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Preface

This is an introductory text dealing with a part of mathematics: modern differential geometry
and the theory of Lie groups. It is written from the perspective of and mainly for the needs
of physicists. The orientation on physics makes itself felt in the choice of material, in the
way it is presented (e.g. with no use of a definition—-theorem—proof scheme), as well as in
the content of exercises (often they are closely related to physics).

Its potential readership does not, however, consist of physicists alone. Since the book
is about mathematics, and since physics has served for a fairly long time as a rich source
of inspiration for mathematics, it might be useful for the mathematical community as
well. More generally, it is suitable for anybody who has some (rather modest) preliminary
background knowledge (to be specified in a while) and who desires to become familiar in
a comprehensible way with this interesting, important and living subject, which penetrates
increasingly into various branches of modern theoretical physics, “pure” mathematics itself,
as well as into its numerous applications.

So, what is the minimal background knowledge necessary for a meaningful study of this
book? As mentioned above, the demands are fairly modest. Indeed, the required mathe-
matical background knowledge does not go beyond what should be familiar from standard
introductory undergraduate mathematics courses taken by physics or even engineering ma-
jors. This, in particular, includes some calculus as well as linear algebra (the reader should
be familiar with things like partial derivatives, several variables Taylor expansion, multiple
Riemann integral, linear maps versus matrices, bases and subspaces of a linear space and
so on). Some experience in writing and solving simple systems of ordinary differential
equations, as well as a clear understanding of what is actually behind this activity, is highly
desirable. Necessary basics in algebra in the form used in the main text are concisely sum-
marized in Appendix A at the end of the book, enabling the reader to fill particular gaps
“on the run,” too.

The book is intentionally written in a form which makes it possible to be fully grasped
also by a self-taught person — anybody who is attracted by tensor and spinor fields or by fiber
bundles, who would like to learn how differential forms are differentiated and integrated,
who wants to see how symmetries are related to Lie groups and algebras as well as to
their representations, what is curvature and torsion, why symplectic geometry is useful in
Lagrangian and Hamiltonian mechanics, in what sense connections and gauge fields realize

xi
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the same idea, how Noetherian currents emerge and how they are related to conservation
laws, etc.

Clearly, it is highly advantageous, as the scope of the book indicates, to be familiar (at
least superficially) with the relevant parts of physics on which the applications of various
techniques are illustrated. However, one may derive profit from the book (in terms of geom-
etry alone) even with no background from physics. If we have never seen, say, Maxwell’s
equations and we are not aware at all of their role in physics, then although we will not be able
to understand why such attention is paid to them, nevertheless we will understand perfectly
what we do with these equations here from the technical point of view. We will see how
these partial differential equations may be reformulated in terms of differential forms, what
the action integral looks like in this particular case, how conservation laws may be derived
from it by means of the energy—momentum tensor and so on. And if we find it interesting,
we may hopefully also learn some “traditional” material on electrodynamics later.

If we, in like manner, know nothing about general relativity, then although we will not
understand from where the concept of a “curved” space-time endowed with a metric tensor
emerged, still we will learn the basics of what space-time is from a geometrical point of view
and what is generally done there. We will not penetrate into the physical heart of the Einstein
equations for the gravitational field, we will see, however, their formal structure and we will
learn some simple, though at the same time powerful, techniques for routine manipulations
with these equations. Mastering this machinery then greatly facilitates grasping the physical
side of the theory, if later we were to read something written about general relativity from
the physical perspective.

The key qualification asked of the future reader is a real interest in learning the subject
treated in the book not only in a Platonic way (say, for the sake of an intellectual conversation
at a party) but rather at a working level. Needless to say, one then has to accept a natural con-
sequence: it is not possible to achieve this objective by a passive reading of a “noble science”
alone. On the contrary, a fairly large amount of “dirty” self-activity is needed (an ideal poten-
tial reader should be pleased by reading this fact), inevitably combined with due investment
of time. The formal organization of the book strongly promotes this method of study.

A specific feature of the book is its strong emphasis on developing the general theory
through a large number of simple exercises (more than a thousand of them), in which the
reader analyzes “in a hands-on fashion” various details of a “theory” as well as plenty of
concrete examples (the proof of the pudding is in the eating). This style is highly appreciated,
according to my teaching experience, by many students.

The beginning of an exercise is indicated by a box containing its number (as an example,
denotes the third exercise in Section 4, Chapter 14), the end of the exercise is marked
by a square . The majority of exercises (around 900) are endowed with a hint (often quite
detailed) and some of them, around 50, with a worked solution. The symbol e marks the
beginning of “text,” which is not an exercise (a “theory” or a comment to exercises). Starred
sections (like 12.6*) as well as starred exercises may be omitted at the first reading (they
may be regarded as a complement to the “hard core” of the book; actually they need not be
harder but more specific material is often treated there).
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This book contains a fairly large amount of material, so that a few words might be useful
on how to read it efficiently. There are several ways to proceed, depending on what we
actually need and how much time and effort we are willing to devote to the study.

The basic way, which we recommend the most, consists in reading systematically from
cover to cover and solving (nearly) all the problems step by step. This is the way in which we
may make full use of the text. The subject may be understood in sufficient broadness, with a
lot of interrelations and applications. This needs, however, enough motivation and patience.

If we lack either, we may proceed differently. Namely, we will solve in detail only those
problems which we, for some reason, regard as particularly interesting or from which we
crucially need the result. Proceeding in this way, it may happen here and there that we will
not be able to solve some problem; we are lacking some vital link (knowledge or possibly
a skill) treated in the material being omitted. If we are able to locate the missing link (the
numbers of useful previous exercises, mentioned in hints, might help in doing so), we simply
fill this gap at the relevant point.

Yet more quickly will proceed a reader who decides to restrict their study to a particular
direction of interest and who is interested in the rest of the book only to the extent that it
is important for his or her preferred direction. As an aid to such a reader we present here a
scheme showing the logical dependence of the chapters:

1 2 53— 4 15 19— 20 —> 21—~ 22
12
1(& ~—y

1n—"
§—16
9
5 6 7 14 17— 18

(The scheme does not represent the dependence completely; several sections, short parts
or even individual exercises would require the drawing of additional arrows, making the
scheme then, however, virtually worthless.)

To be more explicit, one could mention the following possible particular directions of
interest.

1. The geometry needed for the fundamentals of gener al r el ativity (covariant derivatives, curvature
tensor, geodesics, etc.).

One should follow the line 1 - 2 — 3 — 4 — 15 (similar material goes well with advanced
continuum mechanics). If we want to master working with forms, too (to grasp, as an example,
Section 15.6, dealing with the computation of the Riemann tensor in terms of Cartan’s structure
equations, or Section 16.5 on Einstein’s equations and their derivation from an action integral), we
have to add Chapters 5-7.

2. Elementary theory of Lie groups and their representations (“(differential) geometry-free mini-
course”).

The route might contain the chapters (or only the explicitly mentioned sections of some of them)
1—>24— 10— 11.7 > 12 - 13.1-13.3.
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3. Hamiltonian mechanics and symplectic manifolds.
The minimal itinerary contains Chapters 1| — 2 — 3 — beginning of4 — 5 — 6 — 7 — 14.
Its extension (the formulation of Lagrangian and Hamiltonian mechanics on the fiber bundles T M
and T*M respectively) takes place in Chapters 17 and 18. If we have the ambition to follow the
more advanced sections on symmetries (Sections 14.5-14.7 and 18.4), we need to understand the
geometry on Lie groups and the actions of Lie groups on manifolds (Chapters 11-13).
4. Basics of working with differential forms.
The route couldbe 1 — 2 — 3 — beginningof4 — 5 — 6 — 7 — 8 — 9, or perhaps adding
the beginning of Chapter 16.

This book stems from (and in turn covers) several courses I started to give roughly 15
years ago for theoretical physics students at the Faculty of Mathematics and Physics in
Bratislava. It has been, however, extended (for the convenience of those smart students
who are interested in a broader scope on the subject) as well as polished a bit (although
its presentation often still resembles more the style of informal lectures than that of a dry
“noble-science monograph”). In order to mention an example of how the book may be
used by ateacher, let me briefly note what four particular formal cour ses are covered by
the book. The first, fairly broad one, is compulsory and it corresponds roughly to (parts of)
Chapters 1-9 and 14—16. Thus it is devoted to the essentials of general differential geometry
and an outline of its principal applications. The other three courses are optional and they
treat more specific parts of the subject. Namely, (elementary) Lie groups and algebras and
their representations (it reproduces more or less the “particular direction of interest” number
2, mentioned above), geometrical methods in classical mechanics (the rest of Chapter 14
and Chapters 17 and 18) and connections and gauge fields (Chapters 19-21).

I have benefited from numerous discussions about geometry in physics with colleagues
from the Department of Theoretical Physics, in particular with Palo Severa and Vlado Balek.

I thank Pavel Béna for his critical comments on the Slovak edition of the book, Vlado
Buzek and Vlado Cerny for constant encouragement during the course of the work and the
former also for the idea to publish it abroad.

Thanks are due to E. Bartos, J. Busa, V. Cerny, J. Hitzinger, J. Chlebikov4, E. Masar,
E. Saller, S. Slisz and A. Surda for helping me navigate the troubled waters of computer
typesetting (in particular through the subtleties of TgX) and to my sons, Stanko and Mirko,
for drawing the figures (in TgX).

I would like to thank the helpful and patient people of Cambridge University Press,
particularly Tamsin van Essen, Vincent Higgs, Emma Pearce and Simon Capelin. I would
also like to thank all the (anonymous) referees of Cambridge University Press for valuable
comments and suggestions (e.g. for the idea to complement the summaries of the individual
chapters by a list of the most relevant formulas).

I am indebted to Arthur Greenspoon for careful reading of the manuscript. He helped to
smooth out various pieces of the text which had hardly been continuous before.

Finally, I wish to thank my wife, L’ubka, and my children, Stanko, Mirko and Danka,
for the considerable amount of patience displayed during the years it took me to write this
book.
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I tried hard to make Differential Geometry and Lie Groups for Physicists error-free,
but spotting mistakes in one’s own writing can be difficult in a book-length work. If you
notice any errors in the book or have suggestions for improvements, please let me know
(fecko@fmph.uniba.sk). Errors reported to me (or found by myself) will be listed at my
web page

http://sophia.dtp.fmph.uniba.sk/ fecko
Bratislava Marian Fecko






Introduction

In physics every now and then one needs something to differentiate or integrate. This is the
reason why a novice in the field is simultaneously initiated into the secrets of differential
and integral calculus.

One starts with functions of a single variable, then several variables occur. Multiple
integrals and partial derivatives arrive on the scene, and one calculates plenty of them on
the drilling ground in order to survive in the battlefield.

However, if we scan carefully the structure of expressions containing partial derivatives
in real physics formulas, we observe that some combinations are found fairly often, but
other ones practically never occur. If, for example, the frequency of the expressions

82f+82f+82f d 83f+82f +48f
oy 2 %0 g 22 a2
axz 9y 9z ax3  9yoz 0z

is compared, we come to the result that the first one (Laplace operator applied to a function
f) is met very often, while the second one may be found only in problem books on calculus
(where it occurs for didactic reasons alone). Combinations which do enter real physics
books, result, as a rule, from a computation which realizes some visual local geometrical
conception corresponding to the problem under consideration (like a phenomenological
description of diffusion of matter in a homogeneous medium). These very conceptions
constitute the subject of a systematic study of local differential geometry. In accordance
with physical experience it is observed there that there is a fairly small number of truly
interesting (and, consequently, frequently met) operations to be studied in detail (which is
good news — they can be mastered in a reasonably short time).

We know from our experience in general physics that the same situation may be treated
using various kinds of coordinates (Cartesian, spherical polar, cylindrical, etc.) and it is
clear from the context that the result certainly does not depend on the choice of coordinates
(which is, however, far from being true concerning the Sweat involved in the computation —
the very reason a careful choice of coordinates is a part of wise strategy in solving problems).
Thus, both objects and operations on them are independent of the choice of coordinates
used to describe them. It should be not surprising, then, that in a properly built formalism a
great deal of the work may be performed using no coordinates whatsoever (just what part of
the computation it is depends both on the problem and on the level of mastery of a particular
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user). There are several advantages which should be mentioned in favor of these “abstract”
(coordinate-free) computations. They tend to be considerably shorter and more transparent,
making repeated checking, as an example, much easier, individual steps may be better un-
derstood visually and so on. Consider, in order to illustrate this fact, the following equations:

L:g=0 < Ekgij,k-l—élfigkj +f|fjgik=0
Vyy =0 < R+ T xIxk =0
Vg=0 < Oijk—Tijk—Tjik=0

We will learn step by step in this book that the pairs of equations standing on the left and on
the right side of the same line always tell us just the same: the expression on the right may be
regarded as being obtained from that on the left by expressing it in (arbitrary) coordinates.

(The first line represents Killing equations; they tell us that the Lie derivative of g along
& vanishes, i.e. that the metric tensor g has a symmetry given by a vector field &£. The second
one defines particular curves called geodesics, representing uniform motion in a straight
line (= its acceleration vanishes). The third one encodes the fact that a linear connection is
metric; it says that a scalar product of vectors remains unchanged under parallel translation.)

In spite of the highly efficient way of writing of the coordinate versions of the equations
(partial derivatives via commas and the summation convention — we sum on indices repeat-
ing twice (dummy indices) omitting the Y sign), it is clear that they can hardly compete
with the left side’s brevity. Thus if we will be able to reliably manipulate the objects occur-
ring on the left, we gain an ability to manipulate (indirectly) fairly complicated expressions
containing partial derivatives, always keeping under control what we actually do.

At the introductory level calculus used to be developed in Cartesian space R" or in open
domains in R". In numerous cases, however, we apply the calculus in spaces which are not
open domains in R", although they are “very close” to them.

In analytical mechanics, as an example, we study the motion of pendulums by solving
(differential) Lagrange equations for coordinates introduced in the pendulum’s configuration
spaces, regarded as functions of time. These configuration spaces are not, however, open
domains in R". Take a simple pendulum swinging in a plane. Its configuration space is
clearly a circle S'. Although this is a one-dimensional space, it is intuitively clear (and one
may prove) that it is essentially different from (an open setin) R'. Similarly the configuration
space of a spherical pendulum happens to be the two-dimensional sphere S?, which differs
from (an open set in) R?.

Notice, however, that a sufficiently small neighborhood of an arbitrary point on S' or
S is practically indistinguishable from a sufficiently small neighborhood of an arbitrary
point in R! or R? respectively; they are in a sense “locally equal,” the difference being
“only global.” Various applications of mathematical analysis (including those in physics)
thus strongly motivate its extension to more general spaces than those which are simple
open domains in R".

Such more general spaces are provided by smooth manifolds. Loosely speaking they
are spaces which a short-sighted observer regards as R" (for suitable n), but globally
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(“topologically,” when a pair of spectacles are found at last) their structure may differ
profoundly from R".

We can regard as an enjoyable bonus the fact that the formalism, which will be developed
in order to perform coordinate-free computations, happens to be at the same time (free of
charge) well suited to treating global geometrical problems, too, i.e. we may study the objects
and operations on them, being well defined on the manifold as a whole. Therefore, we speak
sometimes about global analysis, or the analysis on manifolds. All the above-mentioned
equations £;,9g =0, V,y =0 and Vg = 0 represent, to give an example, equations on
manifolds and their solutions may be defined as objects living on manifolds, too.

The key concept of a manifold itself will be introduced in Chapter 1. The exposition is
mainly at the intuitive level. A good deal of material treated in detail in mathematical texts
on differential topology will only be mentioned in a fairly informative way or will even be
omitted completely. The aim of this introductory chapter is to provide the reader with a
minimal amount of material which is necessary to grasp (fully, already at the working level)
the main topic of the book, which is differential geometry on manifolds.



1

The concept of a manifold

e The purpose of this chapter is to introduce the concept of a smooth manifold, including
the ABCs of the technical side of its description. The main idea is to regard a manifold as
being “glued-up” from several pieces, all of them being very simple (open domains in R").
The notions of a chart (local coordinates) and an atlas serve as essential formal tools in
achieving this objective.

In the introductory section we also briefly touch upon the concept of a topological space,
but for the level of knowledge of manifold theory we need in this book it will not be used
later in any non-trivial way.

(From the didactic point of view our exposition leans heavily on recent scientific knowl-
edge, for the most part on ethnological studies of Amazon Basin Indians. The studies proved
convincingly that even those prodigious virtuosos of the art of survival within wild jungle
conditions make do with only intuitive knowledge of smooth manifolds and the medicine-
men were the only members within the tribe who were (here and there) able to declaim
some formal definitions. The fact, to give an example, that the topological space underlying
the smooth manifold should be Hausdorff was observed to be told to a tribe member just
before death and as eyewitnesses reported, when the medicine-man embarked on analyzing
examples of non-Hausdorff spaces, the horrified individual preferred to leave his or her soul
to God’s hands as soon as possible.)

1.1 Topology and continuous maps

e Topology is a useful structure a set may be endowed with (and at the same time the
branch of mathematics dealing with these things). It enables one to speak about continuous
maps. Namely, in order to introduce a topology on a set X, one has to choose a system {7}
of subsets 7 of the set X, such that

1. 0 e{r}, X e{t};
2. the union (of an arbitrary number) of elements from {7} is again in {t};
3. the intersection of a finite number of elements from {r} is again in {t}.

(So that the system necessarily contains the empty set as well as the set X itself, and is
closed with respect to arbitrary unions and finite intersections.) The elements of {t} are
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called open sets and the pair (X, {t}) is a topological space. Given two topological spaces
(X, {r}) and (¥, {o'}), a map

f:X—>Y

is said to be continuous if f~'(A) € {r}forany A € {o}, that is to say if the inverse image'
of any open set is again an open set.> Moreover, if the map f happens to be bijective and
f~'is continuous as well, f is called a homeomorphism (topological map); X and Y are
then said to be homeomorphic.

Verify that the “weakest” (coarsest) possible topology on a set X is given by the trivial
topology, where ¢} and X represent the only open sets available, whereas the “strongest”
(finest) topology is the discrete topology, where every subset is open (in particular, this is
also true for every point x € X); all other topologies reside “somewhere between” these
two extreme possibilities.

Let {t},, {t}, be the trivial and the discrete topology respectively (1.1.1). Describe
all continuous maps

f . (Xs {‘C}a) - (Y7 {T}b) a, b € {07 1}

realizing thus that continuity of a map depends, in general, on the choice of topologies
both on X and Y. (For a = 1 (b arbitrary) and for a = 0 = b all maps are continuous; for
a = 0, b = 1 the only continuous maps are constant maps (x — Yo, the same for all x).)

Let
xLysz
f, g being continuous. Show that the composition map
gof:X—>Z
is continuous, too.

Check that the notion of homeomorphism introduces an equivalence relation among
topological spaces (reflexivity, symmetry and transitivity are to be verified).

e The reader may find it helpful to visualize homeomorphic spaces as being made of
rubber; Y can then be obtained from X by means of a deformation alone (neither cutting
nor gluing are allowed). Example: a circle, a square and a triangle are all homeomorphic,
the figure-of-eight symbol is not homeomorphic to the circle (provided that the intersection
in the middle of it is regarded as a single point).?

! Recall that f~! does not mean the inverse map here (this may not exist at all); f~'(A) denotes the collection of all elements in
X which f sends into A, i.e. the inverse image of the set A.

2 In elementary calculus continuity used to be defined in terms of distance; this turns out to be a particular case of the above
definition (the distance induces a topology, to be mentioned later).

3 Differential Topology by A.H. Wallace can be recommended as a nice introductory text about topology (see the Bibliography
for details).
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One usually restricts oneself (for purely technical reasons, in order not to allow for
manifolds of some fairly complicated objects that we do not want to be concerned with)
to Hausdorff topological spaces. In these spaces (by definition), given any two points x, y,
there exist non-intersecting neighborhoods of them (open sets A, B, suchthat x € A,y €
B, AN B = ); one can thus separate any two points by means of open sets. From now
on Hausdorff spaces will be understood automatically when speaking about topological
spaces.

The fact that the Cartesian space R" (ordered n-tuples of real numbers) represents a
topological space (where open sets coincide with those used in the elementary calculus of
n real variables) will be important in what follows.

Let d(x, y) be the standard Euclidean distance between two points x, y € R", i.e.
d*(x, ) o= (21 =y + - O = )
and let
D@, r):={x eR", d(x,a) <r}

(open ball = disk, centered at a, the radius being r). A set A € R” is open if for any point
x € A there exists an open ball centered at x which lies entirely in A. Check that this
definition of an open set meets the axioms of a topological space. This topology is called
the standard topology in R".

1.2 Classes of smoothness of maps of Cartesian spaces
e Let A be an open setin R"[x!, ..., x"] and
f:A—= Ry, ..., y"]
This means that we are given m functions of n variables
y = y*xt, L x") a=1,....,m

If all partial derivatives up to order k exist and are continuous, then f is called a map of
class C*. In particular, it is called continuous (k = 0), differentiable (k = 1), smooth
(k = 00) and (real) analytic (if for all x € A the Taylor series of y“(x) converges to the
function y“(x) itself: k = w). In general, there clearly holds

C%A,R") D C'(A,R") D - D C®(A,R") D C”(A,R"™).
Far less trivial is the fact that not a single inclusion is in fact equality.
Consider the function f : R — R, given by

f(x):e_% x>0
fx)=0 x=<0

Use this function to prove that in general C”(A, R™) # C*(A, R™).
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Hint: show, that f M) =0forn =0, 1,2, ...(sothatthe Taylor series in the neighborhood
of x = 0 gives a function which vanishes for positive x, t00).

1.3 Smooth structure, smooth manifold

e A tourist map may be regarded as a true map (in the mathematical sense of the word)
¢ : TD — SP

where TD is a tourist district and SP is a sheet of paper. If the sheet of paper happens to be
in fact in a square paper exercise book, we have another map

x : SP — R?[x!, x?]
and their composition results finally in
¥ : TD — R? V=yxo0p

For a good map i should be a bijection and this makes it possible to assign a pair of real
numbers — its coordinates — to any point in TD.

In an effort to map a bigger part of a country, an atlas* (a collection of maps) has proved
to be helpful. A good atlas should be consistent at all overlaps: if some part of the land
happens to be on two (or more) maps (close to the margins, as a rule), information obtained
from them must not be mutually contradictory.

If we enlarge the region to be mapped (district — country > continent, etc.), we first
observe annoying metric properties of the maps —the continents become (in comparison with
their shape on the globe) somewhat deformed and the intuitive estimation of the distances
becomes unreliable. This is a manifestation of the fact that i fails to be an isometry (see
Section 4.6); as a matter of fact such an isometry (of a part of the sphere to a part of a sheet
of paper) does not exist at all.’ Topologically, however, everything is still all right — even
if TD = all of America, v still remains a homeomorphism (the latter need not preserve
distances). But even this ceases to be the case abruptly at the moment we try to display
all the globe on a single map. It turns out, once again, that such a map (a bijective and
continuous map of a sphere onto a plane) does not exist; that is to say, more than one single
map — an atlas — is inevitable. An optimistic element in these contemplations lies in the fact
that in spite of the topological complexity of the sphere S? (as compared with the plane),
its mapping is fairly simple when an atlas containing several maps is used. In a similar way
one can construct (highly practical) atlases of some other two-dimensional surfaces, like
T? = the surface of a tire (repairmen in a tire service will then be happy to mark the exact
position of a puncture into this atlas) or the exotic (1.5.9) Klein bottle K? (appreciated by
orienteering fans, mainly in sci-fi).

# Atlas, the brother of Prometheus, hero of Greek mythology, keeps (as he used to do) the cope of heaven on his shoulders on the
title page of a series of detailed maps of various parts of Europe. They were published in 1595, one year after the death of the
author, Gerhard Kramer (Gerardus Mercator in Latin). Since then, every series of maps has been called an “atlas.”

3 There are several characteristics preserved by isometries and the sphere and the sheet of paper differ in some of them (see, e.g.,
the result of the computation of the Lie algebras of Killing fields in (4.6.10) and (4.6.13) or of the scalar curvature in (15.6.11)).
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The aim, now, will be to formalize the idea of an atlas. This will result in the definition
of the crucial concept of a smooth manifold.
Let (X, {r}) be a topological space and O C X an open set. A homeomorphism

0:0—=R'x', ..., x"]

is called a chart, or alternatively local coordinates.
Each point x € O C X is then uniquely associated
with an n-tuple of real numbers — its coordinates.
The set O is known as a coordinate patch in this
context. So far we have introduced coordinates in a
single coordinate patch —in O. If we want to assign
coordinates to all points from X, we need an open
covering { Oy } of the space X (i.e. |, Oy = X) and
local coordinates for each domain O,

Yo : Oy > R"

(n being the same for all ). A collection of charts A = {O,, ¢, } is called an atlas on X.
If the intersection O, N Op is non-empty, a map

<pﬂo<p;1:A—>R", A =9, (0O,NOg) CR"

called a change of coordinates is induced. Since it is a map of Cartesian spaces
(see Section 1.2), it makes sense to talk about its class of smoothness. Automatically (check
(1.1.3)) its class is C°, but it might be higher. If, given an atlas, all maps of this type happen
to be C* or higher, it is called a C*-atlas A.

An atlas may be supplemented by additional maps, provided that the consistency with
the maps already present is assured. A map

u:0—R"

is said to be C*-related (and it may be added to .A), if it is consistent with all maps (O, @)
on the intersections O N Oy, i.e. if the class of the map ¢, o =" is C¥ or higher. If a C*-atlas
A is supplemented consecutively with all maps, we are left with a unique maximal C*-atlas
A. This in turn endows X with a C*-structure. A pair (X, fl) is called an (n-dimensional) C*-
manifold (in particular, topological, differentiable, ..., smooth, analytic). In this book we
will be concerned exclusively with® smooth manifolds, or here and there (when Taylor series
are used) even analytic manifolds. The essential structure to be used implicitly throughout
the book and assumed to be available in all discussions and constructions is the smooth
structure on a manifold X.

Since an atlas A leads to the unique maximal atlas fl, for the practical construction of
a manifold it suffices to give the atlas 4. In spite of this fact the definition of a manifold

6 This highly convenient option is offered by the result of the Whitney (“embedding”) theorem, to be mentioned later, see
Section 1.4.
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refers to the maximal atlas. This emphasizes the formal equality of rights of all charts
(local coordinates). The constitution (= definition) unambiguously states that the initial
charts from A are by no means privileged in A with respect to those coming later (so that
there is no fear of them usurping a privileged position at any later moment). This does not
at all mean that privileged coordinates are of no importance in differential geometry. If
the smooth structure is the only structure available, all charts are to be treated equally. In
applications, on the other hand, there are typically additional structures on manifolds. Then,
of course, particular coordinates tailored to these structures (adapted coordinates) would
play a privileged role from the practical point of view.

The simplest n-dimensional manifold is clearly R” itself. A possible atlas is comprised
of a single chart, given by the identity map

o =id: R"[x!, ..., x"] = R"[x!, ..., x"]

This atlas is trivially smooth (or analytic as well; there are no intersections to spoil it)
and the maximal atlas generated by this atlas defines the standard smooth structure in R”.
Any other chart from this atlas corresponds to curvilinear coordinates in R" (like the polar
coordinates in a part of the plane R?).

The next two exercises deal with the construction of smooth atlases on spheres and
projective spaces.

Onacircle S! of radius R we introduce local coordinates x, x’ as shown on the figure
(this is called the stereographic projection). On higher-dimensional spheres S2, ..., S" a
natural generalization of this idea results
in coordinates r, r’. Verify that:

x

N . Rz

(1) on the intersection of the patches, where
the primed and unprimed coordinates are
in operation, we find for S' and S" re-

S - R[#'] spectively the following explicit transition
! relations:
., (2R ., QR’r
X = r = -
X ror

(i1) in this way an analytic atlas composed of two charts has been constructed on S” — the sphere S”
is thus an n-dimensional analytic manifold;
(iii) if the complex coordinates z and 7’ are introduced on S>

r< @,y <z=x+iy ' &, y)ye=x"+iy
then the transition relations are
7 =QR?*/7 ZI=x-—iy

Hint: on S" a projection is to be performed onto n-dimensional mutually parallel planes,
touching the north and south poles respectively (in these planes r = (x!, ..., x") represent
common Cartesian coordinates centered at the poles). Then r’ = Ar and one easily finds A
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from the observation that in the (two-dimensional) plane given by the poles and the point
P the situation reduces to S'.

The real projective space RP" is the set of all lines in R"*! passing through the
origin. The complex projective space CP”" is introduced similarly — one should replace
R + C in the preceding definition. (Here, a complex line consists of all complex multiples
of a fixed (non-vanishing) complex vector (point of C"*!) z, so that it is a two-dimensional
object from a real point of view.)

(i) Introduce the structure of an n-dimensional smooth man- 7

ifold (= local coordinates) on R P".
(ii) The same for CP" (it is 2n-dimensional). 1 I 51
(iii) Show that the states of an n-level system in quantum me-

20

chanics are in one-to-one correspondence with the points
of CP"~1,

(iv) Show that CP' = §? (in the sense of (1.4.7)) = states
with spin % correspond to unit vectors N in R3. n=1

Hint: (i) one line (a point from R P") consists of those points of R"*! which may be obtained
from a fixed (x°, x', ..., x") using the freedom (x°, x', ..., x") ~ (Ax°, ..., Ax"); in the
part of R"*! where x° # 0 the freedom enables one to make 1 from the first entry of the
array (visually this means that the point of intersection of the line with the plane x° = 1
has been used as a representative of the line); the other n numbers are to be used as local
coordinates on RP" (they are the coordinates in the plane x” = 1 mentioned above; see
the figure for n = 1, try to draw the case n = 2): (x%, x!, ..., x") ~ (Ax0, ..., xx") ~
(1,g', ..., €M forx® £ 0,= (£',..., £") are coordinates (there); in this way obtain step-
by-step (n 4 1) charts,” with the last one coming from (x°, x!, ..., x") ~ (Ax?, ..., Ax") ~
(', ..., n", Dforx" # 0;(ii) in full analogy, , . . ., n are now complex n-tuples, giving rise
to 2n real coordinates; (iii) two non-vanishing vectors in a Hilbert space, one of them being a
complex constant multiple of the other, correspond to a single state; (iv) spin % isatwo-level
system.

e From two given manifolds (X, A) and (¥, B), we can form a new manifold called the
Cartesian product. This new manifold is denoted by the symbol X x Y. As a set, it is the
Cartesian product X x Y (points being ordered pairs), an atlas is constructed in the exercise.

Let (X, fl) and (Y, B) be smooth manifolds and let
Qo : Oy > R" Yo : S, —> R™
represent two charts on X and Y respectively. Show that
0o X g1 Of x S; — R™"
6, ) = (@), Ya(») eR™  x €0y, yeS,

7 In this context the coordinates (x, x!, ..., x") in R"*! are said to be the homogeneous coordinates (of the points in R P").
Note that they are not local coordinates on RP" in the sense of the definition of a manifold, since they are not in one-to-one
correspondence with the points (they are official coordinates only in R"*!).
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introduces a smooth atlas on X x Y, so that we have a smooth manifold of dimensionn + m.

This means, in plain English, that given (x!, ..., x") and (y', ..., y") local coordinates
on X and Y respectively (xt, ..., X", yl, ..., Y™, may be used as local coordinates on
X x7Y.

Show that the following manifolds represent the configuration spaces of simple
mechanical systems mentioned below: a plane double pendulum S' x S!, a free wheel on
aroad R? x SO(3) and a wheel of a car R* x S' x S'.

Hint: a free wheel: R? for the centre and SO(3) (see (10.1.8)) for the orientation in space;
a car: the wheel is to be perpendicular to the road (= vertical).

e Wehave seenin (1.3.1) in the example of a sphere S> how two real coordinates (x, y) can
be encoded compactly into a single complex coordinate z. This can be clearly generalized
trivially to any even-dimensional manifold, so that charts may be regarded then as the maps
into C" (rather than R?" in the real language).

However, it is far from always that the additional requirement can be fulfilled; namely,
to make all the transition relations of the complex coordinates be given by holomorphic
functions. A manifold is called a complex manifold (of complex dimension n, real dimension
2n) if this is possible. Complex manifolds may thus be regarded at the same time as ordinary
(necessarily even-dimensional) “real” manifolds, but the converse may not be true (there
are even-dimensional manifolds where it is not possible to introduce the above-mentioned
“holomorphic” atlas). The theory of complex manifolds is rich and interesting; however, in
this introductory text we shall not take this subject further.

Show that the two-dimensional sphere S is a complex manifold (of complex
dimension 1)

Hint: consider an atlas with charts w, w’, where (using notation from (1.3.1)) w = 7, w’' =
7/; then w'(w) = 4R?/w, and this is a holomorphic relation (where it is needed).

1.4 Smooth maps of manifolds

e When manifolds appear in some context, they nearly always go hand in hand with
various mappings of them. This may happen in a direct and overt way sometimes,
or, in contrast, in a modest and inconspicu-
ous way other times (and this by no means
indicates that the mappings are less impor-
tant in those cases). Reminding the reader
that the virtue a manifold is especially proud
of is its smooth structure, those mappings re-
specting (in some sense) the smooth structure
will surely present particular interest. Such
mappings are called smooth. A closer look at
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what is meant by this exactly is necessary. Given (M, A) and (N, 1§), two smooth manifolds
of dimensions m and n, respectively, and a mapping

f:M—>N
let
9:0 = R"x', ... x" ocM
VU — Ry .y UCN
be local coordinates such that f(O) C Y. Then the composition map
f=vofoe!:R" >R

is induced, which is called the coordinate presentation of the mapping f. In technical terms
one has a collection of n functions of m variables

yazya(xl’_“’xm) a=1,...,n

Reconsider the domains of all the mappings involved and refine, if necessary, the
figure in this respect.

e Since f is amap of Cartesian spaces (see Section 1.2), it makes sense to be interested in
its class of smoothness. By definition, f itselfis said to be smooth (or C¥ more generally),
if its coordinate presentations with respect to any pair of charts (from A and B) happen to
be smooth (C¥).

Let A and B be finite atlases on M and N respectively, which generate maximal
atlases A and B. Show that if the coordinate presentations are smooth with respect to A, 5,
then they are smooth with respect to A, B as well (so that f is smooth).

Hint: one has to check that if y*(x’) is smooth and x"(x/), y"“(y") represent changes of
coordinates on M and N respectively, then y*“(x") is smooth, too.

e Since amanifold needs in general an atlas consisting of several charts, several coordinate
presentations correspond to a single mapping f : M — N.

[1.4.3] Let
f:R?>xR* > R? fz,w) =zw

be the map induced by the multiplication of complex numbers. Check whether it is a
C*-map.

Let M = R>\ (0, 0) and consider the map defined in terms of complex coordinates
as follows

f:M—->M fx)=z"

Is this a C*°-map?
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Write down in coordinates the map (canonical projection)
7 RPN\ (0) > RP?

which assigns to a point from R? the line (1.3.2) on which the point is situated. Show that
the preimages of any two points of R P? are diffeomorphic (diffeomorphism is defined a few
lines later). (£'(x, y, z) = y/x, £%(x,y, z) = z/x; for the remaining two charts on RP?,
similarly.)

Show that (z, w) — z/w (where z, w € C; |z >+ |wl|?> = 1) can be interpreted as
a map

f:8 -8
(The Hopf mapping, see also (20.1.7)—(20.1.10).)
Hint: (z, w) — (z/w, 1) <> z/w is a coordinate presentation of the map C> — CP! ~ §?

((1.3.2), cf. a similar situation in (1.4.4)); the extended complex plane (the result of the
quotient being there) = (Riemannian) sphere S2.

e Ifdim M =dim N = n, f is a bijection and if both f and f~! happen to be smooth,
then the mapping f is called a diffeomorphism and M and N are said to be diffeomorphic
manifolds.

Check that

(1) the concept of a diffeomorphism defines an equivalence relation
(i) all diffeomorphisms M — M form a group (it is denoted by Diff (M)).

Let T2 be a two-dimensional torus = surface of a tire, () a circle = S! and a
square. Show that (= meaning a diffeomorphism)

S' x R ~ surface of a cylinder R" x R™ ~ R"*"

St x st~ 1?2 ~ QO

(Caution:  at the end of a hint is a sign of the end of the exercise and there is nothing to
be proved for it.)

Hint: consider coordinates on a square obtained by means of radial rays from the inscribed
(or circumscribed) circle.

e Consider a smoothmap f : M — N, withm =dim M <n =dim N. Let x € M be
mapped to y € N. This map (locally y* = y*(x!,...,x™), a=1,...,n) is said to be
an immersion if in some neighborhood U of each point y € f(M) C N there exist local
coordinates y', ..., y" such that for a sufficiently small neighborhood O of x (f(O) C U)
it holds there that the subset f(O) is given by the system of equations
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that is to say, if the image of this immersion may be locally expressed in terms of the
vanishing of some part of the coordinates on N. It is possible to show that this requirement
on the subset f(M) C N prohibits the existence of “corners” (edges) and cusps (this is the
interesting point about immersions). In this form the definition is not always suitable for a
practical test (in particular, for a proof that a given f is not an immersion; if this is the case
and coordinates with required properties are easily found, it is suitable). One can show that
the following statement holds:®

3 a
f:M — Nisanimmersion < rankof J = BL is maximal (= m) on f(M)
xl

Moreover, if f is injective, it is called an embedding (then f(M) has no self-intersections).

