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String Theory,

Superstring Theory and Beyond

The two volumes that comprise String Theory provide an up-to-date, comprehensive, and

pedagogic introduction to string theory.

Volume I, An Introduction to the Bosonic String, provides a thorough introduction to

the bosonic string, based on the Polyakov path integral and conformal field theory. The

first four chapters introduce the central ideas of string theory, the tools of conformal field

theory and of the Polyakov path integral, and the covariant quantization of the string. The

next three chapters treat string interactions: the general formalism, and detailed treatments

of the tree-level and one loop amplitudes. Chapter eight covers toroidal compactification

and many important aspects of string physics, such as T-duality and D-branes. Chapter

nine treats higher-order amplitudes, including an analysis of the finiteness and unitarity,

and various nonperturbative ideas. An appendix giving a short course on path integral

methods is also included.

Volume II, Superstring Theory and Beyond, begins with an introduction to supersym-

metric string theories and goes on to a broad presentation of the important advances of

recent years. The first three chapters introduce the type I, type II, and heterotic superstring

theories and their interactions. The next two chapters present important recent discoveries

about strongly coupled strings, beginning with a detailed treatment of D-branes and their

dynamics, and covering string duality, M-theory, and black hole entropy. A following

chapter collects many classic results in conformal field theory. The final four chapters

are concerned with four-dimensional string theories, and have two goals: to show how

some of the simplest string models connect with previous ideas for unifying the Standard

Model; and to collect many important and beautiful general results on world-sheet and

spacetime symmetries. An appendix summarizes the necessary background on fermions

and supersymmetry.

Both volumes contain an annotated reference section, emphasizing references that will

be useful to the student, as well as a detailed glossary of important terms and concepts.

Many exercises are included which are intended to reinforce the main points of the text

and to bring in additional ideas.

An essential text and reference for graduate students and researchers in theoretical

physics, particle physics, and relativity with an interest in modern superstring theory.

Joseph Polchinski received his Ph.D. from the University of California at Berkeley

in 1980. After postdoctoral fellowships at the Stanford Linear Accelerator Center and

Harvard, he joined the faculty at the University of Texas at Austin in 1984, moving to his

present position of Professor of Physics at the University of California at Santa Barbara,

and Permanent Member of the Institute for Theoretical Physics, in 1992.

Professor Polchinski is not only a clear and pedagogical expositor, but is also a leading

string theorist. His discovery of the importance of D-branes in 1995 is one of the most

important recent contributions in this field, and he has also made significant contributions

to many areas of quantum field theory and to supersymmetric models of particle physics.





From reviews of the hardback editions:

Volume 1

‘. . . This is an impressive book. It is notable for its consistent line of development and the clarity

graduate area, and it is rare to have one written by a master of the subject. It is worth pointing out
that the book also contains a collection of useful problems, a glossary, and an unusually complete
index.’

Physics Today

‘. . . the most comprehensive text addressing the discoveries of the superstring revolutions of the
early to mid 1990s, which mark the beginnings of “modern string theory” .’

This elegant mathematical physics subject is expounded by Joseph Polchinski in two volumes from

thorough and up-to-date knowledge.’

American Scientist

‘We would like to stress the pedagogical value of the present book. The approach taken is modern
and pleasantly systematic, and it covers a broad class of results in a unified language. A set of
exercises at the end of each chapter complements the discussion in the main text. On the other
hand, the introduction of techniques and concepts essential in the context of superstrings makes it
a useful reference for researchers in the field.’

Mathematical Reviews

‘It amply fulfils the need to inspire future string theorists on their long slog and is destined to
become a classic. It is a truly exciting enterprise and one hugely served by this magnificent book.’

David Bailin, The Times Higher Education Supplement

Volume 2

‘In summary, these volumes will provide . . . the standard text and reference for students and
researchers in particle physics and relativity interested in the possible ramifications of modern
superstring theory.’

Allen C. Hirshfeld, General Relativity and Gravitation

derstanding of string theory during the past four years; he is also an exemplary teacher, as Steven
Weinberg attests in his foreword. He has produced an outstanding two-volume text, with numerous
exercises accompanying each chapter. It is destined to become a classic . . . magnificent.’

David Bailin, The Times Higher Education Supplement

‘The present volume succeeds in giving a detailed yet comprehensive account of our current knowl-
edge of superstring dynamics. The topics covered range from the basic construction of the theories
to the most recent discoveries on their non-perturbative behaviour. The discussion is remarkably
self-contained (the volume even contains a useful appendix on spinors and supersymmetry in
several dimensions), and thus may serve as an introduction to the subject, and as an excellent
reference for researchers in the field.’

Mathematical Reviews

‘Physicists believe that the best hope for a fundamental theory of nature – including unification of

Cambridge University Press . . . Written for advanced students and researchers, this set provides

quantum mechanics with general relativity and elementary particle theory – lies in string theory.

Donald Marolf, University of California, Santa Barbara, American Journal of Physics

‘Polchinski is a major contributor to the exciting developments that have revolutionised our
un

and insight with which topics are treated . . . It is hard to think of a better text in an advanced
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M. Göckeler and T. Schücker Differential Geometry, Gauge Theories and Gravity†
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Foreword

From the beginning it was clear that, despite its successes, the Standard
Model of elementary particles would have to be embedded in a broader
theory that would incorporate gravitation as well as the strong and elec-
troweak interactions. There is at present only one plausible candidate for
such a theory: it is the theory of strings, which started in the 1960s as a
not-very-successful model of hadrons, and only later emerged as a possible
theory of all forces.
There is no one better equipped to introduce the reader to string

theory than Joseph Polchinski. This is in part because he has played a
significant role in the development of this theory. To mention just one
recent example: he discovered the possibility of a new sort of extended
object, the ‘Dirichlet brane’, which has been an essential ingredient in the
exciting progress of the last few years in uncovering the relation between
what had been thought to be different string theories.
Of equal importance, Polchinski has a rare talent for seeing what is

of physical significance in a complicated mathematical formalism, and
explaining it to others. In looking over the proofs of this book, I was re-
minded of the many times while Polchinski was a member of the Theory
Group of the University of Texas at Austin, when I had the benefit of his
patient, clear explanations of points that had puzzled me in string theory.
I recommend this book to any physicist who wants to master this exciting
subject.

Steven Weinberg
Series Editor

Cambridge Monographs on Mathematical Physics
1998
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Preface

When I first decided to write a book on string theory, more than ten years
ago, my memories of my student years were much more vivid than they
are today. Still, I remember that one of the greatest pleasures was finding
a text that made a difficult subject accessible, and I hoped to provide the
same for string theory.

Thus, my first purpose was to give a coherent introduction to string
theory, based on the Polyakov path integral and conformal field theory.
No previous knowledge of string theory is assumed. I do assume that the
reader is familiar with the central ideas of general relativity, such as metrics
and curvature, and with the ideas of quantum field theory through non-
Abelian gauge symmetry. Originally a full course of quantum field theory
was assumed as a prerequisite, but it became clear that many students
were eager to learn string theory as soon as possible, and that others had
taken courses on quantum field theory that did not emphasize the tools
needed for string theory. I have therefore tried to give a self-contained
introduction to those tools.

A second purpose was to show how some of the simplest four-
dimensional string theories connect with previous ideas for unifying the
Standard Model, and to collect general results on the physics of four-
dimensional string theories as derived from world-sheet and spacetime
symmetries. New developments have led to a third goal, which is to intro-
duce the recent discoveries concerning string duality, M-theory, D-branes,
and black hole entropy.

In writing a text such as this, there is a conflict between the need to
be complete and the desire to get to the most interesting recent results
as quickly as possible. I have tried to serve both ends. On the side of
completeness, for example, the various path integrals in chapter 6 are
calculated by three different methods, and the critical dimension of the
bosonic string is calculated in seven different ways in the text and exercises.

xv



xvi Preface

On the side of efficiency, some shorter paths through these two volumes
are suggested below.
A particular issue is string perturbation theory. This machinery is nec-

essarily a central subject of volume one, but it is somewhat secondary to
the recent nonperturbative developments: the free string spectrum plus
the spacetime symmetries are more crucial there. Fortunately, from string
perturbation theory there is a natural route to the recent discoveries, by
way of T -duality and D-branes.
One possible course consists of chapters 1–3, section 4.1, chapters 5–8

(omitting sections 5.4 and 6.7), chapter 10, sections 11.1, 11.2, 11.6, 12.1,
and 12.2, and chapters 13 and 14. This sequence, which I believe can be
covered in two quarters, takes one from an introduction to string theory
through string duality, M-theory, and the simplest black hole entropy
calculations. An additional shortcut is suggested at the end of section 5.1.
Readers interested in T -duality and related stringy phenomena can

proceed directly from section 4.1 to chapter 8. The introduction to Chan–
Paton factors at the beginning of section 6.5 is needed to follow the
discussion of the open string, and the one-loop vacuum amplitude, ob-
tained in chapter 7, is needed to follow the calculation of the D-brane
tension.
Readers interested in supersymmetric strings can read much of chap-

ters 10 and 11 after section 4.1. Again the introduction to Chan–Paton
factors is needed to follow the open string discussion, and the one-loop
vacuum amplitude is needed to follow the consistency conditions in sec-
tions 10.7, 10.8, and 11.2.
Readers interested in conformal field theory might read chapter 2,

sections 6.1, 6.2, 6.7, 7.1, 7.2, 8.2, 8.3 (concentrating on the CFT as-
pects), 8.5, 10.1–10.4, 11.4, and 11.5, and chapter 15. Readers interested in
four-dimensional string theories can follow most of chapters 16–19 after
chapters 8, 10, and 11.
In a subject as active as string theory — by one estimate the literature

approaches 10 000 papers — there will necessarily be important subjects
that are treated only briefly, and others that are not treated at all. Some of
these are represented by review articles in the lists of references at the end
of each volume. The most important omission is probably a more complete
treatment of compactification on curved manifolds. Because the geometric
methods of this subject are somewhat orthogonal to the quantum field
theory methods that are emphasized here, I have included only a summary
of the most important results in chapters 17 and 19. Volume two of Green,
Schwarz, and Witten (1987) includes a more extensive introduction, but
this is a subject that has continued to grow in importance and clearly
deserves an introductory book of its own.
This work grew out of a course taught at the University of Texas



Preface xvii

at Austin in 1987–88. The original plan was to spend a year turning the
lecture notes into a book, but a desire to make the presentation clearer and
more complete, and the distraction of research, got in the way. An early
prospectus projected the completion date as June 1989± one month, off by
100 standard deviations. For eight years the expected date of completion
remained approximately one year in the future, while one volume grew
into two. Happily, finally, one of those deadlines didn’t slip.
I have also used portions of this work in a course at the University of

California at Santa Barbara, and at the 1994 Les Houches, 1995 Trieste,
and 1996 TASI schools. Portions have been used for courses by Nathan
Seiberg and Michael Douglas (Rutgers), Steven Weinberg (Texas), Andrew
Strominger and Juan Maldacena (Harvard), Nathan Berkovits
and Martin Einhorn (Michigan). I would like to thank those colleagues
and their students for very useful feedback. I would also like to thank
Steven Weinberg for his advice and encouragement at the beginning
of this project, Shyamoli Chaudhuri for a thorough reading of the entire
manuscript, and to acknowledge the support of the Departments of Physics
at UT Austin and UC Santa Barbara, the Institute for Theoretical Physics
at UC Santa Barbara, and the National Science Foundation.
During the extended writing of this book, dozens of colleagues have

helped to clarify my understanding of the subjects covered, and dozens of
students have suggested corrections and other improvements. I began to
try to list the members of each group and found that it was impossible.
Rather than present a lengthy but incomplete list here, I will keep an
updated list at the erratum website

http://www.itp.ucsb.edu/˜joep/bigbook.html.

In addition, I would like to thank collectively all who have contributed to
the development of string theory; volume two in particular seems to me
to be largely a collection of beautiful results derived by many physicists.
String theory (and the entire base of physics upon which it has been built)
is one of mankind’s great achievements, and it has been my privilege to
try to capture its current state.
Finally, to complete a project of this magnitude has meant many sac-

rifices, and these have been shared by my family. I would like to thank
Dorothy, Steven, and Daniel for their understanding, patience, and sup-
port.

Joseph Polchinski
Santa Barbara, California

1998

˜(Sao Paulo)



Notation

This book uses the +++ conventions of Misner, Thorne, & Wheeler
(1973). In particular, the signature of the metric is (− + + . . .+). The
constants h̄ and c are set to 1, but the Regge slope α′ is kept explicit.

A bar ¯ is used to denote the conjugates of world-sheet coordinates and
moduli (such as z, τ and q), but a star ∗ is used for longer expressions. A
bar on a spacetime fermion field is the Dirac adjoint (this appears only
in volume two), and a bar on a world-sheet operator is the Euclidean
adjoint (defined in section 6.7). For the degrees of freedom on the string,
the following terms are treated as synonymous:

holomorphic = left-moving,

antiholomorphic = right-moving,

as explained in section 2.1. Our convention is that the supersymmetric
side of the heterotic string is right-moving. Antiholomorphic operators
are designated by tildes ;̃ as explained in section 2.3, these are not the
adjoints of holomorphic operators. Note also the following conventions:

d2z ≡ 2dxdy , δ2(z, z̄) ≡ 1

2
δ(x)δ(y) ,

where z = x + iy is any complex variable; these differ from most of the
literature, where the coefficient is 1 in each definition.

Spacetime actions are written as S and world-sheet actions as S . This
presents a problem for D-branes, which are T -dual to the former and
S-dual to the latter; S has been used arbitrarily. The spacetime metric is
Gµν , while the world-sheet metric is γab (Minkowskian) or gab (Euclidean).
In volume one, the spacetime Ricci tensor is Rµν and the world-sheet Ricci
tensor is Rab. In volume two the former appears often and the latter never,
so we have changed to Rµν for the spacetime Ricci tensor.

xviii



Notation xix

The following are used:

≡ defined as
∼= equivalent to

≈ approximately equal to

∼ equal up to nonsingular terms (OPEs), or rough correspondence.





10
Type I and type II superstrings

Having spent volume one on a thorough development of the bosonic
string, we now come to our real interest, the supersymmetric string the-
ories. This requires a generalization of the earlier framework, enlarging
the world-sheet constraint algebra. This idea arises naturally if we try to
include spacetime fermions in the spectrum, and by guesswork we are led
to superconformal symmetry. In this chapter we discuss the (1,1) supercon-
formal algebra and the associated type I and II superstrings. Much of
the structure is directly parallel to that of the bosonic string so we can
proceed rather quickly, focusing on the new features.

10.1 The superconformal algebra

In bosonic string theory, the mass-shell condition

pµp
µ + m2 = 0 (10.1.1)

came from the physical state condition

L0|ψ〉 = 0 , (10.1.2)

and also from L̃0|ψ〉 = 0 in the closed string. The mass-shell condition
is the Klein–Gordon equation in momentum space. To get spacetime
fermions, it seems that we need the Dirac equation

ipµΓ
µ + m = 0 (10.1.3)

instead. This is one way to motivate the following generalization, and it
will lead us to all the known consistent string theories.
Let us try to follow the pattern of the bosonic string, where L0 and L̃0

are the center-of-mass modes of the world-sheet energy-momentum tensor
(TB, T̃B). A subscript B for ‘bosonic’ has been added to distinguish these
from the fermionic currents now to be introduced. It seems then that we

1



2 10 Type I and type II superstrings

need new conserved quantities TF and T̃F , whose center-of-mass modes
give the Dirac equation, and which play the same role as TB and T̃B in
the bosonic theory. Noting further that the spacetime momenta pµ are the
center-of-mass modes of the world-sheet current (∂Xµ, ∂̄Xµ), it is natural
to guess that the gamma matrices, with algebra

{Γµ,Γν} = 2ηµν , (10.1.4)

are the center-of-mass modes of an anticommuting world-sheet field ψµ.
With this in mind, we consider the world-sheet action

S =
1

4π

∫
d2z

(
2

α′ ∂X
µ∂̄Xµ + ψµ∂̄ψµ + ψ̃µ∂ψ̃µ

)
. (10.1.5)

For reference we recall from chapter 2 the XX operator product expansion
(OPE)

Xµ(z, z̄)Xν(0, 0) ∼ −α
′
2
ηµν ln |z|2 . (10.1.6)

The ψ conformal field theory (CFT) was described in section 2.5. The
fields ψµ and ψ̃µ are respectively holomorphic and antiholomorphic, and
the operator products are

ψµ(z)ψν(0) ∼ ηµν

z
, ψ̃µ(z̄)ψ̃ν(0) ∼ ηµν

z̄
. (10.1.7)

The world-sheet supercurrents

TF (z) = i(2/α′)1/2ψµ(z)∂Xµ(z) , T̃F (z̄) = i(2/α′)1/2ψ̃µ(z̄)∂̄Xµ(z̄) (10.1.8)

are also respectively holomorphic and antiholomorphic, since they are just
the products of (anti)holomorphic fields. The annoying factors of (2/α′)1/2
could be eliminated by working in units where α′ = 2, and then be restored
if needed by dimensional analysis. Also, throughout this volume the : :
normal ordering of coincident operators will be implicit.
This gives the desired result: the modes ψ

µ
0 and ψ̃

µ
0 will satisfy the

gamma matrix algebra, and the centers-of-mass of TF and T̃F will have
the form of Dirac operators. We will see that the resulting string theory
has spacetime fermions as well as bosons, and that the tachyon is gone.
From the OPE and the Ward identity it follows (exercise 10.1) that the

currents

jη(z) = η(z)TF (z) , ̃η(z̄) = η(z) T̃F (z̄) (10.1.9)

generate the superconformal transformation

ε−1(2/α′)1/2δXµ(z, z̄) = η(z)ψµ(z)

−
η(z)∗ψ̃µ(z̄) , (10.1.10a)

ε−1(α′/2)1/2δψµ(z) = η(z)∂Xµ(z) , (10.1.10b)

ε−1(α′/2)1/2δψ̃µ(z̄) = η(z)∗∂̄Xµ(z̄) . (10.1.10c)

∗

+

−

+



10.1 The superconformal algebra 3

This transformation mixes the commuting field Xµ with the anticommut-
ing fields ψµ and ψ̃µ, so the parameter η(z) must be anticommuting. As
with conformal symmetry, the parameters are arbitrary holomorphic or
antiholomorphic functions. That this is a symmetry of the action (10.1.5)
follows at once because the current is (anti)holomorphic, and so con-
served.

The commutator of two superconformal transformations is a conformal
transformation,

δη1δη2 − δη2δη1 = δv , v(z) = −2η1(z)η2(z) , (10.1.11)

as the reader can check by acting on the various fields. Similarly, the
commutator of a conformal and superconformal transformation is a su-
perconformal transformation. The conformal and superconformal trans-
formations thus close to form the superconformal algebra. In terms of the
currents, this means that the OPEs of TF with itself and with

TB = − 1

α′ ∂X
µ∂Xµ − 1

2
ψµ∂ψµ (10.1.12)

close. That is, only TB and TF appear in the singular terms:

TB(z)TB(0) ∼ 3D

4z4
+

2

z2
TB(0) +

1

z
∂TB(0) , (10.1.13a)

TB(z)TF (0) ∼ 3

2z2
TF (0) +

1

z
∂TF (0) , (10.1.13b)

TF (z)TF (0) ∼ D

z3
+

2

z
TB(0) , (10.1.13c)

and similarly for the antiholomorphic currents. The TBTF OPE implies
that TF is a tensor of weight (32 , 0). Each scalar contributes 1 to the central

charge and each fermion 1
2 , for a total

c = (1 + 1
2)D = 3

2D . (10.1.14)

This enlarged algebra with TF and T̃F as well as TB and T̃B will play
the same role that the conformal algebra did in the bosonic string. That
is, we will impose it on the states as a constraint algebra — it must
annihilate physical states, either in the sense of old covariant quantization
(OCQ) or of Becchi–Rouet–Stora–Tyutin (BRST) quantization. Because
of the Minkowski signature of spacetime the timelike ψ0 and ψ̃0, like
X0, have opposite sign commutators and lead to negative norm states.
The fermionic constraints TF and T̃F will remove these states from the
spectrum.

More generally, the N = 1 superconformal algebra in operator product
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form is

TB(z)TB(0) ∼ c

2z4
+

2

z2
TB(0) +

1

z
∂TB(0) , (10.1.15a)

TB(z)TF (0) ∼ 3

2z2
TF (0) +

1

z
∂TF (0) , (10.1.15b)

TF (z)TF (0) ∼ 2c

3z3
+

2

z
TB(0) . (10.1.15c)

The Jacobi identity requires the same constant c in the TBTB and TFTF
products (exercise 10.5). Here, N = 1 refers to the number of (32 , 0)
currents. In the present case there is also an antiholomorphic copy of the
same algebra, so we have an (N, Ñ) = (1, 1) superconformal field theory
(SCFT). We will consider more general algebras in section 11.1.

Free SCFTs

The various free CFTs described in chapter 2 have superconformal gen-
eralizations. One free SCFT combines an anticommuting bc theory with
a commuting βγ system, with weights

hb = λ , hc = 1− λ , (10.1.16a)

hβ = λ− 1
2 , hγ =

3
2 − λ . (10.1.16b)

The action is

SBC =
1

2π

∫
d2z (b∂̄c+ β∂̄γ) , (10.1.17)

and

TB = (∂b)c− λ∂(bc) + (∂β)γ − 1

2
(2λ− 1)∂(βγ) , (10.1.18a)

TF = −1

2
(∂β)c+

2λ− 1

2
∂(βc)− 2bγ . (10.1.18b)

The central charge is

[−3(2λ− 1)2 + 1] + [3(2λ− 2)2 − 1] = 9− 12λ . (10.1.19)

Of course there is a corresponding antiholomorphic theory.
We can anticipate that the superconformal ghosts will be of this form

with λ = 2, the anticommuting (2, 0) ghost b being associated with the
commuting (2, 0) constraint TB as in the bosonic theory, and the commut-
ing (32 , 0) ghost β being associated with the anticommuting (32 , 0) constraint
TF . The ghost central charge is then −26 + 11 = −15, and the condition
that the total central charge vanish gives the critical dimension

0 =
3

2
D − 15⇒ D = 10 . (10.1.20)
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For λ = 2,

TB = −(∂b)c− 2b∂c− 1

2
(∂β)γ − 3

2
β∂γ , (10.1.21a)

TF = (∂β)c+
3

2
β∂c− 2bγ . (10.1.21b)

Another free SCFT is the superconformal version of the linear dilaton
theory. This has again the action (10.1.5), while

TB(z) = − 1

α′ ∂X
µ∂Xµ + Vµ∂

2Xµ − 1

2
ψµ∂ψµ , (10.1.22a)

TF (z) = i(2/α′)1/2ψµ∂Xµ − i(2α′)1/2Vµ∂ψµ , (10.1.22b)

each having an extra term as in the bosonic case. The reader can verify
that these satisfy the N = 1 algebra with

c =
3

2
D + 6α′VµVµ . (10.1.23)

10.2 Ramond and Neveu–Schwarz sectors

We now study the spectrum of the Xµψµ SCFT on a circle. Much of this
is as in chapter 2, but the new ingredient is a more general periodicity
condition. It is clearest to start with the cylindrical coordinate w = σ1+iσ2.
The matter fermion action

1

4π

∫
d2w

(
ψµ∂w̄ψµ + ψ̃µ∂wψ̃

)
(10.2.1)

must be invariant under the periodic identification of the cylinder, w ∼=
w + 2π. This condition plus Lorentz invariance still allows two possible
periodicity conditions for ψµ,

Ramond (R): ψµ(w + 2π) = +ψµ(w) , (10.2.2a)

Neveu–Schwarz (NS): ψµ(w + 2π) = −ψµ(w) , (10.2.2b)

where the sign must be the same for all µ. Similarly there are two possible
periodicities for ψ̃µ. Summarizing, we will write

ψµ(w + 2π) = exp(2πiν)ψµ(w) , (10.2.3a)

ψ̃µ(w̄ + 2π) = exp(−2πiν̃) ψ̃µ(w̄) , (10.2.3b)

where ν and ν̃ take the values 0 and 1
2 .

Since we are initially interested in theories with the maximum Poincaré
invariance, Xµ must be periodic. (Antiperiodicity of Xµ is interesting, and
we have already encountered it for the twisted strings on an orbifold, but
it would break some of the translation invariance.) The supercurrent then

µ
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has the same periodicity as the corresponding ψ,

TF (w + 2π) = exp(2πiν)TF (w) , (10.2.4a)

T̃F (w̄ + 2π) = exp(−2πiν̃) T̃F (w̄) . (10.2.4b)

Thus there are four different ways to put the theory on a circle, each of
which will lead to a different Hilbert space — essentially there are four
different kinds of closed superstring. We will denote these by (ν, ν̃) or
by NS–NS, NS–R, R–NS, and R–R. They are analogous to the twisted
and untwisted sectors of the Z2 orbifold. Later in the chapter we will
see that consistency requires that the full string spectrum contain certain
combinations of states from each sector.

To study the spectrum in a given sector expand in Fourier modes,

ψµ(w) = i−1/2
∑
r∈Z+ν

ψµr exp(irw) , ψ̃µ(w̄) = i1/2
∑
r∈Z+ν̃

ψ̃µr exp(−irw̄) ,
(10.2.5)

the phase factors being inserted to conform to convention later. On each
side the sum runs over integers in the R sector and over (integers + 1

2)
in the NS sector. Let us also write these as Laurent expansions. Besides
replacing exp(−iw)→ z we must transform the fields,

ψ
µ

z1/2
(z) = (∂zw)

1/2ψ
µ

w1/2(w) = i1/2z−1/2ψµ
w1/2(w) . (10.2.6)

The clumsy subscripts are a reminder that these transform with half the
weight of a vector. Henceforth the frame will be indicated implicitly by
the argument of the field. The Laurent expansions are then

ψµ(z) =
∑
r∈Z+ν

ψµr
zr+1/2

, ψ̃µ(z̄) =
∑
r∈Z+ν̃

ψ̃µr
z̄r+1/2

. (10.2.7)

Notice that in the NS sector, the branch cut in z−1/2 offsets the original
antiperiodicity, while in the R sector it introduces a branch cut. Let us
also recall the corresponding bosonic expansions

∂Xµ(z) = −i
(
α′
2

)1/2 ∞∑
m=−∞

αµm
zm+1

, ∂̄Xµ(z̄) = −i
(
α′
2

)1/2 ∞∑
m=−∞

α̃µm
z̄m+1

,

(10.2.8)
where α

µ
0 = α̃

µ
0 = (α′/2)1/2pµ in the closed string and α

µ
0 = (2α′)1/2pµ in the

open string.

The OPE and the Laurent expansions (or canonical quantization) give
the anticommutators

{ψµr , ψνs } = {ψ̃µr , ψ̃νs } = ηµνδr,−s , (10.2.9a)

[αµm, α
ν
n] = [α̃µm, α̃

ν
n] = mηµνδm,−n . (10.2.9b)
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For TF and TB the Laurent expansions are

TF (z) =
∑
r∈Z+ν

Gr

zr+3/2
, T̃F (z̄) =

∑
r∈Z+ν̃

G̃r

z̄r+3/2
, (10.2.10a)

TB(z) =
∞∑

m=−∞
Lm

zm+2
, T̃B(z̄) =

∞∑
m=−∞

L̃m

z̄m+2
. (10.2.10b)

The usual CFT contour calculation gives the mode algebra

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 − m)δm,−n , (10.2.11a)

{Gr, Gs} = 2Lr+s +
c

12
(4r2 − 1)δr,−s , (10.2.11b)

[Lm,Gr] =
m− 2r

2
Gm+r . (10.2.11c)

This is known as the Ramond algebra for r, s integer and the Neveu–
Schwarz algebra for r, s half-integer. The antiholomorphic fields give a
second copy of these algebras.
The superconformal generators in either sector are

Lm =
1

2

∑
n∈Z

◦◦α
µ
m−nαµ n◦◦ +

1

4

∑
r∈Z+ν

(2r − m) ◦◦ψ
µ
m−rψµ r◦◦ + amδm,0 ,

(10.2.12a)

Gr =
∑
n∈Z

αµnψµ r−n . (10.2.12b)

Again ◦◦ ◦◦ denotes creation–annihilation normal ordering. The normal
ordering constant can be obtained by any of the methods from chapter 2;
we will use here the mnemonic from the end of section 2.9. Each periodic
boson contributes − 1

24 . Each periodic fermion contributes + 1
24 and each

antiperiodic fermion − 1
48 . Including the shift + 1

24c =
1
16D gives

R: am =
1

16
D , NS: am = 0 . (10.2.13)

For the open string, the condition that the surface term in the equation
of motion vanish allows the possibilities

ψµ(0, σ2) = exp(2πiν) ψ̃µ(0, σ2) , ψµ(π, σ2) = exp(2πiν ′) ψ̃µ(π, σ2) .
(10.2.14)

By the redefinition ψ̃µ → exp(−2πiν ′)ψ̃µ, we can set ν ′ = 0. There are
therefore two sectors, R and NS, as compared to the four of the closed
string. To write the mode expansion it is convenient to combine ψµ and
ψ̃µ into a single field with the extended range 0 ≤ σ1 ≤ 2π. Define

ψµ(σ1, σ2) = ψ̃µ(2π − σ1, σ2) (10.2.15)

for π ≤ σ1 ≤ 2π. The boundary condition ν ′ = 0 is automatic, and the
antiholomorphicity of ψ̃µ implies the holomorphicity of the extended ψµ.
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Finally, the boundary condition (10.2.14) at σ1 = 0 becomes a periodicity
condition on the extended ψµ, giving one set of R or NS oscillators and
the corresponding algebra.

NS and R spectra

We now consider the spectrum generated by a single set of NS or R
modes, corresponding to the open string or to one side of the closed
string. The NS spectrum is simple. There is no r = 0 mode, so we define
the ground state to be annihilated by all r > 0 modes,

ψµr |0〉NS = 0 , r > 0 . (10.2.16)

The modes with r < 0 then act as raising operators; since these are
anticommuting, each mode can only be excited once.
The main point of interest is the R ground state, which is degenerate

due to the ψ
µ
0 s. Define the ground states to be those that are annihilated by

all r > 0 modes. The ψ
µ
0 satisfy the Dirac gamma matrix algebra (10.1.4)

with

Γµ ∼= 21/2ψ
µ
0 . (10.2.17)

Since {ψµr , ψν0} = 0 for r > 0, the ψ
µ
0 take ground states into ground

states. The ground states thus form a representation of the gamma matrix
algebra. This representation is worked out in section B.1; in D = 10 it has
dimension 32. The reader who is not familiar with properties of spinors
in various dimensions should read section B.1 at this point. We can take
a basis of eigenstates of the Lorentz generators Sa, eq. (B.1.10):

|s0, s1, . . . , s4〉R ≡ |s〉R , sa = ± 1
2 . (10.2.18)

The half-integral values show that these are indeed spacetime spinors. A
more general basis for the spinors would be denoted |α〉R. In the R sector
of the open string not only the ground state but all states have half-integer
spacetime spins, because the raising operators are vectors and change the
Sa by integers. In the NS sector, the ground state is annihilated by Sµν

and is a Lorentz singlet, and all other states then have integer spin.
The Dirac representation 32 is reducible to two Weyl representations

16+ 16′, distinguished by their eigenvalue under Γ as in eq. (B.1.11). This
has a natural extension to the full string spectrum. The distinguishing
property of Γ is that it anticommutes with all Γµ. Since the Dirac matrices
are now the center-of-mass modes of ψµ, we need an operator that
anticommutes with the full ψµ. We will call this operator

exp(πiF) , (10.2.19)

where F , the world-sheet fermion number, is defined only mod 2. Since ψµ

changes F by one it anticommutes with the exponential. It is convenient
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to write F in terms of spacetime Lorentz generators, which in either sector
of the ψ CFT are

Σµλ = − i

2

∑
r∈Z+ν

[ψµr , ψ
λ−r] . (10.2.20)

This is the natural extension of the zero-mode part (B.1.8). Define now

Sa = iδa,0Σ2a,2a+1 , (10.2.21)

the i being included to make S0 Hermitean, and let

F =
4∑
a=0

Sa . (10.2.22)

This has the desired property. For example,

S1(ψ
2
r ± iψ3

r ) = (ψ2
r ± iψ3

r )(S1 ± 1) , (10.2.23)

so these oscillators change F by ±1. The definition (10.2.22) makes it
obvious that F is conserved by the OPE of the vertex operators, as a
consequence of Lorentz invariance.1 When we include the ghost part of
the vertex operator in section 10.4, we will see that it contributes to the
total F , so that on the total matter plus ghost ground state one has

exp(πiF)|0〉NS = −|0〉NS , (10.2.24a)

exp(πiF)|s〉R = |s′〉RΓs′s . (10.2.24b)

The ghost ground state contributes a factor −1 in the NS sector and −i
in the R sector.

Closed string spectra

In the closed string, the NS–NS states have integer spin. Because the spins
Sa are additive, the half-integers from the two sides of the R–R sector also
combine to give integer spin. The NS–R and R–NS states, on the other
hand, have half-integer spin.

Let us look in more detail at the R–R sector, where the ground states
|s, s′〉R are degenerate on both the right and left. They transform as the
product of two Dirac representations, which is worked out in section B.1:

32Dirac × 32Dirac = [0] + [1] + [2] + . . .+ [10]

= [0]2 + [1]2 + . . .+ [4]2 + [5] , (10.2.25)

1 Lorentz invariance of the OPE holds separately for the ψ and X CFTs (and the ψ̃ CFT
in the closed string) because they are decoupled from one another. However, the world-sheet
supercurrent is only invariant under the overall Lorentz transformation.
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Table 10.1. SO(9, 1) representations of massless R–R states.

(exp(πiF), exp(πiF̃)) SO(9, 1) rep.

(+1,+1): 16× 16 = [1] + [3] + [5]+
(+1,−1): 16× 16′ = [0] + [2] + [4]

(−1,+1): 16′ × 16 = [0] + [2] + [4]

(−1,−1): 16′ × 16′ = [1] + [3] + [5]−

where [n] denotes an antisymmetric rank n tensor. For the closed string
there are separate world-sheet fermion numbers F and F̃ , which on the
ground states reduce to the chirality matrices Γ and Γ̃ acting on the two
sides. The ground states thus decompose as in table 10.1.

10.3 Vertex operators and bosonization

Consider first the unit operator. Fields remain holomorphic at the ori-
gin, and in particular they are single-valued. From the Laurent expan-
sion (10.2.7), the single-valuedness means that the unit operator must be
in the NS sector; the conformal transformation that takes the incoming
string to the point z = 0 cancels the branch cut from the antiperiodicity.
The holomorphicity of ψ at the origin implies, via the contour argument,
that the state corresponding to the unit operator satisfies

ψµr |1〉 = 0 , r =
1

2
,
3

2
, . . . , (10.3.1)

and therefore

|1〉 = |0〉 . (10.3.2)

Since the ψψ OPE is single-valued, all products of ψ and its derivatives
must be in the NS sector. The contour argument gives the map

ψ
µ−r → 1

(r − 1/2)!
∂r−1/2ψµ(0) , (10.3.3)

so that there is a one-to-one map between such products and NS states.
The analog of the Noether relation (2.9.6) between the superconformal
variation of an NS operator and the OPE is

δηA(z, z̄) = −ε
∞∑
n=0

1

n!

[
∂nη(z)Gn−1/2 + (∂nη(z))∗G̃n−1/2

]
· A(z, z̄) . (10.3.4)

The R sector vertex operators must be more complicated because the
Laurent expansion (10.2.7) has a branch cut. We have encountered this
before, for the winding state vertex operators in section 8.2 and the orbifold
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twisted state vertex operators in section 8.5. Each of these introduces a
branch cut (the first a log and the second a square root) into Xµ. For
the winding state vertex operators there was a simple expression as the
exponential of a free field. For the twisted state vertex operators there
was no simple expression and their amplitudes are determined only with
more effort. Happily, through a remarkable property of two-dimensional
field theory, the R sector vertex operators can be related directly to the
bosonic winding state vertex operators.
Let H(z) be the holomorphic part of a scalar field,

H(z)H(0) ∼ − ln z . (10.3.5)

For world-sheet scalars not associated directly with the embedding of
the string in spacetime this is the normalization we will always use,
corresponding to α′ = 2 for the embedding coordinates. As in the case of
the winding state vertex operators we can be cavalier about the location
of the branch cut as long as the final expressions are single-valued. We
will give a precise oscillator definition below. Consider the basic operators
e±iH(z). These have the OPE

eiH(z)e−iH(0) ∼ 1

z
, (10.3.6a)

eiH(z)eiH(0) = O(z) , (10.3.6b)

e−iH(z)e−iH(0) = O(z) . (10.3.6c)

The poles and zeros in the OPE together with smoothness at infinity
determine the expectation values of these operators on the sphere, up to
an overall normalization which can be set to a convenient value:〈∏

i

eiεiH(zi)

〉
S2

=
∏
i<j

z
εiεj
ij ,

∑
i

εi = 0 . (10.3.7)

The εi are ±1 here, but this result holds more generally.
Now consider the CFT of two Majorana–Weyl fermions ψ1,2(z), and

form the complex combinations

ψ = 2−1/2(ψ1 + iψ2) , ψ = 2−1/2(ψ1 − iψ2) . (10.3.8)

These have the properties

ψ(z)ψ(0) ∼ 1

z
, (10.3.9a)

ψ(z)ψ(0) = O(z) , (10.3.9b)

ψ(z)ψ(0) = O(z) . (10.3.9c)

Eqs. (10.3.6) and (10.3.9) are identical in form, and so the expectation
values of ψ(z) on the sphere are identical to those of eiH(z). We will write

ψ(z) ∼= eiH(z) , ψ(z) ∼= e−iH(z) (10.3.10)
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to indicate this. Of course, all of this extends to the antiholomorphic case,

ψ̃(z̄) ∼= eiH̃(z̄) , ψ̃( ) ∼= e−iH̃(z̄) . (10.3.11)

R and kL can be formed

by repeated operator products of e±iH(z) and e±iH̃(z̄), and arbitrary local
operators built out of the fermions and their derivatives can be formed by
repeated operator products of ψ(z), ψ(z), ψ̃(z̄), and ψ̃(z̄), the equivalence
of the theories can be extended to all local operators. Finally, in order for
these theories to be the same as CFTs, the energy-momentum tensors must
be equivalent. The easiest way to show this is via the operator products

eiH(z)e−iH(−z) = 1

2z
+ i∂H(0) + 2zTH

B (0) + O(z2) , (10.3.12a)

ψ(z)ψ(−z) = 1

2z
+ ψψ(0) + 2zT

ψ
B (0) + O(z2) . (10.3.12b)

With the result (10.3.10), this implies equivalence of the H momentum
current with the ψ number current, and of the two energy-momentum
tensors,

ψψ ∼= i∂H , T
ψ
B
∼= TH

B . (10.3.13)

As a check, eiH and ψ are both (12 , 0) tensors.
In the operator description of the theory, define

ψ(z) ∼= ◦◦eiH(z)◦◦ . (10.3.14)

From the Campbell–Baker–Hausdorff (CBH) formula (6.7.23) we have for
equal times |z| = |z′|

◦◦eiH(z)◦◦ ◦◦eiH(z′)◦◦ = exp{−[H(z), H(z′)]} ◦◦eiH(z′)◦◦ ◦◦eiH(z)◦◦

= −◦◦eiH(z′)◦◦ ◦◦eiH(z)◦◦ , (10.3.15)

where we have used the fact (8.2.21) that at equal times [H(z), H(z′)] =
±iπ. Thus the bosonized operators do anticommute. This is possible for
operators constructed purely out of bosons because they are nonlocal. In
particular, note that the CBH formula gives the equal time commutator

H(z) ◦◦eiH(z′)◦◦ = ◦◦eiH(z′)◦◦
(
H(z) + i[H(z), H(z′)]

)
= ◦◦eiH(z′)◦◦

(
H(z)− π sign(σ1 − σ′1)

)
, (10.3.16)

so that the fermion field operator produces a kink, a discontinuity, in the
bosonic field.
This rather surprising equivalence is known as bosonization. Equiva-

lence between field theories with very different actions and fields occurs
frequently in two dimensions, especially in CFTs because holomorphicity
puts strong constraints on the theory. (The great recent surprise is that it is

z̄

Since arbitrary local operators with integer k
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also quite common in higher-dimensional field and string theories.) Many
interesting CFTs can be constructed in several different ways. One form
or another will often be more useful for specific purposes. Notice that
there is no simple correspondence between one-boson and one-fermion
states. The current, for example, is linear in the boson field but quadratic
in the fermion field. A single boson is the same as one ψ fermion and
one ψ fermion at the same point. On a Minkowski world-sheet, where
holomorphic becomes left-moving, the fermions both move left at the
speed of light and remain coincident, indistinguishable from a free boson.
A single fermion, on the other hand, is created by an operator exponential
in the boson field and so is a coherent state, which as we have seen is in
the shape of a kink (10.3.16).

The complicated relationship between the bosonic and fermionic spectra
shows up also in the partition function. Operator products of e±iH(z) gen-
erate all operators with integer kL. The bosonic momentum and oscillator
sums then give

Tr (qL0) =

(∑
kL∈Z

qk
2
L/2

) ∞∏
n=1

(1− qn)−1 . (10.3.17)

In the NS sector of the fermionic theory, the oscillator sum gives

Tr (qL0) =
∞∏
n=1

(1 + qn−1/2)2 . (10.3.18)

We know indirectly that these must be equal, since we can use the OPE
to construct an analog in the fermionic theory for any local operator of
the bosonic theory and vice versa. Expanding the products gives

1 + 2q1/2 + q + 2q3/2 + 4q2 + 4q5/2 + . . . (10.3.19)

for each, and in fact the equality of (10.3.17) and (10.3.18) follows from the
equality of the product and sum expressions for theta functions, section 7.2.
Note that while bosonization was derived for the sphere, the sewing
construction from chapter 9 guarantees that it holds on all Riemann
surfaces, provided that we make equivalent projections on the spectra.
In particular, we have seen that summing over integer kL corresponds to
summing over all local fermionic operators, the NS sector.

Bosonization extends readily to the R sector. In fact, once we combine
two fermions into a complex pair we can consider the more general
periodicity condition

ψ(w + 2π) = exp(2πiν)ψ(w) (10.3.20)

for any real ν. In ten dimensions only ν = 0, 12 arose, but these more gen-
eral periodicities are important in less symmetric situations. The Laurent
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expansion has the same form (10.2.7) as before,

ψ(z) =
∑
r∈Z+ν

ψr

zr+1/2
, ψ(z) =

∑
s∈Z−ν

ψs

zs+1/2
, (10.3.21)

with indices displaced from integers by ±ν. The algebra is

{ψr, ψs} = δr,−s . (10.3.22)

Define a reference state |0〉ν by
ψn+ν |0〉ν = ψn+1−ν |0〉ν = 0 , n = 0, 1, . . . . (10.3.23)

The first nonzero terms in the Laurent expansions are then r = −1 + ν

and s = −ν, so for the corresponding local operator Aν the OPE is

ψ(z)Aν(0) = O(z−ν+1/2) , ψ(z)Aν(0) = O(zν−1/2) . (10.3.24)

The conditions (10.3.23) uniquely identify the state |0〉ν , and so the corre-
sponding OPEs (10.3.24) determine the bosonic equivalent

exp[i(−ν + 1/2)H] ∼=Aν . (10.3.25)

One can check the identification (10.3.25) by verifying that the weight is
h = 1

2(ν − 1
2 )

2. In the bosonic form this comes from the term 1
2p

2 in L0. In
the fermionic form it follows from the usual commutator method (2.7.8)
or the zero-point mnemonic.

The boundary condition (10.3.20) is the same for ν and ν + 1, but the
reference state that we have defined is not. It is a ground state only for
0 ≤ ν ≤ 1. As we vary ν, the state |0〉ν changes continuously, and when
we get back to the original theory at ν + 1, by the definition (10.3.23) it
has become the excited state

|0〉ν+1 = ψ−ν |0〉ν . (10.3.26)

This is known as spectral flow. For the R case ν = 0 there are the two
degenerate ground states

|s〉 ∼= eisH , s = ± 1
2 . (10.3.27)

For the superstring in ten dimensions we need five bosons, Ha for
a = 0, . . . , 4. Then2

2−1/2(±ψ0 + ψ1) ∼= e±iH0

(10.3.28a)

2−1/2(ψ2a ± iψ2a+1) ∼= e±iHa

, a = 1, . . . , 4 . (10.3.28b)

2 The precise operator definition has a subtlety when there are several species of fermion. The Ha

for different a are independent and so the exponentials commute rather than anticommute. A
cocycle is needed, as in eq. (8.2.22). A general expression will be given in the next section.
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The vertex operator Θs for an R state |s〉 is

Θs
∼= exp

[
i
∑
a

saH
a

]
. (10.3.29)

This operator, which produces a branch cut in ψµ, is sometimes called a
spin field. For closed string states, this is combined with the appropriate
antiholomorphic vertex operator, built from H̃a.

The general bc CFT, renaming ψ → b and ψ → c, is obtained by
modifying the energy-momentum tensor of the λ = 1

2 theory to

T
(λ)
B = T

(1/2)
B − (λ− 1

2 )∂(bc) . (10.3.30)

The equivalences (10.3.13) give the corresponding bosonic operator

T
(λ)
B
∼= TH

B − i(λ− 1
2 )∂

2H . (10.3.31)

This is the same as the linear dilaton CFT, with V = −i(λ− 1
2 ). With this

correspondence between V and λ, the linear dilaton and bc theories are
equivalent,

b ∼= eiH , c ∼= e−iH . (10.3.32)

As a check, the central charges agree,

c = 1− 3(2λ− 1)2 = 1 + 12V 2 . (10.3.33)

So do the dimensions of the fields (10.3.32), λ for b and 1−λ for c, agreeing
with k2/2 + ikV for eikH . The nontensor behaviors of the currents bc and
i∂H are also the same. Since the inner product for the reparameterization
ghosts makes b and c Hermitean, the bosonic field H must be anti-
Hermitean in this application. The bosonization of the ghosts is usually
written in terms of a Hermitean field with the opposite sign OPE,

H → iρ ; c ∼= eρ , b ∼= e−ρ . (10.3.34)

10.4 The superconformal ghosts

To build the BRST current we will need, in addition to the anticommuting
b and c ghosts of the bosonic string, commuting ghost fields β and γ of
weight (32 , 0) and (− 1

2 , 0), and the corresponding antiholomorphic fields.
The action for this SCFT was given in eq. (10.1.17) and the currents
TB and TF in eq. (10.1.21). The ghosts β and γ must have the same
periodicity (10.2.4) as the generator TF with which they are associated.
This is necessary to make the BRST current periodic, so that it can be
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integrated to give the BRST charge. Thus,

β(z) =
∑
r∈Z+ν

βr

zr+3/2
, γ(z) =

∑
r∈Z+ν

γr

zr−1/2
, (10.4.1a)

b(z) =
∞∑

m=−∞
bm

zm+2
, c(z) =

∞∑
m=−∞

cm

zm−1 , (10.4.1b)

and similarly for the antiholomorphic fields. The (anti)commutators are

[γr, βs] = δr,−s , {bm, cn} = δn,−m . (10.4.2)

Define the ground states |0〉NS,R by

βr|0〉NS = 0 , r ≥ 1
2 , γr|0〉NS = 0 , r ≥ 1

2 (10.4.3a)

βr|0〉R = 0 , r ≥ 0 , γr|0〉R = 0 , r ≥ 1 , (10.4.3b)

bm|0〉NS,R = 0 , m ≥ 0 , cm|0〉NS,R = 0 , m ≥ 1 . (10.4.3c)

We have grouped β0 with the lowering operators and γ0 with the raising
ones, in parallel with the bosonic case. The spectrum is built as usual
by acting on the ground states with the raising operators. The generators
are

Lg
m =

∑
n∈Z

(m+ n)◦◦bm−ncn◦◦ +
∑
r∈Z+ν

1

2
(m+ 2r)◦◦βm−rγr◦◦ + agδm,0 ,

(10.4.4a)

Gg
r = −∑

n∈Z

[
1

2
(2r + n)βr−ncn + 2bnγr−n

]
. (10.4.4b)

The normal ordering constant is determined by the usual methods to be

R: ag = −5

8
, NS: ag = −1

2
. (10.4.5)

Vertex operators

We focus here on the βγ CFT, as the bc parts of the vertex operators are
already understood. Let us start by considering the state corresponding
to the unit operator. From the Laurent expansions (10.4.1) it is in the NS
sector and satisfies

βr|1〉 = 0 , r ≥ −1

2
, γr|1〉 = 0 , r ≥ 3

2
. (10.4.6)

This is not the same as the ground state |0〉NS: the mode γ1/2 annihilates
|0〉NS while its conjugate β−1/2 annihilates |1〉. We found this also for the
bc ghosts with c1 and b−1. Since anticommuting modes generate just two
states, we had the simple relation |0〉 = c1|1〉 (focusing on the holomorphic
side). For commuting oscillators things are not so simple: there is no state
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in the Fock space built on |1〉 by acting with γ1/2 that has the properties
of |0〉NS. The definition of the state |0〉NS translates into

γ(z)δ(γ(0)) = O(z) , β(z)δ(γ(0)) = O(z−1) , (10.4.7)

for the corresponding operator δ(γ). The notation δ(γ) reflects the fact
that the field γ has a simple zero at the vertex operator. Recall that for
the bc ghosts the NS ground state maps to the operator c, which is the
anticommuting analog of a delta function. One can show that an insertion
of δ(γ) in the path integral has the property (10.4.7).

To give an explicit description of this operator it is again convenient to
bosonize. Of course β and γ are already bosonic, but bosonization here
refers to a rewriting of the theory in a way that is similar to, but a bit
more intricate than, the bosonization of the anticommuting bc theory.
Start with the current βγ. The operator product

βγ(z) βγ(0) ∼ − 1

z2
(10.4.8)

is the same as that of ∂φ, where φ(z)φ(0) ∼ − ln z is a holomorphic
scalar. Holomorphicity then implies that this equivalence extends to all
correlation functions,

βγ(z) ∼= ∂φ(z) . (10.4.9)

The OPE of the current with β and γ then suggests

β(z)
?∼= e−φ(z) , γ(z)

?∼= eφ(z) . (10.4.10)

For the bc system we would be finished: this approach leads to the
same bosonization as before. For the βγ system, however, the sign of
the current–current OPE and therefore of the φφ OPE is changed. The
would-be bosonization (10.4.10) gives the wrong OPEs: it would imply

β(z)β(0)
?
= O(z−1) , β(z)γ(0)

?
= O(z1) , γ(z)γ(0)

?
= O(z−1) , (10.4.11)

whereas the correct OPE is

β(z)β(0) = O(z0) , β(z)γ(0) = O(z−1) , γ(z)γ(0) = O(z0) . (10.4.12)

To repair this, additional factors are added,

β(z) ∼= e−φ(z)∂ξ(z) , γ ∼= eφ(z)η(z) . (10.4.13)

In order not to spoil the OPE with the current (10.4.9), the new fields
η(z) and ξ(z) must be nonsingular with respect to φ, which means that
the ηξ theory is a new CFT, decoupled from the φ CFT. Further, the
equivalence (10.4.13) will hold — all OPEs will be correct — if η and ξ
satisfy

η(z)ξ(0) ∼ 1

z
, η(z)η(0) = O(z) , ∂ξ(z)∂ξ(0) = O(z) . (10.4.14)
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This identifies the ηξ theory as a holomorphic CFT of the bc type: the
OPE of like fields has a zero due to the anticommutativity.
It remains to study the energy-momentum tensor. We temporarily con-

sider the general βγ system, with β having weight λ′. The OPE

T (z)βγ(0) =
1− 2λ′
z3

+ . . . (10.4.15)

determines the φ energy-momentum tensor,

T
φ
B = −1

2
∂φ∂φ+

1

2
(1− 2λ′)∂2φ . (10.4.16)

The exponentials in the bosonization (10.4.13) thus have weights λ′−1 and
−λ′ respectively, as compared with the weights λ′ and 1 − λ′ of β and γ.
This fixes the weights of η and ξ as 1 and 0: this is a λ = 1 bc system, with

T
ηξ
B = −η∂ξ (10.4.17)

and

T
βγ
B
∼= T

φ
B + T

ηξ
B . (10.4.18)

As a check, the central charges are 3(2λ′ − 1)2 + 1 for T
φ
B and −2 for T

ηξ
B ,

adding to the 3(2λ′ − 1)2 − 1 of the βγ CFT. The need for extra degrees
of freedom is not surprising. The βγ theory has a greater density of states
than the bc theory because the modes of a commuting field can be excited
any number of times. One can check that the total partition functions
agree, in the appropriate sectors.
If need be one can go further and represent the ηξ theory in terms

of a free boson, conventionally χ with χ(z)χ(0) ∼ ln z, as in the previous
section. Thus

η ∼= e−χ , ξ ∼= eχ , (10.4.19a)

β ∼= e−φ+χ∂χ , γ ∼= eφ−χ . (10.4.19b)

The energy-momentum tensor is then

TB = −1

2
∂φ∂φ+

1

2
∂χ∂χ+

1

2
(1− 2λ′)∂2φ+

1

2
∂2χ . (10.4.20)

For the string, the relevant value is λ′ = 3
2 . The properties (10.4.7) of

δ(γ) determine the bosonization,

δ(γ) ∼= e−φ , h =
1

2
. (10.4.21)

The fermionic parts of the tachyon and massless NS vertex operators are
then

e−φ , e−φe±iHa

(10.4.22)

respectively. For λ′ = 3
2 , the exponential elφ has weight − 1

2 l
2 − l.
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The operator Σ corresponding to |0〉R satisfies

β(z)Σ(0) = O(z−1/2) , γ(z)Σ(0) = O(z1/2) . (10.4.23)

This determines

Σ = e−φ/2 , h =
3

8
. (10.4.24)

Adding the contribution −1 of the bc ghosts, the weight of e−φ/2 and of
e−φ agree with the values (10.4.5). The R ground state vertex operators
are then

Vs = e−φ/2Θs , (10.4.25)

with the spin field Θs having been defined in eq. (10.3.29).

We need to extend the definition of world-sheet fermion number F to
be odd for β and γ. The ultimate reason is that it anticommutes with
the supercurrent TF and we will need it to commute with the BRST
operator, which contains terms such as γTF . The natural definition for F
is then that it be the charge associated with the current (10.4.9), which
is l for elφ. Again, it is conserved by the OPE. This accounts for the
ghost contributions in eq. (10.2.24). Note that this definition is based on
spin rather than statistics, since the ghosts have the wrong spin-statistics
relation; it would therefore be more appropriate to call F the world-sheet
spinor number.

For completeness we give a general expression for the cocycle for
exponentials of free fields, though we emphasize that for most purposes
the details are not necessary. In general one has operators

exp(ikL ·HL + ikR ·HR) , (10.4.26)

with the holomorphic and antiholomorphic scalars not necessarily equal
in number. The momenta k take values in some lattice Γ. The naive
operator product has the phase of z−k◦k′ , and for all pairs in Γ, k ◦ k′ must
be an integer. The notation is as in section 8.4, k ◦ k′ = kL · k′L − kR · k′R .
When k ◦ k′ is an odd integer the vertex operators anticommute rather
than commute. A correctly defined vertex operator is

Ck(α0)
◦◦ exp(ikL ·HL + ikR ·HR)

◦◦ (10.4.27)

with the cocycle Ck defined as follows. Take a set of basis vectors kα for
Γ; that is, Γ consists of the integer linear combinations nαkα. Similarly
write the vector of zero-mode operators in this basis, α0 = α0αkα, Then for
k = nαkα,

Ck(α0) = exp

(
πi
∑
α>β

nαα0βkα ◦ kβ
)
. (10.4.28)



20 10 Type I and type II superstrings

This generalizes the simple case (8.2.22). The reader can check that vertex
operators with even k ◦ k now commute with all vertex operators, and
those with odd k ◦ k anticommute among themselves. Note that a cocycle
has no effect on the commutativity of a vertex operator with itself, so an
exponential must be bosonic if k ◦ k is even and fermionic if k ◦ k is odd.

10.5 Physical states

In the bosonic string we started with a (diff×Weyl)-invariant theory.
After fixing to conformal gauge we had to impose the vanishing of the
conformal algebra as a constraint on the states. In the present case there
is an analogous gauge-invariant form, and the superconformal algebra
emerges as a constraint in the gauge-fixed theory. However, it is not
necessary to proceed in this way, and it would require us to develop some
machinery that in the end we do not need. Rather we can generalize
directly in the gauge-fixed form, defining the superconformal symmetry to
be a constraint and proceeding in parallel to the bosonic case to construct
a consistent theory. We will first impose the constraint in the old covariant
formalism, and then in the BRST formalism.

OCQ

In this formalism, developed for the bosonic string in section 4.1, one
ignores the ghost excitations. We begin with the open string, imposing the
physical state conditions

Lm
n |ψ〉 = 0 , n > 0 , Gm

r |ψ〉 = 0 , r ≥ 0 . (10.5.1)

Only the matter part of any state is nontrivial — the ghosts are in their
ground state — and the superscript ‘m’ denotes the matter part of each
generator. There are also the equivalence relations

Lm
n |χ〉 ∼= 0 , n < 0 , Gm

r |χ〉 ∼= 0 , r < 0 . (10.5.2)

The mass-shell condition can always be written in terms of the total
matter plus ghost Virasoro generator, which is the same as the world-
sheet Hamiltonian H because the total central charge is zero:

L0|ψ〉 = H |ψ〉 = 0 . (10.5.3)

In ten flat dimensions this is

H =

 α′p2 +N − 1

2
(NS)

α′p2 +N (R)
. (10.5.4)
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The zero-point constants from the ghosts and longitudinal oscillators have
canceled as usual, leaving the contribution of the transverse modes,

NS: 8

(
− 1

24
− 1

48

)
= −1

2
, R: 8

(
− 1

24
+

1

24

)
= 0 . (10.5.5)

For the tachyonic and massless levels we need only the terms

Gm
0 = (2α′)1/2pµψµ0 + . . . , (10.5.6a)

Gm±1/2 = (2α′)1/2pµψµ±1/2 + . . . . (10.5.6b)

The NS sector works out much as in the bosonic string. The lowest state is
|0; k〉NS, labeled by the matter state and momentum. The only nontrivial
condition is from L0, giving

m2 = −k2 = − 1

2α′ . (10.5.7)

This state is a tachyon. It has exp(πiF) = −1, where F was given in
eq. (10.2.24). The first excited state is

|e; k〉NS = e · ψ−1/2|0; k〉NS . (10.5.8)

The nontrivial physical state conditions are

0 = L0|e; k〉NS = α′k2|e; k〉NS , (10.5.9a)

0 = Gm
1/2|e; k〉NS = (2α′)1/2k · e|0; k〉NS , (10.5.9b)

while

Gm−1/2|0; k〉NS = (2α′)1/2k · ψ−1/2|0; k〉NS (10.5.10)

is null. Thus

k2 = 0 , e · k = 0 , eµ ∼= eµ + kµ . (10.5.11)

This state is massless, the half-unit of excitation canceling the zero-point
energy, and has exp(πiF) = +1. Like the first excited state of the bosonic
string it is a massless vector, with D − 2 spacelike polarizations. The
constraints have removed the unphysical polarizations of ψµ, just as for
Xµ in the bosonic case.

In the R sector the lowest states are

|u; k〉R = |s; k〉Rus. (10.5.12)

Here us is the polarization, and the sum on s is implicit. The nontrivial
physical state conditions are

0 = L0|u; k〉R = α′k2|u; k〉R , (10.5.13a)

0 = Gm
0 |u; k〉R = α′1/2|s′; k〉Rk · Γs′sus . (10.5.13b)

λ
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Table 10.2. Massless and tachyonic open string states.

sector SO(8) spin m2

NS+ 8v 0

NS− 1 −1/2α′
R+ 8 0

R− 8′ 0

The ground states are massless because the zero-point energy vanishes in
the R sector. The Gm

0 condition gives the massless Dirac equation

k · Γs′sus = 0 , (10.5.14)

which was our original goal in introducing the superconformal algebra.
The Gm

0 condition implies the L0 condition, because G
2
0 = L0 in the critical

dimension and the ghost parts of G0 annihilate the ghost vacuum.

In ten dimensions, massless particle states are classified by their behavior
under the SO(8) rotations that leave the momentum invariant. Take a
frame with k0 = k1. In the NS sector, the massless physical states are
the eight transverse polarizations forming the vector representation 8v of
SO(8). In the R sector, the massless Dirac operator becomes

k0Γ
0 + k1Γ

1 = −k1Γ0(Γ0Γ1 − 1) = −2k1Γ0(S0 − 1
2 ) . (10.5.15)

The physical state condition is then

(S0 − 1
2 )|s, 0; k〉Rus = 0 , (10.5.16)

so precisely the states with s0 = +1
2 survive. As discussed in section B.1,

we have under SO(9, 1)→ SO(1, 1)× SO(8) the decompositions

16 → (+1
2 , 8) + (−1

2 , 8
′) , (10.5.17a)

16′ → (+1
2 , 8

′) + (−1
2 , 8) . (10.5.17b)

Thus the Dirac equation leaves an 8 with exp(πiF) = +1 and an 8′ with
exp(πiF) = −1.
The tachyonic and massless states are summarized in table 10.2. The

open string spectrum has four sectors, according to the periodicity ν

and the world-sheet fermion number exp(πiF). We will use the notation
NS± and R± to label these sectors. We will see in the next section that
consistency requires us to keep only certain subsets of sectors, and that
there are consistent string theories without the tachyon.
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Table 10.3. Products of SO(8) representations appearing at the massless level of
the closed string. The R–NS sector has the same content as the NS–R sector.

sector SO(8) spin tensors dimensions

(NS+,NS+) 8v × 8v = [0] + [2] + (2) = 1+ 28+ 35

(R+,R+) 8× 8 = [0] + [2] + [4]+ = 1+ 28+ 35+

(R+,R−) 8× 8′ = [1] + [3] = 8v + 56t

(R−,R−) 8′ × 8′ = [0] + [2] + [4]− = 1+ 28+ 35−
(NS+,R+) 8v × 8 = 8′ + 56

(NS+,R−) 8v × 8′ = 8+ 56′

Closed string spectrum

The closed string is two copies of the open string, with the momentum
rescaled k → 1

2k in the generators. With ν, ν̃ taking the values 0 and 1
2 , the

mass-shell condition can be summarized as

α′
4
m2 = N − ν = Ñ − ν̃ . (10.5.18)

The tachyonic and massless closed string spectrum is obtained by com-
bining one left-moving and one right-moving state, subject to the equal-
ity (10.5.18).
The (NS−,NS−) sector contains a closed string tachyon with m2 =

−2/α′. At the massless level, combining the various massless left- and
right-moving states from table 10.2 leads to the SO(8) representations
shown in table 10.3. Note that level matching prevents pairing of the
NS− sector with any of the other three. As in the bosonic string, vector
times vector decomposes into scalar, antisymmetric tensor, and traceless
symmetric tensor denoted (2). The products of spinors are discussed in
section B.1.
The 64 states in 8v × 8 and 8v × 8′ each separate into two irreducible

representations. Denoting a state in 8v × 8 by |i, s〉, we can form the eight
linear combinations

|i, s〉Γiss′ . (10.5.19)

These states transform among themselves under SO(8), and they are in
the 8′ representation because the chirality of the loose index s′ is opposite
to that of s. The other 56 states form an irreducible representation 56. The
product 8v×8′ works in the same way. Note that there are several cases of
distinct representations with identical dimensions: at dimension 8 a vector
and two spinors, at dimension 56 an antisymmetric rank 3 tensor and two
vector-spinors, at dimension 35 a traceless symmetric rank 2 tensor and
self-dual and anti-self-dual rank 4 tensors.
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BRST quantization

From the general structure discussed in chapter 4, in particular the expres-
sion (4.3.14) for the BRST operator for a general constraint algebra, the
BRST operator can be constructed as a simple extension of the bosonic
one:

QB =
1

2πi

∮
(dz jB − dz̄ ̃B) , (10.5.20)

where

jB = cTm
B + γTm

F +
1

2

(
cT

g
B + γT

g
F

)
= cTm

B + γTm
F + bc∂c+

3

4
(∂c)βγ +

1

4
c(∂β)γ − 3

4
cβ∂γ − bγ2 ,

(10.5.21)

and the same on the antiholomorphic side. As in the bosonic case, this is
a tensor up to an unimportant total derivative term.
The BRST current has the essential property

jB(z)b(0) ∼ . . .+
1

z
TB(0) , jB(z)β(0) ∼ . . .+

1

z
TF (0) , (10.5.22)

so that the commutators of QB with the b, β ghosts give the corresponding
constraints.3 In modes,

{QB, bn} = Ln , [QB, βr] = Gr . (10.5.23)

From these one can verify nilpotence by the same steps as in the bosonic
case (exercise 4.3) whenever the total central charge vanishes. Thus, we
can replace some of the spacelike Xµψµ SCFTs with any positive-norm
SCFT such that the total matter central charge is cm = c̃m = 15. The
BRST current must be periodic for the BRST charge to be well defined.
The supercurrent of the SCFT must therefore have the same periodicity,
R or NS, as the ψµ, β, and γ. The expansion of the BRST operator is

QB =
∑
m

c−mLm
m +

∑
r

γ−rGm
r −

∑
m,n

1

2
(n− m)◦◦b−m−ncmcn◦◦ ,

+
∑
m,r

[
1

2
(2r − m)◦◦β−m−rcmγr◦◦ − ◦◦b−mγm−rγr◦◦

]
+ agc0 ,

(10.5.24)

where m and n run over integers and r over (integers + ν). The ghost
normal ordering constant is as in eq. (10.4.5).

3 The bcβγ theory actually has a one-parameter family of superconformal symmetries, related
by rescaling β → xβ and γ → x−1γ. The general BRST construction (4.3.14) singles out
the symmetry (10.1.21); this is most easily verified by noting that it correctly leads to the
OPEs (10.5.22).
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The observable spectrum is the space of BRST cohomology classes. As
in the bosonic theory, we impose the additional conditions

b0|ψ〉 = L0|ψ〉 = 0 . (10.5.25)

In addition, in the R sector we impose

β0|ψ〉 = G0|ψ〉 = 0 , (10.5.26)

the logic being the same as for (10.5.25). The reader can again work out
the first few levels by hand, the result being exactly the same as for OCQ.
The no-ghost theorem is as in the bosonic case. The BRST cohomology
has a positive definite inner product and is isomorphic to OCQ and to the
transverse Hilbert spaceH⊥, which is defined to have no α0,1, ψ0,1, b, c, β,
or γ excitations. The proof is a direct imitation of the bosonic argument
of chapter 4.

We have defined exp(πiF) to commute with QB. We can therefore
consider subspaces with definite eigenvalues of exp(πiF) and the no-ghost
theorem holds separately in each.

10.6 Superstring theories in ten dimensions

We now focus on the theory in ten flat dimensions. For the four sectors
of the open string spectrum we will use in addition to the earlier notation
NS±, R± the notation

(α, F) , (10.6.1)

where the combination

α = 1− 2ν (10.6.2)

is 1 in the R sector and 0 in the NS sector. Both α and F are defined
only mod 2. The closed string has independent periodicities and fermion
numbers on both sides, and so has 16 sectors labeled by

(α, F, α̃, F̃) . (10.6.3)

Actually, six of these sectors are empty: in the NS− sector the level
L0− α′p2/4 is half-integer, while in the sectors NS+, R+, and R− it is an
integer. It is therefore impossible to satisfy the level-matching condition
L0 = L̃0 if NS− is paired with one of the other three.

Not all of these states can be present together in a consistent string
theory. Consider first the closed string spectrum. We have seen that
the spinor fields have branch cuts in the presence of R sector vertex
operators. Various pairs of vertex operators will then have branch cuts
in their operator products — they are not mutually local. The operator F
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counts the number of spinor fields in a vertex operator, so the net phase
when one vertex operator circles another is

exp πi
(
F1α2 − F2α1 − F̃1α̃2 + F̃2α̃1

)
. (10.6.4)

If this phase is not unity, the amplitude with both operators cannot be
consistently defined.
A consistent closed string theory will then contain only some subset

of the ten sectors. Thus there are potentially 210 combinations of sectors,
but only a few of these lead to consistent string theories. We impose three
consistency conditions:

(a) From the above discussion, all pairs of vertex operators must be
mutually local: if both (α1, F1, α̃1, F̃1) and (α2, F2, α̃2, F̃2) are in the
spectrum then

F1α2 − F2α1 − F̃1α̃2 + F̃2α̃1 ∈ 2Z . (10.6.5)

(b) The OPE must close. The parameter α is conserved mod 2 under
operator products (for example, R × R = NS), as is F . Thus if
(α1, F1, α̃1, F̃1) and (α2, F2, α̃2, F̃2) are in the spectrum then so is

(α1 + α2, F1 + F2, α̃1 + α̃2, F̃1 + F̃2) . (10.6.6)

(c) For an arbitrary choice of sectors, the one-loop amplitude will not
be modular-invariant. We will study modular invariance in the next
section, but in order to reduce the number of possibilities it is useful
to extract one simple necessary condition:

There must be at least one left-moving R sector (α = 1) and at least
one right-moving R sector (α̃ = 1).

We now solve these constraints. Assume first that there is at least one
R–NS sector, (α, α̃) = (1, 0). By the level-matching argument, it must either
be (R+,NS+) or (R−,NS+). Further, by (a) only one of these can appear,
because the product of the corresponding vertex operators is not single-
valued. By (c), there must also be at least one NS–R or R–R sector, and
because R–NS × R–R = NS–R, there must in any case be an NS–R
sector. Again, this must be either (NS+,R+) or (NS+,R−), but not both.
So we have four possibilities, (R+,NS+) or (R−,NS+) with (NS+,R+) or
(NS+,R−). Applying closure and single-valuedness leads to precisely two
additional sectors in each case, namely (NS+,NS+) and one R–R sector.
The spectra which solve (a), (b), and (c) with at least one R–NS sector are

IIB: (NS+,NS+) (R+,NS+) (NS+,R+) (R+,R+) ,

IIA: (NS+,NS+) (R+,NS+) (NS+,R−) (R+,R−) ,
IIA′: (NS+,NS+) (R−,NS+) (NS+,R+) (R−,R+) ,

IIB′: (NS+,NS+) (R−,NS+) (NS+,R−) (R−,R−) .
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Notice that none of these theories contains the tachyon, which lives in the
sector (NS−,NS−).

These four solutions represent just two physically distinct theories. In
the IIA and IIA′ theories the R–R states have the opposite chirality on
the left and the right, and in the IIB and IIB′ theories they have the same
chirality. A spacetime reflection on a single axis, say

X2 → −X2 , ψ2 → −ψ2 , ψ̃2 → −ψ̃2 , (10.6.7)

leaves the action and the constraints unchanged but reverses the sign
of exp(πiF) in the left-moving R sectors and the sign of exp(πiF̃) in
the right-moving R sectors. At the massless level this switches the Weyl
representations, 16↔ 16′. It therefore turns the IIA′ theory into IIA, and
IIB′ into IIB.
Now suppose that there is no R–NS sector. By (c), there must be at

least one R–R sector. In fact the combination of (NS+,NS+) with any
single R–R sector solves (a), (b), and (c), but these turn out not to be
modular-invariant. Proceeding further, one readily finds the only other
solutions,

0A: (NS+,NS+) (NS−,NS−) (R+,R−) (R−,R+) ,

0B: (NS+,NS+) (NS−,NS−) (R+,R+) (R−,R−) .
These are modular-invariant, but both have a tachyon and there are no
spacetime fermions.
In conclusion, we have found two potentially interesting string theories,

the type IIA and IIB superstring theories. Referring back to table 10.3, one
finds the massless spectra

IIA: [0] + [1] + [2] + [3] + (2) + 8+ 8′ + 56+ 56′ , (10.6.8a)

IIB: [0]2 + [2]2 + [4]+ + (2) + 8′2 + 562 . (10.6.8b)

The IIB theory is defined by keeping all sectors with

exp(πiF) = exp(πiF̃) = +1 , (10.6.9)

and the IIA theory by keeping all sectors with

exp(πiF) = +1 , exp(πiF̃) = (−1)α̃ . (10.6.10)

This projection of the full spectrum down to eigenspaces of exp(πiF) and
exp(πiF̃) is known as the Gliozzi–Scherk–Olive (GSO) projection. In the
IIA theory the opposite GSO projections are taken in the NS–R and R–
NS sectors, so the spectrum is nonchiral. That is, the spectrum is invariant
under spacetime parity, which interchanges 8 ↔ 8′ and 56 ↔ 56′. On
the world-sheet, this symmetry is the product of spacetime parity and
world-sheet parity. In the IIB theory the same GSO projection is taken in
each sector and the spectrum is chiral.
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The type 0 theories are formed by a different method: for example, 0B
is defined by keeping all sectors with

α = α̃ , exp(πiF) = exp(πiF̃) . (10.6.11)

The projections that define the type II theories act separately on the left-
and right-moving spinors, while the projections that define the type 0
theory tie the two together. The latter are sometimes called diagonal GSO
projections.
The most striking features of the type II theories are the massless

vector–spinor gravitinos in the NS–R and R–NS sectors. The terminology
type II refers to the fact that these theories each have two gravitinos. In
the IIA theory the gravitinos have opposite chiralities (Γ eigenvalues), and
in the IIB theory they have the same chirality. The NS–R gravitino state is

ψ
µ
−1/2|0; s; k〉NS–Ruµs . (10.6.12)

The physical state conditions are

k2 = kµuµs = k ·Γss′uµs′ = 0 , (10.6.13)

as well as the equivalence relation

uµs ∼= uµs + kµζs . (10.6.14)

We have learned that such equivalence relations are the signature of a
local spacetime symmetry. Here the symmetry parameter ζs is a spacetime
spinor so we have local spacetime supersymmetry. In flat spacetime there
will be a conserved spacetime supercharge QAs , where A distinguishes the
symmetries associated with the two gravitinos, and s is a spinor index of
the same chirality as the corresponding gravitino. Thus the IIA theory has
one supercharge transforming as the 16 of SO(9, 1) and one transforming
as the 16′, and the IIB theory has two transforming as the 16.
The gravitino vertex operators are

Vse
−φ̃ψ̃µeik·X , e−φψµṼse

ik·X . (10.6.15)

The operators Vs and Ṽs, defined in eq. (10.4.25), have weights (1, 0)
and (0, 1) and so are world-sheet currents associated with the spacetime
supersymmetries.
This is our first encounter with spacetime supersymmetry, and the reader

should now study the appropriate sections of appendix B. Section B.2
gives an introduction to spacetime supersymmetry. Section B.4 discusses
antisymmetric tensor fields, which we have in the massless IIA and IIB
spectra. Section B.5 briefly discusses the IIA and IIB supergravity theories
which describe the low energy physics of the IIA and IIB superstrings.
In each of the type II theories, there is a unique massless representation,
which has 28 = 256 states. The massless superstring spectra are the
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massless representations of IIA and IIB d = 10 spacetime supersymmetry
respectively. This is to be expected: if all requirements for a consistent
string theory are met (and they are) then the existence of the gravitinos
implies that the corresponding supersymmetries must be present.

The reader may feel that the construction in this section, which is the
Ramond–Neveu–Schwarz (RNS) form of the superstring, is somewhat ad
hoc. In particular one might expect that the spacetime supersymmetry
should be manifest from the start. There is certainly truth to this, but
the existing supersymmetric formulation (the Green–Schwarz superstring)
seems to be even more unwieldy.

Note that the world-sheet and spacetime supersymmetries are distinct,
and that the connection between them is indirect. The world-sheet super-
symmetry parameter η(z) is a spacetime scalar and world-sheet spinor,
while the spacetime supersymmetry parameter ζs is a spacetime spinor
and world-sheet scalar. The world-sheet supersymmetry is a constraint in
the world-sheet theory, annihilating physical states. The spacetime super-
symmetry is a global symmetry of the world-sheet theory, giving relations
between masses and amplitudes, though it becomes a local symmetry in
spacetime.

Let us note one more feature of the GSO projection. In bosonized
form, all the R sector vertex operators have odd length-squared and all
the NS sector vertex operators have even length-squared, in terms of the
◦ product defined in section 10.4. This can be seen at the lowest levels for
the operators (10.4.22) and (10.4.25), the tachyon having been removed by
the GSO projection. By the remark at the end of section 10.4, the space-
time spin is then correlated with the world-sheet statistics. In fact, this
is the same as the space-time statistics. The world-sheet statistics governs
the behavior of the world-sheet amplitude under simultaneous exchange
of world-sheet position, spacetime momentum, and other quantum num-
bers. After integrating over position, this determines the symmetry of the
spacetime S-matrix. The result is the expected spacetime spin-statistics
connection. Note that operators with the wrong spin-statistics connection,
such as ψµ and e−φ, appear at intermediate stages but the projections
that produce a consistent theory also give the spin-statistics connection.
This is certainly a rather technical way for the spin-statistics theorem to
arise, but it is worth noting that all string theories seem to obey the usual
spin-statistics relation.

Unoriented and open superstrings

The IIB superstring, with the same chiralities on both sides, has a world-
sheet parity symmetry Ω. We can gauge this symmetry to obtain an
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unoriented closed string theory.4 In the NS–NS sector, this eliminates the
[2], leaving [0] + (2), just as it does in the unoriented bosonic theory.
The fermionic NS–R and R–NS sectors of the IIB theory have the same
spectra, so the Ω projection picks out the linear combination (NS–R) +
(R–NS), with massless states 8′ + 56. In particular, one gravitino survives
the projection. Finally, the existence of the gravitino means that there
must be equal numbers of massless bosons and fermions, so a consistent
definition of the world-sheet parity operator must select the [2] from the
R–R sector to give 64 of each. One can understand this as follows. The
R–R vertex operators

VsṼs′ (10.6.16)

transform as 8 × 8 = [0] + [2] + [4]+. The [0] and [4]+ are symmetric
under interchange of s and s′ and the [2] antisymmetric (one can see this
by counting states, 36 versus 28, or in more detail by considering the Sa
eigenvalues of the representations). World-sheet parity adds or subtracts
a tilde to give

ṼsVs′ = −Vs′Ṽs , (10.6.17)

where the final sign comes from the fermionic nature of the R vertex
operators. Thus, projecting onto Ω = +1 picks out the antisymmetric [2].
The result is the type I closed unoriented theory, with spectrum

[0] + [2] + (2) + 8′ + 56 = 1+ 28+ 35+ 8′ + 56 . (10.6.18)

However, this theory by itself is inconsistent, as we will explain further
below.
Now consider open string theories. Closure of the OPE in open + open

→ closed scattering implies that any open string that couples consistently
to type I or type II closed superstrings must have a GSO projection in
the open string sector. The two possibilities and their massless spectra are

I: NS+, R+ = 8v + 8 ,

Ĩ: NS+, R− = 8v + 8′ .

Adding Chan–Paton factors, the gauge group will again be U(n) in the
oriented case and SO(n) or Sp(k) in the unoriented case. The 8 or 8′ spinors
are known as gauginos because they are related to the gauge bosons by
supersymmetry. They must be in the adjoint representation of the gauge
group, like the gauge bosons, because supersymmetry commutes with the
gauge symmetry.

4 The analogous operation in the IIA theory would be to gauge the symmetry which is the product
of world-sheet and spacetime parity, but this breaks some of the Poincaré invariance. We will
encounter this in section 13.2.
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We can already anticipate that not all of these theories will be con-
sistent. The open string multiplets, with 16 states, are representations of
d = 10, N = 1 supersymmetry but not of N = 2 supersymmetry. Thus
the open superstring cannot couple to the oriented closed superstring
theories, which have two gravitinos.5 It can only couple to the unoriented
closed string theory (10.6.18) and so the open string theory must also
be unoriented for consistent interactions. With the chirality (10.6.18), the
massless open string states must be 8v + 8. This is required by spacetime
supersymmetry, or by conservation of exp(πiF) on the world-sheet. The
result is the unoriented type I open plus closed superstring theory, with
massless content

[0] + [2] + (2) + 8′ + 56+ (8v + 8)SO(n) or Sp(k) . (10.6.19)

There is a further inconsistency in all but the SO(32) theory. We will
see in section 10.8 that for all other groups, as well as the purely closed
unoriented theory, there is a one-loop divergence and superconformal
anomaly. We will also see, in chapter 12, that the spacetime gauge and
coordinate symmetries have an anomaly at one loop for all but the SO(32)
theory.

Thus we have found precisely three tachyon-free and nonanomalous
string theories in this chapter: type IIA, type IIB, and type I SO(32).

10.7 Modular invariance

one important amplitude that involves no interactions, only the string
spectrum. This is the one-loop vacuum amplitude, studied for the bosonic
string in chapter 7. We study the vacuum amplitude for the closed super-
string in this section and for the open string in the next.

We make the guess, correctly it will turn out, that the torus amplitude
is again given by the Coleman–Weinberg formula (7.3.24) with the region
of integration replaced by the fundamental region for the moduli space of
the torus:

ZT2
= V10

∫
F

d2τ

4τ2

∫
d10k

(2π)10

∑
i∈H⊥

(−1)Fiqα′(k2+m2
i )/4q̄α

′(k2+m̃2
i )/4 , (10.7.1)

with q = exp(2πiτ). We have included the minus sign for spacetime

5 At the world-sheet level the problem is that the total derivative null gravitino vertex operators
give rise to nonzero world-sheet boundary terms. Only one linear combination of the two null
gravitinos decouples, so we must make the world-sheet parity projection in order to eliminate
the other.

Superstring interactions are the subject of chapter 12, but there is
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fermions from the Coleman–Weinberg formula, distinguishing the space-
time fermion number F from the world-sheet fermion number F . The
masses are given in terms of the left- and right-moving parts of the
transverse Hamiltonian by

m2 = 4H⊥/α′ , m̃2 = 4H̃⊥/α′ . (10.7.2)

The trace includes a sum over the different (α, F; α̃, F̃) sectors of the
superstring Hilbert space. In each sector it breaks up into a product of
independent sums over the transverse X, ψ, and ψ̃ oscillators, and the
transverse Hamiltonian similarly breaks up into a sum. Each transverse X
contributes as in the bosonic string, the total contribution of the oscillator
sum and momentum integration being as in eq. (7.2.9),

ZX(τ) = (4π2α′τ2)−1/2(qq̄)−1/24
∞∏
n=1

( ∞∑
Nn,Ñn=1

qnNnq̄nÑn

)

= (4π2α′τ2)−1/2|η( )|−2 , (10.7.3)

where η(τ) = q1/24
∏∞
n=1(1− qn). In addition there is a factor i(4π2α′τ2)−1

from the k0,1 integrations.

For the ψs, the mode sum in each sector depends on the spatial period-
icity α and includes a projection operator 1

2 [1 ± exp(πiF)]. Although for
the present we are interested only in R and NS periodicities, let us work
out the partition functions for the more general periodicity (10.3.20),

ψ(w + 2π) = exp[πi(1− α)]ψ(w) (10.7.4)

where again α = 1 − 2ν. By the definition (10.3.23) of the ground state,
the raising operators are

ψ−m+(1−α)/2 , ψ−m+(1+α)/2 , m = 1, 2, . . . . (10.7.5)

The ground state weight was found to be α2/8. Then

Trα
(
qH
)
= q(3α

2−1)/24
∞∏
m=1

[
1 + qm−(1−α)/2

][
1 + qm−(1+α)/2

]
. (10.7.6)

To define the general boundary conditions we have joined the fermions
into complex pairs. Thus we can define a fermion number Q which is
+1 for ψ and −1 for ψ. To be precise, define Q to be the H-momentum
in the bosonization (10.3.10) so that it is conserved by the OPE. The
bosonization (10.3.25) then gives the charge of the ground state as α/2.

τ
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Thus we can define the more general trace

Zα
β(τ) = Trα

[
qH exp(πiβQ)

]
(10.7.7a)

= q(3α
2−1)/24 exp(πiαβ/2)

×
∞∏
m=1

[
1 + exp(πiβ)qm−(1−α)/2

][
1 + exp(−πiβ)qm−(1+α)/2

]
(10.7.7b)

=
1

η(τ)
ϑ

[
α/2
β/2

]
(0, τ) . (10.7.7c)

The notation in the final line was introduced in section 7.2, but our
discussion of these functions in the present volume will be self-contained.

The charge Q modulo 2 is the fermion number F that appears in the
GSO projection. Thus the traces that are relevant for the ten-dimensional
superstring are

Z0
0(τ) = TrNS

[
qH

]
, (10.7.8a)

Z0
1(τ) = TrNS

[
exp(πiF) qH

]
, (10.7.8b)

Z1
0(τ) = TrR

[
qH

]
, (10.7.8c)

Z1
1(τ) = TrR

[
exp(πiF) qH

]
. (10.7.8d)

We should emphasize that these traces are for a pair of dimensions.

Tracing over all eight fermions, the GSO projection keeps states with
exp(πiF) = +1. This is Z+

ψ (τ), where

Z±
ψ (τ) =

1

2

[
Z0

0(τ)
4 − Z0

1(τ)
4 − Z1

0(τ)
4 ∓ Z1

1(τ)
4
]
. (10.7.9)

The half is from the projection operator, the minus sign in the second
term is from the ghost contribution to exp(πiF), and the minus signs in
the third and fourth (R sector) terms are from spacetime spin-statistics.
For ψ̃ in the IIB theory one obtains the conjugate Z+

ψ (τ)
∗. In the IIA

theory, F̃ = −1 in the R sector so the result is Z−
ψ (τ)

∗. In all,

ZT2
= iV10

∫
F

d2τ

16π2α′τ22
Z8
XZ

+
ψ (τ)Z

±
ψ (τ)

∗ . (10.7.10)

We know from the discussion of bosonic amplitudes that modular in-
variance is necessary for the consistency of string theory. In the superstring
this works out in an interesting way. The combination d2τ/τ22 is modular-
invariant, as is ZX . To understand the modular transformations of the
fermionic traces, note that Zα

β is given by a path integral on the torus
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over fermionic fields ψ with periodicities

ψ(w + 2π) = − exp(−πiα)ψ(w) , (10.7.11a)

ψ(w + 2πτ) = − exp(−πiβ)ψ(w) . (10.7.11b)

This gives

ψ[w + 2π(τ+ 1)] = exp[−πi(α+ β)]ψ(w) . (10.7.12)

Naively then, Zα
β(τ) = Zα

α+β−1(τ + 1), since both sides are given by the
same path integral. Also, defining w′ = w/τ and ψ′(w′) = ψ(w),

ψ′(w′ + 2π) = − exp(−πiβ)ψ′(w′) (10.7.13a)

ψ′(w′ − 2π/τ) = − exp(πiα)ψ′(w′) , (10.7.13b)

so that naively Zα
β(τ) = Zβ−α(−1/τ). It is easy to see that by these

two transformations one can always reach a path integral with α = 1,
accounting for rule (c) from the previous section.
The reason these modular transformations are naive is that there is

no diff-invariant way to define the phase of the path integral for purely
left-moving fermions. For left- plus right-moving fermions with matching
boundary conditions, the path integral can be defined by Pauli–Villars or
other regulators. This is the same as the absolute square of the left-moving
path integral, but leaves a potential phase ambiguity in that path integral
separately.6 The naive result is correct for τ→ −1/τ, but under τ→ τ+1
there is an additional phase,

Zα
β(τ) = Zβ−α(−1/τ)

= exp[−πi(3α2 − 1)/12]Zα
α+β−1(τ+ 1) . (10.7.14)

The τ → τ + 1 transformation follows from the explicit form (10.7.7b),
the phase coming from the zero-point energy with the given boundary
conditions. The absence of a phase in τ → −1/τ can be seen at once for
τ = i. Note that Z1

1 actually vanishes due to cancellation between the two
R sector ground states, but we have assigned a formal transformation law
for a reason to be explained below.
The phase represents a global gravitational anomaly, an inability to define

the phase of the path integral such that it is invariant under large coor-
dinate transformations. Of course, a single left-moving fermion has c �= c̃

and so has an anomaly even under infinitesimal coordinate transforma-
tions, but the global anomaly remains even when a left- and right-moving
fermion are combined. For example, the product Z1

0(τ)
∗Z0

0(τ) has no
infinitesimal anomaly and should come back to itself under τ → τ + 2,

6 The phase factor is a holomorphic function of τ, because the Zα
β are. Since it has magnitude 1,

this implies that it is actually independent of τ.
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but in fact picks up a phase exp(−πi/2). This phase arises from the level
mismatch, the difference of zero-point energies in the NS and R sectors.
The reader can verify that with the transformations (10.7.14), the combi-

nations Z±
ψ are invariant under τ→ −1/τ and are multiplied by exp(2πi/3)

under τ → τ + 1. Combined with the conjugates from the right-movers,
the result is modular-invariant and the torus amplitude consistent. It is
necessary for the construction of this invariant that there be a multiple of
eight transverse fermions. Recall from section 7.2 that invariance under
τ → τ + 1 requires that L0 − L̃0 be an integer for all states. For a single
real fermion in the R–NS sector the difference in ground state energies is
1
16 . For eight fermions this becomes 1

2 , so that states with an odd number
of NS excitations (as required by the GSO projection) are level-matched.
Note also that modular invariance forces the minus signs in the combi-
nation (10.7.9), in particular the relative sign of (Z0

0)
4 and (Z1

0)
4 which

corresponds to Fermi statistics for the R sector states.
In the type 0 superstrings the fermionic trace is

1

2

[
|Z0

0(τ)|N + |Z0
1(τ)|N + |Z1

0(τ)|N ∓ |Z1
1(τ)|N

]
(10.7.15)

with N = 8. This is known as the diagonal modular invariant, and it is
invariant for any N because the phases cancel in the absolute values.
The type II theories have spacetime supersymmetry. This implies equal

numbers of bosons and fermions at each mass level, and so ZT2
should

vanish in these theories by cancellation between bosons and fermions.
Indeed it does, as a consequence of Z1

1 = 0 and the ‘abstruse identity’ of
Jacobi,

Z0
0(τ)

4 − Z0
1(τ)

4 − Z1
0(τ)

4 = 0 . (10.7.16)

The same cancellation occurs in the open and unoriented theories.
Although we have focused on the path integral without vertex operators,

amplitudes with vertex operators must also be modular-invariant. In the
present case the essential issue is the path integral measure, and one can
show by explicit calculation (or by indirect arguments) that the modular
properties are the same with or without vertex operators. However, with a
general vertex operator insertion the α = β = 1 path integral will no longer
vanish, nor will the sum of the other three. The general amplitude will
then be modular-invariant provided that the vacuum is modular-invariant
without using the vanishing of Z1

1 or the abstruse identity (10.7.16) — as
we have required.

More on c = 1 CFT

The equality of the bosonic and fermionic partition functions (10.3.17)
and (10.3.18) was one consequence of bosonization. These partition func-
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tions are not modular-invariant and so do not define a sensible string
background. The fermionic spectrum consists of all NS–NS states. The
bosonic spectrum consists of all states with integer kR and kL; this is
not the spectrum of toroidal compactification at any radius. The simplest
modular-invariant fermionic partition function is the diagonal invariant,
taking common periodicities for the left- and right-movers. In terms of
the states, this amounts to projecting

α = α̃ , exp(πiF) = exp(πiF̃) . (10.7.17)

The NS–NS sector consists of the local operators we have been consider-
ing, and the chirality projection exp(πiF) = exp(πiF̃) means that on the
bosonic side kR = kL mod 2. The bosonic equivalents for the R–R sector
states have half-integral kR and kL with again kR = kL mod 2. In all,

(kR, kL) = (n1, n2) or (n1 +
1
2 , n2 +

1
2) (10.7.18)

for integers n1 and n2 such that n1 − n2 ∈ 2Z. This is the spectrum of a
boson on a circle of radius 2, or 1 by T -duality, which we see is equivalent
to a complex fermion with the diagonal modular-invariant projection.
(The dimensionless radius r for the H scalar corresponds to the radius
R = r(α′/2)1/2 for Xµ, so r = 21/2 is self-dual.)

To obtain an equivalent fermionic theory at arbitrary radius, add

∂H∂̄H ∼= −ψψψ̃ψ̃ (10.7.19)

to the world-sheet Lagrangian density. The H theory is still free, but
the equivalent fermionic theory is now an interacting field theory known
as the Thirring model. The Thirring model has a nontrivial perturbation
series but is solvable precisely because of its equivalence to a free boson.
Actually, for any rational r, the bosonic theory is also equivalent to a free
fermion theory with a more complicated twist (exercise 10.15).

Another interesting CFT consists of the set of vertex operators with

kR = m/31/2 , kL = n/31/2 , m− n ∈ 3Z . (10.7.20)

(This discussion should actually be read after section 11.1.) It is easy to
check that this has the same properties as the set of vertex operators with
integer kR,L. That is, it is a single-valued operator algebra, but does not
correspond to the spectrum of the string for any value of r, and does not
have a modular-invariant partition function. Its special property is the
existence of the operators

exp
[
±i31/2H(z)

]
, exp

[
±i31/2H̃(z̄)

]
. (10.7.21)

These have weights ( 32 , 0) and (0, 32 ): they are world-sheet supercurrents!
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Fig. 10.1. (a) Cylinder in the limit of small t. (b) Analogous field theory graph.

This CFT has (2,2) world-sheet supersymmetry. The standard representa-
tion, in which the supercurrent is quadratic in free fields, has two free X
and two free ψ fields for central charge 3. This is rather more economical,
with one free scalar and central charge 1. The reader can readily check
that with appropriate normalization the supercurrents generate the N = 2
OPE (11.1.4).

This theory becomes modular-invariant if one twists by the symmetry

(H, H̃)→ (H, H̃) +
2π

2× 31/2
(1,−1) . (10.7.22)

This projects the spectrum onto states with m − n ∈ 6Z and adds in a
twisted sector with m, n ∈ Z + 1

2 . The resulting spectrum is the string

theory at r = 2× 31/2. This twist is a diagonal GSO projection, in that the
supercurrent is odd under the symmetry.

10.8 Divergences of type I theory

The cylinder, Möbius strip, and Klein bottle have no direct analog of
the modular group, but the condition that the tadpole divergences cancel
among these three graphs plays a similar role in restricting the possible
consistent theories. The cancellation is very similar to what we have
already seen in the bosonic theory in chapter 7. The main new issue is
the inclusion of the various sectors in the fermionic path integral, and in
particular the separate contributions of closed string NS–NS and R–R
tadpoles.

The cylinder

Consider first the cylinder, shown in figure 10.1(a). One can immedi-
ately write down the amplitude by combining the bosonic result (7.4.1),
converted to ten dimensions, with the fermionic trace (10.7.9) from one
side of the type II string. We write it as a sum of two terms,

ZC2
= ZC2,0 + ZC2,1 , (10.8.1)
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where

ZC2,0 = iV10 n
2
∫ ∞

0

dt

8t
(8π2α′t)−5η(it)−8

[
Z0

0(it)
4 − Z1

0(it)
4
]
,

(10.8.2a)

ZC2,1 = iV10 n
2
∫ ∞

0

dt

8t
(8π2α′t)−5η(it)−8

[
−Z0

1(it)
4 − Z1

1(it)
4
]
.

(10.8.2b)

Note that the GSO and Ω projection operators each contribute a factor
of 1

2 . We have separated the terms according to whether exp(πiF) appears
in the trace. In ZC2,0 it does not, and so the ψµ are antiperiodic in the
σ2 direction. In ZC2,1 it does appear and the ψµ are periodic. We can
also regard the cylinder as a closed string appearing from and returning
to the vacuum as in figure 10.1(b); we have used this idea in chapters 7
and 8. The periodicities of the ψµ mean that in terms of the closed string
exchange, the part ZC2,0 comes from NS–NS strings and the part ZC2,1

from R–R strings.

We know from the previous section that the total fermionic partition
function vanishes by supersymmetry, so that ZC2,1 = −ZC2,0; we concen-
trate then on ZC2,0. Using the modular transformations

η(it) = t−1/2η(i/t) , Zα
β(it) = Zβ−α(i/t) (10.8.3)

and defining s = π/t, this becomes

ZC2,0 = i
V10n

2

8π(8π2α′)5
∫ ∞

0
ds η(is/π)−8

[
Z0

0(is/π)
4 − Z0

1(is/π)
4
]

= i
V10n

2

8π(8π2α′)5
∫ ∞

0
ds [16 + O(exp(−2s))] . (10.8.4)

The divergence as s→∞ is due to a massless closed string tadpole, which
as noted must be an NS–NS state. Thus we identify this as a dilaton plus
graviton interaction (−G)1/2e−Φ coming from the disk, as in the bosonic
string.

However, there is a paradox here: the d = 10, N = 1 supersymmetry
algebra does not allow such a term. Even more puzzling, ZC2,1 has an
equal and opposite divergence which must be from a tadpole of an R–R
state, but the only massless R–R state is the rank 2 tensor which cannot
have a Lorentz-invariant tadpole.

One can guess the resolution of this as follows. The type IIB string has
rank n potentials for all even n, with n and 8 − n equivalent by Poincaré
duality. The Ω projection removes n = 0 and its equivalent n = 8, as
well as n = 4: all the multiples of four. This leaves n = 2, its equivalent
n = 6 — and n = 10. A 10-form potential C10 can exist in ten dimensions
but its 11-form field strength dC10 is identically zero. The integral of the
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Fig. 10.2. Schematic illustration of cancellation of tadpoles.

potential over spacetime

µ10

∫
C10 (10.8.5)

is invariant under δC10 = dχ9 and so can appear in the action. Since there
is no kinetic term the propagator for this field is 1/0, and the effect of the
tadpole is a divergence

µ210
0

. (10.8.6)

This must be the origin of the divergence in ZC2,1, as indeed a more
detailed analysis does show. The equation of motion from varying C10 is
just µ10 = 0, so unlike the divergences encountered previously this one
cannot be removed by a correction to the background fields. It represents
an actual inconsistency.

The Klein bottle

We know from the study of the bosonic string divergences that there is
still the possibility of canceling this tadpole as shown in figure 10.2. The
cylinder, Möbius strip, and Klein bottle each have divergences from the
massless closed string states, the total being proportional to square of the
sum of the disk and RP2 tadpoles. The relative size of the two tadpoles
depends on the Chan–Paton factors, and cancels for a particular gauge
group.7

The relation of the Möbius strip and Klein bottle as depicted in fig-
ure 10.2 to the twisted-strip and twisted-cylinder pictures was developed
in section 7.4, and is shown in figure 10.3. In order to sum as in figure 10.2,
one must rescale the surfaces so that the circumference in the σ2 direction

7 In the vacuum amplitude the sum of the NS–NS and R–R divergences is zero for each topology
separately because the trace vanishes by supersymmetry. This is not sufficient, because they will
no longer cancel when vertex operators are added near one end of each surface. The NS–NS and
R–R tadpoles must vanish separately when summed over topologies.
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0
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tπ2

σ
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2

Fig. 10.3. Two fundamental regions for the Klein bottle. The right- and left-hand
edges are periodically identified, as are the upper and lower edges. In addition
the diagonal arrow shows an orientation-reversing identification. The vertically
hatched region is a fundamental region for the twisted-cylinder picture, as is the
horizontally hatched region for the decription with two crosscaps. As shown by
the arrows, the periodicity of fields in the σ2-direction of the latter description
can be obtained by applying the orientation-reversing periodicity twice. The same
picture applies to the Möbius strip, with the right- and left-hand edges boundaries,
and with the range of σ1 changed to π.

and length in the σ1 directions are uniform; we have taken these to be 2π
and s respectively. From figures 10.1 and 10.3 it follows that s is related
to the usual modulus t for these surfaces by s = π/t, π/4t, and π/2t for
the cylinder, Möbius strip, and Klein bottle respectively.
Each amplitude is obtained as a sum of traces, from summing over

the various periodicity conditions and from expanding out the projection
operators. We need to determine which terms contribute to the NS–NS
exchange and which to the R–R exchange by examining the boundary
conditions on the fermions in the world-sheet path integral. On the Klein
bottle the GSO projection operator is

1 + exp(πiF)

2
· 1 + exp(πiF̃)

2
. (10.8.7)

With R = Ωexp(πiβF + πiβ̃F̃) in the trace, the path integral boundary
conditions are

ψ(w + 2πit) = −Rψ(w)R−1 = − exp(πiβ) ψ̃(w̄) , (10.8.8a)

ψ̃(w̄ + 2πit) = −Rψ̃(w̄)R−1 = − exp(πiβ̃)ψ(w) , (10.8.8b)
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with the usual extra sign for fermionic fields. As indicated by the arrows
in figure 10.3, these imply that

ψ(w + 4πit) = exp[πi(β + β̃)]ψ(w) . (10.8.9)

The NS–NS exchange, from the sectors antiperiodic under σ2 → σ2 +4πt,
then comes from traces weighted by Ω exp(πiF) or Ω exp(πiF̃); further,
these two traces are equal. Both NS–NS and R–R states contribute to the
traces, making the separate contributions8

NS–NS: q−1/3
∞∏
m=1

(1 + q2m−1)8 = Z0
0(2it)

4 , (10.8.10a)

R–R: −16q2/3
∞∏
m=1

(1 + q2m)8 = −Z1
0(2it)

4 , (10.8.10b)

where q = exp(−2πt).
The full Klein bottle contribution to the NS–NS exchange is then

ZK2,0 = iV10

∫ ∞

0

dt

8t
(4π2α′t)−5η(2it)−8

[
Z0

0(2it)
4 − Z1

0(2it)
4
]

= i
210V10

8π(8π2α′)5
∫ ∞

0
ds η(is/π)−8

[
Z0

0(is/π)
4 − Z0

1(is/π)
4
]

= i
210V10

8π(8π2α′)5
∫ ∞

0
ds [16 + O(exp(−2s))] , (10.8.11)

and ZK2,1 = −ZK2,0. The bosonic part is (7.4.15) converted to D = 10.

The Möbius strip

In the open string Ω acts as

Ωψµ(w)Ω−1 = ψ̃µ(π − w̄) = ψµ(w − π) , (10.8.12)

using the doubling trick (10.2.15). In terms of the modes this is

ΩψµrΩ
−1 = exp(−πir)ψµr . (10.8.13)

The phase is imaginary in the NS sector and squares to −1. Thus
Ω2 = exp(πiF) . (10.8.14)

Since exp(πiF) = 1 by the GSO projection, this is physically the same as
squaring to the identity, but the combined Ω and GSO projections require

8 In evaluating these, note that only states with identical ψ and ψ̃ excitations contribute to traces
containing Ω. The signs from exp(πiF) or exp(πiF̃) just cancel the signs from anticommuting ψs
past ψ̃s, so that all terms in each trace have the same sign. The overall sign in the NS–NS trace
(positive) can be determined from the graviton, and the overall sign in the R–R trace (negative)
from the argument (10.6.17).
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a single projection operator

1 + Ω + Ω2 + Ω3

4
. (10.8.15)

With R = Ωexp(πiβF) in the trace, the fields have the periodicities

ψµ(w + 4πit) = − exp(πiβ)ψµ(w + 2πit− π) = ψµ(w − 2π) . (10.8.16)

It follows that in the R sector of the trace the fields are periodic in the
σ2-direction, corresponding to the R–R exchange, while the NS sector of
the trace gives the NS–NS exchange.

It is slightly easier to focus on the R–R exchange, where the traces with
Ω and Ω exp(πiF) sum to

−16q1/3
∞∏
m=1

[1 + (−1)mqm]8 − (1− 1)4q1/3
∞∏
m=1

[1− (−1)mqm]8

= Z0
1(2it)

4Z1
0(2it)

4 . (10.8.17)

The full Möbius amplitude, rewriting the bosonic part slightly, is

ZM2,1 = ±inV10

∫ ∞

0

dt

8t
(8π2α′t)−5Z

0
1(2it)

4Z1
0(2it)

4

η(2it)8Z0
0(2it)4

= ±2in 25V10

8π(8π2α′)5
∫ ∞

0
ds
Z0

1(2is/π)
4Z1

0(2is/π)
4

η(2is/π)8Z0
0(2is/π)4

= ±2in 25V10

8π(8π2α′)5
∫ ∞

0
ds [16 + O(exp(−2s))] , (10.8.18)

where the upper sign is for SO(n). We have used (7.4.22) in D = 10.

The total divergence from R–R exchange is

Z1 = −i(n∓ 32)2
V10

8π(8π2α′)5
∫ ∞

0
ds [16 + O(exp(−2s))] . (10.8.19)

The R–R tadpole vanishes only for the gauge group SO(32). For each
world-sheet topology the NS–NS divergence is the negative of the R–R
divergence, so the dilaton–graviton tadpole also vanishes for SO(32). This
calculation does not determine the sign of the tadpole, but it should
be n ∓ 32. That is, changing from a symplectic to orthogonal projection
changes the sign of RP2, not of the disk. This is necessary for unitarity:
the number of cross-caps is conserved mod 2 when a surface is cut open,
so the sign is not determined by unitarity; this is not the case for the
number of boundaries.
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Exercises

10.1 (a) Find the OPE of TF with Xµ and ψµ.
(b) Show that the residues of the OPEs of the currents (10.1.9) are pro-
portional to the superconformal variations (10.1.10).

10.2 (a) Verify the commutator (10.1.11), up to terms proportional to the
equations of motion.
(b) Verify that the commutator of a conformal and a superconformal
transformation is a superconformal transformation.

10.3 (a) Verify the OPE (10.1.13).
(b) Extend this to the linear dilaton SCFT (10.1.22).

10.4 Obtain the R and NS algebras (10.2.11) from the OPE.

10.5 From the Jacobi identity for the R–NS algebra, show that the coeffi-
cients of the central charge terms in TBTB and TFTF are related.

10.6 Express exp(πiF) explicitly in terms of mode operators in the R and
NS sectors of the ψµ CFT.

10.7 Verify that the expectation value (10.3.7) has the appropriate behav-
ior as zi → ∞, and show that together with the OPE this determines the
result up to normalization.

10.8 Verify the weight of the fermionic ground stateAν for general real ν:
(a) from the commutator (2.7.8);
(b) from the mnemonic of section 2.9.
The most direct, but most time-consuming, method would be to find the
relation between conformal and creation–annihilation normal ordering as
in eq. (2.7.11).

10.9 By any of the above methods, determine the ghost normal ordering
constants (10.4.5).

10.10 Enumerate the states corresponding to each term in the expan-
sion (10.3.19), in both fermionic and bosonic form.

10.11 Find the fermionic operator Fn equivalent to e±inH(z). Here are two
possible methods: build Fn iteratively in n by taking repeated operator
products with e±iH(z); or deduce ψ±m · Fn directly from the OPE. Check
your answer by comparing dimensions and fermion numbers.

10.12 By looking at the eigenvalues of Sa, verify the spinor decomposi-
tions (10.5.17).

10.13 (a) Verify the operator products (10.5.22).
(b) Using the Jacobi identity as in exercise 4.3, verify nilpotence of QB.

10.14 Work out the massless level of the open superstring in BRST quan-
tization.
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10.15 Consider a single complex fermion, with the spectrum summed over
all sectors such that ν = ν̃ is a multiple of 1/2p for integer p. Impose the
projection that the numbers of left- and right-moving excitations differ by
a multiple of 2p. Show that the spectrum is the same as that of a periodic
scalar at radius r = 1/p. Show that this can be understood as a Zp twist
of the r = 1 theory. A further Z2q twist of the T -dual r = 2p theory
produces an arbitrary rational value.



11
The heterotic string

11.1 World-sheet supersymmetries

In the last chapter we were led by guesswork to the idea of enlarging
the world-sheet constraint algebra, adding the supercurrents TF (z) and
T̃F (z̄). Now let us see how much further we can generalize this idea. We
are looking for sets of holomorphic and antiholomorphic currents whose
Laurent coefficients form a closed algebra.

Let us start by emphasizing the distinction between global symmetries
and constraints. Global symmetries on the world-sheet are just like global
symmetries in spacetime, implying relations between masses and between
amplitudes. However, we are also singling out part of the symmetry to
impose as a constraint, meaning that physical states must be annihilated by
it, either in the OCQ or BRST sense. In the bosonic string, the spacetime
Poincaré invariance was a global symmetry of the world-sheet theory,
while the conformal symmetry was a constraint. Our present interest
is in constraint algebras. In fact we will find only a very small set of
possibilities, but some of the additional algebras we encounter will appear
later as global symmetries.

To begin we should note that the set of candidate world-sheet symmetry
algebras is very large. In the bosonic string, for example, any product of
factors ∂nXµ is a holomorphic current. In most cases the OPE of such
currents will generate an infinite number of new currents, which is proba-
bly too big an algebra to be useful. However, even restricting to algebras
with finite numbers of currents leaves an infinite number of possibilities.

Let us focus first on the holomorphic currents. We have seen in sec-
tion 2.9 that in a unitary CFT an operator is holomorphic if and only
if it is of weight (h, 0) with h ≥ 0. Although the complete world-sheet
theory with ghosts and timelike oscillators does not have a positive norm,
the spatial part does and so is a unitary representation of the symmetry.

45
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Because h̃ = 0, the spin of the current is also equal to h. Also, by taking
real and imaginary parts we can assume the currents to be Hermitian.
Now let us consider some possibilities:

Spin h ≥ 2. Algebras with spin > 2 currents are often referred to collec-
tively as W algebras. Many are known, including several infinite families,
but there is no complete classification. We will encounter one example in
chapter 15, as a global symmetry of a CFT. There have been attempts
to use some of these as constraint algebras. One complication is that
the commutator of generators is in general a nonlinear function of the
generators, making the construction of the BRST operator nontrivial. The
few examples that have been constructed appear, upon gauge fixing, to
be special cases of bosonic strings. Further, the geometric interpretation,
analogous to the Riemann surface construction used to formulate bosonic
string perturbation theory, is not clear. So we will restrict our attention to
constraint algebras with h ≤ 2. Also, CFTs can have multiple (2, 0) cur-
rents as global symmetries. The bosonic string has at least 27, namely the
ghost energy-momentum tensor and the energy-momentum tensor for each
Xµ field. However, only the sum of these has a geometric interpretation, in
terms of conformal invariance, and so we will assume that there is precisely
one (2, 0) constraint current which is the overall energy-momentum tensor.

Spin h not a multiple of 1
2 . For a current j of spin h,

j(z)j(0) ∼ z−2h (11.1.1)

with a coefficient that can be shown by a positivity argument not to
vanish. This is multi-valued if 2h is not an integer. Although there are
again many known CFTs with such currents, the nonlocality of these
currents leads to substantial complications if one tries to impose them as
constraints. Attempts to construct such fractional strings have led only to
partial results and it is not clear if such theories exist. So we will restrict
our attention to h a multiple of 1

2 .
With these assumptions the possible algebras are very limited, with spins

0, 1
2 , 1,

3
2 , and 2. Solution of the Jacobi identities allows only the algebras

shown in table 11.1. The first two entries are of course the conformal and
N = 1 superconformal algebras that we have already studied. The three
N = 4 algebras are related. The second algebra is a special case of the
first where the U(1) current becomes the gradient of a scalar. The third is
a subalgebra of the second.
The ghost central charge is determined by the number of currents of

each spin. The central charge for the ghosts associated with a current of
spin h is

ch = (−1)2h+1[3(2h− 1)2 − 1] , (11.1.2a)

c2 = −26 , c3/2 = +11 , c1 = −2 , c1/2 = −1 , c0 = −2 . (11.1.2b)
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Table 11.1. World-sheet superconformal algebras. The number of currents of each
spin and the total ghost central charge are listed, as are the global symmetry gener-
ated by the spin-1 currents and the transformation of the supercharges under these.

n3/2 ≡ N n1 n1/2 n0 cg symmetry TF rep.

0 0 0 0 −26
1 0 0 0 −15
2 1 0 0 −6 U(1) ±1
3 3 1 0 0 SU(2) 3
4 7 4 0 0 SU(2)× SU(2)×U(1) (2,2,0)
4 6 4 1 0 SU(2)× SU(2) (2,2)
4 3 0 0 12 SU(2) 2

The sign (−1)2h+1 takes into account the statistics of the ghosts, anticom-
muting for integer spin and commuting for half-integer spin. Since the
matter central charge cm is −cg, there is only one new algebra, N = 2,
that can have a positive critical dimension.
Actually, for N = 0 and N = 1 there can also be additional spin-

1 and spin-12 constraints, provided the supercurrent is neutral under the
corresponding symmetry. However, these larger algebras are not essentially
different. The negative central charges of the ghosts allow additional
matter, but the additional constraints precisely remove the added states
so that these reduce to the old N = 0 and N = 1 theories. Nevertheless
this construction is sometimes useful, as we will see in section 15.5.
For N = 2 it is convenient to join the two real supercurrents into one

complex supercurrent

T±
F = 2−1/2(TF1 ± iTF2) . (11.1.3)

The N = 2 algebra in operator product form is then

TB(z)T
±
F (0) ∼ 3

2z2
T±
F (0) +

1

z
∂T±

F (0) , (11.1.4a)

TB(z)j(0) ∼ 1

z2
j(0) +

1

z
∂j(0) , (11.1.4b)

T+
F (z)T−

F (0) ∼ 2c

3z3
+

2

z2
j(0) +

2

z
TB(0) +

1

z
∂j(0) , (11.1.4c)

T+
F (z)T+

F (0) ∼ T−
F (z)T−

F (0) ∼ 0 , (11.1.4d)

j(z)T±
F (0) ∼ ±1

z
T±
F (0) , (11.1.4e)

j(z)j(0) ∼ c

3z2
. (11.1.4f)

In particular this implies that T±
F and j are primary fields and that T±

F

has charge ±1 under the U(1) generated by j. The constant c in T+
F T

−
F
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and jj must be the central charge. This follows from the Jacobi identity
for the modes, but we will not write out the mode expansion in full until
chapter 19, where we will have more need of it.

The smallest linear representation of the N = 2 algebra has two real
scalars and two real fermions, which we join into a complex scalar Z and
complex fermion ψ. The action is

S =
1

2π

∫
d2z

(
∂Z∂̄Z + ψ∂̄ψ + ψ̃∂ψ̃

)
. (11.1.5)

The currents are

TB = −∂Z∂Z − 1

2
(ψ∂ψ + ψ∂ψ) , j = −ψψ , (11.1.6a)

T+
F = 21/2iψ∂Z , T−

F = 21/2iψ∂Z . (11.1.6b)

There is also a set of antiholomorphic currents, so this Zψψ̃ CFT has
(2, 2) superconformal symmetry.

The central charge of the Zψψ̃ CFT is 3, so two copies will cancel the
ghost central charge. Since there are two real scalars in each CFT the crit-
ical dimension is 4. However, these dimensions come in complex pairs, so
that the spacetime signature can be purely Euclidean, or (2, 2), but not the
Minkowski (3, 1). Further, while the theory has four-dimensional transla-
tional invariance it does not have four-dimensional Lorentz invariance —
the dimensions are paired together in a definite way in the supercharges.
Instead the symmetry is U(2) or U(1, 1), complex rotations on the two Zs.
Finally, the spectrum is quite small. The constraints fix two full sets of Zψψ̃
oscillators (the analog of the light-cone gauge), leaving none. Thus there is
just the center-of-mass motion of a single state. This has some mathemat-
ical interest, but whether it has physical applications is more conjectural.

Thus we have reduced what began as a rather large set of possible
algebras down to the original N = 0 and N = 1. There is, however, another
generalization, which is to have different algebras on the left- and right-
moving sides of the closed string. The holomorphic and antiholomorphic
algebras commute and there is no reason that they should be the same.
In the open string, the boundary conditions relate the holomorphic and
antiholomorphic currents so there is no analogous construction.

This allows the one new possibility, the (N, Ñ) = (0, 1) heterotic string;
(N, Ñ) = (1, 0) would be the same on redefining z → z̄. We study this new
algebra in detail in the remainder of the chapter. In addition the (0, 2)
and (1, 2) heterotic string theories are mathematically interesting and may
have a less direct physical relevance.

It should be emphasized that the analysis in this section had many
explicit and implicit assumptions, and one should be cautious in assuming
that all string theories have been found. Indeed, there are some string
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theories that do not fall into this classification. One is the Green–Schwarz
form of the superstring. This has no simple covariant gauge-fixing, but in
the light-cone gauge it is in fact equivalent to the RNS superstring, via
bosonization. We will not have space to develop this in detail, but will see
a hint of it in chapter 12. Another exception is topological string theory,
where in a covariant gauge the constraints do not satisfy spin-statistics as
we have assumed. This string theory has no physical degrees of freedom,
but is of mathematical interest in that its observables are topological.
In fact, we will find the same set of physical string theories from

an entirely different and nonperturbative point of view in chapter 14,
suggesting that all have been found. To be precise, there are other theories
with stringlike excitations, but the theories found in this and the previous
chapter seem to be the only ones which have a limit where they become
weakly coupled, so that a string perturbation theory exists.

11.2 The SO(32) and E8 × E8 heterotic strings

The (0, 1) heterotic string combines the constraints and ghosts from the
left-moving side of the bosonic string with those from the right-moving
side of the type II string. We could try to go further and combine the
whole left-moving side of the bosonic string, with 26 flat dimensions, with
the ten-dimensional right-moving side of the type II string. In fact this
can be done, but since its physical meaning is not so clear we will for
now keep the same number of dimensions on both sides. The maximum
is then ten, from the superconformal side. We begin with the fields

Xµ(z, z̄) , ψ̃µ(z̄) , µ = 0, . . . , 9 , (11.2.1)

with total central charge (c, c̃) = (10, 15). The ghost central charges add
up to (cg, c̃g) = (−26,−15), so the remaining matter has (c, c̃) = (16, 0).
The simplest possibility is to take 32 left-moving spin-12 fields

λA(z) , A = 1, . . . , 32 . (11.2.2)

The total matter action is

S =
1

4π

∫
d2z

(
2

α′ ∂X
µ∂̄Xµ + λA∂̄λA + ψ̃µ∂ψ̃µ

)
. (11.2.3)

The operator products are

Xµ(z, z̄)Xν(0, 0) ∼ −ηµν α
′
2
ln |z|2 , (11.2.4a)

λA(z)λB(0) ∼ δAB
1

z
, (11.2.4b)

ψ̃µ(z̄)ψ̃ν(0) ∼ ηµν
1

z̄
. (11.2.4c)
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The matter energy-momentum tensor and supercurrent are

TB = − 1

α′ ∂X
µ∂Xµ − 1

2
λA∂λA , (11.2.5a)

T̃B = − 1

α′ ∂̄X
µ∂̄Xµ − 1

2
ψ̃µ∂̄ψ̃µ , (11.2.5b)

T̃F = i(2/α′)1/2ψ̃µ∂̄Xµ . (11.2.5c)

The world-sheet theory has symmetry SO(9, 1) × SO(32). The SO(32),
acting on the λA, is an internal symmetry. In particular, none of the λA can
have a timelike signature because there is no fermionic constraint on the
left-moving side to remove states of negative norm. So while the action
for the λA is the same as for the ψ̃µ of the RNS superstring, the resulting
theory is very different because of the constraints.

The right-moving ghosts are the same as in the RNS superstring, and
the left-movers the same as in the bosonic string. It is straightforward
to construct the nilpotent BRST charge and show the no-ghost theorem,
with any BRST-invariant periodicity conditions. As usual this still holds
if we replace any of the spatial (Xµ, ψ̃µ) and the λA with a unitary (0,1)
SCFT of the equivalent central charge.

To finish the description of the theory, we need to give the boundary
conditions on the fields and specify which sectors are in the spectrum.
This is more complicated than in the type II strings, because now neither
Poincaré nor BRST invariance require common boundary conditions on
all the λA. Periodicity of TB only requires that the λA be periodic up to
an arbitrary O(32) rotation,

λA(w + 2π) = OABλB(w) . (11.2.6)

We will not carry out a systematic search for consistent theories as we
did for the RNS string, but will describe all the known theories. Nine ten-
dimensional theories based on the action (11.2.3) are known, though six
have tachyons and so are consistent only in the same sense as the bosonic
string. Of the three tachyon-free theories, two have spacetime supersym-
metry and these are our main interest. In this section we construct the
two supersymmetric theories and in the next the seven nonsupersymmetric
theories.

In the IIA and IIB superstrings the GSO projection acted separately on
the left- and right-moving sides. This will be also true in any supersym-
metric heterotic theory. The world-sheet current associated with spacetime
symmetry is Vs as in eq. (10.4.25), with s in the 16. In order for the
corresponding charge to be well defined, the OPE of this current with any
vertex operator must be single-valued. For the right-moving spinor part
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of the vertex operator, the spin eigenvalue s′ must then satisfy

s · s′ + l

2
∈ Z (11.2.7)

for all s ∈ 16, where l is −1 in the NS sector and − 1
2 in the R sector.

Taking s = (12 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ), this condition is precisely the right-moving GSO

projection

exp(πiF̃) = 1 ; (11.2.8)

any other s ∈ 16 gives the same condition.
Now let us try a GSO projection on the left-moving spinors also. That

is, we take periodicities

λA(w + 2π) = ±λA(w) (11.2.9)

with the same sign on all 32 components, and impose

exp(πiF) = 1 (11.2.10)

for the left-moving fermion number. It is easily verified by means of
bosonization that the OPE is local and closed, just as in the IIA and IIB
strings. Combine the 32 real fermions into 16 complex fermions,

λK± = 2−1/2(λ2K−1 ± iλ2K) , K = 1, . . . , 16 . (11.2.11)

These can then be bosonized in terms of 16 left-moving scalars HK(z). By
analogy to the definition of F in the type II string define

F =
16∑
K=1

qK , (11.2.12)

where λK± has qK = ±1. Then F is additive so the OPE is closed, and
the projection (11.2.10) guarantees that there are no branch cuts with the
R sector vertex operators. Note that in the bosonized description we have
26 left-moving and 10 right-moving bosons, so the theory (11.2.3) really is
a fusion (heterosis) of the bosonic and type II strings. We will emphasize
the fermionic description in the present section, returning to the bosonic
description later.
Modular invariance is straightforward. The partition function for the λ

is

Z16(τ) =
1

2

[
Z0

0(τ)
16 + Z0

1(τ)
16 + Z1

0(τ)
16 + Z1

1(τ)
16
]
. (11.2.13)

The modular transformations just permute the four terms, with no phase
under τ → −1/τ and a phase of exp(2πi/3) under τ → τ + 1. The latter
cancels the opposite phase from the partition function Z+

ψ (τ)
∗ of ψ̃. The

form (11.2.13) parallels that of Z+
ψ (τ) in the type II string but with all +
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signs. This is necessary from several points of view. With 32 rather than
8 fermions, the signs in the modular transformations are raised to the
fourth power and so the first three terms must enter with a common sign.
As usual the Z1

1 term transforms only into itself and its sign depends
on the chirality in the R sector. Three other theories, defined by flipping
the chirality in one or both R sectors, are physically equivalent. Also, the
relative minus sign in the first and second terms of Z+

ψ (τ) came from the
F of the superconformal ghosts, which we do not have on the left-moving
side of the heterotic string. The relative minus sign in the first and third
terms came from spacetime statistics, but the λ are spacetime scalars and
so are their R sector states. So modular invariance, conservation of F by
the OPE, and spacetime spin-statistics are all consistent with the partition
function (11.2.13).

We now find the lightest states. The right-moving side is the same as
in the type II string, with no tachyon and 8v + 8 at the massless level.
On the left-moving side, the normal ordering constant in the left-moving
transverse Hamiltonian H⊥ = α′m2/4 is

NS: − 8

24
− 32

48
= −1 , R: − 8

24
+

32

24
= +1 . (11.2.14)

The left-moving NS ground state is therefore a tachyon. The first excited
states

λA−1/2|0〉NS (11.2.15)

have H⊥ = −1
2 but are removed by projection (11.2.10): the NS ground

state now has exp(πiF) = +1 because there is no contribution from ghosts.
A state of H⊥ = 0 can be obtained in two ways:

αi−1|0〉NS , λA−1/2λB−1/2|0〉NS . (11.2.16)

The λA transform under an SO(32) internal symmetry. Under the full
symmetry SO(8)spin× SO(32), the NS ground state is invariant, (1, 1). The
second state in (11.2.16) is antisymmetric under A ↔ B, so the massless
states (11.2.16) transform as (8v, 1) + (1, [2]). The antisymmetric tensor
representation is the adjoint of SO(32), with dimension 32× 31/2 = 496.

Table 11.2 summarizes the tachyonic and massless states on each side.
The left-movers are given with their SO(8) × SO(32) quantum numbers
and the right-movers with their SO(8) quantum numbers. Closed string
states combine left- and right-moving states at the same mass. The left-
moving side, like the bosonic string, has a would-be tachyon, but there
is no right-mover to pair it with so the theory is tachyon-free. At the
massless level, the product

(8v, 1)× (8v + 8) = (1, 1) + (28, 1) + (35, 1) + (56, 1) + (8′, 1) (11.2.17)
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Table 11.2. Low-lying heterotic string states.

m2 NS R ÑS R̃

−4/α′ (1, 1) - - -
0 (8v, 1) + (1, 496) - 8v 8

is the type I supergravity multiplet. The product

(1, 496)× (8v + 8) = (8v, 496) + (8, 496) (11.2.18)

is an N = 1 gauge multiplet in the adjoint of SO(32). The latter is therefore
a gauge symmetry in spacetime.
This is precisely the same massless content as the type I open plus

closed SO(32) theory. However, these two theories have different massive
spectra. In the open string, the gauge quantum numbers are carried by an
SO(32) vector at each endpoint, so even at the massive levels there will
never be more than a rank 2 tensor representation of the gauge group.
In the heterotic string, the gauge quantum numbers are carried by fields
that propagate on the whole world sheet. At massive levels any number
of these can be excited, allowing arbitrarily large representations of the
gauge group. Remarkably, however, we will see in chapter 14 that the type
I and heterotic SO(32) theories are one and the same.

The second heterotic string theory is obtained by dividing the λA into
two sets of 16 with independent boundary conditions,

λA(w + 2π) =

{
ηλA(w) , A = 1, . . . , 16 ,
η′λA(w) , A = 17, . . . , 32 ,

(11.2.19)

with η and η′ each ±1. Correspondingly, there are the operators

exp(πiF1) , exp(πiF ′1) , (11.2.20)

which anticommute with λA for A = 1, . . . , 16 and A = 17, . . . , 32 respec-
tively. Take separate GSO projections on the right-movers and the two
sets of left-movers. That is, sum over the 23 = 8 possible combinations of
periodicities with the projections

exp(πiF1) = exp(πiF ′1) = exp(πiF̃) = 1 . (11.2.21)

Again closure and locality of the OPE and modular invariance are easily
verified. In particular the partition function

Z8(τ)
2 =

1

4

[
Z0

0(τ)
8 + Z0

1(τ)
8 + Z1

0(τ)
8 + Z1

1(τ)
8
]2

(11.2.22)

transforms in the same way as Z±
ψ and Z16. It is important here that the

fermions are in groups of 16, so that the minus signs from Z±
ψ (which was

for eight fermions) are squared.
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As before, the lightest states on the right-hand side are the massless
8v + 8. On the left-hand side, the sector NS–NS′ again has a normal
ordering constant of −1, so the ground state is tachyonic but finds no
matching state on the right. The first excited states, at m2 = 0, are

αi−1|0〉NS,NS′ ,

λA−1/2λB−1/2|0〉NS,NS′ , 1 ≤ A,B ≤ 16 or 17 ≤ A,B ≤ 32 . (11.2.23)

There is a difference here from the SO(32) case: because there are separate
GSO projections on each set of 16, A and B must come from the same set.
Since the SO(32) symmetry is partly broken by the boundary conditions,
we classify states by the surviving SO(16) × SO(16). The states (11.2.23)
include the antisymmetric tensor adjoint representation for each SO(16),
with dimension 16× 15/2 = 120.

In the left-moving R–NS′ sector the normal ordering constant is

− 8

24
+

16

24
− 16

48
= 0 , (11.2.24)

so the ground states are massless. Making eight raising and eight lowering
operators out of the 16 λA zero modes produces a 256-dimensional spinor
representation of the first SO(16). The GSO projection separates it into two
irreducible representations, 128+ 128′, the former being in the spectrum.
The NS–R′ sector produces a 128 of the other SO(16), and the R–R′
sector again has no massless states.

of
the left-hand side is

(8v, 1, 1) + (1, 120, 1) + (1, 1, 120) + (1, 128, 1) + (1, 1, 128) . (11.2.25)

Combining these with the right-moving 8v gives, for each SO(16), massless
vector bosons which transform as 120 + 128. Consistency of the spacetime
theory requires that massless vectors transform under the adjoint repre-
sentation of the gauge group. There is indeed a group, the exceptional
group E8, that has an SO(16) subgroup under which the E adjoint 248
transforms as 120 + 128. Evidently this second heterotic string theory has
gauge group E8×E8. The world-sheet theory has a full E8×E8 symmetry,
even though only an SO(16)×SO(16) symmetry is manifest in the present
description. The additional currents are given by bosonization as

exp

[
i

16∑
K=1

qKH
K(z)

]
. (11.2.26)

This is a spin field, just as in the fermion vertex operator (10.4.25). For

In all, the SO(8) × SO(16) × SO(16) content of the massless level

8

spin
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the first E8 the charges are

qK =

{ ±1
2 , K = 1, . . . 8

0 , K = 9, . . . 16
,

16∑
K=1

qK ∈ 2Z , (11.2.27)

and vice versa for the second. These are indeed (1, 0) operators. The
massless spectrum is the d = 10, N = 1 supergravity multiplet plus an
E8 × E8 gauge multiplet. The SO(8)spin × E8 × E8 quantum numbers of
the massless fields are

(1, 1, 1) + (28, 1, 1) + (35, 1, 1) + (56, 1, 1) + (8′, 1, 1)
+ (8v, 248, 1) + (8, 248, 1) + (8v, 1, 248) + (8, 1, 248) . (11.2.28)

Consistency requires the fermions to be in groups of 16. We could make
a modular-invariant theory using groups of eight, the left-moving partition
function being (Z±

ψ )
4. However, we have seen that modular invariance

requires minus signs in Z±
ψ . These signs would give negative weight to left-

moving R sector states and would correspond to the projection exp(πiF) =
−1 in the NS sector. The first is inconsistent with spin-statistics because
these states are spacetime scalars, and the second is inconsistent with
closure of the OPE thus making the interactions inconsistent. The SO(32)
and E8 × E8 theories are the only supersymmetric heterotic strings in ten
dimensions.

11.3 Other ten-dimensional heterotic strings

The other heterotic string theories can all be constructed from a single
theory by the twisting construction introduced in section 8.5. The ‘least
twisted’ theory, in the sense of having the smallest number of path integral
sectors, corresponds to the diagonal modular invariant

1

2

[
Z0

0(τ)
16Z0

0(τ)
∗4 − Z0

1(τ)
16Z0

1(τ)
∗4

−Z1
0(τ)

16Z1
0(τ)

∗4 − Z1
1(τ)

16Z1
1(τ)

∗4] . (11.3.1)

This invariant corresponds to taking all fermions, λA and ψ̃µ, to be
simultaneously periodic or antiperiodic on each cycle of the torus. In
terms of the spectrum the world-sheet fermions are either all R or all NS,
with the diagonal projection

exp[πi(F + F̃)] = 1 . (11.3.2)

This theory is consistent except for a tachyon, the state

λA−1/2|0〉NS,NS , m2 = − 2

α′ , exp(πiF) = exp(πiF̃) = −1 , (11.3.3)
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which transforms as a vector under SO(32). At the massless level are the
states

αi−1ψ̃
j
−1/2|0〉NS,NS , λA−1/2λB−1/2ψ̃

j
−1/2|0〉NS,NS , (11.3.4)

which are the graviton, dilaton, antisymmetric tensor and SO(32) gauge
bosons. There are fermions in the spectrum, but the lightest are at m2 =
4/α′.

Now let us twist by various symmetries. Consider first the Z2 generated
by exp(πiF̃). Combined with the diagonal projection (11.3.2) this gives the
total projection

1 + exp[πi(F + F̃)]

2
·1 + exp(πiF̃)

2
=

1 + exp(πiF)

2
·1 + exp(πiF̃)

2
. (11.3.5)

This is the same as the projections (11.2.8) plus (11.2.10) defining the
supersymmetric SO(32) heterotic string. Also, the spatial twist by exp(πiF̃)
adds in the sectors in which the λA and ψ̃µ have opposite periodicities. The
twisted theory is thus the SO(32) heterotic string. Twisting by exp(πiF)
has the same effect.
Now consider twisting the diagonal theory by exp(πiF1), which flips the

sign of the first 16 λA and which was used to construct the E8×E8 heterotic
string. The resulting theory is nonsupersymmetric — as in eq. (11.2.8),
a theory will be supersymmetric if and only if the projections include
exp(πiF̃) = 1. It has gauge group E8 × SO(16) and a tachyon in the
(1, 16). We leave it to the reader to verify this. A further twist by exp(πiF̃)
produces the supersymmetric E8 × E8 heterotic string.

One can carry this further by dividing the λA into groups of 8, 4, 2, and
1 as follows. Write the SO(32) index A in binary form, A = 1+d1d2d3d4d5,
where each of the digits di is zero or one. Define the operators exp(πiFi)
for i = 1, . . . , 5 to anticommute with those λA having di = 0 and commute
with those having di = 1. There are essentially five possible twist groups,
with 2, 4, 8, 16, or 32 elements, generated respectively by choosing one,
two, three, four or five of the exp(πiFi) and forming all products. The first
of these produces the E8×SO(16) theory just described; the further twists
produce the gauge groups SO(24)×SO(8), E7×E7×SO(4), SU(16)×SO(2),
and E8. None of these theories is supersymmetric, and all have tachyons.
A further twist by exp(πiF̃) produces a supersymmetric theory which in
each case is either the SO(32) theory or the E8 × E8 theory. These gauge
symmetries are less manifest in this construction, with more of the currents
coming from R sectors.
Let us review the logic of the twisting construction. The vertex operator

corresponding to a sector twisted by a group element h produces branch
cuts in the fields, but the projection onto h-invariant states means that
these branch cuts do not appear in the products of vertex operators.
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Since h is a symmetry the projection is preserved by interactions. On the
torus, the sum over spatial and timelike twists is modular-invariant, and
this generalizes to any genus. However, we have learned in section 10.7
that naive modular invariance of the sum over path integral boundary
conditions is not enough, because in general there are anomalous phases
in the modular transformations. Only for a right–left symmetric path
integral do the phases automatically cancel.

At one loop the anomalous phases appear only in the transforma-
tion τ → τ + 1, where they amount to a failure of the level-matching
condition L0 − L̃0 ∈ Z. It is further a theorem that for an Abelian twist
group (like the products of Z2s considered here), the one-loop ampli-
tude and in fact all amplitudes are modular-invariant precisely if in every
twisted sector, before imposing the projection, there is an infinite number
of level-matched states. The projection can then be defined to satisfy level
matching. In the heterotic string, taking a sector in which k of the λA

satisfy R boundary conditions and 32− k satisfy NS boundary conditions,
the zero-point energy is

− 8

24
+

k

24
− (32− k)

48
= −1 + k

16
. (11.3.6)

The oscillators raise the energy by a multiple of 1
2 , so the energies on

the left-moving side are 1
16k mod 1

2 . On the right-moving side we are still
taking the fermions to have common boundary conditions for Lorentz
invariance, so the energies are multiples of 1

2 . Thus the level-matching
condition is satisfied precisely if k is a multiple of eight. Closure of the
OPE and spacetime spin-statistics actually require k to be a multiple
of 16, as we have seen. The twists exp(πiFi) were defined so that any
product of them anticommutes with exactly 16 of the λA, satisfying this
condition.

