vh in the fiber which

is G-invariant: Rg∗vh = vh

(iv) if we lift in this pointwise way a vector field V from M , we get on P a vector field V h , which is

G-invariant and horizontal:

Rg∗V h = V h 〈ω, V h〉 = 0

(v) on the other hand, each G-invariant and horizontal vector field W on P may be regarded as a

horizontal lift V h of an appropriate field V on M .

Hint: the projection induces a surjective linear map π∗ : Tp P → Tx M ; the distribution Dh

gives by definition the decomposition Tp P = Ver p P ⊕ Hor p P , where Ver p P := Ker π∗
has the dimension of the group G and Hor p P is complementary, so it is canonically
isomorphic to the target space Tx M ; the isomorphism is in one direction (the restriction of)

π∗, in the opposite one the lift (being moreover just the inverse map to the restriction of π∗);

(iii) Rg∗vh
p satisfies both the properties of vh

pg (due to π ◦ Rg = π and the G-invariance of

the horizontal distribution (20.2.1)), so that it is vh
pg .

20.3.2 Let γ be a curve on the base M of a principal bundle π : P → M with connection

and p an arbitrary point from the fiber over γ (0). Check that

(i) there exists a unique curve γ h on P given by the conditions

π ◦ γ h = γ (it projects to γ )

γ h(0) = p (it starts in the point p)

〈ω, ˙(γ h)〉 = 0 (it is horizontal)

i.e. γ h is everywhere “exactly above” γ , it passes through a given point p and the tangent vector

to this curve is at each point horizontal. The curve γ h is called the horizontal lift of the curve γ

(ii) tangent vectors to the curve γ h are horizontal lifts of tangent vectors to the initial curve γ

˙(γ h) = (γ̇ )h

(iii) the horizontal lift of a reparametrized curve is the (equally) reparametrized horizontal lift of the

initial curve; this means that also the horizontal lift of a (non-parametrized) path (corresponding

to a curve γ ) is well defined,

(γ ◦ σ )h = γ h ◦ σ σ : t �→ σ (t) ∈ R



20.3 Parallel transport and the exterior covariant derivative D 565

Hint: (i) we start in γ h(0) = p, make a step by ε along (γ̇ )h (being just over γ (t) at this small

piece of curve and moving horizontally), etc.; (ii) from the construction; (iii) the tangent

vector of a reparametrized curve turns out (2.3.5) to be just a multiple of the initial one, the

procedure of the lift of a vector is, however, linear so that the new lifted tangent vector is

the same multiple of the old lifted one. �

• We will interpret points of the horizontal lift p(t) ≡ γ h(t) by definition (motivated by

the special case (19.5.1) and (19.5.2) for L M) as a parallel transported “generalized frame.”

If we also wish to introduce parallel transport of

objects other than generalized frames, we need first

to define the objects themselves. In the case of L M
we first studied tensor fields, but it then turned out

that their expression in terms of L M also offers free

of charge even more general objects (19.6.5), quan-

tities of type ρ. The good news is that these objects

may also be naturally introduced on a general prin-

cipal G-bundle π : P → M . Again, they are equiv-
ariant functions on P , i.e. maps

� : P → (V, ρ) � ◦ Rg = ρ(g−1) ◦ �

i.e. �(pg) = ρ(g−1)�(p)

where (V, ρ) is a linear space (its elements play the role of components of the quantity �

with respect to the “frame” p), in which a representation ρ of the group G is available. A

quantity of type ρ at a point x ∈ M is introduced as an equivariant function � from the fiber

over x to V ; its value �(p) is regarded as “components” of the quantity with respect to the

“basis” p. If we change the “basis” according to p �→ pg, the equivariance of � results in

a transformation of “components” �(p) �→ �(pg) ≡ ρ(g−1)�(p), i.e. “components” are

mixed up according to the (anti)representation ρ(g−1).

Now, the parallel transport of such an object may be defined in the same way, as we

did for the particular case of L M (see (19.6.4) and the text further on). Namely, if we

parallel transport a “frame” along a curve γ (i.e. we move along the horizontal lift γ h), the

corresponding “components” are to be kept (by definition) constant

� is parallel transported along γ ⇔ �(γ h(t)) = constant

20.3.3 Check that this condition may also be written in the form

〈d�, (γ̇ )h〉 = 0

Hint: item (ii) in (20.3.2). �

• Yet another way of expressing the fact that � corresponds to an autoparallel quantity of

type ρ on a curve γ may be written in terms of special and important operations on forms,

namely projection on the horizontal part and a combination of such a projection with the

exterior derivative.
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20.3.4 For an arbitrary p-form α on P , define a new p-form hor α (the horizontal part of

α) by the prescription

(hor α)(U, . . . , V ) := α(hor U, . . . , hor V )

Check that

(i) it is well defined (the result is indeed a p-form)

(ii) the map hor : �p(P) → �p(P) is a projection, i.e.

hor ◦ hor = hor

(iii) horizontal forms (i.e. such forms α for which hor α = α) are annihilated by (even a single)

vertical argument

hor α = α ⇔ iW α = 0 for vertical W

(iv) for connection form we have

hor ω = 0

(v) on a linear combination and a product there holds

hor (α + λβ) = hor α + λ hor β

hor (α ∧ β) = (hor α) ∧ (hor β)

so that the operator hor is an (endo)morphism of the Cartan algebra �(P) of differential forms

on P; the image of the morphism is a subalgebra of the Cartan algebra

�̄(P) := Im hor ⊂ �(P) the algebra of horizontal forms on P

(vi) if the operator hor is applied in the standard way on forms of type ρ (i.e. with values in (V, ρ),

hor (αA E A) := (hor αA)E A, (6.4.4)), then hor preserves the type ρ of the forms, on which it acts

α is of type ρ ⇒ hor α is of type ρ

Hint: (i) V �→ hor V is F-linear operation; (ii) evaluate both sides on general arguments;

(vi) R∗
g ◦ hor = hor ◦ R∗

g according to (20.2.1). �

20.3.5 Consider differential forms on P and define their exterior covariant derivative by

the prescription

Dα := hor dα

i.e. as the horizontal part of their (ordinary) exterior derivative. Check that

(i) it is a map

D : �p(P) → �̄p+1(P)

(ii) on a linear combination and a product it behaves analogously to the “ordinary” exterior derivative

D(α + λβ) = Dα + λDβ

D(α ∧ β) = (Dα) ∧ hor β + (η̂ hor α) ∧ Dβ
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so that the operator D behaves on the Cartan subalgebra �̄(P) of horizontal forms on P as a

derivation of degree +1

(iii) if we apply the operator D in the standard way on forms of type ρ (i.e. on forms with values in

(V, ρ), the prescription being D(αA E A) := (DαA)E A, (6.4.4)), then D preserves the type ρ of

forms on which it acts

α is of type ρ ⇒ Dα is of type ρ

Hint: (ii) standard properties of d and hor; (iii) R∗
g ◦ D = D ◦ R∗

g according to (20.3.4). �

20.3.6 Consider a quantity � of type ρ (an equivariant function � : P → (V, ρ)) which

satisfies the condition

D� = 0

over some domain U on M (i.e. in π−1(U) ⊂ P). Check that if γ is any curve passing

through U , then the restriction of � to fibers over γ corresponds to an autoparallel quantity

of type ρ defined on the curve γ .

Hint: see (20.3.3) and 〈d�, (γ̇ )h〉 = 〈d�, hor (γ̇ )h〉 = 〈hor d�, (γ̇ )h〉 = 〈D�, (γ̇ )h〉. �

• The mere fact of writing the property of a quantity � as being autoparallel in terms of

D actually represents no technical progress, since the computation right from the definition

is too complicated (one has to perform explicitly horizontal projections of arguments). The

good news is that for truly important objects, horizontal forms of type ρ (in particular,

functions of type ρ) and a connection form ω, the result may be written in an amazingly

simple explicit form (see (20.4.3) and (20.4.6)).

20.3.7 Be sure to understand that

(i) parallel transport does not depend on the parametrization of a curve γ ; it is completely given by

an oriented path (non-parametrized “curve”), along which an object is transported

(ii) the net effect of a transport from x to y and then returning back from y to x along the same path

is zero, i.e. the complete transport is equivalent to doing nothing (the actions of the transports

there and back along the same path “cancel” one another).

Hint: (i) we can see from the result of (20.3.2) that the final point on the lifted path does not

depend on a parametrization of the path itself; (ii) we return back along the same horizontal

lift. �

20.4 Curvature form � ∈ �2(P, Ad) and explicit expressions of D

• As we learned in Sections 19.5 and 20.3, parallel transport involves the construction of

the horizontal lift of a path from the base to the total space of a bundle. The lift, however, may

depend on the path. Namely, consider two different paths connecting the points x, y on the

base. Then, the lifts of the paths (starting from the same point p over x) do not necessarily

end at the same point; actually what is only guaranteed is that the lifts end in the same fiber
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π−1(y) over the common endpoint y of the paths under consideration. This fact may be

alternatively reformulated as that parallel transport around a loop may be non-trivial, i.e. the

values of the geometrical quantity before and after the transport around the loop may differ.

Whether or not the transport indeed depends on the path in any particular case depends

(locally) eventually on integrability of the horizontal distribution. Indeed, if the horizontal

distribution happens to be integrable, then the lift of a small enough loop lies entirely within

the integral submanifold passing through the point x (being the start as well as the endpoint

of the loop). Then, however, also the start and endpoint of the lift necessarily coincide, since

there is exactly one integral submanifold of the horizontal distribution passing through any

point of the fiber over x .

On the other hand, if the distribution is non-integrable over some neighborhood of x , we

can construct a small loop based at x such that the lift of the loop already fails to be a loop

(the start point differs from the endpoint; we encountered a similar situation in problem

(19.3.5)), i.e. the parallel transport turns out to be non-trivial. This shows that it is just the

examination of integrability of the horizontal distribution which reveals whether or not a

parallel transport is (locally) path-dependent.419

In this way we naturally come to the task of finding an object which reflects a measure

of non-integrability of the horizontal distribution (if the latter happens to be integrable

the object should vanish, if it is not integrable it should be non-zero and “the more” non-

integrable the distribution is, “the larger value” the object should have). It turns out that this

piece of information may be conveniently carried by an appropriate 2-form on P .

Recall that one of the formulations of Frobenius’ integrability condition of a distribution

(19.3.8) states that the distribution is integrable if and only if the restriction of the exterior

derivative of all constraint 1-forms to D vanishes (dθ i = 0 on D). In our particular case

this amounts to saying that

Dh is integrable ⇔ {U, V ∈ Dh ⇒ dω(U, V ) = 0}
i.e. the restriction of the 2-form dω to the horizontal subspace results in the zero 2-form

at each point. This criterion is not very convenient so far since, in addition to a (simple)

computation of the exterior derivative of the connection form ω, it requires the (more

complicated) restriction of the result to the horizontal subspace. Before we progress to a

truly convenient formulation, we will express it in terms of operations which we introduced

in (20.3.5).

20.4.1 Check that the horizontal distribution Dh is integrable if and only if the 2-form

� ≡ hor dω vanishes

Dh is integrable ⇔ � := Dω = 0

This (immensely important) 2-form � (with values in the Lie algebra G) is called the

curvature form.

419 This issue gets more involved for “large” loops (or for “remote” points x and y); we will return to this after problem (20.4.8).
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Hint: this is nothing but a rewriting of the criterion mentioned before (20.4.1) in terms of

the operation hor; for general vector fields U, V we have �(U, V ) = dω(hor U, hor V ). �

Although this criterion of integrability seems to be simple and elegant, it still lacks

perfection since so far a simple algorithm for the computation of the curvature form is

not available (a simple realization of the “hor” procedure). This last defect is eventually

removed by a surprisingly simple formula presented in problem (20.4.4).

However, in order to understand the formula it is necessary first to introduce a specific ex-

terior product of Lie algebra valued forms, which will be denoted by [α ∧ β] (we mentioned

it briefly in Section 6.4 in the context of forms with values in a general algebra).

20.4.2 Let α and β be differential forms with values in a Lie algebra G. Check that

(i) if α = αi Ei , β = β i Ei , then the prescription

[α ∧ β] := αi ∧ β j [Ei , E j ] ≡ (
ck

i jα
i ∧ β j

)
Ek

provides a well-defined product (being the Lie algebra valued (p + q)-form, if α and β are

p-form and q-form respectively)

(ii) the product behaves under the exchange of the factors as follows:

[α ∧ β] = −(−1)pq [β ∧ α]

so that the rule contains an extra minus sign compared to ordinary forms (5.2.4)

(iii) for two 1-forms this may also be written as420

[α ∧ β](U, V ) := [α(U ), β(V )] + [β(U ), α(V )]

and, in particular, for two equal 1-forms we have

[α ∧ α](U, V ) := 2[α(U ), α(V )]

(iv) the exterior derivative of such a product (in the sense of Section 6.4) turns out to be in accordance

with expectations

d[α ∧ β] = [dα ∧ β] + [η̂α ∧ dβ]

(v) also the action of the operator hor does not bring any annoying surprises

hor [α ∧ β] = [hor α ∧ hor β]

Hint: (i) check that it does not depend on the choice of basis in G; (ii) the extra minus sign

is due to the commutator in the Lie algebra; (iii)

[α ∧ β](U, V ) = (αi ∧ β j )(U, V )[Ei , E j ]

= (αi (U )β j (V ) − β j (U )αi (V ))[Ei , E j ]

= [α(U ), β(V )] + [β(U ), α(V )]

(iv) see (20.3.4). �

420 The product may be written in the same spirit also for higher degree forms, but we will not need it.
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• Now we are already familiar with all the operations needed for a simple and easily

applicable expression of the curvature form � in terms of a given connection form ω.

20.4.3 Check that the curvature form � ≡ Dω may be expressed in the form of the

Cartan structure equation � = dω + 1

2
[ω ∧ ω] � := Dω ≡ hor dω

so that for the component forms �i we have421

�i = dωi + 1

2
ci

jkω
j ∧ ωk � = �i Ei , ω = ωi Ei

Solution: according to (20.4.2) and (20.3.4) we are to prove that for arbitrary vector fields

U, V there holds

dω(hor U, hor V ) = dω(U, V ) + [ω(U ), ω(V )]

This relation is F(P)-linear (equality of two tensors), so that it is enough to prove it on an

appropriate “basis.” According to (20.2.2), at an arbitrary point p a general vector U (as

well as V ) may be written as Up = Ûp + ξX (p), where Ûp is already horizontal and ξX (p)

is the fundamental field (with appropriate X ). This means that it is enough to consider three

particular cases, namely U, V = Û , V̂ or Û , ξX or ξX , ξY . The first one is trivial, the second

and the third one are

dω(ξX , Û ) ≡ iÛ iξX dω = 0

or dω(ξX , ξY ) ≡ iξY iξX dω = −[X, Y ]

Both equalities are evident from the result iξX dω = −adXω ≡ −[X, ω] ≡ −ck
i j X iω j Ek ,

proved in (20.2.7). �

• This expression of the curvature form � in terms of a given connection form ω is indeed

“user friendly”: the operation hor is realized as a simple addition of the term 1
2
[ω ∧ ω],

so that we do not need to bother at all with any horizontal directions, instead we make do

perfectly with an elementary manipulation with the form ω itself. Thus, let us look at the

basic properties of the curvature form �, which may be easily found either right from the

definition or from the derived explicit expression.

20.4.4 Check that the curvature form � always enjoys the following properties:

(i) it is a horizontal 2-form of type Ad, i.e.

hor � = � R∗
g� = Adg−1�

(ii) it satisfies the Bianchi identity (see also (20.4.7))

D� ≡ DDω = 0

421 The relation of the Cartan structure equation to the equations of the same name introduced in (15.6.7) is discussed in (21.2.7)
and (21.7.4).
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Hint: (i) each form which results from applying the hor operator to another form is horizontal;

Ad-behavior due to the commutation of R∗
g with D (20.3.5) and Ad-behavior of ω itself;

(ii)

DDω = hor d

(

dω + 1

2
[ω ∧ ω]

)

= hor [dω ∧ ω] = [Dω ∧ hor ω] = [� ∧ 0] = 0

where the results of (20.3.4) and (20.4.2) were used. �

• As we have already mentioned, the operation D may be simply expressed in two other

relevant cases, namely for functions of type ρ and for horizontal forms of type ρ. In order

to understand the formulas we need to manage yet another type of product of forms.

20.4.5 On the total space P , consider a differential p-form α with values in the Lie algebra

G and a q-form β with values in a representation space (W, ρ ′) of the Lie algebra G. Check

that

(i) if α = αi Ei , β = βa Ea (Ea being a basis in W ), then by the prescription

ρ ′(α) ∧̇ β := αi ∧ βaρ ′(Ei )Ea ≡ (
ρa

biα
i ∧ βb

)
Ea ≡ (

αa
b ∧ βb

)
Ea

a well-defined (exterior) product is defined, resulting in a (p + q)-form with values in W ; in

particular, if β is a function (β ≡ �, q = 0), the (trivial) symbol of the exterior product may be

omitted and we simply write

ρ ′(α) ∧̇ � ≡ ρ ′(α)� ≡ αi�aρ ′(Ei )Ea ≡ (
ρa

biα
i�b

)
Ea ≡ (

αa
b �b

)
Ea

(ii) the product of two G-valued forms from (20.4.2) is just a special case for ρ ′ = ad

ρ ′(α) ∧̇ β �→ ad (α) ∧̇ β = [α ∧ β]

(iii) the exterior derivative of this product (in the sense of Section 6.4) gives the standard result

d{ρ ′(α) ∧̇ β} = ρ ′(dα) ∧̇ β + ρ ′(η̂α) ∧̇ dβ

(iv) the operator hor also acts according to our expectations

hor {ρ ′(α) ∧̇ β} = ρ ′(hor α) ∧̇ hor β

(v) if α is of type Ad and β is of type ρ, then ρ ′(α) ∧̇ β is of type ρ.

Hint: (i) check that it is independent of the choice of bases in G and W ; (iv) see (20.3.4);

(v)

R∗
g{ρ ′(α) ∧̇ β} = ρ ′(R∗

gα) ∧̇ R∗
gβ = ρ ′(Adg−1α) ∧̇ ρ(g−1)β

= according to (12.3.7)

= ρ(g−1)ρ ′(α)ρ(g) ∧̇ ρ(g−1)β = ρ(g−1){ρ ′(α) ∧̇ β}
�

20.4.6 Let π : P → M be a principal G-bundle, ω ≡ ωi Ei a connection form, α ≡ αa Ea

a horizontal p-form of type ρ, � ≡ �a Ea a function of type ρ and denote ωa
b ≡ ρa

biω
i .
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Check that for exterior covariant derivatives Dα and D� the following explicit expressions

hold:

Dα = dα + ρ ′(ω) ∧̇ α i.e. Dαa = dαa + ωa
b ∧ αb

D� = d� + ρ ′(ω)� i.e. D�a = d�a + ωa
b�

b

(recall that according to Section 6.4 we have Dαa ≡ (Dα)a and D�a ≡ (D�)a).

Hint: proceed similarly as in (20.4.3): we are to check

dα(hor U, hor V, . . .) = dα(U, V, . . .) + ρ ′(ω) ∧̇ α(U, V, . . .)

A decomposition Up = Ûp + ξX (p), Vp = V̂p + ξY (p), . . . reduces the proof to partic-

ular cases, namely to U, V, . . . = Û , V̂ , . . . , ξX , Û , . . . , ξX , ξY , . . . . For all arguments

horizontal it is trivial, for more than one fundamental field we obtain the identity 0 = 0

(the term dα(ξX , ξY , . . .) due to Cartan formulas (6.2.13) and horizontality of α, the term

ρ ′(ω) ∧̇ α(ξX , ξY , . . .) due to horizontality of α, since at least one fundamental field neces-

sarily ends in α) and for a combination ξX , Û , . . . we are to check the validity of

dα(ξX , Û , . . .) + ρ ′(ω) ∧̇ α(ξX , Û , . . .) ≡ (iξX dα)(Û , . . .) + ρ ′(X )α(Û , . . .) = 0

This may be seen from the result iξX dα = −ρ ′(X )α (being an infinitesimal version of

R∗
gα = ρ(g−1)α). For the function � we are to verify

d�(hor U ) = d�(U ) + ρ ′(ω(U ))�)

For U = Û it is trivial, for U = ξX the question is whether ξX� = −ρ ′(X )�, which once

more results from the fact that � is of type ρ. �

• Having gone through this computation let us reward ourselves by deriving further useful

results. First, we will write down a more detailed version of the Bianchi identity and then

we will investigate whether the operator D is also nilpotent (as was d), or whether this

property is lost.

20.4.7 Check that the Bianchi identity may also be written in the form

d� + [ω ∧ �] = 0

or equivalently d�i + ci
jkω

j ∧ �k = 0

Hint: since according to (20.4.4) � is a horizontal form type Ad, (20.4.6) gives

D� = d� + [ω ∧ �]

�

20.4.8 Check that for the square of the exterior covariant derivative we get on a horizontal

form α of type ρ and on a function � of type ρ the results (also known as the Ricci identity)

DDα = ρ ′(�) ∧̇ α i.e. DDαa = �a
b ∧ αb

DD� = ρ ′(�)� i.e. DD�a = �a
b�

b
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We see that the square DD in general does not vanish, but rather it is proportional to the

curvature form. Due to the derived formula, the square nevertheless does vanish in the case

of zero curvature as well as for ρ ′ = 0 (in the case of the trivial representation).

Hint: according to (20.4.6)

DDα = hor d{dα + ρ ′(ω) ∧̇ α} = ρ ′(hor dω) ∧̇ α − ρ ′(hor ω) ∧̇ hor dα = ρ ′(�) ∧̇ α

�

• Now, let us look in some detail at the path (in)dependence of parallel transport for the

case where the curvature vanishes (so that the horizontal distribution is integrable), but

the beginning and the endpoint of a path happen to

be “remote” from one another (or, equivalently, the

loop is “large”). The argument about the path in-

dependence (mentioned at the beginning of Section

20.4) is based on the fact that the lifts of both paths

lie in a single common integral submanifold (then

the endpoints of both lifts necessarily coincide) and

this is only guaranteed locally by the integrability of

the distribution for some neighborhood of a given

point. The question is then: consider two paths c0

and c1 such that they both begin in x and terminate

in y (c0(0) = c1(0) = x , c0(1) = c1(1) = y); do the lifts lie in a single common integral

submanifold even if the points x and y fail to be close to each other (so that a priori it is

not clear whether the integral submanifold passing through x coincides with that passing

through y)? We can see intuitively that if c0 and c1 happen to be homotopic,422 then their

lifts actually do lie in a common integral submanifold. Namely, divide the two-dimensional

surface given by the homotopy (we may visualize it as a soap bubble, stretched at a contour

given by the paths c0, c1) into small enough “rectangles” (as is shown schematically in

the figure), with small enough meaning that they already lie entirely in a single integral

submanifold (given, say, by any vertex of the rectangle). Then we can see easily that the lift
of this “spider web” turns out to be again a spider web which necessarily lies entirely in a
single common large integral submanifold S, so that the lifts of the endpoints of the paths

c0 and c1 necessarily coincide.

20.4.9 Contemplate this argument until it is clear, since it is a fairly useful result.

Hint: let an integral submanifold be given by the left bottom corner of the rectangle; then also

the right bottom corner lies in the same submanifold (since the rectangle is small), the former

coinciding, however, with the left bottom corner of the neighboring rectangle (at the right),

422 That is, such that one can be continuously deformed to the other. Thus for each τ from 0 to 1 there is a path cτ (a one-parameter
class of paths altogether; it is called a homotopy) such that for τ = 0 it is just (our original) c0 and for τ = 1 we get (our
original) c1. More formally, let T1, T2 be topological spaces. Two continuous maps f, g : T1 → T2 are called homotopic, if
there exists a continuous map F : [0, 1] × T1 → T2 (homotopy) such that F(0, x) = f (x) and F(1, x) = g(x) for all x ∈ T1.
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so that it also defines an integral submanifold, in which the entire neighboring rectangle lies,

but, taking into account uniqueness of an integral submanifold passing through a given point,

this necessarily means that both rectangles actually lie in a single common larger integral

submanifold and eventually (by repeating this procedure) also that all the rectangles lie in

a single common large integral submanifold. �

• If the paths c0 and c1 fail to be homotopic to each other (or, speaking in terms of loops,

if the “large” loop fails to be homotopic to zero, i.e. it cannot be continuously shrunk into

its beginning = endpoint), the argument mentioned above cannot be used and it turns out

that in this case parallel transport may (but does not need to) depend on the path (it may be

non-trivial around a non-contractible loop). Simple and instructive examples are provided

by the two-dimensional cylinder and cone endowed with the standard RLC connection. In

both cases the curvature vanishes, since they happen to be locally isometric to the Euclidean

plane. In both cases thus the parallel transport of vectors may be realized as follows: the

surface is slitted, unfolded and put onto the plane and a vector is then translated “ordinarily”

as is common in the plane (shifted); eventually the surface is glued back (of course, we

can also proceed by an official calculation). In this way one can see that while parallel

transport around any loop on the cylinder is trivial, the transport around the loop, which

turns around the cone (it cannot be shrunk, since the cusp does not belong to the cone

regarded as a two-dimensional manifold), is non-trivial – the vector is turned due to the

transport (by an angle which depends on the “steepness” of the cone or, put differently,

on its “angular deficit” (the angle to be cut off from the plane in order to produce the

cone).

20.4.10 If we “repaired” the cone so that we smoothed its cusp replacing it by a nice two-

dimensional small cap, we already would be able to shrink the loop under consideration

(through the cap). In doing so, the region outside the cap did not change at all. Consequently,

the parallel transport around the loop encircling the cap should remain non-trivial. Is it still

possible to use the argument with the lift of the “spider net” (and we have a contradiction),

or it is not (and the matter is all right)?

Hint: the cap necessarily has non-zero curvature (it should be rounded off in order to close

the cone) and so at least a single rectangle lies in a region with non-integrable distribution

(where the gluing of the rectangles into a larger whole collapses). �

• Toward the end of Section 15.8, in the context of linear connections, we discussed

(and did not settle) the question of whether vanishing curvature also represents a sufficient

condition of complete parallelism. Now the (positive) answer may be easily seen. Recall that

by complete parallelism we mean a linear connection for which there exists a covariantly

constant frame field ea , i.e. a field such that ∇V ea = 0 for each V . In terms of the connection

form this gives ωa
b = 0 and, consequently, also �a

b ≡ dωa
b + ωa

c ∧ ωc
d = 0. The opposite

implication is, however, still unclear: does �a
b = 0 result in existence of a frame field ea , in

which ωa
b = 0? Well, we will be wiser after the next problem.
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20.4.11 Check that if the curvature form of a lin-

ear connection vanishes, there exists a covariantly

constant frame field, i.e. we have the complete par-

allelism

�a
b = 0 ⇒ ∃ea : ω̂a

b = 0

For a general connection this may be rephrased so

that the vanishing curvature form guarantees the ex-

istence of a (local) section such that the pull-back

of the connection form by means of the section vanishes

� = 0 ⇒ ∃σ : σ ∗ω = 0

Hint: � = 0 says that the horizontal distribution is integrable; consider an integral subman-

ifold S, which passes through a point p ∈ P and introduce a section σ such that S is just the

image of a domain on M with respect to the section. In this way we obtained a horizontal
section, i.e. a section such that all vectors tangent to its image turn out to be horizontal.

Now, if we pull back the connection form ω to the base manifold by this section, we get

ω̂ ≡ σ ∗ω, which vanishes (〈σ ∗ω, v〉 = 〈ω, σ∗v〉 = 0, since σ∗v is horizontal). �

• Now, let us look at a very simple connection which is available free of charge in each

product principal bundle; it is called flat, since its curvature vanishes.

20.4.12 Consider a product principal G-bundle π : M × G → M

π : M × G → M π : (m, g) �→ m Rg̃ : (m, g) �→ (m, gg̃)

and let πG : M × G → G, (m, g) �→ g, be a natural projection onto the factor G. Check

that

(i) if we declare vectors on P ≡ M × G tangent to M (tangent to curves t �→ (m(t), g)) to be

horizontal, we get a connection (vertical vectors are tangent to G so they correspond to curves

t �→ (m, g(t)))
(ii) even without doing any calculations we can see that the connection has vanishing curvature,

� = 0; it is called the canonical flat connection
(iii) its connection form is ω = π∗

Gθ , where θ denotes the canonical 1-form on the group G; this form

singles out the correct horizontal subspace and it also fulfills all the formal requirements which

any connection form is to satisfy

(iv) also a direct computation of � from this connection form gives � ≡ Dω = 0.

Hint: (i) G-invariance evident from the action (m(t), g) �→ (m(t), gg̃); (ii) the horizon-

tal distribution is integrable (the integral submanifold passing through (m, g) is (M, g));

(iii) the form π∗
Gθ ≡ θ ◦ πG∗ annihilates part of a vector, which is directed along M ; one

should check (20.2.5); if Rg is the action on M × G and R̂g is the right translation on G,

then πG ◦ Rg = R̂g ◦ πG ; if ξX is a generator of Rg on P , then πG∗ξX = L X ; see (11.2.6),

(12.3.4) and (20.2.4); (iv) apply π∗ to the Maurer–Cartan relations (11.2.6). �
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• In applications in gauge field theories one often encounters a situation when the group

G is a direct product of two (or even more) smaller groups, G = G1 × G2 and the represen-

tation ρ of the group (associated with a function of type ρ) is composed of representations

ρ1 and ρ2 of individual groups in the way described in (12.4.16). Let us see how the gen-

eral formulas Dω = dω + 1
2
[ω ∧ ω] from (20.4.3) and D� = d� + ρ ′(ω)� from (20.4.6)

work for this important particular case.

20.4.13
∗

Recall that the Lie algebra of a direct product G1 × G2 is the direct sum of Lie

algebras G = G1 + G2. Let Ei ∈ G1 and EI ∈ G2 denote bases in the initial algebras and ck
i j

and cK
I J denote the structure constants with respect to these bases. Check that

(i) the connection form has a unique decomposition ω = ω1 + ω2 to a G1-valued part and a G2-valued

part respectively

(ii) the curvature form has a unique decomposition � = �1 + �2 to a G1-valued part and a G2-valued

part, where

�1 = dω1 + 1

2
[ω1 ∧ ω1] i.e. �i

1 = dωi
1 + 1

2
ci

jkω
j
1 ∧ ωk

1

�2 = dω2 + 1

2
[ω2 ∧ ω2] i.e. �I

2 = dω I
2 + 1

2
cI

J K ωJ
2 ∧ ωK

2

so that the first (second) part of the curvature form is to be computed by a standard formula

applied to the first (second) part of the connection form alone, as if the second (first) part did not

exist at all.

Hint: (i) ω = ωi Ei + ωI EI ≡ ω1 + ω2 and the decomposition does not depend on the

choice of bases in G1 and G2; (ii) � = d(ω1 + ω2) + 1
2
[(ω1 + ω2) ∧ (ω1 + ω2)] = · · · ,

[G1,G2] = 0. �

20.4.14
∗

Consider still G = G1 × G2 and let � be a function of type ρ for the representa-

tion ρ(g1, g2) = ρ(g1) ⊗ ρ(g2) in V = V1 ⊗ V2 from (12.4.16). Denote bases in the initial

spaces by Ea ∈ V1 and Eα ∈ V2 respectively so that Ea ⊗ Eα is a basis in V1 ⊗ V2 and

� = �aα Ea ⊗ Eα . Check that the formula for computing the exterior covariant derivative

of � may be written in the form of

D�aα = d�aα + (ω1)a
b�

bα + (ω2)αβ�aβ (ω1)a
b = ρa

biω
i
1

(ω2)αβ = ρα
β I ω

I
2

so that both types of indices are separately “processed” by “their own” connection form.

Hint: according to (12.4.16) we have ρ ′(X1 + X2) = ρ ′
1(X1) ⊗ 1̂ + 1̂ ⊗ ρ ′

2(X2) so that

ρ ′(ω1 + ω2)� = · · · . �

20.5∗ Restriction of the structure group and connection

• Consider a principal G-bundle π : P → M and a function � : P → V of type ρ.

We will show that, provided that some requirements are fulfilled, we automatically get
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a submanifold Q ⊂ P “inside” P , which moreover turns out to be the total space of a

“smaller” principal H -bundle π̂ : Q → M (where H is a subgroup of G) and if there was

a connection in P , it is also available in Q.

20.5.1 Let π : P → M be a principal G-bundle and consider a function � : P → V of

type ρ. Be sure to understand that the whole fiber π−1(x) is mapped by � into a single orbit

of the action (representation) ρ in V .

Hint: � is equivariant, �(pg) = ρ(g−1)�(p), so that it preserves orbits (any fiber is just a

whole orbit). �

• In general, different fibers may be mapped into different orbits (i.e. orbits O�(p) may

depend on x ∈ M). In what follows we shall restrict ourselves to the case where the �-image

of the whole P lies in a single orbit W of the representation ρ, so that actually � : P →
W ⊂ V . Let us see how this works for some simple examples (what the requirement may

mean in concrete situations).

20.5.2 Consider the frame bundle π : L M → M and take as � a function of type ρ1
0 with

values in R
n , corresponding to a vector field on M (see the text before (19.6.4)). Be sure

you understand that if � is to map the whole L M into a single orbit of the representation

ρ1
0 , then the corresponding vector field on M either vanishes everywhere or it is, on the

contrary, everywhere non-zero.

Hint: the representation ρ1
0 of the group GL(n, R) in Rn (x �→ Ax) possesses just two

orbits: 0 and everything else. �

20.5.3 Consider again the frame bundle π : L M → M and now take � to be a function

of type ρ0
2 with values in R

n ⊗ R
n , which corresponds to a field of bilinear forms on M

(19.6.3). Check that if � is to map the whole L M into the (single) orbit of the representation

ρ0
2 generated by the identity matrix, then the corresponding object is a symmetric positive

definite bilinear form, i.e. the field of a (“true”) metric tensor on M . A field of the more

general metric tensor with signature (r, s) on M arises in like manner from the orbit of the

matrix η with signature (r, s).

Hint: the representation ρ0
2 of the group GL(n, R) is given by ρ(A)g := (AT)−1g A−1; then

gab(eA) = (ρ(A−1)g)ab(e) gives gab(eA) = Ac
agcd (e)Ad

b . The identity matrix happens to be

the canonical form of any symmetric and positive definite bilinear form.423 �

• Now, choose a point w0 on the orbit W and define a submanifold Q ⊂ P as the preimage

of w0 with respect to � (i.e. Q := �−1(w0)) and the subgroup H ⊂ G as the stabilizer of

the point w0 (i.e. Hw0 = w0):

Q := {p ∈ P | �(p) = w0}
H := {h ∈ G | ρ(h)w0 = w0}

423 The procedure B̂ �→ (AT)−1 B̂ A−1 ≡ ρ(A)B̂ may be regarded as the change of the matrix of a bilinear form due to a change
of basis. Here it is, however, regarded as a transition to another matrix on the same orbit and, consequently, orbits themselves
may be labeled by canonical forms of symmetric matrices and the orbit under consideration which is given by the canonical
form = δab contains just all positive definite symmetric matrices.
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It turns out that if we restrict the projection from

P to the submanifold Q and the action from G to

the subgroup H , we get a new principal bundle (a

subbundle of the bundle π : P → M), namely the

principal H -bundle π : Q → M .

20.5.4 Check that π : Q → M is indeed a princi-

pal H -bundle over M ; it is called the restriction of
the bundle π : P → M . This procedure is also known as a restriction of the structure group
(from G to a subgroup H ).

Hint: in each fiber of the manifold P there exists at least one point from Q: if some p′ �→
w ≡ �(p′), then w = ρ(g)w0 for some g ∈ G and consequently �(p′g) = ρ(g−1)�(p′) =
ρ(g−1)ρ(g)w0 = w0, so that p ≡ p′g �→ w0. In addition to this particular point there are

also exactly all points ph for h ∈ H – these points constitute the fiber π−1(x) for π : Q →
M . The action of H on Q is just the restriction of the action of G on P , so that it satisfies

all the needed properties. �

20.5.5 Consider the frame bundle π : L M → M and the function � discussed in problem

(20.5.3). Take as the point w0 the matrix η with signature (r, s). Check that if we apply

the procedure described above, we get as π : Q → M the bundle of orthonormal frames
π : O M → M (points of the total space are all orthonormal frames with respect to a

metric tensor g on M), which is a principal O(r, s)-bundle, canonically associated to any

Riemannian manifold (M, g).

Hint: �(e) is regarded as the matrix of the metric tensor g with respect to the basis e,

i.e. �ab(e) := g(ea, eb) ≡ gab; then the condition �ab(e)
!= ηab picks up just orthonormal

frames. This works in both directions: if we have (M, g), we define a function � of type

ρ0
2 on L M by the formula �ab(e) := g(ea, eb) ≡ gab; if, on the other hand, we have such a

function � on L M , we can define orthonormal frames by �ab(e)
!= ηab; this is equivalent

to introducing g on M (if we know that a basis ea is orthonormal, we put g = ηabea ⊗ eb).

�

• Although the H -subbundle π : Q → M , strictly speaking, depends on the choice of a

point w0 on the W , this dependence is (as all of us feel in consideration of the equivalence of

points on orbits) irrelevant: another choice just leads to an equivalent principal H -bundle.

20.5.6 Let w1 be another point on the orbit W . Check that the principal H -bundle which

arises from this point is isomorphic to the initial H -bundle, which is associated with w0.

Hint: if w1 = ρ(ĝ)w0, then we get the stabilizer H1 of the point w1 by conjugation of H0

by the element ĝ (being an isomorphism, see (13.1.10) and (13.2.7)) and the submanifold

Q1 is evidently the image of the submanifold Q0 with respect to the right action by ĝ−1

(Q1 = Rĝ−1 Q0, H1 = ĝH0ĝ−1). �
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• We introduced the restriction of a principal bundle in terms of an equivariant function �

on P . The example of the bundle of orthonormal frames, however, showed that sometimes

it is also possible to describe directly, with no reference to any � (to say, for example,

which points of L M constitute O M). It turns out, however, that even if this is the case, the

function � still may be always introduced (in a sense specified in more detail after the next

problem), i.e. there actually exists a bijection between restrictions of a principal bundle and

equivariant functions on the total space such that they map the whole P into a single orbit.

How may such a function � be constructed for a given restriction?

We may take inspiration from the fact discussed in problem (13.2.7), that the orbit W is

isomorphic (as a homogeneous space) to the canonical homogeneous space G/H and, in

particular, that w0 ↔ [e] ↔ eH .

20.5.7 Check that the field � is given by the prescription

�(q) := [e] ↔ eH ≡ H q ∈ Q ⊂ P

Hint: if, by definition, the whole Q maps into the point [e] ↔ H , its value at other points of

P is already given by equivariance, �(p) = �(qg) = ρ(g−1)�(q) = ρ(g−1)[e] = [g−1] ∈
G/H . �

• Note that the map � is not defined here as a field with values in a vector space V (as a

usual linear field) with a given representation ρ, but rather as a map with values in some

manifold (a non-linear field, to throw the physical jargon around a bit, see Section 16.6),

namely in the homogeneous space G/H endowed with the canonical action ρ(g)[g′] =
[gg′]. Put another way, here the orbit is not realized as a subset of a vector space (as was

the case in the approach discussed at the beginning of the section), but rather it is given as

an abstract manifold “in its own right,” not being embedded into anything.

Now we turn our attention to connections. If there was any on P , we also would like to

inherit it on Q. How to ensure this? First we should realize what kind of problems may

actually occur within a “probate process.”

A connection on P may be realized in terms of connection 1-form ω (with values in G). It

seems then that it should be sufficient to restrict it to the submanifold Q and the problem is

solved. However, if the restriction is to serve as a connection form on Q, where already only

the subgroup H ⊂ G acts, its values must only lie (by definition of a connection form) in

the Lie subalgebra H ⊂ G. In addition to this there is a natural requirement with respect to

a parallel transport: if we “parallel transport” a point q (i.e. we perform the horizontal lift of

a curve which starts from the point q ∈ Q), we must also end in Q (for a general connection

on P the endpoint of the lift may lie outside Q in spite of the fact that the beginning of the

lift is in Q). We will see in what follows that these two requirements are actually only a
single requirement with respect to the original connection in π : P → M (the requirement

of compatibility of the original connection with the procedure of the restriction of the

principal bundle).
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20.5.8 Consider a principal G-bundle π : P → M with a connection form ω and let

π : Q → M be a restricted principal H -bundle, which arose with the help of a function �

of type ρ. Check that if the connection is to be inherited by Q (in the sense that ω regarded

as a form living only on Q is a connection form in π : Q → M), then

(i) the exterior covariant derivative of the field � should vanish on (the whole) P

D� ≡ d� + ρ ′(ω)� = 0

(ii) equivalently, upon restriction to the manifold Q, the connection form ω should have values only424

in the Lie subalgebra H ⊂ G.

Hint: (i) each lifted curve should remain in Q (provided that it begins in Q); therefore

�(γ h(t)) = w0, so that 0 = γ̇ h� = 〈d�, γ̇ h〉 = 〈hor d�, γ̇ h〉 ≡ 〈D�, γ̇ h〉 ⇒ D� = 0

(γ̇ h is actually an arbitrary horizontal vector, any vertical one annihilates D�, so that D�

vanishes on arbitrary vectors); this holds at all points from Q, but due to the equation

R∗
g D� = ρ(g−1)D� it even holds on the whole of P; (ii) on Q we have �(Q) = w0, so

d�(Q) = 0; then from D�(Q) = 0 one can deduce ρ ′(ω(Q))�(Q) = 0 = ρ ′(ω(Q))w0,

and consequently ω(Q) has values only in H. �

20.5.9 Let us look at a statement concerning the relation between the connection on

π : P → M and π : Q → M in a more general setting. Assume that our Lie algebra G
admits a decomposition G = H+̇L (by +̇ we denote the direct sum of vector spaces, but

not necessarily of Lie algebras), where L is so far an arbitrary complementary subspace to

H. Then also the connection form has the unique decomposition into two parts, the first

one being H-valued and the second one being L-valued. If we choose in G a basis which is

adapted to the two subspaces, Eα ∈ H, Ei ∈ L, then

ω = ωH + ωL

≡ ωα Eα + ωi Ei

Check that

(i) if (also) L happens to be AdH -invariant,425 i.e. if

AdHL ⊂ L

then the first part ωH itself of the form ω represents a connection form on Q (i.e. we can then

“project out” a connection on Q from a connection on P)

(ii) in the case discussed in (20.5.8) we have

ωL = 0 on Q

424 Recall that the restriction to the (sub)manifold Q ⊂ P concerns points in which we consider the form ω, but implicitly also
vectors, which are from now allowed to be inserted into ω (only those vectors which are tangent to Q, see (7.6.8)). For example,
if we insert to ω (after restriction to points of Q) the vector of the fundamental field generated by an element Y /∈ H (it is
forbidden now, since, moving in this direction, we leave Q), we get, according to the basic property (20.2.5) of the connection
form, just Y ; this, however, contradicts the statement that ω has values only in H.