Zero and eight (or infinity), when drawn on a sheet of paper, may be regarded
as f(M) for M = S', N = R?. Decide whether the mapping f in these two cases is an
immersion, or perhaps even an embedding.

e If f: M — N happens to be an embedding, then the subset f(M) C N is naturally
endowed with the structure of a manifold (yl, ..., ¥y", i.e. those y* which do not vanish on
f(M) serve as local coordinates) and it is called a submanifold of a manifold N.°

1.4.10] Given a smooth map f : M — N we define the map
f:M—MxN m > (m, f(m))

Show that the graph of the map f,i.e. f(M) C M x N,isasmooth submanifoldin M x N.
Draw a picture for M = N =Rand M = R?, N = R.

Hint: check that f is an immersion. (For x’ > (x/, y%(x)), there is an m x m unit block in
the Jacobian matrix.)

1.4.11| Let L be an arbitrary n-dimensional linear space over R. Show that it is an n-
dimensional manifold which is diffeomorphic to R”".

Hint: if e, is any basis in L, then L > x = x“¢, defines an atlas consisting of a single global
chart; x — x“ is a diffeomorphism L — R”.

1.4.12] Letmy : M x N — M, (m,n) — m be the projection on the factor M and let a
smoothmap f : M — M x N satisfy

JTMOf:idM

8 The geometrical meaning of the requirement on the rank of the Jacobian matrix J{ is related to the mapping of tangent vectors,
cf. (3.1.2); technically, the implicit function theorem from several variables differential calculus is behind this.

9 Not all subsets X C N, although being themselves manifolds, are thus submanifolds in N. They need to be “very nicely” placed
in N —with no edges, cusps or self-intersections — in order to satisfy the strict criteria of the “submanifold club”” membership. All
this is guaranteed by the existence of an embedding f. Both a circle and a square, for example, represent (diffeomorphic) smooth
one-dimensional manifolds. The circle is a submanifold in R?, too, but the square fails to meet the submanifold requirements
(since it has corners).
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Show that

(i) f induces amap f : M — N (and vice versa it is ™

fully given by this map)

(i) f is an embedding
(iii) the submanifold f (M) is diffeomorphic to M.

Note: this situation is the simplest realization of
an important geometrical structure, a fiber bundle
(namely the product fiber bundle here). We will
encounter this concept in more detail later (in Chap-
ter 17 and beyond). The map f is a section of the
bundle, ), serves as the canonical projection, M
is its base and M x N its total space.

Hint: (i) f = my o f; (ii) (1.4.10); (iii) f : M — f(M) is a diffeomorphism.

1.4.13] Let f be a diffeomorphism of M to itself and let A = {O,, ¢,} be an atlas on M.
Show that

™

(i) f induces a new atlas A=1{0,, dA)a} on M, which may be regarded as the “shifted” version (by
the diffeomorphism f') of the original atlas .4

Op = f(On)  Gu=pgo

(ii) in new coordinates, the f-image of any object (e.g. the equation of a circle) has the same form
that the initial object had in the initial coordinates.

Hint: draw a picture to see what is going on.

e The official definition of a manifold (a topological space, plus ...) is fairly abstract
and one cannot be sure, a priori, whether “nice surfaces,” like spheres, projective spaces,
etc., which ultimately motivated this definition, are the only objects which satisfy all the
properties required. Maybe some ugly creatures, which nobody needed, are compatible
with the definition as well. Fortunately, there is a useful “embedding” theorem, which fully
protects our slumber. We therefore mention its content (without proof) here.

Theorem (Whitney) Each C' n-dimensional manifold is diffeomorphic to some C® sub-
manifold of R+,

Lesson: each manifold M may be realized (up to a diffeomorphism) as a nicely (no edges,
cusps or self-intersections) located “surface” in Cartesian space, one can estimate its di-
mension from above by 2n 4 1 (if dim M = n) and if there is an atlas of class C ! it can
be improved up to class C® (i.e. if a C! atlas A generates a maximal C' atlas A, one can
choose from A a “better” atlas A of class C®). This enables us to restrict our interest directly
to C® (or smooth, C*) manifolds and, in addition, to regard all manifolds as nice smooth
surfaces in Cartesian spaces from the very beginning. This is the reason we now embark on
the study of the two basic ways of treating such smooth surfaces.
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1.5 A technical description of smooth surfacesin R”

e The first situation when manifolds frequently enter the scene as surfaces in R” is the
existence of smooth constraints.

Example 1 The configuration space of a mathematical pendulum with the length of the
rod [ consists of those points I = (x, y, z) € R? which obey

dN) =1 —P=x*4+y"+>-1*=0
What remains is a sphere S? C R3.

Example2 Moreover, if the same pendulum can swing only in a fixed vertical plane, one
has to consider an additional constraint, so that together

¢1(r)Ex2+y2+Z2_12=0
¢ =y=0
What remains is only a circle S I'c §2 ¢ R3, now.

Example 3 A state of an ideal gas is given by a triple of real numbers (p, V, T) C R3,
constrained through the equation of state

(plus some further restrictions on the realistic intervals for the numbers p, V, T are to be
added). What remains is a particular two-dimensional surface in R.

In general, several functions ¢!, ..., ¢ (constraints) in R"[x!, ..., x"] are often avail-
able and the interesting subset consists of those points in x € R” where all of the functions
vanish (= satisfy the constraints):

Pplx)=---=¢"(x)=0
If certain conditions are satisfied, one really obtains a smooth manifold (and even subman-
ifold in R") in this way.
Theorem (on a submanifold defined implicitly) Let A C R” [x!, ..., x"] bean open set,
g:A—>R’”[¢1,...,¢”’] m<n

a smooth map such that the rank of the Jacobian matrix
99 (x)
dx!
is constant'® (and equals k, 0 % k <m) on the set M = g’l(O). Then M is an (n — k)-

dimensional manifold,!" which is a submanifold of R” (an atlas may be constructed by
means of the implicit function theorem).

Ji(x) =

10 If k = m (maximal rank), the constraints are said to be independent (at a given point).

I More generally one can consider the inverse image of any point in the target space (not necessarily zero). Such an inverse image
is called a level surface. As an example contours (level curves) on a map represent the level surfaces for the “height function,”
regarded as a mapping R?[x, y] — R![z].
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Form = 1, the manifold M is said to be a hypersurface (codimension 1 submanifold). The
Jacobian matrix then reduces to a single row (1 x n matrix) and the requirement on the rank
(k = 1) means that the row does not vanish (i.e. at least one element is non-zero; just which
one saves the good reputation of the Jacobian matrix may depend on the point x € M).

Show that the sphere S” C R"*! of radius r
S = fx e R )2 4+ (M = 42
is a hypersurface in R"*!,
Hint: p(x', ..., 2" = x> + - + @2 — 2
The same as in (1.5.1) for the ellipsoid with half-axes a!, ..., a"*1.

Let SL(n, R) denote the set of real n x n matrices A with unit determinant (see also
(10.1.7)). Show that it can be regarded as a hypersurface in R".

Hint: define g : R” — R! as
g(A1, A, ..., Ayy) i=det A — 1

and check that the relevant row is indeed non-zero (row expansion of a determinant says
that the row in question is given by minors and it is impossible for all minors to vanish,
since the determinant is non-zero on M; or use the result of (5.6.7).

Let M = {(x, y) € R?|y = f(x)}, where f : R — R. Show that M is a submani-
fold in R? and introduce local coordinates on M (see also (1.4.10)). Draw for f(x) = tanh x.

Hint: ¢(x, y) = y — f(x); coordinate x.

e It turns out that it is not possible to treat all manifolds by means of constraints (implic-
itly). One can show (see (6.3.4)) that a manifold constructed by this method is necessarily
orientable. There are, however, non-orientable manifolds, too. A more general approach is
offered by a parametric expression of the latter. Within this scheme a manifold appears as
the image of a smooth mapping

f:A— R'[x', ..., x"], A is an open domain in R™"u',...,u™], m<n
with the maximum (= m) rank of the Jacobian matrix

dxi(u)

Jix) = o

That is to say
M :=Imf = f(A) CR"
(R™ is the parameter space, the coordinates ul, ..., u" are parameters).12

12" A comparison of the implicit and parametric ways of defining a manifold: in both cases mappings of Cartesian spaces R” — R”
play an essential role. In the implicit way m > n holds and the resulting manifold appears as the subset on the left (as the inverse
image of (say) zero), in the parametric case m < n and the manifold appears as the subset on the right (as the image of the
map).
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Consider a map

f R ul - R*[x, y] u — (cosu,sinu) = (x(u), y(u))
Verify that
@
Imf=M={(x,y)eR*|x*+y*=1}=5'cR?

i.e. the manifold M is a sphere S! (circle)
(i) the fact that the sphere S' appears on the right could be recognized (in advance) in the parameter
space (on the left) as well.

Hint: (ii) introduce the equivalence in R'[u] as follows:
u~u & fu)=f@)

One can see easily that they are equivalence classes on the left, which are in one-to-
one relation with the points of S' on the right (1.5.6). What do they look like? We have
u~u+2mk (k € Z), so that (a) it is enough to restrict oneself to the interval (0, 27) and
(b) 0 ~ 2m, so that the ends of the interval (0, 27r) C R![u] are to be identified (= glued
together); a figure homeomorphic to a circle is obtained.

e Exercises (1.5.7)—(1.5.11) treat some two-dimensional surfaces in a similar way. Instead
of the interval (0, 277) one has a basic square in the parameter plane R2[u, v], now, and the
formulas of the mapping induce equivalence relations on the boundary of the square, i.e.
the rules of gluing the boundary in order to obtain the resulting two-dimensional surface.
Standard conventions are used for that: “like” gluing of the opposite sides by , “reverse”
gluing (first turn, then glue) by 1 ; see the figure in exercise (1.5.11).

Let f : M — N be a mapping of sets. Define a relation ~ on M as follows:
m~m' & f(m)= f(m")

Show that it is an equivalence and that f(M) = M/~ (where = means bijection and M/~
denotes the factor-set of M with respect to ~, that is to say, the elements of M/~ are the
equivalence classes in M).

Let f : R? — R3,
(u,v) — ((a + bsinv)cosu, (a + bsinv)sinu, b cosv) O<b<a
Show that
(i) in the sense of ~ from (1.5.6) it holds that
(u,v) ~ (u~+2mny, v+ 2mn,)

forany ny,n, € Z
(i) the image of the parametric plane R?[u, v] in the target space R? is the two-dimensional forus,
f(R?) ~ T?. What is the visual meaning of the constants a, b and the parameters u, v?
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Hint: see (1.5.6), (3.2.2), (1.5.11) and (1.4.8).

Consider the mapping f : R?> — R*, given by
(u, v) — (cosu, sinu, cos v, sinv)
Show that
(i) in the sense of ~ from (1.5.6) it holds that
(u,v) ~ (u+2mny, v+ 2mwn,)

forany ny,n, € Z
(i) the image of the parametric plane R?[u, v] in the target space R* is the two-dimensional torus
(once again), f(R?) ~ T2.

Hint: see (1.5.6), (3.2.3) and (1.5.11).
Given 0 < b < a define amap f : R> — R* as follows:

(u,v) — ((a + bcosv)cosu, (a+ bcosv)sinu, bsinvcos %, b sin v sin g)

Show that the equivalence in the sense of (1.5.6) in R2 corresponds to the Klein bottle K 2
i.e. to the third figure in exercise (1.5.11), so that the image of the parametric plane R2[u, v]
is the Klein bottle embedded into R*.

1.5.10]| Try to visualize the Klein bottle from (1.5.11), when realized in R3, and see that
there is no way to avoid a self-intersection. The mapping from (1.5.9) realizes the bottle in
R* without self-intersection.

Hint: according to the figure in (1.5.11) the first gluing (identification of the top and bottom
lines) gives a (surface of a) cylinder, by the second one (right and left lines) one is to join
two circles; however, taking into account their orientations, one has to approach one by
another “from the inside” (unlike 7%); this needs self-intersection.

1.5.11| Think out (visually) that there are three possibilities altogether to identify the
opposite sides of a square in a “like/reverse” way (see above), namely

4=8"x8' =1 = RP? = K?

(the last picture is to be understood as a definition of K* = Klein bottle).

Hint: R P?: first deform the square onto a disk (opposite points of the boundary are to be
identified); then blow bottom-up to the disk in order to deform it onto a hemisphere in R3,
whose opposite points of the boundary (circle) are identified; finally realize that each point
of the resulting entity corresponds uniquely to a line passing through the origin (1.3.2).
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Summary of Chapter 1

The smooth manifold is the basic playing field in differential geometry. It is a generalization
of the Cartesian space R” (or an open domain in the latter) to a more elaborate object,
which (only) locally looks like R”, but its global structure can be much more complicated.
It is, however, always possible to contemplate it as a whole in which several pieces home-
omorphic to R” are glued together; the number 2, which is the same for all pieces, is called
the dimension of the manifold. The technical realization of these ideas is achieved by the
concepts of a chart (local coordinates) and an atlas (consisting of several charts). The Carte-
sian product M x N of two manifolds is a new manifold, constructed from two given ones
M and N. Any manifold admits a realization as a surface, which is nicely embedded in a
Cartesian space of sufficiently large dimension.

1 = y)>F 4 (g — v)? Euclidean distance between two points x, y € R"  (1.1.5)

0:0 = RYx!, ... x"] Chart (local coordinates) in a patch O C (X, {t}) Sec. 1.3
@popy! Change of coordinates in a patch O, N Oy Sec. 1.3
x,y) = (@ (x), Ya(y)) € RH™ Atlas for the Cartesian product X x Y (1.3.3)

f=vofop ' :R" > R" Coordinate presentation of f : M — N Sec. 1.4
yHl=...=y"=0 Immersion (some coordinates on N vanish) Sec. 1.4
f(M)C N f(M) is a submanifold of N (f = embedding) Sec. 1.4
)= =¢"(x)=0 Smooth constraints (manifold as a surface in R") Sec. 1.5

X', . .oum,i=1,...,n>m Parametric expression of a manifold Sec. 1.5
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Vector and tensor fields

e From elementary physics we know vectors as being arrows, exhibiting direction and
length. This means that they have both a head as well as a tail, the latter being drawn as
a point of the same space in which the physics is enacted. A vector, then, is equivalent to
an ordered pair of points in the space. Such a conception works perfectly on the common
plane as well as in three-dimensional (Euclidean) space.

However, in general this idea presents difficulties. One can already perceive them clearly
on “curved” two-dimensional surfaces (consider, as an example, such a “vector” on a sphere
S? in the case when its length equals the length of the equator). Recall, however, the various
contexts in which vectors enter the physics. One comes to the conclusion that the “tail” point
of the vector has no “invariant” meaning; only the head point of the vector makes sense as
a point of the space. Take as a model case the concept of the (instantaneous) velocity vector
v of a point mass at some definite instant of time #. Its meaning is as follows: if the point
is at position r at time ¢, then it will be at position r + €v at time ¢ + €. However long the
vector v is, the point mass will be only infinitesimally remote from its original position. The
(instantaneous) velocity vector v thus evidently carries only “local” information and it is
related in no reasonable way to any “tail” point at finite distance from its head.

And the transition from (say) a plane to a sphere (or any other curved surface) changes
practically nothing in this reasoning: although we may visualize the velocity as an arrow
touching the surface at a given place, it makes no sense to take seriously its tail as a second
point on the surface (within a finite distance from the first one), since all the velocity
vector informs us about is the behavior of the trajectory within the nearest (infinitesimal)
time interval and over such a short time interval all that we manage to do is to move to a
point infinitesimally near to the first one. Consequently, the second point (the tail of the
vector) plays no invariant role in this business. The velocity vector is thus to be treated as a
concept which is strictly confined to a point. A similar analysis of other vectors in physics
(acceleration, force, etc.) leads to the same result. Vectors are objects which are to be treated
as being “point-like” entities, i.e. as existing at a single point.

That means, however, that our approach to vectors on a manifold has to take into account
this essential piece of information. Fortunately, such an approach does exist; in fact, there
are even several equivalent ways of reaching this goal, as described in Section 2.2.

21
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Before doing this, we undertake a short digression on the concepts of a curve and a
function on a manifold, since they play (in addition to being important enough in themselves)
essential roles in the construction of a vector. The simple machinery of multilinear algebra
(see Section 2.4) then makes it possible to take a (long) step forward, introducing objects
of great importance in physics as well as in mathematics — tensor fields on a manifold.

2.1 Curves and functions on M

e A curve on a manifold M is a (smooth) map
y R[] > M t—>yt)yeM
or, more generally,
y:l—->M

I = (a, b) being an open interval on R[¢]. Note that a definite parametrization of points
from Im y C M is inherent in the definition of a curve, and two curves which differ by
the parametrization alone are to be treated as being different (in spite of the fact that their
image sets Im y on the manifold M coincide). If

0:0 - Rx, ... x"]

is a chart (i.e. x are local coordinates on ) C M), one obtains a coordinate presentation
of acurve y,

P=¢oy R[] - R'x', ..., x"]
i.e. a curve on R”
t> (), X)) = @), . X (@)

In general, a curve may convey several coordinate patches, so that several coordinate
presentations are sometimes needed for a single curve.
A function on a manifold M is a (smooth) map

f:M—>R x> f(x)eR
If
0:0 - Rx! . x"]
is a chart, one obtains a coordinate presentation of a function f
f=fop ' :R" >R
i.e. a function on (a part of) R”

(xl,...,x”)f—> f(xl,...,x”)eR
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so that f is a common “function of n variables.” We will frequently identify the function
with its coordinate presentation in what follows. What will be “really” meant should be
clear from the context (the same holds for curves).

Show that the prescription

A det A= f(A)
defines a smooth function on the manifold of all real n x n matrices (~ R'12).

Hint: The determinant is a polynomial in the matrix elements. O

2.2 Tangent space, vectors and vector fields

e The concept of a vector in a point x € M is undoubtedly one of the most fundamental
notions in differential geometry, serving as the basis from which the whole machinery of
tensor fields (in particular, differential forms) on a manifold is developed with the aid of
the standard methods of multilinear algebra (to be explained in Section 2.4).

A word of caution is in order. Although the actual computations with vectors (as well
as vector and tensor fields) are very simple and indeed “user friendly,” the definition of a
vector is, in contrast, a fairly subtle and tricky matter for the beginner and it might need
some time to grasp the ideas involved in full detail. Our recommendation is not to be in a
hurry and reserve due time to digest all the details of the exposition. A clear understanding
of what a vector is in differential geometry saves time later, when vectors are used in more
advanced applications.

There are several (equivalent) ways in which the concept of a vector at a point x € M
may be introduced. In what follows we mention four of them. In different contexts different
definitions turn out to be the most natural. That is why it is worth being familiar with all of
them.

Each approach reveals the key fact that one can naturally associate an n-dimensional
vector space with each point P on an n-dimensional manifold M. The elements of this
vector space (the tangent space at P) are then treated as vectors at the point P € M.

The first approach generalizes naturally the concept of the instantaneous velocity v(¢) =
I(t) of a point mass moving along a trajectory r(¢), mentioned at the beginning of the
chapter. The essential idea is that of tangent curves.

Definition Given two curves yy, y» on M, we say Y1(t)
that y; is tangent to y; at the point P € M if P

1. 1(0) = ya(0) = P .
2. L] X (n@) = L] x(n(0) / o (t)

7
e

(x' being arbitrary local coordinates in the neighborhood of P). When expressed in the
terminology of analytical mechanics, the definition says that at the moment t = 0 the
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positions of two fictitious points in a configuration space M, moving along trajectories
y1(¢) and y»(¢) respectively, happen to coincide (they are both in P) and, in addition, the
values of their generalized velocities are the same. The curves (trajectories), which are
tangent at t = 0, thus have (at # = 0) the same values of both generalized coordinates and
velocities. It is clear, then, that the motions along these trajectories are up to the first order in
time (within the interval from 0 to €) equal. (Note that the particular choice t = 0 actually
plays no distinguished role in this concept; the curves may be tangent at any other “time”
as well.)

Show that

(1) the definition does not depend on the choice of local coordinates in a neighborhood of P
(ii) the relation “to be tangent in P” is an equivalence on the set of curves on M obeying y(0) = P
(iii) the Taylor expansion (the class of smoothness C is assumed here) of equivalent curves in a
neighborhood of t = 0 is as follows:

X' (y(t) = x'(P) + ta' + o(t)

where x'(P), a’ € R are common for the whole equivalence class.

Hint: (i) 4| x"(y(1)) = &5 (p) 24O jied’ = Ji(PYa’. 0

e Itturns out that the equivalence classes y := [y] of curves y are endowed with a natural
linear structure, which may be introduced by means of representatives.

2.2.2| Given TpM the set of equivalence classes in the sense of (2.2.1), let v, w € Tp M
and y, o be two representatives of these classes (v = y = [y], w = ¢ = [o]), such that

x'(y (1) = x'(P) + ta' + o(t)
x'(o(t)) = x'(P) + tb" + o(t)
Show that the prescription
v+ Aw = [y] + Alo] = [y + Ao]
where
X ((y +20)(@)) := x'(P) + t(a’ + Ab") + o(1)

introduces by means of representatives into 7pM the well-defined structure of an n-
dimensional linear space, i.e. that the definition does not depend on

(i) the choice of local coordinates
(ii) the choice of representatives y, o of the classes v, w. (]

e Because of this result we may for good reasons (and justly indeed) call the elements
v € TpM (tangent) vectors at the point P € M; the space Tp M itself is called the tangent
space at the point P. From the definition of linear combination in (2.2.2) one can see that all
vectors at the point P share the same values of x/(P) and the property by which they can be
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distinguished from one another is by the values
of the coefficients a’ = x/(0). Note that a vector
“uses” only the first two terms of the Taylor ex-

pansion of its coordinate presentation (the zeroth

and the first derivatives), the higher terms being
completely arbitrary. This means that a single

vector corresponds to an infinite number of curves which represent this particular vector

(which should be clear in advance from the intuitive vision of all the curves being tangent
to one another), so that there are an infinite number of representatives of each equivalence
class. If we would like to visualize the concept of a vector in the sense of an equivalence
class of tangent curves, we should assign something like a “bunch” or a “sheaf” of curves,
all of them firmly bound together at the point P. And a good old arrow, which cannot be
thought of apart from the vector, could be put at P in the direction of this bunch, too (so that
it does not feel sick at heart that it had been forgotten because of some dubious novelties).

Verify that

(1) if dim M = n, then Tp M is an n-dimensional space

(i) equivalence classes of coordinate curves y;(t), i.e. the curves obeying x'(y;(1)) = x'(P) + (Sj.z
(the value of the jth coordinate is the only one that varies (namely linearly) with ) constitute a
basis of Tp M.

Hint: (i) v <> a' is an isomorphism 7p M < R"; (ii) check that v = [y] = a'lyil. |

e The definition of a vector in terms of curves is intuitively easy to grasp. From the point
of view of practical manipulations with vectors (and tensors) another one proves to be
convenient, too. It is based on the idea of the directional derivative of a function and leans
heavily on algebraic properties of functions and their directional derivatives.

Let F(M) := {f : M — R} denote the set of (smooth) functions on M, f € F(M),
v € Tp M. Define the map (derivative of f in the direction of v)
d
vV FM)—> R fe0(f) = o fy@®) v=lyl
0
Prove that ¥ does not depend on the representative y in the class [y] = v (i.e. correctness
of the definition). O

e It turns out that this map has interesting algebraic properties, enabling one to give an
alternative definition of the concept of a vector at the point P € M.

Check that

(1) the prescriptions

(f +28)(x) := f(x)+ Ag(x)
(fe)x) == f(x)g(x)
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(f, g € F(M), » € R) endow F(M) naturally with the structure of an (co-dimensional) asso-
ciative algebra (Appendix A.2) and that this algebra turns out to be commutative (fg = gf) for
each manifold; it is called the algebra of functions on a manifold M

(ii) the map

0:FM)— R

from exercise (2.2.4) is a linear functional on F(M), i.e. it behaves on linear combination
according to the rule

O(f +Ag) = 0(f) + 1d(g)
(iii) in addition this functional has the property (behavior on a product)
8(fg) = 8(/)g(P) + f(P)d(g)  (Leibniz’s rule)

(iv) such linear functionals (obeying Leibniz’s rule associated with the point P) constitute a linear
space (we denote it as TP M, here), if one defines

@ +20)(f) := 0(f) + 2d(f)
(v) the map
ViTpM —> TpM v 9
is linear and bijective (i.e. it is an isomorphism).
Hint: (v) surjectivity: if dx’ =: a’, the inverse image is v = a’[y;]. O

e Because of the existence of the (canonical) isomorphism TpM <> Tp M, these spaces
are completely equivalent, so that one may alternatively define a vector at the point P € M
as a linear functional on (M), behaving according to Leibniz’s rule on the product, too.

Define the elements ¢; € TPM, i=1,...,n as follows:

f
axt|p

ei(f) = = dlp f

or symbolically
e := dilp
Check that

(i) the e; belong to fp M, indeed
(ii) the e; happen to be just the images of vectors [y;] € Tp M (which constitute a basis of Tp M)
with respect to the map  from exercise (2.2.5)
(i) any vector d € T» M may be uniquely written in the form
b=ad'e where a' = 0x'

(iv) under the change of coordinates x’ — x"(x), the quantities a’ and e; transform as follows:

i fneo__oqij . /o _lj,
a'w—a' =Ja e~ e, =(J")e;
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where

. ox’t .
Ji = i(P) = J;(P) = Jacobian matrix of the change of coordinates

I xi
(v) the “whole” © = a'e; is not altered under the change of coordinates (it is invariant)

i o
ae =ae;

=17
(vi) the transformation rules for a’ as well as e¢; meet the consistency condition on the intersection
of three charts (coordinate patches): the composition x — x’ > x” is to give the same result as

the direct way x > x”. O

e These results enable one to introduce immediately another two definitions of a vector
at the point P (and the tangent space as well). The first possibility is to declare as a vector
a first-order differential operator with constant coefficients, i.e. an expression a’ 9;|p, with
linear combinations being given by

a' %lp +Ab' &lp = (@ + Ab") &lp

The second possibility is the definition adopted by classical differential geometry: a
vector at a point P € M is an n-tuple of real numbers al,i=1,...,n, associated with
the coordinates x' in a neighborhood of P; under change of coordinates the n-tuple should
transform (by definition) according to the rule

XX = de J}(P)aj

Altogether we gave four equivalent definitions (one can even add more) of a vector: a vector
as being

1. an equivalence class of curves (with respect to the equivalence relation “being tangent at the
point P”’)

2. alinear functional on F (M), which behaves on a product according to Leibniz’s rule

3. afirst-order differential operator (together with the evaluation of the result at the point P)

4. an n-tuple of real numbers a’, which transform in a specific way under the change of coordinates.

Check in detail their equivalence: given a vector in any of these four ways, associate
with it corresponding vectors in the other three senses. In particular, make explicit the
correspondence between the basis vectors in all four languages. O

e Taking into account the equivalence of the four definitions mentioned above, we may
regard a vector as being given in any of the possible realizations, from now on. The cor-
responding tangent space will be denoted by a common symbol Tp M, as well. The basis
e; = 0;i|p <> [y:] <> ... is said to be the coordinate basis in Tp M and the numbers al
constitute the components of a vector v with respect to the basis e;.

(Note that the linear combination has only been defined for vectors sitting at the same
point of a manifold (i.e. in a single tangent space Tp M). The spaces Tp M and Tp M for
P # P'areto be regarded as different vector spaces. It is true that they are isomorphic (both
being n-dimensional), but there is no canonical isomorphism (there exist infinitely many
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isomorphisms, but none is distinguished, in general) so that there is no natural (preferred)
correspondence between vectors sitting at different points. The fact that vectors are routinely
linearly combined, in spite of sitting at different points, in physics (the momenta of a
collection of particles are added in order to obtain the total momentum vector of the system,
to give an example) is justified by particular additional structure inherent in the Euclidean
space — so-called complete parallelism (to be discussed in Chapter 15).)

We say that a vector field on M has been defined if a rule is given which enables one to
choose exactly one vector residing at each point of a manifold M. Only the fields which
“do not differ too much” at two “neighboring” points will be of interest for us in what
follows (what we need is smoothness of the field). It turns out that this property is most
easily formulated after one learns how vector fields act on (the algebra of) functions, i.e. by
looking at the matter from an algebraic perspective.

One can apply a vector field V to a function f so that at each point P € M the vector
Vp € TpM (regarded as a linear functional on F(M), here) is applied to f. In this way we
get a number Vp(f) residing at each point P of a manifold M, i.e. a new function altogether.
A vector field thus may be regarded as a map (operator)

ViFM)— FM)  f= Ve (VAP :=Ve(f)

V is said to be a smooth vector field (= C*°-field) if the image of the map V above is indeed
in F(M), that is to say, if a smooth function results whenever acted on a smooth function by
V. The set of (smooth) vector fields on M will be denoted by X(M) = 761 (M) (the reason
for the second notation will be elucidated in Section 2.5).

Show that the map
ViFM)—FM) [ Vf
obeys
Vif+Arg)=V[f+AVg
V(fg)=WVg+ f(Vg)

(f, g € F(M), » € R). The first property alone says that V is a linear operator on F(M);
when taken both together they say that V is a derivation of the algebra of functions F (M)
(in the sense of Appendix A.2).13 O

e As is the case for vectors, components may be assigned to vector fields, too. In a given
coordinate patch O with coordinates x’, a vector field V may be written, according to
(2.2.6), in the form

. . 0
V=Vx0o=Vkx—
ax!

13 The converse is true, t0o: given any derivation D of the algebra of functions F(M), there exists a vector field V such that
D = V. This makes it possible to identify vector fields on M with derivations of the algebra of functions F(M).
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since the coefficients of a decomposition of a vector with respect to the coordinate basis
may be, in general, different at different points (a’, denoted here as V/, depend on x). The
functions V'(x) are called the components of the field V. The vector fields (!) 9; are called
the coordinate basis of vector fields.

We came to the conclusion, then, that a first-order differential operator with non-constant
coefficients corresponds to a vector field and the action of V on f in coordinates may be
expressed simply as

af (x)

) = (VAX) = V)@ f)x) = Vi(x)W

Prove that V is smooth if and only if its components V/(x) are smooth functions
and that this criterion does not depend on the choice of local coordinates.

Hint: smooth functions are closed with respect to linear combinations and product (=
operations in F(Q)) elements of J ; (x) are smooth. O

2.2.10] Show that under the change of coordinates x — x’(x) the components of a vector
field transform as follows:

Vi) =TIV (x)
Hint: see (2.2.6); V/i(x)d’; = Vi(x);. O

2.2.11| Write down the vector field V = 9, (in polar coordinates in the plane R?) in
Cartesian coordinates and try to visualize at various points the direction of the vectors given
by this field.

Hint: see (2.2.10); (V = 0, = xdy — yd,). O

e One should understand clearly the difference between the algebraic properties of a vector
and a vector field: a vector is a linear functional on F(M) (a map into R), a vector field is
a linear operator on F (M) (a map into F(M)). We have learned in exercise (2.2.5) that the
linear functionals on F (M) comprise a vector space over R, i.e. linear combinations with
coefficients from R are permitted. This kind of combination is permitted for vector fields
as well (so that they comprise a real (albeit co-dimensional) vector space, too). It turns out,
however, that the life of vector fields is considerably richer; in particular, one can form
linear combinations with coefficients from the algebra F(M). This means (Appendix A.4)
that vector fields actually comprise a module over the algebra of functions F(M).

2.2.12| Given V, W € X(M) and f € F(M), check that a linear combination V + fW is
a vector field, too, if one defines it in terms of a pointwise combination of the constituent
vectors

V+ fW)p:=Vp+ f(PYWp
or equivalently (in terms of the action on functions) as

V+fWygeg:=Vg+ f(Wg) g



30 Vector and tensor fields

e If we say, then, that the fields d; constitute a basis for vector fields, what we have in
mind is that this is a basis in the sense of a module (as opposed to a linear space over R).
This means that any vector field in a coordinate patch O <> x' (this may not hold for the
manifold as a whole) may be uniquely decomposed with respect to 9; as V = V'9;, the
coefficients of the decomposition (components) V' being, however, from the algebra F(O)
(R is not enough, in general). Thus X(O) is an co-dimensional linear space over R, but it is,
at the same time, finitely generated as a module over F(QO). Namely, it has n generators (9;,
for example), from which it may be generated completely by means of the algebra 7 (O) in
full analogy with an n-dimensional linear space, which may be generated from an arbitrary
basis ey, . . ., e, with the help of the field" of real numbers R.

2.2.13]" Let L be an n-dimensional linear space over R. Show that

(i) there exists the canonical (independent of the choice of basis in L) isomorphism of L itself and a
tangent space 7, L (x being an arbitrary point in L), so that a linear space L may be canonically
identified with the tangent space at an arbitrary point

(i) if a fixed vector v € L is successively mapped into all tangent spaces in this way, the vector
field V is obtained on L; explicitly (in coordinates introduced in (1.4.11), v = v“e¢,) it reads
V =v9,.

Hint: (i) L 5 v~ (d/dt), (x + tv); a picture might be helpful in order to visualize what
is going on. O

2.2.14| Let M x N be a manifold, which is the Cartesian product of two other manifolds
M and N. Show that

(i) there is a canonical decomposition of tangent spaces at any point (m, n) into the sum of two
subspaces, each of them being isomorphic to the tangent spaces at points m and n respectively of
the initial manifolds

T(m,n)(M X N) = T;nM @ T;zN

(ii) any vector field V on M x N may be uniquely decomposed into the sum of two vector fields
V = Vy + Vy, where V), “is tangent to” M and Vy “is tangent to” N.

Hint: (i) consider the curves t — (m(t), n)andt +— (m, n(t));in coordinates from (1.3.3) the

subspaces span 9; and d,; (ii) pointwise realization of (i); V = A’(x, ¥)9; + B(x, y)d, =
Vu + Vu. O

2.3 Integral curves of a vector field

e Lines of force field provide an aid for visualizing the field; they are essentially a map of
the field. A momentary glance at the pattern of lines provides rich information concerning
the field itself, since if F(r) is the field in question, we know that (by definition) the vector F

14 The field R is hidden in the algebra F(O) in terms of constant functions, so that the algebra F(0O) is a much richer object than
R is — this is the reason why far fewer generators are needed to reach the same goal.
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at a point r is tangent to the line of force at r. The concept of an integral curve adds a definite
parametrization to this idea (it is a curve rather than a line), the latter being irrelevant in
the case of force lines: its orientation is all they need.

A vector field V on M determines a vector Vp € Tp M at each point P € M. On the other
hand, we know from Section 2.1 that a vector Vp may be regarded as an equivalence class
of curves, each representative of the class “being the
same” in the immediate vicinity of the point P (up ~(t)
to order €). An integral curve of a vector field V is
then the curve y on M, such that at each point of its vV
image, the equivalence class [y ] given by the curve, 1% —
coincides with the class Vp, given by the value of
the field V in P. Put another way, from each point it
reaches, it moves away exactly in the direction (as
well as with the speed) dictated by'3 the vector Vp. All this may be written as a succinct
geometrical equation

y=V ie yp@P)=V»

(this is the equation for finding an integral curve y of a vector field V in a “coordinate-free”
form), where the symbol y (P) denotes the tangent vector to the curve y at the point P (i.e.
the equivalence class [y ], given by the curve y at the point P). If the vectors on both sides
of this equation are decomposed with respect to a coordinate basis, a system of differential
equations for the functions x’(¢) = x/(y(¢)) (for the coordinate presentation of the curve to
be found) is obtained.

Show that the differential equations for finding an integral curve y of a vector field
V have the form

3= Vi) i=1,...,n
i.e. in more detail

Ho=viat, .o XM
() = Vit XM
Hint: y (y (1)) = %'(t) 8il,4)» Vyy = V' (x (@) 8l 0)- 0

Write down and solve the equations for integral curves of the field V from exercise
(2.2.11), both in polar and in Cartesian coordinates. Draw the solutions (¥ = 0, ¢ = 1; X =
-y, y =X). O

15 Like a well-disciplined hiker, always walking in the direction of arrows on destination signs and obediently following the
instructions concerning time indications given there (how many minutes he or she would need to reach the next arrow).
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Find integral curves of the field V = 0, + 29, on R[x] x S 1[cp] (the surface of a
cylinder). Draw the results. O

e We may see that, in general, one has to do with a system of n first-order ordinary
differential equations for n unknown functions x’(t). Moreover, the system is quasi-linear
(linear in the highest (= the first, here) derivatives), autonomous (functions on the right-
hand side do not depend explicitly on the variables with respect to which the unknown
functions are differentiated (¢ here)) and, in general, coupled. Since the functions on the
right-hand side are smooth (2.2.9), the theory of equations of this type guarantees that there
exists a unique solution in some neighborhood of the point, which corresponds to the initial
conditions. There then exists a unique integral curve of a field V, which starts at (any given)
P € M int = 0. However, it is not, in general, possible to extend this curve for all values
of the parameter ¢ € (—00, 00).

A vector field V on M is said to be complete if for any point P € M the integral
curve y(t), which starts from P, may be extended to all values of the parameter ¢. Show
that the vector fields V = 3, on M = (—1, 1) and W = x23, on N = R are not complete
(and learn a lesson from these two examples, what some problems with such an extension
might look like). O

Given y(¢), an integral curve of a vector field V on M, let p(¢) := y(o(t)) be a
reparametrized curve. Find the most general dependence o (¢), so that y will be an integral
curve of the vector field V, too.