When the level-matching condition is satisfied, there can in fact be more
than one modular-invariant and consistent theory. Consider a twisted
theory with partition function

Z =
1

order(H)

∑
h1,h2∈H

Zh1,h2 , (11.3.7)

where h1 and h2 are the spatial and timelike periodicities on the torus.
Then the theory with partition function

Z =
1

order(H)

∑
h1,h2∈H

ε(h1, h2)Zh1,h2 (11.3.8)

is also consistent (modular-invariant with closed and local OPE) provided

1h ,h[ 2]= 0

1h ,h[ 2]= 0
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that the phases ε(h1, h2) satisfy

ε(h1, h2) = ε(h2, h1)
−1 , (11.3.9a)

ε(h1, h2)ε(h1, h3) = ε(h1, h2h3) , (11.3.9b)

ε(h, h) = 1 . (11.3.9c)

In terms of ĥ2 defined in the original twisted theory, the new twisted theory
is no longer projected onto H-invariant states, but onto states satisfying

ĥ2|ψ〉h1 = ε(h1, h2)
−1|ψ〉h1 (11.3.10)

in the sector twisted by h1. In other words, states are now eigenvectors
of ĥ, with a sector-dependent phase; equivalently we have made a sector-
dependent redefinition

ĥ→ ε(h1, h)ĥ . (11.3.11)

The phase factor ε(h1, h2) is known as discrete torsion.
There is one interesting possibility for discrete torsion in the theories

above, in the group generated by exp(πiF1) and exp(πiF̃) that produces
the E8 × E8 string from the diagonal theory. For

(h1, h2) =
(
exp[πi(k1F1 + l1F̃)], exp[πi(k2F1 + l2F̃)]

)
(11.3.12)

the phase

ε(h1, h2) = (−1)k1l2+k2l1 (11.3.13)

satisfies the conditions (11.3.9). It modifies the projection from

exp(πiF1) = exp(πiF ′1) = exp(πiF̃) = 1 , (11.3.14)

which produces to the supersymmetric E8 × E8 string, to

exp[πi(F1 + α′1 + α̃)] = exp[πi(F ′1 + α1 + α̃)] = exp[πi(F̃ + α1 + α′1)] = 1 .
(11.3.15)

The notation parallels that in eq. (10.7.11): under w → w+2π, the ψ̃µ, the
first 16 λA, and the second 16 λA pick up phases − exp(−πiα̃), − exp(πiα1),
and − exp(πiα′1) respectively. The αs are conserved by the OPE so the
projections are consistent. In other words, the spectrum consists of the
sectors

(NS+,NS+,NS+) ,

(NS−,NS−,R+) , (NS−,R+,NS−) , (NS+,R−,R−) ,
(R+,NS−,NS−) , (R−,R−,NS+) , (R−,NS+,R−) ,
(R+,R+,R+)

where the notation refers respectively to the ψ̃µ, the first 16 λA, and the
second 16 λA.
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Gravitinos, in the sectors (R±,NS+,NS+), are absent from the spec-
trum. So also are tachyons, which are in the (NS−,NS−,NS+) and
(NS−,NS+,NS−) sectors. The twists leave an SO(16) × SO(16) gauge
symmetry. Classifying states by their SO(8)spin × SO(16) × SO(16) quan-
tum numbers, one finds the massless spectrum

(NS+,NS+,NS+) : (1, 1, 1) + (28, 1, 1) + (35, 1, 1)

+ (8v, 120, 1) + (8v, 1, 120) ,

(R+,NS−,NS−) : (8, 16, 16) ,

(R−,R−,NS+) : (8′, 128′, 1) ,
(R−,NS+,R−) : (8′, 1, 128′) .

This shows that a tachyon-free theory without supersymmetry is possible.

11.4 A little Lie algebra

In the open string the gauge charges are carried by the Chan–Paton
degrees of freedom at the endpoints. In the closed string the charges are
carried by fields that move along the string. We saw this earlier for the
Kaluza–Klein gauge symmetry and the enhanced gauge symmetries that
appear when the bosonic string is compactified, and now we see it again in
the heterotic string. In the following sections we will discuss these closed
string gauge symmetries in a somewhat more systematic way, but first we
need to introduce a few ideas from Lie algebra. Space forbids a complete
treatment; we focus on some basic ideas and some specific results that
will be needed later.

Basic definitions

A Lie algebra is a vector space with an antisymmetric product [T ,T ′]. In
terms of a basis Ta the product is

[Ta, T b] = ifabcT
c (11.4.1)

with fabc the structure constants. The product is required to satisfy the
Jacobi identity

[Ta, [Tb, T c] ] + [Tb, [Tc, T a] ] + [Tc, [Ta, T b] ] = 0 . (11.4.2)

The associated Lie group is generated by the exponentials

exp(iθaT
a) , (11.4.3)

with the θa real. For a compact group, the associated compact Lie algebra
has a positive inner product

(Ta, T b) = dab , (11.4.4)
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which is invariant,

( [T ,T ′] , T ′′ ) + (T ′, [T ,T ′′] ) = 0 . (11.4.5)

This invariance is equivalent to the statement that fabc is completely
antisymmetric, where dab is used to raise the index.

We are interested in simple Lie algebras, those having no nontrivial
invariant subalgebras (ideals). A general compact algebra is a sum of
simple algebras and U(1)s. For a simple algebra the inner product is
unique up to normalization, and there is a basis of generators in which
it is simply δab. For any representation r of the Lie algebra (any set of
matrices tar,ij satisfying (11.4.1) with the given fabc), the trace is invariant

and so for a simple Lie algebra is proportional to dab,

Tr(tar t
b
r ) = Trd

ab (11.4.6)

from some constant Tr . Also, tar t
b
r dab commutes with all the tcr and so is

proportional to the identity,

tar t
b
r dab = Qr (11.4.7)

with Qr the Casimir invariant of the representation r.
The classical Lie algebras are

• SU(n): Traceless Hermitean n×n matrices. The corresponding group
consists of unitary matrices with unit determinant.1 This algebra is
also denoted An−1.

• SO(n): Antisymmetric Hermitean n× n matrices. The corresponding
group SO(n,R) consists of real orthogonal matrices with unit deter-
minant. For n = 2k this algebra is also denoted Dk . For n = 2k + 1
it is denoted Bk .

• Sp(k): Hermitean 2k × 2k matrices with the additional condition

MTM−1 = −TT . (11.4.8)

Here the superscript T denotes the transpose, and

M = i

[
0 Ik
−Ik 0

]
(11.4.9)

with Ik the k × k identity matrix. The corresponding group consists
of unitary matrices U with the additional property

MUM−1 = (UT )−1 . (11.4.10)

1 To be precise the Lie algebra determines only the local structure of the group. Many groups,
differing only by discrete identifications, will have a common Lie algebra.
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Confusingly, the notation Sp(2k) is also used for this group. It is also
denoted Ck .

From each of the compact groups one obtains various noncompact
groups by multiplying some generators by i. For example, the traceless
imaginary matrices generate the group SL(n,R) of real matrices of unit
determinant. The group SO(m, n,R) preserving a Lorentzian inner product
is similarly obtained from SO(m+n). Another noncompact group is gener-
ated by imaginary rather than Hermitean matrices satisfying the symplectic
condition (11.4.8) and consists of real matrices satisfying (11.4.10). This
noncompact group is also denoted Sp(k) or Sp(2k); occasionally USp(2k)
is used to distinguish the compact unitary case.

Such noncompact groups do not appear in Yang–Mills theory (the
result would not be unitary) but they have other applications. Some of the
SL(n,R) and SO(m, n,R) appear as low energy symmetries in compactified
string theory, as discussed in section B.5 and chapter 14. The real form of
Sp(k) is an invariance of the Poisson bracket in classical mechanics.

Roots and weights

A useful description of any Lie algebra h begins with a maximal set of
commuting generators Hi, i = 1, . . . , rank(g). The remaining generators Eα

can be taken to have definite charge under the Hi,

[Hi, Eα] = αiEα . (11.4.11)

The rank(g)-dimensional vectors αi are known as roots. It is a theorem
that there is only one generator for a given root so the notation Eα is
unambiguous. The Jacobi identity determines the rest of the algebra to be

[Eα, Eβ] =


ε(α, β)Eα+β if α+ β is a root ,
2α ·H/α2 if α+ β = 0 ,
0 otherwise .

(11.4.12)

The products α·H and α2 are defined by contraction with dij , the inverse of
the inner product (11.4.4) restricted to the commuting subalgebra. Taking
the trace with Hi, the second equation determines the normalization
(Eα, E−α) = 2/α2. The constants ε(α, β) take only the values ±1.

The matrices tir that represent H
i can all be taken to be diagonal. Their

simultaneous eigenvalues wi, combined into vectors

(w1, . . . , wrank(g)) , (11.4.13)

are the weights, equal in number to the dimension of the representation.
The roots are the same as the weights of the adjoint representation.
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Examples:

• For SO(2k) = Dk , consider the k 2×2 blocks down the diagonal and
let Hi be [

0 i

−i 0

]
(11.4.14)

in the ith block and zero elsewhere. This is a maximal commuting
set. The 2k-vectors (1,∓i, 0, . . . , 0) have eigenvalues

(±1, 0k−1) (11.4.15)

under the k Hi; these are weights of the vector representation. The
other weights are the same with the ±1 in any other position.

The adjoint representation is the antisymmetric tensor, which is
contained in the product of two vector representations. The weights
are additive so the roots are obtained by adding any distinct (because
of the antisymmetry) pair of vector weights. This gives

(+1,+1, 0k−2) , (+1,−1, 0k−2) , (−1,−1, 0k−2) , (11.4.16)

and all permutations of these. The k zero roots obtained by adding
any weight and its negative are just the Hi.

The diagonal generators (11.4.14) are the same as are used in sec-
tion B.1 to construct the spinor representations. In the spinor repre-
sentation the weights wi are given by all k-vectors with components
±1

2 , with the 2k−1 having an even number of − 1
2s and the 2k−1′ an

odd number.

• For SO(2k+1) = Bk , one can take the same set of diagonal generators
with a final row and a final column of zeros. The weights in the vector
representation are the same as above plus (0k) from the added row.
The additional generators have roots

(±1, 0k−1) (11.4.17)

and all permutations.

• The adjoint of Sp(k) = Ck is the symmetric tensor, so one can obtain
the roots as for SO(2k) except that the vector weights need not be
distinct. The resulting roots are those of SO(2k) together with

(±2, 0k−1) (11.4.18)

and permutations. It is usually conventional to normalize the gener-
ators such that the longest root has length-squared two, so we must
divide all the roots by 21/2.
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• For SU(n) = An−1 it is useful first to consider U(n), even though
this algebra is not simple. The n commuting generators Hi can be
taken to have a 1 in the ii position and zeros elsewhere. The charged
generator with a 1 in the ij position then has eigenvalue +1 under
Hi and −1 under Hj: the roots are all permutations of

(+1,−1, 0n−2) . (11.4.19)

Note that all roots lie in the hyperplane
∑
i α
i = 0; this is because all

eigenvalues of the U(1) generator are zero. The roots of SU(n) are
just the roots of U(n) regarded as lying in this hyperplane.

• We have stated that the E8 generators decompose into the adjoint
plus one spinor of SO(16). The commuting generators of SO(16) can
also be taken as commuting generators of E8, so the roots of E8

are the roots of SO(16) plus the weights of the spinor, namely all
permutations of the roots (11.4.16) plus

(+1
2 ,+

1
2 ,+

1
2 ,+

1
2 ,+

1
2 ,+

1
2 ,+

1
2 ,+

1
2) (11.4.20)

and the roots obtained from this by an even number of sign flips.
Equivalently this set is described by

αi ∈ Z for all i , or αi ∈ Z+ 1
2 for all i , (11.4.21a)

and

8∑
i=1

αi ∈ 2Z ,
8∑
i=1

(αi)2 = 2 . (11.4.21b)

For An, Dk , and E8 (and E6 and E7, which we have not yet described),
all roots are of the same length. These are referred to as simply-laced
algebras. For Bk and Ck (and F4 and G2) there are roots of two different
lengths so one refers to long and short roots.
A quantity that will be useful later is the dual Coxeter number h(g) of

the Lie algebra g, defined by

−∑
c,d

facdf
bd
c = h(g)ψ2dab . (11.4.22)

Here ψ is any long root. For reference, we give the values for all simple
Lie algebras in table 11.3. The definition (11.4.22) makes h(g) independent
of the arbitrary normalization of the inner product dab because the inverse
appears in ψ2 = ψiψjdij .

Useful facts for grand unification

The exceptional group E8 is connected to the groups appearing in grand
unification through a series of subgroups. This will play a role in the com-
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Table 11.3. Dimensions and Coxeter numbers for simple Lie algebras.

SU(n) SO(n), n ≥ 4 Sp(k) E6 E7 E8 F4 G2

dim(g) n2 − 1 n(n− 1)/2 2k2 + k 78 133 248 52 14
h(g) n n− 2 k + 1 12 18 30 9 4

pactification of the heterotic string, and so we record without derivation
the necessary results.

The first subgroup is

E8 → SU(3)× E6 . (11.4.23)

We have not described E6 explicitly, but the reader can reproduce this
and the decomposition (11.4.24) from the known properties of spinor
representations, as well as the further decomposition of the E6 rep-
resentations in table 11.4 (exercise 11.5). In simple compactifications
of the E8 × E8 string, the fermions of the Standard Model can all
be thought of as arising from the 248-dimensional adjoint represen-
tation of one of the E8s. It is therefore interesting to trace the fate
of this representation under the successive symmetry breakings. Un-
der E8 → SU(3)× E6,

248→ (8, 1) + (1, 78) + (3, 27) + ( 3 , 27) . (11.4.24)

That is, the adjoint of E8 contains the adjoints of the subgroups, with half
the remaining 162 generators transforming as a triplet of SU(3) and a
complex 27-dimensional representation of E6 and half as the conjugate of
this. Further subgroups are shown in table 11.4. The first three subgroups
correspond to successive breaking of E6 down to the Standard Model
group through smaller grand unified groups; the fourth is an alternate
breaking pattern.

It is a familiar fact from grand unification that precisely one SU(3) ×
SU(2) × U(1) generation of quarks and leptons is contained in the
10 plus 5 of SU(5). Tracing back further, we see that a generation
fits into the single representation 16 of SO(10), together with an addi-
tional state 1−5. This extra state is neutral under SU(5), and so under
SU(3) × SU(2) × U(1), and can be regarded as a right-handed neutrino.
Going back to E6, the 27 contains the 15 states of a single generation
plus 12 additional states. Relative to SU(5) unification, SO(10) and E6 are
more unified in the sense that a generation is contained within a single
representation, but less economical in that the representation contains
additional unseen states as well. In fact, the latter may not be such a
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Table 11.4. Subgroups and representations of grand unified groups.

E6 → SO(10)×U(1)

78 → 450 + 16−3 + 163 + 10

27 → 14 + 10−2 + 161

SO(10) → SU(5)×U(1)

45 → 240 + 104 + 10−4 + 10

16 → 10−1 + 53 + 1−5
10 → 52 + 5−2

SU(5) → SU(3)× SU(2)×U(1)

10 → (3, 2)1 + (3, 1)−4 + (1, 1)6

5̄ → (3, 1)2 + (1, 2)−3
E6 → SU(3)× SU(3)× SU(3)

78 → (8, 1, 1) + (1, 8, 1) + (1, 1, 8) + (3, 3, 3) + (3̄, 3̄, 3̄)

27 → (3, 3̄, 1) + (1, 3, 3̄) + (3̄, 1, 3)

difficulty. To see why, consider the decomposition of the 27 of E6 under
SU(3)× SU(2)×U(1) ⊂ SU(5) ⊂ SO(10) ⊂ E6:

27 → (3, 2)1 + (3, 1)−4 + (1, 1)6 + (3, 1)2 + (1, 2)−3
+ [10]

+ [(3, 1)2 + (3, 1)−2] + [(1, 2)−3 + (1, 2)3] + [10] . (11.4.25)

The first line lists one generation, the second the extra state appearing
in the 16 of SO(10), and the third the additional states in the 27 of E6.
The subset within each pair of square brackets is a real representation
of SU(3) × SU(2) × U(1). The significance of this is that for a real
representation r, the CPT conjugate also is in the representation r, and
so the combined gauge plus SO(2) helicity representation for the particles
plus their antiparticles is (r,+1

2) + (r,− 1
2 ). This is the same as for a

massive spin-12 particle in representation r, so it is consistent with the
gauge and spacetime symmetries for these particles to be massive. In
the most general invariant action, all particles in [ ] brackets will have
large (of order the unification scale) masses. It is notable that for any
of the 10 + 5 of SU(5), the 16 of SO(10), or the 27 of E6, the natural
SU(3) × SU(2) × U(1) spectrum is precisely a standard generation of
quarks and leptons.
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11.5 Current algebras

The gauge boson vertex operators in the heterotic string are of the form
j(z)ψ̃µ(z̄)eik·X , where j(z) is either a fermion bilinear λAλB or a spin
field (11.2.26). Similarly the gauge boson vertex operators for the toroid-
ally compactified bosonic string were of the form j(z)∂̄Xµ(z̄)eik·X with j
being ∂Xm for the Kaluza–Klein gauge bosons or an exponential for the
enhanced gauge symmetry (or the same with right and left reversed). All
these currents are holomorphic (1, 0) operators. In this section we consider
general properties of such currents.

Let us consider in a general CFT the set of (1, 0) currents ja(z). Con-
formal invariance requires their OPE to be of the form

ja(z)jb(0) ∼ kab

z2
+
icabc

z
jc(0) (11.5.1)

with kab and cabc constants. Dimensionally, the z−2 term must be a c-
number and the z−1 term must be proportional to a current. The Laurent
coefficients

ja(z) =
∞∑

m=−∞
jam
zm+1

(11.5.2)

thus satisfy a closed algebra

[jam, j
b
n ] = mkabδm,−n + icabcj

c
m+n . (11.5.3)

In particular,

[ja0 , j
b
0 ] = icabcj

c
0 . (11.5.4)

That is, the m = 0 modes form a Lie algebra g, and

cabc = fabc . (11.5.5)

We focus first on the case of simple g. The ja1 j
b
0 j

c−1 Jacobi identity requires
that

fbcdk
ad + fbadk

dc = 0 . (11.5.6)

This is the same relation as that defining the Lie algebra inner product
dab, and since we are assuming g to be simple it must be that

kab = k̂dab (11.5.7)

for some constant k̂. The algebra (11.5.3) is variously known as a current
algebra, an affine Lie algebra, or an (affine) Kac–Moody algebra. The
currents are (1, 0) tensors, so

[Lm, j
a
n ] = −njam+n . (11.5.8)
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Physically, the jan generate position-dependent g-transformations. This
is possible in quantum field theory because there is a local current. The
central extension or Schwinger term k̂ must always be positive in a unitary
theory. To show this, note that

k̂daa = 〈1| [ ja1 , ja−1 ] |1〉 = ‖ ja−1|1〉‖2 (11.5.9)

(no sum on a). For a compact Lie algebra daa is positive and so k̂ must
be nonnegative. It can vanish only if ja−1|1〉 = 0, but the vertex operator
for ja−1|1〉 is precisely the current ja: any matrix element of ja can be

obtained by gluing ja−1|1〉 into the world-sheet. Thus k̂ = 0 only if the
current vanishes identically.
The coefficient k̂ is quantized. To show this, consider any root α. Defining

J3 =
α ·H
α2

, J± = E±α , (11.5.10)

one finds from the general form (11.4.12) that these satisfy the SU(2)
algebra

[J3, J±] = J± , [J+, J−] = 2J3 . (11.5.11)

The reader can verify that the two sets

α ·H0

α2
, Eα0 , E−α0 , (11.5.12a)

α ·H0 + k̂

α2
, Eα1 , E−α−1 (11.5.12b)

also satisfy the SU(2) algebra. The first is just the usual center-of-mass Lie
algebra, while the second is known as pseudospin. From familiar properties
of SU(2), 2J3 must be an integer, and so 2k̂/α2 must be an integer. This
condition is most stringent if α is taken to be one of the long roots of the
algebra (denoted ψ). The level

k =
2k̂

ψ2
(11.5.13)

is then a nonnegative integer, and positive for a nontrivial current.
It is common to normalize the Lie algebra inner product to give the long

roots length-squared two, so that k̂ = k is the coefficient of the leading
term in the OPE. We will usually do this in examples, as we have done in
giving the roots of various Lie algebras in the previous section. Inciden-
tally, it follows that with this normalization the generators (11.4.14) are
normalized, so the SO(n) inner product is half of the vector representation
trace. Similarly the inner product for SU(n) such that the long roots have
length-squared two is equal to the trace in the fundamental representation.
In general expressions we will keep the inner product arbitrary, inserting
explicit factors of ψ2 so that results are independent of the normalization.

±
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We will, however, take henceforth a basis for the generators such that
dab = δab.
The level represents the relative magnitude of the z−2 and z−1 terms

in the OPE. For U(1) the structure constant is zero and only the z−2
term appears. Hence there is no analog of the level. It is convenient to
normalize all the U(1) currents to

ja(z)jb(0) ∼ δab

z2
. (11.5.14)

From this OPE and holomorphicity it follows that each U(1) current
algebra is isomorphic to a free boson CFT,

ja = i∂Ha . (11.5.15)

We will often use this equivalence.
The current algebra in the heterotic string consisted of n real fermions

λA(z). The currents

iλAλB (11.5.16)

form an SO(n) algebra. The maximal set of commuting currents is
iλ2K−1λ2K for K = 1, . . . , [n/2]. These correspond to the generators
(11.4.14), which are normalized such that roots (11.4.16) have length-
squared two. The level is then the coefficient of the leading term in the
OPE; this is 1/z2, so the level is k = 1. The case n = 3 is an exception:
there are no long roots, only the short roots ±1, so we must rescale the
diagonal current to 21/2iλ1λ2 and the level is k = 2.

For any real representation r of any Lie algebra, one can construct
from dim(r) real fermions the currents

λAλBtar,AB . (11.5.17)

These satisfy a current algebra with level k = Tr/ψ
2, with Tr defined

in eq. (11.4.6). The case in the previous paragraph is the n-dimensional
vector representation of SO(n), for which TR = ψ2. As another example,
nk fermions transforming as k copies of the vector representation give
level k.
As a final example consider the SU(2) symmetry at the self-dual point

of toroidal compactification. The current is exp[21/2iH(z)]. The current
i∂H is then normalized so that the weight (from the OPE) is 21/2, with
length-squared two. The OPE of i∂H with itself starts as 1/z2, so the level
is again k = 1.
In some cases one may have sectors in which some currents are not

periodic, ja(w + 2π) = Rabjb(w), where Rab is any automorphism of the
algebra. In these, the modes of the currents are fractional and satisfy a
twisted affine Lie algebra.

2

1
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The Sugawara construction

In current algebras with conformal symmetry, there is a remarkable con-
nection between the energy-momentum tensor and the currents, which
leads to a great deal of interesting structure. Define the operator

:jj(z1) := lim
z2→z1

(
ja(z1)j

a(z2)− k̂ dim(g)

z212

)
, (11.5.18)

with the sum on a implicit. We first wish to show that up to normalization
the OPE of : jj : with ja is the same as that of TB with ja. This takes
a bit of effort; the same calculation is organized in a different way in
exercise 11.7.
The OPE of the product : jj : is not the same as the product of the

OPEs, because the two currents in : jj : are closer to each other than
they are to the third current; we must make a less direct argument using
holomorphicity. Consider the following product:

ja(z1)j
a(z2)j

c(z3) =
k̂

z231
jc(z2) +

ifcad

z31
jd(z1)j

a(z2) +
k̂

z232
jc(z1)

+
ifcad

z32
ja(z1)j

d(z2) + terms holomorphic in z3 .

(11.5.19)

We have used the current–current OPE to determine the singularities as z3
approaches z1 or z2, with a holomorphic remainder. In this relation take
z2 → z1 and make a Laurent expansion in z21, being careful to expand
both the operator products and the explicit z2 dependence. Keep the term
of order z021 (there is some cancellation from the antisymmetry of fcad) to
obtain

:jj(z1) : j
c(z3) ∼ 2k̂

z213
jc(z1) +

fcadfead

z213
je(z1)

=
2k̂ + h(g)ψ2

z213
jc(z1)

= (k + h(g))ψ2

[
1

z213
jc(z3) +

1

z13
∂jc(z3)

]
. (11.5.20)

Here h(g) is again the dual Coxeter number. Define

T s
B(z) =

1

(k + h(g))ψ2
:jj(z) : . (11.5.21)

The OPE of T s
B with the current is the same as that of the energy-

momentum tensor TB(z),

T s
B(z)j

c(0) ∼ TB(z)j
c(0) . (11.5.22)
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Now repeat the above with jc(z3) replaced by T s
B(z3),

ja(z1)j
a(z2)T

s
B(z3) =

1

z231
ja(z1)j

a(z2) +
1

z31
∂ja(z1)j

a(z2)

+
1

z232
ja(z1)j

a(z2) +
1

z32
ja(z1)∂j

a(z2) + terms holomorphic in z3 .
(11.5.23)

Again expand in z21 and keep the term of order z021 to obtain

T s
B(z1)T

s
B(z3) ∼ cg,k

2z413
+

2

z213
T s
B(z3) +

1

z13
∂T s

B(z3) (11.5.24)

with

cg,k =
k dim(g)

k + h(g)
. (11.5.25)

This is of the standard form for an energy-momentum tensor, with central
charge cg,k . The Laurent coefficients

Ls
0 =

1

(k + h(g))ψ2

(
ja0j

a
0 + 2

∞∑
n=1

ja−njan
)
, (11.5.26a)

Ls
m =

1

(k + h(g))ψ2

∞∑
n=−∞

janj
a
m−n , m �= 0 , (11.5.26b)

satisfy a Virasoro algebra with this central charge. The vanishing of the
normal ordering constant in Ls

0 can be deduced by noting that holomor-
phicity requires Ls

0 and also jan for n ≥ 0 to annihilate the state |1〉.
We have used the jj OPE to determine the : jj :: jj : OPE. We could

not do this directly, because the jj OPE is valid only for two operators
close compared to all others, and in this case there are two additional
currents in the vicinity. Naive application of the OPE would give the
wrong normalization for T s and cg,k . The argument above uses the OPE
only where it is valid, and then takes advantage of holomorphicity. The
operator T s

B constructed from the product of two currents is known as a
Sugawara energy-momentum tensor.

Finding the Sugawara tensor for a U(1) current algebra is easy. With
the normalization (11.5.14) it is simply

T s
B =

1

2
:jj : , (11.5.27)

as one sees by writing the current in terms of a free boson, j = i∂H .

The tensor T s
B may or may not be equal to the total TB of the CFT.

Define

T ′
B = TB − T s

B . (11.5.28)
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Since the TB and T s
B OPEs with ja have the same singular terms, the

product

T ′
B(z1)j

a(z2) ∼ 0 (11.5.29)

is nonsingular. Since T s
B itself is constructed from the currents, this implies

T s
BT

′
B ∼ 0. Then

T ′
B(z)T

′
B(0) = TB(z)TB(0)− T s

B(z)T
s
B(0)− T ′

B(z)T
s
B(0)− T s

B(z)T
′
B(0)

∼ c′
2z4

+
2

z2
T ′
B(0) +

1

z
∂T ′

B(0) , (11.5.30)

the standard TT OPE with central charge

c′ = c− cg,k . (11.5.31)

The internal theory thus separates into two decoupled CFTs. One has
an energy-momentum tensor T s

B constructed entirely from the current,
and the other an energy-momentum tensor T ′

B that commutes with the
current. We will use the term current algebra to refer to the first factor
alone, since the two CFTs are completely independent. For a unitary CFT
c′ must be nonnegative and so

cg,k ≤ c , (11.5.32)

and T ′
B is trivial precisely if

cg,k = c , (11.5.33)

in which case TB = T s
B .

We now consider examples. The dual Coxeter number can be writ-
ten as a sum over the roots. For any simply-laced algebra, h(g) + 1 =
dim(g)/rank(g), and so

cg,k =
k dim(g) rank(g)

dim(g) + (k − 1)rank(g)
. (11.5.34)

For any simply-laced algebra at k = 1, the central charge is therefore

cg,1 = rank(g) . (11.5.35)

For the E8×E8 and SO(32) heterotic strings, this is the same as the central
charge of the free fermion representation, and for the free boson repre-
sentation of the next section: these are Sugawara theories. The operator
: jj : looks as though it should be quartic in the fermions, but by using
the OPE and the antisymmetry of the fermions one finds that T s

B reduces
to the usual −1

2λ
A∂λA.

Another example is SU(2) = SO(3), for which

cg,k =
3k

2 + k
= 1,

3

2
,
9

5
, 2,

15

7
, . . .→ 3 . (11.5.36)
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We have seen the first CFT in this series (the self-dual point of toroidal
compactification) and the second (free fermions). Most levels do not have
a free-field representation. For any current algebra the central charge lies
in the range

rank(g) ≤ cg,k ≤ dim(g) . (11.5.37)

The first equality holds only for a simply-laced algebra at level one, and
the second only for an Abelian algebra or in the limit k →∞.

Primary fields

By acting repeatedly with the lowering operators jan with n > 0, one
reaches a highest weight or primary state of the current algebra, a state
annihilated by all the jan for n > 0. It is therefore also annihilated by the
Ls
n for n > 0, eq. (11.5.26), so is a highest weight state of the Virasoro

algebra. The center-of-mass generators ja0 take primary states into primary
states, so the latter form a representation of the algebra g,

ja0 |r, i〉 = |r, j〉tar,ji , (11.5.38)

with r (not summed) labeling the representation. It then follows that

Ls
0|r, i〉 = 1

(k + h(g))ψ2
|r, k〉tar,kjtar,ji

=
Qr

(k + h(g))ψ2
|r, i〉 , (11.5.39)

with Qr the Casimir (11.4.7). The weights of the primary fields are thus
determined in terms of the algebra, level, and representation,

hr =
Qr

(k + h(g))ψ2
=

Qr

2k̂ + Qg
, (11.5.40)

where Qg is the Casimir for the adjoint representation. For SU(2) at level
k, the weight of the spin-j primary is

hj =
j(j + 1)

k + 2
. (11.5.41)

It is also true that at any given level, only a finite number of represen-
tations are possible for the primary states. For any root α of g and any
weight λ of r, the SU(2) algebra (11.5.12b) implies that

〈r, λ| [Eα1 , E−α−1 ] |r, λ〉 = 2 〈r, λ|(α ·H0 + k̂)|r, λ〉/α2
= 2(α · λ+ k̂)/α2 . (11.5.42)

The left-hand side is ‖E−α−1 |r, λ〉‖2 ≥ 0, and so k̂ ≥ −α · λ. Combining this
with the same for −α gives

k̂ ≥ |α · λ| (11.5.43)
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for all weights λ of r. Taking α to be a long root ψ, the level must satisfy

k ≥ 2|ψ · λ|
ψ2

= 2|J3| , (11.5.44)

where J3 refers to the SU(2) algebra (11.5.12a) constructed from the
charges ja0 and the root ψ. For g = SU(2) the statement is that the spin j
of any primary state can be at most 1

2k. For example at k = 1, only the
representations 1 and 2 are possible. For g = SU(3) at k = 1, only the 1,
3, and 3 can appear. For g = SU(n) at level k, only representations whose
Young tableau has k or fewer columns can appear.
The expectation values of primary fields are completely determined by

symmetry. We defer the details to chapter 15.
Finally, let us briefly discuss the gauge symmetries of the type I theory

in this same abstract language. The matter part of the gauge boson vertex
operator is

Ẋµλaeik·X (11.5.45)

on the boundary, where the λa are weight 0 fields. In a unitary CFT such
λa must be constant by the equations of motion. The OPE is then

λa(y1)λ
b(y2) =

[
θ(y1 − y2)d

ab
c + θ(y2 − y1)d

ba
c

]
λc(y2) , (11.5.46)

so the λa form a multiplicative algebra with structure constants dabc. The
antisymmetric part of dabc is the structure constant of the gauge Lie
algebra. This is an abstract description of the Chan–Paton factor. The
requirement that the λa algebra be associative has been shown to forbid
the gauge group E8 × E8.

11.6 The bosonic construction and toroidal compactification

We have seen in the construction of winding state vertex operators in
section 8.2 that we may consider independent left- and right-moving
scalars. Let us try to construct a heterotic string with 26 left-movers
and 10 right-movers, which together with the ψµ give the correct central
charge. The main issue is the spectrum of kL,R; as in section 8.4 we use
dimensionless momenta

lL,R = (α′/2)1/2kL,R (11.6.1)

in much of the discussion. Recall that an ordinary noncompact dimension
corresponds to a left- plus a right-mover with l

µ
L = l

µ
R = l

µ
taking contin-

uous values; let there be d ≤ 10 noncompact dimensions. The remaining
momenta,

(lmL , l
n
R) , d ≤ m ≤ 25 , d ≤ n ≤ 9 , (11.6.2)

˜
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take values in some lattice Γ. From the discussion of Narain compactifi-
cation in section 8.4, we know that the requirements for a consistent CFT
are locality of the OPE plus modular invariance. After taking the GSO
projection on the right-movers, the conditions on Γ are precisely as in the
bosonic case. Defining the product

l ◦ l′ = lL · l′L − lR · l′R , (11.6.3)

the lattice must be an even self-dual Lorentzian lattice of signature (26 −
d, 10− d),

l ◦ l ∈ 2Z for all l ∈ Γ , (11.6.4a)

Γ = Γ∗ . (11.6.4b)

As in the bosonic case, where the signature was (26 − d, 26 − d), all
such lattices have been classified. Consider first the maximum possible
number of noncompact dimensions, d = 10. In this case, the ◦ product
has only positive signs, so the lmL form an even self-dual Euclidean lattice
of dimension 16. Even self-dual Euclidean lattices exist only when the
dimension is a multiple of 8, and for dimension 16 there are exactly two
such lattices, Γ16 and Γ8 × Γ8. The lattice Γ16 is the set of all points of
the form

(n1, . . . , n16) or (n1 +
1
2 , . . . , n16 +

1
2) , (11.6.5a)∑

i

ni ∈ 2Z (11.6.5b)

for any integers ni. The lattice Γ8 is similarly defined to be all points

(n1, . . . , n8) or (n1 +
1
2 , . . . , n8 +

1
2) , (11.6.6a)∑

i

ni ∈ 2Z . (11.6.6b)

The left-moving zero-point energy is −1 as in the bosonic string, so
the massless states would have left-moving vertex operators ∂Xµ, ∂Xm,
or eikL·X(z) with l2L = 2. Tensored with the usual right-moving 8v + 8,
the first gives the usual graviton, dilaton, and antisymmetric tensor. The
16 ∂Xm currents form a maximal commuting set corresponding to the
m-momenta. The momenta lmL are the charges under these and so are the
roots of the gauge group. For Γ16, the points of length-squared two are
just the SO(32) roots (11.4.16). For Γ8 the points of length-squared two
are the E8 roots (11.4.21). Thus the two possible lattices give the same two
gauge groups, SO(32) and E8×E8, found earlier. The commuting currents
have singularity 1/z2, so k = 1 again.
It is easy to see that the earlier fermionic construction and the present

bosonic one are equivalent under bosonization. The integral points on the
lattices (11.6.5) and (11.6.6) map to the NS sectors of the current algebra
and the half-integral points to the R sectors. The constraint that the total
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kmL be even is the GSO projection on the left-movers in each theory. We
have seen in the previous section that the dynamics of a current algebra is
completely determined by its symmetry, so we can give a representation-
independent description of the left-movers as an SO(32) or E8 × E8 level
one current algebra.2

Let us note some general results about Lie algebras and lattices. The
set of all integer linear combinations of the roots of a Lie algebra g is
known as the root lattice Γg of g. Now take any representation r and let
λ be any weight of r. The set of points λ + v for all v ∈ Γg is denoted
Γr . It can be shown by considering various SU(2) subgroups that for a
simply-laced Lie algebra with roots of length-squared two,

Γr ⊂ Γ∗
g . (11.6.7)

The union of all Γr is the weight lattice Γw , and
3

Γw = Γ∗
g . (11.6.8)

For example, the weight lattice of SO(2n) has four sublattices:

(0) : 0 + any root ; (11.6.9a)

(v) : (1, 0, 0, . . . , 0) + any root ; (11.6.9b)

(s) : ( 12 ,
1
2 ,

1
2 , . . . ,

1
2 ) + any root ; (11.6.9c)

(c) : (−1
2 ,

1
2 ,

1
2 , . . . ,

1
2 ) + any root . (11.6.9d)

These are respectively the root lattice, the lattice containing the weights
of the vector representation, and the lattices containing the weights of
the two 2n−1-dimensional spinor representations. The lattice Γ8 is the root
lattice of E8 and is also the weight lattice because it is self-dual. The root
lattice of SO(32) gives the integer points in Γ16. The full Γ16 is the root
lattice plus one spinor lattice of SO(32).
The level one current algebra for any simply-laced Lie algebra g can

similarly be represented by rank(g) left-moving bosons, the momentum
lattice being the root lattice of g with the roots scaled to length-squared
two. The constants ε(α, β) appearing in the Lie algebra (11.4.12) can then
be determined from the vertex operator OPE; this is one situation where
the explicit form of the cocycle is needed. A modular-invariant CFT can be
obtained by taking also rank(g) right-moving bosons, with the momentum
lattice being

Γ =
∑
r

Γr × Γ̃r . (11.6.10)

2 To be precise it is still necessary to specify the spectrum, which amounts to specifying which
primary fields appear. Modular invariance generally restricts the possibilities greatly.

3 For the nonsimply-laced algebras Sp(k) and SO(2k + 1), these same relations hold between the
weight lattice of one and the dual of the root lattice of the other.
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That is, the spectrum runs over all sublattices of the weight lattice, with
the left- and right-moving momenta taking values in the same sublattice.

Toroidal compactification

In parallel to the bosonic case, all even self-dual lattices of signature
(26−d, 10−d) can be obtained from any single lattice by O(26−d, 10−d,R)
transformations. Again start with any given solution Γ0; for example,
this could be either of the ten-dimensional theories with all compact
dimensions orthogonal and at the SU(2)× SU(2) radius. Then any lattice

Γ = ΛΓ0 , Λ ∈ O(26− d, 10− d,R) (11.6.11)

defines a consistent heterotic string theory. As in the bosonic case there is
an equivalence

Λ1ΛΛ2Γ0
∼= ΛΓ0 , (11.6.12)

where

Λ1 ∈ O(26− d,R)× O(10− d,R) , Λ2 ∈ O(26− d, 10− d,Z) . (11.6.13)

The moduli space is then

O(26− d, 10− d,R)

O(26− d,R)× O(10− d,R)× O(26− d, 10− d,Z)
. (11.6.14)

The discrete T -duality group O(26 − d, 10 − d,Z) of invariances of Γ0 is
understood to act on the right.
Now consider the unbroken gauge symmetry. There are 26 − d gauge

bosons with vertex operators ∂Xmψ̃µ and 10 − d with vertex operators
∂Xµψ̃m. These are the original 16 commuting symmetries of the ten-
dimensional theory plus 10 − d Kaluza–Klein gauge bosons and 10 − d

more from compactification of the antisymmetric tensor. In addition there
are gauge bosons eikL·XLψ̃µ for every point on the lattice Γ such that

l2L = 2 , lR = 0 . (11.6.15)

There are no gauge bosons from points with lR �= 0 because the mass
of such a state will be at least 1

2 l
2
R . For generic boosts Λ, giving generic

points in the moduli space, there are no points in Γ with lR = 0 and so no
additional gauge bosons; the gauge group is U(1)36−2d. At special points
the gauge symmetry is enhanced. Obviously one can get SO(32)×U(1)20−2d
or E8 × E8 × U(1)20−2d from compactifying the original ten-dimensional
theory on a torus without Wilson lines, just as in field theory. However,
as in the bosonic string, there are stringy enhanced gauge symmetries at
special points in moduli space. For example, the lattice Γ26−d,10−d, defined
by analogy to the lattices Γ8 and Γ16, gives rise to SO(52−2d)×U(1)10−d.
As in the bosonic case, the low energy physics near the point of enhanced
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symmetry is the Higgs mechanism. All groups obtained in this way have
rank 36 − 2d. This is the maximum in perturbation theory, but we will
see in chapter 19 that nonperturbative effects can lead to larger gauge
symmetries.

The number of moduli, from the dimensions of the SO groups, is

1

2

[
(36−2d)(35−2d)− (26−d)(25−d)− (10−d)(9−d)

]
= (26−d)(10−d) .

(11.6.16)
As in the bosonic string these can be interpreted in terms of backgrounds
for the fields of the ten-dimensional gauge theory. The compact compo-
nents of the metric and antisymmetric tensor give a total of (10 − d)2

moduli just as before. In addition there can be Wilson lines, constant
backgrounds for the gauge fields Am. As discussed in chapter 8, due to the
potential Tr([Am, An]

2) the fields in different directions commute along flat
directions and so can be chosen to lie in a U(1)16 subgroup. Thus there
are 16(10− d) parameters in Am for (26− d)(10− d) in all.

In chapter 8 we studied quantization with antisymmetric tensor and
open string Wilson line backgrounds. Here we leave the details to the
exercises and quote the result. If we compactify xm ∼= xm + 2πR with
constant backgrounds Gmn, Bmn, and AIm, then canonical quantization
gives

kLm =
nm

R
+
wnR

α′ (Gmn + Bmn)− qIAIm − wnR

2
AInA

I
m , (11.6.17a)

kIL = (qI + wmRAIm)(2/α
′)1/2 , (11.6.17b)

kRm =
nm

R
+
wnR

α′ (−Gmn + Bmn)− qIAIm − wnR

2
AInA

I
m , (11.6.17c)

where nm and wm are integers and qI is on the Γ16 or Γ8 × Γ8 lattice
depending on which string has been compactified. The details are left to
exercise 11.10. Let us note that with the gauge fields set to zero this reduces
to the bosonic result (8.4.7). The terms in kLm and kRm that are linear in AI

come from the effect of the Wilson line on the periodicity, as in eq. (8.6.7).
The term in kIL that is linear in AI comes about as follows. For a string
that winds around the compact dimension, the Wilson line implies that
the current algebra fermions are no longer periodic. The corresponding
vertex operator (10.3.25) shows that the momentum is shifted. Finally,
the terms quadratic in AI can be most easily checked by verifying that
α′k ◦ k/2 is even.

To compare this spectrum with the Narain description one must go to
coordinates in which Gm′n′ = δm′n′ so that km′ = em′

nkn, the tetrad being
defined by δp′q′ = ep′

meq′
nGmn. The discrete T -duality group is generated

by T -dualities on the separate axes, large spacetime coordinate transform-
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ations, and quantized shifts of the antisymmetric tensor background and
Wilson lines.
There is an interesting point here. Because the coset space (11.6.14) is

the general solution to the consistency conditions, we must obtain this
same set of theories whether we compactify the SO(32) theory or the
E8 × E8 theory. From another point of view, note that the coset space
is noncompact because of the Lorentzian signature — one can go to
the limit of infinite Narain boost. Such a limit corresponds physically to
taking one or more of the compact dimensions to infinite radius. Then one
such limit gives the ten-dimensional SO(32) theory, while another gives
the ten-dimensional E8 × E8 theory. Clearly one should think of all the
different toroidally compactified heterotic strings as different states in a
single theory. The two ten-dimensional theories are then distinct limits of
this single theory.
Let us make the connection between these theories more explicit. Com-

pactify the SO(32) theory on a circle of radius R, with G99 = 1 and Wilson
line

RAI9 = diag
(
1
2

8
, 08

)
. (11.6.18)

Adjoint states with one index from 1 ≤ A ≤ 16 and one from 17 ≤ A ≤ 32
are antiperiodic due to the Wilson line, so the gauge symmetry is reduced
to SO(16) × SO(16). Now compactify the E8 × E8 theory on a circle of
radius R′ with G99 = 1 and Wilson line

R′AI9 = diag
(
1, 07, 1, 07

)
. (11.6.19)

The integer-charged states from the SO(16) root lattice in each E8 remain
periodic while the half-integer charged states from the SO(16) spinor
lattices become antiperiodic. Again the gauge symmetry is SO(16) ×
SO(16). To see the relation between these two theories, focus on the states
that are neutral under SO(16)×SO(16), those with kIL = 0. In both theories
these are present only for w = 2m even, because of the shift in kIL. The
respective neutral spectra are

kL,R =
ñ

R
± 2mR

α′ , k′L,R =
ñ′
R′ ±

2m′R′
α′ , (11.6.20)

with the subscript 9 suppressed. The primes denote the E8×E8 theory, and
ñ = n + 2m, ñ′ = n′ + 2m′. We have used the explicit form of the Wilson
line in each case, as well as the fact that kIL = 0. Under (ñ, m) ↔ (m′, ñ′)
and (kL, kR) ↔ (k′L,−k′R), the spectra are identical if RR′ = α′/2. This
symmetry extends to the full spectrum.
Finally let us ask how realistic a theory one obtains by compactification

down to four dimensions. At generic points of moduli space the massless
spectrum is given by dimensional reduction, simply classifying states by
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their four-dimensional symmetries. Analyzing the spectrum in terms of
the four-dimensional SO(2) helicity, the SO(8) spins decompose as

8v → +1, 06, −1 , (11.6.21a)

8 → +1
2

4
, −1

2

4
, (11.6.21b)

and so

8v × 8v → +2, +112, 038, −112,−2 , (11.6.22a)

8× 8v → 3
2

4
, 1

2

28
, − 1

2

28
, − 3

2

4
. (11.6.22b)

From the supergravity multiplet there is a graviton, with helicities ±2.
There are four gravitinos, each with helicities ±3

2 . Toroidal compacti-
fication does not break any supersymmetry. Since in four dimensions
the supercharge has four components, the 16 supersymmetries reduce to
d = 4, N = 4 supersymmetry. The supergravity multiplet also includes
12 Kaluza–Klein and antisymmetric tensor gauge bosons, some fermions,
and 36 moduli for the compactification. The final two spin-zero states
are the dilaton and the axion. In four dimensions a two-tensor Bµν is
equivalent to a scalar (section B.4). This is the axion, whose physics we
will discuss further in chapter 18.
In ten dimensions the only fields carrying gauge charge are the gauge

field and gaugino. These reduce as discussed in section B.6 to an N = 4
vector multiplet — a gauge field, four Weyl spinors, and six scalars, all in
the adjoint. For enhanced gauge symmetries, which are not present in ten
dimensions, one still obtains the same N = 4 vector multiplet because of
the supersymmetry. Compactification with N = 4 supersymmetry cannot
give rise to the Standard Model because the fermions are necessarily in
the adjoint of the gauge group. One gravitino is good, as we will explain
in more detail in section 16.2, but four are too much of a good thing.
We will see in chapter 16 that a fairly simple orbifold twist reduces the
supersymmetry to N = 1 and gives a realistic spectrum.

Supersymmetry and BPS states

A little thought shows that the supersymmetry algebra of the toroidally
compactified theory must be of the form4

{Qα, Q†β} = 2Pµ(Γ
µΓ0)αβ + 2PRm(Γ

mΓ0)αβ . (11.6.23)

This differs from the simple dimensional reduction of the ten-dimensional
algebra in that we have replaced Pm with PRm, the total right-moving

4 For clarity a projection operator is omitted — all spinor indices in this equation must be in
the 16.
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momentum kRm of all strings in a given state. These are equal only for a
state of total winding number zero. To obtain the algebra (11.6.23) directly
from a string calculation requires some additional machinery that we will
not develop until the next chapter. However, it is clear that the algebra
must take this form because the spacetime supersymmetry involves only
the right-moving side of the heterotic string.

Let us look for Bogomolnyi–Prasad–Sommerfield (BPS) states, states
that are annihilated by some of the Qα. Take the expectation value of the
algebra (11.6.23) in any state |ψ〉 of a single string of mass M in its rest
frame. The left-hand side is a nonnegative matrix. The right-hand side is

2(M + kRmΓ
mΓ0)αβ . (11.6.24)

The zero eigenvectors of this matrix are the supersymmetries that anni-
hilate |ψ〉. Since (kRmΓ

mΓ0)2 = k2R , the eigenvalues of the matrix (11.6.24)
are

2(M ± |kR|) , (11.6.25)

with half having each sign. A BPS state therefore has M2 = k2R . Recalling
the heterotic string mass-shell conditions on the right-moving side,

M2 =

{
k2R + 4(Ñ − 1

2 )/α
′ (NS) ,

k2R + 4Ñ/α′ (R) ,
(11.6.26)

the BPS states are those for which the right-movers are in an R ground
state or in an NS state with one ψ−1/2 excited. The latter are the lowest
NS states to survive the GSO projection, so it makes sense to change
terminology at this point and call them ground states as well. The BPS
states are then precisely those states for which the right-moving side is
in its 8v + 8 ground state, but with arbitrarily large kR . These can be
paired with many possible states on the left-moving side. The left-moving
mass-shell condition is

M2 = k2L + 4(N − 1)/α′ (11.6.27)

or

N = 1 + α′(k2R − k2L)/4 = 1− nmw
m − qIqI/2 . (11.6.28)

Any left-moving oscillator state is possible, as long as the compact mo-
menta and winding satisfy the condition (11.6.28). For any given left-
moving state, the 16 right-moving states 8v+8 form an ultrashort multiplet
of the supersymmetry algebra, as compared to the 256 states in a normal
massive multiplet.

It is interesting to look at the ten-dimensional origin of the modified
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supersymmetry algebra (11.6.23). Rewrite the algebra as

{Qα, Q†β} = 2PM(ΓMΓ0)αβ − 2
∆Xm
2πα′ (Γ

mΓ0)αβ , (11.6.29)

where ∆Xm is the total winding of the string. Consider the limit that
the compactification radii become macroscopic, so that a winding string
is macroscopic as well. The central charge term in the supersymmetry
algebra must be proportional to a conserved charge, so we are looking
for a charge proportional to the length ∆X of a string. Indeed, the string
couples to the antisymmetric two-tensor field as

1

2πα′
∫
M
B =

1

2

∫
d10x jMN(x)BMN(x) (11.6.30a)

jMN(x) =
1

2πα′
∫
M
d2σ (∂1X

M∂2X
N − ∂1X

N∂2X
M)δ10(x−X(σ)) .

(11.6.30b)

This is the natural generalization of the gauge coupling of a point particle,
as discussed in section B.4. Integrating the current at fixed time gives the
charge

QM =

∫
d9x jM0 =

1

2πα′
∫
dXM , (11.6.31)

the integral running along the world-line of the string. The full supersym-
metry algebra is then

{Qα, Q†β} = 2(PM − QM)(ΓMΓ0)αβ . (11.6.32)

In ten noncompact dimensions the charge (11.6.31) vanishes for any
finite closed string but can be carried by an infinite string, for example
an infinite straight string which would arise as the R → ∞ limit of a
winding string. It is often useful to contemplate such macroscopic strings,
which of course have infinite total mass and charge but finite values
per unit length. Under compactification the combination Pm − Qm is the
right-moving gauge charge. The left-moving charges do not appear in the
supersymmetry algebra.
It is natural to wonder whether the algebra (11.6.32) is now complete,

and in fact it is not. Consider compactification to four dimensions at a
generic point in the moduli space where the gauge symmetry is broken to
U(1)28. Grand unified theories in which the U(1) of the Standard Model
is embedded in a simple group always have magnetic monopoles arising
from the quantization of topologically nontrivial classical solutions. String
theory is not an ordinary grand unified theory but it also has magnetic
monopoles. Compactification of the heterotic string leads to three kinds
of gauge symmetry: the ten-dimensional symmetries, the Kaluza–Klein
symmetries, and the antisymmetric tensor symmetries. For each there is
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a corresponding monopole solution: the ’t Hooft–Polyakov monopole,
the Kaluza–Klein monopole, and the H-monopole respectively. Of course
since the various charges are interchanged by the O(22, 6,Z) T -duality,
the monopoles must be as well. Monopole charges appear in the super-
symmetry algebra; in the present case it is again the right-moving charges
that appear. In the low energy supergravity theory there is a symmetry
that interchanges the electric and magnetic charges, so they must appear
in the supersymmetry algebra in a symmetric way. We will discuss similar
central charge terms extensively in chapters 13 and 14.

Exercises

11.1 Show that the operators (10.7.21) with appropriate normalization
generate the full N = 2 superconformal algebra (11.1.4).

11.2 Show that if a (32 , 0) constraint jF is not tensor, then L1 · jF is a

nonvanishing (12 , 0) constraint, and a linear combination of L−1 · L1 · jF
and jF is a tensor (32 , 0) constraint.

11.3 Show that if we take the GSO projection on the λA in groups of
eight, modular invariance is inconsistent with spacetime spin-statistics.
Show that the OPE does not close.

11.4 (a) Find the massless and tachyonic states in the theory obtained by
twisting the diagonal theory on the group generated by exp(πiF1).
(b) Do the same for the group generated by exp(πiF1) and exp(πiF2).

11.5 (a) The decompositions of the spinor representation under SO(16)→
SO(6) × SO(10) and under SO(6) → SU(3) × U(1) are obtained in sec-
tion B.1. Use this to show that the adjoint of E8 decomposes into SU(3)
representations with the degeneracies (11.4.24). The 78 generators neutral
under SU(3) must form a closed algebra: this is E6.
(b) Use the same decompositions to show that the E6 representations
decompose as shown in table 11.4 under E6 → SO(10)×U(1).
(c) In a similar way obtain the decompositions shown in table 11.4 for
SO(10)→ SU(5)×U(1).

11.6 Repeat parts (a) and (b) of the previous exercise for SO(16) →
SO(4)×SO(12) and SO(4)→ SU(2)×U(1) to obtain the analogous prop-
erties of E7.

11.7 Show that :jj(0) := ja−1·ja−1·1. Act with the Laurent expansion (11.5.2)
for jc(z) and verify the OPE (11.5.20) in the Sugawara construction. Sim-
ilarly verify the OPE (11.5.24).

11.8 For the free-fermion currents (11.5.16) for SO(n), verify that the Sug-
awara construction gives the usual bilinear TB .
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11.9 Show that the lattice

Γ =
∑
r

Γr × Γ̃r

is even and self-dual, where Γr ˜
r the same

SO(2n). Show that this gives a four-dimensional compactification of the
heterotic string with SO(44)×U(1)6 gauge symmetry.

11.10 (a) Verify the spectrum (11.6.17) for one compact dimension with a
Wilson line background only.
(b) For the full spectrum (11.6.17), verify that α′k ◦ k/2 is even for any
state and that α′k ◦ k′/2 is integral for any pair of states. The ◦ product is

k ◦ k = kILk
′I
L + Gmn(kLmk

′
Ln − kRmk

′
Rn) .

(c) (Optional) Verify the full result (11.6.17) by canonical quantization.
Recall that the antisymmetric tensor background has already been treated
in chapter 8. Reference: Narain, Sarmadi, & Witten (1987).

11.11 In the E8×E8 string, the currents i∂H
I plus the vertex operators for

the points of length two form a set of (1,0) currents satisfying the E8×E8

algebra. From the 1/z term in the OPE, find the commutation relations
of E8. Be sure to include the cocycle in the vertex operator.

11.12 Find the Hagedorn temperatures of the type I, II, and heterotic
string theories. Use the result (7.2.30) for the asymptotics of the partition
function to express the Hagedorn temperature in general form.

is a weight sublattice of SO(44), Γ
weight sublattice for SO(12), and the sum runs over the four sublattices of



12
Superstring interactions

In this chapter we will examine superstring interactions from two com-
plementary points of view. First we study the interactions of the massless
degrees of freedom, which are highly constrained by supersymmetry. The
first section discusses the tree-level interactions, while the second discusses
an important one-loop effect: the anomalies in local spacetime symme-
tries. We then develop superstring perturbation theory. We introduce
superfields and super-Riemann surfaces to give superconformal symme-
try a geometric interpretation, and calculate a variety of tree-level and
one-loop amplitudes.

12.1 Low energy supergravity

The ten-dimensional supersymmetric string theories all have 32 or 16
supersymmetry generators. This high degree of supersymmetry completely
determines the low energy action.

Type IIA superstring

We begin by discussing the field theory that has the largest possible space-
time supersymmetry and Poincaré invariance, namely eleven-dimensional
supergravity. As explained in the appendix, the upper limit on the di-
mension arises because nontrivial consistent field theories cannot have
massless particles with spins greater than two.

This theory would seem to have no direct connection to superstring
theory, which requires ten dimensions. Our immediate interest in it is that,
as discussed in section B.5, its supersymmetry algebra is the same as that
of the IIA theory. The action of the latter can therefore be obtained by
dimensional reduction, toroidal compactification keeping only fields that
are independent of the compact directions. For now this is just a trick to

84
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take advantage of the high degree of supersymmetry, but in chapter 14
we will see that there is much more going on.

The eleven-dimensional supergravity theory has two bosonic fields, the
metric GMN and a 3-form potential AMNP ≡ A3 with field strength F4 .
Higher-dimensional supergravities contain many different p-form fields; to
distinguish these from one another we will denote the rank by an italicized
subscript, as opposed to numerical tensor indices which are written in
roman font. In terms of the SO(9) spin of massless states, the metric gives
a traceless symmetric tensor with 44 states, and the 3-form gives a rank
3 antisymmetric tensor with 84 states. The total number of bosonic states
is then 128, equal to the dimension of the SO(9) vector-spinor gravitino.

The bosonic part of the action is given by

2κ211S11 =

∫
d11x (−G)1/2

(
R − 1

2
|F4 |2

)
− 1

6

∫
A3 ∧ F4 ∧ F4 . (12.1.1)

The form action, written out fully, is proportional to∫
ddx (−G)1/2|Fp|2 =

∫
ddx

(−G)1/2
p!

GM1N1 . . .GMpNpFM1...Mp
FN1...Np .

(12.1.2)
The p! cancels the sum over permutations of the indices, so that each
independent component appears with coefficient 1. Forms are written as
tensors with lower indices in order that their gauge transformations do
not involve the metric.

We will take such results from the literature without derivation. Our
interest is only in certain general features of the various actions, and we will
not write out the full fermionic terms or supersymmetry transformations.
For the supergravities arising from string theories, one can verify the
action by comparison with the low energy limits of string amplitudes; a
few such calculations are given later in the chapter and in the exercises.
Also, many important features, such as the coupling of the dilaton, will
be understood from general reasoning.

Now dimensionally reduce as in section 8.1. The general metric that is
invariant under translations in the 10-direction is

ds2 = G11
MN(x

µ)dxMdxN

= G10
µν(x

µ)dxµdxν + exp(2σ(xµ))[dx10 + Aν(x
µ)dxν]2 . (12.1.3)

Here M,N run from 0 to 10 and µ, ν from 0 to 9. We have added a su-
perscript 11 to the metric appearing in the earlier supergravity action and
introduced a new ten-dimensional metric G10

µν �= G11
µν . The ten-dimensional

metric will appear henceforth, so the superscript 10 will be omitted.

The eleven-dimensional metric (12.1.3) reduces to a ten-dimensional
metric, a gauge field A1 , and a scalar σ. The potential A3 reduces to two
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potentials A3 and A2 , the latter coming from components where one index
is along the compact 10-direction. The three terms (12.1.1) become

S1 =
1

2κ210

∫
d10x (−G)1/2

(
eσR − 1

2
e3σ|F2 |2

)
, (12.1.4a)

S2 = − 1

4κ210

∫
d10x (−G)1/2

(
e−σ|F3 |2 + eσ|F̃4 |2

)
, (12.1.4b)

S3 = − 1

4κ210

∫
A2 ∧ F4 ∧ F4 = − 1

4κ210

∫
A3 ∧ F3 ∧ F4 . (12.1.4c)

We have compactified the theory on a circle of coordinate period 2πR
and defined κ210 = κ211/2πR. The normalization of the kinetic terms is
canonical for 2κ210 = 1.

In the action (12.1.4) we have defined

F̃4 = dA3 − A1 ∧ F3 , (12.1.5)

the second term arising from the components Gµ 10 in the 4-form ac-
tion (12.1.2). We will use Fp+1 = dAp to denote the simple exterior deriva-
tive of a potential, while field strengths with added terms are distinguished
by a tilde as in eq. (12.1.5). Note that the action contains several terms
where p-form potentials appear, rather than their exterior derivatives, but
which are still gauge invariant. These are known as Chern–Simons terms,
and we see that they are of two types. One involves the wedge product of
one potential with any number of field strengths, and it is gauge invariant
as a consequence of the Bianchi identities for the field strengths. The other
appears in the kinetic term for the modified field strength (12.1.5). The
second term in F̃4 has a gauge variation

− dλ0 ∧ F3 = −d(λ0 ∧ F3 ). (12.1.6)

It is canceled by a transformation

δ′A3 = λ0 ∧ F3 , (12.1.7)

which is in addition to the usual δA3 = dλ2 . In the present case, the
Kaluza–Klein gauge transformation λ0 originates from reparameterization
of x10, and the transformation (12.1.7) is simply part of the eleven-
dimensional tensor transformation. Since the combination F̃4 is invariant
under both λ0 and λ2 transformations we should regard it as the physical
field strength, but with a nonstandard Bianchi identity

dF̃4 = −F2 ∧ F3 . (12.1.8)

Poincaré duality of the form theory, developed in section B.4 for forms
without Chern–Simons terms, interchanges these two kinds of Chern–
Simons term.
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The fields of the reduced theory are the same as the bosonic fields of the
IIA string, as they must be. In particular the scalar σ must be the dilaton
Φ, up to some field redefinition. The terms in the action have a variety of
σ-dependences. Recall that the string coupling constant is determined by
the value of the dilaton. As discussed in section 3.7, this means that after
appropriate field redefinitions the tree-level spacetime action is multiplied
by an overall factor e−2Φ, and otherwise depends on Φ only through its
derivatives. ‘Appropriate redefinitions’ means that the fields are the same
as those appearing in the string world-sheet sigma model action.

Since we have arrived at the action (12.1.4) without reference to string
theory, we have no idea as yet how these fields are related to those in the
world-sheet action. We will proceed by guesswork, and then explain the
result in world-sheet terms. First redefine

Gµν = e−σGµν(new), σ =
2Φ

3
. (12.1.9)

The original metric will no longer appear, so to avoid cluttering the
equations we do not put a prime on the new metric. Then

SIIA = SNS + SR + SCS , (12.1.10a)

SNS =
1

2κ210

∫
d10x (−G)1/2e−2Φ

(
R + 4∂µΦ∂

µΦ− 1

2
|H3 |2

)
,

(12.1.10b)

SR = − 1

4κ210

∫
d10x (−G)1/2

(
|F2 |2 + |F̃4 |2

)
, (12.1.10c)

SCS = − 1

4κ210

∫
B2 ∧ F4 ∧ F4 . (12.1.10d)

Note that R → eσR + . . . , that (−G)1/2 → e−5σ(−G)1/2, and that the form
action (12.1.2) scales as e(p−5)σ .
We have regrouped terms according to whether the fields are in the

NS–NS or R–R sector of the string theory; the Chern–Simons action
contains both. It will be useful to distinguish R–R from NS–NS forms, so
for the R–R fields we henceforth use Cp and Fp+1 for the potential and
field strength, and for the NS–NS fields B2 and H3 . Also, we will use A1

and F2 for the open string and heterotic gauge fields, and B2 and H3 for
the heterotic antisymmetric tensor.

The NS action now involves the dilaton in standard form. Eq. (12.1.9)
is the unique redefinition that does this. The R action does not have the
expected factor of e−2Φ, but can be brought to this form by the further
redefinition

C1 = e−ΦC ′1 , (12.1.11)
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∫
d10x (−G)1/2|F2 |2 =

∫
d10x (−G)1/2e−2Φ|F ′2 |2 , (12.1.12a)

F ′2 ≡ dC ′1 − dΦ ∧ C ′1 , (12.1.12b)

and similarly for F and C . The action (12.1.12) makes explicit the dilaton
dependence of the loop expansion, but at the cost of complicating the
Bianchi identity and gauge transformation,

dF ′2 = dΦ ∧ F ′2 , δC ′1 = dλ′0 − λ′0dΦ . (12.1.13)

For this reason the form (12.1.10) is usually used. For example, in a
time-dependent dilaton field, it is the charge to which the unprimed fields
couple that will be conserved.
Let us now make contact with string theory and see why the background

R–R fields appearing in the world-sheet action have the more complicated
properties (12.1.13). We work at the linearized level, in terms of the vertex
operators

VαṼβ(CΓ
µ1...µp)αβeµ1...µp(X) . (12.1.14)

Here Vα is the R ground state vertex operator (10.4.25) and Γµ1...µp =
Γ[µ1 . . .Γµp]. The nontrivial physical state conditions are from G0 ∼ pµψ

µ
0

and G̃0 ∼ pµψ̃
µ
0 , and amount to two Dirac equations, one acting on the

left spinor index and one on the right:

ΓνΓµ1...µp∂νeµ1...µp(X) = Γµ1...µpΓν∂νeµ1...µp(X) = 0 . (12.1.15)

By antisymmetrizing all p + 1 gamma matrices and keeping anticommu-
tators one obtains

ΓνΓµ1...µp = Γνµ1...µp + pην[µ1Γµ2...µp] , (12.1.16a)

Γµ1...µpΓν = (−1)pΓνµ1...µp + (−1)p+1pην[µ1Γµ2...µp] . (12.1.16b)

The Dirac equations (12.1.15) are then equivalent to

dep = d∗ep = 0 . (12.1.17)

These are first order equations, unlike the second order equations encoun-
tered previously for bosonic fields. In fact, they have the same form as
the field equation and Bianchi identity for a p-form field strength. Thus
we identify the function eµ1...µp(X) appearing in the vertex operator as the
R–R field strength rather than potential. To confirm this, observe that
in the IIA theory the spinors in the R–R vertex operator (12.1.14) have
opposite chirality and so their product in table 10.1 contains forms of
even rank, the same as the IIA R–R field strengths.
This has one consequence that will be important later on. Amplitudes

for R–R forms will always contain a power of the momentum and so

4 3

after which
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vanish at zero momentum. The zero-momentum coupling of a gauge field
measures the charge, so this means that strings are neutral under all R–R
gauge fields.
The derivation of the field equations (12.1.17) was for a flat background.

Now let us consider the effect of a dilaton gradient. It is convenient that
the linear dilaton background gives rise to the free CFT (10.1.22),

TF = i(2/α′)1/2ψµ∂Xµ − 2i(α′/2)1/2Φ,µ∂ψµ , (12.1.18a)

G0 ∼ (α′/2)1/2ψµ0 (pµ + iΦ,µ) , (12.1.18b)

and similarly for T̃F and G̃0. The field equations are modified to

(d− dΦ∧)ep = (d− dΦ∧) ∗ ep = 0 . (12.1.19)

Thus the Bianchi identity and field equation for the string background
fields are modified in the fashion deduced from the action. There is no
such modification for the NS–NS tensor. It couples to the world-sheet
through its potential,

1

2πα′
∫
M
B2 . (12.1.20)

This is invariant under δB2 = dλ1 independent of the dilaton, and so
H3 = dB2 is invariant and dH3 = 0.

Massive IIA supergravity

There is a generalization of the IIA supergravity theory which has no
simple connection with eleven-dimensional supergravity but which plays
a role in string theory. The IIA theory has a 2-form and a 4-form field
strength, and by Poincaré duality a 6-form and an 8-form as well,

F̃6 = ∗F̃4 , F̃8 = ∗F2 ; (12.1.21)

again, a tilde denotes a field strength with a nonstandard Bianchi identity.
The pattern suggests we also consider a 10-form F10 = dC9 . The free field
equation would be

d∗F10 = 0 , (12.1.22)

and since ∗F10 is a scalar this means that

∗ F10 = constant . (12.1.23)

Thus there are no propagating degrees of freedom. Nevertheless, such a
field would have a physical effect, since it would carry energy density. This
is closely analogous to an electric field F2 in two space-time dimensions,
where there are no propagating photons but there is an energy density
and a linear potential that confines charges.
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Such a field can indeed be included in IIA supergravity. The action is

S ′
IIA = S̃IIA − 1

4κ210

∫
d10x (−G)1/2M2 +

1

2κ210

∫
MF10 . (12.1.24)

Here S̃IIA is the earlier IIA action (12.1.10) with the substitutions

F2 → F2 +MB2 , F4 → F4 +
1

2
MB2 ∧ B2 , F̃4 → F̃4 +

1

2
MB2 ∧ B2 .

(12.1.25)
The scalar M is an auxiliary field, meaning that it appears in the action
without derivatives (and in this case only quadratically). Thus it can be
integrated out, at the cost of introducing a rather nonlinear dependence
on B2 .

We will see in the next chapter that this massive supergravity does arise
in the IIA string. To put the 9-form potential in perspective, observe that
the maximum-rank potential that gives rise to a propagating field in ten
dimensions is an 8-form, whose 9-form field strength is dual to a 1-form.
The latter is just the gradient of the R–R scalar field C0 . A 10-form
potential also fits in ten dimensions but does not give rise to propagating
states. We saw in section 10.8 that this does exist in the type I string, so
we should not be surprised that the 9-form will appear in string theory as
well.

Type IIB superstring

For low energy IIB supergravity there is a problem due to the self-dual
field strength F5 = ∗F5. As discussed in section B.4 there is no covariant
action for such a field, but the following comes close:

SIIB = SNS + SR + SCS , (12.1.26a)

SNS =
1

2κ210

∫
d10x (−G)1/2e−2Φ

(
R + 4∂µΦ∂

µΦ− 1

2
|H3 |2

)
,

(12.1.26b)

SR = − 1

4κ210

∫
d10x (−G)1/2

(
|F1 |2 + |F̃3 |2 + 1

2
|F̃5 |2

)
, (12.1.26c)

SCS = − 1

4κ210

∫
C4 ∧H3 ∧ F3 , (12.1.26d)

where

F̃3 = F3 − C0 ∧H3 , (12.1.27a)

F̃5 = F5 − 1

2
C2 ∧H3 +

1

2
B2 ∧ F3 . (12.1.27b)

The NS–NS action is the same as in IIA supergravity, while the R–R
and Chern–Simons actions are closely parallel in form. The equation of
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motion and Bianchi identity for F̃5 are

d ∗ F̃5 = dF̃5 = H3 ∧ F3 . (12.1.28)

Recall that the spectrum of the IIB string includes the degrees of free-
dom of a self-dual 5-form field strength. The field equations from the
action (12.1.26) are consistent with

∗ F̃5 = F̃5 (12.1.29)

but they do not imply it. This must be imposed as an added constraint
on the solutions; it cannot be imposed on the action or else the wrong
equations of motion result.
This formulation is satisfactory for a classical treatment but it is not

simple to impose the constraint in the quantum theory. This will not
be important for our purposes, and we leave further discussion to the
references. Our main interest in this action is a certain SL(2,R) symmetry.
Let

GEµν = e−Φ/2Gµν , τ = C0 + ie−Φ , (12.1.30a)

Mij =
1

Im τ

[ |τ|2 −Re τ
−Re τ 1

]
, Fi3 =

[
H3

F3

]
. (12.1.30b)

Then

SIIB =
1

2κ210

∫
d10x (−GE)

1/2

(
RE − ∂µτ̄∂

µτ

2(Im τ)2

−Mij

2
Fi3 · Fj3 −

1

4
|F̃5 |2

)
− εij

8κ210

∫
C4 ∧ Fi3 ∧ Fj3 ,

(12.1.31)

the Einstein metric (12.1.30a) being used everywhere. This is invariant
under the following SL(2,R) symmetry:

τ′ = aτ+ b

cτ+ d
, (12.1.32a)

Fi′3 = ΛijF
j
3 , Λij =

[
d c

b a

]
, (12.1.32b)

F̃ ′5 = F̃5 , G′Eµν = GEµν , (12.1.32c)

with a, b, c, and d real numbers such that ad − bc = 1. The SL(2,R)
invariance of the τ kinetic term is familiar, and that of the F3 kinetic term
follows from

M′ = (Λ−1)TMΛ−1 . (12.1.33)

This SL(2,R) invariance is as claimed in the second line of table B.3. Any
given value τ is invariant under an SO(2,R) subgroup so the moduli space
is the coset SL(2,R)/SO(2,R). If we now compactify on tori, the moduli
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and other fields fall into multiplets of the larger symmetries indicated in
the table and the low energy action has the larger symmetry.
Observe that this SL(2,R) mixes the two 2-form potentials. We know

that the NS–NS form couples to the string and the R–R form does not.
The SL(2,R) might thus seem to be an accidental symmetry of the low
energy theory, not relevant to the full string theory. Indeed, this was
assumed for some time, but now we know better. As we will explain in
chapter 14, the discrete subgroup SL(2,Z) is an exact symmetry.

Type I superstring

To obtain the type I supergravity action requires three steps: set to zero
the IIB fields C0 , B2 , and C4 that are removed by the Ω projection; add
the gauge fields, with appropriate dilaton dependence for an open string
field; and, modify the F3 field strength. This gives

SI = Sc + So , (12.1.34a)

Sc =
1

2κ210

∫
d10x (−G)1/2

[
e−2Φ

(
R + 4∂µΦ∂

µΦ
)− 1

2
|F̃3 |2

]
,

(12.1.34b)

So = − 1

2g210

∫
d10x(−G)1/2e−ΦTrv( |F2 |2 ) . (12.1.34c)

The open string SO(32) potential and field strength are written as matrix-
valued forms A1 and F2 , which are in the vector representation as indicated
by the subscript on the trace. Here

F̃3 = dC2 − κ210
g210

ω3 , (12.1.35)

and ω3 is the Chern–Simons 3-form

ω3 = Trv

(
A1 ∧ dA1 − 2i

3
A1 ∧ A1 ∧ A1

)
. (12.1.36)

Again the modification of the field strength implies a modification of the
gauge transformation. Under an ordinary gauge transformation δA1 =
dλ− i[A1 , λ], the Chern-Simons form transforms as

δω3 = dTrv(λdA1 ). (12.1.37)

Thus it must be that

δC2 =
κ210
g210

Trv(λdA1 ) . (12.1.38)

The 2-form transformation δC2 = dλ1 is unaffected.
The action appears to contain two parameters, κ10 with units of L4 and

g10 with units of L3. We can think of κ10 as setting the scale because
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it is dimensionful, but there is one dimensionless combination κ10g
−4/3
10 .

However, under an additive shift Φ→ Φ+ ζ, the couplings change κ10 →
eζκ10 and g → eζ/2g and so this ratio can be set to any value by a change
of the background. Thus the low energy theory reflects the familiar string
property that the coupling is not a fixed parameter but depends on the
dilaton. The form of the action (12.1.34) is fixed by supersymmetry, but
when we consider this as the low energy limit of string theory there is a
relation between the closed string coupling κ10, the open string coupling
g10, and the type I α′. We will derive this in the next chapter, from a D-
brane calculation, as we did for the corresponding relation in the bosonic
string.

Heterotic strings

The heterotic strings have the same supersymmetry as the type I string
and so we expect the same action. However, in the absence of open strings
or R–R fields the dilaton dependence should be e−2Φ throughout:

Shet =
1

2κ210

∫
d10x (−G)1/2e−2Φ

[
R + 4∂µΦ∂

µΦ− 1

2
|H̃3 |2 − κ210

g210
Trv(|F2 |2)

]
.

(12.1.39)
Here

H̃3 = dB2 − κ210
g210

ω3 , δB2 =
κ210
g210

Trv(λdA1 ) (12.1.40)

are the same as in the type I string, with the form renamed to reflect the
fact that it is from the NS sector.

Because of the high degree of supersymmetry, the type I and heterotic
actions can differ only by a field redefinition. Indeed the reader can check
that with the type I and heterotic fields related by

GIµν = e−ΦhGhµν , ΦI = −Φh , (12.1.41a)

F̃I3 = H̃h3 , AI1 = Ah1 , (12.1.41b)

the action (12.1.34) becomes the action (12.1.39). For the heterotic string,
the relation among κ10, g10, and α

′ will be obtained later in this chapter,
by two different methods; it is, of course, different from the relation in
the type I theory.

For E8 × E8 there is no vector representation, but it is convenient to
use a normalization that is uniform with SO(32). In place of Trv(t

atb) in
the action use 1

30Tra(t
atb). This has the property that for fields in any

SO(16)× SO(16) subgroup it reduces to Trv(t
atb).
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12.2 Anomalies

It is an important phenomenon that some classical symmetries are anoma-
lous, meaning that they are not preserved by quantization. We encountered
this for the Weyl anomaly in chapter 3. We also saw there that if the left-
and right-moving central charges were not equal there was an anomaly in
two-dimensional coordinate invariance.

In general, anomalies in local symmetries make a theory inconsistent,
as unphysical degrees of freedom no longer decouple. Anomalies in global
symmetries are not harmful but imply that the symmetry is no longer exact.
Both kinds of anomalies play a role in the Standard Model. Potential local
anomalies in gauge and coordinate invariance cancel among the quarks
and leptons of each generation. Anomalies in global chiral symmetries of
the strong interaction are important in accounting for the π0 decay rate
and the η′ mass.

In this section we consider potential anomalies in the spacetime gauge
and coordinate invariances in the various string theories. If the theories
we have constructed are consistent these anomalies must be absent, and in
fact they are. Although this can be understood in purely string theoretic
terms it can also be understood from analysis of the low energy field
theory, and it is useful to take both points of view.

We can analyze anomalies from the purely field theoretic point of view
because of the odd property that they are both short-distance and long-
distance effects. They are short-distance in the sense that they arise because
the measure cannot be defined — the theory cannot be regulated — in an
invariant way. They are long-distance in the sense that this impossibility
follows entirely from the nature of the massless spectrum.

Let us illustrate this with another two-dimensional example, which is
also of interest in its own right. Suppose we have left- and right-moving
current algebras with the same algebra g, with the coefficients of the
Schwinger terms being k̂L,Rδ

ab. Couple a gauge field to the current,

Sint =

∫
d2z (jazA

a
z̄ + jaz̄ A

a
z) . (12.2.1)

The OPE determines the jj expectation value, so to second order the path
integral is

Z[A] =
1

2

∫
d2z1 d

2z2

[
k̂L

z212
Aaz̄(z1, z̄1)A

a
z̄(z2, z̄2) +

k̂R

z̄212
Aaz(z1, z̄1)A

a
z(z2, z̄2)

]
.

(12.2.2)
Now make a gauge transformation, which to leading order is δAa1 = dλa.
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Integrate by parts and use ∂z(1/z̄
2) = −2π∂z̄δ2(z, z̄) to obtain

δZ[A] = π

∫
d2z λa(z, z̄)

[
k̂L∂zA

a
z̄(z, z̄) + k̂R∂z̄A

a
z(z, z̄)

]
. (12.2.3)

Now, consider the case that k̂L = k̂R = k̂, where

δZ[A] = πk̂ δ

∫
d2z Aaz(z, z̄)A

a
z̄(z, z̄) . (12.2.4)

Then

Z ′[A] = Z[A] πk̂

∫
d2z Aaz(z, z̄)A

a
z̄(z, z̄)

=
k̂

2

∫
d2z1 d

2z2 ln |z212|Fazz̄(z1, z̄1)Fazz̄(z2, z̄2) (12.2.5)

is gauge-invariant.
Let us run through the logic here. The path integral (12.2.2) is nonlocal,

but its gauge variation is local. The latter is necessarily true because the
variation can be thought of as arising from the regulator if we actually
evaluate the path integral by brute force. Although the variation is local,
it is not in general the variation of a local operator. When it is so, as
is the case for k̂L = k̂R here, one can subtract that local operator from
the action to restore gauge invariance. In fact, with a gauge-invariant
regulator the needed local term will be produced by the path integral
automatically. The OPE is unambiguous only for nonzero separation, so
the OPE calculation above doesn’t determine the local terms — it doesn’t
know which regulator we choose to use.
The final form (12.2.5) is written in terms of the field strength. For an

Abelian theory the full path integral is just the exponential of this. For a
non-Abelian theory the higher order terms are more complicated, but the
condition k̂L = k̂R for the symmetry to be preserved is still necessary and
sufficient.
The two-dimensional gravitational anomaly was similarly determined

from the z−4 term in the TT OPE. Also, if there is a z−3 term in a Tj OPE
then there is a mixed anomaly: the current has an anomaly proportional
to the curvature and the coordinate invariance an anomaly proportional
to the field strength.
Note that these anomalies are all odd under parity, being proportional

to k̂L− k̂R or cL− cR . Parity-symmetric theories can be defined invariantly
using a Pauli–Villars regulator. Also, the anomalies are unaffected if we
add additional massive degrees of freedom. This follows from a field theory
decoupling argument. Massive degrees of freedom give a contribution
to Z[A] which at asymptotically long distance looks local (analytic in
momentum). Any gauge variation of this can therefore be written as the
variation of a local operator, and removed by a counterterm. For this

2

2−

2+
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reason the anomalies in superstring theory are determined by the massless
spectrum, independent of the stringy details at short distance.

A single fermion of charge q coupled to a U(1) gauge field contributes
q2 to the jj OPE. The anomaly cancellation conditions for free fermions
coupled to such a field are

gauge anomaly:
∑
L

q2 −∑
R

q2 = 0 , (12.2.6a)

gravitational anomaly:
∑
L

1−∑
R

1 = 0 , (12.2.6b)

mixed anomaly:
∑
L

q −∑
R

q = 0 . (12.2.6c)

In four dimensions things are slightly different. For dimensional reasons
the dangerous amplitudes have three currents and the anomaly is quadratic
in the field strengths and curvatures. The antiparticle of a left-handed
fermion of charge q is a right-handed fermion of charge −q, so the two
terms in the anomaly are automatically equal for odd powers of q and
opposite for even powers (including the purely gravitational anomaly),
leaving the conditions:

gauge anomaly:
∑
L

q3 = 0 , (12.2.7a)

mixed anomaly:
∑
L

q = 0 . (12.2.7b)

If there is more than one gauge group the necessary and sufficient con-
dition for anomaly cancellation is that the above hold for every linear
combination of generators.

The IIA theory is parity-symmetric and so automatically anomaly-free,
while the others have potential anomalies. In ten dimensions the anomaly
involves amplitudes with six currents (the hexagon graph) and is of fifth
order in the field strengths and curvatures. The calculation has been done
in detail in the literature; we will not repeat it here but just quote the
result. First we must establish some notation. For the gravitational field,
it is convenient to work in the tangent space (tetrad) formalism. In this
formalism there are two local symmetries, coordinate invariance and local
Lorentz transformations

eµ
p(x)′ = eµ

q(x)Θq
p(x) . (12.2.8)

Both are necessary for the decoupling of unphysical degrees of freedom,
and in fact when there is a coordinate anomaly one can by adding
counterterms to the action convert it to a Lorentz anomaly, which closely
resembles a gauge anomaly. The Riemann tensor can be written Rµν

p
q ,

with mixed spacetime and tangent space indices, and in this way be
regarded as a 2-form R2 which is a d× d tangent space matrix. Similarly
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eµ
q is written as a one-form which is a column vector in tangent space,

and the field strength is written as a matrix 2-form F2 = Fa2 t
a
r ; here r is

the representation carried by the matter.

The anomaly can be written in compact form in terms of an anomaly
polynomial, a formal (d+2)-form Îd+2 (R2 , F2 ). This has the property that
it is the exterior derivative of a (d+1)-form, whose variation is the exterior
derivative of a d-form:

Îd+2 = dÎd+1 , δÎd+1 = dÎd . (12.2.9)

The anomalous variation of the path integral is then

δ lnZ =
−i

(2π)5

∫
Îd (F2 , R2 ) . (12.2.10)

The anomaly cancellation condition is that the total anomaly polynomial
vanish.

In the ten-dimensional supergravity theories there are three kinds of
chiral field: the spinors 8 and 8′, the gravitinos 56 and 56′, and the field
strengths [5]+ and [5]− of the IIB theory. Parity interchanges the two fields
in each pair so these make opposite contributions to the anomaly. The
anomaly polynomials have been calculated. For the Majorana–Weyl 8,

Î8(F2 , R2 ) = −Tr(F6
2 )

1440

+
Tr(F4

2 )tr(R
2
2 )

2304
− Tr(F2

2 )tr(R
4
2 )

23040
− Tr(F2

2 )[tr(R
2
2 )]

2

18432

+
n tr(R6

2 )

725760
+
n tr(R4

2 )tr(R
2
2 )

552960
+
n [tr(R2

2 )]
3

1327104
. (12.2.11)

For the Majorana–Weyl 56,

Î56(F2 , R2 ) = −495 tr(R6
2 )

725760
+ 225

tr(R4
2 )tr(R

2
2 )

552960
− 63

[tr(R2
2 )]

3

1327104
. (12.2.12)

For the self-dual tensor,

ÎSD(R2 ) = 992
tr(R6

2 )

725760
− 448

tr(R4
2 )tr(R

2
2 )

552960
+ 128

[tr(R2
2 )]

3

1327104
. (12.2.13)

The ‘tr’ denotes the trace on the tangent space indices p, q. In this section
we will write products and powers of forms without the ∧, to keep
expressions compact. The ‘Tr’ denotes the trace of the field strength in
the representation carried by the fermion. In particular, n = Tr(1) is
the dimension of the representation. If the representation r is reducible,
r = r1 + r2 + . . . , the corresponding traces add: Trr = Trr1 + Trr2 + . . . .

Now let us consider the anomalies in the various chiral string theories.
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Type IIB anomalies

In type IIB supergravity there are two 8′s, two 56s, and one [5]+, giving
the total anomaly polynomial

ÎIIB(R2 ) = −2Î8(R2 ) + 2Î56(R2 ) + ÎSD(R2 ) = 0 . (12.2.14)

There are no gauge fields so only the three purely gravitational terms enter,
and the coefficients of these conspire to produce zero total anomaly. From
the point of view of the low energy theory, this is somewhat miraculous.
In fact, it seems accidental that there are any consistent chiral theories
at all. There are three anomaly terms that must vanish and three free
parameters — the net number of 8 minus 8′, of 56 minus 56′, and of [5]+
minus [5]−. Barring a numerical coincidence the only solution would be
that all these differences vanish, a nonchiral theory. One can view string
theory as explaining this numerical coincidence: the conditions for the
internal consistency of string theory are reasonably straightforward, and
having satisfied them, the low energy theory must be nonanomalous.

The existence of consistent chiral theories is a beautiful example of the
consistency of string theory, and is also of some practical importance. The
fermion content of the Standard Model is chiral — the weak interactions
violate parity. This chiral property seems to be an important clue, and it
has been a difficulty for many previous unifying ideas. Of course, in string
theory we are still talking about the ten-dimensional spectrum, but we
will see in later chapters that there is some connection between chirality
in higher dimensions and in four.

Type I and heterotic anomalies

The type I and heterotic strings have the same low energy limits so we
can discuss their anomalies together. There is an immediate problem. The
only charged chiral field is the 8, so there is apparently no possibility of
cancellation of gauge and mixed anomalies. This is a paradox because we
have claimed that these string theories were constructed to satisfy all the
conditions for unitarity. Our arguments were perhaps heuristic in places,
but it is not so hard to carry out an explicit string calculation at one
loop and verify the decoupling of null states. This contradiction led Green
and Schwarz to a careful study of the structure of the string amplitude,
and they found a previously unknown, and canceling, contribution to the
anomaly.

The assertion that the anomaly cannot be canceled by local counter-
terms takes into account only terms constructed from the gauge field and
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metric. Consider, however, the Chern–Simons interaction

S ′ =
∫
B2Tr(F

4
2 ) (12.2.15)

(in any representation r, for now). This is invariant under gauge trans-
formations of the vector potential because it is constructed from the field
strength, and under the 2-form transformation δB2 = dλ1 using integra-
tion by parts and the Bianchi identity for the field strength. However,
we have seen that in the N = 1 supergravity theory the 2-form has a
nontrivial gauge transformation δB2 ∝ Tr(λdA1 ), eq. (12.1.40). Then

δS ′ ∝
∫

Tr(λdA1 )Tr(F
4
2 ) . (12.2.16)

This is of the form (12.2.9) with

Îd ∝ Tr(λdA1 )Tr(F
4
2 ) , Îd+1 ∝ Tr( F2 )Tr(F

4
2 ) , (12.2.17a)

Îd+2 ∝ Tr(F2
2 )Tr(F

4
2 ) . (12.2.17b)

Thus it can cancel an anomaly of this form. Similarly, the variation of

S ′′ =
∫
B2 [Tr(F

2
2 )]

2 (12.2.18)

can cancel the anomaly polynomial [Tr(F2
2 )]

3.

The pure gauge anomaly polynomial has a different group-theoretic
form Tra(F

6
2 ), now in the adjoint representation because the charged fields

are gauginos. However, for certain algebras there are relations between
the different invariants. For SO(n), it is convenient to convert all traces
into the vector representation. The fermions of the supergravity theory
are always in the adjoint; in terms of the vector traces these are

Tra(t
2) = (n− 2)Trv(t

2) , (12.2.19a)

Tra(t
4) = (n− 8)Trv(t

4) + 3Trv(t
2)Trv(t

2) , (12.2.19b)

Tra(t
6) = (n− 32)Trv(t

6) + 15Trv(t
2)Trv(t

4) . (12.2.19c)

Here t is any linear combination of generators, but this implies the same
relations for symmetrized products of different generators. Symmetrized
products appear when the anomaly polynomial is expanded in sums over
generators, because the 2-forms Fa2 and Fb2 commute.

The last of these identities implies that precisely for SO(32) the gauge
anomaly Tra(F

6
2 ) is equal to a product of lower traces and so can be

canceled by the variations of S ′ and S ′′. This is the Green–Schwarz
mechanism. This is of course the same SO group that arises in the type I
and heterotic strings, and not surprisingly the necessary interactions occur
in these theories with the correct coefficients.

A1
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Also for the group E8, the sixth order trace can be reduced to lower
order traces,

Tra(t
4) =

1

100
[Tra(t

2)]2 , Tra(t
6) =

1

7200
[Tra(t

2)]3 . (12.2.20)

Using the relation Tra(t
m) = Tra1(t

m) + Tra2(t
m), it follows that the sixth

power trace can be reduced for E8 × E8 as well (with only one factor of
E8 the gravitational anomaly does not cancel, as we will see).

Now let us consider the full anomaly, including mixed anomalies. Gen-
eralizing S ′ and S ′′ to ∫

B2X8 (F2 , R2 ) , (12.2.21)

makes it possible to cancel an anomaly of the form Tr(F2
2 )X8 (F2 , R2 ) for

arbitrary 8-form X8 (F2 , R2 ). In addition, the B2 field strength includes
also a gravitational Chern–Simons term:

H̃3 = dB2 − cω3Y − c′ω3L (12.2.22)

with c and c′ constants. Here ω3Y = A1dA1 − i23A
3
1 is the gauge Chern–

Simons term as before and

ω3L = ω1dω1 +
2

3
ω3

1 (12.2.23)

is the Lorentz Chern–Simons term, with ω1 ≡ ωµ
p
qdx

µ the spin connec-
tion. This has the property

δω3L = dtr(Θdω1 ) . (12.2.24)

The combined Lorentz and Yang–Mills transformation law must then be

δA1 = dλ , (12.2.25a)

δω1 = dΘ , (12.2.25b)

δB2 = cTr(λdA1 ) + c′tr(Θdω1 ) . (12.2.25c)

Again, we only indicate the leading, Abelian, terms. With this transfor-
mation the interaction (12.2.21) cancels an anomaly of the form

[cTr(F2
2 ) + c′Tr(R2

2 )]X8 (F2 , R2 ) . (12.2.26)

The gravitational Chern–Simons term was not included in the earlier
low energy effective action because it is a higher derivative effect. The
spin connection ω1 is proportional to the derivative of the tetrad, so the
gravitational term in the field strength (12.2.22) contains three derivatives
where the other terms contain one. However, its contribution is important
in discussing the anomaly.
The chiral fields of N = 1 supergravity with gauge group g are the

gravitino 56, a neutral fermion 8′, and an 8 gaugino in the adjoint
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representation, for total anomaly

ÎI = Î56(R2 )− Î8(R2 ) + Î8(F2 , R2 )

=
1

1440

{
−Tra(F6

2 ) +
1

48
Tra(F

2
2 )Tra(F

4
2 )− [Tra(F

2
2 )]

3

14400

}
+(n− 496)

{
tr(R6

2 )

725760
+

tr(R4
2 )tr(R

2
2 )

552960
+

[tr(R2
2 )]

3

1327104

}
+
Y4X8

768
.

(12.2.27)

Here

Y4 = tr(R2
2 )− 1

30
Tra(F

2
2 ) , (12.2.28a)

X8 = tr(R4
2 ) +

[tr(R2
2 )]

2

4
− Tra(F

2
2 )tr(R

2
2 )

30
+

Tra(F
4
2 )

3
− [Tra(F

2
2 )]

2

900
.

(12.2.28b)

The anomaly has been organized into a sum of three terms. The third
is of the factorized form that can be canceled by the Green–Schwarz
mechanism but the first two cannot, and so for the theory to be anomaly-
free the combination of traces on the first line must vanish for the adjoint
representation, and the total number of gauge generators must be 496. For
the groups SO(32) and E8 × E8, both properties hold.1 The net anomaly
is then

Y4X8

768
. (12.2.29)

Of the various additional heterotic string theories constructed in the
previous chapter, all but the diagonal theory are chiral, and in all cases
the anomalies factorize.
In six-dimensional compactifications, some of which will be discussed in

chapter 19, there can be multiple tensors. The Green–Schwarz mechanism
can then cancel a sum of products Y4X4 . Also, the same mechanism
generalizes to forms of other rank; for example, a scalar in place of B2

can cancel an anomaly Y2Xd. For d = 4 this will arise in section 18.7.

Relation to string theory

From the low energy point of view, the cancellation of the anomaly
involves several numerical accidents: the identity for the gauge traces, the
correct number of generators, the factorized form (12.2.27). Again, these
are explained by the existence of consistent string theories. In constructing
new string theories, it is in principle not necessary to check the low

1 They also hold for E8 ×U(1)248 and U(1)496, but no corresponding string theories are known.
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(a) (b)

V V1 2

Fig. 12.1. Graphs contributing to the anomalies. One of the six external lines is
a current and the others are gauge or gravitational fields: (a) hexagon graph; (b)
canceling graph from exchange of Bµν field.

energy anomaly, since this is guaranteed to vanish if the string consistency
requirements have been satisfied. In practice, it is very useful as a check
on the calculations and as a check that no subtle inconsistency has been
overlooked.

In terms of Feynman graphs, the unphysical gauge and gravitational
polarizations decouple by a cancellation between the two graphs of fig-
ure 12.1. The loop is the usual anomaly graph. The vertices of the
tree graph come respectively from the H3 kinetic term and the inter-
action (12.2.21). It is curious that a tree graph can cancel a loop, and it is
interesting to look more closely at the coupling constant dependence. As
discussed below eq. (12.1.11), in order to do the loop counting we need
to write the R–R field as C2 = e−ΦC ′2 . Both vertices in figure 12.1(b) are
then proportional to e−Φ and so are ‘half-loop’ effects; they come from the
disk amplitude. In the heterotic string no rescaling is needed. The vertex
V1 is proportional to e−2Φ and so is a tree-level effect, while the vertex V2

does not depend on the dilaton and so is actually a one-loop effect.

In each string theory, the hexagon loop and the tree graph arise from the
same topology but different limits of moduli space. In the type I theory,
the topology is the cylinder. The loop graph is from the short-cylinder
limit and the tree graph from the long-cylinder limit. In the heterotic
theory, the topology is the torus. The hexagon graph is from the limit
τ2 →∞, while the tree graph is from the limit where two vertex operators
approach one another.

In the heterotic string, the gauge group was determined by the require-
ment of modular invariance. In the type I string it was determined by
cancellation of tadpole divergences. The relation with the field theory
anomaly is as follows. One can prove the decoupling of null states for-
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mally in either field theory or string theory; the issue is whether terms
from the UV limit invalidate the formal argument. In string theory these
are the usual surface terms on moduli space. In the heterotic string the
effective UV cutoff comes from the restriction of the integration to the
fundamental region of moduli space. Surface terms from the boundary of
the fundamental region cancel if the theory is modular-invariant. In the
type I string the integration is not cut off but the ‘UV’ limit is reinterpreted
as the IR limit of a closed string exchange, and the anomaly then vanishes
if this converges.

12.3 Superspace and superfields

To formulate superstring perturbation theory it is useful to give supercon-
formal symmetry a more geometric interpretation. To do this we need a
supermanifold, a world-sheet with one ordinary complex coordinate z and
one anticommuting complex coordinate θ, with

θ2 = θ̄2 = {θ, θ̄} = 0 . (12.3.1)

What do we mean by anticommuting coordinates? Because of the anti-
commuting property, the Taylor series for any function of θ and θ̄ ter-
minates. We can then think of any function on a supermanifold as the
collection of ordinary functions appearing in the Taylor expansion. How-
ever, just as the operation ‘

∫
dθ’ has so many of the properties of ordinary

integration that it is useful to call it integration, θ behaves so much like a
coordinate that it is useful to think of a manifold with both ordinary and
anticommuting coordinates.
We can think about ordinary conformal transformations as follows.

Under a general change of world-sheet coordinates z′(z, z̄) the derivative
transforms as

∂z =
∂z′
∂z
∂z′ +

∂z̄′
∂z
∂z̄′ . (12.3.2)

The conformal transformations are precisely those that take ∂z into a
multiple of itself.
Define the superderivatives,

Dθ = ∂θ + θ∂z , Dθ̄ = ∂θ̄ + θ̄∂z̄ , (12.3.3)

which have the properties

D2
θ = ∂z , D2

θ̄
= ∂z̄ , {Dθ, Dθ̄} = 0 . (12.3.4)

A superconformal transformation z′(z, θ), θ′(z, θ) is one that takes Dθ into
a multiple of itself. From

Dθ = Dθθ
′∂θ′ + Dθz

′∂z′ + Dθθ̄
′∂θ̄′ + Dθz̄

′∂z̄′ , (12.3.5)
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it follows that a superconformal transformation satisfies

Dθθ̄
′ = Dθz̄

′ = 0 , Dθz
′ = θ′Dθθ′ , (12.3.6)

and so

Dθ = (Dθθ
′)Dθ′ . (12.3.7)

Using D2
θ = ∂z , this also implies

∂z̄z
′ = ∂θ̄z

′ = ∂z̄θ
′ = ∂θ̄θ

′ = 0 (12.3.8)

and the conjugate relations. These conditions can be solved to express a
general superconformal transformation in terms of a holomorphic function
f(z) and an anticommuting holomorphic function g(z),

z′(z, θ) = f(z) + θg(z)h(z) , θ′(z, θ) = g(z) + θh(z) , (12.3.9a)

h(z) = ±
[
∂zf(z) + g(z)∂zg(z)

]1/2
. (12.3.9b)

Infinitesimally,

δz = ε[v(z)− iθη(z)] , δθ = ε[−iη(z) + 1
2θ∂v(z)] (12.3.10)

with ε and v commuting and η anticommuting. These satisfy the super-
conformal algebra (10.1.11).
A tensor superfield of weight (h, h̃) transforms as

(Dθθ
′)2h(Dθ̄θ̄′)2h̃φ′(z′, z̄′) = φ(z, z̄) , (12.3.11)

where z stands for (z, θ). This is analogous to the transformation (2.4.15) of
a conformal tensor. Under an infinitesimal superconformal transformation
δθ = εη(z),

δφ(z, z̄) = −ε
[
2hθ∂η(z) + η(z)Qθ + 2h̃θ̄∂̄η̄(z̄) + η̄(z̄)Qθ̄

]
φ(z, z̄) , (12.3.12)

where Qθ = ∂θ − θ∂z and Qθ̄ = ∂θ̄ − θ̄∂z̄ . Expand in powers of θ, and
concentrate for simplicity on the holomorphic side,

φ(z) = O(z) + θΨ (z) . (12.3.13)

Then the infinitesimal transformation (12.3.12) is

δO = −εηΨ , δΨ = −ε[2h∂ηO+ η∂O] . (12.3.14)

In terms of the OPE coefficients (10.3.4) this is

G−1/2 · O = Ψ , Gr · O = 0 , r ≥ 1
2 , (12.3.15a)

G−1/2 ·Ψ = ∂O , G1/2 ·Ψ = 2hO , Gr ·Ψ = 0 , r ≥ 3
2 . (12.3.15b)

Either by using the NS algebra, or by considering a purely conformal
transformation δz = εv(z), one finds that O is a tensor of weight h and
Ψ a tensor of weight h + 1

2 , so that both are annihilated by all of the
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Virasoro lowering generators. The lowest component O of the tensor
superfield is a superconformal primary field, being annihilated by all the
lowering generators of the NS algebra.
The analog of a rigid translation is a rigid world-sheet supersymmetry

transformation, δθ = −iεη, δz = −iεθη. The Ward identity for TF then
gives the corresponding generator

G−1/2· ∼ −iQθ = −i(∂θ − θ∂z) (12.3.16)

acting on any superfield. This generalizes the relation L−1· ∼ ∂z obtained
in CFT.

Actions and backgrounds

The super-Jacobian (A.2.29) of the transformation (12.3.9) is

dz′ dθ′ = dz dθ Dθθ
′. (12.3.17)

To make a superconformally invariant action, the Lagrangian density must
therefore be a weight (12 ,

1
2 ) tensor superfield. The product of two tensor

superfields is a superfield, with the weights additive, (h, h̃) = (h1, h̃1) +
(h2, h̃2). Also, the superderivative Dθ takes a (0, h̃) tensor superfield into
a (12 , h̃) tensor superfield, and Dθ̄ takes an (h, 0) tensor superfield into an

(h, 12 ) tensor superfield.
These rules make it easy to write superconformal-invariant actions. A

simple invariant action can be built from d weight (0, 0) tensors Xµ(z, z̄):

S =
1

4π

∫
d2z d2θ Dθ̄X

µDθXµ . (12.3.18)

The Taylor expansion in θ is

Xµ(z, z̄) = Xµ + iθψµ + iθ̄ψ̃µ + θθ̄Fµ . (12.3.19)

In this section we set α′ = 2 to make the structure clearer; the reader can
restore dimensions by Xµ → Xµ(2/α′)1/2. The integral d2θ = dθ dθ̄ in the
action picks out the coefficient of θ̄θ,

S =
1

4π

∫
d2z

(
∂z̄X

µ∂zXµ + ψµ∂z̄ψµ + ψ̃µ∂zψ̃µ + FµFµ

)
. (12.3.20)

The field Fµ is an auxiliary field, meaning that it is completely determined
by the equation of motion; in fact it vanishes here. The rest of the action is
the same as the earlier (10.1.5), as are the superconformal transformations
of the component fields.
Many of the earlier results can be recast in superfield form. The equation

of motion is

DθDθ̄X
µ(z, z̄) = 0 . (12.3.21)
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For the OPE, invariance under translations and rigid supersymmetry
transformations implies that it is a function only of z1 − z2 − θ1θ2 and
θ1 − θ2, and their conjugates. In this case,

Xµ(z1, z̄1)X
ν(z2, z̄2) ∼ −ηµν ln |z1 − z2 − θ1θ2|2 , (12.3.22)

as one can verify by expanding both sides in the anticommuting variables.
The superconformal ghost action is constructed from (λ − 1

2 , 0) and
(1− λ, 0) tensor superfields B and C ,

SBC =
1

2π

∫
d2z d2θ BDθ̄C . (12.3.23)

The equation of motion is

Dθ̄B = Dθ̄C = 0 . (12.3.24)

Acting on this equation with Dθ̄ gives ∂z̄B = ∂z̄C = 0, and so also
∂θ̄B = ∂θ̄C = 0. The equation of motion thus implies

B(z) = β(z) + θb(z) , C(z) = c(z) + θγ(z) . (12.3.25)

This is the same as the theory (10.1.17). The OPE is

B(z1)C(z2) ∼ θ1 − θ2

z1 − z2 − θ1θ2
=
θ1 − θ2

z1 − z2
. (12.3.26)

The superfield form makes it easy to write down the nonlinear sigma
model action

S =
1

4π

∫
d2z d2θ [Gµν(X ) + Bµν(X )]Dθ̄X

νDθX
µ

=
1

4π

∫
d2z

{
[Gµν(X) + Bµν(X)]∂zX

µ∂z̄X
ν

+ Gµν(X)(ψµDz̄ψ
ν + ψ̃µDzψ̃

ν) + 1
2Rµνρσ(X)ψµψνψ̃ρψ̃σ

}
,

(12.3.27)

after eliminating the auxiliary field. The Christoffel connection and anti-
symmetric tensor field strength combine in the covariant derivative,

Dz̄ψ
ν = ∂z̄ψ

ν +
[
Γνρσ(X) + 1

2H
ν
ρσ(X)

]
∂z̄X

ρψσ , (12.3.28a)

Dzψ̃
ν = ∂zψ̃

ν +
[
Γνρσ(X)− 1

2H
ν
ρσ(X)

]
∂zX

ρψ̃σ . (12.3.28b)

This describes a general NS–NS background in either type II string theory.
R–R backgrounds are hard to describe in this framework because the
superconformal transformations have branch cuts at the operators. The
dilaton does not appear in the flat world-sheet action but does appear in
the superconformal generators. The reader should beware of a common
convention in the literature, Bhere

µν = 2Bthere
µν .
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All the above applies to the heterotic string, using only θ̄ and not θ.
One needs the superfields

Xµ = Xµ + iθ̄ψ̃µ , (12.3.29a)

λA = λA + θ̄GA . (12.3.29b)

The field GA is auxiliary. The nonlinear sigma model is

S =
1

4π

∫
d2z dθ̄

{
[Gµν(X ) + Bµν(X )]∂zX

µDθ̄X
ν − λADθ̄λ

A
}

=
1

4π

∫
d2z

{
[Gµν(X) + Bµν(X)]∂zX

µ∂z̄X
ν + Gµν(X)ψ̃µDzψ̃

ν

+ λADz̄λ
A + 2F

AB
ρσ (X)λAλBψ̃ρψ̃σ

}
, (12.3.30)

where Dzψ̃
ν is as above and

Dθ̄λ
A = Dθ̄λ

A − iAABµ (X )Dθ̄X
µλB , (12.3.31a)

Dz̄λ
A = ∂z̄λ

A − iAABµ (X)∂z̄X
µλB . (12.3.31b)

It is worth noting that the modified gauge transformation of the 2-form
potential, which played an important role in the cancellation of spacetime
anomalies, has a simple origin in terms of a world-sheet anomaly. A
spacetime gauge transformation

δAABµ = Dµχ
AB , δλA = iχABλB (12.3.32)

leaves the classical action invariant. However, this acts only on left-
moving world-sheet fermions and so has an anomaly in the world-sheet
path integral. We can use the result (12.2.3) with k̂L = 1, k̂R = 0, and

AABz̄ (z, z̄) =
1

2π
AABµ (X)∂z̄X

µ , (12.3.33)

the factor of 2π correcting for the nonstandard normalization of the
Noether current in CFT. Then after the addition of a counterterm,

δZ[A] =
1

8π

∫
d2z Trv[χ(X)Fµν(X)]∂zX

µ∂z̄X
ν . (12.3.34)

This is precisely canceled if we also change the background,

δBµν =
1

2
Trv(χFµν) . (12.3.35)

Comparing to the supergravity result (12.1.40) gives

κ210
g210

=
1

2
→ α′

4
. (12.3.36)

Noting that the left-hand side has units of L2, we have restored α′ by
introducing one factor of α′/2. This is the correct result for the relation

i



108 12 Superstring interactions

between gravitational and gauge couplings in the heterotic string. For
future reference, let us note that if we study a vacuum with a nonzero
dilaton, the physical couplings differ from the parameters in the action by
an additional eΦ, so that also

κ2

g2YM

≡ e2Φκ210
e2Φg210

=
α′
4
. (12.3.37)

(We will discuss slightly differing conventions for the gauge coupling in
chapter 18.)

Vertex operators

Recall that the bosonic string vertex operators came in two forms. The
state–operator mapping gave them as c̃c times a (1, 1) matter tensor. In
the gauge-fixed Polyakov path integral this was the appropriate form for a
vertex operator whose coordinate had been fixed. For an integrated vertex
operator the c̃c was omitted, replaced by a d2z. The vertex operators of
the superstring have a similar variety of forms, or pictures. We will derive
this idea here by analogy to the bosonic string, and explain it in a more
geometric way in section 12.5.

The state–operator mapping in chapter 10 gave the NS–NS vertex
operators as

δ(γ)δ(γ̃) = e−φ−φ̃ (12.3.38)

times a (12 ,
1
2 ) superconformal tensor. These are the analog of the fixed

bosonic vertex operators. We have seen that the superconformal tensors
are the lowest components of superfields, which do indeed correspond to
the value of the superfield when θ and θ̄ are fixed at 0. Calling this tensor
O, eq. (12.3.15) gives the vertex operator integrated over θ and θ̄ as

V0,0 = G−1/2G̃−1/2 · O . (12.3.39)

This operator appears without the δ(γ)δ(γ̃). The nonlinear sigma model
action has just this form, the d2θ integral of a (12 ,

1
2 ) superfield. It is

conventional to label vertex operators by their φ and φ̃ charges as here,
so that an operator of charges (q, q̃) is said to be in the (q, q̃) picture.
The θ-integrated operator (12.3.39) is in the (0,0) picture and the fixed
operators

V−1,−1 = e−φ−φ̃O (12.3.40)

are in the (−1,−1) picture. Of course, all of this extends to the open and
heterotic cases with only one copy of the superconformal algebra, so we
would have there the −1 and 0 pictures.
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Let us consider as an example the massless states

ψ
µ
−1/2ψ̃

ν−1/2|0; k〉NS , (12.3.41)

with vertex operators

V−1,−1 = gce
−φ−φ̃ψµψ̃νeik·X . (12.3.42)

The bosonic coordinates can be integrated or fixed independently of the
fermionic ones, so for convenience we treated them as integrated. From

G−1/2G̃−1/2ψ
µ
−1/2ψ̃

ν−1/2|0; k〉NS

= −(αµ−1 + α0 ·ψ−1/2ψµ−1/2)(α̃ν−1 + α̃0 ·ψ̃−1/2ψ̃ν−1/2)|0; k〉NS , (12.3.43)

we obtain the integrated vertex operators

V0,0 = −2gc
α′ (i∂zX

µ + 1
2α

′k ·ψ ψµ)(i∂z̄Xν + 1
2α

′k ·ψ̃ ψ̃ν)eik·X , (12.3.44)

with α′ again restored. Note the resemblance to the massless bosonic
vertex operators, with additional fermionic terms. These additional terms
correspond to the connection and curvature pieces in the nonlinear sigma
models. For massless open string vectors,

V−1 = go taψµeik·X , (12.3.45a)

V0 = go(2α
′)−1/2ta(iẊµ + 2α′k ·ψ ψµ)eik·X , (12.3.45b)

where ta is the Chan–Paton factor. For heterotic string vectors,

V−1 = gck̂
−1/2 jaψ̃µeik·X , (12.3.46a)

V0 = gc(2/α
′)1/2k̂−1/2ja(i∂̄Xµ + 1

2α
′k ·ψ̃ ψ̃µ)eik·X . (12.3.46b)

For convenient reference, we give the relations between the vertex operator
normalizations and the various couplings in the low energy actions of
section 12.1:

type I: go = gYM(2α′)1/2 ; gYM ≡ g10e
Φ/2 , (12.3.47a)

heterotic: gc =
κ

2π
=
α′1/2gYM

4π
; κ ≡ κ10e

Φ , gYM ≡ g10e
Φ ,

(12.3.47b)

type I/II: gc =
κ

2π
; κ ≡ κ10e

Φ . (12.3.47c)

These can be obtained by comparing the calculations of the next section
with the field theory amplitudes. Note that the amplitudes depend on the

e−

e−˜

φ

φ
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background value of the dilaton in combination with the parameters κ10
and g10 from the action.

12.4 Tree-level amplitudes

It is now straightforward to guess the form of the tree-level amplitudes. In
the next section we will justify this from a more geometric point of view.

We want the expectation value on the sphere or disk of the product of
vertex operators with an appropriate number of bosonic and fermionic
coordinates fixed. In the bosonic string it was necessary to fix three vertex
operators on the sphere because of the existence of three c and three c̃
zero modes. There are two γ and two γ̃ zero modes on the sphere, namely
1, z and 1, z̄: these are holomorphic at infinity for a weight − 1

2 field.
We need this many factors of δ(γ) and δ(γ̃), else the zero-mode integrals
diverge. Thus we should fix the θ, θ̄ coordinates of two vertex operators.
Similarly on the disk, we must fix the θ coordinates of two open string
vertex operators.

We can also see this in the bosonized form. The anomaly in the φ
current requires a total φ charge of −2 and a total φ̃ charge of −2. Thus
we need two vertex operators in the (−1,−1) picture and the rest in the
(0, 0) picture. For open strings on the disk (or heterotic strings on the
sphere) we need two in the −1 picture and the rest in the 0 picture.

The R sector vertex operators have φ charge − 1
2 from the ghost ground

state (10.4.24). This is midway between the fixed and integrated pictures
and does not have such a simple interpretation. Nevertheless, conservation
of φ charge tells us that the sum of the φ charges must be −2. Thus for
an amplitude with two fermions and any number of bosons we can use
the pictures − 1

2 for the fermions, −1 for one boson, and 0 for the rest.

For four fermions and any number of bosons we can use the pictures − 1
2

for the fermions and 0 for all the bosons. This is enough for all the cases
we will treat in this section. To go to six or more fermions we clearly need
to understand things better, as we will do in the next section.

Three-point amplitudes

Type I disk amplitudes: According to the discussion above, the type I
three-boson amplitude is

1

α′g2o

〈
cV−1

1 (x1)cV−1
2 (x2)cV0

3(x3)
〉
+ (V1 ↔V2) , (12.4.1)

where we take x1 > x2 > x3. The relevant expectation values for massless
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amplitudes are

〈 c(x1)c(x2)c(x3) 〉 = x12x13x23 , (12.4.2a)〈
e−φ(x1)e−φ(x2)

〉
= x−112 , (12.4.2b)

〈ψµ(x1)ψν(x2) 〉 = ηµνx−112 , (12.4.2c)

in the bc, βγ, and ψ CFTs, and〈
ψµeik1·X(x1)ψνeik2·X(x2) (iẊρ + 2α′k3 ·ψ ψρ)eik3·X(x3)

〉
= 2iα′(2π)10δ10(

∑
i ki)

(
− ηµνk

ρ
1

x12x13
− ηµνk

ρ
2

x12x23
+
ηµρkν3 − ηνρk

µ
3

x13x23

)
(12.4.3)

in the combined Xψ CFT. We have given the expectation value within
each CFT a simple normalization and included an overall normalization
factor 1/g2oα

′, equal to the one (6.4.14) found in the bosonic theory.
One can verify this normalization by a unitarity calculation as in the
bosonic string, with the convention (12.4.1) that we sum separately over
the reversed-cyclic orientation (which is always equal in this unoriented
theory). That is, an n-particle amplitude is a sum of (n − 1)! orderings
which are equal in pairs.
Combining these, using momentum conservation and transversality, and

including the factor g3o(2α
′)−1/2 from the vertex operators, we obtain the

type I three-gauge-boson amplitude

igYM(2π)10δ10(
∑
i ki) e1µe2νe3ρV

µνρ Trv([t
a1 , ta2 ]ta3 ) , (12.4.4)

where

Vµνρ = ηµνk
ρ
12 + ηνρk

µ
23 + ηρµkν31 , (12.4.5)

and kij = ki − kj . This is the ordinary Yang–Mills amplitude, with gYM

related to go as in eq. (12.3.47a) so as to agree with the definition in
the low energy action. Unlike the bosonic open string amplitude (6.5.15)
there is no k3 term and so no F3 term in the low energy effective action.
Indeed, it is known that such a term is not allowed by the d = 10, N = 1
supersymmetry.
Now consider amplitudes with two fermions and a boson. The CFT

amplitudes are〈
e−φ/2(x1)e−φ/2(x2)e−φ(x3)

〉
= x

−1/4
12 x

−1/2
13 x

−1/2
23 , (12.4.6a)

〈Θα(x1)Θβ(x2) 〉 = x
−5/4
12 Cαβ , (12.4.6b)

〈Θα(x1)Θβ(x2)ψ
µ(x3) 〉 = 2−1/2(CΓµ)αβ x−3/412 x

−1/2
13 x

−1/2
23 . (12.4.6c)

The ghost amplitude is a free-field calculation, and in principle the mat-
ter part can be done in this way as well using bosonization. However,
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bosonization requires grouping the fermions in pairs and so spoils man-
ifest Lorentz invariance. For explicit calculations it is often easier to use
Lorentz and conformal invariance. The two-point amplitude (12.4.6b) is
determined up to normalization by these symmetries. Note that Cαβ is the
charge conjugation matrix (section B.1), and that only for spinors of oppo-
site chirality is it nonzero: in ten dimensions the product of like-chirality
spinors does not include an invariant. The three-point amplitude (12.4.6c)
is then deduced by using the OPE

ψµ(x)Θα(0) = (2x)−1/2Θβ(0)Γ
µ
βα + O(x1/2) (12.4.7)

to determine the x3 dependence. This amplitude is nonvanishing only
for spinors of like chirality. The gaugino-gaugino-gauge-boson amplitude,
with respective polarizations u1,2 and eµ, is then2

igYM(2π)10δ10(
∑
i ki) eµ u1Γ

µu2 Trv([t
a1 , ta2 ]ta3 ) . (12.4.8)

We have used uT1 CΓ
µu2 = u1Γ

µu2, from the Majorana condition.3

Heterotic sphere amplitudes: The closed string three-point amplitudes
are the products of open-string amplitudes. For the heterotic string we
need the expectation values of two and three currents. The OPE gives

〈
ja(z1)j

b(z2)
〉
=
k̂δab

z212
(12.4.9a)

〈
ja(z1)j

b(z2)j
c(z3)

〉
=

ik̂fabc

z12z13z23
, (12.4.9b)

where the expectation value without insertions is normalized to unity. Each
vertex operator thus needs a factor of k̂−1/2 to normalize the two-point
function (as discussed in section 9.1). For the ten-dimensional heterotic
string k = 1. In order to make contact with the discussion in the rest
of this chapter, we will use the trace in the vector representation as the
inner product, and then it follows from the discussion below eq. (11.5.13)
that ψ2 = 1 and k̂ = 1

2 . Including these factors, the normalization of the
current algebra three-point function is

ik̂−1/2fabc = 21/2Trv([t
a, tb]tc) . (12.4.10)

The result can also be obtained from the free-fermion form ja =
2−1/2itaABλAλB , or from the free-boson form. Another necessary expec-

2 In order that the gauge couplings of the gauge boson and gaugino agree — an indirect application
of unitarity — we have normalized the fermion vertex operator as goα

′1/4e−φ/2Θαe
ik·X .

3 We are using standard field theory conventions, but to compare with much of the string literature
one needs ghereYM = 1

2g
there and uherei = 21/2utherei .
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tation value is〈
3∏
i=1

iei · ∂Xeiki·X(zi, z̄i)
〉

=
α′2e1µe2νe3ρTµνρ

8iz12z13z23
, (12.4.11)

where

Tµνρ = k
µ
23η

νρ + kν31η
ρµ + k

ρ
12η

µν +
α′
8
k
µ
23k

ν
31k

ρ
12 . (12.4.12)

This is the same as for the bosonic string, section 6.6, where we have used
the mass-shell condition k2i = 0 and transversality ei · ki = 0.
Now we can write all the massless three-point amplitudes. Including

an overall factor 8π/α′g2c which is the same as in the bosonic string, the
heterotic string three-gauge-boson amplitude is

4πgcα
′−1/2(2π)10δ10(

∑
i ki)e1µe2νe3ρV

µνρTrv([t
a, tb]tc) . (12.4.13)

Up to the definition of the coupling this is the same as the open string
amplitude (12.4.4). In particular there is no k3 correction, again consis-
tent with supersymmetry. Note that the vector part of this amplitude
comes from the right-moving supersymmetric side. The heterotic ampli-
tude for three massless neutral bosons (graviton, dilaton, or antisymmetric
tensor) is

πigc(2π)
10δ10(

∑
i ki)e1µσe2νωe3ρλT

µνρV σωλ . (12.4.14)

One can relate the coupling gc to the constants appearing in the heterotic
string low energy action as in eq. (12.3.47b). In particular, the relation
between gYM and κ is in agreement with the anomaly result (12.3.37). The
heterotic amplitude for two gauge bosons and one neutral boson is

πigc(2π)
10δ10(

∑
i ki) e1µνe2ρe3σk

ν
23V

µρσδab . (12.4.15)

The antisymmetric part contains a Chern–Simons interaction, with ω3Y .
Type I/II sphere amplitudes: In any type I or II theory, the amplitude

for three massless NS–NS bosons on the sphere is

πigc(2π)
10δ10(

∑
i ki)e1µσe2νωe3ρλV

µνρV σωλ . (12.4.16)

The normalization factor 8π/g2cα
′ and the relation κ = 2πgc are the same

as in other closed string theories.
The tensor structure is simpler than in the corresponding heterotic

amplitude (12.4.14), with terms only of order k2. The bosonic side of the
heterotic string makes a more complicated contribution and the amplitude
has terms of order k2 and k4. An R2 correction to the action would give
a three-point amplitude of order k4, and an R3 correction would give
an amplitude of order k6. Here ‘R’ is shorthand for the whole Riemann
tensor, not just the Ricci scalar. The type I/II amplitude (12.4.16) implies
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no R2 or R3 corrections. In the heterotic string there is a correction of
order R2 but none of order R3. The absence of R2 and R3 corrections in
the type II theories is a consequence of the greater supersymmetry (32
generators rather than 16).

By taking two polarizations symmetric and one antisymmetric, there is
in the heterotic string an order k4 interaction of two gravitons and an
antisymmetric tensor. An effective interaction built out of field strengths
and curvatures would have five derivatives. The interaction we have found
must therefore be the gravitational Chern–Simons interaction H3 ∧ ∗ω3L,
which figured in the heterotic anomaly cancellation. No such term was
expected in the type II theories and none has appeared. We do need such
a term in the type I theory, which has the same massless spectrum as
the heterotic string and so needs the same Green–Schwarz cancellation.
However, as explained at the end of section 12.2, in the type I theory this
will come from the disk rather than the sphere. We can also understand
this from the field redefinition (12.1.41). An R2 interaction which is a
tree-level heterotic effect maps

(−Gh)
1/2e−2ΦhR2

h → (−GI)
1/2e−ΦIR2

I , (12.4.17)

which is the correct dilaton dependence for a disk or projective plane
amplitude.

The various other three-point amplitudes are left as exercises.

Four-point amplitudes

All the four-point amplitudes of massless fields have been calculated.
Many of the calculations are a bit tedious, though for supersymmetric
strings the results tend to simplify. We will do a few simple calculations
and quote some characteristic results, leaving the rest to the references.

Let us begin with the type I four-gaugino amplitude, each vertex oper-
ator being go(α

′)1/4taVαe
ik·Xuα. We need the expectation value of four Vs

(of the same chirality). The OPE

Vα(z)Vβ(0) ∼ (CΓµ)αβ

21/2z
e−φψµ , (12.4.18)

follows from the three-point function (12.4.6c). Then

〈Vα(z1)Vβ(z2)Vγ(z3)V (z4) 〉
=

(CΓµ)αβ(CΓµ)γδ
2z12z23z24z34

+
(CΓµ)αγ(CΓµ)δβ
2z13z34z32z42

+
(CΓµ)αδ(CΓµ)βγ
2z14z42z43z23

, (12.4.19)

from consideration of the singularities in z1. An additional holomorphic
term is forbidden because the expectation value (12.4.19) must fall as z−21

δ
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at infinity. Cancellation of the z−11 term further requires that

Γ
µ
αβΓµγδ + ΓµαγΓµδβ + Γ

µ
αδΓµβγ = 0 . (12.4.20)

This is indeed an identity, and plays an important role in ten-dimensional
spacetime supersymmetry.
It is then straightforward to evaluate the rest of the amplitude. For the

cyclic ordering 1234, let the vertex operators lie on the real axis and fix
x1 = 0, x3 = 1, x4 →∞ as usual to obtain

i

2
g2o(2π)

10δ10(
∑
i ki)Trv(t

a1ta ta ta )

∫ 1

0
dxx−α′s−1(1− x)−α′u−1

×(u1Γµu2 u3Γµu4 + x u1Γ
µu3 u2Γ

µu4) . (12.4.21)

Evaluating the integral and summing over cyclic orderings gives the final
result

−16ig2YMα
′2(2π)10δ10(

∑
i ki)K(u1, u2, u3, u4)

×
[
Trv(t

a1ta2ta3ta4 )
Γ(−α′s)Γ(−α′u)
Γ(1− α′s− α′u) + 2 permutations

]
. (12.4.22)

The kinematic factor

K(u1, u2, u3, u4) =
1

8
(u ū1Γ

µu2 ū3Γµu4 − s ū1Γ
µu4 ū3Γµu2) (12.4.23)

is fully antisymmetric in the spinors. We recall the definitions

s = −(k1 + k2)
2 , t = −(k1 + k3)

2 , u = −(k1 + k4)
2 . (12.4.24)

Replacing some of the gauginos with gauge bosons leads to the same
form (12.4.22), with only the factor K altered. For four gauge bosons,

K(e1, e2, e3, e4) =
1

8

(
4M1

µνM
2
νσM

3
σρM

4
ρµ −M1

µνM
2
νµM

3
σρM

4
ρσ

)
+2 permutations

≡ tµνσραβγδk1µe1νk2σe2ρk3αe3βk4γe4δ , (12.4.25)

where Mi
µν = kiµeiν − eiµkiν . The permutations replace the cyclic order

1234 with 1342 and 1423. The tensor t is antisymmetric within each µiνi
pair and symmetric under the interchange of two pairs, µiνi with µjνj .
This determines it to be a sum of the indicated two tensor structures. The
result can also be written out

K(e1, e2, e3, e4) = −1

4

(
st e1 · e4 e2 · e3 + 2 permutations

)
+
1

2

(
s e1 · k4 e3 · k2 e2 · e4 + 11 permutations

)
. (12.4.26)

Each sum runs over all inequivalent terms obtained by permuting the four
external lines.

2 3 4
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It is interesting to consider the low energy limit of the bosonic amplitude.
The expansion of the ΓΓ/Γ factor begins

1

α′2su −
π2

6
+ O(α′) , (12.4.27)

the O(α′−1) term vanishing. We have used Γ′′(1) − Γ′(1)2 = ζ(2) = π2/6,
where the zeta function is defined below. The leading term represents
the Yang–Mills interaction in the low energy theory. Combined with
the kinematic factor K it gives a sum of single poles, corresponding to
exchange of massless gauge bosons, as well as the local quartic gauge
interaction. The O(α′0) terms correspond to a higher-derivative low energy
interaction. To convert the scattering amplitude to a Lagrangian density
replace k[µeν] ∼= −iFµν/2gYM (so that the kinetic term has canonical

normalization 1
2k

2eµeµ =
1
2k

2) and include a factor of 1/4! for the identical
fields to obtain

π2α′2

2×4! g2YM

tµνσραβγδTrv(FµνFσρFαβFγδ) . (12.4.28)

The net g−2YM is as expected for a tree-level string effect. The additional
factor of α′2 reflects the fact that this is a string correction to the low
energy effective action, suppressed by the fourth power of the string length.
The absence of an F3 term is in agreement with the three-point amplitude.

The relation (6.6.23) between open and closed string tree amplitudes
continues to hold in the superstring,

Ac(s, t, u, α
′, gc) = −πig

2
cα
′

g4o
Ao(s, t,

1
4α

′, go)Ao(t, u,
1
4α

′, go)∗ sin
πα′t
4

,

(12.4.29)
where the open string amplitudes represent just one of the six cyclic
orderings, and the factors (2π)10δ10(

∑
i ki) are omitted in Ac,o. The type II

amplitude with four massless NS–NS bosons is then

− iκ2α′3
4

Γ(− 1
4α

′s)Γ(−1
4α

′t)Γ(− 1
4α

′u)
Γ(1 + 1

4α
′s)Γ(1 + 1

4α
′t)Γ(1 + 1

4α
′u)
Kc(e1, e2, e3, e4) . (12.4.30)

Here,

Kc(e1, e2, e3, e4) = tµ1ν1...µ4ν4tρ1σ1...ρ4σ4
4∏
j=1

ejµjρj kjνj kjσj . (12.4.31)

The expansion of the ratio of gamma functions is

− 64

α′3stu − 2ζ(3) + O(α′) (12.4.32)



12.4 Tree-level amplitudes 117

where the zeta function is

ζ(k) =
∞∑
m=1

1

mk
. (12.4.33)

The first term is the low energy gravitational interaction; note that it is
proportional to κ2 with no α′ dependence. From the normalization of the
gravitational kinetic term, eµρkνkσ contracted into t becomes Rµνσρ/4κ;
including a symmetry factor 1/4!, the second term corresponds to an
interaction

ζ(3)α′3
29×4! κ2

tµ1ν1...µ4ν4tρ1σ1...ρ4σ4Rµ1ν1ρ1σ1Rµ2ν2ρ2σ2Rµ3ν3ρ3σ3Rµ4ν4ρ4σ4 . (12.4.34)

This interaction, which is often identified by its distinctive coefficient ζ(3),
has several interesting consequences; we will mention one in section 19.6.
The absence of R2 and R3 corrections is again as expected from the
three-point amplitude. For the heterotic string, the smaller supersymmetry
allows more corrections.
We close with a few brief remarks about the heterotic amplitude with

four gauginos or gauge bosons. The current algebra part of the amplitude
is

k̂−2 〈 ja1 (z1)ja2 (z2)ja3 (z3)ja4 (z4) 〉 = δa1a2δa3a4

z212z
2
34

− fa1a2bfba3a4

k̂z12z23z24z34
+ (2↔ 3) + (2↔ 4) . (12.4.35)

This is obtained by using the OPE to find the singularities in z1. An
additional holomorphic term is forbidden by the behavior at infinity. In
fact, the (1, 0) current must fall off as z−21 , and the three asymptotics of
order z−11 do sum to zero by the Jacobi identity. Let us note further that
δa1a2 = Trv(t

a1ta2 ) and that

−k̂−1fa1a2bfba3a4 = 2Trv([t
a1 , ta2 ]tb)Trv(t

b[ta3 , ta4 ])

= 2Trv([t
a1 , ta2 ][ta3 , ta4 ]) , (12.4.36)

where the last equality holds for SO(32) (or for states in an SO(16)×SO(16)
subgroup of E8 × E8) by completeness.
The remaining pieces of the amplitudes were obtained above, so it is

straightforward to carry the calculation through. The amplitudes have the
same factorized form (12.4.22) as in the type I theory, but with a more
complicated group theory factor. In particular, the terms with two traces
include effects from the exchange of massless supergravity states, which
are of higher order in the type I theory.
All other three- and four-point massless amplitudes can be found in the

references. We should mention that all of these were obtained first in the
light-cone gauge, before the development of covariant methods. In fact,
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while we have emphasized the covariant approach, for actual calculation
the two methods are roughly comparable. The advantage of covariance is
offset by the complication of the ghosts, and the realization of spacetime
supersymmetry is more complicated.

12.5 General amplitudes

Pictures

Amplitudes should not depend on which vertex operators have their θ
coordinates fixed. We demonstrate this in two different formalisms. The
first, operator, method is particularly common in the older literature. The
second leans more heavily on the BRST symmetry.

Let the two θ-fixed vertex operators also be z, z̄-fixed, and use an
SL(2,C) transformation to bring them to 0 and ∞. In operator form, the
amplitude becomes∫

d2z4 . . . d
2zn 〈〈V−1

1 |T[V0
3V0

4 . . .V0
n]|V−1

2 〉matter . (12.5.1)

We are working in the old covariant formalism, where the ghosts appear
in a definite way. They then contribute only an overall factor to the
amplitude, so we need only consider the matter part, as indicated. Then

|V−1
2 〉 = 2Lm

0 |V−1
2 〉 = {Gm

1/2, G
m−1/2}|V−1

2 〉 = Gm
1/2G

m−1/2|V−1
2 〉 , (12.5.2)

using the physical state conditions. The Gm−1/2 converts |V−1
2 〉 into |V0

2〉.
The Gm

1/2 can be moved to the left, the commutators making no contri-

bution because of the superconformal invariance of the vertex operators,
where it converts 〈〈V−1

1 | to 〈〈V0
1|. The final form∫

d2z4 . . . d
2zn 〈〈V0

1|T[V0
3V0

4 . . .V0
n]|V0

2〉matter (12.5.3)

has all matter vertex operators in the 0 picture.

The BRST argument starts by considering the picture-changing operator
(PCO)

X(z) ≡ QB · ξ(z) = TF (z)δ(β(z))− ∂b(z)δ′(β(z)) , (12.5.4)

where ξ is from bosonization of the superconformal ghosts. The calcula-
tion of QB · ξ can be done in two ways. The first is to bosonize the BRST
operator, expressing it in terms of φ, ξ, and η, calculate the OPE, and
convert back. We will use a less direct but more instructive method. First,
we claim that

δ(β) ∼= eφ . (12.5.5)
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The logic is exactly the same as that of δ(γ) ∼= e−φ. Now, it is generally
true that

γ(z)f(β(0), γ(0)) ∼ 1

z
∂βf(β(0), γ(0)) , (12.5.6)

from all ways of contracting γ with a β in f. Now, we claim that the step
function bosonizes as

θ(β) ∼= ξ . (12.5.7)

Taking the OPE with γ = eφη, this is consistent with the previous two
equations, and this determines the left-hand side up to a function of γ
alone; this function must vanish because both sides have a nonsingular
product with β = e−φ∂ξ. The explicit form (10.5.21) of the BRST current
then gives

jB(z)θ(β(0)) ∼ − 1

z2
b( )δ′(β(0)) + 1

z
TF ( )δ(β(0)) . (12.5.8)

The two terms come from two or one γβ contractions respectively. Inte-
grating the current on a contour around the origin gives the result (12.5.4).
To understand the role of the PCO we need to examine an unusual

feature of the βγ bosonization. The (0,0) ξ field has one zero mode on
the sphere, while the (1,0) η field has none. One factor of ξ is then needed
to give a nonvanishing path integral. However, the only ghost factors in
the vertex operators are e−φ and e−φ/2. The correct rule is that the βγ
path integral is equal to the φηξ path integral with the various operators
bosonized and with one additional ξ(z) in the path integral. The position of
the ξ insertion is irrelevant because the expectation value is proportional
to the zero mode, which is constant. We can simply normalize

〈 ξ(z) 〉 = 1 . (12.5.9)

To verify the decoupling of a null state we need to pull the BRST
contour off the sphere. The ξ insertion would seem to be an obstruction,
because the contour integral of the BRST charge around ξ is nonzero: it
is just the definition (12.5.4) of the PCO. However, when the ξ insertion
is replaced by X in this way, the path integral vanishes because of the ξ
zero mode, and so there is no problem.
Now consider the path integral with one PCO and with the ξ insertion,

as well as additional BRST-invariant operators. Then

X(z1) ξ(z2) = QB ·ξ(z1) ξ(z2) = ξ(z1)QB ·ξ(z2) = ξ(z1)X(z2) . (12.5.10)

In the middle step we have pulled the BRST contour from ξ(z1) to ξ(z2)
as in figure 12.2. There are two signs, from changing the order of QB and
ξ(z1), and from changing the direction of the contour. Although X(z) is
formally null, its expectation value does not vanish because of the contour

00
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(a) (b)

z z z z

QB
QB

11 2 2

Fig. 12.2. Moving the PCO. The contour around z1 in (a) is pulled around the
sphere until it becomes a contour around z2 in (b).

integral of QB around the ξ insertion. Unlike the same contribution in
the previous paragraph, this does not vanish because the ξ(z1) remains to
saturate the zero-mode integral. We already know that the path integral
is independent of the position of the ξ insertion, so eq. (12.5.10) shows
that it is also independent of the position of the PCO.
Consider now

lim
z→0

X(z)V−1(0) , (12.5.11)

where for convenience we concentrate on the holomorphic side. The −1
picture vertex operator is e−φO with O a matter superconformal primary.
Consider now the term in X(z) that involves the matter fields,

eφTm
F (z)e−φO(0) = zTm

F (z)O(0) + O(z2) . (12.5.12)

The z → 0 limit picks out the coefficient of the z−1 in the matter OPE,
which is precisely G−1/2 ·O =V0, the 0 picture vertex operator. The purely
ghost terms in X vanish as z → 0, so that

lim
z→0

X(z)V−1(0) =V0(0) . (12.5.13)

In the bosonic n-point amplitude with two −1 picture operators and
(n− 2) 0 picture operators, we can pull a PCO out of each of the latter to
be left with (n−2) PCOs and n vertex operators, all of which are in the −1
picture. This is the ‘natural’ picture, the one given by the state–operator
mapping. This also shows how to define a general tree-level amplitude,
with nB bosons and nF (which must be even) fermions. Put all the bosons
in the natural −1 picture, all the fermions in the natural − 1

2 picture, and

include (nB + 1
2nF − 2) PCOs. By taking some of the PCOs coincident

with vertex operators, possibly more than one PCO at the same vertex
operator, one obtains a representation with the vertex operators in higher
pictures.
Finally, let us tie up a loose end. The operator product (12.4.18) is just

the product of two spacetime supersymmetry currents, Vα ≡ jα. By the
Ward identity and the supersymmetry algebra, we would expect the z−1
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term to be the translation current. Instead it is e−φψµ. However, this is
the zero-momentum vector vertex operator in the −1 picture; if we move
a PCO to the operator we get the 0 picture ∂Xµ which is indeed the
translation current. So the algebra is correct. The (1, 0) operator e−φψµ is
the translation current; which picture it appears in has no effect on the
physics.

Super-Riemann surfaces

The preceding discussion suggests a natural generalization to all orders of
perturbation theory. That is, string amplitudes are given by an integral over
moduli space and the ghost plus matter path integral with the following
insertions: the appropriate vertex operator for each incoming or outgoing
string in the natural −1 or −1

2 picture, the b-ghosts for the measure on
moduli space as in the bosonic string, plus the appropriate number of
PCOs to give a sensible path integral. At genus g, the Riemann–Roch
theorem gives the number of beta zero modes minus the number of
gamma zero modes as 2g − 2. Equivalently, the total φ charge of the
insertions must be 2g− 2. To obtain this, the total number of PCOs must
be

nX = 2g − 2 + nB +
nF

2
, (12.5.14)

at arbitrary points; this is for the open string or one side of the closed
string. The same formal arguments as in the case of the bosonic string
show that this defines a consistent unitary theory. In particular, the PCOs
are BRST-invariant and do not affect the decoupling of null states.

