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String Theory,
Superstring Theory and Beyond

The two volumes that comprise String Theory provide an up-to-date, comprehensive, and
pedagogic introduction to string theory.

Volume I, An Introduction to the Bosonic String, provides a thorough introduction to
the bosonic string, based on the Polyakov path integral and conformal field theory. The
first four chapters introduce the central ideas of string theory, the tools of conformal field
theory and of the Polyakov path integral, and the covariant quantization of the string. The
next three chapters treat string interactions: the general formalism, and detailed treatments
of the tree-level and one loop amplitudes. Chapter eight covers toroidal compactification
and many important aspects of string physics, such as T-duality and D-branes. Chapter
nine treats higher-order amplitudes, including an analysis of the finiteness and unitarity,
and various nonperturbative ideas. An appendix giving a short course on path integral
methods is also included.

Volume 11, Superstring Theory and Beyond, begins with an introduction to supersym-
metric string theories and goes on to a broad presentation of the important advances of
recent years. The first three chapters introduce the type I, type I1, and heterotic superstring
theories and their interactions. The next two chapters present important recent discoveries
about strongly coupled strings, beginning with a detailed treatment of D-branes and their
dynamics, and covering string duality, M-theory, and black hole entropy. A following
chapter collects many classic results in conformal field theory. The final four chapters
are concerned with four-dimensional string theories, and have two goals: to show how
some of the simplest string models connect with previous ideas for unifying the Standard
Model; and to collect many important and beautiful general results on world-sheet and
spacetime symmetries. An appendix summarizes the necessary background on fermions
and supersymmetry.

Both volumes contain an annotated reference section, emphasizing references that will
be useful to the student, as well as a detailed glossary of important terms and concepts.
Many exercises are included which are intended to reinforce the main points of the text
and to bring in additional ideas.

An essential text and reference for graduate students and researchers in theoretical
physics, particle physics, and relativity with an interest in modern superstring theory.

Joseph Polchinski received his Ph.D. from the University of California at Berkeley
in 1980. After postdoctoral fellowships at the Stanford Linear Accelerator Center and
Harvard, he joined the faculty at the University of Texas at Austin in 1984, moving to his
present position of Professor of Physics at the University of California at Santa Barbara,
and Permanent Member of the Institute for Theoretical Physics, in 1992.

Professor Polchinski is not only a clear and pedagogical expositor, but is also a leading
string theorist. His discovery of the importance of D-branes in 1995 is one of the most
important recent contributions in this field, and he has also made significant contributions
to many areas of quantum field theory and to supersymmetric models of particle physics.






From reviews of the hardback editions:
Volume 1

‘... This is an impressive book. It is notable for its consistent line of development and the clarity
and insight with which topics are treated ... It is hard to think of a better text in an advanced
graduate area, and it is rare to have one written by a master of the subject. It is worth pointing out
that the book also contains a collection of useful problems, a glossary, and an unusually complete
index.’

Physics Today

‘... the most comprehensive text addressing the discoveries of the superstring revolutions of the
early to mid 1990s, which mark the beginnings of “modern” string theory.’

Donald Marolf, University of California, Santa Barbara, American Journal of Physics

‘Physicists believe that the best hope for a fundamental theory of nature — including unification of
quantum mechanics with general relativity and elementary particle theory — lies in string theory.
This elegant mathematical physics subject is expounded by Joseph Polchinski in two volumes from
Cambridge University Press ... Written for advanced students and researchers, this set provides
thorough and up-to-date knowledge.’

American Scientist

‘We would like to stress the pedagogical value of the present book. The approach taken is modern
and pleasantly systematic, and it covers a broad class of results in a unified language. A set of
exercises at the end of each chapter complements the discussion in the main text. On the other
hand, the introduction of techniques and concepts essential in the context of superstrings makes it
a useful reference for researchers in the field.’

Mathematical Reviews

‘It amply fulfils the need to inspire future string theorists on their long slog and is destined to
become a classic. It is a truly exciting enterprise and one hugely served by this magnificent book.’

David Bailin, The Times Higher Education Supplement
Volume 2

‘In summary, these volumes will provide ... the standard text and reference for students and
researchers in particle physics and relativity interested in the possible ramifications of modern
superstring theory.’

Allen C. Hirshfeld, General Relativity and Gravitation

‘Polchinski is a major contributor to the exciting developments that have revolutionised our
understanding of string theory during the past four years; he is also an exemplary teacher, as Steven
Weinberg attests in his foreword. He has produced an outstanding two-volume text, with numerous
exercises accompanying each chapter. It is destined to become a classic . .. magnificent.”

David Bailin, The Times Higher Education Supplement

‘The present volume succeeds in giving a detailed yet comprehensive account of our current knowl-
edge of superstring dynamics. The topics covered range from the basic construction of the theories
to the most recent discoveries on their non-perturbative behaviour. The discussion is remarkably
self-contained (the volume even contains a useful appendix on spinors and supersymmetry in
several dimensions), and thus may serve as an introduction to the subject, and as an excellent
reference for researchers in the field.”

Mathematical Reviews



CAMBRIDGE MONOGRAPHS ON
MATHEMATICAL PHYSICS

General editors: P. V. Landshoff, D. R. Nelson, S. Weinberg

S.J. Aarseth  Gravitational N-Body Simulations

J. Ambjgrn, B. Durhuus and T. Jonsson  Quantum Geometry: A Statistical Field Theory Approach

A.M. Anile Relativistic Fluids and Magneto-Fluids

J. A. de Azcdrrage and J. M. Izquierdo  Lie Groups, Lie Algebras, Cohomology and Some Applications in Physics'
O. Babelon, D. Bernard and M. Talon [Introduction to Classical Integrable Systems

F. Bastianelli and P. van Nieuwenhuizen Path Integrals and Anomalies in Curved Space

V. Belinkski and E. Verdaguer Gravitational Solitons

J. Bernstein  Kinetic Theory in the Expanding Universe

G. F. Bertsch and R. A. Broglia  Oscillations in Finite Quantum Systems

N. D. Birrell and P. C. W. Davies Quantum Fields in Curved Space

M. Burgess  Classical Covariant Fields

S. Carlip Quantum Gravity in 2 + 1 Dimensions

J.C. Collins Renormalization’

M. Creutz  Quarks, Gluons and Lattices'

P. D. D’Eath  Supersymmetric Quantum Cosmology

F. de Felice and C. J. S. Clarke  Relativity on Curved Manifolds'

B. S. DeWitt  Supermanifolds, 2nd edition’

P.G. O. Freund Introduction to Supersymmetry’

J. Fuchs  Affine Lie Algebras and Quantum Groups'

J. Fuchs and C. Schweigert Symmetries, Lie Algebras and Representations: A Graduate Course for Physicists'
Y. Fujii and K. Maeda  The Scalar—Tensor Theory of Gravitation

A. S. Galperin, E. A. Ivanov, V. I. Orievetsky and E. S. Sokatchev = Harmonic Superspace

R. Gambini and J. Pullin  Loops, Knots, Gauge Theories and Quantum Gravity'

M. Gockeler and T. Schiicker  Differential Geometry, Gauge Theories and Gravity'!

C. Gémez, M. Ruiz Altaba and G. Sierra  Quantum Groups in Two-Dimensional Physics

M. B. Green, J. H. Schwarz and E. Witten ~ Superstring Theory, volume 1: Introduction

M. B. Green, J. H. Schwarz and E. Witten Superstring Theory, volume 2: Loop Amplitudes, Anomalies and
Phenomenology'

V. N. Gribov  The Theory of Complex Angular Momenta

S. W. Hawking and G. E. R. Ellis  The Large-Scale Structure of Space-Time'

F. Iachello and A. Arima  The Interacting Boson Model

F. Iachello and P. van Isacker The Interacting Boson—Fermion Model

C. Itzykson and J.-M. Drouffe  Statistical Field Theory, volume 1: From Brownian Motion to Renormalization and
Lattice Gauge Theory'

C. Itzykson and J.-M. Drouffe Statistical Field Theory, volume 2: Strong Coupling, Monte Carlo Methods, Con-
formal Field Theory, and Random Systems'

C. Johnson D-Branes

J. L. Kapusta Finite-Temperature Field Theory'

V. E. Korepin, A. G. Izergin and N. M. Boguliubov  The Quantum Inverse Scattering Method and Correlation
Functions®

M. Le Bellac  Thermal Field Theory®

Y. Makeenko Methods of Contemporary Gauge Theory

N. Manton and P. Sutcliffe Topological Solitons

N. H. March  Liguid Metals: Concepts and Theory

L. M. Montvay and G. Miinster Quantum Fields on a Lattice

L. O’ Raifeartaigh  Group Structure of Gauge Theories’

T. Ortin ~ Gravity and Strings

A. Ozorio de Almeida Hamiltonian Systems: Chaos and Quantization'

R. Penrose and W. Rindler ~ Spinors and Space-Time, volume 1: Two-Spinor Calculus and Relativistic Fields'

R. Penrose and W. Rindler Spinors and Space-Time, volume 2: Spinor and Twistor Methods in Space-Time
Geometry'

S. Pokorski  Gauge Field Theories, 2nd edition

J. Polchinski  String Theory, volume 1: An Introduction to the Bosonic, String'

J. Polchinski  String Theory, volume 2: Superstring Theory and Beyond'

V.N.Popov Functional Integrals and Collective Excitations'

R.J. Rivers Path Integral Methods in Quantum Field Theory'

R. G. Roberts  The Structure of the Proton'

C.Rovelli Quantum Gravity

W. C. Saslaw  Gravitational Physics of Stellar and Galactic Systems'

H. Stephani, D. Kramer, M. A. H. MacCallum, C. Hoenselaers and E. Herlt Exact Solutions of Einstein’s Field
Equations, 2nd edition

J. M. Stewart  Advanced General Relativity"

A. Vilenkin and E. P. S. Shellard  Cosmic Strings and Other Topological Defects'

R.S. Ward and R. O. Wells Jr  Twistor Geometry and Field Theories

J. R. Wilson and G. J. Mathews  Relativistic Numerical Hydrodynamics

fIssued as a paperback



STRING THEORY
VOLUME II

Superstring Theory and Beyond

JOSEPH POLCHINSKI

Institute for Theoretical Physics
University of California at Santa Barbara

CAMBRIDGE
;i; UNIVERSITY PRESS



CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao Paulo

Cambridge University Press

The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York
www.cambridge.org

Information on this title: www.cambridge.org/9780521633048

© Cambridge University Press 2001, 2005

This publication is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

First published in print format 1998

ISBN-13  978-0-511-33822-9  eBook (NetLibrary)
ISBN-10 0-511-33822-8 eBook (NetLibrary)

ISBN-13 978-0-521-63304-8  hardback
ISBN-10 0-521-63304-4  hardback

ISBN-13 978-0-521-67228-3  paperback
ISBN-10 0-521-67228-7  paperback

Cambridge University Press has no responsibility for the persistence or accuracy of urls
for external or third-party internet websites referred to in this publication, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.


http://www.cambridge.org/9780521633048
http://www.cambridge.org

To DOROTHY, STEVEN, AND DANIEL






Contents

Foreword
Preface
Notation
10 Type I and type II superstrings
10.1  The superconformal algebra
10.2  Ramond and Neveu-Schwarz sectors
10.3  Vertex operators and bosonization
104  The superconformal ghosts
10.5 Physical states
10.6  Superstring theories in ten dimensions
10.7 Modular invariance
10.8  Divergences of type I theory
Exercises
11 The heterotic string
11.1  World-sheet supersymmetries
11.2  The SO(32) and Eg x Eg heterotic strings
11.3  Other ten-dimensional heterotic strings
11.4 A little Lie algebra
11.5 Current algebras
11.6  The bosonic construction and toroidal compactification
Exercises
12 Superstring interactions
12.1  Low energy supergravity
12.2  Anomalies
12.3  Superspace and superfields
12.4  Tree-level amplitudes
12.5  General amplitudes

X

Xiil

XV

XViil

10
15
20
25
31
37
43

45
45
49
55
59
66
73
82

84
84
94
103
110
118



X Contents
12.6  One-loop amplitudes

Exercises

13 D-branes

13.1  T-duality of type II strings

13.2  T-duality of type I strings

13.3 The D-brane charge and action

134  D-brane interactions: statics

13.5 D-brane interactions: dynamics

13.6  D-brane interactions: bound states
Exercises

14 Strings at strong coupling

14.1  Type IIB string and SL(2,Z) duality
142 U-duality

143 SO(32) type I-heterotic duality

144 Type I1A string and M-theory

14.5 The Eg x Eg heterotic string

14.6  What is string theory?

14.7 Is M for matrix?

14.8  Black hole quantum mechanics
Exercises

15 Advanced CFT

15.1 Representations of the Virasoro algebra
152 The conformal bootstrap

15.3  Minimal models

154  Current algebras

15.5 Coset models

15.6  Representations of the N = 1 superconformal algebra
157 Rational CFT

15.8 Renormalization group flows

15.9  Statistical mechanics

Exercises

16 Orbifolds

16.1  Orbifolds of the heterotic string

16.2  Spacetime supersymmetry

16.3 Examples

164 Low energy field theory

Exercises

17 Calabi—Yau compactification

17.1  Conditions for N = 1 supersymmetry
17.2  Calabi-Yau manifolds

17.3  Massless spectrum

17.4  Low energy field theory

126
134

136
136
138
146
152
158
164
175

178
179
187
190
198
205
208
211
219
226

228
228
233
236
243
250
254
255
259
266
271

274
275
281
283
292
300

302
302
305
312
315



Contents

17.5 Higher corrections
17.6  Generalizations
18 Physics in four dimensions
18.1 Continuous and discrete symmetries
18.2  Gauge symmetries
18.3  Mass scales
18.4 More on unification
18.5 Conditions for spacetime supersymmetry
18.6 Low energy actions
18.7  Supersymmetry breaking in perturbation theory
18.8  Supersymmetry beyond perturbation theory
Exercises
19 Advanced topics
19.1 The N = 2 superconformal algebra
19.2  Type II strings on Calabi—Yau manifolds
19.3  Heterotic string theories with (2,2) SCFT
194 N =2 minimal models
19.5  Gepner models
19.6  Mirror symmetry and applications
19.7  The conifold
19.8  String theories on K3
19.9  String duality below ten dimensions
19.10 Conclusion
Exercises
Appendix B: Spinors and SUSY in various dimensions
B.1  Spinors in various dimensions
B.2  Introduction to supersymmetry: d = 4
B.3  Supersymmetry in d = 2
B.4  Differential forms and generalized gauge fields
B.5  Thirty-two supersymmetries
B.6  Sixteen supersymmetries
B.7  Eight supersymmetries
Exercises
References
Glossary

Index

X1

321
324

327
327
335
343
351
356
359
362
366
373

375
375
379
386
390
394
402
409
415
421
429
429

430
430
439
449
450
452
457
461
466

467
488

518



Outline of volume one

A first look at strings
Conformal field theory
The Polyakov path integral
The string spectrum

The string S-matrix
Tree-level amplitudes
One-loop amplitudes

Toroidal compactification and T-duality

o 0 N N Ut AW N -

Higher order amplitudes

Appendix A: A short course on path integrals

xil



Foreword

From the beginning it was clear that, despite its successes, the Standard
Model of elementary particles would have to be embedded in a broader
theory that would incorporate gravitation as well as the strong and elec-
troweak interactions. There is at present only one plausible candidate for
such a theory: it is the theory of strings, which started in the 1960s as a
not-very-successful model of hadrons, and only later emerged as a possible
theory of all forces.

There is no one better equipped to introduce the reader to string
theory than Joseph Polchinski. This is in part because he has played a
significant role in the development of this theory. To mention just one
recent example: he discovered the possibility of a new sort of extended
object, the ‘Dirichlet brane’, which has been an essential ingredient in the
exciting progress of the last few years in uncovering the relation between
what had been thought to be different string theories.

Of equal importance, Polchinski has a rare talent for seeing what is
of physical significance in a complicated mathematical formalism, and
explaining it to others. In looking over the proofs of this book, I was re-
minded of the many times while Polchinski was a member of the Theory
Group of the University of Texas at Austin, when I had the benefit of his
patient, clear explanations of points that had puzzled me in string theory.
I recommend this book to any physicist who wants to master this exciting
subject.

Steven Weinberg

Series Editor

Cambridge Monographs on Mathematical Physics
1998

Xiil






Preface

When I first decided to write a book on string theory, more than ten years
ago, my memories of my student years were much more vivid than they
are today. Still, I remember that one of the greatest pleasures was finding
a text that made a difficult subject accessible, and I hoped to provide the
same for string theory.

Thus, my first purpose was to give a coherent introduction to string
theory, based on the Polyakov path integral and conformal field theory.
No previous knowledge of string theory is assumed. I do assume that the
reader is familiar with the central ideas of general relativity, such as metrics
and curvature, and with the ideas of quantum field theory through non-
Abelian gauge symmetry. Originally a full course of quantum field theory
was assumed as a prerequisite, but it became clear that many students
were eager to learn string theory as soon as possible, and that others had
taken courses on quantum field theory that did not emphasize the tools
needed for string theory. I have therefore tried to give a self-contained
introduction to those tools.

A second purpose was to show how some of the simplest four-
dimensional string theories connect with previous ideas for unifying the
Standard Model, and to collect general results on the physics of four-
dimensional string theories as derived from world-sheet and spacetime
symmetries. New developments have led to a third goal, which is to intro-
duce the recent discoveries concerning string duality, M-theory, D-branes,
and black hole entropy.

In writing a text such as this, there is a conflict between the need to
be complete and the desire to get to the most interesting recent results
as quickly as possible. I have tried to serve both ends. On the side of
completeness, for example, the various path integrals in chapter 6 are
calculated by three different methods, and the critical dimension of the
bosonic string is calculated in seven different ways in the text and exercises.

XV



Xvi Preface

On the side of efficiency, some shorter paths through these two volumes
are suggested below.

A particular issue is string perturbation theory. This machinery is nec-
essarily a central subject of volume one, but it is somewhat secondary to
the recent nonperturbative developments: the free string spectrum plus
the spacetime symmetries are more crucial there. Fortunately, from string
perturbation theory there is a natural route to the recent discoveries, by
way of T-duality and D-branes.

One possible course consists of chapters 1-3, section 4.1, chapters 5-8
(omitting sections 5.4 and 6.7), chapter 10, sections 11.1, 11.2, 11.6, 12.1,
and 12.2, and chapters 13 and 14. This sequence, which I believe can be
covered in two quarters, takes one from an introduction to string theory
through string duality, M-theory, and the simplest black hole entropy
calculations. An additional shortcut is suggested at the end of section 5.1.

Readers interested in T-duality and related stringy phenomena can
proceed directly from section 4.1 to chapter 8. The introduction to Chan—
Paton factors at the beginning of section 6.5 is needed to follow the
discussion of the open string, and the one-loop vacuum amplitude, ob-
tained in chapter 7, is needed to follow the calculation of the D-brane
tension.

Readers interested in supersymmetric strings can read much of chap-
ters 10 and 11 after section 4.1. Again the introduction to Chan—Paton
factors is needed to follow the open string discussion, and the one-loop
vacuum amplitude is needed to follow the consistency conditions in sec-
tions 10.7, 10.8, and 11.2.

Readers interested in conformal field theory might read chapter 2,
sections 6.1, 6.2, 6.7, 7.1, 7.2, 8.2, 8.3 (concentrating on the CFT as-
pects), 8.5, 10.1-10.4, 11.4, and 11.5, and chapter 15. Readers interested in
four-dimensional string theories can follow most of chapters 16—19 after
chapters 8, 10, and 11.

In a subject as active as string theory — by one estimate the literature
approaches 10000 papers — there will necessarily be important subjects
that are treated only briefly, and others that are not treated at all. Some of
these are represented by review articles in the lists of references at the end
of each volume. The most important omission is probably a more complete
treatment of compactification on curved manifolds. Because the geometric
methods of this subject are somewhat orthogonal to the quantum field
theory methods that are emphasized here, [ have included only a summary
of the most important results in chapters 17 and 19. Volume two of Green,
Schwarz, and Witten (1987) includes a more extensive introduction, but
this is a subject that has continued to grow in importance and clearly
deserves an introductory book of its own.

This work grew out of a course taught at the University of Texas



Preface Xvil

at Austin in 1987-88. The original plan was to spend a year turning the
lecture notes into a book, but a desire to make the presentation clearer and
more complete, and the distraction of research, got in the way. An early
prospectus projected the completion date as June 1989 + one month, off by
100 standard deviations. For eight years the expected date of completion
remained approximately one year in the future, while one volume grew
into two. Happily, finally, one of those deadlines didn’t slip.

I have also used portions of this work in a course at the University of
California at Santa Barbara, and at the 1994 Les Houches, 1995 Trieste,
and 1996 TASI schools. Portions have been used for courses by Nathan
Seiberg and Michael Douglas (Rutgers), Steven Weinberg (Texas), Andrew
Strominger and Juan Maldacena (Harvard), Nathan Berkovits (Sao Paulo)
and Martin Einhorn (Michigan). I would like to thank those colleagues
and their students for very useful feedback. I would also like to thank
Steven Weinberg for his advice and encouragement at the beginning
of this project, Shyamoli Chaudhuri for a thorough reading of the entire
manuscript, and to acknowledge the support of the Departments of Physics
at UT Austin and UC Santa Barbara, the Institute for Theoretical Physics
at UC Santa Barbara, and the National Science Foundation.

During the extended writing of this book, dozens of colleagues have
helped to clarify my understanding of the subjects covered, and dozens of
students have suggested corrections and other improvements. I began to
try to list the members of each group and found that it was impossible.
Rather than present a lengthy but incomplete list here, I will keep an
updated list at the erratum website

http://www.itp.ucsb.edu/~joep/bigbook.html.

In addition, I would like to thank collectively all who have contributed to
the development of string theory; volume two in particular seems to me
to be largely a collection of beautiful results derived by many physicists.
String theory (and the entire base of physics upon which it has been built)
is one of mankind’s great achievements, and it has been my privilege to
try to capture its current state.

Finally, to complete a project of this magnitude has meant many sac-
rifices, and these have been shared by my family. I would like to thank
Dorothy, Steven, and Daniel for their understanding, patience, and sup-
port.

Joseph Polchinski
Santa Barbara, California
1998



Notation

This book uses the +++ conventions of Misner, Thorne, & Wheeler
(1973). In particular, the signature of the metric is (— + +...4). The
constants 7 and ¢ are set to 1, but the Regge slope o' is kept explicit.

A bar ~ is used to denote the conjugates of world-sheet coordinates and
moduli (such as z, T and ¢), but a star * is used for longer expressions. A
bar on a spacetime fermion field is the Dirac adjoint (this appears only
in volume two), and a bar on a world-sheet operator is the Euclidean
adjoint (defined in section 6.7). For the degrees of freedom on the string,
the following terms are treated as synonymous:

holomorphic = left-moving,
antiholomorphic = right-moving,
as explained in section 2.1. Our convention is that the supersymmetric
side of the heterotic string is right-moving. Antiholomorphic operators

are designated by tildes ~; as explained in section 2.3, these are not the
adjoints of holomorphic operators. Note also the following conventions:

d*z = 2dxdy , 52(2,2) = %5(x)5(J’) ,

where z = x + iy is any complex variable; these differ from most of the
literature, where the coefficient is 1 in each definition.

Spacetime actions are written as S and world-sheet actions as S. This
presents a problem for D-branes, which are T-dual to the former and
S-dual to the latter; S has been used arbitrarily. The spacetime metric is
Gy, while the world-sheet metric is y4, (Minkowskian) or g4, (Euclidean).
In volume one, the spacetime Ricci tensor is Ry, and the world-sheet Ricci
tensor is R,p. In volume two the former appears often and the latter never,
so we have changed to R,, for the spacetime Ricci tensor.

Xviil



Notation X1X

The following are used:

defined as
equivalent to
approximately equal to

Qe

¢

equal up to nonsingular terms (OPEs), or rough correspondence.






10

Type I and type II superstrings

Having spent volume one on a thorough development of the bosonic
string, we now come to our real interest, the supersymmetric string the-
ories. This requires a generalization of the earlier framework, enlarging
the world-sheet constraint algebra. This idea arises naturally if we try to
include spacetime fermions in the spectrum, and by guesswork we are led
to superconformal symmetry. In this chapter we discuss the (1,1) supercon-
formal algebra and the associated type I and II superstrings. Much of
the structure is directly parallel to that of the bosonic string so we can
proceed rather quickly, focusing on the new features.

10.1 The superconformal algebra

In bosonic string theory, the mass-shell condition
pup +m* =0 (10.1.1)
came from the physical state condition
Loly) =0, (10.1.2)

and also from Lo|y) = 0 in the closed string. The mass-shell condition
is the Klein—-Gordon equation in momentum space. To get spacetime
fermions, it seems that we need the Dirac equation

ip T* +m=0 (10.1.3)

instead. This is one way to motivate the following generalization, and it
will lead us to all the known consistent string theories.

Let us try to follow the pattern of the bosonic string, where Lo and Lg
are the center-of-mass modes of the world-sheet energy-momentum tensor
(T, Ts). A subscript B for ‘bosonic’ has been added to distinguish these
from the fermionic currents now to be introduced. It seems then that we

1



2 10 Type I and type 11 superstrings

need new conserved quantities Tr and Tr, whose center-of-mass modes
give the Dirac equation, and which play the same role as T and T in
the bosonic theory. Noting further that the spacetime momenta p* are the
center-of-mass modes of the world-sheet current (0X*, 0X*), it is natural
to guess that the gamma matrices, with algebra

(TE TV} = 251 (10.1.4)

are the center-of-mass modes of an anticommuting world-sheet field y*.
With this in mind, we consider the world-sheet action

/ Pz ( OX'EX, +wﬂawu+wﬂawﬂ>. (10.1.5)

For reference we recall from chapter 2 the X X operator product expansion
(OPE)

/

XH(2,2)X"(0,0) ~ —%nﬂ" Inz? . (10.1.6)

The y conformal field theory (CFT) was described in section 2.5. The
fields y# and {* are respectively holomorphic and antiholomorphic, and
the operator products are

u ’/]'uv

PO ~ T R0 ~
The world-sheet supercurrents
Tr(z) = i(2/)" PyH(2)0Xu(z) . Tr(2) = i2/)'*PpH(2)0X,(Z) (10.1.8)

are also respectively holomorphic and antiholomorphic, since they are just
the products of (anti)holomorphic fields. The annoying factors of (2/«)!/?
could be eliminated by working in units where o/ = 2, and then be restored
if needed by dimensional analysis. Also, throughout this volume the : :
normal ordering of coincident operators will be implicit

This gives the desired result: the modes y/ and ¢f will satisfy the
gamma matrix algebra, and the centers-of-mass of TF and Tr will have
the form of Dirac operators. We will see that the resulting string theory
has spacetime fermions as well as bosons, and that the tachyon is gone.

From the OPE and the Ward identity it follows (exercise 10.1) that the
currents

(10.1.7)

JM2) =n(2)Tr(z) . 7'(2) = n(z) Tr(2) (10.1.9)
generate the superconformal transformation
e 12/ 26X M(z,2) = + n(2)p™(z) + n(z) P*E), (10.1.10a)
e o /2)25pH(z) = — n(z)0XHM(z) , (10.1.10b)
e /2)V25M(z) = — n(z) 0X*(Z) . (10.1.10c)



10.1 The superconformal algebra 3

This transformation mixes the commuting field X* with the anticommut-
ing fields yp* and {*, so the parameter #(z) must be anticommuting. As
with conformal symmetry, the parameters are arbitrary holomorphic or
antiholomorphic functions. That this is a symmetry of the action (10.1.5)
follows at once because the current is (anti)holomorphic, and so con-
served.

The commutator of two superconformal transformations is a conformal
transformation,

Oy Oyy — OOy = 0y, 0(2) = =2n1(2)n2(2) , (10.1.11)

as the reader can check by acting on the various fields. Similarly, the
commutator of a conformal and superconformal transformation is a su-
perconformal transformation. The conformal and superconformal trans-
formations thus close to form the superconformal algebra. In terms of the
currents, this means that the OPEs of TF with itself and with

1 1

close. That is, only T and TF appear in the singular terms:

3D 2 1

Tp(z)Tp(0) ~ i Z—zTB(O) + ;aTB(O) , (10.1.13a)
3 1

To(z)TF0) ~ 55 Tr(0) + _0Tr(0) , (10.1.13b)
D 2

Tr(z)Tr(0) ~ =5 + - Ts(0). (10.1.13c)

and similarly for the antiholomorphic currents. The TgTr OPE implies
that TF is a tensor of weight (%, 0). Each scalar contributes 1 to the central

charge and each fermion %, for a total
c=(1+HDp=3D. (10.1.14)

This enlarged algebra with Tr and Tr as well as Tg and Tp will play
the same role that the conformal algebra did in the bosonic string. That
is, we will impose it on the states as a constraint algebra — it must
annihilate physical states, either in the sense of old covariant quantization
(OCQ) or of Becchi—-Rouet—Stora—Tyutin (BRST) quantization. Because
of the Minkowski signature of spacetime the timelike y° and §°, like
X°, have opposite sign commutators and lead to negative norm states.
The fermionic constraints Tr and Tr will remove these states from the
spectrum.

More generally, the N = 1 superconformal algebra in operator product
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form 1s
2 1
Ta(z)Tp(0) ~ ~— + — Tp(0) + -8Tp(0),  (10.1.15a)
2z z z
3 1
Tu()Tr(0) ~ 55 Tr(0) + ~0TH(0) (10.1.15b)
Tr(z)TE(0) ~ 2703 + 2740 . (10.1.15¢)
3z z

The Jacobi identity requires the same constant ¢ in the TpTp and TrTF
products (exercise 10.5). Here, N = 1 refers to the number of (%,0)
currents. In the present case there is also an antiholomorphic copy of the
same algebra, so we have an (N,N) = (1, 1) superconformal field theory
(SCFT). We will consider more general algebras in section 11.1.

Free SCFTs

The various free CFTs described in chapter 2 have superconformal gen-
eralizations. One free SCFT combines an anticommuting bc theory with
a commuting fy system, with weights

hy =2, he=1—2, (10.1.16a)
hg =2—4%, h=3-2. (10.1.16b)
The action is
Spe = 21/(122 (bdc + Bay) , (10.1.17)
T

and

Ts = (0b)c — J0(bc) + (OB)y — %(21 —1)a(By), (10.1.18a)

1 27 —1
Tr = —5(2f)c + %a(ﬂc) —2by . (10.1.18b)

The central charge is
[—322— 1>+ 11+ 321 —2)>—1] =9 —121. (10.1.19)

Of course there is a corresponding antiholomorphic theory.

We can anticipate that the superconformal ghosts will be of this form
with 4 = 2, the anticommuting (2,0) ghost b being associated with the
commuting (2,0) constraint Ty as in the bosonic theory, and the commut-
ing (%, 0) ghost f being associated with the anticommuting (%, 0) constraint
Tr. The ghost central charge is then —26 + 11 = —15, and the condition
that the total central charge vanish gives the critical dimension

0= %D—15=>D =10. (10.1.20)
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For 1 =2,
1 3
Tp = —(db)c — 2bdc — E(ﬁﬁ)y — Eﬁay , (10.1.21a)

Tr = (0f)c + %ﬁac —2by . (10.1.21b)

Another free SCFT is the superconformal version of the linear dilaton
theory. This has again the action (10.1.5), while

1 1
Ts(z) = —Jaxﬂax,l + V, 02 XH — Ewﬂawﬂ , (10.1.22a)
Tr(z) = i(2/od ) 2pro X, — i) 2V 09" (10.1.22b)

each having an extra term as in the bosonic case. The reader can verify
that these satisfy the N = 1 algebra with

c= %D + 6/ VIV, . (10.1.23)

10.2 Ramond and Neveu-Schwarz sectors

We now study the spectrum of the X*y* SCFT on a circle. Much of this
is as in chapter 2, but the new ingredient is a more general periodicity
condition. It is clearest to start with the cylindrical coordinate w = ¢! +ig?.
The matter fermion action

1 2 7 YL
E/d w (w Oapu + 1 é’wtpu> (10.2.1)

~

must be invariant under the periodic identification of the cylinder, w =

w + 27n. This condition plus Lorentz invariance still allows two possible
periodicity conditions for y*,

Ramond (R): p*(w + 27) = +ypH(w) , (10.2.2a)

Neveu—Schwarz (NS): yp*(w + 2n) = —p*(w) , (10.2.2b)

where the sign must be the same for all x. Similarly there are two possible
periodicities for {*. Summarizing, we will write

PH(w 4 21) = exp(2miv) pH(w) , (10.2.3a)
PH (W + 2n) = exp(—2niv) PH(w) , (10.2.3b)

where v and ¥ take the values 0 and %

Since we are initially interested in theories with the maximum Poincaré
invariance, X* must be periodic. (Antiperiodicity of X* is interesting, and
we have already encountered it for the twisted strings on an orbifold, but
it would break some of the translation invariance.) The supercurrent then



6 10 Type I and type 11 superstrings

has the same periodicity as the corresponding 1,

Tr(w 4+ 27) = exp(2niv) Tr(w) , (10.2.4a)
Tr(Ww + 21) = exp(—27i¥) Tr(w) . (10.2.4b)

Thus there are four different ways to put the theory on a circle, each of
which will lead to a different Hilbert space — essentially there are four
different kinds of closed superstring. We will denote these by (v,¥) or
by NS-NS, NS-R, R-NS, and R-R. They are analogous to the twisted
and untwisted sectors of the Z, orbifold. Later in the chapter we will
see that consistency requires that the full string spectrum contain certain
combinations of states from each sector.

To study the spectrum in a given sector expand in Fourier modes,

whw) =123 plexplirw),  §HW) =D plexp(—irw),
reZ+v reZ+v
(10.2.5)

the phase factors being inserted to conform to convention later. On each
side the sum runs over integers in the R sector and over (integers -+ %)
in the NS sector. Let us also write these as Laurent expansions. Besides
replacing exp(—iw) — z we must transform the fields,

1/)51/2(2) = (azw)1/2wa1/2( )=1i 172 1/2wu1/2( ) - (10.2.6)

The clumsy subscripts are a reminder that these transform with half the
weight of a vector. Henceforth the frame will be indicated implicitly by
the argument of the field. The Laurent expansions are then

u ~
ph(z) = L ') = ¥ (10.2.7)
Z
reZ+vy reZ+v
Notice that in the NS sector, the branch cut in z—1/2 offsets the original

antiperiodicity, while in the R sector it introduces a branch cut. Let us
also recall the corresponding bosonic expansions

N2 o N2 E g
e =-i(5) Y S e =—i(3) Y o
m=—o0 m=—o0

(10.2.8)
where of = & = (¢//2)!/?p* in the closed string and ofy = (2¢/)!/?p* in the
open string.

The OPE and the Laurent expansions (or canonical quantization) give
the anticommutators

{lpr’ws} - { ws'} = 77’”5r,—s > (10.2.9a)
o, 0tn) = [0y, ] = My Gy (10.2.9b)

n
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For Tr and Tp the Laurent expansions are

G, _— G,
Tr(z) = ne F@) = > S0 (10.210a)
reZtv reZ+v
- Lm T = = tm
Ts(z)= > 5. Tw(E)= Z iz - (102.10b)
N=—00

The usual CFT contour calculation gives the rnode algebra

[Lm, Ln] = (m - n)Lm+n + E(Wﬁ - m)ém,—n s (102113)

(Gy, Gy} = 2L,4s + 1%(4r2 — )8,y , (10.2.11b)
2

(Lo, G,] = %Gmﬂ . (10.2.11c)

This is known as the Ramond algebra for r,s integer and the Neveu—
Schwarz algebra for r,s half-integer. The antiholomorphic fields give a
second copy of these algebras.

The superconformal generators in either sector are

1

Ln=3)¢ m,,ﬂ,,o+ > @r—m)zphp,,d +d"on
nez, 4zt (10.2.12a)
Gr =D o - (10.2.12b)

nez
Again ¢ ¢ denotes creation—annihilation normal ordering. The normal

ordering constant can be obtained by any of the methods from chapter 2;
we will use here the mnemonic from the end of section 2.9. Each periodic
boson contributes —ﬁ. Each periodic fermion contributes +ﬁ and each

antiperiodic fermion —ﬁ. Including the shift —|—ic = %D gives

1
R: a™ 16 NS: a"=0. (10.2.13)

For the open string, the condition that the surface term in the equation
of motion vanish allows the possibilities

p"(0,62) = exp(2miv) PH(0,067) ,  H(m,02) = exp(2miv’) P(x,07) .

(10.2.14)
By the redefinition {* — exp(—2niv'){H, we can set v/ = 0. There are
therefore two sectors, R and NS, as compared to the four of the closed
string. To write the mode expansion it is convenient to combine yp* and

{p* into a single field with the extended range 0 < ¢! < 27. Define
vl 6?) = p(2n — ', 0?) (10.2.15)
for 1 < ¢! < 2n. The boundary condition v/ = 0 is automatic, and the
antiholomorphicity of §* implies the holomorphicity of the extended y*.
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Finally, the boundary condition (10.2.14) at ¢! = 0 becomes a periodicity
condition on the extended y*, giving one set of R or NS oscillators and
the corresponding algebra.

NS and R spectra

We now consider the spectrum generated by a single set of NS or R
modes, corresponding to the open string or to one side of the closed
string. The NS spectrum is simple. There is no » = 0 mode, so we define
the ground state to be annihilated by all » > 0 modes,

Yll0)ng =0, r>0. (10.2.16)

The modes with r < 0 then act as raising operators; since these are
anticommuting, each mode can only be excited once.

The main point of interest is the R ground state, which is degenerate
due to the yys. Define the ground states to be those that are annihilated by
all r > 0 modes. The )} satisfy the Dirac gamma matrix algebra (10.1.4)
with

rH = l/2n (10.2.17)

Since {y#,py} = 0 for r > 0, the yfj take ground states into ground
states. The ground states thus form a representation of the gamma matrix
algebra. This representation is worked out in section B.1; in D = 10 it has
dimension 32. The reader who is not familiar with properties of spinors
in various dimensions should read section B.1 at this point. We can take
a basis of eigenstates of the Lorentz generators S,, eq. (B.1.10):

150, S1s--sS4)g = IS)R s Sa= 1. (10.2.18)

The half-integral values show that these are indeed spacetime spinors. A
more general basis for the spinors would be denoted |x)g. In the R sector
of the open string not only the ground state but all states have half-integer
spacetime spins, because the raising operators are vectors and change the
S, by integers. In the NS sector, the ground state is annihilated by S*
and is a Lorentz singlet, and all other states then have integer spin.

The Dirac representation 32 is reducible to two Weyl representations
16 + 16/, distinguished by their eigenvalue under I' as in eq. (B.1.11). This
has a natural extension to the full string spectrum. The distinguishing
property of I' is that it anticommutes with all I'*. Since the Dirac matrices
are now the center-of-mass modes of y*, we need an operator that
anticommutes with the full yp*. We will call this operator

exp(wiF) , (10.2.19)

where F, the world-sheet fermion number, is defined only mod 2. Since p*
changes F by one it anticommutes with the exponential. It is convenient
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to write F in terms of spacetime Lorentz generators, which in either sector
of the yp CFT are

P —% St vl (10.2.20)
reZ+v

This is the natural extension of the zero-mode part (B.1.8). Define now
S, = jdaox2a2a+] (10.2.21)

the i being included to make Sy Hermitean, and let
4
F=>)"S,. (10.2.22)
a=0

This has the desired property. For example,
Sty i) = (7 £iw))(S1 £ 1), (102.23)

so these oscillators change F by +1. The definition (10.2.22) makes it
obvious that F is conserved by the OPE of the vertex operators, as a
consequence of Lorentz invariance.! When we include the ghost part of
the vertex operator in section 10.4, we will see that it contributes to the
total F, so that on the total matter plus ghost ground state one has

exp(miF)|0)ns = —0)xg » (10.2.244)
exp(niF)ls)g = |8')rIss - (10.2.24b)

The ghost ground state contributes a factor —1 in the NS sector and —i
in the R sector.

Closed string spectra

In the closed string, the NS—NS states have integer spin. Because the spins
S, are additive, the half-integers from the two sides of the R—R sector also
combine to give integer spin. The NS—R and R—NS states, on the other
hand, have half-integer spin.

Let us look in more detail at the R—R sector, where the ground states
|s,s’)r are degenerate on both the right and left. They transform as the
product of two Dirac representations, which is worked out in section B.1:

32Dirac X 32Dirac = [0] + [1] + [2] +...+ [10]
=0+ [P +...+ 4P +[5, (10225

! Lorentz invariance of the OPE holds separately for the y and X CFTs (and the ¢ CFT
in the closed string) because they are decoupled from one another. However, the world-sheet
supercurrent is only invariant under the overall Lorentz transformation.
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Table 10.1. SO(9, 1) representations of massless R—R states.

(exp(niF), exp(niF)) SO(9,1) rep.
(+1,4+1): 16 x16 = [1]+[3]+[5]+
(+1,—-1): 16 x 16/ = [0] + [2] + [4]
(—1,+1): 16 x16 = [0] + [2] + [4]
(—=1,-1): 16/ x 16’ = [1]+[3] +[5]-

where [n] denotes an antisymmetric rank n tensor. For the closed string
there are separate world-sheet fermion numbers F and F, which on the
ground states reduce to the chirality matrices I' and T acting on the two
sides. The ground states thus decompose as in table 10.1.

10.3 Vertex operators and bosonization

Consider first the unit operator. Fields remain holomorphic at the ori-
gin, and in particular they are single-valued. From the Laurent expan-
sion (10.2.7), the single-valuedness means that the unit operator must be
in the NS sector; the conformal transformation that takes the incoming
string to the point z = 0 cancels the branch cut from the antiperiodicity.
The holomorphicity of y at the origin implies, via the contour argument,
that the state corresponding to the unit operator satisfies

1
Py =0, r=i3

57 E: ) (10.3.1)

and therefore
1) =|0) . (10.3.2)
Since the py OPE is single-valued, all products of y and its derivatives
must be in the NS sector. The contour argument gives the map
’lpu . ﬁ #
- (r—1/2)!
so that there is a one-to-one map between such products and NS states.

The analog of the Noether relation (2.9.6) between the superconformal
variation of an NS operator and the OPE is

"1 2pH(0) (10.3.3)

Sy (2,7) = —ez [ Gurya + (@) Gy | - H(2,2) . (10.3.4)

The R sector vertex operators must be more complicated because the
Laurent expansion (10.2.7) has a branch cut. We have encountered this
before, for the winding state vertex operators in section 8.2 and the orbifold
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twisted state vertex operators in section 8.5. Each of these introduces a
branch cut (the first a log and the second a square root) into X*. For
the winding state vertex operators there was a simple expression as the
exponential of a free field. For the twisted state vertex operators there
was no simple expression and their amplitudes are determined only with
more effort. Happily, through a remarkable property of two-dimensional
field theory, the R sector vertex operators can be related directly to the
bosonic winding state vertex operators.
Let H(z) be the holomorphic part of a scalar field,

H(z)H(0) ~ —Inz . (10.3.5)

For world-sheet scalars not associated directly with the embedding of
the string in spacetime this is the normalization we will always use,
corresponding to o’ = 2 for the embedding coordinates. As in the case of
the winding state vertex operators we can be cavalier about the location
of the branch cut as long as the final expressions are single-valued. We
will give a precise oscillator definition below. Consider the basic operators
etH()_ These have the OPE

oH (@) p=iH(0) 1 , (10.3.6a)
z

G HO) — o(z) (10.3.6b)

e HE)—HO) — (7)) | (10.3.6¢c)

The poles and zeros in the OPE together with smoothness at infinity
determine the expectation values of these operators on the sphere, up to
an overall normalization which can be set to a convenient value:

< [T e > =1Iz". >Y_e=0. (10.3.7)
i s, i<j i
The €; are +1 here, but this result holds more generally.

Now consider the CFT of two Majorana—Weyl fermions y!?(z), and
form the complex combinations

p=2""0" iy’ p=2""0" —ip?). (103.8)
These have the properties

p(z)p(0) ~ é ; (10.3.9a)
p(2)p(0) = 0(z) , (10.3.9b)
P(2)p(0) = 0(z) . (10.3.9¢)

Egs. (10.3.6) and (10.3.9) are identical in form, and so the expectation
values of 1(z) on the sphere are identical to those of ¢/f?). We will write

p(z) =MD | p(z) = HE) (10.3.10)
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to indicate this. Of course, all of this extends to the antiholomorphic case,

P(z) = 0 | F(z)x e HE (10.3.11)

P(2)
Since arbitrary local operators with integer kg and kj, can be formed
by repeated operator products of et} and ¢*H(?) and arbitrary local
operators built out of the fermions and their derivatives can be formed by
repeated operator products of (z), Pp(z), P(Z), and $(z), the equivalence
of the theories can be extended to all local operators. Finally, in order for
these theories to be the same as CFTs, the energy-momentum tensors must
be equivalent. The easiest way to show this is via the operator products

. , 1
() =il (=2) 5+ i0H(0) 4+ 2zTH(0) + 0(z%), (10.3.12a)

1 :
v(2)ip(—z) = 5T Pp(0) +2zTH(0)+0(z%) . (10.3.12b)
With the result (10.3.10), this implies equivalence of the H momentum
current with the y number current, and of the two energy-momentum
tensors,

wp =ioH, T§ =Ty . (10.3.13)

As a check, ¢ and y are both (%,0) tensors.
In the operator description of the theory, define

p(z) = e (10.3.14)
From the Campbell-Baker—Hausdorff (CBH) formula (6.7.23) we have for
equal times |z| = |Z/|

2eiH(2)e o oiH(Z)s exp{—[H(z), H(z")]} 2eiH(Z)g 5 piH(2);

= —geH#)s 5l HG)s (10.3.15)

where we have used the fact (8.2.21) that at equal times [H(z), H(z')] =
+in. Thus the bosonized operators do anticommute. This is possible for
operators constructed purely out of bosons because they are nonlocal. In
particular, note that the CBH formula gives the equal time commutator

H(z) ez = oG (H(z) + i[H(z),H(z’)])
= 2¢HE); (H(z) — nsign(oy — 0’1)) . (10.3.16)

so that the fermion field operator produces a kink, a discontinuity, in the
bosonic field.

This rather surprising equivalence is known as bosonization. Equiva-
lence between field theories with very different actions and fields occurs
frequently in two dimensions, especially in CFTs because holomorphicity
puts strong constraints on the theory. (The great recent surprise is that it is
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also quite common in higher-dimensional field and string theories.) Many
interesting CFTs can be constructed in several different ways. One form
or another will often be more useful for specific purposes. Notice that
there is no simple correspondence between one-boson and one-fermion
states. The current, for example, is linear in the boson field but quadratic
in the fermion field. A single boson is the same as one yp fermion and
one i fermion at the same point. On a Minkowski world-sheet, where
holomorphic becomes left-moving, the fermions both move left at the
speed of light and remain coincident, indistinguishable from a free boson.
A single fermion, on the other hand, is created by an operator exponential
in the boson field and so is a coherent state, which as we have seen is in
the shape of a kink (10.3.16).

The complicated relationship between the bosonic and fermionic spectra
shows up also in the partition function. Operator products of et'f(?) gen-
erate all operators with integer k;. The bosonic momentum and oscillator
sums then give

o0
Tr(g") = (Z q"i“) [Tt—gnt. (10.3.17)
kLGZ n=1
In the NS sector of the fermionic theory, the oscillator sum gives
o0
Tr(g") = JJ(1 +¢"71/%)7. (10.3.18)
n=1

We know indirectly that these must be equal, since we can use the OPE
to construct an analog in the fermionic theory for any local operator of
the bosonic theory and vice versa. Expanding the products gives

142"+ q+2¢°7 + 44> +4¢°7 + .. (10.3.19)

for each, and in fact the equality of (10.3.17) and (10.3.18) follows from the
equality of the product and sum expressions for theta functions, section 7.2.
Note that while bosonization was derived for the sphere, the sewing
construction from chapter 9 guarantees that it holds on all Riemann
surfaces, provided that we make equivalent projections on the spectra.
In particular, we have seen that summing over integer k; corresponds to
summing over all local fermionic operators, the NS sector.

Bosonization extends readily to the R sector. In fact, once we combine
two fermions into a complex pair we can consider the more general
periodicity condition

P(w + 21) = exp(2niv) p(w) (10.3.20)

for any real v. In ten dimensions only v = O,% arose, but these more gen-
eral periodicities are important in less symmetric situations. The Laurent
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expansion has the same form (10.2.7) as before,

_ PYr N Ps

reZ+v s€Z—v

with indices displaced from integers by +v. The algebra is

{pr, Ps} =0 —s . (10.3.22)
Define a reference state |0), by
Puiv|0), = Putr1—410), =0, n=0,1,.... (10.3.23)
The first nonzero terms in the Laurent expansions are then r = —1 4+ v
and s = —v, so for the corresponding local operator .o/, the OPE is
w(2),(0) = 0" 2) , p(2),(0) = O(z""1/?) . (10.3.24)

The conditions (10.3.23) uniquely identify the state |0) , and so the corre-
sponding OPEs (10.3.24) determine the bosonic equivalent

expli(—v + 1/2)H] = o/, . (10.3.25)

One can check the identification (10.3.25) by verifying that the weight is
h = 1(v—1)% In the bosonic form this comes from the term Jp? in L. In
the fermionic form it follows from the usual commutator method (2.7.8)
or the zero-point mnemonic.

The boundary condition (10.3.20) is the same for v and v 4 1, but the
reference state that we have defined is not. It is a ground state only for
0 < v < 1. As we vary v, the state |0), changes continuously, and when
we get back to the original theory at v + 1, by the definition (10.3.23) it
has become the excited state

0),11 = P-,10), . (10.3.26)

This is known as spectral flow. For the R case v = 0 there are the two
degenerate ground states

s) =B =41, (10.3.27)

o=

For the superstring in ten dimensions we need five bosons, H* for
a=0,...,4. Then?

<o

271/2(iw0 +pl) = ot (10.3.28a)
27122 4 ety = oAHY =1, 4. (10.3.28b)

lle

2 The precise operator definition has a subtlety when there are several species of fermion. The H¢
for different a are independent and so the exponentials commute rather than anticommute. A
cocycle is needed, as in eq. (8.2.22). A general expression will be given in the next section.
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The vertex operator ®4 for an R state |s) is
O = exp [iz saH“} . (10.3.29)
a

This operator, which produces a branch cut in y#, is sometimes called a
spin field. For closed string states, this is combined with the appropriate
antiholomorphic vertex operator, built from H¢.

The general bc CFT, renaming v — b and § — ¢, is obtained by
modifying the energy-momentum tensor of the A = % theory to

TS = T3/ — (= Ho(be) . (10.3.30)
The equivalences (10.3.13) give the corresponding bosonic operator
Ty = T —i(2— 1)o*H . (10.3.31)

This is the same as the linear dilaton CFT, with V = —i(4 — %). With this
correspondence between V' and A, the linear dilaton and bc theories are
equivalent,

b=ell | = (10.3.32)
As a check, the central charges agree,
c=1-32/—17>=1+12V>. (10.3.33)

So do the dimensions of the fields (10.3.32), 4 for b and 1—4 for ¢, agreeing
with k2/2 + ikV for e The nontensor behaviors of the currents bc and
i0H are also the same. Since the inner product for the reparameterization
ghosts makes b and ¢ Hermitean, the bosonic field H must be anti-
Hermitean in this application. The bosonization of the ghosts is usually
written in terms of a Hermitean field with the opposite sign OPE,

H—oip; c=e, b=e?, (10.3.34)

10.4 The superconformal ghosts

To build the BRST current we will need, in addition to the anticommuting
b and c¢ ghosts of the bosonic string, commuting ghost fields f and y of
weight (%,O) and (—%,O), and the corresponding antiholomorphic fields.
The action for this SCFT was given in eq. (10.1.17) and the currents
Tp and Tf in eq. (10.1.21). The ghosts f and y must have the same
periodicity (10.2.4) as the generator Tr with which they are associated.
This is necessary to make the BRST current periodic, so that it can be
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integrated to give the BRST charge. Thus,

Vr
ﬂ(Z = ; '+3/2 ) V(Z)= ; W, (10418)
r€l+y reZ+v
o0 b o0 c
)= > iy )= Y 0. (10.4.1b)
m=—o0 m=—o0

and similarly for the antiholomorphic fields. The (anti)commutators are

[r,Bs) = 6r—s 5 {bm>Cu} = On—m - (10.4.2)
Define the ground states |O>NS,R by

Brl0)ns =0, ;0N =0, r=3 (10.4.3a)

Brl0)g =0, r> O . w0r=0,r>1, (10.4.3b)

bulO)ysg =0, m=0, culO)ygg =0, m=1. (10.4.3c)

We have grouped ffy with the lowering operators and yo with the raising
ones, in parallel with the bosonic case. The spectrum is built as usual

by acting on the ground states with the raising operators. The generators
are

L; = Z(m+”) bm—ncns + Z B m+2r) Bimn—ryre + a%0mp

neZ reZ+v (1044a)
G =— Z[ 2r + n)Br—ncn + 2byy,— n] ) (10.4.4b)
nez
The normal ordering constant is determined by the usual methods to be
5 1
Y P S
R: a g NS: a 5 (10.4.5)

Vertex operators

We focus here on the fy CFT, as the bc parts of the vertex operators are
already understood. Let us start by considering the state corresponding
to the unit operator. From the Laurent expansions (10.4.1) it is in the NS
sector and satisfies

1 3
By =0, r=—2, nl)=0,r23. (10.4.6)
This is not the same as the ground state |0)yg: the mode y;,, annihilates
|0)ns While its conjugate fi_;,, annihilates [1). We found this also for the
bc ghosts with ¢y and b_;. Since anticommuting modes generate just two
states, we had the simple relation |0) = ¢;|1) (focusing on the holomorphic

side). For commuting oscillators things are not so simple: there is no state
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in the Fock space built on [1) by acting with y;/, that has the properties
of |0)ns- The definition of the state |0)yg translates into

P(2)8(2(0) = 0(z) ,  B(2)3(3(0)) = 0(="") (10.4.7)

for the corresponding operator J(y). The notation o(y) reflects the fact
that the field y has a simple zero at the vertex operator. Recall that for
the bc ghosts the NS ground state maps to the operator ¢, which is the
anticommuting analog of a delta function. One can show that an insertion
of (y) in the path integral has the property (10.4.7).

To give an explicit description of this operator it is again convenient to
bosonize. Of course f and y are already bosonic, but bosonization here
refers to a rewriting of the theory in a way that is similar to, but a bit
more intricate than, the bosonization of the anticommuting bc theory.

Start with the current fiy. The operator product

B2 B(0) ~ (1048)

is the same as that of d¢, where ¢(z)¢p(0) ~ —Inz is a holomorphic
scalar. Holomorphicity then implies that this equivalence extends to all
correlation functions,

pr(z) = 0¢(z) . (10.4.9)
The OPE of the current with  and y then suggests

? ?
B(z) = e P9 | y(z) =) (10.4.10)

For the bc system we would be finished: this approach leads to the
same bosonization as before. For the fy system, however, the sign of
the current—current OPE and therefore of the ¢¢ OPE is changed. The
would-be bosonization (10.4.10) gives the wrong OPEs: it would imply

B)BO) = 0", B0 = 0(EY, pp(0) = 0E""), (104.11)
whereas the correct OPE is

BEIBO)=0E"), B0 =0E""), 22)0)=0(E"). (104.12)
To repair this, additional factors are added,
Bz) = e oe(z), y =Pz . (10.4.13)

In order not to spoil the OPE with the current (10.4.9), the new fields
n(z) and &(z) must be nonsingular with respect to ¢, which means that
the #¢ theory is a new CFT, decoupled from the ¢ CFT. Further, the
equivalence (10.4.13) will hold — all OPEs will be correct — if # and ¢
satisfy

1
n()E0) ~ —, nz)n(0) =0(z), 0c(z)0(0)=0(z) .  (104.14)
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This identifies the ¢ theory as a holomorphic CFT of the bc type: the
OPE of like fields has a zero due to the anticommutativity.

It remains to study the energy-momentum tensor. We temporarily con-
sider the general 8y system, with § having weight ’. The OPE

=2/
TR0 =

determines the ¢ energy-momentum tensor,

+... (10.4.15)

1 1
T = —5000¢ + (1 - 27/)0%¢ . (10.4.16)

The exponentials in the bosonization (10.4.13) thus have weights A’—1 and
—2" respectively, as compared with the weights 2’ and 1 — 2" of # and 7.
This fixes the weights of  and & as 1 and 0: thisis a 2 = 1 bc system, with

T} = —noé (10.4.17)
and
T8 =~ 1) + T . (10.4.18)

As a check, the central charges are 3(2' — 1)+ 1 for Tg’ and —2 for ng,
adding to the 3(24 — 1)> — 1 of the fy CFT. The need for extra degrees
of freedom is not surprising. The 7y theory has a greater density of states
than the bc theory because the modes of a commuting field can be excited
any number of times. One can check that the total partition functions
agree, in the appropriate sectors.

If need be one can go further and represent the #¢ theory in terms
of a free boson, conventionally y with x(z)x(0) ~ Inz, as in the previous
section. Thus

n=et, (=eh, (10.4.19a)
B=e oy, p=efr, (10.4.19b)

The energy-momentum tensor is then
1 1 1 1
Tg = —5000¢ + 50707 + 5 (1 — 2)1)0%p + 5521 . (10.4.20)

For the string, the relevant value is A’ = % The properties (10.4.7) of
0(y) determine the bosonization,

) =e?, h==. (10.4.21)

The fermionic parts of the tachyon and massless NS vertex operators are

then
e, e Pt (10.4.22)

respectively. For A’ = %, the exponential e/® has weight —%lz — 1L
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The operator X corresponding to |0)y satisfies
B(2)Z(0) = 0(z"?), 7(2)=(0) = 0(z'/?) . (10.4.23)

This determines

Y=¢??, h= % . (10.4.24)
Adding the contribution —1 of the bc ghosts, the weight of e~#/2 and of
e~ agree with the values (10.4.5). The R ground state vertex operators
are then

Ve =e %0y, (10.4.25)

with the spin field ® having been defined in eq. (10.3.29).

We need to extend the definition of world-sheet fermion number F to
be odd for f and y. The ultimate reason is that it anticommutes with
the supercurrent Tr and we will need it to commute with the BRST
operator, which contains terms such as yTr. The natural definition for F
is then that it be the charge associated with the current (10.4.9), which
is | for e/?. Again, it is conserved by the OPE. This accounts for the
ghost contributions in eq. (10.2.24). Note that this definition is based on
spin rather than statistics, since the ghosts have the wrong spin-statistics
relation; it would therefore be more appropriate to call F the world-sheet
spinor number.

For completeness we give a general expression for the cocycle for
exponentials of free fields, though we emphasize that for most purposes
the details are not necessary. In general one has operators

exp(iks, - Hy, + ikg - Hg) , (10.4.26)

with the holomorphic and antiholomorphic scalars not necessarily equal
in number. The momenta k take values in some lattice I'. The naive
operator product has the phase of z—*°¥" and for all pairs in T, k ok’ must
be an integer. The notation is as in section 8.4, k ok’ = k; -k} — kg - k.
When k o k’ is an odd integer the vertex operators anticommute rather
than commute. A correctly defined vertex operator is

Ci(ap)e explikr, - Hr, + ikg - HR)? (10.4.27)

with the cocycle Ci defined as follows. Take a set of basis vectors k, for
I'; that is, I' consists of the integer linear combinations n,k,. Similarly
write the vector of zero-mode operators in this basis, og = og,ky, Then for
k = nyk,,

Ci(op) = exp (m’ > nyoopky o kﬁ> . (10.4.28)

o>p
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This generalizes the simple case (8.2.22). The reader can check that vertex
operators with even k o k now commute with all vertex operators, and
those with odd k o k anticommute among themselves. Note that a cocycle
has no effect on the commutativity of a vertex operator with itself, so an
exponential must be bosonic if k o k is even and fermionic if k o k is odd.

10.5 Physical states

In the bosonic string we started with a (diff xWeyl)-invariant theory.
After fixing to conformal gauge we had to impose the vanishing of the
conformal algebra as a constraint on the states. In the present case there
is an analogous gauge-invariant form, and the superconformal algebra
emerges as a constraint in the gauge-fixed theory. However, it is not
necessary to proceed in this way, and it would require us to develop some
machinery that in the end we do not need. Rather we can generalize
directly in the gauge-fixed form, defining the superconformal symmetry to
be a constraint and proceeding in parallel to the bosonic case to construct
a consistent theory. We will first impose the constraint in the old covariant
formalism, and then in the BRST formalism.

0CQ

In this formalism, developed for the bosonic string in section 4.1, one
ignores the ghost excitations. We begin with the open string, imposing the
physical state conditions

LMy)=0,n>0, GMy)=0,r=>0. (10.5.1)

Only the matter part of any state is nontrivial — the ghosts are in their
ground state — and the superscript ‘m’ denotes the matter part of each
generator. There are also the equivalence relations

Lyly)=0,n<0, GM=0,r<0. (10.5.2)

The mass-shell condition can always be written in terms of the total
matter plus ghost Virasoro generator, which is the same as the world-
sheet Hamiltonian H because the total central charge is zero:

Loly) =Hl|yp)=0. (10.5.3)
In ten flat dimensions this is

1

’.2

H= °‘P2+N_§ (NS) (10.5.4)
«p>+N (R)



10.5 Physical states 21

The zero-point constants from the ghosts and longitudinal oscillators have
canceled as usual, leaving the contribution of the transverse modes,

NS: 8<_214_418) =—%, R: 8(—214—|—214> =0. (10.5.5)
For the tachyonic and massless levels we need only the terms

G = (2d)Ppuply + ..., (10.5.6a)

GPiy = 20) Pppliy n+ (10.5.6b)

The NS sector works out much as in the bosonic string. The lowest state is
|0; k)ng. labeled by the matter state and momentum. The only nontrivial
condition is from Ly, giving

= =L (10.5.7)
20/
This state is a tachyon. It has exp(niF) = —1, where F was given in
eq. (10.2.24). The first excited state is
The nontrivial physical state conditions are
0 = Lole;k)ng = 2'k*[e; k) » (10.5.9a)
0 = Glesk)ns = (20) %k - €0 k) s (10.5.9b)
while
G™ 15105 k)ns = (2)" 2k - p_1 205 k) s (10.5.10)
is null. Thus
k=0, e k=0, e"=e+ k. (10.5.11)

This state is massless, the half-unit of excitation canceling the zero-point
energy, and has exp(niF) = +1. Like the first excited state of the bosonic
string it is a massless vector, with D — 2 spacelike polarizations. The
constraints have removed the unphysical polarizations of y*, just as for
X* in the bosonic case.

In the R sector the lowest states are

lusk)g = I8;k)pus. (10.5.12)

Here ug is the polarization, and the sum on s is implicit. The nontrivial
physical state conditions are

0 = Lolu;k)p = o/k*|u;k)g , (10.5.13a)
0 = Gu;k)g = o«/1/2|8';k) gk - Tystts . (10.5.13b)
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Table 10.2. Massless and tachyonic open string states.

sector SO(8) spin m?

NS+ 8, 0

NS— 1 —1/2d
R+ 8 0
R— 8 0

The ground states are massless because the zero-point energy vanishes in
the R sector. The G’ condition gives the massless Dirac equation

k-Tysus =0, (10.5.14)

which was our original goal in introducing the superconformal algebra.
The G§' condition implies the Ly condition, because G% = L, in the critical
dimension and the ghost parts of Gy annihilate the ghost vacuum.

In ten dimensions, massless particle states are classified by their behavior
under the SO(8) rotations that leave the momentum invariant. Take a
frame with kg = kq. In the NS sector, the massless physical states are
the eight transverse polarizations forming the vector representation 8, of
SO(8). In the R sector, the massless Dirac operator becomes

koT® + ki Tt = —ky TOTT! — 1) = =2k T(So — 3) . (10.5.15)
The physical state condition is then
(So — 1)Is,0;k)qus =0, (10.5.16)

so precisely the states with sy = —{—% survive. As discussed in section B.1,
we have under SO(9,1) —» SO(1,1) x SO(8) the decompositions

16 > (+1.8)+(—13.8), (10.5.17a)
16' — (+5.8)+(—1.8). (10.5.17b)

Thus the Dirac equation leaves an 8 with exp(niF) = +1 and an 8 with
exp(niF) = —1.

The tachyonic and massless states are summarized in table 10.2. The
open string spectrum has four sectors, according to the periodicity v
and the world-sheet fermion number exp(niF). We will use the notation
NS+ and R+ to label these sectors. We will see in the next section that
consistency requires us to keep only certain subsets of sectors, and that
there are consistent string theories without the tachyon.
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Table 10.3. Products of SO(8) representations appearing at the massless level of
the closed string. The R—NS sector has the same content as the NS—R sector.

sector SO(8) spin tensors dimensions
(NS+,NS+) 8, x 8, = [0]+[2] +(2) = 1+28435
(R+,R+) 8 x8 = [0]+[2]+[4] = 1+28+35,
(R+,R—) 8 x 8 = [1]+[3] = 8, +56
(R—R-) 8 x§ = [0]+R2]+[4- = 1+28+35_
(NS+,R+) 8, x8 = 8+56
(NS+,R—) 8 x§ = 8+56

Closed string spectrum

The closed string is two copies of the open string, with the momentum
rescaled k — %k in the generators. With v, ¥ taking the values 0 and %, the

mass-shell condition can be summarized as

/
P =N—v=N—7. (10.5.18)
4

The tachyonic and massless closed string spectrum is obtained by com-
bining one left-moving and one right-moving state, subject to the equal-
ity (10.5.18).

The (NS—NS—) sector contains a closed string tachyon with m? =
—2/a/. At the massless level, combining the various massless left- and
right-moving states from table 10.2 leads to the SO(8) representations
shown in table 10.3. Note that level matching prevents pairing of the
NS— sector with any of the other three. As in the bosonic string, vector
times vector decomposes into scalar, antisymmetric tensor, and traceless
symmetric tensor denoted (2). The products of spinors are discussed in
section B.1.

The 64 states in 8, x 8 and 8, x 8 each separate into two irreducible
representations. Denoting a state in 8, x 8 by [i,s), we can form the eight
linear combinations

li, )T, . (10.5.19)

These states transform among themselves under SO(8), and they are in
the 8’ representation because the chirality of the loose index s’ is opposite
to that of s. The other 56 states form an irreducible representation 56. The
product 8, x 8 works in the same way. Note that there are several cases of
distinct representations with identical dimensions: at dimension 8 a vector
and two spinors, at dimension 56 an antisymmetric rank 3 tensor and two
vector-spinors, at dimension 35 a traceless symmetric rank 2 tensor and
self-dual and anti-self-dual rank 4 tensors.



24 10 Type I and type 11 superstrings

BRST quantization

From the general structure discussed in chapter 4, in particular the expres-
sion (4.3.14) for the BRST operator for a general constraint algebra, the
BRST operator can be constructed as a simple extension of the bosonic
one:

1
QB 2713 %(dz ]B —dz ]B) (10520)

where
H m m 1 g g
jg = TR+ 7T +§(cT +7T§)

3
=cTg +yTg + bcoc + = 8c)ﬁy + fc(ﬁﬁ)y — Zcﬁ@y —by?,
(105 21)

and the same on the antiholomorphic side. As in the bosonic case, this is
a tensor up to an unimportant total derivative term.
The BRST current has the essential property

j8(z)b(0) ~ ...+ %TB(O) . js(2)BO) ~ ... + %TF(O) . (10.5.22)

so that the commutators of Qg with the b, f ghosts give the corresponding
constraints.> In modes,

{QBabn} =Ly, [QBa ﬁr] =G, . (10.5.23)

From these one can verify nilpotence by the same steps as in the bosonic
case (exercise 4.3) whenever the total central charge vanishes. Thus, we
can replace some of the spacelike X*y* SCFTs with any positive-norm
SCFT such that the total matter central charge is ¢™ = ¢™ = 15. The
BRST current must be periodic for the BRST charge to be well defined.
The supercurrent of the SCFT must therefore have the same periodicity,
R or NS, as the y#, 8, and y. The expansion of the BRST operator is

1
Op = Zc—m m T+ ZV— G — Z 2( —mb_ypnCCpt

m,n

+ Z|: 21’ - )gﬁfmfrcm'})rg - gbfmymfr“/r2 + agCO 5
(10.5.24)

where m and n run over integers and r over (integers + v). The ghost
normal ordering constant is as in eq. (10.4.5).

3 The befy theory actually has a one-parameter family of superconformal symmetries, related
by rescaling § — xf and y — x~'y. The general BRST construction (4.3.14) singles out
the symmetry (10.1.21); this is most easily verified by noting that it correctly leads to the
OPEs (10.5.22).
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The observable spectrum is the space of BRST cohomology classes. As
in the bosonic theory, we impose the additional conditions

boly) = Loly) =0 . (10.5.25)

In addition, in the R sector we impose

Boly) = Goly) =0, (10.5.26)

the logic being the same as for (10.5.25). The reader can again work out
the first few levels by hand, the result being exactly the same as for OCQ.
The no-ghost theorem is as in the bosonic case. The BRST cohomology
has a positive definite inner product and is isomorphic to OCQ and to the
transverse Hilbert space #+, which is defined to have no o1, %, b, ¢, B,
or y excitations. The proof is a direct imitation of the bosonic argument
of chapter 4.

We have defined exp(niF) to commute with Q. We can therefore
consider subspaces with definite eigenvalues of exp(niF) and the no-ghost
theorem holds separately in each.

10.6 Superstring theories in ten dimensions

We now focus on the theory in ten flat dimensions. For the four sectors
of the open string spectrum we will use in addition to the earlier notation
NS+, R+ the notation

(o, F) (10.6.1)
where the combination
a=1—2v (10.6.2)

is 1 in the R sector and 0 in the NS sector. Both « and F are defined
only mod 2. The closed string has independent periodicities and fermion
numbers on both sides, and so has 16 sectors labeled by

(0, F, & F) . (10.6.3)
Actually, six of these sectors are empty: in the NS— sector the level
Lo —o/p?/4 is half-integer, while in the sectors NS+, R+, and R— it is an
integer. It is therefore impossible to satisfy the level-matching condition
Lo = Lo if NS— is paired with one of the other three.

Not all of these states can be present together in a consistent string
theory. Consider first the closed string spectrum. We have seen that
the spinor fields have branch cuts in the presence of R sector vertex
operators. Various pairs of vertex operators will then have branch cuts
in their operator products — they are not mutually local. The operator F
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counts the number of spinor fields in a vertex operator, so the net phase
when one vertex operator circles another is

exp ni(chz — Fhoy — Fl&z + F2&1> . (10.6.4)

If this phase is not unity, the amplitude with both operators cannot be
consistently defined.

A consistent closed string theory will then contain only some subset
of the ten sectors. Thus there are potentially 2!° combinations of sectors,
but only a few of these lead to consistent string theories. We impose three
consistency conditions:

(a) From the above discussion, all pairs of vertex operators must be
mutually local: if both (oy, Fy,81, F1) and (o, F2, 8, F>) are in the
spectrum then

Fion — Fhoq —F1&2+F25(1 €27 . (10.6.5)

(b) The OPE must close. The parameter « is conserved mod 2 under
operator products (for example, R x R = NS), as is F. Thus if
(a1, F1,81, F1) and (o, F, 8, F>) are in the spectrum then so is

(o1 + 02, F1 + Fo, 81 + 80, F1 + ) . (10.6.6)

(c) For an arbitrary choice of sectors, the one-loop amplitude will not
be modular-invariant. We will study modular invariance in the next
section, but in order to reduce the number of possibilities it is useful
to extract one simple necessary condition:

There must be at least one left-moving R sector (¢ = 1) and at least
one right-moving R sector (& = 1).