Hint: (d/dt) f(y(o (1)) = o' (t)(d/dt) f(y(t)),sothat § = o'y;[o(t) = t + constant]. O

e This result is easy to understand. Consider y(¢) as being a trajectory. Then y is another
trajectory, such that we traverse the same set of points on M at different moments of time.
Put another way, the path remains unchanged, but the (instantaneous) speed of traversing
the path may be different.'¢ Just how much different depends on the point and the result of
the exercise shows that the new speed is o'(¢) times the old one at any point y(¢). (As an
example, for o () = 2¢, the new speed is twice the old one at each point.) Since the velocity
vector of an integral curve may not be changed (it is given by V uniquely), o/(z) = 1 results.
This means that the only possibility to change the trajectory is to traverse the same path
either sooner or later. This freedom (f — ¢ + constant) enables one to set an arbitrary
value of the parameter 7 (time) at the starting point P.

Let y be anintegral curve of a vector field V on M, which starts from P = y(0) € M.
Show that the integral curve (of the same field V) p, which starts from Q = y(a), is
@) =y +a).

Hint: see (2.3.5). 0

16 In fact, we have not enough structure, yet, to speak of the “speed” (a metric tensor, to be introduced later, is needed for it). In
spite of this, we can speak of the ratio of two speeds, since our velocity vectors are proportional.
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e The result of (2.3.1) admits a different interpretation, too. It shows that each system
of equations of the type (2.3.1) may be regarded as a system for finding integral curves
of the particular vector field (we read out its components from the right-hand side of the
equations). This is the important observation, since it provides a key to the investigation of
properties of solutions of such equations by powerful geometrical and topological methods —
corresponding vector fields (or other objects associated with them) are studied instead of
the equations themselves. We will see this, for example, in Chapter 14, where Hamiltonian
systems will be discussed.

Find a vector field V on R*"[¢',...,q", p1,..., pa], which corresponds to the
Hamilton equations

) oH ) oH

q“:apu pa:_8q” a=1,...,n
(V = (0H/8pa)d/dq" — (9H/3q*)d/dpa). g

e A vector field V on a manifold M gives rise to a new and interesting structure, a
congruence of integral curves on M: the manifold M is “densely” filled by a system of
(infinitely many) curves, which never intersect and

the “speed” of motion along them is completely de- g/
termined by the field V. This situation may be con- v
veniently visualized as the flow of a river. This flow ¥(t)

is stationary (the velocity vector in a given point v — ®,(P)

being always the same; in particular, the river does ~(0)

not flow at the points where the field vanishes) and P

for particular types of fields (e.g. for Hamiltonian

fields) the fluid is in addition incompressible (14.3.6). Integral curves correspond to the
streamlines of the flow. If one fine (and hot) afternoon we do not resist the temptation and
let ourselves waft downstream, we get from P = y(0) € M to the point Q = y(¢) € M,
naturally a one-parameter class of mappings

O, M—->M P=y0)— y()

arises, called a (local) flow generated by the vector field V. We will return to this important
concept in more detail later, in Chapter 4 and beyond.

Justify the statement mentioned above, that integral curves never intersect (nor are
tangent to one another).

Hint: from a point P one has to make a move in the direction of Vp (uniquely). O

Express the results of exercises (2.3.2) and (2.3.3) in the form of a flow &, :
x> xi(t) = &) (r,@) > (r, @ +1) or (x, y) — (xcost — ysint, xsint 4+ ycost);
(x,0) > (x +1,0+21)). O
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2.4 Linear algebra of tensors (multilinear algebra)

e It turns out that each linear space L automatically gives rise to a fairly rich algebraic
structure “above” L —a whole infinite cascade of further and further linear spaces, the spaces
of tensors in L and an co-dimensional associative graded algebra, the tensor algebra T (L),
associated with them. In this section we will become familiar with tensors at the level of
linear algebra, and in the next section we shift to manifolds and introduce the concept of a
tensor field.

Within this section we consider arbitrary n-dimensional linear space L over the field of
real numbers R.

First, we observe that linear forms on L, i.e. linear maps such that

a:L—->R a(v+Aw) =a@)+ ra(w) v,welL,AeR

form a linear space in its own right, the dual space L*. Its elements are called covectors
in L.

Check that the prescription
(@ +2B)(v) == a(v) + AB(v)

introduces a linear structure in L* (i.e. check that the linear combination is indeed a linear
map L — R). a

e The resulting value of «(v) € R will be denoted, as a rule, in the form
(o, v) == a(v)

Given a basis e, in L, there already exists the distinguished basis in L* (tailored to the basis
e, in L).

Lete, be abasisin L and letv =) ;_, vPe, = vPe,. Verify that
(i) the maps
e’ L - R A (We):=v* a=1,...,n

are covectors and, in addition, they constitute a basis in L* (called the dual basis with respect
to e,):

(i1) an equivalent definition of the dual basis is
(e, ep) = 5Z

(iii) a change of the basis in L given by a matrix A results in the change of the dual basis given by
the inverse matrix A~

— a
e e, =Aje, = &> =(AT")e
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(iv) the dimension of a dual space equals the dimension of the original space: dim L* =dim L (= n).

Hint: (i) check that o and (¢, e,)e” are equal linear maps; (iv) consider the number of
elements of the dual basis. g

e Since L* is an n-dimensional vector space in its own right, the whole story may be
repeated again and one can construct the dual space (L*)*. It turns out, however, that this
space is (for finite-dimensional L) in a sense redundant. The reason is that it is canonically
isomorphic to the original space L. What do we mean by this and how can one profit
from it?

In general, any two n-dimensional linear spaces are isomorphic, but there are an infinite
number of equally good isomorphisms available (e, — E,, for arbitrary choice of basis
E,), so that there is no reasonable (independent of arbitrary choices) way to choose a
preferred one. This is true, in particular, for the relation L <> L*. (Try, for example, to
describe your favorite isomorphism to a remote extraterrestrial, who is well educated in
linear algebra and understands all the steps you dictate.) Exercise (2.4.3) shows, however,
that for L — (L*)* the situation is essentially different. In this case, there is a distinguished
isomorphism f, which can be described to our remote extraterrestrial friend and he or
she or it will know what maps into what. This isomorphism suggests using a standard
mathematical trick — identification of the spaces L and (L*)*, and, by analogy then, the nth
with the (n — 2)th dual spaces. Only the first two members, L and L*, thus survive from the
threatening looking, potentially infinite chain of still higher and higher dual spaces. (This,
in a moment, will result in the fact that we will make do with only two kinds of indices,
“lower” and “upper,” on general tensors.)!” If a non-degenerate bilinear form were added
to L, the situation would change significantly, since it would be possible already to identify
L with L* in a canonical way (via the “raising and lowering of indices” procedure, see
(2.4.13).)

Prove that the space (L*)* is canonically isomorphic to the space L.
Hint: the canonical isomorphism f : L — (L*)" is (f(v), @) := («, v). [l

Imagine we have defined a “canonical” isomorphism L <> L* with the help of dual
bases by

fleq) :=e"

(i.e. v < «a, if they have equal coefficients of decomposition with respect to e, and e?
respectively). Check that if we change the basis as e, > A’ey, the isomorphism above will
be changed (and since in general L all bases are equally good, no distinguished f is given
in this way). O

17 This step saves the huge number of higher dual spaces as well as various kinds of indices for future generations, so it can
be regarded as highly satisfactory far-sighted behavior from an ecological point of view; one should not lavishly waste any
non-renewable resources, including mathematical structures.
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e Let us have a look at one aspect, common for linear spaces L, L* and R. One may, in
all three cases, regard their elements as linear maps into R, namely

1. ael* maps vi> (@,v)eR (vel)
2. velL maps ar (a,v)eR (xel”
3. aeR maps fPr—>aekR (no input and a real number as output).

Although item 3 might look fairly far-fetched, it proves convenient to incorporate it as a
gear-wheel into a device, which in general operates as follows: several vectors as well as
covectors are inserted and (after a crank is turned, of course) a real number drops out.
Moreover, if this number depends linearly on each argument (which holds for all three
cases, albeit trivially for the third case), we get a tensor.

Definition Let L be an n-dimensional linear space and L* its dual space. A fensor of type
(fl’ ) in L is a multilinear (= polylinear := linear in each argument) map

t:Lx - xLxL"x---xL*=>R

q p
w,...,wia,..., )~ tlv,...,w;a,..., ) €R
N —— —— .’

q P

tG...,v+r2w,...)=t(..,v,...)+Art(...,w,...)

(and similarly for an arbitrary covector argument). A collection of tensors of type (Z ) inL
will be denoted by qu(L), and for p = g = 0 we set Té)(L) =R.

Check that
(i) fort, 7t € qu(L), A € R, the rule
t+r0)v,...;a,...):=tv,...;a,...)+At(v,...;0,...)

introduces a linear structure into Tr(L) (i.e. the linear combination displayed above indeed
happens to be a multilinear map)
(i1) some special instances are given by

TX(L) =R (L) = L* T (L)~ L
T!(L) ~ Hom (L, L) ~ Hom (L*, L*) T)(L) = By(L)

where Hom (L, L,) denotes all linear maps from L, into L,, B,(L) are bilinear forms on L and
~ denotes canonical isomorphism.

Hint: (8), ((1)) and ((2)) definitions, ((')) (2.4.3); (}) the isomorphisms Hom(L, L) — T,/(L)
and Hom (L*, L*) — T,/(L) read

t(v; ) = (o, A(v)) and t(v;a) ;= (B(a), v)
or, equivalently (in the opposite direction),

AW) :=t(v; +) B(a) :=t(-;a) O
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e Taking into account (multi)linearity, atensort € qu (L) is known completely if we know
its values on all possible combinations of basis vectors e, and covectors e“. This collection
of numbers

d
=1t(e,, ..., ep e, ..., e%)

is said to form the components of the tensor ¢ with respect to e,. The mnemonic rule of the
notation (g ) should finally be clear: a tensor 7 is in the space T, (L) if its components have
p upper indices and g lower indices.

Check that

(i) in components, the rule for performing linear combinations from (2.4.5) reduces to
(t +A0)Gg = 1075 + ATy

(i) dim TP(L) = nP*4 = (dim L)?*? (the number (p + ¢) is known as the rank of a tensor)
(iii) under the change of basis in L, components of a tensor transform as follows:

eat> Aley=e = =AY (ATYALLL AN
(iv) if v = v, ¢ = a, e’ . .. represent the decompositions of arguments, then
t,...,wia,..., B =1t" ,‘fv" whae ... By
(v) three different applications of a (})-type tensor ¢ from (2.4.5) in components look like
W, o) > tivba, v > P o, > oy,

Hint: (ii) £ > ¢ is the isomorphism 7,/ (L) — R""™ (each of (p + ¢) indices takes n

values); (iii) 'S ‘f, =t(e), ..., e?) + linearity in each argument. O

e Thus we have learned that L induces an infinite number of further linear spaces —
for each pair (p, ¢) of non-negative integers there is the n”™-dimensional space 7, (L).
(This means that if we envisage tensor spaces as a
“tower,” the tower dilates in the upward direction,
like a pyramid does on a photograph snapped in Giza
by a distrait yogi, forgetting he has just performed
a headstand.)

If we combine components with a suitable basis,
we get “complete” tensors. It turns out that a suitable
basis may be constructed out of the basis for vectors
and covectors, if an additional operation on tensors is introduced, the tensor product. It may
be regarded as a map

. P ptp’
R : TqP(L) X Tq, (L) —> Tq+q (L)

i.e. two tensors of arbitrary types ( ) and ( ) are multiplied — contrary to linear combi-

nation, where both types have to be equal — and the resulting tensor is of type (p 4 ) The
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definition is as follows:

E®o)vi, ..., Vg, W, ..o, Wyrs &Y, ., 0, Br, ey Bp)
=1, . ovgsar, ., ap)o (Wi, ., wes B, L., By)
(here the indices label complete vectors and covectors, rather than their components!).
Stated in words, we first insert the arguments of both types into the first (left) tensor, until it

is filled completely; the rest we put into the second (right) one. The resulting two numbers
are then simply multiplied.

Verify that

(1) the result of the multiplication ¢ ® o is a tensor, indeed (i.e. check multilinearity)
(ii) at the level of components the multiplication ® gives

(t @) 5 = 15000
iii) the multiplication ® is associative (we need not bother about brackets in multiple products),
p ple p

bilinear and non-commutative
(iv) tensors of type (p, q)

QR Qe ® - ®eseT](L)

constitute the basis of TP (L) with respect to which components have been defined above, i.e. an
arbitrary tensor t € 17 (L) may be decomposed as

t=t19"® . @’ ®e.®---Qey 1 = t(egy ..., eps e, ..., %)

Hint: (iv) one has to check that the “original” tensor and its decomposition represent
the same map; since they are (multi)linear, it is enough to check it for the basis; as an
example

d b o d b b b

(tge ® ec) (eq;€”) =t5(e, ea) (e’ ec) =t] =t(eqz;€”)
thus the equality tg‘,'ed ® e, =t of maps (= tensors) has been proved. O
o Theresult (2.4.7) shows that all tensors constitute an (co-dimensional non-commutative)

associative algebra (Appendix A.2), called the tensor algebra T(L). As a linear space, it
is a direct sum of all spaces T, (L)

T(L) = P 17(L)

r,s=0

=TT/ (LOTNL)STHLYS T (L) TIL)S - -

(up to infinity), i.e. an element from 7'(L) may be regarded as a linear combination of
tensors of all types (Z ) Multiplication ® is defined as a linear extension of the definition

of ® on homogeneous terms (terms with fixed (Z )), i.e. according to the rule “everybody
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with everybody”:'®

k+v+ta+--)Q@+w+pB+--)=kQ@q+kQuW+kQB+---
TvR®g+tv@wt---

Furthermore, this algebra is (Z x Z)-graded (Appendix A.S): its “homogeneous” subspaces
T, (L) are labelled by a pair of integers (p, q), i.e. (we define T, (L) := 0 for negative p, q)
by an element of group Z x Z, and multiplication in algebra 7' (L) is compatible with the
grading: the product of any two elements from the subspaces <> (p, ¢)and (p’, ¢') € Z x Z
is homogeneous, too, belonging to the subspace which corresponds to a product in the sense
of ZxZ,ie.(p+p,q+q).

Operations producing tensors from tensors, are said to be tensor operations. So far we
have met linear combination and tensor product. One further important tensor operation is
provided by contraction. It is defined (for p, g > 1) as follows:

C:T/(L)—T/N(L) 1> Cti=t(..  eq...;....¢" ..)

where the exact position of arguments e, and e is to be specified — it forms a part of the
definition (there are several (pq) various possible contractions, in general, and one has to
state which one is to be performed).

Check that

(1) the result is indeed a tensor (multilinearity)
(i1) C does not depend on the choice of the basis e, (when e, has been fixed, however, e“ is to be the
dual)
(iii) in components the rule for C looks like'”

L i.e.  asasummation with respect to a pair
of upper and lower indices

(iv) independence of a choice of basis results from the component formula, too.

Hint: (ii) see (2.4.2); (iv) see (2.4.6). ]

Show that

(i) the prescription
(Vi) := (a, V)

defines a (})-type tensor, the unit tensor
(ii) its components with respect to any basis e, (e¢“ being dual, as usual) are given by

¢ =5¢ sothat T=e"®e,

'3 The maximum promiscuity rule.

19 Bach contraction thus unloads a tensor by two indices. It breathes with fewer difficulties immediately (fewer indices = fewer
worries), it feels like after a rejuvenation cure. This human aspect of the matter is reflected sensitively in German terminology,
where the word Verjiingung (rejuvenescence) is used.
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(iii) it realizes the unit operator (v — v, @ > «) if it is interpreted as a map
i:L>1L and i:L*> L*

respectively
(iv) its contraction (2.4.8) gives

Hint: (iii) see (2.4.5). O
Show that the evaluation of a tensor on arguments may be regarded as a composition
of tensor product and contractions; as an example, for a ({)—type tensor it is
t,a)=CCtRuRa) =V R oz)ZZ = Qv®a)ep, e e, )
In particular, (see exercise 2.4.8),
{(v,0) = (@, v) = Cla @ v) O

e A metric tensor in L is a symmetric non-degenerate tensor of type ((2)), ie. g e TXL)
such that

g(v, w) = g(w, v) symmetric
gw,w)=0forallw = v=0 non-degenerate
Check that
®
8ab = &ba detgu, #0
(ii) conditions in (i) do not depend on the choice of basis ¢,. O

e Sometimes one demands that g meets stronger requirements, namely to be positive
aleﬁm'te,20 so that

g(v,v) >0 (and equality holds only for v = 0)

and (metric) tensors, which are not positive definite, are said to be pseudo-metric tensors.
We will use, in what follows, the nomenclature metric tensor also for g, which is not positive
definite,”! and if some statement relies heavily on the positive definiteness of the latter (i.e.
“true” metric tensor), it will be specially emphasized.

As is well known from linear algebra, one can bring a matrix of a general symmetric
bilinear form by a suitable (non-unique) choice of basis ¢, to the canonical form

by = diag(l,...,1,—1,...,—1,0,...,0)
—_—— ——— — — —
r s 1
20 Then (v, w) := g(v, w) has the properties of a scalar product in L, see (2.4.13).

21 This is the case both in special and in general relativity, where one speaks of a “metric” in situations where in finer terminology
pseudo-metric tensor (or even tensor field) should be used.
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where the numbers (r, s, [) are inherent properties of the form (Sylvester’s theorem). Non-
degeneracy adds / = 0 (why?), so that the canonical form of a metric tensor reads as

8ap = Nap =diag (1, ..., 1,—1,...,—-1)
——— S ——
r )
or, in other words,
g:gabea®eb
:el®el+”.+er®er_er+l®er+l_”._er+s®er+x

In this case we will speak about a metric tensor with signature (r, s).*> Thus, the positive

definite case corresponds to s = 0 (terms with a minus sign are not present in the canon-
ical form). Any basis e, <> e“ in which this canonical form of g is obtained is called an
orthonormal basis.

2.4.12| Givene, anarbitrary basis and g,, = g(e,, ep), define g°? as elements of the inverse
matrix to gup, i.e.

8" e =8}
Prove that

(i) g constitute the components of a (symmetric) (5)—type tensor (so that they indeed deserve two
upper indices)

g=gwe’ ®e e TZO(L) = g li=g%,®e¢, ¢ TOZ(L)
(ii) matrix g* is non-singular.

Hint: (i) check the transformation law of g’ under a change of basis. O

2.4.13| Consider the maps b, and , given by
be: L — L* V> bov = g(v,-)
o1 L* — L a> o= g e, )

Check that

(i) they are linear (and canonical) isomorphisms
(i1) when expressed in bases and in components, they look like

b

be : e, > ga;,eh v v, = gapv vie, > vet

f e’ > g%e, a, > a = g%, age’ > ale,
(iii) they are inverse to each other:

bg [0} ng = ldL* ﬁg O bg = ldL

22 Sometimes, the number r — s is called the signature, too.
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(iv) if scalar products in L and L* are introduced® by
(v, w) =g, w) = guv'w’ (o, )= g (@ B) = g"aups
then both b, and ff, are isometries, i.e. (byv, bow) = (v, w), (0, #,8) = (@, B). O

o The maps b, and . are known as lowering and raising of indices (with the help of g),
respectively. The quantities v,, v* are often called covariant and contravariant components
of (the same) vector v. We will not adopt this nomenclature, however. We will always strictly
discriminate between a vector v = v?e, and a covector v,e (as being elements of L and
L*) and interpret the operations of raising and lowering of indices as maps between two
different spaces L <> L*. Note that the graphical expressions used for these maps originate
from well-known musical symbols.?*

The metric tensor makes it possible to change the position of indices on higher rank
tensors, too, for example

. d b . e
t}?(‘ = labe *= 8ad Uy, Rfd > Rabed = Gae &bf ch
This belongs to basic exercises of index gymnastics.”

2.4.14| Prove the validity of the exercise

Hint: do you intend to base your proof upon the fact that the total potential energy remains
unchanged? (Red herring.) O

e There are several possibilities of how to raise or lower indices on second or higher rank
tensors, differing in the order of the indices on the resulting tensor. As an example, there
are four places below where one can lower the index on the fourth rank tensor R},

. J . J
Rapea == gﬂijcd Rapea = gbjRacd

The indices are sometimes written so as to have only one index on each vertical line, being
either upper or lower, e.g. Rabc 4 Within this particular convention, it is always clear where
exactly any upper index should be lowered.

It is useful to realize that symmetry of the metric tensor g is of no importance for raising
and lowering of indices, the only property that matters being its non-degeneracy. These
operations might as well be defined by virtue of an antisymmetric tensor w,, = —wpq,
provided that it happens to be non-degenerate (det w,, # 0). We will see in what follows
that this possibility is indeed exploited, the most prominent applications being in symplectic
geometry (to be discussed in Chapter 14 and beyond) and in the theory of two-component
spinors (12.5.3).

23 They are positive definite for Euclidean g only!

24 Namely “flat” and “sharp.” Thoughtful graduates of schools of music might recall that no g was present on sharps and flats
they had read in sheets of music — this is simply because the validity of Euclidean geometry is normally assumed in concert
halls, so that musical flats and sharps are conventionally associated with this Euclidean g (and are not indicated explicitly).

25 It should be performed, as is the case for arbitrary gymnastics, at an open window, never directly after a substantial meal.
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Finally, let us contemplate whether the lowering and raising of indices does change the
numerical values of components. The formula v¢ — v, = gup v? shows that the numbers v*
and v, are the same only in the case where g is given, in a given basis, by the identity matrix,
8ab = 84p. This (only) happens to be true in the positive definite case in the orthonormal
basis; in the indefinite case, this happens in no basis. Therefore, when working with vectors
in Euclidean spaces E? or E*, one may safely ignore the detailed position (upper/lower)
of indices with respect to an orthonormal basis.*® On the other hand, one should pay due
attention to this issue in all cases when non-orthonormal bases or indefinite metrics are
used. In Minkowski space, for example, the lowering and raising of indices always changes
numerical values of (some) components; in an orthonormal basis this change reduces to the
change of a sign (of some of them), but it may be more complicated in general.

2.4.15| Check that raising and lowering of indices

(i) are tensor operations
(i1) may be regarded as compositions of a tensor product (with the tensor g) and contractions.

Hint: e.g. bov = g(v, ) = C(g ® v). O

e Thelast tensor operations to be mentioned are symmetrizations and antisymmetrizations
in various subgroups of indices. Let us illustrate this on just two indices.

2.4.16] Given t € TY(L), define

1
S = E(tab + tha)e® ® e’ = t(ab)e“ ® eb

1
= E(t“b — ) ® e’ = tapie” ® e’

(symmetric and antisymmetric part of the tensor ¢ respectively). Check that
)

S

t> 15 =75 T

are tensor operations, independent of the choice of ¢,
(ii) tensors, for which ¢t = 15 or = t* is true, constitute subspaces in (L)
(iii) 75 and 7# satisfy
aSonS=n8 mSonA=alonS=0
ahomh =nxh sS4+ art=1
so that they serve as projection operators on the subspaces of the symmetric and antisymmetric

tensors mentioned above, the whole space T,)(L) being the direct sum of these two subspaces
(only). O

e Finally, two more useful concepts will be introduced at the end of this section on
multilinear algebra, namely those of a dual map and an induced metric tensor.

26 That is, at the level of components one is allowed to make no difference between a vector and the associated covector, like the
gradient as a covector and a gradient as a vector, see the end of Section 2.6.
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2.4.17) Let A: L; — L, be a linear map, ¢; a basis of L; and e, a basis of L,. The
rank of the map A is defined as a dimension of the image of the space L; in L, i.e. rank
A :=dimIm A. Show that

(i) by the prescription
(A*(ap), v1) := {2, A(V1)) a, e Ll v el
a linear map
A*: Ly — L}

is defined (dual map)
(ii) on the basis it gives

A A ;
e~ Ale, = ' Ale
i.e. matrices of the maps A, A* are transposes of each other
(iii)
rank A = rank of the matrix of a map A
rank A* = rank of the matrix of a map A*

(iv) rank A = rank A* (= that the row and column ranks of a matrix happen to coincide).

Hint: (iv) use adapted bases: a part of e; is a basis of the kernel Ker A of the map (those
v for which v — 0 € L,), the rest are chosen arbitrarily to complete a basis; in L, take
images of the remaining part (they span Im A) + complete a basis. O

2.4.18] Given A : Ly — (Ly, h), dim L < dim L, a maximum rank linear map (2.4.17)
(h being a metric tensor in L), show that
(i) by the rule
g:=A%h (A*h)(v, w) := h(Av, Aw)

a metric tensor g in L, is defined (induced metric tensor)
(i) if e; € L, and ¢, € L, are bases, then

8ij = A?habAi’. Ae; =: Ale, (in matrix notation g = ATh A)
Hint: (i) (among others) one has to check the maximum rank (2.4.13) of the map
bg:L; — Lj Vi g(v, ) =T =byv

(= non-degeneracy of g). This map is a composition of

by,

by =A*obyoA L5 L% LIS LY (A*in the sense of (2.4.17))

(since e; > gjje/ = AfhabA';ej ), all factors in the composition do have maximum rank
and dim L; < dim L, = b, is a maximum rank (= dim L) map, too. O
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2.4.19| Let V be a linear space with a distinguished subspace W C V. Show that in the
dual space V* the associated distinguished subspace W C V* of dimension dim V minus
dim W is given canonically; it is said to be an annihilator of the subspace W.

Hint: consider covectors o € V* annihilated by vectors from W, i.e. such that (o, w) =0
for all w € W (see also (10.1.13)). O

2.5 Tensor fields on M

e In Section 2.2 we showed that there is a vector space associated with each point P of
a manifold M, the tangent space Tp M. In Section 2.4 we learned how to construct tensors
of type (f; ), starting from an arbitrary finite-dimensional vector space L. If we now take
L to be the space Tp M, we immediately get (with practically no labor — it simply suffices
to harvest the crop sown earlier in Section 2.4) tensors at the point P € M. In particular,
the dual space to Tp M, the space of covectors in P € M, is called the cotangent space in
P and it is denoted by Ty M.

Equally naturally the concept of a fensor field of type ( ;’ ) on M appears. In full analogy
with the special case of a vector field, one has to choose exactly one tensor of type (f]’ )
residing at each point of a manifold M. Once again, we restrict to fields which vary smoothly
from point to point. In order to formulate this succinctly, an algebraic perspective is useful.
In particular, one should realize what kind of maps tensor fields actually are.

An individual tensor of type (Z ) in P € M takes as its arguments vectors and covectors in
P, and the result is a number which depends linearly on each of the arguments. At the level
of fields, this happens in each point P € M. It is convenient to regard it as if we inserted
vector and covector fields as arguments of a tensor field, obtaining a number at each point,
i.e. a function. Since at each point linearity over R is required, one has to demand linearity
over F(M) for fields. Let us clarify this subtle point in more detail. Consider a covector
field o. At each point P we have «p, and the value Vp of a vector field V is inserted in it
as an argument. In this way we obtain a function

(a, V) € F(M) (a, V)(P) :== (ap, Vp) € R
Since «p is a covector, for any A € R it holds that
(ap, Vp +AWp) = (ap, Vp) + Aap, Wp)
At a different point Q # P we have
(g, Vo +AWg) = (ag, Vo) + Aag, Wp)

Both results should be valid, however, for arbitrary X, so that A present in the formula cor-
responding to the point P may be completely different from X in the formula corresponding
to the point Q — a “constant” A may depend on a point, and therefore for any function



46 Vector and tensor fields

f € F(M) we must have
(o, V+ fW)=(a, V) + fla, W)

This is said to be the F(M)-linearity of the map o, which should be contrasted with
the weaker requirement of R-linearity. At the same time, we see the important fact that
the property of being F(M)-linear ultimately springs from the pointwise character of the
construction (the expression (e, V') is in fact («p, Vp) performed in each point P). The
F(M)-linearity means that the arguments (vector fields in the case of a covector field)
constitute a module over the algebra (M) and the map

o TH(M) — F(M)

is linear in the sense of modules.

In terms of these maps the smoothness of a covector field is easily stated: « is said to
be smooth (of class C*) if the function (c, V) is smooth for any smooth vector field V.
Smooth covector fields on M will be denoted by TIO(M ).

Given a, B € (M), f € F(M), check that also o + fB € T’(M), if the linear
combination is defined as

(@+ /B, V) :=(a, V) + f(B. V).
|

e This means that not only vector fields, but also covector fields constitute an F(M)-
module. Now, it is clear from this perspective that a tensor field of type (2’ ) may be regarded
as a map

T M) x - x T M) x TAM) % - - x TAM) — F(M)

q p

which is F(M)-linear in each argument. If the resulting function happens to be smooth for
arbitrary smooth arguments, the field ¢ is said to be smooth. Smooth tensor fields of type
(;’ ) on M will be denoted by 7,” (M), the case of 7 (M) being identified with F(M). (This

makes the notation %I(M ) comprehensible for vector fields, too.)

Check that each qu (M) is naturally endowed with the structure of an F(M)-
module. O

e If we make a comparison between tensors in L and tensor fields on M, we can say that
virtually everything goes the same way, if we substitute 7,” (L) by 7,/ (M), linear spaces by
F(M)-modules and R-linearity by F(M)-linearity.

In particular, let us look more closely at the properties of tensor algebra. This concept may
be readily transferred to a manifold, after performing the substitutions mentioned above:
one takes the direct sum of all modules qu (M)

[ee]

T(M) = @ 1) (M)

P.q=0
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(itis an F(M)-module, too) and defines there a pointwise product ®, just like in Section 2.4.
This algebra, the algebra of tensor fields on M, is oo-dimensional (which looks much the
same as for 7'(L)), but here already each homogeneous part qu (M) is co-dimensional (over
R; the most salient difference occurs for the lowest degree (g): R < F(M)). On higher
degrees, the situation is repeated in the form we met already in Section 2.2: although the
spaces 7,/ (Q) are oco-dimensional even on “sufficiently small” domains O C M (e.g. in
coordinate patches O < x'), when regarded as linear spaces, they are finitely generated,
when regarded as modules. And what do the basis tensor fields actually look like, with
respect to which decomposition is to be performed?

We have seen in Section 2.4 that the most natural basis in L*, with respect to a given
basis e, in L, is the dual basis e?. At the same time, for vector fields we know a coordinate
basis 9;. What does a basis for covector fields look like which is dual (in each point) to this
particular basis?

Let f € F(M), and letx' be local coordinates in O C M. Check that
(i) by the prescription
(df,vy=Vf

a covector field df on M is defined. This field is called the gradient of the function f
(ii) gradients of coordinates (= functions!) dx’ € ’TIO(O) constitute a basis for covector fields on O,
i.e. any o € 7,°(O) may be decomposed in the form

o = o;(x)dx’ a;(x) := (a, &) (= components with respect to the basis dx’)

and, in particular, for a gradient we have

. 0 .
df = f;dx' = f_ dx'

ax!

(iii) covectors dx'|p constitute a basis for covectors in P, which is dual to the coordinate basis 9;|p
i) for vectors in P (the basis dx’ is said to be a coordinate basis, too)
iv
(@, V) = a;(x)V'(x)
(v) under the change of coordinates one has (J being, as usual, the Jacobian matrix)
X x(x) = dx' > dx" = Jj(x)dx’ and  (x) > aj(x) = (J_l){(x)a_,-(x)

Hint: (i) see (2.2.12); (v) set f = x"* in (ii). O

e Since we already have the dual basis dx' to 9;, we may write down component decom-
positions of arbitrary tensor fields.

Check that if t € 7./ (M), then
(i) locally (in O <> x) it holds that

t=610dr @ ®d' @4 ®- -0
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(i1) under the change of coordinates x — x’ components transform according to the formula
e RO O LA )]

= JI(x) .. IO ) . (T o (x)

g
Prove that the module ’];p (O) has n?*4 generators.
Hint: see (2.5.4) and (2.4.6); 1,/ € F(O). u

e Theresult given in (2.5.4) might serve as a basis for an independent definition of a tensor
field on M (definition of classical differential geometry; refer to definition no. 4 of a vector in
Section 2.2): the tensor field of type (g ) on M is a collection of functions t,i:::lj (x) associated
with coordinates x' defined in patches O <> x', transforming under the changes of coordi-
nates according to the rule given in (2.5.4). Note that a global object on M is defined here
in terms of its pieces (components t,i:::lj (x)on O C M) as well as a rule of how to globalize
them, i.e. how to glue these pieces together consistently so as to obtain a desired whole. In
order to make this method work, one has to ensure that the rule for transition from one piece
to another satisfies a consistency condition on triple overlap of charts (see (2.2.6)): two steps
x > x’' > x” are to lead to the same result as a single one x — x”. This may be regarded
actually as a requirement, namely that the rule should have particular group properties —
coordinate changes on triple overlaps are naturally endowed with the structure of a group
(multiplication being realized as a composition of the two transformations involved) and the
transformation rules are to have the properties of “action” of the group (in particular, its rep-
resentation in linear spaces, as is the case here; see Section 12.1). Some of these rules may be
fairly complicated (e.g. the rule for Christoffel symbols of a linear connection, see (15.2.3)),
but the property of group action is necessary for a globally defined object (and sufficient as
well).

Check that the rule given in (2.5.4) for transformation of components of a tensor
field meets the requirement of consistency on triple overlaps of charts.

Hint: consider the behavior of Jacobian matrices for the transitions x — x’ — x”. O

Prove that a tensor field is smooth if and only if its components happen to be smooth
(and this does not depend on the choice of coordinates). O

2.6 Metric tensor on a manifold

e On a manifold M, tensor fields of arbitrary type (Z ) may be introduced. The only
canonical (existing automatically) tensor field on a general manifold is the unit tensor field
1 of type (}) (its other names being the contraction tensor or canonical pairing; note that
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the tensor product of several copies of this tensor as well as all possible symmetrizations
and antisymmetrizations of such products are canonical, too)

WV,0):=(a, V) ie. 1(V,H)=V, 1(-,0)=«
Check that

(i) in coordinates
l=dx'®ds e 1
(i) the expression in (i) does not depend on the choice of coordinates (see (2.4.9)). O

e All other tensor fields on a manifold have to be specially defined and they provide
additional structure on M. What particular manifold we choose and what tensor fields it is
endowed with depend ultimately on the physical context in which the tools of differential
geometry are intended to be used (they represent input data, which characterize the problem
in geometric language). In the majority of physically interesting applications of geometry
(although not in all of them) a metric tensor on a manifold enters the scene, i.e. a field
g€ 7'20(M ) such that for each point P it is a metric tensor in 7p M in the sense of (2.4.11).
It is a fairly “strong” structure, indeed, which enables one to perform various operations
directly (such as lowering and raising of indices, association of lengths and angles with
vectors, etc.), but it also induces various additional structures (linear connection, volume
form, etc.) as well. A manifold endowed with a metric tensor, i.e. a pair (M, g), is said
to be the Riemannian manifold and the branch of geometry which treats such manifolds
is Riemannian geometry. If g is not positive definite (see the text just after (2.4.11)), one
sometimes speaks about the pseudo-Riemannian manifold and geometry and, in particular,
about the Lorentzian manifold and geometry for signature (4, —, - -+ —) or (—, +, - - - +).

Check that in the coordinate basis it holds that
be(Vd;) = V;dx' fe(o; dx') = a'd;
where
Vi = g,-jVj o = gijozj
Hint: see (2.4.13). U

The simplest n-dimensional manifold is given by Cartesian space R". Here the standard
(flat) metric tensor of signature (r, s) (r + s = n) is introduced; by definition, in Cartesian
coordinates we put

g,j:nljzdlag(l,,l,—l,,—l)
—_— —o

ie.

g=njdx' @dx/ =dx' ®dx'+--- +dx"@dx" —dx""' @dx" — ... — dx" @ dx"
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This manifold will be denoted by (R”", n;;) = E"™* from now on (and called the pseudo-
Euclidean space), and, in particular, in the positive definite case (R”", §;;) = E" (the Eu-
clidean space).

Let us have a closer look at the motivation for this definition in the most mundane
spaces EZ and E3. In a common plane E? it says, for example, that the length of the two
vectors d, and 9, is (at each point) 1 and that these vectors are orthogonal to each other.
For |9,]> = g(d, 8,) = (dx ® dx + dy ® dy)(dy, d,) = 1, the rest similarly. This shows
that the definition nicely matches our intuitive conception of metric conditions in the usual
plane.

Write down the metric tensor in the common plane E? in polar coordinates. (g =
dx @dx +dy @dy =dr @ dr +r*de @ dg.) O

Cartesian polar

Write down the metric tensor g in the common three-dimensional space E3 in
Cartesian, cylindrical and spherical polar coordinates.
Result:

g=dx®dx+dy®dy+dz®dz Cartesian coordinates
=dr@dr +r’de ®do +dz ®dz cylindrical coordinates
=dr @dr+r*dd @dv +r’sin’ ¥ dy @ dp spherical polar coordinates

O

e This kind of computation can be done either making use of transformational properties
of tensor components (i.e. reading components from its expression in Cartesian coordinates,
using (2.5.4) or (2.4.18) and “gluing together” a new coordinate basis with new compo-
nents), or computing new “differentials” (= gradients of coordinates), first, according to
(25.3),eg.in (2.6.3) dx =x,dr +x ,dp =cospdr —rsingdg, and then exploiting
bilinearity of the tensor product. As a rule, this alternative method is quicker for simple
metric tensors. In elementary situations (like that mentioned above) one can see, after a bit
of practice, the result directly from the visual conception of what the geometry is about on
a particular manifold, see (3.2.11) and (3.2.12).