425 Clearly AdHH ⊂ H, since H is a subalgebra. Thus both subspaces are supposed to be AdH -invariant.
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i.e. if the restriction of a bundle with connection π : P → M to a subbundle π : Q → M is

realized by means of a function � such that D� = 0, nothing (no ωL) is already to be thrown

away on Q in the course of the projection (ω on Q is directly a connection form, nothing is to be

projected out).426

Hint: (i) for a vector v ∈ Tq Q and a group element h ∈ H we may write

〈ω, Rh∗v〉 = 〈ωH, Rh∗v〉 + 〈ωL, Rh∗v〉
Adh−1〈ω, v〉 = Adh−1〈ωH, v〉 + Adh−1〈ωL, v〉

The left-hand sides are equal (due to R∗
gω = Adg−1ω) and both right-hand sides are of the

form X + Y , X ∈ H, Y ∈ L (in the term of type Y in the second equation the assumption of

AdH -invariance of L is crucial). Equating the terms of type X gives the required property of

a connection form R∗
hωH = Adh−1ωH (20.2.5), the second needed property 〈ωH, ξX 〉 = X

(for arbitrary X ∈ H) is evident from ωH = ωα Eα and its validity for ω as a whole. �

20.5.10 Consider once again the function � of type ρ0
2 on L M , which we contemplated

in problems (20.5.3) and (20.5.5). Check that

(i) the condition D� = 0 on P ≡ L M gives here explicitly

D�ab = 0 ⇔ d�ab = ωc
a�cb + ωc

a�cb

and upon restriction to Q ≡ O M it reduces to

ωab + ωba = 0 ωab := �acω
c
b

(ii) this says that the connection is metric
(iii) here, ω restricted to Q indeed has its values only in H
(iv) here, the needed complement L does exist, so if only a “general” (non-metric) linear connection

is available, we can project out its “metric part.”

Hint: (i) according to (19.6.3), (ρ(A)B̂)ab = (A−1)c
a(A−1)d

b B̂cd , from where (ρ ′(C)B̂)ab =
−Cc

a B̂cb − Cc
b B̂ac; (ii) see (15.6.6); (iii) on O M we have ωab + ωba = 0, i.e. ω has

values only in H ≡ so(r, s) ⊂ gl(r + s, R) ≡ G; (iv) an appropriate complement to o(n) ⊂
gl(n, R) (antisymmetric matrices) is the space of symmetric matrices; one easily checks

its invariance (if Y = Y T is a symmetric matrix and A ∈ O(n), then (AY A−1)T = · · · =
AY A−1); so in order to project out a metric connection one should write down ωab with

respect to an orthonormal frame field and then perform ωab �→ ω[ab]. �

• Let us look at the restriction of a principal bundle from still another point of view,

namely that of morphisms of principal bundles. We have already introduced the concept

of bundle maps in Section 17.2, playing the role of morphisms in the category of fibre

bundles. Now we need to relate two principal bundles, so we have to add some requirement

concerning the actions of the groups. We will discuss only the case when both the bundles

share a common base M1 = M2 ≡ M .

426 So if D� �= 0, there is still a chance (if an appropriate L exists) to produce a connection on Q from that on P , but we need to
throw away a part of ω on Q.
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20.5.11 Consider then two principal bundles over

the same base, π1 : P1 → M with group G1 and π2 :

P2 → M with group G2. A morphism of the bun-

dles will be the map f , discussed427 after (17.2.1),

but, except for preserving fibers, the requirement of

preserving actions in the total spaces is added: a

homomorphism of groups ϕ : G1 → G2 has to ex-

ist such that the actions R(1) and R(2) on P1 and P2

“commute in the sense of ϕ,” i.e. it does not matter whether we first move (on P1) from

p1 ∈ P1 by g1 ∈ G1 and then we map the result by means of f , or we first map p1 by means

of f and then we move (on P2) from the resulting point by ϕ(g1) ∈ G2:

f ◦ R(1)
g1

= R(2)
ϕ(g1) ◦ f

Check that all of these requirements turn out to be equivalent to the validity of the commu-

tative diagram.

Hint: the action Rg : P → P may also be written as R : P × G → P , (p, g) �→ Rg p
(13.1.2); the commutativity of the rectangle in the diagram says that (p1, g1) �→ R(1)

g1
p1 �→

f (R(1)
g1

p1) and at the same time (p1, g1) �→ ( f (p1), ϕ(g1)) �→ R(2)
ϕ(g1) f (p1). �

• For the most interesting morphisms, the maps f and ϕ are injective428 (then π1 : P1 →
M is called the restriction of the bundle π2 : P2 → M and π2 : P2 → M is in turn an

extension of the bundle π1 : P1 → M , or surjective (then π1 : P1 → M is a prolongation
of the bundle π2 : P2 → M ,429 and π2 : P2 → M is in turn a reduction of the bundle π1 :

P1 → M).

20.5.12 Be sure you understand that the restriction of a bundle which we discussed in

(20.5.4) is also a restriction in the sense we introduced here; in particular, that the bundle

of orthonormal frames π : O M → M is a restriction of the frame bundle π : L M → M .

Hint: P1 = Q, P2 = P , f is the embedding of Q into P , the action R(1) of the group H is

just a restriction of the action R(2) of the larger group G; in particular for O M : the action of

O(p, q) is just the restriction of the action of GL(n, R) to a subgroup, forced by the need to

connect only orthonormal frames; set in (20.5.11) P1 = O M , P2 = L M , f = the canonical

embedding of O M into L M (we recall that an orthonormal frame is at the same time also

a frame), ϕ = the canonical embedding of O(p, q) into GL(n ≡ p + q, R) (we recall that

an orthogonal transformation is at the same time linear). �

• Clearly, as an example of extension we can take L M with respect to O M ; a more

interesting one (we will, however, not examine it in any detail, here) is the bundle of

427 The map f̂ mentioned there is now the identity map, since there is only a single (common) base.
428 If f is injective, also its restriction to the fiber over p1 ∈ P1 is injective. The fiber is mapped into the fiber over f (p1) ∈ P2;

since both fibers are diffeomorphic to groups, also the homomorphism ϕ : G1 → G2 is necessarily injective. The situation is
similar with surjectivity.

429 This terminology is not unique. For example, the concepts of reduction and restriction are sometimes interchanged in the
literature with respect to the definitions mentioned here.
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affine frames π : AM → M , regarded as an extension of π : L M → M ; one considers

all “affine frames” in each x ∈ M being somewhat richer objects than good old ordinary

“linear” frames, which we frequently encountered here.430

As an interesting example of a surjective morphism f , i.e. of the relation prolongation/

reduction, we mention the spin bundle π : SM → M with respect to the bundle of orthonor-

mal frames O M → M ; this important point will be discussed in Section 22.4.

Let us return once more to the relation between various structures on M and the procedure

of restriction of a principal bundle with the base M . If we fix on M a metric tensor g, we

single out by this a class of distinguished frames –

namely the orthonormal frames with respect to this

g – and then also a particular subset (submanifold)

O M ⊂ L M . A different g would single out a dif-

ferent subset O M ⊂ L M . On both of them, how-

ever, the orthogonal group would naturally act and

we would get two different (but isomorphic) re-

alizations of an abstract principal O(p, q)-bundle

π : O M → M . Introduction of g on M thus leads

to a “concrete version” of an O(p, q)-bundle π :

O M → M , which is a restriction of the GL(n, R)-

bundle of (all) frames π : L M → M . If we were to, the other way round, single out a

submanifold P ⊂ L M , such that it served as the total space of a principal O(p, q)-bundle

π : P → M (so in each fiber of L M we chose a submanifold where the group O(p, q)

acted freely and transitively, etc. – we would call its points distinguished frames), we could

introduce, with the help of this submanifold, on M a metric tensor g: we would simply de-

clare the points of P ⊂ L M as orthonormal frames (the defining properties of a bundle then

guarantee the consistency of the definition). We thus see that the introduction of a metric

tensor g on M with signature (p, q) and the restriction of the frame bundle π : L M → M
to an O(p, q)-subbundle π : O M → M “are actually the same thing” (this fact was already

mentioned in the language of a function � at the end of the hint to (20.5.5)).

One can proceed in this way when also introducing other geometrical structures – a

structure may be realized in terms of an appropriate restriction of an initial principal bundle

to a subbundle (for example, making use of maps � of type ρ),431 in which already only a

subgroup H ⊂ G of the initial group G acts.

20.5.13 Introduction of a metric tensor with signature (p, q) may be realized, as we

learned, by a restriction of the structure group in the bundle π : L M → M from GL(n, R)

to a subgroup O(p, q). Contemplate which restrictions of GL(n, R), as well as distinguished

430 A connection in the principal bundle π : AM → M is called a “generalized” affine connection and it turns out that any such
connection may be parametrized in terms of a linear connection (in L M → M) plus a (1, 1)-type tensor field on M . If the
tensor field happens to be the identity tensor, the attribute “generalized” is omitted. We see from this that there is a one-to-one
relation between affine and linear connections and they are often interchanged because of this fact.

431 This is consistent with a description of various geometrical quantities (like tensor fields) as functions of type ρ, see Sections 19.6
and 20.3.
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frames, correspond to introduction of the following structures:

(i) an orientation on M
(ii) a volume form on M

(iii) the complete parallelism on M .

Hint: (i) H = GL+(n, R) (10.1.9), right-handed frames are distinguished; (ii) H =
SL(n, R) (10.1.7), unimodular frames are distinguished, i.e. such which span a

parallelepiped with volume 1 (then also ω = e1 ∧ · · · ∧ en); (iii) H = {e} (the trivial

group = a group containing just a single element e), “parallel” frame field (= covariantly

constant; such that ∇V ea = 0) is distinguished,432 (15.8.4). �

• It is clear from these examples that in general the restriction to a subgroup may not exist.

If, for example, the manifold M is not orientable, the structure group GL(n, R) cannot be

restricted to GL+(n, R), since this would just be equivalent to introducing an orientation

on M .433

And what about inducing the connection in the opposite direction (to a larger bundle)?

Note that if there is a connection in a smaller bundle π : Q → M , we can trivially extend

it to a connection in a larger bundle π : P → M ; in terms of the connection form we get

ωp from the formula R∗
gω = Adgω, from where ωpg = Adg Rg∗ωp, so the connection form

may be uniquely extended from points q ∈ Q also outside Q as ωqg = Adg Rg∗ωq , qg ∈ P .

(Even before this, however, the form is to be “extended” at the point q itself so as to also

allow the insertion of vectors which are not tangent to Q; this is unique since these new

directions in the tangent space Tq P are just the directions of the fundamental field ξY , Y /∈ H
and there is a strictly specified way of how an arbitrary connection form should respond

to such vectors according to the constitution (namely, it should give Y ); the extension in q
thus takes place so that the form responds to “old” vectors “as before” and to “new” vectors

(also) by course of the constitution.)

This connection does not, however, represent the most general connection in the larger

bundle: namely on Q it has values only in a subalgebra H, and there is no reason for

that for a general connection. The specific feature of this particular connection is that it is

compatible with just the structure which leads to the restriction to the subbundle (horizontal

lifts which start in Q already lie completely in Q, meaning that parallel transport preserves

distinguished “frames”).

If there is, for example, an arbitrary connection form in the bundle π : O M → M , we

also automatically get a unique connection in the bundle π : L M → M . (If we know the

results of ∇U ea = . . . for an orthonormal frame field, the general properties of the covariant

derivative already enable us to compute this expression also for a “general” frame field.)

432 If ea is a distinguished frame field (a section σ with the image in P ⊂ L M), then also êa := Ab
a (x)eb should be distinguished

for an arbitrary matrix Ab
a (x), which for each x belongs to H . A new frame field should also be parallel, which gives

∇V êa = (V Ab
a )eb

!= 0 for each V ⇒ Ab
a is a constant matrix ⇒ Ab

a = δb
a (the only subgroup of GL(n, R) containing a single

element is H = {I}).
433 Whether structures may or may not exist is often determined by appropriate topological objects, like some so-called charac-

teristic classes; non-triviality of a concrete characteristic class represents an obstacle to introducing a concrete structure, i.e.
to a concrete restriction of the structure group.
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The latter is, however, not “general,” but rather it carries an imprint of its history (extension

from the subbundle): it is metric. For if we parallel transport orthonormal frames along

curves on M , we construct horizontal lifts of the curves from M . Since the connection was

originally defined as a connection in the subbundle π : O M → M , the lifts which start in

O M necessarily lie completely in O M . Extension of the connection outside O M clearly

cannot have any impact on these lifts, so that also after the extension, when the connection

becomes a connection on the whole L M , the lifts remain only in O M if they start in O M .

This just means, however, that the connection is metric. In this particular case we thus get

the following result: if a subbundle results from introducing a metric tensor g on M , then

a connection extended from the subbundle is special in that it is compatible with g (it is

metric). This also holds in general (in particular for an orientation, a volume form, etc. from

problem (20.5.13)).

If a structure leads to a restriction of a bundle to a subbundle, then a connection in the

bundle which arises by extension from the subbundle to the whole bundle preserves the

structure.

Summary of Chapter 20

The translation of the concepts related to the linear connection into the language of the frame

bundle, which was performed in Chapter 19, clearly indicates a possible generalization.

One should simply replace π : L M → M by π : P → M , a general principal G-bundle.

A connection in this bundle is then (by definition) any G-invariant horizontal distribution

on the total space P . The distribution may be conveniently encoded in a connection form

ω, a G-valued 1-form on P (G being the Lie algebra of G). The points of P are now the

natural counterparts of frames, and their parallel transport along a curve on M is defined as

the horizontal lift of the curve to P . The (local) dependence of parallel transport on a path

may be rephrased in terms of integrability of the horizontal distribution and the G-valued

curvature 2-form � enters the scene (via the Frobenius integrability condition) just as a

measure of this non-integrability. As a convenient formal tool for the explicit computation

of the curvature form one introduces the exterior covariant derivative D; we then prove

the formula � = Dω = dω + 1
2
[ω ∧ ω]. Similarly we compute the action of D on another

important class of objects, horizontal forms of type ρ, where we get Dα = dα + ρ ′(ω) ∧̇ α.

Applying D twice, Bianchi and Ricci identities arise. The last, starred, section is devoted

to an interesting relation between subbundles, structures on M and connections compatible

with the structures. It explains, for example, how special connections in π : P → M (say,

metric connection in π : L M → M) may be regarded as being extended from appropriate

subbundles π : Q → M , Q ⊂ P (from π : O M → M in the case of the metric connection).

Rg∗Hor p P = Hor pg P Horizontal distribution is G-invariant (20.2.1)

ωp := �−1
p ◦ ver : Tp P → G Connection 1-form in p ∈ P (20.2.4)

R∗
gω = Adg−1ω, 〈ω, ξX 〉 = X Crucial properties of the connection form (20.2.5)
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π ◦ γ h = γ, γ h(0) = p, 〈ω, ˙(γ h)〉 = 0 Horizontal lift of γ starting in p ∈ P (20.3.2)

(hor α)(U, . . .) := α(hor U, . . .) Horizontal part of a form (20.3.4)

Dα := hor dα Exterior covariant derivative of a form (20.3.5)

� := Dω = �i Ei Curvature 2-form on P (20.4.1, 3)

� = dω + 1
2
[ω ∧ ω] Cartan structure equation (20.4.3)

Dα = dα + ρ ′(ω) ∧̇ α Action of D on horizontal forms of type ρ (20.4.6)

DDω ≡ D� = d� + [ω ∧ �] = 0 Bianchi identity (20.4.4, 7)

DDα = ρ ′(�) ∧̇ α Ricci identity (20.4.8)

� = 0 ⇒ ∃σ : σ ∗ω = 0 Zero curvature ⇒ complete parallelism (20.4.11)
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Gauge theories and connections

• We saw in the preceding chapter how the concept of linear connection from Chapter

15 may be generalized to the connection in an arbitrary principal G-bundle. So far it is,

however, not clear at all what is the use of all these new ideas. Here we will show that the

key concepts from this exactly match up434 to corresponding key concepts of the formal

scheme, which is known in the physics literature as a gauge field theory. There the group

G is called the gauge group.

21.1 Local gauge invariance: “conventional” approach

• The best known gauge theory is “ordinary” electromagnetism. Long ago people realized

that the introduction of potentials is a useful technical trick (see the beginning of Chapter 9),

which greatly simplifies some issues. Instead of measurable objects, vectors of electric

and magnetic fields E, B, one introduces auxiliary435 quantities �, A, the electromagnetic

potentials:

div B = 0 ⇒ ∃A such that B = curl A

curl (E + ∂t A) = 0 ⇒ ∃� such that E = −∇� − ∂t A

We can see right from the definition that potentials are not given uniquely; instead of (�, A)

we can use another pair (�′, A′) such that

�′ = � + ∂tχ A′ = A − grad χ for a function χ

The most convenient way of speaking about this freedom (as we learned in Chapter 16)

provides the language of differential forms in space-time: there (E, B) ↔ F , (�, A) ↔ A
and the argumentation reads

d F = 0 ⇒ ∃A such that F = d A, and moreover A ∼ A′ := A + dχ

The transition from initial potentials to new (equivalent) ones, A �→ A′ ≡ A + dχ , is known

as a gauge transformation of the potentials.

434 There are also some other applications in physics, but this one is certainly the best known as well as the most important.
435 In quantum theory potentials turn out to play a much more important role and the use of the word “auxiliary” might actually

be inadequate.

587
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There is, however, also another, at first sight completely unrelated situation in physics,

where one naturally encounters a (co)vector field A with a transformation law A �→ A′ ≡
A + dχ . It namely occurs when the action integral of a field theory which is globally gauge

invariant is required to become locally gauge invariant. Let us see how this works for the

simple case of the theory of a single complex scalar field φ.

21.1.1 Consider a complex scalar field φ on (M, g) with the standard action integral

(16.3.6)

S[φ] =
∫

L(φ, dφ)ωg L(φ, dφ) = (dφ∗, dφ) − m2(φ∗, φ)

≡ ∂μφ∗∂μφ − m2φ∗φ

Check that

(i) the Lagrangian (density) L (as well as the action S) is invariant with respect to a “global” change

of “phase” of the field φ

{φ(x) �→ e−iαφ(x), φ∗(x) �→ eiαφ∗(x)} ⇒ L �→ L (α = constant)

(ii) if the function α(x) depends on x , the action fails to be invariant; a “local” change of phase thus

spoils the invariance

(iii) the invariance of the action with respect to a local change of phase of the field φ may be restored436

by the following simple recipe: the original action is modified by means of the substitution d �→ D,

defined as

Dφ := dφ + i Aφ Dφ∗ := dφ∗ − i Aφ∗

where A is a new field, a 1-form subject to the transformation law A �→ A + dα. So the statement

is that the (new, modified) action

S[φ, A] =
∫

L(φ, dφ, A)ωg L(φ, dφ, A) = (Dφ∗,Dφ) − m2(φ∗, φ)

≡ (∂μ − i Aμ)φ∗(∂μ + i Aμ)φ − m2φ∗φ

happens to be invariant with respect to simultaneous change of the fields

φ �→ e−iα(x)φ φ∗ �→ eiα(x)φ∗ A �→ A + dα(x)

The type as well as the transformation law of the field A is thus chosen so as to compensate
undesirable changes in the original action.

Hint: (ii) dφ �→ d(e−iα(x)φ) = e−iα(x)(dφ − iφdα) �= e−iα(x)dφ; (iii) if a transformation

law A �→ A′ of the field A existed such that D′φ′ ≡ (d + i A′)φ′ != e−iα(x)Dφ were true, we

could check the invariance of the new action in exactly the same way,437 as was done for

the original one for constant α; now

D′φ′ ≡ (d + i A′)φ′ = e−iα(x)(dφ − iφdα + i A′φ)
!= e−iα(x)(dφ + i Aφ)

436 Note, however, that actually we speak about a different (modified) action.
437 For α = constant the operator d is able to “jump over” e−iα and this factor then cancels with e+iα , coming from the left; for

α �= constant D has the same ability with respect to the dangerous factor e−iα(x) and the phase factors again cancel.
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from where A′ = A + dα. So the needed transformation law indeed exists (and it even turns

out to be remarkably simple). �

• So far the “dynamics” of the field A itself has been absent, since there are no derivatives

of A in the action. This shortcoming may, however, be eliminated (not spoiling, at the same

time, the local gauge invariance).

21.1.2 Check that

(i) any expression which only depends on A through F := d A is invariant with respect to a trans-

formation A �→ A + dα, so that a possible dynamical term in the action reads

−1

2
〈F, F〉 = −1

2

∫

F ∧ ∗F ≡ −1

2

∫

(F, F)ωg ≡ −1

4

∫

Fμν Fμνωg

(ii) the complete action

S[φ, A] =
∫

L(φ, dφ, A, d A)ωg

L(φ, dφ, A, d A) = (Dφ∗,Dφ) − m2(φ∗, φ) − 1

2
(F, F)

≡ (∂μ − i Aμ)φ∗(∂μ + i Aμ)φ − m2φ∗φ − ∂[μ Aν]∂
[μ Aν]

is invariant with respect to U (1)-local gauge transformations, i.e. a simultaneous change of fields

φ �→ e−iα(x)φ φ∗ �→ eiα(x)φ∗ A �→ A + dα(x)

(iii) the phase factor eiα(x) may be regarded as a position-dependent element of the group U (1) and

the transformations of the fields may also be written in the form

φ �→ B−1φ φ∗ �→ Bφ∗ i A �→ i A + B−1d B B(x) ≡ eiα(x) ∈ U (1)

which explains the occurrence of “U (1)” in the nomenclature used for these transformations. �

• What is the lesson to take away from this problem? We learned that if we start from the

action of an “isolated” complex scalar field and we try to modify the theory so as to make it

U (1)-locally invariant, we “unwittingly” come to the action of the scalar electrodynamics,

i.e. the theory of two interacting fields, the scalar field itself and a new field A, possessing

all the characteristics of the electromagnetic field.

The resulting action may also be rewritten in an instructive (real) matrix form, in which

the group U (1) formally arises as the isomorphic group SO(2).

21.1.3 Let us look at the results of the preceding problem in the real language. Let φ =:
1√
2
(φ1 + iφ2) and introduce the following notation:438

φ :=
(

φ1

φ2

)

A :=
(

0 −A
A 0

)

F :=
(

0 −F
F 0

)

B(x) :=
(

cos α(x) − sin α(x)

sin α(x) cos α(x)

)

438 Caution: the same notation is used for the new real column φ = (φ1, φ2) as for the initial complex field; there is, however, an

additional factor of
√

2 involved (see the relevant formula).
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Check that the formulas from the preceding problem are modified as follows:

(i) the original action is

S[φ] ↔ S[φ1, φ2] =
∫

L(φa, dφa)ωg a = 1, 2

L(φ, dφ) ↔ L(φa, dφa) = 1

2
hab(dφa, dφb) − 1

2
m2hab(φa, φb) hab = δab

≡ 1

2
hab∂μφa∂μφb − 1

2
m2habφ

aφb

(ii) the action is invariant with respect to the transformations φ �→ B−1φ with a constant matrix B
(i.e. α = constant)

(iii) for position-dependent matrices B(x) invariance is obtained by the replacement dφ �→ Dφ ≡
dφ + Aφ, i.e.

(
dφ1

dφ2

)

�→
(Dφ1

Dφ2

)

≡
(

dφ1

dφ2

)

+
(

0 −A
A 0

)(
φ1

φ2

)

(iv) the complete action now reads

S[φ,A] =
∫

L(φa, dφa, A, d A)ωg

L(φa, dφa, A, d A) = 1

2
hab(Dφa,Dφb) − 1

2
m2hab(φa, φb) − 1

2
(F, F)

≡ 1

2
hab(∂μ − i Aμ)φa(∂μ + i Aμ)φb − 1

2
m2habφ

aφb − ∂[μ Aν]∂
[μ Aν]

and it is invariant with respect to SO(2)-local gauge transformations

(
φ1

φ2

)

�→
(

cos α(x) − sin α(x)

sin α(x) cos α(x)

)(
φ1

φ2

)

(
0 −A
A 0

)

�→
(

0 −A
A 0

)

+
(

cos α(x) − sin α(x)

sin α(x) cos α(x)

)−1

d

(
cos α(x) − sin α(x)

sin α(x) cos α(x)

)

≡
(

0 −A
A 0

)

+
(

0 −dα

dα 0

)

i.e.

φ �→ B−1φ A �→ A + B−1d B B(x) ∈ SO(2)

�

• Now, a way of generalizing the scheme from SO(2) ≈ U (1) to an arbitrary matrix group

G should be clear.

21.1.4 Consider a column φ(x) with components φa(x) and let a group G act on such

columns via an appropriate matrix representation, so that φ �→ B−1φ. Let h be an invariant

scalar product with respect to the representation, so that BTh B = h. Check that
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(i) the action

S[φ1, . . . , φn] =
∫

L(φa, dφa)ωg

L(φa, dφa) = 1

2
hab(dφa, dφb) − 1

2
m2hab(φa, φb) Bc

a hcd Bd
b = hab

≡ 1

2
hab∂μφa∂μφb − 1

2
m2habφ

aφb

is invariant with respect to G-global gauge transformations, i.e. with respect to φ �→ B−1φ with

constant matrices from the corresponding representation of the group G
(ii) the action is not invariant with respect to G-local gauge transformations, i.e. with respect to

φ �→ B−1(x)φ with position-dependent matrices from the corresponding representation of the

group G
(iii) if the gauge potential, i.e. a covector field A with values in the (represented) Lie algebra G,

transforms under a local gauge transformation with a matrix B(x) according to the rule

A �→ B−1AB + B−1d B

then the covariant derivative439 of the field φ

Dφ := dφ + Aφ

transforms (contrary to the ordinary derivative dφ) in the same way as φ itself does, i.e. there

holds

φ �→ B−1(x)φ ⇒ Dφ �→ B−1(x)Dφ

(iv) as a consequence of this fact the replacement d �→ D in the original action extends its invariance

to local gauge transformations: the action

S
[
φa, Aa

bμ

] =
∫

L
(
φa, dφa, Aa

bμ

)
ωg

L
(
φa, dφa, Aa

bμ

) = 1

2
hab(Dφa,Dφb) − 1

2
m2hab(φa, φb) Bc

a hcd Bd
b = hab

≡ 1

2
hab

(
∂μφa + Aa

cμφc
)

(∂μφb + Abμ
c φc) − 1

2
m2habφ

aφb

is invariant with respect to local gauge transformations, i.e. to a simultaneous replacement

φ �→ B−1(x)φ A �→ B−1AB + B−1d B

Hint: (iii)

D′φ′ ≡ (d + A′)(B−1φ) = (d B−1)φ + B−1dφ + A′ B−1φ
!= B−1Dφ ≡ B−1dφ + B−1Aφ

which gives A′ = B−1AB + B−1d B. �

• We see that the requirement of local gauge invariance of the action of the field φ dragged

into play a new field A, the gauge potential. We were able to find a transformation law for

439 For the moment one should ignore the coincidence of this nomenclature (or perhaps even the letter denoting the concept) with
any covariant derivative encountered so far. The justification of the coincidence will be clarified later (in Section 21.5).
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A such that it compensates all the undesirable changes produced by the initial fields, which

otherwise would spoil the invariance of the action. Because of that, it is also known as a

compensating field.

The field A still lacks its own dynamics, since the derivatives of its components are still

missing in the action. (If there are no derivatives of A, the variation with respect to A does

not result in a differential equation for A as the “equation of motion,” but rather it produces

only an algebraic one, a “constraint.”) However, we can once more add an appropriate

(although a bit more involved) term, which contains derivatives and, at the same time, is

locally gauge invariant.

21.1.5 Consider the gauge potential A from problem (21.1.4). Then the prescription

F := dA + A ∧ A

defines a new field, the gauge field strength. It is a 2-form with values in the represented

Lie algebra G, i.e. an n × n matrix with 2-form entries; A ∧ A denotes the matrix product

in which the matrix elements (1-forms) are multiplied in the sense of the exterior product,

so that (A ∧ A)a
b = Aa

c ∧ Ac
b. Check that

(i) the transformation law for the field F is (contrary to the first term alone, the ordinary exterior

derivative dA) very simple (even simpler than that of the field A itself), namely

F �→ B−1FB

(ii) this is also the way in which ∗F transforms

∗F �→ B−1(∗F)B

(iii) and also how F ∧ ∗F transforms (this is a 4-form with values in the represented Lie algebra G,

i.e. an n × n matrix with 4-form entries)

F ∧ ∗F �→ B−1(F ∧ ∗F)B

(iv) the trace of this expression (an ordinary 4-form) is already gauge invariant

Tr {F ∧ ∗F} �→ Tr {B−1(F ∧ ∗F)B} = Tr {F ∧ ∗F}
(v) the integral of the trace may be used as a (locally gauge invariant) term into the action

S[A] ∼
∫

Tr {F ∧ ∗F} S[A] = S[A′]

Hint: (i) a direct computation F ′ = dA′ + A′ ∧ A′ = · · · = B−1FB; (ii) ∗ is only related

to the “form” part of F and B−1 and B are 0-forms, so that ∗(B−1FB) = B−1(∗F)B; (iii)

F ′ ∧ ∗F ′ = B−1FB ∧ B−1 ∗ FB = B−1(F ∧ ∗F)B. �

• The standard nomenclature in physics is as follows: the field φ is called the matter
field, A is the gauge potential and F is the gauge field strength. The basic idea is that the

matter fields (their quanta) describe various kinds of “charged” particles and they in turn

interact by means of the quanta of corresponding gauge fields (potentials). For example,
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in scalar electrodynamics the charged pions440 may be associated with the field φ and the

photons with the field A. If the interaction term which couples the field φ with A (i.e. the

term containing the product of the fields) arises in the Lagrangian as a consequence of

the replacement d �→ D ≡ d + A, we speak about minimal coupling. Notice that only the

fields φ which transform according to non-trivial representation ρ interact with the field

A (otherwise ρ ′ = 0, D = d and the relevant term which contains the product is actually

absent); just those fields (and corresponding particles) are charged.

Now let us see what is in fact the reason why this section introducing the formalism of

the gauge fields is in chapters devoted to connections. This is a bit strange at first sight

since the starting points of the two theories seem to be completely different. However, some

formulas derived in this section look oddly familiar . . . Let us concentrate our attention on

the similarity by explicitly comparing the relevant expressions from gauge field theory with

the corresponding ones we encountered in the theory of linear connections.

21.1.6 Let ω̂ be the 1-form of the (linear) connection, which we introduced in Section 15.6

and let �̂ denote the corresponding curvature 2-form. Compare

(i) the transformation law of ω̂ (under the change of a frame field ea �→ Bb
a eb) with the transformation

law of the field A discussed here

ω̂′ = B−1ω̂B + B−1d B

A′ = B−1AB + B−1d B

and express (by raised eyebrows) your sincere amazement at the unexpected similarity

(ii) the explicit formulas for the computation of F from A and �̂ from ω̂

�̂ = dω̂ + ω̂ ∧ ω̂

F = dA + A ∧ A

and do not forget, please, to look stunned and raise your eyebrows even higher; actually you

should be struck by the similarity and we warmly recommend letting your “eyebrows rise so

high that they are in danger of disappearing into your hair” – the situation indeed deserves strong

emotions

(iii) the transformation laws of �̂ and F

�̂′ = B−1�̂B

F ′ = B−1FB

Hint: see (15.6.2) and (21.1.5). �

• We learned in this section that the basic relations of the formalism of the gauge fields
and the basic relations of the theory of (so far only) the linear connection become (when

appropriately written) as similar as two peas in a pod. In the next section we will see that

the similarity is actually not limited to the linear connection, but rather it also concerns

440 As well as the electrons in the spinor electrodynamics; although the structure of the action is different for electrons (φ is no
longer a scalar field there), the way in which the potential A arises is basically the same.
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the general connection introduced in Chapter 20. Moreover, we will learn that all the basic

objects and relations encountered in the theory of gauge fields441 admit a simple and natural

geometrical interpretation in terms of the theory of connections.

21.2 Change of section and a gauge transformation

• At the end of the last section we realized the striking similarity between the scheme

of the gauge fields and the theory of the linear connection. Recall that the corresponding

objects are

A ↔ ω̂ F ↔ �̂

and the similarity consists in the relations

ω̂′ = B−1ω̂B + B−1d B �̂ = dω̂ + ω̂ ∧ ω̂ �̂′ = B−1�̂B
A′ = B−1AB + B−1d B F = dA + A ∧ A F ′ = B−1FB

In this section we first convince ourselves that the similarity naturally extends from the

linear connection to the general connection as well and then we start to contemplate what

all this resemblance means. The contemplation will result in the joyful conclusion442 that

the formalism of the gauge fields and the theory of connections actually speak “about the

same thing in different words.”

Let us start with the question of how to pass from the linear connection to the general one.

Recall that the transformation law ω̂ �→ ω̂′ = B−1ω̂B + B−1d B speaks about the change

of the forms of the (linear) connection under the change of the frame field ea �→ Bb
a eb. On

the other hand, the choice of a frame field, from the point of view of the formulation on

L M (see (19.2.2)), may be regarded as the choice of a local section σ : U → L M . If we,

moreover, recall (19.2.3) that ω̂ = σ ∗ω, where ω represents the connection form on L M
(which is already independent of any sections), we see that the change ω̂ �→ ω̂′ may also

be interpreted as passing to the form pulled back by another local section:

σ ∗ω �→ σ̂ ∗ω

This formulation already turns out to be convenient for treating the situation in the general

case. We will compute how the pull-back σ ∗ω of the connection form on a general prin-

cipal bundle transforms under the change of the section σ �→ σ̂ . We will also compute the

transformation of the pull-back of an arbitrary horizontal form of type ρ. This then gives

the transformation of the pull-back σ ∗� of the curvature form but it is also closely related

to the transformation of the matter field φ from the theory of gauge fields.

So consider an arbitrary principal G-bundle π : P → M . Let ω ∈ �1(P, Ad) be a con-

nection form, � ∈ �̄2(P, Ad) the curvature form, � ∈ �̄p(P, ρ) a horizontal p-form of

441 We mean explicitly the classical (as opposed to the quantum) theory of gauge fields. On the other hand, the quantum theory
stems from the classical one and this explains why the connection theory is of importance to (some parts of) the quantum field
theory as well.

442 A lot of our brain capacity is saved for other interesting facts if the same thing does not need to be stored twice.
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type ρ and � ∈ �0(P, ρ) a function of type ρ. If σ and σ̂ represent two local sections, we

may pull back the forms ω, �, � and � by means of both of these sections and get

A := σ ∗ω F := σ ∗� λ := σ ∗� φ := σ ∗�

Â := σ̂ ∗ω F̂ := σ̂ ∗� λ̂ := σ̂ ∗� φ̂ := σ̂ ∗�

Passing from the unhatted quantity to the hatted one is called the gauge transformation
of the corresponding quantity. In this section, our goal is to obtain the explicit formulas

for these transformations. As the first step we need to find a convenient way of describing

quantitatively the relation between two sections themselves.

21.2.1 Consider two sections which share the same domain U

σ : U → P σ̂ : U → P

(if the domains were different, everything should be referred to their intersection). Check

that

(i) there is a unique map

S : U → G given by σ̂ (x) = σ (x)S(x) ≡ RS(x)σ (x)

(ii) if, the other way round, there is a section σ and a map S : U → G, a unique second section σ̂ is

then defined by the same formula; this means that there is a one-to-one correspondence between

such maps and transformations from one section to another and the maps under consideration

may thus be used as a quantitative measure of the relation of two sections

(iii) the maps S : U → G are naturally endowed with the structure of a group, if we define the product

as

(S ◦ S̃)(x) := S(x)S̃(x)

(this (infinite-dimensional) group is called the group of local gauge transformations and we will

denote443 it by GU )

(iv) constant elements of the group GU (i.e. the maps which assign to each point from U the same
group element) constitute a subgroup Ĝ ⊂ GU , which is isomorphic to the group G itself (so it

is finite-dimensional); this subgroup is called (in the context of gauge theories)444 the group of

global gauge transformations.

Hint: (i) the action Rg is free and transitive in each fiber; (iv) if S(x) = g = constant, then

the isomorphism is S �→ g. �

• Our goal is to compare the pull-backs σ ∗ω and σ̂ ∗ω (and the same for the form � and

the function �). Inserting arguments this means to compare

〈σ ∗ω, v〉 ≡ 〈ω, σ∗v〉 and 〈σ̂ ∗ω, v〉 ≡ 〈ω, σ̂∗v〉

443 In general, AB denotes all maps from B to A (since the maps behave in a sense like the ordinary power of numbers ab).
444 We see that the meaning of the words global and local differs here from its usual meaning in differential geometry: namely

“global” means constancy within the whole domainU , here (being still locality from the point of view of differential geometry),
local in turn means non-constancy in U .
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From these expressions we see that we are to clarify the issue of how two “lifts” of the same

vector v in terms of two different sections are related, i.e. of the relation of the vectors σ∗v
and σ̂∗v.

21.2.2 Let v be a vector at the point x ∈ U ⊂ M
and let σ and σ̂ be two local sections U → P . The

sections are related by the function S : U → G in

the sense that σ̂ (x) = σ (x)S(x). Check that the im-

ages of the vectorv with respect to these two sections

are then related by

σ̂∗v = Rg∗(σ∗v) + ξX (p)

g = S(x)

for X = 〈S∗θ, v〉
p = σ (x)S(x)

where ξX (p) is the value of the fundamental field

(generator) of the action Rg in the point p ∈ P and θ is the canonical 1-form on the group

G (11.2.6).

Solution: let v = d
dt

∣
∣
0
γ (t); then

σ̂∗v = σ̂∗
d

dt

∣
∣
∣
∣
0

γ (t) = d

dt

∣
∣
∣
∣
0

σ̂ (γ (t)) = d

dt

∣
∣
∣
∣
0

RS(γ (t))σ (γ (t))

= d

dt

∣
∣
∣
∣
0

RS(γ (0))σ (γ (t)) + d

dt

∣
∣
∣
∣
0

RS(γ (t))σ (γ (0))

= RS(x)∗
d

dt

∣
∣
∣
∣
0

σ (γ (t)) + d

dt

∣
∣
∣
∣
0

RS(γ (t))σ (γ (0))

= Rg∗(σ∗v) + d

dt

∣
∣
∣
∣
0

RS(γ (t))σ (x)

So we are to show that the second term gives just ξX (p) for X = 〈S∗θ, v〉. In order to do that,

we proceed as follows: the curve (in the group) S(γ (t)) begins in S(x); for infinitesimal t ≡ ε

it may be written as the right translation S(γ (ε)) = S(x)eεX for a unique element X ∈ G.

So we need the element X ; the infinitesimal right translation by exp εX under consideration

is generated by the left-invariant field L X (g) (11.4.6), so that

d

dt

∣
∣
∣
∣
0

S(γ (t)) ≡ S∗v = L X (S(x)) ≡ L X (g)

and consequently

X = L X (e) = Lg−1∗L X (g) = Lg−1∗S∗v ≡ 〈θ, S∗v〉 = 〈S∗θ, v〉
Then

RS(γ (ε)) = RS(x) exp εX = Rexp εX RS(x)
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and

d

dε

∣
∣
∣
∣
0

RS(γ (ε))σ (x) = d

dε

∣
∣
∣
∣
0

Rexp εX (σ (x)S(x)) ≡ d

dε

∣
∣
∣
∣
0

Rexp εX (p) ≡ ξX (p)

�

• So we are already prepared to answer the motivating question of how σ ∗ω and σ̂ ∗ω (as

well as σ ∗� and σ̂ ∗�) are related.

21.2.3 Let ω be a connection form, � the (corresponding) curvature form, � a horizontal

p-form of type ρ, � a function of type ρ, σ and σ̂ two local sections U → P , which are

related by the function S : U → G, so that σ̂ (x) = σ (x)S(x). Denote further

A := σ ∗ω F := σ ∗� λ := σ ∗� φ := σ ∗�

Â := σ̂ ∗ω F̂ := σ̂ ∗� λ̂ := σ̂ ∗� φ̂ := σ̂ ∗�

We may regard all of this as that the quantities Â, F̂, λ̂, φ̂ result from the gauge transforma-
tion of the “original” quantities A, F, λ, φ, the transformation being quantitatively given

by the function S(x). Check445 that the following formulas hold:

Â = AdS−1 A + S∗θ i.e. Â(x) = Ad(S(x))−1 A(x) + S∗θ (x)

F̂ = AdS−1 F F̂(x) = Ad(S(x))−1 F(x)

λ̂ = ρ(S−1)λ λ̂(x) = ρ((S(x))−1)λ(x)

φ̂ = ρ(S−1)φ φ̂(x) = ρ((S(x))−1)φ(x)

Solution: let g = S(x), X = 〈S∗θ, v〉, p = σ (x); then,

(σ̂ ∗ω)(v) = 〈ω, σ̂∗v〉
= 〈ω, Rg∗(σ∗v)〉 + 〈ω, ξX (pg)〉 (21.2.2)

= 〈R∗
gω, σ∗v〉 + X (20.2.5)

= 〈Adg−1ω, σ∗v〉 + X (20.2.5)

= 〈Adg−1 A, v〉 + X ≡ 〈Adg−1 A + S∗θ, v〉
Similarly,

(σ̂ ∗�)(v, . . .) = �(σ̂∗v, . . .)

= �(Rg∗(σ∗v, . . .) + �(ξX (pg), . . .) (21.2.2)

= R∗
g�(σ∗v, . . .) + 0 � is horizontal

= (ρ(g−1)�)(σ∗v, . . .) � is of type ρ

= (ρ(g−1)λ)(v, . . .)

and for the 0-form � ≡ � it is even simpler

φ̂(x) ≡ (σ̂ ∗�)(x) = �(σ̂ (x)) = �(RS(x)σ (x)) = ρ((S(x))−1)�(σ (x))

= ρ((S(x))−1)�(σ (x)) ≡ ρ((S(x))−1)φ(x)

The curvature form is a horizontal 2-form of type Ad (i.e. the special case of �). �

445 The function � of type ρ is clearly the special case of p-forms of type ρ (for p = 0), but since the horizontality makes no
sense in this particular case, the slight difference in the derivation of the corresponding formula (the result turns out to be the
same) should be at least realized.
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• For the ultimate confrontation of the two formalisms (connections versus gauge fields)

we still need to compute how the expressions obtained above behave after a representation
and also to introduce the exterior covariant derivative D on the base M .