We now solve these constraints. Assume first that there is at least one
R—NS sector, (o, &) = (1,0). By the level-matching argument, it must either
be (R+,NS+) or (R—,NS+). Further, by (a) only one of these can appear,
because the product of the corresponding vertex operators is not single-
valued. By (c), there must also be at least one NS—-R or R—R sector, and
because R-NS x R—R = NS-R, there must in any case be an NS-R
sector. Again, this must be either (NS+,R+) or (NS+,R—), but not both.
So we have four possibilities, (R+,NS+) or (R— ,NS+) with (NS+,R+) or
(NS+,R—). Applying closure and single-valuedness leads to precisely two
additional sectors in each case, namely (NS+,NS+) and one R-R sector.
The spectra which solve (a), (b), and (c) with at least one R—NS sector are

IIB: (NS+NS+) (R+NS+) (NS+R+) (R+.R+),
IIA: (NS+NS+) (R+NS+) (NS+R—) (R+R—),
IIA’: (NS+NS+) (R—NS+) (NS+R+) (R—R+),
IIB": (NS+NS+) (R—NS+) (NS+R—) (R—R—).
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Notice that none of these theories contains the tachyon, which lives in the
sector (NS—,NS—).

These four solutions represent just two physically distinct theories. In
the ITA and ITA’ theories the R-R states have the opposite chirality on
the left and the right, and in the IIB and IIB’ theories they have the same
chirality. A spacetime reflection on a single axis, say

X2 5 X2 , q)z — —1p2 , 11)2 — —17)2 , (10.6.7)

leaves the action and the constraints unchanged but reverses the sign
of exp(niF) in the left-moving R sectors and the sign of exp(niF) in
the right-moving R sectors. At the massless level this switches the Weyl
representations, 16 < 16'. It therefore turns the IIA’ theory into I1A, and
IIB’ into IIB.

Now suppose that there is no R—NS sector. By (c), there must be at
least one R—R sector. In fact the combination of (NS+,NS+) with any
single R—R sector solves (a), (b), and (c), but these turn out not to be
modular-invariant. Proceeding further, one readily finds the only other
solutions,

0A: (NS+NS+) (NS—NS—) (R+,R—) (R—R+),
0B: (NS+,NS+) (NS—NS—) (R+,R+) (R—R—).

These are modular-invariant, but both have a tachyon and there are no
spacetime fermions.

In conclusion, we have found two potentially interesting string theories,
the type I11A and IIB superstring theories. Referring back to table 10.3, one
finds the massless spectra

HA: [0]+ [+ +[B]+Q2)+8+8 +56+56, (10.6.8a)

IIB:  [012+ 21>+ [4]4+ + (2) + 8° + 56 . (10.6.8b)
The IIB theory is defined by keeping all sectors with
exp(niF) = exp(niF) = +1 , (10.6.9)
and the ITA theory by keeping all sectors with
exp(niF) = +1, exp(niF) = (—1)* . (10.6.10)

This projection of the full spectrum down to eigenspaces of exp(niF) and
exp(niF) is known as the Gliozzi-Scherk—Olive (GSO) projection. In the
ITA theory the opposite GSO projections are taken in the NS-R and R—
NS sectors, so the spectrum is nonchiral. That is, the spectrum is invariant
under spacetime parity, which interchanges 8 < 8 and 56 < 56’. On
the world-sheet, this symmetry is the product of spacetime parity and
world-sheet parity. In the IIB theory the same GSO projection is taken in
each sector and the spectrum is chiral.
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The type O theories are formed by a different method: for example, 0B
is defined by keeping all sectors with

a=23d, exp(niF)=exp(niF). (10.6.11)

The projections that define the type II theories act separately on the left-
and right-moving spinors, while the projections that define the type 0
theory tie the two together. The latter are sometimes called diagonal GSO
projections.

The most striking features of the type II theories are the massless
vector—spinor gravitinos in the NS—R and R—-NS sectors. The terminology
type II refers to the fact that these theories each have two gravitinos. In
the ITA theory the gravitinos have opposite chiralities (I" eigenvalues), and
in the IIB theory they have the same chirality. The NS—R gravitino state is

W 510585k) s gitus - (10.6.12)
The physical state conditions are
k* = kFuys = k- Tty =0, (10.6.13)
as well as the equivalence relation
Ups = s + ks - (10.6.14)

We have learned that such equivalence relations are the signature of a
local spacetime symmetry. Here the symmetry parameter (s is a spacetime
spinor so we have local spacetime supersymmetry. In flat spacetime there
will be a conserved spacetime supercharge QZ, where A distinguishes the
symmetries associated with the two gravitinos, and s is a spinor index of
the same chirality as the corresponding gravitino. Thus the ITA theory has
one supercharge transforming as the 16 of SO(9, 1) and one transforming
as the 16/, and the II1B theory has two transforming as the 16.
The gravitino vertex operators are

Vse_&q),ueik-X e Pty e X (10.6.15)

The operators 7" and 7, defined in eq. (10.4.25), have weights (1,0)
and (0,1) and so are world-sheet currents associated with the spacetime
supersymmetries.

This is our first encounter with spacetime supersymmetry, and the reader
should now study the appropriate sections of appendix B. Section B.2
gives an introduction to spacetime supersymmetry. Section B.4 discusses
antisymmetric tensor fields, which we have in the massless IIA and IIB
spectra. Section B.5 briefly discusses the ITA and IIB supergravity theories
which describe the low energy physics of the IIA and IIB superstrings.
In each of the type II theories, there is a unique massless representation,
which has 28 = 256 states. The massless superstring spectra are the
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massless representations of IIA and IIB d = 10 spacetime supersymmetry
respectively. This is to be expected: if all requirements for a consistent
string theory are met (and they are) then the existence of the gravitinos
implies that the corresponding supersymmetries must be present.

The reader may feel that the construction in this section, which is the
Ramond—Neveu—Schwarz (RNS) form of the superstring, is somewhat ad
hoc. In particular one might expect that the spacetime supersymmetry
should be manifest from the start. There is certainly truth to this, but
the existing supersymmetric formulation (the Green—Schwarz superstring)
seems to be even more unwieldy.

Note that the world-sheet and spacetime supersymmetries are distinct,
and that the connection between them is indirect. The world-sheet super-
symmetry parameter 7(z) is a spacetime scalar and world-sheet spinor,
while the spacetime supersymmetry parameter {5 is a spacetime spinor
and world-sheet scalar. The world-sheet supersymmetry is a constraint in
the world-sheet theory, annihilating physical states. The spacetime super-
symmetry is a global symmetry of the world-sheet theory, giving relations
between masses and amplitudes, though it becomes a local symmetry in
spacetime.

Let us note one more feature of the GSO projection. In bosonized
form, all the R sector vertex operators have odd length-squared and all
the NS sector vertex operators have even length-squared, in terms of the
o product defined in section 10.4. This can be seen at the lowest levels for
the operators (10.4.22) and (10.4.25), the tachyon having been removed by
the GSO projection. By the remark at the end of section 10.4, the space-
time spin is then correlated with the world-sheet statistics. In fact, this
is the same as the space-time statistics. The world-sheet statistics governs
the behavior of the world-sheet amplitude under simultaneous exchange
of world-sheet position, spacetime momentum, and other quantum num-
bers. After integrating over position, this determines the symmetry of the
spacetime S-matrix. The result is the expected spacetime spin-statistics
connection. Note that operators with the wrong spin-statistics connection,
such as yp* and e, appear at intermediate stages but the projections
that produce a consistent theory also give the spin-statistics connection.
This is certainly a rather technical way for the spin-statistics theorem to
arise, but it is worth noting that all string theories seem to obey the usual
spin-statistics relation.

Unoriented and open superstrings

The IIB superstring, with the same chiralities on both sides, has a world-
sheet parity symmetry Q. We can gauge this symmetry to obtain an
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unoriented closed string theory.* In the NS—NS sector, this eliminates the
[2], leaving [0] + (2), just as it does in the unoriented bosonic theory.
The fermionic NS-R and R—-NS sectors of the IIB theory have the same
spectra, so the Q projection picks out the linear combination (NS-R) +
(R-NS), with massless states 8 + 56. In particular, one gravitino survives
the projection. Finally, the existence of the gravitino means that there
must be equal numbers of massless bosons and fermions, so a consistent
definition of the world-sheet parity operator must select the [2] from the
R-R sector to give 64 of each. One can understand this as follows. The
R-R vertex operators

VsV g (10.6.16)

transform as 8 x 8 = [0] + [2] + [4]+. The [0] and [4];+ are symmetric
under interchange of s and s’ and the [2] antisymmetric (one can see this
by counting states, 36 versus 28, or in more detail by considering the S,
eigenvalues of the representations). World-sheet parity adds or subtracts
a tilde to give

VAV g ==V gV, (10.6.17)

where the final sign comes from the fermionic nature of the R vertex
operators. Thus, projecting onto Q = +1 picks out the antisymmetric [2].
The result is the type I closed unoriented theory, with spectrum

0] +[2] +(2)+8 +56 = 1+28+35+8 +56. (10.6.18)

However, this theory by itself is inconsistent, as we will explain further
below.

Now consider open string theories. Closure of the OPE in open + open
— closed scattering implies that any open string that couples consistently
to type I or type II closed superstrings must have a GSO projection in
the open string sector. The two possibilities and their massless spectra are

I: NS+, R+=8,+8,
I: NS+, R—=8,+8.

Adding Chan—Paton factors, the gauge group will again be U(n) in the
oriented case and SO(n) or Sp(k) in the unoriented case. The 8 or 8 spinors
are known as gauginos because they are related to the gauge bosons by
supersymmetry. They must be in the adjoint representation of the gauge
group, like the gauge bosons, because supersymmetry commutes with the
gauge symmetry.

4 The analogous operation in the ITA theory would be to gauge the symmetry which is the product
of world-sheet and spacetime parity, but this breaks some of the Poincaré invariance. We will
encounter this in section 13.2.
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We can already anticipate that not all of these theories will be con-
sistent. The open string multiplets, with 16 states, are representations of
d = 10, N = 1 supersymmetry but not of N = 2 supersymmetry. Thus
the open superstring cannot couple to the oriented closed superstring
theories, which have two gravitinos.’ It can only couple to the unoriented
closed string theory (10.6.18) and so the open string theory must also
be unoriented for consistent interactions. With the chirality (10.6.18), the
massless open string states must be 8, + 8. This is required by spacetime
supersymmetry, or by conservation of exp(niF) on the world-sheet. The
result is the unoriented type I open plus closed superstring theory, with
massless content

[0] + [2] + (2) + 8 + 56 + (8, + 8)s0(n) or Spik) - (10.6.19)

There is a further inconsistency in all but the SO(32) theory. We will
see in section 10.8 that for all other groups, as well as the purely closed
unoriented theory, there is a one-loop divergence and superconformal
anomaly. We will also see, in chapter 12, that the spacetime gauge and
coordinate symmetries have an anomaly at one loop for all but the SO(32)
theory.

Thus we have found precisely three tachyon-free and nonanomalous
string theories in this chapter: type IIA, type IIB, and type I SO(32).

10.7 Modular invariance

Superstring interactions are the subject of chapter 12, but there is
one important amplitude that involves no interactions, only the string
spectrum. This is the one-loop vacuum amplitude, studied for the bosonic
string in chapter 7. We study the vacuum amplitude for the closed super-
string in this section and for the open string in the next.

We make the guess, correctly it will turn out, that the torus amplitude
is again given by the Coleman—Weinberg formula (7.3.24) with the region
of integration replaced by the fundamental region for the moduli space of
the torus:

lek ) 2 (2 m2
10/ 4T2/ = 10 (—1)Fig? 6Hmd)/age 624md)/4 (10,7 1)

with ¢ = exp(2rmit). We have included the minus sign for spacetime

5 At the world-sheet level the problem is that the total derivative null gravitino vertex operators
give rise to nonzero world-sheet boundary terms. Only one linear combination of the two null
gravitinos decouples, so we must make the world-sheet parity projection in order to eliminate
the other.
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fermions from the Coleman—Weinberg formula, distinguishing the space-
time fermion number F from the world-sheet fermion number F. The
masses are given in terms of the left- and right-moving parts of the
transverse Hamiltonian by

m?> =4H /o', m> =4H"/o . (10.7.2)

The trace includes a sum over the different («, F; &, F) sectors of the
superstring Hilbert space. In each sector it breaks up into a product of
independent sums over the transverse X, y, and { oscillators, and the
transverse Hamiltonian similarly breaks up into a sum. Each transverse X
contributes as in the bosonic string, the total contribution of the oscillator
sum and momentum integration being as in eq. (7.2.9),

o0 o0 N
Zx(t) = (4n*o/r) P (qq) 1/ H( > q"N”é"N">

n=1 NH=N11=1
= (4n’o/12) "2 n(2) 7%, (10.7.3)

where 5(t) = ¢"/>*[}2;(1 — ¢"). In addition there is a factor i(4n0/ty)~!
from the k%! integrations.

For the s, the mode sum in each sector depends on the spatial period-
icity o and includes a projection operator %[1 + exp(wiF)]. Although for
the present we are interested only in R and NS periodicities, let us work

out the partition functions for the more general periodicity (10.3.20),
p(w + 2n) = exp[ni(l — a)] p(w) (10.7.4)

where again o = 1 — 2v. By the definition (10.3.23) of the ground state,
the raising operators are

Yom+(1—a)/2 > lT)—m+(1+m)/2 , M= 1: 29 . (1075)

The ground state weight was found to be /8. Then

Tr, (qH> - q(3a2_1)/24 ﬁ [1 + qm—(l—a)/z} [1 4 gm—(/2] (10.7.6)

m=1

To define the general boundary conditions we have joined the fermions
into complex pairs. Thus we can define a fermion number Q which is
+1 for yp and —1 for . To be precise, define Q to be the H-momentum
in the bosonization (10.3.10) so that it is conserved by the OPE. The
bosonization (10.3.25) then gives the charge of the ground state as o/2.
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Thus we can define the more general trace

Z%(x) = Tr, [qH exp(n-iﬁQ)] (10.7.7a)
= ¢ exp(ninf/2)

o0
x TT [t + exp(mif)g"~=/2] [1 + exp(—mif)g" 1 +*/]
m=1 (10.7.7b)

_ o/2
- ()9[ﬁ/2}(0 7). (10.7.7¢)

The notation in the final line was introduced in section 7.2, but our
discussion of these functions in the present volume will be self-contained.

The charge Q modulo 2 is the fermion number F that appears in the
GSO projection. Thus the traces that are relevant for the ten-dimensional
superstring are

Z%(t) = Tryg [qH] , (10.7.8a)
Z%(t) = Trng [exp(mF) } , (10.7.8b)
Z(1) = TrR[ H} , (10.7.8¢)
Z4(1) = Tr [exp(mF)q } (10.7.8d)

We should emphasize that these traces are for a pair of dimensions.

Tracing over all eight fermions, the GSO projection keeps states with
exp(niF) = +1. This is Z,(t), where

1
2
The half is from the projection operator, the minus sign in the second
term is from the ghost contribution to exp(niF), and the minus signs in

the third and fourth (R sector) terms are from spacetime spin-statistics.
For ¢ in the IIB theory one obtains the conjugate ZJ(’L’)*. In the ITA

theory, ' = —1 in the R sector so the result is Z,(0)". In all,

ZE(r) =

; Z%0)* = 2% = Zh()* FZh (0 . (10.7.9)

. d*t .
F 1612/ t5

We know from the discussion of bosonic amplitudes that modular in-
variance is necessary for the consistency of string theory. In the superstring
this works out in an interesting way. The combination d*t/ r% is modular-
invariant, as is Zx. To understand the modular transformations of the
fermionic traces, note that Z% is given by a path integral on the torus
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over fermionic fields y with periodicities

P(w + 21) = —exp(—mnia) p(w) , (10.7.11a)
p(w =+ 2nt) = —exp(—mniff) p(w) . (10.7.11b)

This gives
p[w + 2n(t + 1)] = exp[—ri(o + )] p(w) . (10.7.12)

Naively then, Z%(t) = Z%p—1(t + 1), since both sides are given by the
same path integral. Also, defining w' = w/7 and v’ (W) = p(w),

p'(w 4 2n) = —exp(—mnif) y'(w') (10.7.13a)
p'(w —2n/1) = —exp(mio) p' (W) , (10.7.13b)

so that naively Z%(7) = ZF_,(—1/7). It is easy to see that by these
two transformations one can always reach a path integral with o = 1,
accounting for rule (¢) from the previous section.

The reason these modular transformations are naive is that there is
no diff-invariant way to define the phase of the path integral for purely
left-moving fermions. For left- plus right-moving fermions with matching
boundary conditions, the path integral can be defined by Pauli—Villars or
other regulators. This is the same as the absolute square of the left-moving
path integral, but leaves a potential phase ambiguity in that path integral
separately.® The naive result is correct for 1 — —1/7, but under 7 — 7+ 1
there is an additional phase,

Z%(t) = Z"_(—1/7)
= exp[—mi(3e? — 1)/12] Z%p—1(r + 1) . (10.7.14)

The © — 7+ 1 transformation follows from the explicit form (10.7.7b),
the phase coming from the zero-point energy with the given boundary
conditions. The absence of a phase in 1 — —1/t can be seen at once for
7 = i. Note that Z | actually vanishes due to cancellation between the two
R sector ground states, but we have assigned a formal transformation law
for a reason to be explained below.

The phase represents a global gravitational anomaly, an inability to define
the phase of the path integral such that it is invariant under large coor-
dinate transformations. Of course, a single left-moving fermion has ¢ # ¢
and so has an anomaly even under infinitesimal coordinate transforma-
tions, but the global anomaly remains even when a left- and right-moving
fermion are combined. For example, the product Zlo(r)*Zoo(r) has no
infinitesimal anomaly and should come back to itself under 7 — 7+ 2,

© The phase factor is a holomorphic function of 7, because the Z° are. Since it has magnitude 1,
this implies that it is actually independent of .
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but in fact picks up a phase exp(—ni/2). This phase arises from the level
mismatch, the difference of zero-point energies in the NS and R sectors.

The reader can verify that with the transformations (10.7.14), the combi-
nations Zl:% are invariant under 1 — —1/7 and are multiplied by exp(2ni/3)
under 1 — 7 4+ 1. Combined with the conjugates from the right-movers,
the result is modular-invariant and the torus amplitude consistent. It is
necessary for the construction of this invariant that there be a multiple of
eight transverse fermions. Recall from section 7.2 that invariance under
T — 7+ 1 requires that Ly — Lo be an integer for all states. For a single
real fermion in the R—NS sector the difference in ground state energies is
%. For eight fermions this becomes %, so that states with an odd number
of NS excitations (as required by the GSO projection) are level-matched.
Note also that modular invariance forces the minus signs in the combi-
nation (10.7.9), in particular the relative sign of (Z%)* and (Z))* which
corresponds to Fermi statistics for the R sector states.

In the type O superstrings the fermionic trace is

1 —
125N + 2@ +12h@ N F 1z @ (107.15)

with N = 8. This is known as the diagonal modular invariant, and it is
invariant for any N because the phases cancel in the absolute values.

The type 11 theories have spacetime supersymmetry. This implies equal
numbers of bosons and fermions at each mass level, and so Z7, should
vanish in these theories by cancellation between bosons and fermions.
Indeed it does, as a consequence of Z!; = 0 and the ‘abstruse identity’ of
Jacobi,

Z%0)* = 2% = Z2h(0)* =0. (10.7.16)

The same cancellation occurs in the open and unoriented theories.

Although we have focused on the path integral without vertex operators,
amplitudes with vertex operators must also be modular-invariant. In the
present case the essential issue is the path integral measure, and one can
show by explicit calculation (or by indirect arguments) that the modular
properties are the same with or without vertex operators. However, with a
general vertex operator insertion the « = § = 1 path integral will no longer
vanish, nor will the sum of the other three. The general amplitude will
then be modular-invariant provided that the vacuum is modular-invariant
without using the vanishing of Z!| or the abstruse identity (10.7.16) — as
we have required.

More on ¢c =1 CFT

The equality of the bosonic and fermionic partition functions (10.3.17)
and (10.3.18) was one consequence of bosonization. These partition func-
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tions are not modular-invariant and so do not define a sensible string
background. The fermionic spectrum consists of all NS—NS states. The
bosonic spectrum consists of all states with integer kg and kg ; this is
not the spectrum of toroidal compactification at any radius. The simplest
modular-invariant fermionic partition function is the diagonal invariant,
taking common periodicities for the left- and right-movers. In terms of
the states, this amounts to projecting

a=23a, exp(niF)=exp(niF). (10.7.17)

The NS—NS sector consists of the local operators we have been consider-
ing, and the chirality projection exp(niF) = exp(niF) means that on the
bosonic side kg = k;, mod 2. The bosonic equivalents for the R—R sector
states have half-integral kg and k; with again kg = k; mod 2. In all,

(kn.kp) = (n1,m) or (ng + L.my + 1) (10.7.18)

for integers n; and ny such that ny — ny € 2Z. This is the spectrum of a
boson on a circle of radius 2, or 1 by T-duality, which we see is equivalent
to a complex fermion with the diagonal modular-invariant projection.
(The dimensionless radius r for the H scalar corresponds to the radius
R = r(o//2)V/? for X*, so r = 21/ is self-dual.)

To obtain an equivalent fermionic theory at arbitrary radius, add

OHOH = —pyipip (10.7.19)

to the world-sheet Lagrangian density. The H theory is still free, but
the equivalent fermionic theory is now an interacting field theory known
as the Thirring model. The Thirring model has a nontrivial perturbation
series but is solvable precisely because of its equivalence to a free boson.
Actually, for any rational r, the bosonic theory is also equivalent to a firee
fermion theory with a more complicated twist (exercise 10.15).

Another interesting CFT consists of the set of vertex operators with

krp=m/3Y2, kp=n/3"?, m—ne3Z. (10.7.20)

(This discussion should actually be read after section 11.1.) It is easy to
check that this has the same properties as the set of vertex operators with
integer kg . That is, it is a single-valued operator algebra, but does not
correspond to the spectrum of the string for any value of r, and does not
have a modular-invariant partition function. Its special property is the
existence of the operators

exp[iisl/zH(z)} , exp[iisl/zﬁ(z)} . (10.7.21)

These have weights (%,O) and (0, %): they are world-sheet supercurrents!
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Fig. 10.1. (a) Cylinder in the limit of small t. (b) Analogous field theory graph.

This CFT has (2,2) world-sheet supersymmetry. The standard representa-
tion, in which the supercurrent is quadratic in free fields, has two free X
and two free y fields for central charge 3. This is rather more economical,
with one free scalar and central charge 1. The reader can readily check
that with appropriate normalization the supercurrents generate the N = 2
OPE (11.1.4).

This theory becomes modular-invariant if one twists by the symmetry

~ Ny 2n
(H,H) > (H,H)—I—W(l,—l) . (10.7.22)
This projects the spectrum onto states with m —n € 6Z and adds in a
twisted sector with m,n € Z + % The resulting spectrum is the string
theory at r = 2 x 31/2, This twist is a diagonal GSO projection, in that the
supercurrent is odd under the symmetry.

10.8 Divergences of type I theory

The cylinder, Mobius strip, and Klein bottle have no direct analog of
the modular group, but the condition that the tadpole divergences cancel
among these three graphs plays a similar role in restricting the possible
consistent theories. The cancellation is very similar to what we have
already seen in the bosonic theory in chapter 7. The main new issue is
the inclusion of the various sectors in the fermionic path integral, and in
particular the separate contributions of closed string NS-NS and R-R
tadpoles.

The cylinder

Consider first the cylinder, shown in figure 10.1(a). One can immedi-
ately write down the amplitude by combining the bosonic result (7.4.1),
converted to ten dimensions, with the fermionic trace (10.7.9) from one
side of the type II string. We write it as a sum of two terms,

Zey,=Zo,0+Zoy s (10.8.1)
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where

) © dt 5 . .
Zeo = Vor? | Q(snzoc’t) (i) [2%0* — Z (o]
(10.8.22)

Zc,1 = 1V10n / f(STC 1’](lt) { Zol(it)4 —le(it)4]
(10.8.2b)

Note that the GSO and Q projection operators each contribute a factor
of % We have separated the terms according to whether exp(niF) appears
in the trace. In Z¢,o it does not, and so the p* are antiperiodic in the
¢? direction. In Zc,; it does appear and the * are periodic. We can
also regard the cylinder as a closed string appearing from and returning
to the vacuum as in figure 10.1(b); we have used this idea in chapters 7
and 8. The periodicities of the yp* mean that in terms of the closed string
exchange, the part Z¢,o comes from NS-NS strings and the part Zc,
from R—R strings.

We know from the previous section that the total fermionic partition
function vanishes by supersymmetry, so that Z¢,1 = —Z¢,0; we concen-
trate then on Zc,o. Using the modular transformations

n(it) =tV 2y(i/t),  Z%(it) = ZP_(i/t) (10.8.3)
and defining s = n/t, this becomes
. Vlon 0 - 4
Zc,o = W/ dsn(is/m)” [Z o(is/m)* — Z% (is/m) }
 Vin?
=i—— 1 — ) 10.8.
AT /0 ds [16 + O(exp(—25))] (10.8.4)

The divergence as s — oo is due to a massless closed string tadpole, which
as noted must be an NS—NS state. Thus we identify this as a dilaton plus
graviton interaction (—G)!/2¢~® coming from the disk, as in the bosonic
string.

However, there is a paradox here: the d = 10, N = 1 supersymmetry
algebra does not allow such a term. Even more puzzling, Z¢,; has an
equal and opposite divergence which must be from a tadpole of an R-R
state, but the only massless R—R state is the rank 2 tensor which cannot
have a Lorentz-invariant tadpole.

One can guess the resolution of this as follows. The type IIB string has
rank n potentials for all even n, with n and 8 — n equivalent by Poincare
duality. The Q projection removes n = 0 and its equivalent n = 8§, as
well as n = 4: all the multiples of four. This leaves n = 2, its equivalent
n=6—and n=10. A 10-form potential C;y can exist in ten dimensions
but its 11-form field strength dCjy is identically zero. The integral of the
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Fig. 10.2. Schematic illustration of cancellation of tadpoles.

potential over spacetime

1o / Cio (10.8.5)

is invariant under 0C;9p = dy¢ and so can appear in the action. Since there
is no kinetic term the propagator for this field is 1/0, and the effect of the
tadpole is a divergence

Ko
0
This must be the origin of the divergence in Zc,;, as indeed a more
detailed analysis does show. The equation of motion from varying Cjy is
just pyp = 0, so unlike the divergences encountered previously this one
cannot be removed by a correction to the background fields. It represents
an actual inconsistency.

(10.8.6)

The Klein bottle

We know from the study of the bosonic string divergences that there is
still the possibility of canceling this tadpole as shown in figure 10.2. The
cylinder, Mobius strip, and Klein bottle each have divergences from the
massless closed string states, the total being proportional to square of the
sum of the disk and RP, tadpoles. The relative size of the two tadpoles
depends on the Chan—Paton factors, and cancels for a particular gauge
group.’

The relation of the Mobius strip and Klein bottle as depicted in fig-
ure 10.2 to the twisted-strip and twisted-cylinder pictures was developed
in section 7.4, and is shown in figure 10.3. In order to sum as in figure 10.2,
one must rescale the surfaces so that the circumference in the ¢ direction

7 In the vacuum amplitude the sum of the NS-NS and R-R divergences is zero for each topology
separately because the trace vanishes by supersymmetry. This is not sufficient, because they will
no longer cancel when vertex operators are added near one end of each surface. The NS-NS and
R-R tadpoles must vanish separately when summed over topologies.
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Fig. 10.3. Two fundamental regions for the Klein bottle. The right- and left-hand
edges are periodically identified, as are the upper and lower edges. In addition
the diagonal arrow shows an orientation-reversing identification. The vertically
hatched region is a fundamental region for the twisted-cylinder picture, as is the
horizontally hatched region for the decription with two crosscaps. As shown by
the arrows, the periodicity of fields in the g;-direction of the latter description
can be obtained by applying the orientation-reversing periodicity twice. The same
picture applies to the Mobius strip, with the right- and left-hand edges boundaries,
and with the range of ¢; changed to «.

and length in the ¢! directions are uniform; we have taken these to be 27
and s respectively. From figures 10.1 and 10.3 it follows that s is related
to the usual modulus ¢ for these surfaces by s = n/t, n/4t, and =n/2t for
the cylinder, M&bius strip, and Klein bottle respectively.

Each amplitude is obtained as a sum of traces, from summing over
the various periodicity conditions and from expanding out the projection
operators. We need to determine which terms contribute to the NS-NS
exchange and which to the R-R exchange by examining the boundary
conditions on the fermions in the world-sheet path integral. On the Klein
bottle the GSO projection operator is

1 +exp(niF) 1+ exp(niF)
2 2

With R = Qexp(nifF + nipF) in the trace, the path integral boundary
conditions are
p(w + 2mit) = —Ryp(w)R™' = —exp(nif) P(w) , (10.8.8a)
P(w + 2mit) = —RPp(W)R™' = —exp(nif)w(w),  (10.8.8b)

. (10.8.7)
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with the usual extra sign for fermionic fields. As indicated by the arrows
in figure 10.3, these imply that

p(w + 4rit) = exp[ni(f + B)] p(w) . (10.8.9)

The NS-NS exchange, from the sectors antiperiodic under o> — ¢2 +4nt,
then comes from traces weighted by Qexp(niF) or Qexp(niF); further,
these two traces are equal. Both NS—NS and R-R states contribute to the
traces, making the separate contributions®

o0
NS-NS: ¢ '3 J[(1+ ¢ " =z%in*, (10.8.10a)

m=1

o0
R-R: —16¢*" J[(1 +¢*™* =—Z'(2i)*, (10.8.10b)
m=1

where g = exp(—2nt).
The full Klein bottle contribution to the NS-NS exchange is then

© dt
Zkoo = iVio / o (anon) S (2in S [Z%2in® — 7y 2in)]

210
- # / dsn(is/m)~ [ZO (is/m)* Z°1(is/n)4}
- 2%
= '8n(8n24) /0 ds [16 4 O(exp(=29))] , (10.8.11)

and Zk, | = —Zk,0. The bosonic part is (7.4.15) converted to D = 10.

The Mobius strip

In the open string Q acts as

Qu*w)Q ™! = pi(n —w) = pHw — =) , (10.8.12)
using the doubling trick (10.2.15). In terms of the modes this is
QurQ~! = exp(—mir) ¥ . (10.8.13)

The phase is imaginary in the NS sector and squares to —1. Thus
Q% = exp(niF) . (10.8.14)

Since exp(niF) = 1 by the GSO projection, this is physically the same as
squaring to the identity, but the combined Q and GSO projections require

8 In evaluating these, note that only states with identical y and { excitations contribute to traces
containing Q. The signs from exp(niF) or exp(wiF) just cancel the signs from anticommuting s
past s, so that all terms in each trace have the same sign. The overall sign in the NS—-NS trace
(positive) can be determined from the graviton, and the overall sign in the R—R trace (negative)
from the argument (10.6.17).
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a single projection operator

1+0Q04+0Q24+ 03
J .

With R = Qexp(nifF) in the trace, the fields have the periodicities

(10.8.15)

pH(w + 4rit) = —exp(nif)p*(w + 2zit — n) = pH(w —2n) . (10.8.16)

It follows that in the R sector of the trace the fields are periodic in the
o2-direction, corresponding to the R—R exchange, while the NS sector of
the trace gives the NS—NS exchange.

It is slightly easier to focus on the R—R exchange, where the traces with
Q and Qexp(niF) sum to

1/3 H[1+ m m _ 4 1/3 H l)m m

m=1 m=1

= Z%Qit)*Z % 2it)* . (10.8.17)
The full Mobius amplitude, rewriting the bosonic part slightly, is

SZ%(2i0)*Z 4 (2it)*
n(2it 8 Z % (2it)*

. ' dt 2 I N—
Zqul = ianl()/ 7(87.5 O(t)
o &t

— 12 25V1() ‘/OO S201(2is/n)4210(2is/n)4
- T 8n(8n2)S Jo n(2is/m)8Z % (2is/m)*
px1%
= foip— 210 i 2 10.8.1
+ 8n(8n2/ / ds[16 + O(exp(=2s))] ,  (108.18)

where the upper sign is for SO(n). We have used (7.4.22) in D = 10.
The total divergence from R—R exchange is

Z) = —i(nF 3202 / ds[16 + O(exp(=2s)] . (10.8.19)

8n (87r2 !
The R-R tadpole vanishes only for the gauge group SO(32). For each
world-sheet topology the NS—NS divergence is the negative of the R—R
divergence, so the dilaton—graviton tadpole also vanishes for SO(32). This
calculation does not determine the sign of the tadpole, but it should
be n F 32. That is, changing from a symplectic to orthogonal projection
changes the sign of RP,, not of the disk. This is necessary for unitarity:
the number of cross-caps is conserved mod 2 when a surface is cut open,
so the sign is not determined by unitarity; this is not the case for the
number of boundaries.
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Exercises

10.1 (a) Find the OPE of Tf with X* and y*.
(b) Show that the residues of the OPEs of the currents (10.1.9) are pro-
portional to the superconformal variations (10.1.10).

10.2 (a) Verify the commutator (10.1.11), up to terms proportional to the
equations of motion.

(b) Verify that the commutator of a conformal and a superconformal
transformation is a superconformal transformation.

10.3 (a) Verify the OPE (10.1.13).
(b) Extend this to the linear dilaton SCFT (10.1.22).

10.4 Obtain the R and NS algebras (10.2.11) from the OPE.

10.5 From the Jacobi identity for the R—NS algebra, show that the coeffi-
cients of the central charge terms in TgTp and Ty Ty are related.

10.6 Express exp(niF) explicitly in terms of mode operators in the R and
NS sectors of the p* CFT.

10.7 Verify that the expectation value (10.3.7) has the appropriate behav-
ior as z; — oo, and show that together with the OPE this determines the
result up to normalization.

10.8 Verify the weight of the fermionic ground state .7, for general real v:
(a) from the commutator (2.7.8);

(b) from the mnemonic of section 2.9.

The most direct, but most time-consuming, method would be to find the
relation between conformal and creation—annihilation normal ordering as
in eq. (2.7.11).

10.9 By any of the above methods, determine the ghost normal ordering
constants (10.4.5).

10.10 Enumerate the states corresponding to each term in the expan-
sion (10.3.19), in both fermionic and bosonic form.

10.11 Find the fermionic operator F, equivalent to eTMH(z) Here are two

possible methods: build F, iteratively in n by taking repeated operator
products with e*H); or deduce i - F, directly from the OPE. Check
your answer by comparing dimensions and fermion numbers.

10.12 By looking at the eigenvalues of S,, verify the spinor decomposi-
tions (10.5.17).

10.13 (a) Verify the operator products (10.5.22).
(b) Using the Jacobi identity as in exercise 4.3, verify nilpotence of Qgp.

10.14 Work out the massless level of the open superstring in BRST quan-
tization.
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10.15 Consider a single complex fermion, with the spectrum summed over
all sectors such that v = ¥ is a multiple of 1/2p for integer p. Impose the
projection that the numbers of left- and right-moving excitations differ by
a multiple of 2p. Show that the spectrum is the same as that of a periodic
scalar at radius r = 1/p. Show that this can be understood as a Z, twist
of the r = 1 theory. A further Z,, twist of the T-dual r = 2p theory
produces an arbitrary rational value.
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The heterotic string

11.1  World-sheet supersymmetries

In the last chapter we were led by guesswork to the idea of enlarging
the world-sheet constraint algebra, adding the supercurrents Tr(z) and
Tr(z). Now let us see how much further we can generalize this idea. We
are looking for sets of holomorphic and antiholomorphic currents whose
Laurent coefficients form a closed algebra.

Let us start by emphasizing the distinction between global symmetries
and constraints. Global symmetries on the world-sheet are just like global
symmetries in spacetime, implying relations between masses and between
amplitudes. However, we are also singling out part of the symmetry to
impose as a constraint, meaning that physical states must be annihilated by
it, either in the OCQ or BRST sense. In the bosonic string, the spacetime
Poincaré invariance was a global symmetry of the world-sheet theory,
while the conformal symmetry was a constraint. Our present interest
is in constraint algebras. In fact we will find only a very small set of
possibilities, but some of the additional algebras we encounter will appear
later as global symmetries.

To begin we should note that the set of candidate world-sheet symmetry
algebras is very large. In the bosonic string, for example, any product of
factors 0"X*" is a holomorphic current. In most cases the OPE of such
currents will generate an infinite number of new currents, which is proba-
bly too big an algebra to be useful. However, even restricting to algebras
with finite numbers of currents leaves an infinite number of possibilities.

Let us focus first on the holomorphic currents. We have seen in sec-
tion 2.9 that in a unitary CFT an operator is holomorphic if and only
if it is of weight (h,0) with h > 0. Although the complete world-sheet
theory with ghosts and timelike oscillators does not have a positive norm,
the spatial part does and so is a unitary representation of the symmetry.

45
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Because i = 0, the spin of the current is also equal to h. Also, by taking
real and imaginary parts we can assume the currents to be Hermitian.
Now let us consider some possibilities:

Spin h > 2. Algebras with spin > 2 currents are often referred to collec-
tively as W algebras. Many are known, including several infinite families,
but there is no complete classification. We will encounter one example in
chapter 15, as a global symmetry of a CFT. There have been attempts
to use some of these as constraint algebras. One complication is that
the commutator of generators is in general a nonlinear function of the
generators, making the construction of the BRST operator nontrivial. The
few examples that have been constructed appear, upon gauge fixing, to
be special cases of bosonic strings. Further, the geometric interpretation,
analogous to the Riemann surface construction used to formulate bosonic
string perturbation theory, is not clear. So we will restrict our attention to
constraint algebras with h < 2. Also, CFTs can have multiple (2,0) cur-
rents as global symmetries. The bosonic string has at least 27, namely the
ghost energy-momentum tensor and the energy-momentum tensor for each
X* field. However, only the sum of these has a geometric interpretation, in
terms of conformal invariance, and so we will assume that there is precisely
one (2,0) constraint current which is the overall energy-momentum tensor.

Spin h not a multiple of % For a current j of spin A,

Jj(2)j(0) ~ 272" (11.1.1)

with a coefficient that can be shown by a positivity argument not to
vanish. This is multi-valued if 2h is not an integer. Although there are
again many known CFTs with such currents, the nonlocality of these
currents leads to substantial complications if one tries to impose them as
constraints. Attempts to construct such fractional strings have led only to
partial results and it is not clear if such theories exist. So we will restrict
our attention to i a multiple of 1.

With these assumptions the possible algebras are very limited, with spins
0, %, 1, %, and 2. Solution of the Jacobi identities allows only the algebras
shown in table 11.1. The first two entries are of course the conformal and
N = 1 superconformal algebras that we have already studied. The three
N = 4 algebras are related. The second algebra is a special case of the
first where the U(1) current becomes the gradient of a scalar. The third is
a subalgebra of the second.

The ghost central charge is determined by the number of currents of
each spin. The central charge for the ghosts associated with a current of
spin h is

cp = (=)™ BERh—1)*—1], (11.1.2a)
¢ = —26 , €30 = +11 , €1 = -2 , Clp = —1 , Co= —2. (1112b)
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Table 11.1. World-sheet superconformal algebras. The number of currents of each
spin and the total ghost central charge are listed, as are the global symmetry gener-
ated by the spin-1 currents and the transformation of the supercharges under these.

3, =N np nyp ng c8 symmetry TF rep.
0 0 0 0 26
1 0 0 0 —15
2 1 0 0 —6 UQ) +1
3 3 1 0 0 SU((2) 3
4 7 4 0 0 SUR)x SUQ2)x U(1) (2,2,0)
4 6 4 1 0 SUR2) x SU(2) (2,2)
4 3 0 0 12 SU(_2) 2

The sign (—1)**! takes into account the statistics of the ghosts, anticom-
muting for integer spin and commuting for half-integer spin. Since the
matter central charge ¢™ is —c&, there is only one new algebra, N = 2,
that can have a positive critical dimension.

Actually, for N = 0 and N = 1 there can also be additional spin-
1 and spin—% constraints, provided the supercurrent is neutral under the
corresponding symmetry. However, these larger algebras are not essentially
different. The negative central charges of the ghosts allow additional
matter, but the additional constraints precisely remove the added states
so that these reduce to the old N = 0 and N = 1 theories. Nevertheless
this construction is sometimes useful, as we will see in section 15.5.

For N = 2 it is convenient to join the two real supercurrents into one
complex supercurrent

TE =2"VYX(Tp +iTk) . (11.1.3)
The N = 2 algebra in operator product form is then
Ty(z)TF(0) ~ %T}(O) + 1aTFi(O) , (11.1.4a)
Z zZ
. 1 1.,
T(2)j(0) ~ 5j(O) +~0j(0), (11.1.4b)
_ 2¢ 2, 2 1.,
TH(z)TF (0) ~ 37 T 2/ + S T(0) + ~0j(0),  (11.140)
TH(z)TH(0) ~ T (2)TF(0) ~ 0, (11.1.4d)
1
JOTEQO) ~ £-TH(0), (11.1.4¢)
. . C
J2J0) ~ 35 - (11.1.4f)
Z

In particular this implies that T;—r and j are primary fields and that TFJ—r
has charge +1 under the U(1) generated by j. The constant ¢ in T# Tf
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and jj must be the central charge. This follows from the Jacobi identity
for the modes, but we will not write out the mode expansion in full until
chapter 19, where we will have more need of it.

The smallest linear representation of the N = 2 algebra has two real
scalars and two real fermions, which we join into a complex scalar Z and
complex fermion . The action is

1 == = -
P /dzz (0222 + pdy + 707 . (11.1.5)
2n
The currents are
= 1
Ty = —0Z07Z — E(@ﬁu) +yoyp), j=-—Py, (11.1.6a)
TF =2Y%ipoZ , Tp =22ipoz . (11.1.6b)

There is also a set of antiholomorphic currents, so this Zyp® CFT has
(2,2) superconformal symmetry.

The central charge of the Zy{ CFT is 3, so two copies will cancel the
ghost central charge. Since there are two real scalars in each CFT the crit-
ical dimension is 4. However, these dimensions come in complex pairs, so
that the spacetime signature can be purely Euclidean, or (2,2), but not the
Minkowski (3, 1). Further, while the theory has four-dimensional transla-
tional invariance it does not have four-dimensional Lorentz invariance —
the dimensions are paired together in a definite way in the supercharges.
Instead the symmetry is U(2) or U(1, 1), complex rotations on the two Zs.
Finally, the spectrum is quite small. The constraints fix two full sets of Zyp{p
oscillators (the analog of the light-cone gauge), leaving none. Thus there is
just the center-of-mass motion of a single state. This has some mathemat-
ical interest, but whether it has physical applications is more conjectural.

Thus we have reduced what began as a rather large set of possible
algebras down to the original N = 0 and N = 1. There is, however, another
generalization, which is to have different algebras on the left- and right-
moving sides of the closed string. The holomorphic and antiholomorphic
algebras commute and there is no reason that they should be the same.
In the open string, the boundary conditions relate the holomorphic and
antiholomorphic currents so there is no analogous construction.

This allows the one new possibility, the (N, N) = (0, 1) heterotic string;
(N,N) = (1,0) would be the same on redefining z — z. We study this new
algebra in detail in the remainder of the chapter. In addition the (0,2)
and (1,2) heterotic string theories are mathematically interesting and may
have a less direct physical relevance.

It should be emphasized that the analysis in this section had many
explicit and implicit assumptions, and one should be cautious in assuming
that all string theories have been found. Indeed, there are some string
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theories that do not fall into this classification. One is the Green—Schwarz
form of the superstring. This has no simple covariant gauge-fixing, but in
the light-cone gauge it is in fact equivalent to the RNS superstring, via
bosonization. We will not have space to develop this in detail, but will see
a hint of it in chapter 12. Another exception is topological string theory,
where in a covariant gauge the constraints do not satisfy spin-statistics as
we have assumed. This string theory has no physical degrees of freedom,
but is of mathematical interest in that its observables are topological.

In fact, we will find the same set of physical string theories from
an entirely different and nonperturbative point of view in chapter 14,
suggesting that all have been found. To be precise, there are other theories
with stringlike excitations, but the theories found in this and the previous
chapter seem to be the only ones which have a limit where they become
weakly coupled, so that a string perturbation theory exists.

11.2 The SO(32) and Eg x Eg heterotic strings

The (0,1) heterotic string combines the constraints and ghosts from the
left-moving side of the bosonic string with those from the right-moving
side of the type II string. We could try to go further and combine the
whole left-moving side of the bosonic string, with 26 flat dimensions, with
the ten-dimensional right-moving side of the type II string. In fact this
can be done, but since its physical meaning is not so clear we will for
now keep the same number of dimensions on both sides. The maximum
is then ten, from the superconformal side. We begin with the fields

XMz,z), PM3), u=0,...,9, (11.2.1)

with total central charge (¢,¢) = (10,15). The ghost central charges add
up to (c8,¢8) = (—26,—15), so the remaining matter has (c¢,¢) = (16,0).
The simplest possibility is to take 32 left-moving spin-% fields

i)y, A=1,...,32. (11.2.2)

The total matter action is
S = ﬁ / d’z (;axﬁaxﬂ + 24004 +¢”a¢#) . (11.2.3)

The operator products are
X*(z,2)X"(0,0) ~ —n“v‘g In|z|?, (11.2.4a)
2A(2))B0) ~ g8l , (11.2.4b)

(11.2.4c)
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The matter energy-momentum tensor and supercurrent are

1 1

Ty = —anﬂaXu — EzAa;LA , (11.2.5a)
N 1= = 1

TB == —an”aXu - EITJ”(?QJH 5 (1125b)
Tr = i(2/o)?proX, . (11.2.5¢)

The world-sheet theory has symmetry SO(9,1) x SO(32). The SO(32),
acting on the /4, is an internal symmetry. In particular, none of the 24 can
have a timelike signature because there is no fermionic constraint on the
left-moving side to remove states of negative norm. So while the action
for the A4 is the same as for the {* of the RNS superstring, the resulting
theory is very different because of the constraints.

The right-moving ghosts are the same as in the RNS superstring, and
the left-movers the same as in the bosonic string. It is straightforward
to construct the nilpotent BRST charge and show the no-ghost theorem,
with any BRST-invariant periodicity conditions. As usual this still holds
if we replace any of the spatial (X*,{*) and the A with a unitary (0,1)
SCFT of the equivalent central charge.

To finish the description of the theory, we need to give the boundary
conditions on the fields and specify which sectors are in the spectrum.
This is more complicated than in the type II strings, because now neither
Poincaré nor BRST invariance require common boundary conditions on
all the 4. Periodicity of Tp only requires that the 14 be periodic up to
an arbitrary O(32) rotation,

MAw +21) = 0488 (w) . (11.2.6)

We will not carry out a systematic search for consistent theories as we
did for the RNS string, but will describe all the known theories. Nine ten-
dimensional theories based on the action (11.2.3) are known, though six
have tachyons and so are consistent only in the same sense as the bosonic
string. Of the three tachyon-free theories, two have spacetime supersym-
metry and these are our main interest. In this section we construct the
two supersymmetric theories and in the next the seven nonsupersymmetric
theories.

In the ITA and IIB superstrings the GSO projection acted separately on
the left- and right-moving sides. This will be also true in any supersym-
metric heterotic theory. The world-sheet current associated with spacetime
symmetry is 7’ as in eq. (10.4.25), with s in the 16. In order for the
corresponding charge to be well defined, the OPE of this current with any
vertex operator must be single-valued. For the right-moving spinor part
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of the vertex operator, the spin eigenvalue s’ must then satisfy

!
s's'+5€Z (11.2.7)

for all s € 16, where [ is —1 in the NS sector and —% in the R sector.
Taking s = (%, %, %, %, %), this condition is precisely the right-moving GSO

projection
exp(niF) =1 ; (11.2.8)

any other s € 16 gives the same condition.
Now let us try a GSO projection on the left-moving spinors also. That
is, we take periodicities

Aw +21) = £24(w) (11.2.9)
with the same sign on all 32 components, and impose
exp(niF) =1 (11.2.10)

for the left-moving fermion number. It is easily verified by means of
bosonization that the OPE is local and closed, just as in the IIA and IIB
strings. Combine the 32 real fermions into 16 complex fermions,

JRE o 12(p2K=1 4 2Ky K =1,...,16. (11.2.11)

These can then be bosonized in terms of 16 left-moving scalars HX (z). By
analogy to the definition of F in the type II string define

16
F=> qx . (11.2.12)
K=1

where /K* has g = +1. Then F is additive so the OPE is closed, and
the projection (11.2.10) guarantees that there are no branch cuts with the
R sector vertex operators. Note that in the bosonized description we have
26 left-moving and 10 right-moving bosons, so the theory (11.2.3) really is
a fusion (heterosis) of the bosonic and type II strings. We will emphasize
the fermionic description in the present section, returning to the bosonic
description later.
Modular invariance is straightforward. The partition function for the 4
is
Zig(6) = 5 [ 2% + 2% + 20 + 240 . (11.2.13)
The modular transformations just permute the four terms, with no phase
under t — —1/7 and a phase of exp(2ni/3) under © — 7 + 1. The latter

cancels the opposite phase from the partition function ZJ{ (7)* of {. The
form (11.2.13) parallels that of ZJ (7) in the type II string but with all +
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signs. This is necessary from several points of view. With 32 rather than
8 fermions, the signs in the modular transformations are raised to the
fourth power and so the first three terms must enter with a common sign.
As usual the Z!| term transforms only into itself and its sign depends
on the chirality in the R sector. Three other theories, defined by flipping
the chirality in one or both R sectors, are physically equivalent. Also, the
relative minus sign in the first and second terms of ZJ{ (t) came from the
F of the superconformal ghosts, which we do not have on the left-moving
side of the heterotic string. The relative minus sign in the first and third
terms came from spacetime statistics, but the 1 are spacetime scalars and
so are their R sector states. So modular invariance, conservation of F by
the OPE, and spacetime spin-statistics are all consistent with the partition
function (11.2.13).

We now find the lightest states. The right-moving side is the same as
in the type II string, with no tachyon and 8, 4 8 at the massless level.
On the left-moving side, the normal ordering constant in the left-moving
transverse Hamiltonian H- = o/m?/4 is

g8 32 8 32

_ﬁ_&z_l, R:_ﬁ+ﬁ=+1' (11.2.14)

The left-moving NS ground state is therefore a tachyon. The first excited
states

NS:

M1 2100ns (11.2.15)

have H+ = —% but are removed by projection (11.2.10): the NS ground
state now has exp(niF) = +1 because there is no contribution from ghosts.
A state of H- = 0 can be obtained in two ways:

o 0 s s 21028 100k - (11.2.16)

The 44 transform under an SO(32) internal symmetry. Under the full
symmetry SO(8)spin X SO(32), the NS ground state is invariant, (1,1). The
second state in (11.2.16) is antisymmetric under A < B, so the massless
states (11.2.16) transform as (8,,1) + (1, [2]). The antisymmetric tensor
representation is the adjoint of SO(32), with dimension 32 x 31/2 = 496.

Table 11.2 summarizes the tachyonic and massless states on each side.
The left-movers are given with their SO(8) x SO(32) quantum numbers
and the right-movers with their SO(8) quantum numbers. Closed string
states combine left- and right-moving states at the same mass. The left-
moving side, like the bosonic string, has a would-be tachyon, but there
is no right-mover to pair it with so the theory is tachyon-free. At the
massless level, the product

(8,,1) x (8, +8) = (1,1) + (28,1) + (35,1) + (56,1) + (8, 1)  (11.2.17)
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Table 11.2. Low-lying heterotic string states.

m? NS R NS R
vy a1 - -
0 (8,1)+(1,49%) - 8, 8

is the type I supergravity multiplet. The product
(1,496) x (8, + 8) = (8,,496) + (8,496) (11.2.18)

isan N = 1 gauge multiplet in the adjoint of SO(32). The latter is therefore
a gauge symmetry in spacetime.

This is precisely the same massless content as the type I open plus
closed SO(32) theory. However, these two theories have different massive
spectra. In the open string, the gauge quantum numbers are carried by an
SO(32) vector at each endpoint, so even at the massive levels there will
never be more than a rank 2 tensor representation of the gauge group.
In the heterotic string, the gauge quantum numbers are carried by fields
that propagate on the whole world sheet. At massive levels any number
of these can be excited, allowing arbitrarily large representations of the
gauge group. Remarkably, however, we will see in chapter 14 that the type
I and heterotic SO(32) theories are one and the same.

The second heterotic string theory is obtained by dividing the 44 into
two sets of 16 with independent boundary conditions,

1A
4 [ nitw), A=1,...,16,
A (W+27‘C)—{ WAWw) . A=17....32 (11.2.19)

with n and 5" each +1. Correspondingly, there are the operators
exp(niFy), exp(niFy), (11.2.20)

which anticommute with 44 for A = 1,...,16 and 4 = 17,...,32 respec-
tively. Take separate GSO projections on the right-movers and the two
sets of left-movers. That is, sum over the 23 = 8 possible combinations of
periodicities with the projections

exp(niF,) = exp(niF]) = exp(niF) =1 . (11.2.21)
Again closure and locality of the OPE and modular invariance are easily
verified. In particular the partition function
2
8

242 = 2% + 2% + 20 + Z o)

transforms in the same way as Z;—r and Zi. It is important here that the

fermions are in groups of 16, so that the minus signs from ZUJ{ (which was
for eight fermions) are squared.

(11.2.22)
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As before, the lightest states on the right-hand side are the massless
8, + 8. On the left-hand side, the sector NS-NS’ again has a normal
ordering constant of —1, so the ground state is tachyonic but finds no
matching state on the right. The first excited states, at m> = 0, are

“11\0>NS,NS' )
W02 0 nsny » 1 <AB<160r17<A4,B<32. (11223)

There is a difference here from the SO(32) case: because there are separate
GSO projections on each set of 16, A and B must come from the same set.
Since the SO(32) symmetry is partly broken by the boundary conditions,
we classify states by the surviving SO(16) x SO(16). The states (11.2.23)
include the antisymmetric tensor adjoint representation for each SO(16),
with dimension 16 x 15/2 = 120.

In the left-moving R-NS' sector the normal ordering constant is

_8 16 16 _
24 24 48

so the ground states are massless. Making eight raising and eight lowering
operators out of the 16 24 zero modes produces a 256-dimensional spinor
representation of the first SO(16). The GSO projection separates it into two
irreducible representations, 128 + 128', the former being in the spectrum.
The NS-R’ sector produces a 128 of the other SO(16), and the R-R’
sector again has no massless states.

In all, the SO(8)spin X SO(16) x SO(16) content of the massless level of
the left-hand side is

(11.2.24)

(8,, 1, 1) + (1,120,1) + (1,1,120) + (1,128, 1) + (1, 1,128) .  (11.2.25)

Combining these with the right-moving 8, gives, for each SO(16), massless
vector bosons which transform as 120 + 128. Consistency of the spacetime
theory requires that massless vectors transform under the adjoint repre-
sentation of the gauge group. There is indeed a group, the exceptional
group Eg, that has an SO(16) subgroup under which the Eg adjoint 248
transforms as 120 + 128. Evidently this second heterotic string theory has
gauge group Eg X Eg. The world-sheet theory has a full Eg X Eg symmetry,
even though only an SO(16) x SO(16) symmetry is manifest in the present
description. The additional currents are given by bosonization as

16
exp [i > qKHK(z)] . (11.2.26)
K=1

This is a spin field, just as in the fermion vertex operator (10.4.25). For
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the first Eg the charges are

+la K=1,8 16
i :{ 02 K—o . 16 2 ak€2Z, (11.2.27)
) PN =

and vice versa for the second. These are indeed (1,0) operators. The
massless spectrum is the d = 10, N = 1 supergravity multiplet plus an
Eg x Eg gauge multiplet. The SO(8)sin X Eg X Eg quantum numbers of
the massless fields are

(1,1,1) 4 (28,1,1) +(35,1,1) +(56,1,1) + (8',1,1)
+ (8,,248,1) + (8,248,1) + (8,,1,248) + (8,1,248) .  (11.2.28)

Consistency requires the fermions to be in groups of 16. We could make
a modular-invariant theory using groups of eight, the left-moving partition
function being (Z;—r)“. However, we have seen that modular invariance
requires minus signs in ZJ—L These signs would give negative weight to left-
moving R sector states and would correspond to the projection exp(niF) =
—1 in the NS sector. The first is inconsistent with spin-statistics because
these states are spacetime scalars, and the second is inconsistent with
closure of the OPE thus making the interactions inconsistent. The SO(32)
and Eg x Eg theories are the only supersymmetric heterotic strings in ten
dimensions.

11.3 Other ten-dimensional heterotic strings

The other heterotic string theories can all be constructed from a single
theory by the twisting construction introduced in section 8.5. The ‘least
twisted’ theory, in the sense of having the smallest number of path integral
sectors, corresponds to the diagonal modular invariant

1
E 200(1)16200(,[)*4 o ZO1 (‘L')16ZO] (,L_)*4

—zlo(r)lﬁzlo(z)*“—211(1)16211(7;)*4] . (11.3.1)
This invariant corresponds to taking all fermions, A4 and {*, to be
simultaneously periodic or antiperiodic on each cycle of the torus. In

terms of the spectrum the world-sheet fermions are either all R or all NS,
with the diagonal projection

exp[ni(F + F)] = 1. (11.3.2)
This theory is consistent except for a tachyon, the state

2 N
M1 o0)Nsns - M= — exp(niF) = exp(niF) = —1,  (11.3.3)
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which transforms as a vector under SO(32). At the massless level are the
states

oL 5l0)nsiNs - )°f1/2i§1/2‘7)i1/2|0>Ns,Ns ; (11.3.4)

which are the graviton, dilaton, antisymmetric tensor and SO(32) gauge
bosons. There are fermions in the spectrum, but the lightest are at m> =
4/d .

Now let us twist by various symmetries. Consider first the Z, generated
by exp(wiF). Combined with the diagonal projection (11.3.2) this gives the
total projection

1 +exp[ni(F + F)] 1+exp(niF) 14 exp(niF) 1+ exp(niF)
2 2 N 2 2
This is the same as the projections (11.2.8) plus (11.2.10) defining the
supersymmetric SO(32) heterotic string. Also, the spatial twist by exp(niF)
adds in the sectors in which the 24 and (" have opposite periodicities. The
twisted theory is thus the SO(32) heterotic string. Twisting by exp(niF)
has the same effect.

Now consider twisting the diagonal theory by exp(niFi), which flips the
sign of the first 16 A4 and which was used to construct the Eg x Eg heterotic
string. The resulting theory is nonsupersymmetric — as in eq. (11.2.8),
a theory will be supersymmetric if and only if the projections include
exp(niF) = 1. It has gauge group Eg x SO(16) and a tachyon in the
(1,16). We leave it to the reader to verify this. A further twist by exp(niF)
produces the supersymmetric Eg x Eg heterotic string.

One can carry this further by dividing the 44 into groups of 8, 4, 2, and
1 as follows. Write the SO(32) index A in binary form, 4 = 1+dd>d3dyds,
where each of the digits d; is zero or one. Define the operators exp(niF;)
fori=1,...,5 to anticommute with those 24 having d; = 0 and commute
with those having d; = 1. There are essentially five possible twist groups,
with 2, 4, 8, 16, or 32 elements, generated respectively by choosing one,
two, three, four or five of the exp(niF;) and forming all products. The first
of these produces the Eg x SO(16) theory just described; the further twists
produce the gauge groups SO(24)xS0(8), E;xE7xS0(4), SU(16)xS0(2),
and Eg. None of these theories is supersymmetric, and all have tachyons.
A further twist by exp(niF) produces a supersymmetric theory which in
each case is either the SO(32) theory or the Eg x Eg theory. These gauge
symmetries are less manifest in this construction, with more of the currents
coming from R sectors.

Let us review the logic of the twisting construction. The vertex operator
corresponding to a sector twisted by a group element h produces branch
cuts in the fields, but the projection onto h-invariant states means that
these branch cuts do not appear in the products of vertex operators.

. (11.3.5)
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Since h is a symmetry the projection is preserved by interactions. On the
torus, the sum over spatial and timelike twists is modular-invariant, and
this generalizes to any genus. However, we have learned in section 10.7
that naive modular invariance of the sum over path integral boundary
conditions is not enough, because in general there are anomalous phases
in the modular transformations. Only for a right-left symmetric path
integral do the phases automatically cancel.

At one loop the anomalous phases appear only in the transforma-
tion 1 — 7+ 1, where they amount to a failure of the level-matching
condition Ly — Ly € Z. It is further a theorem that for an Abelian twist
group (like the products of Z,s considered here), the one-loop ampli-
tude and in fact all amplitudes are modular-invariant precisely if in every
twisted sector, before imposing the projection, there is an infinite number
of level-matched states. The projection can then be defined to satisfy level
matching. In the heterotic string, taking a sector in which k of the 14
satisfy R boundary conditions and 32 —k satisfy NS boundary conditions,
the zero-point energy is

8 k  (32—k) k

24-|-24 TR 1+16 (11.3.6)
The oscillators raise the energy by a multiple of 1, so the energies on
the left-moving side are 16k mod 1 . On the right-moving side we are still
taking the fermions to have common boundary conditions for Lorentz
invariance, so the energies are multiples of % Thus the level-matching
condition is satisfied precisely if k is a multiple of eight. Closure of the
OPE and spacetime spin-statistics actually require k to be a multiple
of 16, as we have seen. The twists exp(niF;) were defined so that any
product of them anticommutes with exactly 16 of the 44, satisfying this
condition.

When the level-matching condition is satisfied, there can in fact be more
than one modular-invariant and consistent theory. Consider a twisted
theory with partition function

> Znm (11.3.7)

hy,hy eH
[h1 hz]

where hy and h; are the spatial and timelike periodicities on the torus.
Then the theory with partition function

1

2= order(H) 4 11.3.
order(H) hl%;““bhz) ik (11.3.8)

[h1.ha]=0
is also consistent (modular-invariant with closed and local OPE) provided

order(H
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that the phases e(hy, hy) satisfy

e(h1,ha) = e(ha, hy)™", (11.3.9a)
€(hy, ha)e(hy, h3) = e(hy, hah3) , (11.3.9b)
e(hh) = 1. (11.3.9¢)

In terms of h defined in the original twisted theory, the new twisted theory
is no longer projected onto H-invariant states, but onto states satisfying

halw),, = e(hiha) ™), (11.3.10)

in ‘Ehe sector twisted by hy. In other words, states are now eigenvectors
of h, with a sector-dependent phase; equivalently we have made a sector-
dependent redefinition

h — e(hy, h)h . (11.3.11)

The phase factor e(hy, hy) is known as discrete torsion.

There is one interesting possibility for discrete torsion in the theories
above, in the group generated by exp(niF;) and exp(niF) that produces
the Eg x Eg string from the diagonal theory. For

(1, ha) = (explri(ki Fi + LF)], explmikaFy + LF)] ) (11.3.12)
the phase
e(hy, hy) = (—1)laltkh (11.3.13)
satisfies the conditions (11.3.9). It modifies the projection from
exp(niFy) = exp(niF}) = exp(niF) =1, (11.3.14)
which produces to the supersymmetric Eg X Eg string, to
exp[mi(Fy + o) + &)] = exp[ni(F| 4+ o1 + &)] = exp[ni(F + oy +of)] =1 .
(11.3.15)
The notation parallels that in eq. (10.7.11): under w — w + 27, the (¢*, the
first 16 A4, and the second 16 4* pick up phases — exp(—mid&), — exp(mic),
and —exp(nia}) respectively. The as are conserved by the OPE so the

projections are consistent. In other words, the spectrum consists of the
sectors

(NS4, NS+,NS+) ,

(NS—,NS— R+), (NS—, R+,NS—), (NS+,R—,R—),
(R+,NS— NS—), (R—,R— NS+), (R—,NS+,R—),
(R+,R+,R+)

where the notation refers respectively to the {*, the first 16 14, and the
second 16 24,
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Gravitinos, in the sectors (R+, NS+, NS+), are absent from the spec-
trum. So also are tachyons, which are in the (NS—, NS—, NS+) and
(NS—, NS+, NS—) sectors. The twists leave an SO(16) x SO(16) gauge
symmetry. Classifying states by their SO(8)sin X SO(16) X SO(16) quan-
tum numbers, one finds the massless spectrum

(NS+,NS+,NS+) : (1, 1,1)+(28,1,1) + (35,1,1)
+ (8,,120,1) + (8,.1,120) ,
(R+,NS— NS—) : (8,16,16),
(R—,R—,NS+) : (8,128,1),
(R—,NS+,R—) : (8,1,128).

This shows that a tachyon-free theory without supersymmetry is possible.
11.4 A little Lie algebra

In the open string the gauge charges are carried by the Chan—Paton
degrees of freedom at the endpoints. In the closed string the charges are
carried by fields that move along the string. We saw this earlier for the
Kaluza—Klein gauge symmetry and the enhanced gauge symmetries that
appear when the bosonic string is compactified, and now we see it again in
the heterotic string. In the following sections we will discuss these closed
string gauge symmetries in a somewhat more systematic way, but first we
need to introduce a few ideas from Lie algebra. Space forbids a complete
treatment; we focus on some basic ideas and some specific results that
will be needed later.

Basic definitions

A Lie algebra is a vector space with an antisymmetric product [T, T’]. In
terms of a basis T the product is
[T T = if*. T* (11.4.1)

with 1%, the structure constants. The product is required to satisfy the
Jacobi identity

[T (T, T+ [T, [T, T|] + [T [T* T"]]=0. (11.4.2)
The associated Lie group is generated by the exponentials
exp(i0, TY) , (11.4.3)

with the 0, real. For a compact group, the associated compact Lie algebra
has a positive inner product

(T, T") =d", (11.4.4)
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which is invariant,
([T, TN, T")+ (T, [T, T"])=0. (11.4.5)

This invariance is equivalent to the statement that f%¢ is completely
antisymmetric, where d“’ is used to raise the index.

We are interested in simple Lie algebras, those having no nontrivial
invariant subalgebras (ideals). A general compact algebra is a sum of
simple algebras and U(1)s. For a simple algebra the inner product is
unique up to normalization, and there is a basis of generators in which
it is simply 6°°. For any representation r of the Lie algebra (any set of
matrices f;/;; satisfying (11.4.1) with the given f a)), the trace is invariant
and so for a simple Lie algebra is proportional to d*,

Tr(t%t?) = T,.d% (11.4.6)

from some constant T,. Also, t%t’d,, commutes with all the ¢ and so is
proportional to the identity,

ttdyy = 0, (11.4.7)

with Q, the Casimir invariant of the representation r.
The classical Lie algebras are

e SU(n): Traceless Hermitean n X n matrices. The corresponding group
consists of unitary matrices with unit determinant.! This algebra is
also denoted A,_1.

e SO(n): Antisymmetric Hermitean n x n matrices. The corresponding
group SO(n,R) consists of real orthogonal matrices with unit deter-
minant. For n = 2k this algebra is also denoted Dy. For n = 2k + 1
it is denoted B;.

e Sp(k): Hermitean 2k x 2k matrices with the additional condition

MTM ' =—-1T | (11.4.8)
Here the superscript T denotes the transpose, and
B U
M=i [ I 0 } (11.4.9)

with I, the k x k identity matrix. The corresponding group consists
of unitary matrices U with the additional property

MUM ' =@WwT)=". (11.4.10)

1 To be precise the Lie algebra determines only the local structure of the group. Many groups,
differing only by discrete identifications, will have a common Lie algebra.
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Confusingly, the notation Sp(2k) is also used for this group. It is also
denoted C;.

From each of the compact groups one obtains various noncompact
groups by multiplying some generators by i. For example, the traceless
imaginary matrices generate the group SL(n,R) of real matrices of unit
determinant. The group SO(m, n, R) preserving a Lorentzian inner product
is similarly obtained from SO(m+n). Another noncompact group is gener-
ated by imaginary rather than Hermitean matrices satisfying the symplectic
condition (11.4.8) and consists of real matrices satisfying (11.4.10). This
noncompact group is also denoted Sp(k) or Sp(2k); occasionally USp(2k)
is used to distinguish the compact unitary case.

Such noncompact groups do not appear in Yang—Mills theory (the
result would not be unitary) but they have other applications. Some of the
SL(n,R) and SO(m,n,R) appear as low energy symmetries in compactified
string theory, as discussed in section B.5 and chapter 14. The real form of
Sp(k) is an invariance of the Poisson bracket in classical mechanics.

Roots and weights

A useful description of any Lie algebra h begins with a maximal set of

commuting generators H', i = 1,...,rank(g). The remaining generators E*
can be taken to have definite charge under the H',
[H,E*] = «'E* . (11.4.11)

The rank(g)-dimensional vectors o are known as roots. It is a theorem
that there is only one generator for a given root so the notation E* is
unambiguous. The Jacobi identity determines the rest of the algebra to be

e(o, BE*HP if o + p is a root ,
[E* EPF1={ 20 -H/a> ifa+pf=0, (11.4.12)
0 otherwise .

The products o- H and o are defined by contraction with d; j» the inverse of
the inner product (11.4.4) restricted to the commuting subalgebra. Taking
the trace with H', the second equation determines the normalization
(E*,E~*) = 2/o?. The constants e(«, f) take only the values +1.

The matrices . that represent H' can all be taken to be diagonal. Their
simultaneous eigenvalues w’, combined into vectors

(wh,..., wranke)y (11.4.13)

are the weights, equal in number to the dimension of the representation.
The roots are the same as the weights of the adjoint representation.



62

11 The heterotic string

Examples:

e For SO(2k) = Dy, consider the k 2 x 2 blocks down the diagonal and

let H be

0 i
{ i 0 } (11.4.14)
in the ith block and zero elsewhere. This is a maximal commuting
set. The 2k-vectors (1,74,0,...,0) have eigenvalues

(+1,071) (11.4.15)

under the k H'; these are weights of the vector representation. The
other weights are the same with the +1 in any other position.

The adjoint representation is the antisymmetric tensor, which is
contained in the product of two vector representations. The weights
are additive so the roots are obtained by adding any distinct (because
of the antisymmetry) pair of vector weights. This gives

(+15 +170k_2) 5 (+1:_1:0k_2) B (_1’_1’0k_2) 5 (11416)

and all permutations of these. The k zero roots obtained by adding
any weight and its negative are just the H'.

The diagonal generators (11.4.14) are the same as are used in sec-
tion B.1 to construct the spinor representations. In the spinor repre-
sentation the weights w' are given by all k-vectors with components
i%, with the 2k—1 having an even number of —%s and the 2%V an
odd number.