Check that the non-Cartesian coordinate bases in (2.6.3) and (2.6.4) are orthogonal,
but they are not orthonormal.

Hint: see the text prior to (2.4.12). O

e If some local coordinates on (M, g) induce at each point the orthogonal coordinate basis
of the tangent space, they are said to be orthogonal coordinates. We have learned above
that, besides Cartesian coordinates, also polar coordinates in £ and spherical polar as well
as cylindrical coordinates in E3 (and various others, too; e.g. see (3.2.2)~(3.2.7)) deserve
to be titled by this prestigious nomenclature.

A manifold (R*, »; )=E 13 with signature (1, 3) is called Minkowski space and it plays
a featured role in the special theory of relativity (being the space-time there; see more in
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Chapter 16). Cartesian coordinates are usually labelled in this particular case as (x°, x7),
i =1,2,3, x" =t being time and x’ corresponding to Cartesian coordinates in our good
old R? (the choice of units with ¢ = 1 is adopted).

Write down the Minkowski metric 5 in spherical polar and cylindrical coordinates
(i.e.(t,r, 9, @) and (¢, r, ¢, z) respectively instead of (¢, x, v, z)). (n = dt @ dt — h, h from
(2.6.4).) O

e An important metric tensor is unobtrusively hidden in the expression for the kinetic
energy of a system of particles.

Given (r((z), ..., ry(?)) a trajectory of a system of N point masses in mechanics,
we may regard it as a curve I'(¢) on a manifold M = R3 x --. x R? = R3", Check that
the kinetic energy of this system induces the particular metric tensor i € ’]’20(M ) on R3V
(being different from the standard one, in general) by

1 . .
kinetic energy =T = Eh(l", I
Hint: if (x, yk, zx) are Cartesian coordinates of the kth point, then h = mh; +--- +
myhy, where hy ;= dx; @ dxy +dy, @ dyy + dzi @ dzk. O

Write down the kinetic energy of a single point mass in Cartesian, cylindrical and
spherical polar coordinates.

Hint: see (2.6.7) and (2.6.4); for a single point mass, & is only a multiple of the standard
metric tensor; one obtains

1
T = Em()'c2 + 32+ 2% Cartesian coordinates
_ 1o 20 0 o ,
= 2m(r +regp” 4+ 2% cylindrical coordinates
1 .
= Em(f2 + r29% + r%sin?0¢?) spherical polar coordinates

O

e The metric tensor turns out to be the essential element for introducing the concept of the
length of a curve on (M, g), too. Let us begin in E3. If a point moves along a trajectory r(z) in
our usual space E?, it traverses (to first order in €) the distance ds = |v|e = €/x2 + y2 + 22
within the time interval between ¢ and ¢ + € (according to the theorem of Pythagoras; this is
the place, of course, where the metric tensor in E 3 is hidden). Note, however, that one can
write this as €/g(y, y) for y < (x(¢), y(t), z(¢)). The length of a finite segment between
P = y(1)) and Q = y(t) is given by [ dr /g(y, 7). The most interesting feature of this
expression consists in the fact that one cannot see from it that (M, g) = E> and Cartesian
coordinates are used. It is then natural to use this very expression for the definition of
the length of a curve in general. One should understand that even in this general case its
meaning remains just the same — for small pieces, the relation “distance = speed x time
interval” is used, and the result is summed over all small pieces (i.e. integrated).
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It is a suitable time now to contemplate the visual meaning of the concept of the length of
a vector V itself. The following is meant by this notion: if we proceed a parametric distance
€ along the vector V, we travel (in the positive definite case) a distance (in the sense of
the length of the curve)?’ €|V| = €./g(V, V). Keeping this in mind one is often able to
derive explicit forms of metric tensors on two-dimensional surfaces in E* simply by a “rule
of thumb” (see (3.2.11); the same is true for curves in E> as well, being fairly useful, for
example, in computing line integrals of the first kind, see (7.7.4)).

There is an alternative way of displaying the metric tensor, which is frequently used
in general relativity, and may be ultimately traced back to the connection between the
length of a curve and a metric tensor. In this convention one writes directly the “square of
the distance” dI? between two points which are infinitesimally close to one another (i.e.
points with values of coordinates being x’ and x’ + dx' respectively), where dx’ denote
infinitesimal increments of the values of coordinates (so that they are not our base covector
fields (!)). For metric tensors from exercise (2.6.4), as an example, we have

di* = dx* + dy* + dz?
=dr? +r? dgo2 +dz?
=dr’ +r*do* +r’sin® ¥ dg?
Although we will not, as a rule, use this convention in the course of the book, it is fairly

common in texts on relativity and one should understand clearly its precise meaning.

Let r — t(o) be a reparametrization of a curve y, i.e. y(o) := y(t(c)). Check that
the functional of the length of a curve (refer to (4.6.1), (7.7.5) and (15.4.8))

5]
length of acurve y =I[[y] := / dt\/g(y,7)

n
is reparametrization invariant, l[y] = [[y], i.e. this expression depends on the image set
of a curve (i.e. on the path; recall that the curve is a map) rather than on a particular
parametrization of this set (on a curve).

Hint: according to (2.3.5) ' = (dt/do)y, therefore do /g(P’, 7)) = dt/g(y, y). O

e Finally, we mention the possibility of introducing the gradient as a vector field. The
gradient df as a covector field has been defined in (2.5.3). If a metric tensor is available, we
can find a vector field, simply by raising the index on the covector df. The resulting vector
field is called the gradient (of a function f), too, and will be denoted by grad f or V f

gradf = Vf :=tdf =g 'df,-) e (V) :=g"Wdf);=¢"f;

A well-known example is provided by the potential force field in mechanics. It is the gradient
of the (by definition negative) potential energy of a system. Here, indices are raised by means

27 Remember that the vector V officially resides as a whole at a single point x and its length is g,(V, V). This length (in the sense
of a scalar product in 7, M) now becomes related with a formally different length, namely the length of a small piece of a curve
y (¢) defined by the vector, the representative of a class specified by the vector V. Both computations need g and the definitions
are intentionally designed so as to make the results coincide.
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of the standard metric tensoron M = R? x --- x R} = RV thatis by & + --- + hy (as
opposed to (2.6.7), where masses are present, too).

2.6.10| Find the lines of electric field of a point charge and of an elementary dipole.

Hint: first, write down equations for integral curves of the electric field E = —V @, i.e.
o= _ gijqj
for
o pr cos ¥
O(r, 9, p) = - resp. D(r, v, @) = ar—3 = (ap) P

(¢ € R) and then disregard parametrization (eliminate d¢ in the separation of variables
procedure; see also (8.5.13)). O

Summary of Chapter 2

For each point x of an n-dimensional manifold M there is the canonically defined n-
dimensional linear space T, M, the tangent space at the point x. Its elements are called
vectors at x. There are several mutually equivalent definitions of this concept, useful in
different contexts. A vector field on a manifold M is a smooth assignment of a vector to
each point x € M. The integral curve of a vector field is the curve whose motion at each
point is just that dictated by the vector of the field at this point. Standard constructions of
multilinear algebra (construction of tensors of type (’q’ ) for a given vector space L) lead to
the notion of a tensor field of type (Z ) on a manifold. In particular, one has functions (type

(8)), vector and covector fields (type ((1)) and ((IJ)), fields of bilinear form (type (g), in the
symmetric non-degenerate case the metric tensor) and linear operators (type (i))

y:R—>M A curve y on a manifold M Sec.2.1
f:M—>R A function f on a manifold M Sec.2.1
e = 0i|p Coordinate basis of Tp M (2.2.6)
a'v a’ = Ji(P)al Transformation of components of a vector in P (2.2.6)
V(ife)=WVfg+ f(Vg) Leibniz rule for action of vector fields (2.2.8)
¥=Vix) (y=V) Equations for finding integral curves of V (2.3.1)
n
v = Z vPe, = vle, Summation convention 24.2)
b=1
(e, ep) =), The base e“ is dual with respect to e, 2.4.2)
£ = t(eq, ..., eps e, ..., eh) Components of tensor € T,P(L) (2.4.6)
v, 1= gapv”, af = g%ay, Lowering and raising of indices by means of g (2.4.13)
df,Vy=Vf Gradient of a function f as a covector field (2.5.3)
T =1inI,T) Kinetic energy of a system of N point masses (2.6.7)
n
Ily]:= / dt/g(y,y) Functional of the length of a curve y (2.6.9)

il
(VI =g"f; (Vf:=t.df) Gradient of a function f as a vector field Sec.2.6
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Mappings of tensors induced by mappings of manifolds

e Nearly all situations in geometry, as we will see in this text over and over again, are
closely related to maps of manifolds f : M — N; in particular, often M = N. It turns out
that each mapping of points of manifolds automatically leads to a mapping of fensors at
these points and (provided some restrictions are satisfied) also of tensor fields on M or
N. Some of them move in the same direction as the points under the action of f, that is
from M to N, while others reverse the arrow and move against the direction of f. A clear
understanding of this transport of tensors serves as a ticket into a number of following
chapters.?

3.1 Mappings of tensors and tensor fields

e We begin with the simplest case, a function. Let us assume that we have functions on
both M and N denoted by x and i respectively, so that altogether three maps are involved.
This situation may be visualized as

REMLNELR

We want to find out whether x induces some function on N or, alternatively, ¥ induces
some function on M. Put another way, whether there is some combination of the three maps
under consideration which is a map M — R other than x, or amap N — R other than .
A short inspection shows that the answer is yes to the first question and no to the second
question. The composition map

ML NLR
is an effective arrow from M to R, i.e. a new function on M
Yof:M—-R

but one cannot compose the maps x and f since the reverse of the arrow f is needed for
that (f~! should exist), but we do not assume this: f is a general smooth map for which

28 Fortunately, the price/value relation of this ticket is very favorable and since the penalty for fare dodgers is high, there is no
point in trying to travel without paying.

54
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the inverse map may not exist. We thus conclude that one can naturally transport functions
(tensor fields of type (8)) against the direction of the arrow; functions are “pulled back.”

Let f : M — N be a smooth map and v/ : N — R a function on N. Show that
(1) the prescription
f'Y=vyof

induces a function on M (pull-back of the function )
(i1) in local coordinates

foxte Y = (@) =Y
(iii) for the composition of maps of manifolds M LNE Swe get the simple rule
(go f)'=[f"og"
(iv) if F(M), F(N) are the algebras of functions on M, N, then
5 F(N) — F(M)
is a morphism of algebras, i.e.

FrO 4 Ayn) = f Y+ Af @) = (%) (f*Y2) O

e Let us proceed to vectors and vector fields. We will show that vectors are transported
naturally in the direction of the arrow f. There are two equivalent ways to describe this
and the choice depends on how one represents the vector itself, either via curves or via
the algebra of functions (Definitions 1 and 2 in Section 2.2). The idea of these two ways
(to be developed in detail in the exercise) is that a transport of points results automatically
in a transport of curves (in the direction of the arrow) and consequently of vectors; and
a transport of functions backwards enables one to introduce the action of the transported
vectors on functions on N as the action of the original vectors on the function pulled back
to M.

Let f : M — N be a smooth map of manifolds, x’ local coordinates on M, y“ local
coordinates on N, J¢ = 9y“(x)/dx'. We define a map (usually called a differential of the

map f, push-forward or tangent map)
Iif = fi : M — TyyN
by the relation
flyl:=1fov]

In plain English, the resulting vector is simply iden-
tified with the tangent vector to the mapped curve.
This formula may also be expressed equivalently as
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d

Show that

follows:

d
V(l)) = (foy)t) orbriefly fiy=(foy)
=0 =0

t

(1) the map is well defined (it does not depend on the choice of the representative y of the class [y ]
of curves tangent to each other)
(i) it is linear
(iii) on the coordinate basis it gives
fidy = J0, sothat f.(V'9) = (JV')0,

(iv) the rank of the Jacobian matrix determines whether the mapped basis vectors are linearly inde-
pendent or not; namely for dim M < dim N there holds

Jf(x) has maximumrank <  f, isinjective < the vectors f,0; are linearly independent

(v) for compositions of maps of manifolds M LN Swe get the simple rule

(80 fl=8x0 fa
(vi) if ¥ : N — Ris a function then
(¥ =y (f*¥)
This means that an independent (and equivalent) way fo define f, is given by the formula®’

(VY = V(f*Y)
Hint: (ii) using (vi); (iv) see (2.4.17). d

e Let us now see whether this transport can be extended to vector fields, too. We find
immediately that we encounter problems if it is not possible to invert f (if f is not a
diffeomorphism). If f is not surjective, there are no vectors outside the image Im f of the
manifold M and so there is no transported field on the entire manifold N. A much more
serious problem arises, however, if f is not injective. If x;, x, are any two preimages of the
point y = f(x1) = f(x2) € N, then there are two vectors sitting in y, transported from x;
and x», and there is no reason for them to coincide in general. In the case of non-injective
maps, e.g. projections, only the transport of very special vector fields makes sense, namely
of projectable fields, for which the results of the transport of vectors from all preimages
do coincide by definition. When a vector field W on N is an f,-image of a field V on M
(W = f,V), Wand V are said to be f-related. For a general f it is, however, not possible
to construct the f,-image of a general vector field V.

Let us proceed from vectors to covectors. They move against the direction of the arrow
again and the idea follows exactly the lines of the idea of transport of vectors with the help

29 Whether you put the shoe on your foot or you put your foot in the shoe, the result is the same — your foot is in the shoe. It is
thus possible to define the procedure both ways.
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of functions: if we know how to transport vectors forward, we are able to transport covectors
backward, too. A closer look reveals that the same trick (the shoes, see (3.1.2)) enables one
to transport even arbitrary strictly covariant tensors (:= with lower indices only, i.e. of the

type ().

Let f : M — N be a smooth map of manifolds, x’ local coordinates on M and y*
local coordinates on N. Define a map

[P TiyN = I)M
by the relation

(f*av V) = ((X, f*V)
(f is from (3.1.2)). Show that

(i) itis linear
(i1) on the coordinate basis
frdy* = J¢dx' sothat  f*(e,dy*) = (ot J{) dx’
(iii) for a composition of maps of manifolds M LNE Swe get the simple rule
(gofy=/frog" O

Let f : M — N be a smooth map of manifolds, x’ local coordinates on M and y*
local coordinates on N. Define a map (pull-back of the covariant tensor field)

fr TN > T)(M)
by the relation
(f*oyU,...,V):=t(fiU, ..., fiV)
Show that
(i) on the linear combination and tensor product there holds

FEt+As) = 5t + Af*s t.s €T)(N), LeR
ffe®t)=(f")®( 1)

(i1) on the coordinate basis
[y @ @dy) =8 Jdx' @ @dx) = (f*dy)® - (f*dy")
and consequently
t=to,(NdY' ®@---®@dy" [t =1t ,(y))x). T dx ® - @ dx
(iii) for a composition of maps of manifolds M EN N5 Swe get

(go f)=f*og"
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(iv) exercise (3.1.3) is a special case for p = 1
(v) exercise (3.1.1) is a special case for p = 0. O

e Note that, as a matter of fact, in (3.1.4) we have introduced directly the (pointwise)
transport of fields, and no surjectivity or injectivity of f was needed for that (see the text
after (3.1.2)).

Be sure that you understand that in the case of pull-back of strictly covariant tensor
fields no problems occur for any smooth map f (i.e. f need be neither surjective nor injective
in order to be well defined). O

e If one needs to transport tensor fields with upper indices, too, f has to be the diffeomor-
phism (we encountered this fact already when dealing with vector fields). Then the strategy
can be based on the fact (established empirically by centuries of diverse human activities)
that to move forward via £ is the same thing as to move backward via £ ~! (and vice versa).

Let f : M — N be a diffeomorphism. Define a map (pull-back of a general tensor
field)

[T I0(N) = 10(M)
by the relation
(f*OU, ... Vi )= 1(fU, o VI e (B
(the above-mentioned trick was applied to covector arguments). Show that

(i) on linear combination and tensor product there holds

5t +As) = F¥t + Af*s t,se T'(N), LeR
et =(f"He(fT)

(ii) on the coordinate basis
@' ® @) =J .. (JHd'® -
and consequently
t=t(MNdY’' ® - ®3, + ft=t50NSE) ... (ITHixd'® - ®9;
(iii) for a composition of maps of manifolds M EQVALS S we get
(8o f) =f"og"
(iv) if the push-forward of a general tensor field is defined by
L= TN M) — TI(N)
then this f, coincides on X(M) with the pointwise extension of the construction from (3.1.2)

(V) (gof)*:g*of*
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(vi) the definition mentioned at the beginning can also be written as
f v, ..., o, ) =t(fiV, ..., feot, o)
(vii) f*:T(N)—=>T(M)

is an (iso)morphism of tensor algebras (it reduces to (3.1.1) on the component ’Z{JO(N )= F(N)),
i.e. it is a bijective map which respects the degree and commutes with linear combination and
(tensor) product. O

Let f: M — N be a diffeomorphism. Show that the pull-back of a tensor field
commutes with (any) contraction, i.e.

ffoC=Cof*
Hint: for t € 7)(N)
(Cof*DV,..;0,..)=t(fiV,....ei,...; frot, ..., €, ...)
(5o CtHV,...;0,..) = t(fiV, ..., fuis...s futty ..., €', ..)
For a diffeomorphism f,e; is a basis, too (fié' being dual to f,e;); see (2.4.8). O

Prove that for a diffeomorphism f
eV, ..o, ) =DV, e,
and, in particular,
=1
e, V) = (fTa, f*V)
Hint: see (2.4.10) and (3.1.7). O

Let
d:TPM)— TOM) > dy
be the operation of the gradient of a function (2.5.3). Verify that d commutes with arbitrary
pull-back, i.e. thatif f : M — N then the diagram commutes
r*
TY(N) — T(M)

dl ld ie. dff = f*d
TXN) —> TUM)
f*
Hint: the question is whether for every function Y and vector field V there holds

(df*y, V) = (f*dy, V)orequivalently V(f*y) = (f,. V)¢ ;thisis, however, exactly what
the (“independent”) definition of f in (3.1.2) says. O
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Let ¢ : M — R be a function on M. Show that its gradient (d), at the point
X € M can be canonically identified with the differential (= push-forward) ,, of a map
Y at the point x (that is why the notions of the gradient and the differential of a function
are often freely interchanged).

Hint: the gradient gives a number (9;1)(x) on a vector d; and the differential a vector
(3;¥)(x)dy (the function is treated as amap M[x'] — R[y], x' > (x")). The vector field
dy is, however, canonical on R[v/]. d

3.1.11] Show that f, can be used to characterize f : M — N (dim M < dim N) as an
immersion or embedding in the following way:

f:M — N isanimmersion <  f, is (for each x € M) injective

f:M — Nisanembedding <  f, aswell as f are injective

Hint: see Section 1.4 and (3.1.2). O

3.2 Induced metric tensor

e The construction of an induced metric tensor provides an important example of maps
of covariant tensor fields. It enables one to endow an “empty” manifold M with a metric
tensor, using an embedding of M into a manifold N where a metric tensor already exists.

Let

f:M— (N,h)
be an embedding of M into a (pseudo-)Riemannian manifold (N, &). Show that
® g:=f"h

is a (pseudo-)metric tensor on M, i.e. (M, g) is a (pseudo-)Riemannian manifold
(ii) in coordinates

gij(x) = Ji”(X)hah(y(X))J,}-’(X) = y",i(X)hab(y(X))yh,j(X)
Hint: see (3.1.4) and consider non-degeneracy (see 2.4.18). O

e Let us have a closer look at how the induced metric tensor actually works. By the
definition in (3.1.4), the scalar product of two vectors V, W in the sense of g on M is

We can see from this formula that if we use the induced metric tensor the result is the same
as if we first transported the vectors V, W onto N and then performed the computation of
the scalar product in the sense of h there.’

30 The following analogy with computer networks could be helpful: M and N are computers “here” and “there”, 4 is a useful piece
of software there (we are sitting here). We have to make a choice: either to run the program there (which might be inconvenient,
if the work is to be done at the time when the network is overloaded), or first to download the software onto our disk (f* serves
as, say, fip), obtaining (M, f*h) (<> our computer endowed with useful downloaded software), and then run the program (for
performing scalar products and computing expressions containing them) conveniently at any time here.
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Induce a metric tensor on a torus 72 from its embedding (1.5.7) into E 3
x = (a+bsinyr)cos g y=(a+bsiny)sing z=bcosy
(g =(a+bsiny)do @do + b*dy @ dyr). O
Induce a metric tensor on a torus 72 from its embedding (1.5.8) into E* (flat torus)
x! =cosa x> =sina x3 =cos x* =sinp
(g =da®@da+dB R dp). O
Induce a metric tensor on a sphere S? from its embedding into E*
X = Rsind cosg y = Rsin? sing z = Rcos v
(g = R¥(dY @ dv + sin®9 dg ® dy)). O
Induce a metric tensor on a sphere S3 from its embedding into E*
X = Rsin®¥ cosg y = Rsin? sing z = Rcos v cosyr w = R cos ¥ siny
Show that the coordinates (19, ¢, ¥) (they are called biharmonic coordinates) are orthogonal

(g = R*(dY @ dv +sin’9 do ® dy + cos*® dyr Q@ dyr)). O

Letr, z, ¢ be cylindrical coordinates in E3 and consider a rotational surface S given
by both expressions r(z) and z(r). Induce a metric tensor (in coordinates z, ¢ and r, ¢
respectively) on S. Specify for the surface of a cylinder and a cone as well as for both
kinds of rotational hyperboloids and rotational paraboloids (g = (1 + (r/(z))z) dz®dz +
rA(2)de @ dp = (1 + (Z (1)) dr @ dr + r*de @ dy). O

Let E'2 be 1 + 2 Minkowski space (signature + — —).

(1) Induce a metric tensor g on the pseudosphere (2-sheeted hyperboloid endowed with the metric
from E'2), i.e. the set of points satisfying

Mt 2" = (O = () = () = R,
(ii) Verify that the pseudosphere is a space-like hypersurface, i.e. that its metric is negative definite.
Hint: use coordinates «, ¢ such that
x" = +Rcosha x' = Rsinha cos ¢ x> = Rsinhasing
(g = —R*(da ® do + sinh?a dy ® dy)). O

Find a coordinate expression of the loxodrome, i.e. a path on the ocean surface
(= a part of (S2, g)) traced by a ship keeping the course (azimuth o = angle with a local
north-oriented meridian) fixed. Compute the length of the loxodrome with given ¥, and
19ﬁnal-
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Hint: the curve to be found has y = 39y + ¢9,, a north-oriented meridian has 6 = —09y;
write down the condition
/, 0 .
cosa = 8(7.9) g is from (3.2.4)

V8, v)vg(o, o)
and solve the resulting differential equation (tan (¢/2) = tan (Pinitia1 /2) eXp{ (¢ — @initia1)/
tano}, where = = —cosa/|cosa|; dl = —Rdd¥/cosa = | = —R(Vfinal — Pinitial)/
cosa (= 0)). O

e The induced metric tensor also occurs in theoretical mechanics, namely in the definition
of the kinetic energy of constrained systems. In (2.6.7) we have seen that the kinetic energy
of a system of N point masses can be written in the form

1 ..
T = Eh([‘, I)
If one imposes smooth constraints on the possible positions of the point masses (see
Section 1.5), the motion becomes restricted to a configuration space M C RN . This space
may be thought of as an abstract manifold M and we can forget about its origin from R3" if
we remember, however (just before we start the forgetting procedure), the most important
chunk of information concerning this “big” ambient space, which is precisely the metric
tensor needed for the expression of the kinetic energy.?! Put another way, we need to map
(via pull-back) a metric tensor 4 onto a manifold M. In technical language, an embedding

of M into R3 is given by a parametrization of position “vectors” of all particles in terms
of generalized coordinates

A
FiMo>RY @ g g g g g™
(being arbitrary local coordinates on M). If we represent the motion in configuration space
M as acurve y(t) < q%(t),a =1,...,n on M, its image with respect to the embedding

f into R¥ is T(r) = (f oy)(t) < ri(q(?)), and kinetic energy may be written in two
equivalent ways

| 1
T = Eh(F,F)= Eg(y,y) g:=f*h

This is the same kinetic energy (the same number of joules on both sides of the equality
sign), but the second expression is written entirely in “intrinsic” terms of the configuration
space M, namely in terms of the curve y and the metric tensor g = f*h on it.

Verify that
(i) the standard expression of analytical mechanics for kinetic energy on a configuration space

ari(q) ori(q)
9q° aq®

1 N
T=3Tw@q'q"  Tulg) = m

k=1
is nothing but the pull-back of (2.6.7) onto M

31 The potential energy should be remembered, too; see (3.2.9).
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(i1) the standard expression for potential energy in terms of generalized coordinates
Ug',....q" :=Uri(g".....q".....ta(g" ... q")

is the pull-back of a function U from R*" on M, too
(iii) one can summarize the situation by saying that

|
onR3*¥:  L(ry, iy) = Eh(F, D —-Uu

1
on M: Lg% ¢%) = Eg()?s)")_ U
where

g=fh U=jfU T=foy O

Write down the metric tensor on a torus, entering the kinetic energy of the
double (plane) mathematical pendulum (in coordinates where @', ¢? are the angles
of displacement of two material points comprising the pendulum with respect to the
vertical direction) (g = $(m; + my)l} de' ® de' + 1my13 dp® ® d® + myl 1, cos(p' —
p)de' ® dp* +de* ® dg")). O

Derive by a “rule of thumb” (use your intuitive understanding of geometry in E?)
metric tensors on the two-dimensional surfaces treated in exercises (3.2.2), (3.2.4) and
(3.2.6). The solution for (3.2.2): according to the definition of coordinates ¢, » we proceed
along the lines given in the text before (2.6.9) as follows: a step of (parametric) length €
in a coordinate v (i.e. in the direction of dy,) induces in E 3a step of (true) length be (the
arc of a circle of radius b) = |3y | =b = gyy = b?. The same in coordinate ¢ leads to a
step of length (a + b sinyr)e (the arc of a circle again) = |3,| = (a + bsin ) = gy =
(a + bsin )%, These two steps are always mutually orthogonal = Oy - 0y = gyy = 0.

O

3.2.12| Derive by a “rule of thumb” (use your intuitive understanding of the geometry of
E? and E?) expressions for the standard metric tensors in E2 and E?3 in polar, spherical
polar and cylindrical coordinates.

Hint: see (3.2.11), (2.6.3) and (2.6.4). O

Summary of Chapter 3

Each (smooth) mapping of the points of manifolds f : M — N induces a mapping of
tensors living on them. It is denoted by f if it pushes tensors forward (in the same direction
as f, from M to N) and f* if it pulls tensors back (in the opposite direction, from N
to M). For diffeomorphisms it is possible to define both f, and f* for tensor fields of
arbitrary type; if f is not the diffeomorphism, several kinds of problems may occur. There
always exists a pull-back map f* for tensor fields of type (g) In particular, one can induce
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(via pull-back) a metric tensor on M from a Riemannian manifold (N, &), giving rise to
a Riemannian manifold (M, g), g = f*h. The most common instance of this procedure is
that one induces a metric tensor onto a submanifold M of the Euclidean space N = E” (or
more generally E™*), starting from the canonical metric tensor 4 = non N.

'Y =vyof

felyl=1[f o7l

(VY = V(f*Y)
(f*0)U, &) = t(f.U, (f )
(go ) =frog*

(go fle=g«0 fs
ffoC=Cof*

df* = f*d

g:=f"h

8ij = ]iahabJjb = ya,,‘habyb,j
T =38(7.7)

Pull-back of a function

Push-forward of a vector [y]
Push-forward of a vector V

Pull-back of a tensor field

Pull-back for the composition of maps
Push-forward for the composition of maps
Pull-back commutes with contractions
Pull-back commutes with gradient
Induced metric tensor (f: M — (N, h))
Induced metric tensor (components)
Kinetic energy on a configuration space

(3.1.1)
(3.1.2)
(3.1.2)
(3.1.6)
(3.1.6)
(3.1.6)
(3.1.7)
(3.1.9)
(3.2.1)
(3.2.1)
(3.2.9)
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Lie derivative

e Various equations in physics contain partial derivatives of components of tensors. A
possible combination of such derivatives corresponds to an important geometrical object
known as the Lie derivative of a tensor field.

If we speak about a derivative of a tensor field, we should compare (subtract) its values
at infinitesimally close points. However, two tensors at different points (no matter how
close they are to one another) represent elements of completely different linear spaces and
therefore it is not possible to perform their subtraction (linear combination) straight from
the definition (if no tricks are used). A general way to validate the required comparison
should consist in some kind of transport of the tensor from one point to another. Making
use of the concept of transport, comparison may be defined as follows: given two tensors
sitting at two nearby points, one of them is to be transported to the point where the other
resides. In this way two tensors are now available at the same point. If the two tensors
happen to coincide, we may infer that their values at the original points “are equal” (in the
sense of the particular rule of transport) and, consequently, that the derivative of the tensor
(field) in the direction given by the two points vanishes. If the two tensors do not coincide,
we get a non-zero derivative.

In this chapter we thrash out the question of how to carry out this simple idea in the
case where Lie transport is used in the above-mentioned scheme. A highly important and
useful way of differentiating tensor fields emerges from these considerations, namely the
Lie derivative. Later (in Chapter 15), we will return to this idea once again. Another way
of transporting tensors will be introduced there, so-called parallel transport. Consequently,
another kind of derivative will enter the scene, which is known as the covariant derivative.

4.1 Local flow of a vector field

e Atthe end of Section 2.3 we encountered an important concept associated with a vector
field, namely that of a local flow. Recall briefly the main idea of this notion.

A vector field “tears up” a manifold into a system of integral curves. If each point P € M
moves a parametric distance ¢ along “its own” integral curve, we get a map

M- M P=vy(ty)— y(to+1)
which is called the local flow generated by the field V.

65
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(Here, the term local indicates a slightly tricky point in these ideas; namely it means
that @, need not be defined for arbitrarily large ¢, but rather in general only in some
neighborhood of + = 0 and this neighborhood may, in turn, depend on P € M; the reader
should contemplate the flow given by the first field in (2.3.4) in order to feel the issue clearly.
If a flow @, exists for ¢ € (—00, 00), so that the field V is complete, one speaks about a
global flow, or simply a flow. A local flow is enough for the definition of the central concept
of this chapter, the Lie derivative. Therefore, in what follows we will often omit the word
“local” and speak about a “flow” in spite of being only local.)

Check that this map does not depend on the value of the parameter 7y which we
assign to the point P, so that the definition is correct in this sense.

Hint: see (2.3.5). O

e The essential feature of a flow &, is its “composition” property with respect to the
parameter 7.

Show that the flow @, of a vector field V satisfies
Dy = 0,0 D

Hint: let y be the integral curve of the field V from P = y(t)) € M, with " being the
integral curve of V starting from Q = y(f) + t). By means of (2.3.6) show that ®,(Q) =
th+X(P)' g

e Sometimes a flow is expressed in terms of a map
P MxR—->M (x,t) > D(x)
Rewrite the “composition” property (4.1.2) using the language of the map . O

e There is a one-to-one correspondence between vector fields and their flows: with each
vector field we may associate a flow @, (in the way described above) and vice versa, any
flow @, uniquely determines a field V, by which it is in turn generated (®,(P) is the integral
curve of the field V and by means of the derivative V is itself then recovered).

Check that if
o, cxl > xi(t;x)
is the coordinate expression of a flow, then
V = %'(0;x)9;
Test the method on the result of exercise (2.3.9). O
Check that the prescription
r— eMr = ®,(r) reR

describes a (global) flow on R3; find the vector field V which generates this flow and draw
some of its integral curves.

Hint: see (4.1.4) (V = A(xd, + y0y + 20;) = Ar- V). d
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Show that fixed points of the flow ®; (i.e. those points on a manifold which do not
move under the maps @, for all values of t) coincide with zero points of the generating
vector field V (i.e. the points P € M such that Vp = 0 holds). Check this interrelation
on concrete flows and generators that we have encountered (or will encounter in the near
future). O

Check that the prescription
D, : (x,y,2) > (x(2), y(@),z(t)) := (xcost — ysint, x sint + ycost, z)

gives a (global) flow on R3, find the vector field V which generates this flow and draw
some of its integral curves. Write down both @, and V in cylindrical as well as in spherical
polar coordinates (V = —yd, + xd, = 9, = 9, in Cartesian, cylindrical and spherical polar
coordinates). O

e In the following account it is essential to realize that ®, is a diffeomorphism M — M
(at least for some neighborhood of ¢ = 0; often this turns out to be the case, however, for a
fairly large interval, or even for the whole R[¢]). The inverse map for @, is (according to
(4.1.2)) clearly given by ®_; and the statement about the smoothness of ®, is a (non-trivial)
theorem from the theory of ordinary differential equations of the type studied here (a smooth
dependence of solutions on the initial conditions).

The map &, is also known as a one-parameter group of transformations of a manifold
M ; the following exercise elucidates the reason for this terminology.

Check that
é: (R, +) > Diff (M) t+ ®,

is a homomorphism of groups (or, more precisely, only of local groups, i.e. a homomor-
phism of some neighborhood of the unit element on the left (small enough ) into some
neighborhood of the unit element on the right (those diffeomorphisms which are close to
the identity on M)). O

e If a diffeomorphism f : M — N is available, a flow may be easily shifted from M
to N.

Let f : M — N be a diffeomorphism and ®, a flow on M. Show that

() ¥, ;= f o ®, 0 f~!isaflow (on N, however), too
(ii) if the flow @, is generated by the field V, then the flow 1, is generated by the field £,V (i.e. the
generators happen to be f-related). (]

4.1.10| Let f : M — M be a diffeomorphism and let ¢ (¢) be the integral curve of a field
V which starts in x € M. Show that the curve f(y(¢)) is then the integral curve of the field
f+«V which starts in f(x) (so that we obtain the f-image of the initial situation).

Hint: an assumption is y = V, the aimis f,y = f.V. O

e The flow of a vector field induces specific local coordinates on a manifold, which
correspond to an observer who “drifts” with the flow.
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4.1.11] Let ®, be a flow on M and let A = {O,, ¢} be an atlas (local coordinates x’) on
M. Check that

(i) the flow ®, induces (for each ¢) a new atlas A" = {0}, ¢\, } on M, which results from the “shift”
by the flow &, of the initial atlas

O, =®,(0,) ¢, =¢,0®;

(it uses coordinates x! := ®¥x' = x’ o ;)

(ii) in new coordinates the ®,-image of any object has the same coordinate expression as the original
object had in the original coordinates

(iii) these coordinates correspond to (are used by) an observer drifting in the flow ®,;in (4.1.7), say;
this is an observer who rotates uniformly around the z-axis.

Hint: see (1.4.13); see also (4.6.26). O

e The concept of a flow promotes the clarification of the local structure of a vector field.
Given an n-dimensional manifold M, let V be a vector field which is non-vanishing at the
point P .1t is then non-vanishing on some neighborhood of the point P as well (the property
of smooth components V(x)). Fix any (n — 1)-dimensional submanifold S on this neigh-
borhood which is “transversal” with respect to V, i.e. such that the ((n — 1)-dimensional)
tangent space to this submanifold is at each point complementary to the one-dimensional
subspace given by the vector V. If we let the points of this submanifold drift away by means
of the infinitesimal flow @, of the field V (—¢ < # < ¢€), we find a neighborhood of P which
happens to be an n-dimensional manifold equipped with coordinates (x! = ¢, x2, ..., x"),
where (x2, ..., x") are the coordinates on S and x! = ¢ informs us how “far” we have
moved by means of the flow of the field V.

4.1.12] Consider as a manifold Cartesian space R3[x, v, z] and as a vector field V =
—yd; + x9,. Check that

(i) this field is non-vanishing everywhere outside the z-axis
(ii) for any point P apart from the z-axis we may take as a submanifold S a small piece of a plane
(around P) given by the z-axis and the point P
(iii) an infinitesimal flow &, generates a three-dimensional manifold ¢/ which has the shape of a
“cylinder over §” (S expanded in the perpendicular direction). g

e Now, it is clear from the general construction
described above what is the essential property of the

z%, " V9 coordinates introduced in just this way: the vector
- field V looks like
V =0 ie. vi!, ..., x"H =1,
remaining V/(x!,..., x") =0.

In these coordinates the field V “straightens out”
(in the small patch under consideration), its integral
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curves being straight lines (the first coordinate curves)
x'(1) = x10) +1, remaining  x’ (1) = x7(0)

This statement is known as the straightening out lemma. It ensures that the “local structure”
of a vector field in a (small enough) neighborhood of a point in which it does not vanish is
always the same, and moreover it is very simple: each field is “locally straight.”

4.1.13]| Consider the situation treated in (4.1.12). Check that the field V in S straightens
out in cylindrical coordinates,

V=208=39, =9, xX*=r ¥ =z
0

e And what about the local structure of a vector field in a neighborhood of a point, in
which it does vanish? The situation is less boring, here, allowing for more possibilities.