21.2.4 Let ρ be a representation of G in W (i.e. the space where �, the horizontal p-form

of type ρ, and �, the function of type ρ, have their values). Let Ea and Ei be bases in W
and G respectively and let ρ ′ be the derived representation of G, so that

ω = ωi Ei A ≡ σ ∗ω = Ai Ei λ ≡ σ ∗� = λa Ea

� = �i Ei F ≡ σ ∗� = Fi Ei φ ≡ σ ∗� = φa Ea

Denote

A := ρ ′(A) ≡ Aiρ ′(Ei ) AEb = Aiρc
bi Ec =: Ac

b Ec

F := ρ ′(F) ≡ Fiρ ′(Ei ) FEb = Fiρc
bi Ec =: F c

b Ec

and introduce D, the “exterior covariant derivative on the base” M , by the relation

D ◦ σ ∗ := σ ∗ ◦ D

Check that then

(i) the Cartan structure equations on the base for the represented objects read

F = DA = dA + A ∧ A i.e. Fa
b = DAa

b = dAa
b + Aa

c ∧ Ac
b

(ii) the formula for the exterior covariant derivative of a horizontal p-form of type ρ and a function

of type ρ is

Dλ = dλ + A ∧̇ λ i.e. Dλb = dλb + Ab
c ∧ λc

Dφ = dφ + Aφ i.e. Dφb = dφb + Ab
cφ

c

(iii) the Bianchi identity now reads

DF ≡ dF + A ∧ F − F ∧ A = 0

i.e. DFa
b ≡ dFa

b + Aa
c ∧ F c

b − Fa
c ∧ Ac

b = 0

(iv) and the Ricci identity acquires the form

DDλ = F ∧̇ λ i.e. DDλa = Fa
b ∧ λb

DDφ = Fφ i.e. DDφa = Fa
b φb

Hint: a typical computation: (i)

ρ ′(σ ∗[ω ∧ ω]) = ρ ′([A ∧ A]) = Ai ∧ A jρ ′[Ei , E j ]

= Ai ∧ A j (ρ ′(Ei )ρ
′(E j ) − ρ ′(E j )ρ

′(Ei ))

= 2Ai ∧ A jρ ′(Ei )ρ
′(E j ) ≡ 2A ∧ A

so that in the representation the commutator becomes twice the product; then the application

of ρ ′σ ∗ to the Cartan structure equation � = Dω = dω + 1
2
[ω ∧ ω] yields F = DA =

dA + A ∧ A, and the remaining expressions similarly. �
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• And what do the gauge transformations of these represented objects eventually look

like?

21.2.5 Denote by B(x) the matrix representation of the function S(x), which encodes (by

means of the relation σ̂ (x) = σ (x)S(x)) the gauge transformation

B := ρ ◦ S : U → GL(N , R) i.e. B(x) := ρ(S(x))

(N ≡ dim (W, ρ)). So B(x) is an N × N matrix valued function defined in the domain U .

Likewise, also A and F are N × N matrices (with 1-form and 2-form entries respectively)

and λ is an N -component column vector. Check that the gauge transformations now read

as follows:

Â = B−1AB + B−1d B λ̂ = B−1λ

F̂ = B−1FB φ̂ = B−1φ

Hint: apply ρ ′ to the results Â = . . . , F̂ = . . . from (21.2.3), use the formula ρ ′(Adg X ) =
ρ(g)ρ ′(X )(ρ(g))−1 from (12.3.7) and, in the case of A, also the fact that on GL(n, R) we

have θ = x−1dx , see (11.7.19). �

• What exactly did all of these computations show? We learned that if the basic objects

of the theory of connections, ω, � and �, are pulled back to the base by means of a

section, they behave exactly the same as the basic quantities A, F and φ of the physical

formalism of gauge fields. The simplest and most natural conclusion one can make from

this indisputable technical fact is to identify the two groups of objects. Namely, we assume

that the quantities encountered in a gauge theory with the group G on a manifold M (usually

the space-time) are the results of the pull-back of global invariant objects living in the total

space of a principal G-bundle π : P → M and gauge transformations of these quantities

just reflect the relations between the results of pull-back by different local sections. A useful

vocabulary to be used in order to relate the connection theory with the gauge theory then

reads

connection form ω ↔ gauge potential A
curvature form � ↔ gauge field strength F

function � of type ρ ↔ matter field φ of type ρ

choice of a section σ ↔ gauge fixing

(In the spirit of problem (17.6.6), the objects on the left live in the “real world of eternal

Ideas” P , whereas the objects on the right live in the “apparent world of material objects”

M . Each object on the right represents a particular “immersion in the material world” of

the corresponding object on the left.)

21.2.6
∗

Sometimes we encounter gauge transformations in an infinitesimal version. If B(x)

encodes the gauge transformation for represented quantities in the sense of (21.2.5), then

the infinitesimal gauge transformation is given by the matrix

B(x) = I + εb(x)
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Indeed, if we write S(x) = exp{εs(x)}, where s : U → G, then we get within first-order

accuracy in ε

B(x) ≡ ρ(S(x)) = exp{ερ ′(s(x))} ≡ I + εb(x)

for b(x) := ρ ′(s(x)). Check that

(i) the gauge transformations may then be written in the form

Â = A + ε{[A, b] + db} λ̂ = λ − εbλ

F̂ = F + ε{[F, b]} φ̂ = φ − εbφ

(ii) in particular, for the gauge group SU (2) the infinitesimal gauge transformation of the potential

A and the field strength F is

Â = A + ε{A × b + db} A =: A ·
(

− i

2
σ

)

≡ A j
μ dxμ

(

− i

2
σ j

)

F̂ = F + ε{F × b} F =: F ·
(

− i

2
σ

)

≡ 1

2
F j

μν dxμ ∧ dxν

(

− i

2
σ j

)

b =: b ·
(

− i

2
σ

)

≡ b j

(

− i

2
σ j

)

Hint: (ii) see (12.1.5). �

21.2.7 Consider the frame bundle π : L M → M . Here, the group G becomes GL(n, R)

and we may choose the Weyl basis Ea
b in the Lie algebra gl(n, R). Recall also that a section

of this bundle corresponds to a frame field on (part of) M (19.2.2). Be sure to understand

that in this particular case

(i) A �→ ω̂ = ω̂a
b Eb

a , i.e. the gauge potential with respect to σ amounts to good old connection forms

from (15.6.1)

(ii) F �→ �̂ = �̂a
b Eb

a , i.e. the field strength with respect to σ amounts to the curvature forms from

(15.6.3)

(iii) the general transformation rules for A and F match the corresponding formulas from Chapter 15

(iv) the pull-back σ ∗ of the general Cartan structure equation from (20.4.3) yields just the good old

second Cartan structure equation from (15.6.7) (if you are concerned about the first structure

equation, consult Section 21.7, in particular problem (21.7.4)).

Hint: (i) see (21.2.3) and (19.2.3). �

21.3 Parallel transport equations for an object of type ρ in a gauge σ

• In Section 20.3 we introduced the concept of the parallel transport of the quantity of

type ρ along a curve γ (or, actually, along an oriented path c, since according to (20.3.7)

it does not depend on the parametrization). Recall what is going on. A quantity of type

ρ on a curve γ is given by the equivariant map � : π−1(γ ) → (V, ρ); this provides the

pairs (p, �(p)) ∈ P × V , which may be regarded as the pairs (“a frame,” “components

with respect to the frame”). Due to the equivariance property it is enough to define � at a
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single point in each fiber over γ and we get the quantity of type ρ on γ . In order to make

this quantity autoparallel, we have (by definition) to proceed as follows:

1. first we horizontally lift the curve γ on the base M to the total space P (the lift being γ h); this

procedure results in the “autoparallel frame field” on γ

2. the parallel transported quantity has the pairs (γ h(t), �(γ h(t)) = constant).

So one combines constant “components” with the horizontal lift. All the non-trivial work

is performed on P and it consists in the computation of the horizontal lift γ h .

However, the same object may also be described by other pairs, provided that they happen

to be equivalent (in the sense of (p, v) ∼ (pg, ρ(g−1)v)) with those we mentioned above.

What other pair might then represent a more convenient choice than (γ h(t), v ≡ constant)?

Recall that when we studied the parallel transport of vectors in Chapter 15, we never wrote

the (parallel transport) equations for components with respect to an autoparallel (i.e. highly

specific) field on the curve (this was first done as late as in problem (19.6.4)), but rather

with respect to a general frame field on the curve (at least a general coordinate frame field

at the beginning). From the point of view of the present section this means that we should

not lift the curve γ to P horizontally, but rather by making use of an arbitrary section,

γ (t) �→ σ (γ (t)). So we are to solve the following technical problem: what representatives

v ∈ V are to be combined with the points of the curve lifted with the help of an arbitrary

section, so that the resulting pairs were equivalent to the pairs (γ h(t), v ≡ constant), for

which the curve is lifted horizontally? The representativev(t) already necessarily depends on

t , since constant v only combines with the horizontal lift. Our goal is to derive a differential
equation for v(t).

21.3.1 Let γ (t) be a curve on the base, γ̇ (t) the

tangent vector at the point γ (t), γ̇ h(t) the horizontal

lift and σ∗γ̇ (t) the lift with the help of the section

σ : U → P . Check that

(i) the horizontal part of the vector σ∗γ̇ (t) coincides with

the horizontal lift γ̇ h(t)
(ii) the vertical part of the vector σ∗γ̇ (t) has the form ξX

for X = 〈A, γ̇ 〉, where A ≡ σ ∗ω is the gauge poten-
tial in the gauge σ ; putting it all together the decom-

position is

σ∗γ̇ (t) = hor σ∗γ̇ (t) + ver σ∗γ̇ (t)
= γ̇ h(t) + ξX (p) p = σ (γ (t))

X = 〈A, γ̇ 〉

Hint: (i) both vectors are horizontal and both project to γ̇ (t); (ii) according to (20.2.4) we

may write verpσ∗γ̇ (t) = (�p ◦ ωp)σ∗γ̇ (t) = �p〈σ ∗ω, γ̇ 〉 = �p〈A, γ̇ 〉 = �p X = ξX (p),

where p ≡ σ (γ (t)). �
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• By this, as we will see in a moment, a substantial part of the derivation of the parallel

transport equations is in fact done.

21.3.2 Let � : π−1(γ ) → (V, ρ) be a function of type ρ, which is defined over a curve γ ,

σ a local section (a choice of the gauge), φ = σ ∗� ≡ � ◦ σ the pull-back of � to the base,

A = σ ∗ω the gauge potential in the gauge σ , A = ρ ′(A) the represented gauge potential,

v(t) = φ(γ (t)) the “components” (in the gauge σ ) of the quantity of type ρ, defined (by

the function �) on the curve with respect to the “frame field” σ (γ (t)) on the curve. Check

that

(i) the quantity of type ρ is autoparallel on the curve if and only if the vector v(t) satisfies the

differential equation of parallel transport

v̇ + 〈A, γ̇ 〉v = 0

(ii) if v(t) = va(t)Ea and Aa
b ≡ Aiρa

bi are the components of the represented gauge potential (see

(21.2.4)), the parallel transport equation may also be written in components as the system of

ordinary linear differential equations with non-constant coefficients

v̇a(t) = Sa
b (t)vb(t) where Sa

b (t) := − 〈
Aa

b, γ̇
〉 = −ẋμ(t)Aa

bμ(x(t))

(iii) the quantities v and S, which arise in the parallel transport equation v̇ = Sv, change under a

gauge transformation as follows:

v �→ v̂ = B−1v S �→ Ŝ = B−1 SB + B−1 Ḃ

and the equation is invariant with respect to the changes (as it behoves, since the equation is

expected to describe objective parallel transport).

Solution: (i) if we move by ε along the curve σ (γ (t)), we proceed along the vector σ∗γ̇ ,

i.e. by ε along the horizontal part (here the “components” do not change) and then (or

before) by ε along the vertical part ξX ; this is, however, the right action on P by the group

element g(ε) = exp(εX ) (p �→ pg(ε)), which causes the compensation v �→ ρ(g(ε)−1)v =
(1 − ερ ′(X ))v, i.e. v(t) �→ v(t + ε) = v(t) − ερ ′(X )v(t). The differential equation for v(t)
thus reads v̇ = −ρ ′(X )v; (ii) v̇a + 〈Aa

b, γ̇ 〉vb = 0. �

21.3.3 Consider the U (1)-connection in π : P → M and choose as (V, ρ) the one-

dimensional irreducible representation (C, ρn), where ρn : eiα �→ einα (12.2.10). Check

that

(i) the parallel transport equation now reads

ż = Sz S(λ) ≡ −in〈A, γ̇ 〉
i.e. in more detail ż(λ) = −inẋμ(λ)Aμ(x(λ))z(λ)

(ii) the solution may be written in the form of the integral

z(λ) = z(0)e−in
∫ λ

0 Aμ(x(s))ẋμ(s) ds ≡ z(0)e−in
∫
γ Aμ dxμ ≡ z(0)e−in

∫
γ A
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(iii) if A is regarded as the electromagnetic 4-potential, γ (s) as the world-line of a charged particle

and n as its electric charge, then the parallel transport from γ (0) to γ (1) may also be written as

z(1) = z(0)e−i Sint Sint[γ ; A] := n
∫

γ

A ≡ n
∫

γ

Aμ dxμ

According to (16.3.9) Sint[γ ; A] represents the interaction part of the action of a charged particle

moving along the world-line γ (s) in the electromagnetic field given by the potential A.

Hint: (i) if a basis in u(1) is E1 = i , then ω j E j �→ iω, A j E j �→ i A (A being already

an ordinary 1-form on M), A ≡ ρ ′
n(A) = in A, so that 〈A, γ̇ 〉 = in〈A, γ̇ 〉 = inẋμ Aμ; (ii)

ż = Sz ⇒ z−1dz ≡ d ln z = S(λ) dλ ⇒ ln z(λ) − ln z(0) = ∫ λ

0
S(s) ds. �

21.3.4 Consider the “ordinary” linear connection (i.e. the connection in π : L M → M)

and the tensor representation of type
(

r
s

)
of the group GL(n, R). Check that the concise

equation from (21.3.1)

v̇ + 〈A, γ̇ 〉v = 0 A ≡ ρ ′(A)

may then be “unzipped” to the well-known form (15.2.12) from Chapter 15

v̇
i ... j
k...l + ẋm

(
�i

nmv
n... j
k...l + · · · − �n

lmv
i ... j
k...n

) = 0

Hint: first realize (15.6.1) that ẋm�i
nm = 〈ω̂i

n, γ̇ 〉 ≡ 〈Ai
n, γ̇ 〉. For the representation under

consideration we have (ρ(B)v)
i ... j
k...l := Bi

m . . . (B−1)n
l v

m...
...n , so that for the derived one we get

(ρ ′(C)v)
i ... j
k...l = Ci

mv
m... j
k...l + · · · − Cm

l v
i ... j
k...m (12.4.14). Then

0 = v̇
i ... j
k...l + ẋm

(
�i

nmv
n... j
k...l + · · · − �n

lmv
i ... j
k...n

)

= v̇
i ... j
k...l + 〈

Ai
n, γ̇

〉
v

n... j
k...l + · · · − 〈

An
l , γ̇

〉
v

i ... j
k...n

= v̇
i ... j
k...l + (〈A, γ̇ 〉v)

i ... j
k...l

≡ (v̇ + 〈A, γ̇ 〉v)
i ... j
k...l

�

• As we learned in Section 15.2, the deviation of a given field defined on a curve from

being autoparallel is measured by the absolute derivative along the curve (i.e. the covariant

derivative along the tangent vector to the curve, see (15.2.4) and (15.2.11)). If v(t) is a field

of type ρ in a gauge σ , defined on a curve γ on M (in the sense of problem (21.3.2)), then

the absolute derivative of the field at the point γ (t) measures the difference between the

result of the backward parallel transport from the point γ (t + ε) to γ (t) and the actual value

in γ (t)

Dv(t)

Dt
:= lim

ε→0

v‖
ε (t) − v(t)

ε

21.3.5 Check that the explicit formula for the absolute derivative is

Dv(t)

Dt
= dv(t)

dt
+ 〈A, γ̇ 〉v ≡ v̇ + 〈A, γ̇ 〉v
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so that the parallel transport equation just expresses the condition for vanishing of the

absolute derivative

Dv‖(t)

Dt
= 0

(as it should – it says that the values of the autoparallel field v‖(t) on the curve γ may be

regarded as (only) parallel transported from some (arbitrary) point; the difference between

the “transported” and the “original” value thus always vanishes for such a field).

Hint: if the value of v at the point γ (t + ε) is v(t + ε), then, according to (21.3.2), the

backward parallel transport to γ (t) gives (within first-order accuracy in ε) v‖(t) ≡ v‖((t +
ε) − ε) = v(t + ε) − εv̇‖(t + ε) = v(t + ε) + ε〈A, γ̇ 〉v = v(t) + ε(v̇ + 〈A, γ̇ 〉v) so that

lim
ε→0

v‖
ε (t) − v(t)

ε
= v̇ + 〈A, γ̇ 〉v

�

21.3.6 Consider a quantity of type ρ which is also defined in a neighborhood of the curve

γ , in some (open) domain O (rather than only on the curve itself). In a gauge σ we may

then write va(x)Ea ≡ v(x) ≡ φ(x) := �(σ (x)) ≡ (σ ∗�)(x) and we may also introduce its

exterior covariant derivative on the base (21.2.4)

Dv = dv + Av i.e. Dva = dva + Aa
bv

b D ◦ σ ∗ := σ ∗ ◦ D

(it is a 1-form on O ⊂ M with values in (V, ρ), resulting from pull-back of the horizontal

1-form D� from P to M by the section σ ). Check that the absolute derivative along the

curve may then be written in the following useful form:

Dv(t)

Dt
≡ v̇ + 〈A, γ̇ 〉v = iγ̇Dv

This form naturally leads to the definition of the covariant derivative of the field v(x) along

a vector field W on O ⊂ M

∇W v := iWDv ≡ Wv + 〈A, W 〉v

which satisfies (it might be useful to compare it with (15.2.11))

Dv(t)

Dt
= ∇γ̇ v(t)

Hint: v̇ + 〈A, γ̇ 〉v = iγ̇ (dv + Av) = iγ̇ (dσ ∗� + ρ ′(σ ∗ω)σ ∗�) = iγ̇ σ ∗(d� + ρ ′(ω)�) =
iγ̇ σ ∗ D� = iγ̇Dσ ∗� ≡ iγ̇Dv. �

21.3.7 Introduce the following standard coordinate notation related to the covariant deriva-

tives: the 1-form Dva may be expressed in terms of (say) the coordinate frame field dxμ
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on O ⊂ M ; we will denote the corresponding components as446

Dva =: (Dμva) dxμ ≡ va
;μ dxμ

Check that then

(i) a more detailed expression of Dμva is

Dμva = ∂μva + Aa
bμvb i.e. va

;μ = va
,μ + Aa

bμvb Aa
b =: Aa

bμdxμ

(ii) the parallel transport equation may also be written as

ẋμDμva ≡ ẋμva
;μ = 0

(iii) the covariant derivative may also be expressed as

(∇W v)a = W μDμva ≡ W μva
;μ

Hint: see (21.3.6). �

• Finally, let us look at the generalization of the parallel transport equation in a gauge σ

for the case when the representation (V, ρ(g)) is replaced by a general action on a manifold

(N , rg) (so we do not require the linearity of the action). A quantity of type ρ is still regarded

as an equivariant map

� : P → N � ◦ Rg = rg ◦ �

The quantity is said to be parallel transported if the parallel transported “frame field,”

i.e. the horizontal lift γ h(t), is (again) combined with constant “components” (the image

�(γ h(t)); recall that the “components” are not even the elements of a linear space, now,

but rather only the points of a general manifold endowed with an action of a group).

21.3.8
∗

Let π : P → M be a principal bundle with connection, � : π−1(γ ) → (N , r (g))

a quantity of type r (g) defined on a curve γ , i.e. the equivariant map

� : π−1(γ ) → N � ◦ Rg = rg ◦ �

σ a local section (a choice of the gauge), A = σ ∗ω the gauge potential in the gauge σ ,

n(t) = (� ◦ σ )(γ (t)) the “components” (in the gauge σ ) of the quantity of type r (g) which

is defined (in terms of the function �) on the curve, with respect to the “frame field” σ (γ (t))
on the curve (compare with problem (21.3.2)). Check that

(i) the quantity of type r (g) is autoparallel on the curve if and only if the curve n(t) on the manifold

N satisfies the differential equation of parallel transport

ṅ(t) = ξ̂X (t) X (t) ≡ 〈A, γ̇ 〉 ∈ G

i.e. if it is an “integral curve” of the fundamental field ξ̂X of the action r (g) on N (the meaning

of the quotation marks is that the field actually varies with “time” t , since X depends on t ; so we

are to find the integral curve for a vector field which depends on time)

446 In the same way a general frame field ea may be used. If a basis in V is denoted by Eα (the “frame” indices a should not be
confused with the indices α in V ), we define Dvα =: (Davα )ea ≡ vα

;aea and it then comes out as Davα = eavα + Aα
βavβ .
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(ii) if the action eventually grows wise and again becomes a representation (i.e. becomes linear), the

more general equation derived here reduces (as is proper) to the linear equation from (21.3.2).

Hint: (i) we can proceed in full analogy with (21.3.2), but the required compensation is

realized by means of the action rather than a representation, i.e. we move by ε along the
generator, being just ξ̂X ; (ii) if N = V , then n(t) = v(t) = va(t)Ea . According to (13.4.8)

the fundamental field reads ξ̂X = −Xivbρa
bi∂a , so that the equation v̇ = ξ̂X becomes

v̇a = (ξ̂X )a = −Xiρa
biv

b = −〈
Aiρa

bi , γ̇
〉
vb = −〈

Aa
b, γ̇

〉
vb

in agreement with (21.3.2). �

21.4 Bundle P ×ρ V associated to a principal bundle π : P → M

In Section 20.3 we introduced the quantities of type ρ as equivariant functions � : P →
(V, ρ). For example, an ordinary vector field on M (see Section 19.6) in this formalism

“becomes” an equivariant function on L M with (V, ρ) = (Rn, id) and a covector field has

(V, ρ) = (Rn, ǐd) (where id denotes the “identity” representation A �→ A and ǐd is the

contragredient one). Recall, however, that we learned in (17.2.6) that vector and covector

fields on M may also be described differently, as sections of appropriate vector bundles over

M (a section of T M encodes a vector field and a section of T ∗M encodes a covector field).

This is not an accident. It turns out that one may associate a vector bundle447 over the base

M with a quantity of type ρ such that sections of the bundle may, in turn, be canonically

identified with the equivariant functions, i.e. with the quantities of type ρ as treated up to

now. The bundle is called an associated bundle and it is denoted as P ×ρ V . In this section

the total space of the bundle will be denoted by E and the projection by π̂ .

21.4.1 Let π : P → M be a principal G-bundle and (V, ρ) a representation of G. The

points of the total space E of the associated bundle π̂ : E → M are the orbits of the action

of the group G on the Cartesian product P × V , i.e. the equivalence classes [(p, v)] ∼
[(pg, g−1v)]. Check that the bundle is indeed well defined, i.e. be sure to understand that

(i) P × V is a right G-space with respect to the action (p, v) �→ (pg, g−1v)

(ii) there is a natural projection

π̂ : E → M [(p, v)] �→ π (p) ≡ x

(iii) there is a natural linear structure in each fiber π̂−1(x) given by

[(p, v)] + λ[(p, w)] := [(p, v + λw)]

(p is to be the same (although arbitrary); by appropriate p �→ pg the representatives with the

same p may be always chosen and then the linear combination of the second components of the

pairs should be performed)

447 We will not use it explicitly in what follows, but it is worth being familiar with the concept (even though only a little bit) since
it is fairly frequent in the geometrical literature.
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(iv) each fiber is a linear space isomorphic to V ; so the procedure of the (Cartesian) multiplication

by V and subsequent factorization over the group action effectively replaces the fiber of the

principal bundle P by a copy of the vector space V , giving rise to a vector bundle with fibers

isomorphic to V .

Hint: (iii) check the independence on the choice of p; (iv) a (non-canonical) isomorphism

is v ↔ [(p, v)]. �

• So far the quantities of type ρ were described by equivariant functions � : P → V .

It turns out that such functions may be canonically identified with sections of the vector

bundle introduced above.

21.4.2 Check that there is a one-to-one correspondence between equivariant functions

� : P → V and sections of the associated bundle π̂ : E → M .

Hint: for � : P → V the section σ : M → E is given by σ (x) := [(p, �(p))] (it does not

depend on the choice of p over x); if a section σ is available and σ (x) = [(p, v)], we set

�(p) = v. �

• At first sight the construction of the associated bundle looks a bit too abstract. Then we

might be glad to realize that actually we are already familiar with some particular examples

of such objects (albeit their method of introduction was different): the tangent and cotangent

bundles turn out to be associated with the frame bundle.

21.4.3 Be sure to understand that T M and T ∗M are indeed associated bundles with

the principal bundle L M ; more generally the tensor bundle T r
s M of type (r, s) (the fiber

over x consists of all tensors of type (r, s) in the point x ∈ M ; in particular, T 1
0 M = T M ,

T 0
1 = T ∗M) is associated with L M .

Hint: the description of vectors and tensors in Section 19.6 (before (19.6.4)). �

• A short comment might be in order. If contemplated over sufficiently small patchesO on

M , both the principal and the associated bundles are trivial (O × G andO × V respectively).

So the essential information consists in specifying the way in which the trivial pieces are

glued together to form the whole P and E . Now it turns out that the principal bundle and all
the bundles which are associated with it are glued equally (in a sense we will not describe

here). This means that if we know the global topology of (the total space of) a principal

bundle, the global topology of (the total spaces of) all the associated bundles is already

fixed (in particular, if the principal bundle happens to be trivial, all the associated bundles

are necessarily trivial as well).

21.5 Gauge invariant action and the equations of motion

In Section 21.1 we already encountered the typical actions of the theory of gauge fields

in the traditional “physical” language. Here we will discuss the general structure of the
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actions, making use of the machinery of the connection theory. This also greatly simplifies

the derivation of the equations of motion.

Recall that a natural scalar product in the space of differential forms on a Riemannian

manifold was introduced in problem (8.3.1) by the formula

〈α, β〉 :=
∫

U
α ∧ ∗gβ

Later, in (16.3.2) and (16.3.6), we were able to write down the action functionals for the

electromagnetic and the scalar field in terms of the scalar product in the form of

S[A] = −1

2
〈d A, d A〉 − 〈A, j〉 S[φ] = 1

2
〈dφ, dφ〉 − m2

2
〈φ, φ〉

This particular form proved to be remarkably convenient for the manipulations that are

necessary in order to derive the corresponding equations of motion

δF = − j (−δd + m2)φ ≡ (� + m2)φ = 0

and it stems from the simple fact that the operator of the exterior derivative d converts to

the codifferential (8.3.2) when “reshuffled” to the other side of the scalar product, d+ ≡ δ;

this is how the codifferential δ arises naturally in the equations of motion.

In the theory of gauge fields we work with forms with values in various linear spaces. We

already mentioned in (8.3.1) that the generalization of the scalar product to vector-valued

forms is straightforward and it reads

〈α, β〉 :=
∫

U
habα

a ∧ ∗βb

In the action integrals to be studied we will encounter the covariant exterior derivative D
in the scalar product and the issue of the “reshuffling” of such D to the other side of the

scalar product arises naturally; put another way, we are interested in the explicit form of the

conjugated operator D+. If we succeeded in solving this problem, the equations of motion

might be derived from the action integral as easily as we did it in the case of “ordinary”

(R-valued) forms.

So let us concentrate for a while on the structure of (locally) gauge invariant action

integrals. The actions are usually expressed as integrals of forms defined on the base M
(space-time), i.e. the relevant fields depend on the choice of the gauge; i.e. on the section

σ . The action itself should be locally gauge invariant, however, i.e. it should not depend on

the choice of the section σ . Two technical tools are to be used in order to reach this goal:

the exterior covariant derivative D (rather than d) and an invariant scalar product in the

vector space, where the forms take their values.

21.5.1 Consider α, β ∈ �̄p(P, ρ), i.e. horizontal p-forms of type ρ. Let ea be a basis in

(V, ρ) (so that α = αaea, β = βaea), h ↔ hab the ρ-invariant scalar product in (V, ρ) and

σ : U → P a local section (a choice of the gauge). Denote by α̂, β̂ the pull-backs of the
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forms α, β to U with respect to the section σ and by α̂′, β̂ ′ the pull-back of the forms α, β

to U with respect to another section σ ′, where σ ′(x) = σ (x)S(x). Check that the expression

〈α̂, β̂〉h :=
∫

U
habα̂

a ∧ ∗β̂b ≡ hab〈α̂a, β̂b〉

is locally gauge invariant, i.e. it does not depend on the section σ

〈α̂, β̂〉h = 〈α̂′, β̂ ′〉h ≡ 〈α, β〉h

(consequently it may indeed be written without the hats, as is done on the right).

Hint: let α̂′ ≡ σ ′∗α, β̂ ′ ≡ σ ′∗β; then according to (21.2.3) α̂′a = ρ(S−1(x))a
c α̂

c , β̂ ′b =
ρ(S−1(x))b

d β̂
d , so that

habα̂
′a ∧ ∗β̂ ′b = habρ(S−1(x))a

cρ(S−1(x))b
d︸ ︷︷ ︸

hcd

α̂c ∧ ∗β̂d = habα̂
a ∧ ∗β̂b

�

It is worth pointing out the essential elements of the construction. They are

1. the simple transformation law

α̂′a = ρ(S−1(x))a
c α̂

c β̂ ′b = ρ(S−1(x))b
d β̂

d

this is due to the horizontality (and type ρ) of the forms α, β on P
2. the ρ-invariance of the scalar product h in V ; exactly this property ensures the “disarmament” of

the operators ρ(S(x)) (being potentially dangerous due to their x dependence).

The first of the two facts provides the key for understanding of how derivatives of

fields should enter any locally gauge invariant action: it is not enough to use the exterior
derivative alone, but one should also take care of the horizontality of the result of applying

d, i.e. one should make448 the correction d �→ hor d ≡ D. Actually exactly this procedure,

the replacing of the exterior derivative d by the exterior covariant derivative D

d �→ D ≡ “d + A” = minimal coupling prescription

(or introducing the minimal interaction) provides the local gauge invariance of the action

integral. Notice that this rule produces the terms containing concrete products of the field

A with the field being differentiated in the action, thus specifying the interactions. This

is the typical feature of gauge theories: the requirement of local gauge invariance severely

constrains possible individual terms in the action.

Now that we have constructed the locally gauge invariant scalar product let us keep in

mind our goal of constructing locally gauge invariant actions. Concentrate first on the struc-

ture of the action of the gauge field A itself. If the field is to possess its own dynamics,

derivatives are needed. As we have just learned, not dA but rather DA ≡ F ; we recognize

448 The correction is already to be done on forms “upstairs” on P , prior to the pull-back to the base. So one should pull back forms
containing Dα rather than dα, resulting in Dα̂ rather than dα̂ “downstairs” on M .
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the good old gauge field strength (the pull-back of the curvature form to the base). This

2-form has values in the Lie algebra G, so we need an invariant scalar product in G. Re-

call we already encountered such a product in (12.3.8), namely the Killing–Cartan metric

ki j in G. So a good candidate for the action might be449 an appropriate multiple of the

integral

〈F,F〉k ≡ 〈DA,DA〉k ≡ ki j 〈F i ,F j 〉 ≡
∫

U
ki jF i ∧ ∗gF j

We take the action of the gauge field itself in the (standard) form

S[A] = −1

2
〈F,F〉k

In order to derive the corresponding equations of motion we can proceed in full analogy

with (16.3.2): consider the increment of S[A] resulting from the change A �→ A + εa, the

quantity A + εa being of the “same type” as A, so that a itself should be a 1-form with

values in G. We see that the linear part of the increment turns out to be 2ε〈Da,DA〉k and

if we want to use the fact that a is arbitrary, we need to get rid of D on the left by its

“reshuffling” to the right, where it converts, however, to the adjoint operator D+. It should

be very useful to understand the technical side of this “reshuffling” in a general setting. Let

us therefore look at how the operator D+ with respect to the scalar product 〈α, β〉h of forms

with values in (V, ρ, h) may be written explicitly.

21.5.2 Consider α ∈ �̄p(P, ρ), β ∈ �̄p+1(P, ρ) and h a ρ-invariant scalar product in

(V, ρ) and denote

ρabi := hacρ
c
bi Aab := ρabiAi ≡ hacAc

b

Check that

(i) the matrix Aab is antisymmetric

Aab = −Aba

(ii) the following identity holds:

hab(Dα̂a) ∧ ∗β̂b = habα̂
a ∧ ∗(∗−1D ∗ η̂β̂b) + d(habα̂

a ∧ ∗β̂b)

(iii) for the scalar product of forms we then get

〈Dα̂, β̂〉h = 〈α̂,D+β̂〉h +
∫

∂U
habα̂

a ∧ ∗β̂b D+ := ∗−1D ∗ η̂

(it is instructive to compare it with (8.3.2)). The operator D+ is called the covariant codifferential

449 The scalar product k is often realized in terms of the trace of matrices. If we work with the represented potential A = ρ ′(A) ≡
Ai ρ ′(Ei ) (entering the covariant derivative of the matter fields D = dφ + Aφ), the scalar product is of type (12.3.7), if we
speak directly about A = Ai Ei , the scalar product also usually reduces to the trace since the Killing metric of matrix groups
is realized by the trace (12.3.11). This sheds light upon the structure of (21.1.5).
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(iv) if, for any reason whatsoever,450 the integral over the boundary ∂U of the domain U happens to

vanish, then

〈Dα̂, β̂〉h = 〈α̂,D+β̂〉h

so that D+ becomes the adjoint of D (in the sense of 〈·, ·〉h).

Hint: (i) see (12.1.10); (ii) the straightforward calculation goes as follows: Dα̂a = dα̂a +
Aa

b ∧ α̂b ⇒
hab(Dα̂a) ∧ ∗β̂b = habdα̂a ∧ ∗β̂b + Abc ∧ α̂c ∧ ∗β̂b

= d(habα̂
a ∧ ∗β̂b) − hab(η̂α̂a) ∧ d ∗ β̂b − (η̂α̂c) ∧ Acb ∧ ∗β̂b

= habα̂
a ∧ d ∗ (η̂β̂b) + α̂c ∧ Acb ∧ ∗(η̂β̂b) + d(habα̂

a ∧ ∗βb)

= habα̂
a ∧ ∗(∗−1d ∗ η̂β̂b) + habα̂

a ∧ Ab
c ∧ ∗η̂β̂c + d(habα̂

a ∧ ∗βb)

= habα̂
a ∧ ∗(∗−1D ∗ η̂β̂b) + d(habα̂

a ∧ ∗βb)

Another useful (simpler as well as more instructive) way: the expression habα̂
a ∧ ∗β̂b is a

locally gauge invariant form and so we may put D = d on this form (ρ ′ = 0 for invariant

quantities); it has the structure f a ∧ ga , where f, g themselves are forms of type ρ and

ρ̌ (the latter being contragredient to ρ). Then d( f a ∧ ga) = D( f a ∧ ga) = (D f a) ∧ ga +
(η̂ f a) ∧ (Dga); this (plus the “trick” 1̂ = ∗−1∗) already yields directly the required identity;

thus it is enough to realize that also capital D behaves as a derivation (20.3.5). �

• Since we already know how to “reshuffle” D to the other side of the scalar product, the

path towards a simple derivation of the corresponding equations of motion is already free.

21.5.3 Consider the gauge field A alone. Its (locally gauge invariant) action has the form

S[A] = −1

2
〈F,F〉k F ≡ DA

Check that

(i) the equations of motion which correspond to (the extremum of) this action are

D+F = 0 i.e. D ∗ F = 0

(ii) if contemplated along with the Bianchi identity (note, however, that the latter does not result from

the extremizing of the action), the complete system of the equations of motion of the gauge field

itself reads

D ∗ F = 0 DF = 0

Solution: (i) imagine we perform the variation “upstairs” (prior to the pull-back), i.e.

we vary ω �→ ω + εα; then α should be the horizontal 1-form of type Ad (then the

new whole ω + εα has the compulsory properties of a connection form, see (20.2.5)

and (20.2.6)), so that Dα = dα + [ω ∧ α]; then � ≡ dω + 1
2
[ω ∧ ω] �→ � + ε(dα +

450 The reasons may be the same as those mentioned in the text following (8.3.2). Now the reason is “the calculus of variations.”
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[ω ∧ α]) ≡ � + εDα; after the pull-back (“downstairs”) this means that if we perform

the variation A �→ A + εa, then F ≡ DA �→ F + εDa; with the help of (21.5.2) we then

get 〈F,F〉k �→ 〈F,F〉k + 2ε〈Da,F〉k = 〈F,F〉k + 2ε〈a,D+F〉k , so that S[A + εa] =
S[A] − ε〈a,D+F〉k ⇒ D+F = 0. �

• There is a remarkable point concerning the dynamics of the fields under consideration.

Namely, the structure of the action reveals that for the non-commutative (i.e. non-Abelian)

gauge group G the dynamics exhibits the self-interaction of the field A (already making

the theory of the “free” gauge field fairly non-trivial). If we write down the action more

explicitly, we get

S[A] = −1

2
〈F,F〉k = −1

2
〈dA + A ∧ A, dA + A ∧ A〉k

from which we see that it contains the products of as many as four As, which indicates the

self-interaction451 (for an Abelian group, like U (1), the field F reduces to just dA and there

is no self-interaction in the theory).

We now pass to a slightly more complicated action by adding a matter field φ of type

ρ (the pull-back of an equivariant452 function � : P → (V, ρ)). For the sake of simplicity,

let us begin with the kinetic term alone, yet already modified by the “correction” d �→ D.

21.5.4 Consider the action of the coupled system containing the matter field φ of type ρ

and the gauge field A

S[φ,A] = −1

2
〈DA,DA〉k + 1

2
〈Dφ,Dφ〉h

Check that

(i) the response of the new term to the variation A �→ A + εa may be written in terms of the

“current” J ≡ J (φ,A) as

A �→ A + εa ⇒ 1

2
〈Dφ,Dφ〉h �→ 1

2
〈Dφ,Dφ〉h − ε〈a,J 〉k J i = −ki jρabjφ

a(Dφ)b

where the 1-form of the “current” J = J i (φ,A)ei (with values in the Lie algebra453 G) is of

type Ad

(ii) the variation of the complete action with respect to both fields A and φ turns out to be

S[φ + ε1ψ,A + ε2a] = S[φ,A] + ε1〈ψ,D+Dφ〉 − ε2〈a,D+F + J 〉

(iii) the equations of motion corresponding to the action are

D+F = −J D+Dφ = 0

451 In quantum field theory the term containing four As corresponds to a “vertex” with four lines of type A, i.e. there exists an
elementary interaction, in which four particles described by the field A (like gluons in chromodynamics) are involved.

452 In physical parlance this is the “multiplet of scalar fields, which transform according to the representation ρ of the gauge group
G.”

453 Note that the change of the value of the scalar product 〈·, ·〉h may be written in terms of a different scalar product 〈·, ·〉k .
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Hint: (i) A �→A + εa ⇒Dφ �→Dφ + εaφ ⇒ 〈Dφ,Dφ〉h �→ 〈Dφ,Dφ〉h + 2ε〈aφ,Dφ〉h ;

now aφ ≡ (aφ)aea = aiφbρ ′(ei )eb ≡ (ρa
bi a

iφb)ea so that

〈aφ,Dφ〉h =
∫

hab(aφ)a ∧ ∗(Dφ)b =
∫

habρ
a
ci a

iφc ∧ ∗(Dφ)b

=
∫

ai ∧ ∗ρbciφ
c(Dφ)b ≡ −

∫

ai ∧ ∗ki jJ j ≡ −〈a,J 〉k

the type Ad: either use the fact that the expression 〈a,J 〉k should be invariant and a ≡
ai ei is of type Ad (since A �→ A + εa should preserve the type Ad), or directly: if φ �→
ρ(S−1(x))φ ≡ B−1(x)φ, then Dφ �→ B−1(x)Dφ; consequently

J i �→ −ki jρabj (B−1)a
c (B−1)b

dφ
a(Dφ)b = (AdS)i

jJ j

according to (12.5.2); (ii) φ �→ φ + εψ ⇒ Dφ �→ Dφ + εDψ ⇒ 〈Dφ,Dφ〉 �→ · · · . �

• The last term to be added to the action is the “potential energy” U (|φ|) of the matter

field φ (in particular, the mass term).

21.5.5 Consider the matter field φ of type ρ. Check that

(i) the expression

|φ|2 ≡ h(φ, φ) ≡ habφ
aφb

is a locally gauge invariant function

(ii) for any function U (|φ|) we may use the invariant term
∫

U (|φ|)ωg in the action; the response of

this term to the variation of the field φ reads

φ �→ φ + εψ ⇒ U (|φ|)ωg �→ U (|φ|)ωg + ε

〈

ψ, U ′(|φ|) φ

|φ|
〉

h

(iii) the choice U (a) = −m2a2/2 gives rise to the mass terms of the fields φa , the masses of all the

component fields φa being equal (= m).

Hint: (ii)

φ �→ φ + εψ ⇒ |φ|2 ≡ h(φ, φ) �→ |φ|2(1 + 2εh(φ, ψ)/h(φ, φ))

⇒ |φ| �→ |φ|(1 + εh(φ, ψ)/h(φ, φ)) ≡ |φ| + εh(φ/|φ|, ψ)

⇒ U (|φ|) �→ U (|φ|) + εh(U ′(|φ|)φ/|φ|, ψ)

(iii) if ea represents an orthonormal basis in (V, ρ) (hab = δab), we get standard kinetic

terms of the fields φa and U (|φ|) = −(m2/2)((φ1)2 + · · · + (φn)2). �

21.5.6 Consider the action of a coupled system consisting of a matter field φ of type ρ

and a gauge field A

S[φ,A] = −1

2
〈DA,DA〉k + 1

2
〈Dφ,Dφ〉h +

∫

U
U (|φ|)ω
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(In order to obtain correct signs in (both) kinetic terms, both scalar products should be

positive definite. This is guaranteed for compact groups (12.3.18) and (trivially) also for

commutative groups G.) Check that

(i) it is locally gauge invariant

(ii) the variation with respect to the fields A and φ gives

S[φ + ε1ψ,A + ε2a] = S[φ,A] + ε1

〈

ψ,D+Dφ + U ′(|φ|) φ

|φ|
〉

− ε2〈a,D+F + J 〉

(iii) the corresponding equations of motion (including the “non-variational” Bianchi identity)

read454

D+F = −J (φ,A) DF = 0

(

D+D + U ′(|φ|) 1

|φ|
)

φ = 0

(iv) in particular, for U (a) = −m2a2/2 the action is

S[φ,A] = −1

2
〈DA,DA〉k + 1

2
〈Dφ,Dφ〉h − m2

2
〈φ, φ〉h

and the corresponding equations of motion are

D+F = −J (φ,A) DF = 0 (D+D − m2)φ = 0

(v) the equations of motion imply the equation

d ∗ j ≡ d ∗ (J + ∗−1[A ∧ ∗F]) = 0 (i.e. δ j = 0)

where j is the “conserved” (“Noether,” see (21.6.4)) current; making use of the current we get

the conservation of the charges

Qi :=
∫

U3

∗ j i j i := J i + ci
jkA j ∧ ∗F k

which may also be regarded as the conservation of a single element Q ≡ Qi ei from the Lie
algebra G.