For SO(2k+1) = By, one can take the same set of diagonal generators
with a final row and a final column of zeros. The weights in the vector
representation are the same as above plus (0%) from the added row.
The additional generators have roots

(+1,0°h (11.4.17)
and all permutations.
The adjoint of Sp(k) = Cj. is the symmetric tensor, so one can obtain

the roots as for SO(2k) except that the vector weights need not be
distinct. The resulting roots are those of SO(2k) together with

(£2,0°71) (11.4.18)

and permutations. It is usually conventional to normalize the gener-
ators such that the longest root has length-squared two, so we must
divide all the roots by 2!/2.
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e For SU(n) = A,— it is useful first to consider U(n), even though
this algebra is not simple. The n commuting generators H' can be
taken to have a 1 in the ii position and zeros elsewhere. The charged
generator with a 1 in the ij position then has eigenvalue +1 under
H' and —1 under H/: the roots are all permutations of

(+1,—1,0"2) . (11.4.19)

Note that all roots lie in the hyperplane 3°; &' = 0; this is because all
eigenvalues of the U(1) generator are zero. The roots of SU(n) are
just the roots of U(n) regarded as lying in this hyperplane.

e We have stated that the Eg generators decompose into the adjoint
plus one spinor of SO(16). The commuting generators of SO(16) can
also be taken as commuting generators of Eg, so the roots of Eg
are the roots of SO(16) plus the weights of the spinor, namely all
permutations of the roots (11.4.16) plus

(5 +5+5+5 5+ 45 +D) (11.4:20)

and the roots obtained from this by an even number of sign flips.
Equivalently this set is described by

o eZforali,ord eZ+ % foralli , (11.4.21a)
and

> od €2z, d )y =2. (11.4.21b)

i=1 i=1

For A,, Dy, and Eg (and Eg and E;, which we have not yet described),
all roots are of the same length. These are referred to as simply-laced
algebras. For By and C; (and F4 and G;) there are roots of two different
lengths so one refers to long and short roots.

A quantity that will be useful later is the dual Coxeter number h(g) of
the Lie algebra g, defined by

=Y fure = higpd® . (11.422)
cd

Here v is any long root. For reference, we give the values for all simple
Lie algebras in table 11.3. The definition (11.4.22) makes h(g) independent
of the arbitrary normalization of the inner product d** because the inverse

appears in y? = piyp/d;;.
Useful facts for grand unification

The exceptional group Eg is connected to the groups appearing in grand
unification through a series of subgroups. This will play a role in the com-
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Table 11.3. Dimensions and Coxeter numbers for simple Lie algebras.
SU(m) SOm), n=4 Spk) E¢ E; Eg Fi G
dim(g) n*—1 nn—1)/2 2k*+k 78 133 248 52 14
h(g) n n—2 k+1 12 18 30 9 4

pactification of the heterotic string, and so we record without derivation
the necessary results.

The first subgroup is
Es - SUQ3) X E¢ . (11.4.23)

We have not described Eg explicitly, but the reader can reproduce this
and the decomposition (11.4.24) from the known properties of spinor
representations, as well as the further decomposition of the Eg¢ rep-
resentations in table 11.4 (exercise 11.5). In simple compactifications
of the Eg x Eg string, the fermions of the Standard Model can all
be thought of as arising from the 248-dimensional adjoint represen-
tation of one of the Egs. It is therefore interesting to trace the fate
of this representation under the successive symmetry breakings. Un-
der Eg — SU(3) X Eg,

248 — (8,1) + (1,78) + (3,27) + (3,27) . (11.4.24)

That is, the adjoint of Eg contains the adjoints of the subgroups, with half
the remaining 162 generators transforming as a triplet of SU(3) and a
complex 27-dimensional representation of E¢ and half as the conjugate of
this. Further subgroups are shown in table 11.4. The first three subgroups
correspond to successive breaking of Eg down to the Standard Model
group through smaller grand unified groups; the fourth is an alternate
breaking pattern.

It is a familiar fact from grand unification that precisely one SU(3) x
SU((2) x U(1) generation of quarks and leptons is contained in the
10 plus 5 of SU(5). Tracing back further, we see that a generation
fits into the single representation 16 of SO(10), together with an addi-
tional state 1_s. This extra state is neutral under SU(5), and so under
SU(3) x SU(2) x U(1), and can be regarded as a right-handed neutrino.
Going back to Eg, the 27 contains the 15 states of a single generation
plus 12 additional states. Relative to SU(5) unification, SO(10) and Eg are
more unified in the sense that a generation is contained within a single
representation, but less economical in that the representation contains
additional unseen states as well. In fact, the latter may not be such a
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Table 11.4. Subgroups and representations of grand unified groups.
E¢ — SO(10) x U(1)
78 — 450+16_3+ 163+ 19

27 > 14+ 10_, 4+ 164

S0(10) — SU(5) x U(1)
45 — 240+104+IT)_4+10
16 — 10 +5;+1_5
10 - 5,+5,

SU(5) — SUB)xSU(Q2) x U(1)
10 — (3,2); +(3,1)—4 + (1, 1)
5 5 (3 1),+(1,2)3
E¢ — SUB)x SU(3) x SU(3)
78 — (8,1,1)+(1,8,1) + (1,1,8) +(3,3,3) + (3,3.,3)
27 — (3,3,1)+(1,3,3)+(3,1,3)

difficulty. To see why, consider the decomposition of the 27 of Eg under
SUB)xSUR2) x U(1) = SU(5) = SO(10) = Eg:

27 - 3,21 +3, 1) 4+ (1, 1)+ (3, 1) +(1,2)_3
+ [1o]
+ (3, 12+ B, D] + [(1,2) =3+ (1,2)3] + [1o] . (11.4.25)

The first line lists one generation, the second the extra state appearing
in the 16 of SO(10), and the third the additional states in the 27 of Eg.
The subset within each pair of square brackets is a real representation
of SU(3) x SU(2) x U(1). The significance of this is that for a real
representation r, the CP T conjugate also is in the representation r, and
so the combined gauge plus S 0(2) helicity representation for the particles
plus their antiparticles is (r, —1—2) + (r, 2) This is the same as for a
massive spin—f particle in representation r, so it is consistent with the
gauge and spacetime symmetries for these particles to be massive. In
the most general invariant action, all particles in [ ] brackets will have
large (of order the unification scale) masses. It is notable that for any
of the 10 + 5 of SU(5), the 16 of SO(10), or the 27 of Eg, the natural
SU@3) x SU((2) x U(1) spectrum is precisely a standard generation of
quarks and leptons.
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11.5 Current algebras

The gauge boson vertex operators in the heterotic string are of the form
j(z)p*(z)e™ X, where j(z) is either a fermion bilinear 44/ or a spin
field (11.2.26). Similarly the gauge boson vertex operators for the toroid-
ally compactified bosonic string were of the form j(z)0X"(z)e™X with j
being 0X™ for the Kaluza—Klein gauge bosons or an exponential for the
enhanced gauge symmetry (or the same with right and left reversed). All
these currents are holomorphic (1,0) operators. In this section we consider
general properties of such currents.

Let us consider in a general CFT the set of (1,0) currents j%(z). Con-
formal invariance requires their OPE to be of the form

ab

b k ab
()"0 ~ Ty +

e i (0) (11.5.1)

z

with k% and c®. constants. Dimensionally, the z=2 term must be a c-
number and the z~! term must be proportional to a current. The Laurent
coefficients

©
=3 ZJ+1 (11.5.2)
m=—co
thus satisfy a closed algebra
0,01 = mk® Sy 4+ i - (11.5.3)
In particular,
U6 o = ic™.Js - (11.5.4)
That is, the m = 0 modes form a Lie algebra g, and
b = . . (11.5.5)

We focus first on the case of simple g. The j{ jé’ Jj¢1 Jacobi identity requires
that

fbcdkad +fbadkdc =0. (1156)

This is the same relation as that defining the Lie algebra inner product
d, and since we are assuming g to be simple it must be that

k= fq® (11.5.7)

for some constant k. The algebra (11.5.3) is variously known as a current
algebra, an affine Lie algebra, or an (affine) Kac—Moody algebra. The
currents are (1,0) tensors, so

[Lmajg] = _njr{:z—‘f-n . (1158)
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Physically, the ji generate position-dependent g-transformations. This
is possible in quantum field theory because there is a local current. The
central extension or Schwinger term k must always be positive in a unitary
theory. To show this, note that

fed®@ = (1] [, j% 111 = || /110 (11.5.9)

(no sum on a). For a compact Lie algebra d“¢ is positive and so k must
be nonnegative. It can vanish only if j*,|1) = 0, but the vertex operator
for j*,|1) is precisely the current j¢: any matrix element of j* can be
obtained by gluing j*|1) into the world-sheet. Thus k=0 only if the
current vanishes identically.

The coeflicient k is quantized. To show this, consider any root «. Defining
o H

o2
one finds from the general form (11.4.12) that these satisfy the SU(2)
algebra

J3 = , JEt=E*, (11.5.10)

3,05 = +J%, [JH,0]1=2J°. (11.5.11)
The reader can verify that the two sets
o H() « —a
el EY, E;*, (11.5.12a)
“Ho+k
% . El, E? (11.5.12b)

also satisfy the SU(2) algebra. The first is just the usual center-of-mass Lie
algebra, while the second is known as pseudospin. From familiar properties
of SU(2), 2J3 must be an integer, and so 2k/o*> must be an integer. This
condition is most stringent if « is taken to be one of the long roots of the
algebra (denoted ). The level

2k
T2
is then a nonnegative integer, and positive for a nontrivial current.

It is common to normalize the Lie algebra inner product to give the long
roots length-squared two, so that k = k is the coefficient of the leading
term in the OPE. We will usually do this in examples, as we have done in
giving the roots of various Lie algebras in the previous section. Inciden-
tally, it follows that with this normalization the generators (11.4.14) are
normalized, so the SO(n) inner product is half of the vector representation
trace. Similarly the inner product for SU(n) such that the long roots have
length-squared two is equal to the trace in the fundamental representation.
In general expressions we will keep the inner product arbitrary, inserting
explicit factors of 1?2 so that results are independent of the normalization.

k (11.5.13)
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We will, however, take henceforth a basis for the generators such that
dab — 5ab.

The level represents the relative magnitude of the z=2 and z~! terms
in the OPE. For U(l) the structure constant is zero and only the z—2
term appears. Hence there is no analog of the level. It is convenient to
normalize all the U(1) currents to

5ab
J2)°0) ~ — . (11.5.14)
z
From this OPE and holomorphicity it follows that each U(1) current
algebra is isomorphic to a free boson CFT,

j¢=Ii0H" . (11.5.15)
We will often use this equivalence.

The current algebra in the heterotic string consisted of n real fermions
JA(z). The currents

248 (11.5.16)
form an SO(n) algebra. The maximal set of commuting currents is
iK-172K for K = 1,...,[n/2]. These correspond to the generators

(11.4.14), which are normalized such that roots (11.4.16) have length-
squared two. The level is then the coefficient of the leading term in the
OPE; this is 1/z2, so the level is k = 1. The case n = 3 is an exception:
there are no long roots, only the short roots +1, so we must rescale the
diagonal current to 2'/2i2'/? and the level is k = 2.

For any real representation r of any Lie algebra, one can construct
from dim(r) real fermions the currents

%ﬂuAﬂuBt,‘,l’AB : (11.5.17)

These satisfy a current algebra with level k = T,/tpz, with T, defined
in eq. (11.4.6). The case in the previous paragraph is the n-dimensional
vector representation of SO(n), for which Tr = 2. As another example,
nk fermions transforming as k copies of the vector representation give
level k.

As a final example consider the SU(2) symmetry at the self-dual point
of toroidal compactification. The current is exp[2!/?iH(z)]. The current
i0H is then normalized so that the weight (from the OPE) is 2!/2, with
length-squared two. The OPE of i0H with itself starts as 1/z2, so the level
is again k = 1.

In some cases one may have sectors in which some currents are not
periodic, j%(w + 2r) = R%jb(w), where R is any automorphism of the
algebra. In these, the modes of the currents are fractional and satisfy a
twisted affine Lie algebra.
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The Sugawara construction

In current algebras with conformal symmetry, there is a remarkable con-
nection between the energy-momentum tensor and the currents, which
leads to a great deal of interesting structure. Define the operator
:jj(z1):= lim (j“(zl)j“(zz)— kdlzm(g)> , (11.5.18)
p—I 212
with the sum on a implicit. We first wish to show that up to normalization
the OPE of :jj: with j¢ is the same as that of Tp with j% This takes
a bit of effort; the same calculation is organized in a different way in
exercise 11.7.

The OPE of the product : jj: is not the same as the product of the
OPEs, because the two currents in : jj : are closer to each other than
they are to the third current; we must make a less direct argument using
holomorphicity. Consider the following product:

A

S (22))(23) = 5 (22) + Tz (z) + 5 (21)
731 31 Sk

i cad

ifcad
+ = j%(z1)j%(z2) + terms holomorphic in z3 .
732

(11.5.19)

We have used the current—current OPE to determine the singularities as z3
approaches z; or z;, with a holomorphic remainder. In this relation take
zp — z1 and make a Laurent expansion in z»;, being careful to expand
both the operator products and the explicit z; dependence. Keep the term
of order z9, (there is some cancellation from the antisymmetry of f cady to
obtain

2]2 . f‘cad fead

Jiz1): jz3) ~ = j(z1) + —5—J(z1)
213 213

2k + h(g)y?
_ 2(g)w #(z1)

13

1. 1.
= (k+h()? | -j(z3) + —0j(z3)| . (11.5.20)
13 213

Here h(g) is again the dual Coxeter number. Define

Ti(z) = (11.5.21)

b i
(k+h(g)w> 77"
The OPE of Tj with the current is the same as that of the energy-
momentum tensor Tp(z),

Tj(2)j(0) ~ Tp(z)j(0) . (11.5.22)



70 11 The heterotic string

Now repeat the above with j°(z3) replaced by T3(z3),

1 1
J(20)j"(22)Tp(z3) = 5 J(21))%(22) + aaj“(m)j“(h)
31

1 1 ..
+ —-j"(z1)j(z2) + — j“(21)0j*(z2) + terms holomorphic in z3 .

Zky) 73 (11.5.23)
Again expand in z; and keep the term of order z9; to obtain
S S Cg,k 2 S 1 S
Th0)THz3) ~ g + 5 TH(z3) + —0T}(z3) (11.5.24)
2z{3y 73 Z13

with
Cg,k _ kdlm(g)

= it hie) (11.5.25)

This is of the standard form for an energy-momentum tensor, with central
charge c®*. The Laurent coefficients

1 o0

Ly = ( 23 e ) , 11.5.26a
1 [e¢]

L;, = S e, m#0,  (115.26b)

(k + h(g)y? =,

satisfy a Virasoro algebra with this central charge. The vanishing of the
normal ordering constant in L§ can be deduced by noting that holomor-
phicity requires Ly and also j for n > 0 to annihilate the state [1).

We have used the jj OPE to determine the :jj::jj: OPE. We could
not do this directly, because the jj OPE is valid only for two operators
close compared to all others, and in this case there are two additional
currents in the vicinity. Naive application of the OPE would give the
wrong normalization for T* and ¢#*. The argument above uses the OPE
only where it is valid, and then takes advantage of holomorphicity. The
operator Tj constructed from the product of two currents is known as a
Sugawara energy-momentum tensor.

Finding the Sugawara tensor for a U(1) current algebra is easy. With
the normalization (11.5.14) it is simply

1
Ty = 3 i, (11.5.27)

as one sees by writing the current in terms of a free boson, j = i0H.
The tensor T may or may not be equal to the total T of the CFT.
Define

Tp=Ts—T}. (11.5.28)
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Since the Ty and T{ OPEs with j¢ have the same singular terms, the
product

Tg(z1)j%(z2) ~ 0 (11.5.29)

is nonsingular. Since T} itself is constructed from the currents, this implies
T;Tg ~ 0. Then
Ty(z)T5(0) = Tp(z)Tp(0) — T(2)T5(0) — Tp(z) T(0) — Ty(2) T(0)
d 2 1

~ 5+ 3 Ts(0) + ~0Tp(0), (11.5.30)
the standard TT OPE with central charge
¢ =c—ctk (11.5.31)

The internal theory thus separates into two decoupled CFTs. One has
an energy-momentum tensor T3 constructed entirely from the current,
and the other an energy-momentum tensor Tj that commutes with the
current. We will use the term current algebra to refer to the first factor
alone, since the two CFTs are completely independent. For a unitary CFT
¢’ must be nonnegative and so

k<, (11.5.32)
and T} is trivial precisely if

e =c, (11.5.33)

in which case Ty = T}.

We now consider examples. The dual Coxeter number can be writ-
ten as a sum over the roots. For any simply-laced algebra, h(g) + 1 =
dim(g)/rank(g), and so

K k dim(g) rank(g)
v dim(g) + (k — 1)rank(g) (11.5.33)

For any simply-laced algebra at k = 1, the central charge is therefore

¢! = rank(g) . (11.5.35)

For the Eg x Eg and SO(32) heterotic strings, this is the same as the central
charge of the free fermion representation, and for the free boson repre-
sentation of the next section: these are Sugawara theories. The operator
:jj : looks as though it should be quartic in the fermions, but by using
the OPE and the antisymmetry of the fermions one finds that T3 reduces
to the usual —%/IA(MA.
Another example is SU(2) = SO(3), for which
K 3k 15

39
= =15 52 >3 (11.5.36)



72 11 The heterotic string

We have seen the first CFT in this series (the self-dual point of toroidal
compactification) and the second (free fermions). Most levels do not have
a free-field representation. For any current algebra the central charge lies
in the range

rank(g) < ¢®* < dim(g) . (11.5.37)

The first equality holds only for a simply-laced algebra at level one, and
the second only for an Abelian algebra or in the limit k — oo.

Primary fields

By acting repeatedly with the lowering operators j¢ with n > 0, one
reaches a highest weight or primary state of the current algebra, a state
annihilated by all the j¢ for n > 0. It is therefore also annihilated by the
L3 for n > 0, eq. (11.5.26), so is a highest weight state of the Virasoro
algebra. The center-of-mass generators j§ take primary states into primary
states, so the latter form a representation of the algebra g,

Jolrsiy = |r, )t ji s (11.5.38)
with r (not summed) labeling the representation. It then follows that
. 1
L(S)|r, l> = W‘r’k>t?skjt?,ji
= W?Wr’i> : (11.5.39)

with Q, the Casimir (11.4.7). The weights of the primary fields are thus
determined in terms of the algebra, level, and representation,
o0 0
k+h@)w’ ~ 2%+ 0,
where Q, is the Casimir for the adjoint representation. For SU(2) at level
k, the weight of the spin-j primary is
jG+1)
k+2
It is also true that at any given level, only a finite number of represen-
tations are possible for the primary states. For any root o of g and any
weight 4 of r, the SU(2) algebra (11.5.12b) implies that
(A LEF,EZf1Ir,2) = 2(r, (e Ho +)lr 2) /o
=200+ A+ k). (11.5.42)
The left-hand side is |E~%|r, 2)|?> > 0, and so k>—o-2a Combining this
with the same for —a gives

r

(11.5.40)

hj =

(11.5.41)

k> o2 (11.5.43)
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for all weights A of r. Taking a to be a long root v, the level must satisfy

2y - A

k==

=2|J°, (11.5.44)

where J3 refers to the SU(2) algebra (11.5.12a) constructed from the
charges j§ and the root . For g = SU(2) the statement is that the spin j
of any primary state can be at most %k. For example at k = 1, only the
representations 1 and 2 are possible. For g = SU(3) at k = 1, only the 1,
3, and 3 can appear. For g = SU(n) at level k, only representations whose
Young tableau has k or fewer columns can appear.

The expectation values of primary fields are completely determined by
symmetry. We defer the details to chapter 15.

Finally, let us briefly discuss the gauge symmetries of the type I theory
in this same abstract language. The matter part of the gauge boson vertex
operator is

XHpaehX (11.5.45)

on the boundary, where the 1% are weight O fields. In a unitary CFT such
A% must be constant by the equations of motion. The OPE is then

2(y1)22(y2) = [0(y1 — y2)d®e + 0(y2 — YI)dbac} 2(2) , (11.5.46)

so the A form a multiplicative algebra with structure constants d*’.. The
antisymmetric part of d®. is the structure constant of the gauge Lie
algebra. This is an abstract description of the Chan—Paton factor. The
requirement that the A% algebra be associative has been shown to forbid
the gauge group Eg X Eg.

11.6 The bosonic construction and toroidal compactification

We have seen in the construction of winding state vertex operators in
section 8.2 that we may consider independent left- and right-moving
scalars. Let us try to construct a heterotic string with 26 left-movers
and 10 right-movers, which together with the $* give the correct central
charge. The main issue is the spectrum of kj r; as in section 8.4 we use
dimensionless momenta

ILr = (o /2)" kR (11.6.1)

in much of the discussion. Recall that an ordinary noncompact dimension
corresponds to a left- plus a right-mover with [f = I% = [" taking contin-
uous values; let there be d < 10 noncompact dimensions. The remaining
momenta,

iy, d<m<25,d<n<9, (11.6.2)



74 11 The heterotic string

take values in some lattice I'. From the discussion of Narain compactifi-
cation in section 8.4, we know that the requirements for a consistent CFT
are locality of the OPE plus modular invariance. After taking the GSO
projection on the right-movers, the conditions on I" are precisely as in the
bosonic case. Defining the product

Lol =1, 1) —Ig -1y, (11.6.3)

the lattice must be an even self-dual Lorentzian lattice of signature (26 —
d,10 —d),

lol €22 foralllel, (11.6.4a)
r=rr. (11.6.4b)

As in the bosonic case, where the signature was (26 — d,26 — d), all
such lattices have been classified. Consider first the maximum possible
number of noncompact dimensions, d = 10. In this case, the o product
has only positive signs, so the [J' form an even self-dual Euclidean lattice
of dimension 16. Even self-dual Euclidean lattices exist only when the
dimension is a multiple of 8, and for dimension 16 there are exactly two
such lattices, I'j¢ and I's x I's. The lattice I'i5 is the set of all points of
the form

(n1,....m6) or (ni+3,....ng+1), (11.6.5a)
> nie2z (11.6.5b)
for any integers n;. Tlile lattice I'g is similarly defined to be all points
(ni,...,ng) or (ni+%,....ng+1), (11.6.6a)
Z n €27 . (11.6.6b)

The left-moving zerlo-point energy is —1 as in the bosonic string, so
the massless states would have left-moving vertex operators dX*, 0X™,
or kLX) with l% = 2. Tensored with the usual right-moving 8, + 8,
the first gives the usual graviton, dilaton, and antisymmetric tensor. The
16 0X™ currents form a maximal commuting set corresponding to the
m-momenta. The momenta [}’ are the charges under these and so are the
roots of the gauge group. For I's, the points of length-squared two are
just the SO(32) roots (11.4.16). For I's the points of length-squared two
are the Eg roots (11.4.21). Thus the two possible lattices give the same two
gauge groups, SO(32) and Eg x Eg, found earlier. The commuting currents
have singularity 1/z2, so k = 1 again.

It is easy to see that the earlier fermionic construction and the present
bosonic one are equivalent under bosonization. The integral points on the
lattices (11.6.5) and (11.6.6) map to the NS sectors of the current algebra
and the half-integral points to the R sectors. The constraint that the total
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k7' be even is the GSO projection on the left-movers in each theory. We
have seen in the previous section that the dynamics of a current algebra is
completely determined by its symmetry, so we can give a representation-
independent description of the left-movers as an SO(32) or Eg x Eg level
one current algebra.”

Let us note some general results about Lie algebras and lattices. The
set of all integer linear combinations of the roots of a Lie algebra g is
known as the root lattice I'y of g. Now take any representation r and let
/4 be any weight of r. The set of points 2+ v for all v € I'y is denoted
I'.. It can be shown by considering various SU(2) subgroups that for a
simply-laced Lie algebra with roots of length-squared two,

[,cry. (11.6.7)
The union of all I', is the weight lattice I, and?
r,=ry,. (11.6.8)
For example, the weight lattice of SO(2n) has four sublattices:
(0) : 0+ any root ; (11.6.9a)
(v) : (1,0,0,...,0) + any root ; (11.6.9b)
(s) : (%,%,%,...,%)—l—any root ; (11.6.9¢)
(¢): (=% %.3,....3) +any root . (11.6.9d)

These are respectively the root lattice, the lattice containing the weights
of the vector representation, and the lattices containing the weights of
the two 2"~ !-dimensional spinor representations. The lattice I'y is the root
lattice of Eg and is also the weight lattice because it is self-dual. The root
lattice of SO(32) gives the integer points in I'jg. The full I'i¢ is the root
lattice plus one spinor lattice of SO(32).

The level one current algebra for any simply-laced Lie algebra g can
similarly be represented by rank(g) left-moving bosons, the momentum
lattice being the root lattice of g with the roots scaled to length-squared
two. The constants e(a, f) appearing in the Lie algebra (11.4.12) can then
be determined from the vertex operator OPE; this is one situation where
the explicit form of the cocycle is needed. A modular-invariant CFT can be
obtained by taking also rank(g) right-moving bosons, with the momentum
lattice being

r=>roxf,. (11.6.10)
-

2 To be precise it is still necessary to specify the spectrum, which amounts to specifying which
primary fields appear. Modular invariance generally restricts the possibilities greatly.

3 For the nonsimply-laced algebras Sp(k) and SO(2k + 1), these same relations hold between the
weight lattice of one and the dual of the root lattice of the other.
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That is, the spectrum runs over all sublattices of the weight lattice, with
the left- and right-moving momenta taking values in the same sublattice.

Toroidal compactification

In parallel to the bosonic case, all even self-dual lattices of signature
(26—d, 10—d) can be obtained from any single lattice by O(26—d, 10—d, R)
transformations. Again start with any given solution I'g; for example,
this could be either of the ten-dimensional theories with all compact
dimensions orthogonal and at the SU(2) x SU(2) radius. Then any lattice

I'=Aly, A€O0(26—4d,10—d,R) (11.6.11)

defines a consistent heterotic string theory. As in the bosonic case there is
an equivalence

A AAT ) = AT, (11.6.12)
where
A1 €026 —d,R) x0(10—-d,R), A€ 0(26—d,10—d,Z). (11.6.13)
The moduli space is then
0(26 —d, 10 —d,R)
026 —d,R) x O(10 —d,R) x 026 —d, 10 — d,Z)

The discrete T-duality group 0(26 — d, 10 — d, Z)) of invariances of T’y is
understood to act on the right.

Now consider the unbroken gauge symmetry. There are 26 — d gauge
bosons with vertex operators 0X"{p* and 10 — d with vertex operators
0X*p™. These are the original 16 commuting symmetries of the ten-
dimensional theory plus 10 — d Kaluza—Klein gauge bosons and 10 — d
more from compactification of the antisymmetric tensor. In addition there
are gauge bosons XL XL{p* for every point on the lattice " such that

=2, Ig=0. (11.6.15)

There are no gauge bosons from points with /g # 0 because the mass
of such a state will be at least %l%. For generic boosts A, giving generic
points in the moduli space, there are no points in I" with [g = 0 and so no
additional gauge bosons; the gauge group is U(1)3~2¢. At special points
the gauge symmetry is enhanced. Obviously one can get SO(32)x U(1)20—2¢
or Eg x Eg x U(1)>°~2¢ from compactifying the original ten-dimensional
theory on a torus without Wilson lines, just as in field theory. However,
as in the bosonic string, there are stringy enhanced gauge symmetries at
special points in moduli space. For example, the lattice I'y¢_410—q, defined
by analogy to the lattices I's and T'j4, gives rise to SO(52 —2d) x U(1)'19—.
As in the bosonic case, the low energy physics near the point of enhanced

(11.6.14)
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symmetry is the Higgs mechanism. All groups obtained in this way have
rank 36 — 2d. This is the maximum in perturbation theory, but we will
see in chapter 19 that nonperturbative effects can lead to larger gauge
symmetries.

The number of moduli, from the dimensions of the SO groups, is

% (36 —2d)(35—2d)— (26 —d)(25—d)— (10—d)(9—d)| = (26 —d)(10—4d) .

(11.6.16)
As in the bosonic string these can be interpreted in terms of backgrounds
for the fields of the ten-dimensional gauge theory. The compact compo-
nents of the metric and antisymmetric tensor give a total of (10 — d)?
moduli just as before. In addition there can be Wilson lines, constant
backgrounds for the gauge fields 4,,. As discussed in chapter 8, due to the
potential Tr( [An, An]?) the fields in different directions commute along flat
directions and so can be chosen to lie in a U(1)!® subgroup. Thus there
are 16(10 — d) parameters in 4,, for (26 — d)(10 — d) in all.

In chapter 8 we studied quantization with antisymmetric tensor and
open string Wilson line backgrounds. Here we leave the details to the
exercises and quote the result. If we compactify x™ = x™ + 2nR with
constant backgrounds G, Bnn, and AL, then canonical quantization

m>

gives
n, W'R w'R
kim = o+~ (Gun + Bum) — q' Al — TAflAf,, , (11.6.17a)
kb = (q" +w"RAL)2/d)/? (11.6.17b)
HR nR
kRm = % Woc’ (_Gmn + an) - qIAzIn - W2 AiAfn > (11'6'170)

where n, and w™ are integers and ¢! is on the I'j¢ or I's x I'g lattice
depending on which string has been compactified. The details are left to
exercise 11.10. Let us note that with the gauge fields set to zero this reduces
to the bosonic result (8.4.7). The terms in ky,, and kg,, that are linear in A’
come from the effect of the Wilson line on the periodicity, as in eq. (8.6.7).
The term in k! that is linear in 4/ comes about as follows. For a string
that winds around the compact dimension, the Wilson line implies that
the current algebra fermions are no longer periodic. The corresponding
vertex operator (10.3.25) shows that the momentum is shifted. Finally,
the terms quadratic in A’ can be most easily checked by verifying that
o'k ok/2 is even.

To compare this spectrum with the Narain description one must go to
coordinates in which G,y = 0,y so that k,;, = e,k,, the tetrad being
defined by 6,, = e,/"¢,/'Gpn. The discrete T-duality group is generated
by T-dualities on the separate axes, large spacetime coordinate transform-
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ations, and quantized shifts of the antisymmetric tensor background and
Wilson lines.

There is an interesting point here. Because the coset space (11.6.14) is
the general solution to the consistency conditions, we must obtain this
same set of theories whether we compactify the SO(32) theory or the
Eg x Eg theory. From another point of view, note that the coset space
is noncompact because of the Lorentzian signature — one can go to
the limit of infinite Narain boost. Such a limit corresponds physically to
taking one or more of the compact dimensions to infinite radius. Then one
such limit gives the ten-dimensional SO(32) theory, while another gives
the ten-dimensional Eg x Eg theory. Clearly one should think of all the
different toroidally compactified heterotic strings as different states in a
single theory. The two ten-dimensional theories are then distinct limits of
this single theory.

Let us make the connection between these theories more explicit. Com-
pactify the SO(32) theory on a circle of radius R, with Gg9 = 1 and Wilson
line

RAL = diag(%g,og) . (11.6.18)

Adjoint states with one index from 1 < A4 < 16 and one from 17 < 4 < 32
are antiperiodic due to the Wilson line, so the gauge symmetry is reduced
to SO(16) x SO(16). Now compactify the Eg x Eg theory on a circle of
radius R" with G99 = 1 and Wilson line

RAL = diag<1,07, 1,07) . (11.6.19)

The integer-charged states from the SO(16) root lattice in each Eg remain
periodic while the half-integer charged states from the SO(16) spinor
lattices become antiperiodic. Again the gauge symmetry is SO(16) x
SO(16). To see the relation between these two theories, focus on the states
that are neutral under SO(16) x SO(16), those with k! = 0. In both theories
these are present only for w = 2m even, because of the shift in ki. The
respective neutral spectra are
i 2mR i 2m'R

hir= g kp= gt (11.6.20)

with the subscript 9 suppressed. The primes denote the Eg X Eg theory, and
ii=n+2m, i =n 4 2m'. We have used the explicit form of the Wilson
line in each case, as well as the fact that k! = 0. Under (ii,m) < (m', /)
and (kp,kgr) <> (k},—kpg), the spectra are identical if RR" = o'/2. This
symmetry extends to the full spectrum.

Finally let us ask how realistic a theory one obtains by compactification
down to four dimensions. At generic points of moduli space the massless
spectrum is given by dimensional reduction, simply classifying states by
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their four-dimensional symmetries. Analyzing the spectrum in terms of
the four-dimensional SO(2) helicity, the SO(8) spins decompose as

8, — +1, 05, —1, (11.6.21a)
8 — +1%, 1% (11.6.21b)
and so
8, x8, — +2, +112, 08, —112, 2, (11.6.22a)
8x8, — 3 1% 1% 3% (11.6.22b)

From the supergravity multiplet there is a graviton, with helicities +2.
There are four gravitinos, each with helicities i%. Toroidal compacti-
fication does not break any supersymmetry. Since in four dimensions
the supercharge has four components, the 16 supersymmetries reduce to
d = 4, N = 4 supersymmetry. The supergravity multiplet also includes
12 Kaluza—Klein and antisymmetric tensor gauge bosons, some fermions,
and 36 moduli for the compactification. The final two spin-zero states
are the dilaton and the axion. In four dimensions a two-tensor By, is
equivalent to a scalar (section B.4). This is the axion, whose physics we
will discuss further in chapter 18.

In ten dimensions the only fields carrying gauge charge are the gauge
field and gaugino. These reduce as discussed in section B.6 to an N = 4
vector multiplet — a gauge field, four Weyl spinors, and six scalars, all in
the adjoint. For enhanced gauge symmetries, which are not present in ten
dimensions, one still obtains the same N = 4 vector multiplet because of
the supersymmetry. Compactification with N = 4 supersymmetry cannot
give rise to the Standard Model because the fermions are necessarily in
the adjoint of the gauge group. One gravitino is good, as we will explain
in more detail in section 16.2, but four are too much of a good thing,
We will see in chapter 16 that a fairly simple orbifold twist reduces the
supersymmetry to N = 1 and gives a realistic spectrum.

Supersymmetry and BPS states

A little thought shows that the supersymmetry algebra of the toroidally
compactified theory must be of the form*

{0, Qf} = 2P, (TMT)5 + 2PRa(T"T0) . (11.6.23)

This differs from the simple dimensional reduction of the ten-dimensional
algebra in that we have replaced P,, with Pg,, the total right-moving

4 For clarity a projection operator is omitted — all spinor indices in this equation must be in
the 16.
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momentum kg, of all strings in a given state. These are equal only for a
state of total winding number zero. To obtain the algebra (11.6.23) directly
from a string calculation requires some additional machinery that we will
not develop until the next chapter. However, it is clear that the algebra
must take this form because the spacetime supersymmetry involves only
the right-moving side of the heterotic string,

Let us look for Bogomolnyi—Prasad—Sommerfield (BPS) states, states
that are annihilated by some of the Q,. Take the expectation value of the
algebra (11.6.23) in any state |yp) of a single string of mass M in its rest
frame. The left-hand side is a nonnegative matrix. The right-hand side is

2(M + kpp I T0),5 (11.6.24)

The zero eigenvectors of this matrix are the supersymmetries that anni-
hilate |yp). Since (kg,,I""T°)?> = k2, the eigenvalues of the matrix (11.6.24)
are

2(M = |kg]) , (11.6.25)

with half having each sign. A BPS state therefore has M? = k%. Recalling
the heterotic string mass-shell conditions on the right-moving side,

) { kx +4(N —1)/a (NS),

_ R (11.6.26)
kR+4N/O(, (R),

the BPS states are those for which the right-movers are in an R ground
state or in an NS state with one y_;/, excited. The latter are the lowest
NS states to survive the GSO projection, so it makes sense to change
terminology at this point and call them ground states as well. The BPS
states are then precisely those states for which the right-moving side is
in its 8, + 8 ground state, but with arbitrarily large kr. These can be
paired with many possible states on the left-moving side. The left-moving
mass-shell condition is

M? =k} +4(N —1)/o (11.6.27)
or
N=1+d(ki—k})/d=1—n,w"—q'q'/2. (11.6.28)

Any left-moving oscillator state is possible, as long as the compact mo-
menta and winding satisfy the condition (11.6.28). For any given left-
moving state, the 16 right-moving states 8,+8 form an ultrashort multiplet
of the supersymmetry algebra, as compared to the 256 states in a normal
massive multiplet.

It is interesting to look at the ten-dimensional origin of the modified
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supersymmetry algebra (11.6.23). Rewrite the algebra as
AX,,
2no!

{04:0}} = 2Py (TMT0),5 — 25210 5 (11.6.29)

where AX™ is the total winding of the string. Consider the limit that
the compactification radii become macroscopic, so that a winding string
is macroscopic as well. The central charge term in the supersymmetry
algebra must be proportional to a conserved charge, so we are looking
for a charge proportional to the length AX of a string. Indeed, the string
couples to the antisymmetric two-tensor field as

1 / Bl / 4% MY (x)Bar () (11.6.30a)
2no! Jm 2
MN(x) = 21 : / Lo (0, XM 0,XN — 0, XN, XxM)50(x — X(0)) .
oI (11.6.30b)

This is the natural generalization of the gauge coupling of a point particle,
as discussed in section B.4. Integrating the current at fixed time gives the
charge

i
oM — /d9ij° = /dXM , (11.6.31)

the integral running along the world-line of the string. The full supersym-
metry algebra is then

[0,. 04} = 2Py — Q) (TMTO) 5. (11.632)

In ten noncompact dimensions the charge (11.6.31) vanishes for any
finite closed string but can be carried by an infinite string, for example
an infinite straight string which would arise as the R — oo limit of a
winding string. It is often useful to contemplate such macroscopic strings,
which of course have infinite total mass and charge but finite values
per unit length. Under compactification the combination P,, — Q,, is the
right-moving gauge charge. The left-moving charges do not appear in the
supersymmetry algebra.

It is natural to wonder whether the algebra (11.6.32) is now complete,
and in fact it is not. Consider compactification to four dimensions at a
generic point in the moduli space where the gauge symmetry is broken to
U(1)®. Grand unified theories in which the U(1) of the Standard Model
is embedded in a simple group always have magnetic monopoles arising
from the quantization of topologically nontrivial classical solutions. String
theory is not an ordinary grand unified theory but it also has magnetic
monopoles. Compactification of the heterotic string leads to three kinds
of gauge symmetry: the ten-dimensional symmetries, the Kaluza—Klein
symmetries, and the antisymmetric tensor symmetries. For each there is
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a corresponding monopole solution: the 't Hooft—Polyakov monopole,
the Kaluza—Klein monopole, and the H-monopole respectively. Of course
since the various charges are interchanged by the 0(22,6,Z) T-duality,
the monopoles must be as well. Monopole charges appear in the super-
symmetry algebra; in the present case it is again the right-moving charges
that appear. In the low energy supergravity theory there is a symmetry
that interchanges the electric and magnetic charges, so they must appear
in the supersymmetry algebra in a symmetric way. We will discuss similar
central charge terms extensively in chapters 13 and 14.

Exercises

11.1 Show that the operators (10.7.21) with appropriate normalization
generate the full N = 2 superconformal algebra (11.1.4).

11.2 Show that if a (%,0) constraint jr is not tensor, then L; - jr is a
nonvanishing (%,0) constraint, and a linear combination of L_1 - Ly - jF
and jF is a tensor (%,O) constraint.

11.3 Show that if we take the GSO projection on the 44 in groups of
eight, modular invariance is inconsistent with spacetime spin-statistics.
Show that the OPE does not close.

11.4 (a) Find the massless and tachyonic states in the theory obtained by
twisting the diagonal theory on the group generated by exp(niFy).
(b) Do the same for the group generated by exp(wiF;) and exp(wiF>).

11.5 (a) The decompositions of the spinor representation under SO(16) —
SO(6) x SO(10) and under SO(6) — SU(3) x U(1) are obtained in sec-
tion B.1. Use this to show that the adjoint of Eg decomposes into SU(3)
representations with the degeneracies (11.4.24). The 78 generators neutral
under SU(3) must form a closed algebra: this is Eg.

(b) Use the same decompositions to show that the Eg representations
decompose as shown in table 11.4 under E¢ — SO(10) x U(1).

(c) In a similar way obtain the decompositions shown in table 11.4 for
SO(10) —» SU(5) x U(1).

11.6 Repeat parts (a) and (b) of the previous exercise for SO(16) —
SO(4) xS0O(12) and SO(4) —» SU(2) x U(1) to obtain the analogous prop-
erties of E7.

11.7 Show that :jj(0):= j%,-j%,-1. Act with the Laurent expansion (11.5.2)

for j°(z) and verify the OPE (11.5.20) in the Sugawara construction. Sim-
ilarly verify the OPE (11.5.24).

11.8 For the free-fermion currents (11.5.16) for SO(n), verify that the Sug-
awara construction gives the usual bilinear Tp.
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11.9 Show that the lattice
r=>r xI,

is even and self-dual, where T, is a weight sublattice of SO(44), T, the same
weight sublattice for SO(12), and the sum runs over the four sublattices of
SO(2n). Show that this gives a four-dimensional compactification of the
heterotic string with SO(44) x U(1)® gauge symmetry.

11.10 (a) Verify the spectrum (11.6.17) for one compact dimension with a
Wilson line background only.

(b) For the full spectrum (11.6.17), verify that o’k o k/2 is even for any
state and that o’k o k’/2 is integral for any pair of states. The o product is

kok = kik/l{ + Gmn(kLmkin - kRmk;Qn) .

(c) (Optional) Verify the full result (11.6.17) by canonical quantization.
Recall that the antisymmetric tensor background has already been treated
in chapter 8. Reference: Narain, Sarmadi, & Witten (1987).

11.11 In the Eg x Eg string, the currents i0H'! plus the vertex operators for
the points of length two form a set of (1,0) currents satisfying the Eg x Eg
algebra. From the 1/z term in the OPE, find the commutation relations
of Eg. Be sure to include the cocycle in the vertex operator.

11.12 Find the Hagedorn temperatures of the type I, II, and heterotic
string theories. Use the result (7.2.30) for the asymptotics of the partition
function to express the Hagedorn temperature in general form.
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Superstring interactions

In this chapter we will examine superstring interactions from two com-
plementary points of view. First we study the interactions of the massless
degrees of freedom, which are highly constrained by supersymmetry. The
first section discusses the tree-level interactions, while the second discusses
an important one-loop effect: the anomalies in local spacetime symme-
tries. We then develop superstring perturbation theory. We introduce
superfields and super-Riemann surfaces to give superconformal symme-
try a geometric interpretation, and calculate a variety of tree-level and
one-loop amplitudes.

12.1 Low energy supergravity

The ten-dimensional supersymmetric string theories all have 32 or 16
supersymmetry generators. This high degree of supersymmetry completely
determines the low energy action.

Type 11A superstring

We begin by discussing the field theory that has the largest possible space-
time supersymmetry and Poincaré invariance, namely eleven-dimensional
supergravity. As explained in the appendix, the upper limit on the di-
mension arises because nontrivial consistent field theories cannot have
massless particles with spins greater than two.

This theory would seem to have no direct connection to superstring
theory, which requires ten dimensions. Our immediate interest in it is that,
as discussed in section B.5, its supersymmetry algebra is the same as that
of the ITA theory. The action of the latter can therefore be obtained by
dimensional reduction, toroidal compactification keeping only fields that
are independent of the compact directions. For now this is just a trick to

84
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take advantage of the high degree of supersymmetry, but in chapter 14
we will see that there is much more going on.

The eleven-dimensional supergravity theory has two bosonic fields, the
metric Gyn and a 3-form potential Ay np = Az with field strength Fy.
Higher-dimensional supergravities contain many different p-form fields; to
distinguish these from one another we will denote the rank by an italicized
subscript, as opposed to numerical tensor indices which are written in
roman font. In terms of the SO(9) spin of massless states, the metric gives
a traceless symmetric tensor with 44 states, and the 3-form gives a rank
3 antisymmetric tensor with 84 states. The total number of bosonic states
is then 128, equal to the dimension of the SO(9) vector-spinor gravitino.

The bosonic part of the action is given by

1 1
2618 = /d“x(—c;)l/2 (R — 2|F4|2) — ¢ /A3 ANFyAFy . (12.1.1)

The form action, written out fully, is proportional to

/dd G)'?|Fy|* = /dd GM]N] GMNoFyg v Fny.,

(12.1.2)
The p! cancels the sum over permutations of the indices, so that each
independent component appears with coefficient 1. Forms are written as
tensors with lower indices in order that their gauge transformations do
not involve the metric.

We will take such results from the literature without derivation. Our
interest is only in certain general features of the various actions, and we will
not write out the full fermionic terms or supersymmetry transformations.
For the supergravities arising from string theories, one can verify the
action by comparison with the low energy limits of string amplitudes; a
few such calculations are given later in the chapter and in the exercises.
Also, many important features, such as the coupling of the dilaton, will
be understood from general reasoning.

Now dimensionally reduce as in section 8.1. The general metric that is
invariant under translations in the 10-direction is

ds®> = GLly(x")dxMdxN
= G (x")dx"dx" + exp(20(x*))[dx"" + 4,(x")dx"]* . (12.1.3)

Here M, N run from 0 to 10 and u,v from 0 to 9. We have added a su-
perscript 11 to the metric appearing in the earlier supergravity action and
introduced a new ten-dimensional metric GL?, +* GW The ten-dimensional
metric will appear henceforth, so the superscript 10 will be omitted.

The cleven-dimensional metric (12.1.3) reduces to a ten-dimensional

metric, a gauge field 4;, and a scalar . The potential A3 reduces to two
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potentials A3 and A, the latter coming from components where one index
is along the compact 10-direction. The three terms (12.1.1) become

1 1
S = G /d‘o (— G)l/z( “R— 2e3"|F2|2) , (12.1.4a)
S, = /d‘o G) (e3P + e Faf?) (12.1.4b)
4K10
1 1
Sy =——5 [ A ANFyNFy=——5 | A3 ANF3; NFs. (12.1.4c)

We have compactified the theory on a circle of coordinate period 2zR
and defined 3, = x%,/2nR. The normalization of the kinetic terms is
canonical for 2k, = 1.

In the action (12.1.4) we have defined

F; =dA; —A; NF3 (12.1.5)

the second term arising from the components G*!° in the 4-form ac-
tion (12.1.2). We will use F,;; = dA, to denote the simple exterior deriva-
tive of a potential, while field strengths with added terms are distinguished
by a tilde as in eq. (12.1.5). Note that the action contains several terms
where p-form potentials appear, rather than their exterior derivatives, but
which are still gauge invariant. These are known as Chern—Simons terms,
and we see that they are of two types. One involves the wedge product of
one potential with any number of field strengths, and it is gauge invariant
as a consequence of the Bianchi identities for the field strengths. The other
appears in the kinetic term for the modified field strength (12.1.5). The
second term in F; has a gauge variation

—dlg ANF3 = —d(Ag N F3). (12.1.6)
It is canceled by a transformation
5,/43 =Ag NF3, (12.1.7)

which is in addition to the usual 043 = dA,. In the present case, the
Kaluza—Klein gauge transformation 4y originates from reparameterization
of x!° and the transformation (12.1.7) is simply part of the eleven-
dimensional tensor transformation. Since the combination Fy is invariant
under both 49 and A, transformations we should regard it as the physical
field strength, but with a nonstandard Bianchi identity

dFy = —F, A F3 . (12.1.8)

Poincaré duality of the form theory, developed in section B.4 for forms
without Chern—Simons terms, interchanges these two kinds of Chern—
Simons term.
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The fields of the reduced theory are the same as the bosonic fields of the
IIA string, as they must be. In particular the scalar ¢ must be the dilaton
®, up to some field redefinition. The terms in the action have a variety of
g-dependences. Recall that the string coupling constant is determined by
the value of the dilaton. As discussed in section 3.7, this means that after
appropriate field redefinitions the tree-level spacetime action is multiplied
by an overall factor e>®, and otherwise depends on ® only through its
derivatives. ‘Appropriate redefinitions’ means that the fields are the same
as those appearing in the string world-sheet sigma model action.

Since we have arrived at the action (12.1.4) without reference to string
theory, we have no idea as yet how these fields are related to those in the
world-sheet action. We will proceed by guesswork, and then explain the
result in world-sheet terms. First redefine

20
G =€ ’Gy(new), o= B (12.1.9)
The original metric will no longer appear, so to avoid cluttering the
equations we do not put a prime on the new metric. Then

Stia = Sns +Sr +Scs

(12.1.10a)
) 1

Sxs = 5 [ 4662 (R 4 40,000 — S HSF)
K1o 2

(

(

12.1.10b)
Sn=—7 o /dlo (— G)1/2(|F 2+ |Fy) ) 12.1.10¢c)
K10
1
Scs = —— | B ANFy; N NFy . (12.1.10d)
4K10

Note that R — ¢°R + ..., that (—G)'/? — ¢737(—G)!/2, and that the form
action (12.1.2) scales as el?=3)7,

We have regrouped terms according to whether the fields are in the
NS-NS or R-R sector of the string theory; the Chern—Simons action
contains both. It will be useful to distinguish R—R from NS-NS forms, so
for the R-R fields we henceforth use C, and F,,; for the potential and
field strength, and for the NS-NS fields B, and H;. Also, we will use A4;
and F; for the open string and heterotic gauge fields, and B, and Hj; for
the heterotic antisymmetric tensor.

The NS action now involves the dilaton in standard form. Eq. (12.1.9)
is the unique redefinition that does this. The R action does not have the
expected factor of ¢2?, but can be brought to this form by the further
redefinition

C, =e %), (12.1.11)
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after which
/dlox(—G)1/2|F2|2 — /dlox(—G)We%\FgP . (12.1.12a)
Fy = dC, —dd A C) (12.1.12b)

and similarly for Fs and C;. The action (12.1.12) makes explicit the dilaton
dependence of the loop expansion, but at the cost of complicating the
Bianchi identity and gauge transformation,

dFy, =dDAF,, 8C, =dil) —)d® . (12.1.13)

For this reason the form (12.1.10) is usually used. For example, in a
time-dependent dilaton field, it is the charge to which the unprimed fields
couple that will be conserved.

Let us now make contact with string theory and see why the background
R-R fields appearing in the world-sheet action have the more complicated
properties (12.1.13). We work at the linearized level, in terms of the vertex
operators

Py g (CTHM 40 gy (X)) (12.1.14)

Here 77, is the R ground state vertex operator (10.4.25) and I'*i-# =
I'lu Tl The nontrivial physical state conditions are from Gy ~ P
and Gy ~ puPh, and amount to two Dirac equations, one acting on the
left spinor index and one on the right:

TR0, e, 0 (X) = TH-9T e, 0 (X) =0, (12.1.15)

By antisymmetrizing all p + 1 gamma matrices and keeping anticommu-
tators one obtains

DV TH -ty — TVH-Hp +p,7"[/11ru2~~/1p] , (12.1.16a)
DU = (=P TV 4 (—1)PH pp el (12.1.16b)

The Dirac equations (12.1.15) are then equivalent to
de, = dxe, =0 . (12.1.17)

These are first order equations, unlike the second order equations encoun-
tered previously for bosonic fields. In fact, they have the same form as
the field equation and Bianchi identity for a p-form field strength. Thus
we identify the function e, , (X) appearing in the vertex operator as the
R-R field strength rather than potential. To confirm this, observe that
in the IIA theory the spinors in the R—R vertex operator (12.1.14) have
opposite chirality and so their product in table 10.1 contains forms of
even rank, the same as the ITA R-R field strengths.

This has one consequence that will be important later on. Amplitudes
for R-R forms will always contain a power of the momentum and so
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vanish at zero momentum. The zero-momentum coupling of a gauge field
measures the charge, so this means that strings are neutral under all R—R
gauge fields.

The derivation of the field equations (12.1.17) was for a flat background.
Now let us consider the effect of a dilaton gradient. It is convenient that
the linear dilaton background gives rise to the free CFT (10.1.22),

Tr = i(2/d)2proX, — 2i(o /2)12® op" (12.1.18a)
Go ~ (o /2)' Pyl (py + i) (12.1.18b)

and similarly for Tr and Go. The field equations are modified to
(d—ddN)ey, = (d — dDN) xe, =0 . (12.1.19)

Thus the Bianchi identity and field equation for the string background
fields are modified in the fashion deduced from the action. There is no
such modification for the NS—NS tensor. It couples to the world-sheet
through its potential,

1
—/ B, . (12.1.20)
2no! Jm

This is invariant under B, = dA; independent of the dilaton, and so
H; = dB; is invariant and dH; = 0.

Massive IIA supergravity

There is a generalization of the IIA supergravity theory which has no
simple connection with eleven-dimensional supergravity but which plays
a role in string theory. The ITA theory has a 2-form and a 4-form field
strength, and by Poincaré duality a 6-form and an 8-form as well,

Fs =«F;, Fg=xF, ; (12.1.21)

again, a tilde denotes a field strength with a nonstandard Bianchi identity.
The pattern suggests we also consider a 10-form F;p = dCy. The free field
equation would be

d«F;p =0, (12.1.22)
and since *Fjy is a scalar this means that
* Fj9 = constant . (12.1.23)

Thus there are no propagating degrees of freedom. Nevertheless, such a
field would have a physical effect, since it would carry energy density. This
is closely analogous to an electric field F, in two space-time dimensions,
where there are no propagating photons but there is an energy density
and a linear potential that confines charges.
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Such a field can indeed be included in IIA supergravity. The action is
1
SHA—SHA_i/dlo 1/2M2‘i‘72/‘M}?]() . (12124)
2K7,
Here Sypa is the earlier ITA action (12.1.10) with the substitutions

F;, - F,+MB,, Fy —>F4+%MB2/\B2, ﬁ4 —>ﬁ‘4+%MBg/\Bg.

(12.1.25)
The scalar M is an auxiliary field, meaning that it appears in the action
without derivatives (and in this case only quadratically). Thus it can be
integrated out, at the cost of introducing a rather nonlinear dependence
on B».

We will see in the next chapter that this massive supergravity does arise
in the IIA string. To put the 9-form potential in perspective, observe that
the maximum-rank potential that gives rise to a propagating field in ten
dimensions is an 8-form, whose 9-form field strength is dual to a 1-form.
The latter is just the gradient of the R—R scalar field Cy. A 10-form
potential also fits in ten dimensions but does not give rise to propagating
states. We saw in section 10.8 that this does exist in the type I string, so
we should not be surprised that the 9-form will appear in string theory as
well.

Type IIB superstring

For low energy IIB supergravity there is a problem due to the self-dual
field strength Fs5 = xF5. As discussed in section B.4 there is no covariant
action for such a field, but the following comes close:

S = Sns + SR +Scs , (12.1.26a)
1 1
Sns = = / dlox(—G)l/ze_zq’(R+46u®8“¢>— |H3|2> ,
2K7, 2
| (12.1.26b)
Sk = ——/dw (— G)1/2(|F > +|F; + |F5|2) , (12.1.26¢)
4K10
1
Scs = —— | C4 NH; NF3 (12.1.26d)
4K10
where
F3 = F; —Cy AHj3 , (12.1.27a)
- 1 1
F; =F5—§C2 /\H3+§Bz NF3 . (12.1.27b)

The NS-NS action is the same as in IIA supergravity, while the R-R
and Chern—Simons actions are closely parallel in form. The equation of
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motion and Bianchi identity for Fs are
d«Fs =dFs = H; AN F3 . (12.1.28)

Recall that the spectrum of the IIB string includes the degrees of free-
dom of a self-dual 5-form field strength. The field equations from the
action (12.1.26) are consistent with

«Fs = Fs (12.1.29)

but they do not imply it. This must be imposed as an added constraint
on the solutions; it cannot be imposed on the action or else the wrong
equations of motion result.

This formulation is satisfactory for a classical treatment but it is not
simple to impose the constraint in the quantum theory. This will not
be important for our purposes, and we leave further discussion to the
references. Our main interest in this action is a certain SL(2, R) symmetry.
Let

Gew = ¢ %Gy, 1=Cop+ie®, (12.1.30a)
1 7> —Rert i [ H3
My = Imr[ R } . Fi= [ 5 } . (12.1.30b)
Then
1 0,T0*t
S - le -G 1/2 Rr — U
1B 23, / XGRS ey

1. . , .
F} - F} —4|F5|2) — ol [cinFynF]
1o (12.1.31)

the Einstein metric (12.1.30a) being used everywhere. This is invariant
under the following SL(2,R) symmetry:

2

, at+b
_at+b 12.1.32
f T axd’ ( .
FU = AUF] L A= H Z} , (12.1.32b)
F, = F; , by = GEpy » (12.1.32¢)

with a, b, ¢, and d real numbers such that ad — bc = 1. The SL(2,R)
invariance of the t kinetic term is familiar, and that of the F3 kinetic term
follows from

M =AY At (12.1.33)

This SL(2,R) invariance is as claimed in the second line of table B.3. Any
given value 7 is invariant under an SO(2, R) subgroup so the moduli space
is the coset SL(2,R)/SO(2,R). If we now compactify on tori, the moduli
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and other fields fall into multiplets of the larger symmetries indicated in
the table and the low energy action has the larger symmetry.

Observe that this SL(2,R) mixes the two 2-form potentials. We know
that the NS—-NS form couples to the string and the R—R form does not.
The SL(2,R) might thus seem to be an accidental symmetry of the low
energy theory, not relevant to the full string theory. Indeed, this was
assumed for some time, but now we know better. As we will explain in
chapter 14, the discrete subgroup SL(2,Z) is an exact symmetry.

Type I superstring

To obtain the type I supergravity action requires three steps: set to zero
the 1IB fields Cy, B>, and C4 that are removed by the Q projection; add
the gauge fields, with appropriate dilaton dependence for an open string
field; and, modify the F; field strength. This gives

S =S.+S,, (12.1.34a)
Se= v [ -6 [ (R +40,00'0) — 5 F 2]
2K10 2
1 (12.1.34b)
So = =32 / d"x(—G) e Tr,(|F> ) . (12.1.34c)
10

The open string SO(32) potential and field strength are written as matrix-
valued forms A; and F, which are in the vector representation as indicated
by the subscript on the trace. Here

F; =dC, — ;5 (12.1.35)
and w3 is the Chern—Simons 3-form
)
w3 =TrV(A1 AdA, —glAl AA; /\AI) : (12.1.36)

Again the modification of the field strength implies a modification of the
gauge transformation. Under an ordinary gauge transformation 64; =
dA —i[A;, ], the Chern-Simons form transforms as

Sw; = dTry(2dA;). (12.1.37)
Thus it must be that
2
5Cy = 10T ()dA;) . (12.1.38)
g10

The 2-form transformation 0C> = dA; 1s unaffected.
The action appears to contain two parameters, k1o with units of L* and
gio with units of L3. We can think of ko as setting the scale because
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it is dimensionful, but there is one dimensionless combination ng;;‘/ ’
However, under an additive shift ® — ® + {, the couplings change x{y —
¢‘kip and g — ¢*/2g and so this ratio can be set to any value by a change
of the background. Thus the low energy theory reflects the familiar string
property that the coupling is not a fixed parameter but depends on the
dilaton. The form of the action (12.1.34) is fixed by supersymmetry, but
when we consider this as the low energy limit of string theory there is a
relation between the closed string coupling g, the open string coupling
210, and the type I o. We will derive this in the next chapter, from a D-
brane calculation, as we did for the corresponding relation in the bosonic
string.

Heterotic strings

The heterotic strings have the same supersymmetry as the type I string
and so we expect the same action. However, in the absence of open strings
or R-R fields the dilaton dependence should be e~2® throughout:

1 _ 1 - K2
Shet = 272/011%(—(;)1/2(: 2“’[1{ +40,00"® — J|H; 2 — =0Tr(IF2 %) .
K10 810
(12.1.39)

2 2
H; =dBy — Loy, 6By = “10Tr,(3dA)) (12.1.40)
810 1o
are the same as in the type I string, with the form renamed to reflect the
fact that it is from the NS sector.
Because of the high degree of supersymmetry, the type I and heterotic
actions can differ only by a field redefinition. Indeed the reader can check
that with the type I and heterotic fields related by

Gy = ¢ PGy, O =Dy, (12.1.41a)
Fi3 = Hyz , Ay = A (12.1.41b)

the action (12.1.34) becomes the action (12.1.39). For the heterotic string,
the relation among k1o, g10, and o’ will be obtained later in this chapter,
by two different methods; it is, of course, different from the relation in
the type I theory.

For Eg x Eg there is no vector representation, but it is convenient to
use a normalization that is uniform with SO(32). In place of Tr(t%t") in
the action use 3—10Tra(t“tb). This has the property that for fields in any
SO(16) x SO(16) subgroup it reduces to Try(t%t?).
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12.2 Anomalies

It is an important phenomenon that some classical symmetries are anoma-
lous, meaning that they are not preserved by quantization. We encountered
this for the Weyl anomaly in chapter 3. We also saw there that if the left-
and right-moving central charges were not equal there was an anomaly in
two-dimensional coordinate invariance.

In general, anomalies in local symmetries make a theory inconsistent,
as unphysical degrees of freedom no longer decouple. Anomalies in global
symmetries are not harmful but imply that the symmetry is no longer exact.
Both kinds of anomalies play a role in the Standard Model. Potential local
anomalies in gauge and coordinate invariance cancel among the quarks
and leptons of each generation. Anomalies in global chiral symmetries of
the strong interaction are important in accounting for the 7° decay rate
and the 1’ mass.

In this section we consider potential anomalies in the spacetime gauge
and coordinate invariances in the various string theories. If the theories
we have constructed are consistent these anomalies must be absent, and in
fact they are. Although this can be understood in purely string theoretic
terms it can also be understood from analysis of the low energy field
theory, and it is useful to take both points of view.

We can analyze anomalies from the purely field theoretic point of view
because of the odd property that they are both short-distance and long-
distance effects. They are short-distance in the sense that they arise because
the measure cannot be defined — the theory cannot be regulated — in an
invariant way. They are long-distance in the sense that this impossibility
follows entirely from the nature of the massless spectrum.

Let us illustrate this with another two-dimensional example, which is
also of interest in its own right. Suppose we have left- and right-moving
current algebras with the same algebra g, with the coefficients of the
Schwinger terms being kz g6%’. Couple a gauge field to the current,

Sint = / A’z (jOAL 4 j2AY) . (12.2.1)

The OPE determines the jj expectation value, so to second order the path
integral is

1 k k
2U) = 5 [ @2 8o | FAka A ez + A2 AY )

h 12
(12.2.2)
Now make a gauge transformation, which to leading order is 04 = dA“.
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Integrate by parts and use 0.(1/z%) = —2n10:6%(z,Z) to obtain
0Z[A] = 2n/d22 i“(z,Z){l%LazA‘;(z,Z) + kro.A%z,2)| . (12.2.3)
Now, consider the case that lAcL = IQR = IQ, where
5Z[A] = — 21k / Pz A%z, 2)48(2, %) . (12.2.4)
Then
Z'[A] = Z[A] + 27k / Pz A9(z,2) A%z, 7)

i
=5 [ mbl Fae 2L (1225)

is gauge-invariant.

Let us run through the logic here. The path integral (12.2.2) is nonlocal,
but its gauge variation is local. The latter is necessarily true because the
variation can be thought of as arising from the regulator if we actually
evaluate the path integral by brute force. Although the variation is local,
it is not in general the variation of a local operator. When it is so, as
is the case for k; = kg here, one can subtract that local operator from
the action to restore gauge invariance. In fact, with a gauge-invariant
regulator the needed local term will be produced by the path integral
automatically. The OPE is unambiguous only for nonzero separation, so
the OPE calculation above doesn’t determine the local terms — it doesn’t
know which regulator we choose to use.

The final form (12.2.5) is written in terms of the field strength. For an
Abelian theory the full path integral is just the exponential of this. For a
non-Abelian theory the higher order terms are more complicated, but the
condition k; = kg for the symmetry to be preserved is still necessary and
sufficient.

The two-dimensional gravitational anomaly was similarly determined
from the z~* term in the T T OPE. Also, if there is a z—> term in a T j OPE
then there is a mixed anomaly: the current has an anomaly proportional
to the curvature and the coordinate invariance an anomaly proportional
to the field strength.

Note that these anomalies are all odd under parity, being proportional
to IQL —kpg or ¢, — cg. Parity-symmetric theories can be defined invariantly
using a Pauli—Villars regulator. Also, the anomalies are unaffected if we
add additional massive degrees of freedom. This follows from a field theory
decoupling argument. Massive degrees of freedom give a contribution
to Z[A] which at asymptotically long distance looks local (analytic in
momentum). Any gauge variation of this can therefore be written as the
variation of a local operator, and removed by a counterterm. For this



96 12 Superstring interactions

reason the anomalies in superstring theory are determined by the massless
spectrum, independent of the stringy details at short distance.

A single fermion of charge ¢ coupled to a U(1) gauge field contributes
g* to the jj OPE. The anomaly cancellation conditions for free fermions
coupled to such a field are

gauge anomaly: Z q> — Z > =0, (12.2.6a)
L R
gravitational anomaly: » 1—) 1=0, (12.2.6b)
L R
mixed anomaly: Z q— Z q=0. (12.2.6¢)

In four dimensions things are slightly dLifferent.R For dimensional reasons
the dangerous amplitudes have three currents and the anomaly is quadratic
in the field strengths and curvatures. The antiparticle of a left-handed
fermion of charge ¢ is a right-handed fermion of charge —q, so the two
terms in the anomaly are automatically equal for odd powers of ¢ and
opposite for even powers (including the purely gravitational anomaly),
leaving the conditions:

gauge anomaly: Zq3 =0, (12.2.7a)
L

mixed anomaly: » ¢ =0. (12.2.7b)
L

If there is more than one gauge group the necessary and sufficient con-
dition for anomaly cancellation is that the above hold for every linear
combination of generators.

The IIA theory is parity-symmetric and so automatically anomaly-free,
while the others have potential anomalies. In ten dimensions the anomaly
involves amplitudes with six currents (the hexagon graph) and is of fifth
order in the field strengths and curvatures. The calculation has been done
in detail in the literature; we will not repeat it here but just quote the
result. First we must establish some notation. For the gravitational field,
it is convenient to work in the tangent space (tetrad) formalism. In this
formalism there are two local symmetries, coordinate invariance and local
Lorentz transformations

el (x) = e, 2(x)0, (x) . (12.2.8)

Both are necessary for the decoupling of unphysical degrees of freedom,
and in fact when there is a coordinate anomaly one can by adding
counterterms to the action convert it to a Lorentz anomaly, which closely
resembles a gauge anomaly. The Riemann tensor can be written R,,”,
with mixed spacetime and tangent space indices, and in this way be
regarded as a 2-form R, which is a d x d tangent space matrix. Similarly
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e,d is written as a one-form which is a column vector in tangent space,
and the field strength is written as a matrix 2-form F, = F{t{; here r is
the representation carried by the matter.

The anomaly can be written in compact form in terms of an anomaly
polynomial, a formal (d + 2)-form fd+2 (R2, F>). This has the property that
it is the exterior derivative of a (d+ 1)-form, whose variation is the exterior
derivative of a d-form:

Tiwo =dlgy;, Slgpy =diy . (12.2.9)

The anomalous variation of the path integral is then
—1 N
olnZ = —— [ I;(F2,R;) . 12.2.10
n ()3 / a(F2,Rz) ( )

The anomaly cancellation condition is that the total anomaly polynomial
vanish.

In the ten-dimensional supergravity theories there are three kinds of
chiral field: the spinors 8 and 8, the gravitinos 56 and 56, and the field
strengths [5]+ and [5]_ of the IIB theory. Parity interchanges the two fields
in each pair so these make opposite contributions to the anomaly. The
anomaly polynomials have been calculated. For the Majorana—Weyl 8,

. B Tr(F$)
I3(F2,Ry) = — 1440
Tr(FU(R})  Tr(FH(RY)  Tr(F3)[tr(R3))
2304 23040 18432
n tr(Rg) n ‘[r(R‘Z1 )tr(R%) n [tr(R% K
725760 T 552060 | 1327104 (12.2.11)
For the Majorana—Weyl 56,
. w(RS) | t(ROU(RY)  [t(R))?
1s6(F>.Ry) = —4 2 — . (12212
s6(F2, Ry) 93735760 T 22> 552060 031327104+ ¢ )
For the self-dual tensor,
; tr(R$) tr(R)(R3) | . [tr(R3)P
Tsn(R) = 992 — 44 12 . (1221
sp(Ro) = 99227260 855060 T 11327104 ( 3)

The ‘tr’ denotes the trace on the tangent space indices p, ¢. In this section
we will write products and powers of forms without the A, to keep
expressions compact. The “Tr’ denotes the trace of the field strength in
the representation carried by the fermion. In particular, n = Tr(1) is
the dimension of the representation. If the representation r is reducible,
r=r;+ry+..., the corresponding traces add: Tr, = Tr,, + Tr., + ...

Now let us consider the anomalies in the various chiral string theories.
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Type IIB anomalies

In type IIB supergravity there are two 8's, two 56s, and one [5]., giving
the total anomaly polynomial

Tus(R2) = —2I8(Ry) + 2Is6(R2) + Isp(R2) =0 . (12.2.14)

There are no gauge fields so only the three purely gravitational terms enter,
and the coefficients of these conspire to produce zero total anomaly. From
the point of view of the low energy theory, this is somewhat miraculous.
In fact, it seems accidental that there are any consistent chiral theories
at all. There are three anomaly terms that must vanish and three free
parameters — the net number of 8 minus 8, of 56 minus 56’, and of [5]
minus [5]_. Barring a numerical coincidence the only solution would be
that all these differences vanish, a nonchiral theory. One can view string
theory as explaining this numerical coincidence: the conditions for the
internal consistency of string theory are reasonably straightforward, and
having satisfied them, the low energy theory must be nonanomalous.

The existence of consistent chiral theories is a beautiful example of the
consistency of string theory, and is also of some practical importance. The
fermion content of the Standard Model is chiral — the weak interactions
violate parity. This chiral property seems to be an important clue, and it
has been a difficulty for many previous unifying ideas. Of course, in string
theory we are still talking about the ten-dimensional spectrum, but we
will see in later chapters that there is some connection between chirality
in higher dimensions and in four.

Type I and heterotic anomalies

The type I and heterotic strings have the same low energy limits so we
can discuss their anomalies together. There is an immediate problem. The
only charged chiral field is the 8, so there is apparently no possibility of
cancellation of gauge and mixed anomalies. This is a paradox because we
have claimed that these string theories were constructed to satisfy all the
conditions for unitarity. Our arguments were perhaps heuristic in places,
but it is not so hard to carry out an explicit string calculation at one
loop and verify the decoupling of null states. This contradiction led Green
and Schwarz to a careful study of the structure of the string amplitude,
and they found a previously unknown, and canceling, contribution to the
anomaly.

The assertion that the anomaly cannot be canceled by local counter-
terms takes into account only terms constructed from the gauge field and
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metric. Consider, however, the Chern—Simons interaction
S = /BZTr(F;‘) (122.15)

(in any representation r, for now). This is invariant under gauge trans-
formations of the vector potential because it is constructed from the field
strength, and under the 2-form transformation 6 B; = dA; using integra-
tion by parts and the Bianchi identity for the field strength. However,
we have seen that in the N = 1 supergravity theory the 2-form has a
nontrivial gauge transformation 6 B, oc Tr(4dA;), eq. (12.1.40). Then

58 o / Tr(dA;)Tr(F3) . (12.2.16)

This is of the form (12.2.9) with

T4 oc Tr(AdA)Te(FY), Tassoc Tr(A;F2)Tr(FS) , (12.2.17a)
T4 oc Tr(F3)Tr(F$) . (12.2.17b)

Thus it can cancel an anomaly of this form. Similarly, the variation of
s = / B, [Tr(F2))? (12.2.18)

can cancel the anomaly polynomial [Tr(F3)]°.