This prescription is sufficient for all the calculations we will carry out.
However, in the remainder of this section we will develop superstring
perturbation theory from a more general and geometric point of view.
One reason for this is that the picture-changing prescription is rather ad
hoc and it would be satisfying to see it derived in some way. Another
is that this prescription actually has a subtle ambiguity at higher genus,
which is best resolved from the more geometric point of view.

The needed idea is supermoduli space, the space of super-Riemann sur-
faces (SRSs). These are defined by analogy to Riemann surfaces. Cover
the surface with overlapping coordinate patches. The mth has coordinates
zm, θm. Patches are glued together with superconformal transformations.
That is, if patches m and n overlap, identify points such that

zm = fmn(zn) + θngmn(zn)hmn(zn) , (12.5.15a)

θm = gmn(zn) + θnhmn(zn) , (12.5.15b)

h2mn(zn) = ∂zfmn(zn) + gmn(zn)∂zgmn(zn) . (12.5.15c)
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The holomorphic functions fmn and the anticommuting holomorphic func-
tions gmn define the SRS. Two SRSs are equivalent if there is a one-to-one
mapping between them such that the respective coordinates are related
by a superconformal transformation. Tensor fields are defined by anal-
ogy to tensors on an ordinary manifold, as functions in each patch with
appropriate transformations between patches. Supermoduli space is the
set of equivalence classes of super-Riemann surfaces. The coordinates on
supermoduli space are the bosonic (even) moduli tj and the anticommut-
ing (odd) moduli νa. The Riemann–Roch theorem gives the number of
odd moduli minus the number of globally defined odd superconformal
transformations as 2g − 2.

Again one can define all of this by Taylor expanding all functions in
the anticommuting variables θ and νa. The term in fmn of order ν

0
a defines

an ordinary (not super-) Riemann surface, and everything is expressed
in terms of functions on this surface with the component form of the
superconformal transformation between patches. Incidentally, z and z̄ are
no longer formally conjugates of one another on a SRS, particularly in the
heterotic string where z̄ transforms as the conjugate of eq. (12.5.15) while
z transforms as on a ‘bosonic’ Riemann surface. However, if one defines
everything by the Taylor expansion then z and z̄ are again conjugates on
the resulting ordinary Riemann surface.

For any SRS, setting the νa to zero makes the anticommuting gmn vanish
and leaves

zm = fmn(zn) , (12.5.16a)

θm = θnhmn(zn) , h2mn(zn) = ∂zfmn(zn) . (12.5.16b)

The transformation of z defines a Riemann surface, but that of θ requires
the additional choice of which square root to take in each hmn. This
choice is known as a spin structure; it is the same data one would need
to put a spin-12 field on the surface. The signs are not all independent. If
three patches overlap then the transition functions must satisfy the cocycle
condition

hmnhnphpm = 1 . (12.5.17)

Also, a coordinate change θp → −θp in the patch p0 changes the signs of
all the hpn. The net result is that there is one meaningful sign for each
nontrivial closed path on the surface, 2g for a genus g surface. These
define 22g different spin structures, topologically distinct ways to put a
spinor field on the surface.

Any sphere is equivalent to the one with two patches (z, θ), (u, φ) and
transition functions

u = 1/z , φ = iθ/z . (12.5.18)
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formal Killing transformations. One can look for infinitesimal transfor-
mations as in the bosonic case, with the result that δf must be at most
quadratic in z and δg linear in z. The general finite transformation is then
of the superconformal form with

f(z) =
αz + β

γz + δ
, g(z) = ε1 + ε2z (12.5.19)

with αδ− βγ = 1. In particular there are two odd transformations, ε1 and
ε2, consistent with the Riemann–Roch theorem. These can be used to fix
the odd coordinates of two NS vertex operators to zero.
A torus can be described as the (z, θ) plane modded by a group of rigid

superconformal transformations,

(z, θ) ∼= (z + 2π, η1θ) ∼= (z + 2πτ, η2θ) . (12.5.20)

The η1 and η2 are each ±1, defining the four spin structures. When θ

changes sign around a loop, the bosonic and fermionic components of
any superfield will have opposite periodicities, and in particular TF will
be antiperiodic. We thus denote the spin structures (P,P), (P,A), (A,P), and
(A,A), giving the z → z + 2π periodicity first. The periodicities on the
right-moving side have the same form, with τ̄ the conjugate of τ but with
independent η̃1 and η̃2.
On a torus the only holomorphic functions are the constants, so β and

γ zero modes are possible only in the (P,P) case, in which case there is
one of each. There is then an odd supermodulus ν, giving rise to the more
general periodicity4

(z, θ) ∼= (z + 2π, θ) ∼= (z + 2πτ+ θν, θ + ν) . (12.5.21)

There is also the superconformal Killing vector (SCKV)

(z, θ)→ (z + θε, θ + ε) . (12.5.22)

The number of odd moduli minus the number of SCKVs is zero in all
sectors, being 1 − 1 for the (P,P) spin structure and 0 − 0 for the others.
The modular group and the fundamental region for τ are the same as in
the bosonic string.
Returning to a general SRS, if the positions of n vertex operators

2g+n spin structures altogether. The additional spin structures
come from the choice of R or NS boundary conditions of the external

4 We could introduce a second odd parameter into the z + 2π periodicity, but one of the two
parameters can be removed by a linear redefinition of (z, θ). Also, it might appear that a similar
generalization is possible in the antiperiodic case, but a coordinate redefinition returns the
periodicity to the form (12.5.20).

Clearly there

1+

are singled out then there is a nontrivial closed curve circling each, less
one, giving 2

is just one spin structure. The index theorem implies supercon-
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strings. To describe the supermoduli space of SRSs with nB NS vertex
operators and nF R vertex operators, it is useful to extend the approach
used in section 5.4. First in the bosonic case, consider a specific patching
together of a Riemann surface, with n marked points. We will define
another Riemann surface as equivalent to this one if there is a one-to-one
holomorphic mapping between the two which leaves the coordinates of
the points invariant. That is, f(z) − z must vanish linearly at the vertex
operators. For simplicity we take each operator to be at z = 0 in its
own tiny patch. Since we are modding by a smaller group, with two real
conditions for each vertex operator, we obtain a correspondingly larger
coset space, with two additional moduli for each vertex operator. This is
similar to the treatment of vertex operator positions in section 5.4, but
more abstract. In the superconformal case, we mod out the superconformal
transformations for which f(z) − z and g(z) vanish linearly at each NS
vertex operator. At each R vertex operator, g(z) has a branch cut, and so
it is appropriate to require f(z)− z to vanish linearly z and g(z) to vanish
as z1/2. The NS vertex reduces the odd coordinate degrees of freedom by
one and so increases the number of inequivalent surfaces: the number of
odd moduli increases by one, which we can take to be the θ coordinate of
the operator. The condition for the R vertex operator is essentially half
as restrictive, so that there is an additional odd modulus for each pair of
R vertex operators. This has no simple interpretation as a vertex operator
position; an R vertex operator produces a branch cut in θ, so there can be
no well-defined θ coordinate for the operator. The total number of odd
moduli is

nν = 2g − 2 + nB +
nF

2
. (12.5.23)

The measure on supermoduli space

The expression (5.4.19) for the bosonic string S-matrix now generalizes in
a natural way,

S(1; . . . ; n) =
∑
χ,γ

e−λχ
nR

∫
χ,γ
dnetdnoν

〈
ne∏
j=1

Bj

no∏
a=1

δ(Ba)
n∏
i=1

V̂i

〉
. (12.5.24)

The sum is over topologies χ and spin structures γ. The integral runs over
the corresponding supermoduli space. There are ne even moduli, no odd
moduli, and n external strings. The quantity Bj in the ghost insertions is

Bj =
∑
(mn)

∫
Cmn

dzmdθm

2πi
B(zm, θm)

[
∂zm

∂tj
− ∂θm

∂tj
θm

]
zn,θn

, (12.5.25)

plus a right-moving piece of the same form; Ba is given by an identical
expression with νa replacing tj . The sum again runs over all pairs of
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overlapping patches m and n, clockwise as seen from m, with the zm
integration along a contour between the two patches and the θm integral
of the usual Berezin form. The B ghost superfield is as in eq. (12.3.25),
B = β + θb.

The logic of this expression is the same as for the earlier bosonic
expression. First, the number of commuting and anticommuting ghost
insertions is correct for a well-defined path integral. Second, the path
integral depends only on the superconformal structure and not on the
particular choice of patches and transition functions. In particular it is
unchanged if we make a superconformal transformation within a single
coordinate patch. The combination ∂zm + (∂θm)θm transforms as a (−1, 0)
tensor superfield, so the integrand is a (12 , 0) tensor superfield and the
integral is invariant. Third, under a change of coordinates in supermoduli
space, the product

∏
j=1 Bj

∏
a δ(Ba) transforms as a density, inversely to

the measure on supermoduli space. Finally, the commutator of the BRST
charge with Bj,a is Tj,a, defined in the same way but with B replaced by

QB · B(z) = T (z) = TF (z) + θTB(z) . (12.5.26)

The insertion of Tj,a generates a relative coordinate transformation of
adjacent patches, which is just the derivative with respect to the super-
modulus of the world-sheet.

It is interesting to work out the form of the amplitude more explicitly for
a special choice of patches and transition functions. Namely, let patch 1
be contained entirely within patch 2, so that the overlap is an annulus.
Let the 1-2 transition functions depend only on a single odd modulus ν,
as follows:

f12(z2) = z2 , g12(z2) = να(z2) , (12.5.27)

for some holomorphic function α(z). The ghost factor (12.5.25) is propor-
tional to

B[α] =

∮
dz1

2πi
1 (12.5.28)

Similarly the path integral depends on ν only through the insertion

νT [α] , (12.5.29)

where β is replaced by TF . We can then perform the integration over ν, so
that the net effect of the supermodulus is the insertion in the path integral
of

T [α]δ(B[α]) = QB · θ(B[α]) . (12.5.30)

The function α(z1) is holomorphic in the annular overlap of the patches,

α(z )β( , θ) .z1
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but in general cannot be extended holomorphically into the full inner
patch z1. If it can, the contour integrals B[α] and T [α] vanish. In this case
ν is not a modulus at all because it can be transformed away. A nontrivial
case is

α(z1) =
1

z1 − z0
, (12.5.31)

for which B[α] = β(z0) and the insertion (12.5.30) just becomes the PCO
X(z0) (the second term in X is from normal ordering). Thus, the PCO is the
result of integrating out an odd modulus in this special parameterization
of the SRSs. Note that the number (12.5.23) of odd moduli is the same as
the number (12.5.14) of PCOs needed in the ad hoc approach. This provides
the desired geometric derivation of the picture-changing prescription.

The parameterization (12.5.27) is always possible locally on supermoduli
space. It can also be used globally, with careful treatment of the modular
identification and the limits of moduli space. There is a literature on the
‘ambiguity of superstring perturbation theory,’ which arose from parame-
terizations that did not precisely cover supermoduli space. It appears that
superstring perturbation theory to arbitrary order is understood in princi-
ple, and certain special amplitudes have been calculated at higher orders
of perturbation theory. However, the subject is somewhat unfinished — a
fully explicit proof of the perturbative consistency of the theory seems to
be lacking. With the immense progress in nonperturbative string theory,
filling this technical gap does not seem to be a key issue.

We derived the bosonic version (5.4.19) of the measure (12.5.24) by
starting with a path integral over the world-sheet metric, whereas in
the present case we have written it down directly. One can partly work
backwards to an analogous description as follows. Although α(z1) cannot
be extended holomorphically into patch 1 it can be extended smoothly. It
can then be removed by a change of variables in the path integral, but
not one that leaves the action invariant. The odd modulus ν appears in
the final action, multiplying TF and a function that can be regarded as
the world-sheet gravitino field. In particular, the PCO can be regarded
as coming from a pointlike gravitino, a gauge where the gravitino has
delta-function support.

12.6 One-loop amplitudes

We will illustrate one-loop superstring calculations with two examples
where the low energy limit can be obtained in closed form.

The first is the heterotic string amplitude with four gauge bosons
and one antisymmetric tensor. The Green–Schwarz anomaly cancellation
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requires a one-loop Chern–Simons term∫
B2Trv(F

4
2 ) . (12.6.1)

We would like to confirm the appearance of this term by an explicit string
calculation.

Note first that this can only arise from the (P,P) path integral. This
is because it is odd under spacetime parity: written out in components,
it involves the ten-dimensional ε-tensor. The heterotic string world-sheet
action and constraints are invariant under parity. The parity asymmetry
of the theory, the fact that the massless fermions are in a 16 and not a
16′, comes about from the GSO projection in the right-moving R sector,
the choice of exp(πiF) to be +1 or −1. The (P,P) path integral produces
this term in the projection operator. The path integral is then(

2

α′
)5/2

g5c

∫
F

dτdτ̄

8τ2

[
5∏
i=1

∫
d2wi

]〈
b(0)b̃(0)c̃(0)c(0)X(0)

×
[

4∏
i=1

k̂−1/2jai(iei ·∂̄X + 1
2α

′ki ·ψ̃ ei ·ψ̃)eiki·X(wi, w̄i)
]

×ie5µν∂Xµδ(γ̃)ψ̃νeik5·X(w5, w̄5)

〉
(P,P)

(12.6.2)

The bc ghosts and corresponding measure are the same as in the bosonic
string, with an extra 1

2 from the GSO projection operator. For the (P,P)
spin structure there is one PCO and one −1 picture vertex operator.

We will consider in order the ψ̃µ, Xµ, bc, βγ, and ja path integrals. In
the vacuum amplitude the ψ̃µ path integral vanishes in the (P,P) sector. In
terms of a trace, this is due to a cancellation between the R sector ground
states. In terms of a path integral it is due to the Berezin integration over
the zero mode of ψµ (which exists only for this spin structure). In the
latter form it is clear that we need at least ten factors of ψ̃ to obtain a
nonzero path integral. In fact, the path integral (12.6.2) has a maximum
of ten ψ̃s, including one from the term

δ(β̃)i(2/α′)1/2ψ̃ρ∂̄Xρ (12.6.3)

in the PCO. The relevant path integral is easily obtained from a trace,
giving 〈

10∏
i=1

ψ̃µi

〉
ψ̃(P,P)

= εµ1...µ10 q̄10/24
∞∏
n=1

(1− q̄n)10

= εµ1...µ10 [η(τ)10]∗ . (12.6.4)
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The Xµ path integral is then reduced to〈
∂Xµ(w5)∂̄X

ρ(0)
5∏
i=1

eiki·X(wi,w̄i)

〉
X

, (12.6.5)

the gradients coming from the tensor vertex operator and the PCO.
To make things simple we now take the ki → 0 limit. Contractions
between the gradients and exponentials, and among the exponentials,
are then suppressed. Only the contraction between the gradients survives,
−α′/8πτ2 from the background charge term α′(Imwij)

2/4πτ2 in the Green’s
function (7.2.3). The leading term in the expectation value (12.6.5) is then

− i(2π)10δ10(
∑
i ki)

ηµρα′
8πτ2(4π2α′τ2)5|η(τ)|20 . (12.6.6)

The bc path integral is〈
b(0)b̃(0)c̃(0)c(0)

〉
bc

= |η(τ)|4 , (12.6.7)

just as in the bosonic string. The βγ path integral is the reciprocal of the
right-moving part of this,〈

δ(β̃(0))δ(γ̃(w̄5))
〉
βγ

= [η(τ)−2]∗ . (12.6.8)

Finally for the current algebra, we need

k̂−2 〈 ja1 (w1)j
a2 (w2)j

a3 (w3)j
a4 (w4) 〉g . (12.6.9)

We continue to use the convention k̂ = 1
2 for the rest of the chapter.

Note first that all other expectation values are independent of wi. The
integrations over wi thus have the effect of averaging over Re(wi) and
so we can replace each current with the corresponding charge, Qai . We
can then evaluate the expectation value as a trace. However, a careful
treatment of the k → 0 limit shows that an additional contact term is
needed when two vertex operators coincide,

ja(w)jb(0)→ T
[
Q̂a(w)Q̂b(0)

]
− πδ2(w, w̄)δab . (12.6.10)

To see this, integrate both sides over the region of world-sheet −δ < σ2 <

δ. On the left we have

δab

2

∫
|σ2|<δ

d2w
1

w2
(ww̄)k·k′ , (12.6.11)

where we have introduced small k and k′. The (ww̄)k·k′ factor from the Xµ

path integral then regulates the integral at the origin. We have kept the
leading term in the OPE because this is the only one that contributes at
small δ. Writing the integrand as

(−1 + k · k′)−1∂w(w−1+k·k′w̄k·k′) , (12.6.12)
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we can integrate by parts to convert this to a surface integral, which is
then easily evaluated at k, k′ → 0 to give −2π. On the right, the first
term has no singularity that would allow a nonzero limit as δ → 0 (Q̂a

is conserved, so it is a constant except for the time ordering), and so the
delta function is needed.

For the product of two currents we would then have

〈 ja1 (w1)j
a2 (w2) 〉 → Tr

{
exp(2πiτH)T

[
Q̂a1(w1)Q̂

a2(w2)
]}

− δabπδ2(w12, w̄12)

→ Tr
{
exp(2πiτH)Q̂(a1Q̂a2)

}
− δab

8πτ2
. (12.6.13)

In the second line we have used the fact that all other expectation values
are independent of the wi, so that the integrations will have the effect
of averaging over wi. In the first term this symmetrizes the operators
as indicated; in the second it allows us to replace the delta function
with its average over the torus. For four currents the combinatorics are
conveniently summarized in terms of the generating function

f(q, z) ≡ 〈 exp(z · ) 〉
= exp

(
− z · z
16πτ2

)
Tr
[
exp(2πiτH) exp(z · Q̂)

]
, (12.6.14)

where a is the average over the torus and the dot denotes a sum on a.
The needed expectation value is the fourth derivative with respect to za.
The trace is most easily carried out in the bosonic form, where it becomes
an oscillator sum plus sum over the SO(32) or E8 × E8 lattice:

f(q, z) = η(τ)−16 exp
(
− z · z
16πτ2

)∑
l∈Γ

ql
2/2 exp(2−1/2z · l) . (12.6.15)

Gathering all factors, including (8πτ2)
5 from integrating over the wi, the

amplitude becomes

− ig5c
πα′3 (2π)

10δ10(
∑
i ki)ε

µ1...µ10k1µ1e1µ2 . . . k4µ7e4µ8e5µ9µ10

×
∫
F

d2τ

τ22

∂4f̂(q, z)

∂za1 · · · ∂za4
∣∣∣∣∣
z=0

, (12.6.16)

where

f̂(q, z) = η(τ)−8f(q, z) . (12.6.17)

We leave it as an exercise to show that this is modular-invariant. Substi-
tuting eµν → Bµν/2κ and k[µeν] → −iFµν/2gYM from the normalization of
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the kinetic terms, including a factor 25 from converting the ε-tensor to
form notation, and using the relation between the couplings, the amplitude
can be concisely summarized by the effective action

− 1

29π6α′
∫
B2

∫
F

d2τ

τ22
f̂(q, F2 ) . (12.6.18)

The form integration picks out the term of order F4
2 . The integral can be

written as a surface term and given in closed form, using

f̂(q, F2 )

τ22
= − 32πi

F2 ·F2

∂f̂(q, F2 )

∂τ̄
. (12.6.19)

Due to modular invariance, only the limit τ2 → ∞ contributes. The
effective action becomes

− 1

24π5α′
∫

B2

F2 ·F2
f̂(q, F2 )

∣∣∣
q0 term

. (12.6.20)

Only the lattice momenta with l2 = 2 contribute to the q0 term. These
form the adjoint of the gauge group, so the lattice sum reduces to a trace
in the adjoint representation and the effective interaction is

− 1

24π56! α′
∫
B2Tra(F

6
2 )

F2 ·F2
= − 1

24π54! α′
∫
B2

Tra(F
6
2 )

Tra(F
2
2 )
. (12.6.21)

Ordinarily dividing by a form would make no sense, but we know from
the discussion of anomalies that Tra(F

6
2 ) ∝ F2 ·F2 X8 (F2 ), so the effective

interaction is proportional to
∫
B2X8 as required by anomaly cancella-

tion (and with the correct coefficient). For SO(32) the ratio of forms is
1
2Trv(F

4
2 ); for E8 × E8 it is

1

7200

{
[Tra1(F

2
2 )]

2 + [Tra2(F
2
2 )]

2 − Tra1(F
2
2 )Tra2(F

2
2 )
}
. (12.6.22)

With somewhat more effort one can also find the required curvature
terms. That we were able with modest effort to bring this string loop
amplitude to a closed form is not too surprising, since this is a very
special amplitude whose coefficient is determined by symmetry (anomaly
cancellation). However, many of the physically interesting corrections to
the low energy effective action can be obtained in a closed form.

Next we consider the heterotic string amplitude with four gauge bosons
but without the antisymmetric tensor. In contrast to the previous ampli-
tude, which came only from the (P,P) spin structure, the present one comes
only from the other three spin structures: with one fewer vertex operator
there are not enough insertions of ψ̃ to saturate the zero modes of the
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(P,P) path integral. The amplitude is then

4g4c
α′2

∫
F

dτdτ̄

8τ2

[
4∏
i=1

∫
d2wi

] ∑
γ �=(P,P)

〈
b(0)b̃(0)c̃(0)c(0)

×
[

4∏
i=1

k̂−1/2jai(iei ·∂̄X + 1
2α

′ki ·ψ̃ ei ·ψ̃)eiki·X(wi, w̄i)
]〉

γ

. (12.6.23)

For these spin structures, all vertex operators are in the 0 picture and
there is no PCO.
We could proceed to calculate in a straightforward way, but the final

result simplifies substantially and it would be better to simplify at the
start. In fact, this is one amplitude that is much more easily obtained in
the light-cone superstring formalism, and so we will effectively convert the
calculation to that form.
First, analytically continue the momenta so that k0 = k1 = 0. To

be consistent with the mass-shell condition the momenta must become
complex but this will not be a problem. Also, take the polarizations to
vanish in the longitudinal directions. The longitudinal degrees of freedom
then do not appear in the vertex operators, and so in the (P,A), (A,P), and
(A,A) sectors the longitudinal path integrals just give determinants that
cancel against the corresponding ghost path integrals. In particular, the
combined longitudinal and ghost path integrals for these three sectors are
independent of the spin structure, so the net spin structure dependence
comes only from the eight transverse ψ̃i.
Now, we will temporarily change the problem and also add in the

(P,P) spin structure for the ψ̃i, even though in the real amplitude this
is multiplied by zero from the ψ̃0,1 zero modes. The sum over four spin
structures gives a GSO projection in the transverse ψ̃i CFT by itself.
Consider the vertex operator Θ̃α for the R ground state, and bosonize:

Θ̃α →


exp[12 i(H̃1 + H̃2 + H̃3 + H̃4)] = exp(iH̃ ′

1)

exp[12 i(H̃1 + H̃2 − H̃3 − H̃4)] = exp(iH̃ ′
2)

exp[12 i(H̃1 − H̃2 + H̃3 − H̃4)] = exp(iH̃ ′
3)

exp[12 i(H̃1 − H̃2 − H̃3 + H̃4)] = exp(iH̃ ′
4)

→ θ̃α . (12.6.24)

Precisely for eight ψ̃i, the linear combinations of scalars appearing in the
spin field are themselves scalars of canonical normalization

H̃ ′
i (z̄)H̃

′
j(0) ∼ −δij ln z̄ . (12.6.25)

Thus after bosonizing and going to a new basis for the scalars we can
refermionize in terms of free (0, 12 ) fields θ̃α(z̄). Note that only for eight ψ̃i

does the spin field have weight 1
2 . Thus we turn the ψ̃i path integral into

a θ̃α path integral. Moreover, we claim that the spin structures are related
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as follows:

1

2

∑
γ

〈 〉ψ̃,γ = 〈 〉θ̃(P,P) . (12.6.26)

This follows because the spin field Θ̃α survives the GSO projection, im-
plying that it is single-valued on the torus. The periodicity in the time
direction implies the insertion of a factor exp(πiF̃θ) in the sum over states,
which is appropriate because θ̃α is a spacetime spinor.
Now we come to the payoff: for this spin structure the θ̃α have eight

zero modes, and so there must be eight factors of θ̃α to get a nonzero
result. We need to refermionize the vertex operators, but this is easy. The
spinors appear only in the combination

kiejψ̃
[iψ̃j] , (12.6.27)

where we can antisymmetrize because e · k = 0. The product of fermions
is just an SO(8) rotation current, so we can immediately write

ψ̃[iψ̃j] → 1

4
θ̃TΓij θ̃ . (12.6.28)

One can check this by taking the OPE of the two sides with Θ̃α and
θ̃α respectively. The fermionic terms in the vertex operators then provide
precisely the eight θ̃s needed to saturate the zero modes, with the result〈

4∏
a=1

1

4
θ̃TΓiaja θ̃

〉
θ̃(P,P)

=
1

28
εα1...α8Γi1j1α1α2

· · ·Γi4j4α7α8

= ti1j1...i4j4 + εi1j1...i4j4 . (12.6.29)

Here t is the same tensor (12.4.25) that appears in the tree-level amplitudes.
It remains to separate out the unwanted (P,P) sector of the ψ̃ path

integral, but this is easy. It is the only one that is odd under a reflection of
one of the transverse directions, so it is responsible for the term εi1j1...i4j4 .
Thus we omit this term, which in any case does not contribute because the
momenta with which it contracts are not linearly independent. Further,
the tensor t has a unique covariant extension.
The remaining factors are much as in the previous amplitude, leading

for SO(32) to the effective interaction

1

28π54! α′ t
µνσραβγδTrv(FµνFσρFαβFγδ) . (12.6.30)

For E8 × E8 one has instead the group theory structure (12.6.22). Given
the similarity of the F4 amplitude to the BF4 amplitude, the reader may
not be surprised that they are in fact related by supersymmetry.
By this same method several other amplitudes can be obtained, including

the type I cylinder with four open string gauge bosons and the type II
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torus with four gravitons. In the latter case both the ψi and the ψ̃i are
refermionized, and the tensor structure is the same as for the tree-level
amplitude (12.4.34), with two t tensors.

The θ̃α are the first free fields carrying a spacetime spinor index that
we have encountered. One might have expected these to arise at some
earlier stage. In fact the covariant Green–Schwarz superstring theory,
with manifest spacetime supersymmetry, has such fields. It is equivalent to
the RNS superstring: after putting each theory in the light cone they are
related by the refermionization above. However, the constraints and gauge
fixing in the Green–Schwarz description are rather more complicated, and
so we have chosen not to emphasize this subject.

Nonrenormalization theorems

It follows from the preceding calculations that any amplitude with three
or fewer massless particles vanishes because there are too few factors of
θα to saturate the zero-mode integrations. One consequence is that there
is no renormalization of Newton’s constant, which can be measured in
the three-graviton amplitude.

It also follows that all amplitudes vanish at least as k4 when k → 0,
from the explicit momentum factors in the vertex operators.5 This has the
important physical consequence that the constant background

Gµν(x) = ηµν , Φ(x) = Φ0 (12.6.31)

around which we are expanding remains a solution of the field equations
to one-loop order. No interaction∫

d10x (−G)1/2V (Φ) (12.6.32)

is generated. Actually we already knew this from the calculation of the
one-loop vacuum amplitude in chapter 10, which vanished by cancellation
between bosons and fermions. These nonrenormalization theorems have
been argued to extend to all orders of string perturbation theory; the
details are left to the references.

Nonrenormalization can also be understood from a spacetime point of
view. The tree-level action has local supersymmetry. Therefore the loop
corrections must respect this symmetry or else the unphysical polariza-
tions of the gravitino will not decouple. However, no interaction of the

5 This kind of argument is subtle because one can obtain offsetting poles from
∫
d2w (ww̄)−1+k·k′ ,

but the necessary singularity in w does not appear here because the zero modes are independent
of w̄.



134 12 Superstring interactions

form (12.6.32) is allowed by d = 10, N = 1 or N = 2 supersymmetry.6

This argument applies to all orders of perturbation theory and in fact it
is a nonperturbative (exact) result. The latter fact is very striking, because
with the string technology developed so far we have no direct way to
understand strings beyond perturbation theory. It should be noted that
the leap from ‘all orders of perturbation theory’ to ‘exact’ is quite non-
trivial, because in theories with less symmetry there are many examples of
corrections that arise only from nonperturbative effects. We will see some
of these later.

Exercises

12.1 Derive the SO(n) trace identities (12.2.19). You can assume a basis in
which the generator t is a linear combination of the commuting generators
Hi.

12.2 Obtain the trace relations (12.2.20) for E8, and show that Tra(t
6) can

be reduced to lower order traces for E8 × E8.

12.3 Show that the anomaly factorizes for the massless spectrum of the
SO(16)× SO(16) nonsupersymmetric heterotic string.

12.4 Show that the superfield forms for the superconformal transformation
δXµ, the OPEs (12.3.22) and (12.3.26), and the action (12.3.23) reduce to
the correct component forms.

12.5 Show that the superfield form of the sigma model action reduces to
components as shown in eq. (12.3.27).

12.6 Using the contour method from sections 6.2 and 6.3, show that the
sphere amplitude must have total φ charge −2 as discussed at the begin-
ning of section 12.4.

12.7 (a) Calculate the tree-level heterotic string amplitude with two gaug-
inos and a gauge boson.
(b) Calculate the tree-level heterotic string amplitude with two gauginos
and a massless tensor.

12.8 Calculate the tree-level type II amplitude with one NS–NS boson
and two R–R bosons.

12.9 Calculate the tree-level heterotic string amplitude with four gaug-
inos. You can either do this directly, or by first calculating an appro-
priate bosonic open string amplitude and then using the open–closed
relation (12.4.29).

6 The massive IIA supergravity theory (12.1.24) effectively has such a term after setting the fields
M and F10 to fixed background values, but the dilaton dependence is fixed and corresponds to
a tree-level effect.
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12.10 Calculate the ki → 0 limit of the type I cylinder amplitude with
four gauge bosons, where two open string vertex operators are on each
boundary. This is often referred to as the nonplanar amplitude.

12.11 Calculate the same amplitude as in the previous problem but with
all four vertex operators on one boundary. This planar amplitude has a
divergence; calculate the canceling Möbius amplitude.



13
D-branes

In chapter 8 we found that a number of new phenomena, unique to string
theory, emerged when the theory was toroidally compactified. Most no-
table were the T -duality of the closed oriented theory and the appearance
of D-branes in the R → 0 limit of the open string theory. These subjects
become richer still with the introduction of supersymmetry. We will see
that the D-branes are BPS states and carry R–R charges. We will argue
that the type I, IIA, and IIB string theories are actually different states in a
single theory, which also includes states containing general configurations
of D-branes. Whereas previously we considered only parallel D-branes all
of the same dimension, we now wish to study more general configurations.
We will be concerned with the breaking of supersymmetry, the spectrum
and effective action of strings stretched between different D-branes, and
scattering and bound states of D-branes. In the present chapter we are
still in the realm of string perturbation theory, but many of the results will
be used in the next chapter to understand the strongly coupled theory.

13.1 T -duality of type II strings

Even in the closed oriented type II theories T -duality has an interesting
new effect. Compactify a single coordinate X9 in either type II theory and
take the R → 0 limit. This is equivalent to the R → ∞ limit in the dual
coordinate, whose right-moving part is reflected

X ′9
R (z̄) = −X9

R(z̄) (13.1.1)

just as in the bosonic string. By superconformal invariance we must also
reflect ψ̃9(z̄),

ψ̃′9(z̄) = −ψ̃9(z̄) . (13.1.2)

136
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However, this implies that the chirality of the right-moving R sector
ground state is reversed: the raising and lowering operators ψ̃8

0 ± iψ̃9
0 are

interchanged. Simply put, T -duality is a spacetime parity operation on
just one side of the world-sheet, and so reverses the relative chiralities
of the right- and left-moving ground states. If we begin with the IIA
theory and take the compactification radius to be small, we obtain the IIB
theory at large radius, and vice versa. The same is true if we T -dualize
— that is, carry out the change of variables (13.1.1) and (13.1.2) — on
any odd number of dimensions, while T -dualizing on an even number
returns one to the type II theory with which one began. Thus the two
type II theories are related in the same way as the two heterotic theories:
in each case the two noncompact theories are different limits of a single
space of compactified theories. The type II relation is even simpler than
the heterotic relation, in that one takes the radius to zero without having
also to include a Wilson line.

Since the IIA and IIB theories have different R–R fields, T -duality
must transform one set into the other. Again focus on T -duality in just
the 9-direction. In order to preserve the OPE between ψ̃µ and the spin
field, this must act as

V′
α(z) =Vα(z) , Ṽ′

α(z̄) = β9αβṼβ(z̄) , (13.1.3)

where β9 is the parity transformation (9-reflection) on the spinors. It
anticommutes with Γ9 and commutes with the remaining Γµ, so β9 = Γ9Γ.
Now consider the effect on the R–R vertex operators

VΓµ1...µpṼ . (13.1.4)

The T -duality multiplies the product of Γ matrices by Γ9Γ on the right.
The Γ just gives ±1 because the R ground states have definite chirality.
The Γ9 adds a ‘9’ to the set µ1 . . . µp if none is present, or removes one if
it is present via (Γ9)2 = 1. This is how T -duality acts on the R–R field
strengths and potentials, adding or subtracting the index for the dualized
dimensions. Thus, if we start from the IIA string we get the IIB R–R
fields as follows (up to signs),

C9 → C , (13.1.5a)

Cµ, Cµν9 → Cµ9, Cµν , (13.1.5b)

Cµνλ → Cµνλ9 , (13.1.5c)

where here µ stands for a nondualized dimension. We could go on, getting
Cµνλω from Cµνλω9 and so on, but these are not independent fields, and
give rather the Poincaré dual description of the fields listed.
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For T -duality on multiple dimensions replace β9 with∏
m

βm , (13.1.6)

where βm = ΓΓm and the product runs over the dualized directions. There
are some signs which should be noted but should not distract attention
from the main physical point. Since βmβn = −βnβm for m �= n, T -dualities
in different directions do not quite commute but differ by a sign in the
right-moving R sector. We can write this as

βmβn = exp(πiF̃)βnβm , (13.1.7)

where F̃ is the spacetime fermion number of the right-moving state of the
string; this is a symmetry that flips the sign of all right-moving R states.
Also, we have defined βm so as to preserve the Hermiticity of Ṽα (that is,
it is real in a Majorana basis), but then βmβm = −1 and so acting twice
with T -duality gives exp(πiF̃).

13.2 T -duality of type I strings

Taking the R → 0 limit of the open and unoriented type I SO(32) theory
leads to D-branes and orientifold planes by the same arguments as for the
bosonic string in chapter 8, which the reader should review. In particular,
taking the T -dual on a single dimension leads to a space with 16 D8-
branes between two orientifold hyperplanes.
Let us first consider the bulk physics of the T -dual theory, obtained

by taking R → 0 and concentrating on a region of the dual spacetime
that is far away from the fixed planes and D-branes, as illustrated in
figure 13.1. The local physics is that of a closed oriented superstring
theory: closed because the open strings live far away on the D-branes;
oriented because the orientation projection relates the state of any string
to that of its image behind the fixed plane, but does not locally constrain
the space of states. Thus the local physics must be that of a type II theory.
In particular there are two gravitinos, and any closed string scattering
process will be invariant under the 32 supersymmetries of the type II
theory. Since the type I theory with which we started has equal left- and
right-moving chiralities, taking the T -dual in one dimension makes them
opposite: the local physics is the IIA superstring. Taking the T -dual on
any odd number of dimensions has the same effect; taking the T -dual on
any even number of dimensions gives the IIB theory in the bulk.
Now take the R → 0 limit while concentrating on the neighborhood of

one D-brane in the T -dual theory, adjusting the Wilson lines so that again
the fixed plane and other D-branes move away in the T -dual spacetime.
The low energy degrees of freedom on the D-brane are the massless open
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Fig. 13.1. A D-brane, with one attached open string and one closed string
moving in the bulk. The physics away from the D-brane is described by a type II
string theory, so the string theory with the D-brane has the physical properties
of a state of the type II theory containing an extended object.

string states

ψ
µ
−1/2|k〉NS , ψ9−1/2|k〉NS , |α; k〉R . (13.2.1)

As in the bosonic theory, the bosonic states are a gauge field living on
the D-brane and the collective coordinates for the D-brane. The fermionic
states are the superpartners of these.
Consider now a process where closed strings scatter from the D-brane;

this necessarily involves a world-sheet with boundary. Now, the open
string boundary conditions are invariant only under d = 10, N = 1
supersymmetry. In the original type I theory, the left-moving world-sheet
current for spacetime supersymmetry Vα(z) flows into the boundary and
the right-moving current Ṽα(z̄) flows out, so only the total charge Qα+ Q̃α
of the left- and right-movers is conserved. Under T -duality this becomes

Q′α + (β9Q̃′)α . (13.2.2)

The scattering amplitudes of closed strings from the D-brane are invariant
only under these 16 supersymmetries.
To see the significance of this, consider first the conservation of momen-

tum. There is a nonzero amplitude for a closed string to reflect backwards
from the D-brane, which clearly does not conserve momentum in the
direction orthogonal to the D-brane. This occurs because the Dirichlet
boundary conditions explicitly break translational invariance. However,
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from the spacetime point of view the breaking is spontaneous: we are
expanding around a D-brane in some definite location, but there are
degenerate states with the D-brane translated by any amount.1 For a
spontaneously broken symmetry the consequences are more subtle than
for an unbroken symmetry: the apparent violation of the conservation law
is related to the amplitude to emit a long-wavelength Goldstone boson.
For the D-brane, as for any extended object, the Goldstone bosons are
the collective coordinates for its motion. In fact, the nonconservation of
momentum is measured by the integral of the corresponding current over
the world-sheet boundary,

1

2πα′
∫
∂M

ds ∂nX
′9 , (13.2.3)

which up to normalization is just the (0 picture) vertex operator for the
collective coordinate, with zero momentum in the Neumann directions.
We conclude by analogy that the D-brane also spontaneously breaks 16

of the 32 spacetime supersymmetries, the ones that are explicitly broken
by the open string boundary conditions. The integrals∫

∂M
dsV′

α = −
∫
∂M

ds (β9Ṽ′)α , (13.2.4)

which measure the breaking of supersymmetry, are just the vertex op-
erators for the fermionic open string state (13.2.1). Thus this state is
a goldstino, the Goldstone state associated with spontaneously broken
supersymmetry.
It is not surprising that the D-brane breaks some supersymmetry. The

only state invariant under all supersymmetries is the vacuum. Rather,
what is striking is that it leaves half the supersymmetries unbroken: it
is a BPS state. This same argument holds for any number of dualized
dimensions, and so for Dp-branes for all p. The unbroken supersymmetry
is

Q′α + (β⊥Q̃′)α , (13.2.5)

where

β⊥ =
∏
m

βm , (13.2.6)

the product running over all the dimensions perpendicular to the D-brane.

1 The Mermin–Wagner–Coleman theorem from quantum field theory implies that if the D-brane
has two or more noncompact directions there will indeed be an infinite number of degener-
ate states. If it has one or zero noncompact directions, quantum fluctuations force it into a
unique translationally invariant state. The latter effect shows up in perturbation theory through
IR divergences. For a spontaneously broken supersymmetry the fluctuations are less effective:
supersymmetry can be broken even by a zero-dimensional object.
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BPS states, which are discussed in section B.2, must carry conserved
charges. In the present case there is a natural set of charges with the
correct Lorentz properties, namely the antisymmetric R–R charges. The
world-volume of a p-brane naturally couples to a (p+ 1)-form potential∫

Cp+1 , (13.2.7)

the integral running over the D-brane world-volume. By T -duality we can
reach the IIA theory with a Dp-brane of any even p. Thus we need 1-,
3-, 5-, 7-, and 9-form potentials. Indeed, the 1-form and 3-form are in
the IIA theory and the 5-form and 7-form give equivalent descriptions of
the same physics. The 9-form potential we have discussed in section 12.1
in the context of massive IIA supergravity. Although it is not associated
with propagating states, and so was not detected in the quantization of
the IIA string, the existence of D8-branes shows that it must be included.

By analogy with electromagnetism in four dimensions, where the 1-
form electric potential can be replaced with a 1-form magnetic potential,
a Dirichlet p-brane and (6−p)-brane are like electric and magnetic sources
for the same field strength. For example, the free field equation and Bianchi
identity for a 2-form field strength, d∗F2 = dF2 = 0, are symmetric
between F2 and (∗F)8 , and can be written either in terms of a 1-form or
7-form potential:

F2 = dC1 , d ∧ ∗dC1 = 0 , (13.2.8a)

∗F2 = (∗F)8 = dC7 , d ∧ ∗dC7 = 0 . (13.2.8b)

At an electric source, which would be a D0-brane for C1 or a D6-brane
for C7 , the field equation has a source term. At a magnetic source, a
D6-brane for C1 or a D0-brane for C7 , the Bianchi identity breaks down,
and the potential cannot be globally defined: one must introduce a Dirac
string, or use different potentials in different patches.2

For the IIB theory we need 2-, 4-, 6-, 8-, and 10-form potentials.
The first four arise in either the electric or magnetic description of the
propagating R–R states. The existence of the 10-form was deduced in
section 10.8, from the study of type I divergences. Indeed, we argued there
for the coupling (13.2.7) for the 10-form, where the integral runs over
all spacetime. This fits with a point made in chapter 8, that it is natural
to interpret each Chan–Paton degree of freedom in the fully Neumann
theory as a 9-brane filling spacetime. All the other R–R couplings follow
from this one by T -duality, since each time we T -dualize in an additional

2 It should be mentioned that there is no local covariant action for a system with both electric
and magnetic charges, even though the physics is covariant and presumably satisfies the axioms
of local quantum field theory.
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direction the dimension of the p-branes goes down by one and the R–R
form loses an index.

The IIB theory also has a 0-form potential C0 , the R–R scalar. This
should couple to a ‘(−1)-brane.’ Indeed, there is a natural interpretation
to this: it is defined by Dirichlet boundary conditions in all directions,
time as well as space, so its world-sheet is zero-dimensional and the
integral (13.2.7) reduces to the value of C0 at that point. An object that is
localized in time as well as space is an instanton. Instantons in Euclidean
path integrals correspond to tunneling events, and we will argue shortly
that these must be present in string theory.

We will verify the R–R couplings of D-branes in the next section; for
the remainder of this section we will discuss some of the consequences.
The discovery that D-branes carry R–R charges neatly ties together two
loose ends. On the one hand, it was argued in section 12.1 that the
ordinary string states do not have R–R charges, but now we see that
string theory does have a source for every gauge field.3 This extends
the result from chapter 8, that the gauge field from compactification of
the antisymmetric tensor (under which all states in quantum field theory
are neutral) couples to winding strings. On the other hand, the existence
of so many different kinds of extended object, Dp-branes for every p,
might have seemed excessive, but we now see that these are in one-to-one
correspondence with the R–R potentials of the respective type II theories.

The divergence of the type I theory for groups other than SO(32) arose
from the R–R 10-form field equation. This divergence is unaffected by
toroidal compactification and again cancels only for SO(32). It would
have been surprising if toroidal compactification made a consistent theory
inconsistent, or the reverse, and it is not hard to verify explicitly that
this does not happen. The effect of toroidal compactification is to add
world-sheets that wrap around the periodic directions of spacetime. These
correspond to exchange of closed strings with winding number, which are
massive and so do not have dangerous tadpoles.

The spacetime interpretation of the divergence in the T -dual picture
with D-branes is again an inconsistency in the R–R field equations.
One can picture field lines emerging from each D-brane, orthogonal to
the noncompact dimensions, and these field lines must end somewhere.
Further, all D-branes must have the same sign of the charge: the full set
of D-branes is still a BPS state, being T -dual to the type I theory, and
the total mass is linear in the total charge for a BPS state. We know that
the disk tadpole is canceled by the unoriented cross-cap. In the T -dual
spacetime the cross-cap must be localized near one of the orientifold

3 In the next chapter we will discuss a seemingly different kind of R–R source, the black p-brane.
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(a)

(b)

T

2
1

Fig. 13.2. Effect of a T -duality in the 2-direction on D1-branes at various angles
in the (1,2) plane: (a) before T -duality; (b) after T -duality. The ×s indicate a
magnetic field on the D2-brane.

planes, because the string theory in the bulk is oriented. Thus we deduce
that the orientifold planes are sinks for R–R charge. If we T -dualize on
k dimensions there are 2k orientifold planes but still 16 D-branes, so the
charge of an orientifold plane must be −24−k times that of a D-brane of
the same dimension.

New connections between string theories

Starting from the toroidally compactified type I theory, we can reach
either d = 10 type II theory. Simply take an odd or even number of radii
to zero, while moving the D-branes and fixed planes off to infinity as
the dual spacetime expands. Thus, just as for the two heterotic theories,
these should be thought of as limits of a single theory. The theory has
many other states as well: we can take the limit while keeping some of
the D-branes in fixed positions, so that we obtain the compact theory
in a state with D-branes. The simple T -duality leads only to parallel
D-branes of equal dimension, but since the D-branes are dynamical we
can continuously vary their configurations. We can then reach states with
p-branes of different dimension as follows. Consider two D1-branes (D-
strings) in the IIB theory, from dualizing in eight directions. Let one be
along the 1-direction and the other be rotated to lie along the 2-direction.
As illustrated in figure 13.2, a further T -duality in the 2-direction reverses
Dirichlet and Neumann boundary conditions in this direction and so turns
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the first D-string into a D2-brane extended in the 1- and 2-directions but
the second into a D0-brane. Thus these can coexist in the IIA theory. Of
course T -duality leads only to states with 16 D-branes, but we understand
now that this is due to the R–R flux conservation in the compact space. In
a noncompact space the R–R flux can run to infinity and so any number
of D-branes should be allowed.

Thus, starting from the type I theory we can reach states that look like
the type IIA theory with any collection of even Dp-branes or the type IIB
theory with any collection of odd Dp-branes. Of course if we start with
an ordinary type II theory, T -duality will never give us open strings or
D-branes, so one might imagine that there is a different type II theory in
which D-branes are not allowed. This seems unlikely, however: everything
we know points to the uniqueness of the theory, so we do not have such
alternatives. Also, we will see in the next chapter that the inclusion of
D-branes leads to a much more elegant and symmetric theory.

In summary, we are now considering a single theory, which has a state
that contains no D-branes and looks like the ordinary IIA theory, a second
state (T -dual to the first) that contains no D-branes and looks like the
ordinary IIB theory, and a third state that contains 16 D9-branes (and
an orientifold 9-plane) that looks like the type I theory. It also contains
an infinite number of other states with very general configurations of
D-branes.

We can now write down the supersymmetry algebra for this theory:

{Qα, Qβ} = −2
[
PM + (2πα′)−1QNS

M

]
ΓMαβ , (13.2.9a)

{Q̃α, Q̃β} = −2
[
PM − (2πα′)−1QNS

M

]
ΓMαβ , (13.2.9b)

{Qα, Q̃β} = −2∑
p

τp

p!
QR
M1...Mp

(βM1 · · · βMp)αβ . (13.2.9c)

The spacetime supersymmetries Qα and Q̃α

The anticommutator (13.2.9b) of two right-moving supersymmetries is
the same as the heterotic string anticommutator (11.6.32), containing the
charge that couples to the NS–NS 2-form. The argument for the appear-
ance of this term is the same as before: the ṼαṼβ OPE contains the
right-moving momentum ∂̄Xµ, which involves both ordinary momentum
and winding number. Similarly, the VαVβ OPE contains the left-moving
momentum ∂Xµ, so the NS–NS charge appears in the left-moving anti-
commutator with the opposite sign. We have added a superscript NS to
distinguish this charge from the charges QR that couple to R–R forms.
Also, we have changed conventions so that all charges are now normalized
to one per unit world-volume of the respective extended object, and so
the string tension (2πα′)−1 appears explicitly. As discussed in section 11.6,

act respectively on the left-
and right-movers.
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QNS
M is the charge carried by the fundamental string, meaning the original

quantized string. Henceforth we use this term, or F-string, to distinguish
it from the D1-brane.
From the argument that D-branes are BPS states, we expect the R–R

charges to appear in the algebra as well, and the natural place for an R–R
charge to appear is in the anticommutator of a left- and a right-moving
supersymmetry. The sum on p runs over even values in the IIA theory
and odd values in the IIB theory. By analogy with the NS–NS case we
have included the D-brane tensions τp, whose values will be obtained in
the next section; the factor of 1/p! offsets the sum over permutations of
indices. To see that the algebra is correct, focus on a state that contains
a single static Dp-brane. The nonzero charge is Qµ1···µp , where the indices
run over the directions tangent to the Dp-brane. Note that

βµ1 · · · βµp = β⊥Γ0 , (13.2.10)

up to a possible overall sign that can be reabsorbed in the definition of Q̃;
β⊥ is the same as in eq. (13.2.5). It then follows that the anticommutator
of Q+β⊥Q̃ with any supercharge vanishes in this state, as required by the
BPS property. (In eq. (13.2.5) we included primes on the supercharges to
indicate that we were working in a T -dual description to the type I theory
with which we began. In writing the algebra (13.2.9) we are considering
an arbitrary state with D-branes, without necessarily obtaining it from
T -duality, so there are no primes.)
Incidentally, the central charge (13.2.9) is still not complete: the magnetic

NS–NS charge is missing. This is not carried by D-branes or F-strings.
We will discuss this further in the next chapter.
Finally, let us also explain the necessity of D-instantons, localized in

time. We could try to use T -duality in the time direction, but it is not clear
whether this is meaningful. Rather, consider D0-branes, whose world-lines
are one-dimensional, in a space with one compact spatial dimension. For
an ordinary quantized particle in a path sum description we would have to
include closed paths that wind around the compact direction. Such paths
are responsible for Casimir energies and other effects of compactification.
Presumably we must do the same for the D0-branes as well. The shortest
such winding path is a straight line in the compact spatial direction. This
is localized in time and so is essentially an instanton: Casimir energies,
in the path sum description, are essentially instanton effects. Further,
by a T -duality in the compact dimension we obtain a D-instanton that
is localized in all directions. We know from chapter 8 that the D-brane
action depends on the closed string coupling as O(1/g), so the D-instanton
amplitude is of order e−O(1/g). Thus we have found an example of the
enhanced nonperturbative effects that were inferred in section 9.7 from
the high order behavior of string perturbation theory.
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On the heterotic world-sheet there are no boundary conditions that
preserve the world-sheet gauge symmetries, and there is no indication
that D-branes exist. Nevertheless, we will see in the next chapter that the
D-branes of the type I/II theory enable us to learn a great deal about the
heterotic string as well.

13.3 The D-brane charge and action

There is no force between static BPS objects of like charge. The multi-
object state is still supersymmetric and so its energy is determined only by
its charge and is independent of the separations. For parallel Dp-branes,
the unbroken supersymmetry (13.2.5) is the same as for a single Dp-brane.
The vanishing of the force comes about from a cancellation between

attraction due to the graviton and dilaton and repulsion due to the R–R
tensor. We can calculate these forces explicitly from the usual cylinder
vacuum amplitude. The exchange of light NS–NS closed strings was
isolated in eq. (10.8.4). Modify this expression by removing the factors for
the momentum integrations in the Dirichlet directions and introducing a
term for the tension of a string stretched over a separation yµ:

ANS–NS ≈ iVp+14× 16

8π(8π2α′)5
∫ ∞

0

πdt

t2
(8π2α′t)(9−p)/2 exp

(
− ty2

2πα′
)

= iVp+12π(4π
2α′)3−pG9−p(y) (13.3.1)

with Gd(y) = 2−2π−d/2Γ(12d − 1)y2−d the scalar Green’s function. The
Chan–Paton weight is 2 here, from the two orientations of the open
string, and there is no factor of 1

2 from the orientation projection because
the physics is locally oriented. Due to supersymmetric cancellation in the
trace, the R–R exchange amplitude is

AR–R = −ANS–NS (13.3.2)

and so the total force vanishes as expected.
The field theory calculation (8.7.25) for the dilaton–graviton potential

changes only by the substitution 6 = (D − 2)/4→ 2, and so is

2iκ2τ2pG9−p(y) . (13.3.3)

Thus

τ2p =
π

κ2
(4π2α′)3−p . (13.3.4)

This satisfies the same T -duality relation as in the bosonic string. For the
R–R exchange, the low-energy action is

− 1

4κ210

∫
d10x (−G)1/2|Fp+2 |2 + µp

∫
Cp+1 . (13.3.5)
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The kinetic term is canonically normalized, so the propagator for any
given component (such as the one parallel to the D-brane) is 2κ210i/k

2,
and the field theory amplitude is

− 2κ210iµ
2
pG9−p(y) . (13.3.6)

Hence

µ2p =
π

κ210
(4π2α′)3−p = e2Φ0τ2p = T 2

p . (13.3.7)

The reader can carry out a similar calculation of the force between a D-
brane and an orientifold plane and show that it has an additional −(25−k).
We deduced from the cancellation of divergences that the charge of the
orientifold plane should have a factor of −(24−k); the extra factor of 2
in the force arises because the orientifold geometry squeezes the flux lines
into half the solid angle.

The calculation of the interaction confirms our earlier deduction that D-
branes carry the R–R charges. It is interesting to see how this is consistent
with our earlier discussion of string vertex operators. The R–R vertex
operator (12.1.14) is in the (−1

2 ,−1
2 ) picture, which can be used in almost

all processes. On the disk, however, the total left- plus right-moving ghost
number must be −2. With two or more R–R vertex operators, all can
be in the (−1

2 ,−1
2 ) picture (with PCOs included as well), but a single

vertex operator must be in either the (−3
2 ,−1

2 ) or the (−1
2 ,− 3

2 ) picture.

The (−1
2 ,−1

2 ) vertex operator is essentially e−φG0 times the (− 3
2 ,−1

2 )
operator, so besides the shift in the ghost number the latter has one
less power of momentum and one less Γ-matrix. The missing factor of
momentum turns F into C , and the missing Γ-matrix gives the correct
Lorentz representations for the potential rather than the field strength.

Dirac quantization condition

There is an important consistency check on the value of the R–R charge,
which generalizes the Dirac quantization condition for magnetic monopole
charge. Let us review the Dirac condition, shown in figure 13.3. Consider
a magnetic charge µm at the origin. The integrated flux is∫

S2

F2 = µm . (13.3.8)

Because the integral over a closed surface is nonzero, we cannot write
F2 = dA1 for any vector potential. However, we can write F2 = dA1

except along a Dirac string ending on the monopole. Now consider an
electric charge µe moving in this field. Its coupling to the field produces a
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P

D

Fig. 13.3. Sphere surrounding monopole, with a Dirac string running upward.
The particle path P is bounded by the lower cap D.

phase

exp

(
iµe

∮
P
A1

)
= exp

(
iµe

∫
D
F2

)
(13.3.9)

when the particle moves on a closed path P . The surface D spans P and
does not intersect the Dirac string. Now consider the limit as the path is
contracted to a small circle around the Dirac string. The phase becomes

exp

(
iµe

∫
S2

F2

)
= exp(iµeµm) . (13.3.10)

The Dirac string must be invisible, so this phase must be 1. Equivalently,
this is the condition that the phase (13.3.9) is unchanged if we instead
take the surface D′ = S2 − D spanning P in the upper hemisphere. The
result is the Dirac quantization condition,

µeµm = 2πn (13.3.11)

for some integer n.
A p-brane and (6−p)-brane are sources for Fp+2 and F8−p respectively.

These two field strengths are Poincaré dual to one another, so again there
is a Dirac quantization condition that must be satisfied by the product of
their charges. Let us think about Fp+2 as the field strength, so that the p-
brane is an electric source and the (6−p)-brane a magnetic source. In nine
dimensions a (6− p)-dimensional object is surrounded by a (p+2)-sphere,
so by analogy to the magnetic flux (13.3.8),∫

Sp+2

Fp+2 = 2κ210µ6−p . (13.3.12)

One can then repeat the same argument. For example, let the p-brane be
extended in the directions 4 ≤ µ ≤ p + 3 and the (6 − p)-brane in the

/
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directions p + 4 ≤ µ ≤ 9. The system essentially reduces to the three-
dimensional situation of figure 13.3 in the directions µ = 1, 2, 3, and the
charges must satisfy

µpµ6−p = κ210πn . (13.3.13)

Remarkably, the charges (13.3.7), arrived at in an entirely different way,
satisfy this relation with the minimum quantum n = 1.

D-brane actions

The coupling of a D-brane to NS–NS closed string fields is the same
Dirac–Born–Infeld action as in the bosonic string,

SDp = −µp
∫
dp+1ξ Tr

{
e−Φ[− det(Gab + Bab + 2πα′Fab)]1/2

}
, (13.3.14)

where Gab and Bab are the components of the spacetime NS–NS fields
parallel to the brane and Fab is the gauge field living on the brane. The
argument leading to this form is exactly as in the bosonic case, section 8.7.
Recall that for n D-branes at small separation, where the strings stretched
between them are light enough to be included in the low energy action,
the collective coordinates Xµ(ξ), gauge fields Aa(ξ), and their fermionic
partners λ(ξ) all become n× n matrices. The trace in the action is in this
n× n space. In addition there is a term

O([Xm,Xn]2) (13.3.15)

in the potential. As discussed in chapter 8, the effect of this potential is
that in the flat directions the collective coordinates become diagonal. They
can then be interpreted as n ordinary collective coordinates for n objects.
At small separation the full matrix dynamics is crucial, as we will see.

The coupling to the R–R background also includes corrections involving
the gauge field on the brane. Like the Born–Infeld action, these can be
deduced via T -duality. Consider, as an example, a 1-brane in the (1,2)
plane. The action is∫

C2 =

∫
dx0(dx1C01 +dx

2C02) =

∫
dx0 dx1

(
C01 +∂1X

2C02

)
. (13.3.16)

Under a T -duality in the 2-direction this becomes∫
dx0 dx1

(
C012 + 2πα′F12C0

)
. (13.3.17)

We have used the T -transformation of the C fields, eq. (13.1.5). A D-
brane at an angle is T -dual to one with a magnetic field, as in figure 13.2.
We are not keeping track of the normalization but one could, with the
result µp = µp−1/2πα′1/2 in agreement with the explicit calculation. The

/

dx2
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generalization of (13.3.17) to an arbitrary configuration, and to multiple
D-branes, gives the Chern–Simons-like result

iµp

∫
p+1

Tr

[
exp(2πα′F2 + B2 ) ∧

∑
q

Cq

]
. (13.3.18)

The expansion of the integrand (13.3.18) involves forms of various rank;
the integral picks out precisely the terms that are proportional to the
volume form of the p-brane world-volume. There are similar couplings
with the spacetime curvature in addition to the field strength; these can
be obtained from a string calculation.

Thus far we have given only the action for the bosonic fields on the
brane. For the leading fluctuations around a flat D-brane in flat spacetime
the fermionic action is of the usual Dirac form

− i

∫
dp+1ξ Tr(λΓaDaλ) . (13.3.19)

The full nonlinear supersymmetric form is left to the references.

Coupling constants

The ratio of the F-string tension to the D-string tension is

τF1

τD1
=

1

2πα′
κ

4π5/2α′
=

κ

8π7/2α′2
. (13.3.20)

Up to now there has been no natural convention for defining the additive
normalization of the dilaton field or the multiplicative normalization of
the closed string coupling g = eΦ. The dimensionless ratio (13.3.20) is
proportional to the closed string coupling, and it turns out to be very
convenient to take it as the definition of the coupling,

g =
τF1

τD1
. (13.3.21)

Then the gravitational coupling is

κ2 = 1
2(2π)

7g2α′4 (13.3.22)

and the D-brane tension is

τp =
1

g(2π)pα′(p+1)/2
= (2κ2)−1/2(2π)(7−2 )/2α′(3−p)/2 . (13.3.23)

Also, the constant appearing in the low energy actions of section 12.1 is

κ210 =
1
2(2π)

7α′4 ; (13.3.24)

this differs from the physically measured κ because the latter depends on
the dilaton background.

p
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Expanding the action (13.3.14) gives the coupling of the Yang–Mills
theory on the Dp-brane,

g2Dp =
1

(2πα′)2τp
= (2π)p−2gα′(p−3)/2 . (13.3.25)

Notice that for p = 3 this coupling is dimensionless, as expected in a
(3 + 1)-dimensional gauge theory. For p < 3 the coupling has units of
length to a negative power, and for p > 3 length to a positive power.
We now wish to obtain the relation among κ, gYM, and α′ in the type

I theory. We cannot quite identify gDp for p = 9 with gYM, because the
former has been obtained in a locally oriented theory and there are some
additional factors of 2 in the type I case. Rather than repeat the string
calculation we will make a more roundabout but possibly instructive
argument using T -duality.
First, we should note that the coupling (13.3.25) is for the U(n) gauge

theory of coincident branes in the oriented theory: it appears in the form

1

4g2Dp
Trf , (13.3.26)

where the trace is in the n × n fundamental representation. Now let us
consider moving the branes to an orientifold plane so that the gauge
symmetry is enlarged to SO(2n). An SU(n) generator t is embedded in
SO(2n) as

t̃ =

[
t 0
0 −tT

]
, (13.3.27)

because the orientation projection reverses the order of the Chan–Paton
factors and the sign of the gauge field. Comparing the low energy actions
gives

1

4g2Dp
Trf(t

2) =
1

4g2Dp,SO(2n)
Trv(̃t

2) (13.3.28)

and so g2Dp,SO(2n) = 2g2Dp.
Now consider the type I theory compactified on a k-torus with all radii

equal to R. The couplings in the lower-dimensional SO(32) theory are
related to those in the type I theory by

κ210−k = (2πR)−kκ2 (type I) , g210−k,YM = (2πR)−kg2YM (type I) .
(13.3.29)

In the T -dual picture, the bulk theory is of type II and the gauge fields
live on a D( − k)-brane, and

κ210−k = 2(2πR′)−kκ2 , g210−k,YM = g2D(9−k),SO(32) . (13.3.30)

The dimensional reduction for κ210−k has an extra factor of 2 because the
compact space is an orientifold, its volume halved. The gauge coupling is

9
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independent of the volume because the fields are localized on the D-brane.
Combining these results with the relations (13.3.22) and (13.3.25) gives,
independent of k, the type I relation

g2YM

κ
= 2(2π)7/2α′ (type I) . (13.3.31)

As one final remark, the Born–Infeld form for the gauge action applies
by T -duality to the type I theory:

S = − 1

(2πα′)2g2YM

∫
d10xTr

{
[− det(ηµν + 2πα′Fµν)]1/2

}
, (13.3.32)

whose normalization is fixed by the quadratic term in F . In the previous
chapter we obtained the tree-level string correction (12.4.28) to the type I
effective action. If the gauge field lies in an Abelian subgroup, the tensor
structure simplifies to

(2πα′)2

32g2YM

Trv
(
4FµνF

νσFσρF
ρµ − FµνF

νµFσρF
ρσ
)
. (13.3.33)

This is indeed the quartic term in the expansion of the Born–Infeld action,
as one finds by using

det 1/2(1 +M) = exp

[
1

2
tr

(
M − 1

2
M2 +

1

3
M3 − 1

4
M4 + . . .

)]
(13.3.34)

with Mµ
ν = 2πα′Fµσησν . The trace here is on the Lorentz indices, and

tr(x2k+1) = 0 for antisymmetric x. Note that only when the gauge field
can be diagonalized can we give a geometric interpretation to the T -dual
configuration and so derive the Born–Infeld form.

13.4 D-brane interactions: statics

Many interesting new issues arise with D-branes that are not parallel, or
are of different dimensions. In this section we focus on static questions.
The first of these concerns the breaking of supersymmetry. Let us consider
a Dp-brane and a Dp′-brane, which we take first to be aligned along the
coordinate axes. That is, we can partition the spacetime directions µ into
two sets SD and SN according to whether the coordinate Xµ has Dirichlet
or Neumann boundary conditions on the first D-brane, and similarly into
two sets S ′D and S ′N depending on the alignment of the second D-brane.
The DD coordinates are SD ∩ S ′D, the ND coordinates are SN ∩ S ′D, and so
on.
The first D-brane leaves unbroken the supersymmetries

Qα + (β⊥Q̃)α , β⊥ =
∏
m∈SD

βm . (13.4.1)
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Similarly the second D-brane leaves unbroken

Qα + (β⊥′Q̃)α = Qα + [β⊥(β⊥−1β⊥′)Q̃]α , β⊥′ =
∏
m∈S ′D

βm . (13.4.2)

The complete state is invariant only under supersymmetries that are of
both forms (13.4.1) and (13.4.2). These are in one-to-one correspondence
with those spinors left invariant by β⊥−1β⊥′. The operator β⊥−1β⊥′ is a
reflection in the DN and ND directions. Let us denote the total number
of DN and ND directions #ND. Since p − p′ is always even the number
#ND = 2j is also even. We can then pair these dimensions and write
(β⊥)−1β⊥′ as a product of rotations by π,

β ≡ (β⊥)−1β⊥′ = exp[πi(J1 + . . .+ Jj)] . (13.4.3)

In a spinor representation, each exp(iπJ) has eigenvalues ±i, so there will
be unbroken supersymmetries only if j is even and so #ND is a multiple of
4. In this case there are 8 unbroken supersymmetries, one quarter of the
original 32. Note that T -duality switches NN↔DD and ND↔DN and
so leaves #ND invariant. When #ND = 0, then (β⊥)−1β⊥′ = 1 identically
and there are 16 unbroken supersymmetries. This is the same as for the
original type I theory, to which it is T -dual.

An open string can have both ends on the same D-brane or one on
each. The p-p and p′-p′ spectra are the same as obtained before by T -
duality from the type I string, but the p-p′ strings are new. Each of the
four possible boundary conditions can be written with the doubling trick

Xµ(w, w̄) = Xµ(w) + X̃µ(w̄) (13.4.4)

in terms of one of two mode expansions,

Xµ(w) = xµ +

(
α′
2

)1/2[
−αµ0w + i

∑
m∈Z
m�=0

αµm
m

exp(imw)

]
, (13.4.5a)

Xµ(w) = i

(
α′
2

)1/2 ∑
r∈Z+1/2

αµr
r
exp(irw) . (13.4.5b)

The periodic expansion (13.4.5a) describes NN strings for

X̃µ(w̄) = Xµ(2π − w̄) (13.4.6)

and DD strings for

X̃µ(w̄) = −Xµ(2π − w̄) . (13.4.7)

The antiperiodic expansion (13.4.5b) similarly defines DN and ND strings,
with X̃µ(w̄) = ±Xµ(2π − ). For ψµ, the periodicity in the R sector is the
same as for Xµ because TF is periodic. In the NS sector it is the opposite.

w̄
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The string zero-point energy is zero in the R sector as always, because
bosons and fermions with the same periodicity cancel. In the NS sector it
is

(8− #ND)

(
− 1

24
− 1

48

)
+#ND

(
1

48
+

1

24

)
= −1

2
+

#ND

8
. (13.4.8)

The oscillators can raise the level in half-integer units, so only for #ND a
multiple of 4 is degeneracy between the R and NS sectors possible. This
agrees with the analysis above: the #ND = 2 and #ND = 6 systems cannot
be supersymmetric. Later we will see that there are supersymmetric bound
states when #ND = 2, but their description is rather different.

Branes at general angles

It is interesting to consider the case of D-branes at general angles to
one another. To be specific consider two D4-branes. Let both initially be
extended in the (2,4,6,8)-directions, and separated by some distance y1 in
the 1-direction. Now rotate one of them by an angle φ1 in the (2, 3) plane,
φ2 in the (4, 5) plane, and so on; call this rotation ρ. The supersymmetry
unbroken by the rotated 4-brane is

Qα + (ρ−1β⊥ρQ̃)α . (13.4.9)

Supersymmetries left unbroken by both branes then correspond to spinors
left invariant by

(β⊥)−1ρ−1β⊥ρ = (β⊥)−1β⊥ρ2 = ρ2 . (13.4.10)

In the usual s-basis the eigenvalues of ρ2 are

exp

(
2i

4∑
a=1

saφa

)
. (13.4.11)

In the 16 the (2s1, 2s2, 2s3, 2s4) run over all 16 combinations of ±1s;
each combination such that the phase (13.4.11) is 1 gives an unbroken
supersymmetry. There are many possibilities — for example:

• For generic φa there are no unbroken supersymmetries.

• For angles φ1 + φ2 + φ3 + φ4 = 0 mod 2π (but otherwise generic)
there are two unbroken supersymmetries, namely those with s1 =
s2 = s3 = s4. The rotated D4-brane breaks seven-eighths of the
supersymmetry of the first.

• For φ1 + φ2 + φ3 = φ4 = 0 mod 2π there are four unbroken
supersymmetries.

• For φ1 + φ2 = φ3 + φ4 = 0 mod 2π there are four unbroken
supersymmetries.
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• For φ1 + φ2 = φ3 = φ4 = 0 mod 2π there are eight unbroken
supersymmetries.

Also, when k angles are π/2 and the rest are zero this reduces to the
earlier analysis with #ND = 2k.

For later reference let us also describe these results as follows. Join
the coordinates into complex pairs, Z1 = X2 + iX3 and so on, with the
conjugate Za denoted Zā. Then ρ takes Za to exp(iφa)Z

a. The SO(8)
rotation group on the transverse dimensions has a U(4) subgroup that
preserves the complex structure. That is, it rotates Z ′a = UabZb, whereas

a general SO(8) rotation would mix in Zb̄ as well. The rotation ρ in
particular is the U(4) matrix

diag
[
exp(iφ1), exp(iφ2), exp(iφ3), exp(iφ4)

]
. (13.4.12)

When φ1 + φ2 + φ3 + φ4 = 0 mod 2π, which is the condition for two
supersymmetries to be unbroken, the determinant of ρ is 1 and so it
actually lies in the SU(4) subgroup of U(4). Then we can summarize the
above by saying that a general U(4) rotation breaks all the supersymmetry,
an SU(4) rotation breaks seven-eighths, an SU(3) or SU(2) × SU(2)
rotation breaks three-quarters, and an SU(2) rotation half. Further, if
we consider several branes, so that in general the rotations ρi cannot be
simultaneously diagonalized, then as long as all of them lie within a given
subgroup the number of unbroken supersymmetries is as above.

Now let us calculate the force between these rotated branes. The cylinder
graph involves traces over the p-p′ strings, so we need to generalize the
mode expansion to the rotated case. Letting the σ1 = 0 endpoint be on
the unrotated brane and the σ1 = π endpoint on the rotated brane, it
follows that the boundary conditions are

σ1 = 0 : ∂1Re(Za) = Im(Za) = 0 , (13.4.13a)

σ1 = π : ∂1Re[exp( iφa)Z
a]=Im[exp( iφa)Z

a] = 0 . (13.4.13b)

These are satisfied by

Za(w, w̄) = Za(w) +Za(−w̄) ,
= exp(−2iφa)Za(w + 2π) +Za(−w̄) , (13.4.14)

where w = σ1 + iσ2. This implies the mode expansion

Za(w) = i

(
α′
2

)1/2 ∑
r∈Z+νa

αar
r
exp(irw) , (13.4.15)

with νa = φa/π. The modes (αar )
† are linearly independent.

− −
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The partition function for one such complex scalar is

qE0

∞∏
m=0

[
1− qm+(φ/π)

]−1[
1− qm+1−(φ/π)]−1 = −iexp(φ

2t/π)η(it)

ϑ11(iφt/π, it)
(13.4.16)

with q = exp(−2πt), 0 < φ < π (else subtract the integer part of φ/π),
and

E0 =
1

24
− 1

2

(
φ

π
− 1

2

)2

. (13.4.17)

The definitions and properties of theta functions are collected in sec-
tion 7.2, but we reproduce here the results that will be most useful:

ϑ11(ν, it) = −2q1/8 sin πν
∞∏
m=1

(1− qm)(1− zqm)(1− z−1qm) ,
(13.4.18a)

ϑ11(−iν/t, i/t) = −it1/2 exp(πν2/t)ϑ11(ν, it) , (13.4.18b)

where z = exp(2πiν). Similarly in each of the sectors of the fermionic path
integral one replaces the Zα

β(it) that appears for parallel D-branes with4

Zα
β(φ, it) =

ϑαβ(iφt/π, it)

exp(φ2t/π)η(it)
. (13.4.19)

The full fermionic partition function is

1

2

[
4∏
a=1

Z0
0(φa, it)−

4∏
a=1

Z0
1(φa, it)−

4∏
a=1

Z1
0(φa, it)−

4∏
a=1

Z1
1(φa, it)

]
,

(13.4.20)
generalizing the earlier Z+

ψ (it). By a generalization of the abstruse iden-
tity (7.2.41), the fermionic partition function can be rewritten

4∏
a=1

Z1
1(φ

′
a, it) , (13.4.21)

where

φ′1 =
1

2
(φ1 + φ2 + φ3 + φ4) , φ′2 =

1

2
(φ1 + φ2 − φ3 − φ4) , (13.4.22a)

φ′3 =
1

2
(φ1 − φ2 + φ3 − φ4) , φ′4 =

1

2
(φ1 − φ2 − φ3 + φ4) . (13.4.22b)

This identity has a simple physical origin. If we refermionize, writing
the theory in terms of the free fields θα as in eq. (12.6.24), we get the

4 If one applies the formalism of the previous chapter, in the (P,P) spin structure there are two βγ
zero modes and two longitudinal ψ zero modes for a net 02/02. One can define this by a more
careful gauge fixing, or equivalently by adding a graviton vertex operator (which allows all the
zero modes to be soaked up) and relating the zero-momentum graviton coupling to the potential.
However, we simply rely on the physical input of the Coleman–Weinberg formula.
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form (13.4.21) directly. In particular, the exp(±iφ′a) are the eigenvalues of
ρ in the spinor 8 of SO(8).

Collecting all factors, the potential is

V = −
∫ ∞

0

dt

t
(8π2α′t)−1/2 exp

(
− ty21
2πα′

) 4∏
a=1

ϑ11(iφ
′
at/π, it)

ϑ11(iφat/π, it)
. (13.4.23)

Note that for nonzero angles the stretched strings are confined near the
point of closest approach of the two 4-branes. The function ϑ11(ν, it) is odd
in ν and so vanishes when ν = 0. If any of the φa vanish the denominator
has a zero. This is because the 4-branes become parallel in one direction
and the strings are then free to move in that direction. One must replace

ϑ11(iφat/π, it)
−1 → iLη(it)−3(8π2α′t)−1/2 . (13.4.24)

This gives the usual factors for a noncompact direction, L being the
length of the spatial box. Taking φ4 → 0 so the 4-branes both run in the
8-direction, one can T -dualize in this direction to get a pair of 3-branes
with relative rotations in three planes. The fermionic partition function is
unaffected, while the factors (13.4.24) are instead replaced by

η(it)−3 exp
[
− t(y

2
8 + y29)

2πα′
]
, (13.4.25)

allowing for the possibility of a separation in the (8,9) plane. Taking the
T -dual in the 9-direction instead one obtains 5-branes that are separated
in the 1-direction, extended in the (8,9)-directions, and with relative ro-
tations in the other three planes. The effect is an additional factor of
L9(8π

2α′t)−1/2. The extension to other p is straightforward.
If instead any of the φ′a vanishes, the potential is zero. The reason

is that there is unbroken supersymmetry: the phases (13.4.11) include
exp(±2iφ′a). Curiously this covers only eight of the sixteen phases (13.4.11),
so that if some phases (13.4.11) are unity but not those of the form
exp(±2iφ′a), then supersymmetry is unbroken but the potential is nonzero.
This is an exception to the usual rule that the vacuum loop amplitudes
vanish by Bose–Fermi cancellation. The rotated D-branes leave only two
supersymmetries unbroken, so that BPS multiplets of open strings contain
a single bosonic or fermionic state.
The potential is a complicated function of position, but at long distance

it simplifies. The exponential factor in the integral (13.4.23) forces t to be
small, and then the ϑ-functions simplify,

4∏
a=1

ϑ11(iφ
′
at/π, it)

ϑ11(iφat/π, it)
→

4∏
a=1

sinφ′a
sinφa

, (13.4.26)

by using the modular transformation of ϑ11. The t-integral then gives a
power of the separation y1. The result agrees with the low energy field

i
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(a) (b)

Fig. 13.4. (a) D-branes at relative angle. (b) Lower energy configuration.

theory calculation, including the angular factor. For 4-branes with all φa
nonzero the potential grows linearly with y1 at large distance, for 3-branes
with all φa nonzero it falls as 1/y1, and so on.

In nonsupersymmetric configurations a tachyon can appear. For sim-
plicity let only φ1 be nonzero, with 0 ≤ φ1 ≤ π. The NS ground state
energy is −(1/2) + (φ1/2π), and the first excited state ψ−(1/2)+(φ1/π)|0〉NS,
which survives the GSO projection, has weight −φ1/2π. Including the
energy from tension, the lightest state has

m2 =
y21

4π2α′2 −
φ1

2πα′ , 0 ≤ φ1 ≤ π . (13.4.27)

This is negative if the separation is small enough. A special case is φ1 = π,
when the 4-branes are antiparallel rather than parallel. The NS–NS and
R–R exchanges are then both attractive, and below the critical separation
y21

2 ′ the cylinder amplitude diverges as t → ∞. This is where
the tachyon appears — evidently it represents D4-brane/anti-D4-brane
annihilation. Even when the D-branes are nearly parallel they can lower
their energy by reconnecting as in figure 13.4(b), and this is the origin
of the instability. This is one example where the tachyon has a simple
physical interpretation and we can see that the decay has no end: the
reconnected strings move apart indefinitely. On the other hand, for the
same instability but with the strings wound on a two-torus there is a lower
bound to the energy.

13.5 D-brane interactions: dynamics

D-brane scattering

For parallel static D-branes the potential energy is zero, but if they are
in relative motion all supersymmetry is broken and there is a velocity-
dependent force. This can be obtained by an analytic continuation of
the static potential for rotated branes. Consider the case that only φ1

is nonzero, so the rotated brane satisfies X3 = X2 tanφ1. Analytically

= 2π α
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continue X2 → iX ′0 and let φ1 = −iu, with u > 0. Then

X3 = X ′0 tanh u , (13.5.1)

which describes a D-brane moving with constant velocity. Continue also
X0 → −iX ′2 to eliminate the spurious extra time coordinate. The interac-
tion amplitude (13.4.23) between the D-branes becomes

A = −iVp
∫ ∞

0

dt

t
(8π2α′t)−p/2 exp

(
− ty2

2πα′
)

ϑ11(ut/2π, it)
4

η(it)9ϑ11(ut/π, it)
, (13.5.2)

where we have extended the result to general p by using T -duality.5 It is
also useful to give the modular transformation

A =
Vp

(8π2α′)p/2
∫ ∞

0

dt

t
t(6−p)/2 exp

(
− ty2

2πα′
)

ϑ11(iu/2π, i/t)
4

η(i/t)9ϑ11(iu/π, i/t)
. (13.5.3)

We can write this as an integral over the world-line,

A = −i
∫ ∞

−∞
dτV (r(τ), v) , (13.5.4)

where

r(τ)2 = y2 + v2τ2 , v = tanh u , (13.5.5)

and

V (r, v) = i
2Vp

(8π2α′)(p+1)/2

∫ ∞

0
dt t(5−p)/2

× exp

(
− tr2

2πα′
)
(tanh u)ϑ11(iu/2π, i/t)

4

η(i/t)9ϑ11(iu/π, i/t)
. (13.5.6)

The interaction has a number of interesting properties. The first is
that as v → 0 (so that u → 0), it vanishes as v4 from the zeros of
the theta functions. We expect only even powers of v by time-reversal
invariance. The vanishing of the v2 interaction, like the vanishing of the
static interaction, is a consequence of supersymmetry. The low energy
field theory of the D-branes is a U(1) × U(1) supersymmetric gauge
theory with 16 supersymmetries. What we are calculating is a correction
to the effective action from integrating out massive states, strings stretched
between the D-branes. The vanishing of the v2 term is then consistent with
the assertion in section B.6 that with 16 supersymmetries corrections to
the kinetic term are forbidden — the moduli space is flat. If we had
instead taken φ3 = φ4 = π/2 so that #ND = 4, there would only be two
zeros in the numerator and thus a v2 interaction. This is consistent with

5 We find it difficult to keep track of the sign during the continuation, but it is easily checked by
looking at the contribution of NS–NS exchange in the static limit. Note that the ϑ11 are negative
for small positive u.
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the result that corrections to the kinetic term are allowed when there are
eight unbroken supersymmetries.

The interaction (13.5.6) is in general a complicated function of the
separation, but in an expansion in powers of the velocity the leading O(v4)
term is simple,

V (r, v) = −v4 Vp

(8π2α′)(p+1)/2

∫ ∞

0
dt t(5−p)/2 exp

(
− tr2

2πα′
)
+ O(v6)

= − v4

r7−p
Vp

α′p−3 2
2−2pπ(5−3p)/2Γ

(
7− p

2

)
+ O(v6) . (13.5.7)

At long distances this is in agreement with low energy supergravity. It is
also the leading behavior if we expand in powers of 1/r rather than v.

In general the behavior of V (r, v) as r → 0 is quite different from the
behavior as r → ∞. The r-dependence of the integral (13.5.6) arises from
the factor exp(−tr2/2πα′), so that t ≈ 2πα′/r2 governs the behavior at
given r. Large r corresponds to small t, where the asymptotic behavior is
given by tree-level exchange of light closed strings — hence the agreement
with classical supergravity. Small r corresponds to large t, where the
asymptotic behavior is given by a loop of the light open strings. The
cross-over is at r2 ∼ 2πα′. This is as we expect: string theory modifies
gravity at distances below the string scale.

This simple r-dependence of the v4 term is another consequence of
supersymmetry. The fact that this term is singular as r → 0 might seem
to conflict with the assertion that string theory provides a short-distance
cutoff. However, one must look more carefully. To obtain the small-r
behavior of the scattering amplitude (13.5.6), take the large-t limit without
expanding in v to obtain

V (r, v) ≈ −2Vp
∫ ∞

0

dt

(8π2α′t)(p+1)/2
exp

(
− tr2

2πα′
)
tanh u sin4 ut/2

sin ut
.

(13.5.8)
Since t ≈ 2πα′/r2 and v ≈ u, the arguments of the sines are ut ≈ 2πα′v/r2.
No matter how small v is the v4 term will cease to dominate at small
enough r. The oscillations of the integrand then smooth the small-r
behavior on a scale ut ≈ 1. The effective scale probed by the scattering is

r ≈ α′1/2v1/2 . (13.5.9)

A small-velocity D-brane probe is thus sensitive to distances shorter than
the string scale. This is in contrast to the behavior we have seen in string
scattering at weak coupling, but fits nicely with the understanding of
strongly coupled strings in the next chapter.

Let us expand on this result. A slower D-brane probes shorter distances,
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but the scattering process takes longer, δt ≈ r/v. Then

δx δt >∼ α′ . (13.5.10)

This is a suggestion for a new uncertainty relation involving only the
coordinates. It is another indication of ‘noncommutative geometry,’ per-
haps connected with the promotion of D-brane collective coordinates to
matrices.
For a pointlike D0-brane probe there is a minimum distance that can be

measured by scattering. The wavepacket in which it is prepared satisfies

δx >∼
1

mδv
=
gα′1/2
δv

. (13.5.11)

The combined uncertainties (13.5.9) and (13.5.11) are minimized by v ≈
g2/3, for which

δx>∼ g1/3α′1/2 . (13.5.12)

We will see the significance of this scale in the next chapter.

D0-brane quantum mechanics

The nonrelativistic effective Lagrangian for n D0-branes is

L = Tr

{
1

2gα′1/2
D0X

iD0X
i +

1

4gα′1/2(2πα′)2
[Xi, Xj]2

− i

2
λD0λ+

1

4πα′ λΓ
0Γi[Xi, λ]

}
. (13.5.13)

The first term is the usual nonrelativistic kinetic energy with m = τ0 =
1/gα′1/2, dropping the constant rest mass nτ0. The coefficients of the other
terms are most easily obtained by T -duality from the ten-dimensional
super-Yang–Mills action (B.6.13), with Ai → Xi/2πα′. We have taken
a basis in which the fermionic field λ is Hermitean, and rescaled λ to
obtain a canonical kinetic term. The index i runs over the nine spatial
dimensions. The gauge field A0 has no kinetic term but remains in the
covariant derivatives. It couples to the U(n) charges, so its equation of
motion amounts to the constraint that only U(n)-invariant states are
allowed. Only terms with at most two powers of the velocity have been
kept, not the full Born–Infeld action.
The Hamiltonian is

H = Tr

{
gα′1/2
2

pipi− 1

16π2gα′5/2
[Xi, Xj]2− 1

4πα′ λΓ
0Γi[Xi, λ]

}
. (13.5.14)

Note that the potential is positive because [Xi, Xj] is anti-Hermitean. The
canonical momentum, like the coordinate, is a matrix,

[piab, X
j
cd] = −iδijδadδbc . (13.5.15)
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Now we define

Xi = g1/3α′1/2Y i , (13.5.16)

so that also pi = pY i/g
1/3α′1/2. The Hamiltonian becomes

H =
g1/3

α′1/2
Tr

{
1

2
pY ipY i − 1

16π2
[Y i, Y j]2 − 1

4π
λΓ0Γi[Y i, λ]

}
. (13.5.17)

The parameters g and α′ now appear only in the overall normalization. It
follows that the wavefunctions are independent of the parameters when
expressed in terms of the variables Y i. In terms of the original coordinates
Xi their characteristic size scales as g1/3α′1/2, the same scale (13.5.12) found
above. The energies scale as g1/3/α′1/2 from the overall normalization of
H , and the characteristic time scale as the inverse of this, so we find again
the relation (13.5.10).

Recall from the discussion of D-brane scattering that at distances less
than the string scale only the lightest open string states (those which
become massless when the D-branes are coincident) contribute. In this
regime the cylinder amplitude reduces to a loop amplitude in the low
energy field theory (13.5.13).

The #ND = 4 system

Another low energy action with many applications is that for a Dp-brane
and Dp′-brane with relative #ND = 4. There are three kinds of light
strings: p-p, p-p′, and p′-p′, with ends on the respective D-branes. We will
consider explicitly the case p = 5 and p′ = 9, where we can take advantage
of the SO(5, 1)× SO(4) spacetime symmetry; all other cases are related to
this by T -duality.

The 5-5 and 9-9 strings are the same as those that arise on a single
D-brane. The new feature is the 5-9 strings; let us study their massless
spectrum. The NS zero-point energy is zero. The moding of the fermions
differs from that of the bosons by 1

2 , so there are four periodic world-sheet
fermions ψm, namely those in the ND directions m = 6, 7, 8, 9. The four
zero modes then generate 24/2 = 4 degenerate ground states, which we
label by their spins in the (6,7) and (8,9) planes,

|s3, s4〉NS , (13.5.18)

with s3, s4 taking values ± 1
2 . Now we need to impose the GSO projection.

This was defined in eq. (10.2.22) in terms of sa, so that with the extra sign
from the ghosts it is

− exp[πi(s3 + s4)] = +1 ⇒ s3 = s4 . (13.5.19)
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In terms of the symmetries, the four states (13.5.18) are invariant under
SO(5, 1) and form spinors 2 + 2′ of the ‘internal’ SO(4), and only the 2
survives the GSO projection. In the R sector, of the transverse fermions
ψi only those with i = 2, 3, 4, 5 are periodic, so there are again four ground
states

|s1, s2〉R . (13.5.20)

The GSO projection does not have a extra sign in the R sector so it
requires s1 = −s2. The surviving spinors are invariant under the internal

′ of the SO(4) little group of a massless particle.
The system has six-dimensional Lorentz invariance and eight unbroken

supersymmetries, so we can classify it by d = 6, N = 1 supersymmetry
(section B.7). The massless content of the 5-9 spectrum amounts to half of a
hypermultiplet. The other half comes from strings of opposite orientation,
9-5. The action is fully determined by supersymmetry and the charges; we
write the bosonic part:

= − 1

4g2D9

∫
d10xFMNF

MN − 1

4g2D5

∫
d6xF ′MNF

′MN

−
∫
d6x

[
Dµχ

†Dµχ+ g2D5

2

3∑
A=1

(χ
†
i σ

A
ijχj)

2

]
. (13.5.21)

The integrals run respectively over the 9-brane and the 5-brane, with
M = 0, . . . , 9, µ = 0, . . . , 5, and m = 6, . . . , 9. The covariant derivative is
Dµ = ∂µ+ iAµ− iA′µ with Aµ and A′µ the 9-brane and 5-brane gauge fields.
The field χi is a doublet describing the hypermultiplet scalars. The 5-9
strings have one endpoint on each D-brane so χ carries charges +1 and
−1 under the respective symmetries. The gauge couplings gDp were given
in eq. (13.3.25). We are using a condensed notation,

A′M → A′µ , X ′
m/2πα

′ . (13.5.22)

The massless 5-5 (and also 9-9) strings separate into d = 6, N = 1 vector
and hypermultiplets. The final potential term is the 5-5 D-term required
by the supersymmetry. One might have expected a 9-9 D-term as well by
T -duality, but this is inversely proportional to the volume of the D9-brane
in the (6,7,8,9)-directions, which we have taken to be infinite.
Under T -dualities in any of the ND directions, one obtains (p, p′) =

(8, 6), (7, 7), (6, 8), or (5, 9), but the intersection of the branes remains
(5 + 1)-dimensional and the p-p′ strings live on the intersection with
action (13.5.21). T -dualities in r NN directions give (p, p′) = (9 − r, 5 −
r). The vector components in the dualized directions become collective
coordinates as usual,

Ai → Xi/2πα
′ , A′i → X ′

i /2πα
′ . (13.5.23)

SO(4) and form a 2

S
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The term Diχ
†Diχ then becomes(

Xi −X ′
i

2πα′
)2
χ†χ . (13.5.24)

This just reflects the fact that when the (9 − r)-brane and (5 − r)-brane
are separated, the strings stretched between them become massive.

The action for several branes of each type is given by the non-Abelian
extension.

13.6 D-brane interactions: bound states

Bound states of D-branes with strings and with each other, and super-
symmetric bound states in particular, present a number of interesting
dynamical problems. Further, these bound states will play an important
role in the next chapter in our attempts to deduce the strongly coupled
behavior of string theory.

FD bound states

The first case we consider is a state with p F-strings and q D-strings in
the IIB theory, all at rest and aligned along the 1-direction. For a state
with these charges, the supersymmetry algebra (13.2.9) becomes

1

2

{[
Qα
Q̃α

]
,

[
Q
†
β Q̃

†
β

]}
=Mδαβ

[
1 0
0 1

]
+

L1

2πα′ (Γ
0Γ1)αβ

[
p q/g

q/g −p
]
,

(13.6.1)
where L1 is the length of the system. The eigenvalues of Γ0Γ1 are ±1, so
those of the right-hand side are

M ± L1
(p2 + q2/g2)1/2

2πα′ . (13.6.2)

The left-hand side of the algebra is positive — its expectation value in
any state is a matrix with positive eigenvalues. This implies a BPS bound
on the total energy per unit length,

M

L1
≥ (p2 + q2/g2)1/2

2πα′ . (13.6.3)

This inequality is saturated by the F-string, which has (p, q) = (1, 0), and
by the D-string, with (p, q) = (0, 1).

For one F-string and one D-string, the total energy per unit length is

τ(0,1) + τ(1,0) =
g−1 + 1

2πα′ . (13.6.4)
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E E

(a) (b) (c)

D F D F D

Fig. 13.5. (a) Parallel D-string and F-string. The loop signifies a 7-sphere sur-
rounding the strings. (b) The F-string breaks, its ends attaching to the D-string.
(c) Final state: D-string with flux.

This exceeds the BPS bound

τ(1,1) =
(g−2 + 1)1/2

2πα′ , (13.6.5)

and so this configuration is not supersymmetric. One can also see this
directly. The F-string is invariant under supersymmetries satisfying

left-moving: Γ0Γ1Q = Q , right-moving: Γ0Γ1Q̃ = −Q̃ , (13.6.6)

and no linear combination of these is of the form Qα + (β⊥Q̃)α preserved
by the D-string (note that β⊥Γ0Γ1 = Γ0Γ1β⊥).
However, the system can lower its energy as shown in figure 13.5. The

F-string breaks, with its endpoints attached to the D-string. The endpoints
can then move off to infinity, leaving only the D-string behind. This cannot
be the whole story because the F-string carries the NS–NS 2-form charge,
as measured by the integral of ∗H over the 7-sphere in the figure: this flux
must still be nonzero in the final configuration. This comes about because
the F-string endpoints are charged under the D-string gauge field, so an
electric flux runs between them. This flux remains in the end. Further,
from the D-string action

S1 = −T1

∫
d2ξ e−Φ[− det(Gab + Bab + 2πα′Fab)]1/2 , (13.6.7)

one sees that Bµν has a source proportional to the invariant electric flux
Fab = Fab + Bab/2πα

′ on the D-string.

The simplest way to see that the resulting state is supersymmetric is
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via T -duality along the 1-direction. The D1-brane becomes a D0-brane.
The electric field is T -dual to a velocity, Ȧ1 → Ẋ1/2πα′, so the T -dual
state is a D0-brane moving with constant velocity. This is invariant under
the same number of supersymmetries as a D-brane at rest, namely the
Lorentz boost of those supersymmetries. The boosted supersymmetries
are linear combinations of the unbroken and broken supersymmetries of
the D0-brane at rest. All of this carries over by T -duality to the D1–F1
system. We leave it as an exercise to verify that the tension takes the BPS
value.

The F-string ‘dissolves’ in the D-string, leaving flux behind. For sep-
arated D- and F-strings there is an attractive force at long distance, a
consequence of the lack of supersymmetry. One might have expected a
more standard description of the bound state in terms of the F-string
moving in this potential well. However, this description breaks down at
short distance; happily, the D-brane effective theory gives a simple alter-
native description. Note that the bound state is quite deep: the binding
tension

τ(1,0) + τ(0,1) − τ(1,1) =
1− O(g)

2πα′ (13.6.8)

is almost the total tension of the F-string.

String theory with a constant open string field strength has a simple
world-sheet description. The variation of the world-sheet action includes
a surface term ∮

∂M
ds δXµ

(
1

2πα′ ∂nXµ + iFµν∂tX
ν

)
, (13.6.9)

implying the linear boundary condition

∂nXµ + 2πα′iFµν∂tXν = 0 . (13.6.10)

This can also be seen from the T -dual relation to the moving D-brane.

All of the above extends immediately to p F-strings and one D-string
forming a supersymmetric (p, 1) bound state. The general case of p F-
strings and q D-strings is more complicated because the gauge dynamics
on the D-strings is non-Abelian. A two-dimensional gauge coupling has
units of inverse length-squared; we found the precise value g2D1 = g/2πα′
in eq. (13.3.25). For dynamics on length scale l the effective dimensionless
coupling is gl2/2πα′. No matter how weak the underlying string coupling
g, the D-string dynamics at long distances is strongly coupled — this is
a relevant coupling. The theory cannot then be solved directly, but it has
been shown by indirect means that there is a bound string saturating the
BPS bound for all (p, q) such that p and q are relatively prime. We will
sketch the argument and leave the details to the references.
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Focus for example on two D-strings and one F-string. There is a state
with a separated (1, 1) bound state and (0, 1) D-string. The tension

τ(1,1) + τ(0,1) =
(g−2 + 1)1/2 + g−1

2πα′ =
2g−1 + g/2 + O(g3)

2πα′ (13.6.11)

exceeds the BPS bound

τ(1,2) =
(4g−2 + 1)1/2

2πα′ =
2g−1 + g/4 + O(g3)

2πα′ . (13.6.12)

The electric flux is on the first D-brane, so as a U(2) matrix this is
proportional to[

1 0
0 0

]
=

1

2

[
1 0
0 1

]
+

1

2

[
1 0
0 −1

]
. (13.6.13)

We have separated this into U(1) and SU(2) pieces. When we bring the two
D-strings together, the SU(2) field becomes strongly coupled as we have
explained but the U(1) part remains free. The U(1) flux is then unaffected
by the dynamics, and in particular there are no charged fields that might
screen it. However, if the SU(2) part is screened by the massless fields
on the D-strings, then the total energy in the flux (which is proportional
to the trace of the square of the matrix) is reduced by a factor of 2,
from (13.6.11) to the BPS value (13.6.12).

That this does happen has been shown as follows. Focus on four of
the 16 supersymmetries, forming the equivalent of d = 4, N = 1 super-
symmetry. The six scalars X4,...,9 can be written as three chiral superfields
Φi, with the potential coming from a superpotential Tr(Φ1[Φ2,Φ3]). Now
change the problem, adding to the superpotential a mass term,

W (Φ) = Tr(Φ1[Φ2,Φ3]) + mTr(ΦiΦi) . (13.6.14)

This is an example of a general strategy for finding supersymmetric bound
states: the D-string is a BPS state even under the reduced supersymmetry
algebra. Its mass is then determined by the algebra and cannot depend
on the parameter m. By now increasing m we can reduce the effective
dimensionless coupling g/2πα′m2 to a value where the system becomes
weakly coupled. It can then be shown that the SU(2) system has a
supersymmetric ground state.

The same argument goes through for all relatively prime p and q. When
these are not relatively prime, (p, q) = (kp, kq) and the system is only
marginally unstable against falling apart into k subsystems. The dynamics
is then quite different, and there is believed to be no bound string in this
case. The bound string formed from p F-strings and q D-strings is called
a (p, q)-string (as opposed to a p-p′ string, which is an open string whose
endpoints move on Dp- and Dp′-branes).
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D0–Dp BPS bound

For a system with the charges of a D0-brane and a Dp-brane extended in
the (1,. . . , p)-directions, the supersymmetry algebra becomes

1

2

{[
Qα
Q̃α

]
,
[
Q
†
β Q̃

†
β

]}
=M

[
1 0
0 1

]
δ +

[
0 Z

−Z† 0

]
Γ0

β , (13.6.15)

where

Z = τ0 + τpVpβ , β = β1 · · · βp . (13.6.16)

We have wrapped the Dp-brane on a torus of volume Vp so that its mass
will be finite. The positivity of the left-hand side implies that

M2

[
1 0
0 1

]
≥
[

0 Z

−Z† 0

]
Γ0

[
0 Z

−Z† 0

]
Γ0 =

[
ZZ† 0

0 Z†Z

]
,

(13.6.17a)

ZZ† = τ20 + τpVp(β + β†) + τ2pV
2
p ββ

† . (13.6.17b)

For p a multiple of 4, β is Hermitean and β2 = 1 by the same argument
as in eq. (13.4.3). The BPS bound is then

M ≥ τ0 + τpVp . (13.6.18)

For p = 4k + 2, β is anti-Hermitean, β2 = −1, and the BPS bound is

M ≥ (τ20 + τ2pV
2
p )

1/2 . (13.6.19)

These bounds are consistent with our earlier results on supersymmetry
breaking, noting that #ND = p. For p = 4k, a separated 0-brane and
p-brane saturate the BPS bound (13.6.18), agreeing with the earlier con-
clusion that they leave some supersymmetry unbroken. For p = 4k + 2
they do not saturate the bound and so cannot be in a BPS state, as found
before. The reader can extend the analysis of the BPS bound to general
values of p and p′.

D0–D0 bound states

The BPS bound for the quantum numbers of two 0-branes is 2τ0, so
any bound state will be at the lower edge of the continuous spectrum of
two-body states. Nevertheless there is a well-defined, and as it turns out
very important, question as to whether a normalizable state of energy 2τ0
exists.

Let us first look at an easier problem. Compactify the 9-direction and
add one unit of compact momentum, p9 = 1/R. In a two-body state this
momentum must be carried by one 0-brane or the other for minimum

αβ
γα

γα
γ

τ0
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total energy

τ0 +

(
τ0 +

p29
2τ0

)
. (13.6.20)

For a bound state of mass 2τ0, on the other hand, the minimum energy is

2τ0 +
p29
4τ0

, (13.6.21)

a finite distance below the continuum states. The reader may note some
resemblance between these energies and the earlier (13.6.11) and (13.6.12).
In fact the two systems are T -dual to one another. Taking the T -dual
along the 9-direction, the D0-branes become D1-branes and the unit of
momentum becomes a unit of fundamental string winding to give the
(1, 2) system, now at finite radius R′ = α′/R. Quantizing the (1, 2) string
wrapped on a circle gives the 28 states of an ultrashort BPS multiplet. In
terms of the previous analysis, the SU(2) part has a unique ground state
in finite volume while the zero modes of the 16 components of the U(1)
gaugino generate 28 states. The earlier analysis is valid for the T -dual
radius R′ large, but having found an ultrashort multiplet we know that
it must saturate the BPS bound exactly — its mass is determined by its
charges and cannot depend on R. Similarly for n D-branes with m units
of compact momentum, when m and n are relatively prime there is an
ultrashort multiplet of bound states.

Now let us try to take R →∞ in order to return to the earlier problem.
Having found that a bound state exists at any finite radius, it is natural
to suppose that it persists in the limit. Since for any n we can choose
a relatively prime m, it appears that there is one ultrashort bound state
multiplet for any number of D0-branes. However, it is a logical possibility
that the size of these states grows with R such that the states becomes
nonnormalizable in the limit. To show that the bound states actually exist
requires a difficult analysis, which has been carried out fully only for
n = 2.

D0–D2 bound states

Here the BPS bound (13.6.19) puts any bound state discretely below the
continuum. One can see hints of a bound state: the long-distance force
is attractive, and for a coincident 0-brane and 2-brane the NS 0-2 string
has a negative zero-point energy (13.4.8) and so a tachyon (which survives
the GSO projection), indicating instability towards something. We cannot
follow the tachyonic instability directly, but there is a simple alternative
description of where it must end up.

Let us compactify the 1- and 2-directions and take the T -dual only
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in the first, so that the 0-brane becomes a D-string wrapped in the 1-
direction and the 2-brane becomes a D-string wrapped in the 2-direction.
Now there is an obvious state with the same charges and lower energy,
a single D-string running at an angle to wrap once in each direction.
A single wrapped D-string is a BPS state (an ultrashort multiplet to be
precise). Now use T -duality to return to the original description. As in
figure 13.2, this will be a D2-brane with a nonzero magnetic field, such
that ∫

D2
F2 = 2π . (13.6.22)

We can also check that this state has the correct R–R charges. Expanding
out the Chern–Simons action (13.3.18) gives

iµ2

∫
(C3 + 2πα′F2 ∧ C1 ) . (13.6.23)

Thus the magnetic field induces a D0-brane charge on the D2-branes, and
the normalizations are consistent with µ0 = 4π2α′µ2.

The D0-brane dissolves in the D2-brane, turning into flux. The reader
may note several parallels with the discussion of a D-string and an F-
string, and wonder whether the systems are equivalent. In fact, they are
not related to one other by T -duality or any other symmetry visible in
string perturbation theory, but we will see in the next chapter that they
are related by nonperturbative dualities.
The analysis extends directly to n D2-branes and m D0-branes: there is

a single ultrashort multiplet of bound states.

D0–D4 bound states

As with the D0–D0 case, the BPS bound (13.6.18) implies that any bound
state is marginally stable. We can proceed as before, first compactifying
another dimension and adding a unit of momentum so that the bound
state lies below the continuum. The low energy D0–D4 action is as
discussed at the end of the previous section. Again it is an interacting
theory, with a coupling that becomes large at low energy, but again the
existence of supersymmetric bound states can be established by deforming
the Hamiltonian; the details are left to the references. A difference from the
D0–D0 case is that these bound states are invariant only under one-quarter
of the original supersymmetries, the intersection of the supersymmetries
of the 0-brane and of the 4-brane. The bound states then lie in a short
(but not ultrashort) multiplet of 212 states. It is useful to imagine that the
D4-brane is wound on a finite but large torus. In this limit the massless
4-4 strings are essentially decoupled from the 0-4 and 0-0 strings. The 16
zero modes of the massless 4-4 fermion then generate 28 ground states
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delocalized on the D4-brane. The fermion in the 0-4 hypermultiplet has
eight real components (the smallest spinor in six dimensions) and their
zero modes generate 24 ground states localized on the D0-brane. The
tensor product gives the 212 states.

For two D0-branes and one D4-brane, one gets the correct count
as follows. We can have the two D0-branes bound to the D4-brane
independently of one another; for a large D4-brane their interactions can
be neglected. Each D0-brane has 24 states as noted above, eight bosonic
and eight fermionic. Now count the number of ways two D0-branes can
be put into these states: there are eight states with both D0-branes in the
same (bosonic) state and 1

2 × 8 × 7 states with the D-branes in different

bosonic states, for a total of 1
2×8×9 states. There are also 1

2×8×7 states
with the D0-branes in different fermionic states and 8 × 8 with one in a
bosonic state and one a fermionic state. Summing and tensoring with the
28 D4-brane states gives 215 states. However, we could also imagine the
two D0-branes first forming a D0–D0 bound state. The SU(2) dynamics
decouples and the resulting U(1) dynamics is essentially the same as that
of a single D0-brane. This bound state can then bind to the D4-brane,
giving 24+8 states as for a single D0-brane. The total number is 9× 212.

This counting extends to n D0-branes and one D4-brane. The degener-
acy Dn is given by the generating function

∞∑
n=0

qnDn = 28
∞∏
k=1

(
1 + qk

1− qk

)8

. (13.6.24)

The term k in the product comes from bound states of k D0-branes
which are then bound to the D4-brane. For each k there are eight bosonic
states and eight fermionic states, and the expression (13.6.24) is then the
product of the partition functions for all species. The coefficient of q2

in its expansion is indeed 9 × 212. This proliferation of bound states is
in contrast to the single ultrashort multiplet for n D0-branes and one
D2-brane. The difference is that all the latter states are spread over the
D2-brane, whereas the D0–D4 bound states are localized.

By T -duality the above system is converted into one D0-brane and n
D4-branes, so the number of bound states of the latter is the same Dn.
For m D0-branes and n D4-branes one gets the correct answer by the
following argument. The equality of the degeneracy for one D0-brane and
n D4-branes with that for n D0-branes and one D4-brane suggests that
the systems are really the same — that in the former case we can somehow
picture the D0-brane bound to n D4-branes as separating into n ‘fractional
branes,’ each of which can then bind to each other in all combinations as
in the earlier case. Then m D0-branes separate into mn fractional branes.
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The degeneracy would then be Dmn, defined as in eq. (13.6.24). This is
apparently correct, but the justification is not simple.

D-branes as instantons

The D0–D4 system is interesting in other ways. Consider its scalar poten-
tial

g2D0

4

3∑
A=1

(χ
†
i σ

A
ijχj)

2 +
5∑
i=1

(Xi −X ′
i )
2

2πα′
χ†χ , (13.6.25)

as at the end of the previous section. The second term by itself has two
branches of zeros,

Xi −X ′
i = 0 , χ �= 0 (13.6.26)

and

Xi −X ′
i �= 0 , χ = 0 . (13.6.27)

The first of these, where the hypermultiplet scalars are nonzero, is known
as a Higgs branch. The second, where the vector multiplet scalars are
nonzero, is known as a Coulomb branch. In the present case the first term
in the potential, the D-term, eliminates the Higgs branch. The condition

DA ≡ χ
†
i σ

A
ijχj = 0 (13.6.28)

implies that χ = 0. For example, if there were a nonzero solution we could
by an SU(2) rotation make only the upper component nonzero, and then
D3 is nonzero. However, for two D4-branes χ acquires a D4-brane index
a = 1, 2 and the D-term condition is

χ
†
iaσ

A
ijχja = 0 . (13.6.29)

This now is solved by

χia = vδia (13.6.30)

for any v, or more generally

χia = vUia (13.6.31)

for any constant v and unitary U. Further, U can be taken to lie in SU(2)
by absorbing its phase into v, and the latter can then be made real by a
4–4 U(1) gauge rotation.

The Coulomb branch has an obvious physical interpretation, corre-
sponding to the separation of the D0- and D4-brane in the directions
transverse to the latter. But what of the Higgs branch?
Recall that non-Abelian gauge theories in four Euclidean dimensions

have classical solutions, instantons, that are localized in all four dimen-
sions. Their distinguishing property is that the field strength is self-dual

( )2
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or anti-self-dual,

∗F2 = ±F2 , (13.6.32)

so that the Bianchi identity implies the field equations. Because the classical
theory is scale-invariant, the characteristic size of the configuration is
undetermined — there is a family of solutions parameterized by scale size
ρ. The U(n) gauge theory on coincident D4-branes is five-dimensional, so
a configuration that looks like an instanton in the four spatial dimensions
and is independent of time is a static classical solution, a soliton.

This soliton has many properties in common with the D0-brane bound
to the D4-branes. First, it is a BPS state, breaking half of the supersym-
metries of the D4-branes. The supersymmetry variation of the gaugino
is

δλ ∝ FMNΓ
MNζ . (13.6.33)

Here the nonzero terms involve the components of ΓMN in the spatial
directions of the D4-brane. These are then generators of the SO(4) =
SU(2)× SU(2) rotation group. The self-duality relation (13.6.32) amounts
to the statement that only the generators of the first or second SU(2)
appear in the variation. The ten-dimensional spinor ζ decomposes into

(4, 2, 1) + (4, 1, 2) (13.6.34)

under SO(5, 1) × SU(2) × SU(2), so half the components are invariant
under each SU(2) and half the supersymmetry variations (13.6.33) are
zero. Second, it carries the same R–R charge as the D0-brane. Expanding
the Chern–Simons action (13.3.18) gives the term

1

2
(2πα′)2µ4

∫
C1 ∧ Tr(F2 ∧ F2 ) . (13.6.35)

The topological charge of the instanton is∫
D4

Tr(F2 ∧ F2 ) = 8π2 , (13.6.36)

so the total coupling to a constant C1 is (4π2α′)2µ4 = µ0, exactly the charge
of the D0-brane. Finally, the moduli (13.6.31) for the SU(2) Higgs branch
just match those of the SU(2) instanton, v to the scale size ρ and U to the
orientation of the instanton in the gauge group.6 Let us check the counting
of the moduli, as follows. There are eight real hypermultiplet scalars in
χ. The three D-term conditions and the gauge rotation each remove one

6 For a single instanton the latter are not regarded as moduli because they can be changed by a
global gauge transformation, but with more than one instanton there are moduli for the relative
orientation. The same is true of the D0-branes.

′
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to leave four moduli. There are also four additional 0-0 moduli for the
position of the particle within the D4-branes.
The precise connection between the D0-brane and the instanton is this.

When the scale size ρ is large compared to the string scale, the low energy
effective field theory on the D4-branes should give a good description
of the instanton. However, as ρ is reduced below the string length, this
description is no longer accurate. Happily, the D0-brane picture provides
a description that is accurate in the opposite limit: the point v = 0 where
the Higgs and Coulomb branches meet is the zero-size instanton, and
turning on the Higgs moduli expands the instanton: as in the D0–D2
case, the D0-brane is dissolving into flux. This picture also accounts for
the absence of a Higgs branch for a single D4-brane because there are no
instantons for U(1).
The gauge field of the small instanton can be measured directly. Recall

that a slow D0-brane probe is sensitive to distances below the string scale.
One can consider the D0–D4 bound system with an additional probe D0-
brane. This has been studied in a slightly different form, taking first the
T -dual to the D5–D9 system and using a D1-brane probe. As discussed
earlier, only the effective field theory of the light open string states enters,
though this is still rather involved because each open string endpoint can
lie on a D1-, D5-, or D9-brane. However, after integrating out the massive
fields (which get mass because they stretch from the probe to the other D-
branes), the effective theory on moduli space displays the instanton gauge
field. This provides a physical realization of the so-called Atiyah–Drinfeld–
Hitchin–Manin (ADHM) construction of the general instanton solution.
Note the following curious phenomenon. Start with a large instanton,

an object made out of the gauge fields that live on the D4-branes. Contract
it to zero size, where the branches meet, and now pull it off the D4-branes
along the Coulomb branch. The ‘instanton’ can no longer be interpreted as
being made of the gauge fields, because these exist only on the D4-branes.
It should be noted that because the Higgs moduli are 0-4 fields their

vertex operators are rather complicated: the different boundary conditions
on the two endpoints mean that the world-sheet boundary conditions on
the two sides of the vertex operator are different. They are similar to
orbifold twisted state vertex operators — in fact, using the doubling trick,
they are essentially half of the latter. It is therefore difficult to discuss in
string theory a background with nonzero values for these fields, so the
D0-brane picture is really an expansion in ρ, whereas the low energy field
theory is an expansion in 1/ρ.
Returning to the bound state problem, the system with m D0-branes

bound to n D4-branes is equivalent to quantum mechanics on the moduli
space of m SU(n) instantons. The number of supersymmetric states is
related to the topology of this space, and the answer has been argued
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to be Dmn as asserted before. (The connection with the fractional-brane
picture is complicated and the latter is perhaps unphysical.)

D0–D6 bound states

The relevant bound is (13.6.19) and again any bound state would be
below the continuum. This is as in the D0–D2 case, but the situation is
different. The long-distance force is repulsive and the zero-point energy
of coincident 0-6 NS strings is positive, so there is no sign of instability
toward a supersymmetric state. One can give 0-brane charge to the 6-
brane by turning on flux, but there is no configuration that has only these
two charges and saturates the BPS bound. So it appears that there are no
supersymmetric bound states.

D0–D8 bound states

This system is complicated in a number of ways and we will not pursue
it. As one example of the complication, the R–R fields of the D8-brane
do not fall off with distance (it has codimension 1, like a planar source in
3+1 dimensions). The total energy is then infinite, and when the couplings
to the dilaton and metric are taken into account the dilaton diverges a
finite distance from the D8-brane. Thus the D8-brane cannot exist as an
independent object, but only in connection with orientifold planes such as
arise in the T -dual of the type I theory.

Exercises

13.1 (a) For the various massless fields of each of the type II string
theories, write out the relation between the field at (xµ, xm) and at the
orientifold image point (xµ,−xm). The analogous relation for the bosonic
string was given as eq. (8.8.3).
(b) At the eight-dimensional orientifold plane (obtained from type I by
T -duality on a single axis), which massless type IIA fields satisfy Dirichlet
boundary conditions and which Neumann ones?

13.2 Find the scattering amplitude involving four bosonic open string
states attached to a Dp-brane. [Hint: this should be very little work.]

13.3 (a) Consider three D4-branes that are extended along the (6,7,8,9)-,
(4,5,8,9)-, and (4,5,6,7)-directions respectively. What are the unbroken su-
persymmetries?
(b) Add a D0-brane to the previous configuration. Now what are the
unbroken supersymmetries?
(c) Call this configuration (p1, p2, p3, p4) = (4, 4, 4, 0). By T -dualities, what
other configurations of D-branes can be reached?
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13.4 (a) Calculate the static potential between a D2-brane and a D0-brane
from the cylinder amplitude by applying T -duality to the result (13.4.23).
(b) Do the same calculation in low energy field theory and compare the
result with part (a) at distances long compared to the string scale.
(c) Extend parts (a) and (b) to a Dp-brane and D(p + 2)-brane oriented
such that #ND = 2.

13.5 Repeat parts (a) and (b) of the previous exercise for a D0-brane and
D6-brane.

13.6 (a) Find the velocity-dependent interaction between a D4-brane and
D0-brane due to the cylinder. You can do this by analytic continuation
of the potential (13.4.23), with appropriate choice of angles.
(b) Expand the interaction in powers of v and find the explicit r-depen-
dence at O(v2).
(c) Compare the interaction at distances long compared to the string
scale with that obtained from the low energy field theory. One way to
do this is to determine the long-range fields of the D4-brane by solving
the linearized field equations with a D4-brane source, insert these into the
D0-brane action, and expand in the velocity.

13.7 For the D4-brane and D0-brane, determine the interaction at dis-
tances short compared to the string scale as follows. Truncate the low
energy action given at the end of section 13.5 to the massless 0-0 strings
and the lightest 0-4 strings. The D0–D4 interaction arises as a loop cor-
rection to the effective action of the 0-0 collective coordinate, essentially a
propagator correction for the field we called X ′

i . Calculate this Feynman
graph and compare with part (b) of the previous exercise at short distance.
This is a bit easier than the corresponding D0–D0 calculation because the
0-4 strings do not include gauge fields. You need the Lagrangian for the
0-4 fermions; this is the dimensional reduction of the (5 + 1)-dimensional
fermionic Lagrangian density −iψΓµDµψ.
13.8 (a) Continuing the previous two exercises, obtain the full v-depen-
dence at large r from the cylinder amplitude. Compare the result with the
low energy supergravity (graviton–dilaton–R–R) exchange.
(b) Obtain the full v-dependence at small r and compare with the same
from the open string loop.

13.9 Find a configuration of an infinite F-string and infinite D3-brane
that leaves some supersymmetry unbroken.

13.10 From the D-string action, calculate the tension with q units of elec-
tric flux and compare with the BPS bound (13.6.3) for a (q, 1) string.

13.11 Carry out in detail the counting that leads to the bound state de-
generacy (13.6.24).
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13.12 Consider one of the points in figure 13.5(b) at which the F-string
attaches to the D-string. At this point a (1, 0) and a (0, 1) string join
to form a (1, 1) string; alternatively, if we count positive orientation as
being inward, it is a junction of (1, 0), (0, 1), and (−1,−1) strings. Consider
the junction of three semi-infinite straight strings of general (pi, qi), with
vanishing total p and q. Find the conditions on the angles such that the
system is mechanically stable. Show that, with these angles, one-quarter
of the original supersymmetries leave all three strings invariant.



14
Strings at strong coupling

Thus far we have understood string interactions only in terms of pertur-
bation theory — small numbers of strings interacting weakly. We know
from quantum field theory that there are many important phenomena,
such as quark confinement, the Higgs mechanism, and dynamical sym-
metry breaking, that arise from having many degrees of freedom and/or
strong interactions. These phenomena play an essential role in the physics
of the Standard Model. If one did not understand them, one would con-
clude that the Standard Model incorrectly predicts that the weak and
strong interactions are both long-ranged like electromagnetism; this is the
famous criticism of Yang–Mills theory by Wolfgang Pauli.

Of course string theory contains quantum field theory, so all of these
phenomena occur in string theory as well. In addition, it likely has new
nonperturbative phenomena of its own, which must be understood before
we can connect it with nature. Perhaps even more seriously, the perturba-
tion series does not even define the theory. It is at best asymptotic, not
convergent, and so gives the correct qualitative and quantitative behavior
at sufficiently small coupling but becomes useless as the coupling grows.

In quantum field theory we have other tools. One can define the theory
(at least in the absence of gravity) by means of a nonperturbative lattice
cutoff on the path integral. There are a variety of numerical methods and
analytic approximations available, as well as exactly solvable models in
low dimensions. The situation in string theory was, until recently, much
more limited.

In the past few years, new methods based on supersymmetry have
revolutionized the understanding both of quantum field theory and of
string theory. In the preceding chapters we have assembled the tools
needed to study this. We now consider each of the five string theories
and deduce the physics of its strongly coupled limit. We will see that
all are limits of a single theory, which most surprisingly has a limit in

178
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which spacetime becomes eleven-dimensional. We examine one proposal,
matrix theory, for a formulation of this unified theory. We conclude with a
discussion of related progress on one of the central problems of quantum
gravity, the quantum mechanics of black holes.

We will use extensively the properties of D-brane states in mapping out
the physics of strongly coupled strings. This allows a natural connection
with our previous perturbative discussion. We should note, however, that
most of these results were deduced by other methods before the role of D-
branes was understood. Many properties of the R–R states were guessed
(subject to many consistency checks) before the explicit D-brane picture
was known.

14.1 Type IIB string and SL(2, Z) duality

In the IIB theory, consider an infinite D-string stretched in the 1-direction.
Let us determine its massless excitations, which come from the attached
strings. The gauge field has no dynamics in two dimensions, so the only
bosonic excitations are the transverse fluctuations. The Dirac equation for
the massless R sector states

(Γ0∂0 + Γ1∂1)u = 0 (14.1.1)

implies that Γ0Γ1u = ±u for the left- and right-movers respectively, or
that the boost eigenvalue s0 = ±1

2 . The open string R sector ground state
decomposes as

16→ ( 12 , 8) + (−1
2 , 8

′) (14.1.2)

under SO(9, 1) → SO(1, 1) × SO(8), so the left-moving fermionic open
strings on the D-string are in an 8 of SO(8) and the right-movers are in
an 8′.

Now consider an infinite fundamental string in the same theory. The
massless bosonic fluctuations are again the transverse fluctuations. The
massless fermionic fluctuations are superficially different, being the space-
time vectors ψµ and ψ̃µ. However, these are not entirely physical — the
GSO projection forbids a single excitation of these fields. To identify the
physical fermionic fluctuations, recall from the discussion in section 13.2
that these can be thought of as the Goldstone fermions of the super-
symmetries broken by the string. The supersymmetry algebra for a state
containing a long string was given in eq. (13.6.1), where (p, q) = (1, 0)
for the fundamental string. The broken supersymmetries are those whose
anticommutators do not vanish when acting on the BPS state; for the IIB
F-string these are the Qα with Γ0Γ1 = +1 and the Q̃α with Γ0Γ1 = −1.
The decomposition (14.1.2) then shows that the Goldstone fermions on
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the IIB F-string have the same quantum numbers as on the IIB D-string;
for the IIA F-string, on the other hand, the Goldstone fermions moving
in both directions are 8s. The relation between these excitations and the
ψµ is just the refermionization used in section 12.6.
The D-string and F-string have the same massless excitations but they

are not the same object. Their tensions are different,
τF1

τD1
= g = eΦ . (14.1.3)

This relation is a consequence of supersymmetry and so is exact. The
field dependence of the central charge is connected by supersymmetry
to the field dependence of the moduli space metric, and this receives no
corrections for 16 or more supersymmetries. At weak coupling the F-
string is much lighter than the D-string, but consider what happens as the
coupling is adiabatically increased. Quantum mechanics does not allow
the D-string states to simply disappear from the spectrum, and they must
continue to saturate the BPS bound because their multiplet is smaller than
the non-BPS multiplet. Thus at very strong coupling the D-string is still
in the spectrum but it is much lighter than the F-string. It is tempting to
conclude that the theory with coupling 1/g is the same as the theory with
coupling g, but with the two strings reversing roles.
Let us amplify this as follows. Consider also a third scale, the gravita-

tional length

l0 = (4π3)−1/8κ1/4 , (14.1.4)

where the important feature is the dependence on κ; the numerical con-
stants are just included to simplify later equations. The relevant length
scales are in the ratios

τ
−1/2
F1 : l0 : τ

−1/2
D1 = g−1/4 : 1 : g1/4 . (14.1.5)

At g ( 1, if we start at long distance and consider the physics at
progressively shorter scales, before reaching the scale where gravity would
become strong we encounter the fundamental string scale and all the
excited states of the fundamental string. At g ) 1, we again encounter
another scale before reaching the scale where gravity is strong, namely
the D-string scale. We cannot be certain that the physics is the same as at
weak coupling, but we do know that gravity is weak at this scale, and we
can reproduce much of the same spectrum — the long straight string is a
BPS state, as are states with arbitrary left- or right-moving excitations, so
we can identify these. States with both left- and right-moving excitations
are not BPS states, but at low energy the interactions are weak and we
can identify them approximately.
Of course we have no nonperturbative definition of string theory and

anything can happen. For example there could be very light non-BPS
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states below the D-string scale in the strongly coupled string theory, with
no analogs in the weakly coupled theory. However, given that we can
identify many similarities in the g and 1/g theories with F- and D-strings
reversed, the simplest explanation is that there is a symmetry that relates
them. Furthermore we will see that in every string theory there is a unique
natural candidate for its strongly coupled dual, that the various tests we
can make on the basis of BPS states work, and that this conjecture fits
well with observations about the symmetries of low energy supergravity
and in some cases with detailed calculations of low energy amplitudes.

One might have imagined that at strong string coupling one would
encounter a phase with strongly coupled gravity and so with exotic space-
time physics, but what happens instead seems to be the same physics as at
weak coupling. Of course for g ≈ 1, neither theory is weakly coupled and
there is no quantitative understanding of the theory, but the fact that we
have the g ≈ 1 theory ‘surrounded’ surely limits how exotic it can be. Such
weak–strong dualities have been known in low-dimensional quantum field
theories for some time. They were conjectured to occur in some four-
dimensional theories, notably N = 4 non-Abelian gauge theory. There is
now very strong evidence that this is true. It should be noted though that
even in field theory, where we have a nonperturbative definition of the
theory, weak–strong duality has not been shown directly. This seems to
require new ideas, which are likely to come from string theory.

The D-string has many massive string excitations as well. These have

supersymmetric and decay to massless excitations at a rate of order g2.
As g becomes strong they become broader and broader ‘resonances’ and
disappear into multi-particle states of the massless spectrum.

As a further test, the effective low energy IIB action (12.1.26), known
exactly from supersymmetry, must be invariant. Since the coupling is
determined by the value of the dilaton, this must take Φ → −Φ. Setting
the R–R scalar C0 to zero for simplicity, the reader can check that the
action is invariant under

Φ′ = −Φ , G′µν = e−ΦGµν , (14.1.6a)

B′2 = C2 , C ′2 = −B2 , (14.1.6b)

C ′4 = C4 . (14.1.6c)

The Einstein metric, defined to have a dilaton-independent action, is

GEµν = e−Φ/2Gµν = e−Φ′/2G′µν (14.1.7)

and so is invariant.

no analog in the F-string, but this is not relevant. They are not
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SL(2,Z) duality

The transformation (14.1.6) is one of the SL(2,R) symmetries (12.1.32) of
the low energy theory, with τ′ = −1/τ. Consider the action of a general
element on the 2-form coupling of the fundamental string,∫

M
B′2 =

∫
M
(B2d+ C2 c) . (14.1.8)

For general real c and d there is no state with this coupling, but for the
integer subgroup SL(2,Z), the condition ad − bc = 1 implies that d and
c are relatively prime. In this case we know from the previous chapter
that there is a supersymmetric (d, c)-string with these quantum numbers.
It is described at weak coupling as a bound state of c D-strings and d F-
strings, and its existence at strong coupling follows from the continuation
argument used above. This is a strong indication that this integer subgroup
is an exact symmetry of the theory, with the weak–strong duality as one
consequence. The BPS bound can be written in SL(2,Z)-invariant form
as

τ2(p,q) = l−40 (M−1)ijqiqj = l−40

[
eΦ(p+ C0q)

2 + e−Φq2
]
. (14.1.9)

Note that a subgroup of SL(2,R), with a = d = 1 and c = 0, is visible
in perturbation theory. This leaves the dilaton invariant and shifts

C0 → C0 + b . (14.1.10)

This shift is a symmetry of perturbation theory because the R–R scalar
C0 appears only through its field strength (gradient). The coupling to
D-strings then breaks this down to integer shifts. This is evident from
the bound (14.1.9), which is invariant under C0 → C0 + 1 with (p, q) →
(p − q, q). The integer shift takes τ to τ + 1, and the full SL(2,Z) is
generated by this symmetry plus the weak–strong duality.

The IIB NS5-brane

Let us consider how the weak–strong duality acts on the various extended
objects in the theory. We know that it takes the F- and D-strings into
one another. It leaves the potential C4 invariant and so should take the
D3-brane into itself. The D5-brane is a magnetic source for the R–R 2-
form charge: the integral of F3 over a 3-sphere surrounding it is nonzero.
This must be transformed into a magnetic source for the NS–NS 2-form
charge. We have not encountered such an object before — it is neither a
string nor a D-brane. Rather, it is a soliton, a localized classical solution
to the field equations.
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Consider the action for a graviton, dilaton, and q-form field strength in
d dimensions, of the general form∫

d10x (−G)1/2e−2Φ(R + 4∂µΦ∂
µΦ)− 1

2

∫
e2αΦ|Fq |2 , (14.1.11)

where α is −1 for an NS–NS field and 0 for an R–R field. We can look
for a solution which is spherically symmetric in q + 1 directions and
independent of the other 8− q spatial dimensions and of time, and which
has a fixed ‘magnetic’ charge ∫

Sq

Fq = Q . (14.1.12)

Here the q-sphere is centered on the origin in the q + 1 spherically
symmetric dimensions. This would be an (8− q)-brane. The field equation

d ∗ (e2αΦFq ) = 0 (14.1.13)

is automatic as a consequence of the spherical symmetry. The dual field
strength is F10−q = ∗e2αΦFq , for which eq. (14.1.13) becomes the Bianchi
identity. An ‘electric’ solution with∫

S10−q
∗e2αΦFq = Q′ (14.1.14)

would be a (q − 2)-brane.

A generalization of Birkhoff’s theorem from general relativity guaran-
tees a unique solution for given mass M and charge Q. For M/Q greater
than a critical value (M/Q)c the solution is a black hole, with a singu-
larity behind a horizon. More precisely, the solution is a black p-brane,
meaning that it is extended in p spatial dimensions and has a black hole
geometry in the other 9− p. Essentially the source for the field strength is
hidden in the singularity. ForM/Q < (M/Q)c, there is a naked singularity.
The solution with M/Q = (M/Q)c is called extremal, and in most cases
it is a supersymmetric solution, saturating the BPS bound. The naked
singularities would then be excluded by the bound.

For the NS5-brane, the extremal solution is supersymmetric and takes
the form

Gmn = e2Φδmn , Gµν = ηµν , (14.1.15a)

Hmnp = −εmnpq∂qΦ , (14.1.15b)

e2Φ = e2Φ(∞) +
Q

2π2r2
. (14.1.15c)

Here the xm are transverse to the 5-brane, the xµ are tangent to it, and
r2 = xmxm. This is the magnetically charged object required by string
duality. The product τD1τD5 = π/κ2 should equal τF1τNS5 by the Dirac
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Xm

Fig. 14.1. Infinite throat of an NS5-brane, with asymptotically flat spacetime on
the right. The xµ-directions, in which the 5-brane is extended, are not shown.

quantization condition (which determines the product of the charges) com-
bined with the BPS condition (which relates the charges to the tensions).
This gives

τNS5 =
2π2α′
κ2

=
1

(2π)5g2α′3 . (14.1.16)

There must also be bound states of this with the D5-brane, which are
presumably described by adding R–R flux to the above solution.

The geometry of the metric (14.1.15), shown in figure 14.1, is interesting.
There is an infinite throat. The point xm = 0 is at infinite distance, and as
one approaches it the radius of the angular 3-spheres does not shrink to
zero but approaches an asymptotic value (Q/2π2)1/2. The dilaton grows in
the throat of the 5-brane, diverging at infinite distance. String perturbation
theory thus breaks down some distance down the throat, and the effective
length is probably finite. Because of the strong coupling one cannot
describe this object quite as explicitly as the fundamental strings and D-
brane, but one can look at fluctuations of the fields around the classical
solution. There are normalizable massless fluctuations corresponding to
translations and also ones which transform as a vector on the 5-brane, and
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the fermionic partners of these. These are the same as for the D5-brane,
as should be true by duality.

It should be noted that the description above is in terms of the string
metric, which is what appears in the string world-sheet action and is
relevant for the dynamics of the string. The geometry is rather different
in the Einstein metric GEµν = e−Φ/2Gµν . In the string metric the radial

distance is ds ∝ x−1dx, while in the Einstein metric it is ds ∝ x−3/4dx.
The latter is singular but integrable, so the singularity is at finite distance.
Thus, different probes can see a very different geometry.

Let us make a few more comments on this solution. For an NS field
strength, a shift of the dilaton just multiplies the classical action by a
constant. The solution is then independent of the dilaton, and its size can
depend only on α′ and the charge Q. The charge is quantized, Q = nQ0, by
the Dirac condition. The radius is then of order α′1/2 times a function of
n, which in fact is n1/2. For small n the characteristic scale of the solution
is the string scale, so the low energy theory used to find the solution is not
really valid. However, there are nonrenormalization theorems, which have
been argued to show that the solution does not receive corrections. There
is also a description of the throat region that is exact at string tree level
— it does not use sigma model perturbation theory but is an exact CFT.
The geometry of the throat is S3×R1× six-dimensional Minkowski space.
The CFT similarly factorizes. The six dimensions parallel to the brane
world-volume are the usual free fields. The CFT of the radial coordinate
is the linear dilaton theory that we have met before, with the dilaton
diverging at infinite distance. The CFT of the angular directions is an
SU(2)× SU(2) current algebra at level n, in a form that we will discuss in
the next chapter.

This construction might seem to leave us with an embarrassment of
riches, for we can similarly construct NS–NS electrically charged solutions
and R–R charged solutions, for which we already have the F-string and
D-branes as sources. In fact, the NS–NS electrically charged solution
has a pointlike singularity and the fields satisfy the field equations with
a δ-function source at the singularity. Thus this solution just gives the
external fields produced by the F-string. The R–R charged solutions are
black p-branes. Their relation to the D-branes will be considered at the
end of this chapter.

A fundamental string can end on a D5-brane. It follows by weak–strong
duality that a D-string should be able to end on an NS5-brane. A plausible
picture is that it extends down the infinite throat. Its energy is finite in
spite of the infinite length because of the position-dependence of the
dilaton. Similarly a D-string should be able to end on a D3-brane. There
is a nontrivial aspect to the termination of one object ‘A’ on a second
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‘B’, which we saw in figure 13.5. Since A carries a conserved charge, the
coupling between spacetime forms and world-brane fields of B must be
such as to allow it to carry the charge of A.
The solution for any number of parallel NS5-branes is simply given by

substituting

e2Φ = e2Φ(∞) +
1

2π2

N∑
i=1

Qi

(x− xi)2
(14.1.17)

into the earlier solution (14.1.15). A D-string can run from one 5-brane
to another, going down the throat of each. The ground state of this D-
string is a BPS state. It is related by string duality to a ground state
F-string stretched between two D5-branes, which is related by T -duality
to a massless open string in the original type I theory. The mass of the D-
string is given by the classical D-string action in the background (14.1.17),
and agrees with string duality. In particular it vanishes as the NS5-branes
become coincident, so like D-branes these have a non-Abelian symmetry
in this limit. The limiting geometry is a single throat with twice the charge;
in the limit, the non-Abelian degrees of freedom are in the strong coupling
region down the throat and cannot be seen explicitly.

D3-branes and Montonen–Olive duality

Consider a system of n D3-branes. The dynamics on the D-branes is a
d = 4, N = 4 U(n) gauge theory, with the gauge coupling (13.3.25) equal
to

g2D3 = 2πg . (14.1.18)

In particular this is dimensionless, as it should be for a gauge theory in
four dimensions. At energies far below the Planck scale, the couplings of
the closed strings to the D-brane excitations become weak and we can
consider the D-brane gauge theory separately.
The SL(2,Z) duality of the IIB string takes this system into itself, at a

different coupling. In particular the weak–strong duality g → 1/g takes

g2D3 → 4π2

g2D3

. (14.1.19)

This is a weak–strong duality transformation within the gauge theory
itself. Thus, the self-duality of the IIB string implies a similar duality
within d = 4, N = 4 gauge theory. Such a duality was conjectured by
Montonen and Olive in 1979. The evidence for it is of the same type as
for string duality: duality of BPS masses and degeneracies and of the low
energy effective action. Nevertheless the reaction to this conjecture was
for a long time skeptical, until the development of supersymmetric gauge
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theory in the past few years placed it in a broader and more systematic
context.
To understand the full SL(2,Z) symmetry we need also to include the

coupling (13.3.18) to the R–R scalar,

1

4π

∫
C0Tr(F2 ∧ F2 ) . (14.1.20)

This is the Pontrjagin (instanton winding number) term, with C0 = θ/2π.
The full gauge theory action, in a constant C0 background, is

− 1

2g2D3

∫
d4xTr( |F2 |2 ) + θ

8π2

∫
Tr(F2 ∧ F2 ) . (14.1.21)

The duality C0 → C0 + 1 is then the shift θ → θ + 2π, corresponding
to quantization of instanton charge. This and the weak–strong duality
generate the full SL(2,Z).
Let the D3-branes be parallel but slightly separated, corresponding to

spontaneous breaking of U(n) to U(1)n. The ground state of an F-string
stretched between D3-branes is BPS, and corresponds to a vector multiplet
that has gotten mass from spontaneous breaking. The weak–strong dual
is a D1-string stretched between D3-branes. To be precise, this is what it
looks like when the separation of the D3-branes is large compared to the
string scale. When the separation is small there is an alternative picture of
this state as an ’t Hooft-Polyakov magnetic monopole in the gauge theory.
The size of the monopole varies inversely with the energy scale of gauge
symmetry breaking and so inversely with the separation. This is similar to
the story of the instanton in section 13.6, which has a D-brane description
when small and a gauge theory description when large.
The relation between the IIB and Montonen–Olive dualities is one

example of the interplay between the spacetime dynamics of various
branes and the nonperturbative dynamics of the gauge theories that live
on them. This is a very rich subject, and one which at this time is
developing rapidly.