* Given a vector field V which vanishes at a point P (being non-zero, however, in
a neighborhood of the point), consider any coordinates centered in this point (x'(P) = 0;
this may always be arranged by means of a shift). Check that if the situation is linearized
in a small neighborhood of P, then

(i) locally (in a small neighborhood of P) the field is characterized (with respect to coordinates x')
completely® by a matrix k) with numerical entries

(i1) a change of coordinates (all of them always being centered at P) is encoded in a non-singular
numerical matrix Aj» and the matrix kj- then transforms as a type (1, 1) tensor

i Mo ALLS —1yr
k> ki = AkJ(AT))
so that by means of an appropriate change of coordinates one can get a canonical form of the

matrix kj.; possible types of behavior of the field V in a neighborhood of P are thus classified by
the possible canonical forms of the tensor k’, of type (1, 1).

Hint: (i) V/(x) = k%x/ 4 -3 (ii) x"(x) = A"x/ 4 - - -, so that J{(P) = A, and the rule
Kix'l = Vi(x') = Jix)V/(x) (2.2.10) gives k7 = Alks(A7"Y]. O

4.1.15)" Classify all the possible types of behavior of a vector field in the neighborhood
of its zero point on a two-dimensional manifold (with non-singular matrix k;). For each
possibility write down explicitly the corresponding field as well as its integral curves.

Hint: using appropriate A the symmetric part of k’/ may be diagonalized and the antisym-
metric part gets multiplied by the determinant of A; thus the resulting k' is given by the
sum of the diagonal part diag (a, b) and an antisymmetric part ce;;, so that locally the vec-
tor field looks like V = axdx + byd, + c(yd, — x9y); if, forexample,a = —b =1,¢c =0,
the field is V = xd, — yd,, the integral curves being x(t) = x(0)¢’, y(t) = y(0)e™"; for

32 The previous lines are not to be understood as a proof of this important lemma, but rather as a visual explanation of its content.
33 This holds when the matrix k‘f described in the hint happens to be non-singular. Otherwise the higher-order terms matter and
the situation gets fairly complicated.
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a=b=0,c=1weobtain V = yd, — x09, and the integral curves rotate around the ori-
gin (try to draw corresponding pictures and learn how they differ for various combinations
of a, b, ¢ = positive/negative/vanishing). a

4.2 Lie transport and Lie derivative
e Let V be a vector field on M and let
b, :M—>M

be the corresponding flow. Since ®, is a diffeomorphism, it induces, according to (3.1.6),
the mapping (pull-back) of tensor fields of arbitrary type on M:

o7 TP(M) — T)(M)
This mapping is known as Lie transport (or, sometimes, Lie dragging) of tensor fields. Note
that the fields are transported a parametric distance ¢ along the integral curves of the field

V against the direction of the flow ®, (if a transport in the direction of the flow is needed,
one clearly has to use ®* ).

Check that @} is (for each ¢) a linear operator on T,” (M). O

e Let us have a look, to start with the simplest example, at how this map works visually
on functions (scalar fields, p = g = 0).

Consider a function ¥ on M. Imagine it is drawn in the form of a graph, i.e. as a
hypersurface (x, ¥(x)) C M x R.

i) ForM =R,V =0,, ¥(x) = e‘*‘z, draw the graph of the Lie transported function ®;
(i) do the same for M = R2, V = —yd, + xdy, Y(x, y) = e~ 1627 +0=3"]
(iii) take a lesson from these particular examples and realize that in general the graph of a function
@7 may be obtained from the graph of v simply by a shift of the former by a parameter ¢
against the integral curves of the field V. g

e A simple trick — the use of the field lines (or, more precisely, the integral curves of the
field) — enables one to visualize the Lie transported vector fields as well.

Given @, < V, let y(7) be the integral curves of a field W. Justify the idea that
the integral curves I'(t) of the Lie transported vector field ®; W are given simply as the
@ _,-images of the initial curves y (7).

Hint: differentiate ®_, o y(tr) = I'(r) with respect to 7, see (3.1.6). O

Consider two electrostatic fields, the homogeneous field E(;y = Ed, directed along
x and the Coulomb field of a point charge E¢) = (k/ r2) 9,. Consider, in addition, three
vector fields, generating (three different) flows in E 3 namely V =0,,U =9, and W =
y9x — x9,,. Sketch (performing no calculations at all) the field lines of

(i) the initial electrostatic fields E(;y and E )
(ii) the electrostatic fields, obtained by the Lie transport along the three vector fields V, U, W (by
some fixed values of the parameter ¢, e.g.t = w/2; altogether 2 x 3 = 6 cases are to be discussed).
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Hint: (i) see (4.2.3); the drawings resulting from (i) are to be shifted by 7 /2 in the direction
of x and y respectively (for V, U) and rotated by 7 /2 around the z-axis (for W). O

e It may happen, for particular tensor fields, that one gets**
PrA=A teR

Such specific fields are said to be invariant with respect to the flow @, (or vector field V),
or alternatively, Lie dragged. This condition means that the value of A in x € M coincides
with the value of A being transported into x from an arbitrary point lying on the integral
curve passing through x.

(So we obtained in exercise (4.2.4) that the field E(;) is invariant (Lie dragged) with
respect to translations along both the x and y axes and Ey) is in turn invariant with respect
to rotations around the z-axis; one easily verifies that Ej) is, in fact, invariant with respect
to translations in any direction and E(,) is invariant with respect to rotations around any axis
passing through the origin.)

There is no reason for a general tensor field A, however, to be constant along the integral
curves of a field V: the tensor (@} A)(x), which has been transported into x from the point
®,(x), in general depends on ¢. A convenient measure of this dependence (i.e. of Lie non-
constancy = non-invariance with respect to V') is given by the object

LyA:= T . DA
which is called the Lie derivative of a tensor field® A along a vector field V. This derivative
“palpates” the changes of tensor fields induced by a tiny Lie transport along V: first, the
value of the field A at the “slightly drained away” point ®.(x) is transported back into x
and then it is compared with the initial value of A in x. The comparison := their difference
(which makes sense already, since both tensors, the one transported back as well as the
original one, sit at a single point, i.e. they represent elements of a single linear space),
divided by the increment of the parameter €, resulting in a quantity measuring just the
“change of the tensor field per unit value of the parameter #” (or the “rate of change of the
field” A along V).
Right from the definition it follows that

Ly : TP (M) — TP (M)
(it preserves the degree of a tensor field) and

LyA=0 <« Aisinvariant (Lie dragged) with respect to V

34 This occurred in three out of six cases in exercise (4.2.4), namely when E(j was transported along both V and U and when
E () was transported along W.

In Arnold’s monograph the Lie derivative is also mentioned under the well-turned name the fisherman’s derivative: a fisherman
stands in a river and differentiates tensor fields, floating around him. Unfortunately, the present-day status of the human
environment makes this juicy bon mot barely intelligible to the younger generation. The lamentable quality of water causes
tensor fields of higher ranks to simply not be able to survive in the overwhelming majority of rivers and the exciting stories
narrated by our grandfathers on how they (when small boys) used “to guddle fifth-rank completely antisymmetric tensors in a
spruit behind a village” may seem to be typical fish stories, today.

3

S
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In the next section the general properties of Ly (i.e. how it behaves in some standard
situations) will be studied in detail. This will result, in particular, in explicit formulas
for the component calculation of the Lie derivative of an arbitrary tensor. Moreover, the
appropriate use of these properties alone provides an efficient way to compute a number of
useful expressions with no reference to components.

4.3 Properties of the Lie derivative

e As we will see in a while (4.3.4), the component expression of the Lie derivative of
a general tensor field is a sum of several pieces, each one carrying a number of indices.
The overall structure is given by a system of clear rules; the resulting expression looks,
however, fairly complicated at first glance. All the properties of £y may, in principle, be
derived’® from its component expression, but the use of simple algebraic properties of the
Lie derivative (which may be ultimately traced back to the simple properties of the pull-back
®7) turns out to be both more efficient and more instructive.

Recall that pull-back with respect to a diffeomorphism M — M is an isomorphism of the
tensor algebra 7 (M), which commutes with contractions, see (3.1.6) and (3.1.7). A simple
(and very useful) consequence of this is the fact that the Lie derivative is a derivation of the
tensor algebra, which commutes with contractions.

Check that
@) for |e| <« 1
QA =A+eLyA+o(e?)
(i) Ly preserves the degree and satisfies
Ly(A+AB)=LyA+ALyB
Ly(A®Q B)=(LvA)®B+AQ(LyB)

i.e. (see Appendix A.2) that £y happens to be a derivation of the tensor algebra T (M)
(iii) if C is an arbitrary contraction and 1 denotes the unit tensor (field), then

LyoC=CoLly Lyl=0

i.e. Ly commutes with contractions

(iv)
Ly(AWW, .. 5a,..))=LyAW, .. ;a,.. ) +ALW, .. .;a,..)+ -

+ AW, .. Lyoty .. )+

and, in particular,
W) Ly{a, W) = (Lya, W) + {a, Ly W)

36 It used to be done in this way in older textbooks. As an example, the walls of Altamira and Lascaux caverns have been reported
to be densely covered by such fairly long component expressions. Let us remark, as a nice illustration of the inventiveness of the
primeval hunters in masterful use of terrain irregularities, that in caves of calcite, limestone and dolomite they used stalactites
for the location of upper indices, stalagmites for lower indices and stalagnates as the most convenient places for the contraction
of a pair of indices.
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Hint: (i) right from the definition; (ii) see (3.1.6) and (2.4.7) and (i) here; (iii) see (3.1.7);
(iv) see (3.1.8); (v) see Exercise (2.4.9), put A = 1in @iv). |

e The result of (iv) reveals that a function, a vector field and a covector field are all one
really needs to be able to compute Ly A of an arbitrary tensor field. According to (v), a
function and a vector or a covector field is enough.

m Consider the arbitrary derivative D of the tensor algebra 7 (M), which commutes

with contractions. Show that it is completely specified once its action on degree (g) and
either ((1)) or (?) is given.
Hint: see (2.4.10), apply D on a tensor with all slots being filled by arguments. O

e So we now embark on the derivation of explicit expressions for the action of Ly on a
function and a covector field.

Check that the Lie derivative Ly acts as follows:
(i) on functions
Lyy =Vy = Vi@)Yix)
(ii) on covector fields, which happen to be gradients of functions
Ly@y)=d(Lyy)=d(V)
(iii) on general covector fields & = a;(x) dx’
Lya = (Vjot,-,j + V{[(x,) dx'
Hint: (i) see (3.1.1); (ii) see (3.1.9); (iii) « = o; dx' = o; @ dx". O

e Since we learned how to cope with functions and covector fields, we are in a position,
according to (4.3.2) and (4.3.1), to derive a component expression of the Lie derivative of
an arbitrary rank tensor field.

Check that

(i) the Lie derivative of the coordinate basis fields reads

Lydx' =V dxl  Lyd=-V'3,

(ii) this results in the following component expression of the Lie derivative of an arbitrary rank tensor
field:
(LA = VA + VA = VAT

i.e. there is the first term (flat amount), plus there is one term to be added for each index of the
tensor (with a + sign for a lower index and a — sign for an upper one). These rules may be
concisely summarized in the form of a table — a recipe for cooking the house speciality (Ly A);/;
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compare with (15.2.7):

| |
| |
| first put on the bottom of a pan | WA= =W"A- | |
| |
| |

| plus for each A~ add —Wi A
| plus foreach A_;  add +WIA .

Hint: (i) see (4.3.3) for ¥ = x and (4.3.1) for &« = dx/ and W = 9;; (ii)
= (LwA ) d ® - ®0;
FATNLydx) @ ®03; + -
FAST A @ @ (Lyd;) = .

Write down explicit component expressions of the Lie derivative of tensors of rank
0, 1 and 2 (six formulas altogether). O

Show that

(i) the Lie derivative of a vector field turns out to be
LyW =[V, W]

where the vector field on the right-hand side is called the commutator (or Lie bracket) of the
vector fields V and W and it is defined as follows:

V. Wiy :=V(Wy) - W)

(i) if V, W are two vector fields, then their “product” VW ((VW)yr := V(W1))) is not a vector
field, whereas their antisymmetrized product (= commutator) is a vector field

(iii) a product of first-order differential operators is a second-order differential operator, in general,
but their commutator happens to be only the first-order operator

(iv) “the same thing” has been said in (ii) and (iii)

(v) the collection of all vector fields endowed with the bracket operation [ -, - ] constitutes a (co-
dimensional) Lie algebra, i.e. the following hold (cf. Appendix A.3):

[V,W] =—-[W,V] antisymmetry
[Vi 4+ AVs, W] = [Vy, W]+ A[Va, W] (bi)linearity
0O=[[V,WLUI+I[IU,V],W]I+[[W,U], V] Jacobi identity
Hint: (i) compute [V, W] in components and compare with (4.3.4); (ii) apply on a product

of two functions. |

e The properties of £y mentioned up to now were related to its behavior with respect
to particular arguments. They may be summarized concisely as a statement that the Lie
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derivative Ly is a derivation of the tensor algebra, which commutes with contractions
(4.3.1) as well as with the operator of gradient d (4.3.3).

Some additional (very useful) properties of the Lie derivative Ly are related to its behavior
with respect to its “parameter,’ the vector field V (along which it is computed). Here, an
algebraic approach turns out to be the most effective way of reasoning as well. We start
with the following property of arbitrary derivations of the tensor algebra (useful in its own
right, too).

Let Dy, D, be two derivations of the tensor algebra. Check that

(i) their linear combination as well as the commutator
D = Dl + )\.Dz resp. D := [Dl» D2] = D1D2 — D2D1

happen to be derivations of the tensor algebra, too
(i) if Dy, D, commute with contractions, then this is true for linear combination and the commutator,
too. O

e This may be rephrased as the statement that the collection of all derivations of the
tensor algebra is naturally endowed with the structure of the Lie algebra (it is denoted by
Der 7T (M)) and, furthermore, the derivations which commute with contractions constitute
a subalgebra. This elementary observation provides a simple proof of the following useful
proposition.

Prove that
@
Lyiw =Ly + ALy
Livw =Ly, Lwl=LyLw — LwLy
(ii) the mapping
L:X(M)— Der T(M) Vis Ly

is a homomorphism of Lie algebras.

Hint: (i) according to (4.3.7) we are to prove the equality of two derivations of the tensor
algebra which commute with contractions, or equivalently (after reshuffling of all terms
to one side of the equation), that a certain derivation of this type vanishes. By (4.3.2) it is
enough to verify this on functions and vector fields, which is easy (4.3.6); (ii) just this is
asserted in (i). O

4.4 Exponent of the Lie derivative

e The Lie derivative Ly has been defined in Section 4.2 in terms of the pull-back of a
flow @7. It turns out that the pull-back ®; may in turn often be expressed in terms of the
Lie derivative in a useful form of the exponent & = ¢’ Lv 1 et us have a look, first, at what
this formula actually says in the simplest case. Then we prove its validity in a more general
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setting. (One should realize that if the map @, itself is problematic globally, which is the
case for (only) local flows (see the note before (4.1.1)), the formula is problematic as well.
The reader is once again referred to contemplate the particular example (2.3.4), which is
mentioned in the note.)

Let M = R[x], V = 9. Check that the Taylor expansion of a function

2
Y+ 1) = Y) + 1) + %w”m .

may be expressed in the form
2

~ t
dry =Ly e i=1+1Ly + Eﬁvﬁv + -
i.e. that in this particular case there holds
(I);k — el[,v
Hint: see (3.1.1) and (4.3.3). d
Let @, be the flow generated by a vector field V. Starting from the definition
d
ﬂv = — q);k
dt |,
prove that
)
d
— @ =7
dr ! Ly

(i1) for C* tensor fields there holds

t2
cI)f:e’CV El—f—l‘ﬁv-f—?,cv[zv‘f'

Hint: (i) £®; = 4| _ @7, (4.1.2); (ii) (4)" @} = ®}(Ly)". 0
e This formula proves very useful in providing the tool for a systematic expansion of
the infinitesimal flow @} in powers of the parameter ¢. If, for example, we need second-
order accuracy, we may write &} = v =14¢ely + Z—jﬁvﬁv. We will make use of this
particular result in the next section in order to grasp the visual meaning of the commutator
of two vector fields.

Pull-back of a flow & enables one to write down explicitly solutions of linear first-order
partial differential equations in terms of initial conditions, too.

Let V = V'(x)d; be a complete vector field on M and let ®, be the corresponding
flow. Consider a first-order linear partial differential equation on M x R[¢] of the form

(@ — V()3 f(x, 1) =0
together with an initial condition

f(x,0) = h(x)
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Check that the solution may be written as

Jf(x, 1) = h(P(x))
= (®7h)(x)

Hint: see (4.4.2); this means (in visual terms) that
the graph which corresponds to the initial condi-
tions A(x) is moved against the direction of in-
tegral curves of the vector field V on M. For
(M, V)= (R, dy,), this looks (for particular i(x)) something like in the figure displayed
here, since in this case we explicitly obtain f(x,t) = h(P,(x) = h(x + 1)). O

4.5 Geometrical interpretation of the commutator [V, W], non-holonomic frames

e We encountered the concept of the commutator [V, W] of two vector fields V and W
when the Lie derivative of a vector field was computed. Here, we would like to examine
consequences of the fact that the commutator does not vanish for particular vector fields,
i.e. to grasp the geometrical meaning of the commutator.

Suppose we undertake two infinitesimal journeys, both of them starting at a point
P € M. The first one consists of motion by € along V and subsequently by € along W,
the second one performs the same steps in reversed
order. Now, the question arises as to whether or not
we reach the same point. It turns out that the an-
swer is positive within first-order accuracy in €, but
it already happens to be negative within order €,
and the necessary correction (i.e. a step to be added
to the first journey in order to arrive at the end of
the second one) in this order consists in a motion
by €? along the commutator [W, V]. There is an
equivalent formulation of the same problem, which
is represented by the schematic drawing here. The question is whether we return to the same
point or not if we, after reaching the end of the first journey, keep on traveling further, by
€ along (—V) and subsequently by € along (—W). If the flows corresponding to the fields
V and W are denoted by ®) and @} respectively, the question about the closure of such a
“circular tour” may be written as follows:

P=(@" 00V ool o) (PP
Once again, a commutator correction is needed within €> accuracy. Thus the geometrical
role of a commutator is “to close a parallelogram, which fails to close (a bit), yet.” These
statements are easily proved. In order to compute the left-hand side within the desired
accuracy we may exploit the result (4.4.2), provided that coordinates of the expression on
the left are computed. (Remember that (4.4.2) refers to the pull-back of a flow, rather than
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the flow itself, and that a coordinate is a function = pull-back may be applied to it, whereas
it is not possible to apply it directly on a point.)

m Check that the expansion in € explicitly gives
¥ (e[ (P) = (@) )P

= ((1 +ely + ;zvﬁv + - ) xi> (P)

H(@L ol (P) = ((@F) (@) x)(P)
€2 e? 4

= ((1 + GLW+E£W£W + .- ) (1 +ely + Eﬁvﬁv +-- ->x’) (P)

etc.
Hint: see (3.1.1) and (4.4.2). d
4.5.2| Check that
(i) to within €2 accuracy the following identity holds:

" 0 @Y, 00 Mo dl o @) =1+ 0(e?)

(ii) the term containing the commutator may be reshuffled into any other place on the left (five
possibilities together). g

The result of exercise (4.5.2) shows that already in second order in &, the point P’
differs from the initial point P if the commutator [V, W] does not vanish in P and that
the path may be closed (within the same accuracy) by an appropriate small piece. Outline
a schematic drawing corresponding to the closed path composed of five pieces to all five
possible identities mentioned in (4.5.2). O

e This knowledge helps in understanding the situation with so-called non-holonomic
frames.

In Chapter 2 the concept of a coordinate basis 9; for vector fields (as well as the dual
basis dx’ for covector fields) was introduced. We know from linear algebra, however, that
each basis is equally good in a general linear space and, moreover, an arbitrary basis may
be obtained from any other one by “mixing” (making linear combinations) the elements of
the first basis with the help of a non-singular matrix:

eq > ¢, = Ale,

This means that it is not necessary to use coordinate frames for the decomposition of tensor
fields. Instead we are free to use any non-singular linear combinations (depending on x)

e,(x) = efl(x)ai e‘(x) = el (x) dx!

the only two requirements concerning the new frame fields e,, e being smoothness
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(resulting in the smoothness of the matrices ¢! (x), ef(x)) and linear independence (leading
to non-singularity of the matrices).

Check that the requirements regarding duality and completeness of new frames
e, <> e“ resultin

e (x)el (x) = 8 el (x)ef(x) = 8
i.e. the matrices eﬁl(x), ef(x) are to be inverse to each other at each point x.
Hint: see (2.4.2) and (2.4.9); 8¢ = (¢%, ey) = -, | =dx ® =" R e, = -+ -. 0

Check that
ef(x) = (e, 3;) = 1(3;, e") = 1¢
eh(x) = (dx', e,) = 1(eq, dx') = 1

i= ef(x) dx' @ e, = ei(x)e“ ® 0;

This means that the functions ei (x) and e{(x) may also be regarded as components of the
unit tensor with respect to non-dual frames. O

e As we will see later, the appropriate choice of a frame field e,(x) and a coframe field
e“(x) may strongly simplify both reasoning and computation in various situations. Important
examples are provided by orthonormal frame fields on Riemannian manifolds (see, for
example, Section 15.6) or left-invariant fields on Lie groups (see Section 11.1). In the
general theory of relativity a frame field (appropriately chosen, most often orthonormal) is
usually called a tetrad field®’ and a formalism working with components of tensors with
respect to this kind of frame field is known as the tetrad formalism (see, for example,
(15.6.20) and Sections 16.5 and 22.5).

Find the coefficients e/ (x), e¢(x),if x' = Cartesian coordinates in R* and e, = 9, =
coordinate basis with respect to the spherical polar coordinates in R>. O

e Imagine we were given (only) the result of the last exercise, not being told, however,
that the new frame field e, (mixing well the old Cartesian frame field 9;) is, in fact, the
coordinate one, too (with respect to other coordinates, of course; here spherical polar).
Is it possible to reveal this fact from the structure of e¢,? And, more fundamentally, is
it possible to construct a frame field, for which no coordinates y* exist at all, such that
e, = 0,47

It turns out that the correct answer to both questions is yes. Thus there are frame fields
which are not generated by coordinates (i.e. such that e, # 9d,), and if there are some
37 Since a space-time (M, g) is a four-dimensional manifold; in general, the nomenclature vielbein field is widely used, i.e. a

“manypod” or “manyvet field;” a frame in three dimensions resembles (with a bit of fantasy, no doubt a fairly useful instrument
in the realm of mathematics as such) a dreibein = a tripod or a trivet, so that a tetrad is the same thing as a vierbein.
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coordinates hidden behind a frame field, it is an easy job to recognize this fact (one can
even compute these coordinates explicitly).

Consider first the case, when e, = ez (x)9; = 9,, i.e. when the frame is a coordinate one
(with respect to y*). Then

[eq, ep] = [04, 051 =0

since the order of partial derivatives is (on the class of functions we are working with) not
relevant. This means that just one non-vanishing commutator reveals that the frame under
consideration is non-holonomic = non-coordinate, i.e. there are no coordinates y“ such that
e, =0, (= e =dy“).

Check that

(i) the coordinate frame fields corresponding to polar coordinates in R? and both spherical polar and
cylindrical coordinates in R* happen to be orthogonal, but they fail to be orthonormal

(ii) if their lengths are “corrected” so as to be orthonormal, the resulting frame fields turn out to
already be non-holonomic.

Hint: for polar coordinates [0,| = /g(0,,0,) =g, =1, but |9,|=---=7 (F1)=
“orthonormal polar” frame consists of e, = 9, e, = r! d, and [e,, e,] # 0. |

e The vanishing of all commutators [e,, ep] is thus a necessary condition for a frame field
to be holonomic = coordinate. The question whether this condition is at the same time
sufficient remains, however, open. This problem may be tackled in the language of vector
fields and the answer is yes. There is, though, a simpler way to demonstrate the same fact,
using differential forms, namely the so-called Poincaré lemma (9.2.11); we will return to
this issue later.

The simpler question alone, whether it is possible to mix a coordinate frame 9; so as to
generate a non-coordinate one, may be resolved by “counting of degrees of freedom,” too.
A change of coordinates x’ — y“(x) provides “n degrees of freedom,” namely the choice
of new functions y“(x). Then the transformation of the (co)frame field is already fixed:
dx' — dy* = Ji”(x)dxi =e!(x) dx'. Notice, however, that the matrix ef(x) has a very
specific structure here — it is the Jacobi matrix, clearly carrying less freedom (n functions
only) in comparison with a general non-singular matrix e{(x) (encoding n? functions). In
these terms the question is whether it is possible to choose a matrix e{(x) so as not to be
a Jacobian matrix for any choice of new coordinates y“(x). Since n? > n (for n > 2), the
answer reads yes, non-holonomic frames do exist.

We started this section with the problem of whether we return to the point of departure
after taking a (particular) circular tour, i.e. whether two flows generated by vector fields V
and W commute. The lesson from the analysis is that this issue may be reduced to the much
simpler problem of investigating the commuting of generators of the flows, the vector fields
Vand W.
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Let ®) and @) be two flows generated by vector fields V, W. We say that the flows
commute, if for each t, s there holds

®) od! =¥ o)

Prove that the flows ®) and ®" commute if and only if their generators V, W commute
(in the sense of vector fields).

Hint: see (4.4.2) and (4.3.8); f*=g* & f=g. O

4.6 Isometries and conformal transformations, Killing equations

e Imagine several geometrical figures (triangles, rectangles, circles, etc.) drawn in a plane
R2. We search for bijective maps of the plane to itself (transformations) such that all the
figures look “the same” (both in shape and in size), after the transformation.

Think about how this requirement might be reformulated in terms of the concepts we
have met before.

Geometrical figures are composed of lines (possibly curved), which have a length and
some of them intersect under some angles. There is, however, a metric tensor beyond both
the lengths and angles, see (2.6.9) and (3.2.8). Let us examine in detail how, for example,
the length of a curve y changes under a general transformation f.

Let y be a curve on M, f a transformation of M (= diffeomorphism f : M — M)
and y := f o y the curve transformed by f. Denote by /[y, g] the functional of the length
of a curve (2.6.9) on a manifold (M, g), i.e.

[5)

Iy, gl r=f dt/g(y.v)
n

Check that one obtains for the length of the transformed curve the following simple

expression’®

lfoy, gl=Ily, f*gl
Hint: y = foy =y = fiy = Ve v) = Ve(iy. fv) = VO, v). 0

e If we require that the length of any curve y should not change, we have to restrict the
class of the maps under consideration to

fM—>M suchthat f*g =g

These transformations of M are called isometries®® of a (Riemannian) manifold (M, g).

38 The length of a transformed curve differs, in general, from the length of the initial one since the new curve (= the image of the
initial one) is situated in a domain characterized by quite different “metric conditions.” The same effect is achieved, however
(the trick with a shoe, see (3.1.2)), if we pull back the metric conditions from the domain where the new curve is situated. Put
another way, instead of traveling there we simulate “here” the metric conditions which are valid “there.”

39 More generally, given two Riemannian manifolds (M, g) and (N, h), amap f : M — N is called an isometry if f*h =g
(then the length of the f-image of any curve on M happens to be the same as the length of the curve itself). In particular, for
M = N, g = h we find that the isometries are transformations of a single Riemannian manifold.
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Check that isometries automatically preserve the angles under which arbitrary
curves intersect, too.

Hint: let two curves intersect in x € M at an an- v
gle a and let the vectors v, w be tangent (of any w
lengths) to the curves in x. Then there holds x — «

f(x), v~ fiv,wr fiw and cosa — cosa’ = T

cos «, since according to the definition of an angle T‘
s, ) /(@)

Ve, v)v/g(w, w)

we find for the dashed angle

cosa’ ‘= g(fyv, faw) _ (f*e)v, w) _
Ve, fe(fiw, faw)  J(f*e)w, v)/(f*g)(w, w)

coso =

cos o

using f*g = g. Intuitively, it looks fairly reasonable that all angles are preserved if the
lengths of all lines remain unchanged. Simply imagine the angle being realized in some
(infinitesimal, in order that our Euclidean intuition works) triangle and realize that it is
impossible to affect its angles if the lengths of all of its sides are preserved. O

e From the expression for the change of cos & we can see, however, that a weaker require-
ment is enough for the preservation of (all) the angles alone (i.e. if we do not insist at the
same time on preserving the lengths of all lines), namely

ffe=o0g 0 < o0 : M — R, arbitrary

Such transformations are called conformal transformations of a manifold (M, g) (in par-
ticular, for ¢ = constant we have homotheties and for ¢ = 1 they reduce to isometries).

Check that conformal transformations constitute a group, homotheties form a sub-
group and isometries are a subgroup of the group of homotheties. O

Count up the “degrees of freedom” and check that a general manifold (M, g) has
no non-trivial isometries (= differing from f = idy,).

Hint: there are n levers (coordinates of new points as functions of the initial ones) at our
disposal to meet n(n 4 1)/2 conditions (in components f*g = g turns into the equality of
two symmetric matrices), i.e. f*g = g results in an overdetermined system of equations
(see (4.6.6)). |

e A highly effective tool for finding a relevant part of all isometries (namely those isome-
tries which may be obtained by a smooth deformation of the trivial isometry = identity)
provides the infinitesimal approach. In the first step, the strategy consists in finding all
infinitesimal isometries ®, : M — M (differing only slightly from the identity; in coordi-
nates x' — x’ + €£%(x)) and then, in the second step, one obtains the finite (“large”) maps
by iteration of the infinitesimal ones. (A rotation by an angle « may be, as an example,
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regarded as the N-fold repetition of rotation by an angle oo/ N.) In this way we get a whole
one-parameter group = flow of isometries ®, : M — M with the generator of the flow
being the vector field & = £7(x)d;. We now embark on the derivation of the equations which
specify the key vector field.

Let &, : M — M be a one-parameter group (flow) of isometries, generated by a
vector field £. Show that & satisfies the Killing equations

Leg =0
Hint: differentiate the defining equation ®fg = g withrespecttoint = 0. O

Check that

(i) a component expression of the Killing equations reads
fkgij,k + Ek,;gkj + flfjgfk =0
(ii) itis an overdetermined system of equations for unknown functions £'(x), .. ., £"(x) = no (non-

vanishing) solution is guaranteed, in general
(iii) given & and n two solutions of the Killing equations, then both

£+in  and  [£, 1]

represent solutions, as well
(iv) Killing vectors (i.e. solutions of the Killing equations) constitute a subalgebra of the Lie algebra
of all vector fields on M.

Hint: (i) see (4.3.5); (ii) n(n + 1)/2 equations for n unknowns, see also (4.6.4); (iv) see
(4.3.8). O

e The Lie algebra of Killing vectors is, unlike the Lie algebra of all vector fields, always
finite-dimensional and one can show that its dimension may be (for an n-dimensional
manifold) at most n(n + 1)/2 (this maximal value is achieved, as an example, on (pseudo-)
Euclidean spaces E”* as well as on spheres, see (4.6.10) and (4.6.11)).

The fact that the space of solutions of the partial differential equations under consider-
ation (Killing equations) is endowed with the structure of the Lie algebra*® may be used,
sometimes, for finding additional solutions, when only some solutions are known: we sim-
ply form all the possible commutators of the solutions which are known so far and, if we
are lucky enough, a new solution drops out in this way.*!

Find Killing vectors and the corresponding flows for the ordinary Euclidean plane.
Hint: denote £'(x, y) = A(x, y), £2(x, y) = B(x, y). Then the Killing equations read
A,=0=B, = A(y),BXx)
Ay,=—-B, = A'(y)=—B'(x)=constant

40 1 inear combinations are trivial, since the equations are linear; however, the commutator is non-trivial.
41 If we are a bit less lucky, we only find linear combinations of the solutions we already know, in particular the zero field solution.



84 Lie derivative

so that the general solution is
& = Ady + BOy = kier + kaer + kzes,
e1, ey and e being three linearly independent solutions
e; = 0y ey =0, e3 = —yoy +x0,

(they are linearly independent over R; this is a basis of the Lie algebra of Killing fields,
not to be confused with a basis (in the sense of a frame field) of vector fields in R?[x, y]!).
Their flows are translations along the x and y directions and rotations around the origin
(0, 0) respectively. O

Let x' = x — xg, ) = y — yp be the coordinates in R? with respect to the origin,
which is translated into (xg, o).

(i) Check that a general Killing vector, expressed in the initial coordinates (x, y) as well as the new
coordinates (x’, y'), reads

& = ki0y + k20, + k3(—y0, + x09y)
= (k1 — k3y0)dv + (ko + k3x0)dy + k3(—y 0y + x'3y)

(ii) give an interpretation of this computation

Hint: (ii) unless the isometry (which may be obtained by the deformation of the identity)
is a pure translation (i.e. k3 # 0), it may be regarded as a pure rotation around the appro-
priate point (xg, Yo) (this point is obtained by equating the coefficients of the generators of
translations 0/, dy to zero, or using (4.1.6)). |

Guess (and then test your intuition by plugging the guess into Killing equations) a
Killing vector for a general rotational surface discussed in (3.2.6).

Hint: the surface is symmetric with respect to rotations around the z-axis; see (4.1.7). O

Find all Killing vectors for the (pseudo-)Euclidean space, i.e. for E?4 = (R", ),
where 7 is the Minkowskian metric with the signature (p, ¢), p + g = n. Show that there
are three types of flows: translations, rotations and hyperbolic rotations (for p = 1,9 =3
they are known as Poincaré transformations, for g = 0 Euclidean transformations, see also

(10.1.15) and (12.4.8)).
Hint: in Cartesian coordinates the Killing equations read
Ej+&:=0  &=n,E
Differentiation with respect to x* gives
&k +&ik=0
In full analogy we get

§ikj +&kij=0 ik +&kji=0
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Then,

k=it ="86ij=—&xr = &Eu=0

éi = A;xj +d A, a = constant

and plugging into the initial equations leads to the restriction for the matrix A
A +0A)' =0 = Aecso(p,q)

(see (11.7.6)), i.e.

£ = (A;x-i +ai)8,» =g (A,a) € so(p,q) x R"

A a
(A,a) _
S ()

is an isomorphism of the Killing algebra with the semidirect sum so(p, g) X RP* (see
(12.4.9)). We can verify as well that the field £4® may be written in the form

One can check that

§00 = S(An) My +d' P,
((An)7 = —(An)’" being a consequence of (nA) 4+ (nA)" = 0) where the vector fields
Mij=—M;; = x8; —x;8, Pi=9 x =njx’

constitute a basis of the Killing algebra. Flows: solve the equations for the flow of M;; and
P; respectively. The fields P; correspond to translations, M;; yield rotations and hyperbolic
rotations in the plane (ij), depending on the sign of the product n;;;; (not to be summed;
+1 rotations, —1 hyperbolic rotations (boosts)). O

4.6.11] Find the Killing vectors on the standard sphere (S, g) from (3.2.4).

Hint: the first possibility is to solve the Killing equations directly in coordinates ¥, ¢.
Another (instructive) way: it is clear intuitively that isometries of a sphere are given by
all the possible rotations around its centre. The only problem is how to write down their
generators in coordinates ¥, ¢. This may be achieved in the following way: the generators of
the flows corresponding to rotations in R? in Cartesian coordinates are known from (4.6.10)
(they are M;;). The only thing to do is to express them in spherical polar coordinates in R3
(convince yourself that they are tangent to the spheres centered in the origin) and set*> r = 1
in these formulas. We obtain three vector fields on (52, g) and it is now a simple matter to
check that they indeed provide solutions of the Killing equations (see also (13.4.6)). O

42 In principle; in practice there are no rs present.
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4.6.12]| Find the Killing vectors on a torus (T?, g) treated in (3.2.2) and (3.2.3).

Hint: on a “curved” torus in R show (by solving the Killing equations) that the only
solution is given by the generator of rotations around the z-axis (this is intuitively clear in
advance, see (4.6.9)). On a “flat” torus the Killing equations coincide with the equations
in the Euclidean plane (4.6.7), but the tricky point is that the counterpart of the field es,
i.e. —B0, 4 adg is not acceptable, here, since this field is not (even) continuous on T? (its
components are not periodic). This means that the (global) topology of the torus selects
only part of the solutions offered by (local) Killing equations. O

e Alesson we learned from the last example is that the global characteristics of a manifold
may sometimes force us to abandon some Killing vectors we have obtained by local analysis
(solving differential Killing equations), so that finally we are left with only part of the solu-
tions. In the language of Lie algebras this means that the initial Lie algebra of all solutions
of Killing equations reduces to some subalgebra, in general.*> The initial (bigger) algebra
carries (invariant, coordinate-independent) information about the local metric situation on a
manifold — the resulting (smaller) one already encodes the global metric conditions. Itis clear
that if two manifolds differ in their local Killing algebras, they cannot be locally isometric
(isometric within sufficiently small domains; if they were, one could choose
local coordinates such that both the metric tensors looked identical, so that the solutions of
Killing equations were the same).

Show that both the (surface of the) cylinder and a cone (3.2.6) happen to be locally
isometric with an “ordinary” plane (consequently they may be, after being slit — which
alters its global properties only — painlessly unfolded into the plane). Does this hold for the
sphere S? (3.2.4), too?