The pure gauge anomaly polynomial has a different group-theoretic
form Try(F 26), now in the adjoint representation because the charged fields
are gauginos. However, for certain algebras there are relations between
the different invariants. For SO(n), it is convenient to convert all traces
into the vector representation. The fermions of the supergravity theory
are always in the adjoint; in terms of the vector traces these are

Tra(t?) = (n — 2)Try(£?) , (12.2.19a)
Tra(t*) = (n — 8)Try(t*) + 3 Try () Try (1) , (12.2.19b)
Tra(t®) = (n — 32)Try(t%) 4+ 15 Try () Try () . (12.2.19¢)

Here t is any linear combination of generators, but this implies the same
relations for symmetrized products of different generators. Symmetrized
products appear when the anomaly polynomial is expanded in sums over
generators, because the 2-forms F§ and F} commute.

The last of these identities implies that precisely for SO(32) the gauge
anomaly Tr,(FS) is equal to a product of lower traces and so can be
canceled by the variations of S” and S”. This is the Green-Schwarz
mechanism. This is of course the same SO group that arises in the type I
and heterotic strings, and not surprisingly the necessary interactions occur
in these theories with the correct coefficients.
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Also for the group Ejg, the sixth order trace can be reduced to lower
order traces,

1 1
Tra(t4) = @[Tfa(t2)]2 ) Tfa(t6) = 7500

Using the relation Try(t") = Tra1(t") + Trao(t"), it follows that the sixth
power trace can be reduced for Eg x Eg as well (with only one factor of
Eg the gravitational anomaly does not cancel, as we will see).

Now let us consider the full anomaly, including mixed anomalies. Gen-
eralizing $" and S” to

[Tra(t2)]? . (12.2.20)

/Bng(Fz,Rz) , (12.2.21)

makes it possible to cancel an anomaly of the form TI'(FZZ)Xg(F 2, Ry) for
arbitrary 8-form Xs(F,,R;). In addition, the B, field strength includes
also a gravitational Chern—Simons term:

H; = dB> — cwzy — w31, (12.2.22)
with ¢ and ¢’ constants. Here w3y = A;dA; — i%A? is the gauge Chern—

Simons term as before and

2
w3 = w;do; + gco% (12.2.23)

is the Lorentz Chern-Simons term, with w; = w,”,dx" the spin connec-
tion. This has the property

0wz, = dtr(@dwy) . (12.2.24)
The combined Lorentz and Yang—Mills transformation law must then be
0A; = di, (12.2.25a)
ow; =dO , (12.2.25b)
0B, = ¢Tr(AdA;) + tr(O@dwy) . (12.2.25¢)

Again, we only indicate the leading, Abelian, terms. With this transfor-
mation the interaction (12.2.21) cancels an anomaly of the form

[cTr(F3) + ¢/ Tr(R3)] X5 (F2, Ry) . (12.2.26)

The gravitational Chern—Simons term was not included in the earlier
low energy effective action because it is a higher derivative effect. The
spin connection w; is proportional to the derivative of the tetrad, so the
gravitational term in the field strength (12.2.22) contains three derivatives
where the other terms contain one. However, its contribution is important
in discussing the anomaly.

The chiral fields of N = 1 supergravity with gauge group g are the
gravitino 56, a neutral fermion 8, and an 8 gaugino in the adjoint
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representation, for total anomaly
I = Isg(R2) — Is(R>) + Is(F2, R>)

_ 1 6y 4 | 2 4 [Tra(Fzz)P}
— a0 | TP+ g TP T (P —
tr(RS)  tr(R$)tr(R3)  [tr(R3))? Yy X5
T n 496){725760 552960 1327104 768
(12.2.27)
Here
1
Y, = tr(R3) — %Tra(Ff), (12.2.28a)
[tr(R§ )]2 Tra(Fzz)tr(R%) Tra(Fg) [Tra(Fzz)]z
Xz = tr(R} — — .
s = R +— 30 T3 900
(12.2.28b)

The anomaly has been organized into a sum of three terms. The third
is of the factorized form that can be canceled by the Green—Schwarz
mechanism but the first two cannot, and so for the theory to be anomaly-
free the combination of traces on the first line must vanish for the adjoint
representation, and the total number of gauge generators must be 496. For
the groups SO(32) and Eg x Eg, both properties hold.! The net anomaly
is then

Y4 X5

768
Of the various additional heterotic string theories constructed in the
previous chapter, all but the diagonal theory are chiral, and in all cases
the anomalies factorize.

In six-dimensional compactifications, some of which will be discussed in
chapter 19, there can be multiple tensors. The Green—Schwarz mechanism
can then cancel a sum of products Y;X,. Also, the same mechanism
generalizes to forms of other rank; for example, a scalar in place of B,
can cancel an anomaly Y, X,. For d = 4 this will arise in section 18.7.

(12.2.29)

Relation to string theory

From the low energy point of view, the cancellation of the anomaly
involves several numerical accidents: the identity for the gauge traces, the
correct number of generators, the factorized form (12.2.27). Again, these
are explained by the existence of consistent string theories. In constructing
new string theories, it is in principle not necessary to check the low

! They also hold for Eg x U(1)**® and U(1)*°, but no corresponding string theories are known.
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(@) (b)

Fig. 12.1. Graphs contributing to the anomalies. One of the six external lines is
a current and the others are gauge or gravitational fields: (a) hexagon graph; (b)
canceling graph from exchange of B,, field.

energy anomaly, since this is guaranteed to vanish if the string consistency
requirements have been satisfied. In practice, it is very useful as a check
on the calculations and as a check that no subtle inconsistency has been
overlooked.

In terms of Feynman graphs, the unphysical gauge and gravitational
polarizations decouple by a cancellation between the two graphs of fig-
ure 12.1. The loop is the usual anomaly graph. The vertices of the
tree graph come respectively from the H; kinetic term and the inter-
action (12.2.21). It is curious that a tree graph can cancel a loop, and it is
interesting to look more closely at the coupling constant dependence. As
discussed below eq. (12.1.11), in order to do the loop counting we need
to write the R-R field as C, = ¢~®C). Both vertices in figure 12.1(b) are
then proportional to e~® and so are ‘half-loop’ effects; they come from the
disk amplitude. In the heterotic string no rescaling is needed. The vertex
V1 is proportional to e=2® and so is a tree-level effect, while the vertex V5
does not depend on the dilaton and so is actually a one-loop effect.

In each string theory, the hexagon loop and the tree graph arise from the
same topology but different limits of moduli space. In the type I theory,
the topology is the cylinder. The loop graph is from the short-cylinder
limit and the tree graph from the long-cylinder limit. In the heterotic
theory, the topology is the torus. The hexagon graph is from the limit
7o — o0, while the tree graph is from the limit where two vertex operators
approach one another.

In the heterotic string, the gauge group was determined by the require-
ment of modular invariance. In the type I string it was determined by
cancellation of tadpole divergences. The relation with the field theory
anomaly is as follows. One can prove the decoupling of null states for-
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mally in either field theory or string theory; the issue is whether terms
from the UV limit invalidate the formal argument. In string theory these
are the usual surface terms on moduli space. In the heterotic string the
effective UV cutoff comes from the restriction of the integration to the
fundamental region of moduli space. Surface terms from the boundary of
the fundamental region cancel if the theory is modular-invariant. In the
type I string the integration is not cut off but the ‘UV’ limit is reinterpreted
as the IR limit of a closed string exchange, and the anomaly then vanishes
if this converges.

12.3 Superspace and superfields

To formulate superstring perturbation theory it is useful to give supercon-
formal symmetry a more geometric interpretation. To do this we need a
supermanifold, a world-sheet with one ordinary complex coordinate z and
one anticommuting complex coordinate 0, with

0> =0>=1{0,0y=0. (12.3.1)

What do we mean by anticommuting coordinates? Because of the anti-
commuting property, the Taylor series for any function of 0 and 0 ter-
minates. We can then think of any function on a supermanifold as the
collection of ordinary functions appearing in the Taylor expansion. How-
ever, just as the operation ‘[ d6” has so many of the properties of ordinary
integration that it is useful to call it integration, 8 behaves so much like a
coordinate that it is useful to think of a manifold with both ordinary and
anticommuting coordinates.

We can think about ordinary conformal transformations as follows.
Under a general change of world-sheet coordinates z'(z,Z) the derivative
transforms as

/ =/
0, = 6—202/ + 6—265/ . (12.3.2)
0z 0z
The conformal transformations are precisely those that take 0, into a
multiple of itself.
Define the superderivatives,

Dy =09+ 00, , D@ = 89 + 005 , (12.3.3)
which have the properties
Dj=0., D;=20:, {DypDy}=0. (12.3.4)

A superconformal transformation z'(z, 0), 0'(z, 0) is one that takes Dy into
a multiple of itself. From

Dy = D@Q’@@/ + Dgzlazl + D@@’@@/ + Dgflaz/ R (12.3.5)
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it follows that a superconformal transformation satisfies
D0 =Dz’ =0, Dz’ = 0Dyl , (12.3.6)
and so
Dy = (Dy0)Dy . (12.3.7)
Using D} = 0., this also implies
0:2' = 0pz' = 0:0' = 050’ =0 (12.3.8)

and the conjugate relations. These conditions can be solved to express a
general superconformal transformation in terms of a holomorphic function
f(z) and an anticommuting holomorphic function g(z),

2(2,0) = f(z) + 0g(z)h(z) , 0'(z,0) = g(z) + Oh(z), (12.3.9a)

W) = £[0:5() + 8008 (123.95)
Infinitesimally,
oz =e€lv(z) —iOy(z)] , 00 = e[—in(z) + %081}(2)] (12.3.10)

with e and v commuting and n anticommuting. These satisfy the super-
conformal algebra (10.1.11). N
A tensor superfield of weight (h, h) transforms as

(De0' 2" (Dy0) ¢/ (z',2') = p(z.2) (12.3.11)

where z stands for (z, 0). This is analogous to the transformation (2.4.15) of

a conformal tensor. Under an infinitesimal superconformal transformation
00 = en(z),

0p(z,Z) = —e|2h00n(z) + n(2)Qp + 21007 () + 71(2)Q5 | d(z,2) , (12.3.12)

where Qp = 09 — 00; and Qp = 05 — 00-. Expand in powers of 0, and
concentrate for simplicity on the holomorphic side,

o(z)=0(z)+0¥(z) . (12.3.13)
Then the infinitesimal transformation (12.3.12) is
00 = —en¥ , 0¥ = —e[2hdn0 4+ nd0] . (12.3.14)
In terms of the OPE coeflicients (10.3.4) this is
GuipO0=¥, G-0=0,r>1, (12.3.15a)

Gy ¥ =00, Gip-¥=200, G-¥=0,r>3. (123.15b)

Either by using the NS algebra, or by considering a purely conformal
transformation 6z = ev(z), one finds that ¢ is a tensor of weight h and
¥ a tensor of weight h + %, so that both are annihilated by all of the
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Virasoro lowering generators. The lowest component (0 of the tensor
superfield is a superconformal primary field, being annihilated by all the
lowering generators of the NS algebra.

The analog of a rigid translation is a rigid world-sheet supersymmetry
transformation, 60 = —ien, 0z = —iefn. The Ward identity for Tr then
gives the corresponding generator

G_1j° ~ —iQgp = —i(0p — 00;) (12.3.16)

acting on any superfield. This generalizes the relation L_;- ~ J, obtained
in CFT.

Actions and backgrounds
The super-Jacobian (A.2.29) of the transformation (12.3.9) is
dz' d0' = dz d0 Dy0'. (12.3.17)

To make a superconformally invariant action, the Lagrangian density must
therefore be a weight (%, %) tensor superfield. The product of two tensor
superfields is a superfield, with the weights additive, (h,h) = (hi,hi) +
(hy, hy). Also, the superderivative Dy takes a (0,7) tensor superfield into
a (%,fz) tensor superfield, and Dy takes an (h,0) tensor superfield into an
(h, %) tensor superfield.

These rules make it easy to write superconformal-invariant actions. A

simple invariant action can be built from d weight (0,0) tensors X#(z,2):
1
S=o / 2 20 DyX"DyX,, . (12.3.18)
The Taylor expansion in 0 is
X*(z,2) = X* 4 i0pH +i0P* + 00F" . (12.3.19)

In this section we set o/ = 2 to make the structure clearer; the reader can
restore dimensions by X* — X"(2Zoc’)1/2. The integral d*>0 = d0 d0 in the
action picks out the coefficient of 60,

1
S=1 / d’z (@X“@Xu + v 0zpu + PH0: Ty +F“FH) . (12.3.20)

The field F* is an auxiliary field, meaning that it is completely determined
by the equation of motion; in fact it vanishes here. The rest of the action is
the same as the earlier (10.1.5), as are the superconformal transformations
of the component fields.

Many of the earlier results can be recast in superfield form. The equation
of motion is

DyDyX*(z,z) =0 . (12.3.21)
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For the OPE, invariance under translations and rigid supersymmetry
transformations implies that it is a function only of z; — z; — 616, and
01 — 0, and their conjugates. In this case,

X"(z1,21)X" (22,22) ~ =" In|z1 — 22 — 0102, (12.3.22)

as one can verify by expanding both sides in the anticommuting variables.
The superconformal ghost action is constructed from (4 — %,O) and
(1 — 4,0) tensor superfields B and C,

1
Se = o / d*zd*0 BD;C . (12.3.23)
The equation of motion is
DyB =DyC =0. (12.3.24)

Acting on this equation with D; gives 0:B = 0:C = 0, and so also
03B = 05C = 0. The equation of motion thus implies

B(z) =f(z) +0b(z), C(z)=-c(z)+ 0y(z). (12.3.25)
This is the same as the theory (10.1.17). The OPE is
01 — 0, 01 —0y

B(z1)C(z2) ~

= . 12.3.2
Z1—20— 0100  z1— 23 (12.3.26)

The superfield form makes it easy to write down the nonlinear sigma
model action

1
S = E /dZZ d26 [G'uv(X) —+ Buv(X)]DngDHXH

1 ,
= o [ @ {600 + Bu(0)e.X0:X

+ Gu(X)W'Z=p" + P Do) + SR O™ PG}
(12.3.27)

after eliminating the auxiliary field. The Christoffel connection and anti-
symmetric tensor field strength combine in the covariant derivative,

Tap" = 0" + [Dp(X) + TH'o(X)]0:XPp7 , (12.3.28)
D" = 00" + [Mpe(X) — SHpo(X)] 0 X757 . (123.28b)

This describes a general NS—NS background in either type II string theory.
R—R backgrounds are hard to describe in this framework because the
superconformal transformations have branch cuts at the operators. The
dilaton does not appear in the flat world-sheet action but does appear in
the superconformal generators. The reader should beware of a common
convention in the literature, B}jﬁ’re = 2333“6.
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All the above applies to the heterotic string, using only 6 and not 0.
One needs the superfields

Xt = XF +i0pH (12.3.29a)
M =)14061. (12.3.29b)

The field G* is auxiliary. The nonlinear sigma model is
1 _
S = — / 2 d0 {[G, (X) + Buo(X))0. X DX — WA}

- / 2 {[Gy(X) + By (X)]0:X"0:X" + G (X)P 70"

+AA951A + IpaB(x )AAAB@P@“}, (12.3.30)

where 2,¢" is as above and
Dt = Dgit —iA P (X)Dp X AP (12.3.31a)
D=t = 00" — AP (X))o x1P (12.3.31b)
It is worth noting that the modified gauge transformation of the 2-form
potential, which played an important role in the cancellation of spacetime

anomalies, has a simple origin in terms of a world-sheet anomaly. A
spacetime gauge transformation

dAME =Dy "B, 01 =iy"B)B (12.3.32)

leaves the classical action invariant. However, this acts only on left-
moving world-sheet fermions and so has an anomaly in the world-sheet
path integral. We can use the result (12.2.3) with kp =1, kg =0, and

1
AP (z,2) = 5 AP (X)2: X" (123.33)

the factor of 27 correcting for the nonstandard normalization of the
Noether current in CFT. Then after the addition of a counterterm,

5Z[4] = / 02 Try [1(X)F (X)) 0. X 0, X . (12.3.34)

This is precisely canceled if we also change the background,
1
0By, = ETrV(XF/l\’) . (12.3.35)

Comparing to the supergravity result (12.1.40) gives

2
Kjp 1 «
— = = . 12.3.36

Noting that the left-hand side has units of L? we have restored o« by
introducing one factor of o'/2. This is the correct result for the relation
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between gravitational and gauge couplings in the heterotic string. For
future reference, let us note that if we study a vacuum with a nonzero
dilaton, the physical couplings differ from the parameters in the action by
an additional ¢®, so that also

2 20,2 /
= 2 (123.37)
gym  €%¢p 4
(We will discuss slightly differing conventions for the gauge coupling in
chapter 18.)

Vertex operators

Recall that the bosonic string vertex operators came in two forms. The
state—operator mapping gave them as Cc¢ times a (1,1) matter tensor. In
the gauge-fixed Polyakov path integral this was the appropriate form for a
vertex operator whose coordinate had been fixed. For an integrated vertex
operator the ¢c¢ was omitted, replaced by a d?z. The vertex operators of
the superstring have a similar variety of forms, or pictures. We will derive
this idea here by analogy to the bosonic string, and explain it in a more
geometric way in section 12.5.

The state—operator mapping in chapter 10 gave the NS-NS vertex
operators as

5(y)o(F) =e ?7? (12.3.38)

times a (%,%) superconformal tensor. These are the analog of the fixed

bosonic vertex operators. We have seen that the superconformal tensors
are the lowest components of superfields, which do indeed correspond to
the value of the superfield when 0 and 0 are fixed at 0. Calling this tensor
0O, eq. (12.3.15) gives the vertex operator integrated over 0 and 0 as

V=G 1G4 0. (12.3.39)

This operator appears without the 6(y)o(7). The nonlinear sigma model
action has just this form, the 4?0 integral of a (%,%) superfield. It is
conventional to label vertex operators by their ¢ and ¢ charges as here,
so that an operator of charges (q,q) is said to be in the (q,§) picture.
The 6-integrated operator (12.3.39) is in the (0,0) picture and the fixed
operators

e (12.3.40)

are in the (—1, —1) picture. Of course, all of this extends to the open and
heterotic cases with only one copy of the superconformal algebra, so we
would have there the —1 and O pictures.
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Let us consider as an example the massless states
Wy Bl 105 k) s (12.3.41)
with vertex operators
Tl = gm0 Pphp ek X (12.3.42)

The bosonic coordinates can be integrated or fixed independently of the
fermionic ones, so for convenience we treated them as integrated. From

G71/2571/2w51/2¢11/2|0;k>Ns
(o o oy ot B B Py p By ) 0sk)Ns 5 (12.3.43)

we obtain the integrated vertex operators

2gc

1700 = —Z52(i0. X 4 Sk p!)(i0: X" + 3ok p ) N, (123.44)

with o again restored. Note the resemblance to the massless bosonic
vertex operators, with additional fermionic terms. These additional terms
correspond to the connection and curvature pieces in the nonlinear sigma
models. For massless open string vectors,

1771 = goe Nyt (12.3.45a)
70 = g0 (20) V2 XM + 20k )R X (12.3.45b)

where t“ is the Chan—Paton factor. For heterotic string vectors,

7l = gk e (12.3.46a)
10 = go(2/o) P2 jAGOX " + Lok pH)e® Y . (12.3.46b)

For convenient reference, we give the relations between the vertex operator
normalizations and the various couplings in the low energy actions of
section 12.1:

type I: go = gym(20)'? 5 gym = gioe®?, (12.3.47a)
/11/2
heterotic: g. = ; = “ﬂ ;K= Kloe(b , gyM = gloe‘b ,
;f & (12.3.47b)
type I/I1: g. = 2.5 K= Kk10e® . (12.3.47c¢)
s

These can be obtained by comparing the calculations of the next section
with the field theory amplitudes. Note that the amplitudes depend on the
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background value of the dilaton in combination with the parameters g
and gjo from the action.

12.4 Tree-level amplitudes

It is now straightforward to guess the form of the tree-level amplitudes. In
the next section we will justify this from a more geometric point of view.

We want the expectation value on the sphere or disk of the product of
vertex operators with an appropriate number of bosonic and fermionic
coordinates fixed. In the bosonic string it was necessary to fix three vertex
operators on the sphere because of the existence of three ¢ and three ¢
zero modes. There are two y and two 7 zero modes on the sphere, namely
1,z and 1,Z: these are holomorphic at infinity for a weight —% field.
We need this many factors of d(y) and d(%), else the zero-mode integrals
diverge. Thus we should fix the 0, 0 coordinates of two vertex operators.
Similarly on the disk, we must fix the 6 coordinates of two open string
vertex operators.

We can also see this in the bosonized form. The anomaly in the ¢
current requires a total ¢ charge of —2 and a total ¢ charge of —2. Thus
we need two vertex operators in the (—1,—1) picture and the rest in the
(0,0) picture. For open strings on the disk (or heterotic strings on the
sphere) we need two in the —1 picture and the rest in the O picture.

The R sector vertex operators have ¢ charge —% from the ghost ground
state (10.4.24). This is midway between the fixed and integrated pictures
and does not have such a simple interpretation. Nevertheless, conservation
of ¢ charge tells us that the sum of the ¢ charges must be —2. Thus for
an amplitude with two fermions and any number of bosons we can use

the pictures —% for the fermions, —1 for one boson, and O for the rest.

For four fermions and any number of bosons we can use the pictures —%

for the fermions and O for all the bosons. This is enough for all the cases
we will treat in this section. To go to six or more fermions we clearly need
to understand things better, as we will do in the next section.

Three-point amplitudes
Type I disk amplitudes: According to the discussion above, the type I
three-boson amplitude is
1
o'g3

where we take x; > x» > x3. The relevant expectation values for massless

<C“Vfl(xl)cVil(xz)ch(xz)> + (V1o 1), (12.4.1)
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amplitudes are

(c(x1)e(x2)e(x3)) = X12X13X23 , (12.4.2a)
<e—¢(x1)e—¢(x2)> = x), (12.4.2b)
(pr(xn)yp"(x2)) = x5, (12.4.2¢)

in the bc, fy, and v CFTs, and
<’P“€ik1 Hx) 9" e X(xa) (iXP + 20 ks e ¥(x3) >

uvkﬂ ,uvkﬂ HpfYy vpk#
- 2ioc’(277:)10510(2ik,~)<—n [ T 3) (12.4.3)
X12X13 X12X23 X13X23

in the combined Xy CFT. We have given the expectation value within
each CFT a simple normalization and included an overall normalization
factor 1/g2¢/, equal to the one (6.4.14) found in the bosonic theory.
One can verify this normalization by a unitarity calculation as in the
bosonic string, with the convention (12.4.1) that we sum separately over
the reversed-cyclic orientation (which is always equal in this unoriented
theory). That is, an n-particle amplitude is a sum of (n — 1)! orderings
which are equal in pairs.

Combining these, using momentum conservation and transversality, and
including the factor g3(2«/)~!/? from the vertex operators, we obtain the
type I three-gauge-boson amplitude

igym(21)' 6" (3, ki) erpeaves, VAP Try([1,1%]1%) (12.4.4)

where
VI =tk + 0Pl + Pk (12.4.5)

and k;; = k; — k;. This is the ordinary Yang-Mills amplitude, with gym
related to g, as in eq. (12.3.47a) so as to agree with the definition in
the low energy action. Unlike the bosonic open string amplitude (6.5.15)
there is no k> term and so no F? term in the low energy effective action.
Indeed, it is known that such a term is not allowed by the d = 10, N =1
supersymmetry.

Now consider amplitudes with two fermions and a boson. The CFT
amplitudes are

<e—¢/2(X1)€_¢/2(X2)€_¢(X3)> = xp g x 2 (12.4.6a)
(@,(x1)Op(x2)) = x35  Cop (12.4.6b)
(@,(x1)Op(x2)p"(x3)) = 27 VA(CTH)p x5 %10 2x05 . (12.4.60)

The ghost amplitude is a free-field calculation, and in principle the mat-
ter part can be done in this way as well using bosonization. However,
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bosonization requires grouping the fermions in pairs and so spoils man-
ifest Lorentz invariance. For explicit calculations it is often easier to use
Lorentz and conformal invariance. The two-point amplitude (12.4.6b) is
determined up to normalization by these symmetries. Note that C,p is the
charge conjugation matrix (section B.1), and that only for spinors of oppo-
site chirality is it nonzero: in ten dimensions the product of like-chirality
spinors does not include an invariant. The three-point amplitude (12.4.6¢c)
is then deduced by using the OPE

P"(x)0,(0) = (2x) 2@, + O(x'/?) (12.4.7)

to determine the x3 dependence. This amplitude is nonvanishing only
for spinors of like chirality. The gaugino-gaugino-gauge-boson amplitude,
with respective polarizations u;> and e*, is then?

igym(2m) %10, ki) ey it THup Ty ([£1, 1263 (12.4.8)

We have used ulT CT*uy = 1T uy, from the Majorana condition.’
Heterotic sphere amplitudes: The closed string three-point amplitudes

are the products of open-string amplitudes. For the heterotic string we

need the expectation values of two and three currents. The OPE gives

ko
<J‘“(zl)j”(22)> = (12.4.9a)
12
i ]2 abc
<j“(zl)jb(22)j‘(23)> = Z;me , (12.4.9b)

where the expectation value without insertions is normalized to unity. Each
vertex operator thus needs a factor of k~!/2 to normalize the two-point
function (as discussed in section 9.1). For the ten-dimensional heterotic
string k = 1. In order to make contact with the discussion in the rest
of this chapter, we will use the trace in the vector representation as the
inner product, and then it follows from the discussion below eq. (11.5.13)
that 1/)2 =1and k = % Including these factors, the normalization of the
current algebra three-point function is

i];fl/Zfabc — 21/2Trv([t“,tb]tc) . (12410)

The result can also be obtained from the free-fermion form j* =
2712414 . 2478, or from the free-boson form. Another necessary expec-

2 In order that the gauge couplings of the gauge boson and gaugino agree — an indirect application
of unitarity — we have normalized the fermion vertex operator as goo''/4e=%/2@,e* X

3 We are using standard field theory conventions, but to compare with much of the string literature
one needs ghere = 1gthere and ybere = p1/2there,
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tation value is

3 72 v
. ex TP
[iei- 0Xe*X(z,,z)) ) = 2o (12.4.11)
P 8iz12213223
where
: : AT
TP = ks + kyn + kin™ + gk%k%lk?z : (12.4.12)

This is the same as for the bosonic string, section 6.6, where we have used
the mass-shell condition ki2 = 0 and transversality ¢; - k; = 0.

Now we can write all the massless three-point amplitudes. Including
an overall factor 87/¢/g? which is the same as in the bosonic string, the
heterotic string three-gauge-boson amplitude is

dng.o/ V2 2m) 1% 10, kiYer eaves, VI Try([t4, 1216°) . (12.4.13)

Up to the definition of the coupling this is the same as the open string
amplitude (12.4.4). In particular there is no k* correction, again consis-
tent with supersymmetry. Note that the vector part of this amplitude
comes from the right-moving supersymmetric side. The heterotic ampli-
tude for three massless neutral bosons (graviton, dilaton, or antisymmetric
tensor) is

mige(2m)'% (S ki)eruseavmesp, TPV . (12.4.14)

One can relate the coupling g. to the constants appearing in the heterotic
string low energy action as in eq. (12.3.47b). In particular, the relation
between gym and x is in agreement with the anomaly result (12.3.37). The
heterotic amplitude for two gauge bosons and one neutral boson is

mige(2m)1% 10 ki) enwerpesskis VT 5e . (12.4.15)

The antisymmetric part contains a Chern—Simons interaction, with wzy.
Type I/II sphere amplitudes: In any type I or II theory, the amplitude
for three massless NS—NS bosons on the sphere is

nigc(27[)105 10(2;’ ki)eluae2vwe3p}, yie Va'wl . (12416)

The normalization factor 87/g2¢’ and the relation x = 2ng. are the same
as in other closed string theories.

The tensor structure is simpler than in the corresponding heterotic
amplitude (12.4.14), with terms only of order k. The bosonic side of the
heterotic string makes a more complicated contribution and the amplitude
has terms of order k? and k*. An R? correction to the action would give
a three-point amplitude of order k% and an R? correction would give
an amplitude of order k®. Here ‘R’ is shorthand for the whole Riemann
tensor, not just the Ricci scalar. The type /11 amplitude (12.4.16) implies
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no R? or R3 corrections. In the heterotic string there is a correction of
order R? but none of order R3. The absence of R? and R? corrections in
the type II theories is a consequence of the greater supersymmetry (32
generators rather than 16).

By taking two polarizations symmetric and one antisymmetric, there is
in the heterotic string an order k* interaction of two gravitons and an
antisymmetric tensor. An effective interaction built out of field strengths
and curvatures would have five derivatives. The interaction we have found
must therefore be the gravitational Chern—Simons interaction H3 A xw3p,
which figured in the heterotic anomaly cancellation. No such term was
expected in the type II theories and none has appeared. We do need such
a term in the type I theory, which has the same massless spectrum as
the heterotic string and so needs the same Green—Schwarz cancellation.
However, as explained at the end of section 12.2, in the type I theory this
will come from the disk rather than the sphere. We can also understand
this from the field redefinition (12.1.41). An R? interaction which is a
tree-level heterotic effect maps

(—Gp)/2e 2R — (—Gy)/2e R, (12.4.17)

which is the correct dilaton dependence for a disk or projective plane
amplitude.
The various other three-point amplitudes are left as exercises.

Four-point amplitudes

All the four-point amplitudes of massless fields have been calculated.
Many of the calculations are a bit tedious, though for supersymmetric
strings the results tend to simplify. We will do a few simple calculations
and quote some characteristic results, leaving the rest to the references.

Let us begin with the type I four-gaugino amplitude, each vertex oper-
ator being go(o) /4% 4e* X u,. We need the expectation value of four #’s
(of the same chirality). The OPE

1 u(2)7"5(0) ~ (C;Z)Z"ﬁe—%ﬂ : (12.4.18)
follows from the three-point function (12.4.6¢). Then
(7 ulz20)V " p(22)V"y(23)V 5(24) )
_ (€T (CT(CTap | (CT(CTs 1410

2212223224234 2213234232242 2214242243223

from consideration of the singularities in z;. An additional holomorphic
term is forbidden because the expectation value (12.4.19) must fall as z;>
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at infinity. Cancellation of the z;'! term further requires that
Fsﬁrwé + ngrwgﬁ + l—‘gél—"uﬁ}, == 0 . (12420)

This is indeed an identity, and plays an important role in ten-dimensional
spacetime supersymmetry.

It is then straightforward to evaluate the rest of the amplitude. For the
cyclic ordering 1234, let the vertex operators lie on the real axis and fix
x1 =0, x3 =1, x4 — oo as usual to obtain

[ 1 / !
$83m) % (S ) Ty (17 1) [ e o711 — )t
0
X(ﬂlr“uz szl ug + x i IMus azl““u4) . (12.4.21)

Evaluating the integral and summing over cyclic orderings gives the final
result

—16igg o (27)" 6" (3; ki) K (ur, u, u3, ug)
I'(—a/s)I"(—ou)

X Trv(t‘“t"zt“3t“4)r(1 ; )
—oSs—adu

+ 2 permutations| .  (12.4.22)

The kinematic factor
K (uy,up, u3,uq) = %(u M uy a3 us — s M ug a310u0) (12.4.23)
is fully antisymmetric in the spinors. We recall the definitions
s=—(ki+k)*, t=—(ki+k3)*, u=—(ki+ks*. (124.24)

Replacing some of the gauginos with gauge bosons leads to the same
form (12.4.22), with only the factor K altered. For four gauge bosons,

1

K(el, €2, €3, 64) = g (4M,L1wM\2’6MgpM;t,u - M,tivaz';tMgpM:)ta)
+2 permutations
= t“wlmﬁyékwavk26€2pk3ae3/3k4ye45 5 (12.4.25)

where MZW = ki.ei, — ejki,. The permutations replace the cyclic order
1234 with 1342 and 1423. The tensor t is antisymmetric within each p;v;
pair and symmetric under the interchange of two pairs, w;v; with p;v;.
This determines it to be a sum of the indicated two tensor structures. The
result can also be written out

1 )
K(ei,er,e3,e4) = ~ (St e1-eqer-e3+ 2 permutatlons)

1
+§ (s el kges-kyey-eqs+ 11 permutations) . (12.4.26)

Each sum runs over all inequivalent terms obtained by permuting the four
external lines.
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It is interesting to consider the low energy limit of the bosonic amplitude.
The expansion of the I'T’/T" factor begins
1 n? ,
6 +0(x), (12.4.27)
the O(o/~') term vanishing. We have used I'"(1) — I"'(1)> = {(2) = n?/6,
where the zeta function is defined below. The leading term represents
the Yang-Mills interaction in the low energy theory. Combined with
the kinematic factor K it gives a sum of single poles, corresponding to
exchange of massless gauge bosons, as well as the local quartic gauge
interaction. The O(a’°) terms correspond to a higher-derivative low energy
interaction. To convert the scattering amplitude to a Lagrangian density
replace kp.e,) = —iF,,/2gym (so that the kinetic term has canonical
normalization %kze”eu = %kz) and include a factor of 1/4! for the identical
fields to obtain

2

T 06/2

WtuwpaméTrv(FwF(,,,FWFW;) . (12.4.28)
8YM

The net gy is as expected for a tree-level string effect. The additional
factor of o/? reflects the fact that this is a string correction to the low
energy effective action, suppressed by the fourth power of the string length.
The absence of an F? term is in agreement with the three-point amplitude.

The relation (6.6.23) between open and closed string tree amplitudes
continues to hold in the superstring,

/

02!
g, o . Tat
AC(Sa t,u, OC,’ gC) = _%AO(‘% L %O‘,a gO)AO(ta u, %OC/’ gO)* sin T ’
° (12.4.29)

where the open string amplitudes represent just one of the six cyclic
orderings, and the factors (21)'%1°(3>; k;) are omitted in Ac,. The type II

amplitude with four massless NS—NS bosons is then
203 T(—ids)(—=fo/ )T (—Lolu)
4 T+ oD+ Lol (1 + Joru)

iK

Kc(el,ez,e3,e4) . (12.4.30)

Here,

4
Keler, e, e3,eq) = t171-494% 10191049 T ¢ Ky Ko (12.4.31)
j=1

The expansion of the ratio of gamma functions is

64

— —— —2{(3) + 0(«) (12.4.32)
oo stu
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where the zeta function is
“ 1

OEDY

m=1

prt (12.4.33)
The first term is the low energy gravitational interaction; note that it is
proportional to x> with no ' dependence. From the normalization of the
gravitational kinetic term, e, k,k, contracted into t becomes Ryyq,/4K;
including a symmetry factor 1/4!, the second term corresponds to an
interaction

€(3)O(,3 H1V1-.U4V4 £101...0404

mt t RmvmldlRuzvzpszszvwwsRﬂ4\’4p464 . (12'4'34)
This interaction, which is often identified by its distinctive coefficient {(3),
has several interesting consequences; we will mention one in section 19.6.
The absence of R* and R? corrections is again as expected from the
three-point amplitude. For the heterotic string, the smaller supersymmetry
allows more corrections.

We close with a few brief remarks about the heterotic amplitude with
four gauginos or gauge bosons. The current algebra part of the amplitude
is
Saa §azay falagbfba3a4

k=2 (0 (21)j*(22)j(23)j%(2a) ) = ——5—5— — =
Z17Z34 kz12223224234
+2o3)+2o4). (12435

This is obtained by using the OPE to find the singularities in z;. An
additional holomorphic term is forbidden by the behavior at infinity. In
fact, the (1,0) current must fall off as z;2, and the three asymptotics of
order z;'! do sum to zero by the Jacobi identity. Let us note further that
04192 = Try(t*t*) and that

_i%—]falazbfba3a4 — 2TI'V( [tal , taz] tb)TrV(tb [ta3, ta4])
= 2Try([t", t"][tD, t*]) , (12.4.36)

where the last equality holds for SO(32) (or for states in an SO(16) xSO(16)
subgroup of Eg x Eg) by completeness.

The remaining pieces of the amplitudes were obtained above, so it is
straightforward to carry the calculation through. The amplitudes have the
same factorized form (12.4.22) as in the type I theory, but with a more
complicated group theory factor. In particular, the terms with two traces
include effects from the exchange of massless supergravity states, which
are of higher order in the type I theory.

All other three- and four-point massless amplitudes can be found in the
references. We should mention that all of these were obtained first in the
light-cone gauge, before the development of covariant methods. In fact,
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while we have emphasized the covariant approach, for actual calculation
the two methods are roughly comparable. The advantage of covariance is
offset by the complication of the ghosts, and the realization of spacetime
supersymmetry is more complicated.

12.5 General amplitudes

Pictures

Amplitudes should not depend on which vertex operators have their 0
coordinates fixed. We demonstrate this in two different formalisms. The
first, operator, method is particularly common in the older literature. The
second leans more heavily on the BRST symmetry.

Let the two 0-fixed vertex operators also be z,z-fixed, and use an
SL(2,C) transformation to bring them to 0 and co. In operator form, the
amplitude becomes
(12.5.1)

matter °

/d224...dzz,,(("%f1|T[W(3)"/2...”/2]|"/51)

We are working in the old covariant formalism, where the ghosts appear
in a definite way. They then contribute only an overall factor to the
amplitude, so we need only consider the matter part, as indicated. Then

17751 = 2L 1731 = (G0, G™y p} 1775 1) = GTLG™ |75t L (125.2)

using the physical state conditions. The G™, /o converts |75t into |779).
The G‘l’“/2 can be moved to the left, the commutators making no contri-

bution because of the superconformal invariance of the vertex operators,
where it converts (77| to {(7°|. The final form

(12.5.3)

matter

/d224...dzzn(V?|T[“/g“//2..."/2]|“/g>

has all matter vertex operators in the 0 picture.
The BRST argument starts by considering the picture-changing operator
(PCO)

X(z) = Qg &(2) = Tr(2)d(B(2)) — 0b(2)d"(B(2)) , (12.5.4)

where ¢ is from bosonization of the superconformal ghosts. The calcula-
tion of Qp - ¢ can be done in two ways. The first is to bosonize the BRST
operator, expressing it in terms of ¢, &, and #, calculate the OPE, and
convert back. We will use a less direct but more instructive method. First,
we claim that

S(B) = e? . (12.5.5)
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The logic is exactly the same as that of 5(y) = e~?. Now, it is generally
true that

7(2)f(B(0),7(0)) ~ éﬁﬁf(ﬁ(()),v(())) ; (12.5.6)

from all ways of contracting y with a  in f. Now, we claim that the step
function bosonizes as

0p)=¢ . (12.5.7)

Taking the OPE with y = %y, this is consistent with the previous two
equations, and this determines the left-hand side up to a function of 7y
alone; this function must vanish because both sides have a nonsingular
product with f = e~?0¢. The explicit form (10.5.21) of the BRST current
then gives

BB ~ ~5H(O (BO) + - THO(BO) (1253)

The two terms come from two or one yf contractions respectively. Inte-
grating the current on a contour around the origin gives the result (12.5.4).

To understand the role of the PCO we need to examine an unusual
feature of the fy bosonization. The (0,0) ¢ field has one zero mode on
the sphere, while the (1,0) n field has none. One factor of ¢ is then needed
to give a nonvanishing path integral. However, the only ghost factors in
the vertex operators are e~® and e~?/2. The correct rule is that the fy
path integral is equal to the ¢né path integral with the various operators
bosonized and with one additional ¢(z) in the path integral. The position of
the ¢ insertion is irrelevant because the expectation value is proportional
to the zero mode, which is constant. We can simply normalize

(&(2))=1. (12.5.9)

To verify the decoupling of a null state we need to pull the BRST
contour off the sphere. The ¢ insertion would seem to be an obstruction,
because the contour integral of the BRST charge around ¢ is nonzero: it
is just the definition (12.5.4) of the PCO. However, when the ¢ insertion
is replaced by X in this way, the path integral vanishes because of the &
zero mode, and so there is no problem.

Now consider the path integral with one PCO and with the & insertion,
as well as additional BRST-invariant operators. Then

X(z1)¢(z2) = OB-E(21)&(22) = &(21) OB-E(22) = &(z1) X(22) . (12.5.10)

In the middle step we have pulled the BRST contour from &(z1) to &(z2)
as in figure 12.2. There are two signs, from changing the order of Qg and
£(z1), and from changing the direction of the contour. Although X(z) is
formally null, its expectation value does not vanish because of the contour
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Fig. 12.2. Moving the PCO. The contour around z; in (a) is pulled around the
sphere until it becomes a contour around z, in (b).

integral of Qp around the ¢ insertion. Unlike the same contribution in
the previous paragraph, this does not vanish because the £(z;) remains to
saturate the zero-mode integral. We already know that the path integral
is independent of the position of the ¢ insertion, so eq. (12.5.10) shows
that it is also independent of the position of the PCO.

Consider now

lim X ()7~ 0), (12.5.11)

where for convenience we concentrate on the holomorphic side. The —1
picture vertex operator is e~?@ with ¢ a matter superconformal primary.
Consider now the term in X(z) that involves the matter fields,

e? TR(2)e=?0(0) = zTF(2)0(0) 4+ 0(z?) . (12.5.12)

The z — 0 limit picks out the coefficient of the z~! in the matter OPE,
which is precisely G_i»- O = 7~ 0, the 0 picture vertex operator. The purely
ghost terms in X vanish as z — 0, so that

lim X(z)7~1(0) = 7%0) . (12.5.13)

In the bosonic n-point amplitude with two —1 picture operators and
(n—2) 0 picture operators, we can pull a PCO out of each of the latter to
be left with (n—2) PCOs and n vertex operators, all of which are in the —1
picture. This is the ‘natural’ picture, the one given by the state—operator
mapping. This also shows how to define a general tree-level amplitude,
with ng bosons and np (which must be even) fermions. Put all the bosons
in the natural —1 picture, all the fermions in the natural —% picture, and
include (ng + %np — 2) PCOs. By taking some of the PCOs coincident
with vertex operators, possibly more than one PCO at the same vertex
operator, one obtains a representation with the vertex operators in higher
pictures.

Finally, let us tie up a loose end. The operator product (12.4.18) is just
the product of two spacetime supersymmetry currents, ¥, = j,. By the
Ward identity and the supersymmetry algebra, we would expect the z—!
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term to be the translation current. Instead it is e~%y*. However, this is
the zero-momentum vector vertex operator in the —1 picture; if we move
a PCO to the operator we get the O picture dX* which is indeed the
translation current. So the algebra is correct. The (1,0) operator e~ ?p* is
the translation current; which picture it appears in has no effect on the
physics.

Super-Riemann surfaces

The preceding discussion suggests a natural generalization to all orders of
perturbation theory. That is, string amplitudes are given by an integral over
moduli space and the ghost plus matter path integral with the following
insertions: the appropriate vertex operator for each incoming or outgoing
string in the natural —1 or —% picture, the b-ghosts for the measure on
moduli space as in the bosonic string, plus the appropriate number of
PCOs to give a sensible path integral. At genus g, the Riemann—Roch
theorem gives the number of beta zero modes minus the number of
gamma zero modes as 2g — 2. Equivalently, the total ¢ charge of the
insertions must be 2g — 2. To obtain this, the total number of PCOs must
be
ng

nX=2g—2+nB+7 , (12.5.14)
at arbitrary points; this is for the open string or one side of the closed
string. The same formal arguments as in the case of the bosonic string
show that this defines a consistent unitary theory. In particular, the PCOs
are BRST-invariant and do not affect the decoupling of null states.

This prescription is sufficient for all the calculations we will carry out.
However, in the remainder of this section we will develop superstring
perturbation theory from a more general and geometric point of view.
One reason for this is that the picture-changing prescription is rather ad
hoc and it would be satisfying to see it derived in some way. Another
is that this prescription actually has a subtle ambiguity at higher genus,
which is best resolved from the more geometric point of view.

The needed idea is supermoduli space, the space of super-Riemann sur-
faces (SRSs). These are defined by analogy to Riemann surfaces. Cover
the surface with overlapping coordinate patches. The mth has coordinates
Zm, 0. Patches are glued together with superconformal transformations.
That is, if patches m and n overlap, identify points such that

Im = fmn(zn) + Qngmn(zn)hmn(zn) s (125153)

Om = gmn(2n) + Onhimn(zn) (12.5.15b)
h%m(zn) = amen(zn) + gmn(zn)azgmn(zn) . (125150)
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The holomorphic functions f,,, and the anticommuting holomorphic func-
tions g, define the SRS. Two SRSs are equivalent if there is a one-to-one
mapping between them such that the respective coordinates are related
by a superconformal transformation. Tensor fields are defined by anal-
ogy to tensors on an ordinary manifold, as functions in each patch with
appropriate transformations between patches. Supermoduli space is the
set of equivalence classes of super-Riemann surfaces. The coordinates on
supermoduli space are the bosonic (even) moduli ¢; and the anticommut-
ing (odd) moduli v,. The Riemann—Roch theorem gives the number of
odd moduli minus the number of globally defined odd superconformal
transformations as 2g — 2.

Again one can define all of this by Taylor expanding all functions in
the anticommuting variables 6 and v,. The term in f,,;, of order VS defines
an ordinary (not super-) Riemann surface, and everything is expressed
in terms of functions on this surface with the component form of the
superconformal transformation between patches. Incidentally, z and z are
no longer formally conjugates of one another on a SRS, particularly in the
heterotic string where Z transforms as the conjugate of eq. (12.5.15) while
z transforms as on a ‘bosonic’ Riemann surface. However, if one defines
everything by the Taylor expansion then z and Z are again conjugates on
the resulting ordinary Riemann surface.

For any SRS, setting the v, to zero makes the anticommuting g,,,,, vanish
and leaves

Zm = fun(Zn) (12.5.16a)
O = Ouhon(2n) s 12 (20) = 0 Fom(zn) (12.5.16b)

The transformation of z defines a Riemann surface, but that of 0 requires
the additional choice of which square root to take in each hy,. This
choice is known as a spin structure; it is the same data one would need
to put a spin-% field on the surface. The signs are not all independent. If
three patches overlap then the transition functions must satisfy the cocycle
condition

hmnhnphpm =1. (12517)

Also, a coordinate change 0, — —0, in the patch py changes the signs of
all the hp,. The net result is that there is one meaningful sign for each
nontrivial closed path on the surface, 2g for a genus g surface. These
define 2% different spin structures, topologically distinct ways to put a
spinor field on the surface.

Any sphere is equivalent to the one with two patches (z,0), (u, ¢) and
transition functions

u=1/z, ¢=il/z. (12.5.18)
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Clearly there is just one spin structure. The index theorem implies supercon-
formal Killing transformations. One can look for infinitesimal transfor-
mations as in the bosonic case, with the result that 6 f must be at most
quadratic in z and Jg linear in z. The general finite transformation is then
of the superconformal form with
o= P ) — e e (125.19)
vz 40
with «d — fy = 1. In particular there are two odd transformations, €; and
€7, consistent with the Riemann—Roch theorem. These can be used to fix
the odd coordinates of two NS vertex operators to zero.
A torus can be described as the (z, 0) plane modded by a group of rigid
superconformal transformations,

(z,0) = (z + 2n,n10) = (z + 2n1,120) . (12.5.20)

The n; and #, are each +1, defining the four spin structures. When 0
changes sign around a loop, the bosonic and fermionic components of
any superfield will have opposite periodicities, and in particular T will
be antiperiodic. We thus denote the spin structures (P,P), (P,A), (A,P), and
(A,A), giving the z — z + 2n periodicity first. The periodicities on the
right-moving side have the same form, with 7T the conjugate of v but with
independent #j; and 7.

On a torus the only holomorphic functions are the constants, so  and
y zero modes are possible only in the (P,P) case, in which case there is
one of each. There is then an odd supermodulus v, giving rise to the more
general periodicity®

z0)=z+27,0)=(z+2nt+0v,04+v). (12.5.21)
There is also the superconformal Killing vector (SCKV')
(z,0) > (z 4+ 0¢,0 +€) . (12.5.22)

The number of odd moduli minus the number of SCKVs is zero in all
sectors, being 1 — 1 for the (P,P) spin structure and 0 — O for the others.
The modular group and the fundamental region for t are the same as in
the bosonic string.

Returning to a general SRS, if the positions of n+1vertex operators
are singled out then there is a nontrivial closed curve circling each, less
one, giving 278+ spin structures altogether. The additional spin structures
come from the choice of R or NS boundary conditions of the external

4 We could introduce a second odd parameter into the z 4+ 2z periodicity, but one of the two
parameters can be removed by a linear redefinition of (z, §). Also, it might appear that a similar
generalization is possible in the antiperiodic case, but a coordinate redefinition returns the
periodicity to the form (12.5.20).
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strings. To describe the supermoduli space of SRSs with ng NS vertex
operators and np R vertex operators, it is useful to extend the approach
used in section 5.4. First in the bosonic case, consider a specific patching
together of a Riemann surface, with n marked points. We will define
another Riemann surface as equivalent to this one if there is a one-to-one
holomorphic mapping between the two which leaves the coordinates of
the points invariant. That is, f(z) — z must vanish linearly at the vertex
operators. For simplicity we take each operator to be at z = 0 in its
own tiny patch. Since we are modding by a smaller group, with two real
conditions for each vertex operator, we obtain a correspondingly larger
coset space, with two additional moduli for each vertex operator. This is
similar to the treatment of vertex operator positions in section 5.4, but
more abstract. In the superconformal case, we mod out the superconformal
transformations for which f(z) — z and g(z) vanish linearly at each NS
vertex operator. At each R vertex operator, g(z) has a branch cut, and so
it is appropriate to require f(z) — z to vanish linearly z and g(z) to vanish
as z!/2. The NS vertex reduces the odd coordinate degrees of freedom by
one and so increases the number of inequivalent surfaces: the number of
odd moduli increases by one, which we can take to be the 0 coordinate of
the operator. The condition for the R vertex operator is essentially half
as restrictive, so that there is an additional odd modulus for each pair of
R vertex operators. This has no simple interpretation as a vertex operator
position; an R vertex operator produces a branch cut in 0, so there can be
no well-defined 6 coordinate for the operator. The total number of odd
moduli is

n, =2g —2+np + %F (12.5.23)

The measure on supermoduli space

The expression (5.4.19) for the bosonic string S-matrix now generalizes in
a natural way,

su;...;m:Ze:X/ dtd™y <HB Ha a)H"/>. (12.5.24)
ry CROIx

The sum is over topologies y and spin structures y. The integral runs over
the corresponding supermoduli space. There are n. even moduli, n, odd
moduli, and n external strings. The quantity B; in the ghost insertions is

dZdem 0z, 00,
B - Z /’m i Zm, Qm) [% - 8”9"1] , (12525)
(mn) 1 20

plus a right-moving piece of the same form; B, is given by an identical
expression with v, replacing t;. The sum again runs over all pairs of
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overlapping patches m and n, clockwise as seen from m, with the z,
integration along a contour between the two patches and the 6,, integral
of the usual Berezin form. The B ghost superfield is as in eq. (12.3.25),
B =+ 0b.

The logic of this expression is the same as for the earlier bosonic
expression. First, the number of commuting and anticommuting ghost
insertions is correct for a well-defined path integral. Second, the path
integral depends only on the superconformal structure and not on the
particular choice of patches and transition functions. In particular it is
unchanged if we make a superconformal transformation within a single
coordinate patch. The combination 0z, + (00,,)0,, transforms as a (—1,0)
tensor superfield, so the integrand is a (%,0) tensor superfield and the
integral is invariant. Third, under a change of coordinates in supermoduli
space, the product [];—; B;[[, 0(Bq) transforms as a density, inversely to
the measure on supermoduli space. Finally, the commutator of the BRST
charge with Bj, is T}, defined in the same way but with B replaced by

Op - B(z) = T(z) = Tr(z) + 0Tx(z) . (12.5.26)

The insertion of T, generates a relative coordinate transformation of
adjacent patches, which is just the derivative with respect to the super-
modulus of the world-sheet.

It is interesting to work out the form of the amplitude more explicitly for
a special choice of patches and transition functions. Namely, let patch 1
be contained entirely within patch 2, so that the overlap is an annulus.
Let the 1-2 transition functions depend only on a single odd modulus v,
as follows:

f12(z2) = z2,  gu2(22) = va(z2) , (12.5.27)

for some holomorphic function «(z). The ghost factor (12.5.25) is propor-
tional to

Blo] = f dil.“(zl)ﬁ(Zl,Q) : (12.5.28)
27i
Similarly the path integral depends on v only through the insertion

vT[o] , (12.5.29)

where f is replaced by Tr. We can then perform the integration over v, so
that the net effect of the supermodulus is the insertion in the path integral
of

T[]0(B[o]) = 05 - 0(B[¢]) . (12.5.30)

The function o«(z1) is holomorphic in the annular overlap of the patches,
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but in general cannot be extended holomorphically into the full inner
patch zq. If it can, the contour integrals B[o] and T [¢] vanish. In this case
v is not a modulus at all because it can be transformed away. A nontrivial
case is

1

>
Z1 — 20

o(z1) = (12.5.31)
for which B[] = f(z¢) and the insertion (12.5.30) just becomes the PCO
X(z0) (the second term in X is from normal ordering). Thus, the PCO is the
result of integrating out an odd modulus in this special parameterization
of the SRSs. Note that the number (12.5.23) of odd moduli is the same as
the number (12.5.14) of PCOs needed in the ad hoc approach. This provides
the desired geometric derivation of the picture-changing prescription.

The parameterization (12.5.27) is always possible locally on supermoduli
space. It can also be used globally, with careful treatment of the modular
identification and the limits of moduli space. There is a literature on the
‘ambiguity of superstring perturbation theory,” which arose from parame-
terizations that did not precisely cover supermoduli space. It appears that
superstring perturbation theory to arbitrary order is understood in princi-
ple, and certain special amplitudes have been calculated at higher orders
of perturbation theory. However, the subject is somewhat unfinished — a
fully explicit proof of the perturbative consistency of the theory seems to
be lacking. With the immense progress in nonperturbative string theory,
filling this technical gap does not seem to be a key issue.

We derived the bosonic version (5.4.19) of the measure (12.5.24) by
starting with a path integral over the world-sheet metric, whereas in
the present case we have written it down directly. One can partly work
backwards to an analogous description as follows. Although «(z;) cannot
be extended holomorphically into patch 1 it can be extended smoothly. It
can then be removed by a change of variables in the path integral, but
not one that leaves the action invariant. The odd modulus v appears in
the final action, multiplying Tr and a function that can be regarded as
the world-sheet gravitino field. In particular, the PCO can be regarded
as coming from a pointlike gravitino, a gauge where the gravitino has
delta-function support.

12.6 One-loop amplitudes

We will illustrate one-loop superstring calculations with two examples
where the low energy limit can be obtained in closed form.

The first is the heterotic string amplitude with four gauge bosons
and one antisymmetric tensor. The Green—Schwarz anomaly cancellation
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requires a one-loop Chern—Simons term

/ B, Try(FY) . (12.6.1)

We would like to confirm the appearance of this term by an explicit string
calculation.

Note first that this can only arise from the (P,P) path integral. This
is because it is odd under spacetime parity: written out in components,
it involves the ten-dimensional e-tensor. The heterotic string world-sheet
action and constraints are invariant under parity. The parity asymmetry
of the theory, the fact that the massless fermions are in a 16 and not a
16’, comes about from the GSO projection in the right-moving R sector,
the choice of exp(niF) to be +1 or —1. The (P,P) path integral produces
this term in the projection operator. The path integral is then

2\/? dtdz 5
(w) /F - lH / d WK (0)2(0)c(0)X (0)
X [Hk 172 jéi(je;-0X + 1 s ki e ek (Wlawl)‘|

xies; 0X 3(7)p" e (ws, W5)> (12.6.2)
(P.P)

The bc ghosts and corresponding measure are the same as in the bosonic
string, with an extra % from the GSO projection operator. For the (P,P)
spin structure there is one PCO and one —1 picture vertex operator.

We will consider in order the ¢*, X*, bc, fy, and j* path integrals. In
the vacuum amplitude the {p* path integral vanishes in the (P,P) sector. In
terms of a trace, this is due to a cancellation between the R sector ground
states. In terms of a path integral it is due to the Berezin integration over
the zero mode of p* (which exists only for this spin structure). In the
latter form it is clear that we need at least ten factors of { to obtain a
nonzero path integral. In fact, the path integral (12.6.2) has a maximum
of ten s, including one from the term

S(Bi2/o) 2 prox, (12.6.3)

in the PCO. The relevant path integral is easily obtained from a trace,
giving

10 o0
< H IIJM > — 6‘#1"'“106_]10/24 H(l . 6_]”)10
i=1 (P.P)

n=1

_ €H|---lt10[n(f)10]* . (12.6.4)
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The X* path integral is then reduced to

<ax# (ws)0X*(0 He’k X (i i > , (12.6.5)
X
the gradients coming from the tensor vertex operator and the PCO.
To make things simple we now take the k; — 0O limit. Contractions
between the gradients and exponentials, and among the exponentials,
are then suppressed. Only the contraction between the gradients survives,
—a /87ty from the background charge term o/ (Im w; j)2 /4n1, in the Green’s
function (7.2.3). The leading term in the expectation value (12.6.5) is then

—i(2m)"%1(3; ki)
The bc path integral is
( B(O)B0)(0)c(0) ), = In(=)I*, (12.6.7)

just as in the bosonic string. The fy path integral is the reciprocal of the
right-moving part of this,

]’]HPOC/
8nta(4n?e/12)3 (1)

(12.6.6)

(0(BONSGWs) ), =M@ 7T (126.8)
Finally for the current algebra, we need
K2 (W) 72 (w2) 5 (w3) 7% (wa) ), - (12.6.9)

We continue to use the convention k = % for the rest of the chapter.
Note first that all other expectation values are independent of w;. The
integrations over w; thus have the effect of averaging over Re(w;) and
so we can replace each current with the corresponding charge, Q%. We
can then evaluate the expectation value as a trace. However, a careful
treatment of the k — 0 limit shows that an additional contact term is
needed when two vertex operators coincide,

J9(w)j2(0) — T[Q“(W)Qb(O)] — 6% (w, )5 . (12.6.10)

To see this, integrate both sides over the region of world-sheet — < ¢? <
0. On the left we have

54b 1 :

— dPw — (ww)* (12.6.11)

2 Jio2i<s w2
where we have introduced small k and k’. The (ww)¥*’ factor from the X*
path integral then regulates the integral at the origin. We have kept the
leading term in the OPE because this is the only one that contributes at
small 6. Writing the integrand as

(—1+k - K)o, (wIHhK &y (12.6.12)
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we can integrate by parts to convert this to a surface integral, which is
then easily evaluated at k,k’ — 0 to give —2zm. On the right, the first
term has no singularity that would allow a nonzero limit as 6 — 0 (Q*
is conserved, so it is a constant except for the time ordering), and so the
delta function is needed.

For the product of two currents we would then have

(1 wi)j2(w2)) — Tr{exp(2micH)T |0 (w1)Q"(w2)] |
— 5 8% (w2, Wi2)

5ab

81y

— Tr{exp(2ritH)Q 0"} — (12.6.13)
In the second line we have used the fact that all other expectation values
are independent of the w;, so that the integrations will have the effect
of averaging over w;. In the first term this symmetrizes the operators
as indicated; in the second it allows us to replace the delta function
with its average over the torus. For four currents the combinatorics are
conveniently summarized in terms of the generating function

f(g,2) = (exp(z 7))

= exp (—“)Tr [exp(27tirH)exp(z . Q) ,  (12.6.14)
1671,

where j¢ is the average over the torus and the dot denotes a sum on a.

The needed expectation value is the fourth derivative with respect to z¢.

The trace is most easily carried out in the bosonic form, where it becomes

an oscillator sum plus sum over the SO(32) or Eg x Eg lattice:

zZ"Z

f(g,z) =n(r) "exp (— ) S g Pexp21 20 . (12.6.15)
lel”

16nt,

Gathering all factors, including (871»)° from integrating over the w;, the
amplitude becomes

_;ii (2n)10510(2i ki)gmmmoklﬂl €luy - - k4ﬂ7e4ﬂ8e5ﬂ9#10
2 4%
X /F drgt % R (12.6.16)
where
f(a.2) =n(t)*f(q,2) . (12.6.17)

We leave it as an exercise to show that this is modular-invariant. Substi-
tuting e, — By, /2« and ke, — —iF,,/2gym from the normalization of
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the kinetic terms, including a factor 2° from converting the e-tensor to
form notation, and using the relation between the couplings, the amplitude
can be concisely summarized by the effective action

—I/B/dsz( F>) (12.6.18)
Vbt | 72 Jp g TN >

The form integration picks out the term of order F$. The integral can be
written as a surface term and given in closed form, using

fla,F2) _  32mi 0f(q,F2)
’E% Fy-F» 0T '

(12.6.19)

Due to modular invariance, only the limit 7, — oo contributes. The
effective action becomes

! b2 ]A((anQ)

24m3a’ ) Fy-F, q° term

(12.6.20)

Only the lattice momenta with [> = 2 contribute to the ¢q° term. These
form the adjoint of the gauge group, so the lattice sum reduces to a trace
in the adjoint representation and the effective interaction is

1 B,Tro(F§) 1 Tra(F$)
2847561 of Fy-F,  2%n5410 ] P Tr,(F3)

(12.6.21)

Ordinarily dividing by a form would make no sense, but we know from
the discussion of anomalies that Tra(Fg) oc F3-Fy Xg(F3), so the effective
interaction is proportional to | B»Xg as required by anomaly cancella-
tion (and with the correct coefficient). For SO(32) the ratio of forms is
%Trv(Fﬁ); for Eg x Eg it is

TIOO{[Tral(Ff)]2 + [Tro(F)P = Tra (F)Tro(FD)} . (126.22)
With somewhat more effort one can also find the required curvature
terms. That we were able with modest effort to bring this string loop
amplitude to a closed form is not too surprising, since this is a very
special amplitude whose coefficient is determined by symmetry (anomaly
cancellation). However, many of the physically interesting corrections to
the low energy effective action can be obtained in a closed form.

Next we consider the heterotic string amplitude with four gauge bosons
but without the antisymmetric tensor. In contrast to the previous ampli-
tude, which came only from the (P,P) spin structure, the present one comes
only from the other three spin structures: with one fewer vertex operator
there are not enough insertions of { to saturate the zero modes of the
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(P,P) path integral. The amplitude is then
4gt 1 drdt ’
Toc d?w;
o2 /F 815 Ll_[/ Wi

[Hk 172 al(le 8X+ kal wel W) ik X(Wzaw)]> (12623)
i=1 U

< (0)b(0)&(0)c(0)

7#(P.P)

/

For these spin structures, all vertex operators are in the 0 picture and
there is no PCO.

We could proceed to calculate in a straightforward way, but the final
result simplifies substantially and it would be better to simplify at the
start. In fact, this is one amplitude that is much more easily obtained in
the light-cone superstring formalism, and so we will effectively convert the
calculation to that form.

First, analytically continue the momenta so that k° = k! = 0. To
be consistent with the mass-shell condition the momenta must become
complex but this will not be a problem. Also, take the polarizations to
vanish in the longitudinal directions. The longitudinal degrees of freedom
then do not appear in the vertex operators, and so in the (P,A), (A,P), and
(A,A) sectors the longitudinal path integrals just give determinants that
cancel against the corresponding ghost path integrals. In particular, the
combined longitudinal and ghost path integrals for these three sectors are
independent of the spin structure, so the net spin structure dependence
comes only from the eight transverse §'.

Now, we will temporarily change the problem and also add in the
(P,P) spin structure for the ', even though in the real amplitude this
is multiplied by zero from the {%! zero modes. The sum over four spin
structures gives a GSO projection in the transverse ' CFT by itself.
Consider the vertex operator @, for the R ground state, and bosonize:

exp[3 '(1:11 +I:12+FI3 + Hy)] = exp(if))

= explyi(A1 + Hy — Hy — Ha)] = exp(ifl}) ~
0, - g 0,. (12.6.24
, —> eXp[% ( H2 =+ H3 I:I4)] = eXp(lI:Ié) i ( )
exp[5i(H — Hy + Hy)] = exp(if})

Precisely for eight ¢, the linear combinations of scalars appearing in the
spin field are themselves scalars of canonical normalization

H/(2)H)(0) ~ —5;Inz . (12.6.25)

Thus after bosonizing and going to a new basis for the scalars we can
refermionize in terms of free (0, %) fields 0,(z). Note that only for eight '
does the spin field have weight % Thus we turn the ' path integral into
a 0, path integral. Moreover, we claim that the spin structures are related
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as follows:
1

N |

Z< >17W = < >(§(p7p) . (12.6.26)
Y

This follows because the spin field @, survives the GSO projection, im-
plying that it is single-valued on the torus. The periodicity in the time
direction implies the insertion of a factor exp(niFy) in the sum over states,
which is appropriate because 0, is a spacetime spinor.

Now we come to the payoff: for this spin structure the 0, have eight
zero modes, and so there must be eight factors of 0, to get a nonzero
result. We need to refermionize the vertex operators, but this is easy. The
spinors appear only in the combination

kieplip (12.6.27)

where we can antisymmetrize because e - k = 0. The product of fermions
is just an SO(8) rotation current, so we can immediately write

Plip % GTTiD (12.6.28)

One can check this by taking the OPE of the two sides with ®, and
0, respectively. The fermionic terms in the vertex operators then provide
precisely the eight 0s needed to saturate the zero modes, with the result

4
T oo 1 i g
(ITra) = gemryg, iy
a=1 O(P,P)

— liiajs o gitieiajs (12.6.29)

Here t is the same tensor (12.4.25) that appears in the tree-level amplitudes.

It remains to separate out the unwanted (P,P) sector of the { path
integral, but this is easy. It is the only one that is odd under a reflection of
one of the transverse directions, so it is responsible for the term e1/1+#4J4
Thus we omit this term, which in any case does not contribute because the
momenta with which it contracts are not linearly independent. Further,
the tensor ¢ has a unique covariant extension.

The remaining factors are much as in the previous amplitude, leading
for SO(32) to the effective interaction

1
287541 of

For Eg x Eg one has instead the group theory structure (12.6.22). Given
the similarity of the F* amplitude to the BF* amplitude, the reader may
not be surprised that they are in fact related by supersymmetry.

By this same method several other amplitudes can be obtained, including
the type I cylinder with four open string gauge bosons and the type II

t’”“"‘“ﬁyéTrV(FquapFaﬁFyé) . (12.6.30)
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torus with four gravitons. In the latter case both the 1’ and the §' are
refermionized, and the tensor structure is the same as for the tree-level
amplitude (12.4.34), with two ¢t tensors.

The 0, are the first free fields carrying a spacetime spinor index that
we have encountered. One might have expected these to arise at some
earlier stage. In fact the covariant Green—Schwarz superstring theory,
with manifest spacetime supersymmetry, has such fields. It is equivalent to
the RNS superstring: after putting each theory in the light cone they are
related by the refermionization above. However, the constraints and gauge
fixing in the Green—Schwarz description are rather more complicated, and
so we have chosen not to emphasize this subject.

Nonrenormalization theorems

It follows from the preceding calculations that any amplitude with three
or fewer massless particles vanishes because there are too few factors of
0, to saturate the zero-mode integrations. One consequence is that there
1s no renormalization of Newton’s constant, which can be measured in
the three-graviton amplitude.

It also follows that all amplitudes vanish at least as k* when k — 0,
from the explicit momentum factors in the vertex operators.’ This has the
important physical consequence that the constant background

G;tv(X) =N > O(x) = D (12.6.31)

around which we are expanding remains a solution of the field equations
to one-loop order. No interaction

/ d'%x (—G)2v (@) (12.6.32)

is generated. Actually we already knew this from the calculation of the
one-loop vacuum amplitude in chapter 10, which vanished by cancellation
between bosons and fermions. These nonrenormalization theorems have
been argued to extend to all orders of string perturbation theory; the
details are left to the references.

Nonrenormalization can also be understood from a spacetime point of
view. The tree-level action has local supersymmetry. Therefore the loop
corrections must respect this symmetry or else the unphysical polariza-
tions of the gravitino will not decouple. However, no interaction of the

5 This kind of argument is subtle because one can obtain offsetting poles from f d?w (wv'v)_"*""k/,

but the necessary singularity in w does not appear here because the zero modes are independent
of w.
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form (12.6.32) is allowed by d = 10, N = 1 or N = 2 supersymmetry.°®
This argument applies to all orders of perturbation theory and in fact it
is a nonperturbative (exact) result. The latter fact is very striking, because
with the string technology developed so far we have no direct way to
understand strings beyond perturbation theory. It should be noted that
the leap from ‘all orders of perturbation theory’ to ‘exact’ is quite non-
trivial, because in theories with less symmetry there are many examples of
corrections that arise only from nonperturbative effects. We will see some
of these later.

Exercises

12.1 Derive the SO(n) trace identities (12.2.19). You can assume a basis in
which the generator ¢ is a linear combination of the commuting generators
H'

12.2 Obtain the trace relations (12.2.20) for Eg, and show that Tr,(¢°) can
be reduced to lower order traces for Eg x Eg.

12.3 Show that the anomaly factorizes for the massless spectrum of the
SO(16) x SO(16) nonsupersymmetric heterotic string.

12.4 Show that the superfield forms for the superconformal transformation
0X*, the OPEs (12.3.22) and (12.3.26), and the action (12.3.23) reduce to
the correct component forms.

12.5 Show that the superfield form of the sigma model action reduces to
components as shown in eq. (12.3.27).

12.6 Using the contour method from sections 6.2 and 6.3, show that the
sphere amplitude must have total ¢ charge —2 as discussed at the begin-
ning of section 12.4.

12.7 (a) Calculate the tree-level heterotic string amplitude with two gaug-
inos and a gauge boson.

(b) Calculate the tree-level heterotic string amplitude with two gauginos
and a massless tensor.

12.8 Calculate the tree-level type II amplitude with one NS-NS boson
and two R—R bosons.

12.9 Calculate the tree-level heterotic string amplitude with four gaug-
inos. You can either do this directly, or by first calculating an appro-
priate bosonic open string amplitude and then using the open—closed
relation (12.4.29).

® The massive ITA supergravity theory (12.1.24) effectively has such a term after setting the fields
M and Fjy to fixed background values, but the dilaton dependence is fixed and corresponds to
a tree-level effect.
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12.10 Calculate the k; — O limit of the type I cylinder amplitude with
four gauge bosons, where two open string vertex operators are on each
boundary. This is often referred to as the nonplanar amplitude.

12.11 Calculate the same amplitude as in the previous problem but with
all four vertex operators on one boundary. This planar amplitude has a
divergence; calculate the canceling Mobius amplitude.
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D-branes

In chapter 8 we found that a number of new phenomena, unique to string
theory, emerged when the theory was toroidally compactified. Most no-
table were the T-duality of the closed oriented theory and the appearance
of D-branes in the R — 0 limit of the open string theory. These subjects
become richer still with the introduction of supersymmetry. We will see
that the D-branes are BPS states and carry R—R charges. We will argue
that the type I, IIA, and IIB string theories are actually different states in a
single theory, which also includes states containing general configurations
of D-branes. Whereas previously we considered only parallel D-branes all
of the same dimension, we now wish to study more general configurations.
We will be concerned with the breaking of supersymmetry, the spectrum
and effective action of strings stretched between different D-branes, and
scattering and bound states of D-branes. In the present chapter we are
still in the realm of string perturbation theory, but many of the results will
be used in the next chapter to understand the strongly coupled theory.