14.2 U-duality

The effect of toroidal compactification is interesting. The symmetry group
of the low energy supergravity theory grows with the number k of com-
pactified dimensions, listed as G in table B.3. We are familiar with two
subgroups of each of these groups. The first is the SL(2,R) symmetry of
the uncompactified IIB theory. The second is the perturbative O(k, k,R)
symmetry of compactification of strings on Tk , which we encountered in
the discussion of Narain compactification in chapter 8. In each case the
actual symmetry of the full theory is the integer subgroup, the O(k, k,Z)
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T -duality group and the SL(2,Z) of the ten-dimensional IIB theory. The
continuous O(k, k,R) is reduced to the discrete O(k, k,Z) by the discrete
spectrum of (pL, pR) charges, and the continuous SL(2,R) to the discrete
SL(2,Z) by the discrete spectrum of (p, q)-strings. In the massless limit the
charged states do not appear and the symmetry appears to be continuous.
The natural conjecture is that in each case the maximal integer subgroup

of the low energy symmetry is actually a symmetry of the full theory. This
subgroup has been given the name U-duality. In perturbation theory we
only see symmetries that act linearly on g and so are symmetries of each
term in the perturbation series — these are the T -dualities plus shifts
of the R–R fields. The other symmetries take small g to large and so
require some understanding of the exact theory. The principal tools here
are the constraints of supersymmetry on the low energy theory, already
used in writing table B.3, and the spectrum of BPS states, which can be
determined at weak coupling and continued to strong.
Let us look at the example of the IIB string on T 5, which by T -duality

is the same as the IIA string on T 5. This is chosen because it is the setting
for the simplest black hole state counting, and also because the necessary
group theory is somewhat familiar from grand unification.
Let us first count the gauge fields. From the NS–NS sector there are five

Kaluza–Klein gauge bosons and five gauge bosons from the antisymmetric
tensor. There are also 16 gauge bosons from the dimensional reduction
of the various R–R forms: five from Cµn, ten from Cµnpq and one from
Cµnpqrs. The index µ is in the noncompact dimensions, and in each case one
sums over all antisymmetric ways of assigning the compact dimensions to
the roman indices. Finally, in five noncompact dimensions the 2-form Bµν
is equivalent by Poincaré duality to a vector field, giving 27 gauge bosons
in all.
Let us see how T -duality acts on these. This group is O(5, 5,Z), gener-

ated by T -dualities on the various axes, linear redefinitions of the axes, and
discrete shifts of the antisymmetric tensor. This mixes the first ten NS–NS
gauge fields among themselves, and the 16 R–R gauge fields among them-
selves, and leaves the final NS–NS field invariant. Now, a representation
of O(10,R) automatically gives a representation of O(5, 5,R) by analytic
continuation, and so in turn a representation of the subgroup O(5, 5,Z).
The group O(10,R) has a vector representation 10, spinor representations
16 and 16′, and of course a singlet 1. The gauge fields evidently transform
in these representations; which spinor occurs depends on whether we start
with the IIA or IIB theory, which differ by a parity transformation on
O(5, 5,Z).
According to table B.3, the low energy supergravity theory for this

compactification has a continuous symmetry E6(6), which is a noncompact
version of E6. The maximal discrete subgroup is denoted E6(6)(Z). The
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group E6 has a representation 27, and a subgroup SO(10) under which

27→ 10+ 16+ 1 . (14.2.1)

This may be familiar to readers who have studied grand unification;
some of the relevant group theory was summarized in section 11.4 and
exercise 11.5. Evidently the gauge bosons transform as this 27.
Now let us identify the states carrying the various charges. The charges

10 are carried by the Kaluza–Klein and winding strings. Then U-duality
also requires states in the 16. These are just the various wrapped D-branes.
Finally, the state carrying the 1 charge is the NS5-brane, fully wrapped
around the T 5 so that it is localized in the noncompact dimensions.

U-duality and bound states

It is interesting to see how some of the bound state results from the pre-
vious chapter fit the predictions of U-duality in detail. We will generate
U transformations as a combination of Tmn···p, which is a T -duality in
the indicated directions, and S , the IIB weak–strong transformation. The
former switches between Neumann and Dirichlet boundary conditions
and between momentum and winding number in the indicated directions.
The latter interchanges the NS–NS and R–R 2-forms but leaves the R–R
4-form invariant, and acts correspondingly on the solitons carrying these
charges. We denote by Dmn···p a D-brane extended in the indicated direc-
tions, and similarly for Fm a fundamental string extended in the given
direction and pm a momentum-carrying BPS state.

The first duality chain is

(D9,F9)
T78→ (D789,F9)

S→ (D789,D9)
T9→ (D78,D∅) . (14.2.2)

Thus the D-string/F-string bound state is U-dual to the D0–D2 bound
state. The constructions of these bound states were similar, but the precise
relation goes through the nonperturbative step S . In each case there is
one short multiplet of BPS states.
The second chain is

(D6789,D∅)
T6→ (D789,D6)

S→ (D789,F6)
T6789→ (D6, p6)

S→ (F6, p6) . (14.2.3)

The bound states of n D0-branes and m D4-branes are thus U-dual to
fundamental string states with momentum n and winding number m in
one direction. Let us compare the degeneracy of BPS states in the two
cases. For the winding string, the same argument as led to eq. (11.6.28)
for the heterotic string shows that the BPS strings satisfy

(N, Ñ) =

{
(nm, 0) , nm > 0 ,

(0,−nm) , nm < 0 .
(14.2.4)
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Here N and Ñ are the number of excitations above the massless ground
state. We see that BPS states have only left-moving or only right-moving
excitations. The generating function for the number of BPS states is the
usual string partition function,

Tr qN = 28
∞∏
k=1

(
1 + qk

1− qk

)8

, (14.2.5)

or the same with Ñ. Note that we are counting the states of one string
with winding number m, not of a bound state of m strings of winding
number 1. The latter does not exist at small g — except insofar as one
can think of the multiply wound string in this way. The counting (14.2.5)
is most easily done with the refermionized θα. In terms of the ψµ the GSO
projection gives several terms, which simplify using the abstruse identity.
The string degeneracy (14.2.5) precisely matches the degeneracy Dnm of
D0–D4 bound states in section 13.6.

14.3 SO(32) type I–heterotic duality

In the type I theory, the only R–R fields surviving the Ω projection are the
2-form, which couples electrically to the D1-brane and magnetically to the
D5-brane, and the nondynamical 10-form which couples to the D9-brane.
This is consistent with the requirement for unbroken supersymmetry —
the D1- and D5-branes both have #ND = 4k relative to the D9-brane.1

Consider again an infinite D-string stretched in the 1-direction. The type
I D-string differs from that of the IIB theory in two ways. The first is the
projection onto oriented states. The U(1) gauge field, with vertex operator
∂tX

µ, is removed. The collective coordinates, with vertex operators ∂nX
µ,

remain in the spectrum because the normal derivative is even under
reversal of the orientation of the boundary. That is, in terms of its action
on the X oscillators Ω has an additional −1 for the m = 2, . . . , 9 directions,
as compared to the action on the usual 9-9 strings. By superconformal
symmetry this must extend to the ψµ, so that in particular on the ground
states Ω is no longer −1 but acts as

− β = − exp[πi(s1 + s2 + s3 + s4)] , (14.3.1)

with an additional rotation by π in the four planes transverse to the
string. From the fermionic 1-1 strings of the IIB D-string, this removes
the left-moving 8 and leaves the right-moving 8′.

1 It is conceivable that the D3- and D7-branes exist as non-BPS states. However, they would be
expected to decay rapidly; also, there is some difficulty at the world-sheet level in defining them,
as explained later.
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Fig. 14.2. D-string in type I theory with attached 1-1 and 1-9 strings.

The second modification is the inclusion of 1-9 strings, strings with one
end on the D1-brane and one on a D9-brane. The end on the D9-brane
carries the type I Chan–Paton index, so these are vectors of SO(32). These
strings have #ND = 8 so that the NS zero-point energy (13.4.8) is positive,
and there are no massless states in the NS sector. The R ground states
are massless as always. Only ψ0 and ψ1 are periodic in the R sector, so
their zero modes generate two states

|s0; i〉 , (14.3.2)

where s0 = ± 1
2 and i is the Chan–Paton index for the 9-brane end. One of

these two states is removed by the GSO projection; our convention has
been

0 + . . .+ s4)] , (14.3.3)

so that the state with s0 = +1
2 would survive. We now impose the G0

condition, which as usual (e.g. eq. (14.1.1)) reduces to a Dirac equation
and then to the condition s0 = +1

2 for the left-movers and s0 = − 1
2 for

the right-movers. The right-moving 1-9 strings are thus removed from the
spectrum by the combination of the GSO projection and G0 condition.
Finally we must impose the Ω projection; this determines the 9-1 state in
terms of the 1-9 state, but otherwise makes no constraint.

To summarize, the massless bosonic excitations are the usual collective
coordinates. The massless fermionic excitations are right-movers in the 8′
of the transverse SO(8) and left-movers that are invariant under SO(8)
and are vectors under the SO(32) gauge group. This is the same as the
excitation spectrum of a long SO(32) heterotic string. Incidentally, this
explains how it can be consistent with supersymmetry that the 1-9 strings
have massless R states and no massless NS states: the supersymmetry acts
only on the right-movers. This is also a check that our conventions above
were consistent — supersymmetry requires the 1-9 fermions to move in
the opposite direction to the 1-1 fermions. From a world-sheet point of
view, this is necessary in order that the gravitino OPE be consistent.

exp(πiF) = −i exp[πi(s
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The D-string tension τD1 = 1/2πα′g is again exact, and at strong cou-
pling this is the lowest energy scale in the theory, below the gravitational
scale and the fundamental string tension. By the same arguments as in the
IIB case, the simplest conclusion is that the strongly coupled type I theory
is actually a weakly coupled SO(32) heterotic string theory. As a check,
this must be consistent with the low energy supergravity theories. We have
already noted that these must be the same up to field redefinition, because
the supersymmetry algebras are the same. It is important, though, that
the redefinition (12.1.41),

GIµν = e−ΦhGhµν , ΦI = −Φh , (14.3.4a)

F̃I3 = H̃h3 , AI1 = Ah1 , (14.3.4b)

includes a reversal of the sign of the dilaton.

The conclusion is that there is a single theory, which looks like a
weakly coupled type I theory when eΦI ( 1 and like a weakly coupled
SO(32) heterotic theory when eΦI ) 1. The type I supergravity theory
is a good description of the low energy physics throughout. Even if the
dimensionless string coupling is of order 1, the couplings in the low energy
theory are all irrelevant in ten dimensions (and remain irrelevant as long
as there are at least five noncompact dimensions) and so are weak at low
energy.

As a bonus we have determined the strong-coupling physics of the
SO(32) heterotic string, namely the type I string. It would have been
harder to do this directly. The strategy we have used so far, which would
require finding the type I string as an excitation of the heterotic theory,
would not work because a long type I string is not a BPS state. The
NS–NS 2-form, whose charge is carried by most fundamental strings, is
not present in the type I theory. The R–R 2-form remains, but its charge
is carried by the type I D-string, not the F-string. That the long type I
F-string is not a BPS state is also evident from the fact that it can break
and decay. As the type I coupling increases, this becomes rapid and the
type I string disappears as a recognizable excitation.

The strings of the type I theory carry only symmetric and antisymmetric
tensor representations of the gauge group, while the strings of the heterotic
theory can appear in many representations. We see that the corresponding
states appear in the type I theory as D-strings, where one gets large
representations of the gauge group by exciting many 1-9 strings. Note
in particular that type I D-strings can carry the spinor representation of
SO(32); this representation is carried by fundamental heterotic strings but
cannot be obtained in the product of tensor representations. Consider
a long D-string wrapped around a periodic dimension of length L. The
massless 1-9 strings are associated with fermionic fields Λi living on the
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D-string, with i the SO(32) vector index. The zero modes of these,

Λi0 = L−1/2
∫ L

0
dx1 Λi(x1) , (14.3.5)

satisfy a Clifford algebra

{Λi0,Λj0} = δij . (14.3.6)

The quantization now proceeds just as for the fundamental heterotic string,
giving spinors 215+215′ of SO(32). Again, the Λi are fields that create light
strings, but they play the same role here as the λi that create excitations
on the heterotic string.

The heterotic string automatically comes out in fermionic form, and so
a GSO projection is needed. We can think of this as gauging a discrete
symmetry that acts as −1 on every D-string endpoint (the idea of gauging
a discrete group was explained in section 8.5). This adds in the NS sectors
for the fields Λi and removes one of the two spinor representations. Recall
that in the IIB D-string there is a continuous U(1) gauge symmetry acting
on the F-string endpoints. The part of this that commutes with the Ω
projection and so remains on the type I D-string is just the discrete gauge
symmetry that we need to give the current algebra GSO projection.

Quantitative tests

Consider the tension of the D-string,

τD1 (type I) =
π1/2

21/2κ
(4π2α′) = g2YM

8πκ2
. (14.3.7)

We have used the type I relation (13.3.31) to express the result in terms
of the low energy gauge and gravitational couplings, which are directly
measurable in scattering experiments. It should be noted that the type I
cylinder amplitude for the D-brane interaction has an extra 1

2 from the
orientation projection as compared to the type II amplitude, so the D-
brane tension is multiplied by 2−1/2. The result (14.3.7), obtained at weak
type I coupling, is exact as a consequence of the BPS property. Hence
it should continue to hold at strong type I coupling, and therefore agree
with the relation between the heterotic string tension and the low energy
couplings at weak heterotic coupling. Indeed, this is precisely eq. (12.3.37).

As another example, consider the F4
µν interaction (12.4.28) found in type

I theory from the disk amplitude,

π2α′2

2×4! g2YM

(tF4) =
g2YM

210π54! κ2
(tF4) , (14.3.8)

type I
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and the same interaction found in the SO(32) heterotic theory from the
torus,

1

28π54! α′ (tF
4) =

g2YM

210π54! κ2
(tF4) . (14.3.9)

Here (tF4) is an abbreviation for the common Lorentz and gauge structure
of the two amplitudes. In each theory we have expressed α′ appropriately in
terms of the low energy couplings. The agreement between the numerical
coefficients of the respective interactions is not an accident but is required
by type I–heterotic duality. To explain this, first we must assert without
proof the fact that supersymmetry completely determines the dilaton
dependence of the F4

µν interaction in a theory with 16 supersymmetries.2

Hence we can calculate the coefficient when ΦI is large and negative and
the type I calculation is valid, and it must agree with the result at large
positive ΦI where the heterotic calculation is valid.

Actually, this particular agreement is not an independent test of duality,
but is a consequence of the consistency of each string theory separately.
The (tF4) interaction is related by supersymmetry to the B2F

4
2 interaction,

and the coefficient of the latter is fixed in terms of the low energy spectrum
by anomaly cancellation. However, this example illustrates the fact that
weak–strong dualities in general can relate calculable amplitudes in the
dual theories, and not only incalculable strong-coupling effects. In more
complicated examples, such as compactified theories, there are many such
successful relations that are not preordained by anomaly cancellation. As
in this example, a tree-level amplitude on one side can be related to a loop
amplitude on the other, or to an instanton calculation.

Type I D5-branes

The type I D5-brane has some interesting features. The D5–D9 system is
related by T -duality to the D0–D4 system. We argued that in the latter case
the D0-brane was in fact the zero-size limit of an instanton constructed
from the D4-brane gauge fields. The same is true here. The type I theory
has gauge field solutions in which the fields are independent of five spatial
dimensions and are a localized Yang–Mills instanton configuration in the
other four: this is a 5-brane. It has collective coordinates for its shape, and
also for the size and gauge orientation of the instanton. In the zero-size

2 Notice that there are dilaton dependences hidden in the couplings in (14.3.8) and (14.3.9), which
moreover are superficially different because of the different dilaton dependences of gYM in the
two string theories. However, the dilaton dependences are related by the field redefinition (14.3.4),
and are correlated with the fact that the lower order terms in the action also have different
dilaton dependences.
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limit, the D5-brane description is accurate. As in the discussion of D0–
D4 bound states, there are flat directions for the 5-9 fields. Again these
have the interpretation of blowing the D5-brane up into a 9-9 gauge field
configuration whose cross-section is the SO(32) instanton and which is
independent of the other six dimensions.
The heterotic dual of the type I D5-brane is simple to deduce. The

blown-up instanton is an ordinary field configuration. The transforma-
tion (14.3.4) between the type I and heterotic fields leaves the gauge field
invariant, so this just becomes an instanton in the heterotic theory. The
transformation of the metric has an interesting effect. What looks in the
type I theory like a small instanton becomes in the heterotic theory an
instanton at the end of a long but finite throat; in the zero-size limit the
throat becomes infinite as in figure 14.1.
There is one difference from the earlier discussion of D-branes. It turns

out to be necessary to assume that the type I D5-brane carries an SU(2)
symmetry — that is, a two-valued Chan–Paton index. More specifically, it
is necessary on the D5-branes to take a symplectic rather than orthogonal
projection. We will first work out the consequences of this projection, and
then discuss why it must be so.
The bosonic excitation spectrum consists of

ψ
µ
−1/2|0, k; ij〉λij , ψm−1/2|0, k; ij〉λ′ij , (14.3.10)

which are the D5-brane gauge field and collective coordinate respectively;
i and j are assumed to be two-valued. The symplectic Ω projection gives

MλM−1 = −λT , Mλ′M−1 = λ′T , (14.3.11)

with M the antisymmetric 2× 2 matrix. The general solutions are

λ = σa , λ′ = I . (14.3.12)

In particular the Chan–Paton wavefunction for the collective coordinate
is the identity, so ‘both’ D5-branes move together. We should really then
refer to one D5-brane, with a two-valued Chan–Paton index. This is
similar to the T -dual of the type I string, where there are 32 Chan–
Paton indices but 16 D-branes, each D-brane index being doubled to
account for the orientifold image. The world-brane vectors have Chan–
Paton wavefunctions σaij so the gauge group is Sp(1) = SU(2), unlike the
IIB D5-brane whose gauge group is U(1). For k coincident D5-branes the
group is Sp(k).
The need for a two-valued Chan–Paton index can be seen in four

independent ways. The first is that it is needed in order to get the
correct instanton moduli space, the instanton gauge group now being
SO(n) rather than SU(n). We will not work out the details of this, but
in fact this is how the SU(2) symmetry was first deduced. Note that
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starting from a large instanton, it is rather surprising that in the zero-size
limit a new internal gauge symmetry appears. The appearance of new
gauge symmetries at special points in moduli space is now known to
occur in many contexts. The non-Abelian gauge symmetry of coincident
IIB NS5-branes, pointed out in section 14.1, was another such surprise.
The enhanced gauge symmetry of the toroidally compactified string is a
perturbative example.
The second argument for a symplectic projection is based on the fact

that in the type I theory the force between D1-branes, and between D5-
branes, is half of what was calculated in section 13.3 due to the orientation
projection. The tension and charge are then each reduced by a factor 2−1/2,
so the product of the charges of a single D1-brane and single (one-valued)
D5-brane would then be only half a Dirac unit. However, since the D5-
branes with a symplectic projection always move in pairs, the quantization
condition is respected. The third argument is based on the spectrum of 5-9
strings. For each value of the Chan–Paton indices there are two bosonic
states, as in eq. (13.5.19). The D5–D9 system has eight supersymmetries,
and these two bosons form half of a hypermultiplet (section B.7). In an
oriented theory the 9-5 strings are the other half, but in this unoriented
theory these are not independent. A half-hypermultiplet is possible only
for pseudoreal representations, like the 2 of SU(2) — hence the need for
the SU(2) on the D5-brane.
The final argument is perhaps the most systematic, but also the most

technical. Return to the discussion of the orientation projection in sec-
tion 6.5. The general projection was of the form

Ω̂|ψ; ij〉 = γjj′ |Ωψ; j ′i′〉γ−1i′i . (14.3.13)

We can carry over this formalism to the present case, where now the
Chan–Paton index in general runs over 1-, 5-, and 9-branes. In order for
this to be a symmetry the matrix γjj′ must connect D-branes that are of

the same dimension and coincident.3 In chapter 6 we argued that Ω̂2 = 1
and therefore that γ was either purely symmetric or purely antisymmetric.
The first argument still holds, but the second rested on an assumption
that is not true in general: that the operator Ω, the part of Ω̂ that acts on
the fields, squares to the identity, Ω2 = 1. More generally, it may in fact
be a phase.
Working out the phase of Ω is a bit technical. It is determined by

the requirement that the symmetry be conserved by the operator product
of the corresponding vertex operators. In the 5-5 sector, the massless

3 This formalism also applies to the more general orientifold projection, where Ω̂ is combined
with a spacetime symmetry. The matrix γ then connects each D-brane with its image under the
spacetime symmetry.
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vertex operator is ∂tX
µ (Ω = −1) for µ parallel to the 5-brane, and ∂nX

µ

(Ω = +1) for µ perpendicular. On these states, Ω2 = 1, and the same is
true for the rest of the 9-9 and 5-5 Hilbert spaces. To see this, use the
fact that Ω multiplies any mode operator ψr by ± exp(iπr). The mode
expansions were given in section 13.4. In the NS sector this is ±i, but the
GSO projection requires that these mode operators act in pairs (the OPE
is single-valued only for GSO-projected vertex operators). So Ω = ±1,
and this holds in the R sector as well by supersymmetry.

Now consider the NS 5-9 sector. The four Xµ with mixed Neumann–
Dirichlet boundary conditions, say µ = 6, 7, 8, 9, have a half-integer-mode
expansion. Their superconformal partners ψµ then have an integer-mode
expansion and the ground state is a representation of the corresponding
zero-mode algebra. The vertex operator is thus a spin field: the periodic
ψµ contribute a factor

V = ei(H3+H4)/2 , (14.3.14)

where H3,4 are from the bosonization of the four periodic ψ6,7,8,9. We need
only consider this part of the vertex operator, as the rest is the same as in
the 9-9 string and so has Ω2 = +1. Now, the operator product of V with
itself (which is in the 5-5 or 9-9 sector) involves ei(H3+H4), which is the
bosonization of (ψ6 + iψ7)(ψ8 + iψ9). This in turn is the vertex operator
for the state

(ψ6 + iψ7)−1/2(ψ8 + iψ9)−1/2|0〉 . (14.3.15)

Finally we can deduce the Ω eigenvalue. For |0〉 it is +1, because its
vertex operator is the identity, while each ψ−1/2 contributes either −i (for
a 9-9 string) or +i (for a 5-5 string), giving an overall −1. That is, the Ω
eigenvalue of VV is −1, and so therefore is the Ω2 eigenvalue of V .

In the 5-9 sector Ω2 = −1. Separate γ into a block γ9 that acts on the
D9-branes and a block γ5 that acts on the D5-branes. Then repeating the
argument in section 6.5 gives

γT9 γ
−1
9 = Ω2

5 -9γ
T
5 γ

−1
5 . (14.3.16)

We still have γT9 = +γ9 from tadpole cancellation, so we need γT5 = −γ5,
giving symplectic groups on the D5-brane. The minimum dimension for
the symplectic projection is 2, so we need a two-valued Chan–Paton state.
This argument seems roundabout, but it is faithful to the logic that the
actions of Ω in the 5-5 and 9-9 sectors are related because they are both
contained in the 5-9 × 9-5 product. Further, there does not appear to be
any arbitrariness in the result. It also seems to be impossible to define the
D3- or D7-brane consistently, as Ω2 = ±i.
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14.4 Type IIA string and M-theory

The type IIA string does not have D-strings but does have D0-branes,
so let us consider the behavior of these at strong coupling. We focus on
the D-brane of smallest dimension for the following reason. The D-brane
tension τp = O(g−1α′−(p+1)/2) translates into a mass scale

(τp)
1/(p+1) ≈ g−1/(p+1)α′−1/2 (14.4.1)

so that at strong coupling the smallest p gives the lowest scale. Thus we
need to find an effective field theory describing these degrees of freedom.

The D0-brane mass is

τ0 =
1

gα′1/2
. (14.4.2)

This is heavy at weak coupling but becomes light at strong coupling. We
also expect that for any number n of D0-branes there is an ultrashort
multiplet of bound states with mass

nτ0 =
n

gα′1/2
. (14.4.3)

This is exact, so as the coupling becomes large all these states become light
and the spectrum approaches a continuum. Such a continuous spectrum of
particle states is characteristic of a system that is becoming noncompact.
In particular, the evenly spaced spectrum (14.4.3) matches the spectrum
of momentum (Kaluza–Klein) states for a periodic dimension of radius

R10 = gα′1/2 . (14.4.4)

Thus, as g → ∞ an eleventh spacetime dimension appears. This is one
of the greatest surprises in this subject, because perturbative superstring
theory is so firmly rooted in ten dimensions.

From the point of view of supergravity all this is quite natural. Eleven-
dimensional supergravity is the supersymmetric field theory with the
largest possible Poincaré invariance. Beyond this, spinors have at least
64 components, and this would lead to massless fields with spins greater
than 2; such fields do not have consistent interactions. We have used
dimensional reduction of eleven-dimensional supergravity as a crutch to
write down ten-dimensional supergravity, but now we see that it was more
than a crutch: dimensional reduction keeps only the p10 = 0 states, but
string theory has also states of p10 �= 0 in the form of D0-branes and
their bound states. Recall that in the reduction of the eleven-dimensional
theory to IIA string theory, the Kaluza–Klein gauge boson which couples
to p10 became the R–R gauge boson which couples to D0-branes. The
eleventh dimension is invisible in string perturbation theory because this
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is an expansion around the zero-radius limit for the extra dimension, as
is evident from eq. (14.4.4).
The eleven-dimensional gravitational coupling is given by dimensional

reduction as

κ211 = 2πR10κ
2 =

1

2
(2π)8g3α′9/2 . (14.4.5)

The numerical factors here are inconvenient so we will define instead an
eleven-dimensional Planck mass

M11 = g−1/3α′−1/2 , (14.4.6)

in terms of which 2κ211 = (2π)8M−9
11 . The two parameters of the IIA theory,

g and α′, are related to the eleven-dimensional Planck mass and the radius
of compactification by eqs. (14.4.4) and (14.4.6). Inverting these,

g = (M11R10)
3/2 , α′ =M−3

11 R
−1
10 . (14.4.7)

definition of M11, by powers of 2π; the choice here makes the conversion
between string and M-theory parameters simple.
We know little about the eleven-dimensional theory. Its low energy

physics must be described by d = 11 supergravity, but it has no dimen-
sionless parameter in which to make a perturbation expansion. At energies
of order M11 neither supergravity nor string theory is a useful description.
It is hard to name a theory when one does not know what it is; it has
been given the tentative and deliberately ambiguous name M-theory. Later
in the chapter we will discuss a promising idea as to the nature of this
theory.

U-duality and F-theory

Since we earlier deduced the strongly coupled behavior of the IIB string,
and this is T -dual to the IIA string, we can also understand the strongly
coupled IIA string in this way. Periodically identify the 9-direction. The IIB
weak–strong duality S interchanges a D-string wound in the 9-direction
with an F-string wound in the 9-direction. Under T -duality, the D-string
becomes a D0-brane and the wound F-string becomes a string with
nonzero p9. So TST takes D0-brane charge into p9 and vice versa. Thus
we should be able to interpret D0-brane charge as momentum in a dual
theory, as indeed we argued above. The existence of states with R–R
charge and of the eleventh dimension was inferred in this way — as were
the various other dualities — before the role of D-branes was understood.
It is notable that while the IIA and IIB strings are quite similar in

perturbation theory, their strongly coupled behaviors are very different.
The strongly coupled dual of the IIB theory is itself, while that of the

The reader should be alert to possible differences in convention in the
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IIA theory is a new theory with an additional spacetime dimension.
Nevertheless, we see that these results are consistent with the equivalence
of the IIA and IIB theories under T -duality. The full set of dualities forms
a rich interlocking web.
For the type II theory on a circle, the noncompact symmetry of the

low energy theory is SL(2,R) × SO(1, 1,R) (table B.3) and the discrete
U-duality subgroup is

d = 9 : U = SL(2,Z) . (14.4.8)

Regarded as a compactification of the IIB string, this is just the SL(2,Z)
symmetry of the ten-dimensional theory. Regarded as a compactification
of the IIA string on a circle and therefore of M-theory on T 2, it is a
geometric symmetry, the modular transformations of the spacetime T 2.

For the type II theory on T 2, the noncompact symmetry of the low
energy theory is SL(3,R)× SL(2,R) and the discrete U-duality subgroup
is

d = 8 : U = SL(3,Z)× SL(2,Z) . (14.4.9)

In section 8.4 we studied compactification of strings on T 2 and found
that the T -duality group was SL(2,Z) × SL(2,Z), one factor being the
geometric symmetry of the 2-torus and one factor being stringy. In the
U-duality group the geometric factor is enlarged to the SL(3,Z) of the
M-theory T 3.

Under compactification of more dimensions, it is harder to find a
geometric interpretation of the U-duality group. The type II string on T 4,
which is M-theory on T 5, has the U-duality symmetry

d = 6 : U = SO(5, 5,Z) . (14.4.10)

This is the same as the T -duality of string theory on T 5. This is suggestive,
but this identity holds only for T 5 so the connection if any will be
intricate. For compactification of M-theory on Tk for k ≥ 6, the U-duality
symmetry is a discrete exceptional group, which has no simple geometric
interpretation. A good interpretation of these symmetries would likely be
an important step in understanding the nature of M-theory.
Returning to the IIB string in ten dimensions, it has been suggested

that the SL(2,Z) duality has a geometric interpretation in terms of two
additional toroidal dimensions. This construction was christened F-theory.
It is clear that these dimensions are not on the same footing as the
eleventh dimension of M-theory, in that there is no limit of the parameters
in which the spectrum becomes that of twelve noncompact dimensions.
However, there may be some sense in which it is useful to begin with
twelve dimensions and ‘gauge away’ one or two of them. Independent
of this, F-theory has been a useful technique for finding solutions to
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the field equations with nontrivial behavior of the dilaton and R–R
scalar. As in eq. (12.1.30), these fields are joined in a complex parameter
τ = C0 + ie−Φ characterizing the complex structure of the additional
2-torus. Ten-dimensional solutions are then usefully written in terms of
twelve-dimensional geometries.

IIA branes from eleven dimensions

The IIA theory has a rich spectrum of extended objects. It is interesting to
see how each of these originates from compactification of M-theory on a
circle. Let us first consider the extended objects of the eleven-dimensional
theory. There is one tensor gauge field, the 3-form Aµνρ. The corresponding
electrically charged object is a 2-brane; in the literature the term membrane
is used specifically for 2-branes. The magnetically charged object is a 5-
brane. Of course the designations electric and magnetic interchange if we
use instead a 6-form potential. However, d = 11 supergravity is one case
in which one of the two Poincaré dual forms seems to be preferred (the
3-form) because the Chern–Simons term in the action cannot be written
with a 6-form.

As in the discussion of the IIB NS5-brane, but with the dilaton omitted,
we can always find a supersymmetric solution to the field equations having
the appropriate charges. The M2- and M5-brane solutions are black p-
branes, as described below eq. (14.1.14).

0-branes: The D0-branes of the IIA string are the BPS states of nonzero
p10. In M-theory these are the states of the massless graviton multiplet, an
ultrashort multiplet of 28 states for each value of p10.

1-branes: The 1-brane of the IIA theory is the fundamental IIA string.
Its natural origin is as an M-theory supermembrane wrapped on the
hidden dimension. As a check, such a membrane would couple to Aµν10;
this reduces to the NS–NS Bµν field which couples to the IIA string. It
was noted some time ago that the classical action of a wrapped M2-brane
reduces to that of the IIA string.

2-branes: The obvious origin of the IIA D2-brane is as a transverse
(rather than wrapped) M2-brane. The former couples to the R–R Cµνρ,
which is the reduction of the d = 11 Aµνρ to which the latter couples. Note
that when written in terms of M-theory parameters, the D2-brane tension

τD2 =
1

(2π)2gα′3/2
=

M3
11

(2π)2
(14.4.11)
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depends only on the fundamental scale M11 and not on R10, as necessary
for an object that exists in the eleven-dimensional limit. On the other
hand, the F-string tension

τF1 =
1

2πα′ = 2πR10τD2 (14.4.12)

is linear in R10, as should be the case for a wrapped object.
The D2-brane is perpendicular to the newly discovered 10-direction, and

so should have a collective coordinate for fluctuations in that direction.
This is puzzling, because D-branes in general have collective coordinates
only for their motion in the ten-dimensional spacetime of perturbative
string theory. However, the D2-brane is special, because in 2+1 dimensions
a vector describes the same physics, by Poincaré duality, as a scalar. It is
interesting to see this in detail. The bosonic action for a D2-brane in flat
spacetime is

S[F, λ, X] = −τ2
∫
d3x

{
[− det(ηµν + ∂µX

m∂νX
m + 2πα′Fµν)]1/2

+
εµνρ

2
λ∂µFνρ

}
. (14.4.13)

We are treating Fµν as the independent field and so include a Lagrange
multiplier λ to enforce the Bianchi identity. In this form Fµν is an auxiliary
field (its equation of motion determines it completely as a local function
of the other fields) and it can be eliminated with the result

S[λ,X] = −τ2
∫
d3x

{
− det[ηµν + ∂µX

m∂νX
m + (2πα′)−2∂µλ∂νλ]

}1/2
.

(14.4.14)
The algebra is left as an exercise. Defining λ = 2πα′X10, this is the action
for a membrane in eleven dimensions. Somewhat surprisingly, it displays
the full eleven-dimensional Lorentz invariance, even though this is broken
by the compactification of X10. This can be extended to the fermionic
terms, and to membranes moving in background fields.

4-branes: These are wrapped M5-branes.

5-branes: The IIA theory, like the IIB theory, has a 5-brane solution
carrying the magnetic NS–NS Bµν charge. The solution is the same as in

However, there is an interesting difference. Recall that a D1-brane can
end on the IIB NS 5-brane. Under T -duality in a direction parallel to
the 5-brane, we obtain a D2-brane ending on a IIA NS5-brane. From the
point of view of the (5 + 1)-dimensional theory on the 5-brane, the end
of a D1-brane in the IIB theory is a point, and is a source for the U(1)

the IIB theory, because the actions for the NS–NS fields are the same.
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gauge field living on the 5-brane. This is necessary so that the 5-brane
can, through a Chern–Simons interaction, carry the R–R charge of the
D1-brane. Similarly the end of the D2-brane in the IIA theory is a string
in the 5-brane, and so should couple to a 2-form field living on the IIA
NS5-brane.
We were not surprised to find a U(1) gauge field living on the IIB

NS 5-brane, because it is related by S-duality to the IIB D5-brane which
we know to have such a field. We cannot use this argument for the IIA
NS 5-brane. However, in both cases the fields living on the world-sheet
can be seen directly by looking at small fluctuations around the soliton
solution. We do not have space here to develop in detail the soliton
solutions and their properties, but we summarize the results. Modes that
are normalizable in the directions transverse to the 5-brane correspond
to degrees of freedom living on the 5-brane. These include the collective
coordinates for its motion and in each case some R–R modes, which do
indeed form a vector in the IIB case and a 2-form in the IIA case. The
field strength of the 2-form is self-dual.
It is also interesting to look at this in terms of the unbroken super-

symmetry algebras in the 5-brane world-volumes. Again we have space
only to give a sketch. The supersymmetry variations of the gravitinos in
a general background are

δψM = D−Mζ , δψ̃M = D+
Mζ . (14.4.15)

Here D±M is a covariant derivative where the spin connection ω is replaced
with ω± = ω ± 1

2H with H the NS–NS 3-form field strength. We have

already encountered ω± in the world-sheet action (12.3.28). The difference
of sign on the two sides occurs because H is odd under world-sheet parity.
Under

SO(9, 1)→ SO(5, 1)× SO(4) , (14.4.16)

the ten-dimensional spinors decompose

16 → (4, 2) + (4′, 2′) , (14.4.17a)

16′ → (4, 2′) + (4′, 2) . (14.4.17b)

The nonzero components of the connection for the 5-brane solution lie
in the transverse SO(4) = SU(2) × SU(2), and for the NS5-branes ω+

and ω− have the property that they lie entirely in the first or second
SU(2) respectively. A constant spinor carrying the second SU(2) (that is,
a 2′ of SO(4)) is then annihilated by D+

M , and one carrying the first (a 2)
by D−M; these correspond to unbroken supersymmetries. The left-moving
supersymmetries transforming as a 2 of SO(4) are thus unbroken — these
are a 4 in both the IIA and IIB theories. Also unbroken are the right-
moving supersymmetries transforming as a 2′ of SO(4), which for the IIA
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theory are a 4 and for the IIB theory a 4′. In other words, the unbroken
supersymmetry of the IIA NS5-brane is d = 6 (2, 0) supersymmetry, and
the unbroken supersymmetry of the IIB NS5-brane is d = 6 (1, 1) super-
symmetry. These supersymmetries are reviewed in section B.6. Curiously
the nonchiral IIA theory has a chiral 5-brane, and the chiral IIB theory a
nonchiral 5-brane.
These results fit with the fluctuation spectra. For the IIB NS5-brane the

collective coordinates plus vector add up to a vector multiplet of d = 6
(1, 1) supersymmetry. For the IIA NS5-brane, the only low-spin multiplet
is the tensor, which contains the self-dual tensor argued for above and
five scalars.
The obvious interpretation of the IIA NS5-brane is as an M-theory 5-

brane that is transverse to the eleventh dimension. As in the discussion of
the 2-brane, it should then have a collective coordinate for motion in this
direction. Four of the scalars in the tensor multiplet are from the NS–NS
sector and are collective coordinates for the directions perpendicular to
the 5-brane that are visible in string perturbation theory. The fifth scalar,
from the R–R sector, must be the collective coordinate for the eleventh
dimension. It is remarkable that the 2-brane and the 5-brane of the IIA
theory know that they secretly live in eleven dimensions.
The tension of the IIA NS5-brane is the same as that of the IIB

NS5-brane,

τNS5 =
1

(2π)5g2α′3 =
τ2D2

2π
=

M6
11

(2π)5
. (14.4.18)

Like the tension of the D2-brane this is independent of R10, as it must be
for the eleven-dimensional interpretation,

τD2 = τM2 , τNS5 = τM5 . (14.4.19)

This also fits with the interpretation of the D4-brane,

τD4 = 2πR10τM5 . (14.4.20)

Since the IIA NS5-brane and D2-brane are both localized in the eleventh
dimension, the configuration of a D2-brane ending on an NS5-brane lifts
to an eleven-dimensional configuration of an M-theory 2-brane ending
on an M-theory 5-brane. It is interesting to consider two nearby 5-branes
with a 2-brane stretched between them, either in the IIA or M-theory
context. The 2-brane is still extended in one direction and so behaves as
a string. The tension is proportional to the distance r between the two
5-branes,

τ1 = rτM2 . (14.4.21)

In the IIB theory, the r → 0 limit was a point of non-Abelian gauge
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symmetry. Here it is something new, a tensionless string theory. For small
r the lightest scale in the theory is set by the tension of these strings.
They are entirely different from the strings we have studied: they live in
six dimensions, they are not associated with gravity, and they have no
adjustable coupling constant — their interactions in fact are of order 1. Of
all the new phases of gauge and string theories that have been discovered
this is perhaps the most mysterious, and may be a key to understanding
many other things.

6-branes: The D6-brane field strength is dual to that of the D0-brane.
Since the D0-brane carries Kaluza–Klein electric charge, the D6-brane
must be a Kaluza–Klein magnetic monopole. Such an object exists as
a soliton, where the Kaluza–Klein direction is not independent of the
noncompact directions but is combined with them in a smooth and
topologically nontrivial way. This is a local object in three noncompact
spatial dimensions and so becomes a 6-brane in nine noncompact spatial
dimensions.

8-branes: The eleven-dimensional origin of the D8-brane will be seen in
the next section.

14.5 The E8 × E8 heterotic string

The final ten-dimensional string theory is the E8 × E8 heterotic string.
We should be able to figure out its strongly coupled behavior, since it
is T -dual to the SO(32) heterotic string whose strongly coupled limit is
known. We will need to trace through a series of T - and S-dualities before
we come to a weakly coupled description. In order to do this we will keep
track of how the moduli — the dilaton and the various components of
the metric — are related at each step.

Recall that in each string theory the natural metric to use is the one
that appears in the F-string world-sheet action. The various dualities in-
terchange F-strings with other kinds of string, and the ‘string metrics’ in
the different descriptions differ, as one sees explicitly in the IIB trans-
formation (14.1.6) and the type I–heterotic transformation (14.3.4). After
composing a series of dualities, one is interested in how the final dilaton
and metric vary as the original dilaton becomes large. We seek to reach
a description in which the final dilaton becomes small (or at least stays
fixed), and in which the final radii grow (or at least stay fixed). A de-
scription in which the dilaton becomes small and also the radii become
small is not useful, because the effective coupling in a small-radius theory
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is increased by the contributions of light winding states. To get an accu-
rate estimate of the coupling one must take the T -dual to a large-radius
description.

T : Heterotic E8 × E8 on S1 to heterotic SO(32) on S1. Compactify the
heterotic E8 × E8 theory on a circle of large radius R9 and turn on the
Wilson line that breaks E8 × E8 to SO(16) × SO(16). We will eventually
take R9 → ∞ to get back to the ten-dimensional theory of interest, and
then the Wilson line will be irrelevant. As discussed in section 11.6 this
theory is T -dual to the SO(32) heterotic string, again with a Wilson line
breaking the group to SO(16)×SO(16). The couplings and radii are related

R′9 ∝ R−19 , g′ ∝ gR−19 . (14.5.1)

Here primed quantities are for the SO(32) theory and unprimed for the
E8×E8 theory. We are only keeping track of the field dependence on each

side, R9 ∝ G
1/2
99 and g ∝ eΦ. The transformation of g follows by requiring

that the two theories give the same answer for scattering of low energy
gravitons. The low energy actions are proportional to

1

g2

∫
d10x =

2πR9

g2

∫
d9x (14.5.2)

and so R9/g
2 = R′9/g′2.

S: Heterotic SO(32) on S1 to type I on S1. Now use type I–heterotic
duality to write this as a type I theory with

gI ∝ g′−1 ∝ g−1R9 , R9I ∝ g′−1/2R′9 ∝ g−1/2R−1/29 . (14.5.3)

The transformation of G99 follows from the field redefinition (14.3.4). We
are interested in the limit in which g and R9 are both large. It appears
that we can make gI small by an appropriate order of limits. However,
the radius of the type I theory is becoming very small and so we must go
to the T -dual description as warned above.

T : Type I on S1 to type IIA on S1/Z2. Consider a T -duality in the 9-
direction of the type I theory. The compact dimension becomes a segment
of length πα′/R9I with eight D8-branes at each end, and

gI′ ∝ gIR
−1
9I ∝ g−1/2R3/2

9 , R9I′ ∝ R−19I ∝ g1/2R
1/2
9 . (14.5.4)

If we are taking g → ∞ at fixed R9 then we have reached a good
description. However, our real interest is the ten-dimensional theory at
fixed large coupling. The coupling gI′ then becomes large, but one final
duality brings us to a good description. The theory that we have reached
is often called the type I′ theory. In the bulk, between the orientifold
planes, it is the IIA theory, so we can also think of it as the IIA theory
on the segment S1/Z2. The coset must be an orientifold because the only
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spacetime parity symmetry of the IIA theory also includes a world-sheet
parity transformation.

S: Type IIA on S1/Z2 to M-theory on S1 × S1/Z2. The IIA theory is
becoming strongly coupled, so the physics between the orientifold planes
is described in terms of a new periodic dimension. The necessary transfor-
mations (12.1.9) were obtained from the dimensional reduction of d = 11
supergravity, giving

R10M ∝ g
2/3
I′ ∝ g−1/3R9 , R9M ∝ g

−1/3
I′ R9I′ ∝ g2/3 . (14.5.5)

As the original R9 is taken to infinity, the new R10 diverges linearly.
Evidently we should identify the original 9-direction with the final 10-
direction. Hence at the last step we also rename (9, 10)→ (10′, 9′). The final
dual for the strongly coupled E8×E8 theory in ten dimensions is M-theory,
with ten noncompact dimensions and the 10′-direction compactified. This
is the same as the strongly coupled IIA theory. The difference is that
here the 10′-direction is not a circle but a segment, with boundaries
at the orientifold planes. M-theory on S1 is the strongly coupled IIA
theory. M-theory on S1/Z2 is the strongly coupled E8 × E8 heterotic
theory. At each end are the orientifold plane and eight D8-branes, but
now both are nine-dimensional as they bound a ten-dimensional space.
The gauge degrees of freedom thus live in these walls, one E8 in each
wall.

The full sequence of dualities is

heterotic E8 × E8
T9→ heterotic SO(32)

S→ type I
T9→ type I′ S→M-theory .

(14.5.6)
A heterotic string running in the 8-direction becomes

F8
T9→ F8

S→ D8
T9→ D89

S→M8,10′ . (14.5.7)

That is, it is a membrane running between the boundaries, as in figure 14.3.
This whole picture is highly constrained by anomalies, and this in fact
is how it was originally discovered. The d = 11 supergravity theory in a
space with boundaries has anomalies unless the boundaries carry precisely
E8 degrees of freedom. Note also that

p9
T9→ F9

S→ D9
T9→ D∅

S→ p10 = p9′ . (14.5.8)

This confirms the identification of the original 9-direction and final 10-
direction.

Let us comment on the D8-branes. In string theory the D8-brane is a
source for the dilaton. To first order the result is a constant gradient for the
dilaton (since the D8-brane has codimension one), but the full nonlinear
supergravity equations for the dilaton, metric, and R–R 9-form imply that
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Fig. 14.3. Strongly coupled limit of E8 × E8 heterotic string theory, with one
heterotic string shown. The shaded upper and lower faces are boundaries. In
the strongly coupled IIA string the upper and lower faces would be periodically
identified.

the dilaton diverges a finite distance from the D8-brane. To cure this, one
must run into a boundary (orientifold plane) before the divergence: this
sets a maximum distance between the D8-brane and the boundary. As
one goes to the strongly coupled limit, the initial value for the dilaton is
greater and so this distance is shorter. In the strongly coupled limit the
D8-branes disappear into the boundary, and in the eleven-dimensional
theory there is no way to pull them out. The moduli for their positions
just become Wilson lines for the gauge theory in the boundary.

We have now determined the strongly coupled behaviors of all of the
ten-dimensional string theories. One can apply the same methods to the
compactified theories, and we will do this in detail for toroidal compacti-
fications of the heterotic string in section 19.9. Almost all of that section
can be read now; we defer it because to complete the discussion we will
need some understanding of strings moving on the smooth manifold K3.

14.6 What is string theory?

What we have learned is shown in figure 14.4. There is a single theory,
and all known string theories arise as limits of the parameter space, as
does M-theory with 11 noncompact spacetime dimensions. For example,
if one starts with the type I theory on T 2, then by varying the two radii,
the string coupling, and the Wilson line in one of the compact directions,
one can reach the noncompact weakly coupled limit of any of the other
string theories, or the noncompact limit of M-theory. Figure 14.4 shows
a two-dimensional slice through this four-parameter space. This is only
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Fig. 14.4. All string theories, and M-theory, as limits of one theory.

one of many branches of the moduli space, and one with a fairly large
number of unbroken supersymmetries, 16.

The question is, what is the theory of which all these things are limits?
On the one hand we know a lot about it, in that we are able to put
together this picture of its moduli space. On the other hand, over most
of moduli space, including the M-theory limit, we have only the low
energy effective field theory. In the various weakly coupled string limits,
we have a description that is presumably valid at all energies but only as
an asymptotic expansion in the coupling. This is very far from a complete
understanding.

As an example of a question that we do not know how to answer,
consider graviton–graviton scattering with center-of-mass energy E. Let us
suppose that in moduli space we are near one of the weakly coupled string
descriptions, at some small but finite coupling g. The ten-dimensional
gravitational constant is of order GN ∼ g2α′4. The Schwarzchild radius of
the system is of order R ∼ (GNE)

1/7. One would expect that a black hole
would be produced provided that R is large compared to the Compton
wavelength E−1 and also to the string length α′1/2. The latter condition is
more stringent, giving

E >∼
1

g2α′1/2
. (14.6.1)

At this scale, these considerations show that the interactions are strong
and string perturbation theory has broken down. Moreover, we do not
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even in principle have a way to study the scattering, as we should in
a complete theory. Of course, this process is so complicated that we
would not expect to obtain an analytic description, but a criterion for a
complete understanding of the theory is that we could in principle, with
a large enough and fast enough computer, answer any question of this
sort. In our present state of knowledge we cannot do this. We could only
instruct the computer to calculate many terms in the string perturbation
series, but each term would be larger than the one before it, and the
series would tell us nothing. This particular process is of some interest,
because there are arguments that it cannot be described by ordinary
quantum mechanics and requires a generalization in which pure states
evolve to density matrices. We will briefly discuss this issue in the next
section.
Even if one is only interested in physics at accessible energies, it is likely

that to understand the nonsupersymmetric state in which we live will
require a complete understanding of the dynamics of the theory. In the
case of quantum field theory, to satisfy Wilson’s criterion of ‘computability
in principle’ required an understanding of the renormalization group, and
this in turn gave much more conceptual insight into the dynamics of the
theory.
One possibility is that each of the string theories (or perhaps, just some

of them) can be given a nonperturbative definition in the form of string
field theory, so that each would give a good nonperturbative definition.
The various dualities would then amount to changes of variables from one
theory to another. However, there are various reasons to doubt this. The
most prominent is simply that string field theory has not been successful —
it has not allowed us to calculate anything we did not already know how to
calculate using string perturbation theory. Notably, all the recent progress
in understanding nonperturbative physics has taken place without the aid
of string field theory, and no connection between the two has emerged. On
the contrary, the entire style of argument in the recent developments has
been that there are different effective descriptions, each with its own range
of validity, and there is no indication that in general any description has
a wider range of validity than it should. That is, a given string theory is a
valid effective description only near the corresponding cusp of figure 14.4.
And if strings are the wrong degrees of freedom for writing down the
full Hamiltonian, no bookkeeping device like string field theory will give
a satisfactory description. We should also note that even in quantum
field theory, where we have a nonperturbative definition, this idea of
understanding dualities as changes of variables seems to work only in
simple low dimensional examples. Even in field theory the understanding
of duality is likely to require new ideas.
However, there must be some exact definition of the theory, in terms
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of some set of variables, because the graviton scattering question must
have an answer in principle. The term M-theory, originally applied to the
eleven-dimensional limit, has now come to denote the complete theory.

14.7 Is M for matrix?

A notable feature of the recent progress has been the convergence of
many lines of work, as the roles of such constructions as D-branes, string
solitons, and d = 11 supergravity have been recognized. It is likely that
the correct degrees of freedom for M-theory are already known, but their
full significance not appreciated. Indeed, one promising proposal is that
D-branes, specifically D0-branes, are those degrees of freedom.

According to our current picture, D-branes give a precise description
of part of the spectrum, the R–R charged states, but only near the cusps
where the type I, IIA, and IIB strings are weakly coupled — elsewhere
their relevance comes only from the usual supersymmetric continuation
argument. To extend this to a complete description covering the whole
parameter space requires some cleverness. The remainder of this section
gives a description of this idea, matrix theory.

Consider a state in the IIA theory and imagine boosting it to large
momentum in the hidden X10 direction. Of course ‘boosting’ is a decep-
tive term because the compactification of this dimension breaks Lorentz
invariance, but at least at large coupling (and so large R10), we should
be able to make sense of this. The energy of a particle with n units of
compact momentum is

E = (p210 + q2 + m2)1/2 ≈ p10 +
q2 + m2

2p10
=

n

R10
+
R10

2n
(q2 + m2) . (14.7.1)

Here q is the momentum in the other nine spatial dimensions. Recalling
the connection between p10 and D0-brane charge, this is a state of n D0-
branes, and the first term in the action is the D0-brane rest mass. Large
boost is large n/R10. In this limit, the second term in the energy is quite
small. States that have finite energy in the original frame have

E − n/R10 = O(R10/n) (14.7.2)

in the boosted frame. There are very few string states with the prop-
erty (14.7.2). For example, even adding massless closed strings would add
an energy q, which does not go to zero with R10/n. Excited open strings
connected to the D0-branes also have too large an energy. Thus it seems
that we can restrict to ground state open strings attached to the D0-branes.
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The Hamiltonian for these was given in eq. (13.5.14), which we now write
in terms of the M-theory parameters M11 and R10:

H = R10Tr

{
1

2
pipi − M6

11

16π2
[Xi, Xj]2 − M3

11

4π
λΓ0Γi[Xi, λ]

}
. (14.7.3)

We have dropped higher powers of momentum coming from the Born–
Infeld term because all such corrections are suppressed by the boost, just
as the square root in the energy (14.7.1) simplifies. Also, we drop the
additive term n/R10 from H .

The Hamiltonian (14.7.3) is conjectured to be the complete description
of systems with p10 = n/R10 ) M11. Now take R10 and n/R10 to infinity,
to describe a highly boosted system in eleven noncompact dimensions.
By eleven-dimensional Lorentz invariance, we can put any system in this
frame, so this should be a complete description of the whole of M-theory!
This is the matrix theory proposal. We emphasize that this is a conjecture,
not a derivation: we can derive the Hamiltonian (14.7.3) only at weak
string coupling, where we know what the theory is. In effect, we are taking
a specific result derived at the IIA cusp of figure 14.4 and conjecturing
that it is valid over the whole moduli space.

This is a remarkably simple and explicit proposal: the nine n×nmatrices
Xi
ab are all one needs. As one check, let us recall the observation from the

previous chapter that only one length scale appears in this Hamiltonian,
g1/3α′1/2. This is the minimum distance that can be probed by D0-brane
scattering, and now in light of M-theory we see that this scale has another
interpretation — it is M−1

11 , the eleven-dimensional Planck length. This is
the fundamental length scale of M-theory, and so the only one that should
appear.

At first sight, the normalization of the Hamiltonian (14.7.3) seems
to involve another parameter, R10. Recall, however, that the system is
boosted and so internal times are dilated. The boost factor is proportional
to p10, so the time-scale should be divided by a dimensionless factor
p10/M11 = n/M11R10, and again only the scale M11 appears.

The description of the eleven-dimensional spacetime in matrix theory
is rather asymmetric: time is the only explicit coordinate, nine spatial
dimensions emerge from matrix functions of time, and the last dimension
is the Fourier transform of n. This asymmetric picture is similar to the
light-cone gauge fixing of a covariant theory.

Now let us discuss some of the physics. As in the discussion of IIA–M-
theory duality, a graviton of momentum p10 = n/R10 is a bound state of
n D0-branes. Again, the existence of these bound states is necessary for
M-theory to be correct, and has been shown in part. For a bound state of
total momentum qi, the SU(n) dynamics is responsible for the zero-energy
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bound state, and the center-of-mass energy from the U(1) part pi = qiIn/n

is

E =
R10

2
Tr(pipi) =

q2

2p10
, (14.7.4)

correctly reproducing the energy (14.7.1) for a massless state.
Now let us consider a simple interaction, graviton–graviton scattering.

Let the gravitons have 10-momenta p10 = n1,2/R10 and be at well-separated
positions Y i

1,2. The total number of D0-branes is n1+n2, and the coordinate

matrices Xi are approximately block diagonal. Write Xi as

Xi = Xi
0 + xi (14.7.5a)

Xi
0 = Y i

1I1 + Y i
2I2 , xi = xi11 + xi22 + xi12 + xi21 . (14.7.5b)

Here I1 and I2 are the identity matrices in the two blocks, which are
respectively n1 × n1 and n2 × n2, and we have separated the fluctuation
xi into a piece in each block plus off-diagonal pieces. First setting the
off-diagonal xi12,21 to zero, the blocks decouple because [xi11, x

j
22] = 0.

The wavefunction is then a product of the corresponding bound state
wavefunctions,

ψ(x11, x22) = ψ0(x11)ψ0(x22) . (14.7.6)

Now consider the off-diagonal block. These degrees of freedom are heavy:
the commutator

[Xi
0, x

j
12] = (Y i

1 − Y i
2)x

j
12 (14.7.7)

gives them a mass proportional to the separation of the gravitons. Thus
we can integrate them out to obtain the effective interaction between the
gravitons.
We would like to use this to test the matrix theory proposal, to see that

the effective interaction at long distance agrees with eleven-dimensional
supergravity. In fact, we can do this without any further calculation:
all the necessary results can be extracted from the cylinder amplitude
(13.5.6). At distances small compared to the string scale, the cylinder is
dominated by the lightest open strings stretched between the D0-branes,
which are precisely the off-diagonal matrix theory degrees of freedom.
At distances long compared to the string scale, the cylinder is dominated
by the lightest closed string states and so goes over to the supergravity
result. This is ten-dimensional supergravity, but it is equivalent to the
answer from eleven-dimensional supergravity for the following reason. In
the process we are studying, the sizes of the blocks stay fixed at n1 and n2,
meaning that the values of p10 and p

′
10 do not change in the scattering and

the p10 of the exchanged graviton is zero. This has the effect of averaging
over x10 and so giving the dimensionally reduced answer.
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Finally, we should keep only the leading velocity dependence from
the cylinder, because the time dilation from the boost suppresses higher
powers as in eq. (14.7.1). The result (13.5.7) for p = 0, multiplying by the
number of D0-branes in each clump, is

L = −V (r, v) = 4π5/2Γ(7/2)α′3n1n2
v4

r7

=
15π3

2

p10p
′
10

M9
11R10

v4

r7
. (14.7.8)

Because the functional form is the same at large and small r, the matrix
theory correctly reproduces the supergravity amplitude (in the matrix
theory literature, the standard convention is M11 = (2π)−1/3M11 (here),

This is an interesting result, but its significance is not clear. Some
higher order extensions do not appear to work, and it may be that one
must take the large n limit to obtain agreement with supergravity. The
loop expansion parameter in the quantum mechanics is then large, so
perturbative calculations are not sufficient. Also, the process being studied
here, where the p10 of the exchanged graviton vanishes, is quite special.
When this is not the case, one has a very different process where the sizes
of the blocks change, meaning that D0-branes move from one clump to
the other; this appears to be much harder to study.
Matrix theory, if correct, satisfies the ‘computability’ criterion: we can in

principle calculate graviton–graviton scattering numerically at any energy.
The analytic understanding of the bound states is still limited, but in
principle they could be determined numerically to any desired accuracy
and then the wavefunction for the two-graviton state evolved forward
in time. Of course any simulation is at finite n and R10, and the matrix
theory proposal requires that we take these to infinity; but if the proposal is
correct then the limits exist and can be taken numerically. For now all this
is just a statement in principle, as various difficulties make the numerical
calculation impractical. Most notable among these is the difficulty of
preserving to sufficient precision the supersymmetric cancellations that
are needed for the theory to make sense — for example, along the flat
directions of the potential.

The M-theory membrane

If the matrices Xi are a complete set of degrees of freedom, then it must
be possible to identify all the known states of M-theory, in particular the
membranes. We might have expected that these would require us to add
explicit D2-brane degrees of freedom, but remarkably the membranes are
already present as excitations of the D0-brane Hamiltonian.

which removes all 2πs from the matrix theory Hamiltonian).

eff
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To see this, define the n× n matrices

U =


1 0 0 0
0 α 0 0 · · ·
0 0 α2 0
0 0 0 α3

...
. . .

 , V =


0 0 0 1
1 0 0 · · · 0
0 1 0 0
0 0 1 0

...
. . .

 , (14.7.9)

where α = exp(2πi/n). These have the properties

Un = Vn = 1 , UV = αVU , (14.7.10)

and these properties determine U and V up to change of basis. The
matrices UrV s for 1 ≤ r, s ≤ n form a complete set, and so any matrix
can be expanded in terms of them. For example,

Xi =

[n/2]∑
r,s=[1−n/2]

Xi
rsU

rV s , (14.7.11)

with [ ] denoting the integer part and similarly for the fermion λ. To each
matrix we can then associate a periodic function of two variables,

Xi → Xi(p, q) =

[n/2]∑
r,s=[1−n/2]

Xi
rs exp(ipr + iqs) . (14.7.12)

If we focus on matrices which remain smooth functions of p and q as
n becomes large (so that the typical r and s remain finite), then the
commutator maps

[Xi, Xj] → 2πi

n
(∂qX

i∂pX
j − ∂pX

i∂qX
j) + O(n−2)

≡ 2πi

n
{Xi, Xj}PB + O(n−2) . (14.7.13)

One can verify this by considering simple monomials UrV s. Notice the
analogy to taking the classical limit of a quantum system, with the Poisson
bracket appearing. One can also rewrite the trace as an integral,

Tr = n

∫
dq dp

(2π)2
. (14.7.14)

The Hamiltonian becomes

R10

∫
dq dp

(
n

8π2
ΠiΠi +

M6
11

16π2n
{Xi, Xj}2PB − i

M3
11

8π2
λΓ0Γi{Xi, λ}PB

)
.

(14.7.15)
Since Xi(p, q) is a function of two variables, this Hamiltonian evidently
describes the quantum mechanics of a membrane. In fact, it is identical
to the Hamiltonian one gets from an eleven-dimensional supersymmetric
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membrane action in the light-cone gauge. We do not have space to develop
this in detail, but as an example consider the static configuration

X1 = aq , X2 = bp ; (14.7.16)

since q and p are periodic we must also suppose X1,2 to be as well. Then
the energy is

M6
11R10a

2b2

2n
=

M6
11A

2

2(2π)4p10
=
τ2M2A

2

2p10
. (14.7.17)

Here A = 4π2ab is the area of the membrane. The product τM2A is the
mass of an M-theory membrane of this area, so this agrees with the
energy (14.7.1).

There was at one time an effort to define eleven-dimensional super-
gravity as a theory of fundamental membranes; this was one of the roots
of the name M-theory. This had many difficulties, the most immediate
being that the world-volume theory is nonrenormalizable. However, it was
noted that the light-cone Hamiltonian (14.7.15) was the large-n limit of
dimensionally reduced d = 10, N = 1 gauge theory (14.7.3), so the finite-n
theory could be thought of as regularizing the membrane. Matrix theory
puts this idea in a new context. One of the difficulties of the original
interpretation was that the potential has flat directions, for example

Xi = Y i
1I1 + Y i

2I2 (14.7.18)

as in eq. (14.7.5). This implies a continuous spectrum, which is physically
unsatisfactory given the original interpretation of the Hamiltonian as aris-
ing from gauge-fixing the action for a single membrane. However, we now
interpret the configuration (14.7.18) as a two-particle state. The continu-
ous spectrum is not a problem because the matrix theory is supposed to
describe states with arbitrary numbers of particles. We should emphasize
that in focusing on matrices that map to smooth functions of p and q

we have picked out just a piece of the matrix theory spectrum, namely
states of a single membrane of toroidal topology. Other topologies, other
branes, and graviton states are elsewhere.

Since matrix theory is supposed to be a complete formulation of M-
theory, it must in particular reproduce all of string theory. It is surprising
that it can do this starting with just nine matrices, but we now see how
it is possible — it contains membranes, and strings are just wrapped
membranes. The point is that one can hide a great deal in a large matrix!
If we compactify one of the nine Xi dimensions, the membranes wrapped
in this direction reproduce string theory; arguments have been given that
the string interactions are correctly incorporated.
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Finite n and compactification

In arguing for matrix theory we took n to be large. Let us also ask, does
the finite-n matrix theory Hamiltonian have any physical relevance? In
fact it describes M-theory compactified in a lightlike direction,

(x0, x10) ∼= (x0 − πR̃10, x
10 + πR̃10) . (14.7.19)

To see this — in fact, to define it — let us reach this theory as the limit
of spacelike compactification,

(x0, x10) ∼= (x0 − πR̃10, x
10 + πR̃10 + 2πε2R̃10) (14.7.20)

with ε → 0. The invariant length of the compact dimension is 2πεR̃10 +
O(ε2), so this is Lorentz-equivalent to the spacelike compactification

(x′0, x′10) ∼= (x′0, x′10 + 2πεR̃10) , (14.7.21)

where

x′0 ± x′10 = ε∓1(x0 ± x10) . (14.7.22)

Unlike the n → ∞ conjecture, the finite-n conjecture can actually be
derived from things that we already know. Because the invariant ra-
dius (14.7.21) is going to zero, we are in the regime of weakly coupled
IIA string theory. Moreover, states that have finite energy in the original
frame acquire

E′, p′10 ∝ O(ε−1) , E′ − p′10 ∝ O(ε) (14.7.23)

under the boost (14.7.22). These are the only states that we are to retain.
However, we have already carried out this exercise at the beginning of
this section: this is eq. (14.7.2) where

R10 = εR̃10 . (14.7.24)

The derivation of the matrix theory Hamiltonian then goes through just
as before, and it is surely correct because we are in weakly coupled string
theory. The lightlike theory is often described as the discrete light-cone
quantization (DLCQ) of M-theory, meaning light-cone quantization with
a discrete spectrum of p−. This idea has been developed in field theory, but
one must be careful because the definition there is generally not equivalent
to the lightlike limit.

Of course, the physics in a spacetime with lightlike compactification
may be rather exotic, so this result does not directly enable us to under-
stand the eleven-dimensional theory which is supposed to be recovered
in the large-n limit. However, it has been very valuable in understand-
ing how the matrix theory conjecture is to be extended to the case that
some of the additional dimensions are compactified. Let us consider,
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for example, the case that k dimensions are periodic. Working in the
frame (14.7.21), we are instructed to take R10 to zero holding fixed M11

and all momenta and distances in the transverse directions (those other
than x10). We then keep only states whose energy is O(R10) above the
BPS minimum. These clearly include the gravitons (and their superpart-
ners) with nonzero p10, which are just the D0-branes. In addition, let
us consider M2-branes that are wrapped around the 10-direction and
around one of the transverse directions xm. From the IIA point of view
these are F-strings winding in the xm-direction. They have mass equal to
τM2A = M3

11RmR10 and so are candidates to survive in the limit. How-

ever, for M2-branes with vanishing p10, E = (q2 + m2)1/2 and we also
need that they have zero momentum in the noncompact directions — this
is a point of measure zero. The only membrane states that survive are
M2-branes with nonzero p10, which are F-strings that end on D0-branes
in the IIA description. These F-strings must be in their ground states,
but they can wind any number of times around the transverse compact
directions. The lightlike limit now has many more degrees of freedom
than in the noncompact case, because there is an additional winding
quantum number for each compact dimension. In fact, it is simpler to use
the T -dual description, where the D0-branes become Dk-branes and the
winding number becomes momentum: the lightlike limit of matrix theory
then includes the full (k + 1)-dimensional U(n) Yang–Mills theory on the
branes.

It is notable that the number of degrees of freedom goes up drastically
with compactification of each additional dimension, as the dimension of
the effective gauge theory increases. A difficulty is that for k > 3 the
gauge theory on the brane is nonrenormalizable. However, for k > 3 our
discussion of the lightlike limit is incomplete. In the first place, we have
not considered all the degrees of freedom. For k ≥ 4, an M5-brane that
wraps the x10-direction and four of the transverse directions also survives
the limit. Moreover, the coupling of the T -dual string theory,

R10

α′1/2
∏
m

α′1/2
Rm

= R
(3−k)/2
10 (M3

11)
(1−k)/2∏

m

R−1m , (14.7.25)

diverges as R10 → 0 for k ≥ 4. The lightlike limit is then no longer
a weakly coupled string theory, and it is necessary to perform further
dualities. The various cases k ≥ 4 are quite interesting, but we must leave
the details to the references.

In summary, the various compactifications of matrix theory suggest
a deep relation between large-n gauge theory and string theory. Such a
relation has arisen from various other points of view, and may lead to a
better understanding of gauge theories as well as string theory.
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14.8 Black hole quantum mechanics

In the early 1970s it was found that classical black holes obey laws directly
analogous to the laws of thermodynamics. This analogy was made sharper
by Hawking’s discovery that black holes radiate as black bodies at the
corresponding temperature. Under this analogy, the entropy of a black
hole is equal to the area of its event horizon divided by κ2/2π. The analogy
is so sharp that it has long been a goal to find a statistical mechanical
theory associated with this thermodynamics, and in particular to associate
the entropy with the density of states of the black hole. Many arguments
have been put forward in this direction but until recently there was no
example where the states of a black hole could be counted in a controlled
way.
This has now been done for some string theory black holes. To see the

idea, let us return to the relation between a D-brane and an R–R charged
black p-brane. The thermodynamic and other issues are the same for black
p-branes as for black holes. The explicit solution for a black p-brane with
Q units of R–R charge is (for p ≤ 6)

ds2 = Z(r)−1/2ηµνdxµdxν + Z(r)1/2dxmdxm , (14.8.1a)

e2Φ = Z(r)(3−p)/2 . (14.8.1b)

Here xµ is tangent to the p-brane, xm is transverse, and

Z(r) = 1 +
ρ7−p
r7−p , r2 = xmxm , (14.8.2a)

ρ7−p = α′(7−p)/2gQ(4π)(5−p)/2Γ
(
7− p

2

)
. (14.8.2b)

The numerical constant, which is not relevant to the immediate discussion,
is obtained in exercise 14.6. The characteristic length ρ is shorter than the
string scale when gQ is less than 1. In this case, the effective low energy
field theory that we have used to derive the solution (14.8.1) is not valid.
When gQ is greater than 1 the geometry is smooth on the string scale and
the low energy field theory should be a good description.
Consider now string perturbation theory in the presence of Q coincident

D-branes. The expansion parameter is gQ: each additional world-sheet
boundary brings a factor of the string coupling g but also a factor of
Q from the sum over Chan–Paton factors. When gQ is small, string
perturbation theory is good, but when it is large it breaks down. Thus the
situation appears to be very much as with the instanton in section 13.6: in
one range of parameters the low energy field theory description is good,
and in another range the D-brane description is good.
In the instanton case we can continue from one regime to the other by

varying the instanton scale factor. In the black p-brane case we can do the

g2
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same by varying the string coupling, as we have often done in the analysis
of strongly coupled strings. We can use this to count supersymmetric
(BPS) black hole states: we can do the counting at small gQ, where the
weakly coupled D-brane description is good, and continue to large gQ,
where the black hole description is accurate.

The particular solution (14.8.1) is not useful for a test of the black
hole entropy formula because the event horizon, at r = 0, is singular. It
can be made nonsingular by adding energy to give a nonsupersymmetric
black hole, but in the supersymmetric (extremal) limit the area goes to
zero. To obtain a supersymmetric black p-brane with a smooth horizon
of nonzero area requires at least three nonzero charges. A simple example
combines Q1 D1-branes in the 5-direction with Q5 D5-branes in the
(5,6,7,8,9)-directions. To make the energy finite the (6,7,8,9)-directions are
compactified on a T 4 of volume V4. We also take the 5-direction to be
finite, but it is useful to keep its length L large. The third charge is
momentum p5. The solution is

ds2 = Z
−1/2
1 Z

−1/2
5

[
ηµνdx

µdxν + (Zn − 1)(dt+ dx5)
2
]

+Z
1/2
1 Z

1/2
5 dxidxi + Z

1/2
1 Z

−1/2
5 dxmdxm , (14.8.3a)

e−2Φ = Z5/Z1 . (14.8.3b)

Here µ, ν run over the (0,5)-directions tangent to all the branes, i runs
over the (1,2,3,4)-directions transverse to all branes, and m runs over
the (6,7,8,9)-directions tangent to the D5-branes and transverse to the
D1-branes. We have defined

Z1 = 1 +
r21
r2
, r21 =

(2π)4gQ1α
′3

V4
, (14.8.4a)

Z5 = 1 +
r25
r2
, r25 = gQ5α

′ , (14.8.4b)

Zn = 1 +
r2n
r2
, r2n =

(2π)5g2p5α
′4

LV4
, (14.8.4c)

with r2 = xixi. The event horizon is at r = 0; the interior of the black
hole is not included in this coordinate system. The integers Q1, Q5, and
n5 = p5L/2π are all taken to be large so that this describes a classical
black hole, with horizon much larger than the Planck scale.

The solution (14.8.3) is in terms of the string metric. The black hole
area law applies to the Einstein metric GEµν = e−Φ/2Gµν , whose action is
field-independent. This is

ds2E = Z
−3/4
1 Z

−1/4
5

[
ηµνdx

µdxν + (Zn − 1)(dt+ dx5)
2
]

+Z
1/4
1 Z

3/4
5 dxidxi + Z

1/4
1 Z

−1/4
5 dxmdxm . (14.8.5)
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Now let us determine the horizon area. The eight-dimensional horizon is
a 3-sphere in the transverse dimensions and is extended in the (5,6,7,8,9)-
directions. Near the origin the angular metric is(

r21
r2

)1/4(
r25
r2

)3/4

r2dΩ2 = r
1/2
1 r

3/2
5 dΩ2 , (14.8.6)

with total area 2π2r
3/4
1 r

9/4
5 . From G55 = Z

−3/4
1 Z

−1/4
5 Zn it follows that

the invariant length of the horizon in the 5-direction is r
−3/4
1 r

−1/4
5 rnL.

Similarly the invariant volume in the toroidal directions is r1r
−1
5 V4. The

area is the product

A = 2π2LV4r1r5rn = 26π7g2α′4(Q1Q5n5)
1/2 = κ2(Q1Q5n5)

1/2 . (14.8.7)

This gives for the black hole entropy

S =
2πA

κ2
= 2π(Q1Q5n5)

1/2 . (14.8.8)

The final result is quite simple, depending only on the integer charges and
not on any of the moduli g, L, or V4. This is a reflection of the classical
black hole area law: under adiabatic changes in the moduli the horizon
area cannot change.
Now let us consider the same black hole in the regime where the D-

brane picture is valid. The dynamics of the #ND = 4 system was discussed
in chapter 13, and in particular the potential is

V =
1

(2πα′)2 |Xiχ− χYi|2 + g21
4
DA1D

A
1 +

g25
4V4

DA5D
A
5 . (14.8.9)

This is generalized from the earlier (13.6.25) because there are multiple
D1-branes and D5-branes. Thus in the first term the Q1 × Q1 D1-brane
collective coordinates Xi act on the left of the Q1 × Q5 matrix χ, and the
Q5 × Q5 D5-brane collective coordinates Yi act on the right. The black
hole is a bound state of D1- and D5-branes, so the χ are nonzero. The
first term in the potential then requires that

Xi = xiIQ1
, Y i = xiIQ5

, (14.8.10)

and the center-of-mass xi is the only light degree of freedom in the
transverse directions. Also, the 1-1 Xm and 5-5 Am are now charged under
the U(Q1) and U(Q5) and so contribute to the D-terms in the general
form (B.7.3).4 What is important is the dimension of the moduli space,
which can be determined by counting. The Xm contribute 4Q2

1 real scalars,

4 The A4 term is just a rewriting of the [Am, An] term from the dimensional reduction, and similarly
for the X4.
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the Am contribute 4Q2
5, and the χ contribute 4Q1Q5. The vanishing of the

D-terms imposes 3Q2
1 + 3Q2

5 conditions; since the Qs are large we do not
worry about the U(1) parts, which are only 1/Q2 of the total. Also, the
U(Q1) and U(Q5) gauge equivalences remove another Q2

1 + Q2
5 moduli,

leaving 4Q1Q5. This is a generalization of the counting that we did for the
instanton in section 13.6.
These moduli are functions of x5 and x0. We are treating L as very large,

but the counting extends to small L with some subtlety. So we have a two-
dimensional field theory with 4Q1Q5 real scalars and by supersymmetry
4Q1Q5 Majorana fermions, and we need its density of states. This is a
standard calculation, which in fact we have already done. For a CFT of
central charge c, the general relation (7.2.30) between the central charge
and the density of states gives

Tr[exp(−βH)] ≈ exp(πcL/12β) . (14.8.11)

We have effectively set c̃ = 0 because only the left-movers are excited in
the supersymmetric states. The earlier result was for a string of length 2π,
so we have replaced H → LH/2π by dimensional analysis. The density of
states is related to this by∫ ∞

0
dE n(E) exp(−βE) = Tr[exp(−βH)] , (14.8.12)

giving in saddle point approximation

n(E) ≈ exp
[
(πcEL/3)1/2

]
. (14.8.13)

Finally, the central charge for our system is c = 6Q1Q5, while E = 2πn5/L,
and so

n(E) ≈ exp
[
2π(Q1Q5n5)

1/2
]
, (14.8.14)

in precise agreement with the exponential of the black hole entropy.
This is a remarkable result, and another indication, beyond perturbative
finiteness, that string theory defines a sensible theory of quantum gravity.
This result has been extended to other supersymmetric black holes,

to the entropy of almost supersymmetric black holes, and to decay and
absorption rates of almost supersymmetric black holes. In these cases
the agreement is somewhat surprising, not obviously a consequence of
supersymmetry. Subsequently the ‘string’ picture of the black holes has
been extended to circumstances such as M-theory where there is no D-
brane interpretation. These results are suggestive but the interpretation is
not clear. We will discuss highly nonsupersymmetric black holes below.
Recalling the idea that D-branes can probe distances below the string

scale, one might wonder whether the black p-brane metrics (14.8.1) and
(14.8.3) can be seen even in the regime gQ < 1 in which the D-brane



14.8 Black hole quantum mechanics 223

picture rather than low energy field theory is relevant. Indeed, in some
cases they can; this is developed in exercise 14.7.

The metric simplifies very close to r = 0, where the terms 1 in Z1, Z5,
and Zn become negligible. Taking for simplicity the case rn = 0, the metric
becomes

ds2 =
r2

r1r5
ηµνdx

µdxν +
r1r5

r2
dr2 + r1r5dΩ

2 +
r1

r5
dxmdxm . (14.8.15)

This is a product space

AdS3 × S3 × T 4 . (14.8.16)

Here AdS3 is three-dimensional anti-de-Sitter space, which is the geometry
in the coordinates xµ and r (to be precise, these coordinates cover only
part of anti-de-Sitter space). In a similar way, the metric (14.8.1) near a
black 3-brane is

AdS5 × S5 . (14.8.17)

The case p = 3 is special because the dilaton remains finite at the horizon
r = 0, as it does for the D1–D5 metric (14.8.3).

Very recently, a very powerful new duality proposal has emerged. Con-
sider the IR dynamics of a system of N coincident Dp-branes. The bulk
closed strings should decouple from the dynamics on the branes because
gravity is an irrelevant interaction. The brane dynamics will then be de-
scribed by the supersymmetric Yang–Mills theory on the brane, even for
gN large. On the other hand, when gN is large the description of the
system in terms of low energy supergravity should be valid as we have
discussed. Thus we have two different descriptions which appear to have
an overlapping range of validity. In the Yang–Mills description the effec-
tive expansion parameter gN is large, so perturbation theory is not valid.
However, for g fixed, N is also very large. Noting that the gauge group
on the branes is U(N), this is the limit of a large number of ‘colors,’
the large-N limit. Field theories simplify in this limit, but it has been a
long-standing unsolved problem to obtain any analytic understanding of
Yang–Mills theories in this way. Now it appears, at least for theories with
enough supersymmetry, that one can calculate amplitudes in the gauge
theory by using the dual picture, where at low energy supergravity is
essentially classical. If this idea is correct, it is a tremendous advance in
the understanding of gauge field theories.

A correspondence principle

To make a precise entropy calculation we had to consider an extremal
black hole with a specific set of charges. What of the familiar neutral
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Schwarzschild black hole? Here too one can make a quantitative statement,
but not at the level of precision of the supersymmetric case.
For a four-dimensional Schwarzschild black hole of mass M, the radius

and entropy are

R ≈ GNM , (14.8.18a)

Sbh ≈ R2

GN
≈ GNM

2 . (14.8.18b)

In this section we will systematically ignore numerical constants like 2 and
π, for a reason to be explained below; hence the ≈ . Let us consider what
happens as we adiabatically change the dimensionless string coupling g.
In four dimensions, dimensional analysis gives

GN ≈ g2α′ . (14.8.19)

As we vary g the dimensionless combination GNM
2 stays fixed. The

simplest way to see this is to appeal to the fact that the black hole
entropy (14.8.18) has the same properties as the thermodynamic entropy,
and so is invariant under adiabatic changes.
Now imagine making the coupling very weak. One might imagine that

for sufficiently weak coupling the black hole will no longer be black.
One can see where this should happen from the following argument. The
preceding two equations imply that

R

α′1/2
≈ gS

1/2
bh . (14.8.20)

We are imagining that Sbh is large so that the thermodynamic picture
is good. Until g is very small, the Schwarzschild radius is then large
compared to the string length and the gravitational dynamics should not
be affected by stringy physics.

However, when g becomes small enough that gS
1/2
bh is of order 1, stringy

corrections to the action become important. If we try to extrapolate past
this point, the black hole becomes smaller than a string! It is then unlikely
that the field theory description of the black hole continues to be valid.
Rather, the system should look like a state in weakly coupled string theory.
This is how we can make the comparison: at this point, if the black hole
entropy has a statistical interpretation, then the weakly coupled string
theory should have the appropriate number of states of the given mass to
account for this entropy. Since the entropy is assumed to be large we are
interested in highly excited states. For a single highly excited string of mass
M the density of states can be found as in section 9.8 and exercise 11.12,

exp
{
πM[(c+ c̃)α′/3]1/2

}
. (14.8.21)

In fact, one can show that with this exponential growth in their number,
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the single string states are a significant fraction of the total number
of states of given energy. In particular, and in contrast to the R–R case,
states with D-branes plus anti-D-branes would have a much lower entropy
because of the energy locked in the D-brane rest mass. The entropy of
weakly coupled string states is then the logarithm

Ss ≈Mα′1/2 ≈ g−1MG
1/2
N . (14.8.22)

This entropy has a different parametric dependence than the black hole
entropy (14.8.18). However, they are to be compared only at the point

gS
1/2
bh ≈ 1 , (14.8.23)

where the transition from one picture to the other occurs. Inserting this

value for g, the string entropy (14.8.22) becomes S
1/2
bh MG

1/2
N ≈ Sbh.

We see that the numerical coefficients cannot be determined in this
approach, since we do not know the exact coupling where the transition
occurs, and corrections are in any case becoming significant on each side.
However, a priori the entropy could have failed to match by a power of
the large dimensionless number in the problem, Sbh. One can show that
the same agreement holds in any dimension (exercise 14.8) and for black
holes with a variety of charges. This is further evidence for the statistical
interpretation of the black hole entropy, and that string theory has the
appropriate number of states to be a complete theory of quantum gravity.

The information paradox

A closely associated issue is the black hole information paradox. A black
hole of given mass and charge can be formed in a very large number of
ways. It will then evaporate, and the Hawking radiation is apparently inde-
pendent of what went into the black hole. This is inconsistent with ordinary
quantum mechanics, as it requires pure states to evolve into mixed states.
There are various schools of thought here. The proposal of Hawking

is that this is just the way things are: the laws of quantum mechanics
need to be changed. There is also strong skepticism about this view, partly
because this modification of quantum mechanics is rather ugly and very
possibly inconsistent. However, 20 years of investigation have only served
to sharpen the paradox. The principal alternative, that the initial state is
encoded in subtle correlations in the Hawking radiation, sounds plausible
but in fact is even more radical.5 The problem is that Hawking radiation

5 A third major alternative is that the evaporation ends in a remnant, a Planck-mass object having
an enormous number of internal states. This might be stable or might release its information over
an exceedingly long time scale. This has its own problems of aesthetics and possibly consistency,
and is generally regarded as less likely.
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emerges from the region of the horizon, where the geometry is smooth and
so ordinary low energy field theory should be valid. One can follow the
Hawking radiation and see correlations develop between the fields inside
and outside the black hole; the superposition principle then forbids the
necessary correlations to exist strictly among the fields outside. To evade
this requires that the locality principle in quantum field theory break down
in some long-ranged but subtle way.

The recent progress in string duality suggests that black holes do obey
the ordinary rules of quantum mechanics. The multiplets include black
holes along with various nonsingular states, and we have continuously de-
formed a black hole into a system that obeys ordinary quantum mechanics.
However, this is certainly not conclusive — we have two descriptions with
different ranges of validity, and while the D-brane system has an explicit
quantum mechanical description, one could imagine that as the coupling
constant is increased a critical coupling is reached where the D-particles
collapse to form a black hole. At this coupling there could be a discon-
tinuous change (or a smooth crossover) from ordinary quantum behavior
to information loss.

Certainly if matrix theory is correct, the ordinary laws of quantum
mechanics are preserved and the information must escape (there are not
enough states for the remnant idea). It should be noted that in matrix
theory only locality in time is explicit, so the necessary nonlocality may be
present. If so, it is important to see in detail how this happens. In particular
it may give insight into the cosmological constant problem, which stands in
the way of our understanding the vacuum and supersymmetry breaking.
This is another place where the continued failure of mundane ideas
suggests that we need something new and perhaps nonlocal.

Exercises

14.1 From the supersymmetry algebra (13.2.9), show that an infinite type
II F-string with excitations moving in only one direction is a BPS state.
Show the same for a D-string.

14.2 Using the multi-NS5-brane solution (14.1.15), (14.1.17) and the D-
string action, calculate the mass of a D-string stretched between two
NS5-branes. Using IIB S-duality, compare this with the mass of an F-
string stretched between D5-branes.

14.3 For compactification of the type II string on T 4, where the U-duality
group is SO(5, 5,Z) and the T -duality group is SO(4, 4,Z), repeat the
discussion in section 14.2 of the representations carried by the vector
fields.
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14.4 (a) For the series of operations TST discussed in section 14.4, deduce
the transformation of each gauge field and higher rank form.
(b) Deduce the transformation of each extended object (D-brane, F-string,
or NS-brane, with the various possible orientations for each).
(c) In each case compare with the interpretation as a 90◦ rotation of
M-theory compactified on T 2.

14.5 As discussed in section 14.6, consider the type I theory compactified
on T 2. In terms of the two radii, the string coupling, and the Wilson line,
determine the six limits of parameter space that give the six noncompact
theories at the cusps of figure 14.4, with the coupling going to zero in the
stringy limits.

14.6 Expand the black p-brane solution (14.8.1) to first order in gQ and
compare with the field produced by a Dp-brane, calculated in the linearized
low energy field theory as in section 8.7.

14.7 Consider a D1-brane aligned along the 1-direction. Evaluate the
D1-brane action in the field (14.8.3) and expand to order v2. For n5 = 0,
compare with the order v2 interaction between a D1-brane and a collection
of D1- and D5-branes as obtained from the annulus.

14.8 Extend the correspondence principle to Schwarzschild black holes in
other dimensions. The necessary black hole properties can be obtained
by dimensional analysis. The entropy is always equal to the horizon area
(with units ld−2) divided by GN up to a numerical constant.
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Advanced CFT

We have encountered a number of infinite-dimensional symmetry algebras
on the world-sheet: conformal, superconformal, and current. While we
have used these symmetries as needed to obtain specific physical results,
in the present chapter we would like to take maximum advantage of them
in determining the form of the world-sheet theory. An obvious goal, not yet
reached, would be to construct the general conformal or superconformal
field theory, corresponding to the general classical string background.

This subject is no longer as central as it once appeared to be, as
spacetime rather than world-sheet symmetries have been the principal
tools in recent times. However, it is a subject of some beauty in its own
right, with various applications to string compactification and also to
other areas of physics.

We first discuss the representations of the conformal algebra, and the
constraints imposed by conformal invariance on correlation functions.
We then study some examples, such as the minimal models, Sugawara
and coset theories, where the symmetries do in fact determine the the-
ory completely. We briefly summarize the representation theory of the
N = 1 superconformal algebra. We then discuss a framework, rational
conformal field theory, which incorporates all these CFTs. To conclude
this chapter we present some important results about the relation between
conformal field theories and nearby two-dimensional field theories that
are not conformally invariant, and the application of CFT in statistical
mechanics.

15.1 Representations of the Virasoro algebra

In section 3.7 we discussed the connection between classical string back-
grounds and general CFTs. In particular, we observed that CFTs corre-
sponding to compactification of the spatial dimensions are unitary and

228
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their spectra are discrete and bounded below. These additional condi-
tions strongly restrict the world-sheet theory, and we will assume them
throughout this chapter except for occasional asides.

Because the spectrum is bounded below, acting repeatedly with Virasoro
lowering operators always produces a highest weight (primary) state |h〉,
with properties

L0|h〉 = h|h〉 , (15.1.1a)

Lm|h〉 = 0, m > 0 . (15.1.1b)

Starting from a highest weight state, we can form a representation of the
Virasoro algebra

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 − m)δm,−n (15.1.2)

by taking |h〉 together with all the states obtained by acting on |h〉 with
the Virasoro raising operators,

L−k1L−k2 . . . L−kl |h〉 . (15.1.3)

We will denote this state |h, {k}〉 or L−{k}|h〉 for short. The state (15.1.3) is
known as a descendant of |h〉, or a secondary. A primary together with all
of its descendants is also known as a conformal family. The integers {k}
may be put in the standard order k1 ≥ k2 ≥ . . . ≥ kl ≥ 1 by commuting the
generators. This process terminates in a finite number of steps, because
each nonzero commutator reduces the number of generators by one. To see
that this is a representation, consider acting on |h, {k}〉 with any Virasoro
generator Ln. For n < 0, commute Ln into its standard order; for n ≥ 0,
commute it to the right until it annihilates |h〉. In either case, the nonzero
commutators are again of the form |h, {k′}〉. All coefficients are determined
entirely in terms of the central charge c from the algebra and the weight
h obtained when L0 acts on |h〉; these two parameters completely define
the highest weight representation.

It is a useful fact that for unitary CFTs all states lie in highest weight
representations — not only can we always get from any state to a primary
with lowering operators, but we can always get back again with raising
operators. Suppose there were a state |φ〉 that could not be expanded in
terms of primaries and secondaries. Consider the lowest-dimension state
with this property. By taking

|φ〉 → |φ〉 − |i〉〈i|φ〉 (15.1.4)

with |i〉 running over a complete orthonormal set of primaries and sec-
ondaries, we may assume |φ〉 to be orthogonal to all primaries and
secondaries. Now, |φ〉 is not primary, so there is a nonzero state Ln|φ〉 for
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some n > 0. Since the CFT is unitary this has a positive norm,

〈φ|L−nLn|φ〉 > 0 . (15.1.5)

The state Ln|φ〉 lies in a highest weight representation, since by assumption
|φ〉 is the lowest state that does not, and so therefore does L−nLn|φ〉.
Therefore it must be orthogonal to |φ〉, in contradiction to eq. (15.1.5).

This need not hold in more general circumstances. Consider the operator
∂X of the linear dilaton theory. Lowering this gives the unit operator,
L1 ·∂X = −α′V ·1, but L−1 ·1 = 0 so we cannot raise this operator back to
∂X. The problem is the noncompactness of X combined with the position
dependence of the dilaton, so that even |1〉 is not normalizable.

Now we would like to know what values of c and h are allowed in a
unitary theory. The basic method was employed in section 2.9, using the
Virasoro algebra to compute the inner product

M1 ≡ 〈h|L1L−1|h〉 = 2h , (15.1.6)

implying h ≥ 0. Consideration of another inner product gave c ≥ 0.
Now look more systematically, level by level. At the second level of the
highest weight representation, the two states L−1L−1|h〉 and L−2|h〉 have
the matrix of inner products

M2 =

[ 〈h|L2
1〈h|L2

] [
L2−1|h〉 L−2|h〉

]
. (15.1.7)

Commuting the lowering operators to the right gives

M2 =

(
8h2 + 4h 6h

6h 4h+ c/2

)
(15.1.8)

and

det(M2) = 32h(h− h+)(h− h−) , (15.1.9a)

16h± = (5− c)± [(1− c)(25− c)]1/2 . (15.1.9b)

In a unitary theory the matrix of inner products, and in particular its
determinant, cannot be negative. The determinant is nonnegative in the
region c ≥ 1, h ≥ 0, but for 0 < c < 1 a new region h− < h < h+ is
excluded.

At level N, the matrix of inner products is

MN{k},{k′}(c, h) = 〈h, {k}|h, {k′}〉 , ∑
i

ki = N . (15.1.10)

Its determinant has been found,

det[MN(c, h)] = KN

∏
1≤rs≤N

(h− hr,s)
P (N−rs) (15.1.11)
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with KN a positive constant. This is the Kac determinant. The zeros of the
determinant are at

hr,s =
c− 1

24
+

1

4
(rα+ + sα−)2 , (15.1.12)

where

α± = (24)−1/2
[
(1− c)1/2 ± (25− c)1/2

]
. (15.1.13)

The multiplicity P (N − rs) of each root is the partition of N − rs, the
number of ways that N − rs can be written as a sum of positive integers
(with P (0) ≡ 1):

∞∏
n=1

1

1− qn
=

∞∑
k=0

P (k)qk . (15.1.14)

At level 2, for example, the roots are h1,1 = 0, h2,1 = h+, and h1,2 = h−,
each with multiplicity 1, as found above.

The calculation of the determinant (15.1.11) is too lengthy to repeat here.
The basic strategy is to construct all of the null states, those corresponding
to the zeros of the determinant, either by direct combinatoric means or
using some tricks from CFT. The determinant is a polynomial in h and
so is completely determined by its zeros, up to a normalization which can
be obtained by looking at the h → ∞ limit. The order of the polynomial
is readily determined from the Virasoro algebra, so one can know when
one has all the null states. Let us note one particular feature. At level 2,
the null state corresponding to h1,1 is L−1L−1|h = 0〉. This is a descendant
of the level 1 null state L−1|h = 0〉. In general, the zero hr,s appears first at
level rs. At every higher level N are further null states obtained by acting
with raising operators on the level rs state; the partition P (N − rs) in the
Kac determinant is the total number of ways to act with raising operators
of total level N − rs.

A careful study of the determinant and its functional dependence on c
and h shows (the analysis is again too lengthy to repeat here) that unitary
representations are allowed only in the region c ≥ 1, h ≥ 0 and at a
discrete set of points (c, h) in the region 0 ≤ c < 1:

c = 1− 6

m(m+ 1)
, m = 2, 3, . . . ,

= 0,
1

2
,

7

10
,
4

5
,
6

7
, . . . , (15.1.15a)

h = hr,s =
[r(m+ 1)− sm]2 − 1

4m(m+ 1)
, (15.1.15b)

where 1 ≤ r ≤ m − 1 and 1 ≤ s ≤ m. The discrete representations are of
great interest, and we will return to them in section 15.3.
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For a unitary representation, the Kac determinant also determines
whether the states |h, {k}〉 are linearly independent. If it is positive, they
are; if it vanishes, some linear combination(s) are orthogonal to all states
and so by unitarity must vanish. The representation is then said to be
degenerate. Of the unitary representations, all the discrete representa-
tions (15.1.15) are degenerate, as are the representations c = 1, h = 1

4n
2,

n ∈ Z and c > 1, h = 0. For example, at h = 0 we always have L−1 · 1 = 0,
but at the next level L−2 · 1 = Tzz is nonzero.

Let us make a few remarks about the nonunitary case. In the full matter
CFT of string theory, the states L−{k}|h〉 obtained from any primary state
|h〉 are linearly independent when the momentum is nonzero. This can
be seen by using the same light-cone decomposition used in the no-ghost
proof of chapter 4. The term in L−n of greatest N lc is k−α+−n. These
manifestly generate independent states; the upper triangular structure
then guarantees that this independence holds also for the full Virasoro
generators.
A representation of the Virasoro algebra with all of the L−{k}|h〉 lin-

early independent is known as a Verma module. Verma modules exist
at all values of c and h. Verma modules are particularly interesting
when the dimension h takes a value hr,s such that the Kac deter-
minant vanishes. The module then contains nonvanishing null states
(states that are orthogonal to all states in the module). Acting on a
null state with a Virasoro generator gives a null state again, since for
any null |ν〉 and for any state |ψ〉 in the module we have 〈ψ|(Ln|ν〉) =
(〈ψ|Ln)|ν〉 = 0. The representation is thus reducible: the subspace of
null states is left invariant by the Virasoro algebra.1 The Ln for n >
0 must therefore annihilate the lowest null state, so this state is in
fact primary, in addition to being a level rs descendant of the orig-
inal primary state |hr,s〉. That is, the hr,s Verma module contains an
h = hr,s + rs Verma submodule. In some cases, including the special
discrete values of c (15.1.15), there is an intricate pattern of nested sub-
modules.
Clearly a Verma module can be unitary only at those values of c and

h where nondegenerate unitary representations are allowed. At the (c, h)
values with degenerate unitary representations, the unitary representation
is obtained from the corresponding Verma module by modding out the
null states.
As a final example consider the matter sector of string theory, c = 26.

From the OCQ, we know that there are many null physical states at h = 1.
This can be seen from the Kac formula as well. For c = 26, α+ = 3i/61/2,

1 By contrast, a unitary representation is always irreducible. The reader can show that the lowest
state in any invariant subspace would have to be orthogonal to itself, and therefore vanish.



15.2 The conformal bootstrap 233

α− = 2i/61/2, and so

hr,s =
25− (3r + 2s)2

24
. (15.1.16)

The corresponding null physical state is at

h = hr,s + rs =
25− (3r − 2s)2

24
. (15.1.17)

Any pair of positive integers with |3r − 2s| = 1 leads to a null physical
state at h = 1. For example, the states (r, s) = (1, 1) and (1, 2) were
constructed in exercise 4.2. With care, one can show that the number of
null states implied by the Kac formula is exactly that required by the
no-ghost theorem.

15.2 The conformal bootstrap

We now study the constraints imposed by conformal invariance on cor-
relation functions on the sphere. In chapter 6 we saw that the Möbius
subgroup, with three complex parameters, reduced the n-point function to
a function of n−3 complex variables. The rest of the conformal symmetry
gives further information: it determines all the correlation functions of
descendant fields in terms of those of the primary fields.

To begin, consider the correlation function of the energy momentum
tensor T (z) with n primary fields O. The singularities of the correlation
function as a function of z are known from the TO OPE. In addition,
it must fall as z−4 for z → ∞, since in the coordinate patch u = 1/z,
Tuu = z4Tzz is holomorphic at u = 0. This determines the correlation
function to be

〈T (z)O1(z1) . . .On(zn) 〉S2
=

n∑
i=1

[
hi

(z − zi)2
+

1

(z − zi)

∂

∂zi

]
〈 O1(z1) . . .On(zn) 〉S2 . (15.2.1)

A possible holomorphic addition is forbidden by the boundary condition
at infinity. In addition, the asymptotics of order z−1, z−2, and z−3 must
vanish; these are the same as the conditions from Möbius invariance,
developed in section 6.7. The correlation function with several T s is of the
same form, with additional singularities from the TT OPE. Now make a
Laurent expansion in z − z1,

T (z)O1(z1) =
∞∑

k=−∞
(z − z1)

k−2L−k · O1(z1) . (15.2.2)



234 15 Advanced CFT

Then for k ≥ 1, matching coefficients of (z − z1)
k−2 on the right and left

of the correlator (expectation value) (15.2.1) gives

〈 [L−k · O1(z1)]O2(z2) . . .On(zn) 〉S2 =L−k 〈 O1(z1) . . .On(zn) 〉S2 ,
(15.2.3)

where

L−k =
n∑
i=2

[
hi(k − 1)

(zi − z1)k
− 1

(zi − z1)k−1
∂

∂zi

]
. (15.2.4)

This extends to multiple generators, and to the antiholomorphic side,〈
[L−k1 . . . L−kRL̃−l1 . . . L̃−lm · O1(z1)] . . .On(zn)

〉
S2

=L−kR . . .L−k1L̃−lm . . . L̃−l1 〈 O1(z1) . . .On(zn) 〉S2 .
(15.2.5)

The additional terms from the TT OPE do not contribute when all the ki
and li are positive. The correlator of one descendant and n−1 primaries is
thus expressed in terms of that of n primaries. Clearly this can be extended
to n descendants, though the result is more complicated because there are
additional terms from the TT singularities.

Earlier we argued that the operator product coefficients were the basic
data in CFT, determining all the other correlations via factorization. We
see now that it is only the operator product coefficients of primaries that
are necessary. It is worth developing this somewhat further for the four-
point correlation. Start with the operator product of two primaries, with
the sum over operators now broken up into a sum over conformal families
i and a sum within each family,

Om(z, z̄)On(0, 0) =
∑
i,{k,k̃}

z−hm−hn+hi+Nz̄−h̃m−h̃n+h̃i+Ñ

×ci{k,k̃}mnL−{k}L̃−{k̃} · Oi(0, 0) , (15.2.6)

where N is the total level of {k}. Writing the operator product coefficient

ci{k,k̃}mn as a three-point correlator and using the result (15.2.5) to relate
this to the correlator of three primaries gives

ci{k,k̃}mn =
∑
{k′,k̃′}

M−1
{k},{k′}M−1

{k̃},{k̃′}

×L−{k′}L̃−{k̃′} 〈 Om(∞,∞)On(1, 1)Oi(z1, z̄1) 〉S2
∣∣∣
z1=0

. (15.2.7)

To relate the operator product coefficient to a correlator we have to raise
an index, so the inverseM−1 appears (with an appropriate adjustment for
degenerate representations). The right-hand side is equal to the operator
product of the primaries times a function of the coordinates and their
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derivatives, the latter being completely determined by the conformal in-
variance. Carrying out the differentiations in L−{k′} and L̃−{k̃′} and then

summing leaves

ci{k,k̃}mn = βi{k}mn β̃
i{k̃}
mn c

i
mn . (15.2.8)

The coefficient β
i{k}
mn is a function of the weights hm, hn, and hi and the

central charge c, but is otherwise independent of the CFT.

Now use the OPE (15.2.6) to relate the four-point correlation to the
product of three-point correlations,

〈 Oj(∞,∞)Ol(1, 1)Om(z, z̄)On(0, 0) 〉S2 =
∑
i

cijlcimnFjl
mn(i|z)F̃jl

mn(i|z̄) ,
(15.2.9)

where

Fjl
mn(i|z) =

∑
{k},{k′}

z−hm−hn+hi+Nβi{k}jl M{k},{k′}βi{k
′}

mn . (15.2.10)

This function is known as the conformal block, and is holomorphic except
at z = 0, 1, and ∞. The steps leading to the decomposition (15.2.9) show
that the conformal block is determined by the conformal invariance as a
function of hj , hl , hm, hn, hi, c, and z. One can calculate it order by order
in z by working through the definition.

Recall that the single condition for a set of operator product coefficients
to define a consistent CFT on the sphere is duality of the four-point func-
tion, the equality of the decompositions (15.2.9) in the (jl)(mn), (jm)(ln),
and (jn)(lm) channels. The program of solving this constraint is known
as the conformal bootstrap. The general solution is not known. One limi-
tation is that the conformal blocks are not known in closed form except
for special values of c and h.

Beyond the sphere, there are the additional constraints of modular
invariance of the zero-point and one-point functions on the torus. Here
we will discuss only a few of the most general consequences. Separating
the sum over states in the partition function into a sum over conformal
families and a sum within each family yields

Z(τ) =
∑
i,{k,k̃}

q−c/24+hi+Nq̄−c̃/24+h̃i+Ñ

=
∑
i

χc,hi(q)χc̃,h̃i(q̄) . (15.2.11)

Here

χc,h(q) = q−c/24+h
∑
{k}
qN (15.2.12)
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is the character of the (c, h) representation of the Virasoro algebra. For a
Verma module the states generated by the L−k are in one-to-one corre-
spondence with the excitations of a free boson, generated by α−k . Thus,

χc,h(q) = q−c/24+h
∞∏
n=1

1

1− qn
(15.2.13)

for a nondegenerate representation. For degenerate representations it is
necessary to correct this expression for overcounting. A generic degenerate
representation would have only one null primary, say at level N; the
representation obtained by modding out the resulting null Verma module
would then have character (1−qN)q1/24η(q)−1. For the unitary degenerate
representations (15.1.15), with their nested submodules, the calculation of
the character is more complicated.

In section 7.2 we found the asymptotic behavior of the partition function
for a general CFT,

Z(iR)
R→0∼ exp(πc/6R) , (15.2.14)

letting c = c̃. For a single conformal family, letting q = exp(−2πR),
χc,h(q) ≤ qh+(1−c)/24η(iR)−1 R→0∼ R1/2 exp(π/12R) . (15.2.15)

Then for a general CFT

Z(iR) ≤NR exp(π/6R) (15.2.16)

as R→ 0, with N the total number of primary fields in the sum (15.2.11).
Comparing this bound with the known asymptotic behavior (15.2.14), N
can be finite only if c < 1. So, while we have been able to use conformal
invariance to reduce sums over states to sums over primaries only, this
remains an infinite sum whenever c ≥ 1. The c < 1 theories, to be
considered in the next section, stand out as particularly simple.

15.3 Minimal models

For fields in degenerate representations, conformal invariance imposes
additional strong constraints on the correlation functions. Throughout
this section we take c ≤ 1, because only in this range do degenerate
representations of positive h exist. We will not initially assume the CFT
to be unitary, but the special unitary values of c will eventually appear.

Consider, as an example, a primary field O1,2 with weight

h = h1,2 =
c− 1

24
+

(α+ + 2α−)2
4

. (15.3.1)
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For now we leave the right-moving weight h̃ unspecified. The vanishing
descendant is

N1,2 =

[
L−2 − 3

2(2h1,2 + 1)
L2−1

]
· O1,2 = 0 . (15.3.2)

Inserting this into a correlation with other primary fields and using the
relation (15.2.5) expressing correlations of descendants in terms of those
of primaries gives a partial differential equation for the correlations of the
degenerate primary,

0 =

〈
N1,2(z1)

n∏
i=2

Oi(zi)
〉
S2

=

[
L−2 − 3

2(2h1,2 + 1)
L2−1

]
An

=

[
n∑
i=2

hi

(zi − z1)2
−

n∑
i=2

1

zi − z1

∂

∂zi
− 3

2(2h1,2 + 1)

∂2

∂z21

]
An , (15.3.3)

where

An =

〈
O1,2(z1, z̄1)

n∏
i=2

Oi(zi, z̄i)
〉
S2

. (15.3.4)

For n = 4, the correlation is known from conformal invariance up to
a function of a single complex variable, and eq. (15.3.3) becomes an
ordinary differential equation. In particular, setting to zero the z−1, z−2,
and z−3 terms in the T (z) expectation value (15.2.1) allows one to solve
for ∂/∂z2,3,4 in terms of ∂/∂z1, with the result that eq. (15.3.3) becomes[

4∑
i=2

hi

(zi − z1)2
− ∑

2≤i<j≤4

h1,2 − h2 − h3 − h4 + 2(hi + hj)

(zi − z1)(zj − z1)

+
4∑
i=2

1

zi − z1

∂

∂z1
− 3

2(2h1,2 + 1)

∂2

∂z21

]
A4 = 0 . (15.3.5)

This differential equation is of hypergeometric form. The hypergeometric
functions, however, are holomorphic (except for branch cuts at coincident
points), while O1,2 has an unknown z̄1 dependence. Now insert the ex-
pansion (15.2.9), in which the four-point correlation is written as a sum
of terms, each a holomorphic conformal block times a conjugated block.
The conformal blocks satisfy the same differential equation (15.3.5) and so
are hypergeometric functions. Being second order, the differential equa-
tion (15.3.5) has two independent solutions, and each conformal block is
a linear combination of these.
This procedure generalizes to any degenerate primary field. The primary

Or,s will satisfy a generalization of the hypergeometric equation. This
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differential equation is of maximum order rs, coming from the term Lrs−1
in the null stateNr,s. If the antiholomorphic weight is also degenerate, h̃ =
hr̃,̃s, the antiholomorphic conformal blocks satisfy a differential equation
of order r̃s̃, so that〈

Or,s;r̃,̃s(z1, z̄1)
4∏
i=2

Oi(zi, z̄i)
〉
S2

=
rs∑
i=1

r̃s̃∑
j=1

aijfi(z)f̃j(z̄) , (15.3.6)

where fi(z) and f̃j(z̄) are the general solutions of the holomorphic and
antiholomorphic equations. The constants aij are not determined by the
differential equation. They are constrained by locality — the holomorphic
and antiholomorphic functions each have branch cuts, but the product
must be single-valued — and by associativity. We will describe below
some theories in which it has been possible to solve these conditions.

Let us see how the differential equation constrains the operator products
of O1,2. According to the theory of ordinary differential equations, the
points z1 = zi are regular singular points, so that the solutions are of
the form (z1 − zi)κ times a holomorphic function. Inserting this form into
the differential equation and examining the most singular term yields the
characteristic equation

3

2(2h1,2 + 1)
κ(κ− 1) + κ− hi = 0 . (15.3.7)

This gives two solutions (z1 − zi)
κ± for the leading behavior as z1 → zi;

comparing this to the OPE gives

h± = h1,2 + hi + κ± (15.3.8)

for the primary fields in the O1,2Oi product. Parameterizing the weight by

hi =
c− 1

24
+
γ2

4
, (15.3.9)

the two solutions to the characteristic equation correspond to

h± =
c− 1

24
+

(γ ± α−)2
4

. (15.3.10)

These are the only weights that can appear in the operator product, so
we have derived the fusion rule,

O1,2O(γ) = [O(γ+α−)] + [O(γ−α−)] ; (15.3.11)

we have labeled the primary fields other than O1,2 by the corresponding
parameter γ. A fusion rule is an OPE without the coefficients, a list of the
conformal families that are allowed to appear in a given operator product
(though it is possible that some will in fact have vanishing coefficient).
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For the operator O2,1, one obtains in the same way the fusion rule

O2,1O(γ) = [O(γ+α+)] + [O(γ−α+)] . (15.3.12)

In particular, for the product of two degenerate primaries this becomes

O1,2Or,s = [Or,s+1] + [Or,s−1] , (15.3.13a)

O2,1Or,s = [Or+1,s] + [Or−1,s] . (15.3.13b)

For positive values of the indices, the families on the right-hand side
are degenerate. In fact, only these actually appear. Consider the fusion
rule for O1,2O2,1. By applying the rule (15.3.13a) we conclude that only
[O2,2] and [O2,0] may appear in the product, while the rule (15.3.13b)
allows only [O2,2] and [O0,2]. Together, these imply that only [O2,2] can
actually appear in the product. This generalizes: only primaries r ≥ 1 and
s ≥ 1 are generated. The algebra of degenerate conformal families thus
closes, and iterated products of O1,2 and O2,1 generate all degenerate Or,s.
This suggests that we focus on CFTs in which all conformal families are
degenerate.

The values of r and s are still unbounded above, so that the operator
algebra will generate an infinite set of conformal families. When α−/α+ =
−p/q is rational, the algebra closes on a finite set.2 In particular, one then
has

c = 1− 6
(p− q)2

pq
, (15.3.14a)

hr,s =
(rq − sp)2 − (p− q)2

4pq
. (15.3.14b)

The point is that there is a reflection symmetry,

hp−r,q−s = hr,s , (15.3.15)

so that each conformal family has at least two null vectors, at levels rs
and (p− r)(q− s), and its correlators satisfy two differential equations. The
reflection of the conditions r > 0 and s > 0 is r < p and s < q, so the
operators are restricted to the range

1 ≤ r ≤ p− 1 , 1 ≤ s ≤ q − 1 . (15.3.16)

These theories, with a finite algebra of degenerate conformal families,
are known as minimal models. They have been solved: the general solution
of the locality, duality, and modular invariance conditions is known, and
the operator product coefficients can be extracted though the details are
too lengthy to present here.

2 Note that α+α− = −1, and that 0 > α−/α+ > −1.
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Although the minimal models seem rather special, they have received
a great deal of attention, as examples of nontrivial CFTs, as prototypes
for more general solutions of the conformal bootstrap, as building blocks
for four-dimensional string theories, and because they describe the critical
behavior of many two-dimensional systems. We will return to several of
these points later.
Let us now consider the question of unitarity. A necessary condition

for unitarity is that all weights are nonnegative. One can show that this
is true of the weights (15.3.14) only for q = p+ 1. These are precisely the
c < 1 representations (15.1.15) already singled out by unitarity:

p = m , q = m+ 1 . (15.3.17)

Notice that these theories have been found and solved purely from sym-
metry, without ever giving a Lagrangian description. This is how they
were discovered, though various Lagrangian descriptions are now known;
we will mention several later. For m = 3, c is 1

2 and there is an obvious
Lagrangian representation, the free fermion. The allowed primaries,

h1,1 = 0 , h2,1 =
1

2
, h1,2 =

1

16
, (15.3.18)

are already familiar, being respectively the unit operator, the fermion ψ,
and the R sector ground state.
The full minimal model fusion rules can be derived using repeated

applications of the O2,1 and O1,2 rules and associativity. They are

Or1,s1Or2,s2 =
∑

[Or,s] , (15.3.19a)

r = |r1 − r2|+ 1, |r1 − r2|+ 3, . . . ,

min(r1 + r2 − 1, 2p− 1− r1 − r2) , (15.3.19b)

s = |s1 − s2|+ 1, s1 + s2 + 3, . . . ,

min(s1 + s2 − 1, 2q − 1− s1 − s2) . (15.3.19c)

For Op−1,1 only a single term appears in the fusion with any other field,
Op−1,1Or,s = [Op−r,s]. A primary with these properties is known as a simple
current. Simple currents have the useful property that they have definite
monodromy with respect to any other primary. Consider the operator
product of a simple current J(z) of weight h with any primary,

J(z)Oi(0) = zhi′−hi−h[Oi′(0) + descendants] , (15.3.20)

where J · [Oi] = [Oi′]. The terms with descendants bring in only integer
powers of z, so all terms on the right pick up a common phase

2π(hi′ − hi − h) = 2πQi (15.3.21)

when z encircles the origin. The charge Qi, defined mod 1, is a discrete
symmetry of the OPE. Using the associativity of the OPE, the operator
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product coefficient ckij can be nonzero only if Qi+Qj = Qk . Also, by taking
repeated operator products of J with itself one must eventually reach the
unit operator; suppose this occurs first for JN . Then associativity implies
that NQi must be an integer, so this is a ZN symmetry. For the minimal
models,

Op−1,1Op−1,1 = [O1,1] (15.3.22)

which is the identity, and so the discrete symmetry is Z2. Evaluating the
weights (15.3.21) gives

Qr,s =
p(1− s) + q(1− r)

2
mod 1 . (15.3.23)

For the unitary case (15.3.17), exp(2πiQr,s) is (−1)s−1 for m odd and
(−1)r−1 for m even.

Feigin–Fuchs representation

To close this section, we describe a clever use of CFT to generate integral
representations of the solutions to the differential equations satisfied by
the degenerate fields. Define

c = 1− 24α20 (15.3.24)

and consider the linear dilaton theory with the same value of the central
charge,

T = −1

2
∂φ∂φ+ 21/2iα0∂

2φ . (15.3.25)

The linear dilaton theory is not the same as a minimal model. In particular,
the modes α−k generate a Fock space of independent states, so the partition
function is of order exp(π/6R) as R → 0, larger than that of a minimal
model. However, the correlators of the minimal model can be obtained
from those of the linear dilaton theory. The vertex operator

Vα = exp(21/2iαφ) (15.3.26)

has weight α2 − 2αα0, so for

α = α0 − γ

2
(15.3.27)

it is a primary of weight

c− 1

24
+
γ2

4
. (15.3.28)

For γ = rα+ + sα− it is then degenerate, and its correlator satisfies the
same differential equation as the corresponding minimal model primary.
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There is a complication: the correlator

〈Vα1Vα2Vα3Vα4 〉 (15.3.29)

generally vanishes due to the conservation law∑
i

αi = 2α0 (15.3.30)

(derived in exercise 6.2). There is a trick which enables us to find a
nonvanishing correlator that satisfies the same differential equation. The
operators

J± = exp(21/2iα±φ) (15.3.31)

are of weight (1, 0), so the line integral

Q± =

∮
dz J± , (15.3.32)

known as a screening charge, is conformally invariant. Inserting Q
n+
+ Q

n−−
into the expectation value, the charge conservation condition is satisfied
for

n+ =
1

2

∑
i

ri − 2 , n− =
1

2

∑
i

si − 2 . (15.3.33)

Further, since the screening charges are conformally invariant, they do
not introduce singularities into T (z) and the derivation of the differential
equation still holds. Thus, the minimal model conformal blocks are rep-
resented as contour integrals of the correlators of free-field exponentials,
which are of course known. This is the Feigin–Fuchs representation. It is
possible to replace Vα → V2α0−α in some of the vertex operators, since
this has the same weight; one still obtains integer values of n±, but this
may reduce the number of screening charges needed. It may seem curious
that the charges of the (1, 0) vertex operators are just such as to allow for
integer n±. In fact, one can work backwards, deriving the Kac determinant
from the linear dilaton theory with screening charges.

The contours in the screening operators have not been specified —
they may be any nontrivial closed contours (but must end on the same
Riemann sheet where they began, because there are branch cuts in the
integrand), or they may begin and end on vertex operators if the integrand
vanishes sufficiently rapidly at those points. By various choices of contour
one generates all solutions to the differential equations, as in the theory of
hypergeometric functions. As noted before, one must impose associativity
and locality to determine the actual correlation functions. The Feigin–
Fuchs representation has been a useful tool in solving these conditions.
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15.4 Current algebras

We now consider a Virasoro algebra Lk combined with a current algebra
jak . We saw in section 11.5 that the Virasoro generators are actually
constructed from the currents. We will extend that discussion to make
fuller use of the world-sheet symmetry.
Recall that a primary state |r, i〉 in representation r of g satisfies

Lm|r, i〉 = jam|r, i〉 , m > 0 , (15.4.1a)

ja0 |r, i〉 = |r, j〉tar,ji . (15.4.1b)

As in the case of the Virasoro algebra, we are interested in highest weight
representations, obtained by acting on a primary state with the Lm and
jam for m < 0. As we have discussed, a CFT with a current algebra can
always be factored into a Sugawara part and a part that commutes with
the current algebra. We focus on the Sugawara part, where

T (z) =
1

(k + h(g))ψ2
:jj(z) : . (15.4.2)

Recall also that the central charge is

cg,k =
k dim(g)

k + h(g)
(15.4.3)

and that the weight of a primary state is

hr =
Qr

(k + h(g))ψ2
. (15.4.4)

As in the Virasoro case, all correlations can be reduced to those of the
primary fields. In parallel to the derivation of eq. (15.2.3), one finds

〈 (ja−m · O1(z1))O2(z2) . . .On(zn) 〉S2 = Ja−m 〈 O1(z1) . . .On(zn) 〉S2 , (15.4.5)

where

Ja−m = −
n∑
i=2

ta(i)

(zi − z1)m
, (15.4.6)

and so on for multiple raising operators. Here, ta(i) acts in the represen-
tation ri on the primary Oi; the representation indices on ta(i) and Oi are
suppressed.
The Sugawara theory is solved in the same way as the minimal models.

In particular, all representations are degenerate, and in fact contain null
descendants of two distinct types. The first follows directly from the
Sugawara form of T , which in modes reads

Lm =
1

(k + h(g))ψ2

∞∑
n=−∞

janj
a
m−n . (15.4.7)
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For m = −1, this implies that any correlator of primaries is annihilated
by

L−1 − 2

(k + h(g))ψ2

∑
a

ta(i)Ja−1 . (15.4.8)

This is the Knizhnik–Zamolodchikov (KZ) equation,[
∂

∂z1

2

(k + h(g))ψ2

∑
a

n∑
i=2

ta(1)ta(i)

z1 − zi

]
〈 O1(z1) . . .On(zn) 〉S2 = 0 . (15.4.9)

We have suppressed group indices on the primary fields, but by writing
the correlator in terms of g-invariants, the KZ equation becomes a set
of coupled first order differential equations — coupled because there
is in general more than one g-invariant for given representations ri.
Exercise 15.5 develops one example. For the leading singularity (z1−zi)κ as
z1 → zi, the KZ equation reproduces the known result (15.4.4) but does not
give fusion rules. There is again a free-field representation of the current
algebra (exercise 15.6), analogous to the Feigin–Fuchs representation of
the Virasoro algebra.

The second type of null descendant involves the currents only, and
does constrain the fusion rules. For convenience, let us focus on the case
g = SU(2). The results can then be extended to general g by examining the
SU(2) subalgebras associated with the various roots α. We saw in chapter
11 that the SU(2) current algebra has at least two interesting SU(2) Lie
subalgebras, namely the global symmetry j±0 , j30 and the pseudospin

j+−1 , j30 − k

2
, j−1 . (15.4.10)

Now consider some primary field

|j, m〉 , (15.4.11)

which we have labeled by its quantum numbers under the global SU(2).
What are its pseudospin quantum numbers (j ′, m′)? Since it is primary, it
is annihilated by the pseudospin lowering operator, so m′ = −j ′. We also
have m′ = m− k/2, so j ′ = k/2− m. Now, the pseudospin representation
has dimension 2j ′ + 1, so if we raise any state 2j ′ + 1 times we get zero:

(j+−1)
k−2m+1|j, m〉 = 0 . (15.4.12)

This is the null descendant.

Now take the correlation of this descendant with some current alge-
bra primaries and use the relation (15.4.5) between the correlators of

−
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descendants and primaries to obtain

0 =
〈
(J+

−1)
k−2m1+1 · O1(z1) . . .On(zn)

〉
S2

=

[
−

n∑
i=2

t+(i)

zi − z1

]k−2m1+1

〈 O1(z1) . . .On(zn) 〉S2 . (15.4.13)

Notice that, unlike the earlier null equations, this one involves no deriva-
tives and is purely algebraic. To see how this constrains the operator
products, consider the three-point correlation. By considering the separate
zi dependences in eq. (15.4.13) one obtains

0 =
∑
m2,m3

[(t+(2))l2]m2,n2[(t
+(3))l3]m3,n3 〈 Oj1,m1

Oj2,m2
Oj3,m3

〉S2 , (15.4.14)

where we have now written out the group indices explicitly. This holds for
all n2 and n3, and for

l2 + l3 ≥ k − 2m1 + 1 . (15.4.15)

The matrix elements of (t+)l are nonvanishing for at least some n2,3 if
m2 ≥ l2−j2 and m3 ≥ l3−j3. Noting the restriction on l2,3, we can conclude
that the correlation vanishes when m2 +m3 ≥ k− 2m1 + 1− j2− j3. Using
m1 + m2 + m3 = 0 and taking m1 = j1 (the most stringent case) gives

〈 Oj1,j1Oj2,m2
Oj3,m3

〉S2 = 0 if j1 + j2 + j3 > k . (15.4.16)

Although this was derived for m1 = j1, rotational invariance now guar-
antees that it applies for all m1. Applying also the standard result for
multiplication of SU(2) representations, we have the fusion rule

[j1] × [j2] = [ |j1− j2| ] + [ |j1− j2|+1] + . . . + [min(j1+ j2, k− j1− j2)] .
(15.4.17)

Again there is a simple current, the maximum value j = k/2:

[j1]× [k/2] = [k/2− j1] . (15.4.18)

The corresponding Z2 symmetry is simply (−1)2j .

Modular invariance

The spectrum of a g × g current algebra will contain some number nrr̃ of
each highest weight representation |r, r̃〉. The partition function is then

Z(τ) =
∑
r,̃r

nrr̃χr(q)χr̃(q)
∗ , (15.4.19)

with the character defined by analogy to that for the conformal algebra,
eq. (15.2.12). Invariance under τ → τ + 1 amounts as usual to level
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matching, so nrr̃ can be nonvanishing only when hr − hr̃ is an integer.
Under τ→ −1/τ the characters mix,

χr(q
′) =

∑
r′
Srr′χr′(q) , (15.4.20)

so the condition for modular invariance is the matrix equation

S†nS = n . (15.4.21)

The characters are obtained by considering all states generated by the
raising operators, with appropriate allowance for degeneracy. Only the
currents need be considered, since by the Sugawara relation the Virasoro
generators do not generate any additional states. The calculation is then
parallel to the calculation of the characters of finite Lie algebras, and the
result is similar to the Weyl character formula. The details are too lengthy
to repeat here, and we will only mention one simple classic result: the
modular S matrix for SU(2) at level k is

Sjj′ =
(

2

k + 2

)1/2

sin
π(2j + 1)(2j ′ + 1)

k + 2
. (15.4.22)

The general solution to the modular invariance conditions is known.
One solution, at any level, is the diagonal modular invariant for which
each representation with j = ̃ appears once:

nj̃ = δj̃ . (15.4.23)

These are known as the A invariants. When the level k is even, there is
another solution obtained by twisting with respect to (−1)2j . One keeps
the previous states with j integer only, and adds in a twisted sector where
̃ = k/2 − j. For k a multiple of 4, j in the twisted sector runs over
integers, while for k + 2 a multiple of 4, j in the twisted sector runs over
half-integers:

nj̃ = δj̃

∣∣∣
j∈Z+ δk/2−j,̃

∣∣∣
j∈Z+k/4 . (15.4.24)

These are known as the D invariants. For the special values k = 10, 16, 28
there are exceptional solutions, the E invariants. The A–D–E terminology
refers to the simply-laced Lie algebras. The solutions are in one-to-one
correspondence with these algebras, the Dynkin diagrams arising in the
construction of the invariants.

Strings on group manifolds

Thus far the discussion has used only symmetry, without reference to
a Lagrangian. There is an important Lagrangian example of a current
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algebra. Let us start with a simple case, a nonlinear sigma model with a
three-dimensional target space,

S =
1

2πα′
∫
d2z (Gmn + Bmn)∂X

m∂̄Xn . (15.4.25)

Let Gmn be the metric of a 3-sphere of radius r and let the antisymmetric
tensor field strength be

Hmnp =
q

r3
εmnp (15.4.26)

for some constant q; εmnp is a tensor normalized to εmnpε
mnp = 6. The

curvature is

Rmn =
2

r2
Gmn . (15.4.27)

To leading order in α′, the nonvanishing beta functions (3.7.14) for this
nonlinear sigma model are

βGmn = α′Gmn
(
2

r2
− q2

2r6

)
, (15.4.28a)

βΦ =
1

2
− α′q2

4r6
. (15.4.28b)

The first term in βΦ is the contribution of three free scalars. The theory is
therefore conformally invariant to leading order in α′ if

r2 =
|q|
2

+ O(α′) . (15.4.29)

The central charge is

c = 6βΦ = 3− 6α′
r2

+ O

(
α′2
r4

)
. (15.4.30)

A 3-sphere has symmetry algebra O(4) = SU(2) × SU(2). In a CFT, we
know that each current will be either holomorphic or antiholomorphic.
Comparing with the SU(2) Sugawara central charge

c = 3− 6

k + 2
, (15.4.31)

the sigma model is evidently a Sugawara theory. One SU(2) will be
left-moving on the world-sheet and one right-moving.
The general analysis of current algebras showed that the level k is quan-

tized. In the nonlinear sigma model it arises from the Dirac quantization
condition. The argument is parallel to that in section 13.3. A nonzero total
flux H is incompatible with H = dB for a single-valued B. We can write
the dependence of the string amplitude on this background as

exp

(
i

2πα′
∫
M
B

)
= exp

(
i

2πα′
∫
N
H

)
, (15.4.32)
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where M is the embedding of the world-sheet in the target space and N
is any three-dimensional manifold in S3 whose boundary is M. In order
that this be independent of the choice of N we need

1 = exp

(
i

2πα′
∫
S3

H

)
= exp

(
πiq

α′
)
. (15.4.33)

Thus,

q = 2α′n , r2 = α′ (15.4.34)

for integer n. More generally,
∫
H over any closed 3-manifold in spacetime

must be a multiple of 4π2α′.
This is the desired quantization, and |n| is just the level k of the current

algebra. In particular, the one-loop central charge (15.4.30) becomes

c = 3− 6

|n| + O

(
1

n2

)
, (15.4.35)

agreeing with the current algebra result to this order.

The 3-sphere is the same as the SU(2) group manifold, under the
identification

g = x4 + ixiσi ,
4∑
i=1

(xi)2 = 1 . (15.4.36)

The action (15.4.25) can be rewritten as the Wess–Zumino–Novikov–Witten
(WZNW) action

S =
|n|
4π

∫
M
d2z Tr(∂g−1∂̄g) + in

12π

∫
N
Tr(ω3) , (15.4.37)

where ω = g−1dg is the Maurer–Cartan 1-form. Here M is the embedding
of the world-sheet in the group manifold, and N is any 3-surface in the
group manifold whose boundary is M. In this form, the action generalizes
to any Lie group g. The second term is known as the Wess–Zumino term.
The reader can check that

d(ω3) = 0 . (15.4.38)

Therefore, locally on the group ω3 = dχ for some 2-form χ, and the
Chern–Simons term can be written as a two-dimensional action

n

12π

∫
M
Tr(χ) . (15.4.39)

As with the magnetic monopole, there is no such χ that is nonsingular on
the whole space.

|n|
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The variation of the WZNW action is3

δS =
|n|
2π

∫
d2z Tr [∂̄g g−1∂(g−1δg)]

=
|n|
2π

∫
d2z Tr [g−1∂g ∂̄(δgg−1)] . (15.4.40)

As guaranteed by conformal invariance, the global g × g symmetry

δg(z, z̄) = iεLg(z, z̄)− ig(z, z̄)εR (15.4.41)

is elevated to a current algebra,

δg(z, z̄) = iεL(z)g(z, z̄)− ig(z, z̄)εR(z̄) . (15.4.42)

Left-multiplication is associated with a left-moving current algebra and
right-multiplication with a right-moving current algebra. The currents are

|n|Tr(εRg−1∂g) , |n|Tr(εL∂̄gg−1) . (15.4.43)

Let us check that the Poisson bracket of two currents has the correct
c-number piece. To get this, it is sufficient to expand

g = 1 + i(2|n|)−1/2φaσa + . . . (15.4.44)

and keep the leading terms in the Lagrangian density and currents,

L =
1

4π
∂φa∂̄φa + O(φ3) , (15.4.45a)

jaR = |n|1/2∂φa + O(φ2) , (15.4.45b)

jaL = |n|1/2∂̄φa + O(φ2) . (15.4.45c)

The higher-order terms do not contribute to the c-number in the Poisson
bracket. The kinetic term now has the canonical α′ = 2 normalization so
the level k = |n| follows from the normalization of the currents.

Which states appear in the spectrum? We can make an educated guess
by thinking about large k, where the group manifold becomes more and
more flat. The currents then approximate free boson modes so the primary
states, annihilated by the raising operators, have no internal excitations —
the vertex operators are just functions of g. The representation matrices
form a complete set of such functions, so we identify

Drij(g) = Ori (z)Õrj(z̄) . (15.4.46)

This transforms as the representation (r, r) under g×g, so summing over all
r gives the diagonal modular invariant. Recall that for each k the number
of primaries is finite; Drij(g) for higher r evidently is not primary. This
reasoning is correct for simply connected groups, but otherwise we must

3 This is for n > 0; for n < 0 interchange z and z̄.
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exclude some representations and add in winding sectors. For example,
= O(3) leads to the D invariant. We can understand the

restriction to even levels for the D invariant:
∫

of
∫
H on SU(2), so the coefficient must be even to give a well-defined

path integral.

The group manifold example vividly shows how familiar notions of
spacetime are altered in string theory. If we consider eight flat dimensions
with both right- and left-moving momenta compactified on the E8 root
lattice, we obtain an E8L × E8R current algebra at level one. We get the
same theory with 248 dimensions forming the E8 group manifold with unit
H charge.

15.5 Coset models

A clever construction allows us to obtain from current algebras the min-
imal models and many new CFTs. Consider a current algebra G, which
might be a sum of several factors (gi, ki). Let H be some subalgebra. Then
as in the discussion of Sugawara theories we can separate the energy-
momentum tensor into two pieces,

TG = TH + TG/H . (15.5.1)

The central charge of TG/H is

cG/H = cG − cH . (15.5.2)

For any subalgebra the Sugawara theory thus separates into the Sugawara
theory of the subalgebra, and a new coset CFT. A notable example is

G = SU(2)k ⊕ SU(2)1 , cG = 4− 6

k + 2
, (15.5.3a)

H = SU(2)k+1 , cH = 3− 6

k + 3
, (15.5.3b)

where the subscripts denote the levels. Here, the H currents are the sums
of the currents of the two SU(2) current algebras in G, ja = ja(1) + ja(2).
Then the central charges

cG/H = 1− 6

(k + 2)(k + 3)
(15.5.4)

are precisely those of the unitary minimal models with m = k + 2.

A representation of the G current algebra can be decomposed under
the subalgebras,

χGr (q) =
∑
r′,r′′

nrr′r′′χ
H
r′ (q)χ

G/H
r′′ (q), (15.5.5)

SU(2)/Z
H on SU(2)/Z is half

2

2
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where r is any representation of G, and r′ and r′′ respectively run over
all H and G/H representations, with nrr′r′′ nonnegative integers. For the
minimal model coset (15.5.3), all unitary representations can be obtained
in this way. The current algebra theories are rather well understood,
so this is often a useful way to represent the coset theory. For example,
while the Kac determinant gives necessary conditions for a minimal model
representation to be unitary, the coset construction is regarded as having
provided the existence proof, the unitary current algebra representations
having been constructed directly. The minimal model fusion rules (15.3.19)
can be derived from the SU(2) current algebra rules (15.4.17), and the
minimal model modular transformation

Srs,r′s′ =
[

8

(p+ 1)(q + 1)
(−1)(r+s)(r′+s′)

]1/2
sin

πrr′
p

sin
πss′
q

(15.5.6)

can be obtained from the SU(2) result (15.4.22). Further, the minimal
model modular invariants are closely related to the SU(2) A–D–E invari-
ants.

Taking various G and H leads to a wealth of new theories. In this
section and the next we will describe only some of the most important
examples, and then in section 15.7 we discuss some generalizations. The
coset construction can be regarded as gauging the subalgebra H . Confor-
mal invariance forbids a kinetic term for the gauge field, and the equation
of motion for this field then requires the H-charge to vanish, leaving the
coset theory. This is the gauging of a continuous symmetry; equivalently,
one is treating the H currents as constraints. Recall that gauging a discrete
symmetry gave the orbifold (twisting) construction.

The parafermionic theories are:

SU(2)k
U(1)

, c = 2− 6

k + 2
. (15.5.7)

Focusing on the U(1) current algebra generated by j3, by the OPE we can
write this in terms of a left-moving boson H with standard normalization
H(z)H(0) ∼ − ln z:

j3 = i(k/2)1/2∂H , TH = −1

2
∂H∂H . (15.5.8)

Operators can be separated into a free boson part and a parafermionic
part. For the SU(2) currents themselves we have

j+ = exp[iH(2/k)1/2]ψ1 , j− = exp[−iH(2/k)1/2]ψ
†
1 , (15.5.9)

where ψ1 is known as the parafermionic current. Subtracting the weight
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of the exponential, the current has weight (k − 1)/k. One obtains further
currents

: (j+)l := (j+−1)
l · 1 ≡ exp(ilH(2/k)1/2)ψl , (15.5.10)

with ψl having weight l(k− l)/k. The current algebra null vector (15.4.12)
implies that ψl vanishes for l > k, which could also have been anticipated
from its negative weight. The weight also implies that ψ0 = ψk = 1,

and from this one can also deduce that ψl = ψ
†
k−l . The current algebra

primaries similarly separate,

Oj,m = exp[imH(2/k)1/2]ψjm , (15.5.11)

where ψjm is a primary field of the parafermion algebra, and has weight
j(j + 1)/(k + 2)− m2/k.

Factoring out the OPE of the free boson, the operator products of the
parafermionic currents become

ψl(z)ψl′(0) ≈ z−2ll′/k(ψl+l′ + . . . ) . (15.5.12)

This algebra is more complicated than those encountered previously, in
that the currents have branch cuts with respect to each other. However,
it is simple in one respect: each pair of currents has definite monodromy,
meaning that all terms in the operator product change by the same phase,
exp(−4πill′/k), when one current circles the other. We will mention an
application of the parafermion theories later.

For small k, the parafermion theories reduce to known examples. For
k = 1, the parafermion central charge is zero and the parafermion theory
trivial. In other words, at k = 1 the free boson is the whole SU(2)
current algebra: this is just the torus at its self-dual radius. For k = 2,
the parafermion central charge is 1

2 , so the parafermion must be an
ordinary free fermion. We recall from section 11.5 that SU(2) at k = 2
can be represented in terms of three free fermions. The free boson H is
obtained by bosonizing ψ1,2, leaving ψ3 as the parafermion. At k = 3
the parafermion central charge is 4

5 , identifying it as the m = 5 unitary
minimal model.