Hint: find a change of coordinates, making metrics of the cylinder and the cone look the
same as the metric of the plane (in Cartesian or polar coordinates). For a sphere try to do
the same in a reasonable time and then give it up, recalling that the sphere’s (both local and
global) Killing algebra turned out to be so(3) (see (4.6.11) and (11.7.6)), which differs from
the Euclidean plane’s e(2) (see an argument based on different scalar curvatures in (15.5.7),
too). a

e So far we have interpreted Killing equations £; g = 0 in the following way: g is a given
metric tensor and & is an unknown generator (fo be determined) of the symmetry of g (i.e.
the isometry of (M, g)). The same equations may be used, however, for just the opposite
task: for finding the most general form of g, possessing a prescribed set of isometries (say,
a rotationally invariant metric tensor g). In this case, the same equations are to be solved,
just the role of unknowns and known objects has to be interchanged.**

43 On a flat torus, as an example, one starts with a three-dimensional algebra of the plane e(2), but it is to be reduced to its two-
dimensional “translation” subalgebra (the whole algebra e(2) happens to be a semidirect sum of a two-dimensional translational
and a one-dimensional rotational part, see (12.4.9)).

4 Note that Killing equations (4.6.6) contain the first derivatives of both the components &' and g;;, so that if we treat any of
these objects as being given, we get a system of first-order partial differential equations for the other one.
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More generally, any equation of the form £z A = 0, where A is a tensor field (not neces-
sarily a metric tensor) may be interpreted in this dual way. We either look for the symmetries
of a given tensor field (given A, unknown &), or for the most general tensor field A pos-
sessing prescribed symmetries (given &, unknown A). The latter point of view is especially
important for finding exact solutions of complicated partial differential equations; here, one
often looks for solutions with the particular type of symmetry. This involves, first, finding
the most general expression exhibiting this particular type of symmetry and then using this
expression in the role of an ansatz (a tentative solution containing some freedom, which
is then fixed by plugging into the equations). This procedure is often implicitly assumed
when one says “let us search for the solution in the form. ...”

4.6.14| Find the most general (g)—type tensor in E”, which is both translation and rota-
tion invariant (homogeneous and isotropic). What is exceptional about the case n = 2? In
particular, the metric tensor.

Hint: let / be a tensor to be determined, then L£:/ = 0 is needed for & = P; and M;; from
(4.6.10). P; lead to constancy of components (with respect to the Cartesian coordinate
frame), M;; then results in h;; = Ad;;. For n =2 M;; yields a more general expression
hij = M18;j + Ao¢;j, where ¢;; is the two-dimensional Levi-Civita symbol (5.6.1). O

4.6.15| Find the most general rotationally invariant vector field in E* (W = f(r)d, in
spherical polar coordinates (as expected intuitively)). O

e And what about an analog of the Killing equations for the case of conformal transfor-
mations?

4.6.16| Let ®, : M — M be a one-parameter group (flow) of conformal transformations,
generated by a vector field £. Show that
(i) & satisfies the conformal Killing equations

L:g =x8 x “arbitrary” (unknown) function

(ii) x = constant corresponds to homotheties.

Hint: differentiate the defining equation ®}g = o (x, r)g with respect to ¢ in t = 0; x
8t |O U(X, t)

4.6.17| Check that

(1) the component expression of conformal Killing equations reads

O

£ g+ %'k,igkj + Sk_,-gik = X&ij
(ii) it is an overdetermined system of equations for the unknown functions &'(x), ..., £"(x) = no
(non-vanishing) solution is guaranteed, in general
(iii) given £ and n two solutions of the Killing equations, then both

§+in  and  [£,1]

represent solutions as well



88 Lie derivative

(iv) conformal Killing vectors (= solutions of conformal Killing equations) constitute a subalgebra
of the Lie algebra of all vector fields on M and Killing vectors, in turn, constitute a subalgebra
of the Lie algebra of conformal Killing vectors.

Hint: see (4.6.6). O

e We mentioned already (see the text after (4.6.6)) the Lie algebra of Killing vectors
is always finite-dimensional. As a rule, the Lie algebra of conformal Killing vectors is
finite-dimensional, too; however, there exist important exceptions.

4.6.18| Check that the conformal Killing algebra of an ordinary Euclidean plane happens
to be infinite-dimensional.

Hint (cf. (4.6.7)): denote &'(x, y) = A(x,y), £2(x, y) = B(x, y). Then the conformal
Killing equations read

A,x = B\ (= X/2) A\ = _B,x
These are, however, just Cauchy—Riemann relations for a complex function
Y(z) = A(x,y) +iB(x,y) z=x+1iy

This means that any holomorphic function f(z) = u + iv yields a conformal Killing vector

& = u(x, y)dy + v(x, y)d,. In particular, the powers z",n =0, 1, ... generate an infinite
number of solutions (with the first degree polynomial P;(z) = ik3z + ki + iks, ki, k2, k3 €
R corresponding to isometries from (4.6.7)). O

e A connection between conformal transformations of the Euclidean plane and holomor-
phic functions may be understood in an alternative way, too.

The complex plane C may be regarded as a (two-dimensional real) manifold R?. We use
either Cartesian coordinates (x, y) or complex45 coordinates (z, Z) on it, the latter being
defined standardly as

1 1
z=x-+iy, Z=x-—1Iy or x:E(z+Z), y=2—i(z—2)

Consider (smooth) functions on C = R? with values in C, too, f : C — C. There are
two “ordinary” (real-valued) functions f(z, z) = u(x, y) 4+ iv(x, y) “hidden” in it. A key
restriction is given by the introduction of holomorphic functions.

4.6.19| We say that f is a holomorphic function, if it “does not depend on Zz,” i.e. if it
satisfies

ozf =0 sothat f = f(z)
Check that

4 Strictly speaking, this already needs an extension of the formalism to “V-valued” tensors (V' being a vector space; here V = C),
to be discussed in more detail in Sections 6.4 and 8.6.
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(1) in coordinates (x, y) this yields
0y +idy)f =0
(i1) in terms of the functions u, v this results in the Cauchy—Riemann relations
0:f=0 & Odu=0v J4v=-—0u
O

4.6.20] We may use either coordinate frame fields dx,dy ordz = dx +idy,dz = dx —
i dy for decomposition of a general covector field on C. Check that

(i) the coordinate expression of the standard metric tensor on the Euclidean plane E? in coordinates
Z, Z reads

1
825(d2®d2+d2®d2)

(i) if we consider amap F : E> — E? of the (appropriate part of the) plane given by a holomorphic
function w(z) (i.e. a map z — w(z), obeying dw(z)/dz # 0), the metric tensor transforms as
follows:

2

g~ F'g=o0g =0>0

‘aw(z)
0z

so that each such map of (an appropriate part of) the plane is a conformal map (it preserves all
angles of mutually intersecting lines)

(iii) if we take, as an example, the (holomorphic) function w(z) = z?, the corresponding conformal
map (of the first quadrant onto the upper half-plane) reads (when expressed in polar coordinates)
as (r, 9) — (%, 2¢) and we get 0 = 4|z|> = 4r%.

Hint: F*dz = dw(z) = (dw(z)/0dz)dz. |

e Conformal Killing algebras corresponding to higher-dimensional Euclidean spaces turn
out to be already finite-dimensional.

4.6.21|" Find the conformal Killing vectors for E”, n # 2. Show that the corresponding
Lie algebra is isomorphic to so(1, n + 1) (11.7.6).

Hint: modify the procedure used in (4.6.10). Manipulating the equations one has to show
that & ju = O here, so that §' = A" x/x* + Alx/ 4 AT, .. O

4.6.22| Check that the vector field V encountered in (4.1.5) is a conformal Killing vector
in E3, which corresponds to a homothety. O

Let M be the surface of a cone in E3, which makes an angle of 45° with the z-axis,
endowed with a metric induced from E3. Check that there exists a conformal Killing vector
on M of the form V = f(z)d, (the remaining coordinate being ¢). Find the flow of the field
V (the corresponding finite conformal transformations of M).

Hint: see (3.2.6), z(r) = r. O
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In the mechanics of elastic continua one introduces the strain tensor in the following
way: when the points in the continuum are (infinitesimally) displaced according tor > r +
u(r) (a vector field*S u(r) is called the displacement (field)), the corresponding deformation
is encoded in a second-rank tensor (field) with components (in Cartesian coordinates)

1
Ejj = E(aiuj + 8]'1/{,‘)
Check that the coordinate-free expression of this tensor reads

1
&= Eﬂug

where g is the (standard) metric tensor in E3 and that it follows from the definition of the Lie
derivative as well as from the context that a deformation of the medium (a shift of points,
which alters distances between them) is measured by the Lie derivative of a metric tensor
(¢ = 0 & a deformation did not take place < it is an isometry).

Hint: see (4.6.5). O

In the hydrodynamics of viscous fluids we encounter a tensor (field), which re-
sembles the strain tensor, with velocity field v of the fluid’s flow replacing, however, the
displacement u. It is called the rate of deformation tensor or the strain-rate tensor. Namely,
the n-multiple (n = coefficient of viscosity) of this tensor stands for an inner friction (vis-
cosity) part of the stress tensor. The full stress tensor of the viscous fluid then reads (in
Cartesian coordinates)

oij = —pdij + n(div; + 9;v;)
Check that

(i) the coordinate-free expression of this tensor is

o =—pg+nlg

g being the (standard) metric tensor in E>

(ii) the Lie derivative of g just corresponds intuitively to Newton’s idea of a phenomenological
description of viscosity: a term responsible for viscosity is to be proportional to the “relative
velocity of the nearby points” (the force is due to the friction between adjacent layers of the fluid;
if they are not moving with respect to each other, there is no reason for the frictional force
to arise; a quicker motion results in a larger transfer of momentum, so that the resulting force
increases).

Hint: £,g measures the rate of deformation, i.e. the rate of change of relative distances of
points in the fluid. O

4.6.26| Given @, aflow of isometries on M (®Fg = g) let A’ be an atlas (local coordinates)
on M, which arises from A through a displacement by the flow (it uses coordinates x! :=

46 A shift r > r 4 u(r) is interpreted as an infinitesimal flow generated by a vector field u(r).
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<b§‘x" = x' o ®, of the co-moving observer (drifted by the flow ®,), see (4.1.11)). Check
that

(i) it holds then that
g = g,-j(x)dxi Qdx! = gij(x,)dxf ® dx,j

so that the components of the metric tensor are the same both in initial and in transformed
coordinates*’

(ii) if the components have been constant in the initial coordinates, they still remain constant (being
the same constants)

(iii) in particular, for the Euclidean metric in E", the matrix of components turns out to be the identity
matrix in Cartesian coordinates used by the arbitrarily oriented observer.

Hint: (4.1.11), (1.4.13); (i) g = g;;(x)dx' @ dx/ = d*g = g;j(x,)dx! ® dx;. O

e This result is used sometimes (mainly in strictly coordinate sources) for a derivation of
the Killing equations: one looks for a collection of functions &/(x) such that the functional
form of the components g;;(x) remains (up to first order) unchanged under the infinites-
imal transformations of coordinates x' > x!(x) = x' + €£'(x). What we get defines the
(infinitesimal) flow ®, : x’ — x’ 4 €£/(x) (and eventually the “finite” one ®, <> £).

Summary of Chapter 4

Each vector field V on M naturally induces a map ®, : M — M, which translates a point
x along the integral curve starting in x by the parametric distance ¢. It is called the flow
generated by V or, taking into account its composition property ®;,, = ®; o ®,, a one-
parameter group of transformations. According to the results of Chapter 3 the map P,
of a manifold M onto itself induces a mapping of tensor fields ®;, which is called the
Lie transport of tensors (along the integral curves of the field V). The natural measure of
sensitivity of a tensor field A to Lie transport is the Lie derivative. One can assign to any
two vector fields V, W a third one, their commutator [V, W] (which happens to coincide
with Ly W). Two fields commute if and only if their flows do; non-commuting of vector
fields thus results in anholonomy phenomena (dependence on the path). A Killing vector is
a vector field with respect to which the metric tensor is Lie constant. The flow of a Killing
vector is the isometry of a Riemannian manifold (M, g), i.e. a map of M onto itself which
preserves all lengths and angles. If the angles alone are preserved, we speak of conformal
transformations and the corresponding generators are called conformal Killing vectors.

D, =D, 0P “Composition” property of a flow 4.1.2)
PFA=A A is Lie invariant (dragged) Sec. 4.2
LyA = (d/dt),PA Lie derivative of A along V < &, Sec. 4.2

47 There are two Jacobian matrices there, in general; now, the situation is fairly specific and they drop out (in matrix notation
G JTGJ =G).
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Ly(A+AB)=LyA+ALyB
Ly(AQ By =Ly AQB+AQLyB
LyoC=ColLy

LyW =[V, W]

Lypw =Ly + ALy

Livw) =Ly, Lw]

O = =1+ 1Ly 4

@!VEOQDZEOQDE‘L'ZW]OCI):‘/OQ)Z =i+.,.
Ifoy,gl=Ily. fgl

ffe=¢g

ffg=o0g

Egg=0

f'm=n

Leg=xg

e=1Lug

1
Eﬁvg

Lie derivative

Lie derivative of a linear combination

Lie derivative of a tensor product

Lie derivative commutes with contractions
Lie derivative of W along V

Lie derivative along a linear combination
Lie derivative along a commutator
Exponent of the Lie derivative
Interpretation of the commutator [V, W]
Behavior of the length functional

f is an isometry of (M, g)

f is a conformal transformation of (M, g)
Killing equations (£ generates isometries)
f is the Poincaré transformation
Conformal Killing equations

Strain tensor (elastic continuum)
Strain-rate tensor (viscous fluids)

4.3.1)
4.3.1)
4.3.1)
(4.3.6)
(4.3.8)
(4.3.8)
(4.4.2)
4.5.2)
(4.6.1)
(4.6.2)
(4.6.3)
(4.6.5)
(4.6.10)
(4.6.16)
(4.6.24)
(4.6.25)
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Exterior algebra

e In Chapter 2 we met tensor fields on a manifold. It turns out that a prominent role is
played in geometry by a specific class of tensor fields, namely the totally antisymmetric
(reversing sign under interchange of any pair of arguments), fully covariant (with lower
indices only) tensor fields. They are known as differential forms, or simply forms. The
power and beauty of forms ultimately springs from a simple observation in linear algebra
(see Section 5.1) that just these objects (their linear space prototypes) provide the ideal
tool in order to introduce the concept of the volume of a parallelepiped in a linear space.
The volume of the (infinitesimal) parallelepiped is a key element within the context of
integration*® and the integral calculus is closely related to differential calculus. These are
the reasons why differential forms occur naturally as objects of the highest importance in
differential as well as in integral calculus on manifolds.

As we will see, there are several algebraic and differential operations which are specific
for forms and, in a sense, forms represent the only objects one can integrate at all (i.e. each
integral may be regarded as an integral of a differential form; in this sense differential forms
may be understood simply as the quantities under the integral sign, too).

In this chapter a linear algebra of forms will be discussed, which is just a part of the
theory of tensors. Thus, it may be regarded as a continuation of Section 2.4, which dealt
with the algebra of general tensors of type (5 ) Here we restrict ourselves to the features
that are specific for totally antisymmetric tensors of type (9).

5.1 Motivation: volumes of parallelepipeds

e A place where the introduction of forms is most natural is the computation of the volume
of the parallelepiped. Let us have a look at how this takes place.

Given three vectors @, b and cin L = R?, imagine we want to compute the volume
of a parallelepiped spanned by them. After a short browse through a suitable reference book
entitled “Mathematical formulas” (or on Google; experts browse in their memory, true
experts derive the formula quickly from scratch) we come to the result V = |(a x b) - c|.

*8 An integral of a function equals a limit of sums of numbers, each of them being the product of the volume of an infinitesimal
parallelepiped and the value of the function somewhere inside this parallelepiped.

93
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This expression has a fairly remarkable structure, es-
pecially if we concentrate on the part inside the abso-
lute value (the latter only guarantees non-negativity
of the volume). Check that

(i) the map
V:LxLxL—>R V(a,b,c):=(axb)-c
is a tensor of type ()

(ii) the tensor is completely antisymmetric, i.e. the interchange of any two arguments results in the
change of sign of the resulting number

V(@@ b,c)=—-V(b,ac)=—V(c,b,a)=—V(ac,b)

(iii) if e, &, €; is any right-handed (to be defined more precisely later, see Section 5.5) orthonormal
basis in L, then the value V on this particular triplet is Vie,e,8)=1
(iv) interpret (iii).

Hint: (iv) the volume of a unit cube is equal to 1. O

Repeat the analysis from (5.1.1) for L = R?, i.e. for the area P(a, b) of a parallelo-
gram spanned by two vectors a, b € L = R2,

Hint: an explicit formula may be obtained from P(a, b) = V(a, b, ). O

e These results enable one to define the volume of a parallelepiped spanned by an n-tuple
(be wise, generalize) of vectors v, ..., w € L (n = dim L) in a natural way as

P,...,w):= |I~)(v,...,w)|
with P being a tensor of type (2), which is completely antisymmetric
P(..,v,...,w,..)=—=P(..,w,...,v,...)

The expression P(v, ..., w) itself is known as the oriented volume of the parallelepiped
spanned by the vectors v, . .., w. The oriented volume may be both positive and negative, its
sign depends on the order of the arguments and the “usual” volume is given by its absolute
value. Note that from the perspective of linear algebra the concept of the oriented volume
is, in fact, simpler than the “usual” one (the absolute value spoils both multilinearity and
antisymmetry).

A parallelepiped is said to be degenerate if it is spanned by a system of linearly
dependent vectors.

(i) Find the visual meaning of this forn = 2, 3
(ii) check that the volume of such a parallelepiped vanishes
(iii) check that, conversely, the requirement of vanishing of the volume of any degenerate paral-
lelepiped plus the linearity yields antisymmetry (which is a natural motivation to pay attention
to just such tensors).
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Hint: (ii) antisymmetry of V; (iii) first show that P(...,v,...,v,...) =0, then put v =
U+ w. O

5.2 p-formsand exterior product

e This section includes material to familiarize the reader with the algebra of completely
antisymmetric tensors with lower indices.

Given an n-dimensional (real) linear space L, consider T;(L), the space of tensors of
type (2) over L (cf. Section 2.4). A tensor a € TJ(L) will be called a p-form in L if it is
completely antisymmetric, i.e. if

aCc..,v,...,w,..)=—al...,w,...,v,...)

The collection of p-forms in L will be denoted by A”L* (the origin of the star becomes
clear in Section 5.3). The definition makes sense only for p > 2 (when there is something
to be interchanged). The structure to be obtained extends, however, to p = 0, 1, too, if one
defines

A°L* :=T)(L)=R AL :=TXL)=L*
0-forms thus being simply real numbers and 1-forms coinciding with covectors.

Thus, in general, p-forms are those tensors of type ((1);) which happen to be completely
antisymmetric whenever it makes sense. Check that

(i) in components
ae APL” & Aog.b. =" pa.

(i) APL* is a subspace of Tﬁ(L)
a television (iii) the dimension of the space of p-forms in n-dimensional
tower space is

dim APL* = (”) -
P (n—p)!p!

(iv) dim A?L* = dim A" PL*
(v) non-zero p-forms can only exist for p =0, 1, ..., n.

Forms thus resemble a television tower rather than (an infinite modification of) an inverted
pyramid from Giza (cf. the note before (2.4.7)). The tower widens only up to half its height
and then starts to narrow down; item (v) then guarantees its finite height.

Hint: (iii) from (i) it follows that a component «,_, may be non-vanishing only if there are
no repeating values of indices in it (all the indices take different values). The number of
mutually independent components of a general form o (= dim A” L*) thus coincides with

the number of ways in which one can choose p numbers out of n numbers, i.e. (;); (iv) a
property of the combinatorial numbers (Z); (v) for p > n at least two indices necessarily
have the same value. O
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e Thus we have learned an important, albeit fairly simple fact that, unlike the infinite
“tower” of general tensors, non-trivial (non-vanishing) p-forms terminate at p =n =
dim L.

Given a tensor 7 € T(L) we define the tensor 77 € Ty (L) as follows:
1
A — 2 :
T, ..., w) = PR (sgno)t(o(v,...,w))

with o being a permutation and sgn o being +1 for even permutations and —1 for odd ones.
Check that

(i) A is a tensor operation (i.e. 7t is indeed a tensor)
(ii) A is a projector onto p-forms, i.e.

nh i TIL) — APL* C T)(L)  nhom=gx"

The tensor 74t is said to represent the antisymmetric part (= skew-symmetric part) of the
tensor 7 (2.4.16)
(iii) for p =1, 2, 3 we have explicitly

()W) = 1(v)
(T ), w) = %(I(v, w) — 1(w, v))
T, v, w) = %(t(u, v, w) + 1w, 1, v) +1(v, w, u) —1(v, u, w) — 1w, v, u) — 1, W, v))
(iv) in components 77* reads
tas > (T D0y = tai)

where the square brackets denote complete antisymmetrization in indices, i.e.
1 . . -
ta. b) i= —'(t,,___h = all the remaining permutations of indices)
p!

(+ for even, — for odd permutations)
(v) for p = 2, 3 explicitly

1
Hap) = 5(% — Ipq)

1
t[abc] = y(tabc + teap + thea = thac — Leba — tacb)

Hint: (ii) permutations constitute a group S, with respect to composition, o +> sgn o is a ho-
momorphism §, — {1, —1}, an interchange of two arguments is realized by a transposition
&,whichhassgné =—1,) 1= p! O

e The fact that p-forms constitute a subspace of the space of all tensors of type (2) means
that they are closed with respect to linear combinations. But tensors may be multiplied
(tensorially) with one another too, so that a natural question arises as to whether the forms
are closed with respect to this kind of multiplication. One easily verifies that they are not.
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Check that the tensor product of a p-form and a g-form is no longer a form in general
(it is “only” a tensor of type (piq )), ie.

® : APL* x AIL* > T9, (L)
Hint: a tensor «,_f...4 1s antisymmetric within both subgroups (a ...b) and (c...d), but
it is not within the whole group (a...bc...d) = a ® B ¢ APTIL*. O

e However, since the resulting object happens to be a tensor with lower indices only, we
may project out its antisymmetric part with the help of 7, which already yields a form!
In this way one arrives at the definition of a new product, which is specific for forms. It is
called the exterior product, denoted by A and*’ it is defined by

A APL* x AYL* — APTIL* (0, B) > anp
| |
/\::MT[AO@) i.e. aA,B::MﬂA(WXJﬁ)
plq! D:q:

]
(Awkward factors, containing factorials, occur inevitably in the theory of forms. They
originate in combinatorics and (unfortunately) one cannot avoid them, indeed. There are two
main conventions, differing in where exactly these factors do appear (one of them is used
in this book). If we had not used, for example, the above-mentioned factor in the definition
of the exterior product (which is possible), several factors would emerge elsewhere. This
should be borne in mind, in particular, when using various sources dealing with forms: in
different conventions “the same” formulas may contain different factors.)

Verify that the exterior product has the following properties:
(i) bilinearity

aANBF+rT)=aAB+raAT reR
BHrAD)Aax =B Aa+AT A1

(ii) associativity
(@nByny =an(BAy)
(iii) Z-graded commutativity (see Appendix A.5)
aAB=(—DMB A« a€ ALY, Be AIL”

Hint: (ii) in addition to prefactors one should check that o 5Bc. a1Ve.. 1=
Qa..bBic...aYe...r1)> for which (5.2.6) may come in handys; (iii) there holds

(O[ A ,B)a...bc...d ~ O‘[a...bﬂc...d] = ﬁ[c...d‘xa...h] ~ (ﬂ A Ol)c...da...h

(~ means that factorials are not written explicitly, but we take the sign seriously; think over
the validity of =). Now one has to interchange the group (c. . .d) with (a . . . b) (in order to

49 Sometimes, this is read as wedge.
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getthe (a...bc...d)-component of the result), from where a factor (—1)”? emerges (each
interchange of a pair of indices results in (—1)). O

e Both associativity and bilinearity of A are properties inherited from the tensor product ®
(2.4.7). Graded commutativity, to the contrary, is specific for the exterior product and it has
no counterpart within tensor multiplication (the tensors ¢ ® 8 and 8 ® « are not related,
in general). This means, from the practical point of view, that two forms commute as a rule,
with the exception of both degrees being odd (both p and g odd) when they anticommute.

Check that

(i) in components we have

_(p+ !

@A Babe.a = g Aa. b Be...ar

(i1) multiplication by a scalar may be regarded as an exterior product:
rM=rAa=arr reR=AL*
(]
e The following exercises in index gymnastics>® will prove to be useful in what follows.

Justify the legitimacy of the following steps (o, 8, A, t being arbitrary indexed
objects commuting one with another, such as the components of tensors)

@
a[a.“b]ﬂamb = a[a“.b]ﬁ[amb] = aa“.bﬁ[amb]
Ol(a...h)ﬂ"'"h _ Ol(a...b)ﬂ(a"'h) _ Ola...hﬁ(a'"h)
(ii)
Al AL = Al AL = Al A
AL AL = AL LA =AY LAY
(iii)
Waliboc.dod.] = ia b.c.d.]
atbocyd.y = abc.d.)
(iv)

Natoboeydd = atbctdy =0

where the round brackets represent complete symmetrization (all the terms on the right are to
be summed with a plus sign in the definition from (5.2.2)). The idea of (i)—(iii) is to recognize
typical situations, in which some (anti)symmetrizations may be omitted (or conversely added
formally), since they are ensured automatically by means of other (anti)symmetrizations;

30 They used to be fairly popular in those fitness centers in which both square and round brackets are installed.
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(iv) says that a symmetrization, when performed inside an antisymmetrization (and vice
versa), gives zero. ]

p pieces
—

e We know from (2.4.7) that the tensors e/ @ - - - ® e’ may be used as a basis of T;(L).
Their number equals n”, just matching the dimension of the space TPO(L). Since the dimen-
sion of the subspace of p-forms is (for p > 2) lower than this (dim APL* = (Z) <nP =
dim T,?(L)), it is clear that although p-forms may be decomposed with respect to the basis

of “general” tensors of type (2), we can make do very well with a more economical basis,
containing just (;) members.

Check that

(i) the antisymmetrized tensor basis
Q. @M=" ® - Q)

is enough to decompose any p-form
(i) those tensors el ® - - - ® e which obey @ < - - < b form a basis of A”?L*,
. . 5.2.6 ..
Hint: () e =y @ - - @’ = e’ ®@ - @ P CE 4 el @ @ e (i) the
rest may differ at most by a sign. O

e It turns out that these objects may be expressed in a simple and very useful form,
containing just exterior products of the basis 1-forms (covectors) e“.

Given two /-forms « and B, check that
@
aANB=aQRBf-BRa
(i) in particular, for basis 1-forms we have
e ne? =21 @ =21 7 (e’ ® €b)

Hint: (i) evaluate both sides on general arguments u, v, making use of (5.2.5) and (2.4.7).
O

Check that
®
A nN=plel®- Qe =platet @ ®eD)
p entries
(ii) any p-form may be written in the following standard way:

1
(x:—‘aa"_be“An-/\eb
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(iii) there holds

NN — la bl
e“ A Ae'(,...w)y=plov. .. w
p entries
Hint: (i) induction with respect to p, (5.2.5) and (5.2.6); (ii) (5.2.7) and (i). d

e Expressing forms in terms of exterior products of basis 1-forms turns out to be highly
convenient, indeed, making practical manipulations with forms so simple as to border on
the trivial. To make this clearer, let us look at an algorithm for computation of an exterior
product o A B of two forms. The properties of A (discussed in problems (5.2.4) and (5.2.5))
result in the following (amazingly simple) instructions for use:

1. juxtapose the forms (both expressed in terms of exterior products alone)

2. multiply out all terms

3. reshuffle all constants to the left

4. delete those of the resulting terms which contain some basis covector e’ more than once (such
terms vanish because of the anticommutation of the basis covectors: e? Ae” = —e® Ae® =
e'nel =2 At =-..=0).
As an illustration, consider dim L = 3, a basis of L* being e!, €2, &>,

o =2 6 B=-3¢' A&’ +4e” A’
Then,

aAB=QRe +e)A(=3e' ned +4e® Aed)

=—6e' Ae' A+ 8! AP AP =3 Ael AP +H463 At A’
—— —— ———

0 —e'ned —e2Ae?
=8 AP Al +3e' Al A —dP AENE
[ N, e’
0 0
=8 Ae? A e

We see that three out of four terms drop out (vanish). After some practice, such unlucky
terms are immediately recognized and one displays directly the non-vanishing part of the
result alone. Note that it is the highly effective (and merciless) mechanism no. 4 which bears
full responsibility for the fact that so many (innocent and agreeable) terms are not allowed
to survive.”!

This method of computation of the exterior product is very convenient; indeed, it is much
quicker than working with components (i.e. applying the result of (5.2.5)).

31 “Heterogeneity” turns out to be a strong evolutionary advantage within the population of exterior forms: e! A e? A €3 survives,
e' Ae! A€ isnot fit enough (its mortal sin being “repeating e!”). Remarkably, five years on the Beagle (1831-1836) seemed
to be not enough for young Charles Darwin to notice this simple example of how natural selection works (although, in those
times, there was a flourishing colony of exterior forms living in the Galapagos, their multiplication being routine activity, well
known to native people; nor did Alfred Russel Wallace use it in his independent speculations). It was observed only by a teacher
of “Gymnasium” in Stettin (today’s Szczecin in Poland), Hermann Grassmann, in 1844. Because of the lukewarm response to
his work, however, he was so frustrated as to leave this battlefield and set his brain to the understanding Sanskrit (where he was
fairly successful, at last). The ideas of Grassmann were fully appreciated and then developed by Elie Cartan.
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5.2.10| Repeat the computation of the product o A B (treated above) in components and
convince yourself how cumbersome the component method is in comparison with the way
presented above.

Hint: starting with the standard expressions (5.2.9) ¢ = o,e“ and § = % Bave® A e’ identify
first the components «,, B.», then plug them into (5.2.5), thus computing (@ A ) and
finally reconstruct the whole form %(a A Babce® N e” A e°; in the course of the compu-
tation, do your best to avoid (in spite of the temptation being increasingly hard to resist)
shouting highly substandard words (all the more accurate, however), unworthy of a true
lady (or gentleman). O

5.2.11| Reproduce the component result from (5.2.5) by direct multiplication of forms,
both of them being represented according to (5.2.9).

Solution:
1 a b 1 c d
aNnfp = —Qa.pe A--ANe” ) A —|,chde A--Ae
p: q:
1 a b c d
= Waambﬂcmde AN ANe"Ne“"N---Ne
plq!
1 a b c d
= Wa[a'"bﬂc'"d]e AN ANe"Ne" AN ANe
plq!
!
= ————(@ABabe.ae NN AN A
(r+q!
so that we indeed get (5.2.5). O
5.2.12| Check that
p entries
—_—~
(A ne)a=(e" N neNee,...e)) = pl 8L ... 85 =plstd
Hint: (5.2.9), (5.2.6); 6?:"5 is defined in (5.6.2). O

5.2.13| Check that

1
aE—'aamhe“/\nJ\eb: Z oy pe* N ANe
p!

Hint: in the sum on the left, we always have p! terms, differing only in the order of indices,
thus being equal. As an example, for p = n = 2 one has

o= o (algel Aer+ 0{2162 A el) =ape' A &2
A basis of APL* is given by the terms e A --- A e” with a < --- < b alone, but since
all terms without any restrictions whatsoever are present in the decomposition (5.2.9), the
factor 1/p! appears. O

e Let us close this section with a very simple, but nevertheless fairly useful, criterion of
the linear independence of a set of (co)vectors.
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5.2.14| Let a, B, ..., o be any covectors (1-forms). Verify the validity of the following
criterion to test their linear independence:

o, B,...,0 are linearly independent < o ABA---AN0 #0

Hint: =: denote a = €', B = e, ...,0 =¢e and complete arbitrarily to a basis e, a =
1,...,n. According to (5.2.9), the k-form el A neF represents an element of the basis
of the space of all k-forms (thus being necessarily non-vanishing: e.g. if e, is the dual basis,
then (e! A--- Aek)(er, ..., er) =1 # 0); the opposite direction by a contradiction: being
linearly dependent, some of them may be expressed in terms of the others = after plugging
this expression back, each term necessarily contains two identical 1-forms. O

5.3 Exterior algebra AL*

e In Section 2.4 we introduced the concept of the tensor algebra T (L). If we restrict
ourselves to p-forms and at the same time replace the tensor product by the exterior product,
we get in like manner another interesting object, the exterior algebra AL* of a space L*.
Regarded as a linear space, it is the direct sum
AL* = éOA"L* —AL*® AL @ @ A"L*
p=

so that its general element is a linear combination of forms with various values of p =
0, 1, ..., n.Such a general element is called an inhomogeneous form and the elements of a
subspace with fixed value of p (p-forms) are then said to be homogeneous. The number p
is called the degree (of the form) in this context and it is usually denoted as deg = p (for
a € APL¥).

The definition of A” L* may be readily extended to all integers p by defining A’ L* := 0
for p < 0, p > n (we have encountered a similar extension in dealing with 7' (L)). What we
obtain in this way is a Z-graded algebra (Appendix A.5); that is to say AL* is a Z-graded
linear space (it is a direct sum of homogeneous subspaces labeled by elements of the group
(Z, +)) endowed with a multiplication rule compatible with the grading (the product of
two homogeneous elements with degrees p and g respectively is homogeneous as well, its
degree being p + g, which just equals the result of the product of integers in the group
(Z,+)), i.e.

APL* ANATL* C APHIL*

Find the dimension of the linear space AL* (dim AL* = ZZ:O dim APL* =
620 = om), 0

e The concept of an exterior algebra is canonically induced by any (finite-dimensional)
linear space. It may also be introduced in the following way. Let e1, . . ., ¢, be (any) basis
in L. We define a formal multiplication, satisfying the relations

€4€p = —€pey
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The elements of the algebra are then given as the results of arbitrary products and linear
combinations>? of the elements e, and 1 (we say that e, constitute a set of generators of
the algebra; there are n = dim L of them). This algebra is denoted by A L.

Check that

(1) this construction of exterior algebra does not depend on the choice of the basis e, in L
(ii) the algebra resulting from this construction is isomorphic to the algebra A L* from the beginning
of the section.

Hint: a basis of AL is given by the elements 1 for A°L = R, e, for A'L, e,e;, for AL, . ..
(the indicesine, ...e, € AP L fulfillinga < --- < b), an isomorphismise, ...e, <> e* A
N O

e It is seen now that the above-mentioned algebra “is actually” just the exterior algebra
of the space L* (its generators being e, the particular realization of a formal product being
given by the antisymmetrized tensor product A, which just fulfills the relations needed by
the definition). This is the reason why a star occurs in denoting A L*.

Given an exterior algebra A L* one defines a linear operator
A:AL* > AL*  fa=(—D’a=(—1)*%q fora € APL*

Prove that 7} is an automorphism of the exterior algebra A L* (called its main automorphism),
i.e. a bijection of AL* onto itself, such that

(i) it respects the Z-grading
N(APL*) € APL*
(ii) it respects the structure of an algebra (both the linear structure and the product)
file + AB) = fla + Anp fila Ny) = fa Afly

(iii) In addition, it obeys

d

e One further useful point of view consists in regarding the exterior algebra as the result
of appropriate factorization of the tensor algebra. Consider a linear space L and its “purely
covariant” tensor algebra, i.e. the linear space

X 70 0 0 0
T = & T)(L) =TS TL) & (L) &
=R®L*®T)L)® - (up to infinity)

endowed with the product induced by the tensor product of the homogeneous terms (just
like in Section 2.4). In this co-dimensional algebra consider, now, the two-sided ideal 1

52 With possible simplifications of multiple products by means of the definition relations, e.g. eje;e; = — ejeje; = 0.
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(see Appendix A.2) generated by elements of the form o ® o, where o € L*. The ideal 1
thus consists (by definition) of all sums of terms of the form

H®@Ra)®n t,tp € To(L), ae€lL”

Both the algebra 7(.,(L) and the ideal I under consideration are co-dimensional; however,
the factor-algebra T(.)(L)/I turns out to be finite-dimensional.

* Consider the algebra 7T(.,(L) and the set I discussed above. Convince yourself that

(i) the set I is indeed a two-sided ideal of the algebra T(.,(L)
(ii) the same ideal is also generated by elements of the form

Q@B+ a,Bel”

(iii) the factorization under consideration effectively annihilates symmetric parts of tensors and leaves
unchanged just their completely antisymmetric part; this is the reason why the factor-algebra
T(L)/I is isomorphic to the exterior algebra AL* (as defined before)’?

To(L)/I = AL

(iv) the ideal I is generated by homogeneous elements of the initial Z-graded algebra 7, (L); this
gives rise to the fact that the factor-algebra inherits the Z-grading.