13.1 T-duality of type II strings

Even in the closed oriented type II theories T-duality has an interesting
new effect. Compactify a single coordinate X in either type II theory and
take the R — 0 limit. This is equivalent to the R — oo limit in the dual
coordinate, whose right-moving part is reflected

XR(Z) = —X3(2) (13.1.1)

just as in the bosonic string. By superconformal invariance we must also
reflect §°(Z),

P°(z) =—p’(z) . (13.1.2)
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However, this implies that the chirality of the right-moving R sector
ground state is reversed: the raising and lowering operators {3 4 i(yy are
interchanged. Simply put, T-duality is a spacetime parity operation on
just one side of the world-sheet, and so reverses the relative chiralities
of the right- and left-moving ground states. If we begin with the ITA
theory and take the compactification radius to be small, we obtain the IIB
theory at large radius, and vice versa. The same is true if we T-dualize
— that is, carry out the change of variables (13.1.1) and (13.1.2) — on
any odd number of dimensions, while T-dualizing on an even number
returns one to the type II theory with which one began. Thus the two
type Il theories are related in the same way as the two heterotic theories:
in each case the two noncompact theories are different limits of a single
space of compactified theories. The type II relation is even simpler than
the heterotic relation, in that one takes the radius to zero without having
also to include a Wilson line.

Since the ITA and IIB theories have different R—R fields, T-duality
must transform one set into the other. Again focus on T-duality in just
the 9-direction. In order to preserve the OPE between {* and the spin
field, this must act as

VWD) =V y(2) s TE) = Bag T 4(2) (13.1.3)

where ° is the parity transformation (9-reflection) on the spinors. It
anticommutes with I'” and commutes with the remaining I'*, so f° = I'’T".
Now consider the effect on the R—R vertex operators

Tt (13.1.4)

The T-duality multiplies the product of T matrices by I'’T" on the right.
The T just gives +1 because the R ground states have definite chirality.
The T'® adds a ‘9 to the set ;... Kp if none is present, or removes one if
it is present via (I'’)> = 1. This is how T-duality acts on the R-R field
strengths and potentials, adding or subtracting the index for the dualized
dimensions. Thus, if we start from the IIA string we get the IIB R-R
fields as follows (up to signs),

Cy— C, (13.1.50)
C,u: Cyv9 i C,u9, Cyv 5 (1315b)
C,uv/l - Cuvi9 > (13.1.5¢)

where here u stands for a nondualized dimension. We could go on, getting
Cuwio from Cuy09 and so on, but these are not independent fields, and
give rather the Poincaré dual description of the fields listed.
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For T-duality on multiple dimensions replace ° with

I1s", (13.1.6)

m

where f” = I'T"™ and the product runs over the dualized directions. There
are some signs which should be noted but should not distract attention
from the main physical point. Since ™" = —f" "™ for m #+ n, T-dualities
in different directions do not quite commute but differ by a sign in the
right-moving R sector. We can write this as

" = exp(niF)p"p™ , (13.1.7)

where F is the spacetime fermion number of the right-moving state of the
string; this is a symmetry that flips the sign of all right-moving R states.
Also, we have defined f so as to preserve the Hermiticity of 7, (that is,
it is real in a Majorana basis), but then "™ = —1 and so acting twice
with T-duality gives exp(niF).

13.2 T-duality of type I strings

Taking the R — 0 limit of the open and unoriented type I SO(32) theory
leads to D-branes and orientifold planes by the same arguments as for the
bosonic string in chapter 8, which the reader should review. In particular,
taking the T-dual on a single dimension leads to a space with 16 D§-
branes between two orientifold hyperplanes.

Let us first consider the bulk physics of the T-dual theory, obtained
by taking R — 0 and concentrating on a region of the dual spacetime
that is far away from the fixed planes and D-branes, as illustrated in
figure 13.1. The local physics is that of a closed oriented superstring
theory: closed because the open strings live far away on the D-branes;
oriented because the orientation projection relates the state of any string
to that of its image behind the fixed plane, but does not locally constrain
the space of states. Thus the local physics must be that of a type II theory.
In particular there are two gravitinos, and any closed string scattering
process will be invariant under the 32 supersymmetries of the type II
theory. Since the type I theory with which we started has equal left- and
right-moving chiralities, taking the T-dual in one dimension makes them
opposite: the local physics is the IIA superstring. Taking the T-dual on
any odd number of dimensions has the same effect; taking the T-dual on
any even number of dimensions gives the IIB theory in the bulk.

Now take the R — 0 limit while concentrating on the neighborhood of
one D-brane in the T-dual theory, adjusting the Wilson lines so that again
the fixed plane and other D-branes move away in the T-dual spacetime.
The low energy degrees of freedom on the D-brane are the massless open
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)

Fig. 13.1. A D-brane, with one attached open string and one closed string
moving in the bulk. The physics away from the D-brane is described by a type 11
string theory, so the string theory with the D-brane has the physical properties
of a state of the type II theory containing an extended object.

string states
wplkins s w2 plk)ns s kg - (13.2.1)

As in the bosonic theory, the bosonic states are a gauge field living on
the D-brane and the collective coordinates for the D-brane. The fermionic
states are the superpartners of these.

Consider now a process where closed strings scatter from the D-brane;
this necessarily involves a world-sheet with boundary. Now, the open
string boundary conditions are invariant only under d = 10, N = 1
supersymmetry. In the original type I theory, the left-moving world-sheet
current for spacetime supersymmetry ¥ ,(z) flows into the boundary and
the right-moving current 7 ,(Z) flows out, so only the total charge 0, + 0,
of the left- and right-movers is conserved. Under T-duality this becomes

0, + (0. . (13.2.2)

The scattering amplitudes of closed strings from the D-brane are invariant
only under these 16 supersymmetries.

To see the significance of this, consider first the conservation of momen-
tum. There is a nonzero amplitude for a closed string to reflect backwards
from the D-brane, which clearly does not conserve momentum in the
direction orthogonal to the D-brane. This occurs because the Dirichlet
boundary conditions explicitly break translational invariance. However,
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from the spacetime point of view the breaking is spontaneous: we are
expanding around a D-brane in some definite location, but there are
degenerate states with the D-brane translated by any amount.! For a
spontaneously broken symmetry the consequences are more subtle than
for an unbroken symmetry: the apparent violation of the conservation law
is related to the amplitude to emit a long-wavelength Goldstone boson.
For the D-brane, as for any extended object, the Goldstone bosons are
the collective coordinates for its motion. In fact, the nonconservation of
momentum is measured by the integral of the corresponding current over
the world-sheet boundary,

i
— / 5o (13.2.3)

which up to normalization is just the (0 picture) vertex operator for the
collective coordinate, with zero momentum in the Neumann directions.

We conclude by analogy that the D-brane also spontaneously breaks 16
of the 32 spacetime supersymmetries, the ones that are explicitly broken
by the open string boundary conditions. The integrals

/ dsv = — / ds(B07), | (13.2.4)
oM oM

which measure the breaking of supersymmetry, are just the vertex op-
erators for the fermionic open string state (13.2.1). Thus this state is
a goldstino, the Goldstone state associated with spontanecously broken
supersymmetry.

It is not surprising that the D-brane breaks some supersymmetry. The
only state invariant under all supersymmetries is the vacuum. Rather,
what is striking is that it leaves half the supersymmetries unbroken: it
is a BPS state. This same argument holds for any number of dualized
dimensions, and so for Dp-branes for all p. The unbroken supersymmetry
is

Q,+ (50, (13.2.5)

where
gt = [I8". (13.2.6)

the product running over all the dimensions perpendicular to the D-brane.

! The Mermin-Wagner—Coleman theorem from quantum field theory implies that if the D-brane
has two or more noncompact directions there will indeed be an infinite number of degener-
ate states. If it has one or zero noncompact directions, quantum fluctuations force it into a
unique translationally invariant state. The latter effect shows up in perturbation theory through
IR divergences. For a spontaneously broken supersymmetry the fluctuations are less effective:
supersymmetry can be broken even by a zero-dimensional object.
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BPS states, which are discussed in section B.2, must carry conserved
charges. In the present case there is a natural set of charges with the
correct Lorentz properties, namely the antisymmetric R—R charges. The
world-volume of a p-brane naturally couples to a (p + 1)-form potential

/ Cout s (132.7)

the integral running over the D-brane world-volume. By T-duality we can
reach the ITA theory with a Dp-brane of any even p. Thus we need 1-,
3-, 5-, 7-, and 9-form potentials. Indeed, the 1-form and 3-form are in
the IIA theory and the 5-form and 7-form give equivalent descriptions of
the same physics. The 9-form potential we have discussed in section 12.1
in the context of massive IIA supergravity. Although it is not associated
with propagating states, and so was not detected in the quantization of
the IIA string, the existence of D§-branes shows that it must be included.

By analogy with electromagnetism in four dimensions, where the 1-
form electric potential can be replaced with a 1-form magnetic potential,
a Dirichlet p-brane and (6 —p)-brane are like electric and magnetic sources
for the same field strength. For example, the free field equation and Bianchi
identity for a 2-form field strength, d«F; = dF; = 0, are symmetric
between F, and (xF)s, and can be written either in terms of a 1-form or
7-form potential:

F, =dC;, dA+dC; =0, (13.2.8a)
«F> = (xF)g =dC; , dA*dC; =0. (13.2.8b)

At an electric source, which would be a DO-brane for C; or a D6-brane
for C7, the field equation has a source term. At a magnetic source, a
Dé6-brane for C; or a DO-brane for C;, the Bianchi identity breaks down,
and the potential cannot be globally defined: one must introduce a Dirac
string, or use different potentials in different patches.?

For the IIB theory we need 2-, 4-, 6-, 8-, and 10-form potentials.
The first four arise in either the electric or magnetic description of the
propagating R—R states. The existence of the 10-form was deduced in
section 10.8, from the study of type I divergences. Indeed, we argued there
for the coupling (13.2.7) for the 10-form, where the integral runs over
all spacetime. This fits with a point made in chapter 8, that it is natural
to interpret each Chan—Paton degree of freedom in the fully Neumann
theory as a 9-brane filling spacetime. All the other R—R couplings follow
from this one by T-duality, since each time we T-dualize in an additional

2 1t should be mentioned that there is no local covariant action for a system with both electric
and magnetic charges, even though the physics is covariant and presumably satisfies the axioms
of local quantum field theory.
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direction the dimension of the p-branes goes down by one and the R—R
form loses an index.

The I1IB theory also has a O-form potential Cy, the R—R scalar. This
should couple to a ‘(—1)-brane.’ Indeed, there is a natural interpretation
to this: it is defined by Dirichlet boundary conditions in all directions,
time as well as space, so its world-sheet is zero-dimensional and the
integral (13.2.7) reduces to the value of Cy at that point. An object that is
localized in time as well as space is an instanton. Instantons in Euclidean
path integrals correspond to tunneling events, and we will argue shortly
that these must be present in string theory.

We will verify the R-R couplings of D-branes in the next section; for
the remainder of this section we will discuss some of the consequences.
The discovery that D-branes carry R—R charges neatly ties together two
loose ends. On the one hand, it was argued in section 12.1 that the
ordinary string states do not have R—R charges, but now we see that
string theory does have a source for every gauge field.> This extends
the result from chapter 8, that the gauge field from compactification of
the antisymmetric tensor (under which all states in quantum field theory
are neutral) couples to winding strings. On the other hand, the existence
of so many different kinds of extended object, Dp-branes for every p,
might have seemed excessive, but we now see that these are in one-to-one
correspondence with the R—R potentials of the respective type II theories.

The divergence of the type I theory for groups other than SO(32) arose
from the R—R 10-form field equation. This divergence is unaffected by
toroidal compactification and again cancels only for SO(32). It would
have been surprising if toroidal compactification made a consistent theory
inconsistent, or the reverse, and it is not hard to verify explicitly that
this does not happen. The effect of toroidal compactification is to add
world-sheets that wrap around the periodic directions of spacetime. These
correspond to exchange of closed strings with winding number, which are
massive and so do not have dangerous tadpoles.

The spacetime interpretation of the divergence in the T-dual picture
with D-branes is again an inconsistency in the R-R field equations.
One can picture field lines emerging from each D-brane, orthogonal to
the noncompact dimensions, and these field lines must end somewhere.
Further, all D-branes must have the same sign of the charge: the full set
of D-branes is still a BPS state, being T-dual to the type I theory, and
the total mass is linear in the total charge for a BPS state. We know that
the disk tadpole is canceled by the unoriented cross-cap. In the T-dual
spacetime the cross-cap must be localized near one of the orientifold

3 In the next chapter we will discuss a seemingly different kind of R—R source, the black p-brane.
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(@)

1
(b) . xox

Fig. 13.2. Effect of a T-duality in the 2-direction on D1-branes at various angles
in the (1,2) plane: (a) before T-duality; (b) after T-duality. The xs indicate a
magnetic field on the D2-brane.

planes, because the string theory in the bulk is oriented. Thus we deduce
that the orientifold planes are sinks for R-R charge. If we T-dualize on
k dimensions there are 2 orientifold planes but still 16 D-branes, so the
charge of an orientifold plane must be —2*7* times that of a D-brane of
the same dimension.

New connections between string theories

Starting from the toroidally compactified type I theory, we can reach
either d = 10 type II theory. Simply take an odd or even number of radii
to zero, while moving the D-branes and fixed planes off to infinity as
the dual spacetime expands. Thus, just as for the two heterotic theories,
these should be thought of as limits of a single theory. The theory has
many other states as well: we can take the limit while keeping some of
the D-branes in fixed positions, so that we obtain the compact theory
in a state with D-branes. The simple T-duality leads only to parallel
D-branes of equal dimension, but since the D-branes are dynamical we
can continuously vary their configurations. We can then reach states with
p-branes of different dimension as follows. Consider two D1-branes (D-
strings) in the IIB theory, from dualizing in eight directions. Let one be
along the 1-direction and the other be rotated to lie along the 2-direction.
As illustrated in figure 13.2, a further T-duality in the 2-direction reverses
Dirichlet and Neumann boundary conditions in this direction and so turns
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the first D-string into a D2-brane extended in the 1- and 2-directions but
the second into a DO-brane. Thus these can coexist in the ITA theory. Of
course T-duality leads only to states with 16 D-branes, but we understand
now that this is due to the R—R flux conservation in the compact space. In
a noncompact space the R-R flux can run to infinity and so any number
of D-branes should be allowed.

Thus, starting from the type I theory we can reach states that look like
the type IIA theory with any collection of even Dp-branes or the type I1I1B
theory with any collection of odd Dp-branes. Of course if we start with
an ordinary type II theory, T-duality will never give us open strings or
D-branes, so one might imagine that there is a different type II theory in
which D-branes are not allowed. This seems unlikely, however: everything
we know points to the uniqueness of the theory, so we do not have such
alternatives. Also, we will see in the next chapter that the inclusion of
D-branes leads to a much more elegant and symmetric theory.

In summary, we are now considering a single theory, which has a state
that contains no D-branes and looks like the ordinary IIA theory, a second
state (T-dual to the first) that contains no D-branes and looks like the
ordinary IIB theory, and a third state that contains 16 D9-branes (and
an orientifold 9-plane) that looks like the type I theory. It also contains
an infinite number of other states with very general configurations of
D-branes.

We can now write down the supersymmetry algebra for this theory:

(0,05} =2 [PM + (2m’)*1Q1§45]r% : (13.2.92)

(00,05} = —2[Py — 2no!) 1 QN[ TN (13.2.9b)

(0,05} =2 %Qﬁl__.Mp(ﬁMl My . (13.2.9¢)
< p!

The spacetime supersymmetries Q, and Q, act respectively on the left-
and right-movers.

The anticommutator (13.2.9b) of two right-moving supersymmetries is
the same as the heterotic string anticommutator (11.6.32), containing the
charge that couples to the NS—NS 2-form. The argument for the appear-
ance of this term is the same as before: the 7,7~ s OPE contains the
right-moving momentum 6X*, which involves both ordinary momentum
and winding number. Similarly, the ¥7, 7" OPE contains the left-moving
momentum 0X*, so the NS-NS charge appears in the left-moving anti-
commutator with the opposite sign. We have added a superscript NS to
distinguish this charge from the charges QR that couple to R—R forms.
Also, we have changed conventions so that all charges are now normalized
to one per unit world-volume of the respective extended object, and so
the string tension (2no/)~! appears explicitly. As discussed in section 11.6,
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R}S is the charge carried by the fundamental string, meaning the original
quantized string. Henceforth we use this term, or F-string, to distinguish
it from the D1-brane.

From the argument that D-branes are BPS states, we expect the R-R
charges to appear in the algebra as well, and the natural place for an R-R
charge to appear is in the anticommutator of a left- and a right-moving
supersymmetry. The sum on p runs over even values in the IIA theory
and odd values in the IIB theory. By analogy with the NS—-NS case we
have included the D-brane tensions t,, whose values will be obtained in
the next section; the factor of 1/p! offsets the sum over permutations of
indices. To see that the algebra is correct, focus on a state that contains
a single static Dp-brane. The nonzero charge is Qy,...,,, where the indices
run over the directions tangent to the Dp-brane. Note that

B g — BLTO (13.2.10)

up to a possible overall sign that can be reabsorbed in the definition of Q;
Bt is the same as in eq. (13.2.5). It then follows that the anticommutator
of Q4 B0 with any supercharge vanishes in this state, as required by the
BPS property. (In eq. (13.2.5) we included primes on the supercharges to
indicate that we were working in a T-dual description to the type I theory
with which we began. In writing the algebra (13.2.9) we are considering
an arbitrary state with D-branes, without necessarily obtaining it from
T-duality, so there are no primes.)

Incidentally, the central charge (13.2.9) is still not complete: the magnetic
NS-NS charge is missing. This is not carried by D-branes or F-strings.
We will discuss this further in the next chapter.

Finally, let us also explain the necessity of D-instantons, localized in
time. We could try to use T-duality in the time direction, but it is not clear
whether this is meaningful. Rather, consider DO-branes, whose world-lines
are one-dimensional, in a space with one compact spatial dimension. For
an ordinary quantized particle in a path sum description we would have to
include closed paths that wind around the compact direction. Such paths
are responsible for Casimir energies and other effects of compactification.
Presumably we must do the same for the DO-branes as well. The shortest
such winding path is a straight line in the compact spatial direction. This
is localized in time and so is essentially an instanton: Casimir energies,
in the path sum description, are essentially instanton effects. Further,
by a T-duality in the compact dimension we obtain a D-instanton that
is localized in all directions. We know from chapter 8 that the D-brane
action depends on the closed string coupling as O(1/g), so the D-instanton
amplitude is of order ¢~ ?(1/2). Thus we have found an example of the
enhanced nonperturbative effects that were inferred in section 9.7 from
the high order behavior of string perturbation theory.
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On the heterotic world-sheet there are no boundary conditions that
preserve the world-sheet gauge symmetries, and there is no indication
that D-branes exist. Nevertheless, we will see in the next chapter that the
D-branes of the type I/II theory enable us to learn a great deal about the
heterotic string as well.

13.3 The D-brane charge and action

There is no force between static BPS objects of like charge. The multi-
object state is still supersymmetric and so its energy is determined only by
its charge and is independent of the separations. For parallel Dp-branes,
the unbroken supersymmetry (13.2.5) is the same as for a single Dp-brane.

The vanishing of the force comes about from a cancellation between
attraction due to the graviton and dilaton and repulsion due to the R—R
tensor. We can calculate these forces explicitly from the usual cylinder
vacuum amplitude. The exchange of light NS-NS closed strings was
isolated in eq. (10.8.4). Modify this expression by removing the factors for
the momentum integrations in the Dirichlet directions and introducing a
term for the tension of a string stretched over a separation y*:

iVpt14 x 16 [*® ndt 5 _ ty?
o NS zpi/ig '$)0—p)/2 (_ )
NSNS 8n(8n2/)S Jo 12 (8n%ot) P\ " 2nw
= iV, 1 2n(4n%0 ) P Go_p(y) (13.3.1)
with Gy(y) = 272n792T'(3d — 1)y>~* the scalar Green’s function. The
Chan-Paton weight is 2 here, from the two orientations of the open
string, and there is no factor of % from the orientation projection because

the physics is locally oriented. Due to supersymmetric cancellation in the
trace, the R-R exchange amplitude is

&/R—R = _&{NS—NS (1332)

and so the total force vanishes as expected.
The field theory calculation (8.7.25) for the dilaton—graviton potential
changes only by the substitution 6 = (D — 2)/4 — 2, and so is

2ik*13Go_p(y) - (13.3.3)

Thus

2 = D (dnla) (13.3.4)
K

This satisfies the same T-duality relation as in the bosonic string. For the
R-R exchange, the low-energy action is

1 n
— W/dlox(—G)1/2|Fp+2|2+u,,/cp+1 . (13.3.5)
10
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The kinetic term is canonically normalized, so the propagator for any
given component (such as the one parallel to the D-brane) is 2x3,i/k?,
and the field theory amplitude is

— 2i30ity Go—p(y) - (13.3.6)
Hence
T _
102 = 7%0(471-20/)3 P=eMg2 =T, (13.3.7)

The reader can carry out a similar calculation of the force between a D-
brane and an orientifold plane and show that it has an additional —(2°~).
We deduced from the cancellation of divergences that the charge of the
orientifold plane should have a factor of —(247¥); the extra factor of 2
in the force arises because the orientifold geometry squeezes the flux lines
into half the solid angle.

The calculation of the interaction confirms our earlier deduction that D-
branes carry the R-R charges. It is interesting to see how this is consistent
with our earlier discussion of string vertex operators. The R—R vertex
operator (12.1.14) is in the (—%, —%) picture, which can be used in almost
all processes. On the disk, however, the total left- plus right-moving ghost
number must be —2. With two or more R—R vertex operators, all can
be in the (—%,—%) picture (with PCOs included as well), but a single
vertex operator must be in either the (—%,—%) or the (—%,—%) picture.
The (—%,—%) vertex operator is essentially e %Gy times the (—%,—%)
operator, so besides the shift in the ghost number the latter has one
less power of momentum and one less I'-matrix. The missing factor of
momentum turns F into C, and the missing I'-matrix gives the correct
Lorentz representations for the potential rather than the field strength.

Dirac quantization condition

There is an important consistency check on the value of the R-R charge,
which generalizes the Dirac quantization condition for magnetic monopole
charge. Let us review the Dirac condition, shown in figure 13.3. Consider
a magnetic charge uy, at the origin. The integrated flux is

Fy =t . (13.3.8)

S
Because the integral over a closed surface is nonzero, we cannot write
F, = dA; for any vector potential. However, we can write F, = dA;
except along a Dirac string ending on the monopole. Now consider an
electric charge u. moving in this field. Its coupling to the field produces a
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N

Fig. 13.3. Sphere surrounding monopole, with a Dirac string running upward.
The particle path P is bounded by the lower cap D.

phase

exp(iueﬁm) = exp(iue/DFg) (13.3.9)

when the particle moves on a closed path P. The surface D spans P and
does not intersect the Dirac string. Now consider the limit as the path is
contracted to a small circle around the Dirac string. The phase becomes

exp(iue/s Fz) = exp(itlelim) - (13.3.10)
2

The Dirac string must be invisible, so this phase must be 1. Equivalently,
this is the condition that the phase (13.3.9) is unchanged if we instead
take the surface D' = S, — D spanning P in the upper hemisphere. The
result is the Dirac quantization condition,

Uellm = 2Tth (13.3.11)

for some integer n.

A p-brane and (6 — p)-brane are sources for F,,, and Fg_, respectively.
These two field strengths are Poincaré dual to one another, so again there
is a Dirac quantization condition that must be satisfied by the product of
their charges. Let us think about F,, as the field strength, so that the p-
brane is an electric source and the (6 — p)-brane a magnetic source. In nine
dimensions a (6 — p)-dimensional object is surrounded by a (p + 2)-sphere,
so by analogy to the magnetic flux (13.3.8),

/ Fpio = pig_p /23 . (13.3.12)
Sp+2

One can then repeat the same argument. For example, let the p-brane be
extended in the directions 4 < u < p 4+ 3 and the (6 — p)-brane in the
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directions p +4 < u < 9. The system essentially reduces to the three-
dimensional situation of figure 13.3 in the directions u = 1,2,3, and the
charges must satisfy

fplts—p = TN/ KT - (13.3.13)

Remarkably, the charges (13.3.7), arrived at in an entirely different way,
satisfy this relation with the minimum quantum n = 1.

D-brane actions

The coupling of a D-brane to NS-NS closed string fields is the same
Dirac-Born-Infeld action as in the bosonic string,

Spy = —up/d”“é Tr{e‘q’[— det(Gp + Bap + 27ro¢’Fa;,)]1/2} ., (13.3.14)

where G,, and B, are the components of the spacetime NS—NS fields
parallel to the brane and F,, is the gauge field living on the brane. The
argument leading to this form is exactly as in the bosonic case, section 8.7.
Recall that for n D-branes at small separation, where the strings stretched
between them are light enough to be included in the low energy action,
the collective coordinates X*(&), gauge fields A,(¢), and their fermionic
partners A(¢) all become n X n matrices. The trace in the action is in this
n X n space. In addition there is a term

O([X", X" (13.3.15)

in the potential. As discussed in chapter 8, the effect of this potential is
that in the flat directions the collective coordinates become diagonal. They
can then be interpreted as n ordinary collective coordinates for n objects.
At small separation the full matrix dynamics is crucial, as we will see.

The coupling to the R—R background also includes corrections involving
the gauge field on the brane. Like the Born—Infeld action, these can be
deduced via T-duality. Consider, as an example, a 1-brane in the (1,2)
plane. The action is

/ = / dx"(dx" Coy +dx*Con) = / ax" dx' (Cor +01X2Coo ) . (133.16)
Under a T-duality in the 2-direction this becomes
/ dx? dx' dx? (Cor + 270 FiaCo) (13.3.17)

We have used the T-transformation of the C fields, eq. (13.1.5). A D-
brane at an angle is T-dual to one with a magnetic field, as in figure 13.2.
We are not keeping track of the normalization but one could, with the
result w, = p,—1/2na 172 in agreement with the explicit calculation. The
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generalization of (13.3.17) to an arbitrary configuration, and to multiple
D-branes, gives the Chern—Simons-like result

ity /+1 Tr {CXP@M/Fz +B)AY Cq] . (13.3.18)
b q

The expansion of the integrand (13.3.18) involves forms of various rank;
the integral picks out precisely the terms that are proportional to the
volume form of the p-brane world-volume. There are similar couplings
with the spacetime curvature in addition to the field strength; these can
be obtained from a string calculation.

Thus far we have given only the action for the bosonic fields on the
brane. For the leading fluctuations around a flat D-brane in flat spacetime
the fermionic action is of the usual Dirac form

i / AP E Te(TD, 1) | (13.3.19)

The full nonlinear supersymmetric form is left to the references.

Coupling constants

The ratio of the F-string tension to the D-string tension is

TF] 1 K K

o1 2mol 4nS12« 87292 (13.3.20)
Up to now there has been no natural convention for defining the additive
normalization of the dilaton field or the multiplicative normalization of
the closed string coupling ¢ = ¢®. The dimensionless ratio (13.3.20) is
proportional to the closed string coupling, and it turns out to be very
convenient to take it as the definition of the coupling,

TF1

g = . (13.3.21)
D1
Then the gravitational coupling is
K* = 12n) g% (13.3.22)
and the D-brane tension is
e L (2i?) V2 (2m) 20 2/ 3=R)/2 (13.3.23)

P g(zn)pa’(P‘H)/z
Also, the constant appearing in the low energy actions of section 12.1 is
Ko = 22m) o ; (13.3.24)

this differs from the physically measured x because the latter depends on
the dilaton background.
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Expanding the action (13.3.14) gives the coupling of the Yang—Mills
theory on the Dp-brane,
) 1
Dp = (2no)’ty
Notice that for p = 3 this coupling is dimensionless, as expected in a
(3 + 1)-dimensional gauge theory. For p < 3 the coupling has units of
length to a negative power, and for p > 3 length to a positive power.
We now wish to obtain the relation among k, gym, and o in the type
I theory. We cannot quite identify gp, for p = 9 with gym, because the
former has been obtained in a locally oriented theory and there are some
additional factors of 2 in the type I case. Rather than repeat the string
calculation we will make a more roundabout but possibly instructive
argument using T-duality.
First, we should note that the coupling (13.3.25) is for the U(n) gauge
theory of coincident branes in the oriented theory: it appears in the form

1

2
4gb,
where the trace is in the n x n fundamental representation. Now let us
consider moving the branes to an orientifold plane so that the gauge

symmetry is enlarged to SO(2n). An SU(n) generator t is embedded in
S0O(2n) as

= (2n)P2go/ P72 (13.3.25)

Tre (13.3.26)

0 —T

because the orientation projection reverses the order of the Chan—Paton
factors and the sign of the gauge field. Comparing the low energy actions
gives

7 [ £ 0 ] , (13.3.27)

1
TTrf(tz)

= Tr, (%) (13.3.28)
g5, gt soom

Now consider the type I theory compactified on a k-torus with all radii
equal to R. The couplings in the lower-dimensional SO(32) theory are
related to those in the type I theory by

Ko = uR)k? (type 1) . go-rym = (27R) ™ g (type I) .
(13.3.29)
In the T-dual picture, the bulk theory is of type II and the gauge fields
live on a D(9 — k)-brane, and

Kiox = 22nR) K, gloiym = €Do_k.s0(32) - (13.3.30)

The dimensional reduction for k3, , has an extra factor of 2 because the
compact space is an orientifold, its volume halved. The gauge coupling is
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independent of the volume because the fields are localized on the D-brane.
Combining these results with the relations (13.3.22) and (13.3.25) gives,
independent of k, the type I relation

2
B = 200m)% (type 1) (13.3.31)

As one final remark, the Born—Infeld form for the gauge action applies
by T-duality to the type I theory:

— 1 10 / 1/2
S = _(27w/)2g%M/d xTr{ [~ det(n + 202/ F))' 2. (13.332)
whose normalization is fixed by the quadratic term in F. In the previous
chapter we obtained the tree-level string correction (12.4.28) to the type I
effective action. If the gauge field lies in an Abelian subgroup, the tensor
structure simplifies to

(2no)?
32g9Mm

This is indeed the quartic term in the expansion of the Born—Infeld action,
as one finds by using

Try (4F,0 F'7Fop " — Fy F'MF o) FP7) (13.3.33)

1 1 1 1

det '2(1+ M) = exp{ tr(M — EM2 - 3M3 1

with M, = 2no! F,sn°". The trace here is on the Lorentz indices, and

tr(x**1) = 0 for antisymmetric x. Note that only when the gauge field

can be diagonalized can we give a geometric interpretation to the T-dual
configuration and so derive the Born—Infeld form.

-Mm* +)] (13.3.34)

13.4 D-brane interactions: statics

Many interesting new issues arise with D-branes that are not parallel, or
are of different dimensions. In this section we focus on static questions.
The first of these concerns the breaking of supersymmetry. Let us consider
a Dp-brane and a Dp’-brane, which we take first to be aligned along the
coordinate axes. That is, we can partition the spacetime directions y into
two sets Sp and Sy according to whether the coordinate X# has Dirichlet
or Neumann boundary conditions on the first D-brane, and similarly into
two sets Sy, and S depending on the alignment of the second D-brane.
The DD coordinates are Sy N Sf,, the ND coordinates are Sy N Sfy, and so
on.
The first D-brane leaves unbroken the supersymmetries

0, + (B0) =11 5" (13.4.1)

meSp
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Similarly the second D-brane leaves unbroken

0u+ (B0 = Qu + [ (B0, B = J] B".  (1342)

!
meSsy,

The complete state is invariant only under supersymmetries that are of
both forms (13.4.1) and (13.4.2). These are in one-to-one correspondence
with those spinors left invariant by f+—!Y. The operator S+~ is a
reflection in the DN and ND directions. Let us denote the total number
of DN and ND directions #np. Since p — p’ is always even the number
#Np = 2j is also even. We can then pair these dimensions and write
(BH)~'BY as a product of rotations by 7,

p =Y pY = explri(J +...+J)] . (13.4.3)

In a spinor representation, each exp(inJ) has eigenvalues +i, so there will
be unbroken supersymmetries only if j is even and so #np is a multiple of
4. In this case there are 8 unbroken supersymmetries, one quarter of the
original 32. Note that T-duality switches NN«—DD and ND<—DN and
so leaves #np invariant. When #xp = 0, then (f+)~'fY = 1 identically
and there are 16 unbroken supersymmetries. This is the same as for the
original type I theory, to which it is T-dual.

An open string can have both ends on the same D-brane or one on
each. The p-p and p’-p’ spectra are the same as obtained before by T-
duality from the type I string, but the p-p’ strings are new. Each of the
four possible boundary conditions can be written with the doubling trick

XH(w, w) = X*(w) + X*(W) (13.4.4)
in terms of one of two mode expansions,
. ; o 1/2 H ) o% )
XHw) = x* + (2> —OgW -l-l; T exp(imw)| ,  (13.4.5a)
m#0
N\ 1/2 i
XH(w) = i(“) S 5 explirw) . (13.4.5b)
reZ+1/2
The periodic expansion (13.4.5a) describes NN strings for
XM (w) = X*2n — w) (13.4.6)
and DD strings for
XHw) = =X"2n —w) . (13.4.7)

The antiperiodic expansion (13.4.5b) similarly defines DN and ND strings,
with X*(w) = £X#(2n — w). For y*, the periodicity in the R sector is the
same as for X* because T is periodic. In the NS sector it is the opposite.
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The string zero-point energy is zero in the R sector as always, because
bosons and fermions with the same periodicity cancel. In the NS sector it
is

11 I 1\ 1 #p
(8 —#np) (-24 - 48) + #ND (48 + 24) =3 + 3 (13.4.8)

The oscillators can raise the level in half-integer units, so only for #np a
multiple of 4 is degeneracy between the R and NS sectors possible. This
agrees with the analysis above: the #nxp = 2 and #np = 6 systems cannot
be supersymmetric. Later we will see that there are supersymmetric bound
states when #np = 2, but their description is rather different.

Branes at general angles

It is interesting to consider the case of D-branes at general angles to
one another. To be specific consider two D4-branes. Let both initially be
extended in the (2,4,6,8)-directions, and separated by some distance y; in
the 1-direction. Now rotate one of them by an angle ¢ in the (2, 3) plane,
¢> in the (4, 5) plane, and so on; call this rotation p. The supersymmetry
unbroken by the rotated 4-brane is

Qs+ (p~' BHp0), . (13.4.9)

Supersymmetries left unbroken by both branes then correspond to spinors
left invariant by

BHY o B = (BB = p* . (13.4.10)
In the usual s-basis the eigenvalues of p? are

exp (2ia§;saq’)a> . (13.4.11)

In the 16 the (2sy,2s3,253,2s4) run over all 16 combinations of +1s;
each combination such that the phase (13.4.11) is 1 gives an unbroken
supersymmetry. There are many possibilities — for example:

e For generic ¢, there are no unbroken supersymmetries.

e For angles ¢1 + ¢ + ¢3 + ¢4 = 0 mod 2n (but otherwise generic)
there are two unbroken supersymmetries, namely those with s =
sp) = s3 = s4. The rotated D4-brane breaks seven-eighths of the
supersymmetry of the first.

e For ¢1 + ¢p2 + ¢3 = ¢4 = 0 mod 2z there are four unbroken
supersymmetries.

e For ¢p1 + ¢» = ¢3 + ¢4 = 0 mod 2n there are four unbroken
supersymmetries.
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e For ¢1 + ¢p» = ¢p3 = ¢4 = 0 mod 27 there are eight unbroken
supersymmetries.

Also, when k angles are n/2 and the rest are zero this reduces to the
earlier analysis with #xp = 2k.

For later reference let us also describe these results as follows. Join
the coordinates into complex pairs, Z! = X2 4 iX> and so on, with the
conjugate Z¢ denoted Z% Then p takes Z“ to exp(i¢,)Z“. The SO(8)
rotation group on the transverse dimensions has a U(4) subgroup that
preserves the complex structure. That is, it rotates Z 'a — Uabzb whereas
a general SO(8) rotation would mix in Z" as well. The rotation p in
particular is the U(4) matrix

diag[exp(idh ). exp(ig2), exp(ighs). explichs)] - (134.12)

When ¢; + ¢ + ¢3 + ¢4 = 0 mod 2z, which is the condition for two
supersymmetries to be unbroken, the determinant of p is 1 and so it
actually lies in the SU(4) subgroup of U(4). Then we can summarize the
above by saying that a general U(4) rotation breaks all the supersymmetry,
an SU(4) rotation breaks seven-eighths, an SU(3) or SU(2) x SU(2)
rotation breaks three-quarters, and an SU(2) rotation half. Further, if
we consider several branes, so that in general the rotations p; cannot be
simultaneously diagonalized, then as long as all of them lie within a given
subgroup the number of unbroken supersymmetries is as above.

Now let us calculate the force between these rotated branes. The cylinder
graph involves traces over the p-p’ strings, so we need to generalize the
mode expansion to the rotated case. Letting the ¢! = 0 endpoint be on
the unrotated brane and the ¢! = n endpoint on the rotated brane, it
follows that the boundary conditions are

¢l =0: 0|Re(Z9) =Im(Z9) =0, (13.4.13a)
ol = n: 01Re[exp(—ida)Z*|=Im[exp(—i¢a)Z*] =0 .(13.4.13b)

These are satisfied by

ZYw, W) = ZYw) + Z9(—w),
= exp(—2ip,)Z“(w + 21) + Z4—Ww) , (13.4.14)

where w = ¢! + ig2. This implies the mode expansion

W) = i(‘i)m >

reZ+v,

a
%

exp(irw) , (13.4.15)

with v, = ¢,/n. The modes (%)™ are linearly independent.
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The partition function for one such complex scalar is

- n -1 m1—(/m)] ! _exp(¢>t/m)n(it
qEOH{l_qH(fﬁ/ﬂ)} [l—q’“ ((/)/n)] _ X7t /m)n(it) (13.4.16)

s Su(igt/m,it)
with g = exp(—2nt),0 < ¢ < n (else subtract the integer part of ¢/n),
and
1 1/¢ 1\?
Eo=——=|——=] . 13.4.1
07 24 2(n 2) (134.17)

The definitions and properties of theta functions are collected in sec-
tion 7.2, but we reproduce here the results that will be most useful:

o0
Iu(v,it) = =2¢"¥sinmy [T (1 —g™(1 —z¢™)(1 —z""¢g™),
m=1 (134188.)
11(—iv/t,i/t) = —it"? exp(nv?/1)911(v, it) (13.4.18b)

where z = exp(2niv). Similarly in each of the sectors of the fermionic path
integral one replaces the Z%(it) that appears for parallel D-branes with*

Sypligpt/m, it)
exp(¢p?t/mn(it) -
The full fermionic partition function is

Z%(¢,it) = (13.4.19)

4 4 4 4
% H Zoo(d)aa lt) - H Zol(d)as lt) - H Z10(¢a> lt) - H Z 11(¢a: lt)‘| 5
a=1 a=1 1

a= a=1
(13.4.20)
generalizing the earlier ZJ( (it). By a generalization of the abstruse iden-
tity (7.2.41), the fermionic partition function can be rewritten

4
I1Z"(¢,.it) . (13.4.21)

a=1

where

B = 31+ s+ bs+da) . By= 21+ s — b5 — ba) , (134220)
1 1
By = 31— 92 63— ba) . Py = 21— s — s +hs) . (134220)

This identity has a simple physical origin. If we refermionize, writing
the theory in terms of the free fields 6, as in eq. (12.6.24), we get the

41If one applies the formalism of the previous chapter, in the (PP) spin structure there are two fy
zero modes and two longitudinal i zero modes for a net 02/02. One can define this by a more
careful gauge fixing, or equivalently by adding a graviton vertex operator (which allows all the
zero modes to be soaked up) and relating the zero-momentum graviton coupling to the potential.
However, we simply rely on the physical input of the Coleman—Weinberg formula.
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form (13.4.21) directly. In particular, the exp(+i¢)) are the eigenvalues of
p in the spinor 8 of SO(8).
Collecting all factors, the potential is

_ [Tt 12 ty7 H1(ipt/m,it)
V= /0 —(8nolt)” exp( )Hgn(lw/n % (13.4.23)

Note that for nonzero angles the stretched strings are confined near the
point of closest approach of the two 4-branes. The function 91(v, it) is odd
in v and so vanishes when v = 0. If any of the ¢, vanish the denominator
has a zero. This is because the 4-branes become parallel in one direction
and the strings are then free to move in that direction. One must replace

S11(ipat/m, it) ™" — iLny(it) 3 (8n2at)" /2 . (13.4.24)

This gives the usual factors for a noncompact direction, L being the
length of the spatial box. Taking ¢4 — 0 so the 4-branes both run in the
8-direction, one can T-dualize in this direction to get a pair of 3-branes
with relative rotations in three planes. The fermionic partition function is
unaffected, while the factors (13.4.24) are instead replaced by

t(v3 + y%)]
2ol ’

in(it)~> exp {— (13.4.25)
allowing for the possibility of a separation in the (8,9) plane. Taking the
T-dual in the 9-direction instead one obtains 5-branes that are separated
in the 1-direction, extended in the (8,9)-directions, and with relative ro-
tations in the other three planes. The effect is an additional factor of
Lo(8n20/t)~1/2. The extension to other p is straightforward.

If instead any of the ¢/ vanishes, the potential is zero. The reason
is that there is unbroken supersymmetry: the phases (13.4.11) include
exp(+2i¢),). Curiously this covers only eight of the sixteen phases (13.4.11),
so that if some phases (13.4.11) are unity but not those of the form
exp(+2i¢)), then supersymmetry is unbroken but the potential is nonzero.
This is an exception to the usual rule that the vacuum loop amplitudes
vanish by Bose—Fermi cancellation. The rotated D-branes leave only two
supersymmetries unbroken, so that BPS multiplets of open strings contain
a single bosonic or fermionic state.

The potential is a complicated function of position, but at long distance
it simplifies. The exponential factor in the integral (13.4.23) forces t to be
small, and then the 9-functions simplify,

H Su(igt/m,it) li[ sin ¢,
L O(igat/mit) L singg
by using the modular transformatlon of 311. The t-integral then gives a
power of the separation y;. The result agrees with the low energy field

(13.4.26)
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(a) (b)

Fig. 13.4. (a) D-branes at relative angle. (b) Lower energy configuration.

theory calculation, including the angular factor. For 4-branes with all ¢,
nonzero the potential grows linearly with y; at large distance, for 3-branes
with all ¢, nonzero it falls as 1/y;, and so on.

In nonsupersymmetric configurations a tachyon can appear. For sim-
plicity let only ¢; be nonzero, with 0 < ¢; < n. The NS ground state
energy is —(1/2) 4+ (¢1/2n), and the first excited state y_(j/2)4 (4, /m)|0)nss
which survives the GSO projection, has weight —¢;/2xn. Including the
energy from tension, the lightest state has

m? — i _ P

dn?e’2  2mol ’
This is negative if the separation is small enough. A special case is ¢ = 7,
when the 4-branes are antiparallel rather than parallel. The NS-NS and
R-R exchanges are then both attractive, and below the critical separation
y? = 2n%¢ the cylinder amplitude diverges as t — oo. This is where
the tachyon appears — evidently it represents D4-brane/anti-D4-brane
annihilation. Even when the D-branes are nearly parallel they can lower
their energy by reconnecting as in figure 13.4(b), and this is the origin
of the instability. This is one example where the tachyon has a simple
physical interpretation and we can see that the decay has no end: the
reconnected strings move apart indefinitely. On the other hand, for the
same instability but with the strings wound on a two-torus there is a lower
bound to the energy.

0<¢<m. (13.4.27)

13.5 D-brane interactions: dynamics

D-brane scattering

For parallel static D-branes the potential energy is zero, but if they are
in relative motion all supersymmetry is broken and there is a velocity-
dependent force. This can be obtained by an analytic continuation of
the static potential for rotated branes. Consider the case that only ¢
is nonzero, so the rotated brane satisfies X3 = X?tan ¢,. Analytically
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continue X2 — iX’° and let ¢1 = —iu, with u > 0. Then
X? =X"tanhu, (13.5.1)

which describes a D-brane moving with constant velocity. Continue also
X% — —iX" to eliminate the spurious extra time coordinate. The interac-
tion amplitude (13.4.23) between the D-branes becomes

, Cdt o 5, ( ty? ) S11(ut/2m, it)*
_ a _ 13.5.
o =iV, /0 (sl exp( 5L ) SR (1352)

where we have extended the result to general p by using T-duality.” It is
also useful to give the modular transformation

of = L / ﬂtw_p)/z eXp( ty ) 811(”4/27[7 l/t) (1353)
0

(8720 )P/2 t 2nod ) y(i/0)° %1 (iu/m,i/t)
We can write this as an integral over the world-line,
o0
of = —i / e V(r(o),v) | (13.5.4)
—00
where
r(t)> = y* 4+ v*®, v =tanhu, (13.5.5)
and

Viro) = i— 20 % g5
’ (87[20(/)(17"’1)/2 0

tr2 > (tanh u)911(iu/2m,i/t)* (13.5.6)

n(i/t)? 11 (iu/m,i/t)

The interaction has a number of interesting properties. The first is
that as v — 0 (so that u — 0), it vanishes as v* from the zeros of
the theta functions. We expect only even powers of v by time-reversal
invariance. The vanishing of the v? interaction, like the vanishing of the
static interaction, is a consequence of supersymmetry. The low energy
field theory of the D-branes is a U(l) x U(l) supersymmetric gauge
theory with 16 supersymmetries. What we are calculating is a correction
to the effective action from integrating out massive states, strings stretched
between the D-branes. The vanishing of the v? term is then consistent with
the assertion in section B.6 that with 16 supersymmetries corrections to
the kinetic term are forbidden — the moduli space is flat. If we had
instead taken ¢3 = ¢4 = 7 /2 so that #np = 4, there would only be two
zeros in the numerator and thus a v? interaction. This is consistent with

X exp <— o

5 We find it difficult to keep track of the sign during the continuation, but it is easily checked by
looking at the contribution of NS—-NS exchange in the static limit. Note that the 3;; are negative
for small positive u.
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the result that corrections to the kinetic term are allowed when there are
eight unbroken supersymmetries.

The interaction (13.5.6) is in general a complicated function of the
separation, but in an expansion in powers of the velocity the leading O(v*)
term is simple,

V. 0 U.Z
_ 4 ) (5-p)/2 6
V(r,v) = —v (8o P HTI2 /0 de P eXp<_2noc/> +0@°)

ot 2-2p (5-3p)2p- (1 — P
= r7pa,pl’32 P p/F( 5 >+O() (13.5.7)

At long distances this is in agreement with low energy supergravity. It is
also the leading behavior if we expand in powers of 1/r rather than v.

In general the behavior of V(r,v) as r — 0 is quite different from the
behavior as r — co. The r-dependence of the integral (13.5.6) arises from
the factor exp(—tr?/2no’), so that t ~ 2na’/r?> governs the behavior at
given r. Large r corresponds to small ¢, where the asymptotic behavior is
given by tree-level exchange of light closed strings — hence the agreement
with classical supergravity. Small » corresponds to large t, where the
asymptotic behavior is given by a loop of the light open strings. The
cross-over is at > ~ 2no/. This is as we expect: string theory modifies
gravity at distances below the string scale.

This simple r-dependence of the v* term is another consequence of
supersymmetry. The fact that this term is singular as r — 0 might seem
to conflict with the assertion that string theory provides a short-distance
cutoff. However, one must look more carefully. To obtain the small-r
behavior of the scattering amplitude (13.5.6), take the large-t limit without
expanding in v to obtain

0 dt tanhu sin ut/2
V ~ —2 T
(r,v) VP/O (8n2a/t)(p+1)/2 exp( 2ol ) sin ut
(13.5.8)

Since t ~ 2no/ /r? and v ~ u, the arguments of the sines are ut ~ 2no/v/r>.
No matter how small v is the v* term will cease to dominate at small
enough r. The oscillations of the integrand then smooth the small-r
behavior on a scale ut ~ 1. The effective scale probed by the scattering is

ra o/ 2pl2 (13.5.9)

A small-velocity D-brane probe is thus sensitive to distances shorter than
the string scale. This is in contrast to the behavior we have seen in string
scattering at weak coupling, but fits nicely with the understanding of
strongly coupled strings in the next chapter.

Let us expand on this result. A slower D-brane probes shorter distances,
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but the scattering process takes longer, 6t ~ r/v. Then
ox otz o . (13.5.10)

This is a suggestion for a new uncertainty relation involving only the
coordinates. It is another indication of ‘noncommutative geometry, per-
haps connected with the promotion of D-brane collective coordinates to
matrices.

For a pointlike DO-brane probe there is a minimum distance that can be
measured by scattering. The wavepacket in which it is prepared satisfies
/11/2

1 go
x> — =
meév ov

The combined uncertainties (13.5.9) and (13.5.11) are minimized by v =
g%/3, for which

(13.5.11)

ox2g'BPo/1? (13.5.12)

We will see the significance of this scale in the next chapter.

DO-brane quantum mechanics

The nonrelativistic effective Lagrangian for n D0-branes is

1 . .
L= Tr{DoX’DoX’ +

. i
2ga/1/2 2 [Xl’Xj]

4go/1/2(2nar)
iFOFi[X",i]}. (13.5.13)

i
- 7}uD /1
2 04+ dmo!

The first term is the usual nonrelativistic kinetic energy with m = 19 =
1/go/V/2, dropping the constant rest mass ntg. The coefficients of the other
terms are most easily obtained by T-duality from the ten-dimensional
super-Yang-Mills action (B.6.13), with A" — X'/2mo/. We have taken
a basis in which the fermionic field A is Hermitean, and rescaled A to
obtain a canonical kinetic term. The index i runs over the nine spatial
dimensions. The gauge field A° has no kinetic term but remains in the
covariant derivatives. It couples to the U(n) charges, so its equation of
motion amounts to the constraint that only U(n)-invariant states are
allowed. Only terms with at most two powers of the velocity have been
kept, not the full Born—Infeld action.
The Hamiltonian is

1

o/

- 8% - gyl vi2 _ iryi
H= Tr{ PP oS (XX =TT ,,1]} . (13.5.14)

Note that the potential is positive because [X', X/] is anti-Hermitean. The
canonical momentum, like the coordinate, is a matrix,

[Py Xl = —i67 3aadpe - (13.5.15)
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Now we define
X' =gyt (13.5.16)
so that also p; = pyi/g'/3o/'/2. The Hamiltonian becomes

T sarw Lviyir— Loy 13.5.17

_WripYipYi_@[a ]—E» [Y'21p . (13.5.17)
The parameters g and o' now appear only in the overall normalization. It
follows that the wavefunctions are independent of the parameters when
expressed in terms of the variables Y'. In terms of the original coordinates
X' their characteristic size scales as g'/3¢/!/2, the same scale (13.5.12) found
above. The energies scale as g!/3/a/!/2 from the overall normalization of
H, and the characteristic time scale as the inverse of this, so we find again
the relation (13.5.10).

Recall from the discussion of D-brane scattering that at distances less
than the string scale only the lightest open string states (those which
become massless when the D-branes are coincident) contribute. In this
regime the cylinder amplitude reduces to a loop amplitude in the low
energy field theory (13.5.13).

The #np = 4 system

Another low energy action with many applications is that for a Dp-brane
and Dp'-brane with relative #np = 4. There are three kinds of light
strings: p-p, p-p/, and p’-p, with ends on the respective D-branes. We will
consider explicitly the case p = 5 and p’ = 9, where we can take advantage
of the SO(5,1) x SO(4) spacetime symmetry; all other cases are related to
this by T-duality.

The 5-5 and 9-9 strings are the same as those that arise on a single
D-brane. The new feature is the 5-9 strings; let us study their massless
spectrum. The NS zero-point energy is zero. The moding of the fermions
differs from that of the bosons by %, so there are four periodic world-sheet
fermions 1™, namely those in the ND directions m = 6,7,8,9. The four
zero modes then generate 2*/?> = 4 degenerate ground states, which we
label by their spins in the (6,7) and (8,9) planes,

|s3, 54)Ns > (13.5.18)

with s3, s4 taking values i%. Now we need to impose the GSO projection.
This was defined in eq. (10.2.22) in terms of s,, so that with the extra sign
from the ghosts it is

—explri(ss +54)] =41 = s3=34. (13.5.19)
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In terms of the symmetries, the four states (13.5.18) are invariant under
S0(5,1) and form spinors 2 + 2’ of the ‘internal’ SO(4), and only the 2
survives the GSO projection. In the R sector, of the transverse fermions
' only those with i = 2,3,4, 5 are periodic, so there are again four ground
states

|s1,52)R - (13.5.20)
The GSO projection does not have a extra sign in the R sector so it
requires s; = —s3. The surviving spinors are invariant under the internal

S0O(4) and form a 2’ of the SO(4) little group of a massless particle.

The system has six-dimensional Lorentz invariance and eight unbroken
supersymmetries, so we can classify it by d = 6, N = 1 supersymmetry
(section B.7). The massless content of the 5-9 spectrum amounts to half of a
hypermultiplet. The other half comes from strings of opposite orientation,
9-5. The action is fully determined by supersymmetry and the charges; we
write the bosonic part:

1 1
S = —T/dIOXFMNFMN — T/dQXF;VINF,MN
489 4gps

—/d6x

The integrals run respectively over the 9-brane and the 5-brane, with
M=0,.,9u=0,..5 and m = 6,...,9. The covariant derivative is
D, = 0, +iA, —iAj with A, and 4, the 9-brane and 5-brane gauge fields.
The field y; is a doublet describing the hypermultiplet scalars. The 5-9
strings have one endpoint on each D-brane so y carries charges +1 and
—1 under the respective symmetries. The gauge couplings gp, were given
in eq. (13.3.25). We are using a condensed notation,

Ay — A, X )2nd . (13.5.22)

The massless 5-5 (and also 9-9) strings separate into d = 6, N = 1 vector
and hypermultiplets. The final potential term is the 5-5 D-term required
by the supersymmetry. One might have expected a 9-9 D-term as well by
T-duality, but this is inversely proportional to the volume of the D9-brane
in the (6,7,8,9)-directions, which we have taken to be infinite.

Under T-dualities in any of the ND directions, one obtains (p,p’) =
(8,6), (7,7), (6,8), or (5,9), but the intersection of the branes remains
(5 + 1)-dimensional and the p-p’ strings live on the intersection with
action (13.5.21). T-dualities in r NN directions give (p,p’) = (9 —r,5 —
r). The vector components in the dualized directions become collective
coordinates as usual,

A — Xi/2rno! , Al — X[/2nd . (13.5.23)

2 3
4
Dux"D*y + % Z(x?a{‘}xj)zl . (13.5.21)
A=1
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The term D,y Dy then becomes

X, — X\?
( — ) 7y (13.5.24)

This just reflects the fact that when the (9 — r)-brane and (5 — r)-brane
are separated, the strings stretched between them become massive.

The action for several branes of each type is given by the non-Abelian
extension.

13.6 D-brane interactions: bound states

Bound states of D-branes with strings and with each other, and super-
symmetric bound states in particular, present a number of interesting
dynamical problems. Further, these bound states will play an important
role in the next chapter in our attempts to deduce the strongly coupled
behavior of string theory.

FD bound states

The first case we consider is a state with p F-strings and g D-strings in
the IIB theory, all at rest and aligned along the 1-direction. For a state
with these charges, the supersymmetry algebra (13.2.9) becomes

(i) o T el )
(13.6.1)

where L; is the length of the system. The eigenvalues of I'’T"! are +1, so
those of the right-hand side are

(P* +q%/g*)"/?

M+ L 2ma!

(13.6.2)

The left-hand side of the algebra is positive — its expectation value in
any state is a matrix with positive eigenvalues. This implies a BPS bound
on the total energy per unit length,
M _(p*+4q*/g)"?
—_—> 13.6.3
Ly — 2mo! ( )
This inequality is saturated by the F-string, which has (p,q) = (1,0), and
by the D-string, with (p,q) = (0, 1).
For one F-string and one D-string, the total energy per unit length is

g +1

— (13.6.4)

T(0,1) + T(1,0) =
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Fig. 13.5. (a) Parallel D-string and F-string. The loop signifies a 7-sphere sur-
rounding the strings. (b) The F-string breaks, its ends attaching to the D-string,
(c) Final state: D-string with flux.

This exceeds the BPS bound
(> +1'?

/ >

Ty = (13.6.5)

271

and so this configuration is not supersymmetric. One can also see this
directly. The F-string is invariant under supersymmetries satisfying

left-moving: TT'Q =0, right-moving: T°T'0 =—0, (13.6.6)

and no linear combination of these is of the form Q, + (f+0), preserved
by the D-string (note that T = rorigh),

However, the system can lower its energy as shown in figure 13.5. The
F-string breaks, with its endpoints attached to the D-string. The endpoints
can then move off to infinity, leaving only the D-string behind. This cannot
be the whole story because the F-string carries the NS-NS 2-form charge,
as measured by the integral of xH over the 7-sphere in the figure: this flux
must still be nonzero in the final configuration. This comes about because
the F-string endpoints are charged under the D-string gauge field, so an
electric flux runs between them. This flux remains in the end. Further,
from the D-string action

Sy = —T, / P& e[ det(Gyp + Bap + 210 Fap)] /2 (13.6.7)

one sees that B,, has a source proportional to the invariant electric flux
F ap = Fup + Bap/2mo/ on the D-string.
The simplest way to see that the resulting state is supersymmetric is
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via T-duality along the 1-direction. The D1-brane becomes a DO-brane.
The electric field is T-dual to a velocity, A —» X! /2nd/, so the T-dual
state is a DO-brane moving with constant velocity. This is invariant under
the same number of supersymmetries as a D-brane at rest, namely the
Lorentz boost of those supersymmetries. The boosted supersymmetries
are linear combinations of the unbroken and broken supersymmetries of
the DO-brane at rest. All of this carries over by T-duality to the D1-F1
system. We leave it as an exercise to verify that the tension takes the BPS
value.

The F-string ‘dissolves’ in the D-string, leaving flux behind. For sep-
arated D- and F-strings there is an attractive force at long distance, a
consequence of the lack of supersymmetry. One might have expected a
more standard description of the bound state in terms of the F-string
moving in this potential well. However, this description breaks down at
short distance; happily, the D-brane effective theory gives a simple alter-
native description. Note that the bound state is quite deep: the binding
tension

1—-0(g)

— (13.6.8)

Tw0) T 7o) — T =

is almost the total tension of the F-string.

String theory with a constant open string field strength has a simple

world-sheet description. The variation of the world-sheet action includes
a surface term

1 . vV
tiMdséX“<2nw6mXﬂ+le&X'), (13.6.9)
implying the linear boundary condition
OnXy+2mdiF,,0, X" =0. (13.6.10)

This can also be seen from the T-dual relation to the moving D-brane.

All of the above extends immediately to p F-strings and one D-string
forming a supersymmetric (p,1) bound state. The general case of p F-
strings and g D-strings is more complicated because the gauge dynamics
on the D-strings is non-Abelian. A two-dimensional gauge coupling has
units of inverse length-squared; we found the precise value g3, = g/2no/
in eq. (13.3.25). For dynamics on length scale [ the effective dimensionless
coupling is g/?/2na’. No matter how weak the underlying string coupling
g, the D-string dynamics at long distances is strongly coupled — this is
a relevant coupling. The theory cannot then be solved directly, but it has
been shown by indirect means that there is a bound string saturating the
BPS bound for all (p,q) such that p and g are relatively prime. We will
sketch the argument and leave the details to the references.
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Focus for example on two D-strings and one F-string. There is a state
with a separated (1, 1) bound state and (0, 1) D-string. The tension

-2 1 1/2 —1 2 —1 2 3
oy = S TDTHET 287 48210 (344
’ ’ 2no! 2no!
exceeds the BPS bound
4 —2 1 1/2 2 —1 4 3
T(12) = Ue +, ) ~-= Te/4+0() . (13.6.12)

2mor 2mo!

The electric flux is on the first D-brane, so as a U(2) matrix this is
proportional to

10 I710 IT1 o0

{00}—2[01}4-2[0 _1}. (13.6.13)
We have separated this into U(1) and SU(2) pieces. When we bring the two
D-strings together, the SU(2) field becomes strongly coupled as we have
explained but the U(1) part remains free. The U(1) flux is then unaffected
by the dynamics, and in particular there are no charged fields that might
screen it. However, if the SU(2) part is screened by the massless fields
on the D-strings, then the total energy in the flux (which is proportional
to the trace of the square of the matrix) is reduced by a factor of 2,
from (13.6.11) to the BPS value (13.6.12).

That this does happen has been shown as follows. Focus on four of
the 16 supersymmetries, forming the equivalent of d = 4, N = 1 super-
symmetry. The six scalars X*° can be written as three chiral superfields
®;, with the potential coming from a superpotential Tr(®;[®,, P3]). Now
change the problem, adding to the superpotential a mass term,

W (®) = Tr(®;[Ds, D3]) + m Tr(D;®;) . (13.6.14)

This is an example of a general strategy for finding supersymmetric bound
states: the D-string is a BPS state even under the reduced supersymmetry
algebra. Its mass is then determined by the algebra and cannot depend
on the parameter m. By now increasing m we can reduce the effective
dimensionless coupling g/2na/m? to a value where the system becomes
weakly coupled. It can then be shown that the SU(2) system has a
supersymmetric ground state.

The same argument goes through for all relatively prime p and q. When
these are not relatively prime, (p,q) = (kp,kq) and the system is only
marginally unstable against falling apart into k subsystems. The dynamics
is then quite different, and there is believed to be no bound string in this
case. The bound string formed from p F-strings and g D-strings is called
a (p,q)-string (as opposed to a p-p’ string, which is an open string whose
endpoints move on Dp- and Dp’-branes).
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D0-Dp BPS bound

For a system with the charges of a DO-brane and a Dp-brane extended in
the (1...., p)-directions, the supersymmetry algebra becomes

(8 e o= b 2] 5 7). s
where
Z=t+1,V,B, B=p"pF. (13.6.16)

We have wrapped the Dp-brane on a torus of volume V), so that its mass
will be finite. The positivity of the left-hand side implies that

,[1 0 0 Zlo[ 0 Z71 | 2ZzV 0
M{Ol——ZTOF—ZTOF_ 0o Zziz |>
(13.6.17a)
t_ 2 t 212 ppt
272" =15+ 1oy Vp(B+ B + 1,V BB . (13.6.17b)

For p a multiple of 4, f is Hermitean and % = 1 by the same argument
as in eq. (13.4.3). The BPS bound is then

M>1t+1,V,. (13.6.18)
For p =4k 4 2, B is anti-Hermitean, ﬂ2 = —1, and the BPS bound is
M > (g+o V). (13.6.19)

These bounds are consistent with our earlier results on supersymmetry
breaking, noting that #xp = p. For p = 4k, a separated O-brane and
p-brane saturate the BPS bound (13.6.18), agreeing with the earlier con-
clusion that they leave some supersymmetry unbroken. For p = 4k + 2
they do not saturate the bound and so cannot be in a BPS state, as found
before. The reader can extend the analysis of the BPS bound to general
values of p and p'.

DO-DO0 bound states

The BPS bound for the quantum numbers of two O-branes is 27, so
any bound state will be at the lower edge of the continuous spectrum of
two-body states. Nevertheless there is a well-defined, and as it turns out
very important, question as to whether a normalizable state of energy 27
exists.

Let us first look at an easier problem. Compactify the 9-direction and
add one unit of compact momentum, pg = 1/R. In a two-body state this
momentum must be carried by one O-brane or the other for minimum
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total energy

2
To + (ro + "9) . (13.6.20)
270
For a bound state of mass 21¢, on the other hand, the minimum energy is
2
219 + =, (13.6.21)
4t

a finite distance below the continuum states. The reader may note some
resemblance between these energies and the earlier (13.6.11) and (13.6.12).
In fact the two systems are T-dual to one another. Taking the T-dual
along the 9-direction, the DO-branes become D1-branes and the unit of
momentum becomes a unit of fundamental string winding to give the
(1,2) system, now at finite radius R’ = o/ /R. Quantizing the (1,2) string
wrapped on a circle gives the 28 states of an ultrashort BPS multiplet. In
terms of the previous analysis, the SU(2) part has a unique ground state
in finite volume while the zero modes of the 16 components of the U(1)
gaugino generate 28 states. The earlier analysis is valid for the T-dual
radius R’ large, but having found an ultrashort multiplet we know that
it must saturate the BPS bound exactly — its mass is determined by its
charges and cannot depend on R. Similarly for n D-branes with m units
of compact momentum, when m and n are relatively prime there is an
ultrashort multiplet of bound states.

Now let us try to take R — oo in order to return to the earlier problem.
Having found that a bound state exists at any finite radius, it is natural
to suppose that it persists in the limit. Since for any n we can choose
a relatively prime m, it appears that there is one ultrashort bound state
multiplet for any number of DO-branes. However, it is a logical possibility
that the size of these states grows with R such that the states becomes
nonnormalizable in the limit. To show that the bound states actually exist
requires a difficult analysis, which has been carried out fully only for
n=2

DO-D2 bound states

Here the BPS bound (13.6.19) puts any bound state discretely below the
continuum. One can see hints of a bound state: the long-distance force
is attractive, and for a coincident O-brane and 2-brane the NS 0-2 string
has a negative zero-point energy (13.4.8) and so a tachyon (which survives
the GSO projection), indicating instability towards something. We cannot
follow the tachyonic instability directly, but there is a simple alternative
description of where it must end up.

Let us compactify the 1- and 2-directions and take the T-dual only
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in the first, so that the O0-brane becomes a D-string wrapped in the 1-
direction and the 2-brane becomes a D-string wrapped in the 2-direction.
Now there is an obvious state with the same charges and lower energy,
a single D-string running at an angle to wrap once in each direction.
A single wrapped D-string is a BPS state (an ultrashort multiplet to be
precise). Now use T-duality to return to the original description. As in
figure 13.2, this will be a D2-brane with a nonzero magnetic field, such
that

Fy=2n. (13.6.22)
D2

We can also check that this state has the correct R—R charges. Expanding
out the Chern—Simons action (13.3.18) gives

i /(C3 +2nd'F; ACy) . (13.6.23)

Thus the magnetic field induces a DO-brane charge on the D2-branes, and
the normalizations are consistent with uo = 4n20/ yo.

The DO-brane dissolves in the D2-brane, turning into flux. The reader
may note several parallels with the discussion of a D-string and an F-
string, and wonder whether the systems are equivalent. In fact, they are
not related to one other by T-duality or any other symmetry visible in
string perturbation theory, but we will see in the next chapter that they
are related by nonperturbative dualities.

The analysis extends directly to n D2-branes and m DO-branes: there is
a single ultrashort multiplet of bound states.

D0-D4 bound states

As with the DO-DO0 case, the BPS bound (13.6.18) implies that any bound
state is marginally stable. We can proceed as before, first compactifying
another dimension and adding a unit of momentum so that the bound
state lies below the continuum. The low energy D0-D4 action is as
discussed at the end of the previous section. Again it is an interacting
theory, with a coupling that becomes large at low energy, but again the
existence of supersymmetric bound states can be established by deforming
the Hamiltonian; the details are left to the references. A difference from the
DO0-DO case is that these bound states are invariant only under one-quarter
of the original supersymmetries, the intersection of the supersymmetries
of the O-brane and of the 4-brane. The bound states then lie in a short
(but not ultrashort) multiplet of 22 states. It is useful to imagine that the
D4-brane is wound on a finite but large torus. In this limit the massless
4-4 strings are essentially decoupled from the 0-4 and 0-0 strings. The 16
zero modes of the massless 4-4 fermion then generate 28 ground states
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delocalized on the D4-brane. The fermion in the 0-4 hypermultiplet has
eight real components (the smallest spinor in six dimensions) and their
zero modes generate 2* ground states localized on the DO-brane. The
tensor product gives the 2!? states.

For two DO-branes and one D4-brane, one gets the correct count
as follows. We can have the two DO0-branes bound to the D4-brane
independently of one another; for a large D4-brane their interactions can
be neglected. Each DO-brane has 2* states as noted above, eight bosonic
and eight fermionic. Now count the number of ways two DO-branes can
be put into these states: there are eight states with both DO-branes in the
same (bosonic) state and % x 8 x 7 states with the D-branes in different
bosonic states, for a total of % x 8 X 9 states. There are also % X 8 X 7 states
with the DO-branes in different fermionic states and 8 x 8 with one in a
bosonic state and one a fermionic state. Summing and tensoring with the
28 D4-brane states gives 2! states. However, we could also imagine the
two DO-branes first forming a DO-DO0 bound state. The SU(2) dynamics
decouples and the resulting U(1) dynamics is essentially the same as that
of a single DO-brane. This bound state can then bind to the D4-brane,
giving 2*+8 states as for a single DO-brane. The total number is 9 x 2!2.

This counting extends to n DO-branes and one D4-brane. The degener-
acy D, is given by the generating function

00 0 1 kN 8
S ¢"D, =2 H(1 J_qu> . (13.6.24)
n=0 k=1 q

The term k in the product comes from bound states of k DO-branes
which are then bound to the D4-brane. For each k there are eight bosonic
states and eight fermionic states, and the expression (13.6.24) is then the
product of the partition functions for all species. The coefficient of g2
in its expansion is indeed 9 x 2'2. This proliferation of bound states is
in contrast to the single ultrashort multiplet for n DO-branes and one
D2-brane. The difference is that all the latter states are spread over the
D2-brane, whereas the D0-D4 bound states are localized.

By T-duality the above system is converted into one DO-brane and n
D4-branes, so the number of bound states of the latter is the same D,,.
For m DO-branes and n D4-branes one gets the correct answer by the
following argument. The equality of the degeneracy for one D0O-brane and
n D4-branes with that for n DO-branes and one D4-brane suggests that
the systems are really the same — that in the former case we can somehow
picture the DO-brane bound to n D4-branes as separating into n ‘fractional
branes,” each of which can then bind to each other in all combinations as
in the earlier case. Then m DO-branes separate into mn fractional branes.
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The degeneracy would then be D,,,, defined as in eq. (13.6.24). This is
apparently correct, but the justification is not simple.

D-branes as instantons
The D0O-D4 system is interesting in other ways. Consider its scalar poten-
tial
gho (X — X))
5D0 24 Ty 13.6.25
g Xz UXJ lzzl (27_50(,)2 v ( )

as at the end of the previous section. The second term by itself has two
branches of zeros,

Xi—X/ =0, x#0 (13.6.26)
and
Xi— X/ #0, 5=0. (13.6.27)

The first of these, where the hypermultiplet scalars are nonzero, is known
as a Higgs branch. The second, where the vector multiplet scalars are
nonzero, is known as a Coulomb branch. In the present case the first term
in the potential, the D-term, eliminates the Higgs branch. The condition

DA = yloly; =0 (13.6.28)

implies that y = 0. For example, if there were a nonzero solution we could
by an SU(2) rotation make only the upper component nonzero, and then
D3 is nonzero. However, for two D4-branes y acquires a D4-brane index
a = 1,2 and the D-term condition is

1010 =0. (13.6.29)
This now is solved by
Xia = V0iq (13.6.30)
for any v, or more generally
Yia = VUiq (13.6.31)

for any constant v and unitary U. Further, U can be taken to lie in SU(2)
by absorbing its phase into v, and the latter can then be made real by a
4-4 U(1) gauge rotation.

The Coulomb branch has an obvious physical interpretation, corre-
sponding to the separation of the DO- and D4-brane in the directions
transverse to the latter. But what of the Higgs branch?