Hint: see (21.5.4) and (21.5.5); (v) the equation of motion D+F = −J gives D ∗ F =
d ∗ F + [A ∧ ∗F] = −∗J , i.e. d ∗ F = − ∗ J − [A ∧ ∗F]; see (16.2.4). �

• The equations of motion are derived from a locally gauge invariant action and, conse-

quently, the equations themselves are necessarily locally gauge invariant. It is easy to verify

this directly.

21.5.7 Check directly that the equations of motion obtained above are indeed locally gauge

invariant.

Hint: DF = 0 is an equality of two 3-forms of type Ad; ∗ does not change type, so that

D+F = J is an equality of two 1-forms of type Ad (∗−1D ∗ ηF transforms just as F); by

the same argument (−D+D + m2)φ = 0 is an equality of two 0-forms of type ρ. �

454 If we compare the first equation D+F = −J (φ,A) with the “ordinary” Maxwell equation δF = − j (16.2.2), we can see that
the “current” J , which formally “generates” the field A (hidden in F) depends itself on A.
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• As we have already mentioned, in real physical theories the group G is often a direct

product of two (or more) subgroups, G = G1 × G2 and the representation ρ of the group

(according to which the matter field transforms) is composed from the representations ρ1

and ρ2 of the individual groups in a way described in (12.4.16).455 According to the results

of problems (20.4.13) and (20.4.14) the connection form then naturally decomposes into

two parts, ω = ω1 + ω2, and each of them “takes care of its own index” in the computation

of the exterior covariant derivative of the function � = �aα Ea × Eα . It may be instructive

to look at the action in this case in more detail.

21.5.8
∗

Check that the part of the action which corresponds to a pure gauge field takes in

the case G = G1 × G2 the form

S[A] = −1

2
〈F,F〉k F1 =: ρ ′(σ ∗�1)

= −1

2
λ1〈F1,F1〉k1

− 1

2
λ2〈F2,F2〉k2

F2 =: ρ ′(σ ∗�2)

where k1 and k2 are Ad-invariant scalar products in the Lie algebras G1 and G2 and

k = λ1k1 ⊕ λ2k2 λ1, λ2 ∈ R

is the Ad-invariant scalar product on the whole Lie algebra G = G1 ⊕ G2.

Hint: see (20.4.13), (21.5.3) and (12.4.17). �

21.5.9
∗

Still consider G = G1 × G2 and let φ = σ ∗� be a matter field which results

from the pull-back to the base of a function of type ρ for the representation ρ(g1, g2) =
ρ(g1) ⊗ ρ(g2) in the space V = V1 ⊗ V2 discussed in (12.4.16). Check that

(i) the formula for the exterior covariant derivative of a matter field Dφ may now be written in the

form

Dφ = dφ + A1φ + A2φ A1 =: ρ ′(σ ∗ω1)

A2 =: ρ ′(σ ∗ω2)

or, using indices (21.3.7)

φaα
;μ ≡ Dμφaα (A1)a

b =: (A1)a
bμ dxμ

= ∂μφaα + (A1)a
bμφbα + (A2)αβμφaβ (A2)αβ =: (A2)αβμ dxμ

so that each index of the field φ is “managed” (additively) by “its own gauge potential”

(ii) for the corresponding part of the action we get in more detail

S[φ,A] = 1

2
〈Dφ,Dφ〉h ≡ 1

2
(h1)ab(h2)αβ〈Dφaα,Dφbβ〉

where h1 is a ρ1-invariant scalar product in V1 (and similarly h2), and h = h1 ⊗ h2 is ρ-invariant

in V1 ⊗ V2.

455 For example, in the standard model of electroweak interactions we have G = SU (2) × U (1) and, if the chromodynamics is
incorporated, it is even G = SU (3) × SU (2) × U (1); the matter field �aαn then has as many as three indices, each of them
acted on by another group.
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Hint: (i) see (21.2.4); the application of σ ∗ to (20.4.14) gives Dφaα = dφaα + (A1)a
bφ

bα +
(A2)αβφaβ ; (ii) see (21.5.4) and (12.4.16). �

21.5.10
∗

Consider the gauge group G = SU (2) × U (1) and the matter field φ of type

ρ1(g1) ⊗ ρ2(g2), where ρ1 = id (the “fundamental” representation of SU (2)) and ρ2 is the

nth irreducible representation of U (1). Check that

(i) the gauge potential may be written as

A = − i

2

(
A3 A1 − i A2

A1 + i A2 −A3

)

+ i A4

(ii) the exterior covariant derivative of the field φ is

D
(

φ1

φ2

)

≡
(
Dφ1

Dφ2

)

=
(

dφ1

dφ2

)

− i

2

(
A3 A1 − i A2

A1 + i A2 −A3

) (
φ1

φ2

)

+ in A4

(
φ1

φ2

)

Hint: (i) a basis in su (2) ⊕ u(1) is given by (−i/2 σ j , i), so that A = −i/2 A jσ j + i A4;

(ii) V1 ⊗ V2 = C
2 ⊗ C ∼ C

2, see (21.2.6); according to (21.5.9) and (12.4.16)

Dφ = dφ + ρ ′(A)φ = dφ − i

2
A jσ jφ + in A4φ

�

• Let us conclude with a short comment. If we compare the action integral from problem

(21.5.4)

S[φ,A] = −1

2
〈DA,DA〉k + 1

2
〈Dφ,Dφ〉h

with a corresponding expression found in the majority of the physical literature, we will

find that a coupling constant g is used in physics. What is going on? As we have already

mentioned, there is a freedom in the scalar product k in the action: if some particular k is

acceptable (it is Ad-invariant and positive definite), then so is an arbitrary (positive) multiple
of k. So if the scalar product is fixed by (say) the relation 〈·〉k := Tr (·), the freedom may

be written in terms of a free parameter g as

− 1

2g2
〈DA,DA〉k + 1

2
〈Dφ,Dφ〉h A := ρ ′(σ ∗ω)

Now, this g may be reshuffled to a different place from the first term of the action by

introducing a new gauge potential Anew, which is defined (with a view to pulling 1/g2 into

the scalar product) as an appropriate multiple of the original represented form σ ∗ω:

Anew := 1

g
ρ ′(σ ∗ω) ≡ 1

g
A
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Then in terms of the new potential Anew we evidently obtain

S[φ,Anew] = −1

2
〈DAnew,DAnew〉k + 1

2
〈Dφ,Dφ〉h

The coupling constant does not disappear completely, it just arises in another place.

21.5.11
∗

Check that in terms of the new potential the following formulas are modified (the

original formulas correspond to g = 1):

(i) the exterior covariant derivative of Anew and φ read

Fnew ≡ DAnew = dAnew + gAnew ∧ Anew

Dφ = dφ + gAnewφ

(ii) the gauge transformation of the potential is given as

Anew �→ B−1(x)Anew B(x) + 1

g
B−1(x) d B(x)

Hint: simply insert A = gAnew into the corresponding good old formulas from (21.2.4) and

(21.2.5). �

21.5.12
∗

Check that in the particular case of G = G1 × G2 we get in this way as many as

two coupling constants g1 and g2 and the corresponding formulas read (for example)

Fnew
1 = dAnew

1 + g1Anew
1 ∧ Anew

1

Fnew
2 = dAnew

2 + g2Anew
2 ∧ Anew

2

Dφ = dφ + g1Anew
1 φ + g2Anew

2 φ

Hint: according to (21.5.8) in terms of the original fields the action is

S[φ,A1,A2] = − 1

2g2
1

〈F1,F1〉k1
− 1

2g2
2

〈F2,F2〉k2
+ 1

2
〈Dφ,Dφ〉h

Again we should pull g1, g2 into the new fields A1/g1 ≡ Anew
1 and A2/g2 ≡ Anew

2 and

express the covariant derivative Dφ according to (21.5.9) in terms of the new fields. �

(In the standard model of elementary particles with the gauge group SU (3) × SU (2) ×
U (1) we thus obtain as many as three coupling constants; since the constants are free

parameters in the theory, increasing the number of coupling constants results in decreasing

of the “predictive power” of the theory. The idea behind “grand unification theories” consists

in regarding the model as being embedded in a bigger model, a gauge theory based on a

bigger simple Lie group G, into which SU (3) × SU (2) × U (1) may be embedded as a

subgroup (in particular, SU (5) or SO(10)). Since now G is simple (rather than a product),

only a single coupling constant g enters the action. The three coupling constants of the

theory based on SU (3) × SU (2) × U (1) are no longer free parameters since they may be

expressed in terms of g.)
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21.6 Noether currents and Noether’s theorem

As we already mentioned in (21.5.6), the “conserved” current j is also called the “Noether”

current. It turns out that such a Noether current (a 1-form j with vanishing codifferential,

δ j = 0) and the corresponding conserved charge Q may be associated with each global
(continuous) symmetry in field theory.456 Let us look at the statement, which is definitely

one of the most profound observations in theoretical physics. The main general statement

is in problem (21.6.1). In (21.6.4) we check that the above-mentioned current from (21.5.6)

is indeed of this type. Then we find out that the conserved quantities for fields, which we

constructed in Section 16.4 with the help of the energy-momentum tensor, may also be

regarded as particular cases of the formalism treated here. Finally, we discuss from this

useful point of view the conservation laws in Hamiltonian mechanics which we treated in

Chapter 14.

Consider an action integral S[ψ] for a field ψ in the domain U of the space-time M
(there are possibly several fields, ψ denotes all of them). Assume there is a “global” action

ψ(x) �→ ρ(g)ψ(x) of the group G on the fields ψ (so that g does not depend on x ; at each

point x the same g acts), such that the action integral is invariant with respect to the “global”

action of the group

S[ρ(g)ψ] = S[ψ]

In particular, for an infinitesimal global transformation we have

S[ρ(eεX )ψ] = S[ψ] X ∈ G
Consider now an infinitesimal “local” transformation

ψ(x) �→ ρ(eεs(x))ψ(x)

given in terms of the function s : U → G, x �→ s(x) ≡ si (x)Ei ∈ G. The action integral is

no longer invariant in general.

21.6.1 Since for a constant function the action integral is supposed to remain unchanged,

the variation is now expected to be proportional to the 1-form ε ds = ε dsi Ei (it is a 1-form

on U with values in the Lie algebra G)

S[ρ(eεs(x))ψ] = S[ψ] + ε

∫

U
dsi ∧ Ji (ψ) + o(ε)

where (n − 1)-forms Ji (ψ), constructed from the fields ψ , depend on the detailed structure

of the action (n is the dimension of the space-time M). Check that Noether’s theorem holds,

i.e. that

(i) the forms Ji (ψ), when evaluated on the solutions of the equations of motion, are closed

ψ is a solution of the equations of motion ⇒ d Ji (ψ) = 0

456 It is named after the distinguished German mathematician (“whose innovations in higher algebra,” according to Encyclopaedia
Britannica, “gained her recognition as the most creative abstract algebraist of modern times”) Emmy Noether; she published
the celebrated result in 1918.
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(ii) this results in conservation of the spatial integrals of the forms Ji , known as the Noether
charges

Qi :=
∫

the whole space

Ji ⇒ Q̇i = 0 i = 1, . . . , dim G

this may also be regarded as conservation of a single element Q ≡ Qi Ei of the dual of the Lie
algebra G∗

(iii) if we parametrize the forms Ji in terms of Noether currents, the dual 1-forms j i (ψ)

Jj (ψ) = k ji ∗ j i (ψ) i.e. if

∫

U
dsi ∧ Ji (ψ) = k ji

∫

U
ds j ∧ ∗ j i (ψ) ≡ 〈ds, j〉k

(k is the scalar product in the Lie algebra G), then the currents (1-forms) are coclosed

ψ is a solution of the equations of motion ⇒ δ j i (ψ) = 0

(and consequently the charges
∫ ∗ j i ≡ Qi = ki j Q j are conserved).

Hint: (i) if ψ is a solution of the equations of motion, then it extremizes the action, so that the

action S[ψ] does not change within first-order accuracy with respect to an arbitrary small

change of the field ψ , which vanishes on ∂U ; in particular, for functions si (x) vanishing on

∂U (and arbitrary inside U) we get S[ρ(eεs(x))ψ] = S[ψ], i.e.

ψ is a solution of the equations of motion ⇒
∫

U
dsi ∧ Ji (ψ) = 0

Stokes’ theorem and the vanishing of si on ∂U then gives

0 =
∫

U
dsi ∧ Ji (ψ) =

∫

U
d(si Ji (ψ)) −

∫

U
si d Ji (ψ)

=
∫

∂U
si Ji (ψ)) −

∫

U
si d Ji (ψ) =

∫

U
si d Ji (ψ)

and since si (x) are arbitrary inside U , this already leads to d Ji (ψ) = 0; (ii) see (16.2.4). �

• We can see immediately from the derivation that the currents are not given uniquely.

21.6.2 Check that neither the (n − 1)-forms Ji nor Noether currents j i are given uniquely,

but instead only up to the freedom

Ji �→ Ji + d (something)i j i �→ j i + δ (something’)i

i.e. only up to additive exact or coexact forms respectively; the conserved quantities (charges)

Q are, however, already unique.

Hint: the relevant expression
∫
U dsi ∧ Ji (ψ) does not change under the replacement Ji �→

Ji + dσi , since
∫
U dsi ∧ dσi (ψ) = ∫

U d(si dσi (ψ)) = ∫
∂U si dσi (ψ) = 0; the conservation

law is obtained from 0 = ∫
d Ji = · · · and Ji �→ Ji + d (something)i clearly has no effect

on this expression. �
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• In order to illustrate the method, let us work out the Noether current explicitly for the

“global” U (1)-symmetry of the action of the complex scalar field.

21.6.3 Consider the complex scalar field with the standard action integral

S[φ] = 〈dφ∗, dφ〉 − m2〈φ∗, φ〉
and the “global” action of the group U (1) on the fields according to the nth irreducible

representation, i.e.

φ �→ ρn(e−iα)φ = e−inαφ φ∗ �→ einαφ∗

Check that

(i) the corresponding Noether current j and the charge Q read

j(φ, φ∗) = in(φ∗dφ − φdφ∗) ≡ inφ∗ ↔
d φ Q =

∫

j0 dV = in
∫

φ∗ ↔
∂0 φ

(ii) the equations of motion indeed guarantee the coexactness of j
(iii) if we also add the electromagnetic field, i.e. if we extend the action to

S[φ, A] = 〈Dφ∗,Dφ〉 − m2〈φ∗, φ〉 − 1
2
〈F, F〉 Dφ = dφ + in Aφ

Dφ∗ = dφ∗ − in Aφ∗

then the global U (1) symmetry is

φ �→ e−inαφ φ∗ �→ einαφ∗ A �→ A

(it arises from the local gauge symmetry discussed in (21.1.2) for α = constant) and the corre-

sponding Noether current and charge then read

j(φ, φ∗, A) = in(φ∗Dφ − φDφ∗) ≡ inφ∗ ↔
D φ Q =

∫

j0 dV = in
∫

φ∗ ↔
D0 φ

(iv) also here the equations of motion result in the coexactness of j (and consequently the conservation

of the charge Q).

Hint: (i) the infinitesimal local transformation is φ �→ φ − iεnα(x)φ, φ∗ �→ φ∗ +
iεnα(x)φ∗; the action S[φ] = 〈dφ∗, dφ〉 − m2〈φ∗, φ〉 changes within first-order accu-

racy by the term ε〈dα, j〉, where j(φ, φ∗) = in(φ∗ dφ − φ dφ∗); (ii) the equation of mo-

tion is δdφ = m2φ, i.e. d ∗ dφ = −m2 ∗ φ (plus the complex conjugated one), so that

d ∗ (φ∗dφ − φdφ∗) = · · · = 0; (iii) only the term 〈Dφ∗,Dφ〉 changes; we have Dφ �→
Dφ − iεn(dα(x))φ plus an expression independent of dα, similarly Dφ∗. �

21.6.4
∗

We now come back to the action integral

S[φ,A] = 1

2
〈Dφ,Dφ〉h − m2

2
〈φ, φ〉 − 1

2
〈DA,DA〉k

from (21.5.6). The action is locally gauge invariant with respect to the transformations of

the fields

φ �→ φ̂ ≡ B−1(x)φ A �→ Â ≡ B−1(x)AB(x) + B−1(x)d B(x)
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and thus, in particular, also with respect to the same change with a constant matrix B; then,

φ �→ B−1φ A �→ B−1AB B = constant

This, in turn, may be regarded as a global symmetry with the corresponding Noether current.

Check that the current is given by the expression

j = J (φ,A) + ∗−1[A ∧ ∗F]

we encountered in (21.5.6).

Hint: if we take B depending on x in the formulas for the global transformation, we get φ �→
φ̂, A �→ Â − B−1(x) d B(x); the action is invariant with respect to the local transformation

S[φ̂, Â] = S[φ,A], we need to evaluate it for the values S[φ̂, Â − B−1(x) d B(x)], but in

fact only for B(x) = I + εb(x); this gives B−1(x) d B(x) = ε db(x); we thus need S[φ̂, Â −
εdb(x)]; from the derivation of the equations of motion we know (21.5.6) that the variation

of the action with respect to A gives the expression J + DF ; although it is true for hatted

fields, but in the view of the order of ε before db a correction to unhatted is not needed, so

that we have within first-order accuracy in ε

S[φ̂, Â − ε db(x)] = S[φ̂, Â] + ε〈db(x),J + D+F〉
= S[φ,A] + ε〈db(x),J + D+F〉
≡ S[φ,A] + ε〈db(x), j〉

Then the Noether current turns out to be

j(φ,A) = J + D+F ≡ J + δF + ∗−1[A ∧ ∗F]

which differs only by the (completely harmless = coexact) term δF from457 the required

one. �

• In Section 16.4 we saw how the conserved quantities (energy and momentum; also

angular momentum may be computed in this way) for various fields may be obtained

from isometries (sometimes also conformal transformations) of the space-time. The explicit

expressions of the conserved quantities were obtained by combining the generators of

isometries (Killing vectors) with the energy–momentum tensor – the conserved current

turns out to be (for a somewhat miraculous reason) given by T (ξ, ·) (16.4.2). Let us see

what this looks like from the point of view of Noether’s theorem.

Contemplate a simple mechanical system and study its motion in the time interval from

t = 0 to t = 3. For definiteness, think of a pebble thrown upwards and let this interval

represent the time the pebble just moves upwards and downwards. Common sense then

says that if we threw the pebble (in the same way) 5 seconds later, it would move in

exactly the same way. In scientific parlance we appeal to the homogeneity of time, i.e. to

457 Note that this j is vanishing on solutions of the equations of motion (the equations read D+F = −J ), whereas for the
equivalent j = J + ∗−1[A ∧ ∗F] only the codifferential vanishes.
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the invariance of mechanics with respect to shifts in time. When expressed in terms of the

action integral this might mean the following:

If γ denotes the original trajectory, the new one is γ5, where γ5(t) := γ (t − 5). Introduce

the map �5 : t �→ t + 5 (the shift of time by 5 seconds). If I ≡ 〈0, 3〉 is the original interval,

the new one is �5(I ) and the new trajectory is γ5 ≡ γ ◦ �−5. Thus, the expected invariance

of the action integral (and consequently the dynamics) may be written in the noble form

S[γ ◦ �−5; �5(I )] = S[γ ; I ]

The action is to be invariant with respect to the simultaneous shift of the integration domain

by �5 and the solution by �−5.

Now we pass to the field theory. Contemplate a field ψ living in the space-time (M, g)

and let the action integral be of the form S[ψ, g;U]. Assume a symmetry group G acts on

M , the generators (fundamental fields) being ξX . Move the domain U by means of the flow

�t : M → M of the field ξX (this mimics the time shift of I from the mechanical example)

and at the same time pull back the field ψ with respect to the flow, ψ �→ �∗
−tψ ≡ ψ ◦ �−t

(this mimics the shift of the argument of the trajectory in the mechanical example). We

expect that the action integral is the same for the two configurations:

S[�∗
−tψ, g; �t (U)] = S[ψ, g;U)]

In what follows we restrict the action integrals to be discussed to the physically most

important class of actions which are natural with respect to diffeomorphisms. Recall (16.4.1)

that the action is given as the integral of a form �, which in turn depends on some fields ψ

as well as on the metric tensor g

S[ψ, g;U] :=
∫

U
�[ψ, g] ≡

∫

U
L(ψ, g)ωg

(ωg being the metric volume form) and for an arbitrary diffeomorphism f : M → M it

satisfies the condition

f ∗(�[ψ, g]) = �[ f ∗ψ, f ∗g]

21.6.5 Consider an action integral which is natural with respect to diffeomorphisms. Check

that the condition under consideration

S[�∗
−tψ, g; �t (U)] = S[ψ, g;U)]

restricts the transformations �t to those which satisfy

�[ψ, �∗
t g] = �[ψ, g]

i.e. virtually to isometries, or in particular cases458 also conformal transformations.

458 For example, for the action integral of the pure electromagnetic field S[A, g;U)] = ∫
U �[A, g] = ∫

U d A ∧ ∗gd A.
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Solution:

S[�∗
−tψ, g; �t (U)] =

∫

�t (U)

�[�∗
−tψ, g] =

∫

U
�∗

t {�[�∗
−tψ, g]}

=
∫

U
�[�∗

t �
∗
−tψ, �∗

t g] = S[ψ, �∗
t g;U]

�

• Let us now understand the simple meaning behind this result. The field ψ lives and

evolves (according to the equations of motion) on a certain playing field, the (pseudo-)

Riemannian manifold (M, g) (space-time). If we require a “shift” of the configuration (the

field ψ as well as the domain U) by a transformation f to be possible – so that the new

field in the new domain behaves “equally” as the old field in the old domain, we are to

create in the new domain “equal conditions” to those the old field had in the old domain.

The “conditions” are, however, encoded in the action integral and the latter in turn contains

g; thus we are to create equal “metric” conditions. Actually this is to be interpreted just

from the opposite side (since g is given): we have only the moral right to require “equal

behavior” from the field for such diffeomorphisms f which preserve the metric conditions.

These are as a rule isometries, but for some actions it may be even extended to conformal

transformations.

So consider a Killing vector ξX , where X ∈ G belongs to the Lie algebra of the group

of isometries. The corresponding flow is �t . The action is invariant with respect to the

simultaneous transformations of the field ψ and the domain U

ψ �→ �∗
−tψ U �→ �t (U)

Now this may be regarded as a global symmetry of the action integral (the field ψ is

transformed at each point x by the same group element exp t X ∈ G). This means that

Noether’s theorem may be used and we can compute the corresponding Noether current j
and the (conserved) charge Q. Doing all the necessary steps we find that the current turns

out to be just j = T (ξ, ·).
21.6.6 Check that this is indeed the case.

Hint: according to (21.6.5) the global symmetry of the action integral with respect to the

transformation ψ �→ �∗
−tψ of the field ψ may be replaced by the (global) symmetry with

respect to the transformation g �→ �∗
t g of the metric tensor g. For the computation of the

Noether current j we first need to write down the infinitesimal global symmetry, which is

S[ψ, �∗
ε g;U] = S[ψ, g;U] and then to evaluate the change under the local transformation,

i.e. the expression S[ψ, g + εLξX (x)
g;U] for X (x) dependent on the point x (the field ξX (x)

is no longer a Killing vector!); denote the change459 of g by g + εh := g + εLξX (x)
g and

realize that the very existence of h is due to the non-constancy of X (x) = Xi (x)Ei (the

459 We should realize at the latest just now that the energy–momentum tensor necessarily enters the result, since this is (by
definition) exactly the quantity which arises when the infinitesimal change g �→ g + εh is performed in the action (16.4.1).
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terms containing Xi itself (rather than the derivatives of Xi ) vanish, since ξEi are Killing

vectors); we then have

hμν = (LξX (x)
g)μν = (Xi (x)ξEi )μ;ν + (Xi (x)ξEi )ν;μ = Xi

,ν(ξEi )μ + (μ ↔ ν)

and consequently

S[ψ, g + εLξX (x)
g;U] = S[ψ, g;U] − ε

∫

U

1

2
hμνT μνωg

= S[ψ, g;U] − ε

∫

U
Xi

,ν(ξEi )μT μνωg

= S[ψ, g;U] − ε

∫

U
(d Xi )νT (ξEi , ·)νωg

= S[ψ, g;U] − ε

∫

U
d Xi ∧ ∗gT (ξEi , ·)

This shows that for each basis Killing vector ξEi there is a Noether current

ji = T (ξEi , ·)
in full agreement with the result (16.4.1). �

• And if our admiration for the wide range of Noether’s theorem were still not fervent

enough, we might also add the conservation laws in Hamiltonian mechanics. Recall that

they are closely related to exact Cartan symmetries (see Section 14.4) or, alternatively, to

the moment map (see Section 14.5). Here we will look at them from the perspective of the

symmetries of the action integral.
A trajectory γ (t) in mechanics may be regarded as a (non-linear) field (it was already

mentioned in Section 16.6 concerning non-linear sigma models). The “space-time” of this

“field” is just the time axis460 and it has values in the phase space, i.e. in a symplectic

manifold (M, ω). We know from Section 18.5 that if we want to write down an action

integral, we need to add still another dimension (time), so that the curves actually have their

values in the extended phase space M × R[t] (they read t �→ (γ (t), t); we will also denote

the “extended” curves by γ ).

The action S[γ ] may be expressed as the integral of an appropriate 1-form along the

curve

S[γ ] =
∫

γ

(θ − H dt) ≡
∫

γ

(“p dq − H dt”) ≡
∫

γ

σ

Now consider a Lie group G acting on M and let �s be the flow generated by the fundamental

field ξX of the action.461 The flow also transforms curves (by the prescription γ �→ �s ◦ γ ≡
γs) and we get global transformations of the “field” γ (each point γ (t) is transformed by

460 Field theorists like to speak about the mechanics as a “zero-dimensional field theory,” meaning that the fields live in a space-time
with a single time dimension and zero spatial dimensions.

461 More precisely, the flow (as well as the generators) is to be (trivially) extended from M to M × R[t].
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the same group element exp s X ∈ G). The action integral of the infinitesimally transformed

curve is

S[�ε ◦ γ ] =
∫

�ε◦γ

σ =
∫

γ

�∗
εσ = S[γ ] + ε

∫

γ

LξX σ + o(ε)

= S[γ ] + ε

∫

γ

(iξX dσ + diξX σ ) + o(ε)

Since the action of the group is expected to be a symmetry of the dynamics under consid-

eration, the increment of order ε should actually vanish. Let us see what restrictions this

imposes on the action of the group (on the generators ξX ).

21.6.7 Check that the requirement of the invariance of the action integral imposes the

following restrictions on the generators ξX of the action of G:

iξX ω = −d〈θ, ξX 〉 ξX H = 0

or, in plain English, ξX is to be an exact Cartan symmetry (the Hamiltonian field which

moreover preserves the Hamiltonian, (14.4.2)).

Hint: vanishing of the increment of order ε (i.e. of the integral
∫

(iξX dσ + diξX σ )) for each

curve needs to fulfill iξX dσ + diξX σ = 0); since ξX does not contain ∂t , we get

0 = iξX dσ + diξX σ = iξX (ω − d H ∧ dt) + diξX (θ − H dt)

= iξX ω − (ξX H ) dt + d〈θ, ξX 〉
The second term alone contains the basis form dt , so it should vanish in its own right. �

• The exact Cartan symmetries thus act as generators of global symmetries of a “field”

theory. So they necessarily amount to corresponding Noether currents and charges. What

do they look like?

21.6.8 Consider the symmetry given by the field ξX . For constant X then the variation of

order ε vanishes. Check that

(i) the variation of order ε for X (t) which depends on t (for the “local” transformation) reads

ε

∫

γ

d Xi
〈
θ, ξEi

〉

(ii) so that the closed (n − 1)-forms Ji from the general formalism are realized as constant functions

Ji = 〈
θ, ξEi

〉

(iii) the same functions serve at the same time as the conserved charges

Qi = 〈
θ, ξEi

〉

which agrees with the result from Section 14.4 obtained for exact Cartan symmetries.
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Hint: (i) the term proportional to d Xi arises from
∫
γ

diξX σ = ∫
γ

d(X j iξE j
(θ − Hdt)) = · · ·;

(ii) n = 1; (iii) in general the conservation laws are obtained by integration of the condition

d Ji = 0, i.e. here from

0 =
∫ t2

t1

d〈θ, ξEi 〉 = 〈θ, ξEi 〉(t2) − 〈θ, ξEi 〉(t1) ≡ Qi (t2) − Qi (t1)

thus the “spatial integral” in a fixed moment of time is here represented simply by the

evaluation of the function at this time (recall how the integral of 0-forms over a zero-

dimensional chain is computed); according to (14.4.4) the “Hamiltonian” FV of the exact

Cartan symmetry V is conserved; for ξEi this is (according to (21.6.7)) just 〈θ, ξEi 〉. �

21.7∗ Once more (for a while) on L M

We began a whole group of chapters treating connections by Chapter 19, introducing L M and

describing the linear connection in terms of this manifold. Then we extended the concept of

the connection to an arbitrary principal bundle π : P → M and treated various facts already

in the general setting. Clearly everything which is said about the general case is also true for

the particular case π : L M → M . Nevertheless, because of the exceptional importance as

well as some specific features of the good old frame bundle it is worth returning there for a

while.462 For example, a careful reader probably did not miss the fact that while the concept

of curvature naturally generalizes to P , the torsion did not appear at all on P . How, as a

matter of fact, does the torsion arise from the point of view of principal bundles? It turns

out463 that the torsion is indeed a specific feature of the bundle π : L M → M and it is

closely related to the existence of another canonical object living on L M , the canonical

1-form θ with values in R
n .

21.7.1 After some time, welcome again to L M! Introduce at the point e ∈ L M the 1-forms

θa
e , a = 1, . . . , n ≡ dim M by the prescription

〈
θa

e , w
〉

:= 〈ea, π∗w〉 ≡ (π∗w)a e ≡ ea ↔ ea (the dual basis)

The vector w is first projected from e to x = π (e) and then decomposed with respect to the

basis ea corresponding to the point e; the components are then regarded as the θa-images

of w. Put differently, if the projection of the vector is we �→ π∗w ≡ (π∗w)aea , then θa
e

performs the map we �→ (π∗w)a . Check that

(i) if σ is the section which corresponds to a frame field ea in a domain U ⊂ M , then

σ ∗θa = ea

462 We know from detective stories that culprits like to return to the scene of the crime; perhaps we have already committed enough
on L M in Chapter 19 so as to return there for a while.

463 Another natural route leading to the torsion is based on the concept of affine connection. This is a (particular) connection in
another principal bundle which may be canonically associated with a manifold M , the bundle of affine frames (we will not
discuss it in this book). The affine group G A(n, R) (10.1.15) acts naturally in the fibers of the bundle. Since the group happens
to be the semidirect product of GL(n, R) and R

n (12.4.8), the curvature form of the affine connection decomposes to the part
with values in gl(n, R) (this part is closely related to the “ordinary” curvature form of the linear connection) and the part with
values in R

n – and this very part corresponds to the torsion form of the linear connection.
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(so that in the spirit of (17.6.6) the canonical 1-form θ on L M may be regarded as “Platonic

eternal Idea” of a coframe field on M)

(ii) if θa are regarded as the component forms of a single 1-form θ = θa Ea with values in R
n , then

θ is a horizontal 1-form of type id, i.e.

hor θ = θ R∗
Aθ = A−1θ ≡ ρ(A−1)θ ρ(A) = A ≡ idA

It is called the canonical 1-form on L M (with values in R
n)

(iii) the forms θa are pointwise linearly independent, so that they may be used as a (global) basis for

horizontal forms on L M
(iv) in particular, the decomposition of the curvature 2-forms �a

b on L M (recall that they are hori-

zontal) gives

�a
b = 1

2
Ra

bcdθ
c ∧ θ d

The components Ra
bcd (e) constitute a (global) function of type id ⊗ ǐd ⊗ ǐd ⊗ ǐd on L M and by

the pull-back to the base M (by means of the section from item (i)) we get “ordinary” components

R̂a
bcd (x) of the curvature tensor with respect to the frame field ea (introduced in Chapter 15; they

are only defined locally)

R̂a
bcd := σ ∗ Ra

bcd

Hint: (i) for σ (x) ≡ e ≡ ea we have 〈σ ∗θa
e , vx 〉 = 〈θa

σ (x), σ∗vx 〉 = 〈ea, π∗σ∗vx 〉 = 〈ea, vx 〉;
(ii) horizontality right from the definition; type id:

〈(R∗
Aθa)e, w〉 = 〈(θa)eA, RA∗w〉 = 〈(eA)a, π∗ RA∗w〉 = (A−1)a

b〈eb, (π ◦ RA)∗w〉
= (A−1)a

b

〈
θb

e , w
〉

(iii) σ ∗(kaθ
a
e ) = kaea ; (iv) the type of the components: �a

b are of type Ad ∼ id ⊗ ǐd accord-

ing to (20.4.4), so that R∗
A�a

b = (A−1)a
c�

c
d Ad

b ; on the other hand, R∗
A( 1

2
Ra

bcdθ
c ∧ θd ) = · · ·;

the pull-back to the base: (21.7.4) and (15.6.3). �

• The 1-form θ is clearly independent of the connection, it enjoys each day of life on L M ,

whether or not there is any connection.464 If there is nevertheless a connection available,

we get on L M another canonical object, the horizontal 2-form � ≡ Dθ .

21.7.2 Let θ be the canonical 1-form on L M and denote � := Dθ . Check that

(i) it is a horizontal 2-form of type id, so that it may be decomposed with respect to θa as

� = �a Ea = 1

2
T a

bcθ
b ∧ θ c Ea

the components T a
bc(e) constitute a (global) function of type id ⊗ ǐd ⊗ ǐd on L M

(ii) the form � uniquely encodes the torsion of the linear connection by

σ ∗�a = T̂ a ≡ 1

2
T̂ a

bc(x)eb ∧ ec

464 It has lived there since long ago, when the connection was not even on the drawing board of evolution. Several of the world’s
top natural history museums pride themselves on having a few intact components (mostly θ1) found in Palaeozoic layers (at
those times θ fed on trilobites).
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where T̂ a denotes the torsion 2-forms with respect to the frame field ea ↔ σ introduced in (15.6.3)

and T̂ a
bc(x) are “ordinary” components of the torsion tensor with respect to the frame field ea (they

are only defined locally)

T̂ a
bc := σ ∗T a

bc

Hint: (i) the property of D and θ ; (ii) since θ is of type ρ = id, we have Dθa ≡ dθa +
(ρ ′(ω)θ )a = dθa + ωa

b ∧ θb; therefore σ ∗�a ≡ σ ∗ Dθa = σ ∗(dθa + ωa
b ∧ θb) = dea +

ω̂a
b ∧ eb ≡ T a according to (15.6.7). �

21.7.3 Consider the manifold L M and the following vector and covector fields:

vector fields: ξEa
b

the generators of the action of GL(n, R) (19.1.4)

Êa the standard horizontal fields (19.4.8)

covector fields: ωa
b (component forms of) the connection form (19.2.1)

θa (component forms of) the canonical 1-form (21.7.1)

Check that

(i) (ξEa
b
, Êa) and (ωa

b , θ
a) constitute global frame and coframe fields on L M , moreover they are dual

to each other
〈
ωa

b , ξEc
d

〉 = δa
d δc

b

〈
ωa

b , Êc

〉 = 0
〈
θa, ξEc

d

〉 = 0
〈
θa, Êb

〉 = δa
b

and adapted to the vertical and horizontal distribution (subspaces): (ξEa
b
, ωa

b ) are vertical and

(Êa, θ
a) are horizontal

(ii) L M is always parallelizable and consequently also an orientable manifold (even if M itself fails

to have these properties)

(iii) the commutators of the frame field turn out to be

[
ξEa

b
, ξEc

d

] = δa
d ξEc

b
− δc

bξEa
d

[
ξEa

b
, Êc

] = δa
c Êb

[Êa, Êb] = −T c
abÊc − Rd

cabξEc
d

Hint: (i) right from the definitions and basic properties of the quantities involved; ωa
b span

vertical forms (annihilated by horizontal vectors) and θa on the contrary horizontal forms

(annihilated by vertical vectors); (ii) the definition, (19.4.9); (iii) [ξEa
b
, ·] = · · · are nothing

but the infinitesimal versions of R∗
A(·) = · · · (set A = I + εEa

b , . . .); the last one: the duality

of the frames gives [Êa, Êb] = 〈ωc
d , [Êa, Êb]〉ξEc

d
+ 〈θ c, [Êa, Êb]〉Ec; the coefficients:

Rc
dab = �c

d (Êa, Êb) ≡ Dωc
d (Êa, Êb) (21.7.1)

= dωc
d (Êa, Êb) since Êa are horizontal

= Êa
〈
ωc

d , Êb
〉 − Êb

〈
ωc

d , Êa
〉 − 〈

ωc
d , [Êa, Êb]

〉
Cartan formulas (6.2.13)

= − 〈
ωc

d , [Êa, Êb]
〉

duality of frames

and similarly T c
ab = Dθ c(Êa, Êb) = · · · = −〈θ c, [Êa, Êb]〉. �
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• It is fairly useful to realize that some expressions and manipulations may considerably

simplify if we use the operator D, the exterior covariant derivative on the base (21.2.4).

21.7.4 Check that the Cartan structure equations (15.6.7) may be written in terms of

D as

Dea = T̂ a Dω̂a
b = �̂a

b i.e. De = T̂ Dω̂ = �̂

and the Ricci and Bianchi identities then take the form

DT̂ = �̂ ∧ e D�̂ = 0

Hint: apply σ ∗ to the equations Dθ ≡ dθ + ω ∧ θ = � and Dω ≡ dω + 1
2
[ω ∧ ω] = �

(see also (21.7.2), (21.2.4) and (21.2.7)). �

• It is convenient to learn a simple mnemonic when working withD which may be applied

to “indexed” forms, which transform “nicely” under the change of frame field (for example,

the 1-forms ea , the 0-forms gab, the 2-forms T̂ a and so on). The “nice” transformation

rule means that they are “scrambled” by means of a particular representation of the group

GL(n, R) according to the scheme

α(eA) = ρ(A−1)α(e)

(α(e) means that the form is expressed with respect to the frame field e ≡ ea ; compare with

(12.4.14)). As a rule ρ is a multiple tensor product of the simplest representations id ≡ ρ1
0

(due to upper indices on the form) and the contragredient representation ǐd ≡ ρ0
1 (due to

lower indices on the form); for example, the particular cases mentioned above correspond

to

ea �→ (A−1)a
beb ⇒ ρ = ρ1

0

gab �→ Ac
a Ad

b gcd ⇒ ρ = ρ0
1 ⊗ ρ0

1

T̂ a �→ (A−1)a
b T̂ b ⇒ ρ = ρ1

0

21.7.5 Check that the rules for the computation of D of such forms may be concisely

summarized in the form of a table – a recipe for cooking the house speciality Dαa...b
c...d :

− − − − − − − − − − −−
| for preparation of Dαa...b

c...d |
− − − − − − − − − − − − − − − | − − − − − − − − − − −− |

| first put on the bottom of a pan | dαa...b
c...d |

| plus for each α...a... add | + ω̂a
b ∧ α...b... |

| plus for each α...a... add | − ω̂b
a ∧ α...b... |

− − − − − − − − − − − − − − − − − − − − − − − − − −−
i.e. there is the first term (flat amount), plus there is one term to be added for each index (with

a plus sign for an upper index and a minus sign for a lower one); compare with (15.2.7).
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Hint: in general we may write for the forms under consideration Dα = dα + ρ ′(ω̂) ∧̇ α;

according to (12.4.14) the corresponding ρ ′ reads explicitly as (ρ ′(C)t)a...b
c...d = Ca

i t i ...b
c...d +

· · · + Cb
i ta...i

c...d − Ci
cta...b

i ...d − · · · − Ci
d ta...b

c...i . �

21.7.6 Use the table from (21.7.5) to obtain explicit expressions for the exterior covariant

derivative of the following p-forms:465

gab p = 0 Dgab = dgab − (ω̂ab + ω̂ba)

ωa...b p = 0 Dωa...b = dωa...b − ω̂c
cωa...b

ea p = 1 Dea = dea + ω̂a
b ∧ eb

T̂ a p = 2 DT̂ a = dT̂ a + ω̂a
b ∧ T̂ b

�̂a
b p = 2 D�̂a

b = d�̂a
b + ω̂a

c ∧ �̂c
b − ω̂c

b ∧ �̂a
c

where gab and ωa...b denote the components of a metric tensor and a volume form re-

spectively, ea is a coframe field, T̂ a are the torsion forms and �̂a
b are the curvature

forms.

Hint: use the table and realize that ω̂c
agcb + ω̂c

bgac = ω̂ba + ω̂ab and ω̂c
aωc...b + · · · +

ω̂c
bωa...c = ω̂c

cωa...b. �

21.7.7 Check that the equations

Dgab = 0 Dωa...b = 0 Dta...
...b = 0

express the conditions of the compatibility of a connection with a metric, a volume form

and in general with a tensor ta...
...b = 0, or alternatively of the covariant constancy of the

tensors.

Hint: according to (21.3.7) there holds Dgab = gab;cec so that Dgab = 0 actually means

gab;c = 0, (15.3.1); ωa...b and ta...
...b in full analogy (15.3.11). �

• We are now in a position to complete the two missing points in calculations concerning

the Einstein tensor and the Einstein equations in Chapter 16. The first missing point was

the fact that the variation of the Hilbert action (16.5.4) with respect to the metric tensor

occurring in the curvature forms contributes just an exact form in the total variation of the

form under the integral sign.