Hint: ) 1@ (- +1Q@@®@0)®h+-- )= +(I@N)Q @)@+ --=---
H®@®a)®n--- €1, so that [ is a left ideal; the right one in full analogy; (ii)
I>250+P)Q@+B=aQa+LRP+ (¢®B+ P ® ), (iii) according to the mean-
ing of a factorization process the elements of an ideal become “vanishing”; here e¢* ®
e’ + e’ ®e €I, so the rules of computation “by means of representatives” lead to
[a] + A[B] := [ + AB] and [«][B] := [« ® B], so that finally

0=1[e"® e’ + e’ ®e’] = [e“1[e"] + [¢"1[e“]

We obtained the key rule characterizing the exterior product. From tensors themselves we
get forms, since (for a homogeneous term)

[o] = [y pe” @ - @ €] = oy ple"]- - - [€"] = apa._ple”]- - - ["]

so that only the completely antisymmetric part of a tensor survives. This is the origin of
the fact that the resulting factor-algebra is finite-dimensional: completely antisymmetric
tensors with sufficiently high rank necessarily vanish. If square brackets denoting classes
are not explicitly displayed and the resulting multiplication is denoted as A, we just get the
algebra known as AL*. (iv) Since each generator z := o ® « is homogeneous (namely, it
has degree 2), all elements of the ideali = --- +t; ® z ® £, + - - - may be written as a sum
of homogeneous terms i = Y _ iy, each iy being from the ideal, so that the ideal itself (not
only the algebra 7,(L) as a whole) is Z-graded, too; next see Appendix A.5. O
33 This algebra, as a matter of fact, uses a slightly different convention for the numerical prefactors present in the multiplication

rule of forms (see the note after (5.2.3); as an example, here we get for the product of classes of basis 1-forms [e*][¢?] :=

[e¢ ® ?] = [el? @ "] + [ ® "] = [el* ® "] = 1 [e® A €] s0 that the product used here differs by a factor of 1 from
the “wedge-product” A introduced previously.
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e It turns out that in addition to the Z-grading discussed until now, the exterior algebra
AL* is naturally endowed with a “coarser” (less distinguishing) grading, too. Namely, it
may be regarded as a Z,-graded algebra (Z, being the group with two elements, realized
as the set of integers, with multiplication given by addition modulo 2; this means there are
two elements there, [0] and [1] (the square bracket denotes an equivalence class), and the
rules of an addition read [0] 4 [0] = [O], [0] 4+ [1] = [1], [1] + [0] = [1], [1] + [1] = [O],
see (13.2.11)). The new grading arises by dividing the forms (only) into those with even
and odd degrees first and observing then that the exterior product is compatible with this
grading, foo. Now, the grading is given by the direct sum

AL* = AL @ ALY
where
AL = AL e AL D - AL = A'L*e AL e -
and there holds
A[i]L* A A[j]L* C A[i+j]L*

Such a Z,-grading plays an essential role in supermathematics (superspaces, super-
algebras, supermanifolds, supersymmetries, etc.) and supersymmetric field theories (the
latter being the main source of inspiration for establishing supermathematics itself). The
exterior algebra A L*, regarded as Z,-graded space, provides a simple example of a (asso-
ciative) superalgebra.

(In supermathematics, the subspaces of degrees 0 and 1 are said to be the subspaces of
even and odd elements, respectively; supersymmetries in physical theories relate bosons
(represented by even variables) to fermions (represented by odd variables); namely, super-
symmetric models are invariant with respect to particular transformations, mixing bosons
with fermions.)

5.4 Interior product i,

e The interior product is a simple, albeit fairly useful and important, operation on forms.
For a given vector v € L this is a map « +— i,c, which consists in inserting v as the first
argument into a p-form «, i.e.

Gy, ..., w) =a,u,..., w) a€ AL, p>1

ia =0 p=0
Check that
(i)

Lyly = —Iyly (:> (lv) = 0) Lytaw = Ly + )"lw (lva)amb = vcaca“.b



106 Exterior algebra

(i)

i, = v, iq =g,

(iii) the computation of i,(e® A - -- A ) may be performed in the following formal way: if a is not
among (b, ...c), it is zero; otherwise the corresponding (co)vector e is to be reshuffled to the
leftmost position (there is some =+ because of this) and then deleted. It thus resembles a “partial
differentiation” of a homogeneous “polynomial” ¢’ .. .e¢ with respect to e, modulo a slight

sign complication caused by the reshuffling (see the comment at the end of Section 5.6 about
“anticommuting variables” 6¢, too). (]

Check that i, is a derivation of AL* of degree (—1) (see Appendix A.5), i.e. that
there holds>*

(1) i, : APL* — APTIL* it lowers the degree by 1
(i) iy(a +AB) =i, + 1i,pB it is linear
>iii) iy(x A B) = (il,a) A B+ () A ((,B) it obeys a graded Leibniz rule

Hint: (iii) because of the linearity and the possibility of renaming the basis elements it is
sufficient to verify (i = i,,)

. a b c d\y __ f: a . b c . d
i{e* AN Ane )N AN---NeD)) = {i1(e” A ANe) A (e A Ne?)
p entries
+(=DPE A AePYALi1(e A Aet))
Four cases are to be analyzed (in the spirit of the mnemonics learned in (5.4.1)); namely,
when e! is/is not present in the first/second factor. O

* Prove that all derivations of AL* of degree (—1) are of the form i, (for some
vector v).

Hint: given any such derivation, it is uniquely defined by its action on the subspaces with
degrees 0 and 1; on degree O it is necessarily zero (D1 = 0, no (—1)-forms available), on
degree 1 we have by definition De* =: v* € R; the same result is clearly obtained, however,
when acted on by i, with v := ve,. O

e The operation of the interior product has a useful interpretation in the integral calculus
of (differential) forms; we will return to this point in the problem (7.6.11).

5.5 Orientation in L

e Itturnsoutthat E(L), the set of all bases in L, may be naturally divided into two “equally
large” halves. To introduce an orientation in L means declaring one of these two halves of
E(L) to represent right-handed bases. One should remember, however, that the two halves
are completely equivalent, so that there is no preferred choice in fact. In practice, to declare

3% The interior product i, is often denoted by v_a; the graded Leibniz rule then reads v_i(a A B) = (vua) A B + () A (vapB).



5.6 Determinant and generalized Kronecker symbols 107

a single basis as being right-handed is clearly enough to make the choice mentioned above
(the half containing the right-handed basis is then regarded as being right-handed).”> A
linear space endowed with an orientation will be denoted by (L, o).

Let E(L) be the set of all bases of a vector space L and let f € E(L). Then any
basis e may be uniquely expressed as

e = frAY  ie. e=fA AeGLmR)

(GL(n, R) being the set of all non-singular n x n real matrices, see (10.1.3) and beyond).
Show that

(i) each basis falls either into E(L), orinto E(L)_, i.e.

E(L)= E(L), U E(L)_ E(L), N E(L). =9
E(L)s = {e € E(L);det A = 0}

(i1) E(L)+ and E(L)_ are “equally large,” i.e. there exists a bijection of E(L), onto E(L)_

(iii) dividing of E(L) into E(L); and E(L)_ does not depend on the choice of f € E(L), i.e. if e
and ¢ share the same half with respect to f, they share the same half with respect to any other
reference basis f e E(L).

Hint: (ii) (e, ea, ..., €,) < (—ey, €2, ..., e,); (iii) det (AB) = det A det B. ]

e In the Cartesian linear space R” (ordered n-tuples of numbers) a standard orientation is
introduced by declaring the “canonical basis” e; = (1,0, ...,0),e; =(0,1,0,...,0),...
to be right-handed.

5.6 Determinant and generalized Kronecker symbols

e Generalized Kronecker symbols 8% (p-delta symbols) play a similar role in the ma-
chinery of forms as does the ordinary Kronecker delta symbol & for vectors or covectors.
In this section several useful identities involving p-deltas are derived.’® Furthermore, we
will learn how they are related to some other useful objects, like the Levi-Civita symbol
and the determinant.

The Levi-Civita symbol €, (carrying n indices, each running from 1 to n) is
uniquely defined by just two properties:

[a...b]

...b .
€a.p =€ = €la..h] = € €. i=1

(i.e. it is completely antisymmetric and one of its components is explicitly given). Check
that

(i) these data indeed fully determine its value for any other n-tuple of indices

35 Orientation may also be introduced by means of a volume form; see (5.7.5).
36 A reader who suffers from index sickness might use a half tablet of an anti-indexicum or, preferably, skip this section completely.
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(i)
€, €t = nl
(iii) if w is an n-form in n-dimensional space L, then its components may be written in the form
Wap=r€.p ALER
Hint: (iii) A = w1, O

(For the Levi-Civita symbol there holds (by definition) €, _;, = €*? je.the position of

indices (upper or lower) does not matter — it is a symbol, not a tensor. A word of caution is
in order, however. The same symbol often denotes something else in the literature, namely
components of so-called volume form, which is a tensor, to be denoted by w (see (5.7.3))
in this book. The only reason to use a particular position of indices (upper or lower) on
the Levi-Civita symbol is to make the typographical layout of a formula more transparent;
for example, in (ii) the indices are displayed both in upper and lower position in order to
indicate that a summation convention is understood there.)

Let us define the p-delta symbol (the generalized Kronecker symbol §(p)) as a
completely antisymmetric (with respect to upper and lower indices separately) tensor of
type (ﬁ ), which serves as the unit operator on p-forms, i.e. fulfilling

S =8y = Sty = i)
8¢ do. g=a,,  orinbrief  S(pa=a  aec AL
Show that
(1) it may be composed of ordinary delta symbols:
seb =0 .. 85 =l sl =58
(i1) for the Levi-Civita symbol there holds
a. b€t = nl 85 orin brief ee = n! 8(n)
(iii)
80 80y =07y orinbrief §(p)d(p) = 8(p)
(iv) the projection 7# from (5.2.2) (antisymmetrization) may be written as
ta p > 53;;;‘gtc___d orinbrief ¢+ 8(p)t
v)

(A neP) qa=plssh
—————

p entries
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Hint: (i) see (5.2.6); (ii) according to (5.6.1) the components of arbitrary n-form are given
by ay.» = réa.p- Then,

c..d c..d —
€a. b€ e g = Meq p(€7 e g) =nl g p
————
n!

v) (5.2.12). O

e Sometimes one encounters contractions of Levi-Civita or p-delta symbols in manipu-
lations with forms. We will derive several useful results for such contractions.

* Prove the identity

or in the notation §(p) < p-delta, §;(p) <> k-times contracted p-delta, the identity

—p+1
81(p) = %6@— 1)

Hint: according to (5.6.2)

8ru...b — 8§87 .. 53]

re..d [r%c

Write down explicitly the sum indicated by [ ] on lower indices; perform the sum separately

for the terms which begin with r (= 28%-7), with ¢ (= —138-)), ... and finally with
d (= =58 O

* Use the notation from (5.6.3) and prove that
®
Sk(n) = %801 —k) or alternatively 4é(p) = <n) 8y—p(n)
() P
(i)
(e =kl (n—k)! 6(n —k)
i.e. in detail
€ a1 g€ = k! (n — k) 8
—— ’
k
(iii)
()
(n—;+k)

Hint: (i) 81(n) = 18(n — 1), &2(n) = 181(n — 1) = n(;fl)a(n —2),...; (i) see (5.6.2). O

S (p) =

8(p —k)
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Define the determinant of a square n x n matrix®’ with entries Aj by the formula
detA =g, ,A9... A
Check that

() this definition leads to the same result as your favorite definition yields (in case it differs from
the one given here)
(ii) one has also

1
detA = —sg, e Al ... AZ
n!

from which it is clear that the determinant of the fransposed matrix equals the determinant of
the original one
(iii)
detA =859 A%... A orinbrief detA=38mn)A...A

n matrices n matrices

(iv) for matrices close to the unit matrix we get a useful first term of the expansion

detl+eC)=14+eTrCH---

)
apA% .. Ab =detA e, 4
vi)
[ bl _ b
Alr A = detA 5%
———
n matrices

Hint: (iv) set A7 = §; + eC} and use (5.6.4); (v) the expression on the left is completely
antisymmetric = we may use (5.6.1). a

" Prove that

(1) the elements of the inverse matrix may be written explicitly as
(n— 1! detA (A™HY = e™%1gy, (AL A] = (n— 1) AY
= fordetA # 0

1
A—l a _ Aa
A% detA ~°

(i1) Ay is the (a, b)th minor, i.e. the determinant of a matrix which we get from A when the ath
column and the bth row are deleted
(iii) it holds that

ASAY = 5% det A

7 This formal definition is the output of a computation, based on an intuitively comprehensible interpretation of the determinant
as a coefficient, by which all volumes are multiplied under the linear transformation A, see (5.7.6).
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which gives for a = ¢ the expansion of a determinant with respect to the ath row and
ASAY =8 detA
which gives for a = c the expansion of a determinant with respect to the ath column.

Hint: (i) see (5.6.5) and (5.6.4); (ii) % with fixed a effectively behaves as glin(n = 1)-
dimensional space. U

* Prove the formula for the partial derivative of a determinant with respect to a matrix
element

o(det A) 1w b 4
Y, = (detA)(AT), = A, sothat d(detA) = (detA)Tr(A™'dA)
b
Hint: see (5.6.5) and (5.6.6). O

* Let L be an even-dimensional linear space (its dimension being n = 2m (m >
1)), e, a basis in L, e“ the dual basis in L*, A,y = —Apa, By € GL(n, R), (BTAB),, =
BSA.aBf, (eB), = e,BY, and finally

e 1 a b 271 %
ay = EAa;,e Ne € AL
One defines then the Pfaffian Pf(A) of the matrix A by
aS A nab =m!Pf(A) e Ao A e

Prove that

(i) the explicit expression for the Pfaffian is

2m

—~—
Pf(A) = el A A
P e

2mm!

m matrices
(i)

o =af Pf(BTAB) = (det B)Pf(A)

ZTAB
(iii) the numerical value of the square of the Pfaffian is equal to the determinant
(Pf(A))*> = det A

Hint: (i) see (5.6.1); (ii) see (5.7.2); (iii) make use of the existence of the canonical form of
a skew-symmetric matrix: 3C € G L(n, R) such that

0 10
A CTAC=A=|-1 0 0
0 00

(a block expression of the matrix 4 is used), and directly check that Pf(4) = +1 (or 0 if A
happens to be singular, i.e. if indeed there is a zero block displayed in the rightmost down
position). O
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5.6.9]" Introduce the exponent of an arbitrary form 8 by making use of the formal expansion

1
e5:=1+ﬁ+5ﬁAﬁ+~-~

The resulting object is an inhomogeneous form, i.e. an element of the exterior algebra AL*.
Check that

(1) the series necessarily terminates, so that it is, in fact, a finite expression rather than an infinite
series (unless the degree of the form equals 0, of course)
(ii) for forms of odd degree it contains only the first two terms
(iii) if we substitute the 2-form o from problem (5.6.8) as f, the series looks like

1 1

€

% ;:1+a;+5af‘/\ai+...+_‘a;/\.../\ai
! m.:

so that the Pfaffian enters the 2m-form
{4} =Pf(A)e' A A e? = /det(A) e' A A"
which is a top degree form of the series. O

e This simple result has an important application in the quantum theory of fermion fields,
where it is found under the name “integral (of an exponent of a quadratic form) over an-
ticommuting variables.” The correspondence is as follows: the “anticommuting variables”
6¢ from there match our e, our symbol A of the exterior product is omitted and as the
“integral” [ de'...do"(--) of a general “function of anticommuting variables” (an ele-
ment of the exterior algebra here) one defines the coefficient of 1. ..6" in this function
(the only component of the top degree form). The result from (5.6.9) may be then written
in the form>®

/df)l . .dO"er A" — /et A

In this notation the interior product from (5.4.1) may be written as

d

ob .. .6°
aea( )

ig(€” A A€ <

5.7 Themetric volume form

e At the beginning of the chapter we came to the conclusion that a completely antisym-
metric tensor of type (2), i.e. ann-formin L, is needed to enable one to compute the volume
of a parallelepiped spanned by n vectors in an n-dimensional space L. This is the reason
why such a (non-vanishing) n-form used to be called a volume form in L. We know from

58 A similar integral for ordinary commuting variables (over the whole R") is the well-known Gaussian integral (the matrix Agp
then being symmetric and negative definite), and it gives the result which very much resembles that obtained here, the square
root of the determinant being, however, in the denominator rather than in the numerator, as is the case here.
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(5.2.1) that the space of n-forms A" L* is, in fact, one-dimensional. This means that any
two volume forms may differ at most by a (non-vanishing) constant factor.

Let () be an arbitrary basis in L*. Check that
@

A AN =€"P e A ne
— ——

n

n pieces

(ii) the most general n-form w may be expressed as
w=2re'A-- e reR
(iii) if e, > &, = €, A%, then
Ane =R A A8
where
A= (detA) 1

A quantity which transforms in this way under a change of basis is called a scalar density (of
weight —1; see the text after (6.3.7) and problem (21.7.10)).

Hint: (i1) (5.2.9), (5.6.1), A = w;_,; (iii) (2.4.2), (5.6.5). O

e So there is a freedom in a single parameter A in the formula for computation of the
volume of a parallelepiped in L. This parameter may be fixed by ascribing a definite value of
the volume to any one particular (non-degenerate) parallelepiped. In a “general” linear space
(endowed with no additional structure, like a metric tensor), however, all (non-degenerate)
parallelepipeds are completely equivalent (a parallelepiped is given by an n-tuple of vectors
and all vectors are equivalent) and there is no reason for preferring some of them for the
purpose of fixing the constant A. Put another way, there is no natural scale of volumes. All
the volume forms and, consequently, all the formulas for computation of volumes (i.e. with
any choice of 1) based on them are equivalent. We can speak of a ratio of two volumes
rather than of “the” volume itself.>

The state of affairs changes substantially, however, in (L, g, 0), i.e. if L is endowed
with a metric tensor and orientation, too, since the additional structures (g, o) single out

3 Intense and merciless advertisements, hammering us day after day, try to make us think that an individual has not the remotest
chance of surviving without a credit card, wireless phone and a metric tensor. Some of us, however, never shared this opinion.
John Lennon, as an example, expressed his visionary dreams about a life in a linear space with no metric tensor (a situation one
nowadays can hardly imagine, indeed) in his famous composition /magine. In the original version we might hear the courageous
verse

Imagine there’s no metric Imagine there’s no countries
Itisn’t hard to do Itisn’t hard to do

No way to measure angles Nothing to kill or die for
No lengths of vectors too And no religion too

The time was, however, not ripe and people not mature enough to be able to accept such a far-reaching idea in those times;
censorship (closely intertwined to the tensor lobby, of course) forced him (under pressure) to revise substantially the first strophe
and the result is well known today: in the new innocent first strophe, which occurred at the shop counters and which we like to
sing up to the present day, no reference to the metric tensor has remained at all.
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a distinguished class of bases; namely, they enable one to speak about orthonormal right-
handed bases. A parallelepiped spanned by an arbitrary such basis is a good old (oriented)
unit cube and a natural choice is to assign the unit volume just to this figure (as is customarily
done from time immemorial for n = 1, 2, 3). The unique volume form resulting from this
way of fixing the freedom mentioned above is called the metric volume form (or, more
precisely, the volume form compatible with the metric and orientation) and will be denoted
by w,,,, or more frequently only by w,.

Lete =(e,),a =1, ..., nbeabasis in a vector space L, E(L) the collection of all
bases in L and (e?) the dual basis in L*. Define the maps

w: E(L) —> A"L* wE):=e A Ae
R4s: E(L) — E(L) (Rpe), = ebAﬁ = (eA), A e GL0n,R)
Show that

(1) R4 is a right action of GL(n, R) on E(L) (see more in Section 13.1 and in problem (13.2.7)),
i.e. that there holds

Riap =RpgoR,
(ii) w responds to the right action R, in the following way:%
w(eA) = (det A)'w(e) ie. woRy=(detA)'w
(iii) a straightforward consequence of this behavior of w and R, is (a well-known fact)
det (AB) = (det A)(det B)
(iv) in particular, for the matrices which belong to the special orthogonal group (10.1.8) we have
A eSO, s) = w(eh)=uw()
V) (w(e)er, ..., e,) = 1.
Hint: (ii) see (2.4.2) and (5.6.5); (v) see (5.2.12). d
Let (L, g, 0) be an n-dimensional vector space endowed with a metric tensor g and

an orientation o, e = (e¢,) and é = (é,), two right-handed orthonormal bases respectively,
f = (f,) an arbitrary basis and w(f) := f1 A A f(5.7.2). Prove that

)
w(e) = w(e)

i.e. w; = w(e) does not depend on the choice of right-handed orthonormal basis
(i) its expression in terms of the arbitrary basis f reads

w, = w(e) = 0(f)\/|é—’| w(f)

where o(f) is +1 or —1 depending on whether f is right-handed or left-handed and |g| =
|detg(fa, i)l

0 Using the terminology introduced in Section 13.5, this is a 0-form on E(L) of type p = det, i.e. R = (det A) ' w.
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(iii)
0 (fiowes fi) = oW1l sothat o = o(/ W18l €as
@iv)
b

a..b 1 a
™" =o(f)sgn g &

Vigl

where sgn g is the sign of the determinant of the matrix g,, = g(f, f») (for a metric tensor with
signature (r, s) (see the text before (2.4.12)) this is (—1)")
(v) achange of orientation in L results in the change
Wy > —w, ie. wy_p=—wg,
if (—o) is the orientation which is opposite with respect to o.

Hint: (ii) let f, be the arbitrary basis, f, = ebBé’ (i.e. f = eB). Then

8(fas f5) = 8ab = BineaBf = (B"nB), = detg = (det B)* detn
= det B = +./|detg]|

The sign is given (since e is right-handed) by the orientation of the basis f, so thatdet B =
o(f) /] det g|. According to (5.7.2) then

w(e) = w(fB™") = det B w(f) = o(f)y/| detg| w(f)
(iv) 0t = g% ... g"w. 4 = ...(5.6.5); (v) the only change is o( f) — —o(f). O

e The form

a)gEa)(e)zgl/\.../\e"zg(f)\/@fl/\.../\f”

is the metric volume form in (L, g, 0) mentioned above. We see that its explicit expression
is especially simple in terms of an (arbitrary) orthonormal right-handed basis, being merely
a product of basis 1-forms. In a general basis, there is a “correction factor” in front of
the product of the basis 1-forms, which is the square root of the (absolute value of the)
determinant of the component matrix of the metric tensor with respect to this basis (and
possibly the minus sign, if the basis is left-handed).

Note that the letter g in these formulas denotes the determinant of the matrix correspond-
ing to the metric tensor (with lower indices), rather than the metric tensor itself. The actual
meaning of the letter g in any particular formula should always be clear from the context.

Let w, be a metric volume form and f an arbitrary basis. Check that the (oriented)
volume of the parallelepiped P spanned by the vectors (v, ..., w) may be written as

(oriented) volume of the parallelepiped P = o(f)+/|g| det A

where A denotes the matrix with the columns (or, equivalently, rows) given by the compo-
nents of the vectors v, ..., w with respect to the basis f. (In particular, for a right-handed
orthonormal basis the term det A alone stands on the right.)
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Hint: the volume := o (v, ..., w) = w, p v*...w" = ..., (5.7.3), (5.6.5). O

Prove that any volume form may be used to define an orientation on L, moreover in
such a way that the form w, , = w, from (5.7.3) will give just the orientation with which it
is compatible.

Hint: for 0 # o € A”L* a basis f will be right-handed (see Section 5.5), if a(fi, ..., fu)
> 0. a

e Let us devote some time, in closing the section, to the interpretation of the concept of
the determinant of a matrix. We present two useful (and closely related) ways in which it
may be understood.

The first one says that the determinant is a factor by which the volume (in the sense of
an arbitrary volume form) of a parallelepiped is multiplied when all of its “constituent”
vectors undergo a linear map A. The second one introduces the determinant in terms of a
lift of the map A to the (one-dimensional linear) space of forms of top degree.

Note that in both approaches an invariant notion of the determinant of a linear map is
introduced as a primary concept and it is then a matter of computation to show that they
actually coincide with a common expression for the determinant of the matrix of the map
(with respect to an arbitrary basis).

Let A : L — L be alinear map. Consider a non-degenerate parallelepiped, spanned
by the vectors (u, . .., v). Its volume (in the sense of an arbitrary but fixed volume form w)
is

volume (u, ..., v) =w(u,...,v)

Define the determinant of the map A as the factor by which the volume of the initial
parallelepiped is to be multiplied in order to get the volume of the parallelepiped spanned
by the vectors (Au, ..., Av)

volume (Au, ..., Av) =: (det A) volume (u, ..., v)
Show that

(i) the number det A does not depend on the choice of parallelepiped (so that it informs us about
the factor by which each volume in L gets multiplied under the map A)
(ii) the determinant of a map A may be computed as the “ordinary” determinant of the matrix Aj
of the map (with respect to an arbitrary basis)
(iii) the determinant of the product (composition) of maps is the product of determinants

det(AB) = det A detB
Hint: (ii) see (5.6.5); if o = Ae! A--- A", then

o(Au, ..., Av) = re, p(Au) ... (Av)’ = --- = (det A)he. qu® ... v"
= (det Ao(u, ..., v)
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where det A already denotes the determinant of the matrix; (iii) under a map B each volume
increases ¢ times (¢ = det B), with the additional map A causing each volume to increase k
times (k = det A), so that the volume, which is already g times bigger, increases altogether
kq times. O

Let A: L — L be a linear map and let A}, be its matrix with respect to a basis e,
(associated by the standard relation Ae, := Azeb). Consider the dual map A* : L* — L*;
on the dual basis then A*e“ := A;‘,eb (2.4.17). We introduce the lift (prolongation, induced
map) of A to the space of arbitrary p-forms, A : APL* — APL*, by

(Aoz)(u, ...v) = a(Au, ... Av)
(for p = 1 there holds A= A™), so that in components
A w' = A‘gwb = Ao, A; ... Agacmd

In particular, on n-forms (n = dim L*) this is a (linear) map on a one-dimensional linear
space; it is then given by a single number. This number is defined to be the determinant of
amap A

detA=A: A"L* - A"L*
Show that

(i) the determinant of the map A may be computed as an “ordinary” determinant of the matrix Aj,
of the map (with respect to an arbitrary basis)
(i) the lift of a map copies (in the reversed order) the composition®! of the initial maps, i.e.

AB=BA
(iii) the determinant of the product (composition) of maps is the product of determinants

det(AB) = det A detB

(iv) the definition of the determinant of a map A presented here is equivalent to the definition given
in (5.7.6) (and thus to that from (5.6.5) as well).

Hint: (ii) for a general n-form «,,_;, = A€, p, so that
(et At = (Ao, = a(Aeq, ..., Aey) = A5 ... Afote g =+

(5.6.5); (iii) the special case of (ii) for p = n; (iv)

(det A)s.7.6yvolume (u, ..., v) = volume (Au, ..., Av) = w(Au, ..., Av)
= (Aw)u, ..., v) = (det A0, . .., v)
= (det A)s.77yvolume (u, ..., v)

d

6! For non-singular maps the prescription A A thus provides an (anti)representation of the group GL(L) in the space of
p-forms A?L*, see Section 12.1.
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5.8 Hodge (duality) operator =

e From the result of problem (5.2.1) it follows that the dimensions of the spaces of p-
forms and (n — p)-forms in an n-dimensional space L happen to coincide, being in both
cases (;) This means that the spaces are isomorphic, albeit not canonically, in general.
It turns out, however, that if L is endowed with a metric tensor and orientation, a canon-
ical isomorphism is available, which is of great importance in various applications of
forms.

Let (L, g, 0) be an n-dimensional linear space with a metric tensor and orientation
and let = w, , be the metric volume form from (5.7.3). Define a map * = *, , (called the
Hodge operator or the duality operator)

o = *a a e APL*

1
. .d d ds
(*a)a...h = p‘ ac Wc..da..b ac = gcr ... 8 s O s

Check that
®
x: APL* — A"PL¥
(ii) = is a linear map
*(a+AB) =xa+Arxf
(iii) on a (general) basis it gives
1 b

#(e A net)y = ——— o
———

C
=) €N NE

p entries

b

a... _ ar bs
where ™’ ,=g"...8"wr sc.a

(iv) on aright-handed orthonormal basis it gives

1

) A A= " e s € AN
—— " (- p)!
p entries
(v) in particular, for p = 0, n we have
*,1 = w, * W, = sgn g
(vi) achange of orientation in L results in
*g > — %, ie. g o= —%,

if (—o) denotes the orientation, which is opposite to o.

Hint: (iii) see (5.6.2); (V) xw = x(e! A -+ A e") = w!" CLP sgn g holds in a right-handed

orthonormal basis. O



5.8 Hodge (duality) operator * 119

Check that

(i) repeated application of the duality operator

APL* S A"PLE 5 OAPLF

happens to coincide (modulo a sign) with the identity map in A”L*, i.e. that there holds (in
detail)

*ok, = sgn g (=P on APL*
(i)
(_l)p(nfp) — (_1)1’(n+1)
and so® one can also write this as
kgxg = sgn g A" sothat ;' = sgng w, 7"F (it fulfills s, ;" = 1)

(iii) * is a canonical isomorphism

Hint: (i) a direct computation in components gives

_1)pee-p
(* * a)u...b == L Coodr.s We..da..b Or..s
pl(n — p)!
Complete the calculation with the help of (5.7.3), (5.6.4) and (5.3.3) (most easily in a
right-handed orthonormal basis); (iii) the non-trivial kernel contradicts #x ~ 1. O

A conformal rescaling of a metric is a replacement g — «g (0 # k € R; the angles
between vectors remain unchanged,®® but their lengths do change under this transformation).
Prove that for the Hodge operator with respect to a conformally rescaled metric one has a
simple formula

_ yn=2p
*)\Zg =A *g

Hint: in a fixed basis gu. = g(fu, f») > A28 = V181 > M'VIg] = w2y = Mg,

58.1) . .
g% > A72gab ( =>1)Just what is needed. O

e The Hodge operator enables one to express a scalar product in the space of p-forms
(as well as in the exterior algebra AL*, then) in a compact and component-free way. This
scalar product plays an essential role in many applications (like in the action integrals in
field theory). The way one can easily arrive at this concept might look like this: given o and
B as two p-forms, o A *f is always an n-form (forall p =0, 1, .. ., n), depending linearly
on both « and 8. The space of n-forms is one-dimensional, however, so that any n-form may
be regarded as a multiple of some fixed (reference) n-form. If one chooses the metric volume
form w, to serve this purpose (which is clearly the most natural choice in (L, g, 0)), we get
a A *p = (o, Bw,, where the coefficient («, 8) € R depends linearly on both « and .

2 From this expression one can see that in odd-dimensional space the resulting sign does not depend on the degree of a form (in

particular, in ordinary E3 we always have #% = 1). In (1 + 3)-Minkowski space E'> we have % = —1.
63 If a conformal transformation of a manifold (4.6.3) is given, it results in a conformal rescaling of g(x) at each point x € M.
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Given « and S two p-forms in an n-dimensional space (L, g, 0), define (o, B), € R
by

aAxgf =:(a, B),w,
Check that

(i) in components this gives

a

1 |
@ B)g = — tap B0 = — g% g™ @ pBea
p! p!

(i) (o, B) is a symmetric,** non-degenerate bilinear form in the space A”L*, i.e. that

(@, B) = (B, ) (@+2y,B)=(aB)+ 1y, B)

(,)=0forallp = a=0
(iii) for Euclidean space (L, g) (positive definite g) (o, B) is positive definite, i.e.
(¢, ) >0 and the equality occurs only for @ = 0

= (a, B) is the scalar product in AP L*
(iv) for p = 0 and 1 we get the ordinary product in R and the product from (2.4.13) respectively.

Hint: (i) compute in an orthonormal right-handed basis, make use of the results of (5.7.1),
(5.7.3) and (5.6.4); (iii) (o, ov) turns out to be the sum of squares in the orthonormal basis.

(]
* Prove that
@) fora, B € APL*
(kar, %) = sgn g (e, B)
(ii) in the Euclidean case * is an isometry
(iii)) fora € APL*,y € A" PL*
(xa, y) = (@, %7 y)
Hint: (xa, *B)w = (xat) A xx f = ---(5.8.2), (5.2.4), (5.8.4); (ii) this is just what (i) says
for this case; (iii) (xo, Y) = sgn g (x x &, xy) = -« -. O

Check that
(iver, B) = (@, juB)
where
WwBi=0AB D=bev =g, -)

% Note that its symmetry with respect to & <> 8 is not evident at all from the definition relation alone. It is clear, however, from
the component expression (i).
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Hint: according to (5.4.1), (5.8.4) and (5.2.6)

; _ 1 a b..c __ 1 ab...c _ ~
(iva, B) = m Viagp..c B = m o ViaB..c = (&, T A B)

* Given « and 8 two p-forms, check that

(i) under the conformal rescaling of a metric g — A%g the n-form a A %8 transforms as follows:
aA 2, = A2 A * 8

(ii) in particular, the forms of “middle” degree in an even-dimensional space (n = 2p; e.g. 2-forms
in four-dimensional space) this n-form turns out to be conformally invariant

(iii) if one defines appropriately a scaling of forms, o > A/P)g for o € APL*, the n-form & A *,f8
remains unchanged; explicitly

g Ag=g
a> APPa =6 = G AxB=aAxp
B~ )\(P—n/Z)IB = 3

(iv) the situation in (ii) is a special case of (iii).
Hint: see (5.8.3). O

e The bilinear form (¢, 8), as well as the linear operators defined before (like iy, *, .. .),
may be naturally regarded as being defined on the whole exterior algebra AL*.

5.8.8]" Consider inhomogeneous forms &, § € AL*, a = Qo) + oy -y, Oy €
AP L* and similarly B. Define

(o, B) := (o), Booy) + @y, Bay) + -+ - + (o), Bany)

where
(@(p), B(py) = according to (5.8.4)
Check that
(1) in components this gives
(o, B) = By + (@), (B)* + Zi!(aa))ab(ﬂ(z))ab +oo %(a(nﬂa...b(ﬂ(n))a'"b

(ii) («, B) is a symmetric, non-degenerate bilinear form in the space AL*
(iii) for Euclidean space (L, g) it is positive definite (a scalar product in AL*).

Hint: see (5.8.4). O
* Consider a linear extension to the whole of AL* of the operators discussed up to
now; for example,

0 = *(Ol(()) + [278)) R Ol(n)) L= KO0) + *0((1) + -4 * ()

Lo = iv(()l(o) +oaq)+---+ Ol(n)) = iva(o) + iva(l) +--- 4+ iva(,,)
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etc. Check the following identities:

®
= (=) 1

(i1)
iy = —Jy % 1) Iy = % jyf

(iii)
i) = =i, Juf) = =1 jy

(iv)

ivjw + jwiv = g(v, w)i
v)

(ivat, B) = (@, juPB) (xa, B) = (o, *7"*' ) (ra, *f) = sgn g (o, B)

Hint: (ii) on homogeneous terms: according to (5.8.4) and (5.8.6) there holds (i,a) A %8 =
o A *j,B. Making use of (5.4.2) on the left and realizing that @ A x8 = 0 (since it is an
(n 4 1)-form), we get o A iy * ) = a A *j, 8, from which («, B arbitrary) i, * ) = * .
Similarly for the second relation. Extend to inhomogeneous terms by linearity. (iv) Using
(5.4.2) and (5.8.6) we have i, j,o = i,(W A ) = ([L,D) Aot — D A ([po0) = ---.

(]

5.8.10] Let e, be an orthonormal basis in L = E™*, n,, = g(eq, ep), € the dual basis in
L* and w, = *,1 the metric volume form. Define the operators (see (5.8.6) and (5.4.1))

iq i= I, i ="y =iy

Ja = Je, J=0"y = Jiger

Yo' =latja  yi=it+ e
Show that
()

iaj’ + j"ia = 81 iajo + joia = N1 ij*+ ' =n"1
(ii)()S
YaVo + Vo¥a = 20ap1 vy’ + vty =m™1
(iii)
AN =050
(iv)
®(@ A AnD) =it k1= %

% The operators y, realize a (real, reducible) representation of the Clifford algebra C(r, s) (see Section 22.1) in the exterior
algebra AL*.
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v)
iaw = dza iaibw = dzab

etc. (the forms d%,, dX,, ... are defined in (6.3.11) and they play an important role then in
integral calculus, see (8.2.8)).

Hint: (i) see (5.8.6); (iv) see (5.8.9); (v) w = *1. O
5.8.11|" Prove that for @ € APL*
Jlia0 = pa igja = (n— p)
Hint: computation on a monomial e A - - - A e? + linearity, (5.8.10). O
———
p entries

5.8.12]" Let iq, j¢ be the operators defined in (5.8.10). Show
(1) that
j%i,: AL* — AL*

is a derivation of AL* of degree O (see (5.4.2) and Appendix A.5)
(ii) that if Aj are the components of a tensor of type (}), then

A=Aj%,: AL* — AL

is a derivation of A L* of degree 0, which already does not depend on the choice of a frame field
(it may not be orthonormal, as is needed in (5.8.10))
(iii) how A acts on A°L*, A'L* and A2L*.

d

5.8.13]" Let B be a linear operator in AL* and (-, -) the bilinear form on AL* discussed
in (5.8.8). Define the adjoint operator BT by the standard formula

(B*a, B) := (o, BB)
Check that

Hint: see (5.8.6). O

5.8.14]" Consider a linear space L with the Euclidean scalar product (n,, = 645). Check
that A L* realizes the Hilbert space of n fermions. Namely, check that

(i) the operators i, and j, = (i)™ = j“ act as the annihilation and the creation operators of the ath
fermion respectively
(ii) the subspace of p-forms corresponds to the p-particle states
(i) N = J%, =i}, acts as the operator of the total number of particles.



124 Exterior algebra

Hint: (i) (5.8.10) and (5.8.13) say that i,(i,)" + (ip) iy = 845 1; (iii) see (5.8.11). a

5.8.15]" Leta € AP L*. Define a linear map
&:L— APTIL* V= o

The rank of this map (2.4.17) is called the rank of the form a. A p-form « is said to be
decomposable if it can be written as a product of p 1-forms (a general p-form can only be
written, according to (5.2.9), as a sum of several such products). Check that

(i) the minimal rank of a (non-vanishing) p-form is p
(ii) a form is decomposable if and only if it has minimal rank.