Recall that non-Abelian gauge theories in four Euclidean dimensions
have classical solutions, instantons, that are localized in all four dimen-
sions. Their distinguishing property is that the field strength is self-dual
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or anti-self-dual,
xF; =4F, , (13.6.32)

so that the Bianchi identity implies the field equations. Because the classical
theory is scale-invariant, the characteristic size of the configuration is
undetermined — there is a family of solutions parameterized by scale size
p. The U(n) gauge theory on coincident D4-branes is five-dimensional, so
a configuration that looks like an instanton in the four spatial dimensions
and is independent of time is a static classical solution, a soliton.

This soliton has many properties in common with the D0O-brane bound
to the D4-branes. First, it is a BPS state, breaking half of the supersym-
metries of the D4-branes. The supersymmetry variation of the gaugino
is

02 oc FyynTMN( | (13.6.33)

Here the nonzero terms involve the components of TN in the spatial
directions of the D4-brane. These are then generators of the SO(4) =
SU(2) x SU(2) rotation group. The self-duality relation (13.6.32) amounts
to the statement that only the generators of the first or second SU(2)
appear in the variation. The ten-dimensional spinor { decomposes into

(4,2,1) + (4,1,2) (13.6.34)

under SO(5,1) x SU(2) x SU(2), so half the components are invariant
under each SU(2) and half the supersymmetry variations (13.6.33) are
zero. Second, it carries the same R—R charge as the DO-brane. Expanding
the Chern—Simons action (13.3.18) gives the term

1
S0no Py / Ci ATH(Fy AFy) . (13.6.35)
The topological charge of the instanton is
Tr(F2 A F5) = 8n%, (13.6.36)
D4

so the total coupling to a constant C; is (4n°o/)> s = po, exactly the charge
of the DO-brane. Finally, the moduli (13.6.31) for the SU(2) Higgs branch
just match those of the SU(2) instanton, v to the scale size p and U to the
orientation of the instanton in the gauge group.® Let us check the counting
of the moduli, as follows. There are eight real hypermultiplet scalars in
«- The three D-term conditions and the gauge rotation each remove one

6 For a single instanton the latter are not regarded as moduli because they can be changed by a
global gauge transformation, but with more than one instanton there are moduli for the relative
orientation. The same is true of the DO-branes.
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to leave four moduli. There are also four additional 0-0 moduli for the
position of the particle within the D4-branes.

The precise connection between the DO-brane and the instanton is this.
When the scale size p is large compared to the string scale, the low energy
effective field theory on the D4-branes should give a good description
of the instanton. However, as p is reduced below the string length, this
description is no longer accurate. Happily, the DO-brane picture provides
a description that is accurate in the opposite limit: the point v = 0 where
the Higgs and Coulomb branches meet is the zero-size instanton, and
turning on the Higgs moduli expands the instanton: as in the D0-D2
case, the DO-brane is dissolving into flux. This picture also accounts for
the absence of a Higgs branch for a single D4-brane because there are no
instantons for U(1).

The gauge field of the small instanton can be measured directly. Recall
that a slow DO-brane probe is sensitive to distances below the string scale.
One can consider the DO-D4 bound system with an additional probe DO-
brane. This has been studied in a slightly different form, taking first the
T-dual to the D5-D9 system and using a D1-brane probe. As discussed
earlier, only the effective field theory of the light open string states enters,
though this is still rather involved because each open string endpoint can
lie on a D1-, D5-, or D9-brane. However, after integrating out the massive
fields (which get mass because they stretch from the probe to the other D-
branes), the effective theory on moduli space displays the instanton gauge
field. This provides a physical realization of the so-called Atiyah—Drinfeld—
Hitchin—-Manin (ADHM) construction of the general instanton solution.

Note the following curious phenomenon. Start with a large instanton,
an object made out of the gauge fields that live on the D4-branes. Contract
it to zero size, where the branches meet, and now pull it off the D4-branes
along the Coulomb branch. The ‘instanton’ can no longer be interpreted as
being made of the gauge fields, because these exist only on the D4-branes.

It should be noted that because the Higgs moduli are 0-4 fields their
vertex operators are rather complicated: the different boundary conditions
on the two endpoints mean that the world-sheet boundary conditions on
the two sides of the vertex operator are different. They are similar to
orbifold twisted state vertex operators — in fact, using the doubling trick,
they are essentially half of the latter. It is therefore difficult to discuss in
string theory a background with nonzero values for these fields, so the
DO-brane picture is really an expansion in p, whereas the low energy field
theory is an expansion in 1/p.

Returning to the bound state problem, the system with m DO-branes
bound to n D4-branes is equivalent to quantum mechanics on the moduli
space of m SU(n) instantons. The number of supersymmetric states is
related to the topology of this space, and the answer has been argued
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to be Dy, as asserted before. (The connection with the fractional-brane
picture is complicated and the latter is perhaps unphysical.)

D0-D6 bound states

The relevant bound is (13.6.19) and again any bound state would be
below the continuum. This is as in the D0-D2 case, but the situation is
different. The long-distance force is repulsive and the zero-point energy
of coincident 0-6 NS strings is positive, so there is no sign of instability
toward a supersymmetric state. One can give O-brane charge to the 6-
brane by turning on flux, but there is no configuration that has only these
two charges and saturates the BPS bound. So it appears that there are no
supersymmetric bound states.

D0-D8 bound states

This system is complicated in a number of ways and we will not pursue
it. As one example of the complication, the R—R fields of the D8-brane
do not fall off with distance (it has codimension 1, like a planar source in
3+1 dimensions). The total energy is then infinite, and when the couplings
to the dilaton and metric are taken into account the dilaton diverges a
finite distance from the D8-brane. Thus the D8-brane cannot exist as an
independent object, but only in connection with orientifold planes such as
arise in the T-dual of the type I theory.

Exercises

13.1 (a) For the various massless fields of each of the type II string
theories, write out the relation between the field at (x*,x™) and at the
orientifold image point (x*, —x™). The analogous relation for the bosonic
string was given as eq. (8.8.3).

(b) At the eight-dimensional orientifold plane (obtained from type I by
T-duality on a single axis), which massless type IIA fields satisfy Dirichlet
boundary conditions and which Neumann ones?

13.2 Find the scattering amplitude involving four bosonic open string
states attached to a Dp-brane. [Hint: this should be very little work.]

13.3 (a) Consider three D4-branes that are extended along the (6,7,8,9)-,
(4,5,8,9)-, and (4,5,6,7)-directions respectively. What are the unbroken su-
persymmetries ?

(b) Add a DO-brane to the previous configuration. Now what are the
unbroken supersymmetries?

(c) Call this configuration (p1, p2, p3, p4) = (4,4,4,0). By T-dualities, what
other configurations of D-branes can be reached?
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13.4 (a) Calculate the static potential between a D2-brane and a DO-brane
from the cylinder amplitude by applying T-duality to the result (13.4.23).
(b) Do the same calculation in low energy field theory and compare the
result with part (a) at distances long compared to the string scale.

(c) Extend parts (a) and (b) to a Dp-brane and D(p + 2)-brane oriented
such that #ND = 2.

13.5 Repeat parts (a) and (b) of the previous exercise for a DO-brane and
Dé6-brane.

13.6 (a) Find the velocity-dependent interaction between a D4-brane and
DO-brane due to the cylinder. You can do this by analytic continuation
of the potential (13.4.23), with appropriate choice of angles.

(b) Expand the interaction in powers of v and find the explicit r-depen-
dence at O(v?).

(c) Compare the interaction at distances long compared to the string
scale with that obtained from the low energy field theory. One way to
do this is to determine the long-range fields of the D4-brane by solving
the linearized field equations with a D4-brane source, insert these into the
DO-brane action, and expand in the velocity.

13.7 For the D4-brane and DO-brane, determine the interaction at dis-
tances short compared to the string scale as follows. Truncate the low
energy action given at the end of section 13.5 to the massless 0-0 strings
and the lightest 0-4 strings. The D0-D4 interaction arises as a loop cor-
rection to the effective action of the 0-0 collective coordinate, essentially a
propagator correction for the field we called X/. Calculate this Feynman
graph and compare with part (b) of the previous exercise at short distance.
This is a bit easier than the corresponding DO-DO calculation because the
0-4 strings do not include gauge fields. You need the Lagrangian for the
0-4 fermions; this is the dimensional reduction of the (5 + 1)-dimensional
fermionic Lagrangian density —i(pI'*D .

13.8 (a) Continuing the previous two exercises, obtain the full v-depen-
dence at large r from the cylinder amplitude. Compare the result with the
low energy supergravity (graviton—dilaton—-R—R) exchange.

(b) Obtain the full v-dependence at small » and compare with the same
from the open string loop.

13.9 Find a configuration of an infinite F-string and infinite D3-brane
that leaves some supersymmetry unbroken.

13.10 From the D-string action, calculate the tension with ¢ units of elec-
tric flux and compare with the BPS bound (13.6.3) for a (¢, 1) string.

13.11 Carry out in detail the counting that leads to the bound state de-
generacy (13.6.24).
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13.12 Consider one of the points in figure 13.5(b) at which the F-string
attaches to the D-string. At this point a (1,0) and a (0,1) string join
to form a (1,1) string; alternatively, if we count positive orientation as
being inward, it is a junction of (1,0), (0, 1), and (—1,—1) strings. Consider
the junction of three semi-infinite straight strings of general (p;, q;), with
vanishing total p and ¢. Find the conditions on the angles such that the
system is mechanically stable. Show that, with these angles, one-quarter
of the original supersymmetries leave all three strings invariant.
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Strings at strong coupling

Thus far we have understood string interactions only in terms of pertur-
bation theory — small numbers of strings interacting weakly. We know
from quantum field theory that there are many important phenomena,
such as quark confinement, the Higgs mechanism, and dynamical sym-
metry breaking, that arise from having many degrees of freedom and/or
strong interactions. These phenomena play an essential role in the physics
of the Standard Model. If one did not understand them, one would con-
clude that the Standard Model incorrectly predicts that the weak and
strong interactions are both long-ranged like electromagnetism; this is the
famous criticism of Yang—Mills theory by Wolfgang Pauli.

Of course string theory contains quantum field theory, so all of these
phenomena occur in string theory as well. In addition, it likely has new
nonperturbative phenomena of its own, which must be understood before
we can connect it with nature. Perhaps even more seriously, the perturba-
tion series does not even define the theory. It is at best asymptotic, not
convergent, and so gives the correct qualitative and quantitative behavior
at sufficiently small coupling but becomes useless as the coupling grows.

In quantum field theory we have other tools. One can define the theory
(at least in the absence of gravity) by means of a nonperturbative lattice
cutoff on the path integral. There are a variety of numerical methods and
analytic approximations available, as well as exactly solvable models in
low dimensions. The situation in string theory was, until recently, much
more limited.

In the past few years, new methods based on supersymmetry have
revolutionized the understanding both of quantum field theory and of
string theory. In the preceding chapters we have assembled the tools
needed to study this. We now consider each of the five string theories
and deduce the physics of its strongly coupled limit. We will see that
all are limits of a single theory, which most surprisingly has a limit in

178
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which spacetime becomes eleven-dimensional. We examine one proposal,
matrix theory, for a formulation of this unified theory. We conclude with a
discussion of related progress on one of the central problems of quantum
gravity, the quantum mechanics of black holes.

We will use extensively the properties of D-brane states in mapping out
the physics of strongly coupled strings. This allows a natural connection
with our previous perturbative discussion. We should note, however, that
most of these results were deduced by other methods before the role of D-
branes was understood. Many properties of the R-R states were guessed
(subject to many consistency checks) before the explicit D-brane picture
was known.

14.1 Type IIB string and SL(2,Z) duality

In the IIB theory, consider an infinite D-string stretched in the 1-direction.
Let us determine its massless excitations, which come from the attached
strings. The gauge field has no dynamics in two dimensions, so the only
bosonic excitations are the transverse fluctuations. The Dirac equation for
the massless R sector states

(T +T'o)u=0 (14.1.1)

implies that I'°T''y = 4u for the left- and right-movers respectively, or
that the boost eigenvalue sy = i%. The open string R sector ground state
decomposes as

16 — (1,8)+ (—1.8) (14.1.2)

under SO(9,1) — SO(1,1) x SO(8), so the left-moving fermionic open
strings on the D-string are in an 8 of SO(8) and the right-movers are in
an 8.

Now consider an infinite fundamental string in the same theory. The
massless bosonic fluctuations are again the transverse fluctuations. The
massless fermionic fluctuations are superficially different, being the space-
time vectors p* and P*. However, these are not entirely physical — the
GSO projection forbids a single excitation of these fields. To identify the
physical fermionic fluctuations, recall from the discussion in section 13.2
that these can be thought of as the Goldstone fermions of the super-
symmetries broken by the string. The supersymmetry algebra for a state
containing a long string was given in eq. (13.6.1), where (p,q) = (1,0)
for the fundamental string. The broken supersymmetries are those whose
anticommutators do not vanish when acting on the BPS state; for the 1B
F-string these are the Q, with IT'°T'! = +1 and the Q, with I''T"! = —1.
The decomposition (14.1.2) then shows that the Goldstone fermions on
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the IIB F-string have the same quantum numbers as on the IIB D-string;
for the ITA F-string, on the other hand, the Goldstone fermions moving
in both directions are 8s. The relation between these excitations and the
p* is just the refermionization used in section 12.6.

The D-string and F-string have the same massless excitations but they
are not the same object. Their tensions are different,

TFL _ g=e". (14.1.3)
D1

This relation is a consequence of supersymmetry and so is exact. The
field dependence of the central charge is connected by supersymmetry
to the field dependence of the moduli space metric, and this receives no
corrections for 16 or more supersymmetries. At weak coupling the F-
string is much lighter than the D-string, but consider what happens as the
coupling is adiabatically increased. Quantum mechanics does not allow
the D-string states to simply disappear from the spectrum, and they must
continue to saturate the BPS bound because their multiplet is smaller than
the non-BPS multiplet. Thus at very strong coupling the D-string is still
in the spectrum but it is much lighter than the F-string. It is tempting to
conclude that the theory with coupling 1/g is the same as the theory with
coupling g, but with the two strings reversing roles.

Let us amplify this as follows. Consider also a third scale, the gravita-
tional length

lo = (4n3) V314 (14.1.4)

where the important feature is the dependence on x; the numerical con-
stants are just included to simplify later equations. The relevant length
scales are in the ratios

1;11/2 o :rgi/z =g V4.1 gl (14.1.5)

At g < 1, if we start at long distance and consider the physics at
progressively shorter scales, before reaching the scale where gravity would
become strong we encounter the fundamental string scale and all the
excited states of the fundamental string. At g > 1, we again encounter
another scale before reaching the scale where gravity is strong, namely
the D-string scale. We cannot be certain that the physics is the same as at
weak coupling, but we do know that gravity is weak at this scale, and we
can reproduce much of the same spectrum — the long straight string is a
BPS state, as are states with arbitrary left- or right-moving excitations, so
we can identify these. States with both left- and right-moving excitations
are not BPS states, but at low energy the interactions are weak and we
can identify them approximately.

Of course we have no nonperturbative definition of string theory and
anything can happen. For example there could be very light non-BPS
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states below the D-string scale in the strongly coupled string theory, with
no analogs in the weakly coupled theory. However, given that we can
identify many similarities in the g and 1/g theories with F- and D-strings
reversed, the simplest explanation is that there is a symmetry that relates
them. Furthermore we will see that in every string theory there is a unique
natural candidate for its strongly coupled dual, that the various tests we
can make on the basis of BPS states work, and that this conjecture fits
well with observations about the symmetries of low energy supergravity
and in some cases with detailed calculations of low energy amplitudes.

One might have imagined that at strong string coupling one would
encounter a phase with strongly coupled gravity and so with exotic space-
time physics, but what happens instead seems to be the same physics as at
weak coupling. Of course for g & 1, neither theory is weakly coupled and
there is no quantitative understanding of the theory, but the fact that we
have the g =~ 1 theory ‘surrounded’ surely limits how exotic it can be. Such
weak—strong dualities have been known in low-dimensional quantum field
theories for some time. They were conjectured to occur in some four-
dimensional theories, notably N = 4 non-Abelian gauge theory. There is
now very strong evidence that this is true. It should be noted though that
even in field theory, where we have a nonperturbative definition of the
theory, weak—strong duality has not been shown directly. This seems to
require new ideas, which are likely to come from string theory.

The D-string has many massive string excitations as well. These have
no analog in the F-string, but this is not relevant. They are not
supersymmetric and decay to massless excitations at a rate of order g2.
As g becomes strong they become broader and broader ‘resonances’ and
disappear into multi-particle states of the massless spectrum.

As a further test, the effective low energy IIB action (12.1.26), known
exactly from supersymmetry, must be invariant. Since the coupling is
determined by the value of the dilaton, this must take ® — —®. Setting
the R—R scalar Cy to zero for simplicity, the reader can check that the
action is invariant under

»=-0, G,=e%,, (14.1.6a)
B,=¢C,, C,=-B,, (14.1.6b)
c,=cq,. (14.1.6¢)

The Einstein metric, defined to have a dilaton-independent action, is

Gg =€ G, = ¥%G), (14.1.7)

uv

and so is invariant.
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SL(2Z) duality

The transformation (14.1.6) is one of the SL(2,R) symmetries (12.1.32) of
the low energy theory, with ' = —1/7. Consider the action of a general
element on the 2-form coupling of the fundamental string,

/ B, =/ (Bod + Csc) . (14.1.8)
M M

For general real ¢ and d there is no state with this coupling, but for the
integer subgroup SL(2,Z), the condition ad — bc = 1 implies that d and
¢ are relatively prime. In this case we know from the previous chapter
that there is a supersymmetric (d, c)-string with these quantum numbers.
It is described at weak coupling as a bound state of ¢ D-strings and d F-
strings, and its existence at strong coupling follows from the continuation
argument used above. This is a strong indication that this integer subgroup
is an exact symmetry of the theory, with the weak—strong duality as one
consequence. The BPS bound can be written in SL(2,Z)-invariant form
as

g = 0 (4 i = I5* [ (p+ Coq)* + e 7] . (14.1.9)

Note that a subgroup of SL(2,R), with a =d = 1 and ¢ = 0, is visible
in perturbation theory. This leaves the dilaton invariant and shifts

This shift is a symmetry of perturbation theory because the R-R scalar
Cy appears only through its field strength (gradient). The coupling to
D-strings then breaks this down to integer shifts. This is evident from
the bound (14.1.9), which is invariant under Cy — Cy 4+ 1 with (p,q) —
(p — ¢q,q). The integer shift takes 7 to v+ 1, and the full SL(2,Z) is
generated by this symmetry plus the weak—strong duality.

The 1IB NS5-brane

Let us consider how the weak—strong duality acts on the various extended
objects in the theory. We know that it takes the F- and D-strings into
one another. It leaves the potential C4 invariant and so should take the
D3-brane into itself. The D5-brane is a magnetic source for the R—R 2-
form charge: the integral of F3; over a 3-sphere surrounding it is nonzero.
This must be transformed into a magnetic source for the NS-NS 2-form
charge. We have not encountered such an object before — it is neither a
string nor a D-brane. Rather, it is a soliton, a localized classical solution
to the field equations.
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Consider the action for a graviton, dilaton, and g-form field strength in
d dimensions, of the general form

1
/ d"x (—G)!/2e72®(R + 40,00 ®) — 3 / e |F, %, (14.1.11)

where o is —1 for an NS-NS field and 0 for an R-R field. We can look
for a solution which is spherically symmetric in g + 1 directions and
independent of the other 8 — ¢ spatial dimensions and of time, and which
has a fixed ‘magnetic’ charge

/ F,=0Q. (14.1.12)
Sy

Here the g-sphere is centered on the origin in the g + 1 spherically
symmetric dimensions. This would be an (8 — g)-brane. The field equation

d* (ePF;) =0 (14.1.13)

is automatic as a consequence of the spherical symmetry. The dual field
strength is Fjg_, = x¢**®F,, for which eq. (14.1.13) becomes the Bianchi
identity. An ‘electric’ solution with

/ P OF, = ¢f (14.1.14)
S10—4

would be a (¢ — 2)-brane.

A generalization of Birkhoff’s theorem from general relativity guaran-
tees a unique solution for given mass M and charge Q. For M/Q greater
than a critical value (M/Q). the solution is a black hole, with a singu-
larity behind a horizon. More precisely, the solution is a black p-brane,
meaning that it is extended in p spatial dimensions and has a black hole
geometry in the other 9 — p. Essentially the source for the field strength is
hidden in the singularity. For M/Q < (M/Q)., there is a naked singularity.
The solution with M/Q = (M/Q). is called extremal, and in most cases
it is a supersymmetric solution, saturating the BPS bound. The naked
singularities would then be excluded by the bound.

For the NS5-brane, the extremal solution is supersymmetric and takes
the form

Gun = ezd)émn 5 Guv =Nw > (141153)
Hmnp = _emnpqaqq) > (14.1.15b)
20 2d(w0) 0
e’ = e 4 522 (14.1.15¢)
Here the x™ are transverse to the 5-brane, the x* are tangent to it, and
r> = x"x™. This is the magnetically charged object required by string

duality. The product Tpitps = 7/k> should equal tp;Tnss by the Dirac



184 14 Strings at strong coupling
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Fig. 14.1. Infinite throat of an NS5-brane, with asymptotically flat spacetime on
the right. The x*-directions, in which the 5-brane is extended, are not shown.

quantization condition (which determines the product of the charges) com-
bined with the BPS condition (which relates the charges to the tensions).
This gives

2720/ B 1
K2 - (2n)5g2oc’3 :

TNS5 = (14116)

There must also be bound states of this with the D5-brane, which are
presumably described by adding R-R flux to the above solution.

The geometry of the metric (14.1.15), shown in figure 14.1, is interesting.
There is an infinite throat. The point x™ = 0 is at infinite distance, and as
one approaches it the radius of the angular 3-spheres does not shrink to
zero but approaches an asymptotic value (Q/2n%)!/2. The dilaton grows in
the throat of the 5-brane, diverging at infinite distance. String perturbation
theory thus breaks down some distance down the throat, and the effective
length is probably finite. Because of the strong coupling one cannot
describe this object quite as explicitly as the fundamental strings and D-
brane, but one can look at fluctuations of the fields around the classical
solution. There are normalizable massless fluctuations corresponding to
translations and also ones which transform as a vector on the 5-brane, and
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the fermionic partners of these. These are the same as for the D5-brane,
as should be true by duality.

It should be noted that the description above is in terms of the string
metric, which is what appears in the string world-sheet action and is
relevant for the dynamics of the string. The geometry is rather different
in the Einstein metric Gg,, = e 2Guv' In the string metric the radial

distance is ds oc x~'dx, while in the Einstein metric it is ds oc x3/4dx.
The latter is singular but integrable, so the singularity is at finite distance.
Thus, different probes can see a very different geometry.

Let us make a few more comments on this solution. For an NS field
strength, a shift of the dilaton just multiplies the classical action by a
constant. The solution is then independent of the dilaton, and its size can
depend only on o’ and the charge Q. The charge is quantized, Q = nQy, by
the Dirac condition. The radius is then of order '!/2 times a function of
n, which in fact is n'/2. For small n the characteristic scale of the solution
is the string scale, so the low energy theory used to find the solution is not
really valid. However, there are nonrenormalization theorems, which have
been argued to show that the solution does not receive corrections. There
is also a description of the throat region that is exact at string tree level
— it does not use sigma model perturbation theory but is an exact CFT.
The geometry of the throat is S3 X Ry X six-dimensional Minkowski space.
The CFT similarly factorizes. The six dimensions parallel to the brane
world-volume are the usual free fields. The CFT of the radial coordinate
is the linear dilaton theory that we have met before, with the dilaton
diverging at infinite distance. The CFT of the angular directions is an
SU(2) x SU(2) current algebra at level n, in a form that we will discuss in
the next chapter.

This construction might seem to leave us with an embarrassment of
riches, for we can similarly construct NS—NS electrically charged solutions
and R-R charged solutions, for which we already have the F-string and
D-branes as sources. In fact, the NS-NS electrically charged solution
has a pointlike singularity and the fields satisfy the field equations with
a J-function source at the singularity. Thus this solution just gives the
external fields produced by the F-string. The R-R charged solutions are
black p-branes. Their relation to the D-branes will be considered at the
end of this chapter.

A fundamental string can end on a D5-brane. It follows by weak—strong
duality that a D-string should be able to end on an NS5-brane. A plausible
picture is that it extends down the infinite throat. Its energy is finite in
spite of the infinite length because of the position-dependence of the
dilaton. Similarly a D-string should be able to end on a D3-brane. There
is a nontrivial aspect to the termination of one object ‘A’ on a second
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B’, which we saw in figure 13.5. Since A carries a conserved charge, the
coupling between spacetime forms and world-brane fields of B must be
such as to allow it to carry the charge of A.

The solution for any number of parallel NS5-branes is simply given by
substituting

20
= 14.1.17
¢ 2n2 Z x—x)2 ( )

into the earlier solution (14.1.15). A D-strlng can run from one 5-brane
to another, going down the throat of each. The ground state of this D-
string is a BPS state. It is related by string duality to a ground state
F-string stretched between two D5-branes, which is related by T-duality
to a massless open string in the original type I theory. The mass of the D-
string is given by the classical D-string action in the background (14.1.17),
and agrees with string duality. In particular it vanishes as the NS5-branes
become coincident, so like D-branes these have a non-Abelian symmetry
in this limit. The limiting geometry is a single throat with twice the charge;
in the limit, the non-Abelian degrees of freedom are in the strong coupling
region down the throat and cannot be seen explicitly.

D3-branes and Montonen—Olive duality

Consider a system of n D3-branes. The dynamics on the D-branes is a
d =4, N =4 U(n) gauge theory, with the gauge coupling (13.3.25) equal
to

ghy = 2ng . (14.1.18)

In particular this is dimensionless, as it should be for a gauge theory in
four dimensions. At energies far below the Planck scale, the couplings of
the closed strings to the D-brane excitations become weak and we can
consider the D-brane gauge theory separately.
The SL(2,Z) duality of the IIB string takes this system into itself, at a
different coupling. In particular the weak—strong duality g — 1/g takes
2
gh; — 4l ) (14.1.19)
gb3
This is a weak-strong duality transformation within the gauge theory
itself. Thus, the self-duality of the IIB string implies a similar duality
within d = 4, N = 4 gauge theory. Such a duality was conjectured by
Montonen and Olive in 1979. The evidence for it is of the same type as
for string duality: duality of BPS masses and degeneracies and of the low
energy effective action. Nevertheless the reaction to this conjecture was
for a long time skeptical, until the development of supersymmetric gauge



14.2 U-duality 187

theory in the past few years placed it in a broader and more systematic
context.

To understand the full SL(2,Z) symmetry we need also to include the
coupling (13.3.18) to the R—R scalar,

!
- / CoTr(Fy AFs) . (14.1.20)

This is the Pontrjagin (instanton winding number) term, with Cy = 0/2x.
The full gauge theory action, in a constant Cy background, is

b /d4x TH(|F2 ) + /Tr(Fg AFy) . (14.1.21)
2253 8

The duality Cy — Cyp + 1 is then the shift 6 — 0 + 2z, corresponding
to quantization of instanton charge. This and the weak—strong duality
generate the full SL(2,Z).

Let the D3-branes be parallel but slightly separated, corresponding to
spontaneous breaking of U(n) to U(1)". The ground state of an F-string
stretched between D3-branes is BPS, and corresponds to a vector multiplet
that has gotten mass from spontaneous breaking. The weak—strong dual
is a D1-string stretched between D3-branes. To be precise, this is what it
looks like when the separation of the D3-branes is large compared to the
string scale. When the separation is small there is an alternative picture of
this state as an ’t Hooft-Polyakov magnetic monopole in the gauge theory.
The size of the monopole varies inversely with the energy scale of gauge
symmetry breaking and so inversely with the separation. This is similar to
the story of the instanton in section 13.6, which has a D-brane description
when small and a gauge theory description when large.

The relation between the IIB and Montonen—Olive dualities is one
example of the interplay between the spacetime dynamics of various
branes and the nonperturbative dynamics of the gauge theories that live
on them. This is a very rich subject, and one which at this time is
developing rapidly.

14.2  U-duality

The effect of toroidal compactification is interesting. The symmetry group
of the low energy supergravity theory grows with the number k of com-
pactified dimensions, listed as G in table B.3. We are familiar with two
subgroups of each of these groups. The first is the SL(2,R) symmetry of
the uncompactified IIB theory. The second is the perturbative O(k,k,R)
symmetry of compactification of strings on T*, which we encountered in
the discussion of Narain compactification in chapter 8. In each case the
actual symmetry of the full theory is the integer subgroup, the O(k,k,Z.)
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T-duality group and the SL(2,Z) of the ten-dimensional IIB theory. The
continuous O(k,k,R) is reduced to the discrete O(k,k,Z) by the discrete
spectrum of (pr, pr) charges, and the continuous SL(2,R) to the discrete
SL(2,Z) by the discrete spectrum of (p, ¢)-strings. In the massless limit the
charged states do not appear and the symmetry appears to be continuous.

The natural conjecture is that in each case the maximal integer subgroup
of the low energy symmetry is actually a symmetry of the full theory. This
subgroup has been given the name U-duality. In perturbation theory we
only see symmetries that act linearly on g and so are symmetries of each
term in the perturbation series — these are the T-dualities plus shifts
of the R-R fields. The other symmetries take small g to large and so
require some understanding of the exact theory. The principal tools here
are the constraints of supersymmetry on the low energy theory, already
used in writing table B.3, and the spectrum of BPS states, which can be
determined at weak coupling and continued to strong.

Let us look at the example of the IIB string on T°, which by T-duality
is the same as the IIA string on T°. This is chosen because it is the setting
for the simplest black hole state counting, and also because the necessary
group theory is somewhat familiar from grand unification.

Let us first count the gauge fields. From the NS—NS sector there are five
Kaluza—Klein gauge bosons and five gauge bosons from the antisymmetric
tensor. There are also 16 gauge bosons from the dimensional reduction
of the various R-R forms: five from C,,, ten from C,,; and one from
Cnpgrs- The index p is in the noncompact dimensions, and in each case one
sums over all antisymmetric ways of assigning the compact dimensions to
the roman indices. Finally, in five noncompact dimensions the 2-form B,
is equivalent by Poincare duality to a vector field, giving 27 gauge bosons
in all.

Let us see how T-duality acts on these. This group is O(5,5,Z), gener-
ated by T-dualities on the various axes, linear redefinitions of the axes, and
discrete shifts of the antisymmetric tensor. This mixes the first ten NS—-NS
gauge fields among themselves, and the 16 R-R gauge fields among them-
selves, and leaves the final NS—NS field invariant. Now, a representation
of O(10,R) automatically gives a representation of O(5,5,R) by analytic
continuation, and so in turn a representation of the subgroup O(5,5,7Z).
The group O(10,R) has a vector representation 10, spinor representations
16 and 16/, and of course a singlet 1. The gauge fields evidently transform
in these representations; which spinor occurs depends on whether we start
with the IIA or IIB theory, which differ by a parity transformation on
0(5,5,Z7).

According to table B.3, the low energy supergravity theory for this
compactification has a continuous symmetry Eg(), which is a noncompact
version of Eg. The maximal discrete subgroup is denoted Eg()(Z). The
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group E¢ has a representation 27, and a subgroup SO(10) under which
27—->10+16+1. (14.2.1)

This may be familiar to readers who have studied grand unification;
some of the relevant group theory was summarized in section 11.4 and
exercise 11.5. Evidently the gauge bosons transform as this 27.

Now let us identify the states carrying the various charges. The charges
10 are carried by the Kaluza—Klein and winding strings. Then U-duality
also requires states in the 16. These are just the various wrapped D-branes.
Finally, the state carrying the 1 charge is the NS5-brane, fully wrapped
around the T so that it is localized in the noncompact dimensions.

U-duality and bound states

It is interesting to see how some of the bound state results from the pre-
vious chapter fit the predictions of U-duality in detail. We will generate
U transformations as a combination of T,..,, which is a T-duality in
the indicated directions, and S, the IIB weak—strong transformation. The
former switches between Neumann and Dirichlet boundary conditions
and between momentum and winding number in the indicated directions.
The latter interchanges the NS-NS and R-R 2-forms but leaves the R-R
4-form invariant, and acts correspondingly on the solitons carrying these
charges. We denote by D,,,.., a D-brane extended in the indicated direc-
tions, and similarly for F,, a fundamental string extended in the given
direction and p,, a momentum-carrying BPS state.
The first duality chain is

S T
(D9,F9) 5 (D789, Fg) = (D7s9, Dg) — (D73, Dyy) . (14.2.2)

Thus the D-string/F-string bound state is U-dual to the D0-D2 bound
state. The constructions of these bound states were similar, but the precise
relation goes through the nonperturbative step S. In each case there is
one short multiplet of BPS states.

The second chain is

(D67s9,D@) $ (Dyso, Dg) > (D789,F6) ¥ (Dg.pe) > (Fe.pe) . (14.2.3)

The bound states of n DO-branes and m D4-branes are thus U-dual to
fundamental string states with momentum n and winding number m in
one direction. Let us compare the degeneracy of BPS states in the two
cases. For the winding string, the same argument as led to eq. (11.6.28)
for the heterotic string shows that the BPS strings satisfy

(nm,0) , nm >0,

(0,—nm) , nm <0 . (14.24)

(N, ) — {
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Here N and N are the number of excitations above the massless ground
state. We see that BPS states have only left-moving or only right-moving
excitations. The generating function for the number of BPS states is the
usual string partition function,

0 1 kN 8
TrgV = 2° H<1 jqk> , (14.2.5)
k=1 q

or the same with N. Note that we are counting the states of one string
with winding number m, not of a bound state of m strings of winding
number 1. The latter does not exist at small g — except insofar as one
can think of the multiply wound string in this way. The counting (14.2.5)
is most easily done with the refermionized 0,. In terms of the yp* the GSO
projection gives several terms, which simplify using the abstruse identity.
The string degeneracy (14.2.5) precisely matches the degeneracy D, of
DO0-D4 bound states in section 13.6.

14.3 SO(32) type I-heterotic duality

In the type I theory, the only R-R fields surviving the Q projection are the
2-form, which couples electrically to the D1-brane and magnetically to the
D5-brane, and the nondynamical 10-form which couples to the D9-brane.
This is consistent with the requirement for unbroken supersymmetry —
the D1- and D5-branes both have #xp = 4k relative to the D9-brane.!

Consider again an infinite D-string stretched in the 1-direction. The type
I D-string differs from that of the IIB theory in two ways. The first is the
projection onto oriented states. The U(1) gauge field, with vertex operator
J0:X*", is removed. The collective coordinates, with vertex operators 0,X*,
remain in the spectrum because the normal derivative is even under
reversal of the orientation of the boundary. That is, in terms of its action
on the X oscillators Q has an additional —1 for the m = 2,...,9 directions,
as compared to the action on the usual 9-9 strings. By superconformal
symmetry this must extend to the y*, so that in particular on the ground
states Q is no longer —1 but acts as

— f = — explmi(s; + s2 + 53 + 54)] , (14.3.1)

with an additional rotation by 7 in the four planes transverse to the
string. From the fermionic 1-1 strings of the IIB D-string, this removes
the left-moving 8 and leaves the right-moving §'.

U1t is conceivable that the D3- and D7-branes exist as non-BPS states. However, they would be
expected to decay rapidly; also, there is some difficulty at the world-sheet level in defining them,
as explained later.
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[

Fig. 14.2. D-string in type I theory with attached 1-1 and 1-9 strings.

The second modification is the inclusion of 1-9 strings, strings with one
end on the D1-brane and one on a D9-brane. The end on the D9-brane
carries the type I Chan—Paton index, so these are vectors of SO(32). These
strings have #np = 8 so that the NS zero-point energy (13.4.8) is positive,
and there are no massless states in the NS sector. The R ground states
are massless as always. Only y° and ! are periodic in the R sector, so
their zero modes generate two states

|s051) , (14.3.2)

where sop = i% and i 1s the Chan—Paton index for the 9-brane end. One of
these two states is removed by the GSO projection; our convention has
been

exp(niF) = —iexp[mi(so + ...+ s4)] , (14.3.3)

so that the state with sy = —I—% would survive. We now impose the Gy
condition, which as usual (e.g. eq. (14.1.1)) reduces to a Dirac equation
and then to the condition sy = —l—% for the left-movers and sy = —% for
the right-movers. The right-moving 1-9 strings are thus removed from the
spectrum by the combination of the GSO projection and Gy condition.
Finally we must impose the Q projection; this determines the 9-1 state in
terms of the 1-9 state, but otherwise makes no constraint.

To summarize, the massless bosonic excitations are the usual collective
coordinates. The massless fermionic excitations are right-movers in the 8
of the transverse SO(8) and left-movers that are invariant under SO(8)
and are vectors under the SO(32) gauge group. This is the same as the
excitation spectrum of a long SO(32) heterotic string. Incidentally, this
explains how it can be consistent with supersymmetry that the 1-9 strings
have massless R states and no massless NS states: the supersymmetry acts
only on the right-movers. This is also a check that our conventions above
were consistent — supersymmetry requires the 1-9 fermions to move in
the opposite direction to the 1-1 fermions. From a world-sheet point of
view, this is necessary in order that the gravitino OPE be consistent.
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The D-string tension tp; = 1/2na/g is again exact, and at strong cou-
pling this is the lowest energy scale in the theory, below the gravitational
scale and the fundamental string tension. By the same arguments as in the
I1B case, the simplest conclusion is that the strongly coupled type I theory
is actually a weakly coupled SO(32) heterotic string theory. As a check,
this must be consistent with the low energy supergravity theories. We have
already noted that these must be the same up to field redefinition, because
the supersymmetry algebras are the same. It is important, though, that
the redefinition (12.1.41),

Gy = ¢ MGhyy , O =—y, (14.3.4a)
Fi3 = Hyz , Ay = Ay, (14.3.4b)

includes a reversal of the sign of the dilaton.

The conclusion is that there is a single theory, which looks like a
weakly coupled type I theory when e® < 1 and like a weakly coupled
S0(32) heterotic theory when e® > 1. The type I supergravity theory
is a good description of the low energy physics throughout. Even if the
dimensionless string coupling is of order 1, the couplings in the low energy
theory are all irrelevant in ten dimensions (and remain irrelevant as long
as there are at least five noncompact dimensions) and so are weak at low
energy.

As a bonus we have determined the strong-coupling physics of the
SO(32) heterotic string, namely the type I string. It would have been
harder to do this directly. The strategy we have used so far, which would
require finding the type I string as an excitation of the heterotic theory,
would not work because a long type I string is not a BPS state. The
NS-NS 2-form, whose charge is carried by most fundamental strings, is
not present in the type I theory. The R—R 2-form remains, but its charge
is carried by the type I D-string, not the F-string. That the long type I
F-string is not a BPS state is also evident from the fact that it can break
and decay. As the type I coupling increases, this becomes rapid and the
type I string disappears as a recognizable excitation.

The strings of the type I theory carry only symmetric and antisymmetric
tensor representations of the gauge group, while the strings of the heterotic
theory can appear in many representations. We see that the corresponding
states appear in the type I theory as D-strings, where one gets large
representations of the gauge group by exciting many 1-9 strings. Note
in particular that type I D-strings can carry the spinor representation of
SO(32); this representation is carried by fundamental heterotic strings but
cannot be obtained in the product of tensor representations. Consider
a long D-string wrapped around a periodic dimension of length L. The
massless 1-9 strings are associated with fermionic fields A’ living on the
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D-string, with i the SO(32) vector index. The zero modes of these,
Al =L—1/2/0 dx' Al(x1) (14.3.5)

satisfy a Clifford algebra
(A, A} = 0V (14.3.6)

The quantization now proceeds just as for the fundamental heterotic string,
giving spinors 2154215 of SO(32). Again, the A’ are fields that create light
strings, but they play the same role here as the A’ that create excitations
on the heterotic string.

The heterotic string automatically comes out in fermionic form, and so
a GSO projection is needed. We can think of this as gauging a discrete
symmetry that acts as —1 on every D-string endpoint (the idea of gauging
a discrete group was explained in section 8.5). This adds in the NS sectors
for the fields A" and removes one of the two spinor representations. Recall
that in the IIB D-string there is a continuous U(1) gauge symmetry acting
on the F-string endpoints. The part of this that commutes with the Q
projection and so remains on the type I D-string is just the discrete gauge
symmetry that we need to give the current algebra GSO projection.

Quantitative tests

Consider the tension of the type I D-string,

LRI 1V
21/2K(47r o) = Swl (14.3.7)
We have used the type I relation (13.3.31) to express the result in terms
of the low energy gauge and gravitational couplings, which are directly
measurable in scattering experiments. It should be noted that the type I
cylinder amplitude for the D-brane interaction has an extra % from the
orientation projection as compared to the type II amplitude, so the D-
brane tension is multiplied by 21/2. The result (14.3.7), obtained at weak
type I coupling, is exact as a consequence of the BPS property. Hence
it should continue to hold at strong type I coupling, and therefore agree
with the relation between the heterotic string tension and the low energy
couplings at weak heterotic coupling. Indeed, this is precisely eq. (12.3.37).
As another example, consider the F:}v interaction (12.4.28) found in type
I theory from the disk amplitude,

tp1 (type I) =

2o

2x4!gdy

2

2
4y _ 8ym 4
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and the same interaction found in the SO(32) heterotic theory from the
torus,

1 4 g%{M 4
m(tF )= W(tF ). (14.3.9)
Here (tF*) is an abbreviation for the common Lorentz and gauge structure
of the two amplitudes. In each theory we have expressed o’ appropriately in
terms of the low energy couplings. The agreement between the numerical
coefficients of the respective interactions is not an accident but is required
by type I-heterotic duality. To explain this, first we must assert without
proof the fact that supersymmetry completely determines the dilaton
dependence of the Fﬁv interaction in a theory with 16 supersymmetries.”
Hence we can calculate the coefficient when @y is large and negative and
the type I calculation is valid, and it must agree with the result at large
positive ®; where the heterotic calculation is valid.

Actually, this particular agreement is not an independent test of duality,
but is a consequence of the consistency of each string theory separately.
The (tF*) interaction is related by supersymmetry to the B, F3 interaction,
and the coefficient of the latter is fixed in terms of the low energy spectrum
by anomaly cancellation. However, this example illustrates the fact that
weak—strong dualities in general can relate calculable amplitudes in the
dual theories, and not only incalculable strong-coupling effects. In more
complicated examples, such as compactified theories, there are many such
successful relations that are not preordained by anomaly cancellation. As
in this example, a tree-level amplitude on one side can be related to a loop
amplitude on the other, or to an instanton calculation.

Type I D5-branes

The type I D5-brane has some interesting features. The D5-D9 system is
related by T-duality to the DO-D4 system. We argued that in the latter case
the DO-brane was in fact the zero-size limit of an instanton constructed
from the D4-brane gauge fields. The same is true here. The type I theory
has gauge field solutions in which the fields are independent of five spatial
dimensions and are a localized Yang—Mills instanton configuration in the
other four: this is a 5-brane. It has collective coordinates for its shape, and
also for the size and gauge orientation of the instanton. In the zero-size

2 Notice that there are dilaton dependences hidden in the couplings in (14.3.8) and (14.3.9), which
moreover are superficially different because of the different dilaton dependences of gy in the
two string theories. However, the dilaton dependences are related by the field redefinition (14.3.4),
and are correlated with the fact that the lower order terms in the action also have different
dilaton dependences.
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limit, the D5-brane description is accurate. As in the discussion of D0-
D4 bound states, there are flat directions for the 5-9 fields. Again these
have the interpretation of blowing the D5-brane up into a 9-9 gauge field
configuration whose cross-section is the SO(32) instanton and which is
independent of the other six dimensions.

The heterotic dual of the type I D5-brane is simple to deduce. The
blown-up instanton is an ordinary field configuration. The transforma-
tion (14.3.4) between the type I and heterotic fields leaves the gauge field
invariant, so this just becomes an instanton in the heterotic theory. The
transformation of the metric has an interesting effect. What looks in the
type I theory like a small instanton becomes in the heterotic theory an
instanton at the end of a long but finite throat; in the zero-size limit the
throat becomes infinite as in figure 14.1.

There is one difference from the earlier discussion of D-branes. It turns
out to be necessary to assume that the type I D5-brane carries an SU(2)
symmetry — that is, a two-valued Chan—Paton index. More specifically, it
is necessary on the D5-branes to take a symplectic rather than orthogonal
projection. We will first work out the consequences of this projection, and
then discuss why it must be so.

The bosonic excitation spectrum consists of

W ol ks i) iy pl0,ks i) (14.3.10)

which are the D5-brane gauge field and collective coordinate respectively;
i and j are assumed to be two-valued. The symplectic Q projection gives

MM =T MM =0T, (14.3.11)
with M the antisymmetric 2 X 2 matrix. The general solutions are
i=a", V=I. (14.3.12)

In particular the Chan—Paton wavefunction for the collective coordinate
is the identity, so ‘both’ D5-branes move together. We should really then
refer to one D5-brane, with a two-valued Chan-Paton index. This is
similar to the T-dual of the type I string, where there are 32 Chan—
Paton indices but 16 D-branes, each D-brane index being doubled to
account for the orientifold image. The world-brane vectors have Chan—
Paton wavefunctions ¢}; so the gauge group is Sp(1) = SU(2), unlike the
IIB D5-brane whose gauge group is U(1). For k coincident D5-branes the
group is Sp(k).

The need for a two-valued Chan-Paton index can be seen in four
independent ways. The first is that it is needed in order to get the
correct instanton moduli space, the instanton gauge group now being
SO(n) rather than SU(n). We will not work out the details of this, but
in fact this is how the SU(2) symmetry was first deduced. Note that
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starting from a large instanton, it is rather surprising that in the zero-size
limit a new internal gauge symmetry appears. The appearance of new
gauge symmetries at special points in moduli space is now known to
occur in many contexts. The non-Abelian gauge symmetry of coincident
IIB NSS5-branes, pointed out in section 14.1, was another such surprise.
The enhanced gauge symmetry of the toroidally compactified string is a
perturbative example.

The second argument for a symplectic projection is based on the fact
that in the type I theory the force between D1-branes, and between D5-
branes, is half of what was calculated in section 13.3 due to the orientation
projection. The tension and charge are then each reduced by a factor 2-1/2,
so the product of the charges of a single D1-brane and single (one-valued)
D5-brane would then be only half a Dirac unit. However, since the D5-
branes with a symplectic projection always move in pairs, the quantization
condition is respected. The third argument is based on the spectrum of 5-9
strings. For each value of the Chan—Paton indices there are two bosonic
states, as in eq. (13.5.19). The D5-D9 system has eight supersymmetries,
and these two bosons form half of a hypermultiplet (section B.7). In an
oriented theory the 9-5 strings are the other half, but in this unoriented
theory these are not independent. A half-hypermultiplet is possible only
for pseudoreal representations, like the 2 of SU(2) — hence the need for
the SU(2) on the D5-brane.

The final argument is perhaps the most systematic, but also the most
technical. Return to the discussion of the orientation projection in sec-
tion 6.5. The general projection was of the form

Qlypsij) = 7j71Qu: /)i (143.13)
We can carry over this formalism to the present case, where now the
Chan—Paton index in general runs over 1-, 5-, and 9-branes. In order for
this to be a symmetry the matrix y;7 must connect D-branes that are of
the same dimension and coincident.®> In chapter 6 we argued that O =1
and therefore that y was either purely symmetric or purely antisymmetric.
The first argument still holds, but the second rested on an assumption
that is not true in general: that the operator €, the part of Q that acts on
the fields, squares to the identity, Q> = 1. More generally, it may in fact
be a phase.
Working out the phase of Q is a bit technical. It is determined by
the requirement that the symmetry be conserved by the operator product
of the corresponding vertex operators. In the 5-5 sector, the massless

3 This formalism also applies to the more general orientifold projection, where O is combined
with a spacetime symmetry. The matrix y then connects each D-brane with its image under the
spacetime symmetry.
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vertex operator is 0, X* (Q = —1) for u parallel to the 5-brane, and 0, X*
(Q = +1) for u perpendicular. On these states, Q> = 1, and the same is
true for the rest of the 9-9 and 5-5 Hilbert spaces. To see this, use the
fact that Q multiplies any mode operator y, by +exp(inr). The mode
expansions were given in section 13.4. In the NS sector this is +i, but the
GSO projection requires that these mode operators act in pairs (the OPE
is single-valued only for GSO-projected vertex operators). So Q = +1,
and this holds in the R sector as well by supersymmetry.

Now consider the NS 5-9 sector. The four X* with mixed Neumann—
Dirichlet boundary conditions, say u = 6,7,8,9, have a half-integer-mode
expansion. Their superconformal partners yp# then have an integer-mode
expansion and the ground state is a representation of the corresponding
zero-mode algebra. The vertex operator is thus a spin field: the periodic
p* contribute a factor

Y = HstHa/2 (14.3.14)
where Hj 4 are from the bosonization of the four periodic %73, We need
only consider this part of the vertex operator, as the rest is the same as in
the 9-9 string and so has Q> = +1. Now, the operator product of ¥ with
itself (which is in the 5-5 or 9-9 sector) involves e3+H4) which is the
bosonization of (p® + ip”)(p® + iy?). This in turn is the vertex operator
for the state

(W® +ip")_ 1 a® +ip’) 1 5]0) . (14.3.15)

Finally we can deduce the Q eigenvalue. For |0) it is +1, because its
vertex operator is the identity, while each y_;/, contributes either —i (for
a 9-9 string) or +i (for a 5-5 string), giving an overall —1. That is, the Q
eigenvalue of V'V is —1, and so therefore is the Q> eigenvalue of V.

In the 5-9 sector Q? = —1. Separate 7 into a block yg that acts on the
D9-branes and a block ys that acts on the D5-branes. Then repeating the
argument in section 6.5 gives

79 v =5 oyl st (14.3.16)

We still have y{ = +y, from tadpole cancellation, so we need 7 = —ys,
giving symplectic groups on the D5-brane. The minimum dimension for
the symplectic projection is 2, so we need a two-valued Chan—Paton state.
This argument seems roundabout, but it is faithful to the logic that the
actions of Q in the 5-5 and 9-9 sectors are related because they are both
contained in the 5-9 x 9-5 product. Further, there does not appear to be
any arbitrariness in the result. It also seems to be impossible to define the
D3- or D7-brane consistently, as Q2 = +i.
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144 Type IIA string and M-theory

The type IIA string does not have D-strings but does have DO-branes,
so let us consider the behavior of these at strong coupling. We focus on
the D-brane of smallest dimension for the following reason. The D-brane
tension 1, = 0(g—'o/~(P*t1)/2) translates into a mass scale

(zp)/PHD) x g1/ D =172 (14.4.1)

so that at strong coupling the smallest p gives the lowest scale. Thus we
need to find an effective field theory describing these degrees of freedom.
The DO-brane mass is

1

o (14.4.2)

T) =
This is heavy at weak coupling but becomes light at strong coupling. We
also expect that for any number n of DO-branes there is an ultrashort
multiplet of bound states with mass

n

= (14.4.3)

nto
This is exact, so as the coupling becomes large all these states become light
and the spectrum approaches a continuum. Such a continuous spectrum of
particle states is characteristic of a system that is becoming noncompact.
In particular, the evenly spaced spectrum (14.4.3) matches the spectrum
of momentum (Kaluza—Klein) states for a periodic dimension of radius

Rig = go/''/? . (14.4.4)

Thus, as g — oo an eleventh spacetime dimension appears. This is one
of the greatest surprises in this subject, because perturbative superstring
theory is so firmly rooted in ten dimensions.

From the point of view of supergravity all this is quite natural. Eleven-
dimensional supergravity is the supersymmetric field theory with the
largest possible Poincaré invariance. Beyond this, spinors have at least
64 components, and this would lead to massless fields with spins greater
than 2; such fields do not have consistent interactions. We have used
dimensional reduction of eleven-dimensional supergravity as a crutch to
write down ten-dimensional supergravity, but now we see that it was more
than a crutch: dimensional reduction keeps only the pjo = O states, but
string theory has also states of pjg # O in the form of DO-branes and
their bound states. Recall that in the reduction of the eleven-dimensional
theory to ITA string theory, the Kaluza—Klein gauge boson which couples
to pio became the R—R gauge boson which couples to DO-branes. The
eleventh dimension is invisible in string perturbation theory because this
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is an expansion around the zero-radius limit for the extra dimension, as
is evident from eq. (14.4.4).

The eleven-dimensional gravitational coupling is given by dimensional
reduction as

1
K%l = 2nRoK? = E(Zn)gg%c/g/z . (14.4.5)

The numerical factors here are inconvenient so we will define instead an
eleven-dimensional Planck mass

My =g Vo712 (14.4.6)

in terms of which 2x?; = (2n)¥ M. The two parameters of the IIA theory,
¢ and o/, are related to the eleven-dimensional Planck mass and the radius
of compactification by eqs. (14.4.4) and (14.4.6). Inverting these,

g = (MiRyo)**, o = MRy . (14.4.7)

The reader should be alert to possible differences in convention in the
definition of My, by powers of 27 ; the choice here makes the conversion
between string and M-theory parameters simple.

We know little about the eleven-dimensional theory. Its low energy
physics must be described by d = 11 supergravity, but it has no dimen-
sionless parameter in which to make a perturbation expansion. At energies
of order M neither supergravity nor string theory is a useful description.
It is hard to name a theory when one does not know what it is; it has
been given the tentative and deliberately ambiguous name M-theory. Later
in the chapter we will discuss a promising idea as to the nature of this
theory.

U-duality and F-theory

Since we earlier deduced the strongly coupled behavior of the IIB string,
and this is T-dual to the IIA string, we can also understand the strongly
coupled IIA string in this way. Periodically identify the 9-direction. The I1B
weak—strong duality S interchanges a D-string wound in the 9-direction
with an F-string wound in the 9-direction. Under T-duality, the D-string
becomes a DO-brane and the wound F-string becomes a string with
nonzero pyg. So TST takes DO-brane charge into pg and vice versa. Thus
we should be able to interpret DO-brane charge as momentum in a dual
theory, as indeed we argued above. The existence of states with R—-R
charge and of the eleventh dimension was inferred in this way — as were
the various other dualities — before the role of D-branes was understood.

It is notable that while the IIA and IIB strings are quite similar in
perturbation theory, their strongly coupled behaviors are very different.
The strongly coupled dual of the IIB theory is itself, while that of the
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ITA theory is a new theory with an additional spacetime dimension.
Nevertheless, we see that these results are consistent with the equivalence
of the ITA and IIB theories under T'-duality. The full set of dualities forms
a rich interlocking web.

For the type II theory on a circle, the noncompact symmetry of the
low energy theory is SL(2,R) x SO(1,1,R) (table B.3) and the discrete
U-duality subgroup is

d=9: U=SL2,Z). (14.4.8)

Regarded as a compactification of the IIB string, this is just the SL(2,Z)
symmetry of the ten-dimensional theory. Regarded as a compactification
of the IIA string on a circle and therefore of M-theory on T2, it is a
geometric symmetry, the modular transformations of the spacetime T2.

For the type II theory on T2, the noncompact symmetry of the low
energy theory is SL(3,R) x SL(2,R) and the discrete U-duality subgroup
is

d=8: U=SL3,Z)xSL(2,Z). (14.4.9)

In section 8.4 we studied compactification of strings on T2 and found
that the T-duality group was SL(2,Z) x SL(2,Z), one factor being the
geometric symmetry of the 2-torus and one factor being stringy. In the
U-duality group the geometric factor is enlarged to the SL(3,Z) of the
M-theory T3.

Under compactification of more dimensions, it is harder to find a
geometric interpretation of the U-duality group. The type II string on T%,
which is M-theory on T°, has the U-duality symmetry

d=6: U=S50(512Z). (14.4.10)

This is the same as the T-duality of string theory on T°. This is suggestive,
but this identity holds only for T so the connection if any will be
intricate. For compactification of M-theory on T* for k > 6, the U-duality
symmetry is a discrete exceptional group, which has no simple geometric
interpretation. A good interpretation of these symmetries would likely be
an important step in understanding the nature of M-theory.

Returning to the IIB string in ten dimensions, it has been suggested
that the SL(2,Z) duality has a geometric interpretation in terms of two
additional toroidal dimensions. This construction was christened F-theory.
It is clear that these dimensions are not on the same footing as the
eleventh dimension of M-theory, in that there is no limit of the parameters
in which the spectrum becomes that of twelve noncompact dimensions.
However, there may be some sense in which it is useful to begin with
twelve dimensions and ‘gauge away’ one or two of them. Independent
of this, F-theory has been a useful technique for finding solutions to
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the field equations with nontrivial behavior of the dilaton and R-R
scalar. As in eq. (12.1.30), these fields are joined in a complex parameter
1 = Cy + ie™® characterizing the complex structure of the additional
2-torus. Ten-dimensional solutions are then usefully written in terms of
twelve-dimensional geometries.

1A branes from eleven dimensions

The ITA theory has a rich spectrum of extended objects. It is interesting to
see how each of these originates from compactification of M-theory on a
circle. Let us first consider the extended objects of the eleven-dimensional
theory. There is one tensor gauge field, the 3-form A,,,. The corresponding
electrically charged object is a 2-brane; in the literature the term membrane
is used specifically for 2-branes. The magnetically charged object is a 5-
brane. Of course the designations electric and magnetic interchange if we
use instead a 6-form potential. However, d = 11 supergravity is one case
in which one of the two Poincaré dual forms seems to be preferred (the
3-form) because the Chern—Simons term in the action cannot be written
with a 6-form.

As in the discussion of the IIB NS5-brane, but with the dilaton omitted,
we can always find a supersymmetric solution to the field equations having
the appropriate charges. The M2- and M5-brane solutions are black p-
branes, as described below eq. (14.1.14).

0-branes: The DO-branes of the ITA string are the BPS states of nonzero
p1o- In M-theory these are the states of the massless graviton multiplet, an
ultrashort multiplet of 2% states for each value of po.

I-branes: The 1-brane of the IIA theory is the fundamental IIA string.
Its natural origin is as an M-theory supermembrane wrapped on the
hidden dimension. As a check, such a membrane would couple to A,,10;
this reduces to the NS-NS B, field which couples to the IIA string. It
was noted some time ago that the classical action of a wrapped M2-brane
reduces to that of the ITA string.

2-branes: The obvious origin of the IIA D2-brane is as a transverse
(rather than wrapped) M2-brane. The former couples to the R-R Cy,),
which is the reduction of the d = 11 A4,,, to which the latter couples. Note
that when written in terms of M-theory parameters, the D2-brane tension

_ M
- (2%)2goc’3/2 - (zn)z

D (14.4.11)
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depends only on the fundamental scale M{; and not on Rjg, as necessary
for an object that exists in the eleven-dimensional limit. On the other
hand, the F-string tension

1
TF1 = 35— = 2nRj0tp2 (14.4.12)

2mor

is linear in Ry, as should be the case for a wrapped object.

The D2-brane is perpendicular to the newly discovered 10-direction, and
so should have a collective coordinate for fluctuations in that direction.
This is puzzling, because D-branes in general have collective coordinates
only for their motion in the ten-dimensional spacetime of perturbative
string theory. However, the D2-brane is special, because in 2+ 1 dimensions
a vector describes the same physics, by Poincaré duality, as a scalar. It is
interesting to see this in detail. The bosonic action for a D2-brane in flat
spacetime is

S[F,4,X] = -1 / dx {[— det(ny + 0, XM, X™ + 21/ F,,)]1/?

elvp
"‘2quw} . (14.4.13)
We are treating F,, as the independent field and so include a Lagrange
multiplier 4 to enforce the Bianchi identity. In this form Fy, is an auxiliary
field (its equation of motion determines it completely as a local function
of the other fields) and it can be eliminated with the result

3 m m n—2 1 1/2
S[LX] = —1) / & [~ detln +6,X"0,X" + (ma) 20,00,11) .

(14.4.14)
The algebra is left as an exercise. Defining A = 270/ X', this is the action
for a membrane in eleven dimensions. Somewhat surprisingly, it displays
the full eleven-dimensional Lorentz invariance, even though this is broken
by the compactification of X'°. This can be extended to the fermionic
terms, and to membranes moving in background fields.

4-branes: These are wrapped M5-branes.

5-branes: The IIA theory, like the IIB theory, has a 5-brane solution
carrying the magnetic NS-NS B,, charge. The solution is the same as in
the IIB theory, because the actions for the NS-NS fields are the same.
However, there is an interesting difference. Recall that a D1-brane can
end on the IIB NS 5-brane. Under T-duality in a direction parallel to
the 5-brane, we obtain a D2-brane ending on a ITA NS5-brane. From the
point of view of the (5 + 1)-dimensional theory on the 5-brane, the end
of a D1-brane in the IIB theory is a point, and is a source for the U(1)
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gauge field living on the 5-brane. This is necessary so that the 5-brane
can, through a Chern—Simons interaction, carry the R-R charge of the
D1-brane. Similarly the end of the D2-brane in the IIA theory is a string
in the 5-brane, and so should couple to a 2-form field living on the ITA
NSS5-brane.

We were not surprised to find a U(1) gauge field living on the IIB
NS 5-brane, because it is related by S-duality to the IIB D5-brane which
we know to have such a field. We cannot use this argument for the I1A
NS 5-brane. However, in both cases the fields living on the world-sheet
can be seen directly by looking at small fluctuations around the soliton
solution. We do not have space here to develop in detail the soliton
solutions and their properties, but we summarize the results. Modes that
are normalizable in the directions transverse to the 5-brane correspond
to degrees of freedom living on the 5-brane. These include the collective
coordinates for its motion and in each case some R—R modes, which do
indeed form a vector in the IIB case and a 2-form in the IIA case. The
field strength of the 2-form is self-dual.

It is also interesting to look at this in terms of the unbroken super-
symmetry algebras in the 5-brane world-volumes. Again we have space
only to give a sketch. The supersymmetry variations of the gravitinos in
a general background are

Sy =Dyl , 0Py =D (. (14.4.15)
Here D]J\—F,I is a covariant derivative where the spin connection w is replaced

with o = o + %H with H the NS-NS 3-form field strength. We have

already encountered w® in the world-sheet action (12.3.28). The difference
of sign on the two sides occurs because H is odd under world-sheet parity.
Under

S0(9,1) - SO(5,1) x SO(4) (14.4.16)

the ten-dimensional spinors decompose
16 — (4,2) + 4.,2), (14.4.17a)
16/ —» (4,2') + 4.,2). (14.4.17b)

The nonzero components of the connection for the 5-brane solution lie
in the transverse SO(4) = SU(2) x SU(2), and for the NS5-branes o™
and o~ have the property that they lie entirely in the first or second
SU(2) respectively. A constant spinor carrying the second SU(2) (that is,
a 2’ of SO(4)) is then annihilated by Dy, and one carrying the first (a 2)
by D),; these correspond to unbroken supersymmetries. The left-moving
supersymmetries transforming as a 2 of SO(4) are thus unbroken — these
are a 4 in both the IIA and IIB theories. Also unbroken are the right-
moving supersymmetries transforming as a 2" of SO(4), which for the ITA
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theory are a 4 and for the IIB theory a 4'. In other words, the unbroken
supersymmetry of the ITA NS5-brane is d = 6 (2,0) supersymmetry, and
the unbroken supersymmetry of the IIB NS5-brane is d = 6 (1, 1) super-
symmetry. These supersymmetries are reviewed in section B.6. Curiously
the nonchiral ITA theory has a chiral 5-brane, and the chiral IIB theory a
nonchiral 5-brane.

These results fit with the fluctuation spectra. For the IIB NS5-brane the
collective coordinates plus vector add up to a vector multiplet of d = 6
(1,1) supersymmetry. For the IIA NS5-brane, the only low-spin multiplet
is the tensor, which contains the self-dual tensor argued for above and
five scalars.

The obvious interpretation of the IIA NS5-brane is as an M-theory 5-
brane that is transverse to the eleventh dimension. As in the discussion of
the 2-brane, it should then have a collective coordinate for motion in this
direction. Four of the scalars in the tensor multiplet are from the NS—NS
sector and are collective coordinates for the directions perpendicular to
the 5-brane that are visible in string perturbation theory. The fifth scalar,
from the R—R sector, must be the collective coordinate for the eleventh
dimension. It is remarkable that the 2-brane and the 5-brane of the ITA
theory know that they secretly live in eleven dimensions.

The tension of the ITA NS5-brane is the same as that of the IIB
NS5-brane,

(2n)>g2a3 2n (2m)>
Like the tension of the D2-brane this is independent of Ry, as it must be
for the eleven-dimensional interpretation,

(14.4.18)

TD2 =TM2, TNS5 = TMS5 - (14.4.19)
This also fits with the interpretation of the D4-brane,
D4 = 277:R10‘CM5 . (14420)

Since the ITA NS5-brane and D2-brane are both localized in the eleventh
dimension, the configuration of a D2-brane ending on an NS5-brane lifts
to an eleven-dimensional configuration of an M-theory 2-brane ending
on an M-theory 5-brane. It is interesting to consider two nearby 5-branes
with a 2-brane stretched between them, either in the IIA or M-theory
context. The 2-brane is still extended in one direction and so behaves as
a string. The tension is proportional to the distance r between the two
5-branes,

T1 =TrTMm2 . (14421)

In the IIB theory, the r — 0 limit was a point of non-Abelian gauge
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symmetry. Here it is something new, a tensionless string theory. For small
r the lightest scale in the theory is set by the tension of these strings.
They are entirely different from the strings we have studied: they live in
six dimensions, they are not associated with gravity, and they have no
adjustable coupling constant — their interactions in fact are of order 1. Of
all the new phases of gauge and string theories that have been discovered
this is perhaps the most mysterious, and may be a key to understanding
many other things.

6-branes: The D6-brane field strength is dual to that of the DO-brane.
Since the DO-brane carries Kaluza—Klein electric charge, the D6-brane
must be a Kaluza—Klein magnetic monopole. Such an object exists as
a soliton, where the Kaluza—Klein direction is not independent of the
noncompact directions but is combined with them in a smooth and
topologically nontrivial way. This is a local object in three noncompact
spatial dimensions and so becomes a 6-brane in nine noncompact spatial
dimensions.

8-branes: The eleven-dimensional origin of the D8-brane will be seen in
the next section.

145 The Eg x Eg heterotic string

The final ten-dimensional string theory is the Eg x Eg heterotic string.
We should be able to figure out its strongly coupled behavior, since it
is T-dual to the SO(32) heterotic string whose strongly coupled limit is
known. We will need to trace through a series of T- and S-dualities before
we come to a weakly coupled description. In order to do this we will keep
track of how the moduli — the dilaton and the various components of
the metric — are related at each step.

Recall that in each string theory the natural metric to use is the one
that appears in the F-string world-sheet action. The various dualities in-
terchange F-strings with other kinds of string, and the ‘string metrics’ in
the different descriptions differ, as one sees explicitly in the IIB trans-
formation (14.1.6) and the type I-heterotic transformation (14.3.4). After
composing a series of dualities, one is interested in how the final dilaton
and metric vary as the original dilaton becomes large. We seek to reach
a description in which the final dilaton becomes small (or at least stays
fixed), and in which the final radii grow (or at least stay fixed). A de-
scription in which the dilaton becomes small and also the radii become
small is not useful, because the effective coupling in a small-radius theory
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is increased by the contributions of light winding states. To get an accu-
rate estimate of the coupling one must take the T-dual to a large-radius
description.

T : Heterotic Eg x Eg on Sy to heterotic SO(32) on S;. Compactify the
heterotic Eg x Eg theory on a circle of large radius Ry and turn on the
Wilson line that breaks Eg x Eg to SO(16) x SO(16). We will eventually
take Rg — oo to get back to the ten-dimensional theory of interest, and
then the Wilson line will be irrelevant. As discussed in section 11.6 this
theory is T-dual to the SO(32) heterotic string, again with a Wilson line
breaking the group to SO(16) x SO(16). The couplings and radii are related

Ry oc Ry', g ocgRy!. (14.5.1)

Here primed quantities are for the SO(32) theory and unprimed for the
Eg x Eg theory. We are only keeping track of the field dependence on each

side, Ry oc Gééz and g oc e®. The transformation of g follows by requiring
that the two theories give the same answer for scattering of low energy
gravitons. The low energy actions are proportional to

i 2R
2 / 0y — % / Ox (14.5.2)

and so Ry/g> = R}/g"%.
S: Heterotic SO(32) on S to type I on S;. Now use type I-heterotic
duality to write this as a type I theory with

grocg ™ oc g 'Ry, Ropoc g VARG oc g7 VARSY (14.5.3)

The transformation of Ggg follows from the field redefinition (14.3.4). We
are interested in the limit in which g and Ry are both large. It appears
that we can make g; small by an appropriate order of limits. However,
the radius of the type I theory is becoming very small and so we must go
to the T-dual description as warned above.

T : Type I on Sy to type 1A on S1/Z,. Consider a T-duality in the 9-
direction of the type I theory. The compact dimension becomes a segment
of length o/ /Ry; with eight D8-branes at each end, and

_ — 3/2 — 1/2
gy oc giRy' oc g V2RI Ryp oc Ryp' oc g'/2RY* (14.5.4)

If we are taking g — oo at fixed Ry then we have reached a good
description. However, our real interest is the ten-dimensional theory at
fixed large coupling. The coupling g, then becomes large, but one final
duality brings us to a good description. The theory that we have reached
is often called the type I' theory. In the bulk, between the orientifold
planes, it is the IIA theory, so we can also think of it as the IIA theory
on the segment S1/Z,. The coset must be an orientifold because the only
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spacetime parity symmetry of the ITA theory also includes a world-sheet
parity transformation.

S: Type IIA on S1/Z, to M-theory on Sy x S1/Z,. The IIA theory is
becoming strongly coupled, so the physics between the orientifold planes
is described in terms of a new periodic dimension. The necessary transfor-
mations (12.1.9) were obtained from the dimensional reduction of d = 11
supergravity, giving

2/3 — —1/3
RIOM oC gI// ocg 1/31{9 5 R9M oC gI/ / R9I/ oC g2/3 . (1455)

As the original Ry is taken to infinity, the new Rjo diverges linearly.
Evidently we should identify the original 9-direction with the final 10-
direction. Hence at the last step we also rename (9, 10) — (10°,9). The final
dual for the strongly coupled Eg x Eg theory in ten dimensions is M-theory,
with ten noncompact dimensions and the 10’-direction compactified. This
is the same as the strongly coupled IIA theory. The difference is that
here the 10'-direction is not a circle but a segment, with boundaries
at the orientifold planes. M-theory on S; is the strongly coupled IIA
theory. M-theory on S;/Z, is the strongly coupled Eg x Eg heterotic
theory. At each end are the orientifold plane and eight D8-branes, but
now both are nine-dimensional as they bound a ten-dimensional space.
The gauge degrees of freedom thus live in these walls, one Eg in each
wall.

The full sequence of dualities is

heterotic Eg x Eg 5 heterotic SO(32) 35 type 1 B type I’ 5 M-theory .

(14.5.6)
A heterotic string running in the 8-direction becomes
Fs 33 Fs > Dg 23 Dgg > Mg o - (14.5.7)

That is, it is a membrane running between the boundaries, as in figure 14.3.
This whole picture is highly constrained by anomalies, and this in fact
is how it was originally discovered. The d = 11 supergravity theory in a
space with boundaries has anomalies unless the boundaries carry precisely
Eg degrees of freedom. Note also that

Py 5 Fo > Dy 5 Dy 5 P10 = py . (14.5.8)

This confirms the identification of the original 9-direction and final 10-
direction.