21.7.8 Consider the Hilbert action, (16.5.3) and (16.5.4),

SH [g] =
∫

gac�̂
c
b(g) ∧ ∗g(ea ∧ eb)

Check that the variation with respect to g occurring in the curvature form �̂c
b(g) �→ �̂c

b(g +
εh) is irrelevant since it only adds an exact form to the form under the integral sign. In order

to do this check that

465 One has to distinguish ω as a volume n-form and ω̂a
b as connection 1-forms.
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(i) the variation of the curvature forms turns out to be

gab �→ gab + εhab ⇒ �̂a
b �→ �̂a

b + εDσ̂ a
b Dσ̂ a

b ≡ dσ̂ a
b + ω̂a

c ∧ σ̂ c
b − ω̂c

b ∧ σ̂ a
c

where σ̂ a
b is a certain 1-form of type ρ1

1 (in the sense of (21.7.5); it might also be calculated

explicitly in terms of h, but we will not need it)

(ii) the variation of the form under the integral sign then reads

gac�̂
c
b ∧ ∗g(ea ∧ eb) �→ gac�̂

c
b ∧ ∗g(ea ∧ eb) + εdα α ≡ gacσ̂

c
b ∧ ∗g(ea ∧ eb)

Hint: (i) imagine performing the variation “upstairs” on L M (see (21.5.3)); then gab �→
gab + εhab gives rise to ωa

b �→ ωa
b + εσ a

b ; so as the new ω were again a connection form,

σ a
b is to be a horizontal 1-form of type Ad; the pull-back σ̂ a

b (“downstairs” on M) is of type

ρ1
1 in the sense of (21.7.5) so that Dσ̂ a

b = dσ̂ a
b + ω̂a

c ∧ σ̂ c
b − ω̂c

b ∧ σ̂ a
c ; then �̂ �→ d(ω̂ +

εσ̂ ) + (ω̂ + εσ̂ ) ∧ (ω̂ + εσ̂ ) = �̂ + εDσ̂ ; (ii) the form under the integral sign changes466

by the term

gacDσ̂ c
b ∧ ∗g(ea ∧ eb) = ga f Dσ̂

f
b ∧ ωab

cdec ∧ ed

= D
{
ga f σ̂

f
b ∧ ωab

cdec ∧ ed
} + σ̂

f
b ∧ D

{
ga f ω

ab
cdec ∧ ed

}

≡ Dα − σ̂ a
b ∧ D

{
ωb

acdec ∧ ed
}

Due to Dgac = 0 = Dωabcd (the connection is metric, (21.7.7)) and Dec ≡ T c = 0 (the

connection is symmetric) the second term vanishes:

D
{
ωb

acdec ∧ ed
} = Dωb

acd ∧ ec ∧ ed + 2ωb
acdDec ∧ ed = 0

Since α is of type ρ0
0 (there are no “free indices”), there holds Dα = dα (see the table in

(21.7.5)). �

• The second missing point concerned the variation of the Cartan action SC[e, ω] with

respect to the forms ωab (16.5.9).

21.7.9 Consider the Cartan action of a gravitational field

SC ≡ SC[e, ω] :=
∫

U
τ [e, ω] ≡

∫

U

1

2
εabcd�

ab(ω) ∧ ec ∧ ed

Check that the response of the form under the integral sign to the variation of ω is as follows:

τ [e, ω + εσ ] = τ [e, ω] + d{· · ·} − εσ ab ∧ εabcd T c ∧ ed

Hint: ω �→ ω + εσ results in the change of the curvature 2-form

�ab(ω) �→ �ab(ω + εσ ) = d(ωab + εσab) + (ωac + εσac) ∧ (
ωc

b + εηcdσdb
)

= �ab(ω) + ε
(

dσab − ωc
a ∧ σcb − ωc

b ∧ σac
)

= �ab(ω) + εDσab

466 In the four-dimensional space-time; in n dimensions one should just add two times three dots, ωab
cd ec ∧ ed �→ ωab

c...d ec ∧
· · · ∧ ed and everything goes through as before.
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Then,

τ [e, ω + εσ ] = 1

2
εabcd (�ab + εDσ ab) ∧ (ec ∧ ed )

= τ [e, ω] + ε
1

2
{εabcdDσ ab ∧ ec ∧ ed}

= τ [e, ω] + D
{

ε
1

2
εabcdσ

ab ∧ ec ∧ ed

}

− ε
1

2
σ ab ∧ D{εabcdec ∧ ed}

= τ [e, ω] + D{· · ·} − ε

2
σ ab ∧ {Dεabcd ∧ ec ∧ ed + 2εabcdDec ∧ ed}

= τ [e, ω] + d{· · ·} − εσ ab ∧ εabcd T c ∧ ed

(we used Dεabcd = Dωabcd = 0, since ωg(e) is metric (21.7.7)). �

• Eventually, let us compare the actions for the pure gauge field (21.5.3) and for the pure

gravitational field (16.5.3). If we write them side by side (and omit irrelevant coefficients

in front of them)
∫

ki jF i ∧ ∗gF j
∫

�̂ab ∧ ∗g(ea ∧ eb)

we do not see, at first glance, too many similarities. A moment later we realize, however,

that actually �̂ in the second action is a particular case of F in the first one (for the linear
connection) and also the summation over the indices in the second one is a particular case

of the summation in the first one (for the orthogonal Lie algebra, see (12.3.11), since the

connection is metric, (15.6.6)). The similarity is thus considerably closer than it seemed to

be at first glance: both the action integrals have the structure of the scalar product of 2-forms

with values in a Lie algebra
∫

ki jα
i ∧ ∗gβ

j ≡ 〈α, β〉k

Now we can see clearly the essential difference between them: whereas the first action

contains the curvature 2-form twice (it is quadratic in the curvature, α = β = F), the

second one contains it only once (being thus linear in the curvature, α = F) and the second

needed 2-form is realized differently there. The role of the form β is played by the 2-form

ea ∧ eb; note that this form satisfies all the necessary transformational properties (namely

type Ad) in spite of being completely independent of the connection form A. We see that

the action of the gravitational field turns out to be exceptional among the actions of gauge

fields and that its exceptionality (i.e. linearity in the curvature) may be ultimately traced

back to the specific feature of the frame bundle L M , the existence of the above-mentioned

“horizontal building material” with just the needed transformation type467 even without

connection.

We close this section with a problem which returns to the concept of scalar density.

467 “Upstairs” on L M (or on the subbundle O M (20.5.5)) we are speaking about the 2-form θa ∧ θb , which happens to be
a horizontal 2-form of just the needed type, being at the same time constructed exclusively from the “canonical building
material” (which is available regardless of any connection whatsoever).
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21.7.10 Contemplate an equivariant function � of

type ρ on L M , where ρ(A) = (det A)λ, i.e. obeying

(for any A ∈ GL(n, R) and some λ ∈ R)

�(eA) = ρ(A−1)�(e) ≡ (det A)−λ�(e)

Such a field, as well as its pull-back living on M , is

called the scalar density of weight λ (see (5.7.1) and

the text before (6.3.8)). Consider two local sections

σ and σ̂ associated with two frame fields ea and êa

respectively. Assume that they are related by σ̂ (x) = σ (x)A(x) (i.e. êa(x) = Ab
a(x)eb(x) ≡

(RAe)a(x)). Denote the corresponding pull-backs by ϕ(x) = (σ ∗�)(x) ≡ �(σ (x)) and

ϕ̂(x) = (σ̂ ∗�)(x) ≡ �(σ̂ (x)). Check that

(i) the fields ϕ(x) and ϕ̂(x) are related by

ϕ̂(x) = (det A(x))−λϕ(x)

In particular, if the sections correspond to coordinate frame fields ∂μ and ∂ ′
μ, the formula

reads

ϕ′(x ′) = (J (x))λϕ(x) ≡ (det(∂x ′/∂x))λϕ(x)

(ϕ′ denotes the field with respect to the coordinates x ′μ; for λ = 0 the representation ρ is trivial

and we obtain a true function (scalar field) on M)

(ii) the covariant derivative Dϕ(x) of ϕ(x) is given by

Dϕ = dϕ + λω̂a
aϕ ≡ dϕ + λ(Tr ω̂)ϕ

and, in particular (for the “coordinate” section σ ),

Dϕ = dϕ + λ
(
�ν

νμ dxμ
)
ϕ i.e. Dμϕ = ∂μϕ + λ�ν

νμϕ

Hint: (i) ∂ ′
μ = (∂xν/∂x ′μ)∂ν ≡ (J−1)νμ(x)∂ν

!= Aν
μ(x)∂ν ⇒ Aν

μ(x) = (J−1)νμ(x); (ii) accord-

ing to (12.1.7), (20.4.6) and (21.2.4) we have σ ∗(d� + ρ ′(ω)�) = dϕ + λTr (σ ∗ω)σ ∗� =
dϕ + λ(ω̂a

a )ϕ. �

• The case of tensor densities (where ρ(A) = (det A)λρr
s (A), see Section 19.6) may be

treated by a straightforward modification of the approach discussed above (and it is left as

an exercise for the reader).

Summary of Chapter 21

A link between connections on a principal G-bundle and gauge field theory (known from

physics) is systematically built here. First, a standard “physical” approach is briefly intro-

duced for the convenience of the reader who is not familiar with these ideas from physics.

Namely, a “global” G-symmetry of an action is made “local.” This is achieved by adding

new fields with quite definite transformation properties and interaction with the initial fields.
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It is shown that all the building blocks of the gauge scheme possess a natural interpretation

in terms of connection theory. In particular, fixing of the gauge is given by the choice of

a local section σ of the principal bundle, gauge potentials (in this gauge) are obtained by

pull-back (with respect to the section) of a connection form to the base, gauge transforma-

tions correspond to a change of a section, field strength is obtained as the pull-back of the

curvature form and a matter field as the pull-back of an equivariant function on P . Parallel

transport equations of an arbitrary quantity of type ρ in a gauge σ are derived. The concept

of an associated vector bundle is introduced (it arises from a principal bundle as a result of

the replacement of its fiber by a representation space of the group G). The structure of the

(locally) gauge invariant action is given and the equations of motion are derived (they gen-

eralize Maxwell’s equations of electrodynamics, which turns out to be a gauge theory with

group U (1)). Noether’s theorem is introduced, providing a link between the symmetries of

the action integral and the conserved quantities. The theorem sheds new light on some older

results in this direction – the relation between conservation laws and the energy–momentum

tensor in the field theory as well as exact Cartan symmetries in Hamiltonian mechanics. In

the last section we return to the frame bundle L M and introduce the canonical 1-form θ

with values in R
n which is related to the torsion on M and learn how to use the exterior

covariant derivative D on the base M .

φ �→ e−iα(x)φ, A �→ A + dα(x) U (1)-local gauge transformation (21.1.2)

σ̂ (x) = σ (x)S(x) ≡ RS(x)σ (x) Two sections related via S ∈ GU (21.2.1)

φ̂ = B−1φ Local gauge transformation of a matter field (21.2.5)

Â = B−1AB + B−1d B The same for the gauge potential (21.2.5)

F̂ = B−1FB The same for the field strength (21.2.5)

v̇ + 〈A, γ̇ 〉v = 0 Equation of parallel transport (21.3.2)

S[φ,A] = − 1
2
〈DA,DA〉k

+ 1
2
〈Dφ,Dφ〉h − (m2/2)〈φ, φ〉h Action of the coupled system (φ,A) (21.5.6)

D+F = −J , DF = 0,

(D+D − m2)φ = 0 Corresponding field equations (21.5.6)

S[ρ(eεs(x))ψ] = S[ψ] + ε〈ds, j〉k Computation of Noether currents j (21.6.1)

ji = T (ξEi , ·) Noether currents due to Killing vectors (21.6.6)

� := Dθ Where torsion sits in the L M formalism (21.7.2)
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Spinor fields and the Dirac operator

• So far we have not mentioned yet another type of geometrical object, which may live on

(some Riemannian) manifolds, the spinor field. These fields play an important role both in

physics and in mathematics. The way in which Paul Dirac arrived at this concept may serve

as an amusing (as well as highly instructive) example of how sometimes a discovery of truly

the highest importance468 may originate from assumptions which are actually regarded as

erroneous from a present-day perspective.

Dirac tried to find a relativistic formulation of quantum mechanics, i.e. to generalize the

non-relativistic theory, based on the Schrödinger equation. This problem was also attacked

before by several eminent physicists and their activity resulted in the equation nowadays

known as the Klein–Gordon equation (16.3.7).

(In addition to Klein and Gordon it was independently discovered by other people, for

example Fock. Amazingly, it was even discovered by Schrödinger himself before he found

the equation that now bears his name. However, when he computed the energy spectrum

of the hydrogen atom from the relativistic equation, he found that although it comes out

“roughly correct,” it differs slightly from experiment at the finer level of accuracy. That

is why he only published the non-relativistic approximation of the equation (leading just

to the well-known “roughly correct” formula for the spectrum). This equation was then

“relativistically generalized” by other authors.)

There were some serious problems with the physical interpretation of the Klein–Gordon

equation resulting from the fact that it is a second-order equation in time (contrary to the

Schrödinger equation, which is only first order in time). In spite of this fact the generally

accepted opinion in the community was that the relativistic equation was already known.

This was also the belief of Niels Bohr. When he asked Dirac at some conference what

he was working on just now he was indeed very much surprised to hear that Dirac was

trying to find the relativistic wave equation. Dirac’s surprise was, however, no less. He

was not able to understand why the community accepted a second-order equation suffer-

ing from serious interpretational problems. He strongly believed that the true relativistic

equation should be a first-order differential equation. Eventually he indeed succeeded in

468 That is, the Dirac equation and the predictions (which were later confirmed) which stem from the equation (just to mention the
existence and properties of antiparticles, corrections to the hydrogen energy spectrum and automatic appearance of spin 1

2
).

635
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achieving this objective and since then we have known the Dirac equation and spinor

fields.469

A possible way of deriving the Dirac equation consists in “splitting” of the Klein–Gordon

second-order operator470 � − m2, i.e. in writing down this operator as a product of two first-
order operators Â, B̂; the Klein–Gordon equation then would become

(� − m2)ψ ≡ Â B̂ψ = 0

and we could postulate a “deeper” equation

B̂ψ = 0

Clearly the solutions of this equation are at the same time also solutions of the original

equation (just apply Â from the left), however, the converse may not be true. This “deeper”

equation then represents the first-order equation we are looking for.

If the product Â B̂ is to give � − m2, the individual factors Â and B̂ might (according to

the formula u2 − v2 = (u + v)(u − v)) look like

Â = â + m1̂ B̂ = â − m1̂

with â being a strictly differential operator, which may be regarded as a “square root” of

the d’Alembert operator �, i.e. it satisfies

ââ = � ≡ −∂μ∂μ ≡ −ημν∂μ∂ν ≡ � − ∂t
2

Now, since â is a first-order operator in the time variable and in special relativity time and

space form a whole in which these two parts are to be regarded in many respects as being

equal, it is natural to expect that â would be a first-order operator in the spatial variables as

well. Considerations of this type eventually lead to an ansatz

Â = iγ μ∂μ + m1̂ B̂ = iγ μ∂μ − m1̂

where γ μ are unknown numerical coefficients. The coefficients are to be fixed so that

ââ = � holds. This gives the following restrictions for the unknown coefficients:

γ μγ ν + γ νγ μ = 2ημν

They might look fairly innocent at first sight, but appearances are sometimes deceptive.

Actually these equations clearly say that γ a cannot be numbers, since one can hardly find

numbers which would willingly have a good mind to satisfy (for example)

γ 2γ 3 + γ 3γ 2 = 2η23 ≡ 0 i.e. γ 2γ 3 = −γ 3γ 2

469 The present-day point of view is based on relativistic quantum field theory (rather than relativistic quantum mechanics). Here
both equations are accepted to be correct. So Dirac was in fact lucky that he was not aware of the fact that the blame with respect
to the Klein–Gordon equation is based on its erroneous interpretation and that the equation itself is perfectly all right – he
would not have been motivated enough to replace it by another one and he would have missed the chance to discover an
additional fundamental physical equation.

470 We mean the operator in the usual (“flat”) Minkowski space-time E1,3, i.e. for the moment “only” the special theory of relativity
is considered.
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Dirac realized, however, that the conditions may still be fulfilled by square matrices (the

function ψ thus inevitably becomes a column vector) and the Dirac equation

(i∂/ − m1̂)ψ = 0 ∂/ ≡ γ μ∂μ ≡ Dirac operator

came to light (the matrices γ μ form, as we will see, a representation of the Clifford algebra;

sometimes also the factor of i enters the definition of the Dirac operator). The following

detailed analysis of the equation revealed that in order for everything to be relativistic

invariant the column vector ψ should transform according to a new “spinor” representation

of the group SO(1, 3) (its rather peculiar properties reflect the fact that it is actually a

representation of the covering group and, if treated as a representation of SO(1, 3), it

becomes two-valued (13.3.16)) and the spinors (column vectors ψ(x)) came to light as

well.

All of this analysis took place in the Minkowski space-time and in Cartesian coordi-

nates. Recall now the situation with the parallel transport of vectors and tensors. In the

(pseudo-)Euclidean spaces in the Cartesian coordinates the procedure turned out to be

technically completely trivial, but in a more general situation, when the two restrictions

were relaxed, this idea brought a fruitful development and enough material for not only

the whole of Chapter 15, but even for a far-reaching further generalization in subsequent

chapters (Chapters 19–21). A similar situation is repeated here. After a short time works

(by Fock and Weyl) appeared which generalized the formalism of the spinor fields from the

Minkowski space-time E1,3 to any “curved” space-time (M, g) (motivated by applications

in the general theory of relativity; orthonormal tetrad fields and Ricci coefficients of rota-

tions were used for that). This already becomes slightly more complicated (however, just as

was the case with the connection, also more interesting and richer) and it needs once more

a separate chapter to become familiar with these ideas.

In this chapter we introduce an approach of modern differential geometry based on fiber

bundles. Spinor fields will be described in the same way as we have already described tensor

fields (and other matter fields in the theory of gauge fields), as “objects of type ρ.” So they

are related to an appropriate principal bundle and a function of (some particular) type ρ on

the total space of the bundle (they may then be pulled back to the space-time by means of a

local section). The description of this important bundle needs, however, some preparatory

material at the level of linear algebra – we learn necessary facts about the covering groups

of orthogonal groups (generalizing the covering SU (2) → SO(3), which we studied in

Chapter 13). The whole approach is based on the theory of Clifford algebras. That is why

we start with this material right now.

22.1 Clifford algebras C(p, q)

• The real Clifford algebra C(L , g) is a certain finite-dimensional associative algebra with

unit (see Appendix A.2), which may be canonically associated with the pair (L , g), a linear

space L endowed with a symmetric bilinear form g. We will restrict ourselves to the most
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important case, when g is non-degenerate;471 so g will be a metric tensor with signature

(p, q) in what follows. In particular, if we take (Rn, ηab) (the “canonical” coordinate linear

space, n = p + q) as (L , g), the corresponding algebra C(L , g) will be denoted by C(p, q).

Let us turn to the description of the algebra C(L , g).

Recall that in (5.3.4) we obtained the exterior algebra �L∗ by means of the factorization
of the “strictly covariant” tensor algebra with respect to an appropriate ideal I . In order

to construct the algebra C(L , g) we may proceed in like manner, modifying somewhat,

however, the ideal of the same starting algebra. So, consider again the linear space

T(·)(L) := ∞⊕
r=0

T 0
r (L) ≡ T 0

0 (L) ⊕ T 0
1 (L) ⊕ T 0

2 (L) ⊕ · · ·
≡ R ⊕ L∗ ⊕ T 0

2 (L) ⊕ · · · (up to infinity)

endowed with the product induced by the tensor product of the homogeneous terms (just

as it was the case in Section 2.4). However, here we will consider the ideal J generated by

elements of the form

α ⊗ α − g(α, α) α ∈ L∗ g(α, α) ≡ gabαaαb

so that the elements of the ideal J are sums of terms of the form

t1 ⊗ (α ⊗ α − g(α, α)) ⊗ t2 t1, t2 ∈ T(·)(L) α ∈ L∗

22.1.1 Consider the algebra T(·)(L) and a set J described above. Check that

(i) the set J is indeed a two-sided ideal of the algebra T(·)(L)

(ii) the same ideal is also generated by elements of the form

α ⊗ β + β ⊗ α − 2g(α, β) α, β ∈ L∗

(iii) the factorization under consideration leads to a (bilinear and associative) multiplication of classes,

which satisfies the relation

[ea][eb] + [eb][ea] = 2gab[1]

Hint: as in (5.3.4). �

• If we already deal with the resulting factor-algebra

C(L , g) := T(·)(L)/J Clifford algebra

then the square brackets denoting equivalence classes are usually omitted and what remains

is the key relation for the (bilinear and associative) Clifford product

eaeb + ebea = 2gab

So at the level of manipulations of letters the element of the Clifford algebra is an expression

u = û + ûaea + ûabeaeb + ûabceaebec + · · · û, ûa, ûab, . . . ∈ R

471 Also the other extreme case is of considerable interest, when g vanishes. Then we get the good old exterior algebra �L∗ from
Section 5.3.
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and in order to multiply two such elements we multiply each term of the first one with each

term of the second one, always being allowed to simplify the result using the basic relation

eaeb + ebea = 2gab. For example, we get

(1 + 2e1e2)(e1 + 3e2e3) = e1 + 3e2e3 + 2e1e2e1 + 6e1e2e2e3

= e1 + 3e2e3 − 2e1e1e2 + 6e1g22e3

= (e1 − 2g11e2) + (3e2e3 + 6g22e1e3)

∈ C1(L , g) ⊕ C2(L , g)

where, at the end of the computation, we have grouped together the terms which contain

the product of an equal number of eas, all the products being always expressed in order of

increasing values of indices (for example, e2e3 rather than −e3e2, see below). The space of

products of just p entries (ordered in this way), is denoted by C p(L , g).

22.1.2 Consider the Clifford algebra C(L , g). Check that

(i) C(L , g) may be written as the direct sum of the subspaces C p(L , g), where p = 0, 1, . . . , n, in

which we may use a basis in the form of

C0(L , g) = R 1

C1(L , g) = L∗ ea a = 1, . . . , n
C2(L , g) eaeb a < b
C3(L , g) eaebec a < b < c
. . . . . .

Cn(L , g) e1 . . . en

so that C(L , g) is isomorphic as a linear space to the exterior algebra472 �L∗ of the space L∗

(and just as in �L∗, the subspace C0(L , g) may be identified with R and C1(L , g) with L∗)

(ii) the resulting algebra C(L , g) has dimension 2n , where n ≡ p + q is the dimension of the

space L
(iii) the ideal J is generated by inhomogeneous elements of the initial Z-graded algebra T(·)(L) so that

Z-grading does not pass to the factor-algebra C(L , g);473 however, if regarded from the point of

view of the weaker Z2-grading, the generators are homogeneous (even), and so this Z2-grading

passes to the quotient C(L , g)

C(L , g) = C0(L , g) ⊕ C1(L , g) ⊕ C2(L , g) ⊕ · · · ⊕ Cn(L , g)

(only) as a linear space

C(L , g) = C+(L , g) ⊕ C−(L , g)

(also) as an algebra

472 However, when regarded as an algebra it is substantially different, since the multiplication is different. Put another way, the
elements of the Clifford algebra are (inhomogeneous) exterior forms. They are, however, multiplied using the Clifford rule
rather than using the exterior product ∧ (nor is the exterior product used for their presentation, and therefore the fact that
they actually “are” exterior forms is somewhat obscure). There is also an algebra in which both products are defined in the
linear space of forms �L∗ (and in addition also the standard scalar product of forms (α, β) form (5.8.4)); it is called the
Kähler–Atiyah algebra.

473 The algebra C(L , g) is Z-graded at the level of the linear space (it is the direct sum of C p(L , g)); however, this grading is not
inherited from the tensor algebra and (more importantly) it is not respected by the product.
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where

C+(L , g) := C0(L , g) ⊕ C2(L , g) ⊕ C4(L , g) ⊕ · · ·
C−(L , g) := C1(L , g) ⊕ C3(L , g) ⊕ C5(L , g) ⊕ · · ·

Hint: (i) the rule eaeb + ebea = 2gab evidently enables one to rewrite any element C(L , g)

in the form which corresponds to an inhomogeneous form, for example

eaeb = 1

2
(eaeb + ebea + eaeb − ebea) = 1

2
(2gab + ea ∧ eb)

= gab + 1

2
ea ∧ eb ∈ �0L∗ ⊕ �2L∗

There is some extra work needed for products of more basis covectors, but it is clear that

each symmetric part may be rewritten by means of eaeb + ebea = 2gab as an expression

which contains two fewer terms ea , so that at the very end only a sum of completely antisym-
metric terms, which correspond (ea . . . eb ↔ ea ∧ · · · ∧ eb, a < · · · < b) to some unique

elements of the exterior algebra, remains, (5.2.13); (ii) and this algebra has the dimension 2n;

(iii) proceed as in (5.3.4). �

• Now, let us look in detail at what the Clifford algebras with the lowest values of (p, q)

“indeed” look like. We will begin with the most trivial case, C(0, 0). We have a zero-

dimensional L , the whole tensor algebra T(·)(L) reduces to R and there is no ideal to make

a factorization, so that this R is at the same time the final result of all this backbreaking

labor: we get C(0, 0) = R.

Let us try to take a courageous step to C(0, 1). We have a one-dimensional space, a single

basis covector e1 and the general relation eaeb + ebea = 2ηab reduces to a single restriction

e1e1 = −1. So the general element of the algebra reads a + be1 and the linear combination

and the multiplication of such elements give

(a + be1) + λ(â + b̂e1) := (a + λâ) + (b + λ b̂)e1

(a + be1)(â + b̂e1) := aâ + a b̂e1 + bâe1 + b b̂e1e1

≡ (aâ − b b̂) + (a b̂ + bâ)e1 a, â, b, b̂, λ ∈ R

If we envisage in these formulas the imaginary unit i ≡ √−1 instead of e1, we will obtain

just the standard rules for the basic manipulations with complex numbers, so that a +
be1 ↔ a + bi is an isomorphism of the two-dimensional algebra C(0, 1) with the algebra

of complex numbers C (regarded as a two-dimensional algebra over R).

In a similar way we may also sense other Clifford algebras with sufficiently small n ≡
p + q. Let us see how this comes out.

22.1.3 Find explicitly how Clifford algebras work for n ≤ 2 (with every possible signature

(p, q) for given n = p + q). Check that the following isomorphisms hold:

n = 0 C(0, 0) = R

n = 1 C(1, 0) = R ⊕ R C(0, 1) = C

n = 2 C(2, 0) = R(2) C(1, 1) = R(2) C(0, 2) = H
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where R(n) = Mn(R) = the algebra of real n × n matrices and H is the algebra of quater-
nions (see Appendix A.2).

Hint: all of them by an appropriate choice of bases; for example, (1, 0): we have e1e1 =
+1 ⇒ in the basis 1

2
(1 ± e1), i.e. if the elements are written in the form (a, b) ↔ 1

2
a(1 +

e1) + 1
2

b(1 − e1), the multiplication reads (a, b)(â, b̂) = (aâ, b b̂), which corresponds (see

Appendix A.2) to R ⊕ R; (2, 0): we have e1e1 = e2e2 = +1 ⇒ if e1 ↔ σ1 and e2 ↔ σ3,

we have an isomorphism with R(2); for (1, 1) set e1 ↔ σ1 and e2 ↔ iσ2, leading again to

R(2) and finally for (0, 2) we have e1 ↔ −iσ1 and e2 ↔ −iσ2, from where e1e2 ↔ −iσ3;

the general element then corresponds to the matrix a0I + al(−iσl), which may be identified

with the quaternions, since −iσl , l = 1, 2, 3 behave exactly like quaternionic “imaginary

units” i, j, k. �

• The isomorphisms described above are non-canonical. Let us look, for example, at the

isomorphism C(1, 1) = R(2).

22.1.4 A straightforward check shows that for each φ and an arbitrary choice of ± the

assignment

1 �→ I e1 �→ σ1 cos φ + σ3 sin φ e2 �→ ±iσ2

( ⇒ e1e2 �→ ∓σ3 cos φ ± σ1 sin φ)

describes an isomorphism C(1, 1) → R(2) (so that the choice made in the hint to problem

(22.1.3) corresponds to φ = 0, ± = +). �

• In principle we might go on in this way for higher n. However, actually our passion

would ooze away very soon. A fairly passable way is offered by recurrent formulas.

22.1.5 Let us see, for example, how the tensor product C(p, q) ⊗ C(2, 0) works. Check

that the following isomorphism of algebras holds:

C(p, q) ⊗ C(2, 0) = C(q + 2, p)

Hint: let

C(p, q) have the generators Ei E j + E j Ei = 2ηi j ηi j of type (p, q)

C(2, 0) have the generators eaeb + ebea = 2ηab ηab of type (2, 0)

Then we may generate a complete basis of the tensor product of the algebras from the

elements E A = (E i , Ea)

E i := Ei ⊗ e1e2 Ea := 1 ⊗ ea

and moreover there holds

E AE B + E BE A = 2ηAB1 ⊗ 1 ηAB = diag (−ηi j , ηab) ↔ (q + 2, p)

so that actually they generate the whole Clifford algebra C(q + 2, p). �
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• In a similar way we may verify another two useful recurrence formulas; when all three

together are displayed they read

C(p, q) ⊗ C(2, 0) = C(q + 2, p)

C(p, q) ⊗ C(1, 1) = C(p + 1, q + 1)

C(p, q) ⊗ C(0, 2) = C(q, p + 2)

Now consider a non-negative quadrant in the pq-plane. Interpret these formulas as appro-

priate shifts in the plane (the first one, say, performs the shift (p, q) �→ (q + 2, p)). One

can see easily (as is often the case, a small diagram might be useful) that the three steps

are enough (and, moreover, all of them are needed) to get to any point on the integer lattice

lying in the quadrant under consideration, starting from the small triangle near the origin

which corresponds to the algebras examined in problem (22.1.3). Put differently, these for-

mulas enable one to express whatever Clifford algebra we need as a tensor product of those

particular small algebras which we discussed in (22.1.3). For example,

C(3, 0) = C(0, 1) ⊗ C(2, 0) = C ⊗ R(2)

C(1, 3) = C(0, 2) ⊗ C(1, 1) = H ⊗ R(2)

The results are already written in the form of a tensor product of known algebras. The

products may even be simplified further with the help of several isomorphisms which may

be easily verified.

22.1.6 Check that the following isomorphisms of algebras (where ⊗ is over R) hold:

C ⊗ C = C ⊕ C H ⊗ C = C(2) H ⊗ H = R(4)

R(m) ⊗ R(n) = R(mn) R(m) ⊗ C = C(m) R(m) ⊗ H = H(m)

Hint: all of them by a convenient choice of bases; for example, for C ⊗ C = C ⊕ C: let

(1, i) denote the basis in the first copy of C and (1′, i ′) in the second one; then in C ⊗ C we

may choose the basis 1̂ = 1 ⊗ 1′, î = i ⊗ 1′, ĵ = 1 ⊗ i ′, k̂ = i ⊗ i ′; for the new basis

A = 1

2
(1̂ − k̂) B = 1

2
(î + ĵ) a = 1

2
(1̂ + k̂) b = 1

2
(î − ĵ)

already holds

A2 = A, AB = B A = B a2 = a, ab = ba = b Cc = cC = 0

B2 = −A b2 = −a

where C denotes anything “big” (A or B) and c is anything “small”; this is, however,

just a basis in C ⊕ C; R(n) ⊗ A = A(n): the general element from the left algebra is

x = xiα
j E j

i ⊗ eα = E j
i ⊗ xiα

j eα =: E j
i ⊗ xi

j and this defines a bijection R(n) ⊗ A → A(n),

x �→ xi
j ; check that the multiplication works; H ⊗ H = R(4): the question is whether

H ⊗ H
?= R(2) ⊗ R(2); a basis in H is (I ≡ σ0, −iσ1, −iσ2, −iσ3) ≡ Eμ and in R(2) in

turn (I ≡ σ0, −σ1, −iσ2, −σ3) ≡ Eμ, so that in H ⊗ H it is Eμ ⊗ Eν and in R(2) ⊗ R(2) it

is Eμ ⊗ Eν ; check that Eμ ⊗ Eν �→ Eμ ⊗ Eν is an isomorphism, etc. �



22.1 Clifford algebras C(p, q) 643

• Now we may express the tensor products mentioned above more explicitly: C ⊗ R(2) =
C(2) and H ⊗ R(2) = H(2), so that we get simple results

C(3, 0) = C(2)

C(1, 3) = H(2)

In this way we may express step by step all real Clifford algebras C(p, q). Let us look first

at the “edge” cases, C(p, 0) and C(0, p).

22.1.7 Use this technique to check that we get the following results:

(i) for the values p = 0, . . . , 8 there holds

p | 0 1 2 3 4 5 6 7 8

C(p, 0) | R R ⊕ R R(2) C(2) H(2) H(2) ⊕ H(2) H(4) C(8) R(16)

C(0, p) | R C H H ⊕ H H(2) C(4) R(8) R(8) ⊕ R(8) R(16)

so that all of these algebras turn out to be either K(l) or K(l) ⊕ K(l) for K = R, C or H and for

some l = 0, 1, 2, . . .

(ii) one can get beyond eight by means of the recurrence formulas

C(p + 8, 0) = C(p, 0) ⊗ R(16) i.e. C(p + m.8, 0) = C(p, 0) ⊗ R(16m)

C(0, p + 8) = C(0, p) ⊗ R(16) i.e. C(0, p + m.8) = C(0, p) ⊗ R(16m)

(iii) there holds

K(l) ⊗ R(16m) = K(l · 16m) (K(l) ⊕ K(l)) ⊗ R(16m) = K(l · 16m) ⊕ K(l · 16m)

which enables one to find explicitly the algebras C(p, 0) and C(0, p) for an arbitrary p (i.e. we

already know all the algebras situated at the points on both axes of the quadrant pq)

(iv) so that, for example,

C(0, 14) = R(8.16)

C(0, 41) = C(165)

C(1957, 0) = H(4.16244) ⊕ H(4.16244)

Hint: (ii) C(p+8, 0)= C(0, p+6) ⊗ C(2, 0)= · · · = C(p, 0) ⊗ H ⊗ R(2) ⊗ H ⊗ R(2)=
C(p, 0) ⊗ (H ⊗ H) ⊗ (R(2) ⊗ R(2)) = C(p, 0) ⊗ R(16); (iii) K(l) = K ⊗ R(l); (iv) 14 =
1.8 + 6, 41 = 5.8 + 1, 1957 = 244.8 + 5. �

• Finally, the relation C(p + 1, q + 1) = C(p, q) ⊗ C(1, 1) ≡ C(p, q) ⊗ R(2) shows

that, walking with a dandified gait, we are able to move obliquely upwards (parallel to

the symmetry axis of the quadrant) and go from appropriate points on the coordinate axes

p and q to an arbitrary point inside the quadrant; in particular, in order to come to (p, q),

we should start

from C(p − q, 0) if p ≥ q
from C(0, q − p) if p ≤ q
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Note that all the algebras C(p, q) are either of the “type” K(l) or K(l) ⊕ K(l), for some

possible K mentioned above and some l = 0, 1, 2, . . ., since

1. this is the case on the coordinate axes for p and q ranging from 0 to 8

2. it turned out that a shift along the coordinate axes by 8 yields the tensor product with R(16), which

does not change this “type”474

3. moving inwards the quadrant once more does not change the “type” of an algebra, since this only

amounts to the tensor product (possibly iterated) with the algebra R(2).

We see from this consideration that the “type” of the algebra depends crucially on the

number475

(p − q) mod 8

So if we need to know what C(p, q) looks like for a given pair (p, q), we are to slip down

to the place where the line along which we move crosses a coordinate axis and we look

at the algebra which sits there. We find either K(r ) or K(r ) ⊕ K(r ) with some particular

r = 0, 1, 2, . . . . Now we start to take steps backward along the same line and we multiply

the value r by 2 for each step by (1, 1).

22.1.8 Verify476 that all the real Clifford algebras may be summarized in the following

concise table, generalizing the table from problem (22.1.7):

0 1 2 3 4 5 6 7

R(2l) R(2l) ⊕ R(2l) R(2l) C(2l) H(2l−1) H(2l−1) ⊕ H(2l−1) H(2l−1) C(2l)

In the upper line the numbers (p − q) mod 8 are displayed, the lower line then shows the

corresponding Clifford algebras C(p, q). The number l is given by l ≡ [(p + q)/2], where

[k] denotes the integer part of k. �

• Now let us see how the situation simplifies for complex Clifford algebras. The general

element may still be expressed in terms of the basis from (22.1.2), but complex coefficients

are now allowed. Then one can easily see that the resulting algebra turns out to be “the

same” (i.e. isomorphic) as if the initial real algebra were multiplied by ⊗ C. It is also

useful to observe that the detailed signature (p, q) is completely irrelevant in the complex

Clifford algebra; what really matters is only the total477 dimension n = p + q, so that one

should actually speak about C̄(n). We get the complete list of these algebras by simply

tensor multiplying the real versions (with any signature whatsoever within a given n) by

the algebra C. The list turns out to be fairly short.

474 By the “type” we understand the particular K as well as whether the sum ⊕ of two terms is present or not.
475 The number (p − q) itself labels the particular slant line (parallel to the symmetry axis of the quadrant, for which (p − q) = 0)

on which the point (p, q) lies. We learned that for the every eighth line there is the same “type” of algebra.
476 This problem is especially recommended for lifelong prisoners and shipwrecked persons living on desert islands to help pass

the time.
477 For example, consider the term e3e3 = η33. If we choose a new basis element to be ê3 = ie3, we get ê3 ê3 = −η33; the choice

of a new basis thus enables one to adjust the signature at will, êa êb + êb êa = 2η̂ab .



22.2 Clifford groups Pin (p, q) and Spin (p, q) 645

22.1.9 Check that the situation indeed simplifies greatly and the result may be summarized

as follows:

n mod 2 0 1

C̄(n) C(2[n/2]) C
(
2[n/2]

) ⊕ C
(
2[n/2]

)

Put another way, for even n = 2m it is C(2m) and for odd n = 2m + 1 it is a direct sum of

two copies of C(2m).

Hint: for example, for n = 3 we have C(3, 0) = C(2), C(2, 1) = R(2) ⊕ R(2), C(1, 2) =
C(2), C(0, 3) = H ⊕ H; if any of these algebras is multiplied by ⊗C, we get C(2) ⊕ C(2).

�

22.2 Clifford groups Pin (p, q) and Spin (p, q)

• In Clifford algebra elements may be multiplied in an associative way. However, an

associative multiplication also occurs in groups. In groups each element should have (by

definition) its inverse, but this already need not be true for each element of C(p, q). However,

for some elements this is true and they then form a group with respect to the multiplication

in C(p, q). A special subgroup of the group turns out to be of particular interest. It may be

described as follows: consider first the elements of C1(L , g) ≡ L∗, which are normalized

to unity, i.e. such α ∈ C1(L , g) for which g(α, α) = ±1. We will check that the finite

products of such elements constitute a group and eventually we will find that the group is

fairly interesting.

22.2.1 Consider finite products of elements of C1(L , g), which are normalized to unity

u = α1α2 . . . αk g(α j , α j ) = ±1 j = 1, . . . , k

Check that

(i) such products constitute a group – it is denoted by Pin (p, q)

(ii) the elements which contain an even number of factors constitute a subgroup in its own right –

this subgroup is called the spinor group of E p,q and it is denoted by Spin (p, q)

(iii) the group Spin (p, q) lies in the even subalgebra C+(p, q)

(iv) direct computations right from the definition lead for p + q ≡ n ≤ 2 to the following results:

n = 0 not defined (C1(0, 0) missing)

n = 1 Pin (1, 0) = Z2 × Z2 Spin (1, 0) = Z2

Pin (0, 1) = C4 Spin (0, 1) = C2 = Z2

n = 2 Pin (2, 0) = O(2, 0) ≡ O(2) Spin (2, 0) = SO(2, 0) = SO(2)

Pin (1, 1) = O(1, 1) Spin (1, 1) = SO(1, 1)

Pin (0, 2) = O(0, 2) ≡ O(2) Spin (0, 2) = SO(0, 2) = SO(2)

(Ck is the cyclic group of order k).

Hint: (i) closure with respect to the product is evident; since α jα j = g(α j , α j ) = ±1, we

have α−1
j = ±α j and so (α1α2 . . . αk)−1 = ±αk . . . α2α1 ∈ Pin (p, q); (iii) α j ∈ C−(p, q)
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and C(p, q) is Z2-graded; (iv) Pin (1, 0): α j = ae1, a ∈ R, g(α j , α j ) = 1 gives a2 = 1, so

that α j = ±1e1 and the group contains (1, −1, e1, −e1); Pin (2, 0): normalized α j has

the form α ≡ α(φ) = e1 cos φ + e2 sin φ; if we denote β(φ) = 1 cos φ + e1e2 sin φ, the

Clifford multiplication gives

α(φ)α(ψ) = β(φ + ψ) α(φ)β(ψ) = α(φ + ψ) β(φ)β(ψ) = β(φ + ψ)

Thus, there are only two kinds of elements in the group Pin (2, 0), namelyα(φ) = α(φ + 2π )

and β(φ) = β(φ + 2π ) (with vanishing intersection ⇒ the group as a manifold consists of

two circles), their multiplication just corresponding to O(2) (β(φ), the rotation by φ; α(φ),

rotation combined with a reflection (det = −1)); the group Spin (2, 0) contains only β(φ)

and is isomorphic to SO(2); Pin (1, 1): similarly, start from a normalized α j of the form

α(φ) = e1 cosh φ + e2 sinh φ (to +1) or α̂(φ) = e1 sinh φ + e2 cosh φ (to −1). �

• The discrete groups at the beginning are not very interesting, but we see that for n = 2

we already get Lie groups, namely orthogonal groups O(2) and SO(2). And what does the

situation look like for higher n? A deeper insight is provided by means of the following

representation of the group Pin (p, q) in C1(p, q) ≡ L∗.

22.2.2 Consider an arbitrary element

u ∈ Pin (p, q) and define a linear map

ϕu : C1(p, q) → C1(p, q) β �→ uβu−1

Check that

(i) if u contains just one normalized (co)vector, u = α =
α1, then the resulting (co)vector ϕα(β) ≡ αβα−1 is

obtained from the initial β by the reflection with re-

spect to α

(ii) for general u ∈ Pin (p, q) it is obtained by a composition of several reflections, i.e. together with

an orthogonal transformation Â in the space478 C1(p, q) ≡ (L∗, g)

(iii) if an element u = α1α2 . . . αk contains an even number of factors, i.e. if u ∈ Spin (p, q), then Â
is a special orthogonal transformation (rotation) in C1(p, q)

(iv) the prescription u �→ ϕu is a representation479 of Pin (p, q) in C1(p, q).