Although constructed as SU(2) cosets, the minimal models have no
SU(2) symmetry nor otherany weight 1 primaries. In order for an operator
from the G theory to be part of the coset theory, it must be nonsingular
with respect to the H currents, and no linear combination of the currents
ja(1) and j

a
(2) is nonsingular with respect to ja(1) + j

a
(2). The situation becomes

more interesting if we consider the bilinear invariants

:ja(1)j
a
(1) : , :ja(1)j

a
(2) : , :ja(2)j

a
(2) : . (15.5.13)

In parallel with the calculations in exercise 11.7, the operator product of
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the H current with these bilinears is[
jb(1)(z)+ j

b
(2)(z)

]
:ja(i)j

a
(j)(0) : =

∞∑
k=0

1

zk+1

[
jbk(1) + j

b
k(2)

]
ja−1(i)ja−1(j) ·1 . (15.5.14)

The k = 0 term vanishes because the bilinear is G-invariant. For k = 1,
commuting the lowering operator to the right gives a linear combination
of jb−1(1) and jb−1(2). All higher poles vanish. Thus, there are three bilinear
invariants and only two possible singularities, so one linear combination
commutes with the H current and lies entirely within the coset theory.
This is just the coset energy-momentum tensor TG/H , which we already
know.
For SU(2) cosets that is the end of the story, but let us consider the

generalization

G = SU(n)k1 ⊕ SU(n)k2 , cG = (n2 − 1)

[
k1

k1 + n
+

k2

k2 + n

]
,

(15.5.15a)

H = SU(n)k1+k2 , cH = (n2 − 1)
k1 + k2

k1 + k2 + n
. (15.5.15b)

For n ≥ 3 there is a symmetric cubic invariant

dabc ∝ Tr(ta{tb, tc}) , (15.5.16)

which vanishes for n = 2. Similarly, for n ≥ 4 there is an independent
symmetric quartic invariant, and so forth. Using the cubic invariant, we
can construct the four invariants dabc : ja(i)j

b
(j)j

c
(k) :. The operator product

with the H current has three possible singularities, z−2dabc : jb(j)j
c
(k) :, so

there must be one linear combination W (z) that lies in the coset theory.
That is, the coset theory has a conserved spin-3 current. The states of the
coset theory fall in representations of an extended chiral algebra, consisting
of the Laurent modes of T (z),W (z), and any additional generators needed
to close the algebra.
In general, the algebra contains higher spin currents as well. For exam-

ple, the operator product W (z)W (0) contains a spin-4 term involving the
product of four currents. For the special case n = 3 and k2 = 1, making
use of the current algebra null vectors, the algebra of T (z) and W (z)
actually closes without any new fields. It is the W3 algebra, which in OPE
form is

W (z)W (0) ∼ c

3z6
+

2

z4
T (0) +

1

z3
∂T (0) +

3

10z2
∂2T (0) +

1

15z
∂3T (0)

+
16

220 + 50c

(
2

z2
+

1

z
∂

)
[10 :T 2(0) : −3∂2T (0)] . (15.5.17)

In contrast to the various algebras we have encountered before, this one
is nonlinear: the spin-4 term involves the square of T (z). This is the only
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closed algebra containing only a spin-2 and spin-3 current and was first
discovered by imposing closure directly. It has a representation theory
parallel to that of the Virasoro algebra, and in particular has a series of
unitary degenerate representations of central charge

c = 2− 24

(k + 3)(k + 4)
. (15.5.18)

The (k1, k2, n) = (k, 1, 3) cosets produce these representations. As it hap-
pens, the first nontrivial case is k = 1, c = 4

5 , which as we have seen also
has a parafermionic algebra. The number of extended chiral algebras is
enormous, and they have not been fully classified.

15.6 Representations of the N = 1 superconformal algebra

All the ideas of this chapter generalize to the superconformal algebras. In
this section we will describe only the basics: the Kac formula, the discrete
series, and the coset construction.
A highest weight state, of either the R or NS algebra, is annihilated by

Ln and Gn for n > 0. The representation is generated by Ln for n < 0
and Gn for n ≤ 0. Each Gn acts at most once, since G2

n = L2n. The Kac
formula for the R and NS algebras can be written in a uniform way,

det(MN)R,NS = (h− εĉ/16)KN

∏
1≤rs≤2N

(h− hr,s)
PR,NS(N−rs/2) . (15.6.1)

Here, ε is 1 in the Rsector and 0 in theNS sector. The zeros are at

hr,s =
ĉ− 1 + ε

16
+

1

4
(rα̂+ + sα̂−)2 , (15.6.2)

where r − s must be even in the Rsector and odd in theNS sector. We
have defined ĉ = 2c/3 and

α̂± =
1

4

[
(1− ĉ)1/2 ± (9− ĉ)1/2

]
. (15.6.3)

The multiplicity of each zero is again the number of ways a given level
can be reached by the raising operators of the theory,

∞∏
n=1

1 + qn−1
1− qn

=
∞∑
k=0

PR(k)q
k , (15.6.4a)

∞∏
n=1

1 + qn−1/2
1− qn

=
∞∑
k=0

PNS(k)q
k . (15.6.4b)

Unitary representations are allowed at

ĉ ≥ 1 , h ≥ ε
ĉ

16
, (15.6.5)
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and at the discrete series

c =
3

2
− 12

m(m+ 2)
, m = 2, 3, . . . ,

= 0,
7

10
, 1,

81

70
, . . . , (15.6.6a)

h = hr,s ≡ [r(m+ 2)− sm]2 − 4

8m(m+ 2)
+

ε

16
, (15.6.6b)

where 1 ≤ r ≤ m− 1 and 1 ≤ s ≤ m+ 1.
A coset representation for the N = 1 unitary discrete series is

G = SU(2)k ⊕ SU(2)2 , H = SU(2)k+2 . (15.6.7)

The central charge is correct for m = k + 2. The reader can verify that
the coset theory has N = 1 world-sheet supersymmetry: using the free
fermion representation of the k = 2 factor, one linear combination of the
(32 , 0) fields j

a
(1)ψ

a and iεabcψaψbψc is nonsingular with respect to the H
current and is the supercurrent of the coset theory.
For small m, some of these theories are familiar. At m = 2, c vanishes

and we have the trivial theory. At m = 3, c = 7
10 , which is the m = 4

member of the Virasoro unitary series. At m = 4, c = 1; this is the free
boson representation discussed in section 10.7.

15.7 Rational CFT

We have seen that holomorphicity on the world-sheet is a powerful prop-
erty. It would be useful if a general local operator of weight (h, h̃) could
be divided in some way into a holomorphic (h, 0) field times an anti-
holomorphic (0, h̃) field, or a sum of such terms. The conformal block
expression (15.2.9) shows the sense in which this is possible: by organiz-
ing intermediate states into conformal families, the correlation function
is written as a sum of terms, each holomorphic times antiholomorphic.
While this was carried out for the four-point function on the sphere, it is
clear that the derivation can be extended to n-point functions on arbitrary
Riemann surfaces. For example, the conformal blocks of the zero-point
function on the torus are just the characters,

Z(τ) =
∑
i,̃

nĩχi(q)χ̃(q)
∗ , (15.7.1)

where nĩ counts the number of times a given representation of the left
and right algebras appears in the spectrum.
When the sum is infinite this factorization does not seem particularly

helpful, but when the sum is finite it is. In fact, in all the examples
discussed in this section, and in virtually all known exact CFTs, the sum
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is finite. What is happening is that the spectrum, though it must contain
an infinite number of Virasoro representations for c ≥ 1, consists of a
finite number of representations of some larger extended chiral algebra.
This is the definition of a rational conformal field theory (RCFT).

It has been conjectured that all rational theories can be represented
as cosets, and that any CFT can be arbitrarily well approximated by a
rational theory (see exercise 15.9 for an example). If so, then we are close
to constructing the general CFT, but the second conjecture in particular
seems very optimistic.

We will describe here a few of the general ideas and results. The basic
objects in RCFT are the conformal blocks and the fusion rules, nonnegative
integers Nk

ij which count the number of ways the representations i and j
can be combined to give the representation k. For the Virasoro algebra,
we know that two representations can be combined to give a third in a
unique way: the expectation value of the primaries determines those of all
descendants. For other algebras, Nk

ij may be greater than 1. For example,
even for ordinary Lie algebras there are two ways to combine two adjoint
8s of SU(3) to make another adjoint, namely dabc and fabc. As a result,
the same holds for the corresponding current algebra representations:
N8
88 = 2.

Repeating the derivation of the conformal blocks, for a general algebra
the number of independent blocks Fkl

ij (r|z) is
Nijkl = Nr

ijNrkl , (15.7.2)

where the repeated index is summed. Indices are lowered with N0
ij = Nij ,

zero denoting the identity representation. One can show that for each
i, Nij is nonvanishing only for a single j. This defines the conjugate
representation, Nīı = 1. In the minimal models and SU(2) current algebra,
all representations are self-conjugate, but for SU(n), n > 2 for example,
they are not. By associativity, the s-channel conformal blocks Fkl

ij (r|z)
are linearly related to the t-channel blocks Fjk

il (r|1 − z). The number of
independent functions must be the same in each channel, so the fusion
rules themselves satisfy an associativity relation,

Nr
ijNrkl = Nr

ikNrjl = Nr
ilNrjk . (15.7.3)

We will now derive two of the simpler results in this subject, namely
that the weights and the central charge must in fact be rational numbers
in an RCFT. First note that the conformal blocks are not single-valued
on the original Riemann surface — they have branch cuts — but they are
single-valued on the covering space, where a new sheet is defined whenever
one vertex operator circles another. Any series of moves that brings the
vertex operators back to their original positions and sheets must leave the
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conformal blocks invariant. For example,

τ1τ2τ3τ4 = τ12τ13τ23 , (15.7.4)

where τi···j denotes a Dehn twist, cutting open the surface on a circle
containing the indicated vertex operators, rotating by 2π and gluing. To
see this, examine for example vertex operator 1. On the right-hand side,
the combined effect of τ12 and τ13 is for this operator to circle operators 2
and 3 and to rotate by 4π. On the left, this is the same as the combined
effect of τ4 (which on the sphere is the same as τ123) and τ1. Eq. (15.7.4)
is an Nijkl-dimensional matrix equation on the conformal blocks. For
example,

τ1 : Fkl
ij (r|z)→ exp(2πihi)Fkl

ij (r|z) , (15.7.5a)

τ12 : Fkl
ij (r|z)→ exp(2πihr)Fkl

ij (r|z) . (15.7.5b)

On the other hand, τ13 is not diagonal in this basis, but rather in the dual

basis Fjk
il (r|1− z).

In order to get a basis-independent statement, take the determinant of
eq. (15.7.4) and use (15.7.5) to get

Nijkl(hi + hj + hk + hl)−
∑
r

(Nr
ijNrkl +Nr

ikNrjl +Nr
ilNrjk)hr ∈ Z . (15.7.6)

This step is possible only when the number N of primaries is finite.
There are many more equations than weights. Focusing on the special

case i = j = k = l gives∑
r

Nr
iiNrii(4hi − 3hr) ∈ Z . (15.7.7)

This is N− 1 equations for N− 1 weights, where N is the number of
primaries; the weight h0 is always 0, and the i = 0 equation is trivial.
Let us consider the example of SU(2) current algebra at level 3, where
there are four primaries, j = 0, 12 , 1,

3
2 . From the general result (15.4.17),

the nonzero fusion rules of the form Nr
ii are

N0
00 = N0

1/2,1/2 = N1
1/2,1/2 = N0

11 = N1
11 = N0

3/2,3/2 = 1 . (15.7.8)

Thus we find that

8h1/2 − 3h1 , 5h1 , 4h3/2 (15.7.9)

are all integers, which implies that the weights are all rational. These
results are consistent with the known weights j(j + 1)/(k+ 2). The reader
can show that eqs. (15.7.7) are always nondegenerate and therefore require
the weights to be rational.4

4 We are assuming that all the Niiii are nonzero. More generally, one can derive a similar relation
with Niīı̄ı, which is always positive.
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For the central charge, consider the zero-point function on the torus.
The covering space here is just Teichmüller space, on which one may check
that

S4 = (ST )3 = 1 . (15.7.10)

The determinant of this implies that

1 = [(det S)4]−3[(det S detT )3]4 = (detT )12 . (15.7.11)

The transformation T acts on the characters as

T : χi(q)→ exp[2πi(hi − c/24)]χi(q) . (15.7.12)

Thus,

Nc

2
− 12

∑
i

hi ∈ Z , (15.7.13)

and the rationality of c follows from that of the weights.
The consistency conditions for RCFT have been developed in a system-

atic way. Let us just mention some of the most central results. The first
is the Verlinde formula, which determines the fusion rules in terms of the
modular transformation S:

Ni
jk =

∑
r

Srj S
r
kS

†
r
i

S r0
. (15.7.14)

Indices are lowered with N0
ij . The second is naturalness: any operator prod-

uct coefficient that is allowed by the full chiral algebra is actually nonzero.5

The third result describes all possible modular invariants (15.7.1): either
nĩ = δĩ (the diagonal invariant), or nĩ = δiω(̃), where ω(̃) is some
permutation symmetry of the fusion rules. The latter two results are not
quite as useful as they sound, because they only hold with respect to the
full chiral algebra of the theory. As we have seen in the W algebra coset
example, this may be larger than one realizes.
Finally, let us mention a rather different generalization of the coset idea.

Suppose we have a current algebra G, and we consider all (2, 0) operators
formed from bilinears in the currents,

T ′ = Lab :j
ajb : . (15.7.15)

The condition that the TT OPE has the correct form for an energy-
momentum tensor, and therefore that the modes of T form a Virasoro
algebra, is readily found. It is the Virasoro master equation,

Lab = 2Lack
cdLdb − LcdLeff

ce
a f

df
b − Lcdf

ce
f f

df
(a Lb)e , (15.7.16)

5 This precise statement holds only when the Ni
jk

are restricted to the values 0 and 1; otherwise,

it requires some refinement.



15.8 Renormalization group flows 259

where kab is the coefficient 1/z2 in the current–current OPE. The central
charge is

c = 2kabLab . (15.7.17)

We already know some solutions to this: the Sugawara tensor for G,
or for any subalgebra H of G. Remarkably, the set of solutions is very
much larger: for G = SU(3)k , the number has been estimated as 1

4 billion
for each k. For each solution the G theory separates into two decoupled
theories, with energy-momentum tensors T ′ and TG − T ′. Some of these
may be equivalent to known theories, but others are new and many have
irrational central charge.

15.8 Renormalization group flows

Consistent string propagation requires a conformally invariant world-sheet
theory, but there are several reasons to consider the relation of CFTs to
the larger set of all two-dimensional field theories. First, CFT also has
application to the description of critical phenomena, where the parameters
can be varied away from their critical values. Second, there is a rich math-
ematical and physical interplay between conformal theories and nearby
nonconformal ones, each illuminating the other. Third, conformally in-
variant theories correspond to string backgrounds that satisfy the classical
equations of motion. One might then guess that the proper setting for
quantum string theory would be a path integral over all background field
configurations — that is, over all two-dimensional quantum field theories.
This last is more speculative; it is related to other formulations of string
field theory, a subject discussed briefly in chapter 9.

In this section we will develop some general results relating conformal
and nonconformal theories. In the next we will discuss some examples
and applications. Once again, this is an enormous subject and we can only
sketch a few of the central ideas and results.

Scale invariance and the renormalization group

Consider the scale transformation

δsz = εz (15.8.1)

on a world-sheet with flat metric gab = δab. Alternatively we could keep
the coordinates fixed and scale up the metric,

δsgab = 2εgab . (15.8.2)
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In either form the net change (3.4.6) in the action and measure is

− ε

2π

∫
d2σ Ta

a(σ) . (15.8.3)

A flat world-sheet theory will therefore be scale-invariant provided that

Ta
a = ∂aKa, (15.8.4)

for some local operator Ka.

Scale invariance plays an important role in many parts of physics. One
expects that the extreme low energy limit of any quantum field theory will
approach a scale-invariant theory. This has not been proven in general,
but seems to be true in all examples. The scale-invariant theory may be
trivial: if all states are massive then at low enough energy nothing is left.
Consider for example a statistical mechanical system. The Boltzmann sum
is the same as the Euclidean path integral in quantum field theory. This
may have an energy gap for generic values of the parameters and so be
trivial at long distance, but when the parameters are tuned to send the gap
to zero (a second order phase transition) it is described by a nontrivial
scale-invariant theory.

The term nontrivial in this context is used in two different ways. The
broad usage (which is applied in the previous paragraph) means any
field theory without an energy gap, so that there are states of arbitrarily
small nonzero energy. A narrower usage reserves the term for scale-
invariant theories with interactions that remain important at all distances,
as opposed to those whose low energy limit is equivalent to that of a free
field theory.

Scale and conformal invariances are closely related. The scale transfor-
mation rescales world-sheet distances by a constant factor, leaving angles
and ratios of lengths invariant. A conformal transformation rescales world-
sheet distances by a position-dependent factor; on a very small patch of
the world-sheet it looks like a scale transformation. In particular, confor-
mal transformations leave angles of intersection between curves invariant.
Comparing the condition (15.8.4) with the condition Ta

a = 0 for confor-
mal invariance, one sees that it is possible in principle for a theory to be
scale-invariant without being conformally-invariant. However, it is diffi-
cult to find examples. Later in the section we will prove that for compact
unitary CFTs in two dimensions scale invariance does imply conformal
invariance. Exercise 15.12 gives a nonunitary counterexample.

This is of some importance in dimensions greater than two. In the
previous chapter we encountered two nontrivial (in the narrow sense)
scale-invariant theories. The first was the d = 4, N = 4 gauge theory.
The second was the d = 6 (2, 0) tensionless string theory, which arose on
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coincident IIA or M-theory 5-branes. Both are believed to be conformally
invariant.
In quantum field theory, the behavior of matrix elements under a rigid

scale transformation is governed by a differential equation, the renor-
malization group equation. Let us derive such an equation. Consider a
general quantum field theory in d-dimensional spacetime; spacetime here
corresponds to the string world-sheet, which is the case d = 2. The scale
transformation of a general expectation value is

ε−1δs
〈∏

m

Aim(σm)

〉
= − 1

2π

∫
d2σ

〈
Ta

a(σ)
∏
m

Aim(σm)

〉
−∑

n

∆in
j

〈
Aj(σn)

∏
m �=n

Aim(σm)

〉
, (15.8.5)

where Ai is a complete set of local operators. The second term is from
the action of the scale transformation on the operators,

δsAi(σ) = −∆ijAj(σ) . (15.8.6)

The integrated trace of the energy-momentum tensor can be expanded in
terms of the complete set,∫

ddσ Ta
a = −2π∑

i

′ ∫
ddσ βi(g)Ai . (15.8.7)

The prime on the sum indicates that it runs only over operators with
dimension less than or equal to d, because this is the dimension of the
energy-momentum tensor. We can similarly write a general renormalizable
action as a sum over all such terms

S =
∑
i

′
gi
∫
dd Ai(σ) . (15.8.8)

Here gi is a general notation that includes the interactions as well as
the masses and the kinetic term normalizations. The expansions (15.8.7)
and (15.8.8) can be used to rewrite the scale transformation (15.8.5) as the
renormalization group equation,

ε−1δs
〈∏

m

Aim(σm)

〉
= −∑

i

′
βi(g)

∂

∂gi

〈∏
m

Aim(σm)

〉

−∑
n

∆in
j

〈
Aj(σn)

∏
m �=n

Aim(σm)

〉
. (15.8.9)

There may also be contact terms between Ta
a and the other operators,

and terms from the gi-derivative acting on the local operators. These are
dependent on definitions (the choice of renormalization scheme) and can
all be absorbed into the definition of ∆i

j . Eq. (15.8.9) states that a scale

ε−1

σ
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transformation is equivalent to a change in the coupling plus a mixing of
operators. As one looks at longer distances the couplings and operators
flow.

The Zamolodchikov c-theorem.

Without conformal invariance, Tzz is not holomorphic, its modes do not
generate a Virasoro algebra, and the central charge c is not defined.
Nevertheless, c has a useful extension to the space of all two-dimensional
field theories.
Define

F(r2) = z4 〈Tzz(z, z̄)Tzz(0, 0) 〉 , (15.8.10a)

G(r2) = 4z3z̄ 〈Tzz(z, z̄)Tzz̄(0, 0) 〉 , (15.8.10b)

H(r2) = 16z2z̄2 〈Tzz̄(z, z̄)Tzz̄(0, 0) 〉 . (15.8.10c)

Rotational invariance implies that these depend only on r2 = zz̄, as
indicated. From conservation, ∂̄Tzz + ∂Tzz̄ = 0, one finds that

4Ḟ + Ġ− 3G = 0 , 4Ġ− 4G+ Ḣ − 2H = 0 , (15.8.11)

where a dot denotes differentiation with respect to ln r2. The Zamolod-
chikov C function is the combination

C = 2F − G− 3

8
H . (15.8.12)

This has the property

Ċ = −3

4
H. (15.8.13)

In a unitary theory H can be written as a sum of absolute squares by
inserting a complete set of states, and so is nonnegative. The result (15.8.13)
shows that the physics changes in a monotonic way as we look at longer
and longer distances. Also, C is stationary if and only if the two-point
function of Tzz̄ with itself is zero, implying (by a general result in unitary
quantum field theory) that Tzz̄ itself vanishes identically. The theory is
then conformally invariant and C becomes precisely c.
The monotonicity property also implies that the theory at long distance

will approach a stationary point of C and therefore a CFT. Again, this
is intuitively plausible: at long distances the theory should forget about
underlying distance scales. In general this is likely to happen in the
trivial sense that all fields are massive and only the empty c = 0 theory
remains. However, if massless degrees of freedom are present due to some
combination of symmetry and the tuning of parameters, the c-theorem
implies that their interactions will be conformally invariant. We should
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emphasize that the unitarity and compactness are playing a role; in the
more general case there do exist counterexamples (exercise 15.12).

Like c, the C function seems to represent some generalized measure of
the density of states. The monotonicity is then very plausible: a massive
field would contribute to the number of degrees of freedom measured at
short distance, but drop out at distances long compared to its Compton
wavelength. In spite of this intuitive interpretation, there seems to be no
simple generalization of the C function to d > 2. However, the principle
that the long distance limit of any quantum field theory is conformally
invariant still seems to hold under broad conditions.

Conformal perturbation theory

Now let us consider adding small conformally-noninvariant terms to the
action of a CFT,

S = S0 + λi
∫
d2z Oi , (15.8.14)

where S0 is the action of the CFT. For convenience we focus on the
case that the perturbations are primary fields, but the results are easily
generalized. The λi are the earlier couplings gi minus the value at the
conformal point.

The main question is how the physics in the perturbed theory depends on
scale. Consider the following operator product, which arises in first order
perturbation theory for correlations of the energy-momentum tensor:

− Tzz(z, z̄) λ
i
∫
d2w Oi(w, w̄) . (15.8.15)

We have

∂z̄Tzz(z)Oi(w, w̄)
= ∂z̄

[
(z − w)−2hi + (z − w)−1∂w

]
Oi(w, w̄)

= −2πhi∂zδ2(z − w)Oi(w, w̄) + 2πδ2(z − w)∂wOi(w, w̄) . (15.8.16)

Integrating this, the first order perturbation (15.8.15) implies that pertur-
bation leads to

∂z̄Tzz(z, z̄) = 2πλi(hi − 1)∂zOi(z, z̄) . (15.8.17)

As expected, the energy-momentum tensor is no longer holomorphic,
unless the perturbation is of weight hi = 1. The energy-momentum tensor
must still be conserved,

∂z̄Tzz + ∂zTz̄z = 0 . (15.8.18)
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Inspection of the divergence (15.8.17) thus identifies

Tz̄z = 2πλi(1− hi)Oi(z, z̄) . (15.8.19)

We assume that the perturbations are rotationally invariant, hi = h̃i, so
that Tab remains symmetric.
Referring back to the renormalization group, we have

βi = 2(hi − 1)λi , (15.8.20)

so that a rescaling of lengths by ε is equivalent to a rescaling of the
couplings,

δλi = 2ε(1− hi)λ
i . (15.8.21)

A perturbation with hi > 1 is thus termed irrelevant, because its effect
drops away at long distance and we return to the conformal theory. A
perturbation with hi < 1 is termed relevant. It grows more important at
low energies, and we move further from the original conformal theory. A
perturbation with hi = 1 is termed marginal.
Now let us go to the next order in g. Consider first the case that the

perturbations Oi are all of weight (1, 1), marginal operators. Second order
perturbation theory will then involve the operator product

1

2

∫
d2z Oi(z, z̄)

∫
d2w Oj(w, w̄) , (15.8.22)

the factor of 1
2 coming from the expansion of exp(−S). The part of the

OPE that involves only marginal operators is

Oi(z, z̄)Oj(w, w̄) ∼ 1

|z − w|2 c
k
ijOk(w, w̄) , (15.8.23)

so the second order term (15.8.22) will have a logarithmic divergence when
z → w,

2π

∫
dr

r
ckij

∫
d2w Ok(w, w̄) . (15.8.24)

The divergence must be cut off at the lower end, introducing a scale into
the problem and breaking conformal invariance. At the upper end, the
scale is set by the distance at which we are probing the system. We can
read off immediately the scale dependence: if we increase the scale of
measurement by a factor 1 + ε, the log increases by ε. This is equivalent
to shifting the couplings by

δλk = −2πεckijλiλj . (15.8.25)

In other words,

βk = 2πckijλ
iλj . (15.8.26)
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As an application, suppose that we are interested in perturbations that
preserve conformal invariance. We have the familiar necessary condition
that the perturbation be a (1,1) tensor, but now we see that there are
further conditions: conformal invariance will be violated to second order
in λ unless

ckijλ
iλj = 0 (15.8.27)

for all (1,1) operators k.

Now we wish to go to second order in λ for perturbations that are not
marginal. At weak coupling, the order λ2 term is important only if the
first order term is small — that is, if the coupling is nearly marginal. To
leading order in hi − 1, we can just carry over our result for O(λ2) in the
marginal case. Combining the contributions (15.8.20) and (15.8.26), we
then have

βi = 2(hi − 1)λi + 2πckijλ
iλj , (15.8.28)

with corrections being higher order in hi − 1 or λi. Let us also work out
the C function. With Tz̄z = −πβiOi, the result (15.8.13) for the C function
becomes to leading order

Ċ = −12π2βiβjGij , (15.8.29)

where

Gij = z2z̄2 〈 Oi(z, z̄)Oj(0, 0) 〉 (15.8.30)

is evaluated at λi = 0. Observe that

βi =
∂

∂λi
U( ) , (15.8.31a)

U( ) = (hi − 1)λiλi +
2π

3
cijkλ

iλjλk , (15.8.31b)

indices being lowered with Gij . Using this and βi = −2λ̇i gives
Ċ = 24π2βjλ̇

j = 24π2U̇ . (15.8.32)

This integrates to

C = c+ 24π2U (15.8.33)

with c being the central charge at the conformal point λi = 0.

Now let us apply this to the case of a single slightly relevant operator,

λ̇ = (1− h)λ− πc111λ
2, (15.8.34)

normalized so that G11 = 1. If λ starts out positive it grows, but not
indefinitely: the negative second order term cuts off the growth. At long

λ

λ
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distance we arrive at a new conformal theory, with coupling

λ′ = 1− h

πc111
. (15.8.35)

From the string spacetime point of view, we can interpret U(λ) as a po-
tential energy for the light field corresponding to the world-sheet coupling
λ, and the two conformal theories correspond to the two stationary points
of the cubic potential. Note that λ = 0 is a local maximum: relevant
operators on the world-sheet correspond to tachyons in spacetime. The
central charge of the new fixed point is

c′ = c− 8
(1− h)3

c2111
. (15.8.36)

15.9 Statistical mechanics

The partition function in classical statistical mechanics is

Z =

∫
[dq] exp(−βH) , (15.9.1)

where the integral runs over configuration space, β is the inverse tem-
perature, and the Hamiltonian H is the integral of a local density. This
has a strong formal similarity to the path integral for Euclidean quantum
theory,

Z =

∫
[dφ] exp(−S/h̄) . (15.9.2)

In the statistical mechanical case, the configuration is a function of the spa-
tial dimensions only, so that statistical mechanics in d spatial dimensions
resembles quantum field theory in d spacetime dimensions. An obvious
difference between the two situations is that in the statistical mechanical
case there is generally an underlying discrete structure, while in relativistic
field theory and on the string world-sheet we are generally interested in a
continuous manifold.
There is a context in statistical mechanics in which one essentially

takes the continuum limit. This is in critical phenomena, in which some
degrees of freedom have correlation lengths very long compared to the
atomic scale, and the discrete structure is no longer seen. In this case, the
statistical ensemble is essentially identical to a relativistic field theory. Let
us discuss the classic example, the Ising model. Here one has an array of
spins on a square lattice in two dimensions, each spin σi taking the values
±1. The energy is

H = −∑
links

σiσi′ . (15.9.3)
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The sum runs over all nearest-neighbor pairs (links). The energy favors
adjacent pairs being aligned. When β is small, so that the temperature is
large, the correlations between spins are weak and short-range,

〈 σiσj 〉 ∼ exp[−|i− j|/ξ(β)] (15.9.4)

as the distance |i − j| goes to infinity. For sufficiently large β the Z2

symmetry σi → −σi is broken and there is long-range order,

〈 σiσj 〉 ∼ v2(β) + exp[−|i− j|/ξ′(β)] . (15.9.5)

For both small and large β the fluctuations are short-range. However, the
transition between these behaviors is second order, both ξ(β) and ξ′(β)
going to infinity at the critical value βc. At the critical point the falloff is
power law rather than exponential,

〈 σiσj 〉 ∼ |i− j|−η , β = βc . (15.9.6)

The long-wavelength fluctuations at this point should be described by a
continuum path integral. The value of the critical exponent η is known
from the exact solution of the Ising model to be 1

4 . This cannot be
deduced from any classical reasoning, but depends in an essential way on
the nonlinear interactions between the fluctuations.
To deduce the CFT describing the critical theory, note the global

symmetry of the Ising model, the Z2 symmetry σi → −σi. We have a whole
family of CFTs with this symmetry, the minimal models. For reasons to
be explained below, the correct minimal model is the first nontrivial one,
m = 3 with c = 1

2 . The nontrivial primary fields of this theory, taking into
account the identification (15.3.15), are

O1,1 : h = 0 , O1,2 : h =
1

16
, O1,3 : h =

1

2
. (15.9.7)

Under the Z2 (15.3.23), O1,2 is odd and the other two are even. In particular,
the Ising spins, being odd under Z2, should evidently be identified as

σi → σ(z, z̄) = O1,2(z)Õ1,2(z̄) . (15.9.8)

The left- and right-moving factors must be the same to give a rotationally
invariant operator. There are separate Z2s acting on the left- and right-
moving theories, but all operators have equal left and right charges so we
can take either one. The expectation value

〈 σ(z, z̄)σ(0, 0) 〉 ∝ (zz̄)−2h = (zz̄)−1/8 (15.9.9)

agrees with the exact solution for the critical exponent η.
The m = 3 minimal model is equivalent to the free massless Majorana

fermion. Indeed, Onsager solved the Ising model by showing that it could
be rewritten in terms of a free fermion on a lattice, which in general is
massive but which becomes massless at βc. Note that O1,3 has the correct
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dimension to be identified with the fermion field, and O1,2 has the correct
dimension to be the R sector ground state vertex operator for a single
Majorana fermion.
Incidentally, the solubility of the Ising model for general β can be

understood directly from the CFT. Changing the temperature is equivalent
to adding

O1,3(z)Õ1,3(z̄) (15.9.10)

to the action. This is the only relevant perturbation that is invariant under
the Z2 symmetry. This perturbation breaks the conformal invariance, but it
can be shown from the OPEs of the CFT that a spin-4 current constructed
from T 2

zz is still conserved. The existence of a symmetry of spin greater
than 2 in a massive theory is sufficient to allow a complete solution. Of
course, in the present case the perturbation (15.9.10) is just a mass for
the free fermion, but for other CFTs without such a simple Lagrangian
description this more abstract approach is needed.
The requirement that operators have integer spin means that we can

only pair the same conformal family on the right and left. For the theory
quantized on the circle, this corresponds to the A modular invariant
discussed earlier,

[O1,1Õ1,1] + [O1,2Õ1,2] + [O1,3Õ1,3] . (15.9.11)

In terms of the free fermion theory this is the diagonal GSO projection.
For two-dimensional critical theories with few enough degrees of free-

dom that the central charge is less than one, the classification of unitary
representations of the Virasoro algebra completely determines the possible
critical exponents: they must be given by one of the minimal models.6

For this reason this same set of CFTs arises from many different short-
distance theories. Let us mention one such context, which illustrates the
relation among all the unitary minimal models through the Z2 symmetry
they share. We noted that the m = 3 theory has only one relevant per-
turbation that is invariant under Z2. We therefore identified this with a
variation of the temperature away from the critical point. The operator
O1,1Õ1,1 is just the identity and adding it to the action has a trivial effect.
The operator O1,2Õ1,2 is odd under Z2 and corresponds to turning on a
magnetic field that breaks the σi → −σi symmetry. For the minimal model
at general m there are m − 2 nontrivial relevant Z2-invariant operators.
This corresponds to multicritical behavior. To reach such a model one must
tune m− 2 parameters precisely.

6 There is a caveat: the CFTs that arise in statistical physics need not be unitary. Unitarity in that
context is related to a property known as reflection positivity, which holds in most but not all
systems of interest.
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For example, take the Ising model with thermally equilibrated (an-
nealed) vacancies, so that each spin σ can take values ±1 or 0, the last
corresponding to an empty site. When the density ρ of vacancies is small,
the behavior is much like the Ising model, with the same critical behavior
at some point βc(ρ). However, when the vacancy density reaches a critical
value ρc, then at βc(ρc) there are independent long-range fluctuations of
the spin and density. This is known as the tricritical Ising model, tricrit-
ical referring to the need to adjust two parameters to reach the critical
point. Since there are more long-range degrees of freedom than in the
Ising model, we might expect the critical theory to have a greater cen-
tral charge. The tricritical Ising model has been identified with the next
minimal model, m = 4 with c = 7

10 . This generalizes: with spins (also
called ‘heights’) taking m− 1 values, there is a multicritical point obtained
by adjusting m − 2 parameters which is described by the corresponding
minimal model. In fact, every CFT we have described in this chapter can
be obtained as the critical limit of a lattice theory, and indeed of a solvable
lattice theory. It is quite likely that every rational theory can be obtained
from a solvable lattice theory.

A different generalization of the Ising model is the Zk Ising model
(the clock model). Here the spins take k values σi = exp(2πin/k) for
n = 0, 1, . . . , k − 1, and there is a Zk symmetry σi → exp(2πi/k)σi. The
energy is

H = −∑
links

Re(σiσ
∗
i′ ) . (15.9.12)

Again there is a critical point at a value βc. The critical behavior is
described by the Zk parafermion theory. The Zk parafermions describe
a generic critical system in which the fluctuations transform under a Zk
symmetry.

Several of the low-lying minimal models can be realized in different
ways. The m = 5 theory is obtained as a four-height Z2 model or a Z3

Ising model. It is also known as the three-state Potts model, referring
to a different generalization of the Ising model (spins taking k values
with a permutation symmetry Sk) which happens to be the same as the
Zk generalization when k = 3. The m = 6 model can be obtained as
a five-height Z2 model or as a tricritical point of the Z3 Potts/Ising
model with vacancies. In fact the m = 3, 4, 5, 6 theories have all been
realized experimentally, usually in systems of atoms adsorbed on surfaces.
Since the m = 4 model is also the m = 3 minimal model of the N = 1
supersymmetric series, this is in a sense the first experimental realization of
supersymmetry. (Some atomic and nuclear systems have an approximate
Fermi/Bose symmetry, but this is a nonrelativistic algebra whose closure
does not involve the translations.)
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Landau–Ginzburg models

To complete this section, we will give a slightly different Lagrangian
description of the minimal models. To study the long-wavelength behavior
of the Ising model, we can integrate out the individual spins and work
with a field φ(z, z̄) representing the average spin over a region of many
sites. This field takes essentially continuous values, rather than the original
discrete ones. The first few terms in the Lagrangian density for φ would
be

L = ∂φ∂̄φ+ λ1φ
2 + λ2φ

4 . (15.9.13)

At λ1 = 0 the tree-level mass of the field φ is zero. We thus identify λ1
as being proportional to βc − β, with λ1 = 0 being the critical theory, the
m = 3 minimal model.
This is the Landau–Ginzburg description. The original idea was that the

classical potential for φ represented the free energy of the system. Now
one thinks of this as the effective Lagrangian density for a full quantum
(or thermal) path integral. The quantum or thermal fluctuations cannot
be neglected. In some systems, though not here, they change the transition
from continuous to discontinuous, so that there is no critical behavior. In
general they significantly modify the scaling properties (critical exponents).
Now add a λ3φ

6 term and tune λ1 and λ2 to zero. We might expect a
different critical behavior — the potential is flatter than before, so will
have more states below a given energy, but it is still positive so there
will be fewer states than for a free scalar. In other words, we guess that
c is more than 1

2 and less than 1. It is natural to identify this with the
next minimal model, the m = 4 tricritical Ising model, since the number
of relevant Z2-invariant perturbations is two. Similarly, we guess that the
Landau–Ginzburg model whose leading potential is φ2m−2 represents the
mth minimal model.
Representing the minimal models by a strongly interacting quantum

field theory seems to have little quantitative value, but it gives an intuitive
picture of the operator content. To start we guess that φ corresponds to
the operator of lowest dimension, namely O2,2. Also, we guess that we
have the diagonal theory, so the left-moving representation is the same as
the right-moving one, and we indicate only the latter. Now, to find φ2, use
the fusion rule

O2,2O2,2 = [O1,1] + [O3,1] + [O3,3] + [O1,3] . (15.9.14)

The first term is the identity; we guess that φ2 is the remaining operator
of lowest dimension, namely O3,3. Taking further products with O2,2, we
identify

φn = On+1,n+1 , 0 ≤ n ≤ m− 2 . (15.9.15)
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This terminates due to the upper bound (15.3.16), r ≤ m − 1. The lowest
term in φ · φm−2 is Om,m−2 which by reflection is O1,2. We then continue

φm−1+n = On+1,n+2 , 0 ≤ n ≤ m− 3 . (15.9.16)

All this guesswork can be checked in various ways. One check is that the
Z2 symmetry assignment (15.3.23), namely (−1)s for m odd and (−1)r for
m even, matches that of φn. As another check, where is the next monomial
φ2m−3? The product φ ·φ2m−4 leads to no new primaries. This is just right:
the equation of motion is

mλmφ
2m−3 = ∂∂̄φ = L−1L̃−1 · φ , (15.9.17)

so this operator is a descendant. The powers (15.9.15) and (15.9.16) are
all the relevant primary operators.

What happens if we add a relevant perturbation to the Lagrangian
for the mth minimal model? The Landau–Ginzburg picture indicates that
adding φ2k−2 causes the theory to flow to the kth minimal model. Let us
consider in particular φ2m−4 for m large. This is

Om−1,m−2 = O1,3 , h = 1− 2

m+ 1
, (15.9.18)

which is nearly marginal. Thus we can apply the formalism of the previous
section. From the fusion rule

O1,3O1,3 = [O1,1] + [O1,3] + [O1,5] , (15.9.19)

the only nearly marginal operator in O1,3O1,3 is O1,3 itself, so we are in
precisely the single-operator situation worked out in the last paragraph of
the previous section. Thus, we can construct a new conformal theory by
a small O1,3 perturbation of the minimal model. The Landau–Ginzburg
picture indicates that this is the next minimal model down. We can
compute the central charge from the c-theorem. Taking from the literature
the value c111 = 4/31/2 for the large-m minimal model yields

c′ = c− 12

m3
. (15.9.20)

For large m this is indeed the difference between the central charges of
successive minimal models.

Exercises

15.1 Evaluate det(M3) and compare with the Kac formula.

15.2 Derive eqs. (15.2.3) and (15.2.5) for the expectation value of a de-
scendant.
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15.3 Work out the steps outlined in the derivation of eq. (15.2.9) to find
explicitly the N = 0 and N = 1 terms in Fjl

mn(i|z).
15.4 Verify that the discrete symmetries associated with the simple currents
are as asserted below eqs. (15.3.23) and (15.4.18) for the unitary minimal
models and the SU(2) WZNW models.

15.5 (a) For the SU(n) current algebra at level k, consider the four-point
function with two insertions in the representation (n, n) and two in the
representation (n, n). Find the KZ equation for the SU(n) invariants.
(b) Find the general solution for k = 1 and determine the coefficients
using associativity and locality. Compare this with the free-boson repre-
sentation.
(c) Do the same for general k; the solution involves hypergeometric func-
tions.

15.6 The Wakimoto representation is a free-field representation for the
SU(2) current algebra, analogous to the Feigin–Fuchs representation of
the minimal models. Show that the following currents form an SU(2)
current algebra of level k = q2 − 2:

J+ = iw/21/2 , J3 = iq∂φ/21/2 − wχ ,

J− = i[wχ2 + (2− q2)∂χ]/21/2 + qχ∂φ .

Here w, χ are a commuting βγ system and φ is a free scalar. Show that
the Sugawara energy momentum tensor corresponds to the βγ theory with
hw = 1 and hχ = 0, and with φ being a linear dilaton theory of appropriate
central charge.

15.7 For the coset construction of the minimal models, combine primary
fields from the two factors in G to form irreducible representations of
SU(2). Subtract the weight of the corresponding primary of H and show
that the resulting weight is one of the allowed weights for the minimal
model. Not all minimal model primaries are obtained in this way; some
are excited states in the current algebras.

15.8 Repeat the previous exercise for the coset construction of the minimal
N = 1 superconformal theories.

15.9 For the periodic scalar at any radius, the analysis in section 15.2
shows that the spectrum contains an infinite number of conformal fam-
ilies. Show, however, that if R2/α′ is rational, the partition function is a
sum of a finite number of factors, each one holomorphic times antiholo-
morphic in τ. Show that at these radii there is an enlarged chiral algebra.

15.10 Apply the result (15.7.7) to the SU(2) current algebra at k = 4.
Show that the resulting relations are consistent with the actual weights of
the SU(2) primaries.
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15.11 Verify the Verlinde formula (15.7.14) for the SU(2) modular trans-
formation (15.4.22). In this case indices are raised with the identity matrix.

15.12 For the general massless closed string vertex operator, we found the
condition for Weyl invariance in section 3.6. Find the weaker condition
for invariance under rigid Weyl transformations, and find solutions that
have only this smaller invariance.



16
Orbifolds

In the final four chapters we would like to see how compactification
of string theory connects with previous ideas for unifying the Standard
Model. Our primary focus is the weakly coupled E8 × E8 heterotic string,
whose compactification leads most directly to physics resembling the
Standard Model. At various points we consider other string theories and
the effects of strong coupling. In addition, compactified string theories
have interesting nonperturbative dynamics, beyond that which we have
seen in ten dimensions. In the final chapter we discuss some of the most
interesting phenomena.

The two main issues are specific constructions of four-dimensional string
theories and general results derived from world-sheet and spacetime sym-
metries. Our approach to the constructions will generally be to present
only the simplest examples of each type, in order to illustrate the char-
acteristic physics of compactified string theories. On the other hand, we
have collected as many of the general results as possible.

String compactifications fall into two general categories. The first are
based on free world-sheet CFTs, or on CFTs like the minimal models
that are solvable though not free. For these one can generally determine
the exact tree-level spectrum and interactions. The second category is
compactification in the geometric sense, taking the string to propagate on
a smooth spacetime manifold some of whose dimensions are compact. In
general one is limited to an expansion in powers of α′/R2

c , with Rc being
the characteristic radius of compactification. This is in addition to the
usual expansion in the string coupling g. Commonly in a moduli space
of smooth compactifications there will be special points (or subspaces)
described by free CFTs. Thus the two approaches are complementary, one
giving a very detailed picture at special points and the other giving a less
detailed but global picture. Some of the solvable compactifications have
no such geometric interpretation.

274
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In this chapter we discuss free CFTs and in the next geometric com-
pactification. Again, the literature in each case is quite large and a full
account is far beyond the scope of this book.

16.1 Orbifolds of the heterotic string

In section 8.5 we discussed orbifolds, manifolds obtained from flat space-
time by identifying points under a discrete group H of symmetries. Al-
though these manifolds generally have singularities, the resulting string
theories are well behaved. The effect of the identification is to add twisted
closed strings to the Hilbert space and to project onto invariant states.
We start with the ten-dimensional E8×E8 string, with H a subgroup of

the Poincaré× gauge group. An element of H will act on the coordinates
as a rotation θ and translation v,

Xm → θmnXn + vm , (16.1.1)

where m, n = 4, . . . , 9. For a four-dimensional theory H will act trivially
on Xµ for µ = 0, . . . , 3. In order to preserve world-sheet supersymmetry
the twist must commute with the supercurrent, and so its action on the
right-moving fermions is

ψ̃m → θmnψ̃n . (16.1.2)

In addition it acts on the current algebra fermions as a gauge rotation γ,

λA → γABλB . (16.1.3)

Here we are considering gauge rotations γAB which are in the manifest
SO(16)×SO(16) subgroup of E8×E8. The full element is denoted (θ, v; γ).
Just as the fixed points can be thought of as points of singular spacetime
curvature, a nontrivial γ can be thought of as singular gauge curvature at
the fixed points.
Ignoring the gauge rotation, the set of all elements (θ, v) forms the space

group S . In the twisted theory the strings are propagating on the space
M4 ×K , where

K = R6/S . (16.1.4)

Because the elements of S in general have fixed points, this space is an
orbifold.
Ignoring the translation as well as the gauge rotation leaves the point

group P , the set of all rotations θ appearing in the elements of the twist
group. An orbifold is called Abelian or non-Abelian according to whether
the point group is Abelian or non-Abelian.
The subgroup of S consisting of pure translations (1, v) is an Abelian

group Λ. An alternative description of the orbifold is to twist first by Λ
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to form a particular 6-torus,

T 6 = R6/Λ . (16.1.5)

The space group multiplication law

(θ, w) · (1, v) · (θ, w)−1 = (1, θv) , (16.1.6)

implies that the group

P ≡ S/Λ (16.1.7)

is a symmetry of the 6-torus. This is the same as the point group P except
that some elements include translations. One can now twist the torus by
P to form the orbifold

K = T 6/P . (16.1.8)

We can assume that the identity element in spacetime appears only with
the identity in the gauge group, as e = (1, 0; 1). This is no loss of generality,
because if there were additional elements of the form (1, 0; γ), one could
first twist on the subgroup consisting of these pure gauge twists to obtain
a different ten-dimensional theory, or perhaps a different description of
the same theory, and then twist this theory under the remaining group
which has no pure gauge twists. By closure it follows that each element
(θ, v) of the space group appears with a unique gauge element γ(θ, v), and
that these have the multiplication law

γ(θ1, v1)γ(θ2, v2) = γ((θ1, v1) · (θ2, v2)) . (16.1.9)

That is, there is a homomorphism from the space group to the gauge
group.

Modular invariance

Modular invariance requires that the projection onto H-invariant states
be accompanied by the addition of twisted states for each h ∈ H:

ϕ(σ1 + 2π) = h · ϕ(σ1) , (16.1.10)

where ϕ stands for a generic world-sheet field. The resulting sum over path
integral sectors is naively modular-invariant. However, we know from the
example of the superstring in chapter 10 that modular invariance can
be spoiled by phases in the path integral. In particular, the phase under
τ→ τ+1 is determined by the level mismatch, the difference L0−L̃0 mod 1.
In fact, for Abelian orbifolds it has been shown that this is the only
potential obstruction to modular invariance.
To see how this works, consider the spectrum in the sector with twist

h. Let N be the smallest integer such that hN = 1; we then call this a
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ZN twist. We can always choose the axes so that the rotation is of the
form

θ = exp[2πi(φ2J45 + φ3J67 + φ4J89)] . (16.1.11)

Define the complex linear combinations

Zi = 2−1/2(X2i + iX2i+1) , i = 2, 3, 4 , (16.1.12)

with

Zı̄ ≡ Zi = 2−1/2(X2i − iX2i+1) . (16.1.13)

The periodicity is then

Zi(σ + 2π) = exp(2πiφi)Z
i(σ) . (16.1.14)

Taking the same complex basis for the ψ̃m gives

ψ̃i(σ + 2π) = exp[2πi(φi + ν)]ψ̃i(σ) (16.1.15)

with ν = 0 in the R sector and ν = 1
2 in the NS sector. The supercurrent

is then periodic or antiperiodic in the usual way depending on ν. The
oscillators have the following mode numbers:

αi : n+ φi , αı̄ : n− φi , (16.1.16a)

α̃i : n− φi , α̃ı̄ : n+ φi , (16.1.16b)

ψ̃i : n− φi (R) , n− φi +
1
2 (NS) , (16.1.16c)

ψ̃ı̄ : n+ φi (R) , n+ φi +
1
2 (NS) . (16.1.16d)

For a single element, the gauge twist can always be taken in the block-
diagonal U(1)16 subgroup,

γ = diag[exp(2πiβ1), . . . , exp(2πiβ16)] . (16.1.17)

This acts on the complex linear combinations λK± = 2−1/2(λ2K−1 ± iλ2K)
as

λK± → exp(±2πiβK)λK± . (16.1.18)

The oscillators λK± thus have mode numbers n ∓ βK in the R sector of
the current algebra, and n∓ βK + 1

2 in the NS sector.

Because hN = 1 we can write

φi =
ri

N
, βK =

sK

N
, (16.1.19)

for integers ri and sK . Actually, we can say a bit more, because the various
R sectors are in spinor representations and so contain eigenvalues

1

2

4∑
i=2

φi ,
1

2

8∑
K=1

βK ,
1

2

16∑
K=9

βK . (16.1.20)
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Thus we have the mod 2 conditions

4∑
i=2

ri =
8∑

K=1

sK =
16∑
K=9

sK = 0 mod 2 . (16.1.21)

To be precise, if these are not satisfied then hN is a nontrivial twist of the
ten-dimensional theory, and so just changes the starting point.

Consider first the sector (R,R,R), labeled by the periodicities of the two
sets of current algebra fermions and the supercurrent. Recall the general
result that a complex boson with mode numbers n + θ has zero-point
energy

1

24
− 1

8
(2θ − 1)2 , (16.1.22)

and a complex fermion has the negative of this. The above discussion of
modes then gives the level mismatch as

L0 − L̃0 = −
4∑
i=2

(Ni + Ñi + Ñi
ψ)φi −

16∑
K=1

NKβK

− 1

2

4∑
i=2

φi(1− φi) +
1

2

16∑
K=1

βK(1− βK) mod 1 . (16.1.23)

Here Ni counts the number of αi excitations minus the number of αı̄

excitations, and so on.

The oscillator part of L0 − L̃0 is a multiple of 1/N, and the zero-point
part a multiple of 1/2N2, so that in general there are no states for which
L0 − L̃0 is an integer. Suppose, however, that the zero-point contribution
is actually a multiple of 1/N,

− 1

2

4∑
i=2

φi(1− φi) +
1

2

16∑
K=1

βK(1− βK) =
m

N
(16.1.24)

for integer m. Then imposing on the excitation numbers the condition

4∑
i=2

(Ni + Ñi + Ñi
ψ)φi +

16∑
K=1

NKβK =
m

N
mod 1 (16.1.25)

leaves only states with integer L0 − L̃0. The left-hand side is just the
transformation of the oscillators under h, so this condition is the projection
onto h-invariant states. In particular, the phase of h in the twisted sector
is determined by the zero-point energy (16.1.24).

Now consider the sector (R,R,NS). The ψ̃ modes are shifted by one-half,
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so the level mismatch is equal to the earlier value (16.1.23) plus

δ =
1

2

(
−Ñψ − 1 +

4∑
i=2

φi

)
, (16.1.26)

where the first term is from the excitations and the last two are from the
change in the zero-point energy. Level matching again requires that

δ = k/N (16.1.27)

for some integer k. The first two terms add to an integer due to the GSO
projection, and then (16.1.27) follows from the mod 2 conditions (16.1.21).
Level matching in all other sectors follows in the same way from condi-
tions (16.1.21) and (16.1.24). The latter can also be rephrased

4∑
i=2

r2i −
16∑
K=1

s2K = 0 mod 2N. (16.1.28)

For Abelian orbifolds, as long as there are any states for which the level
mismatch (16.1.23) is an integer, then by imposing the projection (16.1.25)
one obtains a consistent theory. For non-Abelian orbifolds there are
additional conditions.

Other free CFTs

The orbifolds above can be thought of as arising from the ten-dimensional
theory in one step, twisting by the full space group, or in two, twisting
first by the translations to make a toroidal theory and then twisting by the
point group. The second construction can be made more general as follows.
Represent the current algebra in bosonic form, so the toroidal theory has
a momentum lattice of signature (22,6). Many lattices have symmetries
that rotate the left and the right momenta independently, as opposed to
the above construction in which θL = θR on the (6,6) spacetime momenta.
These more general theories are known as asymmetric orbifolds. Though
there is no longer a geometric interpretation in terms of propagation on
a singular space, the construct is consistent in CFT and in string theory.

Another construction is to fermionize all the internal coordinates, giving
44 left-movers and 18 right-movers. Since the Lorentz invariance is broken
one can take arbitrary combinations of independent R and NS boundary
conditions on the 62 fermions, subject to the constraints of modular
invariance, locality of the OPE, and so on. Alternatively, join the real
fermions into 22+ 9 complex fermions and take sectors with independent
aperiodicities exp(2πiν) for each fermion. In spite of appearances this is not
strictly more general, because in the first case one can have combinations
of boundary conditions such that the fermions cannot be put into pairs
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having the same boundary conditions in all sectors. The ten-dimensional
E8 theory from section 11.3 is an example with such essentially real
fermions. One can also take some fermions of each type. The general
consistent theory is known.

The supercurrent T̃F is now written purely in terms of fermions. For
example, a single Xψ̃ CFT becomes a theory of three fermions with
T̃F = iχ̃1χ̃2χ̃3. The boundary conditions must be correlated so that all
terms in the supercurrent are simultaneously R or NS. It is interesting
to ask what is the most general T̃F that can be constructed from free
fermions alone. A general (0, 32 ) tensor would be

T̃F = i
18∑

I,J,K=1

χ̃I χ̃J χ̃KcIJK . (16.1.29)

The conditions for the T̃FT̃F OPE to generate a superconformal algebra
are easily solved. The requirement that there be no four-fermi term in the
OPE is

cIJMcKLM + cJKMcILM + cKIMcJLM = 0 . (16.1.30)

This is the Jacobi identity, requiring cIJK to be the structure constants of
a Lie algebra. The condition that the z̄−1 term in the OPE be precisely
2T̃B is then

18cIKLcJKL = δIJ . (16.1.31)

This fixes the normalization of cIJK , and requires the algebra to be
semisimple (no Abelian factors). The dimension of the group is the number
of fermions, 18. There are three semisimple groups of dimension 18, namely
SU(2)6, SU(3)× SO(5), and SU(4)× SU(2).

Another construction is to bosonize all fermions including the ψ̃µ to
form a lattice of signature (22,9), and then to make a Narain-like con-
struction. Again T̃F can be generalized, to a sum of terms of the form

eik·XR , k2 = 6/α′ ; eil·XR ∂̄XR , l2 = 2/α′ . (16.1.32)

Obviously there are overlaps among these constructions, though often
one or the other description is more convenient. The fermionic construc-
tion in particular has been employed by a number of groups. We will
be able to see a great deal of interesting spacetime physics even in the
simplest orbifold models, so we will not develop these generalizations
further.
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16.2 Spacetime supersymmetry

We have seen that in consistent string theories there is a symmetry that
relates fermions to bosons. The important question is whether in the real
world this symmetry is spontaneously broken at very high energy, or
whether part of it survives down to the weak interaction scale, the energy
that can be reached by particle accelerators. In fact there is a strong argu-
ment, independent of string theory, for expecting that exactly one d = 4
supersymmetry survives and is spontaneously broken near the weak scale.
The argument has to do with the self-energies of elementary particles.

The energy in the field of a charged point particle diverges at short
distance. If we suppose that this is cut off physically at some distance l
then naively the self-energy is

δm ≈ α

l
, (16.2.1)

with α = e2/4π the fine structure constant. The electron is known to be
pointlike down to at least 10−16 cm, implying that the energy (16.2.1) is
more than 103 times the actual electron mass. However, it has been known
since the 1930s that relativistic quantum effects reduce the simple classical
estimate (16.2.1) to

δm ≈ αm ln
1

ml
. (16.2.2)

Taking l to be near the Planck scale, the logarithm is of order 50 and
the self-energy, taking into account numerical factors, is roughly 20% of
the actual mass of the electron. For quarks the effect is larger due to the
larger SU(3) coupling, so that the self-energy is of order the mass itself.
In simple grand unified theories the bottom quark and tau lepton are in
the same multiplet and have equal ‘bare’ masses, but the inclusion of the
self-energies accounts to good accuracy for the observed ratio

mb

mτ
≈ 3 . (16.2.3)

This is a successful test of grand unification, though less impressive than
the unification of the gauge couplings because it is more model-dependent
and because the ratio is not known with the same precision.
This leaves one problem in the Standard Model, the Higgs boson. This

is the only scalar, and the only particle for which the estimate (16.2.1) is
not reduced by relativistic quantum effects. If the Higgs boson remains
pointlike up to energies near the Planck scale as in ordinary grand unified
theories, then the self-energy is roughly 15 orders of magnitude larger
than the actual mass. We have to suppose that the bare mass cancels
this correction to an accuracy of roughly one part in 1030, because it
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is actually the mass-squared that adds. This seems quite unsatisfactory,
especially in light of the very physical way we are able to think about the
other self-energies.

One possible resolution of this naturalness problem is that the Higgs
scalar is not pointlike but actually composite on a scale not far from
the weak scale. This is the idea of technicolor theories; it has not been
ruled out but has not led to convincing models. A second is that there
is some other effect that cancels the self-energy. Indeed, this is the case
in supersymmetric theories. The Higgs mass-squared comes from the
superpotential, and as discussed in section B.2 this is not renormalized:
the self-energy is canceled by a fermionic loop amplitude, at least down
to the scale of supersymmetry breaking.

For this reason theories with supersymmetry broken near the weak scale
have received a great deal of attention, both in particle phenomenology
and in string theory. The d = 4 supersymmetry algebra must be N =
1 because the gauge-couplings in the Standard Model are chiral. As
discussed in section B.2, the N = 2 and larger algebras do not allow this.

Supersymmetric string theories are also attractive because as we will see
later supersymmetry in spacetime implies a much-enlarged symmetry on
the world-sheet, and so the construction and solution of these CFTs has
gone much farther than for the nonsupersymmetric theories. Also, non-
supersymmetric string theories usually, though not always, have tachyons
in their spectra. Finally, the order-by-order supersymmetric cancellation
of the vacuum energy means that there are no tadpole divergences and
the perturbation theory is finite at each order.

It is still a logical possibility that all the supersymmetry of string
theory is broken at the string scale, and even that the low energy limit
of string theory is a technicolor theory. Low energy supersymmetry and
string theory are independent ideas: either might be right and the other
wrong. However, the discovery of low energy supersymmetry would be
an encouraging sign that these ideas are in the right direction. Also, the
measurement of the many new masses and couplings of the superpartners
would give new windows onto higher energy physics. Given the important
role that supersymmetry plays at short distance, and the phenomenological
reasons for expecting supersymmetry near the weak scale, it is reasonable
to hope that of all the new phenomena that accompany string theory
supersymmetry will be directly visible.

What then are the conditions for an orbifold compactification to have
an unbroken N = 1 supersymmetry? Let us consider first the case that
the point group is ZN so that it is generated by a single element of the
form (16.1.11). This acts on the supersymmetries as

Qα → D(φ)αβQβ , (16.2.4)
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where D(φ) is the spinor representation of the rotation. In the usual s-basis
this is

Qs → exp(2πis · φ)Qs . (16.2.5)

The (s2, s3, s4) run over all combinations of ±1
2 , each combination appear-

ing twice. Thus if

φ2 + φ3 + φ4 = 0 (16.2.6)

with the φs otherwise generic, there will be four unbroken supersym-
metries, namely those with s2 = s3 = s4. Three-quarters of the original
16 supersymmetries of the heterotic string are broken. Other possibilities
such as φ2 + φ3 − φ4 = 0 give equivalent physics.

Note that this discussion is quite similar to the discussion of the super-
symmetry of rotated D-branes in section 13.4. As there, we can express
the result in a more general way. Since the rotation takes the Zi into
linear combinations of themselves, it lies in a U(3) subgroup of the SO(6)
rotational symmetry of the six orbifold dimensions. The condition (16.2.6)
states that the rotation actually lies in SU(3). Under

SO(9, 1) → SO(3, 1)× SO(6) → SO(3, 1)× SU(3) , (16.2.7)

the 16 decomposes as derived in section B.1,

16 → (2, 4) + (2, 4) → (2, 3) + (2, 1) + (2, 3) + (2, 1) . (16.2.8)

If P ⊂ SU(3) ⊂ SO(6), the generators (2, 1) and (2, 1) will survive the
orbifold projection and there will be unbroken N = 1 supersymmetry.
Similarly the stricter condition

φ2 + φ3 = φ4 = 0 (16.2.9)

implies that

P ⊂ SU(2) ⊂ SU(3) ⊂ SO(6) . (16.2.10)

In this case there will be unbroken N = 2 supersymmetry.

16.3 Examples

The main example we will consider is based on a Z3 orbifold of the torus.
The lattice Λ for the Z3 orbifold is generated by the six translations

ti : Zi → Zi + Ri , (16.3.1a)

ui : Zi → Zi + αRi , α = exp(2πi/3) (16.3.1b)

The lattice in one complex plane is shown in figure 16.1, with Ri the lattice
spacing. For Ri = α′1/2 this is the root lattice of SU(3), so up to rescaling
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x

x

Fig. 16.1. A two-dimensional lattice invariant under rotations by π/3. A unit cell
is indicated. The two points indicated by × are invariant under the combination
of a 2π/3 rotation and a lattice translation, as are the corner points of the unit
cell. A fundamental region for the orbifold identification is shaded. One can think
of the orbifold space as formed by folding the shaded region on the dotted line
and identifying the edges.

of the Zi, Λ is the root lattice of SU(3)×SU(3)×SU(3). This is invariant
under independent six-fold rotations of each SU(3) lattice.
For the Z3 orbifold, the point group consists of a simultaneous three-

fold rotation of all three lattices, the Z3 group {1, r, r2} generated by

r : Z2 → αZ2 , Z3 → αZ3 , Z4 → α−2Z4 . (16.3.2)

In the notation (16.1.11) this is

φi = (13 ,
1
3 ,−2

3 ) , (16.3.3)

which satisfies the mod 2 condition and leaves N = 1 supersymmetry
unbroken.
Initially we will consider the simple case that there are no Wilson lines.

That is, the translations Λ are not accompanied by gauge twists:1 they
are of the form g = (1, v; 1). The gauge twist must satisfy the mod 2
and level-matching conditions. An easy way to do this is to have the
gauge rotation act on the gauge fermions in exactly the same way as the
spacetime rotation (16.1.11) acts on the ψ̃,

βK = (φ2, φ3, φ4, 0
5; 08) = (13 ,

1
3 ,−2

3 , 0
5; 08) . (16.3.4)

This is called embedding the spin connection in the gauge connection. The
two terms in the level-matching condition (16.1.24) then cancel automati-

1 The gauge twists accompanying transformations with fixed points are not referred to as Wilson
lines, because in a sense they do produce a local field strength, a delta function at the fixed point.
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cally. One way to think about this is to note that the nontrivial part of the
world-sheet theory is parity-invariant, which allows a coordinate-invariant
Pauli–Villars regulator. We will analyze the spectrum of this model, and
discuss more general gauge twists later.
Examining the untwisted sector first, we have to impose the Z3 projec-

tion on the states of the toroidal compactification. We assume that none
of the Ri are α

′1/2, to avoid extra massless states from the SU(3) roots. The

left- and right-moving states by their eigenvalues.
On the left-moving side are

α0 : α
µ
−1| 〉 , |a〉 ∈ (8, 1, 1) + (1, 78, 1) + (1, 1, 248) , (16.3.5a)

α1 : αi−1| 〉 , |a〉 ∈ (3, 27, 1) , (16.3.5b)

α2 : αı̄−1| 〉 , |a〉 ∈ (3, 27, 1) . (16.3.5c)

For the states with an α−1 oscillator excited the eigenvalue comes from
the rotation r. The states from the current algebra have been denoted
by their group index |a〉, without reference to a specific (fermionic or
bosonic) representation. These states have been decomposed according to
their transformation under

SU(3)× E6 × E8 ⊂ E8 × E8 . (16.3.6)

This decomposition was given in section 11.4 and a derivation outlined in
exercise 11.5. The SU(3) acts on the first three complex gauge fermions
λ1+,2+,3+. The gauge rotation (16.3.4) acts on any state as

exp[2πi(q1 + q2 − 2q3)/3] , (16.3.7)

where the qK are the eigenvalues of the state under U(1)16. This is an
element of SU(3), in fact of the center of SU(3), acting as α on any
element of the 3 and α2 on any element of the 3.

On the right-moving side h acts only through the rotation r, giving

α0 : ψ̃
µ
−1/2|0〉NS , | 12 , 1〉R , | − 1

2 , 1〉R , (16.3.8a)

α1 : ψ̃i−1/2|0〉NS , | 12 , 3〉R , (16.3.8b)

α2 : ψ̃ı̄−1/2|0〉NS , | − 1
2 , 3〉R . (16.3.8c)

Here µ runs over the noncompact transverse dimensions 2, 3. We have
labeled the fermionic states by their four-dimensional helicity s1 and by
their SU(3) ⊂ SO(6) transformation. In terms of the spins (s2, s3, s4) the 1,
3, 3, and 1 consist of states with zero, one, two, or three − 1

2s respectively.
Now pair up left- and right-moving states, looking first at the bosons.

In the sector α0 · α0 are

α
µ
−1ψ̃

ν−1/2|0〉NS , (16.3.9)

eigenvalues of h = (r, 0; γ) are powers of α. We first classify the massless

a

a

a
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which are the four-dimensional graviton, dilaton, and axion, as well as

ψ̃
µ
−1/2|a〉NS , a ∈ (8, 1, 1) + (1, 78, 1) + (1, 1, 248) . (16.3.10)

These are SU(3) × E6 × E8 gauge bosons. The gauge group is just the
subgroup left invariant by the twist. In the sector α1 · α2 there are neutral
scalars of the form

αi−1ψ̃
̄
−1/2|0, 0〉NS (16.3.11)

and scalars

ψ̃
̄
−1/2|a〉NS , a ∈ (3, 27, 1) . (16.3.12)

The sector α2 · α1 contributes a conjugate set of states. The neutral scalars
are from the internal modes of the graviton and antisymmetric tensor. In
particular, the symmetric combinations are the moduli for a flat internal
metric of the form

GīdZ
idZ̄ . (16.3.13)

A metric of this form, with no dZidZj or dZı̄dZ̄ components, is known
as Hermitean.
The fermions are the superpartners of these. The bosonic states in each

line of the right-moving spectrum (16.3.8) are replaced by the fermionic
states in the same line. In the sector α0 · α0 are the states

α2±i3−1 |s1, 1〉R , (16.3.14)

which are the gravitinos with helicity ±3
2 and the dilatinos with helicity

±1
2 . The other components of the ten-dimensional gravitino are in the

sectors α0 · α1,2 and are removed by the projection, consistent with the
earlier deduction that the theory has N = 1 supersymmetry. The other
spinors with helicity 1

2 are from the sector α2 · α:
|a, 12 , 3〉R , a ∈ (3, 27, 1) , (16.3.15a)

αı̄−1| 12 , 3〉R . (16.3.15b)

Now consider the twisted sectors. There are 27 equivalence classes with
rotation r, corresponding to the elements

h = rtn22 t
n3
3 t

n4
4 , ni ∈ {0, 1, 2}. (16.3.16)

The inverses of these give 27 classes with rotation r2. The classes are in
one-to-one correspondence with the fixed points,2 which are at

Zi =
exp(iπ/6)

31/2
(n2R2, n3R3, n4R4) . (16.3.17)

2 This one-to-one correspondence does not hold for more complicated space groups.
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These are all related by translation, and so give 27 copies of the same
spectrum. Thus we need only analyze the class h = (r, 1; γ).
We analyze strings twisted by the rotation r. Starting on the right-

moving side, in the R sector the µ oscillators are all integer moded, while
the i oscillators have mode numbers n+ 2

3 . The zero-point energy vanishes
by the usual cancellation between Bose and Fermi contributions in the R
sector. The only fermionic zero modes are from the spacetime fermions,
ψ̃2±i3
0 , so there are two ground states | ± 1

2〉h,R. To figure out which survives

the GSO projection we look at the bosonized vertex operators. As in
eq. (10.3.25), states of a spinor field in a sector with periodicity ϕ(σ1+2π) =
exp(2πiζ)ϕ(σ1) have vertex operators

eisH , s = 1
2 − ζ mod 1 , eĩsH̃ , s̃ = −1

2 + ζ mod 1 , (16.3.18)

for left- or right-movers respectively. This follows from the OPE of the
bosonized spinor with the vertex operator. The vertex operators for the R
sector twisted states then have

exp(ĩsaH̃a) , s̃ = (± 1
2 ,−1

6 ,−1
6 ,− 1

6 ) . (16.3.19)

The GSO projection as defined in chapter 10 is

exp[πi(̃s1 + s̃2 + s̃3 + s̃4)] = 1 . (16.3.20)

Thus it is the state

|+ 1
2〉h,R (16.3.21)

that remains.
In the NS sector, the fermionic modes are shifted by 1

2 to n + 1
6 . The

zero-point energy is 1
36 for a complex boson of shift 1

3 or 2
3 , and − 1

72 for

a complex boson of shift 1
6 or 5

6 , and the negative in either case for a
fermion, giving

− 2

24
− 2

48
+

3

36
+

3

72
= 0 . (16.3.22)

The only massless state is then the ground state

|0〉h,NS . (16.3.23)

On the left-moving side, we will figure out the spectrum in the fermionic
formulation. In the (R,NS) sector the three twisted complex fermions have
mode numbers n+ 1

3 , and the zero-point energy is

− 2

24
+

3

36
− 3

36
+

10

24
− 16

48
= 0 . (16.3.24)

There are ten fermionic zero modes, λI0 for I = 7, . . . , 16, so there are 32
ground states forming a 16 and 16 of SO(10). Again examining the vertex
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operator as in eq. (16.3.19), the current algebra GSO projection is

8∑
K=1

qK ∈ 2Z (16.3.25)

in terms of the U(1)8 charges. The vertex operators (16.3.18) imply that
q1 = q2 = q3 =

1
6 , and the projection then picks out the 16.

The other current algebra sector with massless states is (NS,NS), with
zero-point energy

− 2

24
+

3

36
+

3

72
− 10

48
− 16

48
= −1

2
. (16.3.26)

There are several massless states,

λ1+−1/6λ
2+
−1/6λ

3+
−1/6|0〉NS,NS , λI−1/2|0〉NS,NS , 7 ≤ I ≤ 16 , (16.3.27a)

λK+
−1/6α

̄
−1/3|0〉NS,NS , K = 1, 2, 3 . (16.3.27b)

The states in the first line are a singlet and a 10 of SO(10), combining
with the 16 from the (R,NS) sector to form a 27 of E6. The nine states
in the second line transform as three 3s of the gauge SU(3), distinguished
from one another by the index ̄. In all, the left-moving spectrum contains
the massless states

(1, 27, 1) + (3, 1, 1)3 . (16.3.28)

As we have seen from the discussion of modular invariance, the h-
projection is equivalent to level matching, so we can match either right-
moving state (16.3.21) or (16.3.23) with any left-moving state (16.3.28).
The classes (16.3.16) with rotation r give 27 copies of this spectrum, while
the twisted sectors with rotation r2 give the antiparticles.

Connection with grand unification

One of the factors in the low energy gauge group is E6. As discussed in
section 11.4, this is a possible grand unified group for the Standard Model.
In E6 unification, a generation of quarks and leptons is in the 27 or 27
of E6. Which representation we call the 27 and which the 27 is a matter
of convention. These are precisely the representations appearing in the Z3

orbifold: the helicity 1
2 states that are charged under E6 are all in the 27

of E6. The untwisted states (16.3.15a) comprise nine generations, forming
a triplet of the gauge SU(3) and a triplet of SU(3) ∈ SO(6), and each
twisted sector (16.3.28) with rotation r contributes one 27, for 36 in all.
Notice in particular that the matter is chiral, the helicity +1

2 and −1
2 states

carrying different representations of the gauge group. The GSO projection
correlates the spacetime helicity with the internal components of the spin,
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while the twist contains both a spacetime and a gauge rotation and so
correlates the internal spin with the gauge quantum numbers.

Of course this model has too many generations to be realistic, but
just the same it is interesting to look at how the gauge symmetry would
be reduced to the Standard Model SU(3) × SU(2) × U(1). As we will
discuss later, the SU(3) symmetry can be broken by the twisted sector
states (3, 1, 1). There are no light states that carry both the E6 and E8

gauge quantum numbers, so if the Standard Model is embedded in the
former the latter is hidden, detectable only through gravitational strength
interactions. We will see later that this can have important effects, but
for now we can ignore it. This leaves the E6 factor. From experience with
grand unified theories, one might expect that this could be broken to the
Standard Model gauge group by the Higgs mechanism, the expectation
value of a scalar field. However, that is not possible here. All scalars with
E6 charge are in the 27 representation or its conjugate, and it is not possible
to break E6 to the Standard Model gauge group with this representation.
Consulting the decomposition (11.4.25), there are two components of the
27 that are neutral under SU(3) × SU(2) × U(1), but even if both have
expectation values the gauge symmetry is broken only to SU(5). To break
SU(5) to SU(3) × SU(2) × U(1), the smallest possible representation is
the adjoint 24, but this is not contained in the 27 of E6. We will see in
chapter 18 that this is a general property of level one current algebras. The
current algebras here are at level one just as in ten dimensions, because
the orbifold projection does not change their OPEs.

There are still several ways to break to the Standard Model gauge
group. One is to include Wilson lines on the original torus. The full twist
group of the orbifold is generated by the four elements

h1 = (r, 0; γ) , h2 = (1, t2; γ2) , h3 = (1, t3; γ3) , h4 = (1, t4; γ4) ,
(16.3.29)

where the translations are now accompanied by gauge rotations. The
gauge twists are highly constrained. For example, t2t3 = t3t2 implies that
γ2γ3 = γ3γ2 by the homomorphism property (no pure gauge twists). Also,
r3 = 1 implies that γ3 = 1, while (rti)

3 = 1 implies that (γγi)
3 = 1, and so

on. Further, all the elements

h1h
n2
2 h

n3
3 h

n4
4 (16.3.30)

must satisfy the mod 2 and level-matching conditions. Unlike the simple
toroidal compactification, the general solution is not known; the number
of inequivalent solutions has been estimated to be at least 106. Various
examples resembling the Standard Model have been found. We will give
one below.

We should note that if the low energy SU(3)×SU(2)×U(1) is embedded
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Table 16.1. Allowed gauge twists for the Z3 orbifold, and the resulting
gauge groups.

βK gauge group

(i) ( 13 ,
1
3 ,−2

3 , 0
5; 08) E6 × SU(3)× E8

(ii) (08; 08) E8 × E8

(iii) ( 13 ,
1
3 , 0

6;− 2
3 , 0

7) E7 ×U(1)× SO(14)×U(1)

(iv) ( 13 ,
1
3 ,−2

3 , 0
5; 1

3 ,
1
3 ,−2

3 , 0
5) E6 × SU(3)× E6 × SU(3)

(v) ( 13 ,
1
3 ,

1
3 ,

1
3 ,

2
3 , 0

3; 2
3 , 0

7) SU(9)× SO(14)×U(1)

in the standard way in E6, then the usual grand unified prediction sin2 θw =
3
8 still holds with Wilson line breaking even though there is no scale at
which the theory looks like a four-dimensional unified theory. The reason
is the inheritance principle that orbifold projections do not change the
couplings of untwisted states such as the gauge bosons.

A different route to symmetry breaking is to use higher level current
algebras. One way to construct an orbifold model of this type is to start
with an orbifold that has two copies of the same group. For example,
embedding the spin connection in each E8 (twist (iv) in table 16.1), leaves
an unbroken SU(3)× E6 × SU(3)× E6. Add a twist that has the effect of
interchanging the two E6s so that only the diagonal E6

ja = ja(1) + ja(2) (16.3.31)

survives. The z−2 term in the OPE is additive, so the level is now k = 2.
The resulting model has larger representations which can break the unified
group down to the Standard Model. Realistic models of this type have
been constructed. The higher level and Wilson line breakings have an
important difference in terms of the scale of symmetry breaking, as we
discuss further in chapter 18.

Generalizations

Staying with the Z3 orbifold but considering more general gauge twists,
there are five inequivalent solutions to the mod 2 and level-matching
conditions. These are shown in table 16.1, the first twist being the solu-
tion (16.3.4) with gauge rotation equal to spacetime rotation. One realistic
model with Wilson lines uses the twist (v) in the table, with

γ2 = (07, 23 ; 0,
1
3 ,

1
3 , 0

6) , (16.3.32a)

γ3 = 0 , (16.3.32b)

γ4 = (13 ,
1
3 ,

1
3 ,

2
3 ,

1
3 , 0,

1
3 ,

1
3 ;

1
3 ,

1
3 , 0

6) . (16.3.32c)
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With Wilson lines the gauge twist (16.3.30) is in general different at each
fixed point, so the spectra in the different twisted sectors are no longer the
same. Because γ3 = 0 in this example, the 27 fixed points fall into nine sets
of three, and in fact the Wilson lines have been chosen so as to reduce the
number of generations to three. The gauge group is SU(3)×SU(2)×U(1)5,
with a hidden SO(10)×U(1)3. The chiral matter comprises precisely three
generations, accompanied by a number of nonchiral SU(2) doublets (Higgs
fields) and 3 + 3̄s of SU(3). There are also some massless fields coupling
to the hidden gauge group, and some singlet fields. The obvious problems
with this model are the extra U(1) gauge symmetries, and the extra color
triplets which can mediate baryon decay. Some of the singlets are moduli,
and in certain of the flat directions the extra U(1)s are broken and the
triplets heavy. Of course, given the enormous number of consistent CFTs,
as well as the large number of free parameters (moduli) in each, string
theory will not have real predictive power until the dynamics that selects
the vacuum is understood. We will say more about this later.
Another orbifold is a square lattice in each plane with the Z4 rotation

r′ : Z2 → iZ2 , Z3 → iZ3 , Z4 → i−2Z4 . (16.3.33)

Let us again embed the spin connection in the gauge connection. This will
share certain features with the Z3 orbifold. In particular, the gauge twist
is again in SU(3) so the unbroken group will include an E6 × E8 factor,
and the spin-12 states will again be in the 27 and the 27. This will hold for
any model with rotation in SU(3) and with spin connection embedded in
gauge connection. The extra gauge factor depends on the model; here it is
SU(2)×U(1) rather than SU(3). Another difference is that the modulus

dZ4dZ4 (16.3.34)

now survives the twist, in addition to the mixed components

dZidZ̄ . (16.3.35)

This corresponds to a change in the complex structure of the compactified
dimensions: when this modulus is turned on the metric is no longer
Hermitean, though it becomes Hermitean again by redefining the Zi.
The moduli (16.3.34) are thus known as complex structure moduli. The
moduli (16.3.35) are known as Kähler moduli, for reasons to be explained
in the next chapter.
A third difference is that one finds that the helicity-12 states include both

27s and the 27s. We will see in later chapters that this is correlated with
the appearance of the two kinds of moduli. These are generations and
antigenerations, the latter having the opposite chirality. In the Standard
Model there are no antigenerations, but these can obtain mass by pairing
with some of the generations when some scalar fields are given expectation
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values. The net number of generations is the difference, in which by
definition the generations are whichever of the 27s and 27s are more
numerous.

World-sheet supersymmetries

There is an important general pattern which will apply beyond the orbifold
example. The supercurrent for the compact CFT can be separated into
two pieces that separately commute with the twist,

i
4∑
i=2

∂̄Ziψ̃ı̄ , i
4∑
i=2

∂̄Z ı̄ψ̃i . (16.3.36)

These, together with the energy-momentum tensor and the current

4∑
i=2

ψ̃iψ̃ı̄ , (16.3.37)

form a right-moving N = 2 superconformal algebra. This is a global
symmetry of the internal CFT. We will see in chapter 19 that there is
a close connection between (0,2) supersymmetry on the world-sheet and
N = 1 supersymmetry in spacetime.

When in addition the gauge twist is equal to the spacetime twist, we can
do the same thing with the λK± for K = 1, 2, 3, forming the left-moving
supercurrents

i
4∑
i=2

∂Ziλ(i−1)− , i
4∑
i=2

∂Zı̄λ(i−1)+ . (16.3.38)

In this case the compact part of the world-sheet theory separates into
26 free current algebra fermions and a (c, c̃) = (9, 9) CFT which has
(2,2) world-sheet supersymmetry. String theories of this type are highly
constrained, as we will see in chapter 19.

16.4 Low energy field theory

It is interesting to look in more detail at the low energy field theory
resulting from the Z3 orbifold.

Untwisted states

For the untwisted fields of the orbifold compactification, we can determine
the low energy effective action without a stringy calculation. The action
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for these fields follows directly from the ten-dimensional action via the
inheritance principle. The ten-dimensional bosonic low energy action

Shet =
1

2κ210

∫
d10x (−G)1/2e−2Φ

[
R + 4∂µΦ∂

µΦ− 1

2
|H̃3 |2 − α′

4
Trv(|F2 |2)

]
(16.4.1)

is determined entirely by supersymmetry, with

H̃3 = dB2 − α′
4
Trv(A1 ∧ dA1 − 2iA1 ∧ A1 ∧ A1/3) . (16.4.2)

The trace is normalized to the vector representation of SO(16).

It is very instructive to carry out this exercise. Insert into the action
those fields that survive the Z3 projection,

Gµν , Bµν , Φ , Gī , Bī , A
a
µ , Ai ̄x̄ , Aı̄ jx . (16.4.3)

We have subdivided the gauge generators into a in the adjoint of SU(3)×
E6 × E8, jx in the (3, 27, 1), and ̄x̄ in the (3, 27, 1). Now dimensionally
reduce by requiring the fields to be slowly varying functions of the xµ and
to be independent of the xm.

Let us first ignore the ten-dimensional gauge field. The reduction is then
a special case of that for the bosonic string in chapter 8,

S =
1

2κ24

∫
d4x (−G)1/2

[
R − 2∂µΦ4∂

µΦ4 − 1

2
e−4Φ4 |H3 |2

−1

2
GīGkl̄(∂µGīl∂

µḠk + ∂µBīl∂
µB̄k)

]
. (16.4.4)

We have defined the four-dimensional dilaton

Φ4 = Φ− 1

4
detGmn . (16.4.5)

We have also made a Weyl transformation to the four-dimensional Einstein
metric

GµνEinstein = e−2Φ4Gµν ; (16.4.6)

henceforth in this chapter this metric is used implicitly. This action differs
from the bosonic reduction (8.4.2) in that the projection has removed the
Kaluza–Klein and antisymmetric tensor gauge bosons and the ij and ı̄̄
components of the internal metric and antisymmetric tensor. Note that

Gī = Ḡi = G∗
jı̄ = G∗

ı̄j , (16.4.7a)

Bī = −B̄i = −B∗
jı̄ = B∗

ı̄j . (16.4.7b)

The action must be of the general form (B.2.28) required by N =
1 supersymmetry. To make the comparison we must first convert the
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antisymmetric tensor to a scalar as in section B.4,3

−1

2

∫
d4x (−G)1/2e−4Φ4 |H3 |2 +

∫
a dH3

→ −1

2

∫
d4x (−G)1/2e4Φ4∂µa∂

µa . (16.4.8)

The action then takes the form

1

2κ24

∫
d4x (−G)1/2

[
R − 2∂µS

∗∂µS
(S + S∗)2

− 1

2
GīGkl̄∂µTīl∂

µTj̄k

]
, (16.4.9)

where

S = e−2Φ4 + ia , Tī = Gī + Bī . (16.4.10)

This is of the supergravity form (B.2.28) with the Kähler potential

κ24K = − ln(S + S∗)− ln det(Tī + T ∗
ī) . (16.4.11)

The index i in eq. (B.2.28) is the same as the pair ī in eq. (16.4.9).

Now add the four-dimensional gauge field. In addition to its kinetic
term, this appears in the Bianchi identity for the field strength H̃ , so that
the left-hand side of eq. (16.4.8) becomes

− 1

2

∫
d4x (−G)1/2e−4Φ4 |H̃3 |2 +

∫
a

[
dH̃3 +

α′
4
Trv(F2 ∧ F2 )

]
. (16.4.12)

After Poincaré duality the additional terms in the action are

− 1

4g24

∫
e−2Φ4Trv( |F2 |2) + 1

2g24

∫
aTrv(F2 ∧ F2 ) (16.4.13)

with g24 = 4κ24/α
′. This is of the supergravity form (B.2.28) with the gauge

kinetic term

fab =
δab

g24
S . (16.4.14)

Finally add the scalars coming from the ten-dimensional gauge field.

result is that the Kähler potential is modified to

κ24K = − ln(S + S∗)− ln det
[
Tī + T ∗

ī − α′Trv(AiA∗
j )
]
, (16.4.15)

there is a superpotential

W = εijkTrv(Ai [Aj, Ak]) , (16.4.16)

3 One could instead use Poincaré duality to write the supergravity action using an antisymmetric
tensor. This is known as the linear multiplet formalism and appears often in the string literature.

references. The final
The calculations and field redefinitions are a bit longer and are left to the
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and the gauge kinetic term is unchanged. The superpotential accounts
for the potential energy from the reduction of FmnF

mn. We have kept the
scalars in matrix notation. In components this becomes

W = εijkεl̄m̄n̄dx̄ȳz̄Ai l̄x̄Aj m̄ȳAk n̄z̄ . (16.4.17)

Here dx̄ȳz̄ is the 273 invariant of E6, which has just the right form to give
rise to the quark and lepton masses.

We will see in chapter 18 that several features found in this example
actually apply to the tree-level effective action of every four-dimensional
heterotic string theory.

T -duality

The original toroidal compactification had T -duality O(22, 6,Z). The sub-
group of this that commutes with the Z3 twist will survive as a T -duality
of the orbifold theory. In this case it is an SU(3, 3,Z) subgroup. It is
interesting to look at the special case that Tī is diagonal,

Tī = Tiδī , no sum on i , (16.4.18)

and work only to second order in the Ai. The Kähler potential becomes

κ24K = − ln(S + S∗)−∑
i

ln(Ti + T ∗
i ) + α′

∑
i

Trv(AiA
∗
i )

Ti + T ∗
i

. (16.4.19)

For this form of Tī the lattice is a product of three two-dimensional
lattices. We analyzed the T -duality of a two-dimensional toroidal lattice
in section 8.4, finding it to be essentially PSL(2,Z)× PSL(2,Z). The first
factor acts on τ, which characterizes the shape (complex structure) of the
torus, while the second acts on ρ, which characterizes the size of the torus
and the Bīı background. In the Z3 orbifold the twist fixes the shape, so
τ = exp(πi/3), while ρ = iTi in each plane. Thus there is a PSL(2,Z)3

T -duality subgroup that acts as

Ti → aiTi − ibi

iciTi + di
, aidi − bici = 1 . (16.4.20)

This takes

Ti + T ∗
i → Ti + T ∗

i

|iciTi + di|2 . (16.4.21)

The second term in the Kähler potential (16.4.19) is not invariant under
this, changing by

κ24K → κ24K +Re

[∑
i

ln(iciTi + di)

]
. (16.4.22)
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This does not affect the kinetic terms because it is the real part of a holo-
morphic function; in other words, this is a Kähler transformation (B.2.32).
The final term in the Kähler potential is invariant provided that

Ai → Ai

iciTi + di
. (16.4.23)

The superpotential (16.4.16) then transforms as

W → W∏4
i=2(iciTi + di)

. (16.4.24)

This is consistent with the general Kähler transformation (B.2.33).

The space of untwisted moduli is the subspace of the toroidal moduli
space that is left invariant by Z3. For the moduli Tī this is

SU(3, 3)

SU(3)× SU(3)× SU(3, 3,Z)
. (16.4.25)

There are also flat directions for the matter fields Ai, giving a larger coset
in all. The full moduli space for the untwisted fields is the product of this
space with the dilaton–axion moduli space

SU(1, 1)

U(1)× PSL(2,Z)
. (16.4.26)

For orbifolds having complex structure moduli (16.3.34), the T -duality
group would contain an additional PSL(2,Z) acting on the complex
structure moduli U. Various subsequent expressions are appropriately
generalized. In particular the moduli space is a product of three cosets:
one for the dilaton, one for the Kähler moduli, and one for the complex
structure moduli.

Twisted states

For the untwisted states we were able to learn a remarkable amount from
general arguments, without detailed calculations. To find the effective
action for the twisted states it is necessary to do some explicit calculations
with twisted state vertex operators. These methods are well developed but
are too detailed for the scope of this book, so we will simply cite a few of
the most interesting results.

The main one has to do with the E6 singlet states in each twisted sector,

λK+
−1/6α

̄
−1/3|0〉NS,NS , K = 1, 2, 3 , (16.4.27)

transforming as three triplets of the gauge SU(3). The result is that these
do not appear in the superpotential, and as a consequence the potential has
a flat direction with an interesting geometric interpretation. The potential
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for these modes comes only from the SU(3) D-term. Defining the field
MK̄ associated with these states, the D-term (B.2.20) is

Da ∝M∗
K̄t

a
KLML̄ = Tr(M†taM) , (16.4.28)

where ta are the fundamental SU(3) matrices. Since the ta run over a
complete set of traceless matrices, Da can vanish for all a only if

MM† = ρ2I ⇒ M = ρU , (16.4.29)

with I the identity, ρ a real constant, and U unitary. The matrix U can
be taken to the identity by an SU(3) gauge rotation. Thus there is a one-
parameter family of vacua, along which the SU(3) symmetry is completely
broken.
These vacua can be understood as compactification on manifolds in

which the orbifold singularity has been smoothed out (blown up); ρ is the
radius of curvature. Thus the orbifold is a limit of the smooth spaces that
we will discuss in the next chapter. Indeed, it is known that for some
values of the moduli these spaces have orbifold singularities. The orbifold
construction shows that the physics remain well-behaved even when the
geometry appears to be singular.
The existence of the flat direction ρ can be understood as a general

consequence of (2,2) world-sheet supersymmetry, the subject of chapter 19.
For compactifications with less world-sheet supersymmetry similar results
often hold but they are more model-dependent. We noted above that the
number of consistent solutions for orbifolds with Wilson lines is a large
number, of order 106. This is typical for free CFT constructions. However,
when one takes into account that these are embedded in a larger space
of smooth compactifications, many of them lie within the same moduli
space and the number of distinct moduli spaces is much smaller. As we
will discuss in chapter 19, with the inclusion of nonperturbative effects the
number of disconnected vacua becomes smaller still.
The moduli spaces for the smooth geometries are in general more

complicated and less explicitly known than the cosets that parameterize
the orbifolds. The CFT corresponding to a general background of the
twisted moduli is not free, because the twisted vertex operators are rather
complicated. Expanding in powers of the twisted fields, the first few
terms can be determined by considering string scattering amplitudes. For
example, denoting a general twisted field (modulus or generation) by Cα,
the leading correction to the Kähler potential takes the form

CαC
∗
α

4∏
i=2

(T + T ∗)n
i
α . (16.4.30)

The constants niα, known as modular weights, can be determined from
the scattering amplitudes, and for general orbifold theories are given in

i i
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the references. The invariance of the Kähler metric implies the T -duality
transformation

Cα → Cα

4∏
i=2

(iciTi + di)
niα . (16.4.31)

Threshold corrections

The effective action obtained above receives corrections from string loops.
The most important of these is the one-loop correction to the gauge
coupling, the threshold corrections from loops of heavy particles. The
Standard Model gauge couplings are known to sufficient accuracy that
predictions from unification are sensitive to this correction. Also, the
dependence of fab on fields other than S comes only from one loop, and
we will see later that this has an important connection with supersymmetry
breaking.

To one-loop accuracy the physical gauge coupling at a scale µ can be
written

1

g2a(µ)
=
Ska

g24
+

ba

16π2
ln
m2
SU

µ2
+

1

16π2
∆̃a , (16.4.32)

where SU stands for string unification. The subscript on ga denotes a spe-
cific factor in the gauge group, whereas that on g4 denotes the dimension.
The first term on the right is the tree-level coupling; in the present case
the current algebra level is ka = 1, but for future reference we give the
more general form, to be discussed in chapter 18. The second is due to
the running of the coupling below the string scale, with the coefficient ba
being related to the renormalization group beta function by

βa =
bag

3
a

16π2
. (16.4.33)

The final term ∆̃a is the threshold correction. It depends on the masses of
all the string states, and therefore on the moduli.

A great deal is known about ∆̃a. To calculate it directly one considers
the torus amplitude in a constant background field Faµν , which appears

in the world-sheet action in the form Faµνj
aXµ∂̄Xν . This can be simplified

by the same sort of manipulations as we used in section 12.6 to obtain
explicit loop amplitudes, though the details are longer and we just sketch
the results. It is useful to separate the threshold correction as follows:

∆̃a = ∆a + 16π2kaY . (16.4.34)

The second term has the same dependence ka on the gauge group as does
the tree-level term. It therefore does not affect the predictions for ratios
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of couplings or for the unification scale, though it is important for some
purposes as we will mention below.
The term ∆a is given by an integral over moduli space,

∆a =

∫
Γ

d2τ

τ2
[Ba(τ, τ̄)− ba] . (16.4.35)

Here the function Ba(τ, τ̄) is related to a trace over the string spectrum
weighted by Q2

a, with Qa the gauge charge. The limit of Ba(τ, τ̄) as τ→ i∞
is just ba, so this integral converges; the term ba was subtracted out by
the matching onto the low energy field theory behavior. Also,

mSU =
2 exp[(1− γ)/2]

33/4(2πα′)1/2
, (16.4.36)

where γ ≈ 0.577 is Euler’s constant. We will discuss the physical meaning
of this scale in chapter 18. The correction Y is also given by an integral
over moduli space; the calculation and final expression are somewhat
more complicated than for ∆a, due in part to the need to separate IR
divergences.
For orbifold compactifications, ∆a can be evaluated in closed form. Let

us point out one important general feature. The path integral on the torus
includes a sum over the twists h1 and h2 in the two directions. If these
are generic, so that they lie in SU(3) but not in any proper subgroup
(in other words, if they leave only N = 1 supersymmetry unbroken),
then they effectively force the fields in the path integral to lie near some
fixed point. The path integral is therefore insensitive to the shape of the
spacetime torus and so is independent of the untwisted moduli. If on the
other hand h1 and h2 lie in SU(2) ⊂ SU(3), leaving N = 2 unbroken,
then the amplitude can depend on the moduli. An example is the Z4

orbifold (16.3.33), in a sector in which h1 = 1 and h2 = r′2. In particular
h2 acts as

r′2 : Z2 → −Z2 , Z3 → −Z3 , Z4 → +Z4 . (16.4.37)

The field Z4 is completely untwisted and so can wander over the whole
spacetime torus. The threshold correction correspondingly depends on
both the Kähler and complex structure moduli, T4 and U4. Finally, if
h1 = h2 = 1 so that they leave N = 4 unbroken, then the threshold
correction vanishes due to the N = 4 supersymmetry.
The actual form of the threshold correction is

∆a = ca −
∑
i

bia|P i|
|P |

{
ln
[
(Ti + T ∗

i )|η(Ti)|4
]
+ ln

[
(Ui +U∗

i )|η(Ui)|4
]}

,

(16.4.38)
with ca independent of the moduli and η the Dedekind eta function. The
sum runs over all pairs (hi1, h

i
2) that leave N = 2 unbroken. Here P is
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the orbifold point group, P i is the discrete group generated by hi1 and
hi2, and |P i| and |P | are the orders of these groups. Also, bia is the beta
function coefficient for the N = 2 theory on the T 6/P i orbifold, and Ti
and Ui are the moduli for the fixed plane. For the Z3 orbifold there are
no N = 2 sectors and the result is a constant whose value is quite small,
of order 5%.

At tree level, g−2a is the real part of the holomorphic function f in the
gauge kinetic term. Noting that

ln
[
(Ti + T ∗

i )|η(Ti)|4
]
= ln(Ti + T ∗

i ) + 4Re[ln η(Ti)] , (16.4.39)

the same is not true for the one-loop coupling. The second term can arise
from a holomorphic one-loop contribution 4 ln η(Ti) to the function f in
the effective local action obtained by integrating out massive string states
(the Wilsonian action). The term ln(Ti + T ∗

i ) is due to explicit massless
states. This is a general feature in supersymmetric quantum theory: it is
the Wilsonian action, not the physical couplings, that has holomorphicity
properties and satisfies nonrenormalization theorems. On the other hand,
the physical couplings (16.4.38) are T -duality-invariant as one would
expect.

Note on the other hand that the Wilsonian f is not T -duality-invariant,
because it omits the term ln(Ti + T ∗

i ). This can be understood as follows.
The various massless fields (including their fermionic components) trans-
form nontrivially under T -duality due to their modular weights. This leads
to an anomaly in the T -duality transformation, which is canceled by the
explicit transformation of f. In fact, for orbifolds the moduli dependence
of the full threshold correction ∆̃a can be determined from holomorphicity
and the cancellation of the T -duality anomaly. It has the same functional
form as ∆a but with coefficients given by sums over the modular weights.

Exercises

16.1 Find the massless spectrum of the SO(32) heterotic string on the Z3

orbifold.

16.2 Find the massless spectrum of the E8 ×E8 heterotic string on the Z4

orbifold (16.3.33).

16.3 Find the massless spectrum of the six-dimensional E8 × E8 heterotic
string on the orbifold T 4/Z2,

Xm → −Xm , m = 6, 7, 8, 9 .

Determine the unbroken d = 6 supersymmetry and the supersymmetry
multiplets of the massless states.
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16.4 Repeat the previous exercise for the orbifold T 4/Z3,

Zi → exp(2πi/3)Zi , i = 3, 4 .

If you do both this and the previous exercise, compare the spectra. These
two orbifolds are special cases of the same K3 surface, to be discussed
further in chapter 19.

16.5–16.7 Repeat the previous three exercises for the type IIA string.

16.8–16.10 Repeat the same three exercises for the type IIB string.



17
Calabi–Yau compactification

The study of compactification on smooth manifolds requires new, geomet-
ric, tools. A full introduction to this subject and its application to string
theory would be a long book in itself. What we wish to do in this chapter
is to present just the most important results, with almost all calculations
and derivations omitted.

17.1 Conditions for N = 1 supersymmetry

We will assume four-dimensional Poincaré invariance. The metric is then
of the form

GMN =

[
f(y)ηµν 0

0 Gmn(y)

]
. (17.1.1)

We denote the noncompact coordinates by xµ with µ, ν = 0, . . . , 3 and
the compact coordinates by ym with m, n = 4, . . . , 9. The indices M,N run
over all coordinates, 0, . . . , 9. The other potentially nonvanishing fields are
Φ(y), H̃mnp(y), and Fmn(y).

It is convenient to focus from the start on backgrounds that leave some
supersymmetry unbroken. The condition for this is that the variations
of the Fermi fields are zero. This is discussed further in appendix B, in
connection with eq. (B.2.25). For the d = 10, N = 1 supergravity of the
heterotic string these variations are

δψµ = ∇µε , (17.1.2a)

δψm =

(
∂m +

1

4
Ω−mnpΓnp

)
ε , (17.1.2b)

δχ =

(
Γm∂mΦ− 1

12
ΓmnpH̃mnp

)
ε , (17.1.2c)

δλ = FmnΓ
mnε . (17.1.2d)

302
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These are the variations of the gravitino, dilatino, and gaugino respec-
tively. As in the corresponding nonlinear sigma model (12.3.30), the spin
connection constructed from the metric appears in combination with the
3-form field strength,

Ω±MNP = ωMNP ± 1

2
HMNP . (17.1.3)

Under the decomposition SO(9, 1) → SO(3, 1) × SO(6), the 16 decom-
poses as

16 → (2, 4) + (2, 4) . (17.1.4)

Thus a Majorana–Weyl 16 supersymmetry parameter can be written

ε(y)→ εαβ(y) + ε∗αβ(y) , (17.1.5)

where the indices on εαβ transform respectively as (2, 4). If there is any
unbroken supersymmetry, then by SO(3, 1) rotations we can generate
further supersymmetries and so reach the form

εαβ = uαζβ(y) (17.1.6)

for an arbitrary Weyl spinor u. Each internal spinor ζβ(y) for which
δ(fermions)= 0 thus gives one copy of the minimum d = 4 supersymmetry
algebra.
The conditions that the variations (17.1.2) vanish for some spinor ζβ(y)

can be solved to obtain conditions on the background fields. Again,
we quote the results without going through the calculations. Until the
last section of this chapter we will make the additional assumption that
the antisymmetric tensor field strength (often called the torsion in the
literature) vanishes,

H̃mnp = 0 . (17.1.7)

From the vanishing of δχ one can then deduce that if there is any unbroken
supersymmetry then the dilaton is constant,

∂mΦ = 0 . (17.1.8)

The vanishing of δψµ next implies that

Gµν = ηµν , (17.1.9)

forbidding a y-dependent scale factor. The vanishing of δψm then implies
that

∇mζ = 0 , (17.1.10)

so that ζ is covariantly constant on the internal space. This is a strong
condition. It implies, for example, that

[∇m,∇n]ζ = 1

4
RmnpqΓ

pqζ = 0 . (17.1.11)
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This means that the components Γpq that appear are not general SO(6)
rotations but must lie in a subgroup leaving one component of the spinor
invariant. The subgroup with this property is SU(3). In eq. (B.1.49) we
show that under SO(6) → SU(3), the spinor decomposes 4 → 3 + 1, so
that if RmnpqΓ

pq is in this SU(3) then there will be an invariant spinor.
The existence of a covariantly constant spinor ζ is thus the condition

that the manifold have SU(3) holonomy. In other words, under parallel
transport around a closed loop, a spinor (or any other covariant quantity)
comes back to itself not with an arbitrary rotation but with a rotation in
SU(3) ⊂ SO(6). This is the same as the condition forN = 1 supersymmetry
in orbifolds. To see this, transport a spinor from any point to its image
under the orbifold rotation: this is a closed loop on the orbifold. The
orbifold is locally flat, but to compare the spinor to its original value we
must rotate back. Thus the orbifold point group is the holonomy, and as
we found in chapter 16, a point group in SU(3) gives unbroken d = 4,
N = 1 supersymmetry. Similarly, SU(2) holonomy leaves a second spinor
invariant and so gives an unbroken d = 4, N = 2 supersymmetry.
The final supersymmetric variation δλa vanishes if FamnΓ

mn is also an
SU(3) rotation. Writing the indices on Fmn in terms of the complex indices
transforming under SU(3), this means that

Fij = Fı̄̄ = 0 , GīFī = 0 . (17.1.12)

In addition we must impose the Bianchi identities on the various field
strengths. In particular, for the torsion this is

dH̃3 =
α′
4

[
tr(R2 ∧ R2 )− Trv(F2 ∧ F2 )

]
. (17.1.13)

For vanishing H̃ , this condition is quite strong, and the only solution
seems to be to set R2 and F2 essentially equal. That is, consider SO(6) ⊂
SO(16) ⊂ E8, and require the gauge connection to be equal to the spin
connection ωµ of the Lorentz SO(6). This is referred to as embedding the
spin connection in the gauge connection, generalizing the same idea in the
orbifold. Recall that the corrections (17.1.13) were deduced in section 12.3
from anomalies on the world-sheet. When the spin connection is embedded
in the gauge connection, six of the current algebra λA couple in the same
way as the ψ̃m. The relevant part of the world-sheet theory is then parity-
invariant, accounting for the cancellation of anomalies.
With the spin connection embedded in the gauge connection, the con-

ditions (17.1.12) for the vanishing of the gaugino variation follow from
SU(3) holonomy. The Bianchi identity for the field strength also follows
from that for the curvature. It remains to consider the equations of mo-
tion. We might have begun with these, but it is easiest to save them for the
end because at this point they are automatically satisfied. With vanishing
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torsion and a constant dilaton the field equations reduce to

Rmn = 0 , ∇mFmn = 0 . (17.1.14)

These can be shown to follow respectively from SU(3) holonomy and the
conditions (17.1.12).
We should remember that the field equations and supersymmetry vari-

ations in this section are only the leading terms in an expansion in
derivatives, α′1/2∂m being the dimensionless parameter. The conditions we
have found are therefore correct when the length scale Rc of the compact-
ified manifold is large compared to the string scale. However, we will see
in section 17.5 that many of the conclusions have a much wider range of
validity.

17.2 Calabi–Yau manifolds

To summarize, we found in the last section that under the assumption
of vanishing torsion, the compactified dimensions must form a space of
SU(3) holonomy. In this section we present some of the relevant math-
ematics. Again, we give only definitions and results, without derivations.
All manifolds in this section are assumed to be compact.

Real manifolds

We need to introduce the ideas of cohomology and homology. The exterior
derivative d introduced in section B.4 is nilpotent, d2 = 0. As with the
BRST operator, this allows us to define a cohomology. A p-form ωp is
closed if dωp = 0 and exact if ωp = dαp−1 for some (p− 1)-form. A closed
p-form can always be written locally in the form dαp−1 , but not necessarily
globally. Thus we define the pth de Rham cohomology of a manifold K ,

Hp(K) =
closed p-forms on K

exact p-forms on K
. (17.2.1)

The dimension of Hp(K) is the Betti number bp. The Betti numbers depend
only on the topology of the space. In particular, the Euler number is

χ(K) =
d∑
p=0

(−1)pbp . (17.2.2)

The operator

∆d = ∗d ∗ d+ d ∗ d∗ = (d+ ∗d∗)2 (17.2.3)

is a second order differential on p-forms which reduces to the Laplacian
in flat space. The Poincaré ∗ is defined in section B.4. A p-form is said to
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be harmonic if ∆dω = 0. It can be shown that the harmonic p-forms are in
one-to-one correspondence with the group Hp(K): each equivalence class
contains exactly one harmonic form. Using the Poincaré dual one can turn
a harmonic p-form into a harmonic (d−p)-form. This is the Hodge ∗ map
between Hp(K) and Hd−p(K), and implies

bp = bd−p . (17.2.4)

For submanifolds of K one can define the boundary operator δ, which
is also nilpotent. Rather than on a submanifold N itself it is useful to
focus on the corresponding integral∫

N
(17.2.5)

since these form a vector space: we can consider arbitrary real linear
combinations, called chains.1 We can then define closed and exact with
respect to δ; a closed chain is a cycle. The simplicial homology for p-
dimensional submanifolds (p-chains) is

Hp(K) =
closed p-chains in K

exact p-chains in K
. (17.2.6)

That is, it consists of closed submanifolds that are not themselves bound-
aries.

There is a one-to-one correspondence between Hp(K) and Hd−p(K). For
any p-form ωp there is a (d− p)-cycle N(ω) with the property that∫

K
ωp ∧ αd−p =

∫
N(ω)

αd−p (17.2.7)

for all closed (d− p)-forms.

Complex manifolds

A complex manifold is an even-dimensional manifold, d = 2n, such that
we can form n complex coordinates zi and the transition functions

z′i(zj) (17.2.8)

are holomorphic between all pairs of patches. Specifically, this is a complex
n-fold. We have encountered this idea for n = 1 on the string world-sheet.
Two complex manifolds are equivalent if there is a one-to-one holomorphic
map between them. As we have seen in the case of Riemann surfaces, a
manifold of given topology can have more than one inequivalent complex

1 This will define real homology; by analogy one can define integer homology, complex homology,
and so on.
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structure. A Hermitean metric on a complex manifold is one for which

Gij = Gı̄̄ = 0 . (17.2.9)

On a complex manifold we can define (p, q)-forms as having p anti-
symmetric holomorphic indices and q antisymmetric antiholomorphic in-
dices,

ωi1···ip̄1···̄q . (17.2.10)

The relative order of the different types of index is not important and
can always be taken as shown. We can similarly separate the exterior
derivative, d = ∂ + ∂̄, where

∂ = dzi∂i , ∂̄ = dz̄ı̄∂̄ı . (17.2.11)

Then ∂ and ∂̄ take (p, q)-forms into (p + 1, q)-forms and (p, q + 1)-forms
respectively. Each is nilpotent,

∂2 = ∂̄2 = 0 . (17.2.12)

Thus we can define the Dolbeault cohomology

H
p,q

∂̄
(K) =

∂̄-closed (p, q)-forms in K

∂̄-exact (p, q)-forms in K
. (17.2.13)

The dimension of H
p,q

∂̄
(K) is the Hodge number hp,q .

Using the inner product∫
dnzdnz̄ (G)1/2Gı̄i

′ · · ·Gj̄′ · · · (ωi···̄···)∗ωi′···̄′··· , (17.2.14)

one defines the adjoints ∂† and ∂̄† and the Laplacians

∆∂ = ∂∂† + ∂†∂ , ∆∂̄ = ∂̄∂̄† + ∂̄†∂̄ . (17.2.15)

Then the ∆∂̄-harmonic (p, q)-forms are in one-to-one correspondence with
H
p,q

∂̄
(K).

Kähler manifolds

Kähler manifolds are complex manifolds with a Hermitean metric of a
special form. The additional restriction can be stated in several ways.
Define the Kähler form

J1,1 = iGīdz
idz̄̄ . (17.2.16)

One way to define a Kähler manifold is that the Kähler form is closed,

dJ1,1 = 0 . (17.2.17)

A second is that parallel transport takes holomorphic indices only into
holomorphic indices. In other words, the holonomy is in U(n) ⊂ SO(2n).
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A final equivalent statement is that the metric is locally of the form

Gī =
∂

∂zi
∂

∂z̄̄
K(z, z̄) . (17.2.18)

The Kähler potential K(z, z̄) need not be globally defined. The potential

K ′(z, z̄) = K(z, z̄) + f(z) + f(z)∗ (17.2.19)

gives the same metric, and it may be necessary to take different potentials
in different patches. We are now focusing on the spacetime geometry, but
we have seen this same idea in field space in eq. (B.2.32).

For Kähler metrics the various Laplacians become identical,

∆d = 2∆∂̄ = 2∆∂ . (17.2.20)

Then the cohomologies

H
p,q

∂̄
(K) = H

p,q
∂ (K) ≡ Hp,q(K) (17.2.21)

are the same. The Hodge and Betti numbers are therefore also related,

bk =
k∑
p=0

hp,k−p . (17.2.22)

Complex conjugation gives

hp,q = hq,p (17.2.23)

and the Hodge ∗ gives

hn−p,n−q = hp,q . (17.2.24)

Since the Kähler form is closed it is in H1,1(K). Its equivalence class is
known as the Kähler class and is always nontrivial. Taking a basis ωA for
H1,1(K), we can expand

J1,1 =
∑
A

vAω1,1A , (17.2.25)

and the real parameters vA label the Kähler class.

Manifolds of SU(3) holonomy

A manifold has SU(3) holonomy if and only if it is Ricci-flat and Kähler.
While there are many examples of Kähler manifolds, there are few explicit
examples of Ricci-flat Kähler metrics. There is, however, an important
existence theorem. For a Kähler manifold, only the mixed components Rī
of the Ricci tensor are nonzero. Further, the Ricci form

R1,1 = Rīdz
idz̄̄ (17.2.26)
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is closed, dR1,1 = 0. It therefore defines an equivalence class in H1,1(K).
With normalization R1,1/2π, this is known as the first Chern class c1.
Obviously this class is trivial for a Ricci-flat manifold. The hard theorem,
conjectured by Calabi and proved by Yau, is that for any Kähler manifold
with c1 = 0 there exists a unique Ricci-flat metric with a given complex
structure and Kähler class. A vanishing first Chern class, c1 = 0, means
thatR1,1 is exact. A Kähler manifold with c1 = 0 is known as a Calabi–Yau
manifold.
Another theorem states that a Kähler manifold has c1 = 0 if and only if

there is a nowhere vanishing holomorphic (3, 0)-form Ω3,0 . The (3, 0)-form
is covariantly constant in the Ricci-flat metric. It further can be shown
that

hp,0 = h3−p,0 . (17.2.27)

For any complex manifold h0,0 = 1, corresponding to the constant func-
tion. Finally, for a Calabi–Yau manifold of exactly SU(3) holonomy and
not a subgroup, it can be shown that

b1 = h1,0 = h0,1 = 0 . (17.2.28)

Using the various properties above, all the Hodge numbers of a Calabi–
Yau 3-fold are fixed by just two independent numbers, h1,1 and h2,1. The
full set of Hodge numbers is conventionally displayed as Hodge diamond,

h3,3

h3,2 h2,3

h3,1 h2,2 h1,3

h3,0 h2,1 h1,2 h0,3

h2,0 h1,1 h0,2

h1,0 h0,1

h0,0

=

1
0 0

0 h1,1 0
1 h2,1 h2,1 1

0 h1,1 0
0 0
1

. (17.2.29)

In particular, the Euler number (17.2.2) is

χ = 2(h1,1 − h2,1) . (17.2.30)

Examples

An even-dimensional torus is a Calabi–Yau manifold but an uninteresting
one: the holonomy is trivial. To break to N = 1 supersymmetry we need
nontrivial SU(3) holonomy. The Z3 orbifold of T 6 has this property but
is not a manifold, having orbifold singularities. A smooth Calabi–Yau
space can be produced by blowing up all the singularities, as follows. The
Eguchi–Hanson space EH3 has three complex coordinates wi with metric

Gī =

(
1 +

ρ6

r6

)1/3[
δī − ρ6wiw̄̄

r2(ρ6 + r6)

]
, (17.2.31)
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where r2 = wiw̄ı̄ and ρ is a constant that sets the scale of the geometry.
After the identification

wi ∼= exp(2πi/3)wi , (17.2.32)

this becomes an everywhere smooth space which is asymptotically R6/Z3.
This is the same as the geometry around the T 6/Z3 orbifold fixed points.
Each orbifold fixed point can be replaced by a small EH3 to give a smooth
Calabi–Yau space. The (1, 1)-forms are the nine dzidz̄̄ and the 27 blow-up
modes ∂Gī/∂ρ from varying the sizes of the EH3s. There is only one
complex structure, so

h1,1 = 36 , h2,1 = 0 , χ = 72 . (17.2.33)

A second construction starts with complex projective space CPn, formed
by taking n+ 1 complex coordinates and identifying

(z1, z2, . . . , zn+1) ∼= (λz1, λz2, . . . , λzn+1) (17.2.34)

for any complex λ. The identification is important because it makes the
space compact. The space CPn is Kähler but not Calabi–Yau; many
Calabi–Yau manifolds can be obtained from it as submanifolds. In par-
ticular, let G be a homogeneous polynomial in the zi,

G(λz1, . . . , λzn+1) = λkG(z1, . . . , zn+1) (17.2.35)

for some k. The submanifold of CPn defined by

G(z1, . . . , zn+1) = 0 (17.2.36)

is a Kähler manifold of complex dimension n − 1. It can be shown
that this submanifold has vanishing c1 for k = n + 1, so that a quintic
polynomial in CP 4, which is (n, k) = (4, 5), gives a good manifold for
string compactification. This manifold can be shown to have

h1,1 = 1 , h2,1 = 101 , χ = −200 . (17.2.37)

The unique Kähler modulus is the overall scale of the manifold. The
complex structure moduli correspond to the parameters in the polynomial
G, which after taking into account linear coordinate redefinitions number
9!/(5!·4!)− 25 = 101.

Obvious generalizations include starting with a product of CPn spaces,
requiring several polynomials to vanish, and using weighted projective
spaces where coordinates scale by different powers of λ. One can also
divide by a discrete symmetry. For example, a particular case of the
quintic polynomial in CP 4,

z51 + z52 + z53 + z54 + z55 = 0 , (17.2.38)

has a Z5 × Z5 symmetry which is freely acting, meaning that it has no
fixed points. Since the Euler number χ can be written as an integral over
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the curvature, identifying by this Z5 × Z5 reduces χ by a factor of 25, to
χ = −8. Identifying by a symmetry with fixed points produces a space
with orbifold singularities. These can be blown up, but the Euler number
is then not simply obtained by dividing by the order of the group, because
of the curvature at the blow-ups.
Another example is the Tian–Yau space. This is formed from two copies

of CP 3 with coordinates zi and wi by imposing three polynomial equations:
one cubic in z, one cubic in w, and one linear in z and linear in w. This
has χ = −18, and there is a freely-acting Z3 symmetry which can reduce
this to χ = −6.

World-sheet supersymmetry

With the spin connection embedded in the gauge connection, the inter-
acting part of the world-sheet theory is invariant under parity, which
interchanges ψi with λ(i−1)+ for i = 2, 3, 4. Since the heterotic theory has
a (0, 1) superconformal symmetry, the parity symmetry implies that it is
enlarged to (1, 1).
For any metric Gmn(y), the superfield formalism of section 12.3 allows

us to write a nonlinear sigma model having (1,1) supersymmetry. If in
addition the metric is Kähler, then there is actually (2,2) supersymmetry.
One way to see this is to observe that this is the condition for the mixed
components ω

̄
ai and ω

j
āı of the spin connection to vanish, and therefore

for the world-sheet action (12.3.30) to be invariant under a U(1) rotation
of the complex fermions,

ψ̃i → exp(iθ)ψ̃i . (17.2.39)

The right-moving supercurrent then separates into two terms

iGı̄j ∂̄X
ı̄ψ̃j + iGī ∂̄X

iψ̃̄ , (17.2.40)

which have opposite charges under the U(1) symmetry and so must be
separately conserved. The left-moving supercurrent also separates. An-
other way to see the enlarged supersymmetry is by dimensional reduction
of d = 4, N = 1 supersymmetry. As discussed in section B.2, this super-
symmetry requires that the field space be Kähler; dimensional reduction
takes the four generators of d = 4, N = 1 into d = 2 (2,2).
When the metric satisfies the stronger condition of SU(n) holonomy, the

sigma model is conformally invariant, the supersymmetries are extended
to superconformal symmetries, and the U(1) global symmetry is extended
to left- and right-moving U(1) current algebras.

For Calabi–Yau compactification, the interacting part of the world-
sheet theory is a (c, c̃) = (9, 9) CFT. Since the spin connection is embedded
in the gauge connection, the six interacting λA couple in the same way
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as supersymmetric fermions ψm. Thus, as with the orbifold example, the
world-sheet theory has (2,2) superconformal symmetry. In chapters 18
and 19 we will study this world-sheet symmetry systematically. We will see
that a minimum of (0,2) supersymmetry on the world-sheet is necessary
in order to have spacetime supersymmetry. We will also see that the extra
left-moving supersymmetry of Calabi–Yau compactification is responsible
for a great deal of special structure.

17.3 Massless spectrum

We now look at the spectrum of fluctuations around the background. We
will use lower case a, g, b, and φ to distinguish the fluctuations from the
background fields. The various wave operators separate into noncompact
and internal pieces, for example

∇M∇M = ∂µ∂
µ + ∇m∇m , (17.3.1a)

ΓM∇M = Γµ∂
µ + Γm∇m . (17.3.1b)

The solutions similarly separate into a sum over functions of xµ times
a complete set of functions of ym. Massless fields in four dimensions
arise from those modes of the ten-dimensional massless fields that are
annihilated by the internal part of the wave operator.

We start with the ten-dimensional gauge field. The ten-dimensional
index separates M → µ, i, ı̄. Similarly the adjoint decomposes under

E8 × E8 → SU(3)× E6 × E8 (17.3.2)

into

a : (1, 78, 1) + (1, 1, 248) , (17.3.3a)

ix : (3, 27, 1) , ı̄x̄ : (3, 27, 1) , ī : (8, 1, 1) . (17.3.3b)

That is, a denotes the adjoint of E6 × E8, x the 27 of E6 and i, j the 3
of SU(3). We use the same index for the 3 of the gauge SU(3) and the
spacetime SU(3) because their connections are the same.

We denote the various components of the gauge fluctuation as aM,X

with X any of the gauge components (17.3.3). The massless modes of the
form aµ,X are the unbroken gauge fields in four dimensions. These arise
from gauge symmetries that commute with the background fields. Since
the latter are in SU(3), the four-dimensional gauge symmetry is E6 × E8,
meaning X = a. In terms of the wave operator, the internal part acting on
aµ,X is the scalar Laplacian ∇m∇m with gauge-covariant derivative. It has
zero modes only for fields that are neutral under the background gauge
fields. Comparing with the Z3 orbifold, the low energy symmetry SU(3)
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is absent. This is consistent with the analysis (16.4.29) of the blowing-up
modes, which were seen to break the SU(3) symmetry.

The field ai,a can be regarded as a (1, 0)-form, with only the index i
coupling to the background connection, and the relevant wave operator
is in fact ∆d. The number of zero modes is then h1,0, which vanishes for
SU(3) holonomy.

The field ai,jx is not a (2, 0)-form because the tangent space and gauge
indices are not antisymmetrized. However, by using the metric and the
antisymmetric three-form we can produce

aīlm̄x = ai,jxG
jk̄Ωk̄l̄m̄ , (17.3.4)

which is a (1, 2)-form on the indices īlm̄. The relevant wave operator is
again ∆d so the number of zero modes is h2,1. These fields are scalars in
the 27 of E6.

The field ai,̄x̄ is a (1, 1)-form and the relevant wave operator is again
∆d. The number of zero modes is h1,1. These fields are scalars in the 27 of
E6.

The field ai,jk̄ cannot be written as a (p, q)-form and the number of
massless modes is not given by a Hodge number. This field can be
regarded as a 1-form (the index i) transforming as a generator of the
Lorentz group (the indices jk̄); the corresponding cohomology is denoted
H1(EndT ). Because these are neutral under E6 they are less directly
relevant to the low energy physics than the charged fields. We will discuss
some of their physics in section 17.6.

The zero modes of āı,X are the conjugates of those of ai,X .

The massless modes of the gaugino must be the same as those of aM,X

by supersymmetry. This is related directly to the SU(3) holonomy. Under
SO(9, 1)→ SO(3, 1)× SU(3),

16 → (2, 1) + (2, 3) + (2, 1) + (2, 3) . (17.3.5)

The (2, 1) is neutral under the tangent space group and so couples in the
same way as aµ, providing the four-dimensional gauginos. The (2, 3) cou-
ples in the same way as ai and so provides the fermionic partners of those
scalars. Thus there are h2,1 27s and h1,1 27s in the 2 of SO(3, 1). The spec-
trum is chiral and the net number of generations minus antigenerations
is

|h2,1 − h1,1| = |χ|
2
. (17.3.6)

This is 36 for the blown-up orbifold, just as for the singular orbifold, and
100 for the quintic in CP 4. However, dividing by Z5 × Z5 reduces the
latter number to a more reasonable 4, while the Tian–Yau space has a net
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of 3 generations. The relation (17.3.6) can be understood from an index
theorem for the Dirac equation.

Dividing by a discrete group is also useful for breaking the E6 symmetry.
We saw for the orbifold that this could be done by Wilson lines, gauge
backgrounds that are locally trivial but give a net rotation around closed
curves. The Calabi–Yau spaces produced by polynomial equations in
projective spaces are simply connected, but dividing by a freely-acting
group produces nontrivial closed curves running from a point to its
image. Adding a Wilson line means that the string theory is twisted by
the product of the spacetime symmetry and a gauge rotation W . The
nontrivial curves produced in dividing by Zn have the property that if
traversed n times they become closed paths on the original (covering)
space, which are all topologically trivial. Thus the Wilson line must also
satisfy Wn = 1.

For a freely-acting group, adding Wilson lines does not change the net
number of generations. However, the different quark and lepton multiplets
of a given generation in general come from different 27s of the untwisted
theory. Thus, while the inheritance principle requires the Standard Model
gauge couplings to satisfy E6 relations, the Yukawa couplings of the quarks
and leptons in general do not. This is good because the E6 relations for
the gauge couplings (which are the same as the SU(5) relations) work
rather well, while those for the Yukawa couplings are more mixed, with
only the heaviest generation ratio mb/mτ working well. This may also help
to account for the stability of the proton, as the Higgs couplings that give
mass to the quarks and leptons are no longer related to couplings of color
triplet scalars that might mediate baryon decay.

Now we consider the bosonic supergravity fields, gMN , bMN , and φ. The
components with all indices noncompact, gµν , bµν , and φ, each have a
single zero mode (the constant function) giving the corresponding field in
four dimensions.

The components gµi and bµi are (1, 0)-forms on the internal space and
so have no zero modes because h1,0 = 0. In particular, massless modes
of gµi would be Kaluza–Klein gauge bosons, which are in one-to-one
correspondence with the continuous symmetries of the internal space. It
can be shown that a Calabi–Yau manifold has no continuous symmetries.

The components gij correspond to changes in the complex structure,
since a coordinate change would be needed to bring the metric back to
Hermitean form. This field is symmetric and so not a (p, q)-form, but by
the same trick as for aīlm̄x we can form

gīlm̄ = gijG
jk̄Ωk̄l̄m̄ . (17.3.7)

The wave operator is ∆d and so the number of complex structure moduli
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is h2,1. These are complex fields, with ḡı̄ being the conjugate. The field bij
is a (2, 0)-form and has h2,0 = 0 zero modes.

The fluctuation gī is a (1, 1)-form, and the wave operator is ∆d. Thus
it gives rise to h1,1 real moduli. The field bī also is a (1, 1)-form and gives
h1,1 real moduli. These combine to form h1,1 complex fields.

The full massless spectrum is

• d = 4, N = 1 supergravity: Gµν and the gravitino.

• The dilaton–axion chiral superfield S .

• Gauge bosons and gauginos in the adjoint of E6 × E8.

• h2,1 chiral superfields in the 27 of E6.

• h1,1 chiral superfields in the 27 of E6.

• h2,1 chiral superfields for the complex structure moduli.

• h1,1 chiral superfields for the Kähler moduli.

• Some number of E6 singlets from H1(EndT ).

17.4 Low energy field theory

We would now like to deduce the effective four-dimensional action for
the massless fields. We emphasize again that the actual calculations are
omitted, but we will outline the method and the results. The general d = 4,
N = 1 supersymmetric action depends on two holomorphic functions, the
gauge kinetic term and the superpotential, and one general function, the
Kähler potential. We will show in the next chapter that the gauge kinetic
term is the same in all heterotic string compactifications, and so we need
determine only the other two functions. In this section and the next we
will ignore the E6 singlet fields from H1(EndT ), setting their values to
zero.

We consider the low energy effective field theory at string tree level. For
now we assume the compactification radius to be large compared to the
string length, so that we can restrict attention to the massless fields of
the ten-dimensional theory and also ignore higher dimension terms in the
effective action. This is the field-theory approximation. In the next section
we consider corrections to this approximation.

Expand each ten-dimensional field in a complete set of eigenfunctions
fm(y) of the appropriate wave operator on the internal space, schematically

ϕ(x, y) =
∑
m

φm(x)fm(y) . (17.4.1)

Insert this into the ten-dimensional action and integrate over the internal
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Fig. 17.1. Quartic interaction among light fields induced by integrating out a
heavy field.

coordinates to obtain the four-dimensional Lagrangian density,

L4(φ) =

∫
d6yL10(ϕ) . (17.4.2)

This still depends on all the functions φm(x), the infinite number of massive
fields as well as the finite number of massless ones. Split ϕ(x, y) into ‘light’
and ‘heavy’ parts,

ϕ = ϕl + ϕh, (17.4.3)

according to whether fm has a zero or nonzero eigenvalue under the
internal wave operator. We want to integrate ϕh out so as to obtain an
effective action for the finite number of four-dimensional fields in ϕl. The
simplest approach would be to set ϕh = 0 in L4, but this is not quite
right. Since we are at string tree level we can treat the problem classically:
what we must do is extremize the action with respect to ϕh with ϕl fixed.
The result is the effective action for ϕl. As a schematic example, consider
the following terms

mϕ2
h + gϕhϕ

2
l . (17.4.4)

Setting ϕh to its extremum −gϕ2
l /2m leaves the effective interaction

− g2

4m
ϕ4
l (17.4.5)

for the light fields. Figure 17.1 shows the corresponding Feynman graph.
This is known as a Kaluza–Klein correction to the low energy action. It
is easy to see that these always involve at least four light fields. With an
interaction ϕhϕl we could induce a quadratic or cubic term, but this is
absent by definition. It is an off-diagonal mass term mixing the light and
heavy fields, but the latter are defined to be eigenstates of zero mass. The
terms that we will be interested in contain two or three light fields and so
we can ignore the Kaluza–Klein corrections.
Let us first consider the fields associated with (1, 1)-forms, beginning

with the superpotential for the 27s of E6. We will focus on the renormal-
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izable terms, which are at most cubic in the fields. The quadratic terms
vanish because the 27s are massless, and the linear terms vanish because
their presence would imply that the background is not supersymmetric
by eq. (B.2.25); actually both terms are forbidden by E6 as well. Thus
we are interested in terms that are precisely cubic. These are related to
four-dimensional Yukawa couplings. The relevant expansions for ϕl are

ai,̄x̄(x, y) =
∑
A

φAx̄(x)ωAī(y) , (17.4.6a)

λi,̄x̄(x, y) =
∑
A

λAx̄(x)ωAī(y) , (17.4.6b)

where A runs over a complete set of nontrivial (1,1)-forms; henceforth
summation convention is used for this index. A four-dimensional Weyl
spinor index on λ is suppressed. Inserting these expansions into the action,
the ten-dimensional term∫

d6y Trv( λΓ
m[Am, λ ] ) (17.4.7)

becomes

dx̄ȳz̄ λ̄Ax̄λ
B
ȳφ

C
z̄

∫
K
ω1,1A ∧ ω1,1B ∧ ω1,1C . (17.4.8)

Here dx̄ȳz̄ is the E6 invariant for 27·27·27. The superpotential is then

W (φ) = dx̄ȳz̄φAx̄φ
B
ȳφ

C
z̄

∫
K
ω1,1A ∧ ω1,1B ∧ ω1,1C . (17.4.9)

The wedge product of the internal wavefunctions is a (3,3)-form and so
can be integrated over the internal space without using the metric.
This part of the superpotential is independent of all moduli, and so

is topological. To make this explicit, we use the correspondence (17.2.7)

A of nontrivial 4-cycles, and
let ωA be the corresponding basis of 2-forms. Three 4-cycles will generi-
cally intersect in isolated points. We can therefore define the intersection
number, the total number of intersections weighted by orientation; this
is a topological invariant.2 A standard result from topology relates the
intersection number of NA, NB , and NC to the integral of the wedge
product:

#(NA,NB,NC) =

∫
K
ω1,1A ∧ ω1,1B ∧ ω1,1C . (17.4.10)

Thus the superpotential is determined by these integers. Typically many
of the intersection numbers vanish for topological reasons unrelated to

2 If the cycles do not intersect only in isolated points, as is obviously the case if for example two
are the same, one can make them do so by deforming them within the same homology class.
This then defines the intersection number.

between 2-forms and 4-cycles. Take a basis N
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symmetry; this may be useful in understanding the stability of the proton
and the rich texture of the Yukawa couplings in the Standard Model. For
later reference we mention that there is a dual basis NA of 2-cycles such
that

#(NA,NB) =

∫
NA
ω1,1B = δAB . (17.4.11)

For the (1,1) Kähler moduli the superpotential is zero. The static Calabi–
Yau space solves the field equations for any value of the moduli, so the
potential and therefore the superpotential for these vanishes.
Now we consider the Kähler potential, starting with the (1,1) moduli.

These have the expansion

(gī + bī)(x, y) =
∑
A

TA(x)ωAī(y) . (17.4.12)

The four-dimensional kinetic term is obtained from the ten-dimensional
kinetic term by inserting this expansion. The result is

GAB̄ =
1

V

∫
d6y (detG)1/2Gik̄Gl̄ωAīω

∗
Bkl̄

. (17.4.13)

The integral can be related to the one appearing in the superpotential by
using the Kähler form J1,1 defined in (17.2.16). Parameterize the Kähler
moduli space by h1,1 complex numbers TA,

J1,1 + iB1,1 = TAω1,1A , TA = vA + ibA . (17.4.14)

Then after some calculation,

GAB̄ = − ∂2

∂TA∂TB∗ lnW (v) , (17.4.15)

where 2vA = TA + TA∗ and

W (v) = #(NA,NB,NC)v
AvBvC =

∫
K
J1,1 ∧ J1,1 ∧ J1,1 . (17.4.16)

This is just the superpotential, evaluated at φ = v; it is also equal to the
volume of the Calabi–Yau space. The N = 1 spacetime supersymmetry
requires that this metric be Kähler.3 The expression (17.4.15) gives the
metric on Kähler moduli space directly in Kähler form, with

K1(T ,T
∗) = − lnW (v) . (17.4.17)

Thus the Kähler potential for the moduli is determined in terms of the
superpotential W . This is a very special property, which we will see later
to be a consequence of the (2,2) world-sheet supersymmetry. The Kähler

3 Kähler, Kähler, everywhere. Note that in some places it is the geometry of the compactification
that is referred to, while here it is the geometry of the low energy scalar field space.
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potential depends on the Kähler moduli and so is not a topological
invariant, but it is quasitopological in the sense that its dependence on
these moduli is determined by topological data. Note that it is independent
of the complex structure moduli, another consequence of the (2,2) world-
sheet supersymmetry.
The metric for the 27 kinetic terms is closely related,

G′
AB̄

= exp[κ24(K2 −K1)/3]GAB̄ (17.4.18)

with K2 to be defined below. The Kähler potential for these fields is then
G′
AB̄
φAφB∗.

Similar results hold for the (2, 1)-forms, though the precise statements
and the derivations (which are again omitted) are somewhat more intricate.
Expand

ai,jx(x, y) =
1

2

∑
a

χax(x)ωaik̄l̄(y)Ω
k̄l̄
j (y) , (17.4.19a)

λi,jx(x, y) =
1

2

∑
a

λax(x)ωaik̄l̄(y)Ω
k̄l̄
j (y) , (17.4.19b)

where a runs over the (1,2)-forms. In this case it is the kinetic term for the
moduli that has a simple expression in terms of forms,

Gab̄ = −

∫
K
ω1,2a ∧ ω∗

1,2∫
K
Ω3,0 ∧ Ω∗

3,0

= − ∂

∂Xa

∂

∂X
K2(X,X

∗) , (17.4.20)

with

K2(X,X
∗) = ln

(
i

∫
K
Ω3,0 ∧ Ω∗

3,0

)
. (17.4.21)

Here Xa are coordinates for the moduli space of complex structures,
a = 1, . . . , h2,1, and Xā = Xa∗.
To relate the superpotential to the Kähler potential it is useful to take

special coordinates on moduli space. The Betti number b3 is 2h
2,1 + 2. One

can always find a basis of 3-cycles

{AI, BJ} , I, J = 0, . . . h2,1 (17.4.22)

such that the intersection numbers are

#(AI, BJ) = δIJ , #(AI, AJ) = #(BI, BJ) = 0 . (17.4.23)

The corresponding (1,2)-forms are α1,2 I and β
J
1,2 . Thus we can define

ZI =

∫
AI

Ω3,0 . (17.4.24)

b

b̄
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These h2,1 + 1 complex numbers are one too many to serve as coordinates
on the complex structure moduli space. However, there is no natural
normalization for Ω, so we must identify

(Z0, Z1, . . . , Zn) ∼= (λZ0, λZ1, . . . , λZn) (17.4.25)

with n = h2,1, and this projective space has the correct number of coordi-
nates. The integrals

GI (Z) =

∫
BI

Ω3,0 (17.4.26)

then cannot be independent variables; for given topology the GI are
known functions of the ZJ . These can be determined in terms of a single
function G(Z),

GI = ∂G
∂ZI

, G(λZ) = λ2G(Z) . (17.4.27)

The nonprojective coordinates are then Xa = Za/Z0 for a = 1, . . . , h2,1.
The Kähler potential (17.4.21) for the complex structure moduli can be

expressed in terms of G,
K2(Z,Z

∗) = ln Im(ZI∗∂IG(Z)) . (17.4.28)

So also can the superpotential,

W (Z, χ) =
χaχbχc

3!

∂3G(Z)

∂Za∂Zb∂Zc
. (17.4.29)

The matter metric is again slightly different from that for the moduli,

G′
ab̄

= exp[κ24(K1 −K2)/3]Gab̄ . (17.4.30)

The intersection numbers (17.4.23) are invariant under a symplectic
change of basis, [

A′I
B′J

]
= S

[
AI

BJ

]
(17.4.31)

for S ∈ Sp(h2,1 + 1,Z). The new coordinates[
Z ′I
G′J

]
= S

[
ZI

GJ
]

(17.4.32)

are then another set of special coordinates for the same moduli space.
To summarize, the low energy effective action is determined in terms of

two holomorphic functions, W (T ) and G(Z). Each of these is determined
in turn by the topology of the Calabi–Yau manifold and can be calculated
by well-developed methods from analytic geometry. Notice that the actual
Ricci-flat metric is never used — a good thing, as the explicit form is not
known in any nontrivial example.
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17.5 Higher corrections

Thus far we have considered only the leading term in an expansion in
α′/R2

c . We now consider the corrections, remaining in this chapter at the
string tree level. The ten-dimensional action derived from string theory
has an infinite series of higher derivative corrections, each derivative ac-
companied by α′1/2. These terms can be deduced from the momentum
expansion of the tree-level scattering amplitudes. Alternatively, they can
be obtained from the higher loop corrections to the world-sheet beta func-
tions, where again the expansion parameter is α′/R2

c . The supersymmetry
transformations are given by a similar series.

The most immediate questions would seem to be whether the Calabi–
Yau manifolds solve the full field equations, and whether they remain
supersymmetric. Actually they do not. They continue to solve the field
equations when the terms quadratic and cubic in the curvatures and field
strengths are included in the action, but with the inclusion of the quartic
terms (corresponding to four loops in the world-sheet sigma model) they
in general do not. However, this is not really the right question. Rather,
as in any perturbation theory, we need to know whether the solution
can be corrected order-by-order so as to solve the field equations at
each order. It is not trivial that this is possible — as in other forms of
perturbation theory there is a danger of vanishing denominators — but
it has been shown to be possible from an analysis of the detailed form of
the corrections to the beta functions.