Let us comment on the D8-branes. In string theory the D8-brane is a
source for the dilaton. To first order the result is a constant gradient for the
dilaton (since the D8-brane has codimension one), but the full nonlinear
supergravity equations for the dilaton, metric, and R—R 9-form imply that
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Fig. 14.3. Strongly coupled limit of Eg x Eg heterotic string theory, with one
heterotic string shown. The shaded upper and lower faces are boundaries. In
the strongly coupled ITA string the upper and lower faces would be periodically
identified.

the dilaton diverges a finite distance from the D8-brane. To cure this, one
must run into a boundary (orientifold plane) before the divergence: this
sets a maximum distance between the D8-brane and the boundary. As
one goes to the strongly coupled limit, the initial value for the dilaton is
greater and so this distance is shorter. In the strongly coupled limit the
D8-branes disappear into the boundary, and in the eleven-dimensional
theory there is no way to pull them out. The moduli for their positions
just become Wilson lines for the gauge theory in the boundary.

We have now determined the strongly coupled behaviors of all of the
ten-dimensional string theories. One can apply the same methods to the
compactified theories, and we will do this in detail for toroidal compacti-
fications of the heterotic string in section 19.9. Almost all of that section
can be read now; we defer it because to complete the discussion we will
need some understanding of strings moving on the smooth manifold K3.

14.6 What is string theory?

What we have learned is shown in figure 14.4. There is a single theory,
and all known string theories arise as limits of the parameter space, as
does M-theory with 11 noncompact spacetime dimensions. For example,
if one starts with the type I theory on T2, then by varying the two radii,
the string coupling, and the Wilson line in one of the compact directions,
one can reach the noncompact weakly coupled limit of any of the other
string theories, or the noncompact limit of M-theory. Figure 14.4 shows
a two-dimensional slice through this four-parameter space. This is only
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M -theory

TypelIA
SO(32) heterotic

TypellB Egx Eg heterotic

Typel
Fig. 14.4. All string theories, and M-theory, as limits of one theory.

one of many branches of the moduli space, and one with a fairly large
number of unbroken supersymmetries, 16.

The question is, what is the theory of which all these things are limits?
On the one hand we know a lot about it, in that we are able to put
together this picture of its moduli space. On the other hand, over most
of moduli space, including the M-theory limit, we have only the low
energy effective field theory. In the various weakly coupled string limits,
we have a description that is presumably valid at all energies but only as
an asymptotic expansion in the coupling. This is very far from a complete
understanding.

As an example of a question that we do not know how to answer,
consider graviton—graviton scattering with center-of-mass energy E. Let us
suppose that in moduli space we are near one of the weakly coupled string
descriptions, at some small but finite coupling g. The ten-dimensional
gravitational constant is of order Gy ~ g%«’*. The Schwarzchild radius of
the system is of order R ~ (GnE)!/7. One would expect that a black hole
would be produced provided that R is large compared to the Compton
wavelength E~! and also to the string length o/'/2. The latter condition is
more stringent, giving

1
E = P (14.6.1)
At this scale, these considerations show that the interactions are strong
and string perturbation theory has broken down. Moreover, we do not
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even in principle have a way to study the scattering, as we should in
a complete theory. Of course, this process is so complicated that we
would not expect to obtain an analytic description, but a criterion for a
complete understanding of the theory is that we could in principle, with
a large enough and fast enough computer, answer any question of this
sort. In our present state of knowledge we cannot do this. We could only
instruct the computer to calculate many terms in the string perturbation
series, but each term would be larger than the one before it, and the
series would tell us nothing. This particular process is of some interest,
because there are arguments that it cannot be described by ordinary
quantum mechanics and requires a generalization in which pure states
evolve to density matrices. We will briefly discuss this issue in the next
section.

Even if one is only interested in physics at accessible energies, it is likely
that to understand the nonsupersymmetric state in which we live will
require a complete understanding of the dynamics of the theory. In the
case of quantum field theory, to satisfy Wilson’s criterion of ‘computability
in principle’ required an understanding of the renormalization group, and
this in turn gave much more conceptual insight into the dynamics of the
theory.

One possibility is that each of the string theories (or perhaps, just some
of them) can be given a nonperturbative definition in the form of string
field theory, so that each would give a good nonperturbative definition.
The various dualities would then amount to changes of variables from one
theory to another. However, there are various reasons to doubt this. The
most prominent is simply that string field theory has not been successful —
it has not allowed us to calculate anything we did not already know how to
calculate using string perturbation theory. Notably, all the recent progress
in understanding nonperturbative physics has taken place without the aid
of string field theory, and no connection between the two has emerged. On
the contrary, the entire style of argument in the recent developments has
been that there are different effective descriptions, each with its own range
of validity, and there is no indication that in general any description has
a wider range of validity than it should. That is, a given string theory is a
valid effective description only near the corresponding cusp of figure 14.4.
And if strings are the wrong degrees of freedom for writing down the
full Hamiltonian, no bookkeeping device like string field theory will give
a satisfactory description. We should also note that even in quantum
field theory, where we have a nonperturbative definition, this idea of
understanding dualities as changes of variables seems to work only in
simple low dimensional examples. Even in field theory the understanding
of duality is likely to require new ideas.

However, there must be some exact definition of the theory, in terms
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of some set of variables, because the graviton scattering question must
have an answer in principle. The term M-theory, originally applied to the
eleven-dimensional limit, has now come to denote the complete theory.

14.7 Is M for matrix?

A notable feature of the recent progress has been the convergence of
many lines of work, as the roles of such constructions as D-branes, string
solitons, and d = 11 supergravity have been recognized. It is likely that
the correct degrees of freedom for M-theory are already known, but their
full significance not appreciated. Indeed, one promising proposal is that
D-branes, specifically DO-branes, are those degrees of freedom.

According to our current picture, D-branes give a precise description
of part of the spectrum, the R—R charged states, but only near the cusps
where the type I, 1IA, and IIB strings are weakly coupled — elsewhere
their relevance comes only from the usual supersymmetric continuation
argument. To extend this to a complete description covering the whole
parameter space requires some cleverness. The remainder of this section
gives a description of this idea, matrix theory.

Consider a state in the IIA theory and imagine boosting it to large
momentum in the hidden X'© direction. Of course ‘boosting’ is a decep-
tive term because the compactification of this dimension breaks Lorentz
invariance, but at least at large coupling (and so large Rjp), we should
be able to make sense of this. The energy of a particle with n units of
compact momentum is
@?+m* _ n | Ry

+ == (¢* +m?) . (147.1)

E=(pio+d" +m)"? ~pio+-5—=——
(P10 + 4 ) p 0 Ro | 2n

Here ¢ is the momentum in the other nine spatial dimensions. Recalling
the connection between pig and DO-brane charge, this is a state of n DO-
branes, and the first term in the action is the DO-brane rest mass. Large
boost is large n/Ryg. In this limit, the second term in the energy is quite
small. States that have finite energy in the original frame have

E — n/R10 = O(Rlo/l’l) (14.7.2)

in the boosted frame. There are very few string states with the prop-
erty (14.7.2). For example, even adding massless closed strings would add
an energy ¢, which does not go to zero with Ryg/n. Excited open strings
connected to the DO-branes also have too large an energy. Thus it seems
that we can restrict to ground state open strings attached to the DO-branes.
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The Hamiltonian for these was given in eq. (13.5.14), which we now write
in terms of the M-theory parameters M; and Ryy:

_ 1 M161 i vj12 M131 17011y

We have dropped higher powers of momentum coming from the Born—
Infeld term because all such corrections are suppressed by the boost, just
as the square root in the energy (14.7.1) simplifies. Also, we drop the
additive term n/R;o from H.

The Hamiltonian (14.7.3) is conjectured to be the complete description
of systems with p,, = n/R,y > Mji. Now take Rjo and n/Rjo to infinity,
to describe a highly boosted system in eleven noncompact dimensions.
By eleven-dimensional Lorentz invariance, we can put any system in this
frame, so this should be a complete description of the whole of M-theory!
This is the matrix theory proposal. We emphasize that this is a conjecture,
not a derivation: we can derive the Hamiltonian (14.7.3) only at weak
string coupling, where we know what the theory is. In effect, we are taking
a specific result derived at the IIA cusp of figure 14.4 and conjecturing
that it is valid over the whole moduli space.

This is a remarkably simple and explicit proposal: the nine n x n matrices
X;b are all one needs. As one check, let us recall the observation from the
previous chapter that only one length scale appears in this Hamiltonian,
g!/3¢/1/2 This is the minimum distance that can be probed by DO-brane
scattering, and now in light of M-theory we see that this scale has another
interpretation — it is M;!, the eleven-dimensional Planck length. This is
the fundamental length scale of M-theory, and so the only one that should
appear.

At first sight, the normalization of the Hamiltonian (14.7.3) seems
to involve another parameter, R;,. Recall, however, that the system is
boosted and so internal times are dilated. The boost factor is proportional
to pio, so the time-scale should be divided by a dimensionless factor
p1o/M11 = n/Mq1Ry9, and again only the scale M1y appears.

The description of the eleven-dimensional spacetime in matrix theory
is rather asymmetric: time is the only explicit coordinate, nine spatial
dimensions emerge from matrix functions of time, and the last dimension
is the Fourier transform of n. This asymmetric picture is similar to the
light-cone gauge fixing of a covariant theory.

Now let us discuss some of the physics. As in the discussion of IIA-M-
theory duality, a graviton of momentum pj9 = n/Rjg is a bound state of
n DO-branes. Again, the existence of these bound states is necessary for
M-theory to be correct, and has been shown in part. For a bound state of
total momentum g¢;, the SU(n) dynamics is responsible for the zero-energy



14.7 Is M for matrix? 213

bound state, and the center-of-mass energy from the U(1) part p; = gq;l,/n
is

2

Rjo
E="Tr(pip) =T

correctly reproducing the energy (14.7.1) for a massless state.

Now let us consider a simple interaction, graviton—graviton scattering.
Let the gravitons have 10-momenta pjo = ny2/Rjo and be at well-separated
positions Yf,z. The total number of DO-branes is n; +n,, and the coordinate

matrices X' are approximately block diagonal. Write X' as
X' =X\ + X' (14.7.5a)
Xy =Y +Y5,, x'=xi+xbh+xh+x5. (147.5b)

: (14.7.4)

Here I; and I, are the identity matrices in the two blocks, which are
respectively n; x n; and ny X ny, and we have separated the fluctuation
x' into a piece in each block plus off-diagonal pieces. First setting the
off-diagonal xi,,, to zero, the blocks decouple because [x};,x},] = 0.
The wavefunction is then a product of the corresponding bound state
wavefunctions,

P(x11,X22) = Yo(X11)yo(x22) - (14.7.6)

Now consider the off-diagonal block. These degrees of freedom are heavy:
the commutator

(X4, x1,] = (Y] — Y9)x], (14.7.7)

gives them a mass proportional to the separation of the gravitons. Thus
we can integrate them out to obtain the effective interaction between the
gravitons.

We would like to use this to test the matrix theory proposal, to see that
the effective interaction at long distance agrees with eleven-dimensional
supergravity. In fact, we can do this without any further calculation:
all the necessary results can be extracted from the cylinder amplitude
(13.5.6). At distances small compared to the string scale, the cylinder is
dominated by the lightest open strings stretched between the DO-branes,
which are precisely the off-diagonal matrix theory degrees of freedom.
At distances long compared to the string scale, the cylinder is dominated
by the lightest closed string states and so goes over to the supergravity
result. This is ten-dimensional supergravity, but it is equivalent to the
answer from eleven-dimensional supergravity for the following reason. In
the process we are studying, the sizes of the blocks stay fixed at n; and ny,
meaning that the values of p,, and p}, do not change in the scattering and
the pio of the exchanged graviton is zero. This has the effect of averaging
over x'° and so giving the dimensionally reduced answer.
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Finally, we should keep only the leading velocity dependence from
the cylinder, because the time dilation from the boost suppresses higher
powers as in eq. (14.7.1). The result (13.5.7) for p = 0, multiplying by the
number of DO-branes in each clump, is

o4

Legp = —V(r,v) = 4715/2F(7/2)oc’3n1n2r—7

_ 157° P1oP'o f
2 MR,

Because the functional form is the same at large and small r, the matrix
theory correctly reproduces the supergravity amplitude (in the matrix
theory literature, the standard convention is Mi; = (2n)~ '3 My (here),
which removes all 2zs from the matrix theory Hamiltonian).

This is an interesting result, but its significance is not clear. Some
higher order extensions do not appear to work, and it may be that one
must take the large n limit to obtain agreement with supergravity. The
loop expansion parameter in the quantum mechanics is then large, so
perturbative calculations are not sufficient. Also, the process being studied
here, where the pjo of the exchanged graviton vanishes, is quite special.
When this is not the case, one has a very different process where the sizes
of the blocks change, meaning that DO-branes move from one clump to
the other; this appears to be much harder to study.

Matrix theory, if correct, satisfies the ‘computability’ criterion: we can in
principle calculate graviton—graviton scattering numerically at any energy.
The analytic understanding of the bound states is still limited, but in
principle they could be determined numerically to any desired accuracy
and then the wavefunction for the two-graviton state evolved forward
in time. Of course any simulation is at finite n and Rjp, and the matrix
theory proposal requires that we take these to infinity; but if the proposal is
correct then the limits exist and can be taken numerically. For now all this
is just a statement in principle, as various difficulties make the numerical
calculation impractical. Most notable among these is the difficulty of
preserving to sufficient precision the supersymmetric cancellations that
are needed for the theory to make sense — for example, along the flat
directions of the potential.

(14.7.8)

The M-theory membrane

If the matrices X' are a complete set of degrees of freedom, then it must
be possible to identify all the known states of M-theory, in particular the
membranes. We might have expected that these would require us to add
explicit D2-brane degrees of freedom, but remarkably the membranes are
already present as excitations of the DO-brane Hamiltonian.
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To see this, define the n x n matrices

100 0 00 0 1
0a 0 0 100 0
u=|00 « 0 , v=]0 10 01 (1479
00 0 o 00 1 0

where oo = exp(2ni/n). These have the properties
u'=v"=1, UV=aVU, (14.7.10)

and these properties determine U and V' up to change of basis. The
matrices U"V* for 1 < r,s < n form a complete set, and so any matrix
can be expanded in terms of them. For example,

' m2
X'= > Xxuwve, (14.7.11)
r,s=[1—n/2]
with [ ] denoting the integer part and similarly for the fermion A. To each
matrix we can then associate a periodic function of two variables,
_ _ [n/2] _
X'— X'(p,q) = X, exp(ipr + igs) . (14.7.12)
rs=[1—n/2]
If we focus on matrices which remain smooth functions of p and ¢ as

n becomes large (so that the typical r and s remain finite), then the
commutator maps

X', X/] — %(aqxiapr —3,X'0,X7) +0(n?)
= %{Xi,Xj}pB +0(n7?). (14.7.13)

One can verify this by considering simple monomials U"V*. Notice the
analogy to taking the classical limit of a quantum system, with the Poisson
bracket appearing. One can also rewrite the trace as an integral,

dq dp
Tr = . 14.7.1
" n/(zn)z (14.7.14)

The Hamiltonian becomes

Ry [dadp (o + M xi xoz Mo ropiyi

10 q p 87‘52 1 l+ 1671:2”{ > }PB_lgTCZ { H “}PB
(14.7.15)

Since X'(p,q) is a function of two variables, this Hamiltonian evidently

describes the quantum mechanics of a membrane. In fact, it is identical
to the Hamiltonian one gets from an eleven-dimensional supersymmetric
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membrane action in the light-cone gauge. We do not have space to develop
this in detail, but as an example consider the static configuration

X'=aq, X’=bp; (14.7.16)

since ¢ and p are periodic we must also suppose X? to be as well. Then
the energy is
MS R,ya*b? _ M$ 42 _ 3,42
2n 22m)*p10 2p1o

(14.7.17)

Here A = 4n’ab is the area of the membrane. The product typA is the
mass of an M-theory membrane of this area, so this agrees with the
energy (14.7.1).

There was at one time an effort to define eleven-dimensional super-
gravity as a theory of fundamental membranes; this was one of the roots
of the name M-theory. This had many difficulties, the most immediate
being that the world-volume theory is nonrenormalizable. However, it was
noted that the light-cone Hamiltonian (14.7.15) was the large-n limit of
dimensionally reduced d = 10, N = 1 gauge theory (14.7.3), so the finite-n
theory could be thought of as regularizing the membrane. Matrix theory
puts this idea in a new context. One of the difficulties of the original
interpretation was that the potential has flat directions, for example

X' =Y/, + Y;I, (14.7.18)

as in eq. (14.7.5). This implies a continuous spectrum, which is physically
unsatisfactory given the original interpretation of the Hamiltonian as aris-
ing from gauge-fixing the action for a single membrane. However, we now
interpret the configuration (14.7.18) as a two-particle state. The continu-
ous spectrum is not a problem because the matrix theory is supposed to
describe states with arbitrary numbers of particles. We should emphasize
that in focusing on matrices that map to smooth functions of p and ¢
we have picked out just a piece of the matrix theory spectrum, namely
states of a single membrane of toroidal topology. Other topologies, other
branes, and graviton states are elsewhere.

Since matrix theory is supposed to be a complete formulation of M-
theory, it must in particular reproduce all of string theory. It is surprising
that it can do this starting with just nine matrices, but we now see how
it is possible — it contains membranes, and strings are just wrapped
membranes. The point is that one can hide a great deal in a large matrix!
If we compactify one of the nine X' dimensions, the membranes wrapped
in this direction reproduce string theory; arguments have been given that
the string interactions are correctly incorporated.
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Finite n and compactification

In arguing for matrix theory we took n to be large. Let us also ask, does
the finite-n matrix theory Hamiltonian have any physical relevance? In
fact it describes M-theory compactified in a lightlike direction,

(x% x1%) = (x° — R0, x'° 4+ 7Ryo) . (14.7.19)

To see this — in fact, to define it — let us reach this theory as the limit
of spacelike compactification,

(x% x1%) = (x° — zRy0, x' 4+ nRio + 21€*Ryo) (14.7.20)

with e — 0. The invariant length of the compact dimension is 2zeR;g +
O(€?), so this is Lorentz-equivalent to the spacelike compactification

(x°,x'"1%) = (x°,x"1° + 27€Ry) , (14.7.21)
where
x4+ 110 = eF(x0 + x19) . (14.7.22)

Unlike the n — oo conjecture, the finite-n conjecture can actually be
derived from things that we already know. Because the invariant ra-
dius (14.7.21) is going to zero, we are in the regime of weakly coupled
ITA string theory. Moreover, states that have finite energy in the original
frame acquire

E', plooc O(e™), E'—pioc Oe) (14.7.23)

under the boost (14.7.22). These are the only states that we are to retain.
However, we have already carried out this exercise at the beginning of
this section: this is eq. (14.7.2) where

Rio = €Ryy . (14.7.24)

The derivation of the matrix theory Hamiltonian then goes through just
as before, and it is surely correct because we are in weakly coupled string
theory. The lightlike theory is often described as the discrete light-cone
quantization (DLCQ ) of M-theory, meaning light-cone quantization with
a discrete spectrum of p_. This idea has been developed in field theory, but
one must be careful because the definition there is generally not equivalent
to the lightlike limit.

Of course, the physics in a spacetime with lightlike compactification
may be rather exotic, so this result does not directly enable us to under-
stand the eleven-dimensional theory which is supposed to be recovered
in the large-n limit. However, it has been very valuable in understand-
ing how the matrix theory conjecture is to be extended to the case that
some of the additional dimensions are compactified. Let us consider,
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for example, the case that k dimensions are periodic. Working in the
frame (14.7.21), we are instructed to take Rjg to zero holding fixed My,
and all momenta and distances in the transverse directions (those other
than x!°). We then keep only states whose energy is O(Rjo) above the
BPS minimum. These clearly include the gravitons (and their superpart-
ners) with nonzero pio, which are just the DO-branes. In addition, let
us consider M2-branes that are wrapped around the 10-direction and
around one of the transverse directions x". From the IIA point of view
these are F-strings winding in the x™-direction. They have mass equal to
wmd = MflRleo and so are candidates to survive in the limit. How-
ever, for M2-branes with vanishing pio, E = (¢> + m?)'/? and we also
need that they have zero momentum in the noncompact directions — this
is a point of measure zero. The only membrane states that survive are
M2-branes with nonzero pjg, which are F-strings that end on DO-branes
in the ITA description. These F-strings must be in their ground states,
but they can wind any number of times around the transverse compact
directions. The lightlike limit now has many more degrees of freedom
than in the noncompact case, because there is an additional winding
quantum number for each compact dimension. In fact, it is simpler to use
the T-dual description, where the DO-branes become Dk-branes and the
winding number becomes momentum: the lightlike limit of matrix theory
then includes the full (k 4 1)-dimensional U(n) Yang—Mills theory on the
branes.

It is notable that the number of degrees of freedom goes up drastically
with compactification of each additional dimension, as the dimension of
the effective gauge theory increases. A difficulty is that for k > 3 the
gauge theory on the brane is nonrenormalizable. However, for k > 3 our
discussion of the lightlike limit is incomplete. In the first place, we have
not considered all the degrees of freedom. For k > 4, an M5-brane that
wraps the x!%-direction and four of the transverse directions also survives
the limit. Moreover, the coupling of the T-dual string theory,

Ry 7 o'? 3-k)/2 _ _
12 11 R. Rio !/ (M) k)/ZHle ; (14.7.25)
m m

m
diverges as Rygp — O for k > 4. The lightlike limit is then no longer
a weakly coupled string theory, and it is necessary to perform further
dualities. The various cases k > 4 are quite interesting, but we must leave
the details to the references.

In summary, the various compactifications of matrix theory suggest
a deep relation between large-n gauge theory and string theory. Such a
relation has arisen from various other points of view, and may lead to a
better understanding of gauge theories as well as string theory.
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14.8 Black hole quantum mechanics

In the early 1970s it was found that classical black holes obey laws directly
analogous to the laws of thermodynamics. This analogy was made sharper
by Hawking’s discovery that black holes radiate as black bodies at the
corresponding temperature. Under this analogy, the entropy of a black
hole is equal to the area of its event horizon divided by x?/27. The analogy
is so sharp that it has long been a goal to find a statistical mechanical
theory associated with this thermodynamics, and in particular to associate
the entropy with the density of states of the black hole. Many arguments
have been put forward in this direction but until recently there was no
example where the states of a black hole could be counted in a controlled
way.

This has now been done for some string theory black holes. To see the
idea, let us return to the relation between a D-brane and an R—R charged
black p-brane. The thermodynamic and other issues are the same for black
p-branes as for black holes. The explicit solution for a black p-brane with
0 units of R—R charge is (for p < 6)

ds? = Z(r)™ 2y pdxtdx’ + Z (r)"/2dx"dx™ (14.8.1a)
20— gZZ(r)(3_”)/2 _ (14.8.1b)
Here x* is tangent to the p-brane, x™ is transverse, and
p’ P
Z(r) =1+, 1= x"x" (14.8.2a)
r’—p
PP = a’(7_p)/2gQ(4n)(5_p)/2F<7;p> : (14.8.2b)

The numerical constant, which is not relevant to the immediate discussion,
is obtained in exercise 14.6. The characteristic length p is shorter than the
string scale when gQ is less than 1. In this case, the effective low energy
field theory that we have used to derive the solution (14.8.1) is not valid.
When gQ is greater than 1 the geometry is smooth on the string scale and
the low energy field theory should be a good description.

Consider now string perturbation theory in the presence of Q coincident
D-branes. The expansion parameter is gQ: each additional world-sheet
boundary brings a factor of the string coupling g but also a factor of
Q from the sum over Chan—Paton factors. When gQ is small, string
perturbation theory is good, but when it is large it breaks down. Thus the
situation appears to be very much as with the instanton in section 13.6: in
one range of parameters the low energy field theory description is good,
and in another range the D-brane description is good.

In the instanton case we can continue from one regime to the other by
varying the instanton scale factor. In the black p-brane case we can do the
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same by varying the string coupling, as we have often done in the analysis
of strongly coupled strings. We can use this to count supersymmetric
(BPS) black hole states: we can do the counting at small gQ, where the
weakly coupled D-brane description is good, and continue to large g0,
where the black hole description is accurate.

The particular solution (14.8.1) is not useful for a test of the black
hole entropy formula because the event horizon, at r = 0, is singular. It
can be made nonsingular by adding energy to give a nonsupersymmetric
black hole, but in the supersymmetric (extremal) limit the area goes to
zero. To obtain a supersymmetric black p-brane with a smooth horizon
of nonzero area requires at least three nonzero charges. A simple example
combines Q; Dl-branes in the 5-direction with Qs DS5-branes in the
(5,6,7,8,9)-directions. To make the energy finite the (6,7,8,9)-directions are
compactified on a T* of volume V4. We also take the 5-direction to be
finite, but it is useful to keep its length L large. The third charge is
momentum ps. The solution is

ds? =z 212 [ dxtdx” + (Z, — 1)(dt + dxs)?

+21°Z5ax'ax' + 2"z Paraxm - (1483a)

e =275/7; . (14.8.3b)
Here u,v run over the (0,5)-directions tangent to all the branes, i runs
over the (1,2,3,4)-directions transverse to all branes, and m runs over

the (6,7,8,9)-directions tangent to the D5-branes and transverse to the
D1-branes. We have defined

rf ,  (2n)*gQqo

Zl =1+ rj , I = T , (14843.)
V% 2 /

Zs =1+ 2 rs = gQ0so (14.8.4b)
2 2 552 14

Z, = 1+% - ICLN ¥ Fi “)LgiS“ : (14.8.4c)

with 2 = x!x!. The event horizon is at r = 0; the interior of the black
hole is not included in this coordinate system. The integers Q;, Os, and
ns = psL/2n are all taken to be large so that this describes a classical
black hole, with horizon much larger than the Planck scale.

The solution (14.8.3) is in terms of the string metric. The black hole
area law applies to the Einstein metric Gg,y = e v/ 2G,w, whose action is
field-independent. This is

—1/4

Tz dxtdx 4 (Z, — 1)(dt + dxs)?

dslzi =Z
1217 i + 7 e (148.5)
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Now let us determine the horizon area. The eight-dimensional horizon is
a 3-sphere in the transverse dimensions and is extended in the (5,6,7,8,9)-
directions. Near the origin the angular metric is

2 1/4 2 3/4
(;) (;) r2dQ? = r*r?a0? (14.8.6)
r r

) 3/4 9/4 3/4

with total area 2n“r From Gss = Z; Z;1/4 Z, it follows that
—3/4 —1/4

the invariant length of the horizon in the 5-direction is r, r5 ruL.

Similarly the invariant volume in the toroidal directions is ryr5'Va. The
area is the product

A =21 LVyrirsry, = 2817 g%/*(01Qsns)!/? = 1*(Q1Qsns)'/? . (14.8.7)
This gives for the black hole entropy

2nA
S="5 = = 27(Q1Qsns)/? . (14.8.8)

The final result is quite simple, depending only on the integer charges and
not on any of the moduli g, L, or V4. This is a reflection of the classical
black hole area law: under adiabatic changes in the moduli the horizon
area cannot change.

Now let us consider the same black hole in the regime where the D-
brane picture is valid. The dynamics of the #xp = 4 system was discussed
in chapter 13, and in particular the potential is

2

y— (27: Xt~ LY+ TD{‘D{‘+ f; pip4 . (14.8.9)
This is generalized from the earlier (13.6.25) because there are multiple
D1-branes and D5-branes. Thus in the first term the Q; x Q1 D1-brane
collective coordinates X; act on the left of the Q; X Q5 matrix y, and the
Qs x Qs D5-brane collective coordinates Y; act on the right. The black
hole is a bound state of D1- and D5-branes, so the y are nonzero. The
first term in the potential then requires that

X' =xTy,, Y'=x1Iy,, (14.8.10)

and the center-of-mass x' is the only light degree of freedom in the
transverse directions. Also, the 1-1 X, and 5-5 A,, are now charged under
the U(Q1) and U(Qs) and so contribute to the D-terms in the general
form (B.7.3).* What is important is the dimension of the moduli space,
which can be determined by counting. The X, contribute 4Q% real scalars,

4 The A* term is just a rewriting of the [A,,, A,] term from the dimensional reduction, and similarly
for the X*.
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the A,, contribute 4Q§, and the y contribute 4Q;Qs. The vanishing of the
D-terms imposes 3Q7 + 302 conditions; since the Qs are large we do not
worry about the U(1) parts, which are only 1/0% of the total. Also, the
U(Q;) and U(Qs) gauge equivalences remove another Q7 + Q2 moduli,
leaving 4Q;Qs. This is a generalization of the counting that we did for the
instanton in section 13.6.

These moduli are functions of x> and x°. We are treating L as very large,
but the counting extends to small L with some subtlety. So we have a two-
dimensional field theory with 4QQs real scalars and by supersymmetry
40105 Majorana fermions, and we need its density of states. This is a
standard calculation, which in fact we have already done. For a CFT of
central charge c, the general relation (7.2.30) between the central charge
and the density of states gives

Trlexp(—fH)] ~ exp(ncL/12f) . (14.8.11)

We have effectively set ¢ = 0 because only the left-movers are excited in
the supersymmetric states. The earlier result was for a string of length 2x,
so we have replaced H — LH /2n by dimensional analysis. The density of
states is related to this by

o0
/ dE n(E) exp(—BE) = Trlexp(—BH)] | (14.8.12)
0
giving in saddle point approximation
n(E) zexp[(ncELn)‘/z} : (14.8.13)

Finally, the central charge for our system is ¢ = 6Q1Qs, while E = 2znns/L,
and so

n(E) ~ exp [2n(Q1Q5n5)1/2} , (14.8.14)

in precise agreement with the exponential of the black hole entropy.
This is a remarkable result, and another indication, beyond perturbative
finiteness, that string theory defines a sensible theory of quantum gravity.
This result has been extended to other supersymmetric black holes,
to the entropy of almost supersymmetric black holes, and to decay and
absorption rates of almost supersymmetric black holes. In these cases
the agreement is somewhat surprising, not obviously a consequence of
supersymmetry. Subsequently the ‘string’ picture of the black holes has
been extended to circumstances such as M-theory where there is no D-
brane interpretation. These results are suggestive but the interpretation is
not clear. We will discuss highly nonsupersymmetric black holes below.
Recalling the idea that D-branes can probe distances below the string
scale, one might wonder whether the black p-brane metrics (14.8.1) and
(14.8.3) can be seen even in the regime gQ < 1 in which the D-brane
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picture rather than low energy field theory is relevant. Indeed, in some
cases they can; this is developed in exercise 14.7.

The metric simplifies very close to r = 0, where the terms 1 in Z;, Zs,
and Z, become negligible. Taking for simplicity the case r, = 0, the metric
becomes

2
ds = ——pudxtdx’ + "2 d? 4 rirsdQ + Laxmaxn . (148.15)
rirs r rs

This is a product space
AdSy x §* x T, (14.8.16)

Here AdS; is three-dimensional anti-de-Sitter space, which is the geometry
in the coordinates x* and r (to be precise, these coordinates cover only
part of anti-de-Sitter space). In a similar way, the metric (14.8.1) near a
black 3-brane is

AdSs x S° . (14.8.17)

The case p = 3 is special because the dilaton remains finite at the horizon
r =0, as it does for the D1-D5 metric (14.8.3).

Very recently, a very powerful new duality proposal has emerged. Con-
sider the IR dynamics of a system of N coincident Dp-branes. The bulk
closed strings should decouple from the dynamics on the branes because
gravity is an irrelevant interaction. The brane dynamics will then be de-
scribed by the supersymmetric Yang—Mills theory on the brane, even for
gN large. On the other hand, when gN is large the description of the
system in terms of low energy supergravity should be valid as we have
discussed. Thus we have two different descriptions which appear to have
an overlapping range of validity. In the Yang—Mills description the effec-
tive expansion parameter gN is large, so perturbation theory is not valid.
However, for g fixed, N is also very large. Noting that the gauge group
on the branes is U(N), this is the limit of a large number of ‘colors,
the large-N limit. Field theories simplify in this limit, but it has been a
long-standing unsolved problem to obtain any analytic understanding of
Yang—Mills theories in this way. Now it appears, at least for theories with
enough supersymmetry, that one can calculate amplitudes in the gauge
theory by using the dual picture, where at low energy supergravity is
essentially classical. If this idea is correct, it is a tremendous advance in
the understanding of gauge field theories.

A correspondence principle

To make a precise entropy calculation we had to consider an extremal
black hole with a specific set of charges. What of the familiar neutral
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Schwarzschild black hole? Here too one can make a quantitative statement,
but not at the level of precision of the supersymmetric case.

For a four-dimensional Schwarzschild black hole of mass M, the radius
and entropy are

R ~ GN\M , (14.8.18a)
R? 5

Son & —— ~ GuM? . (14.8.18b)
GN

In this section we will systematically ignore numerical constants like 2 and
7, for a reason to be explained below; hence the ~ . Let us consider what
happens as we adiabatically change the dimensionless string coupling g.
In four dimensions, dimensional analysis gives

Gn ~ g2 . (14.8.19)

As we vary g the dimensionless combination GyM? stays fixed. The
simplest way to see this is to appeal to the fact that the black hole
entropy (14.8.18) has the same properties as the thermodynamic entropy,
and so is invariant under adiabatic changes.

Now imagine making the coupling very weak. One might imagine that
for sufficiently weak coupling the black hole will no longer be black.
One can see where this should happen from the following argument. The
preceding two equations imply that

S~ S (14.8.20)

We are imagining that Sp is large so that the thermodynamic picture
is good. Until g is very small, the Schwarzschild radius is then large
compared to the string length and the gravitational dynamics should not
be affected by stringy physics.

However, when g becomes small enough that gS;éz is of order 1, stringy
corrections to the action become important. If we try to extrapolate past
this point, the black hole becomes smaller than a string! It is then unlikely
that the field theory description of the black hole continues to be valid.
Rather, the system should look like a state in weakly coupled string theory.
This is how we can make the comparison: at this point, if the black hole
entropy has a statistical interpretation, then the weakly coupled string
theory should have the appropriate number of states of the given mass to
account for this entropy. Since the entropy is assumed to be large we are
interested in highly excited states. For a single highly excited string of mass
M the density of states can be found as in section 9.8 and exercise 11.12,

exp{nM[(c + a)a’/3]1/2} . (14.8.21)

In fact, one can show that with this exponential growth in their number,



14.8 Black hole quantum mechanics 225

the single string states are a significant fraction of the total number
of states of given energy. In particular, and in contrast to the R—R case,
states with D-branes plus anti-D-branes would have a much lower entropy
because of the energy locked in the D-brane rest mass. The entropy of
weakly coupled string states is then the logarithm

Se~ Md'* ~ g7 ' MGY? . (14.8.22)
This entropy has a different parametric dependence than the black hole
entropy (14.8.18). However, they are to be compared only at the point

gSit a1, (14.8.23)

where the transition from one picture to the other occurs. Inserting this
value for g, the string entropy (14.8.22) becomes S;}{zMGIl\I/2 =~ Sph.

We see that the numerical coefficients cannot be determined in this
approach, since we do not know the exact coupling where the transition
occurs, and corrections are in any case becoming significant on each side.
However, a priori the entropy could have failed to match by a power of
the large dimensionless number in the problem, Spy. One can show that
the same agreement holds in any dimension (exercise 14.8) and for black
holes with a variety of charges. This is further evidence for the statistical
interpretation of the black hole entropy, and that string theory has the
appropriate number of states to be a complete theory of quantum gravity.

The information paradox

A closely associated issue is the black hole information paradox. A black
hole of given mass and charge can be formed in a very large number of
ways. It will then evaporate, and the Hawking radiation is apparently inde-
pendent of what went into the black hole. This is inconsistent with ordinary
quantum mechanics, as it requires pure states to evolve into mixed states.

There are various schools of thought here. The proposal of Hawking
is that this is just the way things are: the laws of quantum mechanics
need to be changed. There is also strong skepticism about this view, partly
because this modification of quantum mechanics is rather ugly and very
possibly inconsistent. However, 20 years of investigation have only served
to sharpen the paradox. The principal alternative, that the initial state is
encoded in subtle correlations in the Hawking radiation, sounds plausible
but in fact is even more radical.’ The problem is that Hawking radiation

5 A third major alternative is that the evaporation ends in a remnant, a Planck-mass object having
an enormous number of internal states. This might be stable or might release its information over
an exceedingly long time scale. This has its own problems of aesthetics and possibly consistency,
and is generally regarded as less likely.
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emerges from the region of the horizon, where the geometry is smooth and
so ordinary low energy field theory should be valid. One can follow the
Hawking radiation and see correlations develop between the fields inside
and outside the black hole; the superposition principle then forbids the
necessary correlations to exist strictly among the fields outside. To evade
this requires that the locality principle in quantum field theory break down
in some long-ranged but subtle way.

The recent progress in string duality suggests that black holes do obey
the ordinary rules of quantum mechanics. The multiplets include black
holes along with various nonsingular states, and we have continuously de-
formed a black hole into a system that obeys ordinary quantum mechanics.
However, this is certainly not conclusive — we have two descriptions with
different ranges of validity, and while the D-brane system has an explicit
quantum mechanical description, one could imagine that as the coupling
constant is increased a critical coupling is reached where the D-particles
collapse to form a black hole. At this coupling there could be a discon-
tinuous change (or a smooth crossover) from ordinary quantum behavior
to information loss.

Certainly if matrix theory is correct, the ordinary laws of quantum
mechanics are preserved and the information must escape (there are not
enough states for the remnant idea). It should be noted that in matrix
theory only locality in time is explicit, so the necessary nonlocality may be
present. If so, it is important to see in detail how this happens. In particular
it may give insight into the cosmological constant problem, which stands in
the way of our understanding the vacuum and supersymmetry breaking.
This is another place where the continued failure of mundane ideas
suggests that we need something new and perhaps nonlocal.

Exercises

14.1 From the supersymmetry algebra (13.2.9), show that an infinite type
IT F-string with excitations moving in only one direction is a BPS state.
Show the same for a D-string.

14.2 Using the multi-NS5-brane solution (14.1.15), (14.1.17) and the D-
string action, calculate the mass of a D-string stretched between two
NS5-branes. Using IIB S-duality, compare this with the mass of an F-
string stretched between DS5-branes.

14.3 For compactification of the type II string on T4, where the U-duality
group is SO(5,5,Z) and the T-duality group is SO(4,4,Z), repeat the
discussion in section 14.2 of the representations carried by the vector
fields.
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14.4 (a) For the series of operations TS T discussed in section 14.4, deduce
the transformation of each gauge field and higher rank form.

(b) Deduce the transformation of each extended object (D-brane, F-string,
or NS-brane, with the various possible orientations for each).

(c) In each case compare with the interpretation as a 90° rotation of
M-theory compactified on T2

14.5 As discussed in section 14.6, consider the type I theory compactified
on T2. In terms of the two radii, the string coupling, and the Wilson line,
determine the six limits of parameter space that give the six noncompact
theories at the cusps of figure 14.4, with the coupling going to zero in the
stringy limits.

14.6 Expand the black p-brane solution (14.8.1) to first order in gQ and
compare with the field produced by a Dp-brane, calculated in the linearized
low energy field theory as in section 8.7.

14.7 Consider a Dl1-brane aligned along the 1-direction. Evaluate the
D1-brane action in the field (14.8.3) and expand to order v2. For ns = 0,
compare with the order v? interaction between a D1-brane and a collection
of D1- and D5-branes as obtained from the annulus.

14.8 Extend the correspondence principle to Schwarzschild black holes in
other dimensions. The necessary black hole properties can be obtained
by dimensional analysis. The entropy is always equal to the horizon area
(with units [972) divided by Gx up to a numerical constant.



15
Advanced CFT

We have encountered a number of infinite-dimensional symmetry algebras
on the world-sheet: conformal, superconformal, and current. While we
have used these symmetries as needed to obtain specific physical results,
in the present chapter we would like to take maximum advantage of them
in determining the form of the world-sheet theory. An obvious goal, not yet
reached, would be to construct the general conformal or superconformal
field theory, corresponding to the general classical string background.

This subject is no longer as central as it once appeared to be, as
spacetime rather than world-sheet symmetries have been the principal
tools in recent times. However, it is a subject of some beauty in its own
right, with various applications to string compactification and also to
other areas of physics.

We first discuss the representations of the conformal algebra, and the
constraints imposed by conformal invariance on correlation functions.
We then study some examples, such as the minimal models, Sugawara
and coset theories, where the symmetries do in fact determine the the-
ory completely. We briefly summarize the representation theory of the
N = 1 superconformal algebra. We then discuss a framework, rational
conformal field theory, which incorporates all these CFTs. To conclude
this chapter we present some important results about the relation between
conformal field theories and nearby two-dimensional field theories that
are not conformally invariant, and the application of CFT in statistical
mechanics.

15.1 Representations of the Virasoro algebra

In section 3.7 we discussed the connection between classical string back-
grounds and general CFTs. In particular, we observed that CFTs corre-
sponding to compactification of the spatial dimensions are unitary and

228
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their spectra are discrete and bounded below. These additional condi-
tions strongly restrict the world-sheet theory, and we will assume them
throughout this chapter except for occasional asides.

Because the spectrum is bounded below, acting repeatedly with Virasoro
lowering operators always produces a highest weight (primary) state |h),
with properties

Lolh) = hih) , (15.1.1a)
Luh) =0, m>0. (15.1.1b)

Starting from a highest weight state, we can form a representation of the
Virasoro algebra

c

[Lu, Ln] = (m — n)Lyin + E(m3 — M) —n (15.1.2)
by taking |h) together with all the states obtained by acting on |h) with
the Virasoro raising operators,

Lt L_t,...L_glh) . (15.1.3)

We will denote this state |h, {k}) or L_;,|h) for short. The state (15.1.3) is
known as a descendant of |h), or a secondary. A primary together with all
of its descendants is also known as a conformal family. The integers {k}
may be put in the standard order k; > ky > ... > k; > 1 by commuting the
generators. This process terminates in a finite number of steps, because
each nonzero commutator reduces the number of generators by one. To see
that this is a representation, consider acting on |h, {k}) with any Virasoro
generator L,. For n < 0, commute L, into its standard order; for n > 0,
commute it to the right until it annihilates |h). In either case, the nonzero
commutators are again of the form |h, {k'}). All coefficients are determined
entirely in terms of the central charge ¢ from the algebra and the weight
h obtained when L acts on |h); these two parameters completely define
the highest weight representation.

It is a useful fact that for unitary CFTs all states lie in highest weight
representations — not only can we always get from any state to a primary
with lowering operators, but we can always get back again with raising
operators. Suppose there were a state |¢) that could not be expanded in
terms of primaries and secondaries. Consider the lowest-dimension state
with this property. By taking

[$) = 1) — [)){il¢) (15.1.4)

with |i) running over a complete orthonormal set of primaries and sec-
ondaries, we may assume |¢) to be orthogonal to all primaries and
secondaries. Now, |¢) is not primary, so there is a nonzero state L,|¢) for
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some n > 0. Since the CFT is unitary this has a positive norm,
(pIL_yLnlgp) > 0. (15.1.5)

The state L,|¢) lies in a highest weight representation, since by assumption
|¢) is the lowest state that does not, and so therefore does L_,L,|®).
Therefore it must be orthogonal to |¢), in contradiction to eq. (15.1.5).

This need not hold in more general circumstances. Consider the operator
0X of the linear dilaton theory. Lowering this gives the unit operator,
Li-0X =—o/V-1,but L_;-1 =0 so we cannot raise this operator back to
0X. The problem is the noncompactness of X combined with the position
dependence of the dilaton, so that even |1) is not normalizable.

Now we would like to know what values of ¢ and h are allowed in a
unitary theory. The basic method was employed in section 2.9, using the
Virasoro algebra to compute the inner product

MY = (h|LiL_i|h) =2h, (15.1.6)

implying h > 0. Consideration of another inner product gave ¢ > 0.
Now look more systematically, level by level. At the second level of the
highest weight representation, the two states L_yL_1|h) and L_,|h) have
the matrix of inner products

2 = { EZE ] [L21h) L) ] - (15.1.7)
Commuting the lowering operators to the right gives
M = ( 8h262 i 4h ihc/z ) (15.1.8)
and
det(.#?) = 32h(h — hy)(h—h_) , (15.1.9a)
16hy = (5—¢) £ [(1 — )25 —0)]'/? . (15.1.9b)

In a unitary theory the matrix of inner products, and in particular its
determinant, cannot be negative. The determinant is nonnegative in the
region ¢ > 1, h > 0, but for 0 < ¢ < 1 a new region h_ < h < hy is
excluded.

At level N, the matrix of inner products is

M Gy gor(eh) = (kY (K'}) . Y k=N . (15.1.10)

Its determinant has been found,

detl.#/N(e,h] =Ky [[ (h—hes)"™") (15.1.11)

1<rs<N
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with Ky a positive constant. This is the Kac determinant. The zeros of the

determinant are at
c—1

1 2
hr,s = 7 + Z(VO(+ + SOC_) 5 (15112)

where
oy = (24)71/2 [(1 — )2 J_r(zs—c)l/z] . (15.1.13)

The multiplicity P(N — rs) of each root is the partition of N — rs, the
number of ways that N — rs can be written as a sum of positive integers
(with P(0) = 1):

ﬁ 1

n=1

o0
— =Y P(k)qd" . (15.1.14)
At level 2, for example, the roots are hj; =0, hyy = hy, and hiy = h_,
each with multiplicity 1, as found above.

The calculation of the determinant (15.1.11) is too lengthy to repeat here.
The basic strategy is to construct all of the null states, those corresponding
to the zeros of the determinant, either by direct combinatoric means or
using some tricks from CFT. The determinant is a polynomial in h and
so is completely determined by its zeros, up to a normalization which can
be obtained by looking at the h — co limit. The order of the polynomial
is readily determined from the Virasoro algebra, so one can know when
one has all the null states. Let us note one particular feature. At level 2,
the null state corresponding to hy; is L_iL_j|h = 0). This is a descendant
of the level 1 null state L_;|h = 0). In general, the zero h,, appears first at
level rs. At every higher level N are further null states obtained by acting
with raising operators on the level rs state; the partition P(N —rs) in the
Kac determinant is the total number of ways to act with raising operators
of total level N —rs.

A careful study of the determinant and its functional dependence on ¢
and h shows (the analysis is again too lengthy to repeat here) that unitary
representations are allowed only in the region ¢ > 1, h > 0 and at a
discrete set of points (¢, h) in the region 0 < ¢ < 1:

S . =2,3,...
¢ mmt 1 " 2,3,...,
1 7 4 6
= 0, 5, E, g, 7, cee o (151153)
[r(m + 1) —sm)?> — 1
— = , 15.1.1
h = hs dmm £ 1) (15.1.15b)

where 1 <r <m—1 and 1 < s < m. The discrete representations are of
great interest, and we will return to them in section 15.3.
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For a unitary representation, the Kac determinant also determines
whether the states |h, {k}) are linearly independent. If it is positive, they
are; if it vanishes, some linear combination(s) are orthogonal to all states
and so by unitarity must vanish. The representation is then said to be
degenerate. Of the unitary representations, all the discrete representa-
tions (15.1.15) are degenerate, as are the representations ¢ = 1, h = %nz,
n€ Zand c > 1, h=0. For example, at h = 0 we always have L_;-1 =0,
but at the next level L_, - 1 = T, is nonzero.

Let us make a few remarks about the nonunitary case. In the full matter
CFT of string theory, the states L_|h) obtained from any primary state
|h) are linearly independent when the momentum is nonzero. This can
be seen by using the same light-cone decomposition used in the no-ghost
proof of chapter 4. The term in L_, of greatest N'° is k—at,. These
manifestly generate independent states; the upper triangular structure
then guarantees that this independence holds also for the full Virasoro
generators.

A representation of the Virasoro algebra with all of the L_gq|h) lin-
early independent is known as a Verma module. Verma modules exist
at all values of ¢ and h. Verma modules are particularly interesting
when the dimension h takes a value h,s such that the Kac deter-
minant vanishes. The module then contains nonvanishing null states
(states that are orthogonal to all states in the module). Acting on a
null state with a Virasoro generator gives a null state again, since for
any null |v) and for any state |yp) in the module we have (y|(L,|v)) =
((w|Ly)|v) = 0. The representation is thus reducible: the subspace of
null states is left invariant by the Virasoro algebra.! The L, for n >
0 must therefore annihilate the lowest null state, so this state i1s in
fact primary, in addition to being a level rs descendant of the orig-
inal primary state |h,s). That is, the h,s Verma module contains an
h = h.s + rs Verma submodule. In some cases, including the special
discrete values of ¢ (15.1.15), there is an intricate pattern of nested sub-
modules.

Clearly a Verma module can be unitary only at those values of ¢ and
h where nondegenerate unitary representations are allowed. At the (c, h)
values with degenerate unitary representations, the unitary representation
is obtained from the corresponding Verma module by modding out the
null states.

As a final example consider the matter sector of string theory, ¢ = 26.
From the OCQ, we know that there are many null physical states at h = 1.
This can be seen from the Kac formula as well. For ¢ = 26, oy = 3i/61/2,

! By contrast, a unitary representation is always irreducible. The reader can show that the lowest
state in any invariant subspace would have to be orthogonal to itself, and therefore vanish.
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a_ = 2i/6'/2 and so
25— (3r 4 2s)?

hys = 15.1.16
. (15.1.16)
The corresponding null physical state is at
25 — (3r — 2s)?
h=hy+rs = # (15.1.17)

Any pair of positive integers with |37 — 2s| = 1 leads to a null physical
state at h = 1. For example, the states (r,s) = (1,1) and (1,2) were
constructed in exercise 4.2. With care, one can show that the number of
null states implied by the Kac formula is exactly that required by the
no-ghost theorem.

152 The conformal bootstrap

We now study the constraints imposed by conformal invariance on cor-
relation functions on the sphere. In chapter 6 we saw that the Mobius
subgroup, with three complex parameters, reduced the n-point function to
a function of n—3 complex variables. The rest of the conformal symmetry
gives further information: it determines all the correlation functions of
descendant fields in terms of those of the primary fields.

To begin, consider the correlation function of the energy momentum
tensor T(z) with n primary fields @. The singularities of the correlation
function as a function of z are known from the T¢® OPE. In addition,
it must fall as z=* for z — oo, since in the coordinate patch u = 1/z,
T,. = z*T.. is holomorphic at u = 0. This determines the correlation
function to be

< 7”(2)(01(21) ﬁn(zn)> S,
__2:{ Z‘_ZJz (

A possible holomorphic addition is forbidden by the boundary condition
at infinity. In addition, the asymptotics of order z~!, z72, and z—> must
vanish; these are the same as the conditions from Mobius invariance,
developed in section 6.7. The correlation function with several T's is of the
same form, with additional singularities from the TT OPE. Now make a

Laurent expansion in z — z1,

1 0

z—z) 0z

(O1(z1)... On(zn) g, - (15.2.1)

T(z)01(z) = > (z—z21)" Ly - Oy(z1) . (15.2.2)

k=—0o0
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Then for k > 1, matching coefficients of (z — z;)*~2 on the right and left
of the correlator (expectation value) (15.2.1) gives

([Lek - O1(z0)] O2(22) ... On(zp) )5, = Lk { O1(21) ... Op(zn) )s, »
(15.2.3)
where

[ itk — 1) ! d ] (15.2.4)

Py = [ _ 9
,Z:; (zi—z1) (zi—z) oz
This extends to multiple generators, and to the antiholomorphic side,

< (L. L Lt Ly - O1(z1)] ... On(zn) >S2

=L 4y L Lty L (O1(21)... Op(zn) ),
(15.2.5)

The additional terms from the TT OPE do not contribute when all the k;
and [; are positive. The correlator of one descendant and n—1 primaries is
thus expressed in terms of that of n primaries. Clearly this can be extended
to n descendants, though the result is more complicated because there are
additional terms from the T T singularities.

Earlier we argued that the operator product coefficients were the basic
data in CFT, determining all the other correlations via factorization. We
see now that it is only the operator product coefficients of primaries that
are necessary. [t is worth developing this somewhat further for the four-
point correlation. Start with the operator product of two primaries, with
the sum over operators now broken up into a sum over conformal families
i and a sum within each family,

@m(z Z)(Q (0 O Z 7z m hn+h +N— hm hn+h +N

i, (k) . ~
Xcz{k,k}an_{k}L_{]z} - 00(0,0) , (15.2.6)

where N is the total level of {k}. Writing the operator product coefficient
ci'{k”‘},nn as a three-point correlator and using the result (15.2.5) to relate

this to the correlator of three primaries gives
= > M i m
fk/ k/
XL g Z iy { Onlon, OO)(Qn(l,1)@(21,21))52‘21:0 . (1527)

To relate the operator product coefficient to a correlator we have to raise
an index, so the inverse .# ! appears (with an appropriate adjustment for
degenerate representations). The right-hand side is equal to the operator
product of the primaries times a function of the coordinates and their
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derivatives, the latter being completely determined by the conformal in-
variance. Carrying out the differentiations in & _ ") and ¥ _ ") and then
summing leaves

i{k.k itk} pilk)
Cl{ }mn = 117;;1} mnjclml’l . (1528)

The coefficient ﬁ,ﬁlﬁ} is a function of the weights h,,, h,, and h; and the
central charge c, but is otherwise independent of the CFT.

Now use the OPE (15.2.6) to relate the four-point correlation to the
product of three-point correlations,

(O (00,00)0;(1,1)0p(z,2)0,(0,0)) Zc LiCimn F I (11 2) F (1)
(15.2.9)
where
Fhilz)y= Y 2t N g gy B (152.10)
(K} (k')

This function is known as the conformal block, and is holomorphic except
at z =0, 1, and oo. The steps leading to the decomposition (15.2.9) show
that the conformal block is determined by the conformal invariance as a
function of hj, hy, hy, hy, hi, ¢, and z. One can calculate it order by order
in z by working through the definition.

Recall that the single condition for a set of operator product coefficients
to define a consistent CFT on the sphere is duality of the four-point func-
tion, the equality of the decompositions (15.2.9) in the (jl)(mn), (jm)(In),
and (jn)(Im) channels. The program of solving this constraint is known
as the conformal bootstrap. The general solution is not known. One limi-
tation is that the conformal blocks are not known in closed form except
for special values of ¢ and h.

Beyond the sphere, there are the additional constraints of modular
invariance of the zero-point and one-point functions on the torus. Here
we will discuss only a few of the most general consequences. Separating
the sum over states in the partition function into a sum over conformal
families and a sum within each family yields

Z(T) _ Z q*C/24+hi+Nq*Z'/24+hi+N

i (k)
= ten @iz (@) - (15.2.11)
Here
Len(q) = g~ " gN (15.2.12)

{k}
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is the character of the (c, h) representation of the Virasoro algebra. For a
Verma module the states generated by the L_j are in one-to-one corre-
spondence with the excitations of a free boson, generated by a_j. Thus,

= 1
Len(q) = qic/24+h H 1—qg"
n=1

(15.2.13)
for a nondegenerate representation. For degenerate representations it is
necessary to correct this expression for overcounting. A generic degenerate
representation would have only one null primary, say at level N; the
representation obtained by modding out the resulting null Verma module
would then have character (1—g")q'/**5(q)~". For the unitary degenerate
representations (15.1.15), with their nested submodules, the calculation of
the character is more complicated.

In section 7.2 we found the asymptotic behavior of the partition function
for a general CFT,

Z(it) ‘R0 exp(nc/6t) (15.2.14)
letting ¢ = ¢. For a single conformal family, letting g = exp(—2n/),
ten(q) < g2 iy 20 12 exp(n/127) (15.2.15)
Then for a general CFT
Z(it) < N exp(n/6/) (15.2.16)

as / — 0, with ./ the total number of primary fields in the sum (15.2.11).
Comparing this bound with the known asymptotic behavior (15.2.14), A"
can be finite only if ¢ < 1. So, while we have been able to use conformal
invariance to reduce sums over states to sums over primaries only, this
remains an infinite sum whenever ¢ > 1. The ¢ < 1 theories, to be
considered in the next section, stand out as particularly simple.

15.3 Minimal models

For fields in degenerate representations, conformal invariance imposes

additional strong constraints on the correlation functions. Throughout

this section we take ¢ < 1, because only in this range do degenerate

representations of positive h exist. We will not initially assume the CFT

to be unitary, but the special unitary values of ¢ will eventually appear.
Consider, as an example, a primary field /1, with weight

—1 + 20 )?
4 Jr(06+ 0<).

h=h>=— 4

(15.3.1)
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For now we leave the right-moving weight  unspecified. The vanishing
descendant is
3
Nyg=|Ly— L[> |- 015=0. 15.3.2
12 { 2 e, G2 ( )
Inserting this into a correlation with other primary fields and using the
relation (15.2.5) expressing correlations of descendants in terms of those

of primaries gives a partial differential equation for the correlations of the
degenerate primary,

0= <JV1,2(Z1)H(9i(Zi)>
S>

i=2
= {ff 3 ]sz
C T 20k T T
n h; n 1 0 3 02
S ) L o . S 15.3.3
L 5 (zi — z1)? —zi—z1 0zi  2(2ha+1) 02%] R )
where
oAy = <(91,2(21,?1)H(0i(2i,5i)> : (15.3.4)
i=2 S,

For n = 4, the correlation is known from conformal invariance up to
a function of a single complex variable, and eq. (15.3.3) becomes an
ordinary differential equation. In particular, setting to zero the z !, z72,
and z 3 terms in the T(z) expectation value (15.2.1) allows one to solve

for 0/0z234 in terms of 0/0z;, with the result that eq. (15.3.3) becomes

i hi > hip —hy —h3 — ha + 2(h; 4 h;)
= (zi —z1)? 2<i<j<4 (zi — z1)(zj — z1)
3 02
+Z — |4 =0. (153.5)

3 Zi — 71 821 2(2h1 2+ 1) (721

This differential equation is of hypergeometric form. The hypergeometric
functions, however, are holomorphic (except for branch cuts at coincident
points), while ¢;, has an unknown Zz; dependence. Now insert the ex-
pansion (15.2.9), in which the four-point correlation is written as a sum
of terms, each a holomorphic conformal block times a conjugated block.
The conformal blocks satisfy the same differential equation (15.3.5) and so
are hypergeometric functions. Being second order, the differential equa-
tion (15.3.5) has two independent solutions, and each conformal block is
a linear combination of these.

This procedure generalizes to any degenerate primary field. The primary
0,5 will satisfy a generalization of the hypergeometric equation. This
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differential equation is of maximum order rs, coming from the term L',
in the null state 4", 5. If the antiholomorphic weight is also degenerate, h=
hz3, the antiholomorphic conformal blocks satisfy a differential equation
of order 73, so that

rs T3

4
< Orsi5(z1,21) [ [ Oi(zi ) > = aiifi2)f(z) (15.3.6)
i=2

S» i=1 j=1

where fi(z) and fj(z) are the general solutions of the holomorphic and
antiholomorphic equations. The constants a;; are not determined by the
differential equation. They are constrained by locality — the holomorphic
and antiholomorphic functions each have branch cuts, but the product
must be single-valued — and by associativity. We will describe below
some theories in which it has been possible to solve these conditions.

Let us see how the differential equation constrains the operator products
of 015. According to the theory of ordinary differential equations, the
points z; = z; are regular singular points, so that the solutions are of
the form (z; — z;)* times a holomorphic function. Inserting this form into
the differential equation and examining the most singular term yields the
characteristic equation

3
202h, + 1)

This gives two solutions (z; — z;)*+ for the leading behavior as zy — z;;
comparing this to the OPE gives

(k=D +x—h=0. (15.3.7)

hy =hio+ hi + x4 (15.3.8)
for the primary fields in the (;,0; product. Parameterizing the weight by
c—1 92
hi=—+*~—, 15.3.9
24 + 4 ( )
the two solutions to the characteristic equation correspond to
—1 + o)
Pt V2 (15.3.10)

24 4

These are the only weights that can appear in the operator product, so
we have derived the fusion rule,

(91’2(9(7.) = [O+a)] + [O—a)] ; (15.3.11)

we have labeled the primary fields other than (¢;, by the corresponding
parameter y. A fusion rule is an OPE without the coefficients, a list of the
conformal families that are allowed to appear in a given operator product
(though it is possible that some will in fact have vanishing coefficient).
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For the operator /1, one obtains in the same way the fusion rule

0y100) =[O 1a)] + [O—a,)] - (15.3.12)
In particular, for the product of two degenerate primaries this becomes

@I,Z@r,s = [(Or,s-H] + [(91‘,3—1] > (153133)

0210y 5 = [Or415] + [Or—15] - (15.3.13b)

For positive values of the indices, the families on the right-hand side
are degenerate. In fact, only these actually appear. Consider the fusion
rule for O1,0,;. By applying the rule (15.3.13a) we conclude that only
[02>] and [O»0] may appear in the product, while the rule (15.3.13b)
allows only [05] and [Opp]. Together, these imply that only [¢2>] can
actually appear in the product. This generalizes: only primaries r > 1 and
s > 1 are generated. The algebra of degenerate conformal families thus
closes, and iterated products of (1, and (), generate all degenerate O, ;.
This suggests that we focus on CFTs in which all conformal families are
degenerate.

The values of r and s are still unbounded above, so that the operator
algebra will generate an infinite set of conformal families. When o /oy =
—p/q is rational, the algebra closes on a finite set.> In particular, one then
has

2
_ P9 (15.3.14a)
rq
Cen2 —(n— )2
hyy = TA=SP) == a) (15.3.14b)
4pq
The point is that there is a reflection symmetry,
hp—rg—s = hys , (15.3.15)

so that each conformal family has at least two null vectors, at levels rs
and (p—r)(q —s), and its correlators satisfy two differential equations. The
reflection of the conditions r > 0 and s > 0 is r < p and s < ¢, so the
operators are restricted to the range

l<r<p—1, l<s<qg—1. (15.3.16)

These theories, with a finite algebra of degenerate conformal families,
are known as minimal models. They have been solved: the general solution
of the locality, duality, and modular invariance conditions is known, and
the operator product coefficients can be extracted though the details are
too lengthy to present here.

2 Note that oo = —1, and that 0 > o_ /oy > —1.
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Although the minimal models seem rather special, they have received
a great deal of attention, as examples of nontrivial CFTs, as prototypes
for more general solutions of the conformal bootstrap, as building blocks
for four-dimensional string theories, and because they describe the critical
behavior of many two-dimensional systems. We will return to several of
these points later.

Let us now consider the question of unitarity. A necessary condition
for unitarity is that all weights are nonnegative. One can show that this
is true of the weights (15.3.14) only for ¢ = p + 1. These are precisely the
¢ < 1 representations (15.1.15) already singled out by unitarity:

p=m, g=m+1. (15.3.17)

Notice that these theories have been found and solved purely from sym-
metry, without ever giving a Lagrangian description. This is how they
were discovered, though various Lagrangian descriptions are now known;
we will mention several later. For m = 3, ¢ is % and there is an obvious
Lagrangian representation, the free fermion. The allowed primaries,
1 1
2 Mm2=1ge
are already familiar, being respectively the unit operator, the fermion wp,
and the R sector ground state.

The full minimal model fusion rules can be derived using repeated
applications of the (U1 and ()1, rules and associativity. They are

OrsiOrysy = D [0rs] (15.3.192)
r=lri—r|+1, |rn—rl+3 ...,
min(ri +rm —1,2p—1—r1 — 1), (15.3.19b)
s=|st—s2/+1, sg+s24+3, ...,
min(s; + s — 1,2g — 1 —s1 — $3) . (15.3.19¢)

hi1=0, hy= (15.3.18)

For O)_11 only a single term appears in the fusion with any other field,
Op-1,10,5 = [Op_]. A primary with these properties is known as a simple
current. Simple currents have the useful property that they have definite
monodromy with respect to any other primary. Consider the operator
product of a simple current J(z) of weight h with any primary,

J(2)04(0) = z"~h=h[©;(0) + descendants] , (15.3.20)
where J - [0;] = [0y]. The terms with descendants bring in only integer
powers of z, so all terms on the right pick up a common phase

2n(hy — h; — h) = 27Q; (15.3.21)

when z encircles the origin. The charge Q;, defined mod 1, is a discrete
symmetry of the OPE. Using the associativity of the OPE, the operator
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product coefficient ¢k i can be nonzero only if Q;+Q; = Q. Also, by taking
repeated operator products of J with itself one must eventually reach the
unit operator; suppose this occurs first for JV. Then associativity implies
that NQ; must be an integer, so this is a Zy symmetry. For the minimal
models,

Op-1,10p—-1,1 = [011] (15.3.22)

which is the identity, and so the discrete symmetry is Z,. Evaluating the
weights (15.3.21) gives

0. — (1 —S)erq(l —)

For the unitary case (15.3.17), exp(2niQ,;) is (—1)*"! for m odd and
(—1)"~! for m even.

mod 1 . (15.3.23)

Feigin—Fuchs representation

To close this section, we describe a clever use of CFT to generate integral
representations of the solutions to the differential equations satisfied by
the degenerate fields. Define

c=1—240} (15.3.24)

and consider the linear dilaton theory with the same value of the central
charge,

T = —%6(}50(}5 + 21210002 . (15.3.25)

The linear dilaton theory is not the same as a minimal model. In particular,
the modes o_j generate a Fock space of independent states, so the partition
function is of order exp(n/6/) as / — 0, larger than that of a minimal
model. However, the correlators of the minimal model can be obtained
from those of the linear dilaton theory. The vertex operator

V, = exp(2'/%ing) (15.3.26)
has weight o> — 200, so for
o= oy — % (15.3.27)
it is a primary of weight
02_41 + f . (15.3.28)

For y = ray + sa_ it is then degenerate, and its correlator satisfies the
same differential equation as the corresponding minimal model primary.
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There is a complication: the correlator
(Vo Vi Vaiy Vi ) (15.3.29)
generally vanishes due to the conservation law

> o = 2ag (15.3.30)
i

(derived in exercise 6.2). There is a trick which enables us to find a
nonvanishing correlator that satisfies the same differential equation. The
operators

Ji = exp(22ios ) (15.3.31)

are of weight (1,0), so the line integral

0, = jfdz Ty, (15.3.32)

known as a screening charge, is conformally invariant. Inserting Q" Q"-
into the expectation value, the charge conservation condition is satisfied
for

1 1
=30 ri—2, o= si—2. (15.3.33)

Further, since the screening charges are conformally invariant, they do
not introduce singularities into T(z) and the derivation of the differential
equation still holds. Thus, the minimal model conformal blocks are rep-
resented as contour integrals of the correlators of free-field exponentials,
which are of course known. This is the Feigin—Fuchs representation. It is
possible to replace V, — V,,—, in some of the vertex operators, since
this has the same weight; one still obtains integer values of ny, but this
may reduce the number of screening charges needed. It may seem curious
that the charges of the (1,0) vertex operators are just such as to allow for
integer n4. In fact, one can work backwards, deriving the Kac determinant
from the linear dilaton theory with screening charges.

The contours in the screening operators have not been specified —
they may be any nontrivial closed contours (but must end on the same
Riemann sheet where they began, because there are branch cuts in the
integrand), or they may begin and end on vertex operators if the integrand
vanishes sufficiently rapidly at those points. By various choices of contour
one generates all solutions to the differential equations, as in the theory of
hypergeometric functions. As noted before, one must impose associativity
and locality to determine the actual correlation functions. The Feigin—
Fuchs representation has been a useful tool in solving these conditions.
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154 Current algebras

We now consider a Virasoro algebra L, combined with a current algebra
Ji. We saw in section 11.5 that the Virasoro generators are actually
constructed from the currents. We will extend that discussion to make
fuller use of the world-sheet symmetry.

Recall that a primary state |r,i) in representation r of g satisfies

Ly|r,i) = jolr,iy, m>0, (15.4.1a)
Jolrsi) = [r, )ty i . (15.4.1b)
As in the case of the Virasoro algebra, we are interested in highest weight
representations, obtained by acting on a primary state with the L,, and
@ for m < 0. As we have discussed, a CFT with a current algebra can

always be factored into a Sugawara part and a part that commutes with
the current algebra. We focus on the Sugawara part, where

1

T(z)=——F— :jj(z): . 154.2
Recall also that the central charge is
k dim(g)
gh 2218/ 154.3
Tkt (1543)
and that the weight of a primary state is
O (15.4.4)

"= kT b

As in the Virasoro case, all correlations can be reduced to those of the
primary fields. In parallel to the derivation of eq. (15.2.3), one finds

(L - O1(21)) Oa(22) ... On(zn) )5, = I ( O1(21) ... On(zn) ), » (154.5)

where
O = Z (15.4.6)
5 (zi

and so on for multiple raising operators. Here, t*() acts in the represen-
tation r; on the primary (;; the representation indices on t*?) and ¢; are
suppressed.

The Sugawara theory is solved in the same way as the minimal models.
In particular, all representations are degenerate, and in fact contain null
descendants of two distinct types. The first follows directly from the
Sugawara form of T, which in modes reads

Ly = (k+h F @ Z JnFinen - (15.4.7)

n=—aoo
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For m = —1, this implies that any correlator of primaries is annihilated
by

a(i) ga
L — (k+h ZZI 7Y (15.4.8)

This is the Knizhnik—Zamolodchikov (KZ ) equation,

0
621 k+h 22.

(O1(z1)... Onlz) )5, =0 . (15.4.9)

We have suppressed group indices on the primary fields, but by writing
the correlator in terms of g-invariants, the KZ equation becomes a set
of coupled first order differential equations — coupled because there
is in general more than one g-invariant for given representations r;.
Exercise 15.5 develops one example. For the leading singularity (z; —z;)" as
z1 — z;, the KZ equation reproduces the known result (15.4.4) but does not
give fusion rules. There is again a free-field representation of the current
algebra (exercise 15.6), analogous to the Feigin—Fuchs representation of
the Virasoro algebra.

The second type of null descendant involves the currents only, and
does constrain the fusion rules. For convenience, let us focus on the case
g = SU(2). The results can then be extended to general g by examining the
SU(2) subalgebras associated with the various roots «. We saw in chapter
11 that the SU(2) current algebra has at least two interesting SU(2) Lie
subalgebras, namely the global symmetry joi, jg and the pseudospin

. 3 k .
AR (15.4.10)

Now consider some primary field
j,m) (15.4.11)

which we have labeled by its quantum numbers under the global SU(2).
What are its pseudospin quantum numbers (j/,m’)? Since it is primary, it
is annihilated by the pseudospin lowering operator, so m’ = —j’. We also
have m' = m —k/2, so j/ = k/2 — m. Now, the pseudospin representation
has dimension 2j" + 1, so if we raise any state 2j' 4+ 1 times we get zero:

()2 jom) = 0. (15.4.12)

This is the null descendant.

Now take the correlation of this descendant with some current alge-
bra primaries and use the relation (15.4.5) between the correlators of
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descendants and primaries to obtain
k—2mi+1
0= ((FE)2M - 01(z1).. Onlzn) ).