Hint: (i) decompose β into the part β‖ = λα parallel to α and β⊥ perpendicular to α; then

β ≡ β‖ + β⊥ �→ α(β‖ + β⊥)α−1 = λααα−1 + αβ⊥α−1 = λα + [−β⊥α + 2g(α, β⊥)]α−1

= β‖ − β⊥

(ii)ϕuβ = ϕα1α2...αk β = · · · = ϕα1
ϕα2

· · · ϕαk β; a composition of orthogonal transformations

(each reflection is an orthogonal transformation) is again an orthogonal transformation; (iii)

any reflection changes the orientation ⇒ it has determinant of = −1, so that the product

478 We can see from this that the image of ϕu is indeed (only) in C1 (from the definition it is only clear that it is somewhere in
(the whole algebra) C(p, q)).

479 It is sometimes called the twisted adjoint representation of Pin (p, q) and is denoted by Ãd.



22.2 Clifford groups Pin (p, q) and Spin (p, q) 647

of an even number of reflections has a determinant of +1; (iv) if u1 = α1α2 . . . αk and

u2 = αk+1αk+2 . . . αk+r then u1u2 = α1α2 . . . αk+r andϕu1u2
= ϕα1α2...αk+r = ϕα1

. . . ϕαk+r =
ϕu1

ϕu2
. �

22.2.3 Consider again the map ϕu from the last problem. Check that

(i) if we assign to the element u ∈ Pin (p, q) the orthogonal transformation ϕu in C1(p, q) and if the

matrices Aa
b are associated with this transformation in a standard way, i.e. by the prescription480

ueau−1 =: (A−1)a
beb Aa

b ∈ O(p, q)

then the assignment π : u �→ Aa
b(u) is a homomorphism of groups

π : Pin (p, q) → O(p, q) π : Spin (p, q) → SO(p, q)

(the second homomorphism is just the restriction of the first one to the subgroup)

(ii) this homomorphism is surjective

(iii) however, it is not injective; its kernel contains at least the two-element subgroup (1, −1) ⊂
Spin (p, q).

Hint: (i) u �→ ϕu is a representation by orthogonal operators or directly u1u2eau−1
2 u−1

1 =
(A−1

2 )a
bu1ebu−1

1 = · · · ; (ii) the geometrical folklore says481 that each rotation (orthogo-

nal transformation with determinant +1) may be realized as a sequence of an even num-

ber of reflections; a sequence of an odd number of reflections then leads to a composi-

tion of a rotation and a reflection, i.e. an element of O(p, q), which is not contained in

SO(p, q). �

• For further material it is useful to know the following facts (we mention them without

any detailed analysis):

1. starting from dimension n = 2 both the groups Pin (p, q) and Spin (p, q) turn out to be Lie groups

(they constitute a submanifold of the vector space C(p, q))

2. the kernel of their homomorphic maps onto the orthogonal groups is given by exactly the two-

element subgroup (1, −1) ⊂ Spin (p, q) mentioned above, so that according to Section 13.3

Spin (p, q) is a two-sheeted covering of SO(p, q) and according to (13.3.1) their Lie algebras

are isomorphic:

spin (p, q) = so(p, q)

3. for n ≥ 3 the connected component of the identity of the group Spin (p, q) is also simply connected,

so that the homomorphism actually provides a universal covering of the connected component of

the identity in SO(p, q) (the “proper Lorentz group”)

4. Spin (3, 0) is isomorphic to SU (2) and the connected component of the identity of the group

Spin (1, 3) is isomorphic to the group SL(2, C) (which is consistent with our previous knowledge

that it is just SU (2) which is the two-sheeted covering of SO(3) and SL(2, C) which covers the

480 The inverse matrix is needed in order to obtain a left action.
481 In two dimensions, draw two straight lines intersecting at an angle ψ and check that the composition of two reflections with

respect to the lines results in the rotation by an angle of 2ψ around the point at which the lines intersect. In three dimensions
one should replace the straight lines by planes. For more dimensions consult any official treatment.
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proper Lorentz group L↑
+); next, Spin (0, 6) is isomorphic to SU (4). The spinor groups in higher

dimensions are already no longer isomorphic to any “classical” matrix groups (like SU ( · ), SO( · )

etc.; they turn out to be simply different).

22.2.4 Check that also in the case where (p, q) = (2, 0) we have a two-sheeted covering:

Spin (2, 0) = SO(2) covers SO(2) (the group covers “itself”).

Hint: according to (22.2.1) we have u ≡ u(ψ) = 1 cos ψ + e1e2 sin ψ ; check that ea �→
ueau−1 ≡ (A−1)a

beb yields a matrix A, which describes the rotation by 2ψ , so that the circle

= Spin (2, 0) is wound twice around the circle SO(2). �

• Now let us see how the isomorphism of the Lie algebras spin (p, q) = so(p, q) looks

explicitly (we will need it, among other things, for the Dirac operator). Since this isomor-

phism is actually a derived homomorphism with respect to the covering π of the groups,

we may proceed as follows: we first introduce a convenient basis in so(p, q). Then we find

what the one-parameter groups corresponding to the basis look like in SO(p, q) as well as

the one-parameter groups in Spin (p, q), which project on them. Eventually, we read off the

basis elements of the Lie algebra spin (p, q), which serve as preimages with respect to the

basis in so(p, q) mentioned above.

22.2.5 Let Ea
b be a standard basis in gl(n, R), so that (Ea

b )c
d = δa

dδc
b and let η denote the

Minkowski metric tensor matrix of signature (p, q). Check that

(i) the matrices Eab := ηac Eb
c also constitute a basis of gl(n, R)

(ii) the matrices

Eab := (Eab − Eba) i.e. (Eab)c
d = ηacδb

d − ηbcδa
d

constitute a basis of so(p, q) (they are pseudo-antisymmetric)

(iii) the commutation relations in so(p, q) in this basis read as follows:

[Eab, E cd ] = −2
(
ηc[aEb]d − (c ↔ d)

) ≡ ηacEdb + ηcbEad + ηadEbc + ηdbE ca

(iv) in the particular case of the Lie algebra so(3) (i.e. p = 3, q = 0, so that ηab = δab) is the basis

Eab related to the basis la introduced earlier (11.7.13), (la)bc = −εabc, by

la = −1

2
εabcEbc Eab = −εabclc

Hint: Ea
b has unity at the place ba and elsewhere zeros, Eab has the number ηaa ≡ ±1

at the place ab and elsewhere zeros, Eab has at the place ab the number ηaa ≡ ±1 and

at the place ba the number −ηbb and elsewhere zeros; the commutation relations follow

straightforwardly. �

22.2.6 Let us look at what the matrices Eab actually “do.” For definiteness, think of E12.

Check that the matrix A(ε) = (I + εE12) performs on the basis ea the transformation

e1 �→ e1 + εη11e2

e2 �→ e2 − εη22e1

e3 �→ e3 etc. up to en �→ en
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It thus generates the (pseudo)rotation by an “angle” ε in the 12 plane; it is clear that in a

similar way the matrix Eab generates the (pseudo)rotation by an “angle” ε in the ab plane.

Hint: (I + εE12)c
ded = · · · . �

• The rotation by an “angle” ε in the 12 plane may be replaced by a composition of two

reflections, namely with respect to (arbitrary) two vectors in the 12 plane, which make

the half “angle,” i.e. ε/2. For the case of a signature in which there holds η11η22 = 1, we

may choose, for example, e1 and e1 cos(ε/2) + e2 sin(ε/2) (for η11η22 = −1 the hyperbolic
cosine and sine occur). According to (22.2.2), such reflections in C1(p, q) ≡ L∗ are pro-

duced by the operators ϕα1
and ϕα2

with α1 = e1 and α2 = e1 cos(ε/2) + e2 sin(ε/2) and

the composition of the two reflections is performed by ϕu with u = α1α2. However, within

first-order accuracy in ε we have

α1α2 = e1[e1 cos(ε/2) + e2 sin(ε/2)] = e1e1 cos(ε/2) + e1e2 sin(ε/2)
.= 1 + ε

1

2
e1e2

and from this expression we can eventually see that the element Ê12 from the Lie algebra

spin (p, q), which is “over” the basis element E12 from so(p, q) is 1
2
e1e2 ∈ C2(p, q). Again,

it is clear that in the ab plane we would get 1
2
eaeb ∈ C2(p, q), a < b in this way and since just

these elements constitute a basis of C2(p, q), we may identify the Lie algebra spin (p, q)

with the subspace C2(p, q) (with respect to the commutator induced by the associative

Clifford product in C(p, q)).

22.2.7 Consider the subspace C2(p, q) ⊂ C(p, q) and introduce a commutator into

C(p, q) in terms of the associative (= here Clifford) product, i.e. by the prescription

[x, y] := xy − yx (see Appendix A.3). Check that

(i) the subspace C2(p, q) turns out to be closed with respect to the commutator482

(ii) the map

π ′ : spin (p, q) → so(p, q)
1

2
eaeb �→ Eab a < b

is an isomorphism of Lie algebras (it is the derived homomorphism of the two-sheeted universal

covering π : Spin (p, q) → SO(p, q))

(iii) verify once more explicitly that the defining relation for the covering homomorphism

ueau−1 = (A−1)a
beb i.e. A = π (u)

gives for

u = 1 + ε
1

2
eaeb the matrix A = I + εEab a < b

482 So that it is a Lie subalgebra of the Lie algebra C(p, q) (with the commutator [x, y] := xy − yx mentioned above). The
(whole) Lie algebra C(p, q) is easily seen to correspond to the group of all invertible elements of the Clifford algebra C(p, q).
Those of them which happen to be products of normalized elements from C1(p, q) constitute the subgroup Pin (p, q) with the
Lie algebra C2(p, q).
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Hint: (iii)

(1 + ε/2 eaeb)ec(1 − ε/2 eaeb) = · · · = (I − εEab)c
ded != (A−1)c

ded

�

22.3 Spinors: linear algebra

• The (non-canonical) isomorphisms of Clifford algebras to the matrix algebras, which

are summarized in tables in (22.1.8) and (22.1.9), provide automatically their (faithful)

matrix representations ρ. The elements of the spaces in which these representations act

as matrices are called spinors. So spinors are ordinary real or complex column vec-

tors, taken together with a rule saying how the elements of the Clifford algebra act on

them (put another way they are the elements of the representation module of the Clifford

algebra).

Since in the Clifford algebra there are also hidden (as subsets) Clifford groups Pin (p, q)

and Spin (p, q) as well as their (common) Lie algebra spin (p, q), the operations in the latter

structures being simply barefacedly “stolen” from the Clifford algebra, each representation

of the Clifford algebra also yields free of charge representations of the “substructures” under

consideration, of the Clifford groups Pin (p, q) and Spin (p, q) as well as of the Lie algebra

spin (p, q); they are called the spinor representation (of the groups and the Lie algebra)

and we will denote all of them by the same letter ρ.

Recall that the whole Clifford algebra may be generated from a basis ea of the subspace

C1(p, q) (all the other elements of C(p, q) then being linear combinations of the products

of ea). This means, however, that a representation of the whole algebra C(p, q) is actually

fully specified if we represent the basis ea (for example, ρ(3e2e4) = 3ρ(e2)ρ(e4)); these

key objects, the images of an orthonormal basis with respect to the spinor representation ρ

γ a := ρ(ea)

are called the γ -matrices.

22.3.1 Check that the γ -matrices satisfy the following identities:

γ aγ b + γ bγ a = 2ηab ρ(u)γ aρ(u−1) = (A−1)a
bγ

b

where Aa
b ∈ SO(p, q) is the image of u ∈ Spin (p, q) with respect to the two-sheeted

covering.

Hint: the first one is just the ρ-image of the essential relation obeyed by the Clifford

multiplication of an orthonormal basis, eaeb + ebea = 2ηab, the second one is the ρ-image

of the relation ueau−1 = (A−1)a
beb from (22.2.3). �

• The properties of the γ -matrices as well as of the spinors on which they act depend

on what the concrete isomorphism of the corresponding Clifford algebra looks like. For
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example, if (p − q) mod 8 is 0 or 2, we can see from the table in (22.1.8) that the Clifford

algebra is isomorphic to the real matrix algebra R(2l). This means that in an appropriate
representation ρ all the elements of the Clifford algebra, in particular also the basis elements

ea , are represented by real matrices 2l × 2l and the spinors themselves may then be realized

by real column vectors. This particular representation is called the Majorana representation
of the corresponding Clifford algebra (and, consequently, also the related group and the Lie

algebra). We see that this only occurs for rather specific values of (p, q).

22.3.2 Consider the two-dimensional space with signature (p, q) = (1, 1) and the four-

dimensional space with signature (p, q) = (3, 1). Check that

(i) the Majorana representation exists for both of these signatures; write down explicitly the corre-

sponding γ -matrices

(ii) the Clifford algebra C(1, 1) may also be represented “improperly,” by means of matrices which

are not real.

Hint: (i) according to the hint to (22.1.3) for C(1, 1) the following (real) representation works

(for example) e1 �→ γ 1 ≡ ρ(e1) = σ1, e2 �→ γ 2 ≡ ρ(e2) = iσ2; according to (22.1.5) there

holds C(3, 1) = C(1, 1) ⊗ C(2, 0) = R(2) ⊗ R(2) = R(4); the algorithm from the hint to

problem (22.1.5) gives E1 = E1 ⊗ e1e2, E2 = E2 ⊗ e1e2, E3 = 1 ⊗ e1, E4 = 1 ⊗ e2; since

according to (22.1.3) one can assign E1 �→ σ1, E2 �→ iσ2, e1 �→ σ1, e2 �→ σ3, we eventually

get the matrices �A := ρ(E A), A = 1, 2, 3, 4 in the form �1 = σ1 ⊗ σ1σ3, �2 = iσ2 ⊗ σ1σ3,

�3 = I ⊗ σ1, �4 = I ⊗ σ3, i.e.

�̂1 =
(

0 −iσ2

−iσ2 0

)

�̂3 =
(

σ1 0

0 σ1

)

�̂2 =
(

0 −iσ2

iσ2 0

)

�̂4 =
(

σ3 0

0 σ3

)

which satisfy the relations “of type” (3, 1)

�A�B + �B�A = 2ηAB
I ηAB ≡ diag (−1, 1, 1, 1)

(ii) the assignment e1 �→ σ1, e2 �→ iσ3 (rather than the real matrices iσ2) realizes C(1, 1)

as a subalgebra of the matrix algebra C(2), where it is not evident at first sight that it is

“actually” R(2). �

• If there exist real γ -matrices for signature (p, q), then it is clear that for signature

(q, p) by contrast purely imaginary γ -matrices exist (it is enough to take i-multiples of

the real matrices). So purely imaginary γ -matrices exist just for such (p, q) for which

real matrices exist for (q, p); this, however, occurs just for (q − p) mod 8 = 0, 2, i.e. for

(p − q) mod 8 = 0, 6.

22.3.3 Check that in the space with ordinary Minkowski signature (1, 3) purely imaginary

γ -matrices exist and find their explicit form.
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Hint: (1 − 3) mod 8 = (−2) mod 8 = 6 mod 8; take the matrices from (22.3.2) and multi-

ply all of them by i ; we get

�̂1 =
(

0 σ2

σ2 0

)

�̂3 =
(

iσ1 0

0 iσ1

)

�̂2 =
(

0 σ2

−σ2 0

)

�̂4 =
(

iσ3 0

0 iσ3

)

�

• The isomorphism (22.1.9) of the complex Clifford algebra C̄(2m) for even-dimensional

space with the matrix algebra C(2m) is called the Dirac representation ρ of the Clifford

algebra and the elements of the representation space (module) are Dirac spinors.

This representation, when regarded as a representation of the Clifford algebra, is irre-

ducible.483 However, “the same” representation, when only regarded as a representation of

the Clifford group Spin (p, q), already turns out to be reducible – the representation space

(the space of Dirac spinors) invariantly decomposes with respect to the action of the group

to two halves (in which inequivalent representations operate). We say that chiral spinors
exist here (they are called right and left spinors). Let us see how this arises.

22.3.4 Consider the element z ≡ e1e2 . . . e2m ∈ C2m(p, q) ⊂ C(p, q) (the product of all
basis elements of C1(p, q); it constitutes a basis of the subspace C2m(p, q)). Its image in

the Dirac representation thus amounts to the product of all γ -matrices484

γ5 := γ 1γ 2 . . . γ 2m ≡ ρ(e1e2 . . . e2m)

Check that

(i) the element z anticommutes with all the basis elements ea , so that γ5 anticommutes with all

matrices γ a (note that for C̄(2m + 1) it commutes)

(ii) consequently this element commutes with all the elements of the group Spin (p, q) (being itself

from the group); upon the representation this means that γ5 commutes with all operators of the

representation and therefore, according to Schur’s lemma, the representation is reducible

(iii) the square of the element z is the number ±1 (the concrete value depends on the signature and

it may be easily computed in the general case), so that upon the representation we have

γ5γ5 = ±I

and this means that

L := 1

2
(I − γ5) P := 1

2
(I + γ5) if γ5γ5 = +I

L := 1

2
(I − iγ5) P := 1

2
(I + iγ5) if γ5γ5 = −I

483 The algebra of all square matrices C(2m ) evidently does not preserve any non-trivial subspace in the space of column vectors
of appropriate dimension. To see this consider a non-trivial subspace that stands as a candidate for being invariant and an
operator which casts out at least one vector from the subspace. This operator certainly belongs to all operators and at the same
time it does not preserve the subspace. (Note that the odd-dimensional case is reducible (22.1.9).)

484 The subscript 5 is a residue from the time where all this was only treated in “ordinary” four-dimensional Minkowski space,
where the indices ran through the values 1, 2, 3, 4 (rather than 0, 1, 2, 3, as is done as a rule today), so that the “ordinary”
γ -matrices were γ 1, γ 2, γ 3, γ 4. Their product was then denoted by γ 5. If we, however, consider more dimensions, there is
also γ 5 which corresponds to the fifth dimension. In order for these two “gamma fives” not to be confused, we use the subscript
5 to denote the “product” one.
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act as projection operators onto the invariant subspaces of right and left spinors485

ψ = ψL + ψP := Lψ + Pψ

Such spinors are also said to be chiral or Weyl spinors.

Hint: (i) ea equals just one particular element of the product; the interchange of ea with

those elements inside z which differ from ea brings just a change of sign, the interchange

with “itself” does nothing at all; (iii) zz = e1e2 . . . e2me1e2 . . . e2m = ±e1e1e2e2 . . . e2me2m .

�

22.3.5 Let us see how this works for the two-dimensional case with signatures (2, 0) and

(1, 1). Write down explicitly the projection operators P, L and specify the structure of right

and left spinors for these two cases.

Solution: for (2, 0) we have according to (22.1.3) γ5 ≡ γ 1γ 2 = σ1σ3 ≡ −iσ2, so that

γ5γ5 = −I; similarly for (1, 1) we have γ5 ≡ γ 1γ 2 = σ1iσ2 ≡ −σ3, so that γ5γ5 = +I;

consequently,

(2, 0) : L = 1

2
(I − σ2) ≡ 1

2

(
1 i
−i 1

)

ψL = a

(
1

−i

)

P = 1

2
(I + σ2) ≡ 1

2

(
1 −i
i 1

)

ψP = a

(
1

i

)

(1, 1) : L = 1

2
(I + σ3) ≡

(
1 0

0 0

)

ψL = a

(
1

0

)

P = 1

2
(I − σ3) ≡

(
0 0

0 1

)

ψP = a

(
0

1

)

where a ∈ C is an arbitrary complex number. �

22.3.6 Check that for signatures (1, 3) and (3, 1) we get the matrix γ5 in the form

(1, 3) : �5 ≡ �1�2�3�4 = σ3 ⊗ (−iσ2) so that �5�5 = −I

(3, 1) : �̂5 ≡ �̂1�̂2�̂3�̂4 = σ3 ⊗ (−iσ2) so that �̂5�̂5 = −I

In both cases specify the structure of Weyl spinors ψL and ψP .

Hint: see (22.3.2), (22.3.3) and (22.3.5); solve LψL = ψL and RψR = ψR . �

• Note that in the case of signature (1, 1) the projectors P, L turn out to be given by

real matrices (22.3.5), so that in this particular case spinors exist which are at the same
time Majorana and Weyl. This happens in general in those cases when in addition to the

requirement for the existence of Majorana spinors, (p − q) mod 8 = 0, 2, also the condition

γ5γ5 = +I is satisfied (so as not to allow i to enter into the projectors). A computation of

485 This dividing turns out to be of great importance in physics. For example, in the “standard model” of electroweak interactions
(which won the Nobel prize for Glashow, Salam and Weinberg) the right and left fermions (represented by right and left spinor
fields) behave very differently (they transform in different representations of the gauge symmetry and this results in different
interactions; see the text after (21.1.5)).
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the relevant square shows (the reader is invited to work out the details as homework) that

this excludes the 2 in the Majorana condition. Majorana–Weyl spinors thus exist only in

spaces with signatures (p, q) such that (p − q) mod 8 = 0; for example, in the case where

(p, q) = (1, 1).

Remark: the concept of chirality may also be regarded as a Z2-grading in the space of

spinors; right and left spinors constitute the subspaces labeled by the elements [0] and [1].

The grading in the space of spinors also induces the grading in the space of operators acting

on them (see Appendix A.5) – operators decompose into even and odd parts (which respect

and change the chirality respectively). In particular, the main celebrity of this chapter, the

Dirac operator, turns out to be odd in this sense (22.5.12).

22.3.7 A useful piece of wisdom for life consists of realizing that Pauli matrices σa ,

a = 1, 2, 3, actually represent particular γ -matrices. Check that this is indeed the case,

namely for the Clifford algebra C(3, 0) (i.e. the algebra associated with the most mundane,

but at the same time the most important three-dimensional486 space E3 and the usual action

of the rotation group SO(3, 0) ≡ SO(3) in this space).

Hint: according to (22.1.8) we have C(3, 0) = C(2), so that γ -matrices are to be 2 × 2

complex matrices (and consequently the spinors are two-component complex column vec-

tors; we already mentioned that Spin (3, 0) ≈ SU (2), so that the action of the spinor group

on spinors actually coincides with the natural action of SU (2) on two-component column

vectors); with regard to the identity σaσb + σbσa = 2δab we may take the matrices to be

just Pauli matrices. �

22.4 Spin bundle π : SM → M and spinor fields on M

• Recall that a vector field on a manifold M may be described in several ways, differing

so much at first sight that it is not immediately clear whether we are even speaking about

the same object.

In the first approach (2.2) the concept of a vector at the point x ∈ M was introduced first

(this in turn may be done in a highly intuitive way in terms of tangent curves on M) and the

vector field was then identified with a rule providing “a vector at each point on M” (plus an

appropriate introduction of smoothness). Then, step by step, various different possibilities

arose: the vector field as a derivation of the algebra of functions F(M) on M (2.2.8), as a

section of the tangent bundle (17.2.6), as an equivariant function of type ρ1
0 on L M (19.6),

or eventually as a section of an appropriate bundle associated with the principal bundle L M
(the last alternative being, however, isomorphic to that with T M). All of these possibilities

of introducing a vector field on M are equivalent to each other and although some of them

might seem unnatural and even unduly complicated, each of them actually has its virtue

when used in the appropriate context.

486 We saw already before (e.g. for C(2, 0) in (22.1.3)) that in terms of some Pauli matrices the γ -matrices may be realized for
“smaller” Clifford algebras; here all three of them are understood.
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Now we would like to introduce a spinor field on M . We might try once again to begin

with a “spinor at each point on M .” However, contrary to the vector, now we are not able to

give any simple and intuitive meaning to the concept of a spinor at the point x (like tangent

curves, refining good old arrows for a vector), so that the first approach cannot be imitated.

Therefore we would appreciate any alternative way of introducing a vector field which can
be modified so that it might serve for introducing a spinor field as well. A convenient (and

conceptually fairly simple) alternative turns out to be the method of equivariant functions

on principal bundles.

A spinor in linear algebra has been introduced as an element of the representation space

of the Clifford algebra C(p, q), and consequently also the Clifford group Spin (p, q). So in

terms of equivariant functions we should then first introduce a spin bundle, i.e. a principal

bundle π : SM → M with the group Spin (p, q) and then an equivariant function of type ρ

on SM , where ρ denotes the spinor representation of the group Spin (p, q) (a representation

in the space of column vectors acted on by the matrices given by the isomorphism of C(p, q)

with a particular matrix algebra). However, the group Spin (p, q) is just a two-sheeted

covering ϕ of the special orthogonal group SO(p, q), so that a fiber in the principal bundle

with group Spin (p, q) should also be a two-sheeted covering of the fiber in some principal

bundle with group SO(p, q).

Such a bundle, which is canonically associated with the metric tensor (recall that the

metric tensor is essential for the very existence of the algebra C(p, q) as well as the group

Spin (p, q)) and the orientation on a manifold M is,

however, well known from Section 20.5 – it is the

bundle π : O M → M of (right-handed) orthonor-
mal frames. So the total space SM (to be found)

of the principal bundle needed for spinors is to be

a two-sheeted covering of the manifold O M . Re-

call, however, that the two-sheeted covering of the

groups ϕ is moreover a homomorphism. We even-

tually realize that all of this exactly matches the general scheme which we treated at the

end of Section 20.5 under the name “morphisms of principal bundles”; and we see at last a

non-trivial example of surjective f (here, in particular, the two-sheeted covering).

So consider a (pseudo-)Riemannian manifold (M, g) with signature (p, q). Then the spin
bundle

π : SM → M

is, in the terminology introduced in Section 20.5, a prolongation of the bundle of (right-

handed) orthonormal frames π̃ : O M → M such that its structure group is Spin (p, q)

and the needed homomorphism ϕ : Spin (p, q) → SO(p, q) is the two-sheeted covering

mentioned in Section 22.2. This bundle (which is also known as the spin frame bundle)

is often identified with the spin structure on M . In analogy to the case of the restriction

the existence of the prolongation of a given bundle is not guaranteed; there may exist

various topological “obstructions.” In particular, the spin structure may not exist for a given
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(pseudo-)Riemannian manifold. We will not treat the details of the issue,487 but instead we

will simply assume that our manifold (M, g) admits a spin structure.

22.4.1 Be sure to understand that for the base manifold (M, g) = E p,q (ordinary pseudo-

Euclidean space) both the bundle of right-handed orthonormal frames as well as the spin

bundle are trivial, i.e. both of them are equivalent to product bundles

π̃ : E p,q × SO(p, q) → E p,q π : E p,q × Spin (p, q) → E p,q

Hint: on E p,q there is the (right-handed orthonormal) global Cartesian coordinate frame

field ∂μ; any (right-handed orthonormal) frame e in the point x ∈ E p,q uniquely decomposes

with respect to ∂μ at this point, ea = eμ
a ∂μ, eμ

a ∈ SO(p, q), so that e �→ (x, eμ
a ) is a global

trivialization; E p,q × Spin (p, q) satisfies the commutative diagram for O M ≡ O E p,q =
E p,q × SO(p, q). �

22.4.2 However, there are also fairly simple manifolds for which both the bundles, π̃ :

O M → M as well as π : SM → M , already turn out to be non-trivial. For example, let

us see how this works for a sphere (S2, g) with the standard “round” metric (induced from

E3). Check that

(i) the total space of the bundle of the (right-handed) orthonormal frames may be identified as a

manifold with the group SO(3)

(ii) its two-sheeted covering space, the total space of the spin bundle, may be identified as a manifold

with the group SU (2) ≡ S3

(iii) the spin bundle π : SM → M for M = S2 may thus be as a matter of fact identified with the

good old Hopf bundle

π : SU (2) → S2

from (20.1.9).

Hint: (i) consider in E3 a fixed (fiducial) right-handed orthonormal basis Ea, a = 1, 2, 3. If

we act on the basis by an element A ∈ SO(3) according to Ea �→ ea := Ab
a Eb, we again get

a (right-handed) orthonormal basis and we thus clearly obtain a bijection A ↔ e between

SO(3) and the set of all right-handed orthonormal bases in E3. However, the set of bases

may be easily identified with the total space of the bundle of right-handed orthonormal

frames on the sphere S2: regard the end of the vector e3 as a point s on S2 and the remaining

pair (e1, e2) (after a shift to the point s on the sphere) as a right-handed orthonormal frame in

s ∈ S2. By reversing this procedure we may in turn associate a unique element A ∈ SO(3)

with each right-handed orthonormal frame (e1, e2) in s on S2. SO(2) acts in the fiber over

e3 = s as the group of such B ∈ SO(3), which do not change e3 (the stabilizer of the point

e3 with respect to the action ea �→ Bb
a eb, i.e. A �→ AB); (ii) let us look at what happens, say,

over the north pole; this point corresponds to the matrices A ∈ SO(3) such that e3 = E3,

487 For the convenience of the reader who intended to actively join with nonchalance a debate of experts at an evening party, we
mention that it is advisable to remember that the object which acts as an obstruction to introducing the spin structure is “the
second Stiefel–Whitney class” w2(M) of the manifold M . Just after saying this we recommend leaving the group of experts
as soon as possible under the guise of, say, tasting “that marvellous cake.”
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i.e. (13.1.11) A = diag( Ã, 1) = exp{α l3}, Ã ∈ SO(2), l3 ∈ so(3) (they form the fiber over

the north pole of the sphere S2 in the bundle of right-handed orthonormal frames). In the

fiber the group SO(2) acts by Ã �→ Ã B̃, B̃ = exp{β iσ2} ∈ SO(2). The covering (13.3.6)

shows that over the fiber there are the elements in SU (2) of the form U = exp{−iα/2 σ3};
they form in turn the fiber in the spin bundle; the half-angle indicates that this fiber realizes

a two-sheeted covering of the fiber in the first bundle, exp{−i(α/2)σ3} �→ exp{αl3} (see

also (22.2.4)); the group U (1) = SO(2) = Spin (2, 0) acts there by U �→ Ue−iβ/2. �

• Now, when the matter of a principal bundle needed for spinor fields is already settled, we

can introduce the fields themselves. They are, as already mentioned before, the equivariant

functions � of type ρ on the total space SM , where

ρ denotes the spinor representation of the group

Spin (p, q) which acts in the fibers of SM . If we

want to work with them “downstairs” on M (and this

would indeed be desirable if, for example, (M, g)

represents the space-time and we want to describe

fermions there), we need to choose a gauge, i.e. to

choose a (local) section σ : U → SM and pull-back

� with the help of the section to the base

ψ := σ ∗� ≡ � ◦ σ spinor field on the base

Notice that the composition of the section σ with the covering map f of the total spaces

SM → O M also gives automatically a section σ̃ := f ◦ σ of the bundle of the orthonormal

frames, i.e. an orthonormal frame field on U ⊂ M . The basic property of the two-sheeted

covering immediately leads to the conclusion that there is one more section of the bundle π :

SM → M which would yield the same section σ̃ , namely the section σ ′ : U → SM which

we obtain from the initial one σ by means of the action488 of the element −1 ∈ Spin (p, q).

And what would be the result of a pull-back of the same spinor field � with the help of the

“primed” section?

22.4.3 Let � be a spinor field on SM and σ : U → SM a local section. Denote by σ ′ :

U → SM another local section which may be obtained from σ by the “gauge function”

S(x) = −1 ∈ Spin (p, q). Denote further by ψ and ψ ′ the spinor fields on the base which

we get by pull-back of (the same) � with respect to σ and σ ′

ψ := σ ∗� ψ ′ := σ ′∗�

Check that

(i) the composition of these sections with the covering map f indeed gives the same section σ̃ of the

bundle of orthonormal frames, i.e. the same (right-handed) orthonormal frame field ea(x) in the

domain U ⊂ M

488 Recall (21.2.1) the relation σ ′(x) = σ (x)S(x), which holds for two arbitrary sections, where S : U → G; here S(x) = −1 ∈
Spin (p, q), so that it may be regarded as a “global” gauge transformation (S(x) does not depend on x).
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(ii) the fields ψ(x) and ψ ′(x) differ just by a sign

ψ ′(x) = −ψ(x)

(iii) so, the other way round, if we fix a (right-handed) orthonormal frame field ea(x) in the domain

U , exactly two sections of the spin bundle are induced by this choice and moreover for a given

� we get a spinor field ψ(x) up to a sign.

Hint: (i) a consequence of “equivariance” of f , expressed by the commutative diagram at

the beginning of the section (see also the general diagram in (20.5.11)):

σ̃ ′(x) = f (σ (x)S(x)) = f (σ (x))ϕ(S(x)) = f (σ (x))ϕ(−1) = f (σ (x)) ≡ σ̃ (x)

(since −1 is in the kernel of the covering group ϕ : Spin (p, q) → SO(p, q)); (ii) according

to (21.2.3) we may write in general

ψ ′(x) := σ ′∗�(x) = ρ((S(x))−1)ψ(x) = ρ(−1)ψ(x) = −ψ(x)

(iii) there are just two preimages of σ̃ (x); uncertain ± due to the pull-back with respect to

the uncertain section (out of two possibilities). �

• Now let us turn to the question of connection. Any connection in the spin bundle

π : SM → M will be called the spin connection (in terms of this connection spinors are

parallel transported and covariantly differentiated). A connection in π̃ : O M → M in turn

corresponds (as we know from the end of Section 20.5) to a metric linear connection on

M (it may have non-vanishing torsion, so that it is not necessarily the RLC connection).

It is important to realize that if we fix a particular connection in π̃ : O M → M , a unique

connection in the spin bundle π : SM → M is automatically induced. And, the other way

round, a connection in π : SM → M induces a unique metric linear connection on M
(connection in π̃ : O M → M).489

22.4.4 Be sure to understand exactly how the one-to-one correspondence between con-

nections in the bundles π̃ : O M → M and π : SM → M works in terms of vertical and

horizontal subspaces.

Hint: f is a two-sheeted covering and consequently also a local diffeomorphism, so that f∗
is an isomorphism of tangent spaces; it moreover preserves vertical subspaces (due to the

equivariance of f , i.e. the property R̃ϕ(u) ◦ f = f ◦ Ru , u ∈ Spin (p, q)). This isomorphism

enables one to define horizontal subspaces on either of the bundles, if they are available on

the other one, as isomorphic images of the known subspaces (Hor f (p) O M = f∗Horp SM ;

the equivariance of f then guarantees the needed G-invariance of the constructed horizontal

distribution, i.e. the validity of the relation R̃ϕ(u)∗Hor f (p) O M = Hor f (p)ϕ(u) O M). �

22.4.5 Be sure to understand how exactly the one-to-one correspondence between con-

nections in the bundles π̃ : O M → M and π : SM → M works in terms of connection

489 Clearly this one-to-one relation between the spin and metric connections works only if the prolongation of O M to SM exists,
i.e. if (M, g) admits the spin structure.
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forms: namely that if ω is a connection form on π : SM → M and ω̃ is a connection form

on π̃ : O M → M , the two connections being related in the way described in (22.4.4), then

there is a simple relation between them490

f ∗ω̃ = ϕ′ω i.e. ( f ∗ω̃i )Ẽi = ωiϕ′(Ei )

(Ei being a basis of spin (p, q) and Ẽi a basis of so(p, q), such that ϕ′(Ei ) = Ẽi ; see more

details in (22.4.6)).

Hint: if X̃ = ϕ′(X ) ∈ so(p, q), then the corresponding fundamental fields are related by

ξ̃X̃ = f∗ξX ; one checks that f ∗ω̃ = ϕ′ω is consistent with all the requirements demanded

of a connection form

R∗
uω = Adu−1ω 〈ω, ξX 〉 = X

R̃∗
ϕ(u)ω̃ = Ad(ϕ(u))−1 ω̃ 〈ω̃, ξ̃X̃ 〉 = X̃

One has still to check whether there holds Hor f (p) O M = f∗Horp SM , i.e. whether

Ker ω̃ f (p) = f∗Ker ωp. However, this follows from ωp = ( f ∗ω̃)p ≡ ω̃ f (p) ◦ f∗p and the

fact that f∗p is an isomorphism. �

22.4.6 The relation between the connection forms on SM and O M may also be stated

more explicitly, since we know from the result of (22.2.7) what the adapted bases (such that

ϕ′(Ei ) = Ẽi ) in the Lie algebras actually look like. Check that there holds (Ea being the

generators of the “abstract” Clifford algebra, a basis of C1(p, q))

(i) ω = 1

4
ωab Ea Eb ≡ 1

8
ωab(Ea Eb − Eb Ea) ωab = −ωba ∈ �1(SM)

(ii) ω̃ = 1

2
ω̃abEab ω̃ab = −ω̃ba ∈ �1(O M)

(iii) ωab = f ∗ω̃ab

(iv) ρ(ω) = 1

4
ωabγ

aγ b ≡ 1

8
ωab(γ aγ b − γ bγ a) ωab = −ωba ∈ �1(SM)

Hint: (i) according to (22.2.7) a basis of spin (p, q) is given by the elements 1
2

Ea Eb, a < b;

then

ω =
∑

a<b

ωab
1

2
Ea Eb =

∑

a,b

ωab
1

4
Ea Eb ≡ 1

4
ωab Ea Eb

(ii) in a similar way a basis of so(p, q) is given by the matrices Eab, a < b, so that ω̃ =
∑

a<b ω̃abEab = 1
2

∑
a,b ω̃abEab ≡ 1

2
ω̃abEab; (iii) the isomorphism ϕ′ of the Lie algebras

(it was denoted as π ′ there) reads ϕ′( 1
2

Ea Eb) = Eab, so that f ∗ω̃ = ϕ′ω yields ωab =
f ∗ω̃ab; (iv) after the representation ρ of the Clifford algebra (and as a consequence also of

the Clifford group as well as its Lie algebra)491 in terms of the isomorphic matrix (22.3)

490 The formal complication with the isomorphism of Lie algebras ϕ′ is needed so that the connection forms have their values in
due Lie algebras: ω in spin (p, q) and ω̃ in so(p, q).

491 All three representations are denoted by the same letter ρ. However, the representation of spin (p, q) is actually the derived
representation to the representation of Spin (p, q), so that it should, in fact, be written (in the notation used so far) by ρ ′. Here
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algebra (introduction of γ -matrices by the relations γ a := ρ(Ea)) we get the expression

ρ(ω) = 1
4
ωabγ

aγ b. �

• The decompositions of the connection forms ω and ω̃ with respect to the bases in Lie

algebras yield the component 1-forms ωab and ω̃ab. These forms live in the total spaces of

the corresponding bundles and they may be pulled back onto the base M . If the sections

σ : U → SM and σ̃ : U → O M are not chosen at random, but rather they correspond to

one another in the sense of (22.4.3) (i.e. σ̃ = f ◦ σ ), we will find out that actually both

pull-backs lead to the same result.

22.4.7 Consider sections σ and σ̃ from (22.4.3) and use them to pull-back the forms ω

and ω̃ onto the base (a domain U). Check that

σ̃ ∗ω̃ = ϕ′(σ ∗ω)

i.e. at the level of component forms

σ̃ ∗ω̃ab = σ ∗ωab

Hint: σ̃ ∗ = ( f ◦ σ )∗, f ∗ω̃ = ϕ′ω, see (22.4.6). �

• The 1-forms pulled back onto the base

ω̂ab := σ̃ ∗ω̃ab

already live in the domain U ⊂ M where the section σ̃ is defined and, consequently, also

where the corresponding orthonormal frame field lives. And if they seem to be somehow

familiar to you, you are perfectly right.

22.4.8 Let σ̃ : U → O M be the section which corresponds to a (right-handed orthonor-

mal) frame field ea on U and let ω̃ be a connection form on O M . Be sure to understand that

the component 1-forms ω̂ab := σ̃ ∗ω̃ab, given by the decomposition

ω̂ := σ̃ ∗ω̃ = 1

2
(σ̃ ∗ω̃ab)Eab ≡ 1

2
ω̂abEab

are nothing but the good old 1-forms of the metric connection with respect to an orthonormal
frame field ea from (15.6.6).

Hint: according to (19.2.3), the connection forms492 ωa
b introduced in (15.6.1) and living

in the domain O ⊂ M may be pulled back from L M by means of a section of the bundle

π : L M → M ; if the connection happens to be metric, it is enough to know it (according

to the considerations presented at the end of Section 20.5) on O M , and it may thus be

pulled back by means of a section of the subbundle π : O M → M ; due to the antisymmetry

ωab = −ωba (15.6.6), the basis of antisymmetric matrices is sufficient: according to (19.2.1)

it concerns the term ρ(ω), which should be written more precisely as ρ ′(ω) – one should keep this in mind when writing the
exterior covariant derivative of the spinor field in (22.5.1).

492 Just to be sure, fix the notation: in (15.6.6) they were denoted by ωab . Here, as many as three versions of similar objects knock
about: ωab on SM , ω̃ab on O M and ω̂ab := σ̃ ∗ω̃ab = σ ∗ωab on U ⊂ M . Those of them denoted here by ω̂ab actually coincide
with ωab from (15.6.6).
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and (22.2.5) we may write

ω = ωa
b Eb

a = ηacωcb Eb
a = ωab Eab = 1

2
ωab(Eab − Eba) ≡ 1

2
ωabEab

�

• We see that the component forms of the spin connection coincide, when pulled back onto

the base, with the component forms of the metric connection. This is a useful observation.

It means that if we want to compute covariant derivatives of spinor fields ψ(x) on the base,

no new objects are necessary for doing so, we need just the good old forms of the metric
connection, since they happen to play at the same time the role of the forms of the spin
connection; both of them read

ω̂ab ≡ σ̃ ∗ω̃ab ≡ σ ∗ωab =: ωabμ(x) dxμ

Recall that the coordinate basis components ωabμ(x) were already called (thus manifesting

an admirable foresight, indeed) “spin connection” in (15.6.19).

And finally, let us introduce important vector fields on SM , which may be canonically

associated with the bundle π : SM → M endowed with a connection.

22.4.9 Consider a point p ∈ SM . Its f -image is e = f (p) ∈ O M , i.e. an orthonormal

frame ea in the tangent space Tx M . Now the individual vectors ea may in turn be horizontally
lifted to the point p, making use of the connection; we get the vectors Ea ∈ Tp SM

Ea(p) := eh
a (p) ea ↔ f (p)

Check that

(i) in this way we get on the manifold SM an n-tuple of global horizontal vector fields Ea

(ii) under the action of the group Spin (p, q) on SM the fields behave as follows:

R∗
uEa = Ab

aEb u ∈ Spin (p, q) ϕ(u) ≡ A ∈ SO(p, q)

Hint: (ii) if f (p) = e and ϕ(u) = A, then f (pu) = f (p)ϕ(u) ≡ eA; then Ea(pu) =
(eA)h

a(pu) = Ab
aeh

b (pu) = Ab
a Ru∗eh

b (p) ≡ Ab
a Ru∗Eb(p), from where R∗

uEa(pu) = Ab
aEb(p).

�

• If the construction of the fields Ea on SM and their behavior with respect to the action

of the group Spin (p, q) seems to be somehow familiar to you, you are perfectly right once

again. And if you even noticed that it reminds you of the construction of the fields Êa on

L M from (19.4.8) and their behavior with respect to the action of the group GL(n, R),

you are undoubtedly showing a promising observation ability. It is not hard to check that

the f∗-image of the field Ea happens to be a field on O M which is the restriction of the

field Êa from L M to the submanifold O M (provided that there is a metric connection

on L M).