Remarkably, this same result obtained by a rather technical world-sheet
argument can be obtained much more easily and usefully from an analysis
of the spacetime effective action — a common theme in supersymmetric
theories. First note that regardless of whether the Calabi–Yau space can
be corrected to give an exact solution, we can still study the physics for
nearby configurations by the method of the previous section. Expand the
fields as background plus fluctuation, separate the fluctuations into light
and heavy, and integrate out the heavy fields to obtain an effective action
for the light fields. Corrections in the α′/R2

c expansion give additional
terms in the low energy action. Now, an important point is that any mass
scale appearing in these terms will be the compactification energy R−1c

times a power of the small parameter α′/R2
c . Thus there is still a clean

separation between the light and heavy fields, and it makes sense to discuss
the effective action for the former.

The final key point is that this low energy effective action must be
supersymmetric. Because the full theory is supersymmetric, any breaking
must be spontaneous rather than explicit. To see this another way, note
that as α′/R2

c → 0 with Rc fixed, supersymmetry is restored and so the
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gravitino becomes massless; near this limit it remains one of the light
fields. However, the only consistent theory of light spin-32 particles is
spontaneously broken supergravity.
We will see in the next chapter that the gauge kinetic term receives no

corrections at string tree level to any order of α′/R2
c . All corrections to

the low energy effective action must then appear in the Kähler potential
or the superpotential. We can now state the criterion for the corrections
to spoil the solution: they must produce a correction to superpotential
that depends only on the moduli, δW (T ,Z). In this case there will be a
potential for the moduli, which at general points will not be stationary so
that most or all of the previous static supersymmetric solutions are gone.
Now let us argue that this is impossible. Consider how a string amplitude

depends on the moduli bA for the Bī background, eq. (17.4.14). This
background enters into the string amplitude as

1

2πα′
∫
M
B1,1 =

nAb
A

2πα′ . (17.5.1)

Since the background B1,1 form is closed, the integral depends only on
the topology of the embedding of the world-sheet M in spacetime. The
embedding is equivalent to a sum nAN

A of generators of H2(K), and
so the integral follows as in eq. (17.4.11). Now, world-sheet perturbation
theory is an expansion around the configuration Xµ(σ) = constant, which
is topologically trivial. To all orders of perturbation theory, nA = 0 and
the amplitudes are independent of bA. There are thus h1,1 symmetries

TA → TA + iεA . (17.5.2)

Since the superpotential must be holomorphic in TA, this implies that it
is actually independent of TA.
To obtain a nonrenormalization theorem, let us write

TA = cAT (17.5.3)

with the cA fixed complex numbers, and focus on the dependence on T .
Varying T at fixed cA rescales Gī and so scales the size of K while holding
its shape fixed. Thus the world-sheet perturbation expansion parameter
is T−1. Since the superpotential is holomorphic in T , it can receive no
corrections in world-sheet perturbation theory.
Thus the terms that might destabilize the vacuum and break super-

symmetry cannot be generated, and so the Calabi–Yau solution can be
perturbatively corrected to all orders to give a static supersymmetric back-
ground. A potential could also be generated by a Fayet–Iliopoulos term
in the more general case that the gauge group includes a U(1) factor.
A separate argument excludes this; we postpone the discussion to sec-
tion 18.7. It also follows that the superpotential for the matter fields,
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though calculated above by means specific to the α′/R2
c → 0 limit, is exact

to all orders in α′/R2
c .

Ordinarily the Kähler potential does not have similar nonrenormal-
ization properties because it is not holomorphic, and so could have an
arbitrary dependence on T +T ∗. However, the presence of (2,2) supercon-
formal symmetry on the world-sheet puts strong additional constraints on
the theory. The action obtained in the field-theory approximation of the
previous section had two notable properties. First, there was no superpo-
tential for the moduli. Second, the full low energy action was determined
by two holomorphic functions, one depending only on the Kähler mod-
uli and the other only on the complex structure moduli. We will see in
chapter 19 that these properties actually follow from (2,2) world-sheet
supersymmetry and so are exact properties of the string tree-level action
in Calabi–Yau compactification. The nonrenormalization of the superpo-
tential then implies the same for the Kähler potential, and the full effective
action found in the field-theory approximation is exact to all orders in
α′/R2

c , except for one term to be discussed in chapter 19.

For future reference, note that the Kähler potential (17.4.16) for the
overall scale T is

− 3 ln(T + T ∗) , (17.5.4)

up to instanton corrections that are exponentially small in T .

Instanton corrections

The discussion above does not exclude the possibility of corrections that
are nonperturbative on the string world-sheet. Indeed, these do break
the shift symmetries (17.5.2). Consider a world-sheet instanton, meaning a
topologically nontrivial embedding of the world-sheet in spacetime: the
string world-sheet wraps around some noncontractible surface in space-
time. The nA defined in eq. (17.5.1) are then nonzero and the amplitude
depends on bA, breaking the TA → TA + iεA symmetry.

To see whether these can affect the superpotential, compare the Polya-
kov action

1

2πα′
∫
d2z Gī(∂zZ

i∂z̄Z
̄ + ∂zZ

ı̄∂z̄Z
j) (17.5.5)

to

1

2πα′
∫
M
J1,1 =

1

2πα′
∫
d2z Gī(∂zZ

i∂z̄Z
̄ − ∂zZ

ı̄∂z̄Z
j)

=
nAv

A

2πα′ . (17.5.6)



324 17 Calabi–Yau compactification

The two terms in the action (17.5.5) are nonnegative, so the action is
bounded below by |nAvA|/2πα′. When this bound is attained, then either
∂z̄Z

i or ∂z̄Z
ı̄ vanishes, and the embedding of the world-sheet in spacetime

is a holomorphic instanton. In this case, the Polyakov action and the
coupling to B combine to give the path integral factor

exp(−nATA/2πα′) (17.5.7)

or its conjugate. This is holomorphic in TA and so can appear in the super-
potential: holomorphic instantons can, and do, correct the superpotential.
In particular they correct the cubic terms in 273. By (2,2) supersymmetry
they also then correct the metric for the (1,1)-forms. However, study of the
detailed form of the instanton amplitudes, in particular the fermion zero
modes, shows that they cannot generate a superpotential for the moduli
fields alone and so do not destabilize the solution. Again, this will be
understood later as a consequence of (2,2) symmetry: no superpotential
for the moduli can be generated.

Instantons cannot correct the metric for the (1,2)-forms. Instanton cor-
rections depend as in eq. (17.5.7) on the (1,1) modulus T , and the metric
for the (1,2)-forms cannot depend on (1,1) moduli (another consequence
of (2,2) supersymmetry). They cannot then correct the 273 superpotential
either. The low energy action for the (1,2)-forms, though obtained in the
field theory limit, is exact at string tree level. The low energy action for
the (1,1)-forms receives instanton corrections.

17.6 Generalizations

Let us now consider the E6 singlets from H1(EndT ). In particular, are
there flat directions for these fields? Also, are there flat directions for the
charged fields in the 27s and 27s? In each case the massless fields originate
from the compact components of the ten-dimensional gauge field, so flat
directions would correspond to varying the gauge field away from the
‘spin connection = gauge connection’ form assumed so far. The Bianchi
identity (17.1.13) then implies that generically the torsion H̃ must be
nonvanishing, so these flat directions take us outside the vanishing-torsion
ansatz with which we began. Also, with the spin connection unrelated to
the gauge connection there are in general no longer any left-moving
supersymmetries on the world-sheet, and the world-sheet supersymmetry
is reduced to (0, 2). We will thus refer to the fields parameterizing these
potential flat directions as (0,2) moduli.

The analysis of the general solution is somewhat more intricate than
for vanishing torsion, but again there are existence theorems to the effect
that under appropriate topological conditions solutions exist in the field
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theory limit. The nonrenormalization theorem above still applies, so that
these remain solutions to all orders of world-sheet perturbation theory.
Nonperturbatively, instantons in (0, 2) backgrounds have fewer fermion
zero modes and there is no general argument forbidding a superpotential
for the (0,2) moduli. Initially it was believed that a superpotential would
generically appear and destabilize most (0,2) vacua. However, it is now
known that many of the (0,2) directions are exactly flat, so that the typical
(2,2) moduli space is embedded in a larger moduli space of (0,2) theories.
There are likely also moduli spaces of (0,2) theories that are not connected
to any (2,2) theories.
The understanding of (0,2) theories is much less complete than for (2,2)

theories, and the analysis of them is more intricate. We will therefore not
discuss them in any detail, though some of the methods to be developed
in chapter 19 for (2,2) theories are also useful in the (0,2) case.
We would like to mention briefly some phenomenological features of

the (0,2) vacua. We have emphasized that the (2,2) theories look much like
a grand unified Standard Model, with an E6 gauge group and matter in
the 27. Under the SU(3)×SU(2)×U(1) subgroup of E6, the 27 contains 15
states with chiral gauge couplings, having the precise quantum numbers
of a generation of quarks and leptons, and 12 with parity-symmetric
couplings. The latter can have (SU(3) × SU(2) × U(1))-invariant mass
terms and so can be much more massive than the weak scale. Indeed,
these extra states in the 27 can mediate baryon decay, so they must be
much heavier than the weak scale. Other arguments based on the running
of the gauge couplings and the lightness of the Standard Model neutrinos
also suggest that the extra states are quite massive. In addition to the extra
states within each 27, typical (2,2) theories have both 27s and 27s, which
from the low energy point of view correspond to generations with left-
and right-handed weak interactions. Although it is possible that some
right-handed ‘mirror generations’ exist near the weak scale, this seems
unlikely for a number of reasons. Fortunately the gauge symmetry allows
a 27 and a 27 to pair up and become massive.
Although these various masses are allowed by the low energy gauge

symmetry, we need a specific mechanism for generating them. As long as
we stay within the (2,2) theories, even adding Wilson lines to break the
E6 symmetry, the general properties of these theories guarantee that the
quantum numbers of the low energy fields add up to complete multiplets
of E6. However, along the (0,2) directions the extra states can become
massive. In addition to the 273 and 273 terms already discussed, the
lowest order superpotential contains terms 13 and 1·27·27, and together
these have the potential to generate all the needed masses.
The (0,2) moduli from the 27s and 27s may be useful for another

related reason. In most examples, such as those discussed in section 17.2,
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the freely-acting discrete symmetry is Abelian, for example Z3. The Wilson
lines must have the same algebra as the space group, so they commute and
can be taken to lie in a U(1)6 subalgebra of E6. Since the low energy group
is that part of E6 that commutes with the Wilson lines, it contains at least
this U(1)6 and so has rank 6, as compared to the rank 4 of the Standard
Model: the closest we can come in this way to the Standard Model is
SU(3)× SU(2)×U(1)3. The additional U(1)s might be broken somewhat
above the weak scale, but again there are problems; in particular the extra
12 states in the 27 are chiral under the additional U(1)s so this prevents
them from becoming very massive. One way to break these symmetries is
to twist by a non-Abelian discrete group, but another is to give expectation
values to (0,2) moduli from the 27 and 27. Clearly this breaks some of
the E6 symmetry, and in fact it necessarily reduces the rank of the gauge
group. The group theory in section 11.4 shows that the 27 contains two
singlets of SU(3)×SU(2)×U(1). If both of these have expectation values
they break E6 to the minimal grand unified group SU(5), and combined
with Wilson line breaking this can give the Standard Model gauge group.
Thus it is an attractive possibility that our vacuum is given by turning

on some of the (0,2) moduli of a Calabi–Yau compactification. We should
emphasize, however, that if one considers the large set of (0,2) theories
that can be constructed by asymmetric orbifolds or free fermions, only a
small subset of these have a close resemblance to the Standard Model.

No exercises

The nature of this chapter, all results and no derivations, does not lend
itself to exercises. The reader who wishes to learn more should consult the
references.
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Physics in four dimensions

We have now studied two kinds of four-dimensional string theory, based
on orbifolds and on Calabi–Yau manifolds. We saw that the low energy
physics of the weakly coupled heterotic string resembles a unified version
of the Standard Model rather well. In this chapter we present general
results, valid for any compactification. In most of this chapter we are con-
cerned with weakly coupled heterotic string theories, but at various points
we will discuss how the results are affected by the new understanding of
strongly coupled strings.

18.1 Continuous and discrete symmetries

An important result holding in all string theories is that there are no
continuous global symmetries; any continuous symmetries must be gauged.
We start with the bosonic string. Associated with any symmetry will be a
world-sheet charge

Q =
1

2πi

∮
(dz jz − dz̄ jz̄) . (18.1.1)

This is to be a symmetry of the physical spectrum and so it must be
conformally invariant. Thus jz transforms as a (1, 0) tensor and jz̄ as a
(0, 1) tensor. We can then form the two vertex operators

jz∂̄X
µeik·X , ∂Xµjz̄e

ik·X . (18.1.2)

These create massless vectors coupling to the left- and right-moving parts
of the charge Q. Thus the left- and right-moving parts of Q each give rise
to a spacetime gauge symmetry. If Q is carried only by fields moving in
one direction, then only one of the currents and only one of the vertex
operators is nonvanishing. Turning the construction around, any local
symmetry in spacetime gives rise to a global symmetry on the world-sheet.

327
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For type I or II strings the same argument holds immediately if we use
superspace, writing

Q =
1

2πi

∮
(dzdθ J − dz̄dθ̄ J̃) . (18.1.3)

Superconformal invariance requires that J be a (12 , 0) tensor superfield and

J̃ a (0, 12 ) tensor superfield. Combined with ψ̃µ or ψµ respectively, these
give gauge boson vertex operators, so again this is a gauge symmetry in
spacetime. The same is true for the heterotic string, using the bosonic
argument on one side and the supersymmetric argument on the other.

The absence of continuous global symmetries has often been imposed
as an aesthetic criterion by model builders in field theory, and we see that
it is realized in string theory. There is a slight loophole in the argument,
which we will discuss later in the section.

We have seen in the examples from earlier chapters that string theories
generally have discrete symmetries at special points in moduli space. It is
harder to generalize about whether these are local or global symmetries
because the difference is subtle for a discrete symmetry: there is no
associated gauge boson in the local case. The meaning of a discrete local
symmetry was discussed in section 8.5 in the context of the field theory
on the world-sheet. The simplest way to verify that a discrete symmetry is
local is to find a point in moduli space where it is enlarged to a continuous
gauge symmetry. For example, this is the case for the T -duality of the
bosonic and heterotic strings. To see what this would mean, consider a
spacetime with x8 and x9 periodic, with the radius R8 a function of x9.
Then R8(x

9) need not be strictly periodic; rather, it could also be that

R8(2πR9) = α′/R8(0) . (18.1.4)

This is the essence of a discrete gauge symmetry: that on nontrivial loops
fields need be periodic only up to a gauge transformation. Since T -duality
is embedded in the larger U-duality of the type II theory, the latter must
be a gauge symmetry as well. Thus we could have a similar aperiodicity
in the IIB string coupling, for example:

Φ(2πR9) = −Φ(0) , g(2πR9) = 1/g(0) . (18.1.5)

It is not clear that this is true of all discrete symmetries in string theory,
but it seems quite likely.

P , C , T , and all that

We would like to discuss briefly the breaking of the discrete spacetime
symmetries P , C , and T in string theory.
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Parity symmetry P is invariance under reflection of any one coordinate,
say X3 → −X3. It is not a good symmetry of the Standard Model, being
violated by the gauge interactions. Classifying particles moving in the
1-direction by the helicity Σ23 = s1, the helicity +1

2 states form some

gauge representation r+, and the helicity −1
2 states some representation

r−. Parity takes the helicity s1 → −s1, and so is a good symmetry only if
r+ = r−. In the Standard Model it appears (barring the discovery of new
massive states with the opposite gauge couplings) that r+ �= r−: the gauge
couplings are chiral.

Let us consider the situation in string theory, starting with the ten-
dimensional heterotic string. In ten dimensions states are labeled by their
SO(8) representation. Parity again reverses the spinor representations 8
and 8′, and is a good symmetry only if the corresponding gauge repre-
sentations are the same, r = r′. For the heterotic string, r is the adjoint
representation while r′ is empty, so the gauge couplings are chiral and
there is no parity symmetry. To see how this arises, note that the heterotic
string action and world-sheet supercurrent (or BRST charge) are invari-
ant if we combine the reflection X3 → −X3 with ψ3 → −ψ3. However,
this also flips the sign of exp(πiF̃) in the R sector, and so it is not a
symmetry of the theory because the GSO projection restricts the spectrum
to exp(πiF̃) = +1.

Although the ten-dimensional spectrum is chiral, compactification to
four dimensions can produce a nonchiral spectrum. This is true of toroidal
compactification, for example, as one sees from the discussion in sec-
tion 11.6. The point is that the theory is invariant under simultaneous
reflection of one spacetime and one internal coordinate, say X3 and X9,
as well as their partners ψ3 and ψ9. This is a symmetry of the action,
supercurrent, and GSO projection, and so of the full theory. From the
ten-dimensional point of view, it is a rotation by π in the (3,9) plane, but
from the four-dimensional point of view it is a reflection of the 3-axis,
combined with an internal action which gives negative intrinsic parity
to the 9-oscillators. This symmetry reverses the momenta k9R,L, which are
the charges under the corresponding Kaluza–Klein gauge symmetries,
while leaving the other internal momenta invariant. Strictly speaking, it
is therefore not a pure parity operation (which by the usual definition
leaves gauge charges invariant) or a CP transformation (which inverts all
charges), but something in between.

In the Z3 orbifold example, the spectrum was found to be chiral. The
orbifold twist removes all parity symmetries. Notice that simultaneous
reflection of X3,5,7,9, which takes Zi ↔ Zı̄, satisfies Pr = r2P and so
commutes with the twist projection. However, to extend this action to the
various spinor fields requires that P reflect ψ3,5,7,9 and λ2,4,6 as well. This
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acts on an odd number of the λ fermions and so does not commute with
the current algebra GSO projection. The combined effect of the orbifold
twist and the ψ and λ GSO projections removes all parity symmetry and
leaves a chiral spectrum. Chiral gauge couplings arise in many other kinds
of string compactification.
There is one interesting general remark. The chirality of the spectrum

can be expressed in terms of a mathematical object known as an index.
Separate exp(πiF̃) into a spacetime part and an internal part, F̃ = F̃4+F̃K .
For massless fermions moving in the 1-direction, 2s1 = −i exp(πiF̃4),
which in turn is equal to i exp(πiF̃K) due to the GSO projection. For
massless R sector states the internal part is annihilated by G0, so the net
chirality (number of helicity +1

2 states minus helicity −1
2 states) in a given

irreducible representation r is

N+1
2 ,r
−N− 1

2 ,r
= Trr,ker(G0)[i exp(πiF̃K)] , (18.1.6)

the trace running over all states in the internal CFT which are in the
representation r and are annihilated by G0. One can now drop the last
restriction on the trace,

N+1
2 ,r
−N− 1

2 ,r
= Trr[i exp(πiF̃K)] . (18.1.7)

The point is that any state |ψ〉 with a positive eigenvalue ν under G2
0 is

always paired with a state G0|ψ〉 of opposite exp(πiF̃K), so these states
make no net contribution to the trace. The state G0|ψ〉 cannot vanish
because G0G0|ψ〉 = ν|ψ〉.
Such a trace is known as an index: this can be defined whenever one

has a Hermitean operator G0 anticommuting with a unitary operator
exp(πiF̃K). The index has the important property that it is invariant under
continuous changes of the CFT. Under such a change, the eigenvalues ν
of G2

0 change continuously, but the trace of exp(πiF̃K) at ν = 0 remains
invariant because states can only move away from ν = 0 in pairs with
opposite exp(πiF̃K). This invariance can also be understood from the
spacetime point of view: a continuous change in the background fields
can give mass to some previously massive states, but to make a massive
representation one must combine states of opposite helicity.1 Using this
invariance, the index may often be calculated by deforming to a convenient
limit. There is one subtlety that comes up in some examples: the index
may change in certain limits due to states running off to infinity in field
space.
Charge conjugation C leaves spacetime invariant but conjugates the

gauge generators. In the Standard Model this is again broken by the

1 This is one of those statements that, surprisingly, need no longer hold at strong coupling. We
will discuss this further in sections 19.7 and 19.8.



18.1 Continuous and discrete symmetries 331

gauge couplings of the fermions. For C invariance to hold, the fermion
representations must satisfy r+ = r+ and r− = r−. CPT invariance, to
be discussed below, implies that r+ = r− so that chiral gauge couplings
violate C as well as P . Thus the orbifold example also violates C .

The combination CP takes r+ → r− and so is automatically a symme-
try of the gauge couplings as a consequence of CPT . In the Standard
Model Lagrangian, CP is broken by phases in the fermion–Higgs Yukawa
couplings. In the Z3 orbifold example, the transformation that reverses
X3,5,7,9, ψ3,5,7,9, and all of the λI for I odd is a symmetry of the action,
the BRST charge, and all projections. From the point of view of the four-
dimensional theory this is CP , because the action on the λI changes the
sign of all the diagonal generators, which is charge conjugation. The Z3

orbifold is thus CP -invariant. However, recall that there were many mod-
uli. These included the flat metric background Gij̄dZ

idZ̄ . The operation
CP takes Gī → Gı̄j . Reality of the metric requires Gī to be Hermitean,
while CP requires it to be real. The generic Hermitean Gī is not real, so
CP is broken almost everywhere in moduli space. One must also consider
other possible CP operations, such as adding discrete rotations of some
of the Zi, or permutations of the Zi, to the transformation. These will
be symmetries at special points in moduli space, but are again broken
generically. This is also true for most other string compactifications: there
will be CP -invariant vacua, but some of the many moduli will be CP -odd
so that CP -invariance is spontaneously broken at generic points.
It is interesting to note that CP , like the discrete symmetries discussed

earlier, is a gauge symmetry. The operation described above can be thought
of as rotations by π in the (3,5) and (7,9) planes, combined with a gauge
rotation. These are all part of the local symmetry of the ten-dimensional
theory, though this is partly spontaneously broken by the compactification.
In local, Lorentz-invariant, quantum field theory the combination CPT

is always an exact symmetry. It is easy to show that CPT is a symmetry
of string perturbation theory, using essentially the same argument as is
used to prove the CPT theorem in field theory. Consider the operation θ
that reverses X0,3 and ψ0,3. If we continue to Euclidean time this is just a
rotation by π in the (iX0,X3) plane and so is obviously a symmetry. The
analytic continuation is well behaved because X0,3 and ψ0,3 are free fields.
Clearly θ includes parity and time-reversal. To see that it also implies
charge conjugation, recall that a vertex operator V with k0 < 0 creates a
string in the initial state, while a vertex operator with k0 > 0 destroys a
string in the final state. If V carries some charge q it creates a string of
charge q. The operation θ does not act on the charges, so θ · V also has
charge q and so destroys a string of charge −q. Thus, θ takes a string in
the in-state to the C-, P -, and T -reversed string in the out-state.
To make this slightly more formal, recall from section 9.1 that the
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S-matrix is given schematically by

〈α, out|β, in〉 =
〈
VαVβ

〉
, (18.1.8)

where to be concise we have only indicated one vertex operator in each
of the initial and final states. Then by acting with θ this becomes

〈α, out|β, in〉 =
〈
θ ·Vα θ ·Vβ

〉
= 〈θβ, out|θα, in〉 . (18.1.9)

The CPT operation is antiunitary,

〈CPT · β, out|CPT · α, in〉 = 〈α, out|β, in〉 , (18.1.10)

so we see that CPT is θ combined with the conjugation of the vertex
operator.

This argument is formulated in string perturbation theory. Elsewhere
we have encountered results that hold to all orders of perturbation theory
but are spoiled by nonperturbative effects. Without a nonperturbative
formulation of string theory we cannot directly extend the CPT theorem,
but we can ‘prove’ it by the strategy that we have used elsewhere: assert
that the low energy physics of string theory is governed by quantum field
theory, and then cite the CPT theorem from the latter. Still, there may
be surprises; we can hope that when string theory is better understood
it will make some distinctive non-field-theoretic prediction for observable
physics.

The spin-statistics theorem is often discussed alongside the CPT the-
orem. The discussion in section 10.6 for free boson theories is easily
generalized. Consider a basis of Hermitean (1,1) operators Ai with def-
inite Σ01 eigenvalue s0 and βγ ghost number q. Now consider the OPE
of such an operator with itself. In any unitary CFT, a simple positivity
argument shows that the leading term in the OPE of a Hermitean operator
with itself is the unit operator. Then

Ai(z, z̄)Ai(0, 0) ∼ (zz̄)−2z̄2(q+q2−s20) exp(2qφ̃+ 2is0H̃0) , (18.1.11)

where the z- and z̄-dependence follows from the weight h̃ = 2(q+ q2− s20)
of the exponential. For NS states, with integer spacetime spin, s0 and q
are integers, while for R states, with half-integer spacetime spin, they are
half-integer. It follows that the operator product (18.1.11) is symmetric in
the NS sector and antisymmetric in the R sector. The spacetime spin is
thus correlated with world-sheet statistics, and the spacetime spin-statistics
theorem then follows as in section 10.6. Again this is a rather narrow and
technical way to establish this result.
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The strong CP problem

In the Standard Model action CP violation can occur in two places, the
fermion–Higgs Yukawa couplings and the theta terms

Sθ =
θ

8π2

∫
Tr(F2 ∧ F2 ) . (18.1.12)

This is θ times the instanton number, the trace normalized to the n of
SU(n). For the weak SU(2) and U(1) gauge interactions the fluctuations
of the gauge field are small and the effect of Sθ is negligible, but for the
strongly coupled SU(3) gauge field the nontrivial topological sectors make
significant contributions. The result is CP violation proportional to θ in
the strong interactions. The limits on the neutron electric dipole moment
imply that

|θ| < 10−9 . (18.1.13)

The CP -violating phases in the fermion–Higgs couplings are known from
kaon physics not to be much less than unity. Understanding the small
value of θ is the strong CP problem.
One proposed solution, Peccei–Quinn (PQ) symmetry, is automatically

incorporated in string theory. In eq. (16.4.13) we found the coupling

1

2g24

∫
aFa2 ∧ Fa2 . (18.1.14)

Aside from this term, the action is invariant under

a→ a+ ε , (18.1.15)

known as PQ symmetry. The field a, which would be massless if the
symmetry (18.1.15) were exact, is the axion. The axion and the θ-parameter
appear only in the combination θ + 8π2a/g24, so θ has no physical effect:
it can be absorbed in a redefinition of a. The effective physical value
θeff is θ + 8π2〈a〉/g24. The strong interaction produces a potential for a,
which is minimized precisely at θeff = 0 because at this point the various
contributions to the path integral add coherently. The weak interactions
induce a nonzero value, but this is acceptably small.
The axion a is known as the model-independent axion because the cou-

pling (18.1.14) is present in every four-dimensional string theory: the am-
plitude with one Bµν vertex operator and two gauge vertex operators does
not depend on the compactification. Unfortunately, the model-independent
axion may not solve the strong CP problem. There are likely to be sev-
eral non-Abelian gauge groups below the string scale. Low energy string
theories typically have hidden gauge groups larger than SU(3), and the
corresponding strong interaction scales are Λhidden > ΛQCD. We will see
later in the chapter that this is a likely source of supersymmetry breaking.
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The model-independent axion couples to all gauge fields. The gauge group
with the largest scale Λ gives the largest contribution, so that the axion
sets the θ-parameter for that gauge group approximately to zero. In a
CP -violating theory, the θ-parameters for the different gauge groups will
in general differ, so that θQCD remains large. Nonperturbative effects at
the string scale may also contribute to the axion potential.
Another difficulty is cosmological. The axion a, being closely related to

the graviton and dilaton, couples with gravitational strength κ. In other
words, the axion decay constant is close to the Planck length. A decay
constant this small leads to an energy density in the axion field today that
is too large; it takes a rather nonstandard cosmology to evade this bound.
Both problems might be evaded if there were additional axions with ap-

propriate decay constants. In Calabi–Yau compactifications there are shift
symmetries (17.5.2) of the Bī background, T

A → TA + iεA. Further, the
threshold corrections discussed in section 16.4 induce the coupling (18.1.14)
to the gauge fields. However, these are only approximate PQ symmetries,
because world-sheet instantons generate interactions proportional to

exp(−nATA/2πα′) = exp[−nA(vA + ibA)/2πα′] . (18.1.16)

These spoil the PQ symmetries and generate masses for the axions bA.
There is some suppression if vA/2πα′ is large, and possibly additional sup-
pression from light fermion masses, which appear in relating the instanton
amplitudes to the actual axion mass. However, the suppression must be
very large, so that the axion mass from this source is well below the QCD
scale, if this is to solve the strong CP problem.
In the type I and II theories the scalars from the R–R sector are also

potential axions. As discussed in section 12.1, their amplitudes vanish at
zero momentum, implying a symmetry C → C + ε for each such scalar.
In addition they can have the necessary couplings to gauge fields. They
receive mass from D-instanton effects.
In summary we have potentially three kinds of axion — model-indepen-

dent, Bī , and R–R — which receive mass from three kinds of instanton
— field theory, world-sheet, and Dirichlet. Not surprisingly, one can show
that these are related by various string dualities. It may be that in some
regions of parameter space the axions are light enough to solve the strong
CP problem. There may also be additional approximate PQ symmetries
from light fermions coupling to some of the strong groups. Or it may
be that the solution to the strong CP problem lies in another direction,
depending on details of the origin of CP violation.
Incidentally, these PQ symmetries are continuous global symmetries,

seemingly violating the result obtained earlier. The loophole is that the
world-sheet charge Q vanishes in each case — strings do not carry any
of the PQ charges. We know this for the R–R charges; for the others it
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follows because the axion vertex operator at zero momentum is a total
derivative. However, since in each case these are not really symmetries,
being violated by the various instanton effects, the general conclusion
about continuous global symmetries evidently still holds.
The arguments thus far are based on our understanding of perturbative

string theory, but it is likely that the conclusion also holds at strong
coupling. If a symmetry is exact at large g, it remains a symmetry as g is
taken into the perturbative regime, since this is just a particular point in
field space. At weak coupling it can then take one of two forms. It could
be visible in string perturbation theory, meaning that it holds at each
order of perturbation theory; it is then covered by the above discussion.
Or, it could hold only in the full theory; the duality symmetries are of this
type, but these are all discrete symmetries.

18.2 Gauge symmetries

Gauge and gravitational couplings

In sections 12.3 and 12.4 we obtained the relation between the gauge and
gravitational couplings of the heterotic string in ten dimensions:

g210 =
4κ210
α′ . (18.2.1)

If we compactify, then by the usual dimensional reduction

g24 = g210/V , κ24 = κ210/V , (18.2.2)

with V the compactification volume. The relation between the parameters
in the four-dimensional action is then the same,

g24 =
4κ24
α′ . (18.2.3)

Also, the actual physical values of the couplings depend on the dilaton
as2 eΦ4, but this enters in the same way on each side so that

g2YM =
4κ2

α′ . (18.2.4)

This derivation is valid only in the field-theory limit, but with one gener-
alization it holds for any four-dimensional string theory. For gauge bosons

2 When 〈Φ4〉 �= 0, the rescaling (16.4.6) changes the background value of the metric. To study the
physics in a given background, as we are doing in this chapter, one should instead rescale

G′µνEinstein = exp[−2(Φ4 − 〈Φ4〉)]Gµν ,
and the coefficient of the gravitational action is then the physical coupling κ = exp(〈Φ4〉)κ4.
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with polarizations and momenta in the four noncompact directions, the
explicit calculation (12.4.13) of the three-gauge-boson amplitude involves
only the four-dimensional and current algebra fields and so is independent
of the rest of the theory. The only free parameter is the parameter k̂ from
the current algebra, which appeared in the three-gauge-boson amplitude
as k̂−1/2. Thus the general result is

g2YM =
2

k̂α′
. (18.2.5)

For completeness3 let us recall that k̂ is the coefficient of z−2δab in the
jajb OPE, and that the gauge field Lagrangian density is defined to be

− 1

4g2YM

FaµνF
aµν . (18.2.6)

The parameter k̂ differs from the quantized level of the current algebra
through the convention for the normalization of the gauge generators,
which can be parameterized in terms of the length-squared of a long
root, ψ2 = 2k̂/k. The common current algebra convention is ψ2 = 2 so

that k̂ = k. The common particle physics convention is that the inner
product for SO(n) groups is the trace in the vector representation, and
the inner product for SU(n) groups is twice the trace in the fundamental
representation. Both of these give ψ2 = 1 so that k̂ = 1

2k. We should
emphasize that it is the quantized level k that matters physically — for
example, it determines the allowed gauge representations — but that when
we deal with expressions that require a normalization of the generators
(like the gauge action) it is generally the parameter k̂ that appears.

It is interesting to consider the corresponding relation in open string
theory. The ten-dimensional coupling was obtained in eq. (13.3.31),

g2YM

κ
= 2(2π)7/2α′ (type I, d = 10) . (18.2.7)

Under compactification this becomes

g2YM

κ
=

2(2π)7/2α′
V 1/2

(type I, d < 10) . (18.2.8)

Unlike the closed string relation, this depends on the compactification
volume.

3 We feel compelled to be precise about the factors of 2, but most readers will want to skip such
digressions as this paragraph.

2κ
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Gauge quantum numbers

For a gauge group based on a current algebra of level k, only certain
representations can be carried by the massless states. The total left-
moving weight h of the matter part of any vertex operator is unity. Since
the energy-momentum tensor is additive,

TB = T s
B + T ′

B , (18.2.9)

the contribution of the current algebra to h is at most unity. This leaves
two possibilities. Either the current algebra state is a primary field with
h ≤ 1, or it is a descendant of the form

ja−1 · 1 = ja . (18.2.10)

Let us consider the latter case first. The current ja has h = 1, so for
bosons the remainder of the matter vertex operator has weight (0, 12 ). One
possibility is ψµ, which just gives the gauge boson states. There could
also be (0, 12 ) fields from the internal CFT, but we will see later in the
section that this is inconsistent with having any chiral gauge interactions.
For fermions the remainder of the matter vertex operator would have

weight (0, 58 ). This combines with the βγ ghost vertex operator e−φ̃/2 to
give a (0, 1) current. This is a spacetime spinor, and so is the world-
sheet current associated with a spacetime supersymmetry. Thus there are
massless fermions of this type only if the theory is supersymmetric, in
which case they are the gauginos.

For massless states based on current algebra primaries, the restric-
tion (11.5.43) limits the representations that may appear. For SU(2) at
k = 1 only the 1 and 2 are allowed, while for SU(3) at k = 1 only the 1,
3, and 3 are allowed.

In the Standard Model, there are several notable patterns in the gauge
quantum numbers of the quarks and leptons: replication of generations,
chirality, quantization of the electric charge, and absence of large (‘ex-
otic’) representations of SU(2) and SU(3). We have seen in the orbifold
and Calabi–Yau examples that multiple generations arise frequently in
four-dimensional string theories. This is an attractive feature of higher-
dimensional theories in general. The generations arise from massless exci-
tations that differ in the compact dimensions but have the same spacetime
quantum numbers. Chirality was discussed in section 18.1, and quanti-
zation of electric charge will be discussed in section 18.4. Finally, the
absence of exotics, the fact that only the 1 and 2 of SU(2) and the 1,
3, and 3̄ of SU(3) are found, is ‘explained’ by string theory if we as-
sume that these gauge symmetries arise from k = 1 current algebras.
Also, the only scalar in the Standard Model is the SU(2) doublet Higgs
scalar, and from tests of this model it is known that no more than
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O(1%) of the SU(2) × U(1) breaking can come from larger representa-
tions.

Unfortunately, this is not a firm prediction of string theory. While
the simplest four-dimensional string theories have k = 1, there is still
an enormous number of tree-level string vacua with higher level current
algebras. Also, as discussed in section 16.3, k = 1 is impossible if a
grand unified group remains below the string scale. For SU(5) only
the representations 1, 5, 5, 10, and 10 are allowed, for SO(10) only
1, 16, 16, and 10, and for E6 only 1, 27, and 27. In each case this
includes the representations carried by the quarks, leptons, and the Higgs
scalar that breaks the electroweak symmetry, but not the representations
needed to break the unified group to SU(3) × SU(2) × U(1). The latter
are allowed for levels k ≥ 2. We will return to this point in the next
section.

Right-moving gauge symmetries

Thus far we have considered gauge symmetries carried by the left-moving
degrees of freedom of the heterotic string. For these the conformal in-
variance leads to a current algebra. For gauge symmetries carried by the
right-movers, the superconformal algebra plus gauge symmetry give rise
to a superconformal current algebra (SCCA). The matter part of the gauge
boson vertex operator in the −1 picture is

∂Xµψ̃aeik·X (18.2.11)

with ψ̃a a weight (0, 12 ) superconformal tensor field. Then

G̃−1/2 · ψ̃a = ̃a (18.2.12)

is a (0, 1) field. It is nontrivial because

G̃1/2 · ̃a = 2L̃0 · ψ̃a = ψ̃a . (18.2.13)

Also, ̃a is a conformal tensor, annihilated by L̃n for n > 0, though not a
superconformal tensor. The ̃a thus form a right-moving current algebra.

We take the current algebra to be based on a simple group g at level
k, and for simplicity use the current algebra normalization (which is no
problem, because we are about to see that these gauge symmetries will
never appear in particle physics!). Using the Jacobi identity we can fill in
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the rest of the operator products,

ψ̃a(z̄)ψ̃b(0) ∼ kδab

z̄
, (18.2.14a)

̃a(z̄)ψ̃b(0) ∼ ifabc

z̄
ψ̃c(0) , (18.2.14b)

T̃F (z̄)ψ̃
a(0) ∼ 1

z̄
̃a(0) , (18.2.14c)

̃a(z̄)̃b(0) ∼ kδab

z̄2
+
ifabc

z̄
̃c(0) , (18.2.14d)

T̃F (z̄)̃
a(0) ∼ 1

z̄2
ψ̃a(0) +

1

z̄
∂̄ψ̃a(0) . (18.2.14e)

In particular, the ψ̃a are free right-moving fields with a nonstandard
normalization.

We can now carry out a generalization of the Sugawara construction.
The ̃ψ̃ product implies that if we define

̃a = ̃aψ + ̃ ′a , (18.2.15)

where

̃aψ = − i

2k
fabcψ̃bψ̃c , (18.2.16)

then ̃ ′a is nonsingular with respect to the ψ̃a. It follows that there are
actually two current algebras. One is built out of the ψ̃a and has current
̃aψ and level kψ = h(g). The other commutes with the ψ̃a and has current
̃ ′a and level k′ = k − kψ . We see that k ≥ h(g), with equality if and only
if ̃ ′a is trivial.

As in the Sugawara construction we can separate T̃F ,

T̃F = T̃ s
F + T̃ ′′

F , (18.2.17)

where

T̃ s
F = − i

6k2
fabcψ̃aψ̃bψ̃c +

1

k
ψ̃ã ′a (18.2.18)

and T̃ ′′
F is nonsingular with respect to ψ̃a and ̃ ′a. Further,

T̃B = T̃
ψ
B + T̃ ′

B + T̃ ′′
B , (18.2.19)

with

T̃
ψ
B = − 1

2k
ψ̃a∂̄ψ̃a , (18.2.20a)

T̃ ′
B =

1

2(k′ + h(g))
: ̃ ′̃ ′ : . (18.2.20b)
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The remainders T̃ ′′
F and T̃ ′′

B are nonsingular with respect to both ψ̃a and
̃ ′a. The CFT thus separates into three pieces, with central charges

c̃ψ =
dim(g)

2
, c̃′ = k′ dim(g)

k′ + h(g)
, c̃′′ = c̃− c̃ψ − c̃′ . (18.2.21)

The SCFT separates into only two pieces, because ψ̃a and ̃ ′a are coupled
in the supercurrent. In particular, the central charge for the ψ̃̃ ′ SCFT is

c̃ψ + c̃′ = (3k′ + h(g)) dim(g)

2(k′ + h(g))
. (18.2.22)

This lies in the range

dim(g)

2
≤ c̃ψ + c̃′ ≤ 3 dim(g)

2
. (18.2.23)

The lower bound is reached only when ̃ ′a vanishes, and the upper only
for an Abelian algebra.

For an Abelian SCCA, the non-Abelian terms in the OPE (18.2.14)
vanish. In particular, ̃ψ vanishes and k = k′, so a nontrivial theory
requires that k′ �= 0. We can then normalize the currents to set k = k′ = 1.
Writing the current as the derivative of a free boson, ̃ = i∂̄H , gives

T̃ s
F = iψ̃∂̄H , T̃

ψ
B + T̃ ′

B = −1

2
ψ̃∂̄ψ̃ − 1

2
∂̄H∂̄H . (18.2.24)

If there is a right-moving gauge symmetry below the string scale the
gauge boson vertex operator must be periodic, and so the fermionic
currents ψ̃a must always have the same periodicity as the supercurrent
T̃F . This defines an untwisted SCCA.

One can derive strong results restricting the relevance of right-moving
gauge symmetries to physics. In the (1, 0) heterotic string,

1. If there are any massless fermions, then there are no non-Abelian
SCCAs.

2. All massless fermions are neutral under any Abelian SCCA gauge
symmetries.

3. If any fermions have chiral gauge couplings, then there are no
SCCAs.

The first two results are sufficient to imply that the Standard Model
SU(3)× SU(2)×U(1) gauge symmetries must come from the left-moving
gauge symmetries in heterotic string theory. If, as it appears, the SU(3)×
SU(2) × U(1) gauge couplings are chiral, then there are no right-moving
gauge symmetries at all.
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To show these, consider the vertex operator for any massless spin-12
state, whose matter part is

SαVKe
ikµX

µ

. (18.2.25)

Here Sα is a spin field for the four noncompact dimensions, leaving a weight
(1, 38 ) operator VK from the internal theory. The Ramond generator G̃0

is Hermitean, implying that

G̃2
0 = L̃0 − c̃

24
≥ 0 (18.2.26)

in any unitary SCFT. The internal theory here has central charge 9,
and so the internal part VK of any massless spin-12 state saturates the
inequality. Incidentally, this also implies that there can never be fermionic
tachyons. Further, if the internal theory decomposes into a sum of SCFTs,
G0 =

∑
i G

i
0, then the same argument requires that

L̃i0 =
c̃i

24
(18.2.27)

within each SCFT.
Now suppose that one of these SCFTs is a non-Abelian SCCA. In the

R sector the ψ̃a and ̃a are periodic. Then L̃
ψ
0 + L̃′0 is bounded below by

the zero-point energy 1
16 dim(g) of the ψ̃a, and

L̃
ψ
0 + L̃′0 − c̃ψ + c̃′

24
≥ h(g) dim(g)

24(k′ + h(g))
> 0 . (18.2.28)

This is strictly positive for all states, so massless fermions are impossible
and the first result is established. For an Abelian SCCA, the same form
holds with k′ = 1 and h(g) = 0, so equality is possible. However, the term
1
2j0j0 in L̃

′
0 makes an additional positive contribution unless the charge j0

is zero for the state, establishing the second result.
The equivalence (18.2.24) means that a U(1) SCCA algebra has the

same world-sheet action as a flat dimension. Further, as noted above,
for an SCCA associated with a gauge interaction the periodicity of the
fermionic current ψ is the same as that of the ψµ. Then if there is a
U(1) SCCA the massless R sector ground states will be the same as
those of a five-dimensional theory. The SO(4, 1) spinor representation 4
decomposes into one four-dimensional representation of each chirality,
2 + 2, so the massless states come in pairs of opposite chirality. In
other words, the SO(4, 1) spin ψ

µ
0ψ0 commutes with the GSO projection

and (in the massless sector) with the superconformal generators, and so
takes massless physical states into massless physical states of the opposite
four-dimensional chirality. This establishes the third result, and shows
that heterotic string vacua with right-moving gauge symmetries are not
relevant to the Standard Model.
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Gauge symmetries of type II strings

Now let us consider the possibility of getting the Standard Model from
the type II string. Here, both sides are supersymmetric, so the vertex
operators of gauge bosons are of one of the two forms

ψaψ̃µeik·X , ψµψ̃aeik·X , (18.2.29)

where ψa is associated with a left-moving SCCA and ψ̃a with a right-
moving SCCA. For example, one could take the internal theory to consist
of 18 right-moving and 18 left-moving fermions with trilinear supercur-
rents (16.1.29). This leads to gauge algebra gR×gL with gR and gL each of
dimension 18. This can then be broken to the Standard Model by twists.
This seems much more economical than the heterotic string, where the
dimension of the gauge group can be much larger. However, we will see
that the Standard Model does not quite fit into the type II string theory.

The same analysis as used in the heterotic string shows that only one
of the two types of gauge boson (18.2.29) may exist. If there are chiral
fermions in the R–NS sector there can be no left-moving SCCA, and if
there are chiral fermions in the NS–R sector there can be no right-moving
SCCA. In order to have both chiral fermions and gauge symmetries,
the fermions must all come from one sector, say R–NS, and the gauge
symmetries all from right-moving SCCAs.

Now let us see that this does not leave room for the Standard Model.
To be precise, it is impossible to have an SU(3) × SU(2) × U(1) gauge
symmetry with massless SU(3) triplet and SU(2) doublet fermions. The
internal part of any massless state has weight h̃ = 1

2 . This restricts the
current algebra part to be either a primary state of the SCCA, annihilated
by all the ψ̃ar and ̃ ′an for r, n > 0, or of the form ψ̃a−1/2|1〉. The latter

is a gaugino, in the adjoint representation, so the triplets and doublets
must be primary states instead. By the same argument as in the conformal
case, the allowed representations for the primary states are restricted
according to the level k′ of the current ̃ ′a of the SCCA, so that k′ ≥ 1 in
both the SU(2) and SU(3) factors in order to have doublets and triplets
respectively. Noting that the central charge (18.2.22) increases with k′, the
total central charge of the SCCAs is

c̃ ≥ 8

2
+ c̃SU(3),1 +

2
+ c̃SU(2),1 + c̃U(1) = 4 + 2 +

3

2
+ 1 +

3

2
= 10 . (18.2.30)

This exceeds the total c̃ = 9 of the internal theory, so there is a contradic-
tion.

This is an elegant argument, using only the world-sheet symmetries.
However, progress in string duality has made its limitations clearer. Since

3
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all string theories are connected by dualities, we would expect that non-
perturbatively a spectrum that can be obtained in one string theory can be
obtained in any other. The most obvious limitation of the argument is that
it applies only to vacua without D-branes, because the latter would have
additional open string states. One might also wonder whether some or all
of the Standard Model states can originate not as strings but as D-branes.
As long as string perturbation theory is valid then all D-branes and other
nonperturbative states should have masses that diverge as g → 0, so that
string perturbation theory gives a complete account of the physics at
any fixed energy. However, we will see in the next chapter that D-branes
can become massless at some points in moduli space, and that this is
associated with a breakdown of string perturbation theory.

18.3 Mass scales

There are a number of important mass scales in string theory:

1. The gravitational scale mgrav = κ−1 = 2.4 × 1018 GeV, at which
quantum gravitational effects become important; this is somewhat
more useful than the Planck mass, which is a factor of (8π)1/2 greater.

2. The electroweak scale mew, the scale of SU(2)×U(1) breaking, O(102)
GeV.

3. The string scale ms = α′−1/2, the mass scale of excited string states.

4. The compactification scale mc = R−1c , the characteristic mass of states
with momentum in the compact directions.

5. The grand unification scale mGUT, at which the SU(3)×SU(2)×U(1)
interactions are united in a simple group.

6. The superpartner scale msp, the mass scale of the superpartners of
the Standard Model particles.

In this section we consider relations among these scales. Of course, there
may be additional scales. The unification of the gauge group may take
place in several steps, and there may be other intermediate scales at which
new degrees of freedom appear. Also, these scales may not all be relevant.
For example, when the internal CFT is a sigma model on a manifold
large compared to the string scale, the idea of compactification applies.
There are states with masses-squared of order m2

c ( m2
s , states which

would be massless in the noncompact theory and which have internal
momenta of order mc. However, as mc increases to ms these states become
indistinguishable from the various ‘stringy’ states, and compactification



344 18 Physics in four dimensions

is not so meaningful. The internal CFT may have several equivalent
descriptions as a quantum field theory, with ‘internal excitations’ and
‘stringy states’ interchanging roles. Similar remarks apply to the grand
unification and supersymmetry scales.

For most of the discussion we will assume explicitly that the string
theory is weakly coupled, and that the Standard Model gauge couplings
remain perturbative up to the string scale. In this case it is possible to
make some fairly strong statements. As we know from chapter 14, strong
coupling opens up many new dynamical possibilities. The consequences
for physics in four dimensions have not been fully explored; we will make
a few comments at the end of the section.

The relation between the string and gravitational scales follows from
the relation (18.2.5) between the couplings,

ms

mgrav

= gYM(k/2)1/2 . (18.3.1)

The quantities on the right are not too far from unity, so the string and
gravitational scales are comparable. In the minimal supersymmetric model
to be discussed below, the coupling gYM at high energy is of order 0.7;
for k = this gives ms ≈ 1018 GeV . This result is shown graphically
in figure 18.1: plotted as a function of energy E are the four-dimensional
gauge coupling αYM = g2YM/4π and the corresponding dimensionless
gravitational coupling κ2E2. The scale where these meet is the expected
scale of unification of the gravitational and gauge interactions, the string
scale.

Now consider the compactification scale. Suppose that there are k di-
mensions compactified at some scale mc ( ms. Between the scales mc

and ms, physics is described by a (4 + k)-dimensional field theory, in
which a gauge coupling α4+k has dimension m−k and the gravitational
coupling G4+k has dimension m−k−2. The behaviors of the dimensionless
couplings α4+kE

k and G4+kE
k+2 are indicated in figure 18.1 by dashed

lines. The gauge coupling rises rapidly from its four-dimensional value
αYM. Our assumption that the coupling remains weak up to the string
scale then implies that the latter is not far above the compactification scale
(in this section ‘scale’ always refers to energy, rather than the reciprocal
length). Also, it presumably does not make sense for the compactification
scale to be greater than the string scale, as illustrated by T -duality for
toroidal compactification. Thus the string, gravitational, and compactifica-
tion scales are reasonably close to one another. In open string theory, the
quantitative relation (18.2.8) between the scales is different, but the reader
can show that with the weak-coupling assumption these three scales are
again close to one another.

ˆ

ˆ
2

1
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Fig. 18.1. The dimensionless gauge and gravitational couplings as a function
of energy. On the scale of this graph we neglect the differences between gauge
couplings and the running of these couplings. The dashed curves illustrate the
effect of a compactification scale below the Planck scale, at 1012 GeV in this
example (the slopes correspond to all six compact dimensions being at this
same scale, and are reduced if there are fewer). The shaded region indicates the
breakdown of perturbation theory.

Next consider the unification scale. First let us review SU(5) unification
of the Standard Model. The Standard Model gauge group SU(3)×SU(2)×
U(1) can be embedded in the 5 representation of SU(5), with SU(3) being
the upper 3× 3 block, SU(2) the lower 2× 2 block, and U(1) hypercharge
the diagonal element

Y

2
= diag

(
−1

3
,−1

3
,−1

3
,
1

2
,
1

2

)
. (18.3.2)

The SU(n) generators for the fundamental representation n are conven-
tionally normalized Tr(tatb) = 1

2δ
ab. This is also true for U(1) if we define

tU(1) = (35 )
1/2 1

2Y , in which case SU(5) symmetry implies

g3 = g2 = g1 = gSU(5) (18.3.3)

for the SU(3) × SU(2) × U(1) couplings. The hypercharge coupling g′ is
defined by

1
2g

′Y = gU(1)t
U(1) ⇒ g′ = (3/5)1/2g1 . (18.3.4)
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The SU(5) prediction is then

(5/3)1/2g′ = g2 = g3 . (18.3.5)

The weak mixing angle θw is defined by sin2 θw = g′2/(g22 + g′2). Before
taking into account radiative corrections, the SU(5) prediction is sin2 θw =
3
8 . The same holds for standard SO(10) and E6 unification, because SU(5)
is just embedded in these.

For the purposes of the present section we will assume that the same
relation (18.3.5) holds in string theory; in the next we will discuss the
circumstances under which this is true. In both string theory and grand
unified field theory, this tree-level relation receives substantial renormal-
ization group corrections below the scale of SU(5) breaking. To one-loop
order, the couplings depend on energy as

µ
∂

∂µ
gi =

bi

16π2
g3i . (18.3.6)

This integrates to

α−1i (µ) = α−1i (mGUT) +
bi

4π
ln(m2

GUT/µ
2) , (18.3.7)

where αi = g2i /4π. For a non-Abelian group the constant bi is

bi = −11

3
Tg +

1

3

∑
complex
scalars

Tr +
2

3

∑
Weyl

fermions

Tr , (18.3.8)

where Tr(tar t
b
r ) = Trδ

ab and Tg = Tr=adjoint. For a U(1) group the result is
the same with Tg = 0 and Tr replaced by q2.

The couplings at the weak interaction scale MZ are α−11 ≈ 59, α−12 ≈ 30,
and α−13 ≈ 9. Extrapolating the couplings αi(µ) as in eq. (18.3.7), SU(5)
unification makes the prediction (18.3.3) that at some scale mGUT they
become equal. This is often expressed as a prediction for sin2 θw(mZ ): use
α−11 (mZ ) and α

−1
3 (mZ ) to solve for mGUT and αGUT, and then extrapolate

downwards to obtain a prediction for α−12 (mZ ). The prediction depends
on the spectrum of the theory through the beta function (18.3.8).4 For the
minimal SU(5) unification of the Standard Model,

sin2 θw(mZ ) = 0.212± 0.003 . (18.3.9)

For the minimal supersymmetric Standard Model, which consists of the
Standard Model plus a second Higgs doublet plus the supersymmetric

4 The experiment and theory are sufficiently precise that one must take into account the two-loop
beta function, threshold effects at the weak and unified scales, and other radiative corrections to
the weak interaction.



18.3 Mass scales 347

partners of these,

sin2 θw(mZ ) = 0.234± 0.003 . (18.3.10)

The experimental value is

sin2 θw(mZ ) = 0.2313± 0.0003 . (18.3.11)

The minimal nonsupersymmetric model is clearly ruled out. On the other
hand, the agreement between the minimal supersymmetric SU(5) predic-
tion and the actual value is striking, considering that a priori sin2 θw(mZ )
could have been anywhere between 0 and 1. The agreement between
the supersymmetric prediction and the actual value means that the three
gauge couplings meet, with

mGUT = 1016.1±0.3 GeV , α−1GUT ≈ 25 . (18.3.12)

In the nonsupersymmetric case, the disagreement with sin2 θw(mZ ) implies
that the three couplings do not meet at a single energy, but meet pairwise
at three energies ranging from 1013 GeV to 1017 GeV.
To a first approximation, the unification scale (18.3.12) is fairly close

to the string scale and so to the compactification and gravitational scales.
This is also necessary for the stability of the proton. The running of the
couplings is shown pictorially in figure 18.2. We should note that a direct
comparison of the string and unification scales is not appropriate at the
level of accuracy of the extrapolation (18.3.12). Rather, we should compare
the measured couplings to a full one-loop string calculation: this is just
the calculation (16.4.32). Ignoring for now the threshold correction, this
relation is of the form (18.3.7) with the string unification scale (16.4.36)

mSU = k1/2gYM × 5.27× 1017 GeV → 3.8× 1017 GeV . (18.3.13)

We have inserted the relation (18.3.1) between the gauge and gravitational
scales and then carried out the numerical evaluation using the unified
coupling (18.3.12) and assuming k = 1. The resulting discrepancy between
the string unification scale and the value in minimal SUSY unification
is a factor of 30. This is larger than the experimental uncertainty, but
small compared to the fifteen orders of magnitude difference between the
electroweak scale and the string scale. This suggests that the unification
and string scales are actually one and the same, so that not just the three
gauge couplings but also the gravitational coupling meet at a single point;
the apparent difference between the unification and string scales would
then be due to some small additional correction.
Before discussing what such a correction might be, let us consider the

consequences if the two scales actually are separated. This means that there
is a range mGUT < E < ms in which physics is described by a grand unified
field theory, with SU(3) × SU(2) × U(1) contained in SU(5) or another
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Fig. 18.2. The unification of the gauge couplings in the minimal supersymmetric
unified model, and the near-miss of the gravitational coupling. The dashed line
shows the potential effect of an extra dimension of the form S1/Z2 at the scale
indicated by the arrow.

simple group. This theory is presumably four-dimensional, because even
a factor of 30 difference between the string and compactification scales
is difficult to accommodate. The unified group must then be broken to
SU(3)×SU(2)×U(1) by the usual Higgs mechanism. As we have discussed
in the previous section, this is not possible if the underlying current algebra
is level one, because a Higgs scalar in the necessary representation cannot
be lighter than the string scale. There do exist higher level string models
in which such a separation of scales is possible.
An intermediate possibility is partial unification, embedding SU(3) ×

SU(2)×U(1) in one of

SU(5)′ ×U(1) ⊂ SO(10) , (18.3.14a)

SU(4)× SU(2)L × SU(2)R ⊂ SO(10) , (18.3.14b)

SU(3)C × SU(3)L × SU(3)R ⊂ E6 . (18.3.14c)

The group SU(5)′×U(1) is known as flipped SU(5). Color SU(3) and weak
SU(2) are embedded in SU(5) in the usual way, but hypercharge is a linear
combination of a generator from SU(5) and the U(1) generator. String
models based on flipped SU(5) have been studied in some detail. The group
SU(4)×SU(2)L×SU(2)R is known as Pati–Salam unification. Color SU(3)
is in the SU(4) factor, weak SU(2) is SU(2)L, and hypercharge is a linear
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combination of a generator from SU(4) and a generator from SU(2)R .
In the SU(3)3 group, sometimes called trinification, color is SU(3)C , weak
SU(2) is in SU(3)L, and hypercharge is a linear combination of generators
from SU(3)L and SU(3)R . When G is one of these partially unified groups
and is embedded in a simple group as indicated in eq. (18.3.14), then the
Standard Model group within G has the same embedding as in simple
unification. The tree-level prediction for sin2 θw(mZ ) is therefore again 3

8 ,
but the running of the couplings will of course be different between mGUT

and ms. These partially unified groups can all be broken to the Standard
Model by Higgs fields that are allowed at level one.

Now let us consider the corrections that might eliminate the difference
between mGUT and mSU. The quoted uncertainties in the grand unified
predictions come primarily from the uncertainty in the measured value
of α3, and in the supersymmetric case from the unknown masses of the
superpartners. There is a far greater uncertainty implicit in the assumption
that the spectrum below the unification scale is minimal. Adding a few
extra light fields, either at the electroweak scale or at an intermediate scale,
can change the running by an amount sufficient to bring the unification
scale up to the string scale.

There is also a threshold correction due to loops of string-mass fields.
This is a function of the moduli, as in the orbifold example (16.4.38),

∆a = ca −
∑
i

bia|Gi|
|G| ln

[
(Ti + T ∗

i )|η(Ti)|4(Ui +U∗
i )|η(Ui)|4

]
. (18.3.15)

Although this correction reflects a sum over the infinite set of string states,
its numerical value is rather small for values of the moduli of order 1. It
can become large if the moduli become large. For example,

∆a ≈
∑
i

bia|Gi|
|G|

π(Ti + T ∗
i )

6
(18.3.16)

for large Ti, from the asymptotics of the eta function. For large enough Ti,
in those models where the correction has the correct sign, this can account
for the apparent difference between the string and unification scales.

Finally, in more complicated string models the tree-level predictions
may be different and so also the predicted unification scale. We will
discuss this somewhat in the next section.

All of these modifications have the drawback that a change large enough
to raise the unification scale to the string scale will generically change the
prediction for sin2 θw by an amount greater than the experimental and
theoretical uncertainty, so that the excellent agreement is partly accidental.
Since the gauge couplings already meet, it would be simple and economical
to leave them unchanged and instead change the energy dependence of
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the gravitational coupling so that it meets the other three. However, this
seems impossible, since the ‘running’ of the gravitational coupling κ2E2

is just dimensional analysis: the gravitational interaction is essentially
classical below the string scale and quantum effects do not affect its
energy dependence.

This is one point where the new dynamical ideas arising from strongly
coupled string theory can make a difference. One way to change the
dimensional analysis is to change the dimension! It does not help to
have a low compactification scale of the ordinary sort: as shown in
figure 18.1, all the couplings increase more rapidly but they do not meet
any sooner. Consider, however, the strongly coupled E8×E8 heterotic string
compactified on a Calabi–Yau space K . From the discussion in chapter 14,
this is the eleven-dimensional M-theory compactified on a product space

K × S1

Z2
. (18.3.17)

The scales of the two factors are independent; let us suppose that the
space S1/Z2 is larger, so that its mass scale R−110 lies below the unification
scale. The point is that the gauge and matter fields live on the boundary
of this space, which remains four-dimensional, while the gravitational field
lives in the five-dimensional bulk. The effect is as shown in figure 18.2:
the gauge couplings evolve as in four dimensions, while the gravitational
coupling has a kink. For an appropriate value of R10, all four couplings
meet at a point.

With the only data points being the low energy values of the gauge cou-
plings, there is no way to distinguish between these various alternatives. If
in fact supersymmetry is found at particle accelerators, then measurement
of the superpartner masses will allow similar renormalization group ex-
trapolations and may enable us to unravel the ‘fine structure’ at the string
scale.

This brings us to the next scale, which is msp. The lower limits on
the various charged and strongly interacting superpartners are of order
102 GeV. If supersymmetry is the solution to the hierarchy problem, the
cancellation of the quantum corrections to the Higgs mass requires that
the splitting between the Standard Model particles and their superpartners
be not much larger than this,

102 GeV<∼msp<∼ 103 GeV . (18.3.18)

Of all the new phenomena associated with string theory, supersymmetry
is the one that is likely to be directly accessible to particle accelerators.

lie so far below the others; we will discuss this briefly in section 18.8.
Finally, we should ask why the superpartner and electroweak scales
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18.4 More on unification

In this section we collect a number of additional results on the relation
between string theory and grand unification.
The first issue is the condition under which the grand unified relation

g1 = g2 = g3 holds in string theory at tree level. This is obviously the
case in theories where a unified group remains unbroken below the string
scale. It is also true if, as in the orbifold and Calabi–Yau cases, a unified
group is broken at the string or compactification scale by twists. Although
there is no scale at which the world looks like a four-dimensional grand
unified theory, the inheritance principle guarantees that the equality of the
tree-level couplings persists after the twist.
More generally one can make some statements just from current algebra

arguments. The current algebra relation (18.2.5) between the gravitational
coupling and any single gauge coupling implies that for the SU(2) and
SU(3) gauge couplings

α2

α3
=
k̂3

k̂2
=
k3

k2
. (18.4.1)

Thus the grand unified prediction α2 = α3 holds whenever the levels of the
SU(3) and SU(2) current algebras are equal. In any case one expects that
the levels are small integers, models with large levels having complicated
spectra, so that if the levels are not equal their ratio differs substantially
from unity. Since the unification scale can be determined from any pair of
couplings, this implies a large change in the unification scale, spoiling the
near-equality between the unification and string scales. Thus it is likely
that, whatever the levels of the SU(2) and SU(3) current algebras, they
are equal.
For the U(1) coupling there is no similar statement, because there is no

level to give an absolute normalization to the current. One general result
concerns the common situation that there is a continuous moduli space of
vacua, all with an unbroken U(1) symmetry: if there are chiral fermions,
then at tree level the coupling g1, and so also sin2 θw, is the same for all
the connected vacua. To see this, write the U(1) current algebra in terms
of a left-moving boson H(z). Let us consider how H might appear in
the vertex operator for the modulus that interpolates between the vacua.
The U(1) is assumed to be unbroken for all vacua, so the vertex operator
must be invariant under H → H + ε — it can only contain derivatives of
H . Dimensionally, the only operator that can then appear in a massless
vertex operator is ∂H , and the whole matter vertex operator must be

∂Hψ̃eik·X (18.4.2)

for some (0, 12 ) superconformal tensor ψ̃. However, we know from sec-
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tion 18.2 that such tensors are inconsistent with chirality, so H cannot
appear in the vertex operator at all. Expectation values of the U(1) cur-
rent are then independent of the modulus, and therefore so is the gauge
coupling.

A related issue is the quantization of electric charge. An isolated frac-
tional multiple of the electron charge has never been seen in nature. The
Standard Model has fractionally charged quarks, of course, but these are
confined in hadrons of integer charge. It is therefore useful to work with

Q′ = QEM +
T

3
, (18.4.3)

where the triality T , defined mod 3, is +1 for an SU(3) 3 and −1 for a 3̄.
One can take T to be the SU(3) generator which is diag(1, 1,−2) in the 3
representation. Quarks are confined in states with T = 0 mod 3, so for all
isolated states Q′ = QEM mod 1. The charge Q′ has been defined so as to
be an integer for all Standard Model fields, so it follows that QEM is an
integer for all isolated states.

Now consider this issue in string theory, starting with some special
cases. If there is an SU(5) gauge group below the string scale, there can
be no isolated fractional charges. In the SU(5) 5, the charge

Q′ = QEM +
1

3
T =

1

2
Y + I3 +

1

3
T (18.4.4)

is

diag

(
−1

3
,−1

3
,−1

3
,
1

2
,
1

2

)
+ diag

(
0, 0, 0,

1

2
,−1

2

)
+ diag

(
1

3
,
1

3
,−2

3
, 0, 0

)
= diag(0, 0,−1, 1, 0) . (18.4.5)

Since Q′ is an integer for all states in the 5 and all representations can be
obtained as tensor products of 5s, Q′ is an integer for all states and so
QEM is an integer for all isolated states.

Now consider the case in which there is a level one SU(5) current
algebra at the string scale, broken by twists to SU(3)× SU(2)×U(1). Let
us represent this current algebra by free fermions λK± for K = 4, . . . , 8,
with SU(3) acting on K = 4, 5, 6 and SU(2) acting on K = 7, 8 (the
numbering is kept consistent with the orbifold and Calabi–Yau chapters).
The current corresponding to Q′ is thus

j ′ = λ6−λ6+ − λ7−λ7+ = i∂(H7 −H6) . (18.4.6)

In a sector with boundary conditions

λK+(σ1 + 2π) = exp(2πiνK)λ
K+(σ1) , (18.4.7)
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the bosonized vertex operator

exp

[
i
∑
K

(1/2− νK)HK

]
(18.4.8)

has charge

Q′ = ν6 − ν7 . (18.4.9)

Thus there will be isolated fractional charges if there are twisted sectors
with ν6 �= ν7. In fact there must be such sectors. Consider the gauge
boson associated with the current λ6+λ7−. This carries the SU(3)× SU(2)
representation (3,2) and is one of the SU(5) bosons that is removed by the
twists that break the SU(5) symmetry. One of the twists must therefore
have exp[2πi(ν6 − ν7)] �= 1, and the corresponding twisted sector has
fractional Q′.

The lightest fractionally charged particle must be stable due to charge
conservation. The number of fractional charges in ordinary matter is
known to be less than 10−20 per nucleon. If fractionally charged particles
of mass m were in thermal equilibrium in the early universe at temperatures
T > m, it is estimated that annihilation would only reduce their present
abundance to approximately 10−9 per nucleon. Whether this is a problem
depends critically on the masses of the fractionally charged states, whether
all are near the string scale or whether some are near the weak scale.
If all the fractional charges are superheavy then the situation is very
similar to that with magnetic monopoles in grand unified theories. Diluting
the density of relic monopoles was one of the original motivations for
inflationary cosmology; this would also sufficiently dilute the fractional
charges. It may also be the case that the universe was never hot enough
to produce string-scale states thermally. Fractionally charged particles
with masses near the weak scale are a potentially severe problem, unless
they are charged under a new strongly coupled gauge symmetry and so
confined.

In Calabi–Yau compactification the fractionally charged states are su-
perheavy. The twist that breaks SU(5) is accompanied by a freely-acting
spacetime symmetry, so that any string in the twisted sector of the gauge
group will be stretched in spacetime. In orbifold compactifications there
can be massless fractionally charged states from the twisted sectors, but
the Calabi–Yau result suggests that superheavy masses are more generic.

Let us mention a generalization of the previous result. If the SU(3) and
SU(2) gauge symmetries are at level one, and the tree-level value of sin2 θw
is the SU(5) value 3

8 , and SU(5) is broken to SU(3)× SU(2)×U(1), then
there are states of fractional Q′. To see this, write the SU(3)×SU(2)×U(1)
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current algebra in terms of free bosons, the diagonal currents being5

j3SU(3) =
i

2
∂(H4 −H5) , (18.4.10a)

j8SU(3) =
i

2× 31/2
∂(H4 +H5 − 2H6) , (18.4.10b)

j3SU(2) =
i

2
∂(H7 −H8) , (18.4.10c)

jY /2 =
i

6
∂[−2(H4 +H5 +H6) + 3(H7 +H8)] . (18.4.10d)

The current jY /2 is normalized so that the z−2 term in the jY /2jY /2
operator product is 5

3 times that of the non-Abelian currents, giving the

tree-level value sin2 θw = 3
8 . Then

j ′ = jY /2 + j3SU(2) +
2

31/2
j8SU(3) = i∂(H7 −H6) (18.4.11)

just as above, and Q′ = k7 − k6. If Q′ were an integer for all states, then
the (1, 0) operator

exp[i(H6 −H7)] (18.4.12)

would have single-valued OPEs with respect to all vertex operators. How-
ever, this would mean that the current algebra is larger than the assumed
SU(3) × SU(2) × U(1); in fact, closure of the OPE gives a full SU(5)
algebra and gauge group. So under the assumptions given there must
be fractional charges. This is more general than the earlier result, the
assumption of a twisted SU(5) current algebra having been replaced by a
weaker assumption about the weak mixing angle.

There are various further generalizations. By an extension of the above
argument it can be shown that if the current algebras are level one,
and there are no states of fractional Q′, and SU(5) is broken, then the
tree-level sin2 θw must take one of the values 3

20 ,
3
32 ,

3
44 , . . . . To make these

values consistent with experiment takes a very nonstandard running of the
couplings, suggesting that either the current algebras are higher level or
that supermassive fractional charges should be expected to exist. One can
also obtain constraints on higher level models, but they are less restrictive.
We mention in passing that at higher levels we cannot use the same
free-boson representation of the current algebras. Rather, simple currents,
defined below eq. (15.3.19), play the role that exponentials of free fields
play in the level one case.

5 Only four free bosons are needed to represent the current algebra — the linear combination
H4+H5+H6+H7+H8 does not appear. The notation is chosen to correspond to the bosonization
of the earlier free Fermi representation.
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If unconfined fractional charges do exist, electric charge is quantized
in a unit e/n smaller than the electron charge. The Dirac quantization
condition implies that any magnetic monopole must have a magnetic
charge which is an integer multiple of 2πn/e. Various classical monopole
solutions exist in string theories, and one expects that the minimum value
allowed by the Dirac quantization is attained. Discovery of a monopole
with charge 2π/e would imply the nonexistence of fractional charges, and
so have implications for string theory through the above theorems.
The final issues are proton decay and neutrino masses. The details

here are rather model-dependent, but we will outline some of the general
issues. Two of the successes of the Standard Model are that it explains
the stability of the proton and the lightness of the neutrinos. The most
general renormalizable action with the fields and gauge symmetries of
the Standard Model has no terms that violate baryon number B. This is
termed an accidental symmetry, meaning that the long life of the proton
is indirectly implied by the gauge symmetries. The allowed ∆B �= 0 terms
of lowest dimension are some four-fermion interactions. These will be
induced in grand unified theories by exchange of heavy gauge (X) bosons.
The operators have dimension 6, so the amplitude goes as M−2

X , and an
estimate of the resulting proton lifetime is

τP ≈
(

MX

1015 GeV

)4

× 1031±1 years. (18.4.13)

The experimental bound is of order 1032 years, so this is an interesting rate
although very sensitive to the unification scale. Similarly, a mass for the
Weyl neutrinos would violate lepton number, and L is another accidental
symmetry of the Standard Model.
In supersymmetric theories there are gauge-invariant dimension 3, 4,

and 5 operators that violate B and/or L. These are the superpotential
terms

µ1H1L

+ η1U
cDcDc + η2QLD

c + η3LLE
c

+
λ1

M
QQQL +

λ2

M
UcUcDcEc +

λ3

M
LLH2H2 . (18.4.14)

Here Q, Uc, Dc, L, and Ec are chiral superfields, containing respectively
the left-handed quark doublet, anti-up quark, anti-down quark, lepton
doublet, and the positron; H1 and H2 are chiral superfields containing
the two Higgs scalars needed in the supersymmetric Standard Model.
Gauge and generation indices are omitted. The dimension 3 term in
the first line would generate a neutrino mass and so it must be that
µ1 ≤ 10−3 GeV, which is small compared to the weak scale and minuscule
compared to the unification scale. The terms in the second line are of
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dimension 4, unsuppressed by heavy mass scales, and their dimensionless
coefficients must be very small. For example, the first two terms together
can induce proton decay, so η1η2 ≤ 10−24. The terms in the third line are
of dimension 5, suppressed by one power of mass; the proton decay limit
λ1,2/M ≤ 10−25 GeV−1 requires a combination of heavy scales and small
coefficients, while the lightness of the neutrino implies that λ3/M ≤ 10−13
GeV−1. Thus any supersymmetric theory needs discrete symmetries to
eliminate almost completely the dimension 3 and 4 terms and at least
to suppress the dimension 5 terms unless they are not proportional to
small Yukawa couplings. Several groups have argued that the necessary
symmetries exist in various classes of string vacua. In many examples
these seem to be associated with an additional U(1) gauge interaction
broken in the TeV energy range.

There is at least one respect in which string theories, or at least higher-
dimensional theories, may have an advantage over other supersymmetric
unified theories. The SU(2) doublet Higgs scalar that breaks the weak
interaction must have a mass of order the electroweak scale, while its
color triplet GUT partners can mediate proton decay and so must have
masses near the unification scale. It is possible to arrange the necessary
mass matrix for these states without fine tuning, but the models in general
seem rather contrived. String theory provides another solution. When an
SU(5) current algebra symmetry is broken by twists, the low energy states
do not in general fit into complete multiplets of the unified symmetry:
some of the states are simply projected away. This is true somewhat more
generally for any higher-dimensional gauge theory compactified to d = 4
with the gauge symmetry broken at the compactification scale by Wilson
lines. In these cases one keeps certain attractive features, such as the
unification of the gauge interactions and the prediction of mixing angle,
but the undesired Higgs triplet need not be present.

18.5 Conditions for spacetime supersymmetry

Consider any four-dimensional string theory with N = 1 spacetime su-
persymmetry. We will show that there must be a right-moving N = 2
world-sheet superconformal symmetry, generalizing the results found in
the orbifold and Calabi–Yau examples.

The current for spacetime supersymmetry is

̃α = e−φ̃/2S̃αΣ̃ , ̃α̇ = e−φ̃/2S̃α̇Σ̃ . (18.5.1)

We have separated the four-dimensional spin field into its 2 and 2 com-
ponents, denoted respectively by undotted and dotted indices. The four-
dimensional spin fields have opposite values of exp(πiF̃), so the internal



18.5 Conditions for spacetime supersymmetry 357

parts Σ̃ and Σ̃ must also have opposite values by the GSO projection.
These are the vertex operators for the ground states of the compact CFT.
They must each be of weight (0, 38 ) in order that the total currents have
weight (0, 1). As shown in section 18.2, this is the minimum weight for a

field in this sector, and so G̃0 annihilates both Σ̃ and Σ̃.

The single-valuedness of the OPEs of ̃α and ̃α̇ implies that

Σ̃(z̄)Σ̃(0) = z̄−3/4 · single-valued , (18.5.2a)

Σ̃(z̄)Σ̃(0) = z̄3/4 · single-valued , (18.5.2b)

in order to cancel the branch cuts from the other factors. By unitarity, the
coefficient of the unit operator in the OPE

Σ̃(z̄)Σ̃(0) = z̄−3/4
(
1 +

z̄

2
̃ + . . .

)
(18.5.3)

cannot vanish, and so can be normalized to 1 as shown. The point of
the following argument will be to show that the second term is also
nonvanishing, so that there is an additional conserved current ̃.

The OPE of supersymmetry currents is

̃α(z̄)̃β̇(0) ∼ 1

21/2z̄
(CΓµ)αβ̇e

−φ̃ψ̃µ(0) . (18.5.4)

As required by the supersymmetry algebra, the residue on the right-hand

side is the spacetime momentum current; this is in the −1 picture e−φ̃ψ̃µ
just as in the ten-dimensional equation (12.4.18). It also follows from the
supersymmetry algebra that the OPE ̃α̃β of two undotted currents is
nonsingular, implying that

Σ̃(z̄)Σ̃(0) = O(z̄3/4) . (18.5.5)

The four-point function is then〈
Σ̃(z̄1)Σ̃(z̄2)Σ̃(z̄3)Σ̃(z̄4)

〉
=

(
z̄13z̄24

z̄12z̄14z̄23z̄34

)3/4

f(z̄1, z̄2, z̄3, z̄4) , (18.5.6)

where the OPEs as various points become coincident imply that f is a
holomorphic function of its arguments. The z̄−3/4 behavior as any of the
(0, 38 ) fields is taken to infinity then implies that f is bounded at infinity
and so a constant. Taking the limit of the four-point function as z̄12 → 0,

the term of order z̄
−3/4
12 implies that f = 1. The term of order z̄

1/4
12 then

implies 〈
̃(z̄2)Σ̃(z̄3)Σ̃(z̄4)

〉
=

3z̄
1/4
34

2z̄23z̄24
, (18.5.7)

so that in particular ̃ is nonzero. The further limits z̄23 → 0, z̄24 → 0, and
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z̄34 → 0 then reveal that

̃(z̄)Σ̃(0) ∼ 3

2z̄
Σ̃(0) , (18.5.8a)

̃(z̄)Σ̃(0) ∼ − 3

2z̄
Σ̃(0) , (18.5.8b)

̃(z̄)̃(0) ∼ 3

z̄2
. (18.5.8c)

As in the discussion of bosonization, the ̃ ̃ OPE implies that the
expectation values of the current can be written in terms of those of a
right-moving boson H̃ ,

̃(z̄) = 31/2i∂̄H̃(z̄) . (18.5.9)

The energy-momentum tensor separates into one piece constructed from
the current and another commuting with it,

T̃B = −1

2
∂̄H̃∂̄H̃ + T̃ ′

B . (18.5.10)

The ̃Σ̃ OPE implies that

Σ̃ = exp(31/2iH̃/2)Σ̃′ , (18.5.11)

with Σ̃′ commuting with the current. The weight of the exponential is
(0, 38 ), the same as that of Σ̃ itself, so Σ̃′ is of weight (0,0) and must be the
identity. Thus the R ground state operators are functions only of the free
field,

Σ̃ = exp(31/2iH̃/2) , Σ̃ = exp(−31/2iH̃/2) . (18.5.12)

Now consider the supercurrent TF of the compact CFT. Since Σ̃ and Σ̃
are primary fields in the R sector and are annihilated by G̃0, we have

T̃F (z̄)Σ̃(0) = O(z̄−1/2) , T̃F (z̄)Σ̃(0) = O(z̄−1/2) . (18.5.13)

Using the explicit form (18.5.12), this implies

T̃F = T̃+
F + T̃−

F , (18.5.14a)

T̃+
F ∝ exp(iH̃/31/2) , T̃−

F ∝ exp(−iH̃/31/2) . (18.5.14b)

In other words,

̃(z̄)T̃+
F (0) ∼ 1

z̄
T̃+
F (0) , ̃(z̄)T̃−

F (0) ∼ −1

z̄
T̃−
F (0) . (18.5.15)

Applying the Jacobi identity, one obtains the full (0, 2) superconformal
OPE (11.1.4).
To summarize, the existence of N = 1 supersymmetry in spacetime

implies the existence of N = 2 right-moving superconformal symmetry on
the world-sheet. That is, there is at least (0,2) superconformal symmetry.
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The various components of the spacetime supersymmetry current are
now known explicitly in terms of free scalar fields; for example

̃ 1
2
1
2
= exp

[
1
2 (−φ̃+ iH̃0 + iH̃1 + 31/2iH̃)

]
. (18.5.16)

Single-valuedness of this current with any vertex operator thus implies
that all states have integer charge under

̃GSO =
1

2
∂̄(−φ̃+ iH̃0 + iH̃1 + 31/2iH̃) . (18.5.17)

This integer charge condition is the generalization of the GSO projection.
The converse holds as well: if the (0, 1) world-sheet supersymmetry of

the heterotic string is actually embedded in a (0, 2) or larger algebra, and
if all states carry integer charge under the current J̃ , then the theory
has spacetime supersymmetry. The argument is simple: if there is an
N = 2 right-moving supersymmetry, then by bosonizing the current J̃ we
can construct the operator (18.5.16). This is a (0, 1) field, a world-sheet
current. By the integer charge assumption it is local with respect to all the
vertex operators, and so has a well-defined action on the physical states. It
is a spacetime spinor and so corresponds to a spacetime supersymmetry.
Lorentz and CPT invariance generate the remaining components of the
supersymmetry current (18.5.1). Combining these currents with ∂Xµ gives
the gravitino vertex operators, so the supersymmetry is local.
The same argument can be applied to extended spacetime supersym-

metry. The analysis is a bit longer and is left to the references, but we
summarize the results. If there is N = 2 spacetime supersymmetry in the
heterotic string, then the right-moving internal CFT separates into two
pieces. The first, with c̃ = 3, is a specific (0, 2) superconformal theory:
two free scalars and two free fermions forming the standard (0, 2) super-
field discussed in section 11.1. The second, with c̃ = 6, must have (0, 4)
supersymmetry but is otherwise arbitrary. If there is N = 4 spacetime
supersymmetry, then the right-moving internal CFT consists precisely of
six free scalars and six free fermions — in other words, it is a toroidal
theory.

18.6 Low energy actions

In section 16.4 we obtained the low energy effective action for the Z3 orb-
ifold. Several important features of that action actually hold at string tree
level for all four-dimensional string theories with N = 1 supersymmetry:

1. The Kähler potential is −κ−2 ln(S+S∗) plus terms independent of S .

2. The superpotential is independent of S .
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3. The nonminimal gauge kinetic term is

fab =
2k̂aδab

g24
S . (18.6.1)

Such general results are not surprising from a world-sheet point of view.
The vertex operators for Φ4 and a involve only the noncompact free
fields Xµ and ψ̃µ, which are independent of the compactification. The
gauge boson vertex operators involve only these fields and the (1, 0) gauge
currents, which again are universal up to the coefficient k̂.
Rather than a detailed world-sheet derivation, it is very instructive to

give a derivation based on the spacetime effective action. The introduc-
tion (16.4.12) of the axion field depends only on the four-dimensional
fields and so is always valid. Under a shift a → a + ε the action changes
only by a term proportional to∫

F2 ∧ F2 . (18.6.2)

This is a topological invariant and vanishes in perturbation theory. In
perturbation theory there is then a PQ symmetry

S → S + iε . (18.6.3)

Second, there is a scale invariance: under

S → tS , Gµν4E → tGµν4E , (18.6.4)

with the other bosonic fields invariant, the action changes by

S → tS . (18.6.5)

This is just the statement that a constant dilaton only appears in the world-
sheet action multiplying the world-sheet Euler number. The scaling (18.6.4)
of the metric arises because the Einstein metric differs from the string
metric by a function of the dilaton.
The PQ symmetry requires that the Kähler potential depend only on

S + S∗. In the kinetic term for S , the metric contributes a scaling t and so
this term must be homogeneous in S; this determines the form given above
for the Kähler potential.6 In the gauge kinetic term, the metric contributes
no net t-dependence so fab must scale as t; by holomorphicity it must
be proportional to S . The PQ symmetry then requires that it depend
on no other fields, in order that the variation ε multiply the topological
term (18.6.2). The dependence on k̂a was obtained in section 18.2. It is

6 Scale invariance seems to allow an additional term (C + C∗) ln(S + S∗), where C is any other
superfield. To rule this out we appeal to the world-sheet argument that an off-diagonal metric
GCS̄ is impossible because the CFT factorizes.
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often conventional to choose the additive normalization of the dilaton
and the multiplicative normalization of the axion to eliminate g4,

fab = δab
S

8π2
. (18.6.6)

The physical value of the coupling is then

g2YM

8π2
=

1

Re〈S〉 . (18.6.7)

PQ invariance and the holomorphicity of the superpotential together
require that the superpotential be independent of S . This is precisely
consistent with the scaling of the action. To see this consider the term∫

d4x (−G4E)
1/2 exp(κ2K)

(
KījW ∗

;iW;j − 3κ2W ∗W
)

(18.6.8)

in the potential (B.2.29). There is a scale-dependence t2 from the metric
and t−1 from exp(κ2K), and so the action has the correct scaling if the
superpotential is scale-invariant.

One of the great strengths of this kind of argument is that it gives infor-
mation to all orders of perturbation theory, and even nonperturbatively.
An L-loop term in the effective action will scale as

SL → t1−LSL . (18.6.9)

It follows from consideration of the potential again that an L-loop term
in the superpotential scales as t−L. PQ invariance requires (S + S∗)−L
while holomorphicity requires S−L, so only tree level is allowed, L = 0.
This is an easy demonstration of one of the most important nonrenor-
malization theorems. The original proof in field theory involved detailed
graphical manipulations; a parallel argument can be constructed in string
perturbation theory using contour arguments. This nonrenormalization
theorem has many important consequences. For example, particle masses
or Yukawa couplings that vanish at tree level also vanish to all orders in
perturbation theory (except in certain cases where D-terms are renormal-
ized, as discussed in the next section).

For the gauge kinetic term f an L-loop contribution will scale as t1−L.
Again it must be holomorphic and PQ-invariant, allowing only L = 1, or
L = 0 with the precise field dependence S . Thus, aside from this tree-level
term f receives only one-loop corrections.7 With N = 1 supersymmetry
there are no such constraints on the Kähler potential because it need not

7 Such statements are often rather subtle in that one must be precise about what is not being
renormalized. The discussion in section 16.4 of the physical coupling versus the Wilsonian action
illustrates some of the issues.
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be holomorphic. An L-loop term (S + S∗)−L times any function of the
other fields is allowed.

The PQ symmetry is broken by nonperturbative effects because the
integral of F2 ∧F2 is nonzero for a topologically nontrivial instanton field.
The superpotential and gauge kinetic terms can then receive corrections,
which can often be determined exactly. We will see an example of a
nonperturbative superpotential below.

One final point: there is a useful general result about the metric for
the space of scalar fields. Suppose we have a compactification with some
moduli φi, which we take to be real. The world-sheet Lagrangian density
Lws is a function of the φi. One result of the analysis of string perturbation
theory in chapter 9 was that the Zamolodchikov metric 〈〈 | 〉, which is
the two-point function on the sphere, determines the normalization of the
vertex operators. In other words, the inner product of the string states
created by φi and φj is

Gij =
〈〈
∂Lws

∂φi

∣∣∣∣∂Lws

∂φj

〉
. (18.6.10)

This implies that the kinetic term for these fields is

1

2
Gij∂µφi∂µφj. (18.6.11)

Thus the Zamolodchikov metric is the metric on moduli space. This result
does not depend on having world-sheet supersymmetry, although in this
case we have the additional information that the manifold is complex and
Kähler.

18.7 Supersymmetry breaking in perturbation theory

Supersymmetry breaking at tree level

Now we would like to consider the spontaneous breaking of supersymme-
try, with particular attention to the fact that the supersymmetry breaking
scale is far below the string scale. The first question is whether it is possible
to find examples having this property at string tree level. In fact it seems
to be essentially impossible to do so.

Here is an example which illustrates the main issue. Consider the
heterotic string on a simple cubic torus, Xm ∼= Xm+2πRm for m = 4, . . . , 9,
except that the translation in the 7-direction is accompanied by a π/2
rotation in the (8,9) plane. In other words, the (7,8,9)-directions form a
cube with opposite faces identified, with a π/2 twist between one pair
of opposite faces. This fits in the general category of orbifold models.
However, the space is nonsingular because the combined rotation and
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translation has no fixed points. The rotation

(φ2, φ3, φ4) = (0, 0, 12π) (18.7.1)

is not in SU(3) and so all the supersymmetries are broken. However,
there is a limit, R7 → ∞, where the identification in the 7-direction
becomes irrelevant and supersymmetry is restored. More explicitly, the
effect of the twist is that p7R7 for any state is shifted from integer
values by an amount proportional to the spin s4, thus splitting the boson
and fermion masses. This is the Scherk–Schwarz mechanism. The mass-
squared splittings are of order R−27 and so go to zero as the 7-direction
decompactifies. The obvious problem with this is that the supersymmetry
breaking scale is tied to the compactification scale, which is inconsistent
with the discussion in section 18.3. This linking of the supersymmetry
breaking and compactification scales appears to be a generic problem
with tree-level supersymmetry breaking. We could avoid it in the above
example by taking instead the angle φ4 → 0; however, crystallographic
considerations limit φ4 to a finite set of discrete values. Note that a twist
acting on ψ̃m without acting on Xm would be a symmetry of the CFT for
any values of φ4, but would not commute with T̃F and so would render
the theory inconsistent.
There is a theorem that greatly restricts the possibilities for a large ratio

of scales at tree level. The simplest way to obtain such a ratio would be to
start with a supersymmetric vacuum and turn on a modulus that breaks
the supersymmetry. Vacua in the neighborhood of the supersymmetric
point would then have arbitrarily small breaking. However, this situation
is not possible. If there is a continuous family of string vacua with
vanishing cosmological constant, then either all members of the family
are spacetime supersymmetric, or none is. We will give both a world-sheet
and a spacetime demonstration of this.
On the world-sheet, we know that the supersymmetric point has (0,2)

supersymmetry with a quantized U(1) charge. As we move away from
this point either the supersymmetry must be broken to (0,1), which in
particular implies that the U(1) in the (0,2) algebra is broken, or we must
shift the quantization of the charge. To obtain either effect the vertex
operator for the modulus must depend on the boson H̃ . It can be shown
that this is impossible; the argument makes rather detailed use of the (0,2)
world-sheet algebra so we defer it to the next chapter.
For the spacetime argument, let us denote the modulus as t, with t = 0

the supersymmetric point. The condition that the potential (B.2.29) be flat
is

(∂t∂t̄K)−1|∂tW + κ2∂tKW |2 = 3κ2|W |2 . (18.7.2)

We assume that the modulus is neutral so that the D-term potential
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vanishes, but the argument can be extended to the case that it is not.
Physically, the metric ∂t∂t̄K must be nonvanishing and nonsingular. As a
differential equation for W , the condition (18.7.2) then implies that if W
vanishes for any t then it vanishes for all t, as claimed. This shows that a
continuous family of string vacua with zero cosmological constant cannot
include both supersymmetric and nonsupersymmetric states in any theory
with N = 1 supergravity, independent of string theory.

The Scherk–Schwarz mechanism gives arbitrarily small supersymmetry
breaking, but the supersymmetric point R7 = ∞ is at infinite distance. This
evades the theorem but it is also what makes this example uninteresting.
One could try to evade the theorem with a small discrete rather than
continuous parameter. For example, the Sugawara SU(2) theories have
c = 3 − 6/(k + 2) with k an integer, and so cluster arbitrarily closely to
c = 3 as k →∞. However, all attempts based on free, solvable, or smooth
compactifications have run into the decompactification problem.

Supersymmetry breaking in the loop expansion

The conditions for unbroken supersymmetry are

W (φ) = ∂iW (φ) = Da(φ, φ∗) = 0 . (18.7.3)

Now let us suppose that these conditions are satisfied at tree level and
ask whether loop corrections can lead to them being violated. We know
that the superpotential does not receive loop corrections, so the first two
conditions will continue to hold to all orders. For non-Abelian D-terms,
the vanishing of the Da is implied by the gauge symmetry, so the key issue
is the U(1) D-terms.

The D-term potential is

V = Re[(S/8π2) + f1(T )]
D2

2
(18.7.4a)

D =
1

Re[(S/8π2) + f1(T )]

(
2ξ − iκ2K,i

δφi

δλ

)
. (18.7.4b)

Here δφi/δλ is theU(1) variation of the given scalar φi. We have used what
we know about the gauge kinetic term — the threshold correction f1 is
included for completeness, but it is subleading and makes no difference in
the following discussion. The scaling property (18.6.9) (which includes the
scaling of the (−G)1/2 in the action) implies that an L-loop contribution
to the potential scales as t−L−1 and therefore as

S−L−1 . (18.7.5)

Consider first the possibility of a nonzero Fayet–Iliopoulos term ξ being
generated in perturbation theory. Expanding in powers of 1/S , the leading
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term in the potential is of order ξ2/Re(S). This is a tree-level effect, and
so by assumption is absent.
Now consider the effect of gauging the PQ symmetry associated with S ,

δS = iqδλ . (18.7.6)

With the known form of the Kähler potential for S , the leading potential
is

V ∝ q2

(S + S∗)3
. (18.7.7)

This is a two-loop effect, so D itself is a one-loop effect. To see the
significance of the variation (18.7.6), consider the effect on the PQ coupling

δ
1

4π2

∫
Im(S)Fa2 ∧ Fa2 =

qδλ

4π2

∫
Fa2 ∧ Fa2 . (18.7.8)

This is not gauge-invariant but has just the right form to cancel against a
one-loop anomaly in the gauge transformation, if the low energy fermion
spectrum produces one. In fact, many compactifications do have anoma-
lous spectra, and the anomaly is canceled by the variation (18.7.8) in
a four-dimensional version of the Green–Schwarz mechanism. This is
accompanied by cancellation of a gravitational anomaly. The induced
D-term is proportional to Tr(Q), the total U(1) charge of all massless
left-handed fermions.
Thus D �= 0 precisely if Tr(Q) �= 0, and then the supersymmetry of

the original configuration is broken by a one-loop effect. The important
question is whether the system can relax to a nearby supersymmetric
configuration. The full D-term, including the other charged fields, is

D =
q

(S + S∗)
+
∑
φi �=S

qiφ
i∗φi (18.7.9)

and the potential is proportional to the square of this. If we can give
the various φi small expectation values, of order (S + S∗)−1/2, such that
the D-term is set to zero while preserving W = ∂iW = 0, then there is
a supersymmetric minimum near the original configuration. In fact, in
the known examples this is the case. Notice that while supersymmetry is
restored, the new vacuum is qualitatively different from the original one.
In particular, the U(1) gauge symmetry is now broken by the expectation
value of eS , and the gauge boson is massive. Being a one-loop effect, the
gauge boson mass-squared is of order g2/8π2 times the string scale. Thus
the one-loop D-term produces a modest hierarchy of scales; this might
be useful, for example, in accounting for the pattern of quark and lepton
masses. Other massless particles may also become massive due to the shift
in the φi. These are effects that cannot occur with only F-terms in the
potential.
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It is also interesting to consider the case that the PQ-like symmetry
associated with the (1,1) moduli TA is gauged,

δTA = iqAδλ . (18.7.10)

To leading order in S the potential is then

V =
(qA∂AK)2

(S + S∗)
. (18.7.11)

This is a tree-level effect. We are assuming that we have a supersym-
metric tree-level solution, which is still possible on the submanifold of
moduli space where qA∂AK = 0. The would-be moduli orthogonal to
this submanifold are all massive. There is a natural origin for the gauge
transformation (18.7.10). The imaginary part of TA is the integral of B2

over the 2-cycle NA. In the heterotic string the gauge variation of B2 is
proportional to Tr(δλF2 ), so if the U(1) field strength has an expectation
value there is a transformation

δTA ∝ iδλ

∫
NA
F2 . (18.7.12)

This is automatically absent for Calabi–Yau compactification, because the
integral of the flux measures the first Chern class. This is also another
example of the difficulty of breaking supersymmetry by a small amount
at tree level. It might seem that we could break the supersymmetry of
the qA∂AK �= 0 vacua slightly by making F2 small, but the integral of
F2 over any 2-cycle must satisfy a Dirac quantization condition. By a
generalization of the monopole argument, qi

∫
F2 must be a multiple of

2π, where F2 is proportional to any U(1) generator of E8 × E8, and qi
runs over the U(1) charges of all heterotic string states.

18.8 Supersymmetry beyond perturbation theory

An example

In the previous section, we saw that a vacuum that is supersymmetric at
tree level usually remains supersymmetric to all orders of perturbation
theory. Remarkably, it is known that in most tree-level N = 1 vacua the
supersymmetry is broken spontaneously by nonperturbative effects. Our
understanding of nonperturbative string theory is still limited, but below
the string scale we can work in the effective quantum field theory. In fact,
there is a reasonably coherent understanding of nonperturbative breaking
of supersymmetry in field theory, and the low energy theories emerging
from the string theory are typically of the type in which this breaking
occurs. This subject is quite involved; there are several symmetry-breaking
mechanisms (gaugino condensation, instantons, composite goldstinos), and
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a variety of techniques are needed to unravel the physics. Fortunately, we
can get a good idea of the issues by focusing on the simplest mechanism,
gluino condensation, in the simplest N = 1 vacua.
Consider any (2,2) compactification, with the visible E6 possibly broken

by Wilson lines. The hidden E8 generally has a large negative beta function

β8 =
b8

16π2
g3E8

, −b8 ) 1 . (18.8.1)

The running coupling is

g2E8
(µ) =

8π2

Re(S) + b8 ln(ms/µ)
(18.8.2)

(for the present discussion we are not concerned about the small numerical
difference between ms and mSU), and so becomes strong at a scale

Λ8 = ms exp[−Re(S)/|b8|] . (18.8.3)

This is below the string scale but above the scale where any of the visible
sector groups become strong. Just as with quarks in QCD, the strong
attraction causes the gauginos to condense,

|〈 (λλ)hidden〉| ≈ Λ3
8 . (18.8.4)

Here and below ‘≈’ means up to numerical coefficients. As in QCD this
condensate breaks a chiral symmetry, but in the pure supersymmetric
gauge theory (gauge fields and gauginos only) it is known not to break
supersymmetry.
In string theory at tree level the fields of the hidden E8 couple to

precisely one other light superfield, namely S . We have discussed the
coupling of the dilaton and the axion to the field strength, but in addition
supersymmetry requires a coupling between the auxiliary field and the
gauginos

κFS (λ̄λ)hidden . (18.8.5)

At scales below Λ8 this looks like an effective interaction

κFS 〈 (λλ)hidden〉 ≈ FSκm
3
SU exp(−3S/|b8|) . (18.8.6)

From the general N = 1 action (B.2.16) this implies an effective superpo-
tential8

W ≈ κm3
SU exp(−3S/|b8|) . (18.8.7)

This superpotential is nonperturbative, vanishing at large S faster than
any power of 1/S . This is an example of the violation of a perturbative

8 This must be holomorphic in S , whereas the scale Λ8 depends on Re(S). The point is that the
phase of the condensate depends on the axion in just such a way as to account for the difference.
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V

Re(S)

Fig. 18.3. The potential in a simple model of gluino condensation, as a function
of the dilaton with other moduli held fixed.

nonrenormalization theorem by nonperturbative effects. This superpoten-
tial is not PQ-invariant, which is consistent with the earlier discussion.

What is more, this superpotential breaks supersymmetry. At tree level
and to all orders of perturbation theory, the vacuum is supersymmetric
for any value of S . Nonperturbatively,

FS =
∂W

∂S
≈ κm3

SU exp(−3S/|b8|) (18.8.8)

is nonzero, which is the criterion (B.2.25) for the breaking of supersymme-
try. This simple model is not satisfactory because the potential is roughly

V ≈ κ2m6
SU(S + S∗)k exp[−3(S + S∗)/|b8|] . (18.8.9)

The power of S + S∗ comes from the Kähler potential for S and from the
two-loop beta function. At small coupling (large S), where the calculation
is valid, the potential has the qualitative form shown in figure 18.3 and
there is no stable vacuum. Rather, the system rolls down the potential
toward the point Re(S) = ∞, where the theory is free and supersymmetric.

We will consider the problem of stabilizing the dilaton shortly, but
for now let us see what happens if we assume that some higher correc-
tion, additional gauge group, or other modification gives rise to a stable
supersymmetry-breaking vacuum at a point where S has roughly the value
8π2/g2YM ≈ 100 found in simple grand unified models. The number 100
seems large, but noting that |b8| = 90 this is actually the typical scale for
the S-dependence.

Having broken supersymmetry, the next question is how this affects the
masses of the ordinary quarks, leptons, gauge bosons, and their superpart-
ners. The only tree-level coupling of the supersymmetry breaking field S
to these fields is again through a gauge kinetic term, that of the Standard
Model gauge fields. Thus FS has a coupling of the same form as (18.8.5)
but to the ordinary gauginos. Inserting the expectation value for FS gives
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a gaugino mass term,

κ〈FS 〉λλ ≈ κ2m3
SU exp(−3〈S〉/|b8|)λ̄λ . (18.8.10)

The mass is

mλ ≈ κ2m3
SU exp(−3〈S〉/|b8|) ≈ exp(−3〈S〉/|b8|)× 1018 GeV . (18.8.11)

To solve the Higgs naturalness problem the masses of the Standard Model
superpartners must be of order 103 GeV or less. For the values S ≈ 100
and |b8| = 90 of this simple model this is not the case, but because
these parameters appear in the exponent a modest ratio of parameters
S/|b| ≈ 12 would produce the observed large ratio of mass scales.

Once masses are generated for the Standard Model gauginos, loop
corrections will give mass to the scalar partners of quarks and leptons.
There is a simple reason why the (yet unseen) superpartners receive masses
in this way while the quarks, leptons and gauge bosons do not: the latter
masses are all forbidden by gauge invariance. Another feature to be
understood is the negative mass-squared of the Higgs scalar, needed to
break SU(2)×U(1), while the quark and lepton scalars must have positive
masses-squared to avoid breaking baryon and lepton number. Again there
is a simple general explanation, namely the one-loop correction to the
Higgs potential coming from a top quark loop; the large top quark mass
is just what is needed for this to work. The mass scale of the superpartners
then determines the weak interaction scale.

The enormous ratio
mew

mgrav
≈ 10−16 (18.8.12)

thus arises ultimately from an exponent of order 10 in Λ8, eq. (18.8.3). The
renormalization group has this effect of amplifying modestly small cou-
plings into large hierarchies. Thus, assuming the necessary stable vacuum,
the enormous ratio of the weak and gravitational scales could emerge
from a theory that has no free parameters.

We should point out that there is a distinction between the mass scale

msp of the Standard Model superpartners and the scale mSUSY = F
1/2
S of

the supersymmetry-breaking expectation value. In fact,

m2
SUSY ≈ mspmgrav , (18.8.13)

or

msp ≈ κFS . (18.8.14)

This relation has a simple interpretation: the splittings in the Standard
Model are given by the magnitude of the supersymmetry-breaking ex-
pectation value times the strength of the coupling between the Standard
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Model and the supersymmetry breaking. There has also been much con-
sideration of field theory models in which the two sectors couple more
strongly, through gauge interactions, and mSUSY is correspondingly lower.
Such models could arise in string theory, in (0,2) vacua.
The form of supersymmetry breaking in this particular model, from

〈FS 〉, is known as dilaton-mediated supersymmetry breaking. Because the
couplings of the dilaton are model-independent, the resulting pattern of
superpartner masses is rather simple. In particular, the induced masses
for the squarks and sleptons are to good accuracy the same for all
three generations. This is important to account for the suppression of
radiative corrections to rare decays (flavor changing neutral currents).
More generally, radiative and other corrections can lead to a less universal
pattern. Also, we have neglected all moduli other than the dilaton, but we
will see below a simple model in which it is one of the Calabi–Yau moduli
whose auxiliary field breaks supersymmetry.
The massless dilaton appears in the tree-level spectrum of every string

theory, but not in nature: it would mediate a long-range scalar force of
roughly gravitational strength. Measurements of the gravitational force at
laboratory and greater scales restrict any force with a range greater than a
few millimeters (corresponding to a mass of order 10−4 eV) to be several
orders of magnitude weaker than gravity, ruling out a massless dilaton.
We see from the present model that supersymmetry breaking can, and
generically will, generate a potential for the dilaton. In this case there is
no stable minimum, but the second derivative of the potential gives an
indication of the typical mass

mΦ ≈ msp . (18.8.15)

The superpotential (18.8.7) does not depend on any moduli other than
S . This is because the scale Λ8 is determined by the initial value of the
gauge coupling, which at tree level depends only on S . We know that the
one-loop correction to the gauge coupling depends on the other moduli,
and this in turn induces a dependence in the superpotential. Thus if there
is a stable minimum in the potential, generically all moduli will be massive.
Cosmological questions are outside our scope, but we note in passing

that there is a potential cosmological problem with the moduli, in that
their current energy density must not greatly exceed the critical density for
closure of the universe. Typically the range of masses 10−7 GeV < m < 104

GeV is problematic. Below this, the mass is sufficiently small not to present
a problem; above it, the decay rate of the particles is sufficiently great.
Masses at either end of the range give interesting possibilities for dark
matter.
Let us give an optimistic summary. Start with the simplest heterotic

string vacuum with N = 1 supersymmetry, namely a (2,2) orbifold or
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Calabi–Yau compactification. The result is a theory very much like the
picture one obtains by starting from the Standard Model and trying to
account for its patterns: gauge group E6, chiral matter in the 27 repre-
sentation, and a hidden sector that breaks supersymmetry (modulo the
stabilization problem) and produces a realistic spectrum of superpartner
masses. Of course, things may not work out so simply in detail; we know
that the set of string vacua is vast, and we do not know any dynamical
reason why these simple vacua should be preferred.

Another example

It is interesting to consider the following model,

K = − ln(S + S∗)− 3 ln(T + T ∗) , (18.8.16a)

W = −w + κm3
SU exp(−3S/|b8|) . (18.8.16b)

The Kähler potential for T is based on the large-radius limit of Calabi–
Yau compactification. Inclusion of a constant −w in the tree-level su-
perpotential is consistent with the scaling and PQ transformations. After
some cancellation, the potential is proportional to a square,

V =
(S + S∗)|W;S |2
(T + T ∗)3

, (18.8.17a)

W;S =
w

S + S∗
− κm3

SU exp(−3S/|b8|)
(

3

|b8| +
1

S + S∗

)
. (18.8.17b)

When W;S = 0 the potential is minimized, and the value at the minimum
is zero. Nevertheless supersymmetry is broken, as

W;T = − 3W

T + T ∗ �= 0 . (18.8.18)

This is intriguing: supersymmetry is broken nonperturbatively yet the
vacuum energy is still zero. Also, the field T is undetermined, so there
is a degenerate family of vacua with arbitrary supersymmetry-breaking
scale W;T . This is known as a no-scale model. The special properties of
the potential depend on the detailed form of the Kähler potential and
the superpotential, in particular the factor of 3 in the former and the fact
that the latter is independent of T . Higher order effects will spoil this. For
example, as we have noted above, threshold corrections will introduce a
T -dependence into the superpotential.

Discussion

Since S ∝ g−2, the superpotential (18.8.7) is of order exp[−O(1/g2)],
which is characteristic of nonperturbative effects in field theory. It is not
invariant under the PQ symmetry S → S + iε but transforms in a simple
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way. This can be related to the breaking of PQ invariance by instantons,
but the argument is rather indirect and we will not pursue it.
It is interesting to consider at this point the order exp[−O(1/g)] stringy

nonperturbative corrections deduced from the large order behavior of
string perturbation theory. For the type II string we were able to relate
these to D-instantons, but there is no analogous amplitude in the heterotic
string. In the type II theory the D-instanton gives rise to an effect that
does not occur in any order of perturbation theory, the nonconservation
of the integrated R–R 1-form field strength. In the heterotic string it is
unlikely that the stringy nonperturbative effects violate the perturbative
nonrenormalization theorems. They would give rise to effects proportional
to one of the forms

exp(CS1/2) , exp[C(S + S∗)1/2] (18.8.19)

with C a constant. The first form is holomorphic and the second is
PQ-invariant. Corrections to the superpotential would have to be of the
first form, but these have a complicated PQ transformation which is
probably not allowed. In particular, it is believed that a discrete subgroup
of the PQ symmetry is unbroken by anomalies; this would forbid the
form exp(CS1/2). The nonperturbative effects could then only modify the
Kähler potential, but this in any case receives corrections at all orders of
perturbation theory.
Now we return to the stabilization of the dilaton. One possibility is

that there are two competing strong gauge groups. In this case the dilaton
potential can have a minimum, which for appropriate choices of the
groups can be at the weak coupling S ≈ 100 which is suggested by
grand unification and needed for a large hierarchy. Another possibility is
that a weak-coupling minimum can be produced by including the stringy
nonperturbative corrections to the Kähler potential. It may seem odd
that these corrections can be important at weak coupling, but it has been
suggested that for the modestly small but not infinitesimal couplings of
interest, the stringy nonperturbative effects can dominate the perturbative
corrections. There may also be minima at very strong coupling, where the
dual M-theory picture is more useful, or at couplings of order 1 which are
close to neither limit.
Another idea would be that the potential really is as in figure 18.3 and

that the dilaton is time-dependent, rolling toward large S . However, a brief
calculation shows that these solutions cannot describe our universe: given
the age of the universe, the supersymmetry breaking and gauge couplings
would be far too small.
However, it is impossible to separate the stabilization of the dilaton

from the cosmological constant problem. A generic potential on field
space will have some number of local minima, but there is no reason
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that the value of the potential at any of the minima should vanish, either
exactly or to the enormous accuracy required by the upper limit on the
cosmological constant. So while the dilaton is stabilized, the metric is still
‘unstable,’ expanding exponentially, and the vacuum is not acceptable.
The cosmological constant problem afflicts any theory of gravity, not
just string theory. However, since predictive power in string theory is
completely dependent on understanding the dynamics of the vacuum,
any detailed discussion of the determination of the vacuum is likely to
be premature until we understand why the cosmological constant is so
small.
In any event, our current understanding would suggest that string the-

ory has many stable vacua. Supersymmetry guarantees that the various
moduli spaces with N = 2 and greater supersymmetry are exact solutions.
In addition there are likely moduli spaces with N = 1 supersymmetry but
no strong gauge groups and no breaking of supersymmetry. In addition
there may be a number of isolated minima of approximate N = 1 super-
symmetry, which are the ones we seek. There are also some string states of
negative energy density. These are known to exist from one-loop calcula-
tions in nonsupersymmetric vacua with vanishing tree-level cosmological
constant. The reader might worry that any vacuum with zero energy den-
sity will then be unstable. However, gravitational effects can completely
forbid tunneling from a state of zero energy density to a state of negative
energy density if the barrier between the two is sufficiently high. The
conditions for this to occur are met rather generally in supersymmetric
theories.
If there are many stable vacua, which of these the universe finds itself

in would be a cosmological question, depending on the initial conditions,
and the answer might be probabilistic rather than deterministic. This
does not imply a lack of predictive power. Assuming that we eventually
understand the dynamics well enough to determine the minima, there will
likely be very few with such general features of the Standard Model as
three generations. The key point is that because supersymmetry breaking
leaves only isolated minima, there are no effective free parameters: the
moduli are all determined by the dynamics.
This rather prosaic extrapolation is likely to be modified by new dy-

namical ideas. In particular, whatever principle is responsible for the
suppression of the cosmological constant may radically change the rules
of the game.

Exercises

18.1 Calculate the tree-level string amplitude with a model-independent
axion and two gauge bosons.
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18.2 Show from the explicit form of the string amplitudes that no scalar
other than the model-independent axion has a tree-level coupling to
F2 ∧ F2 .

string theory to have N = 2 and N = 4 spacetime supersymmetry.

18.4 Calculate the Zamolodchikov metric for two untwisted moduli of
the Z3 orbifold and compare with the result obtained in chapter 16 by
dimensional reduction.

18.5 Work out the one-loop vacuum amplitude for the twisted theory
described at the beginning of section 18.7.

18.6 For the SO(32) heterotic string on the Z3 orbifold, show that the gauge
and mixed gauge–gravitational anomalies are nonzero. Show that they can
be canceled by giving the superfield S the gauge transformation (18.7.6).
Show that the resulting potential has supersymmetric minima.

18.7 If we integrate out the auxiliary field FS , the couplings (18.8.5) lead
to a tree-level interaction of four gauge fermions. Find this interaction
using string perturbation theory. Note that it is independent of the com-
pactification.

18.3 Derive the conditions cited at the end of section 18.5 for a heterotic
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Advanced topics

In this final chapter we develop a number of intertwined ideas, concerning
the perturbative and nonperturbative dynamics of the heterotic and type
II theories. A common thread running through much of the chapter is
world-sheet N = 2 superconformal symmetry, and we begin by developing
this algebra in more detail. We then consider type II strings on Calabi–
Yau and other (2,2) SCFTs, and heterotic strings on general (2,2) SCFTs.
We next study string theories based on (2,2) minimal models, which
leads us also to mirror symmetry. From there we move to some of the
most interesting recent discoveries, phase transitions involving a change
of topology of the compact space — the perturbative flop transition and
the nonperturbative conifold transition. The final two sections deal with
dualities of compactified theories, the first developing K3 compactification
and the second the dualities of toroidally compactified heterotic strings.

19.1 The N = 2 superconformal algebra

The N = 2 superconformal algebra in operator product form, given in
eq. (11.1.4), is repeated below:

TB(z)T
±
F (0) ∼ 3

2z2
T±
F (0) +

1

z
∂T±

F (0) , (19.1.1a)

TB(z)j(0) ∼ 1

z2
j(0) +

1

z
∂j(0) , (19.1.1b)

T+
F (z)T−

F (0) ∼ 2c

3z3
+

2

z2
j(0) +

2

z
TB(0) +

1

z
∂j(0) , (19.1.1c)

T+
F (z)T+

F (0) ∼ T−
F (z)T−

F (0) ∼ 0 , (19.1.1d)

j(z)T±
F (0) ∼ ±1

z
T±
F (0) , (19.1.1e)

j(z)j(0) ∼ c

3z2
. (19.1.1f)

375
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In the examples of interest the current j is single-valued with respect to
all vertex operators. The Laurent expansions are then

TB(z) =
∑
n∈Z

Ln

zn+2
, j(z) =

∑
n∈Z

Jn

zn+1
, (19.1.2a)

T+
F (z) =

∑
r∈Z+ν

G+
r

zr+3/2
, T−

F (z) =
∑
r∈Z−ν

G−r
zr+3/2

, (19.1.2b)

where the shift ν can take any real value. The OPEs (19.1.1) correspond
to the N = 2 superconformal algebra

[Lm,G
±
r ] =

(
m

2
− r

)
G±m+r , (19.1.3a)

[Lm, Jn] = −nJm+n , (19.1.3b)

{G+
r , G

−
s } = 2Lr+s + (r − s)Jr+s +

c

3

(
r2 − 1

4

)
δr,−s , (19.1.3c)

{G+
r , G

+
s } = {G−r , G−s } = 0 , (19.1.3d)

[Jn, G
±
r ] = ±G±r+n , (19.1.3e)

[Jm, Jn] =
c

3
mδm,−n . (19.1.3f)

It was shown in section 18.5 that every heterotic string theory with
d = 4, N = 1 spacetime supersymmetry has a right-moving N = 2
superconformal algebra. In compactifications with the spin connection
embedded in the gauge connection there is also a left-moving N = 2
algebra. Most of this final chapter deals with string theories having such
(2,2) superconformal algebras. These are interesting for a number of rea-
sons. First, they can also be taken as backgrounds for the type II string,
where they lead to d = 4, N = 2 supersymmetry. This larger supersym-
metry puts strong constraints on the dynamics, even nonperturbatively.
Second, the large world-sheet superconformal algebra allows us to derive
many general results concerning the low energy dynamics of heterotic
string compactifications. Third, there are several additional constructions
of (2,2) CFTs, and an interesting interplay between the different construc-
tions. Finally, we have explained in the previous chapter that (0,2) CFTs
have several phenomenological advantages over the more restricted (2,2)
theories. However, many (0,2) theories are obtained from (2,2) theories
by turning on Wilson lines or moduli. Also, many of the methods and
constructions that we will develop for (2,2) theories can also be applied
to the (0,2) case, though with more difficulty.

Heterotic string vertex operators

In this section we consider only the right-moving supersymmetry algebra,
so that the results apply to all supersymmetric compactifications of the
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heterotic string. We take c̃ = 9, as is relevant to four-dimensional theories.
The local symmetry T̃F of the heterotic string is embedded in the N = 2
algebra as

T̃F = T̃+
F + T̃−

F . (19.1.4)

The separate generators T̃±
F must have the same periodicity as T̃F : either

NS (ν = 1
2) or R (ν = 0). In addition to N = 2 superconformal symmetry,

spacetime supersymmetry implies that all states have integer charge under
the current (18.5.17). In a general vertex operator proportional to

exp
[
lφ̃+ is0H̃

0 + is1H̃
1 + iQ̃(H̃/31/2)

]
, (19.1.5)

it must then be the case that

l + s0 + s1 + Q̃ ∈ 2Z . (19.1.6)

Given the result ̃ = 31/2i∂̄H̃ from section 18.5, it follows that Q̃ is the
eigenvalue of J̃0.
The vertex operators for the graviton, dilaton, and axion depend only on

the noncompact coordinates and so are independent of compactification.
For the remaining scalars, the weight (1, 12 ) vertex operator in the −1
picture comes entirely from the compact CFT. The condition (19.1.6) in
this case implies that Q̃ is an odd integer. The weight of exp(iQ̃H̃/31/2) is
h̃ = Q̃2/6, so the only possible values are Q̃ = ±1 and the vertex operator
takes one of the two forms

U exp(iH̃/31/2) , U exp(−iH̃/31/2) , (19.1.7)

with U having weight (1, 13 ).

For fermions from the compact CFT, the internal part has weight (1, 38 ).
When the four-dimensional spinor is a 2, then s0 + s1 is an odd integer
and the allowed values of Q̃ are 3

2 and − 1
2 , giving the vertex operators

ja exp(31/2iH̃/2) , U exp[−iH̃/(2× 31/2)] . (19.1.8)

For Q̃ = 3
2 , the exponential saturates the right-moving weight 3

8 and is
identical to the compact part of the spacetime supercharge. The remaining
factor j is a (1, 0) current, so this state is a gaugino. For Q̃ = − 1

2 , the

remaining factor U is of weight (1, 13 ), just as for the scalar. Because
these theories have spacetime supersymmetry there is an isomorphism
between the scalar and fermionic spectra. The OPE with the compact part
exp(±31/2iH̃/2) of the supercharge, which has Q̃ = ±3

2 , relates the bosonic

states with Q̃ = +1 to the fermionic states with Q̃ = −1
2 . Similarly when

the four-dimensional spinor is a 2′, then Q̃ must be 1
2 or − 3

2 , giving the
vertex operators

U exp[iH̃/(2× 31/2)] , ja exp(−31/2iH̃/2) . (19.1.9)
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Chiral primary fields

The N = 2 superconformal algebra includes the anticommutators

{G̃+
1/2, G̃

−−1/2} = 2L̃0 + J̃0 , (19.1.10a)

{G̃+
−1/2, G̃

−
1/2} = 2L̃0 − J̃0 . (19.1.10b)

We use the right-moving notation consistent with our convention for the
heterotic string, but now allow arbitrary central charge. For central charge
c̃, the bosonization of the ̃ ̃ OPE implies that

̃ = i(c̃/3)1/2∂̄H̃ . (19.1.11)

Taking the expectation values of the anticommutators (19.1.10) in any
state, the left-hand side is nonnegative and so

2h̃ ≥ |Q̃| . (19.1.12)

Let us consider an NS state |c〉 that saturates this inequality with Q̃ = 2h̃.
Such a state has the properties

G̃±r |c〉 = 0 , r > 0 , (19.1.13a)

L̃n|c〉 = J̃n|c〉 = 0 , n > 0 , (19.1.13b)

G̃+
−1/2|c〉 = 0 . (19.1.13c)

The first two lines state that |c〉 is annihilated by all of the lowering
operators in the N = 2 algebra and so is an N = 2 superconformal
primary field. The additional property of being annihilated by G̃+

−1/2
defines a chiral primary field. To derive (19.1.13), note that all of the
lowering operators except for G̃−1/2 take |c〉 into a state that would violate

the inequality (19.1.12), and so must annihilate it. The expectation value
of the anticommutator (19.1.10b) further implies that G̃−1/2 and G̃+

−1/2
annihilate |c〉, giving the rest of eq. (19.1.13). A state with Q̃ = −2h̃ is
similarly a superconformal primary field that is also annihilated by G̃−−1/2,
and is known as an antichiral primary field. The free boson H̃ contributes
3Q̃2/2c̃ to the weight of any state, so chiral primaries are possible only if

3Q̃2

2c̃
≤ |Q̃|

2
⇒ |Q̃| ≤ c̃

3
. (19.1.14)

In particular the NS vertex operators (19.1.7), with Q̃ = ±1 and h̃ = 1
2 ,

are chiral and antichiral primaries. This property will be useful later. For
the present we just use it to complete an argument from the previous
chapter. We have seen that the −1 picture massless vertex operators have
U(1) charge Q̃ = ±1. Acting with G−1/2 to obtain the 0 picture operators

could give Q̃ = ±2 or 0. However, the chiral and antichiral properties
imply that the terms with Q̃ = ±2 vanish, so that the 0 picture operator
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must have Q̃ = 0 and can depend on H̃ only through its derivative.
Dimensionally it can then only be linear in ∂̄H̃ . Acting with J̃1 picks out
the coefficient of ∂̄H̃ ,

J̃1 · V0 = J̃1G−1/2 · V−1 = (G̃−1/2J̃1 + G̃+
1/2 − G̃−1/2) · V−1 = 0 , (19.1.15)

the final equality holding because V−1 is primary. The 0 picture vertex
operator is the change in the world-sheet action when a modulus is
varied. We have established that this is independent of H̃ , as needed
above eq. (18.7.2).

Spectral flow

Suppose that we have a representation of the N = 2 algebra (19.1.3) with
some periodicity ν. Imagine shifting the U(1) charge of every state by
−c̃η/3, so that the free boson part of any vertex operator is shifted

exp
[
i(3/c̃)1/2Q̃H̃

]
→ exp

[
i(3/c̃)1/2Q̃H̃ − iη(c̃/3)1/2H̃

]
. (19.1.16)

From their U(1) charges we know that the T̃±
F depend on the free

boson as exp[±i(3/c̃)1/2H̃]. Then from the OPE of this factor with the

exponential (19.1.16) it follows that the periodicity of T̃±
F with respect to

any vertex operator shifts,

ν → ν + η . (19.1.17)

By this shift of the U(1) charges, known as spectral flow, a representation
with any periodicity can be converted to any other periodicity. The peri-
odicities of the U(1) current and energy-momentum tensor are unaffected.
In the d = 4 heterotic string, the flow with η = 1

2 converts a chiral primary

into a Q̃ = −1
2 R sector state, the flow with η = −1

2 converts an antichiral

primary into a Q̃ = 1
2 R sector state, and vice versa: the superpartners are

related to one another by spectral flow. The defining relations for chiral
and antichiral primaries become

G̃±n |ψ〉 = L̃n|ψ〉 = J̃n|ψ〉 = 0 , n ≥ 0 , (19.1.18)

where |ψ〉 is the R sector state produced by the flow.

19.2 Type II strings on Calabi–Yau manifolds

Consider either type II string on a Calabi–Yau manifold. The compact
CFT is the same as for the heterotic string, with the left-moving current
algebra fermions λA for A = 1, . . . , 6 replaced by fermions ψm and the
remaining λA omitted. One can construct a right-moving spacetime super-
symmetry precisely as in the heterotic string, and because the world-sheet
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theory is now the same on the right and left, there is a second spacetime
supercharge from the left-movers. Thus either type II theory will have
d = 4, N = 2 supersymmetry. The argument from section 18.5 shows fur-
ther that this will be true for any compact CFT with (2,2) superconformal
symmetry, provided it satisfies the generalized GSO projection (19.1.6) on
both sides.

For the IIA string on a Calabi–Yau manifold, the massless fields come
from the NS–NS fluctuations gMN , bMN , φ and the R–R fluctuations
cM and cMNP . For any Calabi–Yau manifold these will include the four-
dimensional metric gµν , dilaton φ, and axion bµν ∼= a. The field cµ is a
massless vector. In addition, every Calabi–Yau manifold has exactly one
(3,0)-form and one harmonic (0,3)-form, giving additional scalars from cijk
and c̄ı̄k̄ . For each harmonic (1,1)-form there is a scalar from gī , another
scalar from bī , and a vector from cµī . For each harmonic (2,1)-form there
are scalars from gij and ḡı̄ just as for the heterotic string, and also scalars
from cijk̄ and c̄ı̄k .

Let us see how these fit into multiplets of the N = 2 spacetime super-
symmetry; the latter are summarized in section B.2. The metric gµν plus
vector cµ comprise the bosonic content of the supergravity multiplet. The
remaining model-independent fields are four real scalars: φ, a, cijk , and
c̄ı̄k̄ . This is the bosonic content of one hypermultiplet. For each harmonic
(1,1)-form there are two scalars and a vector, the bosonic content of a
vector multiplet. For each harmonic (2,1)-form there are four scalars again
forming a hypermultiplet. In all, there are

IIA: h1,1 vector multiplets , h2,1 + 1 hypermultiplets . (19.2.1)

For the IIB string on a Calabi–Yau manifold, the massless fields come
from the NS–NS fluctuations gMN , bMN , φ and the R–R fluctuations
c, cMN , and cMNPQ. The model-independent fields are now the four-
dimensional metric gµν , dilaton φ, and axion bµν ∼= a, and also the scalar
c, a second axion cµν ∼= a′, and a vector cµijk from the (3, 0)-form. For
each harmonic (1,1)-form there is again a scalar from gī and one from
bī , and also one from cī and a fourth from the Poincaré dual of cµνī .
One might think that we should get additional scalars from cijk̄l̄ with the

h1,1 harmonic (2,2)-forms implied by the Hodge diamond (17.2.29), but
because the 5-form field strength is self-dual these are actually identical to
the states from cµνī . For the same reason there is not an additional vector
from cµ̄ı̄k̄ . For each harmonic (2,1)-form there are scalars from gij and
ḡı̄ and a vector from cµijk̄ . Again the self-duality means that the vectors
cµ̄ı̄k give the same vector states. The massless IIB states form the N = 2
supergravity multiplet plus

IIB: h2,1 vector multiplets , h1,1 + 1 hypermultiplets . (19.2.2)
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Table 19.1. Relations between Calabi–Yau moduli and
supersymmetry multiplets in the two type II theories.

IIA IIB

Kähler (1,1): vector hyper
complex structure (2,1): hyper vector

For convenient reference we have summarized the Calabi–Yau moduli of
the type II theories in table 19.1.

Low energy actions

In section B.7 we describe the general low energy theory allowed by
N = 2 supergravity. An important result is that the potential is deter-
mined entirely by the gauge interactions. Since the gauge fields in the type
II compactifications all come from the R–R sector, all strings states are
neutral and so the potential vanishes. Thus we can conclude that all the
scalars found above are moduli. Moreover, because this is a consequence
of symmetry it remains true to all orders in string and world-sheet per-
turbation theory, and even nonperturbatively. This is different from the
N = 1 case, where we saw that nonperturbative effects could produce a
potential.
The low energy action is then determined by supersymmetry in terms of

the kinetic terms for the moduli — the metric on moduli space. Supersym-
metry further implies that the kinetic terms for the hypermultiplet scalars
are independent of the vector multiplet scalars and the kinetic terms for
the vectors and their scalar partners are independent of the hypermultiplet
scalars. In other words, the moduli space is a product. The vector multiplet
moduli space is a special Kähler manifold and the hypermultiplet moduli
space a quaternionic manifold, both defined in section B.7.
Now let us compare the IIA and IIB theories compactified on the same

Calabi–Yau manifold. A hypermultiplet has twice as many scalars as a
vector multiplet, so the IIA and IIB moduli spaces (19.2.1) and (19.2.2) do
not in general even have the same dimension. However, they are related in
interesting ways. If the R–R scalars are set to zero the tree-level IIA and
IIB theories become identical, and indeed this removes two states from
each hypermultiplet. Thus at string tree level, the R–R-vanishing subspace
of each hypermultiplet moduli space should be a product of the dilaton–
axion moduli space and a space identical to the vector multiplet moduli
space of the other type II theory on the same Calabi–Yau manifold.
We can also go the other way, constructing the larger hypermultiplet
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moduli space from the smaller vector multiplet moduli space. Imagine
compactifying one additional coordinate x3 on a circle, going to d = 3.
On a circle the IIA and IIB theories are T -dual, so the resulting moduli
spaces should be identical. Indeed, each vector gives rise to two additional
moduli, one from the vector component A3 and one from the Poincaré
dual of the d = 3 gauge field, so the dimensions are correct. Carrying
out this reduction in detail gives the c-map from special Kähler manifolds
to quaternionic manifolds. Since the hypermultiplet moduli spaces can be
deduced in this way from the vector multiplet spaces, it follows that each
can be characterized by a single holomorphic prepotential as in special
Kähler geometry.
For the heterotic string we found a nonrenormalization theorem for the

superpotential in world-sheet perturbation theory from the combination
of holomorphicity and the symmetry δT = iε. It is interesting to apply
these same constraints in the present case. Consider first a single Kähler
modulus T representing the overall scale of the Calabi–Yau manifold. Just
as for the heterotic string, eq. (17.5.4), one derives the Kähler potential

K = −3 ln(T + T ∗) . (19.2.3)

Up to a Kähler transformation, this is of the special geometry form
(B.7.18),

K = − ln Im

(∑
I

XI∗∂IF(X)

)
, (19.2.4)

where

F(X) =
(X1)3

X0
, T =

iX1

X0
. (19.2.5)

The PQ symmetry δT = iε is

δX1 = εX0 . (19.2.6)

The function F is not invariant under this but changes by

δF = 3ε(X1)2 . (19.2.7)

The Kähler potential is then invariant; more generally, it is invariant
provided that

δF = cIJX
IXJ (19.2.8)

with real coefficients.
The function F must be of degree 2 in the XI , and so an n-loop world-

sheet correction would scale as T 3−n(X0)2. The only such correction that
is allowed by the PQ symmetry and is not of the trivial form (19.2.8) is

∆F = iλ(X0)2 , (19.2.9)
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a three-loop correction to the leading interaction. This does in general
appear, as we will note later. Further, in parallel to the heterotic string,
nonperturbative world-sheet corrections to the Kähler moduli space are
allowed by this argument but corrections to the complex structure moduli
space are forbidden because the Kähler modulus T cannot couple to the
complex structure moduli.

For more than one hypermultiplet, the PQ symmetries δTA = iεA again
greatly constrain the function F . It can be shown that any symmetry of
the Kähler metric must be of the form

δXI = ωIJXJ , (19.2.10)

so that up to a field redefinition we must have

TA =
iXA

X0
, A = 1, . . . , n , (19.2.11)

and ωA0 = εA. Requiring that F transform as in eq. (19.2.8) determines
that it is of the form

F =
dABCX

AXBXC

X0
+ iλ(X0)2 . (19.2.12)

This is consistent with the explicit results in section 17.5 for Calabi–Yau
compactification, which were stated for the heterotic string but also apply
to the type II theories. The coefficients dABC are the intersection numbers
discussed there. This is the moduli space of vector multiplets in the IIA
string, or the R–R-vanishing subspace of the IIB hypermultiplet moduli
space. Since it is derived using the (1,1) PQ symmetry, this F receives
world-sheet instanton corrections of order exp(−nATA/2πα′).
The complex structure moduli space must be a special Kähler manifold

but is otherwise not restricted to a form as narrow as eq. (19.2.12). The one
strong constraint is that the field-theory calculation of this moduli space
receives no corrections from world-sheet interactions. The scale of the
Calabi–Yau space, which governs these interactions, is a Kähler modulus.
By the factorized property of the moduli space, it cannot appear in the
complex structure metric. In section 19.6 we will describe the field theory
calculation further.

The discussion of the moduli space metric thus far has been restricted
to string tree level. For the potential, the N = 2 spacetime supersymmetry
allowed us to draw strong conclusions that were valid even nonperturba-
tively. This is also the case for the metric: supersymmetry strongly con-
strains the form of possible string corrections, in the expansion parameter
g ∼ eΦ4, as well as world-sheet corrections, in the expansion parameter
α′/R2

c ∼ 1/T . The string coupling is governed by the dilaton, so any
perturbative and nonperturbative corrections to the metric must depend
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on the dilaton. For both IIA and IIB compactifications, we have argued
above that the dilaton is in a hypermultiplet. We arrived at this conclusion
by counting states, but one can also show it directly (exercise 19.1). The
low energy action for the vector multiplet cannot depend on the dilaton
because of the product structure, and so receives no corrections from
string interactions, either perturbative or nonperturbative.

Referring to table 19.1, one can conclude from the nonrenormalization
theorems that of the four moduli spaces appearing in the type II theories,
the IIB complex structure moduli space receives neither world-sheet nor
string corrections. The tree-level result one obtains in the field theory
approximation is exact. The other moduli spaces receive corrections of
one or both kinds. Later we will see various extensions and applications
of these results.

Chiral rings

As a final point, let us consider compactification on a general (2,2) SCFT.
In parallel to the discussion for the heterotic string, the vertex operators
for the NS–NS moduli must be of one of the forms

|c, c̃〉 , |c, ã〉 , |a, c̃〉 , |a, ã〉 , (19.2.13)

the states being chiral or antichiral primaries on each side. The corre-
sponding operators are respectively denoted

Φ++ , Φ+− , Φ−+ , Φ−− . (19.2.14)

Now consider a product of operators of the same type, for example chiral–
chiral operators Φ++ and Ψ++. The minimum weight for an operator in
the OPE is

h ≥ 1

2
(QΦ + QΨ) = hΦ + hΨ , (19.2.15)

and similarly for h̃ and Q̃. The OPE is therefore nonsingular,

Φ++(z, z̄)Ψ++(0, 0) ∼ (ΦΨ)++(0, 0) . (19.2.16)

The operator (ΦΨ)++ has (h, h̃) = 1
2(Q, Q̃) and so is again chiral–chiral.

The (c, c̃) operators thus form a multiplicative chiral ring (not a group,
because an operator with Q > 0 has no inverse). The (a, ã) operators form
the conjugate ring, and the (c, ã) and (a, c̃) operators form a different ring
and its conjugate.

Let us connect this with the Calabi–Yau example. The (2,2) U(1) cur-
rents are

j = ψiψı̄ , ̃ = ψ̃iψ̃ı̄ . (19.2.17)
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From any harmonic (p, q)-form we can construct the operator

bi1...ip̄1...̄q (X)ψi1 . . . ψipψ̃̄1 . . . ψ̃̄q . (19.2.18)

This has charges and weights

Q = p , h =
p

2
, Q̃ = −q , h̃ =

q

2
, (19.2.19)

and so is a (c, ã) chiral primary.1 The weight comes entirely from the
Fermi fields, because the form is harmonic. Naively multiplying two op-
erators (19.2.18), the chiral ring is just the wedge product of the forms,
which is the cohomology ring. This is correct at large radius, where the
world-sheet interactions are weak, but the ring is corrected by world-sheet
interactions. Note that the operator corresponding to a (1, 1)-form is just
the vertex operator for the Kähler modulus. The product of three such
operators is proportional to the corresponding Yukawa coupling.

Topological string theory

Notice that

(G+
0 )

2 = 0 . (19.2.20)

This suggests that we think of G+
0 as a BRST operator. The reader can

show that the cohomology consists precisely of the chiral primary states,
in the form (19.1.18), with vanishing spacetime momentum.
The operator G+

0 is not conformally invariant, because the current T+
F

has weight (32 , 0). Let us consider instead the energy-momentum tensor

T
top
B ≡ TB +

1

2
∂j . (19.2.21)

The reader can verify the following properties:

T
top
B (z)T

top
B (0) ∼ 2

z2
T

top
B (z) +

1

z
∂T

top
B (z) , (19.2.22a)

T
top
B (z)T+

F (0) ∼ 1

z2
T+
F +

1

z
∂T+

F . (19.2.22b)

This shows that T
top
B generates a conformal symmetry of central charge 0,

and that under this symmetry T+
F has weight (1, 0) and so G+

0 is confor-
mally invariant.
Starting with any (2,2) CFT, we can make a string theory by coupling the

world-sheet metric to T
top
B . Because the central charge already vanishes,

no additional ghosts are needed; the OPE

T+
F (z)T−

F (0) = . . .+
1

z
T

top
B (0) + . . . (19.2.23)

1 Often the sign convention for Q̃ is reversed so that the operator is (c, c̃).
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shows that T−
F plays the role of the b ghost. This theory has very few states

because the cohomology is so small, and in particular has no dynamics
because all physical states are time-independent. It is known as topological
string theory, and its amplitudes are a special subset of the amplitudes of
the related type II string theory.