2

-2

i=2

(O1(21)...COnlz0))s, - (154.13)

Zi— 21
Notice that, unlike the earlier null equations, this one involves no deriva-
tives and is purely algebraic. To see how this constrains the operator

products, consider the three-point correlation. By considering the separate
z; dependences in eq. (15.4.13) one obtains

0= Z [(t+(2))lz]lnz,n2 [(t+(3))l3]m3,n3 ( Ojim Cjomy O js.my >s

mp,ms3

. (15.4.14)

2

where we have now written out the group indices explicitly. This holds for
all n, and n3, and for

b4l >k—2m +1. (15.4.15)

The matrix elements of (t+)! are nonvanishing for at least some ny3 if
my > l,— j» and m3 > [3— j3. Noting the restriction on [, 3, we can conclude
that the correlation vanishes when my +m3 > k —2m; + 1 — j, — j3. Using
my + my +m3 = 0 and taking m; = j; (the most stringent case) gives

<(QJ'1J1 Oy O s ms >32 =0 if j+pt+i>k. (15.4.16)

Although this was derived for m; = jj, rotational invariance now guar-
antees that it applies for all m;. Applying also the standard result for
multiplication of SU(2) representations, we have the fusion rule

Uil x Ll = [i—nll + [a—il+1] + ... + [min(i +j2,k—ji—j2)] -
(15.4.17)
Again there is a simple current, the maximum value j = k/2:

Uil x [k/2] = [k/2— ji] . (15.4.18)
The corresponding Z, symmetry is simply (—1)%.

Modular invariance

The spectrum of a g x g current algebra will contain some number n, of
each highest weight representation |r, 7). The partition function is then

Z(7) = Z mexr(@)1r(@)” 5 (15.4.19)

with the character defined by analogy to that for the conformal algebra,
eq. (15.2.12). Invariance under 7 — 7 4+ 1 amounts as usual to level
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matching, so n, can be nonvanishing only when h, — h; is an integer.
Under t — —1/1 the characters mix,

2(d) =D Swrr(a) (15.4.20)

so the condition for modular invariance is the matrix equation
SThs =n. (15.4.21)

The characters are obtained by considering all states generated by the
raising operators, with appropriate allowance for degeneracy. Only the
currents need be considered, since by the Sugawara relation the Virasoro
generators do not generate any additional states. The calculation is then
parallel to the calculation of the characters of finite Lie algebras, and the
result is similar to the Weyl character formula. The details are too lengthy
to repeat here, and we will only mention one simple classic result: the
modular S matrix for SU(2) at level k is

7 \1/2 . -/
o o P2+ DR+ 1)
1 k+2 k+2

The general solution to the modular invariance conditions is known.
One solution, at any level, is the diagonal modular invariant for which
each representation with j = j appears once:

nj; = 5j7 . (15423)

(15.4.22)

These are known as the A invariants. When the level k is even, there is
another solution obtained by twisting with respect to (—1)*. One keeps
the previous states with j integer only, and adds in a twisted sector where
j = k/2 — j. For k a multiple of 4, j in the twisted sector runs over
integers, while for k + 2 a multiple of 4, j in the twisted sector runs over
half-integers:

njy =0j1|, ,F Ok2—id|scgss - (15.4.24)
These are known as the D invariants. For the special values k = 10, 16, 28
there are exceptional solutions, the E invariants. The A-D-E terminology
refers to the simply-laced Lie algebras. The solutions are in one-to-one
correspondence with these algebras, the Dynkin diagrams arising in the

construction of the invariants.

Strings on group manifolds

Thus far the discussion has used only symmetry, without reference to
a Lagrangian. There is an important Lagrangian example of a current
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algebra. Let us start with a simple case, a nonlinear sigma model with a
three-dimensional target space,

S:

| ]
/ &2 (G + By)OX"3X" . (15.4.25)
2no!

Let Gy, be the metric of a 3-sphere of radius r and let the antisymmetric
tensor field strength be

q

Hmnp = rjfmnp (15.4.26)
for some constant q; €, 1S a tensor normalized to €,,¢™” = 6. The
curvature is

2

Ry = r—szn . (15.4.27)
To leading order in o/, the nonvanishing beta functions (3.7.14) for this
nonlinear sigma model are

2 2
= <>/Gmn(r2 - 2qr6> , (15.4.28a)
1 og?
B =5 - o;fé : (15.4.28b)

The first term in B® is the contribution of three free scalars. The theory is
therefore conformally invariant to leading order in o if
2 Ll

L+ow). (15.4.29)

The central charge is

/ 2
c=6ﬁ‘1’=3—6°2‘+0<°‘4> . (15.4.30)
r r
A 3-sphere has symmetry algebra 0(4) = SU(2) x SU(2). In a CFT, we
know that each current will be either holomorphic or antiholomorphic.
Comparing with the SU(2) Sugawara central charge
6

k+2°
the sigma model is evidently a Sugawara theory. One SU(2) will be
left-moving on the world-sheet and one right-moving.

The general analysis of current algebras showed that the level k is quan-
tized. In the nonlinear sigma model it arises from the Dirac quantization
condition. The argument is parallel to that in section 13.3. A nonzero total
flux H is incompatible with H = dB for a single-valued B. We can write
the dependence of the string amplitude on this background as

i i
exp(zna/ /MB>:exp(2mx,/NH), (15.4.32)

c=3 (15.4.31)
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where M is the embedding of the world-sheet in the target space and N

is any three-dimensional manifold in S3 whose boundary is M. In order
that this be independent of the choice of N we need

/33 H> = eXP(’Z?) . (154.33)

g=2dn, r*=d|n (15.4.34)

1= exp(

Thus,

for integer n. More generally, [ H over any closed 3-manifold in spacetime
must be a multiple of 4720/

This is the desired quantization, and |n| is just the level k of the current
algebra. In particular, the one-loop central charge (15.4.30) becomes

6 1
c=3- 40 (nz> , (15.4.35)

agreeing with the current algebra result to this order.

The 3-sphere is the same as the SU(2) group manifold, under the
identification

4
g=x'+ixe’, Y (x)y=1. (15.4.36)

The action (15.4.25) can be rewritten as the Wess—Zumino—Novikov—Witten
(WZNW ) action

'”'/ &z Tr(0g ' 3g) +—/ Tr(o?) (15.4.37)

where @ = g~ !dg is the Maurer—Cartan 1-form. Here M is the embedding
of the world-sheet in the group manifold, and N is any 3-surface in the
group manifold whose boundary is M. In this form, the action generalizes
to any Lie group g. The second term is known as the Wess—Zumino term.
The reader can check that

d(w’) =0. (15.4.38)

Therefore, locally on the group w® = dy for some 2-form y, and the
Chern-Simons term can be written as a two-dimensional action

n
- /M Tr(y) . (15.4.39)

As with the magnetic monopole, there is no such y that is nonsingular on
the whole space.
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The variation of the WZNW action is?

58 = 2’1/6122 Tr[dg g 'o(g )]

_ ‘zﬂ / Pz Tr[g " 0g 3(5gg)] . (15.4.40)
T
As guaranteed by conformal invariance, the global g x g symmetry
0g(z,z) =iepg(z,z) —ig(z,z2)er (15.4.41)
is elevated to a current algebra,
0g(z,z) =ier(z)g(z,z) —ig(z,z)er(z) . (15.4.42)

Left-multiplication is associated with a left-moving current algebra and
right-multiplication with a right-moving current algebra. The currents are

In|Tr(erg~'dg), |n|Tr(erdgg™!) . (15.4.43)

Let us check that the Poisson bracket of two currents has the correct
c-number piece. To get this, it is sufficient to expand

g =14i2n)) " ?p0% + ... (15.4.44)

and keep the leading terms in the Lagrangian density and currents,

g = %84&“5(1)“ +0(¢%), (15.4.45a)
j& = n|'200" + 0(¢?) , (15.4.45b)
j = |29 + 0(¢?) . (15.4.45¢)

The higher-order terms do not contribute to the c-number in the Poisson
bracket. The kinetic term now has the canonical o/ = 2 normalization so
the level k = |n| follows from the normalization of the currents.

Which states appear in the spectrum? We can make an educated guess
by thinking about large k, where the group manifold becomes more and
more flat. The currents then approximate free boson modes so the primary
states, annihilated by the raising operators, have no internal excitations —
the vertex operators are just functions of g. The representation matrices
form a complete set of such functions, so we identify

Di;(g) = 0i(2)(z) . (15.4.46)

This transforms as the representation (r,7) under g X g, so summing over all
r gives the diagonal modular invariant. Recall that for each k the number
of primaries is finite; Dj;(g) for higher r evidently is not primary. This
reasoning is correct for simply connected groups, but otherwise we must

3 This is for n > 0; for n < 0 interchange z and Z.
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exclude some representations and add in winding sectors. For example,

(2)/Z, = O(3) leads to the D invariant. We can understand the
restriction to even levels for the D invariant: [ H on SU(2)/Z, is half
of [ H on SU(2), so the coefficient must be even to give a well-defined
path integral.

The group manifold example vividly shows how familiar notions of
spacetime are altered in string theory. If we consider eight flat dimensions
with both right- and left-moving momenta compactified on the Eg root
lattice, we obtain an Eg; x Egr current algebra at level one. We get the
same theory with 248 dimensions forming the Eg group manifold with unit
H charge.

15.5 Coset models

A clever construction allows us to obtain from current algebras the min-
imal models and many new CFTs. Consider a current algebra G, which
might be a sum of several factors (g;, k;). Let H be some subalgebra. Then
as in the discussion of Sugawara theories we can separate the energy-
momentum tensor into two pieces,

TG =TH 4 TG/H (15.5.1)
The central charge of T/H is
O =G H (15.5.2)
For any subalgebra the Sugawara theory thus separates into the Sugawara
theory of the subalgebra, and a new coset CFT. A notable example is

G=SUQKx®SUQ), “=4——1 (15.5.3a)

H=SUQ2s, 1=3- 3 (15.5.3b)

where the subscripts denote the levels. Here, the H currents are the sums
of the currents of the two SU(2) current algebras in G, j* = ji, + jb)
Then the central charges

6
G/H _ 1 _
=1 (k +2)(k + 3) (15:54)

are precisely those of the unitary minimal models with m = k + 2.
A representation of the G current algebra can be decomposed under
the subalgebras,

15 (q) = Zn @z (), (155.5)
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where r is any representation of G, and ' and " respectively run over
all H and G/H representations, with n/,, nonnegative integers. For the
minimal model coset (15.5.3), all unitary representations can be obtained
in this way. The current algebra theories are rather well understood,
so this is often a useful way to represent the coset theory. For example,
while the Kac determinant gives necessary conditions for a minimal model
representation to be unitary, the coset construction is regarded as having
provided the existence proof, the unitary current algebra representations
having been constructed directly. The minimal model fusion rules (15.3.19)
can be derived from the SU(2) current algebra rules (15.4.17), and the
minimal model modular transformation

8 L] V2 nrr’ nss’
= (=) i sin 15.5.6
TSP p n U559

can be obtained from the SU(2) result (15.4.22). Further, the minimal
model modular invariants are closely related to the SU(2) A-D-E invari-
ants.

Srs,r’ s =

Taking various G and H leads to a wealth of new theories. In this
section and the next we will describe only some of the most important
examples, and then in section 15.7 we discuss some generalizations. The
coset construction can be regarded as gauging the subalgebra H. Confor-
mal invariance forbids a kinetic term for the gauge field, and the equation
of motion for this field then requires the H-charge to vanish, leaving the
coset theory. This is the gauging of a continuous symmetry; equivalently,
one is treating the H currents as constraints. Recall that gauging a discrete
symmetry gave the orbifold (twisting) construction.

The parafermionic theories are:

SUQ . _,_ 6
Ul k42"

(15.5.7)

Focusing on the U(1) current algebra generated by j?, by the OPE we can
write this in terms of a left-moving boson H with standard normalization
H(z)HO) ~ —Inz:

P =ik/2)\?oH, TH = —%aHaH . (15.5.8)

Operators can be separated into a free boson part and a parafermionic
part. For the SU(2) currents themselves we have

Jt = expliH2/k)' P11, j~ = exp[—iH(2/k)' 1y}, (15.5.9)

where 1y is known as the parafermionic current. Subtracting the weight
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of the exponential, the current has weight (k — 1)/k. One obtains further
currents

(N = ()" 1 = exp(LH2/K) )y (15.5.10)

with y; having weight I(k — [)/k. The current algebra null vector (15.4.12)
implies that y; vanishes for [ > k, which could also have been anticipated
from its negative weight. The weight also implies that yo = yr = 1,
and from this one can also deduce that y; = w,:_l. The current algebra
primaries similarly separate,

Ojm = explimH (2/k)' Ty}, , (15.5.11)

where ), is a primary field of the parafermion algebra, and has weight
JjG+1)/(k +2) —m?/k.

Factoring out the OPE of the free boson, the operator products of the
parafermionic currents become

wi(2)pr(0) = 272 (i 4 .. (15.5.12)

This algebra is more complicated than those encountered previously, in
that the currents have branch cuts with respect to each other. However,
it is simple in one respect: each pair of currents has definite monodromy,
meaning that all terms in the operator product change by the same phase,
exp(—4rill’' /k), when one current circles the other. We will mention an
application of the parafermion theories later.

For small k, the parafermion theories reduce to known examples. For
k = 1, the parafermion central charge is zero and the parafermion theory
trivial. In other words, at k = 1 the free boson is the whole SU(2)
current algebra: this is just the torus at its self-dual radius. For k = 2,
the parafermion central charge is %, so the parafermion must be an
ordinary free fermion. We recall from section 11.5 that SU(2) at k = 2
can be represented in terms of three free fermions. The free boson H is
obtained by bosonizing 1'?, leaving 1> as the parafermion. At k = 3
the parafermion central charge is %, identifying it as the m = 5 unitary
minimal model.

Although constructed as SU(2) cosets, the minimal models have no
SU(2) symmetry nor any other weight 1 primaries. In order for an operator
from the G theory to be part of the coset theory, it must be nonsingular
with respect to the H currents, and no linear combination of the currents
J(1) and j{) 1s nonsingular with respect to jij) + ji3). The situation becomes
more interesting if we consider the bilinear invariants

:j(“l)j(“l) - :j(“l)j(“z) 5, :j(“z)j(“z) D (15.5.13)

In parallel with the calculations in exercise 11.7, the operator product of
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the H current with these bilinears is

o0
j(bl)(z)"'j(b2)(z)} ]8)]6)(0) L= Z Zk% {j/f(l) +j£(2)}jgl(i)jil(j) 1. (15514)
k_
The k = 0 term vanishes because the bilinear is G-invariant. For k = 1,
commuting the lowering operator to the right gives a linear combination
of jb 1(1) and i 1(2)- All higher poles vanish. Thus, there are three bilinear
invariants and only two possible singularities, so one linear combination
commutes with the H current and lies entirely within the coset theory.
This is just the coset energy-momentum tensor T9/H, which we already
know.

For SU(2) cosets that is the end of the story, but let us consider the
generalization

k k
G 2 1 2
—t f— — 1
G=SUmnk @SUnk,, c¢ (n ) k1+n+k2+n ,
(15.5.15a)
ki 4+ ko
H=SU =) ——. 15.5.15b
(s, € =07 =) (155.15b)
For n > 3 there is a symmetric cubic invariant
d® oc Tr(t{e%, 1)) , (15.5.16)

which vanishes for n = 2. Similarly, for n > 4 there is an independent
symmetric quartic invariant, and so forth. Using the cubic invariant, we
can construct the four invariants d*° : i j(bj) Jixy - The operator product
with the H current has three possible singularities, z=2d“"¢ : j(bj) Jik) > 8O
there must be one linear combination W (z) that lies in the coset theory.
That is, the coset theory has a conserved spin-3 current. The states of the
coset theory fall in representations of an extended chiral algebra, consisting
of the Laurent modes of T'(z), W(z), and any additional generators needed
to close the algebra.

In general, the algebra contains higher spin currents as well. For exam-
ple, the operator product W(z)W(0) contains a spin-4 term involving the
product of four currents. For the special case n = 3 and k, = 1, making
use of the current algebra null vectors, the algebra of T(z) and W(z)
actually closes without any new fields. It is the W3 algebra, which in OPE
form is

C 2 1 3 5 1 ;
WEWO) ~ o+ 5 TO) + 50T0) + 150" T(0) + -°T(0)
16 2 1 e aa
+ s (54 10)10:T30): =302 . (15517

In contrast to the various algebras we have encountered before, this one
is nonlinear: the spin-4 term involves the square of T'(z). This is the only
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closed algebra containing only a spin-2 and spin-3 current and was first
discovered by imposing closure directly. It has a representation theory
parallel to that of the Virasoro algebra, and in particular has a series of
unitary degenerate representations of central charge

24
C (k43)(k+4)°
The (ki,ko,n) = (k,1,3) cosets produce these representations. As it hap-
pens, the first nontrivial case is k =1, ¢ = %, which as we have seen also

has a parafermionic algebra. The number of extended chiral algebras is
enormous, and they have not been fully classified.

(15.5.18)

15.6 Representations of the N = 1 superconformal algebra

All the ideas of this chapter generalize to the superconformal algebras. In
this section we will describe only the basics: the Kac formula, the discrete
series, and the coset construction.

A highest weight state, of either the R or NS algebra, is annihilated by
L, and G, for n > 0. The representation is generated by L, for n < 0
and G, for n < 0. Each G, acts at most once, since G2 = L,,. The Kac
formula for the R and NS algebras can be written in a uniform way,

det(/N)rns = (h—et/16)Ky [[ (h—hyg)PsN=r/2 - (15.6.1)
1<rs<2N
Here, € is 1 in the NS sector and 0 in the R sector. The zeros are at

_e—1+4e 1 . 2
hy s = —1¢ T Z(roq +s6_)", (15.6.2)

where r — s must be even in the NS sector and odd in the R sector. We
have defined ¢ = 2¢/3 and

by = %[(1 —o)V2 49— e)l/z] . (15.6.3)

The multiplicity of each zero is again the number of ways a given level
can be reached by the raising operators of the theory,

1+ n—1 0
H = q =Z Pr(k)g* (15.6.42)
n=1 k=0
n—1/2 0
H “{q = 3" Pas(k)gt (15.6.4b)
n=1 k=0

Unitary representations are allowed at

¢
c>1 h>e— 15.6.
c>1, TR (15.6.5)
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and at the discrete series

3 12
= —-— =23,...
C 2 m(m+2) ) m s~y )
7 81
=0, 10 1, 70 (15.6.6a)
[r(m+2)—sm>*—4 €
h=h,= — 15.6.6b
i 8m(m + 2) + 16° ( )

where | <r<m—1land 1 <s<m+ L
A coset representation for the N = 1 unitary discrete series is

G=SUQK®SUQR), H=SUQ2)ss. (15.6.7)

The central charge is correct for m = k + 2. The reader can verify that
the coset theory has N = 1 world-sheet supersymmetry: using the free
fermion representation of the k = 2 factor, one linear combination of the
(%,0) fields jij,p“ and ie“bpaypbip¢ is nonsingular with respect to the H
current and is the supercurrent of the coset theory.

For small m, some of these theories are familiar. At m = 2, ¢ vanishes
and we have the trivial theory. At m = 3, ¢ = 1—70, which is the m = 4
member of the Virasoro unitary series. At m = 4, ¢ = 1; this is the free
boson representation discussed in section 10.7.

15.7 Rational CFT

We have seen that holomorphicity on the world-sheet is a powerful prop-
erty. It would be useful if a general local operator of weight (h, /) could
be divided in some way into a holomorphic (h,0) field times an anti-
holomorphic (0,4) field, or a sum of such terms. The conformal block
expression (15.2.9) shows the sense in which this is possible: by organiz-
ing intermediate states into conformal families, the correlation function
is written as a sum of terms, each holomorphic times antiholomorphic.
While this was carried out for the four-point function on the sphere, it is
clear that the derivation can be extended to n-point functions on arbitrary
Riemann surfaces. For example, the conformal blocks of the zero-point
function on the torus are just the characters,

Z(t) =Y nmyxil@)q)" (15.7.1)
i

where n;; counts the number of times a given representation of the left
and right algebras appears in the spectrum.

When the sum is infinite this factorization does not seem particularly
helpful, but when the sum is finite it is. In fact, in all the examples
discussed in this section, and in virtually all known exact CFTs, the sum
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is finite. What is happening is that the spectrum, though it must contain
an infinite number of Virasoro representations for ¢ > 1, consists of a
finite number of representations of some larger extended chiral algebra.
This is the definition of a rational conformal field theory (RCFT).

It has been conjectured that all rational theories can be represented
as cosets, and that any CFT can be arbitrarily well approximated by a
rational theory (see exercise 15.9 for an example). If so, then we are close
to constructing the general CFT, but the second conjecture in particular
seems very optimistic.

We will describe here a few of the general ideas and results. The basic
objects in RCFT are the conformal blocks and the fusion rules, nonnegative
integers N{‘j which count the number of ways the representations i and j
can be combined to give the representation k. For the Virasoro algebra,
we know that two representations can be combined to give a third in a
unique way: the expectation value of the primaries determines those of all
descendants. For other algebras, Nf‘j may be greater than 1. For example,
even for ordinary Lie algebras there are two ways to combine two adjoint
8s of SU(3) to make another adjoint, namely d“*° and f%¢. As a result,
the same holds for the corresponding current algebra representations:
N§ =2.

Repeating the derivation of the conformal blocks, for a general algebra

the number of independent blocks ,97@-1(”2) is

Nijii = NijNri (15.7.2)

where the repeated index is summed. Indices are lowered with Nl-oj = Nyj,
zero denoting the identity representation. One can show that for each
i, N;j i1s nonvanishing only for a single j. This defines the conjugate
representation, N; = 1. In the minimal models and SU(2) current algebra,
all representations are self-conjugate, but for SU(n), n > 2 for example,

they are not. By associativity, the s-channel conformal blocks ,g"ifj(r\z)

are linearly related to the t-channel blocks & {lk(r|1 — z). The number of
independent functions must be the same in each channel, so the fusion
rules themselves satisfy an associativity relation,

N/;N,; = NjN,; = NjN,j . (15.7.3)

We will now derive two of the simpler results in this subject, namely
that the weights and the central charge must in fact be rational numbers
in an RCFT. First note that the conformal blocks are not single-valued
on the original Riemann surface — they have branch cuts — but they are
single-valued on the covering space, where a new sheet is defined whenever
one vertex operator circles another. Any series of moves that brings the
vertex operators back to their original positions and sheets must leave the
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conformal blocks invariant. For example,
TIT2T3T4 = T12T13723 , (15.7.4)

where 7;..; denotes a Dehn twist, cutting open the surface on a circle
containing the indicated vertex operators, rotating by 2z and gluing. To
see this, examine for example vertex operator 1. On the right-hand side,
the combined effect of 71, and 713 is for this operator to circle operators 2
and 3 and to rotate by 4x. On the left, this is the same as the combined
effect of 74 (which on the sphere is the same as 7123) and ;. Eq. (15.7.4)
is an Njj-dimensional matrix equation on the conformal blocks. For
example,

1 Fh(rlz) > expuihy) F i (rlz) | (15.7.5a)
T F(rlz) > exp2nih) T (rlz) - (15.7.5b)

On the other hand, 713 is not diagonal in this basis, but rather in the dual
basis %{Ik(ru —2).

In order to get a basis-independent statement, take the determinant of
eq. (15.7.4) and use (15.7.5) to get

Nijkl(hi + h] + hk + h]) - Z(Nlerrkl + NirkNrjl + Nl’lNer)hr S Z . (1576)
p
This step is possible only when the number 4" of primaries is finite.
There are many more equations than weights. Focusing on the special
case i = j =k =1 gives

ZN Li(4hi —3h,) € Z . (15.7.7)

This is .4/ — 1 equations for .#/° — 1 weights, where ./ is the number of
primaries; the weight hy is always 0, and the i = 0 equation is trivial.
Let us consider the example of SU(2) current algebra at level 3, where
there are four primaries, j = 0, %, 1, % From the general result (15.4.17),
the nonzero fusion rules of the form Nj; are

Noo =N{jp1p=Nipip =N =Nl =N33,=1. (15.7.8)
Thus we find that
Shys—3hi, Shi. 4hy, (15.7.9)

are all integers, which implies that the weights are all rational. These
results are consistent with the known weights j(j 4+ 1)/(k 4+ 2). The reader
can show that eqgs. (15.7.7) are always nondegenerate and therefore require
the weights to be rational.*

4 We are assuming that all the Nj;;; are nonzero. More generally, one can derive a similar relation
with Nji, which is always positive.
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For the central charge, consider the zero-point function on the torus.
The covering space here is just Teichmiiller space, on which one may check
that

St=(STY =1. (15.7.10)
The determinant of this implies that
1 = [(det $)*73[(det S det T)*]* = (det T)!? . (15.7.11)
The transformation T acts on the characters as
T :  7ilq) — exp2mi(h; — ¢/24)]1i(q) - (15.7.12)
Thus,
%—uzh e’Z, (15.7.13)

and the rationality of ¢ follows from that of the weights.

The consistency conditions for RCFT have been developed in a system-
atic way. Let us just mention some of the most central results. The first
is the Verlinde formula, which determines the fusion rules in terms of the
modular transformation S:

Ti
=y S"S . (15.7.14)
.

Indices are lowered with N?j. The second is naturalness: any operator prod-

uct coefficient that is allowed by the full chiral algebra is actually nonzero.’

The third result describes all possible modular invariants (15.7.1): either
nj; = 0; (the diagonal invariant), or nj; = 0iw(j), Where w(j) is some
permutation symmetry of the fusion rules. The latter two results are not
quite as useful as they sound, because they only hold with respect to the
full chiral algebra of the theory. As we have seen in the W algebra coset
example, this may be larger than one realizes.

Finally, let us mention a rather different generalization of the coset idea.
Suppose we have a current algebra G, and we consider all (2,0) operators
formed from bilinears in the currents,

T = Lg :j45": . (15.7.15)

The condition that the TT OPE has the correct form for an energy-
momentum tensor, and therefore that the modes of T form a Virasoro
algebra, is readily found. It is the Virasoro master equation,

d d
Loy = 2L ok“Lygy — LegLog fEF8 — Loaf 5 Ly, (15.7.16)

5 This precise statement holds only when the N}k are restricted to the values 0 and 1; otherwise,
it requires some refinement.
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where k% is the coefficient 1/z2 in the current—current OPE. The central
charge is

¢ =2k%Ly, . (15.7.17)

We already know some solutions to this: the Sugawara tensor for G,
or for any subalgebra H of G. Remarkably, the set of solutions is very
much larger: for G = SU(3)i, the number has been estimated as % billion
for each k. For each solution the G theory separates into two decoupled
theories, with energy-momentum tensors T’ and T¢ — T’. Some of these
may be equivalent to known theories, but others are new and many have
irrational central charge.

15.8 Renormalization group flows

Consistent string propagation requires a conformally invariant world-sheet
theory, but there are several reasons to consider the relation of CFTs to
the larger set of all two-dimensional field theories. First, CFT also has
application to the description of critical phenomena, where the parameters
can be varied away from their critical values. Second, there is a rich math-
ematical and physical interplay between conformal theories and nearby
nonconformal ones, each illuminating the other. Third, conformally in-
variant theories correspond to string backgrounds that satisfy the classical
equations of motion. One might then guess that the proper setting for
quantum string theory would be a path integral over all background field
configurations — that is, over all two-dimensional quantum field theories.
This last is more speculative; it is related to other formulations of string
field theory, a subject discussed briefly in chapter 9.

In this section we will develop some general results relating conformal
and nonconformal theories. In the next we will discuss some examples
and applications. Once again, this is an enormous subject and we can only
sketch a few of the central ideas and results.

Scale invariance and the renormalization group
Consider the scale transformation
0sz = €z (15.8.1)

on a world-sheet with flat metric g,, = J,4. Alternatively we could keep
the coordinates fixed and scale up the metric,

0s8ab = 2€ab - (15.8.2)



260 15 Advanced CFT

In either form the net change (3.4.6) in the action and measure is

_ /d% T(q) . (15.8.3)
2n
A flat world-sheet theory will therefore be scale-invariant provided that
T = 0,4, (15.8.4)

for some local operator ¢

Scale invariance plays an important role in many parts of physics. One
expects that the extreme low energy limit of any quantum field theory will
approach a scale-invariant theory. This has not been proven in general,
but seems to be true in all examples. The scale-invariant theory may be
trivial: if all states are massive then at low enough energy nothing is left.
Consider for example a statistical mechanical system. The Boltzmann sum
is the same as the Euclidean path integral in quantum field theory. This
may have an energy gap for generic values of the parameters and so be
trivial at long distance, but when the parameters are tuned to send the gap
to zero (a second order phase transition) it is described by a nontrivial
scale-invariant theory.

The term nontrivial in this context is used in two different ways. The
broad usage (which is applied in the previous paragraph) means any
field theory without an energy gap, so that there are states of arbitrarily
small nonzero energy. A narrower usage reserves the term for scale-
invariant theories with interactions that remain important at all distances,
as opposed to those whose low energy limit is equivalent to that of a free
field theory.

Scale and conformal invariances are closely related. The scale transfor-
mation rescales world-sheet distances by a constant factor, leaving angles
and ratios of lengths invariant. A conformal transformation rescales world-
sheet distances by a position-dependent factor; on a very small patch of
the world-sheet it looks like a scale transformation. In particular, confor-
mal transformations leave angles of intersection between curves invariant.
Comparing the condition (15.8.4) with the condition T% = 0 for confor-
mal invariance, one sees that it is possible in principle for a theory to be
scale-invariant without being conformally-invariant. However, it is diffi-
cult to find examples. Later in the section we will prove that for compact
unitary CFTs in two dimensions scale invariance does imply conformal
invariance. Exercise 15.12 gives a nonunitary counterexample.

This is of some importance in dimensions greater than two. In the
previous chapter we encountered two nontrivial (in the narrow sense)
scale-invariant theories. The first was the d = 4, N = 4 gauge theory.
The second was the d = 6 (2,0) tensionless string theory, which arose on
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coincident ITA or M-theory 5-branes. Both are believed to be conformally
invariant.

In quantum field theory, the behavior of matrix elements under a rigid
scale transformation is governed by a differential equation, the renor-
malization group equation. Let us derive such an equation. Consider a
general quantum field theory in d-dimensional spacetime; spacetime here
corresponds to the string world-sheet, which is the case d = 2. The scale
transformation of a general expectation value is

GA@OJﬂ@mM>=-b2/ﬁ%<rzwq}ﬂmwm>

-5 8 (Ao T] tilom) . (1585)
n m=n

where .o7; is a complete set of local operators. The second term is from

the action of the scale transformation on the operators,

e 10t i(0) = =N/ A j(0) . (15.8.6)

The integrated trace of the energy-momentum tensor can be expanded in
terms of the complete set,

/ dlo T = —22%" / de Bi(g)t: . (15.8.7)

The prime on the sum indicates that it runs only over operators with
dimension less than or equal to d, because this is the dimension of the
energy-momentum tensor. We can similarly write a general renormalizable
action as a sum over all such terms

S — Z/gi/ddayfi(a) . (15.8.8)

Here g' is a general notation that includes the interactions as well as
the masses and the kinetic term normalizations. The expansions (15.8.7)
and (15.8.8) can be used to rewrite the scale transformation (15.8.5) as the
renormalization group equation,

a%{gﬂm%ﬁz—;W@gKg%m%ﬁ

- A,-nf<,;z/ o) [] ﬂ,-m(am)> . (15.8.9)
n m#n

There may also be contact terms between T% and the other operators,

and terms from the g;-derivative acting on the local operators. These are

dependent on definitions (the choice of renormalization scheme) and can

all be absorbed into the definition of A;/. Eq. (15.8.9) states that a scale
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transformation is equivalent to a change in the coupling plus a mixing of
operators. As one looks at longer distances the couplings and operators
flow.

The Zamolodchikov c-theorem.

Without conformal invariance, T, is not holomorphic, its modes do not
generate a Virasoro algebra, and the central charge ¢ is not defined.
Nevertheless, ¢ has a useful extension to the space of all two-dimensional
field theories.

Define
F(r?) = z*(T. Zz(o 0)) , (15.8.10a)
G(r?) = 4z 32( )T-2(0,0)) , (15.8.10b)
H(r?) = 162°z> <T ( 7)T.2(0,0)) . (15.8.10c)
Rotational invariance implies that these depend only on r? = zz, as
indicated. From conservation, 0T,; 4+ 0T,z = 0, one finds that
4F+G—-3G=0, 46—4G+H—-2H=0, (15.8.11)

where a dot denotes differentiation with respect to Inr2. The Zamolod-
chikov C function is the combination

3
C=2F—-G-— gH . (15.8.12)
This has the property
C= —%H. (15.8.13)

In a unitary theory H can be written as a sum of absolute squares by
inserting a complete set of states, and so is nonnegative. The result (15.8.13)
shows that the physics changes in a monotonic way as we look at longer
and longer distances. Also, C is stationary if and only if the two-point
function of T,z with itself is zero, implying (by a general result in unitary
quantum field theory) that T.; itself vanishes identically. The theory is
then conformally invariant and C becomes precisely c.

The monotonicity property also implies that the theory at long distance
will approach a stationary point of C and therefore a CFT. Again, this
is intuitively plausible: at long distances the theory should forget about
underlying distance scales. In general this is likely to happen in the
trivial sense that all fields are massive and only the empty ¢ = 0 theory
remains. However, if massless degrees of freedom are present due to some
combination of symmetry and the tuning of parameters, the c-theorem
implies that their interactions will be conformally invariant. We should
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emphasize that the unitarity and compactness are playing a role; in the
more general case there do exist counterexamples (exercise 15.12).

Like ¢, the C function seems to represent some generalized measure of
the density of states. The monotonicity is then very plausible: a massive
field would contribute to the number of degrees of freedom measured at
short distance, but drop out at distances long compared to its Compton
wavelength. In spite of this intuitive interpretation, there seems to be no
simple generalization of the C function to d > 2. However, the principle
that the long distance limit of any quantum field theory is conformally
invariant still seems to hold under broad conditions.

Conformal perturbation theory

Now let us consider adding small conformally-noninvariant terms to the
action of a CFT,

S =)+ /v'/dzz o; (15.8.14)

where Sy is the action of the CFT. For convenience we focus on the
case that the perturbations are primary fields, but the results are easily
generalized. The A' are the earlier couplings g’ minus the value at the
conformal point.

The main question is how the physics in the perturbed theory depends on
scale. Consider the following operator product, which arises in first order
perturbation theory for correlations of the energy-momentum tensor:

CTe(z.2) / Pow Oy, ) . (15.8.15)

We have
0= T>2(2)Oi(w, W)
= 0:[(z = W) 2hi + (2 = w) ' o] i, W)
= —27hi0.0%(z — w)Oi(w, W) + 216%(z — w)dy, O(w, W) . (15.8.16)

Integrating this, the first order perturbation (15.8.15) implies that pertur-
bation leads to

0:T2x(2,2) = 2mdi(h — 1)0.04(z, %) . (15.8.17)

As expected, the energy-momentum tensor is no longer holomorphic,
unless the perturbation is of weight h; = 1. The energy-momentum tensor
must still be conserved,

0:Tor 4+ 0, s, = 0. (15.8.18)
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Inspection of the divergence (15.8.17) thus identifies
T:. =212 (1 — hy)0i(z,Z) . (15.8.19)

We assume that the perturbations are rotationally invariant, h; = f;, so
that T,, remains symmetric.
Referring back to the renormalization group, we have

B =2(hi — 1), (15.8.20)

so that a rescaling of lengths by e is equivalent to a rescaling of the
couplings,

0N =2e(1 —h)A . (15.8.21)

A perturbation with h; > 1 is thus termed irrelevant, because its effect
drops away at long distance and we return to the conformal theory. A
perturbation with h; < 1 is termed relevant. It grows more important at
low energies, and we move further from the original conformal theory. A
perturbation with h; = 1 is termed marginal.

Now let us go to the next order in g. Consider first the case that the
perturbations (; are all of weight (1, 1), marginal operators. Second order
perturbation theory will then involve the operator product

% / Pz 04(2.7) / &P 0w, W) | (15.8.22)

the factor of % coming from the expansion of exp(—S). The part of the
OPE that involves only marginal operators is

1
0i(z,2)0;(w, W) ~ mckij@k(w,w) , (15.8.23)

so the second order term (15.8.22) will have a logarithmic divergence when
z—>w,

o / ar / Pw O(w, ) . (15.8.24)

The divergence must be cut off at the lower end, introducing a scale into
the problem and breaking conformal invariance. At the upper end, the
scale is set by the distance at which we are probing the system. We can
read off immediately the scale dependence: if we increase the scale of
measurement by a factor 1 + ¢, the log increases by e. This is equivalent
to shifting the couplings by

5k = —2meck; 2t . (15.8.25)
In other words,

B = 2mckiid . (15.8.26)
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As an application, suppose that we are interested in perturbations that
preserve conformal invariance. We have the familiar necessary condition
that the perturbation be a (1,1) tensor, but now we see that there are
further conditions: conformal invariance will be violated to second order
in A unless

i =0 (15.8.27)

for all (1,1) operators k.

Now we wish to go to second order in A for perturbations that are not
marginal. At weak coupling, the order A> term is important only if the
first order term is small — that is, if the coupling is nearly marginal. To
leading order in h; — 1, we can just carry over our result for O(4?) in the
marginal case. Combining the contributions (15.8.20) and (15.8.26), we
then have

Bl = 2(h; — 1)1+ 2k, (15.8.28)

with corrections being higher order in h; — 1 or A'. Let us also work out
the C function. With Tz, = —n'0;, the result (15.8.13) for the C function
becomes to leading order

C=—-122°B'4/Gy; (15.8.29)
where
Gij = 2°22{ 0i(2,2)0}(0,0)) (15.8.30)

is evaluated at A = 0. Observe that
0

P= — 15.8.31
pr= 500G (158.31a)
i 2n i9jqk

UQ)=(h— DA+ ?Cijk/l A, (15.8.31b)

indices being lowered with G;j. Using this and B! = —2/ gives
C =24n’B;i) = 24n°U . (15.8.32)

This integrates to

C =c+24n°U (15.8.33)

with ¢ being the central charge at the conformal point A’ = 0.
Now let us apply this to the case of a single slightly relevant operator,

Jo=(1—h)A—mncii A2, (15.8.34)

normalized so that Gy = 1. If 1 starts out positive it grows, but not
indefinitely: the negative second order term cuts off the growth. At long
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distance we arrive at a new conformal theory, with coupling
1—h
/ —

A .
TC111

(15.8.35)

From the string spacetime point of view, we can interpret U(4) as a po-
tential energy for the light field corresponding to the world-sheet coupling
/, and the two conformal theories correspond to the two stationary points
of the cubic potential. Note that 2 = 0 is a local maximum: relevant
operators on the world-sheet correspond to tachyons in spacetime. The
central charge of the new fixed point is
U=

d=c (15.8.36)

2
TN

15.9 Statistical mechanics

The partition function in classical statistical mechanics is

7z = / [dq] exp(—BH) , (15.9.1)

where the integral runs over configuration space, f§ is the inverse tem-
perature, and the Hamiltonian H is the integral of a local density. This
has a strong formal similarity to the path integral for Euclidean quantum
theory,

Z = / [d$] exp(—S /) . (15.9.2)

In the statistical mechanical case, the configuration is a function of the spa-
tial dimensions only, so that statistical mechanics in d spatial dimensions
resembles quantum field theory in d spacetime dimensions. An obvious
difference between the two situations is that in the statistical mechanical
case there is generally an underlying discrete structure, while in relativistic
field theory and on the string world-sheet we are generally interested in a
continuous manifold.

There is a context in statistical mechanics in which one essentially
takes the continuum limit. This is in critical phenomena, in which some
degrees of freedom have correlation lengths very long compared to the
atomic scale, and the discrete structure is no longer seen. In this case, the
statistical ensemble is essentially identical to a relativistic field theory. Let
us discuss the classic example, the Ising model. Here one has an array of
spins on a square lattice in two dimensions, each spin g; taking the values
+1. The energy is

H=-> ooy . (15.9.3)

links
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The sum runs over all nearest-neighbor pairs (links). The energy favors
adjacent pairs being aligned. When f is small, so that the temperature is
large, the correlations between spins are weak and short-range,

(gi0j) ~ exp[—i — jI/<(P)] (15.9.4)

as the distance |i — j| goes to infinity. For sufficiently large f the Z;
symmetry ¢; — —o; is broken and there is long-range order,

(ai0;) ~v*(B) + exp[—|i— jI/E(B)] . (15.9.5)

For both small and large f the fluctuations are short-range. However, the
transition between these behaviors is second order, both &(f8) and &'(f)
going to infinity at the critical value .. At the critical point the falloff is
power law rather than exponential,

(gigj) ~li—jI™", B=4p. (15.9.6)

The long-wavelength fluctuations at this point should be described by a
continuum path integral. The value of the critical exponent 1 is known
from the exact solution of the Ising model to be %. This cannot be
deduced from any classical reasoning, but depends in an essential way on
the nonlinear interactions between the fluctuations.

To deduce the CFT describing the critical theory, note the global
symmetry of the Ising model, the Z, symmetry o; —» —a;. We have a whole
family of CFTs with this symmetry, the minimal models. For reasons to
be explained below, the correct minimal model is the first nontrivial one,
m =3 with ¢ = % The nontrivial primary fields of this theory, taking into

account the identification (15.3.15), are

1 1
— ch=—. 15.9.
%’ O13: h 3 (15.9.7)

Under the Z, (15.3.23), O, is odd and the other two are even. In particular,
the Ising spins, being odd under Z,, should evidently be identified as

o — 0(2,2) = 015(2)012(2) . (15.9.8)

The left- and right-moving factors must be the same to give a rotationally
invariant operator. There are separate Z)s acting on the left- and right-
moving theories, but all operators have equal left and right charges so we
can take either one. The expectation value

(6(2,2)0(0,0)) oc (z2) 2" = (zz)71/3 (15.9.9)

agrees with the exact solution for the critical exponent 7.

The m = 3 minimal model is equivalent to the free massless Majorana
fermion. Indeed, Onsager solved the Ising model by showing that it could
be rewritten in terms of a free fermion on a lattice, which in general is
massive but which becomes massless at .. Note that (/1 3 has the correct

(91’11 h=0, (91’21 h=
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dimension to be identified with the fermion field, and (;, has the correct
dimension to be the R sector ground state vertex operator for a single
Majorana fermion.

Incidentally, the solubility of the Ising model for general f can be
understood directly from the CFT. Changing the temperature is equivalent
to adding

013(2)013(2) (15.9.10)

to the action. This is the only relevant perturbation that is invariant under
the Z, symmetry. This perturbation breaks the conformal invariance, but it
can be shown from the OPEs of the CFT that a spin-4 current constructed
from T2 is still conserved. The existence of a symmetry of spin greater
than 2 in a massive theory is sufficient to allow a complete solution. Of
course, in the present case the perturbation (15.9.10) is just a mass for
the free fermion, but for other CFTs without such a simple Lagrangian
description this more abstract approach is needed.

The requirement that operators have integer spin means that we can
only pair the same conformal family on the right and left. For the theory
quantized on the circle, this corresponds to the A modular invariant
discussed earlier,

[011011] + [012015] + [015013] . (15.9.11)

In terms of the free fermion theory this is the diagonal GSO projection.

For two-dimensional critical theories with few enough degrees of free-
dom that the central charge is less than one, the classification of unitary
representations of the Virasoro algebra completely determines the possible
critical exponents: they must be given by one of the minimal models.®
For this reason this same set of CFTs arises from many different short-
distance theories. Let us mention one such context, which illustrates the
relation among all the unitary minimal models through the Z, symmetry
they share. We noted that the m = 3 theory has only one relevant per-
turbation that is invariant under Z,. We therefore identified this with a
variation of the temperature away from the critical point. The operator
@1,1@1,1 is just the identity and adding it to the action has a trivial effect.
The operator (91,2@1,2 is odd under Z, and corresponds to turning on a
magnetic field that breaks the 6; —» —o; symmetry. For the minimal model
at general m there are m — 2 nontrivial relevant Z,-invariant operators.
This corresponds to multicritical behavior. To reach such a model one must
tune m — 2 parameters precisely.

© There is a caveat: the CFTs that arise in statistical physics need not be unitary. Unitarity in that
context is related to a property known as reflection positivity, which holds in most but not all
systems of interest.
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For example, take the Ising model with thermally equilibrated (an-
nealed) vacancies, so that each spin ¢ can take values +1 or 0, the last
corresponding to an empty site. When the density p of vacancies is small,
the behavior is much like the Ising model, with the same critical behavior
at some point f.(p). However, when the vacancy density reaches a critical
value p, then at f(pc) there are independent long-range fluctuations of
the spin and density. This is known as the tricritical Ising model, tricrit-
ical referring to the need to adjust two parameters to reach the critical
point. Since there are more long-range degrees of freedom than in the
Ising model, we might expect the critical theory to have a greater cen-
tral charge. The tricritical Ising model has been identified with the next
minimal model, m = 4 with ¢ = 1—70. This generalizes: with spins (also
called ‘heights’) taking m — 1 values, there is a multicritical point obtained
by adjusting m — 2 parameters which is described by the corresponding
minimal model. In fact, every CFT we have described in this chapter can
be obtained as the critical limit of a lattice theory, and indeed of a solvable
lattice theory. It is quite likely that every rational theory can be obtained
from a solvable lattice theory.

A different generalization of the Ising model is the Z; Ising model
(the clock model). Here the spins take k values o; = exp(2rmin/k) for
n=0,1,...,k — 1, and there is a Z; symmetry o; — exp(2ni/k)o;. The
energy is

H=—> Re(sio}). (15.9.12)
links

Again there is a critical point at a value f.. The critical behavior is
described by the Z; parafermion theory. The Z; parafermions describe
a generic critical system in which the fluctuations transform under a Z;
symmetry.

Several of the low-lying minimal models can be realized in different
ways. The m = 5 theory is obtained as a four-height Z; model or a Zj
Ising model. It is also known as the three-state Potts model, referring
to a different generalization of the Ising model (spins taking k values
with a permutation symmetry S;) which happens to be the same as the
Z generalization when k = 3. The m = 6 model can be obtained as
a five-height Z, model or as a tricritical point of the Zs3 Potts/Ising
model with vacancies. In fact the m = 3,4,5,6 theories have all been
realized experimentally, usually in systems of atoms adsorbed on surfaces.
Since the m = 4 model is also the m = 3 minimal model of the N =1
supersymmetric series, this is in a sense the first experimental realization of
supersymmetry. (Some atomic and nuclear systems have an approximate
Fermi/Bose symmetry, but this is a nonrelativistic algebra whose closure
does not involve the translations.)
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Landau—Ginzburg models

To complete this section, we will give a slightly different Lagrangian
description of the minimal models. To study the long-wavelength behavior
of the Ising model, we can integrate out the individual spins and work
with a field ¢(z,Zz) representing the average spin over a region of many
sites. This field takes essentially continuous values, rather than the original
discrete ones. The first few terms in the Lagrangian density for ¢ would
be

L = 0pod + I p* + Mt (15.9.13)

At 41 = 0O the tree-level mass of the field ¢ is zero. We thus identify 4
as being proportional to . — 8, with 4; = 0 being the critical theory, the
m = 3 minimal model.

This is the Landau—Ginzburg description. The original idea was that the
classical potential for ¢ represented the free energy of the system. Now
one thinks of this as the effective Lagrangian density for a full quantum
(or thermal) path integral. The quantum or thermal fluctuations cannot
be neglected. In some systems, though not here, they change the transition
from continuous to discontinuous, so that there is no critical behavior. In
general they significantly modify the scaling properties (critical exponents).

Now add a 23¢° term and tune A; and A, to zero. We might expect a
different critical behavior — the potential is flatter than before, so will
have more states below a given energy, but it is still positive so there
will be fewer states than for a free scalar. In other words, we guess that
¢ is more than % and less than 1. It is natural to identify this with the
next minimal model, the m = 4 tricritical Ising model, since the number
of relevant Z,-invariant perturbations is two. Similarly, we guess that the
Landau-Ginzburg model whose leading potential is ¢>"~2 represents the
mth minimal model.

Representing the minimal models by a strongly interacting quantum
field theory seems to have little quantitative value, but it gives an intuitive
picture of the operator content. To start we guess that ¢ corresponds to
the operator of lowest dimension, namely (5. Also, we guess that we
have the diagonal theory, so the left-moving representation is the same as
the right-moving one, and we indicate only the latter. Now, to find ¢, use
the fusion rule

022025 = [O11] + [O31] + [033] + [O13] . (15.9.14)

The first term is the identity; we guess that ¢ is the remaining operator
of lowest dimension, namely (33. Taking further products with 5, we
identify

"= Opsins1, O<n<m—2. (15.9.15)
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This terminates due to the upper bound (15.3.16), r < m — 1. The lowest
term in ¢ - qb’”‘Z 18 Oy ;m—> which by reflection is (U1,>. We then continue

P O OSnEm—3. (15516

All this guesswork can be checked in various ways. One check is that the
7, symmetry assignment (15.3.23), namely (—1)° for m odd and (—1)" for
m even, matches that of ¢". As another check, where is the next monomial
$>" 32 The product ¢ - $p>"~* leads to no new primaries. This is just right:
the equation of motion is

m/'{md)Zm—3 — aégb — L—lt—l . d) , (15917)

so this operator is a descendant. The powers (15.9.15) and (15.9.16) are
all the relevant primary operators.

What happens if we add a relevant perturbation to the Lagrangian
for the mth minimal model? The Landau-Ginzburg picture indicates that
adding ¢**~2 causes the theory to flow to the kth minimal model. Let us
consider in particular ¢p>"* for m large. This is

2
m+1’

which is nearly marginal. Thus we can apply the formalism of the previous
section. From the fusion rule

013013 = [O11] + [O13] + [O15] , (15.9.19)

(Om—l,m—2 = (91,3 , h=1 (15918)

the only nearly marginal operator in 01303 is (13 itself, so we are in
precisely the single-operator situation worked out in the last paragraph of
the previous section. Thus, we can construct a new conformal theory by
a small O3 perturbation of the minimal model. The Landau—Ginzburg
picture indicates that this is the next minimal model down. We can
compute the central charge from the c-theorem. Taking from the literature
the value ci1; = 4/3!/2 for the large-m minimal model yields

d=c——. (15.9.20)
For large m this is indeed the difference between the central charges of
successive minimal models.

Exercises

15.1 Evaluate det(.#>) and compare with the Kac formula.

15.2 Derive eqs. (15.2.3) and (15.2.5) for the expectation value of a de-
scendant.
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15.3 Work out the steps outlined in the derivation of eq. (15.2.9) to find
explicitly the N =0 and N = 1 terms in ﬁfmln(ﬂz).

15.4 Verify that the discrete symmetries associated with the simple currents
are as asserted below egs. (15.3.23) and (15.4.18) for the unitary minimal
models and the SU(2) WZNW models.

15.5 (a) For the SU(n) current algebra at level k, consider the four-point
function with two insertions in the representation (m,n) and two in the
representation (n,n). Find the KZ equation for the SU(n) invariants.

(b) Find the general solution for k = 1 and determine the coefficients
using associativity and locality. Compare this with the free-boson repre-
sentation.

(c) Do the same for general k; the solution involves hypergeometric func-
tions.

15.6 The Wakimoto representation is a free-field representation for the
SU(2) current algebra, analogous to the Feigin—Fuchs representation of
the minimal models. Show that the following currents form an SU(2)
current algebra of level k = ¢> — 2:

JT=iw/2V2 3 =iqod/2"? —wy,
J= =iwi+ (2 —q»0x1/2"% + q30¢ .

Here w, y are a commuting fy system and ¢ is a free scalar. Show that
the Sugawara energy momentum tensor corresponds to the iy theory with
h,, = 1and h, = 0, and with ¢ being a linear dilaton theory of appropriate
central charge.

15.7 For the coset construction of the minimal models, combine primary
fields from the two factors in G to form irreducible representations of
SU(2). Subtract the weight of the corresponding primary of H and show
that the resulting weight is one of the allowed weights for the minimal
model. Not all minimal model primaries are obtained in this way; some
are excited states in the current algebras.

15.8 Repeat the previous exercise for the coset construction of the minimal
N =1 superconformal theories.

159 For the periodic scalar at any radius, the analysis in section 15.2
shows that the spectrum contains an infinite number of conformal fam-
ilies. Show, however, that if R?>/o/ is rational, the partition function is a
sum of a finite number of factors, each one holomorphic times antiholo-
morphic in 7. Show that at these radii there is an enlarged chiral algebra.

15.10 Apply the result (15.7.7) to the SU(2) current algebra at k = 4.
Show that the resulting relations are consistent with the actual weights of
the SU(2) primaries.
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15.11 Verify the Verlinde formula (15.7.14) for the SU(2) modular trans-
formation (15.4.22). In this case indices are raised with the identity matrix.

15.12 For the general massless closed string vertex operator, we found the
condition for Weyl invariance in section 3.6. Find the weaker condition
for invariance under rigid Weyl transformations, and find solutions that
have only this smaller invariance.
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Orbifolds

In the final four chapters we would like to see how compactification
of string theory connects with previous ideas for unifying the Standard
Model. Our primary focus is the weakly coupled Eg x Eg heterotic string,
whose compactification leads most directly to physics resembling the
Standard Model. At various points we consider other string theories and
the effects of strong coupling. In addition, compactified string theories
have interesting nonperturbative dynamics, beyond that which we have
seen in ten dimensions. In the final chapter we discuss some of the most
interesting phenomena.

The two main issues are specific constructions of four-dimensional string
theories and general results derived from world-sheet and spacetime sym-
metries. Our approach to the constructions will generally be to present
only the simplest examples of each type, in order to illustrate the char-
acteristic physics of compactified string theories. On the other hand, we
have collected as many of the general results as possible.

String compactifications fall into two general categories. The first are
based on free world-sheet CFTs, or on CFTs like the minimal models
that are solvable though not free. For these one can generally determine
the exact tree-level spectrum and interactions. The second category is
compactification in the geometric sense, taking the string to propagate on
a smooth spacetime manifold some of whose dimensions are compact. In
general one is limited to an expansion in powers of o'/R2, with R, being
the characteristic radius of compactification. This is in addition to the
usual expansion in the string coupling g. Commonly in a moduli space
of smooth compactifications there will be special points (or subspaces)
described by free CFTs. Thus the two approaches are complementary, one
giving a very detailed picture at special points and the other giving a less
detailed but global picture. Some of the solvable compactifications have
no such geometric interpretation.

274



16.1 Orbifolds of the heterotic string 275

In this chapter we discuss free CFTs and in the next geometric com-
pactification. Again, the literature in each case is quite large and a full
account is far beyond the scope of this book.

16.1 Orbifolds of the heterotic string

In section 8.5 we discussed orbifolds, manifolds obtained from flat space-
time by identifying points under a discrete group H of symmetries. Al-
though these manifolds generally have singularities, the resulting string
theories are well behaved. The effect of the identification is to add twisted
closed strings to the Hilbert space and to project onto invariant states.

We start with the ten-dimensional Eg x Eg string, with H a subgroup of
the Poincaré x gauge group. An element of H will act on the coordinates
as a rotation 6 and translation v,

XM s QX 4™ (16.1.1)

where m,n = 4,...,9. For a four-dimensional theory H will act trivially
on X* for u =0,...,3. In order to preserve world-sheet supersymmetry
the twist must commute with the supercurrent, and so its action on the
right-moving fermions is

P — 0" . (16.1.2)
In addition it acts on the current algebra fermions as a gauge rotation 7,
A — 4B )B (16.1.3)

Here we are considering gauge rotations 48 which are in the manifest
SO(16) x SO(16) subgroup of Eg x Eg. The full element is denoted (0,v; 7).
Just as the fixed points can be thought of as points of singular spacetime
curvature, a nontrivial y can be thought of as singular gauge curvature at
the fixed points.

Ignoring the gauge rotation, the set of all elements (0,v) forms the space
group S. In the twisted theory the strings are propagating on the space
M* x K, where

K =R%/S . (16.1.4)

Because the elements of S in general have fixed points, this space is an
orbifold.

Ignoring the translation as well as the gauge rotation leaves the point
group P, the set of all rotations 6 appearing in the elements of the twist
group. An orbifold is called Abelian or non-Abelian according to whether
the point group is Abelian or non-Abelian.

The subgroup of S consisting of pure translations (1,v) is an Abelian
group A. An alternative description of the orbifold is to twist first by A
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to form a particular 6-torus,
TS = Ré/A . (16.1.5)
The space group multiplication law
O,w) - (1,v) - (0,w)~' =(1,00), (16.1.6)
implies that the group
P=S/A (16.1.7)

is a symmetry of the 6-torus. This is the same as the point group P except
that some elements include translations. One can now twist the torus by
P to form the orbifold

K=T%P. (16.1.8)

We can assume that the identity element in spacetime appears only with
the identity in the gauge group, as e = (1,0; 1). This is no loss of generality,
because if there were additional elements of the form (1,0;7), one could
first twist on the subgroup consisting of these pure gauge twists to obtain
a different ten-dimensional theory, or perhaps a different description of
the same theory, and then twist this theory under the remaining group
which has no pure gauge twists. By closure it follows that each element
(0,v) of the space group appears with a unique gauge element y(0,v), and
that these have the multiplication law

P(01,01)y(02,v2) = p((01,01) - (02,02)) . (16.1.9)

That is, there is a homomorphism from the space group to the gauge
group.

Modular invariance

Modular invariance requires that the projection onto H-invariant states
be accompanied by the addition of twisted states for each h € H:

o' +2n)=h-o(d), (16.1.10)

where ¢ stands for a generic world-sheet field. The resulting sum over path
integral sectors is naively modular-invariant. However, we know from the
example of the superstring in chapter 10 that modular invariance can
be spoiled by phases in the path integral. In particular, the phase under
7 — 17+1 is determined by the level mismatch, the difference Lo—Ly mod 1.
In fact, for Abelian orbifolds it has been shown that this is the only
potential obstruction to modular invariance.

To see how this works, consider the spectrum in the sector with twist
h. Let N be the smallest integer such that A = 1; we then call this a
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Zy twist. We can always choose the axes so that the rotation is of the
form

0 = exp[2mi(¢p2Jas + $3J67 + PaJso)] - (16.1.11)
Define the complex linear combinations
Zi=2"12(x% 4 ix?Yy | i=234, (16.1.12)
with
Z'=271 = 271X — x| (16.1.13)

The periodicity is then
Z'(0 4 2n) = exp(2nii)Z'(0) . (16.1.14)
Taking the same complex basis for the ¢ gives
P'(o + 21) = exp[27i(¢i + v)]P'(0) (16.1.15)

with v = 0 in the R sector and v = % in the NS sector. The supercurrent
is then periodic or antiperiodic in the usual way depending on v. The
oscillators have the following mode numbers:

d i n4¢i, o n—ai, (16.1.16a)
B :n—¢i, & on+ei, (16.1.16b)
P n—¢i (R), n—¢;+ 1 (NS), (16.1.16¢)
P on+¢i (R), n+¢i+ 5 (NS). (16.1.16d)

For a single element, the gauge twist can always be taken in the block-
diagonal U(1)!¢ subgroup,
y = diag[exp(27ify),...,exp(27wifi1s)] - (16.1.17)

This acts on the complex linear combinations AKX+ = 2-1/2()2K=1 4 j2K)
as

KL 5 exp(+2mipi )IKE . (16.1.18)

The oscillators AX* thus have mode numbers n F Pk in the R sector of
the current algebra, and n F fx + % in the NS sector.
Because iV = 1 we can write

i =X (16.1.19)

for integers r; and sx. Actually, we can say a bit more, because the various
R sectors are in spinor representations and so contain eigenvalues

1 4 1 8 1 16
b Y Bk 5> Bk (16.1.20)
2 2 2

i=2 K=1 K=9
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Thus we have the mod 2 conditions

4 8 16
dori=> sk=Y sk =0 mod2. (16.1.21)
K=1 K=9

i=2

To be precise, if these are not satisfied then h" is a nontrivial twist of the
ten-dimensional theory, and so just changes the starting point.

Consider first the sector (R,R,R), labeled by the periodicities of the two
sets of current algebra fermions and the supercurrent. Recall the general
result that a complex boson with mode numbers n + 0 has zero-point
energy

! 20 —1 16.1.22

7 ( ), (16.1.22)
and a complex fermion has the negative of this. The above discussion of
modes then gives the level mismatch as

4
Lo—Lo ==Y (N'+ N+ N})¢; ZNKﬁK
i—2

4
- 1Zqﬁi(l —¢i)+ 5 Z Bx(1 —Bx)mod 1. (16.1.23)
2 i=2 2K:1

Here N' counts the number of « excitations minus the number of of
excitations, and so on.

The oscillator part of Ly — Lo is a multiple of 1/N, and the zero-point
part a multiple of 1/2N?, so that in general there are no states for which
Lo — Lo is an integer. Suppose, however, that the zero-point contribution
is actually a multiple of 1/N,

4

16
S DI I SRS S I MR (16.1.24)
K=1

i=2

I\JM—‘

for integer m. Then imposing on the excitation numbers the condition

4 16
>IN+ N+ N+ > N = % mod 1 (16.1.25)
i=2 K=

leaves only states with integer Lo — Lo. The left-hand side is just the
transformation of the oscillators under h, so this condition is the projection
onto h-invariant states. In particular, the phase of & in the twisted sector
is determined by the zero-point energy (16.1.24).

Now consider the sector (R,R,NS). The { modes are shifted by one-half,
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so the level mismatch is equal to the earlier value (16.1.23) plus

1 N 4
S = 3 (—Nw —14+) ¢i> , (16.1.26)
i=2

where the first term is from the excitations and the last two are from the
change in the zero-point energy. Level matching again requires that

5 =k/N (16.1.27)

for some integer k. The first two terms add to an integer due to the GSO
projection, and then (16.1.27) follows from the mod 2 conditions (16.1.21).
Level matching in all other sectors follows in the same way from condi-
tions (16.1.21) and (16.1.24). The latter can also be rephrased

4 16
> 17— sk =0 mod 2N. (16.1.28)
i=2 K=1

For Abelian orbifolds, as long as there are any states for which the level
mismatch (16.1.23) is an integer, then by imposing the projection (16.1.25)
one obtains a consistent theory. For non-Abelian orbifolds there are
additional conditions.

Other free CFTs

The orbifolds above can be thought of as arising from the ten-dimensional
theory in one step, twisting by the full space group, or in two, twisting
first by the translations to make a toroidal theory and then twisting by the
point group. The second construction can be made more general as follows.
Represent the current algebra in bosonic form, so the toroidal theory has
a momentum lattice of signature (22,6). Many lattices have symmetries
that rotate the left and the right momenta independently, as opposed to
the above construction in which 07, = 0r on the (6,6) spacetime momenta.
These more general theories are known as asymmetric orbifolds. Though
there is no longer a geometric interpretation in terms of propagation on
a singular space, the construct is consistent in CFT and in string theory.
Another construction is to fermionize all the internal coordinates, giving
44 left-movers and 18 right-movers. Since the Lorentz invariance is broken
one can take arbitrary combinations of independent R and NS boundary
conditions on the 62 fermions, subject to the constraints of modular
invariance, locality of the OPE, and so on. Alternatively, join the real
fermions into 22 4+ 9 complex fermions and take sectors with independent
aperiodicities exp(2niv) for each fermion. In spite of appearances this is not
strictly more general, because in the first case one can have combinations
of boundary conditions such that the fermions cannot be put into pairs
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having the same boundary conditions in all sectors. The ten-dimensional
Eg theory from section 11.3 is an example with such essentially real
fermions. One can also take some fermions of each type. The general
consistent theory is known.

The supercurrent Ty is now written purely in terms of fermions. For
example, a single X{ CFT becomes a theory of three fermions with
Tr = i%,%,7;- The boundary conditions must be correlated so that all
terms in the supercurrent are simultaneously R or NS. It is interesting
to ask what is the most general Tr that can be constructed from free
fermions alone. A general (0, %) tensor would be

18

Tr=i > uljixcx - (16.1.29)
I,J K=1

The conditions for the TrTr OPE to generate a superconformal algebra
are easily solved. The requirement that there be no four-fermi term in the
OPE is

cramCrim t CrmCrim + CkimCiim =0 - (16.1.30)

This is the Jacobi identity, requiring ¢, ;i to be the structure constants of
a Lie algebra. The condition that the z~! term in the OPE be precisely
2Tg is then

18¢, 1 Coxp = 0;- (16.1.31)

This fixes the normalization of c¢;;x, and requires the algebra to be
semisimple (no Abelian factors). The dimension of the group is the number
of fermions, 18. There are three semisimple groups of dimension 18, namely
SU(2)%, SU(3) x SO(5), and SU(4) x SU(2).

Another construction is to bosonize all fermions including the §* to
form a lattice of signature (22,9), and then to make a Narain-like con-
struction. Again Tr can be generalized, to a sum of terms of the form

eRXR 2= 6/y s QXREX R P =2/d (16.1.32)

Obviously there are overlaps among these constructions, though often
one or the other description is more convenient. The fermionic construc-
tion in particular has been employed by a number of groups. We will
be able to see a great deal of interesting spacetime physics even in the
simplest orbifold models, so we will not develop these generalizations
further.
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16.2 Spacetime supersymmetry

We have seen that in consistent string theories there is a symmetry that
relates fermions to bosons. The important question is whether in the real
world this symmetry is spontaneously broken at very high energy, or
whether part of it survives down to the weak interaction scale, the energy
that can be reached by particle accelerators. In fact there is a strong argu-
ment, independent of string theory, for expecting that exactly one d = 4
supersymmetry survives and is spontaneously broken near the weak scale.

The argument has to do with the self-energies of elementary particles.
The energy in the field of a charged point particle diverges at short
distance. If we suppose that this is cut off physically at some distance [
then naively the self-energy is

omm~ — (16.2.1)

o
[
with o = e%/4n the fine structure constant. The electron is known to be
pointlike down to at least 107!® cm, implying that the energy (16.2.1) is
more than 103 times the actual electron mass. However, it has been known
since the 1930s that relativistic quantum effects reduce the simple classical
estimate (16.2.1) to

1
om~oamln — . (16.2.2)
ml

Taking [ to be near the Planck scale, the logarithm is of order 50 and
the self-energy, taking into account numerical factors, is roughly 20% of
the actual mass of the electron. For quarks the effect is larger due to the
larger SU(3) coupling, so that the self-energy is of order the mass itself.
In simple grand unified theories the bottom quark and tau lepton are in
the same multiplet and have equal ‘bare’ masses, but the inclusion of the
self-energies accounts to good accuracy for the observed ratio

M3, (16.2.3)

This is a successful test of grand unification, though less impressive than
the unification of the gauge couplings because it is more model-dependent
and because the ratio is not known with the same precision.

This leaves one problem in the Standard Model, the Higgs boson. This
is the only scalar, and the only particle for which the estimate (16.2.1) is
not reduced by relativistic quantum effects. If the Higgs boson remains
pointlike up to energies near the Planck scale as in ordinary grand unified
theories, then the self-energy is roughly 15 orders of magnitude larger
than the actual mass. We have to suppose that the bare mass cancels
this correction to an accuracy of roughly one part in 10%°, because it
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is actually the mass-squared that adds. This seems quite unsatisfactory,
especially in light of the very physical way we are able to think about the
other self-energies.

One possible resolution of this naturalness problem is that the Higgs
scalar is not pointlike but actually composite on a scale not far from
the weak scale. This is the idea of technicolor theories; it has not been
ruled out but has not led to convincing models. A second is that there
is some other effect that cancels the self-energy. Indeed, this is the case
in supersymmetric theories. The Higgs mass-squared comes from the
superpotential, and as discussed in section B.2 this is not renormalized:
the self-energy is canceled by a fermionic loop amplitude, at least down
to the scale of supersymmetry breaking.

For this reason theories with supersymmetry broken near the weak scale
have received a great deal of attention, both in particle phenomenology
and in string theory. The d = 4 supersymmetry algebra must be N =
1 because the gauge-couplings in the Standard Model are chiral. As
discussed in section B.2, the N = 2 and larger algebras do not allow this.

Supersymmetric string theories are also attractive because as we will see
later supersymmetry in spacetime implies a much-enlarged symmetry on
the world-sheet, and so the construction and solution of these CFTs has
gone much farther than for the nonsupersymmetric theories. Also, non-
supersymmetric string theories usually, though not always, have tachyons
in their spectra. Finally, the order-by-order supersymmetric cancellation
of the vacuum energy means that there are no tadpole divergences and
the perturbation theory is finite at each order.

It is still a logical possibility that all the supersymmetry of string
theory is broken at the string scale, and even that the low energy limit
of string theory is a technicolor theory. Low energy supersymmetry and
string theory are independent ideas: either might be right and the other
wrong. However, the discovery of low energy supersymmetry would be
an encouraging sign that these ideas are in the right direction. Also, the
measurement of the many new masses and couplings of the superpartners
would give new windows onto higher energy physics. Given the important
role that supersymmetry plays at short distance, and the phenomenological
reasons for expecting supersymmetry near the weak scale, it is reasonable
to hope that of all the new phenomena that accompany string theory
supersymmetry will be directly visible.

What then are the conditions for an orbifold compactification to have
an unbroken N = 1 supersymmetry? Let us consider first the case that
the point group is Zy so that it is generated by a single element of the
form (16.1.11). This acts on the supersymmetries as

Qs = D(h)upQp » (16.2.4)
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where D(¢) is the spinor representation of the rotation. In the usual s-basis
this is

Qs — exp(2zis - $)0s . (16.2.5)

The (s, 53, 54) run over all combinations of i%, each combination appear-
ing twice. Thus if

P2+ 3+ s =0 (16.2.6)

with the ¢s otherwise generic, there will be four unbroken supersym-
metries, namely those with s = s3 = s4. Three-quarters of the original
16 supersymmetries of the heterotic string are broken. Other possibilities
such as ¢, + ¢3 — ¢p4 = 0 give equivalent physics.

Note that this discussion is quite similar to the discussion of the super-
symmetry of rotated D-branes in section 13.4. As there, we can express
the result in a more general way. Since the rotation takes the Z' into
linear combinations of themselves, it lies in a U(3) subgroup of the SO(6)
rotational symmetry of the six orbifold dimensions. The condition (16.2.6)
states that the rotation actually lies in SU(3). Under

S0(9,1) - SO(3,1) x SO(6) —» SO(3,1) x SU(3), (16.2.7)
the 16 decomposes as derived in section B.1,
16 - 2,4 +2,4) - 2.3)+2,1)+(2,3)+(2,1). (16.2.8)

If P = SUQ3) = SO(6), the generators (2,1) and (2,1) will survive the
orbifold projection and there will be unbroken N = 1 supersymmetry.
Similarly the stricter condition

P2+ ¢3=cs=0 (16.2.9)
implies that
P cSUR2) =SU(3) = S0(6) . (16.2.10)

In this case there will be unbroken N = 2 supersymmetry.

16.3 Examples

The main example we will consider is based on a Z3 orbifold of the torus.
The lattice A for the Z3 orbifold is generated by the six translations

ti: Z'>Z +Ry, (16.3.1a)
w2 Z'—>Z' +oR;, o=exp(2ni/3) (16.3.1b)

The lattice in one complex plane is shown in figure 16.1, with R; the lattice
spacing. For R; = o’'/2 this is the root lattice of SU(3), so up to rescaling
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Fig. 16.1. A two-dimensional lattice invariant under rotations by 7 /3. A unit cell
is indicated. The two points indicated by x are invariant under the combination
of a 2n/3 rotation and a lattice translation, as are the corner points of the unit
cell. A fundamental region for the orbifold identification is shaded. One can think
of the orbifold space as formed by folding the shaded region on the dotted line
and identifying the edges.

of the Z!, A is the root lattice of 