Now everything is already prepared to write down routinely the exterior covariant deriva-

tive of spinors D� (or, after the pull-back to the base, Dψ). In doing this, surprisingly
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enough an interesting combination of operators D, γ a and iEa arises (or, after the pull-back

to the base, D, γ a and iea ), which is called the Dirac operator and which will be denoted

by D/ (and its version on the base D/ ).

22.5 Dirac operator

• A spinor field � is, according to its introduction in Section 22.4, a field of type ρ on

SM (where ρ is the spinor representation). This field (as well as the field ψ , which arises

by pull-back of � onto the base) thus has its values in (V, ρ), the representation space

of the Clifford algebra C(p, q) (and automatically also of the group Spin (p, q) and the

Lie algebra spin (p, q)). The space (V, ρ) coincides with the space in which γ -matrices

act as linear operators (since γ a := ρ(Ea)). We may thus regard this space as the space of

column vectors of appropriate type (either real or complex) and dimension, according to

what exactly the isomorphism ρ of a given Clifford algebra C(p, q) with the matrix algebra

in (22.1.8) and (22.1.9) looks like. If a basis Eα is introduced in this space, we obtain in a

standard way the decomposition of both the field � and ψ as well as of the γ -matrices γ a

� = �α Eα ψ = ψα Eα γ a Eα = γ aβ
α Eβ

We will call indices α of this type the spinor indices. Of course, all the common rules of

index gymnastics also apply for this particular type of index. The components of an object

depend (as the world, at least since Section 2.4, goes), on the choice of a basis and they

transform under the change of basis in a well-known way. For example, if we regarded γ a

as a linear operator in V , it is a tensor of type (1, 1), so that its matrix elements with respect

to Eα are labeled by one upper and one lower “spinor” index

γ a = γ aβ
α Eα ⊗ Eβ

Now, let us look at the exterior covariant derivative of a spinor field. This is already

child’s play since for the fields of type ρ we have the universal formula (20.4.6)

D� = d� + ρ ′(ω)�

which also holds for the case of a spinor field on SM ; we just need to write down explicitly

the term ρ ′(ω).

22.5.1 Let � ≡ �α Eα be a spinor field on SM , σ : U → SM a section of the spin bundle,

corresponding to a frame field ea onU (as a section f ◦ σ : U → O M) and let ψ be a spinor

field in the domain U ⊂ M , resulting from the pull-back of � by means of the section σ .

Check that the explicit formulas for the exterior covariant derivative read

D� = d� + 1

4
ωabγ

aγ b� ≡ d� + 1

8
ωab[γ a, γ b]�

Dψ = dψ + 1

4
ω̂abγ

aγ bψ ≡ dψ + 1

8
ω̂ab[γ a, γ b]ψ ω̂ab = σ ∗ωab
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so that

Dμψα = ∂μψα + 1

4
ω̂abμ(γ aγ b)αβψβ

≡ ∂μψα + 1

8
ω̂abμ[γ a, γ b]αβψβ

Hint: see (22.4.6); according to (21.3.7) we have Dψ =: (Dμψα) dxμ Eα . �

• In addition to the spinor field which is a function (0-form) of type ρ on SM , it is also

convenient to consider more general objects, horizontal forms of type ρ on SM (the space

of such forms493 will be denoted by �̄p(SM, ρ)). The representation ρ remains the same

spinor representation of the group Spin (p, q). When pulled back to the base, such p-forms

χ have in the component language a single upper “spinor” index α (due to the values lying

in (V, ρ)) and p lower “ordinary tensor” indices (either coordinate μ, or a general frame a;

due to being forms). In particular, for p = 1 this gives, for example,

χ = χα
μ(x) dxμ Eα ≡ χα

a (x)ea(x)Eα

Such a field χα
μ(x) is in physics usually called the494 Rarita–Schwinger field.

Now, there is a remarkable operator iE/ which may be applied to such fields. The operator

preserves both the horizontality and type ρ of the forms, with the first property being trivial,

whereas the second one is not visible in an instantaneous view but rather it is to be verified

by a computation.

22.5.2 Consider the space �̄p(SM, ρ) of horizontal p-forms of type ρ (where ρ is the

spinor representation) on SM and introduce the operator

iE/ := γ aiEa

with Ea being the canonical horizontal vector fields on SM , studied in problem (22.4.9).

Check that

(i) iE/ preserves the horizontality of forms

χ is horizontal ⇒ iE/ χ is horizontal

(ii) iE/ preserves the type ρ of forms

χ is of type ρ ⇒ iE/ χ is of type ρ

This means that iE/ may be regarded as an operator

iE/ : �̄p(SM, ρ) → �̄p−1(SM, ρ)

(iii) if pulled back to the base (by means of a local section σ ), the operator takes the form

ie/ := γ aiea

493 In the general context of principal bundles we already recognized their usefulness in Chapter 20.
494 An “ordinary” spinor field ψα describes particles with spin 1

2
, whereas the field χα

μ corresponds to particles with spin 3
2

(gravitino).
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where ea(x) is the orthonormal frame field, which corresponds to the section σ according to

(22.4.3)

Solution: (ii) if R∗
uχ = ρ(u−1)χ , then

R∗
u (iE/ χ ) = γ a R∗

u (iEa χ )

= γ aiR∗
uEa R∗

uχ (8.3.6)

= γ ai Ab
aEbρ(u−1)χ (22.4.9) and the type ρ

= Ab
aρ(u−1)ρ(u)γ aρ(u−1)iEbχ (5.4.1) and the type ρ

= Ab
aρ(u−1)(A−1)a

cγ
ciEbχ (22.3.1)

= ρ(u−1)γ aiEa χ ≡ ρ(u−1)(iE/ χ )

(iii)

(σ ∗iE/ χ )(w, . . .) = γ aχ (Ea, σ∗w, . . .) = γ aχ (σ∗ea, σ∗w, . . .) = γ a(σ ∗χ )(ea, w, . . .)

= γ aiea (σ ∗χ )(w, . . .)

so that σ ∗iE/ = ie/ σ ∗; we used the fact that we may replace the horizontal lift of a vector

by the lift obtained by the section (σ∗ea instead of Ea ≡ eh
a ) if used as an argument of a

horizontal form, since they only differ by a vertical vector (21.3.1). �

22.5.3 Consider the space �̄p(SM, ρ) of horizontal p-forms of (spinor) type ρ and intro-

duce an operator which results by the composition of the exterior covariant derivative D
with the operator iE/

D/ := iE/ ◦ D ≡ γ aiEa D Dirac operator on SM

Check that

(i) it indeed acts in the space mentioned above

D/ : �̄p(SM, ρ) → �̄p(SM, ρ)

(ii) in the most important (and the simplest) case, on spinor fields � ∈ �0(SM, ρ) (i.e. for p = 0),

this gives a strictly differential operator

D/ � = γ aEa� ≡ E/ �

(iii) when pulled back onto the base (in terms of a local section σ ), the operator takes the form495

D/ = ie/ ◦ D ≡ γ aieaD Dirac operator on M

where ea(x) is the orthonormal frame field, which corresponds to the section σ (22.4.3).

Hint: (i) D raises the degree by 1 and iE/ returns it back right away (similarly, as it works,

say, in the identitiesLV = iV d + diV , � = −(δd + dδ) and in numerous further examples),

495 Note that this is no longer a strictly differential operator even for p = 0, see (22.5.4).
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both of them preserve the type ρ; (ii)

D/ � = γ aiEa D� = γ a〈D�, Ea〉 = γ a〈d�, Ea〉 = γ aEa�

(the operator D may be replaced by d , since Ea is horizontal); (iii) σ ∗ D/ = σ ∗iE/ D =
ie/ σ ∗ D = ie/Dσ ∗ according to (22.5.2) and (21.2.4). �

• Let us look in detail at various explicit expressions of the Dirac operator which acts on

a spinor field ψ(x) ≡ σ ∗� on the base. In these expressions several objects occur which we

have already encountered earlier, namely the vielbein field eμ
a (in four-dimensional space

the tetrad field), the Ricci coefficients of rotation γabc ≡ �abc, the “spin connection” ωa
bμ(x)

and the coefficients of anholonomy ca
bc(x). For the convenience of the reader we summarize

the definitions in terms of the notation used here (where connection forms on the base
are denoted by (22.4.8) with the hat); their mutual interrelations were studied in problems

(15.6.19) and (15.6.20):

ea =: eμ
a (x)∂μ (4.5.5), (15.6.19)

ω̂ab =: ωabμ(x)dxμ ω̂ab ≡ ηacω̂
c
b (15.6.19)

∇aeb =: �c
ba(x)ec �abc ≡ ηad�

d
bc (15.6.20)

[ea, eb] =: cc
ab(x)ec cabc ≡ ηadcd

bc (9.2.10)

22.5.4 Let xμ be local coordinates and ea ≡ eμ
a ∂μ an orthonormal frame field. Check that

the action of the Dirac operator D/ on a spinor field ψ(x) on the base may be explicitly

expressed by either of the following formulas:

D/ ψ
1= γ a

(

eaψ + 1

4
〈ω̂bc, ea〉γ bγ cψ

)

2= γ a

(

eaψ + 1

4
�bcaγ

bγ cψ

)

3= γ aeμ
a

(

∂μψ + 1

4
ωbcμγ bγ cψ

)

4= γ a

(

eaψ + 1

8
(cabc + ccba − cbca)γ bγ cψ

)

Hint: the expression of Dψ from (22.5.1); see (15.6.19) and (15.6.20). �

• It may not have escaped your notice that the last formula (which contains the coefficients

of anholonomy ca
bc(x)) actually does not need any objects explicitly characterizing the

connection; it is just enough to evaluate (all) mutual commutators of the frame field (being

sort of a simple homework from (quasi-)quantum mechanics).496 In this way we can get

rid of the computation of, say, connection forms ω̂ab starting from the Cartan structure

equations, or Ricci coefficients of rotations from the formula γabc := eμ
a ebμ;νeν

c (15.6.20)

496 This kind of computation is recommended to be performed, in order to save time, in parallel with watching the evening news
(except for breaking news coverage – this often leads to sign errors), a weather forecast or financial reports.
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(one has to compute all semi-colons and this in turn needs computation of Christoffel

symbols from the formula 2�μ
νσ = gμρ(gρν,σ + · · ·) etc.).

22.5.5 Consider the ordinary flat space E p,q and the Cartesian frame field ea = ∂a . Check

that then we get for the Dirac operator the following well-known simple formula:

D/ = γ a∂a ≡ ∂/ in E p,q , Cartesian frame field

(i.e. then it coincides with the operator mentioned at the beginning of the chapter) and that

its square yields just the Laplace497 operator � in E p,q (in Minkowski space � ≡ −�)

D/D/ = � ≡ −� ≡ ∂μ∂μ in E p,q

In this sense the Dirac operator may be regarded as a “square root” of the Laplacian.

Hint: see (22.5.4), the basis ∂a is orthonormal and at the same time holonomic (i.e. cabc = 0);

the square gives ∂/ ∂/ = γ μγ ν∂μ∂ν = ημν∂μ∂ν = � ≡ −�. �

(Another square root reads � ≡ −(δd + dδ) = (d − δ)2 and it provides the basis of

an alternative formalism to the standard Dirac approach, known as Kähler fermions. It

was first proposed shortly after Dirac’s paper in traditional “tensor” language by Ivanenko

and Landau; some quarter of a century later it was then independently rediscovered (and

elaborated) in terms of non-homogeneous differential forms by Kähler; in real physics it is,

however, practically not used. The role of the “Dirac” operator is played by the Dirac–Kähler
operator (d − δ).)

• As the world goes, in two dimensions things used to be considerably simpler (we have

seen this for example when treating the Cartan structure equations (15.6.10)). This also

applies here. There are just two γ -matrices γ 1, γ 2, and all antisymmetric objects become

proportional to εab, etc. – not bad news, indeed.

22.5.6 Consider a two-dimensional manifold and an orthonormal frame field ea . Check

that

(i) the exterior covariant derivative of a spinor field turns out to be

Dψ = dψ + 1

2
αγ5ψ ω̂ab =: αεab

i.e. Dμψα = ∂μψα + 1

2
αμ(γ5)αβψβ

(ii) for γ -matrices there holds the identity

εabγ
b = ηabγ

bγ5 =: γaγ5

(iii) the coefficients of anholonomy may be parametrized by a single one-index (non-tensor; neither

does cabc correspond to a tensor) quantity ca(x)

cabc(x) =: ca(x)εbc

497 Also in the general case the square of the Dirac operator is closely related to the Laplace operator. The computation is, however,
more complicated and both the curvature and torsion enter the final formula.
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(iv) the relevant term in D/ ψ from the option 4 in (22.5.4) may be written in the form

1

8
γ a(cabc + ccba − cbca)γ bγ c = 1

2
caε

a
bγ

b ≡ 1

2
c/ γ5 c/ := caγ

a εa
b := ηacεcb

(v) so that we get for the Dirac operator the following expression:

D/ ψ = γ a

(

ea + 1

2
caγ5

)

ψ ≡ γ a

(

ea + 1

2
cbε

b
a

)

ψ

Hint: (iii) cabc = −cacb; (iv) e.g. cabcγ
bγ c = caεbcγ

bγ c = 2caε12γ
1γ 2 = 2caγ5. �

22.5.7 Check that the explicit form of the Dirac operator

(i) in the two-dimensional Euclidean plane with respect to the orthonormal frame field e1 = dr ,

e2 = r dϕ, based on the polar coordinates (r, ϕ) reads

D/ ψ =
{

γ 1

(

e1 + 1

2r

)

+ γ 2e2

}

ψ ≡
{

γ 1

(

∂r + 1

2r

)

+ 1

r
γ 2∂ϕ

}

ψ

ψ = ψ(r, ϕ)

(ii) on the ordinary two-dimensional sphere of radius R with respect to the orthonormal frame field

e1 = R dϑ , e2 = R sin ϑ dϕ, based on standard spherical coordinates (ϑ, ϕ) is

D/ ψ =
{

γ 1

(

e1 + 1

2R
cot ϑ

)

+ γ 2e2

}

ψ ≡ 1

R

{

γ 1

(

∂ϑ + 1

2
cot ϑ

)

+ 1

sin ϑ
γ 2∂ϕ

}

ψ

ψ = ψ(ϑ, ϕ)

(iii) a possible choice of the γ -matrices is (in both cases)498

γ 1 = σ1 γ 2 = σ3 if we consider Majorana spinor fields ψ

γ 1 = σ1 γ 2 = σ2 if we consider Dirac spinor fields ψ

Hint: (i) [er , eϕ] = −eϕ/r ≡ c2ε12eϕ , so that c/ γ5 = c2γ
2γ 1γ 2 = γ 1/r ; (ii) [eϑ , eϕ] =

−eϕ/Rcot ϑ ≡ c2ε12eϕ , therefore c/ γ5 = c2γ
2γ 1γ 2 = γ 1/R cot ϑ ; (iii) both the plane and

the sphere have signature ++, so that we are to represent C(2, 0), (22.1.3); for Majorana

spinors the γ -matrices are to be real and for Dirac spinors complex matrices are also allowed.

�

22.5.8 Consider the standard orthonormal (co)frame fields in the ordinary four-

dimensional Minkowski space, based on the spherical and cylindrical coordinates

e0 = dt e1 = dr e2 = r dϑ e3 = r sin ϑ dϕ spherical

e0 = dt e1 = dr e2 = r dϕ e3 = dz cylindrical

Check that the explicit form of the Dirac operator with respect to these frame fields reads

D/ = γ 0e0 + γ 1

(

e1 + 1

r

)

+ γ 2

(

e2 + cot ϑ

2r

)

+ γ 3e3 spherical

D/ = γ 0e0 + γ 1

(

e1 + 2

r

)

+ γ 2e2 + γ 3e3 cylindrical

498 The first choice is also suitable for Dirac spinors, however, the second one is not suitable for Majorana spinors.
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Hint: see (22.5.4) and either use ω̂ab from (15.6.14), or compute the coefficients of anholon-

omy for ea . �

22.5.9 Check that the explicit form of the Dirac operator on a semi-simple Lie group with

respect to the left-invariant (orthonormal) frame field ea is

D/ = γ a

(

ea − 1

8
cabcγ

bγ c

)

(cabc being the structure constants with respect to ea) and, in particular, on SU (2) it may

be expressed in terms of Pauli matrices σa and the fields ea from (11.7.23) in the form

D/ = σaea − 3i

4
I

Hint: the coefficients of anholonomy in (22.5.4) then coincide with the structure con-

stants (11.2.1), the latter being completely antisymmetric (12.3.9), g = − 1
2
K; on SU (2)

we may take as γ -matrices the σ -matrices (12.3.15), (22.3.7) and we have γ acabcγ
bγ c =

σaεabcσbσc = 6σ1σ2σ3 = 6iI. �

• Note that the expressions of the Dirac operator on the base D/ in (22.5.4) are uniquely

given once we choose a frame field ea . Recall that the choice of a frame field defines a

section σ̂ of (only) the bundle of orthonormal frames π̂ : O M → M , whereas the spinor

fields ψ on the base as well as the operators acting on them are given by a section σ of

the spin bundle π : SM → M . Secondly, recall (see (22.4.3)) that as many as two sections

σ1 and σ2 may be associated with a single section σ̂ . So it looks like the Dirac operator

D/ on the base does not feel the difference between the sections σ1 and σ2 (which is fairly

convenient from the practical point of view, since everybody would probably agree that

it is simpler to fix (only) a frame field than to make still an additional choice of one of

the (two possible) sections σ , which correspond to the frame field). We will verify that

this is indeed the case. Actually we will derive a more general formula for the transforma-

tion of the Dirac operator on the base under an arbitrary change of a section of the spin

bundle.

22.5.10 Consider two sections σ and σ ′ of the spin bundle, which are related (in the sense

of (21.2.1)) by an element S(x) of the groups {Spin (p, q)}U of the local gauge transfor-

mations (S : U → Spin (p, q) is a function on U with values in the group Spin (p, q)).

Denote (see (21.2.5)) also the image of S(x) with respect to the spinor representation ρ

by B(x)

B := ρ ◦ S : U → GL(N ≡ dim ρ, C) i.e. B(x) := ρ(S(x))

Check that

(i) the Dirac operators D/ and D/ ′ on the base, which result from the pull-back by means of the

sections σ and σ ′ respectively, are related by

D/ ′ = B−1(x)D/ B(x)
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(ii) this formula indeed enables one to transform, say, the Dirac operator with respect to the “spher-

ical polar” (orthonormal) frame field (22.5.7) to the corresponding operator with respect to the

“Cartesian” frame field (22.5.5)

(iii) it follows from the general formula that if the two sections σ1 and σ2 correspond to the same
frame field (section σ̂ ), then the Dirac operator turns out to be the same

D/ 1 = D/ 2

Hint: (i) according to (21.2.5), any spinor field transforms according to the prescription

ψ �→ B−1(x)ψ ≡ ψ ′; if any, then also D/ ψ �→ (D/ ψ)′ = B−1(D/ ψ) ≡ B−1(D/ B B−1ψ) ≡
(B−1D/ B)ψ ′ =: D/ ′ψ ′; (ii) first realize that for the choice γ 1 = σ1, γ

2 = σ3 we have γ5 =
−iσ2 = −E12; the (orthonormal) spherical polar basis ea ≡ (er , eϕ) and the Cartesian basis

ei ≡ (ex , ey) in the xy-plane are related by ea = Ai
aei , where

Ai
a(r, ϕ) = Ai

a(ϕ) =
(

cos ϕ − sin ϕ

sin ϕ cos ϕ

)

= e−ϕE12

This matrix from SO(2) relates the sections of O M ; the corresponding sections of SM
are then related by such S, which covers this A; since E12 ↔ 1

2
E1 E2, a covering S is

S(r, ϕ) = S(ϕ) = exp{−ϕ 1
2

E1 E2}, so that

B(r, ϕ) ≡ ρ(S(ϕ)) = e−ϕ 1
2
γ 1γ 2 ≡ e−ϕ 1

2
γ5 = e−ϕ 1

2
(−E12) ≡ A(−ϕ/2)

Then the “spherical polar” and the “Cartesian” Dirac operators should be related by D/ pol =
B−1D/ Cart B; indeed,

BD/ pol B
−1 = e− 1

2
ϕγ5

(

γ 1

(

er + 1

2r

)

+ γ 2eϕ

)

e
1
2
ϕγ5 = · · ·

= γ 1eϕγ5 er + γ 2eϕγ5 eϕ = · · · = γ 1ex + γ 2ey ≡ D/ Cart

(iii) S(x) = −1 ⇒ B(x) = −I ≡ B−1(x). �

• In (12.5.3) we learned that the matrix elements of Pauli matrices may be regarded as

the components of an invariant SU (2)-tensor. But Pauli matrices are nothing but special

γ -matrices (22.3.7) and SU (2) = Spin (3, 0) (see Section 22.2). We will verify that such

an invariance also holds in general: the matrix elements of γ -matrices may be regarded as

the components of Spin (p, q)-invariant tensors. This means that they can be used (in the

sense of Section 12.5) for “transmutation of types” of objects.

22.5.11 According to the beginning of this section, the matrix elements of the γ -matrices

carry the indices γ aα
β . Thus we may associate with them a vector of the representation

space of ϕ ⊗ ρ ⊗ ρ̌, where ϕ is the covering Spin (p, q) → SO(p, q), ρ is the spinor

representation and ρ̌ is the contragredient one. Check that

(i) the vector under consideration is an invariant element of the space, i.e.

ρ(u)ατ ρ(u−1)σβ Aa
bγ

bτ
σ = γ aα

β A ≡ ϕ(u)
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(ii) if we regard γ aα
β as a (constant) function of type ϕ ⊗ ρ ⊗ ρ̌ on SM (which is possible according

to item (i)), then the function has vanishing exterior covariant derivative:

Dγ a = 0 i.e. Dγ aα
β = 0

(iii) the same is also true for γ5

(iv) the Dirac operator anticommutes with the matrix γ5

D/ γ5 = −γ5 D/

Hint: (i) this is exactly what the equation ρ(u)γ aρ(u−1) = (A−1)a
bγ

b from (22.3.1)

says; (ii) the general formula D(·) = d(·) + ρ ′(ω) ∧̇ (·) gives Dγ aα
β = dγ aα

β + ((ϕ ⊗ ρ ⊗
ρ̌)′(ω)γ )aα

β ; the first term vanishes due to constancy of γ aα
β , the second one due to in-

variance of the latter (in general if ρ(g)C = C , then ρ ′(X )C = 0); (iii) this is true

for any product of γ -matrices; (iv) making use of γ aγ5 = −γ5γ
a (22.3.4) we have

D/ γ5� = iE/ Dγ5� = iE/ {(Dγ5)� + γ5 D�} = iE/ (γ5 D�) = −γ5iE/ D� ≡ −γ5 D/ �. �

22.5.12 Check that the Dirac operator is odd with respect to chirality, i.e. it behaves with

respect to the projectors to the right and left spinors as follows:

D/ P = L D/ D/ L = P D/

This says that D/ maps right spinors to left spinors and vice versa.

Hint: according to (22.3.4) the projectors L and P read L = 1
2
(I − λγ5), P = 1

2
(I + λγ5)

(where λ = 1 or i) and according to (22.5.11) D/ anticommutes with γ5; if L� = �, then

R(D/ �) = D/ L� = D/ � and vice versa. �

Summary of Chapter 22

The special orthogonal group SO(p, q) admits the two-sheeted universal covering group,

which is called the spin group and is denoted by Spin (p, q). An elementary theory of spin

groups is systematically developed with the help of Clifford algebras. An isomorphism of

these algebras with appropriate matrix algebras (a faithful representation) is constructed.

This leads naturally to the concept of a spinor as an element (vector) of the representation

space of the Clifford algebra. Since the spin groups are subsets of the Clifford algebras,

restriction of the representation of the algebra is automatically a representation of the spin

group. Consequently, spinors also carry a representation of spin groups (and also the two-

valued representation of the orthogonal groups). This is called the spinor representation.

For some particular values of (p, q) special kinds of spinors may exist (Weyl, Majorana,

etc.). The term spin structure on M is sometimes used as a synonym for a principal bundle

over M (the spin bundle), whose total space is a two-sheeted covering of the total space of

the bundle of right-handed orthonormal frames and in the fibers of which the spin group

acts. There are also manifolds which do not admit the spin structure. Equivariant functions

of type ρ on the total space of the spin bundle (as well as their pull-backs to the base with

the help of a section), where ρ is the spinor representation, are called spinor fields on M .
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The Rarita–Schwinger field then corresponds to a 1-form of type ρ. There is a specific

first-order operator which acts on spinor fields, the Dirac operator. Its historical origin is in

physics, in the quantum theory of the relativistic electron and it enters the Dirac equation.

eaeb + ebea = 2gab Fundamental relations in Clifford product (22.1.1)

u = α1 . . . αk, g(α j , α j ) = ±1 Elements of the group Pin (p, q) (22.2.1)

ueau−1 =: (A−1)a
beb Two-sheeted covering Spin (p, q) → SO(p, q) (22.2.3)

1
2
eaeb �→ Eab Derived isomorphism spin (p, q) → so(p, q) (22.2.7)

γ a := ρ(ea) γ -matrices (22.3.1)

Dψ = dψ + 1
4
ω̂abγ

aγ bψ Exterior covariant derivative of a spinor field (22.5.1)

χα
μ (x) dxμ Eα ≡ χα

a (x)ea(x)Eα Rarita–Schwinger field Sec. 22.5

D/ := iE/ ◦ D ≡ γ aiEa D Dirac operator on SM (22.5.3)

D/ = ie/ ◦ D ≡ γ aieaD Dirac operator on M (22.5.3)

D/ ψ = γ aeμ
a (∂μψ + 1

4
ωbcμγ bγ cψ) Action of the Dirac operator on spinor fields (22.5.4)

D/ ψ = γ aeμ
a (∂μψ + 1

2
αμγ5ψ) How it simplifies for two dimensional M (22.5.4)

ρ(u)ατ ρ(u−1)σβ Aa
bγ

bτ
σ = γ aα

β γ -matrices are Spin (p, q)-invariant tensors (22.5.11)





Appendix A

Some relevant algebraic structures

In these appendices elementary facts are collected concerning those algebraic structures
which are most frequently used in the text. As a rule the proofs of the statements are
straightforward and the reader is invited to carry them out her(him)self.

A.1 Linear spaces

In a linear space (i.e. vector space) V over the field F , we may perform linear combina-
tions x + λy ∈ V , where x, y ∈ V , λ ∈ F . In an overwhelming majority of cases we will
encounter the field F = R in this book, sometimes the field F = C. We will denote by
L(V, W ) (or Hom(V, W )) linear maps from V to W . They form in their own right a linear
space of dimension nm (if dim V = n, dim W = m).

Given two linear spaces V, W , their direct sum is a linear space denoted499 by V ⊕ W .
Its elements are ordered pairs (v, w) (so that it is a Cartesian product V × W as a set) and
the linear combination is given by components

(v, w) + λ(v′, w′) := (v + λv′, w + λw′)

The dimension of the space V ⊕ W is the sum of the dimensions of V and W (if they happen
to be finite). Each element (v, w) may be uniquely written as the sum (v, w) = (v, 0) +
(0, w). This means that there is a subspace Ṽ in V ⊕ W which is isomorphic to V (vectors
(v, 0)) and W̃ isomorphic to W (vectors (0, w)), their intersection containing the single
vector 0 ≡ (0, 0) ∈ V ⊕ W . If ei is a basis of V and eα a basis of W , in V ⊕ W we may use
the basis Ei , Eα (n + m vectors), where Ei = (ei , 0), Eα = (0, eα) (it is moreover adapted
to the structure of the direct sum). A general vector u ∈ V ⊕ W then admits the expression

u = ui Ei + uα Eα . If A and B are linear operators in V and W respectively, Aei = A j
i e j and

Beα = Bβ
α eβ , we may introduce their sum A ⊕ B by (A ⊕ B)(v, w) := (Av, Bw). Then

(A ⊕ B)Ei = A j
i E j , (A ⊕ B)Eα = Bβ

α Eβ , so that the matrix of the operator A ⊕ B with
respect to the basis Ei , Eα has the block diagonal form

A ⊕ B ↔
(

A j
i 0

0 Bβ
α

)

499 If there is an additional structure in the linear space (see, for example, Section A.3 on Lie algebras), the sum of the spaces
themselves is sometimes denoted by V � W and then V ⊕ W means more, namely the sum of the spaces including the
compatibility of the additional structure with the sum (for Lie algebras this requires that the commutator of elements from V
was again from V and similarly for W ).
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We can also easily see that the following useful relations hold for operators of the form of
a sum of two other operators:

(A ⊕ B)(C ⊕ D) = AC ⊕ B D

λ(A ⊕ B) = (λA) ⊕ (λB)

[(A ⊕ I), (I ⊕ B)] = 0

Given two vector spaces V, W , there is also another way of obtaining a new space, namely
their tensor product V ⊗ W (i.e. a direct product). A possible definition is that this is the
(linear) space of bilinear maps V ∗ × W ∗ → R. So this is reminiscent of second rank tensors
from Section 2.4. Note, however, that here the two spaces V, W may not be interrelated at
all, whereas there the second one either coincides with the first one or it is its dual. (There
holds T 0

2 (L) = L∗ ⊗ L∗, T 2
0 (L) = L ⊗ L , T 1

1 (L) = L∗ ⊗ L ∼ L ⊗ L∗.) By repeating the
considerations from Section 2.4, special elements of the space V ⊗ W have the form v ⊗ w,
v ∈ V, w ∈ W , where

(v ⊗ w)(a, b) := 〈a, v〉〈b, w〉 a ∈ V ∗, b ∈ W ∗

or at the level of components

(v ⊗ w)iα := viwα

(so that ⊗ : V × W → V ⊗ W ) and a general element is in turn a linear combination of
such special ones; if ei , eα constitute bases in V, W , a general element u ∈ V ⊗ W may be
uniquely expressed as

u = uiαei ⊗ eα uiα := u(ei , eα) ∈ R

This means that the elements ei ⊗ eα form a basis in V ⊗ W (⇒ dim V ⊗ W = the product
of the dimensions of the corresponding spaces) and a general element is specified by the
values of the components uiα (they may be displayed as an n × m matrix) with respect to
the basis. Given two operators A and B in V and W respectively we may construct their
tensor product A ⊗ B. This is a linear operator in V ⊗ W defined by

(A ⊗ B)(v ⊗ w) := Av ⊗ Bw

or equivalently

(A ⊗ B)u ≡ (A ⊗ B)(uiαei ⊗ eα) := uiα(Aei ) ⊗ (Beα) = A j
i Bβ

α uiαe j ⊗ eβ

≡ (Ai
j u

jβ Bα
β )ei ⊗ eα

For operators in the form of a tensor product of the other two operators there holds

(A ⊗ B)(C ⊗ D) = AC ⊗ B D

λ(A ⊗ B) = (λA) ⊗ B = A ⊗ (λB)

(A + C) ⊗ (B + D) = A ⊗ B + A ⊗ D + C ⊗ B + C ⊗ D

[(A ⊗ I), (I ⊗ B)] = 0

The matrix elements of the operators in V ⊗ W naturally carry four indices (since the basis
vectors carry two)

H (ei ⊗ eα) =: H jβ
iα (e j ⊗ eβ)
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In particular, for H ≡ A ⊗ B we have

(A ⊗ B)
jβ
iα = A j

i Bβ
α

so that

u �→ (A ⊗ B)u ↔ uiα �→ ((A ⊗ B)u)iα = Ai
j Bα

β u jβ ≡ Ai
j u

jβ Bα
β

and this may be written in terms of matrices as500

u �→ Au BT

If we labeled the basis ei ⊗ eα in terms of a single index a = 1, . . . , nm

Ea = E1, . . . , Enm ≡ e1 ⊗ e1, . . . , e1 ⊗ em, e2 ⊗ e1, . . . , en ⊗ em

then also the matrix of the operator A ⊗ B would only have two indices (A ⊗ B)b
a , which

are given by its action on the basis, (A ⊗ B)Ea =: (A ⊗ B)b
a Eb. This nm × nm matrix is

said to be the tensor product of the matrices A j
i and Bβ

α ; explicitly it reads

A ⊗ B =

⎛

⎜
⎝

A1
1 B . . . A1

n B
...

. . .
...

An
1 B . . . An

n B

⎞

⎟
⎠ B = the whole m × m matrix

so that, for example,

(
1 2
3 4

)

⊗
(

5 6
7 8

)

=

⎛

⎜
⎜
⎝

1

(
5 6
7 8

)

2

(
5 6
7 8

)

3

(
5 6
7 8

)

4

(
5 6
7 8

)

⎞

⎟
⎟
⎠ =

⎛

⎜
⎝

5 6 10 12
7 8 14 16

15 18 20 24
21 24 28 32

⎞

⎟
⎠

An element B of the space V ∗ ⊗ W ∗ is also called a bilinear pairing of the spaces V and
W . It is thus a bilinear map501

V × W → R (v, w) �→ B(v, w) ∈ R

Its expression with respect to bases ei ∈ V, eα ∈ W reads

B = Biαei ⊗ eα Biα := B(ei , eα)

so that the components Biα form a matrix (not necessarily square). A pairing naturally
induces the linear maps

B̂ : V → W ∗ v �→ B(v, · ) i.e. vi �→ vi Biα

B̌ : W → V ∗ w �→ B( · , w) i.e. wα �→ Biαwα

A pairing is said to be non-degenerate (sometimes also called dual) if there holds

B(v, w) = 0 for all v ∈ V ⇒ w = 0
B(v, w) = 0 for all w ∈ W ⇒ v = 0

In this case V and W ∗ are (canonically) isomorphic (B̂ is the isomorphism, the matrix Biα
is square and non-singular). The existence of a non-degenerate pairing thus automatically

500 This “matrix” presentation is specific for the product of two operators. The general rule is that each of the initial matrices acts
on “its own index”; for example, uiαa �→ ((A ⊗ B ⊗ C)u)iαa = Ai

j Bα
β Ca

b u jβb .
501 A bilinear form is a special case where both arguments belong to the same space, i.e. where V = W .
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means502 that V and W ∗ are isomorphic (and vice versa). The standard example of a
non-degenerate pairing is provided by the canonical pairing of the spaces V ∗ and V ,
B(α, v) := 〈α, v〉, introduced in Section 2.4.

Consider a subspace W ⊂ V of a vector space V . A subspace U is said to be comple-
mentary to W if each vector v ∈ V may be uniquely written in the form of a sum w + u,
where w ∈ W, u ∈ U (so that V is a direct sum W ⊕ U ). Given the subspace W , there are
in general an infinite number of complementary subspaces; any other subspace U ′ may be
obtained from a fixed one U by U ′ = U + hU , for an appropriate linear map h : U → W
(if u′ ∈ U ′, there is a decomposition u′ = w + u ≡ hu + u; the vector hu ∈ W corrects the
vector u so that it belongs to the new complementary subspace).

If W ⊂ V , we may introduce in V an equivalence v̂ ∼ v ⇔ v̂ = v + w for some w ∈ W .
In the factor set V/W (i.e. the set of equivalence classes) a linear structure is introduced by
means of representatives ([v1] + λ[v2] := [v1 + λv2]), so that the factor space V/W arises
with dimension dim V minus dim W . This space is isomorphic to an arbitrary complemen-
tary subspace U (if v = w + u, then [v] = [u] and [v] ↔ u is the isomorphism; for another
choice, U ′, we have u′ = u + hu and consequently [u] = [u′]).

Given V = W ⊕ U , let P, Q be the projection operators onto W, U . Then an arbitrary
operator A in V may be expressed as a sum of four parts,

A = (P + Q)A(P + Q) = P AP + P AQ + Q AP + Q AQ ≡ a + b + c + d

where the operators a, b, c, d effectively only act as a : W → W, b : U → W, c :
W → U, d : U → U (their matrices with respect to the adapted basis (ei , eα) in V being
Ai

j , Ai
α, Aα

i , Aα
β). If, in contrast, we know these four operators, we can in turn reconstruct

A. If W is invariant with respect to A, then c = 0 and if U is invariant, then b = 0.
More generally, consider two linear spaces which happen to be direct sums of their

subspaces, L = ⊕i Li and L̂ = ⊕α L̂α , and denote by Pi and P̂α the projection operators onto

the corresponding subspaces. Then an arbitrary linear map A : L → L̂ has a decomposition

A = (
∑

i Pi )A(
∑

α P̂α) = ∑
iα Pi AP̂α = ∑

iα Âiα , where Âiα may already be regarded as

a map only acting between the relevant subspaces Aiα : Li → L̂α . If, vice versa, we know
all of these partial linear maps, we can reconstruct the whole A.

A.2 Associative algebras

An algebra A is a linear space endowed with an additional binary operation A × A →
A (“multiplication”) a, b �→ ab, a, b, ab ∈ A. Compatibility with the linear structure is
required in the sense that

a(b + λc) = ab + λac (b + λc)a = ba + λca

i.e. the multiplication is to be bilinear. If there exists an identity in A (an element 1 ∈
A, satisfying a1 = 1a = a, a ∈ A), the algebra is said to be unital, if the multiplication
happens to be associative (a(bc) = (ab)c ≡ abc), we speak about the associative algebra.
In what follows what we will have in mind will be as a rule a real associative algebra
(except for the Lie algebra, which is not associative, see Section A.3). Standard examples
are provided by the complete matrix algebra R(n) ≡ Mn(R) of all real n × n matrices
(with the common matrix multiplication), the algebra EndV of endomorphisms of a linear

502 Also B̌ is an isomorphism so that a non-degenerate pairing also says that V ∗ and W are canonically isomorphic.
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space V (= all linear maps V → V ; the choice of a basis yields a non-canonical isomorphism
with R(n)), the algebra F(M) of smooth functions on a manifold M , the tensor algebra
T (V ) of a linear space V , the algebra T (M) of tensor fields on M , the exterior algebra
�V ∗ of forms in V , the Cartan algebra �(M) of differential forms on M or the Clifford
algebra C(V, g) associated with a linear space V endowed with a symmetric (as a rule
non-degenerate) bilinear form g.

The real numbers R, the complex numbers C and the quaternions H may be regarded
as algebras over R (of dimensions one, two and four respectively). A basis in C is
(1, e1 = i), where e1e1 = −1. A matrix realization is, for example, 1 = I, e1 = iσ2. A basis
in H is (1, e1 ≡ i, e2 ≡ j, e3 ≡ k) and the multiplication satisfies eaeb = −δab + εabcec,
a = 1, 2, 3 (ea represent sort of three imaginary units). A general element of H is
w = a + waea ≡ a + w1i + w2 j + w3k, a, wa ∈ R. A simple matrix realization is 1 = I,
ea = −iσa . Further useful algebras are R(n), C(n) and H(n), n × n matrices with entries
from R, C and H respectively.

For the finite-dimensional case, if ea is a basis inA as a linear space, complete information
about the multiplication (⇒ about the algebra) is contained in the structure constants cc

ab,
given by the decomposition of the products of the basis elements eaeb =: cc

abec. These

constants comprise the components of a tensor of type
(

1
2

)
.

A subspace B ⊂ A is a subalgebra if it (also) happens to be closed with respect to
the multiplication and a subalgebra I is an ideal (left, right, two-sided) if the multipli-
cation of an arbitrary element a ∈ A by an element i ∈ I (from the left, from the right
and both) results in an element in I (for example, for the left ideal ia = i ′ ∈ I for any
a ∈ A).503 Given a two-sided ideal I in the algebra A, we may introduce the multi-
plication into the factor space A/I by means of representatives and obtain the factor-
algebra ([a][b] := [ab]; for another choice of representatives504 we get [a + i][b + i ′] =
[ab + ai ′ + ib + i i ′] = [ab], if I is a two-sided ideal).

A linear bijective map A : A → A is called an automorphism of the algebra A if it (also)
respects the product, A(ab) = A(a)A(b). All the automorphisms of A form a group Aut A
(with respect to composition of maps).

A linear map D : A → A is called a derivation of the algebraA, if it behaves on a product
according to the Leibniz rule, i.e. if D(ab) = (Da)b + a(Db). All the derivations ofA form
a Lie algebra Der A (with the commutator [D1, D2] := D1 D2 − D2 D1, see Section A.3),
which is just the Lie algebra of the group Aut A.

Given two algebras A and B, we may form two other algebras, their direct sum A ⊕ B
and their tensor product A ⊗ B. Regarded as linear spaces they represent the constructions
bearing the same name with the linear spaces of the original algebras (see Section A.1). The
multiplication in the direct sum reads (a, b)(a′, b′) := (aa′, bb′) (in the original algebras as
before, e.g. (a, 0)(a′, 0) := (aa′, 0), and the mutual products vanish, (a, 0)(0, b) := (0, 0)).

In the tensor product we define on decomposable elements (i.e. of the form of a
product)

(a ⊗ b)(a′ ⊗ b′) := (aa′ ⊗ bb′)

and this is extended then by linearity, so that for general elements we get

(K iαei ⊗ eα)(k jβe j ⊗ eβ) := K iαk jβei e j ⊗ eαeβ = K iαk jβck
i j c

γ

αβek ⊗ eγ

503 If elements of the ideal I are regarded as carriers of the gene of idealism, then the offspring from mating (multiplication) of
an idealist with any other element of A (including realists, pragmatists and so on) consists again only of idealists.

504 The square brackets in [a] denote the class given by the representative a; it is not related to the commutator from Section A.3.
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Making use of adapted bases one easily verifies the isomorphisms

(A ⊕ B) ⊗ C = (A ⊗ C) ⊕ (B ⊗ C)

C ⊗ (A ⊕ B) = (C ⊗ A) ⊕ (C ⊗ B)

A.3 Lie algebras

An algebra in which the multiplication is antisymmetric and satisfies the Jacobi identity
is called the Lie algebra. So it is a linear space G in which we have moreover a bilinear
“multiplication”G × G → G (here, the product xy is usually called commutator and denoted
by [x, y]) with the properties

[x, y] = −[y, x] antisymmetry

[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0 Jacobi identity

If A is an associative algebra, the prescription [a, b] := ab − ba makes from this algebra
(also) the Lie algebra (however, not every Lie algebra has this origin; for example, the
commutator of vector fields does not arise from their associative multiplication – the latter
is even not defined).

The concept of an ideal, factor-algebra, automorphism and derivation are introduced in
close analogy with the corresponding definitions in associative algebras.

A subspaceB ⊂ G is a Lie subalgebra if it is (also) closed with respect to the commutator
and a subalgebra I is an ideal (only two-sided here) if the commutator with any element
yields an element in I (i.e. [i, x] = i ′ ∈ I for arbitrary i ∈ I, x ∈ G). Given an ideal I in
a Lie algebra G, we may introduce the commutator into the factor space G/I by means of
representatives and obtain the Lie factor-algebra.