Hint: Let (e4) = (e;, e,) be a basis of L, which is adapted to the kernel of the map & (e; €
Ker&). Then o decomposes with respect to the e“s alone (since pla = (ip ...isc)e® A
-+~ A eB). By definition the rank of « equals the number of entries of ¢“. If we are to
compose a p-form from them, their number should be at least p. If there are exactly p of
them, we have o = (ke') A - - - A e?, so that it is decomposable. O

[5.8.16]" The characteristic subspace L@ of a form « is the kernel of the map & introduced
in (5.8.15), i.e.
L@ :={vel|i,a =0} =Kera
Check that
(i) the characteristic subspaces of the forms « and o are orthogonal to one another
L@ 1, Lo

i.e. the characteristic subspace of the form *c is a part (subspace) of the orthogonal complement
to the characteristic subspace of the initial form o (L, denotes orthogonality in the sense of g)
(>ii) for a decomposable form o

LU0 — (L

i.e. in this case x« corresponds to the entire orthogonal complement (“geometrical meaning” of
the operator x*,).

Hint: (i) leti,a = 0, i, * @ = 0. Then,

. 589 . . . 589 . . ..
0=lw>k0l(=)>k]w)70£ = jya=0 = g(v,w)ot(=)lvjwa—|—]wlvot=0

= gv,w)=0

(ii) make use of a right-handed orthonormal basis (e;, e,) (adapted to the subspace L®);
if a happens to be decomposable, it is of the form o = ke! A --- A e? due to (5.8.15);
according to (5.8.1) xa = keP*' A ... Ae" so that L is a direct sum of (the orthogonal
subspaces) L@ and L&), O
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The computation of volumes of parallelepipeds (and consequently the integration procedure,

where the values of functions are multiplied by the volumes of infinitesimal parallelepipeds)

singles out completely antisymmetric fully covariant tensors, usually called forms. This

chapter makes the reader acquainted with forms at the level of linear algebra. Forms enjoy

several important unique properties (not shared with general tensors). They are naturally

Z-graded, one can multiply them one with another via the (graded commutative) exterior
(wedge) product A (giving rise to a graded exterior = Grassmann algebra) and with vectors
via the interior product i, (which turns out to be a derivation of degree —1 of the exterior
algebra). If a vector space is endowed with a metric tensor and orientation, there are also
the canonical volume form and Hodge star operator * on forms available. The determinant

is naturally related to these concepts.

+q)!
A= (pp!q({) ah
B+Hro)rha=BAa+ AT A
aANBF+rT)=aAB+raAT
@ABYAY =an(BAY)
aAB=(=DIB A
a=(/pha,pe’ N---Ne
Ao 1= (—1)%e ey
(ya)u,...,w) :=a(v,u,...,w)
((y@)a..b = VCa.b
(o A B) = (i,a) A B+ (o) A (,B)
et =o0 ... 8h =ela.. .8 =5, . 8]
n! detA =g, ,e Al AZ

wg = o(/VIGI 1 Ao A f"

o®

b

vol (Au, ..., Av) =: (det A) vol (u, ..., v)

p!(*a)a“,b = azr“,d We.. da...b
kg% = sgn g (—1)PetD

a Nk, B =:(a, B)ywg
pla, By = ap B4

Exterior (wedge) product of forms

Bilinearity of A

Associativity of A

Z-graded commutativity of A
Expression of a p-form in terms of e*
Main automorphism of AL*

Interior product (of v and «)
Component expression of i,

Graded Leibniz rule for i,

p-delta (generalized Kronecker) symbol
Determinant and Levi-Civita symbol
Metric volume form

Determinant of a linear map A
Hodge star (duality) operator

Star squared is &+ the unity

Scalar product (a, B), of forms
Component expression of (c, ),

(5.2.4)

(5.2.4)
(5.2.4)
(5.2.4)
(5.2.9)
(5.3.3)
(5.4.1)
(5.4.1)
(5.4.2)
(5.6.2)
(5.6.2)
(5.7.3)
(5.7.6)
(5.8.1)
(5.8.2)
(5.8.4)
(5.8.4)
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Differential calculus of forms

6.1 Formson a manifold

e In Section 2.5 we described how one may progress from the linear algebra of tensors
(Section 2.4) to tensor fields on a manifold M. Since p-forms in L are nothing but special
tensors in L, the same construction brings us to tensor fields on M again, namely to com-
pletely antisymmetric tensor fields of the type (2) in this particular case. Such objects®® are
called (differential) p-forms on M and the space of p-forms on M will be denoted by Q7 (M).

The straightforward pointwise approach of Section 2.5 thus enables us to carry all the
objects and operations, introduced at the level of linear algebra in Chapter 5, to the manifold.

In particular, we get a Cartan algebra of differential forms®” on M
QM) :=® Q'(M)=Q'M)® QM) @ & Q' (M)
Ao

and F(M)-linear operators iy, jy, *, and ) on it (V is a vector field on M and g is the field
of a metric tensor®® on M).

Check that an arbitrary p-form « on M may be written locally (in a coordinate patch
O < x')as

1 ; .
a=—a; jx)dx' A---Adx’
p' S— e ——

p entries

Hint: see (5.2.9) and (2.5.4). O

Write down the most general forms on M = R?[x, y] (QUR?) > f(x,y), Q'(R?) >
o = a(x, y)dx + as(x, y)dy, QR?>) 5 B = B(x, y)dx Ady). O

LetM =R3[x, y,zl,a =xdy — ydz, B = z2dx Adz —dy Adx, V= (xy)*0,+
dy,. Compute
a AP iya ivp iv(ia A B)

% Asin Section 5.2 we put Q°(M) := T)(M) = F(M), Q' (M) := T(M).

7 Tts origin being in the exterior algebra AT M (cf. T(M) <> T(TpM) in Section 2.5); the subspaces of degrees p < 0 and
p > n are trivial and so they need not be displayed explicitly.

% The introduction of * needs, in fact, an oriented manifold, see Section 6.3.
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Hint: the calculation before (5.2.10) and (5.4.2); (—(xz> + y)dx Ady Adz, x, —dx +
xy)2dy + (xy2)?, (x2> + y)dx Adz — (x22 + y)(xy)2 dy A d2). O

e Taking into account the result of (3.1.5) we see that differential forms (being special
strictly covariant tensors) behave nicely under (smooth) maps of manifolds (one can always
pull them back). Since the exterior product is based on the tensor product, pull-back behaves
very simply on the former, too.

Check that a map of manifolds f : M — N induces a morphism of their Cartan
algebras,i.e.themap f* : Q(N) — Q(M) (pull-back of differential forms), which respects
grading, linear structure and product, so that there holds

f*iQP(N) — QP(M) ffa+rB) = ffa+Arf*B
fflano)= ffan fo
Hint: see (3.1.4), the definition of A. O

Check that if a map f: M — N is given in coordinates as x' — y“(x) and if
o € QP(N), then

1 1
frfa=f* ] Qap(N)AY N Ady = o7 %) dy“(x) A -+ Ady"(x)
. ——— .

p entries

1 : )
— (YO S . T] ) dx A - A d
~—_——
P p entries
Hint: see (3.1.4). O
Let f : S — R3 be the standard realization of the two-dimensional sphere in the

three-dimensional space (3.2.4). Compute f*B for the 2-form B discussed in (6.1.3) for
R =1 (the unit sphere).

Hint:
fH@dx Adz—dy Adx) = 220, ) dx (D, ¢) Adz(D, 9) — dy(9, ) A dx (D, @) = ---
= sin ¥ cos ¥ (1 — sin ¥ cos ¥ sin @) dv A dg
O

e We come now to more technical results concerning properties of derivations of the
Cartan algebra. This algebra, as already mentioned above, is Z-graded and it is also graded
commutative (5.2.4). Let us state two fairly simple, albeit very useful, results in the abstract
language of such algebras.

Let A be a Z-graded and graded commutative algebra and let D; and D; be its
derivations of degree k and [ respectively; so there holds
A Zé Ai aaj = (—l)ijaja,' a; € A,‘ aj € Aj
Dy:Ai = Aisx Dilaib) = (Dradb + (—1)*a;(Dyb) a; € A;, be A
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Show that their graded commutator
[Dy, D] := DyD; — (=1)¥' DD,

(being actually a commutator, unless both derivations are of odd degree, when it becomes
the anticommutator®) is a derivation of the algebra A (of degree k + I), too.

Hint: brute force (apply [ Dy, D;] on the product a;b and make use of the definitions). O

Let A be a Z-graded and graded commutative algebra, D a derivation of degree k
and let a, be an element of degree r (i.e. a, € A,). Show that

D=a,D: A — Aprri b > a,(Di(b))
is a derivation of the algebra A (of degree k + r), too.
Hint: as in (6.1.7). O

The result (6.1.7) will be used as early as in the next section (see, for example, (6.2.8)),
(6.1.8) will be used in Chapter 15, which deals with a linear connection (15.6.17).

We will close this section by mentioning two concepts, which will not be used directly
in what follows. They are, however, fairly common in modern mathematical physics.

The objects treated in problem (6.1.7) provide an example of a graded Lie algebra (Ap-
pendix A.5). In the case under consideration, its underlying linear space is given as a direct
sum of linear spaces of derivations of degree k and a graded commutator is then introduced
into this space according to (6.1.7) (extended to non-homogeneous elements by linearity).
If a coarser Z, grading were to be considered (i.e. if forms and their derivations were di-
vided only into even and odd), it would result in a Lie superalgebra. The corresponding
Z-graded commutator is usually called the supercommutator, being (like in (6.1.7)) actu-
ally a commutator, unless both elements are odd, when it becomes the anticommutator).
It obeys the super-Jacobi identity, details of which are left to the ambitious reader (less
ambitious readers may find it in Appendix A.5).

The problem (6.1.8) provides a basis of another useful trick, frequently met in supermath-
ematics, namely the use of odd parameters. We see that if an expression a, Dy, is combined
with r and k such that their sum is even, the resulting derivation turns out to be even. In the
Z,-case this opens up the possibility of getting rid of considering odd derivations (one al-
ways combines them with auxiliary odd “parameters,” i.e. with odd elements of an auxiliary
algebra A) as well as anticommutators (for even derivatives ordinary commutators suffice).

6.2 Exterior derivative

e In addition to algebraic operations on forms on a manifold (x, iy, jy, 1) being merely
pointwise extensions of corresponding operations at each point P € M, a differential oper-
ation of highest importance appears on 2(M ), namely the exterior derivative. As we will see

9 Although it is written as an ordinary commutator, in graded algebra this means automatically the graded commutator (since
the latter is much more important than the former).
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later in Section 8.5, this derivative represents a “common base” (core) hidden behind all the
basic differential operations known from vector analysis in E* (gradient, divergence, curl
and Laplace operator), but also of various far-reaching generalizations. In the next chapter,
which deals with the integral calculus of forms, we will derive the (very simple, general and
useful) Stokes’ theorem, which relates “volume integrals” to particular “surface integrals”
(over the boundaries of the volumes) and it turns out that the exterior derivative happens to
play a prominent role in this theorem, too.”®

The exterior derivative is often introduced in an axiomatic way (see items 1-5 in (6.2.5)),
but we will try, as is done frequently in this book, to arrive at its definition “bottom up,”
through a rough motivation first, and possibly a further improvement of the raw result,
afterwards.

Consider the following problem: given a tensor field of type (2), examine whether the
operation of partial differentiation of its components

L j > bk =0kl

represents a tensor operation. We see that an additional lower index has appeared, so that it
might represent a map Tpo M) — T[? +1(M). A short calculation, however, cures us quickly
of these expectations.

Given a tensor field 7;_;(x) of type ( g), check that
Si k(X)) =1tk = Olij
fails to be a tensor field (of type (pi | )) in general.

Hint: this object transforms under a change of coordinates x’ x'" as follows .y =
oty jr):

_ 8xk8 axt ox/
e = ok ) o™ s

axk axi dx/ 3%x! dx/ dx! 9%x/
ikt ioj

dxk 9x ox/ dxk dxi ox/ ox! axk ax/
tensorial (good) terms

non-tensorial (bad) terms

O
Check that non-tensorial terms actually do not appear if:

(1) p =0 (sothat f = f; isa genuine tensor operation; namely, the good old gradient f > df)

(ii) one restricts to affine changes of coordinates x' = A;x-’ + a' (in particular, linear changes for
a =0).
Hint: see (6.2.1) and (2.5.3). O

70 The exterior derivative may also be defined in terms of this theorem (and this way of acquainting oneself with it is fairly
instructive, too; see the reputable monographs by Arnold and by Misner, Thorne and Wheeler for more details. In this approach
the exposition of integral calculus of forms precedes that of the differential calculus; the idea generalizes well-known procedures
leading to divergence in terms of (the limit of) a flux of a vector field for the boundary of the region and the curl in terms of
(the limit of) a circulation of a vector field for the boundary of a surface, given standardly in the courses of hydrodynamics and
electrodynamics (or in textbooks devoted to vector analysis, such as that by Marder).
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e So, in general, mere partial differentiation of components of tensor fields does not lead
in turn to components of tensor fields. The structure of “bad” (non-tensorial) terms present
in the expression above, however, strongly suggests a simple (but non-trivial) way to get
rid of them.”! Let us consider the case when #; _ j is a completely antisymmetric tensor (i.e.
a p-form) and let us arrange the antisymmetry of the result as well:

lij =it lijx
Check that if « € Q7(M), then the component rule
do:a;.j—> ap
provides a map
dy : QP (M) — QPTN(M)
(so that dj actually is a tensor operation).

Hint: antisymmetrization cancels out “bad” terms in (6.2.1), since they are symmetric (each
one in a pair of indices), (5.2.6). O

Check that the map dj from (6.2.3) enjoys the following properties:

(1) do(a + AB) = doox + Ady AreR

(i) dof =df f € QUM), d is the gradient from (2.5.3)
(iii) dodp =0
(iv) if o € QP(M), B € QI(M), then on their product we have

do(a A B) = A(p, g)(doa) A B+ B(p, g)a A do

where

p+1 qg+1
A(p.q)= ——— (=1)!  B(p.q) = ——
r. ) p+q+]( ) (r.q) Py
. 526 . . . .
Hint: (iii) o j 0 = i, ki) O )0; (iv) a direct computation of components right from
the definition. 0O

e The first three properties are very simple. The fourth one would be simple, too (it
resembles Leibniz’s rule), if it did not contain the awkward factors A and B. We may get rid
of these factors easily, however (without losing the nice properties of d), if a new operation
d, the exterior derivative, is defined as being just an appropriate multiple of dy (depending
on the degree of a form, i.e. d = C(p)dy on Q27 (M)).

Check that the component rule (with respect to the coordinate basis)
da)i jk =D (p+Daj_ju a e QP(M)

7' Another, technically more involved, possibility is to introduce a covariant derivative (Chapter 15). Here, further terms occur
in addition to partial derivatives, resulting in exact cancellation with the non-tensorial terms from (6.2.1). There is an essential
difference between these two lines of reasoning: while the covariant derivative needs an additional structure on a manifold
(namely a linear connection), the exterior derivative makes do with a “bare” manifold (endowed with a smooth structure
alone).
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(i.e. the choice” C(p) = (—1)? (p + 1)) defines a map on forms, enjoying the properties

1. d: QM) — QPTYM) amap of degree +1

2. da+XrB)=do+21dB it is R-linear (A € R)

3. df =df f € Q%M), d on the right being the gradient
4. dd =0 it is nilpotent

5. dla A B)={dx)A B+ (Ha) ANdB graded Leibniz’s rule

i.e. put all together, d is a derivation of the Cartan algebra of degree +1 (items 1, 2 and 5;
see Appendix A.5 or (6.1.7)), which moreover happens to be nilpotent (item 4) and which
coincides with the gradient of a function on degree 0.

Hint: item 5: see (6.2.6). O

Check that properties 1-5 fully characterize the operator d and that, in particular,
they already result in the component formula displayed in problem (6.2.5).

Hint: since (6.2.5) yields ddx’ = 0 (!), we find
1 . . 1 . .
da =d <— o jdx' A /\dx/) = —dao;_; ANdx' A--- ANdx!
p! p!
—1)P

p!

1 k i j
=—0o jrdx" Ndx' AN ANdx! =
p'

Ofi...jk] dx' Ao Adx? A dx"

Compute de, df for , B given in (6.1.3).

Hint: making direct use of the properties mentioned in (6.2.5) turns out to be a much quicker
method of computation than the component formula from (6.2.5). Here, for example, we
may write

dxdy —ydz) =dx ANdy +x Addy —dy Adz — y Addz =dx ANdy —dy ANdz

since ddy = 0 = ddz (compare with the similar situation when the exterior product was
discussed before (5.2.10)). O

6. 2.8| Show that the Lie derivative of differential forms may be expressed in the followin
y p g
(very useful) form:”3

Ly =iyvd+diy Cartan’s identity

Hint: according to (6.1.7) this is an equality of two derivations (of degree 0) of the algebra
Q(M) = it suffices to verify it in degrees 0 and 1, where it is easy (e.g. in components). [

Prove the validity of the (fairly useful) identity
[Lyv,iw]l= Ly iw —iw Lv = iv,w
Hint: just like in (6.2.8). g
72 Making use of another choice of C(p) an “opposite” convention may be arranged, by which da A B)=a AdB)+ (da) A 7B
(d = d1 is enough for that). This convention is often adopted in the context of supermanifolds.

73 The operators which enter this formula may be given a visual meaning in the integral calculus of forms and this identity itself
may be interpreted in terms of Stokes’ theorem, see (7.8.2).
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6.2.10| Prove that the exterior derivative commutes with the Lie derivative (along an arbi-
trary vector field)

[d,ﬁv]Ed;Cv—ﬁvdIO
Hint: just like in (6.2.8), or use the result of (6.2.8). d

6.2.11] Prove that the exterior derivative commutes with pull-back (with respect to an
arbitrary smoothmap f : M — N);thatis to say, the following commutative diagram holds:

QP(N) —f> QP(M)

dl ld ie. [d, ffl=d f*— f*d =0
Q”“(N)T Qrti(Mm)

Hint: denote A := [d, f*] and check that it is linear and on a product it gives (see (6.1.4)
and (6.2.5))

A np)=(Aa) A B+ (f ) A AP
= it suffices to verify A = 0 in degrees 0 and 1; degree 0 is treated in (3.1.9), from degree

1 just dy is enough for an arbitrary function v, which results immediately from dd = 0
and (once again) (3.1.9); or everything in components. O

6.2.12| Derive (6.2.10) from (6.2.11). Generalize to the following statement: each oper-
ation (not only d) which is invariant with respect to diffeomorphisms commutes with the
Lie derivative.

Hint: for d: differentiate (in t = 0) [d, ®;] = 0 for ®} <> V; in general: invariant with
respect to diffeomorphisms means that it commutes with the latter; the Lie derivative is a
generator (of the pull-back) of diffeomorphisms. O

e Often one needs to evaluate the exterior derivative do of a form « on general arguments
(for a 2-form, as an example, to evaluate da(U, V, W) on arbitrary vector fields U, V, W).
Although this certainly can be done in components (= values on special arguments, a
coordinate basis), in many cases of interest “Cartan formulas” (to be discussed in the
following problem) prove to be much more efficient.

6.2.13| Prove

(i) the validity of the Cartan formulas (from a practical point of view one makes do with the particular
cases p =0, 1,2 mostly) for the evaluation of the exterior derivative of a form on arbitrary
arguments (vector fields), i.e. not only on a coordinate basis

p+l
doa(Xy, ..., Xp11) = Z(—Uf“x_,a(xl, e X Xon)
j=1
+ ) DX Xl K K X )

i<j

where o € Q7(M) and the hat indicates that corresponding arguments are to be omitted
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(i1) that on the coordinate basis they yield just (6.2.5)
(iii) that for p = 0, 1, 2 they explicitly read as
df(U)=Uf
da(U,V) = U((V)) = V(a(U)) — (U, V]
dpu,v,w) =U(BWV, W) = V(EBU, W) + W(BWU, V)
—B(IU, VI, W)+ (U, W], V) — B([V, W], U)
(iv) that in the case where p = 2 it may also be written as

(U, v, W) ={U(BV, W) — B(lU, V], W)} + cycl.

Hint: first show that the formulas to be proved are equivalent to’* the identities

iud = ,CU on QO(M)

iviUd=£UiV —EviU _i[U,V] on QI(M)

iwiviUd = (,CiniV + CYCl.) - (iWi[U,V] + Cycl.) on 92(M)
etc.

In order to prove these identities (as well as further ones, i.e. ix ., ...ix,d = ---) one has
to commute in successive steps d through the interior products, making use of (6.2.8) and
(6.2.9); the term with d at the leftmost position vanishes (why?). |

6.2.14]" Check that for the Lie derivative of forms along a field o V, where o is a function,
there holds

E((TV)C( =oLya+do Niya

Hint: see (6.2.8) and (5.4.1). |

6.3 Orientability, Hodge operator and volume form on M

e In Chapter 5 we encountered the concepts of orientation (Section 5.5), the Hodge oper-
ator (Section 5.7) and the volume form (Section 5.8) at the level of linear algebra. Now we
would like to carry these objects onto a manifold.

Each tangent space Tp M, P € M, is alinear n-dimensional space and one may introduce
an orientation there. As explained in detail in Section 5.5, given a space L there exist just two
possible orientations in it (one particular basis is declared to be either right-handed or left-
handed), i.e. the orientation in L turns out to be a discrete quantity. If one intends to set an
orientation on each tangent space on a (smooth) manifold, an additional requirement arises.
Namely, it is natural to restrict to smooth choices of orientations (so that two “nearby”
points, roughly speaking, do not have opposite, i.e. “the farthest possible,” orientations
of their tangent spaces). This may be stated simply within a single coordinate patch as
follows: coordinates x’ <> O induce the coordinate basis in each tangent space in O. To

74 A possible point of view is that Cartan formulas express the exterior derivative in terms of the Lie derivative.
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make a smooth choice of orientation in O C M means to declare all the coordinate bases
to be, say, right-handed. If the coordinate basis {9;} is right, the coordinates themselves are
said to be right-handed.

On a manifold R” the standard orientation is introduced by declaring Cartesian coordi-
nates to be right-handed.”

Let two coordinates x’ and x*" be available in a patch ©. Check that

(i) itis the sign of the Jacobian matrix J(x) := det J| = det(3x"' /3x/) which determines the relative
orientations of the coordinates x’ with respect to x'
(i) the interchange of any pair of coordinates (like x' <> x?) changes the orientation.

Hint: see (2.2.6) and Section 5.5 and use the properties of the determinant. O

e If we try, however, to introduce in this way an orientation onto the manifold as a whole,
insurmountable problems may arise. Imagine there are only two charts on the manifold and
let their intersection @ N O’ be connected. Then if one chooses an orientation in O, the
orientation O’ is induced automatically (making use of the consistency on the overlap) and
so on the whole manifold M = O U O as well.

Consider a case with M = O U (' still, where the intersection O N @' is, however, no
longer connected. Now, the orientation from O gets to O’ via rwo (or more) channels and it
might happen that the results which stem from these two sources will contradict one another.
A simple’® example illustrating that this threat is real is provided by the Mobius band.

Take two bands P, P’ cut out of a square pa- o
per exercise book (so that they are both endowed with
Cartesian coordinates, x, y and x’, y’ respectively).
Denote by A, B <> P and A’, B' <> P’ respectively P
their (two-dimensional) marginal regions. Now put B A
B and B’ over each other and glue together; a (longer)
band with margins A, A’ results. On the regions P
B, B’ (when glued together) a natural change of coor-
dinates arises, x'(x, y) = x + ¢, y'(x, y) = y, with x
positive Jacobian matrix (= 1). Now put A and A’

over each other and glue together again. Check (by

experiment) that

(1) if A and A’ are glued together “as it is proper” (no flip over = a ring results), the Jacobian of
the change of coordinates in this region is positive, too
(ii) if we flip the band over at A’ by the angle 7 around the longitudinal axis of the band, first, and
only then glue together A and A’ (= the Md6bius band results), the change of coordinates in this
region is x'(x, y) = x + ¢y, y'(x, ¥) = —y + ¢, with negative Jacobian (= —1)
(iii) in general, if we flip the band over by an angle 2k, the Jacobian is positive, for (2k + 1) itis
negative. g

75 Since a single chart is enough on R”, the orientation is fixed by this on the whole manifold.
76 Tt is also popular, see Escher’s art works Band van Mébius I, I1.
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e We see that the orientations of the band P’, induced from P via the channels A = A’
and B = B’ respectively, contradict one another. This actually means that we obtain no
consistent global orientation on the union (on the whole Mobius band). One can prove that
this is really an inherent problem with the Mobius band itself.”’

(Here we encountered the tiny tip of a huge iceberg on our voyage, the volume of its
underwater part being, as is well known, much bigger than that of its visible part. Un-
fortunately the majority of the iceberg will remain under the surface until the end of the
book. What we are speaking about is the close relation between the differential geome-
try and the topology of manifolds. We see that global topological properties of manifolds
may, as an example, obstruct the introduction of some particular geometrical structures
(here the orientation or, equivalently (6.3.5), a volume form). Similar “topological condi-
tions” are imposed by several other celebrities of the geometrical heaven, such as spinor
fields or a metric tensor with Lorentzian signature (the latter cannot be globally defined
on the ordinary sphere S?). They might be more modest and follow the example of such
a reputable and useful quantity as the “ordinary” (positive definite) metric tensor: with-
out any idle talk it gladly allows itself to be defined, when nicely asked, on an arbitrary
manifold.)

Manifolds like the Mdbius band are said to be non-orientable manifolds.”® In contrast,
a manifold is called orientable if it can be endowed with an oriented atlas, which is an
atlas in which the Jacobian of the change of coordinates happens to be positive on every
non-empty overlap of coordinate patches. Thus, if we are given an atlas on a manifold,
we may try to improve it (as regards orientability) by interchanging, if necessary, the
order of coordinates (6.3.1) and, if the manifold is orientable, we end up with the oriented
atlas.

Check that the spheres S” are orientable manifolds.

Hint: inspect the structure of overlapping region(s?) of charts in the atlas consisting of
stereographic coordinates (1.3.1); or use the result of (6.3.4). |

* Check that each manifold which can be defined implicitly (in terms of constraints;
(see Section 1.5)) is necessarily orientable.

Hint: in a neighborhood of the manifold M (given by m independent constraints in R"*") we
may use as local coordinates the constraints (]51, ..., @®" plus some n additional coordinates
z', ..., z" (the latter then provide an atlas for M itself). Order these further n coordinates
so that (¢!, ..., ¢™, z',...7") is right-handed (in the sense of the standard orientation in
R™*™) Check that the atlas on M constructed in this manner is oriented. O

e The test of the orientability of a manifold by direct construction of the oriented atlas
may turn out to be far from simple. There is, fortunately, another practical criterion’® based

77 1t is unavoidable by any trick like, say, some ingenious choice of coordinate patches and the structure of their overlaps; see
(6.3.6).

78 There are long lasting heated disputes among scientists as to whether non-orientability of a manifold is congenital, unalterable
by upbringing at all, or results from an emotionless approach within babyhood (some claim even during the prenatal period,
when being glued from trivial pieces).

79 This criterion enables one to prove in an elegant way the orientability of each Lie group (11.1.6) as well as of each phase space
in mechanics (14.3.6).
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on a volume form. A volume form on an n-dimensional manifold M is an arbitrary (globally
defined, smooth and) everywhere non-vanishing n-form on M (i.e. w € Q"(M), w(x) #
0,x € M).80

Prove the following statement:
M is orientable < 3 a volume form w on M

Hint: — let x = x', y = y“, z = z% be charts of an oriented atlas. In the coordinate patch
of z define

n

w:=dz=dz' A Adz
Thenon z Ny itis
wo=J(yr2z)dy+#0
—_——
>0
=> it may be extended (being non-vanishing) to the region y, etc. Consistency on a triple
overlap x Ny N z follows from

Jxr>2)=Jx > J(+ 2)

< any atlas may become oriented as follows: in the patches of x and y we accomplish (by

the interchange x! < x? or y! < y2, if necessary)

w(%,...,%)>0 w(aiyl,...,%)>0
(5.7.5); since
J(Xf—>y)w<i,..., a):a)(ii> we have J(x > y) >0
oy! ay" ax! axn
>0 >0

O

e One more criterion of orientability stems from the idea of the continuous transport of a
frame along a curve. Consider a point x € M and let (O, x?) be its coordinate neighborhood.
Let y be a curve passing through x = y(0). If there is a frame e(x) at the point x, it may be
decomposed with respect to the coordinate frame field, e, = A’ 3;. When speaking about
the continuous transport of a frame along a curve (its part in O), we will understand such
a frame field on y (¢) which, when decomposed with respect to the local coordinate basis,
leads to a continuous (matrix valued) function A (r) (where Al (0) = A!). If a frame is
transported in this way along a loop which lies entirely in O, it is clear that the frame
carried back has the same orientation that it had at the beginning (since the determinant of
A does not vanish anywhere it cannot change sign along the way). If, however, the loop
traverses several coordinate patches, the matter gets more complicated.

80 Thereby defining a volume form in the sense of Section 5.7 in each tangent space.
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Think over the fact that

(1) a manifold is orientable if and only if a frame, after being continuously transported along an
arbitrary loop, preserves its orientation
(ii) the Mobius band is non-orientable.?!

Hint: (i) given two coordinate patches with non-empty overlap O, N Og, an orientation
may be carried from one to the other by constructing a loop which lies in both of the patches
and transporting an arbitrary frame along it; (ii) consider a frame which is transported along
the central line of the Mobius band, e; being directed along the motion and e, always in the
same half with respect to the line; after finishing the circuit e; lies on the opposite side. O

e On an oriented Riemannian manifold (M, g, 0) we may introduce (by pointwise con-
struction) the metric volume form (see Section 5.7) as well as the Hodge (duality) operator
(see Section 5.8). Things are now easy, the essential part of the work having been done in
the linear algebra.

Check that

(1) any volume form on M may be expressed in local coordinates as
o= fx)dx"' A Adx" f#0on0 < x'
(i1) in particular, the metric volume form on M reads as follows
0, = 0(x)/1g(x)dx" A -+ Adx"
where o(x) (being £1) is given by the orientation of coordinates x’ and g(x) := det g;;(x).
Hint: see (5.7.1) and (5.7.3). O

e The “function” f(x), which arises as a (single independent) component of the volume
form, does not stand for a genuine function on M. Namely, it transforms under the change
of coordinates according to the rule

x> = f) e ) =TT @) ()

whereas, as we know, the Jacobian is absent for a true function (= “scalar field”). Such a
quantity is called a scalar density (of weight —1) on M (see (5.7.1) and (21.7.10)).

Write down the metric volume form in E? in Cartesian and polar coordinates and
in E3 in Cartesian, spherical polar and cylindrical coordinates.

[E%: wg =dx Ndy =rdr Ndg;
ES:wg=dx/\dy/\dz:rdr/\d(p/\dz=r2sim9dr/\dz9/\d(p] O

Cartesian cylindrical spherical polar

81 Note that the criterion in terms of transporting frames along loops is particularly well suited to proving non-orientability of a
manifold (a single suitable loop is enough for that), whereas the criterion in terms of a volume form serves well for the proof
of orientability (a single volume form guarantees its orientability).
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Write down the metric volume form in Minkowski space E '3 in Cartesian, spherical
polar and cylindrical coordinates (w, = dt A &, where & are the expressions valid for E 3
from (6.3.8)). O

6.3.10| Check that the metric volume forms @, on manifolds from problems (3.2.2)—(3.2.7)
read

(a+bsiny)bde Ady for T C E*
doa Ndf for 7% c E*
R%sin® do A dy for $> c E3
R? |sin® cos ¥ d® Ady Ady for S c E*
r(z)y/ (1 + (r'(2)») dz Ady for a rotational surface
R? |sinh «| do A d for the pseudosphere

O

6.3.11] Let (M, g, o) be an n-dimensional (pseudo-)Riemannian oriented manifold and let
= w, be the metric volume form on M. Show that

(i) the following results are true in a (right-handed) coordinate basis®
xdx' = gUdy;
w(dx' Adx?)) = g*glldzy

etc.
where the (n — 1), (n — 2), ... -forms on the right are defined as follows:
1 ; 1 .
dE,- = mwljmk dx’ A+ A dxk = m RV |g(x)| Eij.k dx' A+ A dxk
1
dz;; == mwijk,..l dx* A Adx = ") VIg| eiji g dx* Ao Adx!
etc.

(i1) in a (right-handed) orthonormal basis we have
xe! = nab dz,
etc.

where

dY, = ——€p ' A Ae
(n—1!

etc.

Hint: see (5.8.1). O

82 Caution: the letter d in d; (just like in d%;j, ... ) is conventional and does not denote (!) the exterior derivative, here (see
(6.3.12)).
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6.3.12| Check that the forms d%; and d%;; come out in E3 as follows:

(i) in Cartesian coordinates

d¥, =dyndz dX, =dzNdx d¥, =dx Ndy
d¥,, =dz d¥,, =dx d¥,, =dy

(i1) in spherical polar coordinates

dX, =r’sin® dd Ade dXy =r’sindde Adr d¥, =r?sind dr A d¥
dX.; =r’sindde d%y, =r’sind dr d%,, =r?sind dv

(iii) verify that “d” in their labeling does not stand for the exterior derivative (find such d%; (or d %;;),
for which d(d%;) # 0 = dX; # d(...) in the sense of the exterior derivative).

Hint: (6.3.11); (iii) d(d X,) = 2rdr A sin®dd Ade # 0. O

6.3.13] Show that a volume form on E? which is translationally invariant is automatically
rotationally invariant (i.e. homogeneity yields isotropy). Is the opposite true? Compare with
the metric tensor (4.6.14).

Hint: translations are generated (in Cartesian coordinates) by the basis vector fields 9;; then
ifw= f(x,y,z)dx Ady A dz, translational invariance gives f = constant. (The opposite
doesnothold. The form ®(r)d, ®(r) being any non-vanishing function of the radial spherical
coordinate and & being the standard (metric) volume form, is rotationally invariant albeit
it is not (unless ® = constant) translationally invariant.) O

6.4 V-valued forms

e In a number of applications of forms (Lie groups, fiber bundles, connections, etc.)
one actually encounters slightly more general objects than we have discussed up to now,
namely forms with values in a (finite-dimensional) vector space V. They represent a simple
generalization of “ordinary” (R-valued) forms, which are, however, a fairly convenient
tool, economizing both the conceptual and computational sides of the matter. We will treat
V-valued forms first at the level of linear algebra and then carry them onto a manifold.

Recall that p-forms in L (the elements of A”L*, see Section 5.2) were introduced as the
multilinear, completely antisymmetric maps

c:Lx---xL—>R w,...,w)—>o,...,w)eR
— —
P P
Multilinearity itself is perfectly meaningful, however, in a more general case, when the target
space is an arbitrary vector space V rather than (the simplest one) R. Consider accordingly
multilinear, completely antisymmetric® maps
a:Lx---xL—>YV (w,...,w)—~a,...,w)eV
— N ———’
p 4

83 Complete antisymmetry is not required, as usual, for p = 0, 1 (when it makes no sense).
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Such maps will be called V-valued p-forms in L and the space of such forms®* will be
denoted by AP(L*, V).

Letor € AP(L*, V), e; beabasisin L, E4 beabasisin V ande?, E” be corresponding
dual bases. Show that
(1) by the rule
otA(v, L, w) = (EA,oz(v, L, w))

N pieces of “ordinary” (R-valued) p-forms in L are defined, where N = dim V/; they are called

component forms and together they carry the same information as o does
(ii) the component forms depend on the choice of a basis in V (but not in L) and

EA = EA = AﬁEB = aA = &A = (A_])gag
(iii) if the form « is decomposed as
a=aE, ie. a(,...,w)=a’(v,...,w)E,4 then o Ey =& "E,

from which we see that the whole does not depend on the choice of a basis (as should be the
case)
(iv) a complete decomposition (including a basis in L) of the form « reads

1 . .
a=a'E, = (—aiA e A-~-/\ef)EA

p‘ ]
so that the components o ; (already being real numbers) of these forms carry one upper index
of “type A” in addition to the usual lower indices of “type i” (with respect to which they are
completely antisymmetric).% O

e The vector space V, in which forms take their values, is often endowed with some
supplementary structure (besides the linear one); this enables one to perform various sup-
plementary operations (besides linear combinations). If, to give an example, the target space
V turns out to be an algebra (either associative or Lie), one can multiply its elements and
this is reflected in the possibility of introducing the exterior product of such forms. The
simplest way to define this product is in terms of the decompositions from (6.4.1).

Let o € AP(L*, A) and B € AY(L*, A) be A-valued forms (A being an algebra),
and let the product in A be given by the relations E4Ep = ¢S Ec with respect to a basis
E 4 (see Appendix A.2). Show that

(i) the rule (exterior product of such forms)
A AP(L*, A) x AY(L*, A) — APTI(L*, A)
aAB= (@ E ) ABPEp) = (" ABYEAEg = (cSza* A B”) Ec

is well defined (= does not depend on the choice of E 4; the exterior product of the component
forms is assumed to be known already)
84 For p = 0, 1, we set by definition A°(L*, V) := V, A'(L*, V) := Hom(L, V) (linear maps from L to V).

85 If we return to the special case where V = R, i.e. when we consider “ordinary” forms, the