19.3 Heterotic string theories with (2,2) SCFT

Now let us consider heterotic string theory with a general c = c̃ = 9 (2,2)
CFT. The remainder of the left-moving central charge for the compact
theory comes from 26 free current algebra fermions. The noncompact
fields are the usual Xµ and ψ̃µ. We continue to take the generalized GSO
projection (19.1.6) on the right-moving side. On the left-moving side we
will similarly generalize the GSO projection. We focus on the E8 × E8

case. The current algebra fermions of interest will always be λA with
7 ≤ A ≤ 16. For the second E8, where 17 ≤ A ≤ 32, we take the same
GSO projection as in ten dimensions. The current algebra GSO projection
then requires that the sum of the charge Q from the left-moving N = 2
SCFT and the charge for the current algebra number current

8∑
K=4

λK+λK− (19.3.1)

be an even integer.
From the current algebra fields and the free boson for the U(1) of

the left-moving superconformal algebra one can form the following (1,0)
currents, all of which survive the GSO projection:

λAλB , Θ16 exp(3
1/2iH/2) , Θ16 exp(−31/2iH/2) , i∂H . (19.3.2)

Here Θ16 and Θ16 are the R sector vertex operators for the current algebra
fermions, with the subscript distinguishing the two spinor representations.
These currents transform as

45+ 16+ 16+ 1 (19.3.3)

under the manifest SO(10) current algebra. The gauge group must have
an SO(10) subgroup under which the adjoint representation decomposes
in this way; this identifies it as E6, whose adjoint is the 78. In addition
there is another E8 from the second set of current algebra fermions. This
E6 × E8 is the full gauge symmetry of generic (2,2) compactifications. In
special cases there are additional gauge symmetries, such as the SU(3) of
the Z3 orbifold.

To find the scalar spectrum, we start with the operator Φ++ for a state
|c, c̃〉 with Q = Q̃ = 1. On the right-moving side this is in the −1

2 picture,
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but on the left the superconformal symmetry is just a global symmetry
and there are no pictures. Rather, we need total weight h = 1. We can
obtain this and also satisfy the GSO projection with an additional λA

excitation; the vertex operator is

V = λAΦ++ . (19.3.4)

This is a 10 of the SO(10) that acts on λA. By spectral flow on the
left-moving part of Φ++ we also obtain

Θ16Φ
++(1→ − 1

2 ) . (19.3.5)

The notation indicates the charge Q after spectral flow. The charge is
shifted by −3

2 units, which moves Φ++ from the NS to the R sector of the
(2,2) CFT. The effect of spectral flow is to give Φ++(Q→ Q′) a weight

h =
Q

2
+
Q′2 − Q2

6
, h̃ =

Q̃

2
. (19.3.6)

This is ( 38 ,
1
2 ) in the present case. We have also included an R sector vertex

operator Θ16 for the current algebra fermions, the subscript indicating its
representation. The vertex operator then has the correct weight (1, 12 ) and
satisfies the GSO projection. Spectral flow also gives

Φ++(1→ −2) . (19.3.7)

This is now in the NS sector, with weight (1, 12 ), and satisfies the GSO
projection. These SO(10) representations 10 + 16 + 1 add up to a 27
of E6. As discussed in section 19.1, spectral flow on the right-moving
side generates the fermionic partners of these scalars in the 2 of the
four-dimensional Lorentz group.

There is one more massless scalar related to the above, with the weight
(1, 12 ) vertex operator

G−−1/2 · Φ++ . (19.3.8)

This is neutral under the gauge group. To see the significance of this state,
consider using the same (2,2) CFT for compactification of one of the type
II strings. In this case, Φ++ is the (−1,−1) picture vertex operator for
a modulus. The operator (19.3.8), which is in the heterotic −1 picture,
is then identical to the zero-momentum vertex operator for the type II
modulus in the (0,−1) picture. Raising the right-moving picture in both
theories, the 0 picture heterotic vertex operator is identical to the (0, 0)
picture type II vertex operator. These are the pictures that we add to the
action when we turn on a background, so we conclude that we get the
same CFT in the heterotic theory with a background of the scalar (19.3.8)
as in the type II theories with a nonzero (c, c̃) modulus.
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This further implies that the massless state (19.3.8) is a modulus, with
vanishing potential. The argument is that we know from N = 2 spacetime
supersymmetry that the corresponding type II state has no potential,
and so the world-sheet theory with this background is an exact CFT
whichever string theory we have. This kind of argument, using the larger
supersymmetry of the type II theory to make arguments indirectly about
the heterotic compactification, is very effective. It is important to note that
it is valid only at string tree level: we have used the statement that CFTs
correspond to tree-level backgrounds. At higher orders there is no relation
between the two theories, because different states run around the loops.
Some quantities that are not renormalized in the type II theory do get
corrections in the less supersymmetric heterotic theory. For example, we
argued that for the type II string, N = 2 spacetime supersymmetry implies
that the flat directions are flat even nonperturbatively. In the heterotic
string we know that gluino condensation and other effects can produce a
potential.

Starting with a state |a, ã〉 leads to the antiparticles of the above states.
Starting with states |c, ã〉 and |a, c̃〉 leads to a modulus plus a generation
of the opposite chirality, the spacetime 2 being correlated with the gauge
27. This pairing between generations and moduli of one type, and anti-
generations and moduli of another type, generalizes the association with
(1,1) and (2,1) forms found in Calabi–Yau compactification. In chapter 17
we argued that the moduli were exact by appealing to a result on the
detailed form of instanton amplitudes, and now we have come to the
same conclusion by appealing to results on the general N = 2 spacetime
supersymmetric action. This second method is more general. For example,
it also implies that the blowing-up modes for the fixed points of orbifolds
are moduli, a result argued for in section 16.4 by citing detailed studies of
twisted-state amplitudes.

In Calabi–Yau compactification we found additional E6 singlets. In the
abstract (2,2) description, these are states of weight (1, 12 ) and Q = 0 that
are N = 2 superconformal primary fields on the left-moving side. This is
in contrast to the states (19.3.8), which are not annihilated by G+

1/2.

We have used the relation between heterotic and type II compactifi-
cations at string tree level, but let us note that any modular-invariant
type II compactification also gives rise to a modular-invariant heterotic
compactification. The modular transformation of the type II string theory
mixes up the four sectors on each side, R vs NS and exp(πiF) = ±1,
in the same fashion as in the ten-dimensional theory in chapter 10. To
make a heterotic theory we replace the two left-moving fermions ψ2,3 with
26 left-moving current algebra fermions. The effect is independent of the
(2,2) CFT and in particular is the same as in ten dimensions. Because
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the difference in the number of fermions is an odd multiple of eight,
the signs in the type II and heterotic modular invariants differ (compare
eq. (10.7.9) with eq. (11.2.13)), which is precisely as required by spacetime
spin-statistics.

More on the low energy action

The argument that the scalars (19.3.8) are moduli is not self-contained,
in that it uses results on N = 2 supergravity that we have not derived.
To show these requires detailed analysis of the field theory actions and is
beyond the scope of this book. One can also give a direct demonstration
that the scalar (19.3.8) is a modulus, by extracting the effective action from
an analysis of the heterotic string scattering amplitudes. The basic strategy
is to consider a tree-level amplitude with any number of moduli (19.3.8), in
any combination of the chiral and antichiral types. If the potential vanishes
then this amplitude vanishes in the zero-momentum limit. Writing the
operator G−−1/2 as a contour integral of TF around Φ++, one can deform

the contour until it surrounds other vertex operators. It then takes one of
the two forms

G−−1/2G−−1/2 · Φ+± = 0 , (19.3.9a)

G−−1/2G+
−1/2 · Φ−± = (2L−1 − G+

−1/2G
−−1/2) · Φ−± = 2∂Φ−± . (19.3.9b)

We have used the relations

(G−−1/2)2 = 0 , G−−1/2 · Φ−± = 0 . (19.3.10)

The final result is a total derivative and so should integrate to zero. To
complete the argument one needs to show that there are no surface terms
from vertex operators approaching one another; this uses the fact that
the same structure appears on the right-moving side as on the left-moving
one. Also, the fixed vertex operators require some additional bookkeeping.
These details are left to the references. Below we cite further results that
are found from a careful study of string amplitudes. These are obtained
by the same approach, but the details are lengthy and again are left to
the references.
In the previous section we discussed the constraints from N = 2 super-

gravity on the metrics for the type II moduli spaces, that is, on the kinetic
terms for the moduli. We have argued that the CFT is the same for the
type II and heterotic theories, and so the metric on moduli space should
be the same in both string theories. In particular, the Zamolodchikov
metric (18.6.10) gives the moduli space metric in terms of data from the
CFT. This conclusion is confirmed by a study of moduli scattering ampli-
tudes, which to order k2 are the same in the type II and heterotic theories.
Thus the (1,1) and (2,1) moduli spaces for the heterotic string each are



390 19 Advanced topics

special Kähler manifolds and are governed by a single holomorphic pre-
potential. This is in agreement with the explicit Calabi–Yau results in
section 17.5. The analytic function F1(T ) governing the Kähler moduli
was there denoted W (T ), and the analytic function F2(Z) governing the
complex structure moduli was there denoted G(Z).

For the 27s and 27s, the model-dependent factors Φ±±′ in the vertex
operators are the same as for the corresponding moduli. One would
therefore expect that their amplitudes would be related to the amplitudes
for the moduli in a model-independent way. Indeed, the low energy action
is completely determined in terms of the holomorphic prepotentials F1 and
F2 governing the (1,1) and (2,1) moduli, except for the extra E6 singlets.
The 27 metric and superpotential are

G′
AB̄

= exp[κ2(K2 −K1)/3]GAB̄ , (19.3.11a)

W (φ) = φAx̄φ
B
ȳφ

C
z̄d
x̄ȳz̄∂A∂B∂CF1(T ) . (19.3.11b)

The 27 metric and superpotential are

G′
ab̄

= exp[κ2(K1 −K2)/3]Gab̄ , (19.3.12a)

W (χ) = χaxχ
b
yχ
c
zd
xyz∂a∂b∂cF2(Z) . (19.3.12b)

Unlike earlier results, these cannot be derived from N = 2 supergravity,
as the 27s and 27s have no analogs in the type II theory. That the
relations (19.3.11) and (19.3.12) are identical in form follows from the fact
that the (1,1) and (2,1) states are essentially identical in CFT, differing
only by a change in sign of the free scalar H from the superconformal
algebra. The four-loop term (19.2.9) in F1 does not affect W (φ).

These results generalize the Calabi–Yau results in section 17.5. We
have also learned from the use of the PQ symmetries that the Kähler
prepotential F1 is of the form eq. (19.2.12) in world-sheet perturbation
theory, and that F2 cannot receive world-sheet corrections. Again we
emphasize that the forms (19.3.11) and (19.3.12) are derived using CFT
arguments and so are exact at string tree level, but that the relation
between the different terms in the low energy action and the special form
of the Kähler potential are not protected by the N = 1 supersymmetry of
the heterotic string and so do not survive string loop corrections.

19.4 N = 2 minimal models

In chapter 15 we described the N = 0 and N = 1 minimal models. There is
a similar family of solvable CFTs with N = 2 superconformal symmetry.
It is interesting to consider heterotic string theories where the (2,2) CFT is
a combination of these N = 2 minimal models, with total central charge
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(c, c̃) = 9. This is another subject for which our treatment must be rather
abbreviated. The full details of the constructions are lengthy and are left
to the references.
A generalization of the method described in section 15.1 shows that

unitary representations of the N = 2 superconformal algebra can exist
only if c ≥ 3, or at the discrete values

c = 3− 6

k + 2
=

3k

k + 2
, k = 0, 1, . . . . (19.4.1)

For the discrete theories, the allowed weights and U(1) charges are

NS: h =
l(l + 2)− q2

4(k + 2)
, Q =

q

k + 2
, (19.4.2a)

R: h =
l(l + 2)− (q ± 1)2

4(k + 2)
+

1

8
, Q =

q ± 1

k + 2
∓ 1

2
, (19.4.2b)

where 0 ≤ l ≤ k and −l ≤ q ≤ l.
We showed that the N = 0 minimal models could be constructed as

cosets starting from SU(2) current algebras. There is a similar relation
here. The central charge (19.4.1) is precisely the central charge of the
SU(2) current algebra at level k. The connection is as follows. Recall from
section 15.5 that we can represent one current, say j3, in terms of a free
boson i(k/2)1/2∂H , and the CFT then separates into the free boson CFT
and a so-called parafermionic theory. All other operators separate, for
example

j+ = ψ1 exp

[
i

(
2

k

)1/2
H

]
, j− = ψ

†
1 exp

[
−i
(
2

k

)1/2
H

]
. (19.4.3)

Now define

T+
F = ψ1 exp

[
i

(
k + 2

k

)1/2
H

]
, T−

F = ψ
†
1 exp

[
−i
(
k + 2

k

)1/2
H

]
. (19.4.4)

These operators have conformal weight

1− 1

2

(
2

k

)
+

1

2

(
k + 2

k

)
=

3

2
, (19.4.5)

and one can show that they satisfy the N = 2 superconformal OPE. The
parafermionic plus free-boson central charge remains at its original value.
Similarly, the current algebra primary fields factorize

Ojm = ψjm exp

[
im

(
2

k

)1/2
H

]
. (19.4.6)

Define now

O′jm = ψjm exp

[
i

2m

k1/2(k + 2)1/2
H

]
. (19.4.7)
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Relative to the current algebra primary, the exponent in O′jm is multiplied
by [2/(k+2)]1/2. The exponent in TF is multiplied by the reciprocal factor
relative to j3, so the leading singularity z−1 in the current–primary OPE
remains the same, and the operators O′jm are NS primaries under the N = 2
algebra. Subtracting and adding the free-boson contributions, the weight
of O′jm is

h =
j(j + 1)

k + 2
− m2

k
+

2m2

k(k + 2)
=
j(j + 1)− m2

k + 2
. (19.4.8)

This matches the weight of the NS primary (19.4.2a), with the identification
l = 2j and q = 2m. The ranges of l and q then match the ranges of the
current algebra primaries. With the properly normalized N = 2 current

j = i[k/(k + 2)]1/2∂H , (19.4.9)

the charge Q = 2m/(k + 2) also matches that of the current algebra
primary. Similarly, the fields

ψjm exp

[
i

2m± k/2

k1/2(k + 2)1/2
H

]
(19.4.10)

have an additional factor z±1/2 in their OPEs with the currents. They are
therefore primary fields in the R sector and are also annihilated by G±0 ,
the sign correlating with that in the exponential. The weight and U(1)
charge agree with eq. (19.4.2b).

Landau–Ginzburg models

We now give a Lagrangian representation of the minimal models, the
Landau–Ginzburg description. The rigid subgroup of the (2,2) superconfor-
mal algebra is (2,2) world-sheet supersymmetry. Having four supercharges,
this is the dimensional reduction of d = 4, N = 1 supersymmetry. Any
d = 4, N = 1 theory becomes a (2,2) world-sheet theory by dimensional
reduction, requiring the fields to be independent of x2,3.

In particular, let us take a single chiral superfield with superpotential

W (Φ) = Φk+2 . (19.4.11)

Consider a scale transformation

σ → λσ , φ λωφ , (19.4.12a)

ψ → λω−1/2ψ , F λω−1F , (19.4.12b)

with ω as yet unspecified. The relation between the scaling of the various
components of the superfield is determined by the fact that the super-
symmetry transformation squares to a translation. Including the scaling

→
→
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of d2σ, the terms in the action (B.2.16) that are linear in W scale as

λ2−1+(k+2)ω , (19.4.13)

and so are invariant if ω = −1/(k + 2). With this value for ω, the kinetic
terms scale as λ−2/(k+2) and are less important at long distance (large λ).
Thus the theory at long distance is scale-invariant, and so also confor-
mally invariant by the discussion of the c-theorem. Normally one must
worry about quantum corrections to scaling, but not here because the
superpotential is not renormalized. In this case the nonrenormalization
theorem can be understood from symmetry. The theory with superpoten-
tial (19.4.11) has an R symmetry (defined in eq. (B.2.21)) under which φ
has charge 2/(k + 2). This allows no corrections to the superpotential. If
we began with a superpotential which also had higher powers of Φ, their
effect would scale away at long distance.

The combination of conformal invariance and rigid supersymmetry
generates the full (2,2) superconformal theory. Thus, the long distance
limit of the theory has this symmetry, and it is this limiting critical theory
that can be used as a string compactification. Equivalently, but more in
the language of renormalization, we can hold the distance fixed but take
to zero the ‘cutoff’ length at which the original field theory is defined.

We expect the critical theory to be a minimal model. The chiral super-
field without a superpotential is the usual c = 3 free field representation.
As in the discussion of N = 0 Landau–Ginzburg theories in chapter 15, the
superpotential should reduce the effective number of degrees of freedom
and so reduce the central charge. To see which minimal model we have,
let us note that the field φ is a (c, c̃) primary. Its supersymmetry transfor-
mation (B.2.14) contains a projection operator P+ onto four-dimensional
spinors with s0 + s1 = ±1. The value of s0 determines which of P 0 ± P 1

the supersymmetry squares to, and so whether it is left- or right-moving.
The projection P+ thus implies that one rigid supersymmetry on each side
annihilates φ; by convention we call these G−−1/2 and G̃−−1/2, so φ is (c, c̃).

The chiral–chiral property is also consistent with the weight and charge.
The scale transformation (19.4.12) implies that hφ + h̃φ = −ω, and φ is
spinless so

hφ = h̃φ =
1

2(k + 2)
. (19.4.14)

The R symmetry, under which φ has charge 2/(k+ 2), acts on all compo-
nents of the supercharge and so is equal to Q+ Q̃. Thus

Qφ = Q̃φ =
1

k + 2
, (19.4.15)

and φ satisfies Q = 2h and Q̃ = 2h̃.
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We can now identify the Landau–Ginzburg theory (19.4.11) with the

minimal model at the same k. The minimal model field O′1/21/2 is a chiral

primary, as one sees from the relation Q = 2h, and its weight agrees with
that of φ at the same k. Also, by the chiral ring argument, we can make

further primaries as powers φl . These correspond to O′l/2
l/2 . However, the

process terminates, because the equation of motion

∂φW (φ) = (k + 2)φk+1 = 0 (19.4.16)

implies that l ≤ k. This matches the minimal model bound on l, as well
as the general bound that the maximum charge of a chiral primary is

Q =
c

3
=

k

k + 2
. (19.4.17)

An important role is played by the Zk+2 symmetry of the Landau–
Ginzburg theory,

Φ→ exp

(
2πi

k + 2

)
Φ . (19.4.18)

This acts in the same way on all components of the superfield and leaves
the superpotential invariant. It is a discrete subgroup of the superconfor-
mal U(1) generated by

exp(2πiQ) ; (19.4.19)

this operator acts on φ as in (19.4.18), and it commutes with T±
F and so

acts in the same way on all components of a world-sheet superfield. The
operator exp(2πiQ̃) is not an independent symmetry, because all fields in
the Landau–Ginzburg theory are invariant under exp[2πi(Q− Q̃)].

The Landau–Ginzburg theory is strongly interacting at long distance
(since the interaction dominates the kinetic term) and so cannot be solved
explicitly. Nevertheless, as in the examples we have seen, most of the
quantities of interest in the low energy limit of string theory can be
determined using constraints from supersymmetry. Much of the physics
can then be rather directly understood from this representation, as opposed
to the more abstract CFT construction of the minimal models. Landau–
Ginzburg theories can be generalized to multiple superfields, where the
classification of superpotentials uses methods from singularity theory.
There are also more general current algebra constructions.

19.5 Gepner models

Now we wish to use the exact CFTs from the previous section to construct
string theories. In order to obtain central charge (9,9) we need several
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minimal/Landau–Ginzburg models, with∑
i

ki

ki + 2
= 3 . (19.5.1)

There are many combinations that satisfy this. Now consider the product
of the Landau–Ginzburg path integrals, where we sum over common
periodic or antiperiodic boundary conditions on all the fermions ψi and
ψ̃i at once. The result is modular-invariant: the modular transformations
mix the path integral sectors in the usual way, and the left–right symmetry
guarantees the absence of anomalous phases. In terms of the abstract
CFT description this is the diagonal invariant, taking the same N = 2
representation on the left and right and summing over representations; to
be precise, one separates each representation into two halves according to
exp(πiF) before combining left and right.

This is a consistent CFT for either the type II or heterotic string, but
it is not yet spacetime supersymmetric. We must now impose the GSO
projection (19.1.6), namely

l + s0 + s1 + Q ∈ 2Z . (19.5.2)

Normally this is imposed as a Z2 projection, beginning with a spectrum
for which the combination l + s0 + s1 + Q takes only integer values. It is
therefore necessary first to twist by the group generated by

gq = exp(πis+ 2πiQ) = exp(πis)
∏
i

exp(2πiQi) , (19.5.3)

where we define s to be even in the NS sector and odd in the R sector. The
extra factor of exp(πis) is needed because l + s0 + s1 is integer in the NS
sector but half-integer in the R sector. The operator (19.5.3) contains the
product of the Zki+2 generators for the separate minimal model factors
and so generates Zp, where p is the least common multiple of the ki + 2.

There are two possible subtleties. First, since the projection (19.5.3)
is not left–right symmetric, modular invariance is not guaranteed. The
issue is the same as for the orbifold, discussed in section 16.1, and the
necessary and sufficient condition is level matching just as in that case.
Second, the phase of the operator (19.5.3) is determined by level matching
and may not be that which we wanted. In the references it is shown
that under rather general conditions, which include the case at hand,
these subtleties do not arise and so the resulting theory is consistent and
supersymmetric. This argument also applies to a more general set of (2,2)
CFTs known as Kazama–Suzuki theories, which are also constructed from
current algebras.

Let us illustrate these general results for the notationally simple case
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of N minimal model factors having equal levels k. The central charge
condition

Nk

k + 2
= 3 (19.5.4)

has integer solutions

kN = 19, 26, 35, 64 . (19.5.5)

Before twisting, the NS–NS primaries are

N∏
i=1

ψjimiψ̃
ji
mi
exp

[
i
2m(Hi + H̃i)

k1/2(k + 2)1/2

]
. (19.5.6)

We continue to use the SU(2) notation, though the common notation in
the literature on this subject is to use integer-valued labels l = 2j and
q = 2m (or, confusingly, m equal to twice its SU(2) value).

Now twist by gq . An operator of charge Qi = l depends on the free
scalar Hi from the ith factor as

exp

[
il

(
k + 2

k

)1/2
Hi

]
. (19.5.7)

This picks up an extra phase exp(2πinl) when transported around a vertex
operator in a sector twisted by gnq . It follows that the vertex operators in
that sector contain an additional factor

exp

[
in

(
k

k + 2

)1/2
Hi

]
. (19.5.8)

Thus the untwisted vertex operator (19.5.6) becomes

N∏
i=1

ψjimiψ̃
ji
mi
exp

[
i
(2mi + nk)Hi + 2miH̃i

k1/2(k + 2)1/2

]
. (19.5.9)

Using eq. (19.5.4), this has total U(1) charge

Q =
1

k + 2

N∑
i=1

(2mi + nk) = 3n+
2

k + 2

N∑
i=1

mi . (19.5.10)

The level mismatch is

L0 − L̃0 =
1

2k(k + 2)

N∑
i=1

{
(2mi + nk)2 − (2mi)

2
}

=
3n2

2
+

2n

k + 2

N∑
i=1

mi . (19.5.11)

Thus, requiring the charge (19.5.10) to be an integer implies that the level
mismatch is a multiple of 1

2 , which is the appropriate result for the NS–NS
sector before GSO projecting. The other sectors work as well.
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Now let us look for (c, c̃) states. On the right-moving side, the charge
and weight are given by the untwisted values (19.4.2a), so

h̃− Q̃

2
=

N∑
i=1

ji(ji + 1)− mi(mi + 1)

k + 2
. (19.5.12)

The chiral primaries have mi = ji for all i. In the untwisted sector, n = 0,
these are paired with chiral primaries on the left. The number of such
states having Q = 1 is given by all sets of ji such that∑

i

ji =
k + 2

2
, |ji| ≤ k

2
. (19.5.13)

From the structure of the N = 2 superconformal representations one can
show that there are no (c, c̃) states in the twisted sectors; these moduli, or
the 27s in the heterotic string, come entirely from the untwisted sector.
The (a, c̃) states, or 27s, come from primaries with opposite m on the

right and left,

mi = −m̃i = −ji , all i . (19.5.14)

These must come from the twisted sectors. Note that the states (19.5.9) are
in general excited states in their representations, and the (a, c̃) states are
obtained with lowering operators. A little thought shows that (a, c̃) states
can arise only if m̃i is independent of i; one such state is consistent with
the conditions (19.5.13) for the 35 and 64 cases. For example, the (a, c̃)
state in the 35 model is obtained from the state with mi =

1
2 and n = 1 by

acting with G−−1/2 in each of the five factors. The reader can check that

this has the correct weight and charge, and that the OPE implies that it
is nonzero.
In summary, the numbers (n27, n27) for the k

N models are

19 : (84, 0) , 26 : (90, 0) , 35 : (101, 1) , 64 : (149, 1) . (19.5.15)

Connection to Calabi–Yau compactification

An interesting point about the Gepner models is that most are in the same
moduli space as Calabi–Yau compactifications. The simplest example is
35, five copies of the k = 3 model. The discrete symmetry is

S5 � Z4
5 , (19.5.16)

where the permutation group S5 interchanges the various factors. The Z5s
come from the separate minimal model factors,

exp(2πiQi) , i = 2, 3, 4, 5 . (19.5.17)

The symmetry exp(2πiQ1) is not independent because the projection
(19.5.3) relates it to the others.
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Now consider our simple example of a Calabi–Yau model, the quintic
in CP 4, for the special polynomial

G(z) = z51 + z52 + z53 + z54 + z55 . (19.5.18)

This is invariant under the same discrete symmetry (19.5.16); the permu-
tation acts on the zi, and the four Z5s are

zi → exp(2πini/5)zi , n1 = 0 . (19.5.19)

We can set n1 = 0 because an overall phase rotation of the zi is trivial by
the projective equivalence. Further, this Gepner model has 101 27s and one
27, the same as the Calabi–Yau theory. The generations in each theory can
be shown to fall into the same representations of the discrete symmetry.
The only difference in the massless spectrum is that the Gepner model has
four extra U(1) gauge symmetries. These come from the currents ∂Hi for
the separate factors, minus one linear combination that is already part of
E6. Such enhancements are common at special points of moduli space, as
for toroidal compactification at the self-dual point. There are also extra
E6 singlet U(1) charged states. All the extra states become massive by the
Higgs mechanism as we move away from the Gepner point.

This is strong evidence that the 35 Gepner model is the same the-
ory as the quintic (19.5.18). The same is true of other Gepner models,
though in many cases one needs a Calabi–Yau manifold constructed from
weighted projective space, where the projection (17.2.34) that defines CPn

is generalized to allow different scalings for the different zi. To under-
stand the connection in more detail, note the suggestive fact that the total
Landau–Ginzburg superpotential

5∑
i=1

Φ5
i (19.5.20)

is the same as the defining polynomial (19.5.18) of the Calabi–Yau mani-
fold.

To make this observation more precise we generalize the previous Lan-
dau–Ginzburg construction, starting again with a theory of (2,2) rigid
supersymmetry obtained by dimensional reduction from a d = 4, N = 1
theory. We take the five superfields Φi and an additional superfield P , as
well as a U(1) gauge field. The superpotential is

W = PG(Φ) , (19.5.21)

where we take an arbitrary quintic polynomial as in the Calabi–Yau case.
This is gauge-invariant with U(1) gauge charges

qΦ = 1 , qP = −5 . (19.5.22)



19.5 Gepner models 399

The gauge coupling is e, and if we start from the general four-dimensional
action (B.2.16) then there is one more parameter at our disposal, a U(1)
Fayet–Iliopoulos term which we will denote ξ = −r/2.
The potential energy for this linear sigma model is

U = |G(φ)|2 + |p|2
5∑
i=1

∣∣∣∣ ∂G∂φi
∣∣∣∣+ e2

2

(
r + 5|p|2 −

5∑
i=1

|φi|2
)

+(A2
2 + A2

3)

(
25|p|2 +

5∑
i=1

|φi|2
)
, (19.5.23)

coming from the F-terms, the D-terms, and the dimensional reduction of
the kinetic terms. We use lower case letters for the scalar components
of superfields. We are interested in the low energy dynamics of this field
theory, and so in those points in field space where the potential vanishes.

Let us first restrict attention to polynomials that are transverse, meaning
that the five equations

∂G

∂φi
= 0 (19.5.24)

have no simultaneous solutions except at φ = 0. The reason for imposing
this condition is that we are going to make contact with the Calabi–Yau
manifold defined by the embedding G(φ) = 0. If the gradient vanishes
at any point, the condition G(φ) = 0 degenerates and does not define a
smooth manifold (if the gradient vanishes at some point φi, this point
automatically lies on the submanifold G = 0 because φi∂iG = 5G). These
are actually five equations for four independent unknowns because of
the projective equivalence (homogeneity of G). They therefore generically
have no solutions other than φ = 0; the case in which they do is very
interesting and will be discussed in section 19.7.

Let us first consider the case r > 0. Transversality implies that the
second term in the potential vanishes only if p vanishes and/or all the φi
vanish. Combined with the vanishing of the third term this implies that

p = 0 ,
5∑
i=1

|φi|2 = r . (19.5.25)

The fourth term forces A2 = A3 = 0, so finally we are left with

G(φ) = 0 . (19.5.26)

The manifold of vacua is identical to the Calabi–Yau manifold defined by
G = 0 in CP 4. The condition (19.5.25) on φ can be regarded as a partial
fixing of the projective invariance. The remaining invariance, a common
phase rotation of the φi, is the U(1) gauge invariance. The metric on this

2 2
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space is induced by the flat metric in the kinetic term |∂aφi|2. In particular,
the size of the Calabi–Yau manifold is

R2
c ∝ r . (19.5.27)

One can show that this classical analysis becomes quantitatively accurate
for large r.

Now consider r < 0. The unique zero-energy point is

|p|2 = r

5
, φi = 0 , A2 = A3 = 0 . (19.5.28)

Although this is an isolated zero of the potential, the fields φi are massless
because their potential is of order |φ|8. In fact, they are described by a
generalized Landau–Ginzburg theory, with superpotential

W = 〈 p 〉G(Φ) ; (19.5.29)

we can replace p with its mean value because the fluctuations are massive.
This superpotential produces a nontrivial critical theory, by a generaliza-
tion of the earlier argument.

We have seen that for positive values the parameter r has an inter-
pretation as a modulus. It is the only Kähler modulus for this CFT.
The complex structure moduli are the parameters in the polynomial G.
Thus we conclude that the Landau–Ginzburg theories represent a differ-
ent region in the same moduli space. The identification (19.5.27) would
suggest that they correspond to unphysical negative values of R2

c , but that
identification is valid only at large r. There is an important distinction
between the r → +∞ and r → −∞ limits. The former really represents
an infinite distance in moduli space, corresponding to the fact that the
Calabi–Yau space is becoming very big. As r → −∞, however, the low
energy critical theory is determined by the superpotential (19.5.29). This
depends on r through 〈 p 〉, but that can be absorbed in a rescaling of the
fields. It follows that the low energy theory becomes independent of r as
r → −∞. This point is actually at finite distance in moduli space, and the
region of moduli space described by the Landau–Ginzburg theory is in
the interior.

Recall that to construct a string theory from the Landau–Ginzburg
theory we had to twist by the 5 symmetry gq . It is interesting to see how
this arises in the present construction. The expectation value of p breaks
the U(1) gauge symmetry, but a discrete subgroup

p→ p , φi → exp(2πi/5)φi , (19.5.30)

remains as an unbroken gauge symmetry of the low energy theory. As
discussed in section 8.5, gauging of a discrete symmetry is one way to
think about the twisting construction.

Z
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The analysis above breaks down at r = 0. The potential requires p and
φi to vanish, and the fields A2,3 then have no potential. This infinite volume
in field space could produce a singularity that prevents continuation from
positive to negative r. In fact, there is a singularity (to jump ahead a little,
it is the mirror of the conifold singularity in the complex structure), but it
does not prevent continuation between the two regions. The point is that
the Kähler modulus is a complex field, and we have identified only its real
part. To find the imaginary part, the Bī background, recall that this gives
a total derivative on the world-sheet. There is one natural total derivative
to add to the present theory, namely

i
θ

2π

∫
F2 , (19.5.31)

where F2 is the U(1) field strength 2-form. This does indeed correspond
to the imaginary part of the modulus. In the Calabi–Yau phase one can
use the equation of motion for the gauge field A1 to show this.

At r = 0 but with θ nonzero, the world-sheet theory is nonsingular and
so one can continue past the r = θ = 0 singularity. The θ parameter in
two dimensions has been extensively discussed in field theory, in part as
a model for the instanton θ parameter in four dimensions. It does not
change the equations of motion but changes the boundary conditions, so
that there is a fractional electric flux

F12 =
θ

2π
. (19.5.32)

This flux will produce a nonzero energy density unless it is screened. A
fractional flux cannot be screened by massive integer charged quanta. It
can be screened by massless integer charges in two dimensions, or by the
condensate if the U(1) symmetry is spontaneously broken. In the present
case a charged field, either p or φi, has an expectation value when r is
nonzero and then the θ parameter has no effect. When r vanishes the U(1)
is unbroken. If A2,3 are nonzero then all charged fields are massive and
there is an energy density. Only at the point where all the fields vanish
does the energy density go to zero, so the field space is effectively compact
at low energy and the theory is nonsingular.
Thus the two parts of moduli space are smoothly connected. The term

phases is often used to describe the two regions. Like the water/steam
case, the two phases are continuously connected but display qualitatively
different physics.
We have focused on the simplest example, but there are clearly many

possible generalizations. It is interesting to note the following point. In
the (2,2) algebra there are left- and right-moving U(1)s, under which the
fields that move in the opposite direction are neutral. In the Landau–
Ginzburg theory we identified the sum of these charges as an R symmetry.
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To identify the separate symmetries we need also the rotation S1 in
the (2,3) plane, which in the dimensionally reduced theory becomes an
internal symmetry. Since a four-dimensional Weyl spinor has s0 = −s1,
the charge S1 is correlated with the direction of motion, while the R
charge is independent of it. By forming linear combinations of R and
S1 we can obtain symmetries Q and Q̃ under which either the left- or
right-movers are neutral. To do this simultaneously for all fields, we must
assign a common R-charge to all superfields. Since there is a gauge field
we must be concerned about a possible anomaly in a current that acts on
Fermi fields moving in one direction. The anomaly comes from a current–
current OPE, as in section 12.2. By the above construction Q and Q̃ are
the same for all superfields and so their anomalies are proportional to the
sum of the gauge U(1) charges. This is −5 + (5 × 1) = 0 for the model
at hand, so the anomalies vanish. If there were an anomaly, then one
would not expect to have independent conserved Q and Q̃ and so there
could be no (2,2) superconformal algebra. In fact one finds in this case
quantum corrections that invalidate the classical analysis used above. In
more general models, the anomaly cancellation condition turns out to be
equivalent to the condition that in the Calabi–Yau phase the first Chern
class vanishes, which was a necessary condition for conformal invariance.

19.6 Mirror symmetry and applications

In CFT it is arbitrary which states we call (c, c̃) and which (a, c̃). These just
differ by a redefinition H → −H of the free scalar for the left-moving U(1)
current. However, for CFTs obtained from Calabi–Yau compactification
these have very different geometric interpretations, in terms of the Kähler
and complex structure moduli respectively. This suggests that Calabi–Yau
manifolds might exist in mirror pairs M and W, where

(h1,1, h2,1)M = (h2,1, h1,1)W , (19.6.1)

and where the two CFTs are isomorphic, being related by H → −H .

We can illustrate this for the analog of Calabi–Yau compactification
with two compact dimensions. The holonomy is in SU(1), which is triv-
ial, so the compact dimensions must be a 2-torus. Calling the compact
directions x8,9, act with T -duality in the 9-direction. This flips the sign
of X9

L(z) and so that of ψ9(z). Therefore it also flips the U(1) current
iψ8ψ9. The 2-torus is thus its own mirror, but with different values of
the moduli. Referring back to the discussion at the end of section 8.4, we
noted there that T -duality on one axis interchanged the Kähler modulus
ρ with the complex structure modulus τ. When the Kähler modulus ρ is
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large, the 2-torus is large; when the complex structure modulus τ is large,
the 2-torus is long and thin.

The T -duality between the IIA and IIB theories implies that the IIA
string on one 2-torus is the same as the IIB string on its mirror. This last
will also be true for six-dimensional Calabi–Yau manifolds: the reversal
of the U(1) charge on one side also reverses the GSO projection on that
side, interchanging the two type II strings. This is consistent with our
results (19.2.1) and (19.2.2) for the moduli spaces. If we put the IIA theory
onM and the IIB theory onW, the number of vector multiplets h1,1M = h2,1W
is the same, and similarly the number of hypermultiplets.

The explicit construction of the mirror transformation for six-dimen-
sional Calabi–Yau manifolds is less straightforward. Circumstantial ev-
idence for the existence of mirror pairs was found when the (h1,1, h2,1)
values were plotted for large classes of Calabi–Yau manifolds: if a given
point was present, then a manifold with reversed Hodge numbers (h2,1, h1,1)
usually also existed. This does not prove that the manifolds are mirrors,
because the Hodge numbers do not determine the full CFT, but it is
suggestive.

There is one class of Calabi–Yau manifolds where the mirror can
be constructed explicitly, the ones that are related to Gepner models.
Consider our usual example 35. The subgroup of the global Z4

5 symmetry
that commutes with the spacetime supersymmetry is the group Γ = Z3

5

with elements

exp
{
2πi[r(Q2 − Q3) + s(Q3 − Q4) + t(Q4 − Q5)]

}
(19.6.2)

for integer r, s, and t. We claim that if the theory is twisted by Γ
then something simple happens. Consider first a single periodic scalar X
compactified at radius R = (α′n)1/2 for some integer n. The translation

X → X + 2π(α′/n)1/2 (19.6.3)

generates a Zn. If we twist by this Zn then we obtain the scalar at radius

R′ = (α′/n)1/2 . (19.6.4)

This is T -dual to the original radius, so the result is isomorphic to the
original CFT, differing only by XL(z)→ −XL(z). We leave it to the reader
to show that the twist by Γ has the same effect in the 35 model, turning
the Gepner CFT into one that is isomorphic under H(z) → −H(z). The
point of this exercise is that we now have a geometric relation between
the original theory and its mirror. This Gepner model maps to the quintic,
which we will denote M. The group Γ acts on the CP 4 coordinates in the
Calabi–Yau description as

(z1, z2, z3, z4, z5)→ (z1, α
rz2, α

s−rz3, αt−sz4, α z5) , (19.6.5)−t
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where α = exp(2πi/5). Twisting by Γ produces the coset space

W =M/Γ . (19.6.6)

Some of the transformations have fixed points, so the space W is not a
manifold but has orbifold singularities. These can be blown up, and the
resulting smooth manifold indeed has Hodge numbers (h1,1, h2,1) = (101, 1),
the reverse of the (1, 101) of the quintic.
The explicit twist can be carried out only at the Gepner point in moduli

space, but the existence of mirror symmetry at this point is sufficient to
imply it for the whole moduli space. The point is that the isomorphism
of CFTs implies a one-to-one mapping of moduli, so the effect of turning
on a modulus in one theory is identical to that of the equivalent modulus
in the dual theory.
There have been many attempts to derive mirror symmetry in a more

general way, with partial success. Toric geometry is a generalization of
the projective identification that defines CPn corresponding to the most
general linear sigma model. It provides a framework for constructing many
Calabi–Yau manifolds and their mirrors. In another direction, one might
wonder whether a connection can be made to T -duality, as in the case
of the 2-torus. Indeed, this has been done as follows. Put the IIA string
on a Calabi–Yau manifold M, and consider the manifold of states of a
D0-brane: this is just the Calabi–Yau manifold itself, since the D0-brane
can be anywhere. In the IIB string on the mirror manifold W, BPS states
come from Dp-branes with p odd, wrapped on nontrivial cycles of the
mirror. Since b1 = b5 = 0, we must have p = 3. This immediately suggests
a T -duality on three axes. Three of the coordinates of the D0-brane
map to internal Wilson lines on the D3-brane, which therefore must be
topologically a 3-torus. By following this line of argument one can show
that W is a T 3 fibration. That is, it is locally a product T 3 × X with X
a three-manifold, but with the shape of the T 3 fiber varying over X. The
mirror transformation is T -duality on the three axes of T 3, and M is also
a T 3 fibration. Any Calabi–Yau space with a Calabi–Yau mirror must be
such a fibration; this property is not uncommon.

Moduli spaces

An important consequence of mirror symmetry is that it allows the full
low energy field theory to be obtained at string tree level but exactly
in world-sheet perturbation theory. We have argued that the field theory
calculation of the complex structure moduli space is exact, but now we can
also obtain the Kähler moduli space from the complex structure moduli
space of the mirror.
Let us explain further how this works, taking our usual example of the
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quintic. We focus on the Kähler moduli space, which has a single modulus
T . The general polynomial invariant under the Z3

5 twist (19.6.5) is

G(z) = z51 + z52 + z53 + z54 + z55 − 5ψz1z2z3z4z5 . (19.6.7)

This polynomial is parameterized by one complex parameter ψ, which
survives as the sole complex structure modulus of the mirror.
The low energy action for the complex structure modulus of the mirror

can be obtained as described in section 17.4. The special coordinates and
periods are defined by the integrals of the harmonic (3, 0)-form Ω over
closed cycles,

ZI =

∫
AI

Ω3,0 , GI (Z) =

∫
BI

Ω3,0 . (19.6.8)

The range of I is from 1 to h2,1 + 1, which is 2 in this example. For this
construction the cycles and Ω3,0 can be given explicitly and the integrals
evaluated. The result is that Za and GI are hypergeometric functions of
ψ. These in turn determine the prepotential G = 1

2Z
IGI , and so the low

energy action for ψ.
There are three special points in this space, ψ = 0, 1, and ∞. The Gepner

point ψ = 0 is where the theory can be described by a product of minimal
models. The conifold point ψ = 1 is a singular Calabi–Yau space. The
singularity is very interesting, and will be described in detail in the next
section. The large complex structure limit is ψ = ∞. It is the only point
at infinite distance in the moduli space metric, and so must be related by
mirror symmetry to the large-radius limit T = ∞.

To exploit mirror symmetry we need the precise mapping between ψ

and T . As in section 19.2, T is related to the special coordinates on
Kähler moduli space by T = iX1/X0. The ZI are special coordinates
on the complex structure moduli space. Special geometry allows only
a symplectic transformation (B.7.20) between different sets of special
coordinates. The precise form of the symplectic transformation (which
depends on the basis of cycles used in eq. (19.6.8)) can be found by
comparing the exact prepotential as ψ → ∞ with the large-radius limit
of the Kähler prepotential. To leading approximation at large radius the
result is

T ≈ 5

2π
ln(5ψ) . (19.6.9)

The full mapping gives the exact prepotential for T and so the low
energy action. Expanded around large T it agrees with the general form
in section 19.2,

F = (X0)2
[
5i

6
T 3 − 25i

2π3
ζ(3) +

∞∑
k=1

Ck exp(−2πkT )

]
. (19.6.10)
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The first term is the tree-level interaction, the normalization agreeing
with the expression (17.4.16) in terms of the intersection number. The
second term is the three-loop correction, related to the R4 term in the
effective action which has the distinctive coefficient ζ(3). The final term
represents a sum over instantons, where k is the total winding number of
the world-sheet over the nontrivial 2-cycle of the Calabi–Yau manifold.
The contribution of each instanton is rather simple, so the numerical
constant just counts the number nk of instantons (holomorphic curves)
of given winding number, up to some simple factors. Expanding out the
result from the mirror map gives immediately the number of such curves,
which grows rapidly:

nk = 2875, 609250, 317206375, 242467530000, . . . . (19.6.11)

The direct geometric determination of nk is much more involved. Initially
only the first few values were known, but now the full series has been
determined, in agreement with the mirror symmetry prediction.

All of the above applies to string tree level. The string corrections
depend on which string theory is put on the Calabi–Yau space. For the
IIA string, the Kähler moduli are in vector multiplets and their low energy
action receives no corrections. For the IIB string the low energy action
for the complex structure moduli receives no corrections. For the heterotic
or type I string there is only d = 4, N = 1 supersymmetry and so both
moduli spaces may be corrected, while the superpotential may receive
nonperturbative corrections.

The flop

The integral of the Kähler form over a 2-cycle is

Re(TA) =

∫
NA
J1,1 =

∫
NA
d2wGī

∂Xi

∂w

∂X̄

∂w̄
> 0 . (19.6.12)

This must be positive for every 2-cycle, and similarly for the integral of
J1,1 ∧J1,1 over any 4-cycle and of J1,1 ∧J1,1 ∧J1,1 over the whole Calabi–Yau
space. These conditions define the Kähler moduli space as a cone in the
space parameterized by TA.

In combination with mirror symmetry, this presents a puzzle. The
boundary of the cone has codimension 1, since Re(TA) = 0 is a single
real condition on the geometry. This must agree with the structure of the
complex structure moduli space of the mirror manifold. The puzzle is that
such boundaries do not appear in the complex structure moduli space. All
special points in the latter are determined by complex equations, and so
lie on manifolds of even codimension; an example is the point ψ = 1 of
the quintic.
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Fig. 19.1. The flop transition, projected onto the Re(φ1)–Re(ρ1) plane. The dots
indicate the intersection of the minimal 2-spheres with this plane. The conifold
transition is similar, but with a 3-sphere before the transition and a 2-sphere
after.

The resolution of this puzzle is suggested by geometry. The integral
of the Kähler form represents the minimum volume of a 2-sphere in
the given homology class. This goes to zero at the boundary and would
be negative beyond it. There is a sense in which the geometry can be
continued to ‘negative volumes.’ A model for the region of the small
sphere is given in terms of four complex scalars φ1, φ2, ρ1, and ρ2. To
make a six-dimensional manifold we impose the condition

φ∗ · φ− ρ∗ · ρ− r = 0 (19.6.13)

for some real parameter r, and also the identification

(φi, ρi) ∼= (eiλφi, e
−iλρi) . (19.6.14)

Let r first be positive, and look at the space parameterized by φ when ρi =
0. The condition (19.6.13) defines a 3-sphere and the identification (19.6.14)
reduces this to a 2-sphere, with volume 4πr. As ρi varies, the size of this 2-
sphere grows, so 4πr is the minimum volume. For r = 0 the volume is zero
and the space singular, but for r < 0 the space is perfectly smooth: the
previous picture goes through with φi and ρi interchanged. The smallest
2-sphere has volume 4π|r|, but it is a different 2-sphere from the one
considered at positive r. This is shown schematically in figure 19.1. The
transition from positive to negative r is known as a flop.

The mirror symmetry argument strongly suggests that the CFT at the
r = 0 point is nonsingular, and that one can pass smoothly through it. One
can check this in various ways. The flop transition does not change the
Hodge numbers h1,1 and h2,1; this is consistent with the fact that nothing is
happening in the mirror description. It does change the topology, however,
as measured for example by the intersection numbers of various 2-cycles.
These intersection numbers determine the low energy interactions of the
Kähler moduli in the field-theory limit, so we need to understand how the
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discontinuity of the intersection numbers is compatible with the continuity
of the physics in the mirror description. The point is that as we approach
the boundary of the Kähler cone, the action for instantons wrapped on
the shrinking 2-cycle becomes very small and so the instanton corrections
important. The smoothness of the transition has been checked in two
ways. The first is by evaluating the instanton sum near the transition:
the difference between the instanton contributions on the two sides of the
transition just offsets the discontinuity in the intersection number. The
second is by looking at points on either side of the transition but far from
it: the calculation in the mirror is then found to reduce to the appropriate
intersection number in the various limits. As a final argument for the
smoothness of the transition we can use a linear sigma model. In fact, if
we take four chiral superfields and gauge the U(1) symmetry (19.6.14), the
D-term condition and gauge equivalence just reproduce the above model
of the flop. As in the earlier application of the linear sigma model, we can
interpolate from positive r to negative r along a path of nonzero θ.

The full picture is that in each moduli space the only singularities are of
codimension at least 2. In the complex structure description the topology
is the same throughout. In the mirror-equivalent Kähler description the
cones for the different topologies join smoothly. However, smooth Calabi–
Yau manifolds do not cover the whole Kähler moduli space. Some regions
have a description in terms of orbifolds of Calabi–Yau manifolds, or
Landau–Ginzburg models, or a hybrid of the two.
We cannot illustrate the flop transition with the quintic. This has only

one Kähler modulus, and when it vanishes the volume of the whole
Calabi–Yau manifold goes to zero. Incidentally, the moduli space of
the quintic (in either the Kähler or complex structure description) is
multiply connected. One nontrivial path runs from ψ to exp(2πi/5)ψ; these
points are equivalent with the coordinate change z1 → exp(−2πi/5)z1. The
Gepner model is a fixed point for this operation. A second nontrivial path
circles the conifold point ψ = 1. Together these generate the full modular
group. This acts in a complicated way in terms of the variable T , but has
a fundamental region with Re(T ) positive.
We could consider a situation in which the moduli are time-dependent,

moving from one Kähler cone to another. From the four-dimensional
point of view, this is just the smooth evolution of a scalar field. If we
consider the same process with the radius of the manifold blown up to
macroscopic scales, we would see a region of the compact space pinch
down and then expand in a topologically distinct way.
In general relativity the geometry of spacetime is dynamical, but it is

an old question as to whether the topology is as well: spacetime can bend,
but can it break? String theory, as a complete theory of quantum gravity,
should answer this, and it does. At least in the limited way considered
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here, and in the somewhat more drastic way that we are about to consider,
topology can change. It remains to understand the full extent of this and to
learn what ideas are to replace geometry and topology as the foundation
of our understanding of spacetime.

19.7 The conifold

Following eq. (19.5.24) we have discussed the requirement that the poly-
nomial defining the embedding of the Calabi–Yau space in CP 4 be trans-
verse, its gradient nonvanishing. As explained there, the vanishing of the
gradient gives five conditions for four unknowns and generically has no
solutions. If we allow the complex structure moduli to vary we get addi-
tional unknowns, and there will in general be solutions having complex
codimension 1 (real codimension 2). The conifold is a realization of this.
The vanishing of the gradient implies that

z5i = ψz1z2z3z4z5 , i = 1, . . . , 5 . (19.7.1)

Multiplying these five equations together implies either that all the zi
vanish (which point is excluded from CP 4 by definition) or that

ψ5 = 1 . (19.7.2)

This has isolated solutions in the complex plane, consistent with the
counting. We have noted above that ψ and exp(2πi/5)ψ are equivalent,
so there is one possible singular point, ψ = 1. The singular manifold is
known as a conifold, with ψ = 1 the conifold point in moduli space. The
singularity, or node, on the manifold itself is at the point z1 = z2 = z3 =
z4 = z5.

Let us see the nature of the singularity. Generically, and in this example,
the matrix of second derivatives of G is nonvanishing. We can then find
complex coordinates w = (w1, . . . , w4) such that near the singularity the
manifold is of the form ∑

i

w2
i = 0 , (19.7.3)

the gradient of the left-hand side vanishing at the point w = 0. These are
ordinary, not projective coordinates: one can fix the projective invariance
by z1 = 1, and the wi are linear functions of z2, . . . , z5. This equation then
defines a space of 4 − 1 complex dimensions as it should. The space is a
cone, meaning that if w is on it then so is aw for any real a. To see the
cross-section of the cone, consider the intersection with the 3-sphere∑

i

|w2
i | = 2ρ2 . (19.7.4)
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Separating wi into real and imaginary parts wi = xi + iyi, this becomes

x · x = ρ2 , y · y = ρ2 , x · y = 0 . (19.7.5)

That is, x lies on a 3-sphere, and for given x the coordinate y lies on a
2-sphere. This is in fact a direct product, so the whole geometry near the
singularity is

S3 × S2 × R+ . (19.7.6)

If the complex structure is deformed away from the singular value then
the embedding equation becomes∑

i

w2
i = ψ − 1 . (19.7.7)

There is now a minimum 3-sphere of radius |ψ−1|1/2. For example, taking
ψ − 1 to be real, this would be given by

x · x = |ψ − 1| , y = 0 . (19.7.8)

We have seen that for manifolds with orbifold or flop singularities, the
CFT and associated string theory remain perfectly well-behaved. This is
not the case at a conifold singularity. The exact calculation described in
the previous section shows that there is a singularity at the conifold point
in moduli space. Specifically, let us take the A1 cycle to be the 3-sphere
that is contracting to zero size at ψ = 1. The special coordinate Z1 is
defined by an integral (19.6.8) over A1, so it must be that in terms of this
coordinate the conifold singularity is at Z1 = 0. The result of the exact
calculation is then that the period has a singularity

G1 =
1

2πi
Z1 lnZ1 + holomorphic terms . (19.7.9)

This implies in turn a logarithmic singularity in the metric G11̄ on the mod-
uli space. The singularity (19.7.9) can be understood as follows. Observe
that if Z1 is taken once around the origin then the period is multivalued:

G1 → G1 + Z1 . (19.7.10)

Now, this period is defined by an integral (19.6.8) over a cycle B1 that
intersects the shrinking cycle A1 once. This does not define B1 uniquely,
and it is a general result that if we take a surface in the topological
class of B1 and follow it as we deform the complex structure through a
cycle around the conifold point, then it ends up as a cycle topologically
equivalent to B1 + A1, which also intersects A1 once. This monodromy of
the cycles translates into the monodromy (19.7.10) of the period.
We wish to understand the meaning of this singularity. We focus on the

IIB string, where the issue is particularly sharp. In this case the complex
structure moduli are in vector multiplets, and so the low energy action
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does not receive quantum corrections. The conifold singularity is then a
property of the exact low energy field theory.
A general physical principle, which seems to hold true even in light of

all recent discoveries about dynamics, is that singularities in low energy
actions are IR effects, arising because one or more particles is becoming
massless. For a nonsingular description of the physics we must keep these
extra massless particles explicitly in the effective theory. We then need to
understand why a particle would become massless at the conifold point
in moduli space. The fact that this point is associated with a 3-cycle
shrinking to zero size suggests a natural mechanism. A 3-brane wrapped
around this surface would at least classically have a mass proportional to
its area, and so become massless at Z1 = 0.

This classical reasoning could be invalidated by quantum corrections,
which might add a zero-point energy to the mass of the soliton. This does
not happen for the following reason. The vector multiplet Z1 comes from
the (2,1)-form ω1 that has unit integral over the cycle A

1 and zero integral
over the other basis 3-cycles. In other words, the R–R 4-form potential is

cµnpq(x, y) = c1µ(x)ω1npq(y) , (19.7.11)

with c1µ the four-dimensional gauge field. For a D3-brane whose world-

volume D is the product of the cycle A1 on which the brane is wrapped
and a path P in the noncompact dimensions, the coupling to the R–R
4-form is ∫

D
c4 =

∫
P
c11 . (19.7.12)

The D3-brane thus has unit charge under the U(1) gauge symmetry
associated with the vector multiplet of Z1. There is a BPS bound that
the mass of any state with U(1) charge is at least the charge times |Z1|,
times an additional nonzero factor. A BPS state, which attains the bound,
thus has a mass that vanishes at Z1 = 0. For the wrapped D3-brane,
an analysis far from the conifold point in moduli space, where it is
large and its world-volume theory weakly coupled, shows that it has one
hypermultiplet of BPS states. This is also consistent with the low energy
supersymmetry algebra, which allows a mass term (B.7.11) proportional
to |Z1| for a charged hypermultiplet.
Finally, the logarithm in the low energy effective action arises from

loops of the light charged particles. By a standard field theory calculation
a hypermultiplet of unit charge and mass M contributes

− 1

32π2
ln(Λ2/M2)FµνF

µν (19.7.13)

to the effective Lagrangian density. Here Λ is the effective cutoff on
the momentum integral. This is in precise agreement with the singular-
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ity (19.7.9): N = 2 supergravity implies that the gauge kinetic term is
proportional to

1

8π
Re(i∂1G1) . (19.7.14)

Thus the singular interactions at the conifold point, though they are
found in a tree-level string calculation, can only be understood in terms of
the full nonperturbative spectrum of the theory. This is another indication
of the tight structure of nonperturbative string theory. We call the D-brane
nonperturbative because it is not part of the ordinary string spectrum, and
because at any fixed Z1 the ratio of its mass to the masses of the string
states goes to infinity as g is taken to zero. Note that in four dimensions
the scale g−1α′−1/2 of its mass is the four-dimensional Planck mass up to
numerical factors. This is consistent with the fact that the BPS bound is
derived in supergravity using only the gravitational and gauge part of the
action, and so when written in units of the Planck scale cannot depend
on the dilaton.

In some early papers the state that is becoming massless is referred
to as a black hole. As discussed in section 14.8, the black hole and D-
brane pictures apply in different regimes. In the present case the particle
is singly charged and so the D-brane picture is the relevant one in the
string perturbative regime g < 1. For g > 1 we would have to use a dual
description of the IIB string; in this description the D-brane picture is
again the relevant one.

Previously we encountered D-branes as large, essentially classical ob-
jects. It is not clear in what regimes it is sensible to sum over virtual
D-branes, but clearly here where a D-brane becomes a light particle it
is necessary to do so. One might think that as g = eΦ goes to zero,
the D-brane would have to decouple because it becomes very massive,
meaning that its effect would go to zero. However, the complex structure
action is independent of the dilaton Φ. Evidently we must take the upper
cutoff Λ in the loop amplitude (19.7.13) also to scale as 1/g as compared
to the string mass. This is another indication of the existence of distances
shorter than the string scale.

The conifold transition

We should consider the possibility that at the point where the D-brane
hypermultiplet becomes massless, there is another branch of moduli space
where it acquires an expectation value. This does not happen in the
example above because there is a quartic potential. In the notation of
section B.7, where the two scalars in the hypermultiplet are denoted Φα,
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the condition that the potential vanish is

Φ†ασAαβΦβ = 0 , A = 1, 2, 3 . (19.7.15)

It is easy to show that the only solution is Φ1 = Φ2 = 0. However, in
more intricate examples a new branch of moduli space does emerge from
a conifold point.
Let us consider a different point in the complex structure moduli space

of the quintic, where the embedding equation is

z1H1(z) + z2H2(z) = 0 , (19.7.16)

with H1 and H2 generic quartic polynomials in the zi. This has singular
points when

z1 = z2 = H1(z) = H2(z) = 0 . (19.7.17)

The simultaneous quartic equations generically have 16 solutions, so this
is the number of singular points on the Calabi–Yau manifold. Sixteen
3-spheres have shrunk to zero size.
The new feature of this example is that the shrinking 3-spheres are not

all topologically distinct. Their sum is trivial in homology, which is to say
that there is a four-dimensional surface whose boundary consists of these
sixteen 3-spheres. Thus there are only fifteen distinct homology cycles
and so fifteen associated U(1) gauge groups. However, there are sixteen
charged hypermultiplets that become massless at the point (19.7.16) in
moduli space, since a D3-brane can wrap each small 3-sphere. The fact
that the sum of the cycles is trivial translates into the statement that the
sum of the charges of the sixteen light hypermultiplets is zero. Labeling
the hypermultiplets by i = 1, . . . , 16, we can take a basis I = 1, . . . , 15 for
the U(1)s such that the charges are

qIi = δIi , i = 1, . . . , 15 , qI16 = −1 . (19.7.18)

The condition that the potential for the charged hypermultiplets vanish is
then

Φ
†
iασ

A
αβΦiβ − Φ

†
16ασ

A
αβΦ16β = 0 , A = 1, 2, 3 , i = 1, . . . , 15 . (19.7.19)

This has nonzero solutions, namely

Φiα = Φ16α , i = 1, . . . , 15 . (19.7.20)

Thus there is a new branch of moduli space. The fifteen U(1)s are spon-
taneously broken, so the number of vector multiplets is reduced from
101 to 86, while the potential leaves one additional hypermultiplet modu-
lus (19.7.20) for a total of two.
As with the flop transition, this stringy phenomenon is already hinted

at in geometry. We have discussed blowing up the 3-sphere at the apex
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of the cone (19.7.6), but it is also possible to blow up the 2-sphere.
There are certain global obstructions to how this can be done; it cannot
be done for the simple singularity at ψ = 1 but it can be done in the
case (19.7.16). In fact these obstructions just coincide with the condition
that the hypermultiplet potential has flat directions. The resulting Calabi–
Yau manifold has just the Hodge numbers that would be deduced from
the low energy field theory, which are

(h1,1, h2,1) = (2, 86) (19.7.21)

in the present case. Thus the condensate of D-branes has a classical
interpretation in terms of a change of the topology of the manifold.
This change of topology is more radical than the flop, in that the

Hodge numbers change, and in particular the Euler number χ = 2(h1,1 −
h2,1) changes. This is another example of the phenomenon, illustrated in
figure 14.4, that the more we understand string dynamics the more we
find that all theories and vacua are connected to one another. It appears
that all Calabi–Yau vacua may be connected by conifold transitions.
The conifold transition is also more radical in that it is nonperturbative

while the flop occurs in CFT, at string tree level. In fact the Euler number
cannot change in CFT. One way to see this is by considering the dynamics
of type II strings on the Calabi–Yau manifold. To have a potential that
can give mass to some moduli, we need charged matter as above. However,
the low energy gauge fields are all from the R–R sector and do not couple
to ordinary strings. We can also see it by putting the heterotic string on the
same space. At tree level the only way generations and antigenerations
could become massive is in pairs, through a coupling 1 · 27 · 27 when
a singlet acquires an expectation value. This leaves the Euler number
unchanged.
For a different string theory on the same Calabi–Yau manifold, the

3-branes that could become massless at the conifold point. Also in this case
the complex structure moduli are in hypermultiplets, so the low energy
effective action can receive string corrections. It is then possible and in fact
likely that these corrections remove the singularity present in the tree-level
action. This is similar to the way that world-sheet instantons remove the
singularity at the edge of the Kähler cone in the flop transition. On the
other hand, mirror symmetry relates the conifold singularity in complex
structure moduli space to a singularity in the Kähler moduli space of the
mirror. The IIB theory has the same behavior at this singularity as the
IIA theory at the singularity in complex structure moduli space.
The two heterotic theories and the type I theory on a Calabi–Yau

manifold have only d = 4, N = 1 supersymmetry, so there is less control
over their nonperturbative behavior. One might think that the argument

nonperturbative physics will be different. For the IIA theory there are no
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above about generations and antigenerations becoming massive in pairs
would exclude any Euler number changing conifold transition in these
cases. However, one of the things that has been learned from the recent
study of nonperturbative dynamics in field and string theory is that at
a nontrivial fixed point (meaning that the interactions remain nontrivial
to arbitrarily long distances) one can have phase transitions that cannot
be described by any classical Lagrangian. We will illustrate one such
transition in the next section. There is no physical principle (such as an
index theorem) to exclude the possibility that as one passes through such
a fixed point to a new branch of moduli space, unpaired generations
become massive due to strong interaction effects. It has been argued that
this does actually occur, though in a somewhat different situation.

19.8 String theories on K3

A Calabi–Yau manifold of 2n real dimensions has SU(n) holonomy. The
number of six-dimensional Calabi–Yau manifolds is large, but in the dis-
cussion of mirror symmetry we saw that there is a unique two-dimensional
example T 2. In four dimensions there are exactly two Calabi–Yau man-
ifolds, the flat T 4 and the manifold K3, which has nontrivial SU(2)
holonomy. Compactification on K3 down to six noncompact dimensions
is of interest for a number of reasons. The resulting six-dimensional the-
ories have interesting dynamics but are highly constrained by Lorentz
invariance and supersymmetry. Also, compactification on K3 often ap-
pears as an intermediate step to a four-dimensional theory, where the
compact space is locally the product of K3 and a 2-manifold.

Compactification on K3 breaks half of the supersymmetry of the origi-
nal theory. Under SO(9, 1)→ SO(5, 1)×SO(4), the ten-dimensional spinors
decompose

16 → (4, 2) + (4′, 2′) , (19.8.1a)

16′ → (4, 2′) + (4′, 2) . (19.8.1b)

Under SO(4) → SU(2) × SU(2), the 2 transforms under the first SU(2)
and the 2′ under the second, so if the holonomy lies in the first SU(2)
then a constant 2′ spinor is also covariantly constant and gives rise to
an unbroken supersymmetry. The smallest d = 6 supersymmetry algebra
(reviewed in section B.7) has eight supercharges, so each ten-dimensional
supersymmetry gives rise to one six-dimensional supersymmetry. The de-
compositions (19.8.1) determine the chiralities: the IIA theory on K3
has nonchiral d = 6 (1,1) supersymmetry, the IIB theory has chiral (2,0)
supersymmetry, and the heterotic or type I theory has (1,0) supersymmetry.
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The Hodge diamond of K3 is

h2,2

h2,1 h1,2

h2,0 h1,1 h0,2

h1,0 h0,1

h0,0

=

1
0 0

1 20 1
0 0
1

. (19.8.2)

In four spatial dimensions, the Poincaré dual squares to one, ∗∗ = 1, so
we can define self-dual or anti-self-dual 2-forms,

∗ ω2 = ±ω2 . (19.8.3)

On K3, 19 of the (1,1)-forms are self-dual, and the remaining (1,1)-form
and the (2,0) and (0,2)-forms are anti-self-dual.

For the IIA string, the fluctuations without internal indices are gµν , bµν ,
φ, cµ, and cµνρ, the last being related by Poincaré duality to a second
vector c′µ. Each (1,1)-form gives rise to a Kähler modulus gī and an axion
bī . An additional scalar arises from each of bij and b̄ı̄ . The complex
structure moduli arise from (1,1)-forms by using the (2,0)-form Ω2,0 , in
parallel to their connection with (2,1)-forms in four-dimensional theories:

gij = Ω[i
k̄ωj]k̄ , (19.8.4)

and similarly for ḡı̄ . This vanishes when ω2 is the Kähler form so there
are a total of 19 + 19 = 38 complex structure moduli. The total number
of moduli for the K3 surface is then 80, of which 58 parameterize the
metric and 22 the antisymmetric tensor background. Finally, cµnp gives
22 vectors, one for each 2-form. In all the spectrum consists of the (1,1)
supergravity multiplet (B.6.7) and 20 vector multiplets (B.6.8).

For the IIB string, there are the same NS–NS fluctuations gµν , bµν , φ,
gmn and bmn. There is also an R–R scalar c, another from the dual of
cµνρσ , and another antisymmetric tensor cµν . The components cmn give an
additional 22 scalars from the 2-forms, while cµνpq give 22 tensors. For the
latter we must be careful about the duality properties. The ten-dimensional
field strength is

Hµνσpq = Hµνσωpq . (19.8.5)

The ten-dimensional ∗ factorizes

∗10 = ∗4 ∗6 . (19.8.6)

Since the ten-dimensional field strength is self-dual in the IIB string,
the four-dimensional field strength transforms in the same way as the
internal form ω2 . The tensors bµν and cµν have both self-dual and anti-
self-dual parts, so the total spectrum contains 21 self-dual tensors and 5
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anti-self-dual tensors. The bosonic fields add up to the (2,0) supergravity
multiplet (B.6.10) and 21 tensor multiplets (B.6.11).

It is interesting that the properties of the cohomology of K3 can
be deduced entirely from physical considerations. The (2,0) supergravity
theory is chiral and so potentially anomalous. We leave the discussion of
anomalies in six dimensions to the references, but the result is that the
anomaly from the supergravity multiplet can only be canceled if there
are exactly 21 tensor multiplets. This determines the cohomology, and so
indirectly the spectrum of the nonchiral IIA theory on the same manifold.

Before going on to the heterotic string, let us note some further prop-
erties of K3 and the associated CFT. First, there are various orbifold
limits. Two were developed in the exercises to chapter 16, namely T 4/Z2

and T 4/Z3. The spectra of the type II theories on each of these orbifolds
are the same as those that we have just found. Second, the manifold K3
is hyper-Kähler. In section B.7 hyper-Kähler geometry is defined in the
context of field space, but the idea also applies to the spacetime geometry:
the holonomy SU(2) ⊂ SO(4) is the case m = 1 of the discussion in the
appendix. In fact, spacetime and moduli space are not so distinct. Consider
a Dp-brane for p < 5, oriented so that it is extended in the noncompact
directions and at a point in the K3. We leave it to the reader to show
that this breaks half the supersymmetries of the type II theory on K3,
leaving eight unbroken. The four collective coordinates for the motion of
the Dp-brane within K3 lie in a hypermultiplet and so their moduli space
geometry is hyper-Kähler. However, the moduli space of the collective
coordinates is just the space in which the Dp-brane moves, K3. This is
an elementary example of a very fruitful idea, the interrelation between
spacetime geometry and the moduli spaces of quantum field theories on
branes. Third, the 80-dimensional moduli space of the NS–NS fields on
K3 is guaranteed by supersymmetry to be of the form (B.6.1), namely

SO(20, 4,R)

SO(20,R)× SO(4,R)
, (19.8.7)

up to a right identification under some discrete T -duality group.

Finally, the CFT of the string on K3 has (4,4) world-sheet superconfor-
mal invariance. This is closely related to the condition for d = 4, N = 2
supersymmetry cited in section 18.5. In geometric terms it comes about as
follows. The basic world-sheet supercurrent is

TF = iψm∂X
m = iψre

r
m∂X

m , (19.8.8)

and similarly for right-movers. We have used the tetrad erm to convert the
index on ψ to tangent space. This tangent space index transforms as a 4 =
(2, 2) of SO(4) = SU(2)× SU(2). The curvature of K3 lies entirely within
the first SU(2), so rotations of ψr in the second SU(2) leave the action
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invariant. However, they do not leave the supercurrent invariant, and the
three infinitesimal SU(2) rotations generate three additional conserved
supercurrents.
For the heterotic string we need to specify the gauge background. We

start by embedding the spin connection in the gauge connection. This
breaks the gauge symmetry to E7 × E8 or SO(28) × SU(2). The bosonic
spectrum includes the same states gµν , bµν , φ, gmn, and bmn found in the NS–
NS spectrum of the type II theories. These comprise the bosonic content
of the d = 6, N = 1 supergravity multiplet, one tensor multiplet, and 20
hypermultiplets. In addition there are vector multiplets in the adjoint of
the gauge group. Finally there are additional hypermultiplets not related
to the cohomology, which come from varying the gauge connection so
that it is no longer equal to the spin connection. For the E8 × E8 theory
these hypermultiplets lie in the representations

(56, 1)10 + (1, 1)65 (19.8.9)

of E7 × E8. For the SO(32) theory they lie in

(28, 2)10 + (1, 1)65 (19.8.10)

of SO(28) × SU(2). Let us mention another result from the analysis of
anomalies. A necessary condition for anomaly cancellation is that the
numbers of hyper, tensor, and vector multiplets satisfy

nH + 29nT − nV = 273 . (19.8.11)

In both of the present theories this is 625+ 29− 381 = 273. The full story
of anomaly cancellation is more involved, because of the possibility of
multiple tensors, and is left to the references.
The potential for the charged hypermultiplets has flat directions, and

there is a nice geometric description of the resulting moduli space. The
conditions (17.1.12), namely Fij = Fı̄̄ = Fi

i = 0, translate for four compact
dimensions into the statement that the field strength is self-dual,

F = ∗F . (19.8.12)

This is the condition that defines instantons in Yang–Mills theory; K3
is a four-dimensional Euclidean manifold, which is the usual setting for
Yang–Mills instantons. The integral of the Bianchi identity (17.1.13),∫

K3
tr(R2 ∧ R2 ) =

∫
K3

Trv(F2 ∧ F2 ) , (19.8.13)

determines the instanton charge: the number works out to 24. Thus the
moduli space parameterized by the charged hypermultiplets is the space
of gauge fields of instanton number 24 on K3. Supersymmetry guarantees
that these lowest order solutions are exact. One can think of the moduli
as representing the sizes of the instantons, their positions on K3, and their
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orientations within the gauge group; these parameters are not completely
independent for the different instantons because there are constraints in
order for the gauge field to be globally well defined. With spin connection
equal to gauge connection all instantons are in the same SU(2) subgroup
and the unbroken symmetry is rather large. Generically they have various
gauge orientations and the unbroken symmetry is smaller, E8 for the
E8 × E8 theory and SO(8) for the SO(32) theory. For the E8 × E8 theory,
the gauge field with spin connection equal to gauge connection lies entirely
in one E8. By varying the moduli one can break the first E8 entirely but the
gauge field in the second E8 remains zero. This is because the instanton
numbers in the respective groups start at (n1, n2) = (24, 0) and cannot
change continuously. There are other branches of moduli space with
different values of (n1, n2) such that n1 + n2 = 24.
Finally, it is very interesting to consider what happens when one or

more instantons shrink to zero size. Note that all of these instantons are
5-branes, in that they are localized on K3 but the fields are independent
of the six noncompact dimensions. We have discussed small instantons for
the type I string in section 14.3: a new SU(2) gauge symmetry appears on
the 5-brane. The type I theory is the dual of the SO(32) heterotic theory
so the same must happen in the latter case. The gauge symmetry in the
core cannot change as we go from weak to strong coupling by varying the
neutral dilaton. Independent of duality, some of the arguments that were
used in the type I case to derive the existence of the SU(2) gauge symmetry
apply also in the heterotic case — the ones based on the instanton moduli
space and on the need for complete hypermultiplet representations. The
group grows to Sp(m) for m coincident zero-size instantons.

For the E8×E8 theory the same analysis leads to a very different result.
To understand what happens, let us remember that the E8 × E8 heterotic
string is M-theory compactified on a segment of length α′1/2g. The eleven-
dimensional spacetime is bounded by two ten-dimensional walls, with one
E8 living in each wall. The claim is that when an instanton in one of
the walls shrinks to zero size, it can detach from the wall and move
into the eleven-dimensional bulk. It remains extended in the noncompact
directions so must be some 5-brane; there is a natural candidate, the
5-brane of M-theory discussed in section 14.4.
We have seen a similar phenomenon in section 13.6, where an instanton

constructed from the gauge fields on a D4-brane could be contracted
to a point and then detached from the D4-brane as a D0-brane. In
fact, the present situation is dual to this, as shown in figure 19.2. If we
compactify one of the noncompact dimensions with a small radius and
regard this as the eleventh direction, we get the IIA string compactified to
five dimensions on K3×S1/Z2. The gauge fields live on D8-branes, and the
instanton detaches as a D4-brane; this is T -dual to the D4–D0 system.
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Fig. 19.2. A schematic picture of M-theory on K3 × (S1/Z2) × S1. The 4 + 1
noncompact dimensions are suppressed, and K3 is represented by a single di-
mension. An M5-brane, extended in the noncompact and S1 directions, is shown.
When the S1 is small, this is the IIA theory with a D4-brane. When the S1/Z2 is
small it is the E8 × E8 heterotic string with a detached M5-brane. The M5-brane
can move to either boundary and become an instanton in one of the E8s.

In all, there can be some number n5 of M5-branes, and this and the
instanton numbers now satisfy

n1 + n2 + n5 = 24 . (19.8.14)

The different (n1, n2) moduli spaces discussed above are now connected,
as an instanton can detach from one wall, move across the bulk, and
attach to the other. In chapter 14 we argued that the world-volume of the
M5-brane includes a massless tensor and five scalars. Here the M5-brane
is extended in the noncompact dimensions, so these become massless fields
in the six-dimensional low energy field theory. Four of the scalars, forming
a hypermultiplet, represent the position of the brane within K3. The fifth
scalar, in a tensor multiplet, represents the position in the S1/Z2 direction.
The total number of tensor multiplets is nT = n5 + 1.

The instanton and M5-brane branches meet at a point, and the nature of
the transition is quite interesting. As the vacuum moves onto the M5-brane
branch, the number nT of tensor multiplets increases by one. The anomaly
cancellation condition nH + 29nT − nV = 273 requires a compensating
change in the number of hyper or vector multiplets. Typically, the number
of hypermultiplets associated with the gauge background decreases by 30
when the instanton number goes down by one, offsetting the contribution
of the tensor and hypermultiplets on the M5-brane.

The ordinary Higgs mechanism preserves the anomaly cancellation by
giving mass to a vector and hypermultiplet. For the Higgs mechanism
there is a familiar classical Lagrangian description. There is no classi-



19.9 String duality below ten dimensions 421

cal Lagrangian that exhibits this new phase transition where a tensor
multiplet becomes massless and a net of 29 hypermultiplets massive, or
the reverse. In this respect it is like the generation-changing transition
discussed in the previous section, and so would until recently have been
considered impossible. We now understand that such transitions can oc-
cur at nontrivial fixed points. In fact, the ∆nT transition point is similar
to the tensionless string theory that arises on coincident M5-branes. We
have not discussed in detail the boundary conditions on the ends of the
S1/Z2, but an M2-brane can end on them, as well as on an M5-brane
as before (using duality, the reader can derive this fact in various ways).
An M2-brane stretched between an M5-brane and the wall is a string
with tension proportional to the separation, becoming tensionless when
the M5-brane reaches the wall.

19.9 String duality below ten dimensions

In chapter 14 we focused on the nonperturbative dynamics of string
theories in ten dimensions, and in a few toroidal compactifications. In this
chapter we have seen some further phenomena that arise in compactified
theories, in particular the conifold transition and the instanton/5-brane
transition.

We should emphasize that many things that are impossible in CFT
(string tree level) can happen nonperturbatively. One is the conifold tran-
sition itself, as we have explained. Another is heterotic string theory with
nT > 1, which we have just found. To get a massless tensor from a pertur-
bative string state requires exciting a right-moving vector oscillator and
a left-moving vector oscillator, and there is exactly one way to do this.
The vacua with n5 > 0 then do not have a perturbative string description.
A third concerns the maximum rank of the gauge group in the heterotic
string. Focusing on the maximal commuting subgroup U(1)r , each U(1)
contributes 1 to the central charge, or 3

2 for a right-mover, for a maximum
of r = 16+2k, where k is the number of compactified dimensions. On the
other hand, the SO(32) theory in the limit that all instantons are pointlike
has gauge group SO(32) × Sp(1)24, or as large as SO(32) × Sp(24) if the
instantons are coincident. Each of these has rank 40, exceeding the 24
allowed in CFT. A fourth is the no-go theorem for the Standard Model
in type II theory. This was proved in section 18.2, but the possibility of
nonperturbative breakdown was also discussed.

This does not mean that the various results obtained in CFT are
valueless. First, an understanding of the tree-level spectrum is a necessary
step toward determining the nonperturbative dynamics. Second, Calabi–
Yau compactification of the weakly coupled E8 × E8 string resembles
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the grand unified Standard Model sufficiently closely to suggest that our
vacuum may be of this type, at least approximately.

The conifold and small instanton transitions both occurred in theo-
ries with eight supersymmetries; such theories can have rich dynamics.
Presumably theories with four and fewer supersymmetries have dynamics
that is at least as rich, though the understanding of these is less com-
plete. However, even with 16 supersymmetries there are some important
phenomena that come with compactification. In particular, the toroidal
compactifications of the heterotic string have this supersymmetry, and
these are the main subject of this final section.

Heterotic strings in 7 ≤ d ≤ 9

We would like to determine the strong-coupling behavior of the heterotic
string compactified on Tk . The answer would seem to be obvious, because
we know the duals in ten dimensions and we can just compactify these. To
see what the issue is, recall the SO(32) heterotic–type I relations (14.3.4),

GIµν = g−1h Ghµν , (19.9.1a)

gI = g−1h . (19.9.1b)

This symmetry acts locally on the fields, and so should take a given
spacetime into the same spacetime in the dual theory. However, the metric
is rescaled; therefore, for toroidal compactification, the radii are rescaled

RmI ∝ g
−1/2
h Rmh . (19.9.2)

As the heterotic coupling becomes large the k-torus in the type I theory
becomes small. As usual, we seek a description where the compact man-
ifold is fixed in size or large, because g is not an accurate measure of
the effective coupling with a very small compact manifold. Thus we will
follow a succession of dualities, as we did in section 14.5 in deducing the
dual of the E8 × E8 heterotic string.

The obvious next step is T -duality. This gives

g′ ∝ V−1
I gI ∝ V−1

h g
(k−2)/2
h , (19.9.3a)

R′m ∝ R−1mI ∝ g
1/2
h R−1mh . (19.9.3b)

We have defined the volume V =
∏9
m=10−k(2πRm) in each theory. The

compact space is now an orientifold as discussed in section 13.2,

Tk/Z2 , Z2 = {1,Ωβ̂} . (19.9.4)

Here β̂ is essentially a reflection in the compact directions, to be studied
in more detail below.



19.9 String duality below ten dimensions 423

At strong heterotic coupling the compact space is now large, while the
coupling is proportional to gh

(k−2)/2. For k = 1 the theory that we have
arrived at is weakly coupled, but even here there is a subtlety. If we begin
with a compactification that has vanishing Wilson lines, we know from the
discussion in chapter 8 that in the T -dual theory the 16 D(9− k)-branes
will be at a single fixed point. The R–R and dilaton charges of the fixed
points and D-branes cancel globally, but not locally. The dilaton, and
therefore the effective coupling, is position-dependent. It diverges at the
fixed points without D-branes when k ≥ 2, and even for k = 1 it will
diverge if the dual spacetime is too large. To keep things simple we will
always start with a configuration of Wilson lines such that the D-branes
are distributed equally among the fixed points. The number of fixed points
is 2k , so that by using half-D-branes we can do this for k as large as 5.

For k = 2 the coupling in the dual theory is V−1
h . If the original 2-torus

is larger than the string scale then we have reached a weakly coupled
description, and if it is smaller then we simply start with an additional
T -duality. If it is of order the string scale then the coupling g′ is of order
1 and this is the simplest description that we can reach.

For k = 3 the coupling g′ is strong, suggesting a further weak–strong
duality. The bulk physics for k odd is that of the IIA theory, so strong
coupling gives an eleven-dimensional theory. The necessary transforma-
tions (12.1.9) were obtained from the dimensional reduction of d = 11
supergravity, giving

R10M ∝ g′2/3 ∝ g
1/3
h V

−2/3
h , (19.9.5a)

RmM ∝ g′−1/3R′m ∝ g
1/3 −1V 1/3

h . (19.9.5b)

All the radii grow with gh, so the strongly coupled theory is eleven-dimen-
sional. We will make some further remarks about the k = 3 case after the
discussion of k = 4.

Heterotic–type IIA duality in six dimensions

The case k = 4 is interesting for a number of reasons, and we will discuss
it in some detail. The description (19.9.3) is strongly coupled and the
bulk physics is described by the IIB string, so we make a further IIB
weak–strong transformation to obtain

g′′ ∝ g′−1 ∝ g−1h Vh , (19.9.6a)

R′′m ∝ g′−1/2R′m ∝ R−1mhV
1/2
h . (19.9.6b)

We now have a weakly coupled description on a space of fixed volume as
gh becomes large.

R hmh
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To be more precise about the nature of the dual theory we must
determine the Z2 identification. This is related to the Ω of the type
I theory by a T -duality and then a IIB S-duality. The T -duality is a
redefinition by βR , a reflection in the compact directions acting only on
the right-movers. Then Ωβ̂ is the image of Ω under this,

Ωβ̂ = β−1R ΩβR = Ωβ−1L βR . (19.9.7)

For k = 2n even, β has a convenient definition exp(πiJ) as a rotation by
π in n planes. Then

β̂ = β−1L βR = β−2L βLβR = exp(−2πiJL)β = exp(πinFL)β . (19.9.8)

In other words, this differs from the simple parity operation β by an extra
(−1)n in the left-moving R sector. For T 4 this is simply β, and the Z2 is
Ωβ. We must now consider the effect of the IIB weak–strong duality. The
image of β is β, because duality commutes with the Lorentz group. To
determine the image of Ω let us note its effect on the massless fields of
the IIB theory, as discussed in section 10.6,

Gµν + , Bµν − , Φ+ , C − , Cµν + , Cµνρσ − . (19.9.9)

The weak–strong duality interchanges Bµν and Cµν and inverts e−Φ + iC .
Conjugating the operation (19.9.9) by this results in

Gµν + , Bµν + , Φ+ , C − , Cµν − , Cµνρσ − . (19.9.10)

This acts as +1 on NS–NS fields and −1 on R–R fields. This identifies
it as exp(iπFL) (or exp(iπFR) — which one we choose is arbitrary). As
another check, Ω commutes with one of the two supercharges (the sum
of the left- and right-movers), as does exp(πiFL) (the supercharge in the
NS–R sector).

Thus our dual to the heterotic theory on T 4 is the IIB theory on

Tk/Z2 , Z2 = {1, exp(πiFL)β}. (19.9.11)

We can bring this to a more familiar form by a further T -duality trans-
formation on a single coordinate, say X9; since the radii are independent
of the heterotic coupling this still defines a good dual. This gives the IIA
theory with

gA = g′′R′′−19 = g−1h R9hV
1/2
h , (19.9.12a)

R9A = R′′−19 = V
−1/2
h R9h , (19.9.12b)

RmA = R′′m = V
1/2
h R−1mh , m = 6, 7, 8 . (19.9.12c)

The T -duality adds or deletes a 9-index on each R–R field so that β will
act with the opposite sign. This cancels the action of exp(πiFL), so the
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IIA image of the space (19.9.11) is the ordinary orbifold

T 4/Z2 , Z2 = {1, β} . (19.9.13)

This orbifold is a special case of K3.
Thus the dual of the heterotic string on T 4 is the IIA string on K3;

this is often termed string–string duality. In particular we have found that
a special configuration of Wilson lines in the heterotic theory maps to an
orbifold K3, but since the duality at this point implies an isomorphism
between the respective moduli we can in the usual way extend this to the
full moduli space. Indeed, the moduli space (19.8.7) of the IIA string on
K3 is identical to the Narain moduli space (11.6.14) of the heterotic string.
The coset structure is just a consequence of the 16 supercharges, but the
number 20 in each case is a nontrivial check. Also, a careful analysis of
the discrete T -duality of the K3 CFT has shown that it is identical to that
of the heterotic theory on T 4.
In perturbation theory the gauge group of the IIA string on K3 is

U(1)24. This is also the gauge group at generic points in heterotic moduli
space. At special points non-Abelian symmetries appear, the low energy
physics being the usual Higgs mechanism. These same symmetries must
appear on the IIA side. The U(1)s all come from the R–R sector, so
the charged gauge bosons must arise from D-branes. In particular, the
gauge fields associated with 2-forms couple to D2-branes wrapped around
the corresponding 2-cycles. These must become massless at the enhanced
symmetry points, and we know from the conifold example that this can
occur if one or more 2-cycles shrinks to zero size. Indeed, the possible
singularities of K3 are known to have an A–D–E classification, meaning
that they are associated with the Dynkin diagrams of the simply-laced Lie
algebras. At such a singularity the charges of the massless D-brane states
are the roots of the associated algebra. Thus nonperturbative string theory
provides a connection between the A–D–E classification of singularities
and the corresponding algebra.
A single collapsed 2-sphere gives a Z2 orbifold singularity. The orbifold

CFT is solvable and nonsingular. One expects that if a CFT is nonsingular
then string perturbation theory should be a good description at weak
coupling, meaning that there should not be massless nonperturbative
states. This seems to contradict the argument that the collapsed 2-sphere
gives rise to massless wrapped D-brane states. In fact, the massless D-
brane should appear only when both the real and imaginary parts of the
Kähler modulus T = v + ib for the 2-sphere vanish. A careful analysis
shows that the solvable theory is the orbifold limit with T = iπ. The
modulus b is a twisted state in the orbifold theory, so to reach the point
of enhanced symmetry one must turn on a twisted state background and
the CFT is no longer solvable.
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Define the six-dimensional dilaton by

e−2Φ6 = Ve−2Φ . (19.9.14)

Tracing through the various dualities, the map between heterotic and IIA
fields is

Φ6 → −Φ6 , Gµν → e−2Φ6Gµν , (19.9.15a)

H̃3 → e−2Φ6 ∗6H̃3 , Fa2 → Fa2 . (19.9.15b)

The transformation takes the same form in both directions, heterotic →
IIA and IIA → heterotic. The tensors and forms (19.9.15) are all in the
noncompact directions. In the special case of a Z2 orbifold, the mapping
of the moduli is given in eq. (19.9.12). The dimensionally reduced six-
dimensional action for the fields (19.9.15) in the heterotic string is

Shet =
1

2κ26

∫
d6x (−G6)

1/2e−2Φ6

(
R + 4∂µΦ6∂

µΦ6

− 1

2
|H̃3 |2 − κ26

2g26
|F2 |2

)
. (19.9.16)

The same action for the IIA theory is

SIIA =
1

2κ26

∫
d6x (−G6)

1/2

(
e−2Φ6R + 4e−2Φ6∂µΦ6∂

µΦ6

− 1

2
|H̃3 |2 − κ26

2g26
e−2Φ6 |F2 |2

)
. (19.9.17)

We have omitted the kinetic terms for the moduli and the dependence of
g6 on the moduli; it is left to the reader to include these. The transforma-
tion (19.9.15) converts one theory to the other.
We should mention that the strategy that we used to find the dual of the

ten-dimensional type I and IIB theories, following the D-string to strong
coupling, was first applied to the six-dimensional heterotic–IIA duality.
Consider the IIA NS5-brane, with four of its dimensions wrapped around
K3. This is extended in one noncompact direction, and so is a string.
A study of its fluctuations shows that they are the same as those of a
heterotic string. The ratio of the tensions of the solitonic and fundamental
strings is g−2, as compared to the g−1 of the D-string. This again becomes
small at strong coupling, so we can make the same duality argument as
for the D-string. Similarly the fluctuations of the heterotic NS5-brane
wrapped on T 4 are the same as those of the fundamental IIA string, and
so this argument yields an element of the U-duality group.
Let us return to the case k = 3. To deduce the spacetime geometry,

we need to understand how the Z2 identification acts on the M-theory
circle. Again the Z2 arises via T -duality from the Ω projection of the
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type I theory. Recall from section 10.6 that the field Cµ789 is odd under
the latter. In the T -dual description the field Cµ is then odd. Since this
couples to 10-momentum, it must be that the Z2 reflects the M-theory
circle as well as the original T 3. Thus, the d = 7 heterotic string is dual
to M-theory on

T 4/Z2 = K3. (19.9.18)

Recall from the Narain description that the moduli space of this heterotic
compactification, including the dilaton, is locally

SO(19, 3,R)

SO(19,R)× SO(3,R)
× R+ . (19.9.19)

This 58-parameter space is identical to the space of metrics on K3. This
is different from string theory on K3: M-theory has no 2-form field, so
there are fewer moduli. The enhanced gauge symmetries on the heterotic
side come from M2-branes wrapped on collapsed cycles of the K3.

Heterotic S-duality in four dimensions

The six-dimensional duality that we have just found can be used to find
duals of four-dimensional theories. Let us consider the most supersym-
metric case, compactification on a further 2-torus, to give the heterotic
string on T 6 and the IIA string on T 2×K3. The four-dimensional dilaton

e−2Φ4 ∝ R R e−2Φ6 (19.9.20)

transforms as

eΦ4 −1/2, (19.9.21)

where again the transformation is the same in both directions. The 3-form
field strength transforms as

∗4H̃ → e−2Φ4dB , (19.9.22)

but also in each theory this field strength is related to the axion by

∗4H̃ ∝ e−2Φ4da . (19.9.23)

It follows that the dilaton–axion field S = e−2Φ4 + ia is related to the scalar
ρ ∼ B + iR R introduced in section 8.4 by

S → iρ∗ . (19.9.24)

From this we learn something interesting. The T -duality in the (5,6)-
directions acts by the usual SL(2,Z) transformation on ρ in each theory.
It follows from the duality (19.9.24) that in each theory there is also an
SL(2,Z) acting on S (and hence called S-duality). This includes a weak–
strong duality S → 1/S , as well as discrete shifts of the axion. Thus we

4 5

4→ (R R )5

45 4 5

45
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have deduced the strong-coupling dual of the heterotic string on T 4: itself.
We see that the heterotic string compactified on tori has a complicated but
consistent pattern of duals in different dimensions. In no case does one
find two different weakly coupled duals of the same theory: that would be
a contradiction.
In the heterotic theory on T 6, the interactions at energies far below

the Planck scale reduce to d = 4, N = 4 gauge theory, and the SL(2,Z)
reduces to the Montonen–Olive symmetry of gauge theory, discussed in
section 14.1. In both theories the full moduli space is

SU(1, 1)

U(1)× SU(1, 1,Z)
× O(22, 6,R)

O(22,R)× O(6,R)× O(22, 6,Z)
. (19.9.25)

As usual, the continuous identifications act on the left and the discrete
ones on the right. In the heterotic string the first factor is from the dilaton
superfield and the second from the moduli of Narain compactification. As
is usually the case, the integer subgroup of the symmetry in the numerator
of each factor is a symmetry of the full theory. In the IIA theory the first
factor is from the ρ field, while the dilaton–axion field, the K3 moduli,
and additional moduli from the T 2 compactification combine to give a
single coset. The O(22, 6,Z) duality then includes the perturbative duality
of the K3, the S-duality of the dilaton–axion field, and U-dualities that
mix these.
The six-dimensional duality is also useful in constructing dual pairs

with less supersymmetry. Many Calabi–Yau manifolds are K3 fibrations,
locally a product of K3 with a two-dimensional manifold. Applying the
heterotic–IIA duality locally, the IIA theory on such a space is dual to
the heterotic string on the corresponding T 4 fibration. For heterotic string
compactifications with d = 4, N = 2 supersymmetry, the dilaton is in a
vector multiplet. To see this, note that the dilaton is obtained by exciting
one left- and one right-moving oscillator and so is of the form |1,−1〉 or
|−1, 1〉, where the notation refers to the helicity s1 carried on each side.
Spacetime supersymmetry acts only on the right, generating a multiplet
of four states. A helicity ±3

2 on one side is not possible at the massless

level, as the conformal weight would be at least 9
8 . The supermultiplet

must then consist of

|1,−1〉 , |1,−1
2〉2 , |1, 0〉 (19.9.26)

and the CPT conjugates. This is the helicity content of a vector multiplet.
It follows that the hypermultiplet moduli space does not have string loop
or nonperturbative corrections in d = 4, N = 2 compactifications of the
heterotic string, just as the vector multiplet moduli space does not have
such corrections in the dual type II theory. This is analogous to the
constraints from mirror symmetry, but for string rather than world-sheet
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corrections. In some cases one can combine mirror symmetry and string
duality to determine the exact low energy action for a d = 4, N = 2
compactification. As with mirror symmetry, comparing the exact result in
one theory with the loop and instanton corrections in its dual leads to
unexpected mathematical connections.

19.10 Conclusion

Especially in this final chapter, we have only been able to scratch the
surface of many important and beautiful ideas. String theory is a rich
structure, whose full form is not yet understood. It is a mathematical
structure, but deeply grounded in physics. It incorporates and unifies the
central principles of physics: quantum mechanics, gauge symmetry, and
general relativity, as well as anticipated new principles: supersymmetry,
grand unification, and Kaluza–Klein theory. Undoubtedly there are many
remarkable discoveries still to be made.

Exercises

19.1 Verify directly that the type II dilaton is in a hypermultiplet, by the
method of eq. (19.9.26).

19.2 Fill in the details of the counting of (a, c̃) states in the Gepner models,
as discussed below eq. (19.5.14).

19.3 Show explicitly that the net effect of the twist (19.6.2) on the spectrum
is to reverse the sign of the left-moving U(1) charge.

19.4 For compactification of the type I string on Tk for k ≤ 5, give
explicitly the Wilson line configuration such that in the T -dual theory
there is an equal number of D-branes coincident with each orientifold
fixed plane. What is the unbroken gauge group in each case?

19.5 By composing S , T , S , and T dualities as discussed in section 19.9,
show that in both directions the string–string duality transformation takes
the form (19.9.15). Show that this transforms the heterotic action into
the IIA action. Find the action for the moduli Rm and show that it is
invariant.



Appendix B
Spinors and supersymmetry
in various dimensions

Results about spinors and supersymmetry in various spacetime dimensions
are used throughout this volume. This appendix provides an introduction
to these subjects. The appropriate sections of the appendix should be read
as noted at various points in the text.

B.1 Spinors in various dimensions

We develop first the Dirac matrices, which represent the Clifford algebra

{Γµ,Γν} = 2ηµν . (B.1.1)

We then go on to representations of the Lorentz group. To be specific
we will take signature (d − 1, 1), so that ηµν = diag(−1,+1, . . . ,+1). The
extension to signature (d, 0) (and to more than one timelike dimension)
will be indicated later. Throughout this appendix the dimensionality of
spacetime is denoted by d; we generally reserve D to designate the total
spacetime dimensionality of a string theory.

We begin with an even dimension d = 2k + 2. Group the Γµ into k + 1
sets of anticommuting raising and lowering operators,

Γ0± =
1

2
(±Γ0 + Γ1) , (B.1.2a)

Γa± =
1

2
(Γ2a ± iΓ2a+1) , a = 1, . . . , k . (B.1.2b)

These satisfy

{Γa+,Γb−} = δab , (B.1.3a)

{Γa+,Γb+} = {Γa−,Γb−} = 0 . (B.1.3b)

In particular, (Γa+)2 = (Γa−)2 = 0. It follows that by acting repeatedly

430



Spinors and SUSY in various dimensions 431

with the Γa− we can reach a spinor annihilated by all the Γa−,
Γa−ζ = 0 for all a . (B.1.4)

Starting from ζ one obtains a representation of dimension 2k+1 by acting
in all possible ways with the Γa+, at most once each. We will label these
by with s ≡ (s0, s1, . . . , sk), where each of the sa is ± 1

2 :

ζ(s) ≡ (Γk+)sk+1/2 . . . (Γ0+)s0+1/2ζ . (B.1.5)

In particular, the original ζ corresponds to all sa = −1
2 .

Taking the ζ(s) as a basis, the matrix elements of Γµ can be derived
from the definitions and the anticommutation relations. Increasing d by
two doubles the size of the Dirac matrices, so we can give an iterative
expression starting in d = 2, where

Γ0 =

[
0 1
−1 0

]
, Γ1 =

[
0 1
1 0

]
. (B.1.6)

Then in d = 2k + 2,

Γµ = γµ ⊗
[ −1 0

0 1

]
, µ = 0, . . . , d− 3 , (B.1.7a)

Γd−2 = I ⊗
[
0 1
1 0

]
, Γd−1 = I ⊗

[
0 −i
i 0

]
, (B.1.7b)

with γµ the 2k × 2k Dirac matrices in d− 2 dimensions and I the 2k × 2k

identity. The 2 × 2 matrices act on the index sk , which is added in going
from 2k to 2k + 2 dimensions.
The notation s reflects the Lorentz properties of the spinors. The Lorentz

generators

Σµν = − i

4
[ Γµ,Γν ] (B.1.8)

satisfy the SO(d− 1, 1) algebra

i[ Σµν ,Σσρ ] = ηνσΣµρ + ηµρΣνσ − ηνρΣµσ − ηµσΣνρ . (B.1.9)

The generators Σ2a,2a+1 commute and can be simultaneously diagonalized.
In terms of the raising and lowering operators,

Sa ≡ iδa,0Σ2a,2a+1 = Γa+Γa− − 1

2
(B.1.10)

so ζ(s) is a simultaneous eigenstate of the Sa with eigenvalues sa. The
half-integer values show that this is a spinor representation. The spinors
form the 2k+1-dimensional Dirac representation of the Lorentz algebra
SO(2k + 1, 1).
The Dirac representation is reducible as a representation of the Lorentz

algebra. Because Σµν is quadratic in the Γ matrices, the ζ(s) with even and
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odd numbers of +1
2s do not mix. Define

Γ = i−kΓ0Γ1 . . .Γd−1 , (B.1.11)

which has the properties

(Γ)2 = 1 , {Γ,Γµ } = 0 , [ Γ,Σµν ] = 0 . (B.1.12)

The eigenvalues of Γ are ±1. The conventional notation for Γ in d = 4 is
Γ5, but this is inconvenient in general d. Noting that

Γ = 2k+1S0S1 . . . Sk , (B.1.13)

we see that Γss′ is diagonal, taking the value +1 when the sa include
an even number of −1

2s and −1 for an odd number of −1
2s. The 2k

states with Γ eigenvalue (chirality) +1 form a Weyl representation of the
Lorentz algebra, and the 2k states with eigenvalue −1 form a second,
inequivalent, Weyl representation. For d = 4, the Dirac representation is
the familiar four-dimensional one, which separates into 2 two-dimensional
Weyl representations,

4Dirac = 2+ 2′ . (B.1.14)

Here we have used a common notation, labeling a representation by its
dimension (in boldface). In d = 10 the representations are

32Dirac = 16+ 16′ . (B.1.15)

For an odd dimension d = 2k + 3, simply add Γd = Γ or Γd = −Γ to
the Γ matrices for d = 2k + 2. This is now an irreducible representation
of the Lorentz algebra, because Σµd anticommutes with Γ. Thus there is a
single spinor representation of SO(2k + 2, 1), which has dimension 2k+1.

Majorana spinors

The above construction of the irreducible representation of the Γ matrices
shows that in even dimensions d = 2k + 2 it is unique up to a change
of basis. The matrices Γµ∗ and −Γµ∗ satisfy the same Clifford algebra
as Γµ, and so must be related to Γµ by a similarity transformation. In
the basis s, the matrix elements of Γa± are real, so it follows from the
definition (B.1.2) that Γ3,Γ5, . . . ,Γd−1 are imaginary and the remaining Γµ

real. This is also consistent with the explicit expression (B.1.7). Defining

B1 = Γ3Γ5 . . .Γd−1 , B2 = ΓB1 , (B.1.16)

one finds by anticommutation that

B1Γ
µB−11 = (−1)kΓµ∗ , B2Γ

µB−12 = (−1)k+1Γµ∗ . (B.1.17)

For either B1 or B2 (and only for these two matrices),

BΣµνB−1 = −Σµν∗ . (B.1.18)
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It follows from eq. (B.1.18) that the spinors ζ and B−1ζ∗ transform in
the same way under the Lorentz group, so the Dirac representation is its
own conjugate. Acting on the chirality matrix Γ, one finds

B1ΓB
−1
1 = B2ΓB

−1
2 = (−1)kΓ∗ , (B.1.19)

so that either form for B will change the eigenvalue of Γ when k is odd and
not when it is even. For k even (d = 2 mod 4) each Weyl representation is
its own conjugate. For k odd (d = 0 mod 4) each Weyl representation is
conjugate to the other. Thus in d = 4 we can designate the representations
as 2 and 2 rather than 2 and 2′, but in d = 10, only as 16 and 16′

Just as the gravitational and gauge fields are real, various spinor fields
satisfy a Majorana condition, which relates ζ∗ to ζ. This condition must
be consistent with Lorentz transformations and so must have the form

ζ∗ = Bζ (B.1.20)

with B satisfying (B.1.18). Taking the conjugate gives ζ = B∗ζ∗ = B∗Bζ,
so such a condition is consistent if and only if B∗B = 1. Using the reality
and anticommutation properties of the Γ-matrices one finds

B∗
1B1 = (−1)k(k+1)/2 , B∗

2B2 = (−1)k(k−1)/2 . (B.1.21)

A Majorana condition using B1 is therefore possible only if k = 0
or 3 (mod 4), and using B2 only if or 1 (mod 4). If
k = 0 conditions are possible but they are physically
equivalent, being related by a similarity transformation.
A Majorana condition can be imposed on a Weyl spinor only if B∗B = 1

and the Weyl representation is conjugate to itself. For k odd, which is d = 0
or 4 (mod 8), it is therefore not possible to impose both the Majorana and
Weyl conditions on a spinor: one can impose one or the other. Precisely
for k = 0 mod 4, which is d = 2 (mod 8), a spinor can simultaneously
satisfy the Majorana and Weyl conditions. Majorana–Weyl spinors in
d = 10 play a key role in the spacetime theory of the superstring, and
Majorana–Weyl spinors in d = 2 (ψµ and ψ̃µ) play a key role on the
world-sheet.
Extending to odd dimensions, Γd = ±Γ, and so the conjugation (B.1.19)

of Γd is compatible with the conjugation (B.1.17) of the other Γµ only for
B1, so that k = 0 or 3 (mod 4). In all, a Majorana condition is possible
if d = 0, 1, 2, 3, or 4 (mod 8). When the Majorana condition is allowed,
there is a basis in which B is either 1 or Γ and so commutes with all the
Σµν . In this basis the Σµν are imaginary.

All these results are summarized in the table B.1. The number of real
parameters in the smallest representation is indicated in each case. This
is twice the dimension of the Dirac representation, reduced by a factor of
2 for a Weyl condition and 2 for a Majorana condition. The derivation

(mod 4)
k = 0 (mod 4)

(mod 4) both
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Table B.1. Dimensions in which various conditions are allowed for SO(d − 1, 1)
spinors. A dash indicates that the condition cannot be imposed. For the Weyl repre-
sentation, it is indicated whether these are conjugate to themselves or to each other
(complex). The final column lists the smallest representation in each dimension,
counting the number of real components. Except for the final column the properties
depend only on d mod 8.

d Majorana Weyl Majorana–Weyl min. rep.

2 yes self yes 1
3 yes - - 2
4 yes complex - 4
5 - - - 8
6 - self - 8
7 - - - 16
8 yes complex - 16
9 yes - - 16

10=2+8 yes self yes 16
11=3+8 yes - - 32
12=4+8 yes complex - 64

implies that the properties are periodic in d with period 8, except the
dimension of the representation which increases by a factor of 16.

For d a multiple of 4, a spinor may have the Majorana or Weyl property
but not both: conjugation changes one Weyl representation into the other.
In fact, the two cases are physically identical, there being a one-to-one
mapping between them. Define the chirality projection operators

P± =
1± Γ

2
. (B.1.22)

Given a Majorana spinor ζ or a Weyl spinor χ, the maps

ζ → P+ζ , χ→ χ+ B χ∗ (B.1.23)

give a spinor of the other type, and these maps are inverse to one another.

The matrices −ΓµT also satisfy the Clifford algebra. The charge conju-
gation matrix has the property

CΓµC−1 = −ΓµT . (B.1.24)

Using the hermiticity property

Γµ† = Γµ = −Γ0Γµ(Γ0)−1 , (B.1.25)

this implies that

CΓ0Γµ(CΓ0)−1 = Γµ∗ . (B.1.26)

∗
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Then for even d,

C = B1Γ
0 , d = 2 mod 4 ; C = B2Γ

0 , d = 4 mod 4 . (B.1.27)

For odd d = 2k + 3, again only C = B1Γ
0 acts uniformly on Γµ for all µ;

with this definition CΓµC−1 = (−1)k+1ΓµT . In all cases,

CΣµνC−1 = −ΣµνT . (B.1.28)

Additional properties of the matrices B and C are developed in exer-
cise B.1.

Product representations

We now wish to develop the decomposition of a product of spinor rep-
resentations. A product of spinors ζ and χ will have integer spins and
so can be decomposed into tensor representations. Recall the standard
spinor invariant

ζχ = ζ†Γ0χ . (B.1.29)

Similarly

ζΓµ1Γµ2 . . .Γµmχ (B.1.30)

transforms as the indicated tensor. However, this involves conjugation of
the spinor ζ. From the properties of C it follows that ζTC transforms in
the same way as ζ, so for the product of spinors without conjugation

ζTCΓµ1Γµ2 . . .Γµmχ (B.1.31)

transforms as a tensor.

Starting now with the case of d = 2k + 3 odd, we claim that

ζTCΓµ1µ2...µmχ (B.1.32)

for m ≤ k + 1 comprise a complete set of independent tensors. Here

Γµ1µ2...µm = Γ[µ1Γµ2 . . .Γµm] (B.1.33)

is the completely antisymmetrized product. Without the antisymmetry
these would not be independent, as the anticommutation relation would
allow a pair of Γ matrices to be removed. The restriction m ≤ k+1 comes
about as follows. The definition of Γ implies in even dimensions that

Γµ1...µsΓ = − i
(d− s)!

εµ1...µdΓµs+1...µd . (B.1.34)

In odd dimensions, where Γd = ±Γ, it follows that the antisymmetrized
products (B.1.33) for m and d−m are linearly related. There are no further

−k+s(s 1)−
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restrictions, and the dimensions agree: 2k+1 ·2k+1 in the product of spinors
and 22k+2 from the binomial expansion. Thus

2k+1 × 2k+1 = [0] + [1] + . . .+ [k + 1] , (B.1.35)

where [m] denotes the antisymmetric m-tensor.

For even d = 2k + 2, the products of m and d − m Γ matrices are
independent, and the same construction leads to

2k+1Dirac × 2k+1Dirac = [0] + [1] + . . .+ [2k + 2]

= [0]2 + [1]2 + . . .+ [k]2 + [k + 1] . (B.1.36)

In the second line we have used the equivalence [m] = [d − m] from
contraction with the ε-tensor. Again the dimensionality is correct.

To find the products of the separate Weyl representations, use

ζTCΓµ1µ2...µmΓχ = (−1)k+m+1(Γζ)TCΓµ1µ2...µmχ , (B.1.37)

as follows from the definition of C . The tensor (B.1.32) is then nonvan-
ishing if k + m is odd and the chiralities of ζ and χ are the same, or if
k + m is even and the chiralities are opposite. This allows us to separate
the product (B.1.36):

2k × 2k =

{
[1] + [3] + . . .+ [k + 1]+ , k even ,

[0] + [2] + . . .+ [k + 1]+ , k odd ,
(B.1.38a)

2k′ × 2k′ =
{

[1] + [3] + . . .+ [k + 1]− , k even ,

[0] + [2] + . . .+ [k + 1]− , k odd ,
(B.1.38b)

2k × 2k′ =
{

[0] + [2] + . . .+ [k] , k even ,

[1] + [3] + . . .+ [k] , k odd .
(B.1.38c)

The relation (B.1.34) implies that the tensors of rank k + 1 = d/2 satisfy
a self-duality condition with a sign that depends on the chirality of the
spinor. A self-dual tensor representation can only be real for k even.

Some of the facts that we have deduced can also be verified quickly
by considering the eigenvalues sa. Consider the reality properties of the
Weyl spinors. Conjugation flips the rotation eigenvalues s1, . . . , sk but not
the boost eigenvalue s0. For k even, this is an even number of flips and
gives a state of the same chirality; for k odd it reverses the chirality.
This is consistent with the third column of table B.1. For the tensor
products of Weyl representations, note that the even-rank tensors [2n]
(e.g. the invariant [0]) always contain a component with eigenvalues sa =
(0, 0, . . . , 0), while the odd-rank tensors do not. This would be obtained,
for example, from the product of spinor components sa = (12 ,

1
2 , . . . ,

1
2 )

and sa = (− 1
2 ,−1

2 , . . . ,−1
2 ). For k even these have opposite chirality, as in
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Table B.2. Dimensions in which various conditions are
allowed for SO(N) spinors.

N mod 8 real Weyl real and Weyl

0 yes self yes
1 yes - -
2 yes complex -
3 pseudo - -
4 pseudo self -
5 pseudo - -
6 yes complex -
7 yes - -

the product (B.1.38c). For k odd they have the same chirality, as in the
products (B.1.38a) and (B.1.38b).

Spinors of SO(N)

For SO(N) the analysis is quite parallel. For N = 2l, there is a 2l-
dimensional representation of the Γ-matrices which reduces to two 2l−1-
dimensional spinor representations of SO(2l), while for SO(2l + 1) there
is a single representation of dimension 2l . The reality properties can be
analyzed as in the Minkowski case. Essentially one ignores µ = 0, 1, so
SO(N) is analogous to SO(N + 1, 1), with the results shown in table B.2.
Here real means the algebra can be written in terms of purely imaginary
matrices. The term pseudoreal is often used for N = 3, 4, 5 mod 8, where
the representation is conjugate to itself but cannot be written in terms of
imaginary matrices.
The familiar case of a pseudoreal representation is the 2 of SO(3). This

is conjugate to itself because it is the only two-dimensional representation,
but it must act on a complex doublet. It should be noted, however, that
two wrongs make a right — the product of two pseudoreal representations
is real. Let the indices on uij both be SU(2) doublets, either of the same
or different SU(2)s. Then the reality condition

u∗ij = εii′εjj′ui′j′ (B.1.39)

is invariant. With just a single index, the analogous condition u∗i = εii′ui′
would force u to vanish. Incidentally, one can impose a Majorana condition
on the 2 of SO(2, 1), consistent with table B.1. A real basis for the Γ-
matrices is

Γ0 = iσ2 , Γ1 = σ1 , Γ2 = σ3 . (B.1.40)

Product representations are obtained as in the Minkowski case, with
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the result in N = 2l

2l−1 × 2l−1 =

{
[0] + [2] + . . .+ [l]+ , l even ,

[1] + [3] + . . .+ [l]+ , l odd ,
(B.1.41a)

2l−1′ × 2l−1′ =
{

[0] + [2] + . . .+ [l]− , l even ,

[1] + [3] + . . .+ [l]− , l odd ,
(B.1.41b)

2l−1 × 2l−1′ =
{

[1] + [3] + . . .+ [l − 1] , l even ,

[0] + [2] + . . .+ [l − 1] , l odd .
(B.1.41c)

For more than one timelike dimension, the analog of table B.1 or B.2
depends on the difference of the number of spacelike and timelike dimen-
sions.

Decomposition under subgroups

We frequently consider subgroups such as

SO(9, 1)→ SO(3, 1)× SO(6) . (B.1.42)

We can directly match representations by comparing the eigenvalues of
Sa. In particular, for the case in which all the dimensions are even,

SO(2k + 1, 1)→ SO(2l + 1, 1)× SO(2k − 2l) , (B.1.43)

the Weyl spinors decompose

2k → (2l, 2k−l−1) + (2l′, 2k−l−1′) , (B.1.44a)

2k′ → (2l′, 2k−l−1) + (2l, 2k−l−1′) . (B.1.44b)

Another subgroup that has particular relevance for the superstring is

SO(2n)→ SU(n)×U(1) . (B.1.45)

To describe this subgroup, consider again the complex linear combina-
tions (B.1.2) of Γ-matrices, where a = 1, . . . , n. A general SO(2n) rotation
will mix the Γa+ both among themselves and with the Γa−. The subgroup
that mixes the Γa+ only among themselves is U(n) = SU(n)×U(1). Now
let us consider how the spinor representation decomposes. Again we start
with the spinor ζ annihilated by all the Γa−. This condition Γa−ζ = 0 is
invariant under U(n) rotations so that ζ rotates at most by a phase. Thus

ζ ∈ 1−n , (B.1.46)

2
∑
Sa. Acting with a raising operator adds an SU(n) index and increases

the U(1) charge by 2, giving

2n → [0]−n + [1]2−n + [2]4−n + . . .+ [n]n , (B.1.47)

where the U(1) charge, indicated by the subscript, has been normalized to
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where [k] refers to the k-times antisymmetrized n of SU(n). The completely
antisymmetrized [n] is the same as [0] = 1, while [n− 1] = [1] = n, and so
on. Decomposing further into the Weyl representations, the last term [0]n
is in the 2n−1, and the successive terms alternate. Thus in particular for

SO(6)→ SU(3)×U(1) , (B.1.48)

we have

4 → 13 + 3−1 , (B.1.49a)

4 → 1−3 + 31 . (B.1.49b)

A relation that arises often is

SO(4) = SU(2)× SU(2) . (B.1.50)

To see this, combine the four components of a vector into a 2× 2 matrix

x = x4I + ixiσi , i = 1, 2, 3 ; det x =
4∑

m=1

(xm)2 . (B.1.51)

The length of x is invariant under independent left- and right-hand SU(2)
rotations

x′ = g1xg
−1
2 , (B.1.52)

giving the decomposition (B.1.50). Then

4 = (2, 2) , (B.1.53a)

2 = (2, 1) , (B.1.53b)

2′ = (1, 2) . (B.1.53c)

The decomposition of the vector is just eq. (B.1.52), while those of the
spinors can be derived in various ways.

B.2 Introduction to supersymmetry: d = 4

The familiar conserved quantities, such as energy-momentum, angular
momentum, and charge, transform as vectors, tensors, and scalars under
the Lorentz group. It is also possible for a conserved quantity to transform
as a spinor. Such a supersymmetry (SUSY) will relate the properties of
fermions to those of bosons. Supersymmetry is a feature of all consistent
string theories. Further, as discussed in section 16.2, there is good reason
to expect that it will be found with particle accelerators.
In this appendix we summarize the various results that will be needed

in the text. We are interested in the algebras, their representations, the
transformations of the fields, and the invariant actions. The reader should
be able to follow the derivation of the various representations (massless,
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standard massive, and BPS massive). However, the transformations and
actions require detailed calculation, and so for these we simply cite for
reference some of the key results.

d = 4, N = 1 supersymmetry

According to table B.1, the smallest spinor in four dimensions has four
real degrees of freedom. As shown in eq. (B.1.23) this can be described
either as a Weyl spinor, with two complex components, or as a Majorana
spinor, with four components satisfying a reality condition.

The smallest d = 4 supersymmetry algebra would have one Weyl or
Majorana spinor of supercharges. Again these are identical, the same four
linearly independent supercharges described in two different notations;
we will use the Majorana description. A more general supersymmetry
algebra in d = 4 would have 4N supercharges. For N > 1 this is known
as extended supersymmetry. In any number of dimensions the ratio of the
number of supercharges to the smallest spinor representation is denoted
by N. However, the structure of the theory depends more on the actual
number of supercharges than on the ratio N, so subsequent sections are
organized according to this total number. For pedagogic purposes we find
it convenient in this section to start with the smallest algebra and build
up, but later we will start with the largest algebra and work downwards,
from 32 to 16 to 8. The number of supercharges need not be a power of
2, but in the great majority of examples it is and so these are the cases on
which we focus.

The N = 1 supersymmetry algebra is uniquely determined to be

{Qα, Qβ} = −2PµΓµαβ , (B.2.1a)

[Pµ, Qα] = 0 , (B.2.1b)

where Pµ is the spacetime momentum. The minus sign is due to our
metric signature (− + . . .+). Recall that from the Majorana property,
Q ≡ Q†Γ0 = QTC .

It is easy to work out the representations of this algebra. The massless
and massive representations differ, and we consider the former first. For
massless states choose a frame in which k1 = k0. The supersymmetry
algebra becomes

{Qα, Q†β} = 2k0(1 + Γ0Γ1)αβ = 2k0(1 + 2S0)αβ . (B.2.2)

In the s-basis, the Majorana condition becomes Q†s0s1 = Qs0,−s1 and the
anticommutator becomes

{Qs′0s′1 , Q
†
s0s1
} = 4k0δs0,1/2δss′ . (B.2.3)
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The matrix elements of Q−1/2,s1 must vanish in these momentum eigen-
states because

0 = 〈ψ|{Q−1/2,s1 , Q†−1/2,s1}|ψ〉
= ‖Q−1/2,s1 |ψ〉‖2 + ‖Q†−1/2,s1 |ψ〉‖2 . (B.2.4)

The remaining supercharges form a fermionic oscillator algebra. Defining

b = (4k0)−1/2Q1/2,−1/2 , b† = (4k0)−1/2Q1/2,1/2 , (B.2.5)

the supersymmetry algebra becomes

{b, b†} = 1 , b2 = b†2 = 0 . (B.2.6)

Starting from a state |λ〉 such that

S1|λ〉 = λ|λ〉 , b|λ〉 = 0 , (B.2.7)

the algebra generates exactly one additional state

b†|λ〉 = |λ+ 1
2〉 , S1|λ+ 1

2〉 = (λ+ 1
2)|λ+ 1

2〉 . (B.2.8)

The massless irreducible multiplets thus each consist of two states with
helicities differing by 1

2: one state in each multiplet is a fermion and one
a boson. These are also representations of Poincaré symmetry. However,
CPT , which appears to be an exact symmetry of string theory as it is of
field theory, requires that each multiplet be accompanied by its conjugate
with opposite helicities and quantum numbers. Thus we have the following
(λ, λ+ 1

2) multiplets:

• The chiral multiplet consists of a (0, 12 ) multiplet and its CPT conju-

gate (−1
2 , 0), corresponding to a Weyl fermion and a complex scalar.

• The vector multiplet ( 12 , 1) plus (−1,− 1
2 ) contains a gauge boson and

a Weyl fermion, both necessarily in the adjoint of the gauge group.

• The gravitino multiplet (1, 32 ) plus (−3
2 ,−1) contains an additional

spin-32 gravitino and so is not relevant since there is only one super-
symmetry and so only the gravitino in the graviton multiplet. This
multiplet would be relevant if we had a larger supersymmetry and
decomposed it into N = 1 representations.

• The graviton multiplet ( 32 , 2) plus (−2,−3
2 ) contains the graviton and

gravitino.

• Massless particles with helicities greater than 2 are believed to be
impossible to couple to gravity, and have not arisen in string theory.



442 Appendix B

In an N = 1 supersymmetric extension of the Standard Model, the Higgs
boson and spin-12 fermions are in chiral multiplets. The Standard Model
fermions cannot be in vector multiplets because the latter must be in the
adjoint representation.

For massive representations, the anticommutator in the rest frame is

{Qs′0s′1 , Q†s0s1} = 2mδss′ . (B.2.9)

This is now two copies of the fermionic oscillator algebra,

b1 = (2m)−1/2Q1/2,−1/2 , b2 = (2m)−1/2Q−1/2,−1/2 , (B.2.10a)

{bi, b†j } = δij , {bi, bj} = {b†i , b†j } = 0 . (B.2.10b)

Starting again from a state

S1|λ〉 = λ|λ〉 , bi|λ〉 = 0 , (B.2.11)

the algebra generates the additional three states

b
†
1|λ〉, b†2|λ〉, b†1b†2|λ〉 , S1 = λ+ 1

2 , λ+
1
2 , λ+ 1 . (B.2.12)

For example, the massive chiral multiplet is λ = −1
2 , 0, 0,

1
2 , the same as the

CPT -extended massless multiplet. The multiplet λ = 0, 12 ,
1
2 , 1 is incom-

plete, even without CPT , because massive states must be a representation
of the rotation group SU(2). Adding in λ = −1,− 1

2 ,−1
2 , 0, we obtain a

spin-1, two spin-12 , and one spin-0 particle. These are the same states as a
massless vector plus chiral multiplet, and can be obtained from them via
the Higgs mechanism.

Actions with d = 4, N = 1 SUSY

From section 16.4 on, we need some results about d = 4, N = 1 super-
symmetry transformations and invariant actions. We collect these here,
without derivation. A general renormalizable theory will contain a num-
ber of massless chiral and vector multiplets; the larger massive multiplets
can always be decomposed into these. The particle content of the massless
chiral multiplet corresponds to a complex scalar field φ and a Majorana
(or Weyl) spinor ψ. That of a massless vector multiplet corresponds to
a gauge field Aµ and a Majorana (or Weyl) spinor λ. In each case it is

field F in the chiral multiplet and a real field D in the vector multiplet.
We then have the following superfields

Φi: φi , ψi , Fi , (B.2.13a)

Va: Aaµ , λ
a , Da . (B.2.13b)

useful, though not essential, to add an auxiliary field, a complex
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These have the supersymmetry transformations

δφi/21/2 = iζP+ψ
i = iψiP+ζ , (B.2.14a)

δ(P+ψ
i)/21/2 = P+ζF

i + ΓµP−ζDµφi , (B.2.14b)

δFi/21/2 = −iζΓµDµP+ψ
i , (B.2.14c)

and

δAaµ = −iζΓµλa , (B.2.15a)

δλa =
1

2
ΓµνζFaµν + iΓζDa , (B.2.15b)

δDa = −ζΓΓµDµλa , (B.2.15c)

in terms of a Majorana SUSY parameter ζ.

The most general renormalizable action is determined by the gauge
couplings ga (which of course must be equal within each simple group) and
the superpotential W (Φ), which is a holomorphic function of the superfields.
Also, for each U(1) gauge group there is an additional parameter ξa, the
Fayet–Iliopoulos term. The Lagrangian density is

L =L1 +L2 , (B.2.16)

where

L1 = −Dµφi∗Dµφi − i

2
ψiΓµDµψ

i − 1

4g2a
FaµνF

aµν − i

2g2a
λaΓµDµλ

a

− 1

2

[
iW,ij(φ)ψ

iP+ψ
j + 21/2φi∗taijλ

aP+ψ
j
]
+ c.c. , (B.2.17)

and

L2 = Fi∗Fi +
1

2g2a
Da2 +W,i(φ)F

i + c.c.+
1

2
Da(2ξa + φi∗taijφ

j) . (B.2.18)

In L1 are the kinetic terms, fermion masses and Yukawa couplings, while
in L2 are all terms involving the auxiliary fields. The taij are the gauge
group representation matrices. Renormalizability requires the superpoten-
tial W to be at most cubic in the fields. Carrying out the Gaussian path
integration over the auxiliary fields gives a scalar potential

−L′
2 = V = |Fi(φ)|2 + 1

2g2a
[Da(φ, φ∗)]2 , (B.2.19)

where

Fi(φ) = −W,i(φ)
∗ , (B.2.20a)

Da(φ, φ∗) = −g
2
a

2
(2ξa + φi∗taijφ

j) . (B.2.20b)
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The two terms in the potential are known respectively as the F-term, from
the superpotential, and the D-term, from the gauge interaction.

An important nonrenormalization theorem states that the tree-level su-
perpotential does not receive perturbative corrections. It is also important
that this is only a perturbative statement, and that there can be nonper-
turbative corrections to the superpotential. An example of this arises in
chapter 18.

Two kinds of internal symmetry are possible in supersymmetry. The
first is a unitary rotation Uij acting uniformly on all fields φi, P+ψ

i and
Fi in a given chiral multiplet. This is a symmetry if W is invariant. The
gauge fields Aaµ couple to such a symmetry. The second, known as an R
symmetry, acts differently on different components:

φi → exp(iqiα)φ
i , P+ψ

i → exp[i(qi − 1)α]P+ψ
i , (B.2.21a)

Fi → exp[i(qi − 2)α]Fi , (B.2.21b)

Aaµ → Aaµ , P+λ
a → exp(iα)P+λ

a , Da → Da . (B.2.21c)

Examining the action, for example the Yukawa terms, one sees that this
is a symmetry provided the superpotential transforms as

W (φ)→ exp(2iα)W (φ) . (B.2.22)

In addition, the R symmetry must commute with the gauge symmetry.

Spontaneous supersymmetry breaking

As with an ordinary internal symmetry, spontaneous breaking of super-
symmetry is signified by certain nonvanishing vacuum expectation values.
In particular, consider

〈0|{Qα, χβ}|0〉 , (B.2.23)

where Qα is some component of the supercharge. We can assume the
operator χβ to be fermionic; otherwise, the expectation value vanishes au-
tomatically by Lorentz invariance. If supersymmetry is unbroken, Qα|0〉 =
〈0|Qα = 0 and all such vacuum expectation values vanish. Classically the
condition for unbroken supersymmetry becomes

δψi = δλa = 0 . (B.2.24)

From the variations (B.2.14) and (B.2.15), it follows that a configuration
is supersymmetric if the fields are position-independent, the gauge field is
zero, and

Fi(φ) = Da(φ) = 0 . (B.2.25)

Moreover, we see from the potential (B.2.19) that if such a configuration
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exists it will be a minimum of the energy. Supersymmetry will be spon-
taneously broken if there are no solutions to eqs. (B.2.25). The simplest
example of a system with broken supersymmetry is a single superfield
with superpotential

W = fφ1 , (B.2.26)

with f a nonzero constant; then F = −f∗ �= 0. This is rather trivial as it
stands, but by coupling φ1 appropriately to other fields, for example

W = fφ1 + mφ2φ3 + gφ1φ
2
2 , (B.2.27)

one obtains a theory with a nonsupersymmetric spectrum.

Higher corrections and supergravity

In the usual power counting in four dimensions, the scalar field and vector
potential have dimension l−1 and the spinors dimension l−3/2, l being
length. These are determined by the kinetic terms. It follows from the
transformations (B.2.14) and (B.2.15) that the supersymmetry parameter
ζ has dimension l1/2, consistent with the product of two supersymmetry
transformations being a translation. Also, the auxiliary fields Fi and Da

have dimension l−2. Including the l4 from d4x, the renormalizable action
retains all terms that are relevant at long distance, that is, all terms of
dimension ln with n ≥ 0.

Power counting in renormalization theory is based on the scaling of
the quantum fluctuations of the fields. However, in string theory we have
encountered the phenomenon of moduli, scalar fields with flat potentials.
These can have large classical values. In order to write an effective La-
grangian valid in all of moduli space,1 we need a different power counting
that assigns scalars scaling l0. Supersymmetry then assigns their fermionic
partners scaling l−1/2. We wish to keep all terms of the same order as the
kinetic terms for these fields, and therefore all terms in the Lagrangian
density having dimension lm with m ≥ −2. In order to keep the kinetic
terms for the gauge multiplet, assign Aµ scaling l0 and λ scaling l−1/2.
Finally, we assign the metric scaling l0, since it has a classical expectation
value. Incidentally, this ‘moduli space’ power counting is the same in all
dimensions, whereas the renormalization power counting is dimension-
dependent.

1 To be precise, the effective Lagrangian will still break down at particular points in moduli space,
namely those points where extra massless fields occur. In the neighborhood of such a point, one
needs an effective Lagrangian which includes these additional fields.
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In this approximation, the low energy effective action includes all the
earlier terms plus additional ones. It depends now on three functions:

• The superpotential W (Φ), which is still holomorphic but need no
longer be cubic.

• An arbitrary holomorphic function fab(Φ) replacing the gauge cou-
pling g−2a .

• The Kähler potential K(Φ,Φ∗), which is a general function of the
superfields.

Again there is a Fayet–Iliopoulos parameter ξa for each U(1). The full
Lagrangian density is quite lengthy, so we give only the purely bosonic
terms,

Lbos

(−G)1/2 =
1

2κ2
R −K,̄ıjDµφ

i∗Dµφj − 1

4
Re(fab(φ))F

a
µνF

bµν

−1

8
Im(fab(φ))ε

µνσρFaµνF
b
σρ − V (φ, φ∗) . (B.2.28)

The potential is

V (φ, φ∗) = exp(κ2K)(Kı̄jW ∗
;iW;j − 3κ2W ∗W ) +

1

2
fabD

aDb . (B.2.29)

Here Kı̄j is the inverse matrix to ∂j∂k̄K and

W;i = ∂iW + κ2∂iKW (B.2.30a)

Re(fab(φ))D
b = −2ξa −K,it

a
ijφ

j . (B.2.30b)

The negative term proportional to κ2 is a supergravity effect. The other
terms generalize the earlier potential (B.2.19).

The kinetic term for the scalars is now field-dependent. The second
derivative

K,̄ij =
∂2K(φ, φ∗)
∂φi∗∂φj

(B.2.31)

plays the role of a metric for the space of scalar fields, generalizing
the flat metric δ̄ij of the renormalizable theory. The flat metric is the

special case K = φi∗φi. A metric of the form (B.2.31) is known as a
Kähler metric. In a similar way, the function fab(φ) gives rise to a field-
dependent (nonminimal) kinetic term for the gauge fields, as well as a
field-dependent F2 ∧ F2 coupling. The metric (B.2.31) is invariant under
Kähler transformations,

K(φ, φ∗)→ K(φ, φ∗) + f(φ) + f(φ)∗ . (B.2.32)
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This is an invariance of the whole action provided also that the superpo-
tential transforms as

W (φ)→ exp[−κ2f(φ)]W (φ) . (B.2.33)

This is important because in interesting examples the field space has a
nontrivial topology and the Kähler potential is not globally defined.
The supersymmetry transformations of the fermions are

δP+ψ
i/21/2 = −KīW ∗

;jP+ζ + ΓµP−ζDµφi , (B.2.34a)

δλa =
1

2
ΓµνζFaµν + iΓζDa , (B.2.34b)

δψµ = Dµζ +
1

2
Γµζ exp(κ

2K/2)W . (B.2.34c)

Here ψµ is the gravitino. The covariant derivative of the spinor ζ includes
the spin connection. The variations (B.2.34) all vanish if the metric is flat,
the gauge field zero, the scalars and ζ constant, and ∂iW = Da =W = 0.

Extended supersymmetry in d = 4

With several supersymmetries QAα for A = 1, . . . , N, the straightforward
generalization of the earlier algebra is

{QAα , QBβ } = −2δABPµΓµαβ , [Pµ, QAα ] = 0 . (B.2.35)

This is not the most general algebra, but we analyze it first. For massless
particles, the earlier fermionic oscillator is replaced by N oscillators bA.
These generate 2N states in a binomial distribution from helicity λ to
helicity λ+ 1

2N. For example, for N = 2 the following massless multiplets
are important:

hypermultiplet: (− 1
2 , 0

2, 1
2 ) + (− 1

2 , 0
2, 1

2 ) ,

vector multiplet: (−1, −1
2

2
, 0) + (0, 1

2

2
, 1) ,

supergravity multiplet: (−2, −3
2

2
, −1) + (1, 3

2

2
, 2) .

In each case there are two SUSY multiplets, related by CPT . For states
that are their own CPT conjugates, a half-hypermultiplet is allowed.
Let us note an important feature of these multiplets. If we just look at

the SUSY multiplets, not making use of CPT , then all states in the mul-
tiplet have the same gauge quantum numbers because the supersymmetry
charges commute with the gauge symmetries.2 It follows that an N = 2
theory cannot have chiral gauge interactions. The only SUSY multiplets

2 There is an exception to this known as gauged supergravity, but it is not relevant to the gauge
interactions of the Standard Model.
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with spin-12 states are the half-hypermultiplet and the vector multiplet.

The former contains states of helicities ± 1
2 with the same gauge quantum

numbers and so is nonchiral. The latter is necessarily in the (real) adjoint
representation and so is also nonchiral.

For N = 4 the multiplets are larger:

vector multiplet: (−1, − 1
2

4
, 06, 1

2

4
, 1) ;

supergravity multiplet: (−2, −3
2

4
, −16, − 1

2

4
, 0) + (0, 1

2

4
, 16, 3

2

4
, 2) .

Finally, for N = 8 there is only a single possible representation:

supergravity multiplet: (−2, − 3
2

8
, −128, −1

2

56
, 070, 1

2

56
, 128, 3

2

8
, 2) .

Larger algebras would require helicities greater than 2, which is believed
to be impossible (there are some uninteresting exceptions, such as free
field theories). String theory has several times turned up loopholes in such
statements, but not yet here.

Massive representations of extended supersymmetry similarly contain
22N states generated by b1A and b2A.

The most general extended supersymmetry algebra allowed by Lorentz
invariance is

{QAα , QBβ } = −2δABPµΓµαβ − 2iZABδαβ , (B.2.36a)

[Pµ, QAα ] = [ZAB, QCα ] = [ZAB, Pµ] = [ZAB, ZCD] = 0 . (B.2.36b)

Here ZAB is some set of conserved charges. It must be antisymmetric in
AB due to the Majorana property and the antisymmetry of the charge
conjugation matrix C .

To be precise, this is the most general algebra if we include only
charges that can be carried by point particles. Including charges that
can be carried by extended objects, additional terms appear. Rather than
explain this here, we introduce it in its natural physical context: first in
section 11.6, and then in more variety in chapter 13. The same caveat
applies to the higher-dimensional algebras to be introduced later in this
appendix.

To see the effect of the additional term consider a particle in its rest
frame, for which the algebra becomes

{QAα , QB†β } = 2mδABδαβ + 2iZABΓ0
αβ . (B.2.37)



Spinors and SUSY in various dimensions 449

Taking an eigenstate of the charges ZAB , we can go to a basis in which

ZAB =


0 q1 0 0
−q1 0 0 0 . . .

0 0 0 q2
0 0 −q2 0

...
. . .

 , (B.2.38)

with qi ≥ 0. The left-hand side of the algebra (B.2.37) is nonnegative as
a matrix in (Aα, Bβ). The eigenvalues 2(m ± qi) on the right-hand side
must therefore also be nonnegative, implying the Bogomolnyi–Prasad–
Sommerfield (BPS) bound

m ≥ qi . (B.2.39)

Thus the mass is bounded below by the charges, and in particular massless
states must be neutral. If m is strictly greater than all the qi, the massive
representations are unaffected and contain 22N states. If the largest k
qis are equal to one another and to m, the algebra requires 2k pairs of
fermionic oscillators to annihilate the states, just as half the oscillators do
for a massless representation. This gives a short or BPS representation
with 22(N−k) states. If all the qi are equal to one another and to m, the
result is an ultrashort representation of dimension 2N (for N even), the
same as the massless representation.

B.3 Supersymmetry in d = 2

In this section we briefly make the connection with the world-sheet alge-
bras of string theory. The smallest spinor representation in two dimen-
sions is Majorana–Weyl and has one Hermitean component. The general
(N, Ñ) algebra would have N Hermitean left-moving supercharges QAL and
Ñ Hermitean right-moving supercharges QAR . The algebra is

{QAL, QBL} = δAB(P 0 − P 1) , {QAR, QBR} = δAB(P 0 + P 1) , (B.3.1a)

{QAL, QBR} = ZAB , (B.3.1b)

where now ZAB need have no special symmetry. The superconformal
generators G0 and G̃0 satisfy this algebra. Thus the R sector of the (N, Ñ)
superconformal theory contains the (N, Ñ) supersymmetry algebra. In
fact, this was one of several independent routes by which supersymmetry
was first discovered.