A map D : G → G is called a derivation of the (Lie) algebra G, if it is linear and if it
behaves on the “product” (commutator) according to the Leibniz rule

D(x + λy) = D(x) + λD(y) D([x, y]) = [D(x), y] + [x, D(y)]

An important example of the derivation is the inner derivation D ≡ adx , defined by

adx := [x, · ] i.e. adx (y) := [x, y]

(the Jacobi identity may be regarded as just expressing the fact that it is indeed a derivation).
A map A : G → G is called an automorphism of a (Lie) algebra G, if it is bijective, linear

and if it preserves the “product” (commutator)

A(x + λy) = A(x) + λA(y) A([x, y]) = [A(x), A(y)]

An important example is provided by the inner automorphism A ≡ Adg , which is (for
g ∈ G ≡ the Lie group) defined by (12.3.1)

Igex ≡ gex g−1 =: eAdg(x)

All the automorphisms of G form a group Aut G (they are closed with respect to com-
positions), whose Lie algebra Der G turns out to be given by just all the derivations of
G (the commutator in Der G arises from the associative multiplication of linear maps,

i.e. [D1, D2] := D1 D2 − D2 D1). Infinitesimal automorphisms thus have the form 1̂ + εD,
D ∈ Der G.

If Ei is a basis of G, the formula [Ei , E j ] =: ck
i j Ek defines structure constants. They form

the components of a tensor of type
(

1
2

)
. Antisymmetry and the Jacobi identity are reflected
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in the properties

ck
i j = −ck

ji cr
si c

s
jk + cr

skcs
i j + cr

s j c
s
ki = 0

Given two Lie algebras, G1 and G2, we may construct their direct sum G ≡ G1 ⊕ G2 as the
linear space G1 � G2, where the commutator is introduced by the prescription

[(x1, x2), (y1, y2)] := ([x1, y1], [x2, y2]) x j , y j ∈ G j j = 1, 2

The elements of the form (x1, 0) constitute a Lie subalgebra (a subspace closed with re-
spect to the commutator) G̃1 isomorphic to the algebra G1, and similarly the elements
(0, x2) form G̃2 ⊂ G, G̃2 ≈ G2. The subalgebras G̃ j are moreover ideals in G and there
holds

G/G̃1 ≈ G2 G/G̃2 ≈ G1

If G1 and G2 happen to be matrix Lie algebras, their direct sum may be realized by block-
diagonal matrices

(x1, x2) ↔
(

x1 0
0 x2

)

A.4 Modules

A module may be regarded as a generalization of the concept of a linear space in which the
elements may be linearly combined with coefficients from an algebra A (rather than from
R, as is the case in a real linear space). A left A-module M is thus a linear space (over R), in
which the algebra A acts from the left, i.e. there exists a prescription (map) A × M → M ,
(a, m) �→ am, such that

a(bm) = (ab)m (a + λb)m = am + λbm a(m + λn) = am + λan

a, b ∈ A λ ∈ R m, n ∈ M

In a rightA-module the algebra acts from the right, so that we have a prescription M × A →
M , (m, a) �→ ma such that

(ma)b = m(ab) m(a + λb) = ma + λmb (m + λn)a = ma + λna

a, b ∈ A λ ∈ R m, n ∈ M

A standard example is given by R
k as M and R(k) ≡ Mk(R) (k × k real matrices) as A

(the left action being x �→ Bx and the right action given by xT �→ xT B). Other examples
are provided by T r

s (M) (tensor fields of type
(

r
s

)
on a manifold M) and, in particular,

�p(M) (differential p-forms on M) as two-sided F(M)-modules. The algebra A itself
is an A-module (left action b �→ ab, right one b �→ ba; just as R is a linear space over
R). Given two modules M, M̃ over the same algebra A, we may speak about A-linear
maps; they are maps which preserve linear combinations over A, i.e. such f : M → M̃
that f (m + an) = f (m) + a f (n), a ∈ A, whereas for (only) R-linear maps (only) f (m +
λn) = f (m) + λ f (n), λ ∈ R holds. For example, tensor fields on a manifold M are A ≡
F(M)-linear with respect to each argument.
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A.5 Grading

If G is a commutative group then a G-graded vector space is a space which is a direct sum
of subspaces “labeled” by elements of the group G (homogeneous subspaces). Actually
we only encounter the grading with respect to three groups in this book, namely Z (the
subspaces labeled by integers), Z × Z (pairs of integers) and Z2 (the subspaces labeled by
zero or one; their elements are then called even and odd vectors respectively)

Z : L = ∞⊕
p=−∞

L p
Z × Z : L = ∞⊕

p,q=−∞
L p

q Z2 : L = L [0] ⊕ L [1]

The group elements are usually called degree in this context. The grading naturally passes
to linear maps. A general linear map of G-graded spaces L → L (in particular, an endo-
morphism L → L) may be regarded as a system of maps of the homogeneous subspaces
(in the way described at the end of Section A.1). These maps are said to be homogeneous
and we may assign a degree g to a map from the subspace with degree ĝ to the subspace
with degree ĝg. For example, in the case of Z-grading a map from the subspace L3 to L7

has degree 4, in the Z2-case the maps which preserve parity are even, and the maps which
reverse parity are odd.

If there is moreover the structure of an algebra in a graded linear space and this structure
happens to be compatible with grading (the product of homogeneous elements is again
homogeneous, its degree being the product of the original degrees in the sense of G), we
speak about a graded algebra. Examples: Z × Z-graded algebra T (M) of tensor fields on a
manifold M, Z-graded algebra of strictly covariant fields, Z-graded Cartan algebra �(M)
of differential forms on M (all of them may also be regarded as (only) Z2-graded) and the
algebra of endomorphisms of a graded vector space. A Z2-graded algebra is also known as
a superalgebra.

Consider a Z-graded algebra A. A derivation of degree k is a linear map A → A of
degree k which behaves on products according to the graded Leibniz rule, i.e.

Dk : Al → Al+k Dk(ai b) = (Dkai )b + (−1)ikai (Dkb)

ai ∈ Ai b ∈ A
For the Z2-case we get in this way (only) even and odd derivations of a superalgebra A.

In a graded Lie algebra (in particular, in a Lie superalgebra) the role of “multiplication”
is played by the graded commutator (in particular, the supercommutator), which is bilinear
and on homogeneous elements it satisfies

[ai , a j ] = −(−1)i j [a j , ai ]

(−1)ik[ai , [a j , ak]] + (−1)k j [ak, [ai , a j ]] + (−1) j i [a j , [ak, ai ]] = 0

so that it is antisymmetric except for two elements of odd degrees, where it becomes
symmetric and it satisfies the graded Jacobi identity (it says that adai ≡ [ai , · ] is a derivation
of degree i). Such a graded Lie algebra is realized for example by derivations (of all degrees
k) of a graded (associative) algebra (see (6.1.6)). In particular, the triple of the operators
iV ,LV , d acting on the Cartan algebra �(M) (as a−1, a0, a1, all the others vanish).

If V is a Z-graded linear space, then its general subspace may not be compatible with
the grading.505 However, if it is compatible, i.e. if W = ⊕Wi , Wi ⊂ Vi , then the grading

505 Consider a two-dimensional space V . Let e1 span the subspace of degree 1 and e2 span the subspace of degree 2 (all the
others being trivial, i.e. zero spaces); if a one-dimensional subspace W is spanned by e1 + e2, no non-zero vector w ∈ W may
be written as a sum of homogeneous terms, all of them being from W . The structures of Z-grading and a subspace are not
compatible.
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also passes to the factor space V/W , deg[vk] := deg vk ≡ k and V/W = ⊕ Vk/Wk . If,
moreover, V ≡ A is an algebra and the (graded) subspace is an ideal, the grading passes to
the factor algebra, A/I = ⊕ Ak/Ik , [ai ][a j ] = [ai a j ] ∈ Ai+ j/Ii+ j .

A.6 Categories and functors

In modern mathematics and mathematical physics the language of category theory is often
used to discuss properties of different mathematical structures in a unified way. In this book
these concepts are encountered only seldom and they are only used as a language (no non-
trivial results or statements of the theory are needed). The aim of this appendix is then just
to make some simple statements which concern geometry understandable to the beginner
(so that the reader is not forced immediately to put aside a potentially useful and simple
text about geometry as being “unreadable” just because it uses this (natural and convenient)
language).

To define a particular category K amounts to describing two things, the class of its objects
ObK and, for each pair A, B of objects, the set Mor(A, B) of morphisms of the object A

to the object B ( f ∈ Mor(A, B) is standardly drawn as an arrow A
f→ B). For each triple

of objects A, B, C a prescription should be given of how to compose A
f→ B with B

g→ C ;

this results in a composed morphism A
g◦ f→ C . For each object A the “identity” morphism

should exist (such that for each f ∈ Mor(A, A) there holds 1A ◦ f = f = f ◦ 1A) and
the composition is to be associative, f ◦ (g ◦ h) = ( f ◦ g) ◦ h. If for f ∈ Mor(A, B) the
inverse morphism exists, f is said to be an isomorphism.

All the categories encountered in this book have as objects some structured sets (vector
spaces, groups, manifolds, etc.) and as morphisms (arrows) homomorphic maps of these
structured sets. For example, the objects of the category of linear spaces are (all the pos-
sible) linear spaces and the morphisms of this category are linear maps between vector
spaces; the objects of the category of Lie groups are (all the possible) Lie groups and the
morphisms are smooth maps, which at the same time happen to be homomorphisms of
groups.

Given two categories, K and K̂ , a (covariant) functor F from K to K̂ is a prescrip-
tion which assigns to objects of the first category objects of the second one (A �→ F(A)

∈ ObK̂ ), but also to morphisms of the first category morphisms of the second one
( f ∈ Mor (A, B) �→ F( f ) ∈ Mor (F(A), F(B))); one requires the preserving of the
identity morphism as well as of the composition rule for morphisms (F( f ◦ g) =
F( f ) ◦ F(g); for a contravariant functor one requires F( f ◦ g) = F(g) ◦ F( f )). Let us
mention some examples encountered in the main text of the book.

The assignment “a Lie group �→ (its) Lie algebra” is a functor from the category of
Lie groups to the category of Lie algebras. We assign to a morphism of the category of
Lie groups (a homomorphism f : G → H ) a morphism of the category of Lie algebras –
the derived (homo)morphism f ′ : G → H (so that using the notation from the main text,
F(G) = G, F( f ) = f ′). The point is that f ′ is indeed a homomorphism of Lie algebras as
well as that ( f ◦ g)′ = f ′ ◦ g′ (so that it is a covariant functor; these are technical facts,
which are not evident (although not surprising) and they needed to be proved in the main
text).

The assignment “a representation of a Lie group �→ the derived representation of its Lie
algebra” is a functor from the category of representations of a Lie group G (objects being
representations of the Lie group G, morphisms are intertwining operators between them)
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to the category of representations of the Lie algebra G (objects are representations of the
Lie algebra G, morphisms are intertwining operators between them).

The assignment T “a manifold M �→ (its) tangent bundle T M” is a functor (known as
the tangent functor) from the category of smooth manifolds (objects are smooth manifolds,
morphisms are their smooth maps) to the category of vector bundles (objects are vector
bundles, morphisms are maps of their total spaces which preserve fibers and are linear in
fibers). We learned in the main text that T f indeed preserves fibers, it is linear on fibers and
that T ( f ◦ g) = T f ◦ T g.

The assignment “a manifold M �→ (its) algebra of functions F(M)” is a (contravariant)
functor F from the category of manifolds to the category of associative (and commutative)
algebras (F(M) = F(M), F( f ) = f ∗).

The assignment “a manifold M �→ (its) Cartan algebra �(M)” is a (contravariant) functor
from the category of manifolds to the category of Z-graded (graded) commutative algebras.

The assignment “a manifold �→ (its) deRham complex” is a functor from the category of
manifolds to the category of complexes (the morphisms being maps of complexes, which
preserve degree and commute with the differentials).

A standard trick of algebraic topology is the construction of a functor from the category
of topological spaces to the category of some algebraic structure (the category of groups,
algebras, etc.). For example, the assignment “a manifold M �→ H p(M)” (its pth deRham
cohomology group) is the functor from the category of manifolds to the category of groups.
This enables one to formulate important statements about a particular topological space
(possibly enriched by an additional structure, for example a manifold) in the language and
by technical means of the other category (groups, algebras, etc.).
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Pfaff, Johann Friedrich, 1765 Stuttgart–1825 Halle
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Index of (frequently used) symbols

∇γ̇ Absolute derivative along the curve γ (12.3.2)

Ad, Adg Adjoint representation of a Lie group (12.3.2)

ad, adX Adjoint representation of a Lie algebra (12.3.5)

S[γ ], S[A], . . . Action integral (functional) (15.4.4)

F(M) Algebra of (smooth) functions on M (2.2.5)

A(M) Algebra of observables (14.1.9)

R(n), Mn (R) Algebra (associative) of real n × n matrices (11.7.1)

gl(n, R) Algebra (Lie) of real n × n matrices (11.7.2)

T (M) Algebra of tensor fields on M Sec. 2.5

∂ Boundary operator (7.2.2)

π : O M → M Bundle of orthonormal frames (20.5.5)

(qa , pa ) Canonical (Darboux) coordinates on (M, ω) (14.2.2)

θ = θ i Ei Canonical 1-form on G (Maurer–Cartan form) (11.2.6)

θ = pa dqa Canonical 1-form on T ∗ M (17.6.5)

θ = θa Ea Canonical 1-form on L M (21.7.1)

� = Dθ = �a Ea Canonical 2-form on L M with connection (21.7.2)

〈α, v〉 Canonical pairing of L and L∗ (2.4.2)

	(M) Cartan algebra of differential forms on M Sec. 6.1

θL , ωL Cartan 1-form, Cartan 2-form (on T M) (18.2.3)


k
i j Christoffel symbols (15.2.3)

C(L , g), C(p, q) Clifford algebra Sec. 22.1

Ad∗ Coadjoint action (representation) (12.3.19)

δ, δg Codifferential (8.3.2)

[X, Y ] Commutator in Lie algebra G of G (11.2.2)

Ig Conjugation by the element g (12.3.1)

ω Connection form on the total space P (20.2.5)

ωa
b Connection forms (linear connection on M) (15.6.1)

ρ̌ Contragredient (dual) representation (12.1.8)

T ∗
x M Cotangent space at the point x ∈ M Sec. 2.5

τ : T ∗ M → M Cotangent bundle (17.1.4)

∇V Covariant derivative along vector field V (15.2.1)

	 Curvature form on the total space P (20.4.1)

	a
b Curvature forms (linear connection on M) (15.6.3)

R(U, V ) Curvature operator (15.5.1)

D/ Dirac operator (22.5.3)

D/ Dirac operator on the base M (22.5.3)

L∗ Dual space (2.4.1)

E, B Electric and magnetic fields (9.2.9)

Gab Einstein tensor Sec. 16.5
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688 Index of (frequently used) symbols

En Euclidean space Sec. 2.6

�L∗ Exterior algebra of L Sec. 5.3

d Exterior derivative (6.2.5)

D Exterior covariant derivative (20.3.5)

D Exterior covariant derivative on the base (21.2.4)

α ∧ β Exterior product of forms (5.4.1)

α ∧̇ β Exterior product of G and (W, ρ ′) valued forms (20.4.5)

[α ∧ β] Exterior product of Lie algebra valued forms (11.2.6)

π : L M → M Frame bundle (19.1.1)

�V
t , �t Flow generated by vector field V Sec. 2.3

ξX Fundamental field (generator of action) (13.4.3)

A Gauge potential (21.2.4)

A Gauge potential (represented) (21.2.4)

F Gauge field strength (21.2.4)

F Gauge field strength (represented) (21.2.4)

G A(n, R) General affine group (10.1.15)

GL(n, R) General linear group (10.1.3)

ζ f Hamiltonian field generated by f (14.1.6)
∗,∗g Hodge star operator (5.8.1)

Dh Horizontal distribution (19.4.3)

γ h Horizontal lift of a curve γ (20.3.2)

vh Horizontal lift of a vector v (20.3.1)

	̄p(P, ρ) Horizontal p-forms of type ρ on P Sec. 21.2

iv, v� Interior product (5.4.1)

�, �g Laplace–deRham operator (8.3.3)

G,H, . . . Lie algebra of the group G, H, . . . (11.2.2)

LV Lie derivative along vector field V Sec. 4.2

G, H, . . . Lie group Sec. 10.2

ωg Metric volume form (5.7.3)

O(n), O(n, R) Orthogonal group (10.1.5)

P Poisson tensor (14.1.1)

{ f, g} Poisson bracket of f and g (14.1.1)

Er,s Pseudo-Euclidean space Sec. 2.6

O(r, s) Pseudo-orthogonal group (10.1.5)

f ∗ Pull-back (3.1.4)

f∗ Push-forward (3.1.2)

H, C, R Quaternions, complex and real numbers (22.1.43)

Rab Ricci tensor Sec. 15.5

Rg, Lg Right and left action of a group Sec. 13.1

ρ(g) Representation of a group Sec. 13.1

R Scalar curvature Sec. 15.5

(α, β)g Scalar product of forms in (L , g) (5.8.4)

〈α, β〉 Scalar product of forms on (M, g) (8.3.1)

〈α, β〉h Scalar product of forms from 	̄p(P, ρ) (21.5.1)

SO(n), SO(n, R) Special orthogonal group (10.1.8)

SU (n) Special unitary group (10.1.12)

π : SM → M Spin bundle Sec. 22.4

ci
jk Structure constants with respect to Ei (11.2.2)

ω Symplectic form (14.1.4)

Sp (m, R) Symplectic group (10.1.6)

π : T M → M Tangent bundle (17.1.1)

Tx f Tangent map at the point x ∈ M (3.1.2)

γ̇ Tangent vector to the curve γ (2.2.2)
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Tx M Tangent space at the point x ∈ M (2.2.2)

T r
s (L) Tensors of type (r, s) in L (2.4.5)

T r
s (M) Tensor fields of type (r, s) on M (2.5.2)

T a Torsion forms (15.6.3)

F 2-form of the electromagnetic field (16.2.1)

U (n) Unitary group (10.1.12)



Index

1-form of current, 437
2-form of the electromagnetic field, 436
3-form of current, 437
Ck -atlas, 8
Ck -manifold, 8
Ck -related, 8
Ck -structure, 8
f -related, 56, 67
G-invariant Lagrangian, 508
k-dimensional smooth distribution, 530
n-sheeted covering, 300
p-delta, 108
U (1)-charge, 256
V -valued p-forms in L , 140
R-linearity, 46
Z2-grading, 654
A-module, 679
F(M)-linearity, 46
γ -matrices, 650, 654
ρ-invariant scalar product, 249
(4-)acceleration, 447

Abelian group, 201
absolute derivative, 373, 377, 381
acceleration, 369, 447
action integral, 392
acts from the left, 289, 679
acts from the right, 289
adapted bases, 44
adapted coordinates, 9, 336
adapted to the subspace, 531
adiabatic curve, 537
adiabatic process, 537
adjoint operator, 123
adjoint representation, 260, 284
affine connection, 583, 626
affine group, 210, 273
affine transformations, 210
algebra, 676
algebra of functions on a manifold, 26
algebra of horizontal forms on P , 566
algebra of observables, 333, 367
algebra of quaternions, 641
algebra of tensor fields on M , 47

algebraically closed field, 255
Ampère’s law, 439
analylic map, 6
analytic manifolds, 8
angular momentum of the field, 451
annihilate a covector, 531
annihilator, 45, 209, 366, 531
ansatz, 87
anti-self-dual part of a form, 187
anticommuting variables., 112
antisymmetric part of a tensor, 96
associated bundle, 606
associative algebra, 26, 38, 676
atlas, 8
automorphism, 204, 259, 260, 334, 677, 678
autonomous differential equations, 32
autoparallel field, 374, 377, 381, 544
autoparallel quantity of type ρ, 602, 605
average over the group, 251
azimuth, 61

base of a bundle, 482
Betti number, 201
bi-invariant metric tensor, 266
bi-invariant integral, 232
bi-invariant volume form, 268
Bianchi identity, 415, 570, 572, 598
biharmonic coordinates, 61
bilinear pairing, 151, 675
bivector field, 328
boost, 85, 307
boundaries, 199
boundary operator, 147, 149, 200
bundle, 482, 552
bundle map, 482, 581
bundle of affine frames, 626
bundle of orthonormal frames, 578
by parts (integration), 165

canonical 1-form on G, 224, 240, 261
canonical (exact) symplectic form, 496
canonical 1-form on T ∗ M , 496
canonical 1-form on L M , 627
canonical coordinates, 337, 479, 480

690



Index 691

canonical embedding, 157
canonical flat connection, 575
canonical momentum, 509, 514
canonical pairing, 48, 676
canonical projection, 13, 294, 479, 482
canonical transformations, 339
Cartan 1-form, 501
Cartan 2-form, 501
Cartan action, 464
Cartan algebra, 126
Cartan formulas, 132, 282
Cartan structure equations, 410, 570, 598
Cartan symmetry, 346
Cartan’s identity, 131
Cartesian product, 10
Cartesian space, 6
Casimir operators, 265, 312
Cauchy theorem, 188
Cauchy–Riemann relations, 88, 89, 186
central field, 517
chain complex, 199
change of coordinates, 8
characteristic subspace, 124
charge density, 437
charged particles, 593
charges (Noether), 614
chart, 8
chiral spinors, 652, 653
Christoffel symbols, 376
class Ck , 6
Clebsch–Gordan series, 278
Clifford algebra, 122, 637, 638
Clifford product, 638
closed element, 199
closed form, 190
closed surface, 156
coadjoint action, 351, 354
coadjoint representation, 269
coboundary, 199
cochain complex, 199
coclosed, 187, 188, 197
cocycle, 199, 352
codifferential, 173, 416, 608
coefficients of anholonomy, 196, 417, 665
coefficients of linear connection, 375
coexactness, 197
coframe field, 79
cohomologous to zero, 200
cohomology, 199, 201
cohomology classes, 200
cohomology group, 201
cohomology theory, 198
commutative group, 256
commutator, 74, 678
comoment map, 354
compact Lie algebra, 268
compact Lie groups, 232, 252
compact manifold, 173
compatible, 212
compensating field, 592

complete, 32
complete lift, 491, 493, 508, 511
complete parallelism, 425, 574
completely reducible, 252
complex, 198, 284
complex Lie group, 213
complex manifold, 11
complex representations, 255
component fields, 320
component forms, 140
component functions, 316
components, 27, 29, 37, 47
composition law, 212
condition of incompressibility, 167
configuration space, 62, 508
conformal class, 472
conformal Killing equations, 87
conformal Killing vectors, 88, 454
conformal rescaling, 119, 454
conformal transformations, 82, 458, 622
conformally invariant, 121, 458
congruence, 33
conjugate subgroup, 292
conjugation, 259, 290, 292
connected space, 239
connected component of the identity, 240
connected components, 202, 239
connection form, 406, 528, 561
connection on a principal G-bundle, 559
conserved quantity, 347, 450
constraint 1-form, 531
constraints, 62
contact form, 520
contact structure, 520
continuity equation, 167, 438
continuous map, 5, 6
contour, 156, 166
contractible manifold, 192
contraction, 39, 277
contraction tensor, 48
contragredient representation, 248
coordinate basis, 27, 29, 47, 78
coordinate curves, 25
coordinate patch, 8
coordinate presentation, 12, 22
cotangent bundle, 481, 484
cotangent space, 45
coupling constant, 616
covariant, 57
covariant codifferential, 610
covariant derivative, 375, 591
covariant divergence, 416, 449, 459
covariant functor, 486
covariant gradient, 379
covariantly constant, 380
covariantly constant frame field, 425
covectors, 34, 45
covering, 300
covering homomorphism, 300
curl, 181
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current density, 437
curvature form, 407, 568
curvature operator, 401
curvature tensor, 403
curve, 22
curvilinear coordinates, 9
cycles, 199
cyclic coordinate, 509

d’Alembert operator, 434
Darboux theorem, 337
decomposable, 124
decomposition of unity, 258
deformation retract, 202
degenerate parallelepiped, 94
degree of a form, 102
densities of physical quantities, 160
density operator, 359
deRham complex, 199
derivation, 72, 677, 678
derivation of degree +1, 567
derivation of degree k, 131, 680
derivation of the algebra of functions, 28
derivation of the Cartan algebra, 131
derivation of the tensor algebra, 72
derivations of the Lie algebra, 286
derived homomorphism, 230
derived representation, 247
determinant, 110
determinant of a linear map, 116, 117
diffeomorphic manifolds, 13
diffeomorphism, 13, 205
differentiable map, 6
differential of a complex, 199
differential forms, 93
differential forms of type ρ̂, 320
differential of a map, 55
dilation field, 494
dimension of the representation, 245
Dirac equation, 637
Dirac operator, 637, 664
Dirac representation, 652
Dirac spinors, 652
Dirac–Kähler operator, 666
direct product of representations, 274
direct product of the groups, 269
direct sum, 38, 209, 274, 673, 677, 679
direct sum of Lie algebras, 270
directional derivative, 25
Dirichlet boundary condition, 178
Dirichlet problem, 176
discrete topology, 5
displacement (field), 90
distinguished frames, 583
divergence of a vector field, 166, 181,

344
dotted spinor, 308
dual basis, 34
dual map, 44
dual representation, 248

dual space, 34
duality operator, 118

effective action of a group, 318
effective potential energy, 517
Einstein equations, 458
Einstein tensor, 458
Einstein’s vacuum equations, 461
Einstein 1-forms, 464
Einstein–Cartan theory, 462
electric charge conservation, 438
electrostatics, 440
embedding, 14, 60
embedding theorem, 15
endomorphisms, 232
energy, 503
energy of the field, 451
energy–momentum tensor, 449, 458, 621
entropy, 538
equations of parallel transport, 378, 381, 602, 605
equivalence principle, 456
equivalent representations, 254
equivalent bundles, 483, 553
equivariant map, 253, 293, 296, 351, 545, 546, 553,

555
equivariant functions, 565
equivariant isomorphism, 254
Euclidean group, 273, 509
Euclidean p-simplex, 147
Euclidean space, 50, 84
Euclidean transformations, 84, 315
Euler angles, 242
Euler–Lagrange 1-form, 399, 447
Euler–Lagrange expression, 392, 504
Euler–Lagrange field, 503
exact element, 199
exact Cartan symmetry, 346, 508, 625
exact form, 190
exact symplectic form, 330
exponential group, 240
exponential map, 228, 395
extended phase space, 518
extension of the bundle, 582
exterior algebra, 102, 112
exterior covariant derivative, 566
exterior derivative, 130
exterior product, 97, 140

factor-algebra, 104, 677
factor space, 201
faithful representation, 249
Faraday’s law of induction, 439
fiber bundle, 482
fiber over a point, 482
fibered manifold, 482
fibered map, 483
field of type ρ, 548
finitely generated module, 30
first law of thermodynamics, 537
fixed point, 67, 291
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flat space, 455
flat connection, 425, 470
flat torus, 61
flow, 33
form of type ρ, 562
forms, 93, 95
Foucault angle, 406, 418
Foucault pendulum, 387
Fourier expansion, 322
four-potential, 441
frame bundle, 526
frame field, 79
free action, 318, 526, 552
Frobenius’ theorem, 533
function on a manifold, 22
functional of the length, 394, 399
fundamental field of the action Rg , 312
fundamental representations, 308

gauge condition, 194
gauge field strength, 592, 610
gauge field theory, 587
gauge group, 587
gauge invariant, 443, 608
gauge potential, 591, 592, 601
gauge transformations, 441, 587, 595, 597
Gauss’ law, 439
Gauss’ theorem, 168, 182
Gaussian curvature, 412
Gaussian integral, 112
generalized coordinates, 62
generalized force, 393
generalized potential energy, 513
generating function, 339
generator of the action, 312
generators of an algebra, 103
generators of a module, 30
generators of a representation, 246
geodesic deviation, 421
geodesic equation, 390
geodesic neighborhood, 395
geodesics, 372, 512
global gauge transformations, 591, 595
global trivialization, 483, 553
globalize, 48
globally Hamiltonian action, 350, 356, 508
graded algebra, 39, 102, 680
graded commutative, 97, 127
graded commutator, 128
graded Lie algebra, 128, 680
gradient, 47, 52, 181
graph of a map, 14
gravitino, 663
Green identities, 177
Green’s theorem, 165

Hamilton equations, 33, 520
Hamiltonian, 329, 359
Hamiltonian field, 328, 331, 502
Hamiltonian flow, 334

Hamiltonian system, 338, 502
harmonic form, 187, 188
harmonic function, 176, 470
harmonic maps, 471
Hausdorff space, 6
heat 1-form, 536
Heisenberg picture, 335
Hermitian scalar product, 208
Hilbert action, 460
Hodge operator, 118
holomorphic function, 88, 186, 188
holonomy, 406
holonomy group, 406
homeomorphism, 5
homogeneous sensor, 87
homogeneous coordinates, 10
homogeneous of degree k, 494
homogeneous space, 291, 295, 552
homogeneous symplectic spaces, 356
homogeneous terms, 38, 102
homologies, 199
homomorphism theorem, 299
homotheties, 82
homotopic paths, 573
homotopic maps, 193
homotopic to zero, 574
homotopy, 193, 573
homotopy operator, 193, 198
Hopf bundle, 555, 557, 559, 656
Hopf mapping, 13
horizontal curve, 544
horizontal distribution, 540
horizontal forms, 363, 566
horizontal forms of type ρ, 663
horizontal lift of a vector, 540, 544, 564
horizontal lift of a curve, 544, 564
horizontal section, 575
horizontal subspace, 540, 559
horizontal vectors, 540, 561
horizontality, 544
hypersurface, 17

ideal, 273, 332, 346, 365, 677, 678
immersion, 13, 60
in involution, 347
incompressible, 344
index gymnastics, 42, 98, 388
induced metric tensor, 44, 60
inhomogeneous form, 102, 112
inner automorphism, 259, 678
inner derivation, 678
integrability condition, 535
integral curve, 31
integral invariants, 342
integrals of the first kind, 160
integrals of the second kind, 160
interaction term, 442, 446
interior product, 331
intertwining operator, 253, 277
invariant tensor field, 71
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invariant complement, 252
invariant form, 341
invariant subgroup, 298
invariant subspace, 252
invariant tensors, 279
inversions (time and space), 457
irreducible representation, 252
isometry, 7, 42, 81, 82, 471, 622
isotropic, 87

Jacobi identity, 334
Jacobi’s equation, 421
Jacobian matrix, 14

Killing equations, 83, 398
Killing vector, 83, 314, 450, 512, 514
Killing–Cartan form, 263
kinetic energy, 51, 511
kinetic term, 442, 445
Klein bottle, 19
Klein–Gordon equation, 445
Kähler fermions, 666
Kähler–Atiyah algebra, 639

Lagrange equations, 393, 500
Lagrange theorem, 295
Lagrangian density, 442
Lamé coefficients, 183
Laplace equation, 176
Laplace–Beltrami operator, 174, 416
Laplace–deRham operator, 173
left G-space, 289
left action, 289
left coset, 294
left regular representation, 311
left translation, 214, 314
left-invariant, 215
left-invariant metric tensor, 266
Legendre map, 505
length of a curve, 51, 52, 81
level surface, 16
Levi-Civita connection, 385
Levi-Civita symbol, 107
Lie algebra, 74, 75, 223, 678
Lie algebra cohomologies, 284
Lie bracket, 74
Lie derivative, 65, 71
Lie dragging, 70, 71
Lie factor-algebra, 678
Lie group, 212, 213
Lie subgroup, 213
Lie superalgebra, 128, 680
Lie transport, 70
lift, 488
lift of a linear map, 117
lift of a map, 485
lift of a action of a group, 508
linear connection, 375
linear field, 579
linear forms, 34

linear functional, 26
linear operator, 28, 70
linear space, 673
linear-fractional transformation, 297
lines of force field, 30
Liouville equation, 359
Liouville field, 494, 511
Liouville form, 343
Liouville’s theorem, 344
little group, 292
local coordinates, 8
local flow, 65
local gauge transformations, 589, 590, 591, 595
local homeomorphism, 300
local Lorentz transformations, 466
local product structure, 482
local section, 484, 528
local trivialization, 482
locally gauge invariant, 609
locally isometric, 86
locally trivial, 483
Lorentz (4-)force, 447
Lorentz force, 447
Lorentz gauge condition, 446
Lorentz group, 206, 254, 304
Lorentzian manifold, 49, 455
lowering of indices, 42
loxodrome, 61, 424

magnetostatics, 440
main automorphism, 103
Majorana representation, 651
Majorana–Weyl spinors, 654
manifold of frames, 525
map, 7
mass density, 167
mass term, 445
matrix algebra, 676
matrix group, 213
matter field, 592, 612
Maurer–Cartan 1-form, 224
Maurer–Cartan formula, 224
maximal Ck -atlas, 8
Maxwell’s equations, 438
Maxwell’s displacement current, 439
mean value, 161
metric connection, 383
metric tensor, 40, 577
metric volume form, 114, 115
minimal coupling, 593, 609
minimal interaction, 609
Minkowski space, 50, 430
mixed states, 333, 360
module, 29
modulo 2, 105
moment map, 353, 508
momentum of a field, 451
morphism, 59, 566
morphism of Cartan algebras, 127
morphism of vector bundles, 486



Index 695

morphism of principal bundles, 581
multi-valued representations, 308
multilinear map, 36
multiplication table, 215
Möbius band, 134
Möbius transformation, 297

Nambu and Goto, 476
natural Lagrangian, 511
natural lift of the curve, 488, 521
natural parameter, 394, 446
natural with respect to diffeomorphisms, 174, 448, 622
Neumann boundary condition, 178
Newton–Leibniz formula, 164
Nijenhuis tensor, 503
nilpotent, 147, 150, 199, 284
Noether currents, 619
Noether’s theorem, 618
Noether charges, 619
no magnetic poles, 439
non-Abelian gauge group, 612
non-coordinate, 80
non-degenerate Poisson tensor, 330
non-degenerate Lagrangian, 502
non-holonomic frame field, 80
non-linear field, 467, 579
non-linear realizations, 289
non-linear sigma model, 467
non-orientable manifolds, 135
non-singular Lagrangian, 502
normal coordinates, 228, 396
normal derivative, 177
normal subgroup, 298

observables, 333
odd parameters, 128
odd with respect to chirality, 670
of type Ad, 562
one-parameter group of transformations, 67
one-parameter subgroups, 225
open covering, 8
open sets, 5
operator of parallel transport, 378, 381
operator of the square of the angular momentum, 266
operators of spin, 318
orbit, 291
orbital angular momentum, 314
order of a (finite) group, 215
orientable, 17, 135, 216, 543, 628
orientation in L , 106
oriented atlas, 135
oriented volume, 94
orthogonal complement, 253
orthogonal coordinates, 50
orthogonal group, 206
orthogonal matrices, 206
orthogonal transformation, 646
orthonormal basis, 41
outer normal, 156
overdetermined system, 82

p-chain on a manifold, 149
p-chains, 147
p-form, 95
p-forms on a manifold, 126
parallel transport, 378, 381, 565, 605
parallelizable, 204, 216, 543, 628
parametric expression, 17
parametrization, 22
path, 32, 52
Pauli matrices, 237, 281, 654
Pfaffian, 111
Pfaffian forms, 537
phase flow, 334
phase space, 333, 338, 508, 510
phase volume, 343
Poincaré group, 273
Poincaré lemma, 191, 194
Poincaré transformations, 84
point transformations, 481
pointwise construction, 46
pointwise combination, 29
Poisson action, 354, 356, 361, 508
Poisson bracket, 328
Poisson equation, 177, 178
Poisson manifold, 328
Poisson tensor, 328
polar decomposition, 305
polarization vector, 360
pole, 188
Polyakov action, 476
polylinear map, 36
positive definite, 40
potential, 190, 441
potential energy, 52, 511
potential force field, 52
power of the electric field, 447
preserves orientation, 154
principal G-bundle, 526, 551
principal homogeneous space, 296, 526, 552
Proca equation, 445
product bundle, 482, 534
product principal bundle, 552
projectable field, 56, 230
projective space, 10
projector, 96, 258
prolongation of a bundle, 582, 655
proper Lorentz group, 647
proper orthochronous Lorentz, 304
proper orthochronous Lorentz group, 554
proper time, 446
pseudo-Euclidean space, 50, 84
pseudo-metric, 40
pseudo-orthogonal group, 205
pseudo-orthogonal matrices, 206
pseudo-Riemannian, 49
pseudo-unitary matrices, 208
pseudosphere, 61
pull-back, 55, 57, 58
pure states, 333, 360
push-forward, 55, 58
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quadratic Casimir operator, 266
quantity of type ρ, 547, 565, 605
quasi-linear equations, 32
quaternions, 677

raising of indices, 42
rank of a tensor, 37
rank of a linear map, 44
rank of a 2-form, 330
rank of a bivector, 330
rank of a form, 124
Rarita–Schwinger field, 663
rate of deformation tensor, 90
reduced field, 364
reduced Hamiltonian system, 365
reduced phase space, 364
reduced symplectic manifold, 364
reducible representation, 252
reduction by a group G, 364
reduction of a bundle, 582
regular Lagrangian, 502
relative acceleration, 420
relative invariance, 342
relative velocity, 420
reparametrization, 52
reparametrization invariant, 52, 475
reparametrized curve, 32
representation of a group, 245
representation of a Lie algebra, 246
residue, 188
restrict a form, 157
restriction of a representation, 252
restriction of an action, 291
restriction of a bundle, 578, 582
restriction of a structure group, 578
restriction on a subgroup, 246
Ricci coefficients of rotation, 417, 665
Ricci forms, 459
Ricci identity, 415, 572, 598
Ricci-flat, 462
Ricci tensor, 404
Riemann connection, 385
Riemann tensor, 403
Riemannian geometry, 49
Riemannian manifold, 49
right G-space, 289
right action, 114, 289
right and left spinors, 653
right regular representation, 311
right translation, 313
right-invariant volume form, 251
RLC connection, 385
rotational matrices, 323

scalar curvature, 404
scalar density, 113, 137, 547, 632
scalar density of weight λ, 633
scalar electrodynamics, 589
scalar field, 444, 468
scalar fields, 470

scalar potential, 441
scalar product, 40, 120, 172
Schrödinger picture, 335
Schur lemma, 255
second law of thermodynamics, 537
second-order differential equation fields, 500
section, 484, 528, 534
self-adjoint operator, 173
self-dual form, 187
self-interaction, 612
semi-simple Lie algebras, 265
semidirect product of the groups, 272
semidirect sum of the Lie algebras, 273
simply connected, 300
singular chains, 200
smooth map, 6
smooth covector field, 46
smooth action, 290
smooth constraints, 16
smooth distribution in a domain O, 531
smooth manifolds, 8
smooth structure, 8
smooth vector field, 28
soap bubbles, 475
soldering, 551
space-like hypersurface, 61
space-time, 50, 430, 458
spatial codifferential, 434
spatial domain, 435
spatial exterior derivative, 432
spatial forms, 431
spatial Hodge operator, 433
spatial Laplace–deRham operator, 434
spatial Stokes’ theorem, 435
special unitary, 209
spherical harmonics, 322
spin bundle, 583, 655
spin connection, 417, 658, 665
spin frame bundle, 655
spin structure, 655
spinor field, 467
spinor field on the base, 657
spinor group of E p,q , 645
spinor indices, 662
spinor representation, 304, 308, 650
spinors, 304, 650
square of the angular momentum, 324
stabilizer, 292
standard n-simplex in, 148
standard (flat) metric tensor, 49
standard horizontal fields, 543
standard orientation, 134
standard smooth structure, 9
standard topology in R

n , 6
state quantity, 190, 537
stationary flow, 33, 167
stationary subgroup, 292
stereographic projection, 9
Stokes’ theorem, 157, 182, 197
straightening out lemma, 69
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strain tensor, 90
strain-rate tensor, 90
stress tensor, 90
string theory, 476
structure constants, 223, 668, 677, 678
subalgebra, 677, 678
subbundle, 578
submanifold, 14
subrepresentation, 252
superalgebra, 680
supercommutator, 128, 680
supermathematics, 105
Sylvester’s theorem, 41
symmetric connection, 384
symmetrization, 98
symplectic action, 349
symplectic fields, 331
symplectic form, 330, 355
symplectic group, 206
symplectic manifold, 330, 502
symplectic map, 335
symplectic orthogonal complements, 361
symplectic reduction, 514
symplectomorphism, 335
symplectomorphisms, 334

tangent bundle, 481, 484
tangent functor, 486, 491
tangent map, 55
tangent space, 24
tangent vector, 31
teleparallelism, 425
tensor algebra, 38
tensor bundle, 607
tensor densities of weight λ, 547
tensor field, 45, 548
tensor fields of type ρ̂, 320
tensor operations, 39
tensor product of tensors, 37
tensor product of linear spaces, 143, 674
tensor product of matrices, 675
tensor product of algebras, 677
tetrad field, 79, 417, 463, 665
tetrad formalism, 79, 417
tetrad postulate, 417
theory of angular momentum, 265
thermodynamics, 536
time development of a system, 502
time development of the observables, 335
time development of the states, 335
topological space, 5
topology, 4
torsion, 384, 627
torsion 2-forms, 407, 628
torsion tensor, 384
torsion-free, 384

torus, 13, 18, 19
total angular momentum, 318
total space of a bundle, 482
transitive action, 291, 526, 552
trivial bundle, 483, 553
trivial representation, 284
trivial topology, 5
twisted adjoint representation, 646
two-level system, 359
two-sheeted covering, 301, 647
two-sided ideal, 103
two-valued representation, 309
typical fiber, 482

undotted spinor, 308
uniform straight-line, 370
unimodular frames, 584
unitary matrices, 208
unitary representation, 250
universal covering, 647
universal covering group, 300

variation, 442
variation of the initial conditions, 419
variational derivative, 443
vector bundle, 484, 553, 607
vector field, 28, 445
vector of spin, 360
vector potential, 441
vector product, 182
velocity field, 90, 167
vertical action, 362, 526
vertical vector, 362, 487
vertical distribution, 538
vertical endomorphism, 495, 501
vertical lift of a vector, 489
vertical lift a tensor, 490
vertical lift of a covector, 492
vertical subspace, 487, 527, 538, 559
vielbein field, 79, 417, 463, 475, 665
volume, 93
volume form, 112, 136, 206, 343
volume of a domain, 155, 159, 473
volume of a submanifold, 161

wave operator, 434
Weyl basis, 218
Weyl spinors, 653
Wigner rotational functions, 323
work done by the force, 195
work 1-form, 536
world-line, 446, 476
world-sheet, 476

zero points, 67
zero section, 553
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