The dimensional reduction of the d = 4, N = 1 supersymmetry algebra
gives the d = 2 (2,2) algebra.
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B.4 Differential forms and generalized gauge fields

Various antisymmetric tensor fields appear in supergravity and string
theory. Differential forms are a convenient notation to minimize the
bookkeeping of indices and combinatoric factors. A p-form A is simply a
completely antisymmetric p-index tensor Aµ1...µp with the indices omitted.
Because we encounter many different forms, we will denote the rank of
any form by an italicized subscript, Ap . The product of a p-form Ap and
a q-form Bq is written Ap ∧ Bq or simply ApBq , and is defined

(Ap ∧ Bq )µ1...µp+q =
(p+ q)!

p!q!
A[µ1...µpBµp+1...µp+q] . (B.4.1)

Again, [ ] denotes antisymmetrization, averaging over permutations with
a ±1 for odd permutations. The wedge product of a p-form A and q-form
B has the property

Ap ∧ Bq = (−1)pqBq ∧ Ap . (B.4.2)

The exterior derivative d takes a p-form into a (p+ 1)-form:

(dAp)µ1...µp+1
= (p+ 1)∂[µ1Aµ2...µp+1] . (B.4.3)

It has the important property d2 = 0.

The integral of a d-form is coordinate-invariant,∫
ddxA01...d−1 ≡

∫
Ad , (B.4.4)

the transformation of the tensor offsetting that of the measure. Because
of the antisymmetry, one must specify an orientation. Similarly, a p-form
can be integrated over any p-dimensional submanifold. For a manifold
with boundary one has Stokes’s theorem,∫

M
dAp−1 =

∫
∂M

Ap−1 (B.4.5)

where M is p-dimensional.

None of the above constructions requires a metric. In particular d
contains only the ordinary derivative, but it is invariant due to the an-
tisymmetry. One construction that does require a metric is the Poincaré
dual, or, more properly, Hodge star. It is defined as

∗Aµ1...µd−p =
1

p!
εµ1...µd−p

ν1...νpAν1...νp . (B.4.6)

The Levi–Civita symbol εµ1...µd is defined to transform as a tensor. Thus

with all lower indices its components are ±(−G)1/2 and 0, while with all
upper indices its components are ±(−G)−1/2 and 0. One can check that
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on a p-form,

∗ ∗ = (−1)p(d−p)+1 , (B.4.7)

the +1 coming from the Minkowski signature.
One can also represent the above by introducing an algebra of d

anticommuting differentials dxµ, writing

Ap =
1

p!
Aµ1...µpdx

µ1 . . . dxµp . (B.4.8)

The factorial just offsets the sum over permutations so that each indepen-
dent component appears once. The product of a p-form A and a q-form
B is then (B.4.1), and the exterior derivative is d = dxν∂ν .

In this notation, an Abelian field strength, vector potential, and gauge
transformation are written

F2 = dA1 , δA1 = dλ . (B.4.9)

In the non-Abelian case, writing the fields as matrices, these become

F2 = dA1 − iA1 ∧A1 ≡ dA1 − iA2
1 , δA1 = dλ− iA1λ+ iλA1 . (B.4.10)

In the Abelian case there is a straightforward generalization to a p-form
gauge transformation

Fp+2 = dAp+1 , δAp+1 = dλp . (B.4.11)

The action is

− 1

2

∫
ddx (−G)1/2|Fp+2 |2 = −1

2

∫
ddx

(−G)1/2
(p+ 2)!

Fµ1...µp+2
Fµ1...µp+2 . (B.4.12)

A given component, say A1...p+1, then appears with the canonical normal-

ization for a real scalar, −1
2∂µA1...p+1∂

µA1...p+1. There is no straightforward
non-Abelian generalization. For p = −1, the gauge invariance is trivial
and this describes a massless scalar.
Using the gauge invariance (B.4.11), we can set nµAµν1...νp = 0. The field

equation then also implies kµAµν1...νp = 0 and k2 = 0. The potential Ap+1

thus gives rise to a massless particle in the representation [p + 1] of the
spin SO(d− 2).

Since [p + 1] = [d − p − 3] for SO(d − 2), a (p + 1)-form potential
and a (d − p − 3)-form potential describe the same particle states. For
d = 4 and p = 1, this is the familiar fact that Bµν describes the axion.
We can also show this at the level of the fields. The Bianchi identity from
Fp+2 = dAp+1 and the equation of motion from the action (B.4.12) are

dFp+2 = 0 , d∗Fp+2 = 0 . (B.4.13)

There is an obvious symmetry here: defining

F ′d−p−2 = ∗Fp+2 (B.4.14)
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simply switches the field equation and Bianchi identity, and in particular
one can solve the new Bianchi identity in terms of a new potential A′d−p−3 ,

where dA′d−p−3 = F ′d−p−2 . These theories are therefore equivalent, and one

need consider only potentials of rank up to 1
2d − 1. Again note that it is

the field strength, not the potential, that is dualized. One can also see the
equivalence in the action:

−1

2

∫
ddx (−G)1/2|dAp+1 |2 → − 1

2

∫
ddx (−G)1/2|Fp+2 |2

+

∫
A′d−p−3 ∧ dFp+2

→ − 1

2

∫
ddx (−G)1/2|dA′d−p−3 |2 . (B.4.15)

In the first action the potential Ap+1 is the variable of integration. In
the second, Fp+2 is the variable of integration; the Bianchi identity is no
longer automatic so a Lagrange multiplier A′d−p−3 has been introduced
to enforce it. In the final form the original Fp+2 has been integrated out,
leaving a gauge action for A′d−p−3 . In d = 4, this is electric–magnetic
duality of Maxwell’s equations. In d = 3, it implies that a vector potential
is equivalent to a massless scalar. In d = 2 a massless scalar is equivalent
to a dual scalar; in fact, this is equivalent to the world-sheet T -duality
X → X ′. Again, note that it is the field strength to which the Poincaré
duality is applied, not the potential.

For d = 2 mod 4, where ∗2 = 1 on (d/2)-forms, it is consistent with the
field equation and Bianchi identity to impose one of

Fd/2 = ±∗Fd/2 . (B.4.16)

These are consistent theories with half as many components. In d = 2
they correspond to the left- or right-moving parts of a massless scalar.
The action (B.4.12) no longer gives the field equation, as

|Fd/2 |2 = ±Fd/2 ∧ Fd/2 = 0 (B.4.17)

vanishes. There are more complicated actions which are not manifestly
covariant.

B.5 Thirty-two supersymmetries

We now begin a survey of some of the supersymmetric theories that arise
as low energy limits in string theory. A more complete treatment can be
found in the references.
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d = 11 supergravity

In four dimensions the largest supersymmetry algebra, N = 8, contains
32 supercharges. This same limit holds in higher dimensions, since we
could reduce to four by compactifying on tori. Table B.1 then implies
that d = 11 is the maximum in which supersymmetry can exist,3 since the
spinor representations are too large for d ≥ 12. Although this exceeds by
one the critical dimension of superstring theory, we will start with this
case.

The Majorana spinor supercharge again satisfies the algebra

{Qα, Qβ} = −2PµΓµαβ . (B.5.1)

The massless irreducible representation contains 28 = 256 states, half
fermions and half bosons. By calculating the spins S1, . . . , S4 one finds
that the graviton multiplet contains two bosonic representations of SO(9):
a traceless symmetric tensor (the graviton) with 1

2 × 9 × 10 − 1 = 44
components and a completely antisymmetric three-index tensor with 9 ×
8×7/3! = 84 components for 128 in all. There is a single fermionic vector-
spinor representation. The spinor index takes 16 values and the vector
9 values; 16 components vanish by a trace condition as in eq. (10.5.19),
leaving 16× 9− 16 = 128 fermionic components.

With two or fewer derivatives there is a unique supersymmetric action,
whose bosonic part is

S11 =
1

2κ2

∫
d11x (−G)1/2

(
R − 1

2
|F4 |2

)
− 1

12κ2

∫
A3 ∧ F4 ∧ F4 (B.5.2)

with A3 a 3-form potential and F4 its 4-form field strength. The final
Chern–Simons term is gauge-invariant in spite of the explicit appearance
of A3 because the term from the variation δA3 = dλ2 vanishes by parts.

d = 10 IIA supergravity

By compactifying the d = 11 theory on a torus and keeping only the
massless fields (dimensional reduction), we obtain a d = 10 theory with 32
supercharges. The d = 11 Majorana spinor becomes a d = 10 Majorana
spinor, which reduces to one Majorana–Weyl spinor of each chirality,

Q1
α ∈ 16 , Q2

α ∈ 16′ . (B.5.3)

The product of two spinors of the same chirality contains a vector, while
the product of spinors of opposite chirality contains a scalar (eq. (B.1.38)),

3 With two timelike dimensions a Majorana–Weyl spinor with 32 components is allowed at d = 12,
but we will not try to figure out what this might mean.
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so from the eleven-dimensional algebra we deduce

{Q1
α, Q

1
β} = −2Pµ(P+Γ

µ)αβ , {Q2
α, Q

2
β} = −2Pµ(P−Γµ)αβ , (B.5.4a)

{Q1
α, Q

2
β} = −2P10(P+Γ)αβ . (B.5.4b)

Here Γ = Γ10 is from the toroidal dimension. A notable feature is the
appearance of a central charge proportional to the Kaluza–Klein momen-
tum. This is one of the ways that a central charge in the supersymmetry
algebra can arise; additional central charges carried by extended objects
are introduced in their physical context in section 13.2.

The dimensional reduction of the d = 11 theory leaves a scalar from
G10 10, a Kaluza–Klein vector from Gµ10, a 2-form potential from Bµν10
and a 3-form from Bµνσ . This is the same as the massless content of
the IIA superstring, the scalar dilaton and the 2-form being from the
NS–NS sector and the 1- and 3-forms from the R–R sector. This is
no surprise because the large amount of supersymmetry determines the
massless particle content completely. What is a surprise is that there really
is an eleventh dimension hidden in the IIA string, invisible in perturbation
theory but visible at strong coupling. This is discussed in chapter 14.

The action can be obtained by dimensional reduction; further details
are given in section 12.1.

d = 10 IIB supergravity

There is another ten-dimensional supergravity, which is not obtained by
compactifying an eleven-dimensional theory. This has two supercharges
of the same chirality, which we can define to be 16. The algebra is

{QAα , QBβ } = −2δABPµ(P+Γ
µ)αβ . (B.5.5)

The graviton multiplet contains two scalars, the traceless symmetric gravi-
ton, two antisymmetric 2-forms, and a 4-form with self-dual field strength,
for

2 + 35 + 28 + 28 + 35 = 128 (B.5.6)

bosonic states in all. This is the same as the massless content of the IIB
superstring. More details are given in chapters 10 and 12.

d < 10 supergravity

The supergravities with 32 supercharges in d < 10 can be obtained
by dimensional reduction of the IIA string, or equivalently of d = 11
supergravity. In this section we discuss some of the main features; this
subject is relevant in particular to section 14.2. We need not consider the
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Table B.3. Supergravities with 32 supercharges. The group G is a symmetry of the
low energy supergravity theory, and the moduli space is locally G/H .

d scalars vectors G H

10A 1 1 SO(1, 1,R) -
10B 2 0 SL(2,R) SO(2,R)
9 3 3 SL(2,R)× SO(1, 1,R) SO(2,R)
8 7 6 SL(2,R)× SL(3,R) SO(2,R)× SO(3,R)
7 14 10 SL(5,R) SO(5,R)
6 25 16 SO(5, 5,R) SO(5,R)× SO(5,R)
5 42 27 E6(6)(R) USp(8)
4 70 28 E7(7)(R) SU(8)
3 128 - E8(8)(R) SO(16,R)

IIB string separately below d = 10, because after compactification on a
circle it is T -dual to the IIA string (chapter 13).

The first issue we wish to consider is the number of scalars. Compacti-
fying k of the dimensions of d = 11 supergravity, there are

1

2
k(k + 1) (B.5.7)

scalars from Gmn and

1

3!
k(k − 1)(k − 2) (B.5.8)

from Bmnp. Again m, n, p are compactified and µ, ν are noncompact. In
addition, in d = 5, the Poincaré dual ∗(Hµνρσ) gives the field strength
(gradient) for an extra scalar, as discussed at the end of section B.4. In
d = 4, ∗(Hµνρm) gives 7 extra scalars. In d = 3, ∗(Hµνmn) gives

1
28× 7 = 28

extra scalars. Also in d = 3 the duals of the 8 Kaluza–Klein vectors give
additional scalars. The total number is indicated in table B.3.

The second issue is the number of vectors: k from Gµn and 1
2k(k − 1)

from Bµmn. In addition there is one in d = 6 from ∗(Hµνρσ) and six in d = 5
from ∗(Hµνρm). In d = 4, ∗(Hµνmn) is just the magnetic description of the
Bµmn vectors, and there are no vectors in d = 3 because we have converted
them all to scalars by Poincaré duality. The results are summarized in the
second column of the table. The gauge group is U(1)nV .

Third, there is no potential — the scalars are moduli — and the moduli
space metric is completely determined by symmetry. The moduli spaces
are cosets G/H , as listed in the table. The structure is the same as in
the toroidal example in section 8.4, a coset of a noncompact group by a
compact group. In the string case there was a further identification by the
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discrete T -duality group. This discrete identification does not affect the
local structure of moduli space, and in particular not the effective action,
and so it is not determined at this point by supersymmetry. Rather, it
is determined by short-distance physics as is described in chapter 14.
In the bosonic case the dilaton was decoupled, giving a separate space
SO(1, 1,R) = R. Below d = 9 in table B.3 it combines with other moduli
into a larger homogeneous space.

In each case, the noncompact group in the numerator is a global
symmetry of the supergravity theory, and the compact group in the
denominator is the unbroken symmetry at any point in moduli space. The
notation En(n)(R) refers to an exceptional group with some sign changes
in the algebra to make it noncompact, just as SO(n, m,R) is related to
SO(n + m,R) and SL(n,R) to SU(n). The details of table B.3 are not at
this point important, but it is interesting to see in chapter 14 how the
structure fits into string theory.

For d = 4, the count in the table agrees with the N = 8 multiplet. To
dimensionally reduce the supersymmetry algebra, separate the 11-dimen-
sional 32-valued spinor index into a 4-valued SO(3, 1) index α and an
8-valued SO(7) index A. The 11-dimensional algebra (B.5.1) becomes

{QAα , QBβ } = −2PµδABΓµαβ − 2PmΓ
mAB
(7) Γ(4)αβ . (B.5.9)

Here Γm factors into ΓmAB(7) Γ(4)αβ with ΓmAB(7) being SO(7) Γ matrices. The
factor of

Γ(4)αβ = i(Γ0Γ1Γ2Γ3)αβ (B.5.10)

must appear because Γm anticommutes with Γµ. Again, a central charge
has arisen from the compact momenta. Since

(PmΓ
mPnΓ

n)AB = δABPmP
m , (B.5.11)

the eigenvalues qi of the central charge are all equal and any BPS multiplet
will be ultrashort, with the same 256 states as a massless multiplet. In this
case there is a simple explanation. The BPS condition is −PµPµ = PmP

m,
so a BPS multiplet is actually a massless multiplet from the higher-
dimensional point of view.

The d = 4, N = 8 theory has 28 gauge bosons, but only the 7 Kaluza–
Klein charges appear in the dimensionally reduced algebra (B.5.9). In
fact, the full algebra contains all 28 gauge charges, the remainder arising
from the extended-object charges in higher dimensions. The antisymmetric
matrix ZAB has precisely 28 components, so in general all are nonzero.
The gauge charges can be organized into an antisymmetric matrix PAB

so that the algebra (after a chirality rotation to remove Γ(4)) is

{QAα , Q̄Bβ } = −2PµδABΓµαβ − 2PABδαβ . (B.5.12)
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It should be noted that the compact momenta depend on the moduli, for
example p = n/R for compactification on a single circle. When the central
charge is written in terms of integer charges such as n, it has explicit
dependence on the moduli.

B.6 Sixteen supersymmetries

d = 10, N = 1 (type I) supergravity

This algebra has a single Majorana–Weyl 16 supercharge. The massless
vector representation has 16 states, 8v + 8′ under the SO(8) little group.
The supergravity multiplet is 8v × (8v + 8′) as found in the bosonic and
type I strings. The bosonic content is then a graviton, an antisymmetric
tensor, and a dilaton from the supergravity multiplet plus dim g vectors
from the gauge multiplets, g being the gauge group. The bosonic action is
given in section 12.1. The action is classically invariant for any g, but as
discussed in section 12.2 there are anomalies unless g = SO(32) or E8×E8.

d < 10 supergravity

Toroidal compactification of k dimensions gives supergravity with 16
supersymmetries in d = 10− k. There are a total of k(k+ r) + 1 moduli, r
being the rank of the ten-dimensional gauge group g. The metric gives rise
to 1

2k(k+1) moduli, the antisymmetric tensor to 1
2k(k−1), the Wilson lines

to kr, and the original ten-dimensional dilaton to the final one. Of course
g is SO(32) or E8×E8, both having r = 16, in a consistent ten-dimensional
theory, but here we are just using this as a trick to generate theories in
lower dimensions. The reduced theories are parity-symmetric and have no
anomalies, and so can have any g. In fact, various r < 16 theories can be
obtained in string theory by slightly more complicated compactifications.
The moduli space is as given explicitly by the Narain compactification of
the heterotic string,

SO(1, 1,R)× SO(k + r, k,R)

SO(k + r,R)× SO(k,R)
, (B.6.1)

the SO(1, 1,R) being from the dilaton. In d = 4 the antisymmetric tensor
gives another scalar, the axion, via Poincaré duality; this combines with
the dilaton to form SL(2,R)/SO(2,R). In d = 3 (k = 7), the Poincaré duals
of the 14 + r vectors combine with the dilaton and the other moduli to
enlarge the moduli space (B.6.1) to

SO(8 + r, 8,R)

SO(8 + r,R)× SO(8,R)
. (B.6.2)
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Toroidal compactification gives gauge group U(1)2k+r at generic points
in moduli space, the original gauge group being broken to U(1)r by Wilson
lines. At special points it will be enhanced to various non-Abelian groups;
the rank remains 2k + r.

d = 6, N = 2 supersymmetry

Under SO(9, 1)→ SO(5, 1)× SO(4), the ten-dimensional N = 1 supersym-
metry decomposes

16→ (4, 2) + (4′, 2′) . (B.6.3)

The (4, 2) has eight real components, forming a single complex 4. The
4 cannot have a Majorana condition imposed so the complex 4 is the
smallest algebra in d = 6. The dimensionally reduced algebra is d = 6
(1, 1) supersymmetry, one supercharge in the 4 and one in the 4′. The
only representation with spins ≤ 1 is the vector, which is the dimensional
reduction of the d = 10 vector and so consists of one vector and four
scalars.
Decomposing SO(5, 1) into the SO(1, 1) of the (0,1)-plane and the

transverse SO(4), the Weyl spinor supercharges decompose

4 → (+1
2 , 2) + (−1

2 , 2
′) = (+1

2 ,
1
2 , 0) + (− 1

2 , 0,
1
2 ) , (B.6.4a)

4′ → (+1
2 , 2

′) + (− 1
2 , 2) = (+1

2 , 0,
1
2 ) + (− 1

2 ,
1
2 , 0) . (B.6.4b)

These are complex representations, so their adjoints are independent
operators. The representations of SO(1, 1) are all one-dimensional and are
labeled by the helicity S0. In the second equality of each line we have used
the relation SO(4) = SU(2)×SU(2) and labeled the SU(2) representations
by their spin j, so the notation is (s0, j1, j2). As in section B.1, the s0 =
− 1

2 generators annihilate the massless states. The latter then form a

representation of the generators with s0 =
1
2 , these being Qα and Q

′
β in the

(12 , 0) and (0, 12 ) of SU(2)×SU(2). Treating these as lowering operators and
their adjoints as raising operators, by taking all combinations of raising
operators one obtains the representations

r = (12 ,
1
2 ) + (12 , 0)

2 + (0, 12 )
2 + (0, 0)4 . (B.6.5)

Starting from an SU(2)× SU(2) multiplet |j1, j2〉 annihilated by the low-
ering operators, the raising operators generate the representations

r × |j1, j2〉 . (B.6.6)

The supergravity multiplet is built on | 12 , 12〉, giving the states

|1, 1〉+ |1, 0〉+ |0, 1〉+ |0, 0〉+ |12 , 12〉4

+ |1, 12〉2 + | 12 , 1〉2 + |0, 12〉2 + | 12 , 0〉2 . (B.6.7)
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The bosonic content, in the first line, is a graviton, an antisymmetric
tensor, a scalar, and four vectors. The vector multiplet is built on |0, 0〉,
giving

|12 , 12〉+ |0, 0〉4 + |12 , 0〉2 + |0, 12〉2 . (B.6.8)

There is a second d = 6 algebra with 16 supercharges, the (2, 0) algebra
with two complex 4 supercharges. The raising operators now form the
representations

r′ = (1, 0) + (12 , 0)
4 + (0, 0)5 . (B.6.9)

Acting on |0, 1〉, these produce the supergravity multiplet

|1, 1〉+ |12 , 1〉4 + |0, 1〉5 , (B.6.10)

whose bosonic content is a graviton and five anti-self-dual antisymmetric
tensors. Acting on |0, 0〉 they produce the tensor multiplet

|1, 0〉+ |12 , 0〉4 + |0, 0〉5 , (B.6.11)

with self-dual antisymmetric tensor and five scalars.

d = 4, N = 4 gauge theory

The four-dimensional N = 4 algebra is

{QAα , QBβ } = −2PµδABΓµαβ − 2PRmΓ
mABδαβ . (B.6.12)

In this case only six of the gauge charges appear; in the heterotic string
these are the ones coming from right-moving currents.

We now consider the effective renormalizable theory near a point of
non-Abelian symmetry h. It will be useful to derive the full action and
SUSY transformation by dimensional reduction of ten-dimensional super-
symmetric Yang–Mills theory, whose Lagrangian density is

− 1

4g2
Tr(FMNF

MN)− i

2g2
Tr(λΓMDMλ) . (B.6.13)

The gauge field and the gaugino λ (a Majorana–Weyl 16) are written in
matrix notation, and M,N run from 0 to 9. The supersymmetry transfor-
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mation is

δAM = −iζΓMλ , (B.6.14a)

δλ =
1

2
FMNΓ

MNζ . (B.6.14b)

Reducing M → µ, m, the Lagrangian density becomes

− 1

4g2
Tr
(
FµνF

µν + 2DµAmD
µAm − [Am, An]

2
)

− i

2g2
Tr(λ̄ΓµDµλ+ iλ̄Γm[Am, λ]) . (B.6.15)

The six compact components of the gauge field become the six scalars Am
of the N = 4 vector multiplet. The 16 index separates into (2, 4) + (2, 4)
under SO(3, 1)× SO(6), so the ten-dimensional spinor becomes four Weyl
spinors. Similarly the transformation laws reduce to

δAµ = −iζΓµλ (B.6.16a)

δAm = −iζΓmλ (B.6.16b)

δλ =

(
1

2
FµνΓ

µν + Dµ nΓ
µn +

i

2
[Am, An]Γ

mn

)
ζ . (B.6.16c)

The potential

V = − 1

4g2
Tr
(
[Am, An]

2
)

(B.6.17)

is nonnegative and vanishes only if [Am, An] = 0 for all m, n. Thus, in
the flat directions the Am can be taken simultaneously diagonal, and the
moduli are just the 6 rank(h) eigenvalues. At generic points the group is
broken to U(1)rank(h). We have seen this potential before, in eq. (8.7.11) for
the D-brane moduli. This is no accident, as the T -duality that produces
the D-brane has the effect of dimensionally reducing the open string
Yang–Mills action.
Eq. (B.6.15) is the most general renormalizable action consistent with

N = 4 global supersymmetry. It remains the most general action if we
adopt the looser moduli space power counting described in section B.2,
which would have allowed field-dependent kinetic terms. In other words,
N = 4 global supersymmetry requires the moduli space to be flat. This is no
contradiction with the curved moduli space (B.6.1) found in supergravity.
The only scale there is the Planck scale, so the dimensionless variable
is κA and the nonlinearities vanish in the limit κ → 0 where we ignore
gravity.
The N = 4 Yang–Mills theory has a number of interesting properties,

the first being that its beta function vanishes identically — the coupling
does not run. Unlike most gauge theories, different values of g really give
different theories, rather than being transmuted to a change of scale. It is

A
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easy to prove this statement, not just to all orders of perturbation theory
but exactly. Consider for simplicity h = SU(2). Generically, Am ∝ σ3

breaks SU(2) to U(1) at a scale

v = (AmAm)
1/2 ≡ A , (B.6.18)

so the massless theory contains only an Abelian vector multiplet. Consider
the gauge field kinetic term in the effective action. Its coefficient is −1/4g2,
but if the coupling runs in SU(2) we must figure out at what scale to
evaluate g. The answer is v, because this is where SU(2) breaks and the
coupling stops running. The scale v depends on the massless moduli, so
what we really have is an effective Lagrangian density

− 1

4g2(A)
FµνF

µν . (B.6.19)

However, this is a field-dependent kinetic term, which we have just stated
is inconsistent with N = 4 supersymmetry — unless in fact the coupling
is independent of scale as claimed. This argument is typical of the re-
cent analysis of supersymmetric gauge theories, but is particularly simple
because of the large amount of supersymmetry.

B.7 Eight supersymmetries

d = 6, N = 1 supersymmetry

We start in six dimensions, the maximum in which a spinor with eight
components is allowed according to table B.1. We obtain the massless
representations as in eq. (B.6.6), where now

r′′ = (12 , 0) + (0, 0)2 . (B.7.1)

The supergravity multiplet, built on | 12 , 1〉, is
|1, 1〉+ | 12 , 1〉2 + |0, 1〉 (B.7.2)

containing the graviton, gravitino (which requires two copies of |12 , 1〉), and
the (0, 1) which is an anti-self-dual 2-form. The other relevant multiplets
are built on |0, 0〉, |0, 12〉, and | 12 , 0〉, giving

half-hypermultiplet: | 12 , 0〉 , |0, 0〉2 ,

vector multiplet: | 12 , 12〉 , |0, 12〉2 ,

tensor multiplet: |1, 0〉 , | 12 , 0〉2 , |0, 0〉 .
The respective bosonic content is: two scalars; a vector; a self-dual tensor
plus scalar.
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A general theory will have some number of vector, hyper-, and tensor
multiplets. We describe the general bosonic Lagrangian, first in the most
restrictive form of keeping only terms that would be renormalizable when
reduced to four dimensions. The Lagrangian consists of gauge-invariant
kinetic terms for the various fields and a potential for the hypermultiplets.
The tensors must be neutral under the gauge group, so in this limit
the tensor representation is decoupled from all other fields. To write the
potential, we collect two half-hypermultiplets into a complex doublet of
scalars Φiα, with α the doublet index and i labeling the hypermultiplets.4

The N = 2 D-term is

DAa =
g2

2
Φi∗α σ

A
αβt

a
ijΦ

j
β , (B.7.3)

with σAαβ the Pauli matrices (A = 1, 2, 3) and taij the group representation.
The potential, determined entirely by the gauge symmetry, is

1

2g2
DAaDAa . (B.7.4)

The interactions, incidentally, are nonrenormalizable in six dimensions.
Now consider the less restrictive moduli space action, where field-

dependent kinetic terms are included, but with gravity still decoupled.
Supersymmetry does not allow the gauge field kinetic term to depend on
the hypermultiplet moduli, and it is allowed to depend on the scalar t in
the tensor multiplets only in the precise form

tTr(FµνF
µν) . (B.7.5)

The linear dependence is fixed because this term is related by supersym-
metry to a coupling of the self-dual tensor,

B2Tr(F2 ∧ F2 ) , (B.7.6)

where the tensor gauge invariance allows only the linear coupling. The
term (B.7.6) is needed to cancel anomalies in a six-dimensional version of
the Green–Schwarz mechanism, so these terms can arise only at exactly
one loop, with a coefficient that is determined by the gauge quantum
numbers of the hyper- and vector multiplets.
The hypermultiplet kinetic term may depend on the hypermultiplet

moduli but not the tensor moduli. Representing the moduli by real fields
φr , one has

Grs(φ)∂µφ
r∂µφs . (B.7.7)

4 If the scalars are in a pseudoreal representation of the gauge group, meaning that the conjugation
matrix Cij is antisymmetric, one can reduce to a half-hypermultiplet by the reality condition

Φi∗α = εαβCijΦ
j
β
.
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For the case of d = 4, N = 1 supersymmetry, we have explained in
section B.2 that the moduli space must be Kähler, meaning that the 2n
real moduli can be grouped into n complex fields φi with the metric Gı̄j =
K,̄ıj . Here the supersymmetry is doubled and the metric correspondingly
more restricted: it must be hyper-Kähler. This means that there are three
different complex Kähler structures, three different ways to group the real
moduli into complex fields, each giving a Kähler metric. Further there
is a relation between the three complex structures. Given any complex
structure, a set of complex coordinates φi and φi∗, we can define the tensor
J by

Jij = iδij , Jı̄̄ = −iδı̄̄ , Jī = Jı̄j = 0 . (B.7.8)

This tensor can be defined for any complex manifold and is also known as
the complex structure. We have defined it in a particular coordinate system
but now can translate it to arbitrary coordinates. It satisfies J2 = −1, a
frame-independent statement. The three complex structures of the hyper-
Kähler space are required to satisfy

JAJB = −δAB + εABCJC . (B.7.9)

These properties require the number of real moduli to be a multiple of 4.
An alternative characterization is as follows. There are 4m moduli, so

a general metric (B.7.7) would have holonomy SO(4m). That is, parallel
transport of a vector around a loop in moduli space brings it back to
itself rotated by a general element of SO(4m). These ideas are familiar
from general relativity, in the context of the spacetime manifold, but
we emphasize that the manifold in question here is field space. Now
consider the following SU(2) subgroup of SO(4m). We know that SO(4) =
SU(2)× SU(2). Take the first SU(2) and replace the elements with m×m
identity matrices to make a subgroup of SO(4m). The subgroup of SO(4m)
that commutes with this SU(2) is Sp(m). Then a hyper-Kähler manifold
is one for which the holonomy lies in this Sp(m) subgroup, the Js being
the SU(2) generators.

d = 4, N = 2 supersymmetry

Let us first consider the reduction of the self-dual tensor multiplet from d =
6 to d = 5. The components Bµ5 become a vector. The dual ∗Hσρω would
give the field strength of a second vector if the tensor were unconstrained,
but due to the self-duality this is the same as Hµν5. Thus one has in all a
vector and a scalar. This is the same as the content of the vector multiplet,
where the scalar comes from the reduction of A5, so these multiplets are
identical in d = 5 and consequently in d = 4.
Thus in d = 4 we need consider only the hypermultiplet with four
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scalars, and the vector multiplet with two scalars A4, A5 from the six-
dimensional vector. First in the renormalizable limit, the action includes
the bosonic terms discussed in d = 6, the gauge-invariant kinetic terms
and the potential (B.7.4). The potential has additional terms

− 1

4g2
Tr([A4, A5]

2) (B.7.10)

from reduction of the field strength and

Φi†α (M2
4 +M2

5 )ijΦ
j
α , (B.7.11)

where

Mmij = Aamt
a
ij + qmij . (B.7.12)

The first term in M is from reduction of the covariant derivative; the
parameters qmij are allowed by supersymmetry and can be thought of as
arising from a ‘dummy’ gauge field.

The potential has various flat directions. We discuss first the moduli
space approximation with gravity still decoupled. Supersymmetry requires
the kinetic term for the vector multiplet to depend only on the vector
multiplet moduli and the kinetic term for the hypermultiplet to depend
only on the hypermultiplet moduli. The latter is required to be a hyper-
Kähler space just as in d = 6. The vector moduli space is also a Kähler
metric with extra conditions. Namely, forming the complex scalars Aa =
Aa4 + iAa5 with a indexing the gauge generators, the Kähler potential must
be of the form

K(A,A∗) = Im

(∑
a

Aa∗∂aF(A)
)

(B.7.13)

for some holomorphic prepotential F(A). The metric on moduli space is
then

Gab̄ = Im(∂a∂bF) . (B.7.14)

This is known as a rigid special Kähler metric.

Turning on N = 2 supergravity, the moduli space acquires additional
curvature as it did for N = 4, but it remains a direct product of hyper-
multiplet and vector multiplet moduli spaces. The hyper-Kähler metrics
are replaced by quaternionic metrics, where the SU(2) holonomy is no
longer zero but has a definite curvature of order κ2. The vector moduli
space becomes a special Kähler space. These spaces are also relevant to
N = 1 compactifications of the heterotic string, so we describe them in
some detail. For n hypermultiplets, it is useful to begin with n+1 complex



Spinors and SUSY in various dimensions 465

coordinates XI with the projective identification

(X0, X1, . . . , Xn) ∼= (λX0, λX1, . . . , λXn) (B.7.15)

for any nonzero complex λ. One can also introduce invariant coordinates;
for example, away from the subspace X0 = 0 the set

TA =
XA

X0
, A = 1, . . . , n . (B.7.16)

The low energy action is determined by a single complex function F(X),
which must be homogeneous of degree 2 under the identification (B.7.15),

F(λX) = λ2F(X) . (B.7.17)

The Kähler potential is then

K = − ln Im

(∑
I

XI∗∂IF(X)

)
. (B.7.18)

Under a projective transformation (B.7.15),

K → K − ln λ− ln λ∗ . (B.7.19)

This is a Kähler transformation (B.2.32), so the metric is well defined on
the projective space produced by the identification. The number of vectors
is n+1, including the one from the supergravity multiplet, so the fields AIµ
for I = 0, . . . , n are independent. Their kinetic term is again determined
by F and depends only on the vector multiplet moduli; its explicit form
is left to the references.

The forms (B.7.15) and (B.7.18) are not invariant under arbitrary
changes of coordinates: the coordinates XI are known as special coor-
dinates. The forms are clearly invariant under linear redefinitions of the
special coordinates, but there is in fact a larger set of transformations that
preserves the form, namely[

X ′I
∂I ′F

′
]
= S

[
XI

∂IF

]
(B.7.20)

for S a 2(n + 1) × 2(n + 1) real symplectic matrix. As a final comment,
in recent literature it has been noted that in special cases the symplectic
transformation (B.7.20) gives a would-be gradient ∂I ′F

′ whose curl is
actually nonvanishing. For these the definition of special geometry needs
to be generalized.
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Exercises

B.1 In section B.1 we defined B and C in a particular basis. The prop-
erties (B.1.17) and (B.1.24) define them in general. Under a change of
basis

Γµ → UΓµU−1

for unitary U, find the transformations of B and C . Show that the prop-

such a change of basis. Determine the relations between B and BT and
between C and CT , and show that these are independent of basis.

B.2 Extend the decomposition (B.1.44) to the general SO(d − 1, 1) →
SO(d′ − 1, 1)× SO(d− d′), where some of the dimensions are odd.

B.3 Work out the details of the reduction of the d = 4, N = 1 supersym-
metry algebra to the d = 2 (2,2) algebra. Identify the central charges.

B.4 Verify eq. (B.4.7) for ∗2 and derive the corresponding result for Eu-
clidean space.

B.5 List the helicities (s1, s2, s3, s4) for the massless 8v+8 open string states
and show that these constitute a representation of the type I supersym-
metry algebra.

erties (B.1.18), (B.1.19), (B.1.21), (B.1.26), and (B.1.28) are independent of
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reviewed in Bouwknegt & Schoutens (1993) and de Boer, Harmsze, & Tjin
(1996). Our discussion of rational CFT is largely based on Vafa (1988).
Moore & Seiberg (1989) give a systematic treatment of the monodromy
and other constraints. Irrational CFT is reviewed in Halpern, Kiritsis,
Obers, & Clubok (1996).

Many of the subjects in the final two sections are developed in the
review by Cardy (1990). For more on the c-theorem see Zamolodchikov
(1986b), and for more on Landau–Ginzburg models see Zamolodchikov
(1986a).

Chapter 16

Dixon, Harvey, Vafa, &Witten (1985, 1986) develop the general framework
for strings on orbifolds. Modular invariance is discussed in Vafa (1986).
Orbifold vertex operators and interactions are treated in Dixon, Friedan,
Martinec, & Shenker (1987), Hamidi & Vafa (1987), and the review by
Dixon (1988). These papers also discuss the blowing up of the fixed points;
our discussion is similar to that in Hamidi & Vafa.

Asymmetric orbifolds are developed in Narain, Sarmadi, & Vafa (1987).
Antoniadis, Bachas, & Kounnas (1987) and Kawai, Lewellen, & Tye
(1987) develop general free-fermion models. A generalized free-boson
construction appears in Lerche, Schellekens, & Warner (1989).

Two (of the many) discussions of the motivation for spacetime super-
symmetry and of general aspects of supersymmetric model building are
Witten (1981) and Dine (1997). Ross (1984) is an introduction to grand
unification.

Font, Ibañez, Quevedo, & Sierra (1990) is a review of three gener-
ation orbifold models; the model (16.3.32) appears in section 4.2. A
much-vamped three-generation free-fermion model appears in Antoniadis,
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Ellis, Hagelin, & Nanopoulos (1989). Kakushadze, Shiu, Tye, & Vtorov-
Karevsky (1997) is a recent review of free-field models with particular
attention to higher level three-generation models, which can have ordi-
nary grand unified symmetry breaking.
The discussion of the action for untwisted moduli is patterned on Witten

(1985). The general expression for the one-loop threshold correction is
obtained in Kaplunovsky (1988); the lectures by Kiritsis (1997) give a
thorough treatment. The evaluation of ∆a for orbifold models is in Dixon,
Kaplunovsky, & Louis (1991). The paper by Ibàñez & Lüst (1992) reviews
many aspects of the low energy physics of orbifolds, especially those
connected with T -duality and with threshold corrections. Quevedo (1996)
is a review of low energy string physics.

Chapter 17

The necessary geometric background is given in more detail in chapter 15
of GSW and in Candelas (1988). Hübsch (1992) is a full length treatment
at a more advanced level. Calabi–Yau compactification is developed in
Candelas, Horowitz, Strominger, & Witten (1985) and in chapter 16 of
GSW. Strominger & Witten (1985) discuss various aspects of the low
energy physics. For more on the low energy action see Candelas & de
la Ossa (1991). The nonrenormalization theorem is from Witten (1986),
who also discusses (0,2) compactifications. World-sheet instantons are
discussed in Dine, Seiberg, Wen, & Witten (1986, 1987). An analysis of the
field equations without the vanishing torsion assumption is in Strominger
(1986).

Chapter 18

Continuous symmetries are discussed in Banks & Dixon (1988). Dine
(1995) discusses discrete symmetries and the strong CP problem in string
theory.
Closed string gauge couplings are discussed in Ginsparg (1987). Con-

straints on right-moving and type II gauge symmetries are in Dixon,
Kaplunovsky, & Vafa (1987). Dienes (1997) is an extensive review of cou-
pling constant unification in string theory. The argument in figure 18.1
for the proximity of the compactification and string scales is based on
Kaplunovsky (1985). The discussion of the effect of an extra dimension in
figure 18.2 is based on Witten (1996c). The derivation of the moduli in-
dependence of sin2 θw follows Banks, Dixon, Friedan, & Martinec (1988).
The unification of the couplings in supersymmetric theories is reviewed
in Dimopoulos, Raby, & Wilczek (1991). The discussion of fractional
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charges is taken from Schellekens (1990). For more on proton stability in
supersymmetric and string theories see Ib ñez & Ross (1992), Pati (1996).

The general argument that spacetime supersymmetry requires N = 2
world-sheet supersymmetry is from Banks, Dixon, Friedan, & Martinec
(1988). The analysis for extended supersymmetry is in Banks & Dixon
(1988). The world-sheet argument that supersymmetry breaking cannot
be turned on continuously is also in that paper; the spacetime derivation
of the same result is in Dine & Seiberg (1988). The use of PQ symmetry
and the scaling of S to derive nonrenormalization theorems is in Dine
& Seiberg (1986). Derivation of nonrenormalization theorems from the
structure of string perturbation theory is in Martinec (1986). The reader
will note that the spacetime derivations are generally shorter and less
intricate, and can in some cases give nonperturbative information as well.
Generation of D-terms by string loops is discussed in Dine, Seiberg, &
Witten (1987). The reviews by Quevedo (1996) and Dine (1997) discuss
nonperturbative supersymmetry breaking in more detail, with extensive
references. The cosmological constant problem is reviewed in Weinberg
(1989).

Chapter 19

Many of the subjects in this chapter are covered in the review by Greene
(1997).

For more on chiral rings see Lerche, Vafa, & Warner (1989). For type II
strings on Calabi–Yau manifolds and their low energy actions, see Cecotti,
Ferrara, & Girardello (1989). The world-sheet argument for the vanishing
of the potential for the moduli is given in more detail in Dixon (1988).
For a systematic derivation of the constraints from (2,2) superconformal
symmetry, derived from analysis of string scattering amplitudes, see Dixon,
Kaplunovsky, & Louis (1990). For arguments using the relation between
type II and heterotic compactification see Dine & Seiberg (1988).

For more on N = 2 minimal models see Boucher, Friedan, & Kent
(1986); for more on their connection with SU(2) current algebra see
Zamolodchikov & Fateev (1986) and Qiu (1987). For more on N = 2
Landau–Ginzburg models and singularity theory see Martinec (1989) and
Vafa & Warner (1989). Gepner models are constructed in Gepner (1988).
Our discussion is based on Vafa (1989); our discussion of the connection
to Calabi–Yau compactification is based on Witten (1993).

Numerical evidence for mirror symmetry appears in Candelas, Lynker,
& Schimmrigk (1990). The construction via twisted Gepner models is in
Greene & Plesser (1990). Strominger, Yau, & Zaslow (1996) obtain the
connection to T -duality. Toric geometry and other advanced ideas are

á
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covered in the review by Greene (1997). The use of mirror symmetry to
obtain the exact low energy action is in Candelas, de la Ossa, Green,
& Parkes (1991). The flop transition is described in Aspinwall, Greene,
& Morrison (1993) and Witten (1993). Cox & Katz (1998) is a recent
treatment of mathematics and mirror symmetry.

The interpretation of the conifold singularity in terms of a light black
hole/D-brane is in Strominger (1995). Shenker (1995) discusses the short-
distance cutoff on the loop graph. Greene, Morrison, & Strominger (1995)
show that condensation of these states leads to topology change, providing
a physical interpretation for the geometric observations of Candelas,
Green, & Hübsch (1989).

The basic features of string theories on K3 are described in Seiberg
(1988) (the discussion of Calabi–Yau moduli space in that paper has
been superceded by later references). Aspinwall (1997) gives an extended
review of this subject. The lectures by Sagnotti (1997) and Schwarz (1997)
also cover various six-dimensional string theories, discussing in particular
anomaly cancellation. The tensionless string phase transition is described
in Seiberg & Witten (1996) and Ganor & Hanany (1996).

For more on the duals of toroidally compactified heterotic strings see
Hull & Townsend (1995) and Witten (1995). Our discussion is similar
to that in Sen (1997). Sen (1994) is a review of SL(2,Z) duality of the
heterotic string on T 6. F-theory is introduced in Vafa (1996c). Kachru &
Silverstein (1997) apply F-theory to find heterotic phase transitions that
change generation number, and give further references. There is a growing
literature on duals of theories with N = 1 and N = 2 supersymmetry.
Vafa & Witten (1995) and Ferrara, Harvey, Strominger, & Vafa (1995)
give some relatively simple examples.

Appendix

Our treatment of the spinor representations of SO(D − 1, 1) and SO(n)
follows the treatment for SO(n) in Georgi (1982). Sohnius (1985) also
discusses spinors in general dimensions.

Two references on d = 4, N = 1 supersymmetry are Sohnius (1985) and
Wess & Bagger (1992); the former also has some discussion of extended
supersymmetry and higher-dimensional theories. The general d = 4, N = 1
supergravity action is given in Cremmer, Ferrara, Girardello, & Van
Proeyen (1983). The significance of the BPS property is developed in
Witten & Olive (1978).

The d = 11 supergravity theory appears in Cremmer, Julia, & Scherk
(1978). Table B.3 (with a misprint corrected) is taken from Hull &
Townsend (1995), who give original references. Chapter 13 of GSW and
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Townsend (1996) have more on supergravity actions in d = 11 and d = 10;
Townsend also discusses the central charges in the supersymmetry algebra.
Salam & Sezgin (1989) is a collection of many relevant papers.
The general d = 4, N = 4 supergravity theory is obtained in de Roo

(1985). The general d = 4, N = 2 supergravity theory is obtained in
Andrianopoli et al. (1996). The hypermultiplet moduli space is described
in Bagger & Witten (1983) and Hitchin, Karlhede, Lindstrom, & Roček
(1987). The vector multiplet moduli space is described in de Wit, Lauwers,
& Van Proeyen (1985). Seiberg & Witten (1994) give a review of the global
supersymmetry limit.
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Alvarez-Gaumé, L., & Witten, E. (1983). Gravitational anomalies. Nuclear
Physics, B234, 269.

Andrianopoli, L., Bertolini, M., Ceresole, A., D’Auria, R., Ferrara, S., & Fré, P.
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202–242. Woodbury, NY: American Institute of Physics. E-print
hep-th/9603074.
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Glossary

(0, 2) compactification a generic heterotic string vacuum having d = 4, N = 1
supersymmetry. The world-sheet CFT has N = 2 right-moving supercon-
formal invariance.

(2, 0) theory in current usage, this refers to a family of nontrivial fixed point
theories with tensionless strings and d = 6 (2, 0) supersymmetry. These arise
on coincident M5-branes and IIA NS5-branes, and on the IIB theory at an
A–D–E singularity.

(2, 2) compactification one of a special subset of d = 4, N = 1 heterotic string
vacua, which includes the Calabi–Yau compactifications. The world-sheet
CFT has both right-moving and left-moving N = 2 superconformal invari-
ance. In the type II string theories, these CFTs give vacua with d = 4,
N = 2 supersymmetry.

A–D–E singularity a singularity of a four-(real)-dimensional complex manifold,
resulting from the collapse of one or more two-spheres to zero volume. The
terminology A–D–E refers to the Dynkin diagrams of the simply-laced Lie
algebras, which describe the intersection numbers of the collapsed spheres.

Abelian differential a globally defined holomorphic (1,0)-form on a Riemann
surface.

abstruse identity one of a set of quartic theta function identities due to Jacobi,
it implies the degeneracy of bosons and fermions in GSO-projected string
theories as required by supersymmetry.

affine Lie algebra see current algebra.

anomaly the violation of a classical symmetry by quantum effects. A gravita-
tional anomaly is an anomaly in coordinate invariance. A global anomaly
is an anomaly in a large symmetry transformation (one not continuously
connected to the identity).

anomaly polynomial a formal (d+ 2)-form in d-dimensions, which encodes the
gauge and gravitational anomalies.
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asymptotically locally Euclidean (ALE) space a space which at long distance
approaches flat Euclidean space identified under a discrete group. This is
the geometry in the neighborhood of an orbifold fixed point (or blown-up
fixed point).

Atiyah–Drinfeld–Hitchin–Manin (ADHM) construction a method for the con-
struction of all Yang–Mills field configurations having self-dual field
strength.

auxiliary field a nonpropagating field, one whose field equation is algebraic
rather than differential. In many supersymmetric theories, the transforma-
tions can be simplified by introducing such fields.

axion a Goldstone boson associated with spontaneously broken PQ symmetry.
The model-independent axion appears in every perturbative string theory,
and is closely related to the graviton and dilaton.

bc CFT a free CFT of anticommuting fields with an action of first order in
derivatives. There is a family of such CFTs, parameterized by the weight
hb = 1 − hc. For hb = 2 this CFT describes the Faddeev–Popov ghosts
associated with conformal invariance.

βγ CFT a free CFT of commuting fields with an action of first order in
derivatives. There is a family of such CFTs, parameterized by the weight
hβ = 1 − hγ . For hβ = 3

2
this CFT describes the Faddeev–Popov ghosts

associated with superconformal invariance.

Batalin–Vilkovisky formalism an extension of the BRST formalism, for quan-
tizing more general theories with constraints. This has been useful in string
field theory.

Becchi–Rouet–Stora–Tyutin (BRST) invariance a nilpotent symmetry of
Faddeev–Popov gauge-fixed theories, which encodes the information con-
tained in the original gauge symmetry.

Beltrami differential the derivative with respect to the moduli of the complex
structure of a Riemann surface.

Berezin integration a linear operation taking functions of Grassmann vari-
ables to complex numbers, with many of the key properties of ordinary
integration.

beta function 1. in quantum field theory, the derivative of the effective strength
of an interaction with respect to length scale; 2. a special function involving
a ratio of gamma functions, which appears in the Veneziano amplitude.

Betti numbers the number of nontrivial p-forms in de Rham cohomology,
denoted Bp.

black hole entropy a quantity S proportional to the area of the horizon of
a black hole, S = 2πA/κ2. This has the properties of a thermodynamic
entropy: it is nondecreasing in classical general relativity, and the sum of
the black hole entropy and the ordinary entropy is nondecreasing even
with the inclusion of Hawking radiation. To find a statistical mechanical
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derivation of this entropy has been a major goal, partly realized in recent
work.

black hole evaporation the emission of thermal (Hawking) radiation by a black
hole, due to pair production near the horizon.

black hole information paradox a conflict between quantum mechanics and
general relativity. Information falling into a black hole is lost and does
not reappear when the black hole evaporates; this is inconsistent with
ordinary quantum mechanical evolution. It apparently requires either a sig-
nificant modification of quantum mechanics, or a significant breakdown of
the usual understanding of locality.

black p-brane a p-dimensional extended object with an event horizon: a space
that is translationally invariant in p directions and has a black hole geometry
in the remaining directions.

blow up to deform a singular manifold into a smooth manifold.

Bogomolnyi–Prasad–Sommerfield (BPS) state a state that is invariant under
a nontrivial subalgebra of the full supersymmetry algebra. Such states
always carry conserved charges, and the supersymmetry algebra determines
the mass of the state exactly in terms of its charges. BPS states lie in
smaller supersymmetry representations than non-BPS states, so-called short
representations. When there are short representations of different sizes, one
also distinguishes ultrashort representations, which are the smallest possible
(generally their dimension is the square root of the non-BPS dimension).

Borel summation a method of defining the sum of a divergent series. This has
been used as a means of studying nonperturbative effects in field and string
theories, but it should be understood that most nonperturbative effects are
not usefully studied in terms of the perturbation series.

Born–Infeld action a generalization of the usual gauge field action which is
nonpolynomial in the gauge field strength. This was originally proposed as
a possible short-distance modification of electromagnetism. It arises as the
low energy effective action of the gauge fields on D-branes.

bosonization the exact equivalence of a theory of fermionic fields and a theory
of bosonic fields, possible in two dimensions. The boson is a fermion–
antifermion pair; the fermion is a coherent state of bosons.

c-map a method for constructing the hypermultiplet moduli space of a type
II string theory compactified on a Calabi–Yau three-fold from the vector
multiplet moduli space of the other type II theory on the same three-fold.

c-theorem the existence, in unitary CFTs in two dimensions, of a positive
quantity c that is monotonically nonincreasing with increasing length scale,
and which at fixed points is stationary and equal to the central charge. This
is a strong constraint on the global form of the renormalization group flow;
no simple analog seems to exist in higher dimensions. Also known as the
Zamolodchikov c-theorem.
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CPT symmetry the combined operation of parity-reversal, time-reversal, and
charge conjugation, which is a symmetry of all Lorentz-invariant local
quantum field theories.

Calabi–Yau manifold a Kähler manifold with vanishing first Chern class. A
Calabi–Yau n-fold has 2n real = n complex coordinates. Yau’s theorem
guarantees the existence of a Ricci-flat metric of SU(n) holonomy.

canceled propagator argument a general principle implying, under broad con-
ditions, the vanishing of surface terms on the moduli space of Riemann
surfaces and therefore the decoupling of unphysical states in string ampli-
tudes. Such amplitudes are defined by analytic continuation from a regime
where the integrand falls rapidly at the boundary and the surface term is
identically zero; its continuation is therefore also identically zero.

Casimir energy a shift in the ground state energy of a quantum field theory
due to boundary conditions on the fields.

center-of-mass mode the zeroth spatial Fourier component of a quantum field.

central charge an operator (which might be a constant) that appears on the
right-hand side of a Lie algebra and commutes with all operators in the alge-
bra. Prominent examples include the constant term in the Virasoro algebra
and the charges appearing on the right-hand sides of many supersymmetry
algebras.

Chan–Paton degrees of freedom degrees of freedom localized at the endpoints
of open strings. These are now interpreted as designating the D-brane on
which the string ends.

Chan–Paton factor the vertex operator factor for the state of the Chan–Paton
degrees of freedom.

Chern–Simons term a term in the action which involves p-form potentials as
well as field strengths. Such a term is gauge-invariant as a consequence of
the Bianchi identity and/or the modification of the p-form gauge transfor-
mation. These terms usually have a close connection to topology and to
anomalies.

chiral 1. acting in a parity asymmetric fashion; see chiral multiplet, chiral sym-
metry, chiral theory, chirality, extended chiral algebra; 2. invariant under part
of the supersymmetry algebra; see chiral field, chiral multiplet, chiral primary,
chiral ring.

chiral field in supersymmetry, a local operator that is invariant under part of
the algebra: the operator analog of a BPS state.

chiral multiplet the multiplet of d = 4, N = 1 supersymmetry with two real
scalars. The quarks and leptons are contained in such multiplets. This
multiplet is connected to both senses of chiral: it contains a fermion with
chiral couplings, and the integral of the associated superfield is invariant
under half of the supersymmetry algebra.

chiral primary in an N = 2 SCFT, a primary field that is also annihilated by
one of the rigid supersymmetries G±−1/2.
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chiral ring the closed OPE algebra of chiral fields.

chiral symmetry a symmetry whose action on spinor fields is not parity-
symmetric.

chiral theory a gauge theory in which the gauge couplings are not parity-
symmetric.

chirality in d = 2k dimensions, the eigenvalue of the operator Γd which anti-
commutes with the Γµ. This eigenvalue distinguishes the two Weyl repre-
sentations, which are related to one another by parity.

Christoffel connection in general relativity, the connection that is constructed
from the metric.

critical behavior the behavior of a quantum field theory at an IR fixed point
with massless fields, and the approach to this behavior.

closed string a string with the topology of a circle.

cocycle in a vertex operator, an operator-valued phase factor which multi-
plies the creation–annihilation normal ordered exponential. This in needed
in some cases in order to give the operator the correct commuting or
anticommuting property.

coefficient functions the position-dependent coefficients of local operators ap-
pearing in the expansion of an operator product.

cohomology in any vector space with a nilpotent operator Q (one such that
Q2 = 0), the kernel of Q modulo the image of Q. That is, the space of
closed states (those annihilated by Q) with the exact states (those of the
form Qψ) defined to be equivalent to zero. De Rham cohomology is the
cohomology of the exterior derivative d acting on differential forms. On a
complex manifold, Dolbeault cohomology is the cohomology of ∂ and ∂̄ (the
(1, 0) and (0, 1) parts of d) on (p, q)-forms. Homology is the cohomology of
the boundary operator. BRST cohomology is the cohomology of the BRST
operator, and defines the physical space of a gauge-invariant theory.

Coleman–Weinberg formula the expression for the vacuum energy density of a
free quantum field, from the renormalized sum of the zero-point energies
of its modes.

collapsing cycle a cycle whose volume vanishes in a limit, usually giving rise to
a singular manifold.

collective coordinate in quantizing a soliton or other extended object, the de-
grees of freedom corresponding to its position or configuration.

compact CFT a CFT in which the number of states with energy less than any
given value is finite. This is defined by analogy with the spectrum of a
differential operator on a compact space.

compactification scale the characteristic mass scale of states whose wavefunc-
tions have a nontrivial dependence on the compact dimensions.

compactify to consider a field theory or string theory in a spacetime, some of
whose spatial dimensions are compact.
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complex manifold a manifold with an assigned system of complex coordinates,
modulo holomorphic reparameterizations of these coordinates.

complex structure an equivalence class of complex coordinates. A given differ-
entiable manifold may have many inequivalent complex structures.

complex structure moduli the moduli that parameterize the inequivalent com-
plex structures on a manifold. In compactification on a Calabi–Yau 3-fold,
these are associated with (2, 1)-forms.

conformal block in CFT, the contribution of a single conformal family to a
sum over states.

conformal bootstrap the partially successful program to construct all CFTs by
using only symmetry and consistency conditions.

conformal family the set of states obtained by acting on a highest weight
state with Virasoro raising generators in all inequivalent ways; or, the
corresponding set of local operators. A degenerate conformal family contains
null states, which are orthogonal to all states in the family.

conformal field theory (CFT) a conformally invariant quantum field theory.

conformal gauge a choice of coordinates in two dimensions, such that the
metric is proportional to the unit metric.

conformal Killing vector a globally defined infinitesimal diff×Weyl transforma-
tion that leaves the metric invariant.

conformal transformation a mapping of Euclidean or Minkowski space to itself
that leaves the flat metric invariant up to a position-dependent rescaling;
equivalently, the subgroup of diff × Weyl that leaves invariant the flat
metric. In d ≥ 3 dimensions this has 1

2
(d + 1)(d + 2) parameters. In two

dimensions it is the set of all holomorphic maps. Finite transformations
require the inclusion of points at infinity, as in the case of the Möbius
transformations of the sphere.
This usage has become standard in string theory and quantum field theory,
but in general relativity conformal transformation is defined to be any
position-dependent rescaling of the metric, now called a Weyl transformation
in string theory.

conifold a Calabi–Yau manifold with a singular complex structure, correspond-
ing to the collapse of a three-cycle. The string theory on this space is singu-
lar; this is now understood to be due to the quantum effects of a massless
3-brane wrapped on the cycle.

conifold transition a change of topology due to condensation of massless 3-
brane fields. Under appropriate conditions, the potential for the massless
3-brane fields on a conifold with multiple collapsed cycles has a flat direction
for these fields; this corresponds to a change of topology, blowing up a
2-cycle rather than the collapsed 3-cycle.

constraint a symmetry generator whose matrix elements are required to vanish
in physical states, either in the BRST or OCQ sense. These can usually
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be understood as arising from a gauge symmetry (for so-called first class
constraints, which are all that we consider), and consist of those gauge
symmetry generators that do not vanish by the equations of motion.

coset CFT a CFT constructed as one of the factors of a known CFT, when
the energy-momentum tensor of the latter can be written as a sum of
commuting pieces. In the classic example the full CFT G is a current
algebra, as is one of the factors (H). This can also be thought of as gauging
the symmetry H .

cosmological constant the energy density of the vacuum. In a nonsupersymmet-
ric quantum theory (including one with spontaneously broken supersym-
metry), there are many effects that give rise to such an energy density. The
cosmological constant problem is the problem that the cosmological constant
in nature is many orders of magnitude smaller than known nonzero effects.

critical dimension the dimension in which a perturbative string theory is con-
sistent in flat Minkowski spacetime; the value is 26 for the bosonic string
and 10 for the supersymmetric string theories.

current algebra in quantum field theory, the algebra of the currents associated
with a continuous symmetry group g (or of their Fourier modes). As used
here, it is the specific algebra that occurs in two-dimensional CFTs, with the
energy-momentum tensor defined to be of Sugawara form. The terms affine
Lie algebra and affine Kac–Moody algebra are also used for this algebra,
though like current algebra they both have broader definitions as well. The
term affine refers to the c-number (Schwinger) term. An untwisted current
algebra is the algebra of periodic currents, with integer modes. An algebra
can be twisted by any automorphism of g.

cycle a topologically nontrivial submanifold (in the sense of homology); a p-
cycle is p-dimensional. The A- and B-cycles are a standard basis for the
nontrivial one-cycles on a Riemann surface.

D-brane in the type I, IIA, and IIB string theories, a dynamical object on
which strings can end. The term is a contraction of Dirichlet brane. The
coordinates of the attached strings satisfy Dirichlet boundary conditions
in the directions normal to the brane and Neumann conditions in the
directions tangent to the brane. A Dp-brane is p-dimensional, with p taking
any even value in the IIA theory, any odd value in the IIB theory, and
the values 1, 5, and 9 in the type I theory; a D9-brane fills space and so
corresponds to an ordinary Neumann boundary condition. The Dp-brane
is a source for the (p + 1)-form R–R gauge field. The mass or tension
of a D-brane is intermediate between that of an ordinary quantum or a
fundamental string and that of a soliton. The low energy fluctations of D-
branes are described by supersymmetric gauge theory, which is non-Abelian
for coincident branes.

D-instanton an object localized in (Euclidean) time as well as space, defined by
Dirichlet conditions on all coordinates of attached strings. This is similar to
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a field-theoretic instanton, corresponding to a tunneling process that changes
the value of an R–R field strength. More generally, the (p+1)-dimensional
world-volume of a Dp-brane, when localized in time and wrapped on a
(p+ 1)-cycle in space, has similar effects.

D-string a D1-brane, in the type I and IIB string theories.

D-term 1. in gauge theories with four or eight supersymmetries, the auxiliary
field in the gauge multiplet; 2 the potential term proportional to the square
of this auxiliary field, which depends only on the gauge couplings and, in
the U(1) case, the value of the Fayet–Iliopoulos parameter.

Del Guidice–Di Vecchia–Fubini (DDF) operators operators satisfying an os-
cillator algebra, which create a complete set of physical states in OCQ.

descendant a state obtained by acting on a highest weight state with Virasoro
raising generators.

diagonal modular invariant a modular-invariant CFT formed by imposing com-
mon boundary conditions on the left- and right-moving fields.

diff invariance general coordinate (reparameterization) invariance, usually ap-
plied to the world-sheet coordinates.

dilaton the massless scalar with gravitational-strength couplings, found in all
perturbative string theories. An exactly massless dilaton would violate limits
on nongravitational interactions, but a mass for the dilaton is not forbidden
by any symmetry and so dynamical effects will generate one in vacua
with broken supersymmetry (the same holds for other moduli). The string
coupling constant is determined by the value of the dilaton field.

dimensional reduction in the simplest cases, toroidal compactification retaining
only the states of zero compact momentum. More generally (and less
physically) the construction of a lower-dimensional field theory by requiring
all fields to be invariant under a set of symmetries; this may have no
interpretation in terms of compactification.

Dirac quantization condition for an electric and a magnetic charge, the con-
dition that the product be quantized, µeµ

′
m = 2πn. For two dyons, which

have both charges, the condition is µeµ
′
m − µmµ

′
e = 2πn. These conditions

generalize to objects of dimension p and d − p − 4 in d dimensions, where
one is the source of a (p + 2)-form field strength and the other of the
Poincaré dual (d− p+ 2)-form field strength.

Dirac spinor the unique irreducible representation of the algebra of Dirac
matrices, which is also known as a Clifford algebra. This is also a repre-
sentation of the Lorentz group; in even dimensions it is reducible to two
Weyl representations of the Lorentz group. The Dirac spinor is complex;
in certain dimensions a further Majorana (reality) condition is compatible
with Lorentz invariance.

Dirichlet boundary condition the condition that the value of a field be fixed at
a boundary. This is the relevant usage in string theory, but in other contexts
only the tangent derivative need be fixed.
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discrete torsion in forming a twisted CFT, a change in the phases of the path
integral sectors and therefore in the projection on the Hilbert space.

doubling trick the representation of holomorphic and antiholomorphic fields
on a manifold with boundary by holomorphic fields alone, on the doubled
copy of the manifold obtained by reflecting through the boundary.

dual resonance model a phenomenological model of the strong interaction,
which developed into string theory. The dual refers here to world-sheet
duality.

duality the equivalence of seemingly distinct physical systems. Such an equiv-
alence often arises when a single quantum theory has distinct classical
limits. One classic example is particle–wave duality, wherein a quantum
field theory has one limit described by classical field theory and another
described by classical particle mechanics. Another is the high-temperature–
low-temperature duality of the Ising model. Here, low temperature is the
statistical mechanical analog of the classical limit, the Boltzmann sum being
dominated by the configurations of lowest energy. See Montonen–Olive dual-
ity, S-duality, string–string duality, T -duality, U-duality, world-sheet duality.

effective field theory the description of a physical system below a given energy
scale (or equivalently, above a given length scale).

Einstein metric the metric whose leading low energy action is the Hilbert action

1

2κ2

∫
ddx (−G)1/2R ;

this is independent of other fields. Here κ is the gravitational coupling,
related to the Planck length by κ = (8π)1/2LP. This metric is related to
other metrics such as the sigma-model metric by a field-dependent Weyl
transformation. The existence of distinct metrics would appear to violate
the equivalence principle, but when the dilaton and other moduli are massive
the distinction disappears.

electroweak scale the mass scale of electroweak symmetry breaking, roughly
102 GeV.

enhanced gauge symmetry a gauge symmetry appearing at special points in
moduli space, which is not evident in the original formulation of a theory.
The classic examples are the gauge symmetries that arise at special radii
of toroidal compactification, whose gauge bosons are winding states. Many
other mechanisms are now known: D-branes and black p-branes wrapped
on collapsing cycles, F-strings or D-strings stretched between various branes
in the limit that the latter become coincident, and the gauge symmetry
appearing on a zero size SO(32) instanton.

Euclidean having a metric of strictly positive signature. The original conno-
tation that the metric be flat is somewhat disregarded; thus one refers
to Euclidean quantum gravity, a conjectured analytic continuation of the
Minkowskian theory. For the metric itself, the term Riemannian for a
curved metric of Euclidean signature is more precise.
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Euclidean adjoint in a Euclidean quantum theory, the Hermitean adjoint com-
bined with time-reversal. The latter operation undoes the time-reversing
effect of the adjoint, so that the combined operation is local.

Euler number the topological invariant

χ =

d∑
p=0

(−1)pBp ,

where Bp is the pth Betti number. It is equal to 2(1 − g) for a Riemann
surface of genus g. More properly, the Euler characteristic.

expectation value a path integral with specified insertions. This is the term that
we have chosen to use, but correlation function and correlator are also in
common usage.

extended chiral algebra the full set of holomorphic operators in a CFT.

extended supersymmetry a supersymmetry algebra in which the supercharges
comprise more than one copy of the smallest spinor representation for the
given spacetime dimension.

F -term 1. the auxiliary field in the chiral multiplet of d = 4, N = 1 supersym-
metry; 2. the potential term proportional to the square of this field.

F theory 1. a systematic description of IIB superstring states with nontrivial
dilaton and R–R scalar backgrounds, which relates these fields to the
modulus τ of an auxiliary two-torus; 2. a conjectured twelve-dimensional
quantum theory underlying the IIB string. The name is inspired by M-
theory, with F for father.

Faddeev–Popov determinant the Jacobian determinant arising from the reduc-
tion of a gauge-invariant functional integral to an integral over a gauge
slice.

Faddeev–Popov ghosts the wrong-statistics quantum fields used to give a func-
tional integral representation of the Faddeev–Popov determinant.

Fayet–Iliopoulos term in U(1) gauge theories with four or eight supersymme-
tries, a term in the action which is linear in the auxiliary D-term field.

Feigin–Fuchs representation a representation of minimal model expectation val-
ues in terms of free fields.

fibration a space which is locally the product of a fiber F and a base B. The
geometry of the fiber varies as one moves over the base, and may become
singular. Typical fibers are tori and the K3 manifold.

first Chern class on a complex manifold, the Dolbeault cohomology class of
the Ricci form Rīdz

idz̄̄ .

first-quantized description the representation of a quantized particle theory as
a sum over particle paths, or of a string theory as a sum over world-
sheets. Second-quantized refers to the representation in terms of a functional
integral over ordinary or string fields. The term second-quantized implies
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the reinterpretation of the first-quantized wavefunction as a field operator.
This terminology is in common usage, but it has been argued that it is
unsatisfactory, in that it implies a deep principle where none may exist.
Since the sum over world-sheets is itself a quantum field theory, one can
equally well call it second-quantized, in which case string field theory is third-
quantized. Third quantization of an ordinary field theory would describe
operators that create and destroy universes, a concept which may or may
not be useful.

Fischler–Susskind mechanism the cancellation of divergences and anomalies in
the world-sheet quantum field theory against divergences and anomalies
from integration over small topological features at higher orders of string
perturbation theory. This is needed for the consistency of string perturbation
theory in a quantum-corrected background.

fixed point 1. (in geometry) a point left invariant by a given symmetry trans-
formation. This becomes a boundary point or a singularity if the space
is identified under the transformation; 2. (in quantum field theory) a quan-
tum theory whose physics is independent of length scale (scale-invariant).
Usually such a theory is conformally invariant as well. A UV fixed point is
the theory governing the short-distance physics of a quantum field theory;
an IR fixed point is the theory governing the long-distance physics of a
quantum field theory. A trivial IR fixed point has no massless fields. A
nontrivial IR fixed point has massless fields with nonvanishing interactions.
A theory whose IR limit is a massless free field theory is therefore described
by neither of these terms; it is a noninteracting IR fixed point.

flat direction in scalar field space, a line of degenerate local minima. The field
corresponding to this direction is a modulus.

flop a change of topology which can occur in weakly coupled string theory,
where a two-cycle collapses and then a different two-cycle blows up.

fractional charge an unconfined particle whose electric charge is not a multiple
of that of the electron. These exist in most d = 4 string theories, although
in many cases all are superheavy.

fractional string theory a proposed generalization of string theory having con-
straints whose spin is not a multiple of 1

2
. No complete construction exists.

Fuchsian group a discrete subgroup Γ of the SL(2,R) Möbius transformations
of the complex upper-half-plane H , with additional conditions such that
H/Γ is a manifold and in particular a Riemann surface.

functional integral in our usage, synonymous with path integral.

fundamental region in relation to a coset space M/Γ where Γ is a discrete
group, a region F such that every point in M is identified with exactly one
point in the interior of F or with one or more points on the boundary of F .

fundamental string (F-string) the original string whose quantization defines a
weakly coupled string theory, as distinguished from D-strings and solitonic
strings.
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fusion rule the specification of which conformal families appear in the operator
product of any two primary fields in a given CFT.

gauge-fixing the reduction of a redundant (gauge-invariant) description of a
quantum theory to a description with a single representative from each
equivalence class.

gaugino a spin- 1
2
fermion in the same supersymmetry multiplet as a gauge

boson.

gaugino condensation a strong coupling effect where a product of gaugino fields
acquires a vacuum expectation value. This generally breaks a chiral sym-
metry but does not directly break supersymmetry; however, in combination
with other fields it often induces supersymmetry breaking.

generation a family of quarks and leptons, described by spinor fields in a chiral
but anomaly-free set of SU(3) × SU(2) × U(1) representations. In SU(5)
grand unification these become a 5 + 10, in SO(10) they are contained in a
16, and in E6 they are contained in a 27. An antigeneration is the conjugate
representation; the distinction between generation and antigeneration is a
matter of convention.

genus the number g of handles on a closed oriented Riemann surface: g = 0
is a sphere, g = 1 is a torus, and so on.

Gepner model a string model based on N = 2 minimal model CFTs.

ghosts see Faddeev–Popov ghosts.

Gliozzi–Scherk–Olive (GSO) projection a construction of modular-invariant
string theories by summing over R and NS boundary conditions on the
fermion fields and projecting onto states of definite world-sheet fermion
number. In supersymmetric string theories there are independent GSO pro-
jections on the left-movers and right-movers. The diagonal projection, which
acts simultaneously on both sides, produces a nonsupersymmetric theory.

goldstino the massless spin- 1
2
Goldstone fermion associated with spontaneously

broken supersymmetry. In supergravity it combines with the gravitino to
form a massive fermion.

Goldstone boson the massless scalar corresponding to fluctuations of the direc-
tion of spontaneous symmetry breaking.

grand unification the unification of the SU(3)×SU(2)×U(1) gauge symmetries
in a simple group.

grand unification scale the mass scale of spontaneous breaking of the grand
unified group. Proton stability and the unification of the couplings require
that it be within two or three orders of magnitude of the gravitational scale.

Grassmann variable the elements θi of an algebra with the relation θiθj =
−θjθi. These are used to give a path integral representation of fermionic
fields, and to define superspace. They are also called anticommuting c-
numbers.
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gravitational scale the mass scale at which the dimensionless gravitational cou-
pling becomes of order 1, mgrav = κ−1 = 2.4 × 1018 GeV; this is (8π)−1/2
times the Planck mass.

gravitino a spin- 3
2
fermion in the same supersymmetry multiplet as the graviton.

Green–Schwarz mechanism the cancellation of an anomaly by the modified
transformation law of a p-form potential in a Chern–Simons term.

Green–Schwarz superstring a manifestly supersymmetric formulation of the su-
persymmetric string theories, with a spacetime-fermionic gauge invariance
known as κ symmetry. There is no simple covariant gauge fixing.

H-monopole a monopole carrying the magnetic charge of the antisymmetric
tensor gauge field Bµn.

heterotic 5-brane the 5-brane carrying the magnetic charge of the massless
heterotic string 2-form potential. It is obtained as the limit of a zero size
instanton in the heterotic string gauge fields. The instanton configuration
is localized in four spatial dimensions, and is therefore a 5-brane in nine
spatial dimensions.

heterotic string a string with different constraint algebras acting on the left-
and right-moving fields. The case of phenomenological interest has a (0, 1)
superconformal constraint algebra, with spacetime supersymmetry acting
only on the right-movers and with gauge group E8 × E8 or SO(32).

Hagedorn temperature the temperature at which the thermal partition function
of free strings diverges, due to the exponential growth of the density of states
of highly excited strings.

hidden sector the fields that couple to the Standard Model only through gravi-
tational-strength interactions. In hidden sector models, these include the
fields responsible for supersymmetry breaking.

highest weight state in CFT, a state annihilated by all Virasoro lowering oper-
ators, or more generally by all lowering operators in a given algebra.

Hodge number the number of nontrivial (p, q)-forms in Dolbeault cohomology,
denoted hp,q .

holographic principle the conjecture that the states of quantum gravity in d

dimensions have a natural description in terms of a (d − 1)-dimensional
theory. This radical departure from local field theory was motivated by
the black hole information problem, and has played a role in attempts to
formulate M-theory.

holomorphic analytic, as used in the theory of complex variables. The Minkow-
skian continuation is left-moving. An antiholomorphic field is analytic in the
conjugate variable, and its continuation is right-moving.

holomorphic quadratic differential a globally defined holomorphic (2, 0)-form
on a Riemann surface.
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holomorphic vector field a globally defined holomorphic (−1, 0)-form on a Rie-
mann surface.

holonomy consider the parallel transport of a vector around a closed loop on a
d-dimensional manifold: it returns to an O(n) rotation of its original value.
The set of all rotations that are obtained in this way for a given manifold
is a subgroup of O(n); this is the holonomy group.

homology see cohomology.

hyperelliptic surface a Riemann surface with a Z2 symmetry. This can be
represented as a two-sheeted cover of the sphere with branch cuts.

hyper-Kähler manifold a 4k-dimensional manifold of holonomy Sp(k) ⊂
SO(4k). This is the geometry of the moduli space of hypermultiplets in
d = 6, N = 1 or d = 4, N = 2 supersymmetry, in the limit in which gravity
decouples.

hypermultiplet in d = 6, N = 1 or d = 4, N = 2 supersymmetry, the multiplet
whose bosonic content is four real massless scalars.

identify to define two points (or other objects) to be equivalent, thus producing
a coset space.

infrared (IR) divergence a divergence arising from long distances in spacetime,
usually signifying that one has calculated the wrong thing.

inheritance principle in twisted (orbifold) theories, the principle that the tree-
level amplitudes of untwisted states are the same as in the untwisted theory.

insertion the integrand of a path integral, excluding the weight exp(iS) or
exp(−S).

instanton in a Euclidean path integral, a nonconstant configuration that is a
local but not a global minimum of the action. Such configurations are
usually localized in spacetime, are usually topologically nontrivial, and
are of interest when they give rise to effects such as tunneling that are not
obtained from small fluctuations around a constant configuration. Spacetime
instantons are instantons in the effective field theory in spacetime. World-
sheet instantons are instantons in the world-sheet quantum field theory,
and correspond to world-sheets wrapping around nontrivial two-cycles of
spacetime.

intersection number the number of points at which a set of surfaces intersect,
weighted by the orientation of the intersection.

irrelevant interaction an interaction whose dimensionless strength decreases with
increasing length scale. In perturbation theory, this is equivalent to a non-
renormalizable interaction.

K3 manifold the unique nontrivial Calabi–Yau manifold of four (real) di-
mensions. To be precise, it is topologically unique, but possesses complex
structure and Kähler moduli. Its holonomy is SU(2), so that half of the
supersymmetries of a theory are broken upon compactification on K3.
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Kac determinant the determinant of the matrix of inner products of states at
a given L0 level of a Verma module.

Kac–Moody algebra see current algebra.

Kähler form the (1, 1)-form Gīdz
idz̄̄ , formed from a Kähler metric on a com-

plex manifold.

Kähler manifold a complex manifold of U(n) holonomy in n complex dimen-
sions.

Kähler moduli the moduli parameterizing the Kähler form.

Kähler potential the potential K(z, z̄), in terms of which the metric of a Kähler
manifold is determined, Gī = ∂i∂̄K . This is not globally defined, being
determined only up to a Kähler transformation K(z, z̄) → K(z, z̄) + f(z) +
f(z)∗.

Kaluza–Klein gauge field in a compactified theory, a gauge field originating
from the metric of the higher-dimensional theory. The gauge group is the
isometry group of the compact space.

Kaluza–Klein monopole a monopole carrying the magnetic charge of a U(1)
Kaluza–Klein gauge symmetry. The monopole configuration is the smooth
Taub–NUT spacetime. It is localized in three spatial dimensions, and is
therefore a 6-brane in nine spatial dimensions.

Kaluza–Klein states states with nonzero momentum in a compact spatial di-
rection.

Knizhnik–Zamolodchikov (KZ) equation the differential equation determining
the expectation values of the primary fields of a current algebra.

Landau–Ginzburg model a scalar field theory which has a nontrivial IR fixed
point when the potential is appropriately tuned. In particular, this gives a
Lagrangian representation of the minimal model CFTs.

large coordinate transformation a coordinate transformation that is not con-
tinuously connected to the identity.

lattice the set Γ of integer linear combinations of n linearly independent basis
vectors in n dimensions. Given a Euclidean or Lorentzian metric, an even
lattice is one whose points have even length-squared. The dual lattice Γ∗ is
the set of points v such that v · w ∈ Z for all w ∈ Γ. The root lattice is the
set of integer linear combinations of the roots of a Lie algebra.

level 1. the quantized c-number term in a current algebra, also known as the
Schwinger term; 2. the total oscillator excitation number in free field theory;
3. in a conformal family, the difference between the L0 eigenvalue of a given
state and that of the highest weight state.

level-matching the modular invariance condition that L0 − L̃0 ∈ Z.
Lie algebra an algebra with an antisymmetric product that satisfies the Jacobi

identity. A simple Lie algebra has no subalgebra that commutes with its
complement. A simply-laced Lie algebra has all roots of equal length. A
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graded Lie algebra has odd and even elements, with a symmetric product
between odd elements.

light-cone gauge in string theory, the choice of world-sheet time coordinate
to coincide with a particular spacetime null coordinate. In theories with
local symmetries, a gauge choice such that the connection in a given null
direction vanishes.

linear dilaton theory a scalar CFT in which the energy-momentum tensor in-
cludes a term proportional to the second derivative of the scalar. This arises
in string theory when the dilaton is a linear function of position.

linear sigma model a scalar field theory whose kinetic term is field independent,
but whose long-distance physics is governed by a nonlinear sigma model.

Liouville field theory the CFT of a scalar field with an exponential interaction.
This arises in various situations, including the noncritical string. It corre-
sponds to bosonic string theory in a linear dilaton plus exponential tachyon
background.

little string theory one of several interacting string theories without gravity,
notably found on NS5-branes in the limit of zero string coupling.

loop expansion in quantum field theory, the Feynman graph expansion, which
is equivalent to the expansion in powers of h̄. The string loop expansion
is the sum over Riemann surfaces, with dimensionless string coupling g.
The world-sheet loop expansion is the nonlinear sigma model perturbation
expansion, in powers of α′/R2

c with Rc the compactification radius.

Lorentzian having a mixed signature (−, . . . ,−,+, . . . ,+).

lowering operator operators that reduce the energy of a given state. In CFT,
operators that reduce the Virasoro generator L0 (or L̃0) by n units carry a
grading (subscript) n.

M-theory 1. (narrow) the limit of strongly coupled IIA theory with eleven-
dimensional Poincaré invariance; 2. (broad; most common usage) the entire
quantum theory whose limits include the various weakly coupled string
theories as well as M-theory in the narrow sense. The name is deliberately
ambiguous, reflecting the unknown nature of the theory; M has variously
been suggested to stand for membrane, matrix, mother, and mystery.

M2-brane the 2-brane of M-theory, which couples to the potential A3 of
eleven-dimensional supergravity.

M5-brane the 5-brane of M-theory, which carries the magnetic charge of the
potential A3 of eleven-dimensional supergravity.

macroscopic string a string whose length is much greater than the characteristic
string length scale. In particular, it is sometimes useful to consider an infinite
string stretching across spacetime.

Majorana condition a Lorentz-invariant reality condition on a spinor field. This
can be imposed only if the spacetime dimension is 1, 2, 3, 4, or 8 (mod 8).
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marginal interaction an interaction whose dimensionless strength is indepen-
dent of the length scale. In general this might hold only to first order in the
coupling of the interaction; a truly marginal interaction is one that remains
marginal even with finite coupling.

matrix models quantum mechanical systems with matrix degrees of freedom,
with critical points governed by noncritical string theories.

matrix theory a quantum mechanical system with matrix degrees of freedom
and 32 supercharges, obtained by dimensional reduction of d = 10 super-
symmetric U(n) Yang–Mills theory. In the large-n limit this is conjectured
to define M-theory (in the broad sense).

minimal models several families of solvable CFTs, in which every conformal
family is degenerate. There are infinite series of unitary minimal models
having N = 0, N = 1, and N = 2 superconformal symmetries, which
converge from below on the central charges 1, 3

2
, and 3 respectively.

Minkowskian having a signature (−,+,+, . . . ,+).

mirror symmetry an equivalence between string theories compactified on dis-
tinct manifolds. The equivalence reverses the sign of the U(1) charge of one
N = 2 superconformal algebra, and therefore changes the sign of the Euler
number of the manifold.

Möbius group the globally defined SL(2,C) conformal symmetry of the sphere;
or, the globally defined SL(2,R) conformal symmetry of the disk.

mode operators the spatial Fourier components of a quantum field.

model see vacuum.

modular group the group of large coordinate transformations (often applied to
a Riemann surface but also applicable to spacetime).

modular invariance the invariance of the string path integral under large coor-
dinate transformations.

moduli 1. the parameters labeling the geometry of a manifold. Notable exam-
ples are the parameters for the complex structure of the string world-sheet,
and the parameters for the geometry of compactification; 2. the parameters
labeling a space of degenerate (and, usually, physically inequivalent) vacua
in quantum field theory. This is closely related to the compactification
example: in expanding around the classical limit, each compact solution
of the field equations gives a vacuum of the quantum theory, to leading
order; 3. the massless fields corresponding to position dependence of these
parameters. Contrast Goldstone boson.

moduli space the space of geometries or vacua, whose coordinates are the
moduli.

monodromy for a quantity which is locally single-valued, the multi-valuedness
around nontrivial closed paths.

Montonen–Olive duality the weak–strong duality of d = 4, N = 4 Yang–Mills
theory.
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Nambu–Goto action a string action, which is proportional to the invariant area
of the world-sheet in spacetime.

Narain compactification the abstract description of toroidal compactification
in terms of the lattice of left- and right-moving momenta.

naturalness problem the problem of explaining why a constant of nature takes
a value much smaller than estimated nonzero contributions. Examples are
the Higgs scalar mass, the cosmological constant, and the QCD θ-angle.

Neumann boundary condition the condition that the normal derivative of a
field vanish at a boundary; the value of the field is free to fluctuate.

Neveu–Schwarz algebra the world-sheet algebra of the Fourier modes of the
supercurrent and energy-momentum tensor, in a sector where the supercur-
rent is antiperiodic and its moding therefore half-integer-valued.

Neveu–Schwarz (NS) boundary condition the condition that a fermionic field
on the world-sheet be antiperiodic, in the closed string or in the double of
the open string (see doubling trick). Its Fourier moding is then half-integer-
valued.

Neveu–Schwarz 5-brane in the type I and type II superstring theories, the
5-brane that carries the magnetic charge of the NS–NS 2-form potential.

Neveu–Schwarz–Neveu–Schwarz (NS–NS) states in type II super string
theories, the bosonic closed string states whose left- and right-moving parts
are bosonic. These include the graviton and dilaton, and in the type II
case a 2-form potential.

no-ghost theorem 1. the theorem that the OCQ or BRST Hilbert space has a
positive inner product; 2. the further theorem that the string amplitudes are
well defined and unitary in this space.

no-scale model a field theory that has, to some approximation, a line of degen-
erate vacua with broken supersymmetry.

Noether’s theorem the theorem that an invariance of the Lagrangian implies a
conserved quantity.

noncommutative geometry a generalization of ordinary geometry, focusing on
the algebra of functions on a space. The noncommutative collective coor-
dinates of D-branes suggest the need for such a generalization.

noncritical string theory 1. a Weyl-noninvariant string theory — one with a
measure of world-sheet distance that is independent of the embedding in
spacetime. These include strings with an independent world-sheet metric
field, and strings with a short-distance cutoff; 2. more recently, the term has
been applied to any string theory that does not have a weakly coupled limit
with a Weyl-invariant world-sheet theory. In this form it includes various
theories with stringlike excitations in which the coupling is fixed to be of
order 1, such as the (2,0) theory and the little string theories. Such a theory
does not have a well-defined world-sheet, because processes that change the
world-sheet topology cannot be turned off.



506 Glossary

nonlinear sigma model a scalar field theory in which the kinetic term has a
field-dependent coefficient. This has a natural interpretation in terms of a
curved field space, and corresponds to string theory in curved spacetime, or
more generally one with position-dependent background fields.

nonrenormalization theorem a theorem restricting the form of quantum cor-
rections to a given amplitude, or to the effective action. It may require
that these corrections vanish, that they arise only at specific orders of
perturbation theory, or that they arise only nonperturbatively.

normal ordering a prescription for defining products of free fields by specific
subtractions of divergent terms. Conformal normal ordering, denoted : :,
produces operators with simple conformal properties. Creation–annihilation
normal ordering, denoted ◦◦ ◦◦ , where lowering operators are put to the
right of raising operators, produces operators with simple matrix elements.
Boundary normal ordering, denoted V

V
V
V , is conformal normal ordering with

an additional image charge subtraction to produce operators that are finite
as they approach a boundary.

null state a physical state that is orthogonal to all physical states including
itself. Or, a descendant in a conformal family which is orthogonal to all
states in the family.

old covariant quantization (OCQ) a method of quantizing string theory, similar
to the Gupta–Bleuler quantization of electrodynamics. It is equivalent to
the light-cone and BRST quantizations.

one-loop the leading quantum correction, coming from surfaces of Euler num-
ber zero in string perturbation theory.

open string a string that is topologically a line segment.

operator equation in quantum theory, an equality between operators that holds
in arbitrary matrix elements; equivalently, an equality that holds when
inserted into a functional integral with arbitrary boundary conditions.

operator product expansion (OPE) the expansion of a product of operators as
a sum of local operators. This provides an asymptotic expansion, as the
separation of the operators vanishes, for an arbitrary expectation value
containing the product. In CFT the expansion is convergent.

orbifold 1. (noun) a coset spaceM/H , where H is a group of discrete symmetries
of a manifold M. The coset is singular at the fixed points of H; 2. (noun)
the CFT or string theory produced by the gauging of a discrete world-sheet
symmetry group H . If the elements of H are spacetime symmetries, the
result is a theory of strings propagating on the coset space M/H . A non-
Abelian orbifold is one whose point group is non-Abelian. An asymmetric
orbifold is one where H does not have a spacetime interpretation and which
in general acts differently on the right-movers and left-movers of the string;
3. (verb) to produce such a CFT or string theory by gauging H; this is
synonymous with the third definition of twist.



Glossary 507

oriented string theory a string theory in which the world-sheet has a definite
orientation; world-sheet parity-reversal is not treated as a gauge symmetry.

orientifold a string theory produced by the gauging of a world-sheet symmetry
group H , where H includes elements that combine the world-sheet parity-
reversal Ω with other symmetries.

orientifold plane a plane (of any dimension p) consisting of fixed points of the
orientifold group H (specifically, of an element of H that includes Ω).

p-brane a p-dimensional spatially extended object. Examples are black p-branes,
Dp-branes, M2- and M5-branes, NS5-branes, heterotic 5-branes, and (in d >
4) Kaluza–Klein monopoles.

p-form a fully antisymmetric p-index tensor, usually written in an index-free
notation.

p-form gauge field a generalization of Abelian gauge theory, with a p-form
potential A, a (p − 1)-form gauge parameter λ, and a (p + 1)-form field
strength F . For p = 0 this is an ordinary massless scalar; for p = 1 it is an
Abelian gauge field. A (p+1)-form potential couples naturally to a p-brane,
through the integral of the form over the world-volume. A self-dual p-form
theory is one where ∗F = F; this requires the spacetime dimension to be
d = 2p + 2, and further d must be 2 mod 4 (in the Minkowskian case) in
order that ∗∗ = 1.

p-p′ string an open string with one endpoint on a Dp-brane and the other on
a Dp′-brane.

(p, q)-form on a complex manifold, a tensor that is completely antisymmetric
in p holomorphic indices and q antiholomorphic indices.

(p, q) string a bound state of p F-strings and q D-strings in the IIB theory.

parafermion CFT a family of coset CFTs with Zn symmetry, generalizing the
Z2-invariant free fermion theory. These describe the generic critical behavior
of a system with Zn symmetry.

parity transformation an operation that reflects one spatial dimension, or any
odd number. One distinguishes spacetime parity, P (or β) and world-sheet
parity Ω.

partition function a sum over the spectrum of a quantum system, weighted by
e−H/T where H is the Hamiltonian and T the temperature. Often additional
charges are included in the exponent. This is the basic object in equilibrium
statistical mechanics. In string theory it is given by a path integral on the
torus or the cylinder, and so arises in one-loop amplitudes.

path integral a representation of the transition amplitudes of a quantum system
as a coherent sum over all possible histories. In quantum mechanics the
history is a particle path; in quantum field theory it is a path in field space;
in first-quantized string theory it is the embedding of the string world-sheet
in spacetime.
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Pauli–Villars regulator a means of regulating quantum field theories by intro-
ducing a very massive wrong-statistics field.

Peccei–Quinn (PQ) symmetry an approximate symmetry, violated only by
anomalies.

period matrix a g×g matrix characterizing the complex structure of a genus-g
Riemann surface.

perturbation theory the expansion of the amplitudes of a quantum system in
powers of the coupling.

physical state in a quantum system with constraints, a state annihilated by the
constraints. In OCQ this is a state annihilated by the Virasoro lowering
generators and having a specified L0 eigenvalue.. In BRST quantization
it is a state annihilated by the BRST operator. In both these cases, the
true physical spectrum is the space of physical states with an additional
equivalence relation, physical states differing by a null state being identified.

picture in the RNS superstring, one of several isomorphic representations of
the vertex operators. The q-picture consists of vertex operators of βγ ghost
charge q. The natural pictures are q = −1 and − 1

2
, with higher pictures

including partial integrations over supermoduli space. The picture changing
operator increases q by one.

Planck length the natural length scale of quantum gravity, LP = M−1
P = 1.6×

10−33 cm, constructed from h̄, c, and GN.

Planck mass the natural mass scale of quantum gravity,MP = 1.22×1019 GeV,
constructed from h̄, c, and GN.

plumbing fixture a procedure for constructing higher genus Riemann surfaces
from lower ones by sewing in a handle. The construction includes a param-
eter q, such that when q goes to 0 the handle degenerates or pinches. This
gives a canonical representation of the boundary of the moduli space of
Riemann surfaces.

Poincaré dual a map from p-forms to (d− p)-forms, given by contraction with
the completely antisymmetric tensor.

Poincaré invariance the invariance group of the flat metric, consisting of trans-
lations and Lorentz transformations.

point group the orbifold group H , with translations ignored (applicable only
for orbifolds having a spacetime interpretation).

Polyakov path integral a representation of first-quantized string theory as a
path integral with an independent world-sheet metric. A local Weyl symme-
try guarantees that the classical degrees of freedom are the same as those
of the Nambu–Goto theory.

primary field in CFT, a local operator annihilated by all of the lowering gen-
erators of a given algebra, such as the Virasoro algebra. The corresponding
state is a highest weight state.
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projective space a compact n-dimensional space constructed from a linear
(n + 1)-dimensional space by identifying points under the overall rescal-
ing (x1, . . . , xn+1) ∼= (λx1, . . . , λxn+1). For xi and λ real this produces RPn,
and for xi and λ complex it produces CPn (which has n complex = 2n real
dimensions).

pseudospin in a current algebra, an SU(2) subalgebra not contained in the Lie
algebra of the center-of-mass modes.

puncture a marked point on a Riemann surface, the position of a vertex oper-
ator.

QCD string a reformulation of non-Abelian gauge theory as a string theory,
conjectured to exist at least in the limit of a large number of colors.

quaternionic manifold a 4k-dimensional manifold with the holonomy group
Sp(k)× SU(2) ⊂ SO(4k), with specific SU(2) curvature. This is the geome-
try of the moduli space of hypermultiplets in d = 6, N = 1 or d = 4, N = 2
supergravity.

R symmetry a symmetry that acts nontrivially on the supercurrent(s).

raising operator operators that reduce the energy of a given state. In CFT,
operators that increase the Virasoro generator L0 (or L̃0) by n units carry
a grading (subscript) −n.

Ramond algebra the world-sheet algebra of the Fourier modes of the super-
current and energy-momentum tensor, in a sector where the supercurrent
is periodic and its moding therefore integer-valued.

Ramond (R) boundary condition the condition that a fermionic field on the
world-sheet be periodic, in the closed string or in the double of the open
string (see doubling trick). Its Fourier moding is then integer-valued.

Ramond–Neveu–Schwarz (RNS) superstring the formulation of type I and II
superstrings that has superconformal invariance but not manifest spacetime
supersymmetry. The latter emerges after imposing the GSO projection on
the string Hilbert space.

Ramond–Ramond (R–R) states in type I and type II superstring theories, the
bosonic closed string states whose left- and right-moving parts are fermionic.
These include p-form potentials Cp, with p taking all odd values in the IIA
string and all even values in the IIB string.

rank 1. the maximal number of commuting generators of a Lie algebra; 2. the
number of indices on a tensor.

rational CFT a CFT with a finite number of primary fields under an extended
chiral algebra, a generalization of the minimal models. Such CFTs are highly
constrained.

refermionization after bosonization, the construction of new spin- 1
2
fields from

linear combinations of the bosonic fields. These fermions are nonlocal,
nonlinear functions of the original fermions.
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Regge behavior in scattering at large center-of-mass energy-squared s and fixed
momentum transfer-squared −t, the scaling of the amplitude as sα(t). The
values of t where α(t) = j is a nonnegative integer correspond to exchange
of a particle of spin j and mass-squared −t.

Regge slope denoted α′, the square of the characteristic length scale of pertur-
bative string theory. The tension of the fundamental string is 1/2πα′.

relevant interaction an interaction whose dimensionless strength increases with
distance. In perturbation theory, this is equivalent to a superrenormalizable
interaction.

renormalization group equation the differential equation governing the change
of physics with length scale.

renormalization theory the calculus of path integrals.

Riemann–Roch theorem the theorem that the number of metric moduli minus
the number of conformal Killing vectors on a Riemann surface is −3χ, with
χ being the Euler number of the surface; and, generalizations of this result.

Riemann surface a two-(real)-dimensional complex manifold, equivalent to a
Weyl equivalence class of Riemannian manifolds.

root a vector of the eigenvalues of the maximal set of commuting generators
of a Lie algebra, associated with a state in the adjoint representation.

S-duality a duality under which the coupling constant of a quantum theory
changes nontrivially, including the case of weak–strong duality. Important
examples are the SL(2,Z) self-dualities of IIB string theory and of d = 4,
N = 4 supersymmetric Yang–Mills theory. More loosely, it is used for
weak–strong dualities between different theories, such as IIA–M-theory (on
a circle) duality, SO(32) heterotic–type I duality, and E8 heterotic–M-theory
(on an interval) duality. In compactified theories, the term S-duality is
limited to those dualities that leave the radii invariant, up to an overall
coupling-dependent rescaling; contrast T-duality and U-duality.

S-matrix the overlap amplitude between states in the infinite past and states
in the infinite future; the scattering amplitude. In coordinate-invariant
quantum theories this is generally the simplest invariant. The term usually
implies a basis of free particle states; this is problematic in theories with
massless particles due to IR divergences, and meaningless in theories at
nontrivial IR fixed points.

scale transformation a rigid rescaling of spacetime, or of the world-sheet.

Scherk–Schwarz mechanism the breaking of supersymmetry by dimensional
reduction that includes a spacetime rotation.

Schottky group a discrete subgroup Γ of the SL(2,C) Möbius transformations
of the sphere S2, with additional conditions such that S2/Γ is a manifold
and in particular a Riemann surface.

Schwarzian the combination of derivatives appearing in the finite conformal
transformation of the energy-momentum tensor.
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Schwinger–Dyson equation the operator equations of a quantum theory, ex-
pressed as equations for the expectation values.

short multiplet see BPS state.

sigma model metric the metric appearing in the string world-sheet action. Also
known as the string metric, this differs from the Einstein metric by a dilaton-
dependent Weyl transformation.

simple current an operator J such that, for any primary field O, the operator
product JO contains only a single conformal family.

soliton a state whose classical limit is a smooth, localized, and (usually) topo-
logically nontrivial classical field configuration; this includes particle states,
which are localized in all directions, as well as extended objects. By contrast,
a state of ordinary quanta is represented near the classical limit by small
fluctuations around a constant configuration. In a theory with multiple
classical limits (dualities), solitons and quanta may exchange roles.

special Kähler geometry the geometry of the moduli space of vector multiplets
in d = 4, N = 2 supergravity. It is most simply defined (section B.7) in terms
of special coordinates, which are fixed up to a symplectic transformation.
Rigid special geometry is obtained in the limit where gravity decouples and
the supersymmetry becomes global.

spectral flow the adiabatic change in the spectrum produced by a continuous
change in the boundary conditions.

spin the behavior of a field or a state under rotations. In a CFT this is given
in terms of the conformal weights by h− h̃.

spin field the vertex operator for a Ramond ground state, which produces a
branch cut in the spinor fields.

spin structure one of a set of inequivalent ways of defining a spinor field
globally on a manifold. Roughly speaking, it corresponds to a choice of
signs in the square roots of the transition functions.

spurious state in OCQ, a state produced by Virasoro raising operators.

state–operator isomorphism in CFT, a one-to-one isomorphism between states
of the theory quantized on a circle and local operators. Also, a one-to-
one isomorphism between states of the theory quantized on an interval
and local operators on a boundary. In d dimensions the circle becomes a
(d− 1)-sphere and the interval a (d− 1)-hemisphere.

string coupling the dimensionless parameter g governing the weights of differ-
ent Riemann surfaces in string perturbation theory, the contribution from
surfaces of Euler number χ being weighted by g−χ. The string coupling
is related to the dilaton by g = eΦ. This definition corresponds to the
amplitude to emit a closed string; the amplitude to emit an open string is
proportional to g1/2.

string field theory the representation of string theory as theory of fields, the
fields being maps from a circle (or interval) into spacetime. This corresponds
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to an infinite number of ordinary quantum fields. This formalism can
reproduce string perturbation theory, but it is unclear whether it can be
defined beyond perturbation theory.

string metric see sigma model metric.

string scale the mass scale α′−1/2 characterizing the tower of string excitations.

string–string duality a term sometimes used to denote a weak–strong duality
between different string theories, in particular between the heterotic string
compactified on T 4 and the IIA string compactified on K3.

string tension the mass per unit length of a string at rest, related to the Regge
slope by 1/2πα′.

Sugawara construction in current algebra, the construction of the energy-
momentum tensor as a product of two currents. Originally proposed as
a phenomenological model in four dimensions, this was later found to be
an exact result in two dimensions.

superconformal algebra an extension of the conformal (Virasoro) algebra to in-
clude anticommuting spinor generators. The (N, Ñ) superconformal algebra
has N left-moving and Ñ right-moving supercurrents.

superconformal current algebra an extension of the conformal transformations
to include both spin- 3

2
and spin-1 currents.

superconformal field theory (SCFT) a quantum field theory that is invariant
under superconformal transformations.

supercurrent a conserved spinor current. This includes the world-sheet current
TF associated with superconformal transformations, and the spacetime
current associated with spacetime supersymmetry.

superfield a field on superspace, with specific transformation properties under
a change of coordinates.

supergravity the union of general relativity and supersymmetry, implying also
the promotion of supersymmetry to a local symmetry.

supermanifold (or superspace) a formal extension of the concept of manifold
to include both commuting and anticommuting (Grassmann) coordinates.

supermoduli the anticommuting parameters characterizing a super-Riemann
surface.

superpartner scale the mass scale of the superpartners of the Standard Model
particles. This is expected to be between 102 and 103 GeV if supersymmetry
solves the naturalness problem of the Higgs scalar mass.

superpotential in d = 4, N = 1 supersymmetry, the holomorphic function of
the superfields that determines the nongauge interactions.

super-Riemann surface a supermanifold defined in terms of superconformal
transition functions between patches.

supersymmetry a symmetry whose charge transforms as a spinor, which relates
the masses and couplings of fermions and bosons.
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supersymmetry breaking scale the mass scale of the expectation value that
breaks supersymmetry. The superpartner scale is the supersymmetry break-
ing scale times the strength of the coupling of the Standard Model fields to
the supersymmetry breaking fields.

T -duality a duality in string theory, usually in a toroidally compactified the-
ory, that leaves the coupling constant invariant up to a radius-dependent
rescaling and therefore holds at each order of string perturbation theory.
Most notable is R → α′/R duality, which relates string theories compact-
ified on large and small tori by interchanging winding and Kaluza–Klein
states. More generally it includes shifts of antisymmetric tensor backgrounds
and large coordinate transformations in spacetime. Contrast S-duality and
U-duality.

’t Hooft–Polyakov monopole a classical solution with magnetic charge, which
exists whenever a simple group is spontaneously broken to a group with a
U(1) factor.

tachyon a particle (almost always a scalar) with a negative mass-squared,
signifying an instability of the vacuum.

tadpole an amplitude for creation of a single particle from the vacuum, induced
by quantum effects.

target space the space in which a function takes its values. This is usually
applied to the nonlinear sigma model on the string world-sheet, where the
target space is itself spacetime.

Teichmüller parameters the moduli for the complex structure of a Riemann
surface (strictly speaking, points in Teichmüller space are not identified
under the modular group).

tensionless string theory an interacting theory with tensionless strings. These
can arise as p-branes with p−1 directions wrapped on a collapsing cycle, as
various 2-branes with one direction stretched between higher-dimensional
branes when the latter become coincident, and on zero-size E8 ×E8 instan-
tons. In general the coupling is fixed to be of order one, so there is no
perturbation expansion. Tensionless implies that the string tension in units
of the gravitational scale goes to zero; it is not applied to the fundamental
string, which becomes noninteracting in that limit.

tensor multiplet 1. the multiplet of d = 6, (1, 0) supersymmetry whose bosonic
content is one self-dual tensor and one scalar. This reduces to a vector
multiplet of d = 4, N = 2 supersymmetry; 2. the multiplet of d = 6,
(2, 0) supersymmetry whose bosonic content is one self-dual tensor and five
scalars. This reduces to a vector multiplet of d = 4, N = 4 supersymmetry.

tensor operator in CFT, a local operator whose conformal or superconformal
transformation involves only the first derivative of the transformation; syn-
onymous with a primary field of the conformal or superconformal symmetry.
Such an operator is mapped to a highest weight state by the state–operator
isomorphism.
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tetrad a basis of d orthonormal vector fields in d dimensions. The term tetrad
originates in d = 4 (as does the equivalent term vierbein) but there is no
other convenient term for general d.

the theory formerly known as strings see M-theory, second definition.

theory see vacuum.

theta functions the family of holomorphic functions having simple periodicity
properties on a torus.

Thirring model the solvable quantum field theory of a single Dirac fermion
with a quartic interaction in 1 + 1 dimensions. This is equivalent under
bosonization to a free scalar field at a general real radius.

threshold correction a correction to the low energy effective action, and in
particular to the gauge coupling, due to virtual massive particles.

topological string theory a modification of string theory without local dynam-
ics; all observables are topological.

toric geometry a generalization of the idea of projective space. Roughly speak-
ing, this corresponds to the most general linear sigma model.

toroidal compactification the periodic identification of one or more flat dimen-
sions.

torsion a term applied to various 3-form field strengths, so called because
they appear in covariant derivatives in combination with the Christoffel
connection.

tree-level the Feynman graphs which become disconnected if one propagator
is cut, or the analogous string amplitudes, the sphere and disk. These
correspond to classical terms in the effective action.

twist 1. (verb) to define a field in a periodic space to be aperiodic by a
symmetry transformation h; 2. (noun) the aperiodicity h; 3. (verb) given a
CFT or string theory, to construct a new theory using a symmetry group H .
One adds closed strings twisted by any of the elements h ∈ H , and requires
all states to be invariant under the transformations in H . This is equivalent
to treating H as a world-sheet gauge symmetry. The term orbifold is also
used as a synonym; 4. (noun, archaic) world-sheet parity.

twisted state a closed string with twisted periodicity.

type ... supergravity the low energy supergravity theory of the corresponding
string theory. The Roman numeral signifies the number of d = 10 super-
symmetries, and IIA and IIB distinguish whether the two supersymmetries
have opposite or identical chiralities respectively.

type I superstring the theory of open and closed unoriented superstrings, which
is consistent only for the gauge group SO(32). The right-movers and left-
movers, being related by the open string boundary condition, transform
under the same spacetime supersymmetry.
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type IIA superstring a theory of closed oriented superstrings. The right-movers
and left-movers transform under separate spacetime supersymmetries, which
have opposite chiralities.

type IIB superstring a theory of closed oriented superstrings. The right-movers
and left-movers transform under separate spacetime supersymmetries, which
have the same chirality.

type 0 string a pair of nonsupersymmetric string theories, which have tachyons
and no spacetime fermions, with the same world-sheet action as the type II
theories but with different projections on the Hilbert space.

U -duality any of the dualities of a string theory, usually of a toroidally com-
pactified type II theory. This includes the S-dualities and T-dualities, but
in contrast to these includes also transformations that mix the radii and
couplings.

ultrashort multiplet see BPS state.

unit gauge a choice of coordinate and Weyl gauges in two dimensions, such
that the metric is the identity.

unitary as applied to a quantum system, the property of having a conserved
inner product in a positive-norm Hilbert space.

unoriented string theory a string theory in which world-sheet parity-reversal Ω
is a discrete gauge symmetry. The perturbation theory includes unoriented
world-sheets, and the spectrum is restricted to states with Ω = +1.

UV divergence a divergence arising from short distances in spacetime, usually
signifying a limit to the validity of a theory.

vacuum a stable Poincaré-invariant state. The novel feature of systems with
unbroken supersymmetries is the frequent appearance of degenerate but
physically inequivalent vacua.
While it is now clear that the different string theories are actually different
vacua in a single theory, it is still common to use the term theory for each.
Also, different CFTs within a single string theory are sometimes referred to
as different theories rather than vacua. The term model is used to refer to
string vacua whose low energy physics resembles the Standard Model.

vector multiplet in d = 4, N = 1 or d = 6, N = 1 supersymmetry, the multiplet
whose bosonic content is a massless vector field. The d = 6 multiplet reduces
to a vector field plus two real scalars in d = 4, N = 2 supersymmetry.

Veneziano amplitude the bosonic string tree-level amplitude for four open string
tachyons.

Verma module the set of states obtained by acting on a highest weight state
with Virasoro raising generators in all inequivalent ways, with the require-
ment that all such states be linearly independent (the generators act freely).
This gives a representation of the Virasoro algebra that depends on the
central charge c and on the weight h of the highest weight state. This is
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very similar to a conformal family, except that in the case of a degenerate
representation some states in the latter may vanish; the Verma module
would in this case give a reducible representation.

vertex operator a local operator on the string world-sheet, corresponding to a
string in the initial or final state.

Virasoro algebra in a CFT, the infinite-dimensional Lie algebra of the Fourier
modes of the energy-momentum tensor.

Virasoro–Shapiro amplitude the bosonic string tree-level amplitude for four
closed string tachyons.

W algebras a family of extended chiral algebras with currents of spin greater
than 2.

W string a proposed generalization of string theory with constraints of spin
greater than 2. No complete construction exists.

Ward identity a relation between the divergence of the expectation value of a
conserved current and the same expectation value without the current.

weight 1. in CFT, the L0 or L̃0 eigenvalue, which determines the behavior
of an operator under scale transformations and rotations (= conformal
weight); 2. in Lie algebra, a vector of the eigenvalues of the maximal set of
commuting generators of a Lie algebra, in a state of a given representation.

Wess–Zumino consistency condition the condition that the second derivative of
a functional integral with respect to the background fields be symmetric.
This strongly constrains the form of possible anomalies in a theory.

Wess–Zumino–Novikov–Witten (WZNW) model a conformally invariant non-
linear sigma model on a group manifold with an antisymmetric tensor
background.

Weyl anomaly an anomaly in the Weyl transformation, this determines the
critical dimension in the Polyakov formalism. This is sometimes called the
trace anomaly or the conformal anomaly.

Weyl condition in even dimensions, the condition that a fermion have definite
chirality. This defines a spinor representation of the Lorentz group, which
contains half of the components of the Dirac representation of the gamma
matrix algebra.

Weyl transformation a position-dependent rescaling of the metric.

Wilson line 1. a gauge field with vanishing field strength but with nontrivial
parallel transport (holonomy) around nontrivial paths in spacetime. 2. the
gauge-invariant operator that measures such a field: the trace of the path-
ordered product of the line integral of the vector potential.

Wilsonian action the action in a low energy effective field theory, which incor-
porates the effects of higher energy virtual states.

winding state a closed string whose configuration is a nontrivial path in a
non-simply-connected spacetime.
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world-sheet 1. the two-dimensional surface in spacetime swept out by the
motion of a string. 2. the abstract two-dimensional parameter space used
to describe the motion of a string.

world-sheet duality the equivalence between Hamiltonian descriptions obtained
by cutting open a string world-sheet along inequivalent circles. Important
examples are the associativity condition, from the four-point sphere am-
plitude, and the equivalence of the open string loop and closed string tree
descriptions of the cylinder.

wrapped refers to a p-brane, q of whose dimensions are wound on a nontrivial
compact submanifold of spacetime, leaving a (p− q)-dimensional extended
object.

Yang–Mills field non-Abelian gauge field.

Zamolodchikov metric the expectation value of a pair of local operators on the
sphere, giving a natural inner product for the corresponding string states.
This is the metric that appears in the kinetic term in the spacetime action.

zero modes 1. of a differential operator: eigenfunctions with zero eigenvalue.
In a Gaussian functional integral, these would give an infinite factor in the
bosonic case and a zero factor in the fermionic case. In general these have
a physical origin and the functional integral has an appropriate integrand
to give a finite result; 2. center-of-mass modes.

zero-point energy the energy due to vacuum fluctuations of quantum fields.

zero-slope limit the limit α′ → 0. Only massless string states, described by low
energy field theory, remain.
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Calabi–Yau 311–12, 318–19, 323–5
Gepner models 394–402
of heterotic strings 386–90
constraints on spacetime action

388–90, 473
of type II strings 379–85
orbifold 292, 297

A–D–E singularity 425
An−1 see SU(n)
action (D-brane) 149–50
D0-brane 161
Dp-Dp′ system (#ND = 4) 163–4,
172

action (general)
Pontrjagin term 173, 187, 333

action (spacetime)
anomaly-cancelling terms 99–100,
130

d = 4, N = 1 supergravity 446, 474
d = 4, N = 1 supersymmetry 443,
474

d = 4, N = 4 Yang–Mills theory 443
d = 10, N = 1 Yang–Mills theory
443

eleven-dimensional supergravity 85,
453, 468, 474

F4 term 116, 132
and Born–Infeld action 152, 469

and duality 193–4
from (2,2) compactification 473
heterotic string 388–90
type II string 381–4

from Calabi–Yau compactification
315–20, 404–6, 472
higher corrections 321–4

from orbifold compactification 472
threshold corrections 298–300
twisted states 296–8
untwisted states 292–6

in N = 1 heterotic string vacua
359–62, 473

p-form gauge field 451–2
R4 term 117
R–R tadpole term 39
singularities in 411
type I supergravity 92–4
type I–heterotic relation 93, 192

type IIA supergravity 87–8
massive 89–90

type IIB supergravity 90–2
SL(2,R) symmetry 91, 181–2

action (world-sheet)
BC SCFT 4, 106
heterotic string 49
Landau–Ginzburg 270, 392
linear dilation 5
linear sigma model 398–9
N = 2 free SCFT 48
nonlinear sigma model 106–7
superfield form 105–7
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superstring 2
WZNW 247–50

affine Lie algebra 66
annulus, see cylinder
anomalies 94–103, 468
anomaly polynomial 97–101, 374
cancellation for SO(32) and E8 × E8

99–101
gauge 95ff
global gravitational 34
gravitational 95ff
in six dimensions 417, 420
in two dimensions 94–6, 107
mixed 95ff
see also Green–Schwarz mechanism

anti-de-Sitter space 223
antisymmetric tensor gauge field, see

p-form gauge field
Atiyah–Drinfeld–Hitchin–Manin

(ADHM) construction 174
auxiliary field 442–4
axion 79, 286, 315, 373–4
field (a) 293–4
and strong-CP problem 333–5

bc CFT, bosonization 15
BC SCFT 4–5
Bk see SO(2k + 1)
βγ CFT 15–20
bosonization 17–20, 118–19

BPS bound 449
D0–Dp system 168
F-string–D-string system 164, 176,
182

BPS states 449, 474
behavior at strong coupling 180–1
black p-branes 183, 220
bound states 164–75
D-branes 140–5
Kaluza–Klein states 456
macroscopic strings 81, 226, 468
stretched strings 186–7, 226
winding states 79–80
wrapped branes 404, 411–12
zero-force property 146

BRST charge 15–16, 24, 43, 50

and picture changing 118–21, 125
in topological string theory 385

BRST quantization 24–5, 43, 45, 50
beta function
and scale transformation 261, 264–6
for gauge coupling 298, 346, 367
vanishes for d = 4, N = 4 460

nonlinear sigma model 247, 321
Betti numbers 305, 308
Bianchi identity
Chern–Simons term in 86, 88, 91
for R–R vertex operators 88–9
in Calabi–Yau compactification 304,
324, 418

related to field equation by Poincaré
duality 141, 451–2

black hole
entropy 219–25, 227, 470
information paradox 225–6
produced in graviton–graviton
scattering 209

black p-brane 183–5, 201, 219–20,
227, 470

blow up (a fixed point) 297, 309–11,
388, 471

bosonization 11–15, 279–80, 467
and refermionization 131–2
bc CFT 15
βγ CFT 17–20, 118–19
current algebra fermions 54–5, 74–5
higher genus 13
kink operator 12
of U(1) current 68
Ramond states 13–15
twisted fermions 13–14

bound states
D0–D0 168–9, 469
and M-theory 198
and matrix theory 212–14

D0–D2 169–70
U-dual to FD-string 189

D0–D4 170–5, 176, 469–70
and instantons 172–5
U-dual to winding string 189

D0–D6 175
D1–D5 black hole 220–3
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F-string–D-string 164–7, 176, 469
SL(2,Z) duality 182
U-dual to D0–D2 state 189

C invariance 330–1
Ck see Sp(k)
c-map 382
CP invariance 331, 333–5, 472
CPT invariance 331–2
c-theorem 262–3
and supersymmetry multiplets
441–2, 447

Calabi–Yau compactification 302–24,
472–4

and Gepner models 397–402
as special case of (2, 2)
compactification 311–12, 386–90

field theory approximation 315
low energy field theory 315–20
massless spectrum 312–15
of type II string 379–86

Calabi–Yau manifold 309–12
Casimir energy 145
Casimir invariant 60
central charge (conformal) 3–5, 15, 43
and BRST nilpotence 24
and density of states 222, 236
and rank of gauge group 421
and renormalization group 262–6,
271

in heterotic string 49–50
in rational CFT 258–9
in topological string theory 385
in unitary CFT 228–33
of ghosts 46–8
specific
coset models 250–4
current algebra 70–2
N = 0 minimal models 231
N = 1 minimal models 254–5
N = 2 minimal models 391
superconformal current algebra

340–2
WZNW 247–8

central charge (supersymmetry)
and BPS states 449, 456

from dimensional reduction 454,
456–7, 466

in extended supersymmetry 448–9
in heterotic string 79–82
in type I/II string 144–5, 475

central extension 67
Chan–Paton degrees of freedom 30
for type I D5-brane 195–7
reinterpreted as D-brane label 141–2

Chan–Paton factor 73, 109, 468
character 235–6, 245–6
charge conjugation matrix C 434
Chern class (first) 309, 366, 402
Chern–Simons 3-form 92, 100
and modified gauge transformation
92, 107, 469

Chern–Simons terms 86, 453
and anomaly cancellation 99–100
from string perturbation theory
113–14, 127–30

in D-brane action 150
and induced R–R charge 170, 173,

203
chiral gauge couplings 282, 325, 330
constraints from 337, 340–2, 351–2,
447–8

in (2,2) models 386–8
in Calabi–Yau models 313
in orbifold models 288–9, 291

chiral multiplet 315, 441–2
chiral primary fields 378–9, 384–5
in Landau–Ginzburg models 394–5,
397

chiral ring 384–95, 473
chiral superfields 442–7
chirality
and anomalies 96–8, 101
effect of T -duality on 137–8
IIA vs IIB 27–9, 415–16, 453–4
matrix (Γ) 10, 432
of NS5-branes 204

Christoffel connection 106
Clifford (Dirac matrix) algebra 2, 193,

430
cocycle 19–20, 83
cohomology
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and homology 306, 317
BRST 25, 385–6
De Rham 305
Dolbeault 307
of K3 416–17

ring 385
Coleman–Weinberg formula 31, 156
collective coordinate 139–40, 149
for eleventh dimension 202, 204

commutators and anticommutators
[αµm, α

ν
n] 6

{bm, cn} 16
{βr, γs} 16
[Eα, Eβ] 61
{Gr, Gs} 7
[Hi, Eα] 61
[jam, j

b
n ] 66

[Lm,Gr] 7
[Lm, j

a
m] 66

[Lm, Ln] 7
{ψr, ψs} 14
{ψµr , ψνs } 6
N = 2 superconformal 376
{QB, bn} 24
[QB, βr] 24
[Ta, T b] 59
see also supersymmetry algebras

compactification 274
scale 344, 350
see also (0, 2), (2, 2), Calabi–Yau,
Gepner, orbifold, toroidal
compactifications

complex manifold 306–7
complex structure 306–7
hyper-Kähler manifold 463
large 403, 405

complex structure moduli 291,
314–15, 381

conifold singularity 409–15
effective action 319–20, 472
K3 416
moduli space 296, 383–4, 402–9
orbifold 291, 296, 299
quintic 310

conformal block 235, 272
differential equation 237–8

in rational CFT 255–7
conformal bootstrap 233–6
conformal family 229
degenerate 232, 239

conformal field theory (CFT)
c < 1 236–42
c = 1 35–7
density of states 222, 236
irrational 258–9, 471
nonunitary 232
rational 255–8, 471
unitary 45, 228–32
see also bc, βγ, ψ, coset,
Landau–Ginzburg, parafermion
CFTs, current algebras, minimal
models, superconformal field
theory

conformal gauge 20
conformal invariance
constraints on correlators 233–5
vs scale invariance 260, 262–3

conformal perturbation theory 263–6
conifold 405, 409–10, 474
massless 3-brane 411–12
singularity in CFT 410–11
transition 412–15

constraint algebra 3, 20, 24, 45–9
coset CFT 250–4, 272, 471
from gauged world-sheet symmetry
251

minimal models 250–1
N = 1 minimal models 255
parafermion CFTs 251–2
W algebras 253–4

cosmological constant 226, 372–3, 473
coupling constants
gauge 298, 361
unification 314, 345–52

relations among 107–10, 150–2,
335–6, 472

string vs M-theory 199
Yukawa 317, 331

critical dimension 4, 47–8, 198
critical phenomena 266–71, 393, 400
current algebra 66–73, 243–50, 272,

468, 471
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and coset models 250–4
and unification 337–8, 351, 353–4
bosonic representation 74–5
fermionic representation 68
gauging 94–5
KZ equation 244
level 67
modular invariants 245–6, 249–50
primary fields 72–3
restriction on representations 72–3,
289, 337–8, 349

Sugawara construction 69, 82
superconformal 338–42
WZNW models 246–50

cycle 306, 319–20
collapsing 404, 410–13, 425, 427
D-brane wrapped on 404, 411–13,
425

intersection number 317–18
monodromy 410
world-sheet wrapped on 322–4, 406,
408

cylinder
D-brane interactions from 146–7,
155–60, 176, 196

in type I theory 37–9, 135

D-branes 138–77, 469–70
action 149–50
and black p-branes 219–23, 227
D1–D5 black p-brane 220–23

as BPS states 140–1, 145, 226
as R–R sources 141–2
charge 146–7
coincident, non-Abelian dynamics
149, 166, 211–23

D0-brane quantum mechanics 161–2
in matrix theory 211–14, 217–18

D0-branes as Kaluza–Klein states
198–9

D1-branes and IIB duality 180–2
D3-branes and Montonen–Olive
duality 180–2

Dp–Dp′ system 152–8, 162–4, 175–6
BPS bound 168

effect of T -duality on 143–4, 429

gauge coupling 151

in type I theory 190–7

interactions between 175–6

parallel 146–7

rotated 154–8

velocity-dependent 158–61

on collapsing cycle 411–15, 425

p even, relation to M-theory 200–8

substring length scale 160–2, 412

tension 146, 150

see also bound states

D-instanton 142, 145, 334, 372, 469

Dk see SO(2k)

D-terms

four supersymmetries 364–6, 399,
443–4, 473

and orbifold blow-up modes 297

eight supersymmetries 462

in Dp-Dp′ system 163, 172, 221–2

descendants 229, 233–4, 271

diagonal modular invariant 36

current algebra 246, 249

heterotic string 55

type 0 superstring 35

differential forms 305–6, 450–2

dilaton

and string loop expansion 87–9,
360–2, 383–4

coupling to R–R fields 87–9

in chiral multiplet 294, 315

in hypermultiplet 380, 383–4, 429

in vector multiplet 428

dilaton-mediated supersymmetry
breaking 370

dimensional reduction

of action 84–6, 292–5, 374

of couplings 206, 335

of d = 10 Yang–Mills 459–61

of spectrum 78–80, 84–6, 188, 453–5

of supersymmetry 79–80, 311, 454,
458, 463–4

to d = 2 392, 399, 449, 466

Dirac–Born–Infeld action 149

Dirac equation 1–2, 22, 88, 179

Dirac matrices 1–2, 8, 430
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Dirac quantization condition 147–9,
183–5, 196, 247–8, 355, 366

Dirac spinor 8, 430–2
Dirichlet boundary condition 139,

142, 143, 152
discrete light-cone quantization

(DLCQ) 217
discrete series, see minimal models
discrete symmetry (spacetime) 328–35,

472
Z5 example 397–8
see also S-, T -, U-dualities

discrete torsion 58, 468
disk amplitudes 102, 110–12, 114–16,

134, 175
tadpole 38–9, 42, 147

divergences, cancellation 37–42,
102–3, 135, 142–3, 468

doubling trick 7–8, 153
dual Coxeter number 63–4, 71
duality, see Montonen–Olive, S-,

string–string, T -, and U-dualities

E6 64–5, 82, 285ff, 312, 386–8
singlets 313, 315, 324–6, 388
see also grand unification

E6(6) 188–9
E7 82
E8 54, 63–4, 82–3, 285, 290
and anomalies 100, 110, 134
root lattice 74–5

Eguchi–Hanson space 309–10
electroweak scale 343, 369
energy-momentum tensor 1–5, 50
in bosonization 12, 15, 18
in type I theory 37–9, 135
topological 385

enhanced gauge symmetries
at Gepner point 398
at orbifold points 309–10, 312–13
on coincident branes 149, 185–6
on singular manifolds 425, 427
on small SO(32) instantons 195–6
winding state 66, 76–7

Euler number (Calabi–Yau) 305, 309,
414–15

extended chiral algebra 253–4, 256
extended supersymmetry 359, 440,

447–9, 473–4
exterior derivative 305, 307, 450

F-terms 399, 443–5
F-theory 200–1, 474
Faddeev–Popov ghosts 15–20, 46–7
Fayet–Iliopoulos term 364–5, 399,

443, 446
Feigin–Fuchs representation 241–2,

272
fermion number
spacetime 32
world-sheet 8–9, 19, 22ff, 32–3

Feynman diagrams 102, 176, 316
fibrations 404, 428
fixed point
orbifold 275, 284, 286
blowing up 297, 309–10, 388, 471

field theory 266
nontrivial 260–1, 415, 421, 460–1

flipped SU(5) 348
flop 406–9, 474
fractional charge 352–5
fractional string theory 46, 468
free fermion models 279–80, 471–2
free parameters, absence of 369, 373
fundamental (F-) string 145, 150
fundamental region 31, 40, 284
fusion rule 238–40, 244–5, 256–8,

270–1

gauge coupling, see coupling
constants, gauge

gauge-fixing 20
gauginos 30, 315
condensation 367–9

general relativity 183, 408, 429
generation (quark and lepton) 64–5,

288–92, 313–15, 324–6, 387–8,
471–2

gen.-changing transition 414–15, 474
Gepner models 394–405, 473
relation to Calabi–Yau 397–402

Gliozzi–Scherk–Olive (GSO)
projection 27, 30, 33
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and spin–statistics 29
and supersymmetry 50–1, 359
current algebra fermions 51–5, 82,
193, 386

diagonal 28, 35–7, 268
global symmetry 45, 94, 327–8, 334–5
goldstino 140
Goldstone boson 140
grand unification 63–5, 81, 281,

288–90, 351–6
partial 348
scale 298–9, 345–50
symmetry breaking 289, 325–6,
337–8, 349

gravitational scale 180, 344
eleven-dimensional 199, 212

gravitino 28–31, 79, 286, 315, 441
world-sheet 126

Green–Schwarz mechanism 99–101,
365, 462

Green–Schwarz superstring 29, 49,
133

H-monopole 82
Hagedorn temperature 83
Hamiltonian, D0-brane 161–2, 212
heterotic 5-brane 195
heterotic string 45–83, 468
(0,2) and (1,2) 48
amplitudes 112–13, 126–33, 134,

373–4
bosonic form 73–5
E8 × E8 53–5
at strong coupling 205–8

fermionic form 49–50
nonsupersymmetric 55–9
SO(16)× SO(16) 57–9
SO(32) 51–3
at strong coupling 190–4

T -duality between SO(32) and
E8 × E8 78

toroidal compactification 76–82,
422–9

hidden sector 289, 367–71
hierarchy (Higgs naturalness) problem

281–2, 350, 369

highest weight (primary) state 229ff
current algebra 72–3, 243
N = 2 chiral 378–9, 384–5
superconformal 105

Hodge numbers 309–10, 315, 402–3,
414, 416

holomorphic fields 45–6, 255
holonomy 304ff, 415–17, 463–4
homology 306, 317
hyper-Kähler manifold 417, 463–4
hypermultiplet 380–4ff, 447, 461–4
from p-p′ strings 163, 172–3, 196

index theorem 330
inheritance principle 290, 293, 314,

351
instanton (Pontrjagin) number 187,

333
instantons 334–5
D- 142, 145, 334, 372, 469
world-sheet 323–5, 383, 406, 408,
472

Yang–Mills 172–5, 194–6, 418–20,
470

intersection number 317–18
irrelevant interaction 192, 264
Ising model 266–70
tricritical 269

Jacobi’s abstruse identity 35

K3 manifold 301, 415–18
and heterotic string 418–21
and type II string 415–18, 425–8

Kac determinant 230–3, 242, 254, 271,
471

Kac–Moody algebra 66
Kähler class 308
Kähler form 307–8
Kähler manifold 307–8, 446
and supersymmetry 311, 446
Ricci-flat 308–11
see also hyper-Kähler manifold,
special Kähler manifold

Kähler moduli 291, 315, 381
effective action 316–19, 323, 381–4,
472
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K3 416
moduli space 296, 381–3, 402–9
Kähler cone 406–8

Kähler potential 294–8, 308, 359–62,
390, 446–7

Kähler transformation 296, 308, 446–7
Kaluza–Klein gauge symmetry 76, 79,

86, 188–9
and supersymmetry algebra 454–6
vertex operators 66

Kaluza–Klein monopole 81, 205
Kaluza–Klein states 198
Klein bottle 39–41
Klein–Gordon equation 1
Knizhnik–Zamolodchikov (KZ)

equation 244, 272

Landau–Ginzburg model 270–1,
392–4, 400, 471, 473

large-N limit 223
large order behavior 145
lattice (momentum) 19, 74–8, 83
Laurent expansion, see mode

expansion
length, minimum 160–2, 412
level (current algebra) 67
level-matching 25, 57, 276–9, 284–5ff,

395, 468
Lie algebra 59–65, 468
and grand unification 63–5
normalization of generators 67–8,
93, 112, 151, 336

roots and weights 61–3, 74–6
simply-laced 63

light-cone quantization 212, 216
calculations 117–18, 131–3
discrete (DLCQ) 217–18

lightlike limit 217–18
linear dilaton CFT 5, 15, 43, 230
applications 89, 185, 241–2, 272

linear multiplet 294
linear sigma model 398–402, 408
Lorentz generators 8–9, 431
Lorentz invariance 9, 331
eleven-dimensional 212
local 96

M-theory 198–205, 208–11, 426–7, 470

on S1/Z2 207–8, 350, 419–20

M2-brane 201–2, 470

in matrix theory 214–16

stretched 204–5, 421

wrapped 427

M5-brane 201–5, 419–21, 470

macroscopic string 81

magnetic monopoles 81–2, 187, 205,
353, 468, 470

Dirac quantization condition 147–8,
355

Majorana spinor 433–4, 437

Majorana–Weyl spinor 433

manifold

Calabi–Yau 309–11

complex 306–7

group 246–50

hyper-Kähler 463

Kähler 307–8

quaternionic 464

real 305–6

SU(3) holonomy 308–9

special Kähler 464–5

marginal interaction 264–5

mass-shell condition 1, 20, 23

matrix theory 211–18, 226, 470

Maurer–Cartan 1-form 248

measure, supermoduli 124–6

membrane, see M2-brane

Mermin–Wagner–Coleman theorem
140

minimal models 236–42

coset construction 250–1

Feigin–Fuchs representation 241–2

fusion rule 238

Ising model 267–9

Landau–Ginzburg models 270–1

mirror symmetry 402–4, 473–4

and conifold transition 401, 414

and flop transition 406–9

and Kähler moduli space 404–9,
428–9

Möbius invariance 233

Möbius strip 39, 41–2, 135
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mode (Laurent) expansion
b, c, β, γ 16
free scalar (Xµ) 6
ja 66
N = 2 superconformal 376
p-p′ strings 153–5
ψ 6–8, 14
TB, TF 7

model-independent axion 333
modular invariance 33–7, 235–6, 471
A–D–E invariants 246, 250–1
and anomalies 103
current algebra 245–6, 249–50
Gepner models 395
heterotic string 52–3, 55–8, 82,
388–9

minimal model 251
orbifold 276–9
rational CFT 268
superstring 26–7, 33–5

modular transformations 34, 38, 156
modular weights 297
moduli, physical effects 291, 324–6,

331, 370–3, 445
in threshold correction 298–300, 349

moduli space
(2, 2), product form 381, 389–90
IIB theory 91–2
as spacetime 404, 417
branches 172–4, 373, 412–15, 419–21
D1–D5 system 221–2
dilaton–axion 296, 428, 457
for toroidal compactification 76–8,
81, 91–2, 427–8, 455–8

K3 417–19, 427–8, 474
metric on 362, 374
orbifold 296–7, 472
with 8 supersymmetries 462–5, 475
with 16 supersymmetries 159, 460,
475

see also complex structure, Kähler
moduli

monodromy 240, 252, 410, 471
Montonen–Olive duality 186–7, 428,

470
multicritical behavior 268–70

NS algebra 7, 43

NS boundary condition 5–8, 15–16

vertex operators 10–13, 16–18

NS–NS charge 81

in supersymmetry algebra 81–2

magnetic 81–2, 145, 183–5, 189

NS–NS fields 87

background 106

tadpole 37–42

NS5-brane 470

IIA 202–4, 426

IIB 182–6, 202–4

multiple 186

heterotic 195

Narain compactification 73–9, 83, 468

naturalness problem 282, 350, 369

Neumann boundary condition 141,
143, 152

no-ghost theorem 25, 50, 232–3

no-scale models 371

noncommutative geometry 149, 161

nonlinear sigma model 106–8, 247,
311, 469, 471

nonperturbative definition (of string
theory) 180–1, 208–11

nonperturbative effects 49, 134, 145,
178, 343, 366–73, 421–2, 425

see also instantons, strong coupling

nonrenormalization theorems 133–4,
300

α′ corrections 111–17, 185, 321–5,
382–3, 472

perturbative, violation by instantons
323–5, 367–8, 372, 472

string corrections 469, 473

4 supersymmetries 361–2, 364–5,
444

8 supersymmetries 381, 383–4,
410–11, 428–9

16 supersymmetries 133–4, 159,
194, 460–1

32 supersymmetries 133–4, 180

normal ordering 2, 7, 43

null state 231–3, 236–9, 243–5, 252–3

decoupling of 98, 101–2, 119, 121
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old covariant quantization (OCQ) 3,
20–3, 25

one-loop string amplitudes 31–42,
126–34, 135, 146–7, 155–60,
298–300, 374, 468–9, 472

operator product expansion (OPE) 43,
82–3, 95–6

and bosonization 11–12, 17–19
B C 106, 134
βγ CFT 17–19
closure and locality 26, 52–5, 74
H H 11
in Sugawara construction 69–71
ja jb 66, 68
̃α ̃β̇ 357
jB b 24
jB β 24
λA λB 49
λa λb 73
N = 2 superconformal 37, 47, 375
Om On 234
ψAν 14
ψl ψl′ 252
ψµ ψν 2, 49
ψµΘα 112
superconformal current algebra 339
TB O 233
TB TB 3–4
TB TF 3–4
TFA 10
TF TF 3–4, 280
Xµ Xν 2, 49
Xµ X ν 106, 134
VαVβ 114
W W 253

orbifolds 274–301, 331ff, 471–2
asymmetric 279
fixed points 311
blowing up 296–7, 309–10, 312–13

K3 300–1, 417, 425, 427
modular invariance 276–9
non-Abelian 275
nonsingularity of CFT 275, 410, 425
T -duality 295–6
twisted sector 286–8, 296–8
twisting construction 55–9

Z3 283–91, 300, 309–10
Z4 291–2, 300

orientifold 196, 422
orientifold plane 138, 142–4, 147, 151,

175, 206–8

p-brane, see black p-, D-, M2-, M5-,
and NS5-branes

p-form, see differential forms
p-form gauge field 85, 451–2
field strength 86
self-dual 91, 452
see also Chern–Simons term, R–R
fields

p-p′ string 153–5, 162–4
#ND = 4 162–4, 197
#ND = 8 191

(p, q)-form 307–9
(p, q) string 167, 176–7, 182
P invariance, see parity
parafermion CFT 251–2, 269, 391–2,

471
parallel transport 304, 463
parity
and anomalies 95–8, 285, 304,
329–30

and T -duality 137
spacetime 27–8, 127
world-sheet 27–31, 41

partition functions 235–6, 266, 272,
471

and bosonization 13
BPS states 171, 190
GSO projected 32–7, 51–3, 55–8
with twists 33–4, 156

Pati–Salam unification 348
Pauli–Villars regulator 95, 285
Peccei–Quinn (PQ) symmetry 333–5,

360–2, 365–6, 371–2, 382–3, 473
physical states 1, 3, 20–3, 28, 45
picture changing operator (PCO)

118–21, 126, 469
pictures 108–10, 118–21, 147
Planck scale, eleven-dimensional 199,

212
Poincaré duality 86, 450–2
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point group 275
primary field, see highest weight state,

tensor field
projective plane 39, 42
projective space 310–11, 320, 398, 404,

465
proton decay 355–6, 472
pseudospin 67, 244

quantum mechanics 210, 225–6, 429
quaternionic manifold 464
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nonperturbative contributions
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strong coupling limit 190–7



Index 531

T -duality 138, 143–4
type II superstrings 26–9, 31–7
amplitudes 113–18, 134
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